TABLE EP-2(1)

# EXISTING TRANSMISSION LINES

| No. | Secti       | on    |                | Circuit<br>No.                         | Route<br>Length<br>(km) | Conductors                 |
|-----|-------------|-------|----------------|----------------------------------------|-------------------------|----------------------------|
|     | (I) 150 kV  | Frans | smission Line  |                                        |                         |                            |
| 1.  | Waru        | -     | Bangil         | 1                                      | 31.547                  | ACSR 330                   |
| 2.  | Waru        | -     | Kebonagung     | 1                                      | 89.495                  | ACSR 330                   |
| 3.  | Bangil      | -     | Sutami         | 1                                      | 82.947                  | ACSR 330                   |
| 4.  | Kebonagung  | _     | Sutami         | 1                                      | 27.950                  | ACSR 330                   |
| 5.  | Waru        | _     | Perak          | 1                                      | 17.800                  | ACSR 330                   |
| 6.  | Waru        | _     | Gresik         | 2                                      | 24.950                  | ACSR 330                   |
| 7.  | Gresik      | _     | Segoromadu     | 2                                      | 3.900                   | ACSR 344.1                 |
| 8.  | Segoromadu  | _     | Lamongan       | 2                                      | 28.200                  | ACSR 240                   |
| 9.  | Lamongan    | -     | Batat          | 2                                      | 31.000                  | ACSR 240                   |
| 10. | Babat       | -     | Bojonegoro     | 2                                      | 35.300                  | ACSR 240                   |
| 11. | Waru        | _     | Mojokerto      | 1                                      | 35.700                  | ACSR 330                   |
| 12. | Mojokerto   | -     | Kediri         | 1                                      | 69.100                  | ACSR 330                   |
| 13. | Kediri      | _     | Manisrejo      | 1                                      | 71.000                  | ACSR 330                   |
| 14. | Probolinggo | -     | Jember         | 1                                      | 92.850                  | ACSR 330                   |
| 15. | Jember      | -     | Banyuwangi     | 1                                      | 82.400                  | ACSR 330                   |
| 16. | Waru        | _     | Tandes         | 1                                      | 13.800                  | ACSR 330                   |
| 17. | Tandes      | -     | Perak          | 1                                      | 4.000                   | ACSR 330<br>+ of Cab 200x2 |
| 18. | Manisrejo   | _     | Palur (Jateng) | 2                                      | 78.674                  | ACSR 330                   |
| 19. | Sukolilo    | _     | Waru           | 1 .                                    | 11.05                   | ACSR 330                   |
| 20. | Lumajang    | _     | Incoming       | 2                                      | 7.3                     | ACSR 330                   |
| 21. | Segoromadu  | ~     | Petrokimia     | 2                                      | 2.1                     | ACSR 330                   |
|     | Sub-Tota    | al    | (1)            | * *; * * * * * * * * * * * * * * * * * | 841.063 (               | 1,052.487 km-cct)          |

TABLE EP-2(2)

| No. | Sect        | ion          |               | Circuit<br>No. | Route<br>Length<br>(km) | Conductors   |
|-----|-------------|--------------|---------------|----------------|-------------------------|--------------|
|     | (II) 70 kV  | Trans        | smission Line |                |                         |              |
| 1.  | Waru        | _            | Bangil        | 2              | 31.850                  | ÇU 50        |
| 2.  | Waru        | -            | Sukolilo      | 2              | 11.0                    | Ct 50        |
| 3.  | Sukolilo    |              | Ngagel        | 2              | 4.5                     | CU 50        |
| 4.  | Ngagel      | -            | Ujung         | 2              | 13,297                  | CU 50        |
| 5.  | Ujung       | -            | Perak         | 5              | 2.89                    | ACSR 300 MCM |
| 6.  | Perak       | -            | Krembangan    | 2              | 2.456                   | CVT 100      |
| 7.  | Krembangan  | <del>-</del> | Swahan        | 2              | 5.5                     | ACSR 300 MCM |
| 8.  | Sawahan     | -            | Mojokerto     | 2              | 37.1                    | ACSR (3/0)   |
| 9.  | Sawahan     | -            | Waru          | 2              | 10.6                    | CU 50        |
| 10, | Sawahan     | -            | Tandes        | 2              | 3.5                     | ACSR 300 MCM |
| 11. | Tandes      | -            | Segorómadu    | 2              | 10.5                    | NCSR 300 MCM |
| 12. | Segoromadu  | -            | Semen Gresik  | 2              | 2.1                     | ACSR 300 MCM |
| 13. | Segoromadu  | -            | Barat         | 2              | 1.0                     | ACSR (3/0)   |
| 14. | Segoromadu  | -            | Petrokimia    | 2              | 8.4                     | ACSR 300 MCM |
| 15. | Bangil      | -            | Pandaan       | 2              | 9.7                     | ACSR 300 MCM |
| 16. | Bangil      | _            | Probolinggo   | 2              | 52.704                  | ACSR 300 MCM |
| 17. | Bangil      | -            | Buduran       | 1              | 14.831                  | CU 50        |
| 18. | Bangil      | -            | Blimbing      | 2              | 43.5                    | ACSR (3/0)   |
| 19. | Blimbing    | -            | Mendalan      | 2              | 39.331                  | ACSR (3/0)   |
| 20. | Blimbing    | -            | Polehan       | 2              | 12.159                  | CU 50        |
| 21. | Polehan     | -            | Kebonagung    | 2              | 13.0                    | ACSR 300 MCM |
| 22. | Kebonagung  | -            | Turen         | 1              | 21.126                  | ÇU 50        |
| 23. | Mendalan    | -            | Mojokerto     | 2              | 49.8                    | ACSR (3/0)   |
| 24. | Mojokerto   |              | Kertosono     | 1              | 45.4                    | ACSR 300 MCM |
| 25. | Manisrejo   | _            | Dolopo        | 1              | 14.0                    | ACSR 300 MCM |
| 26. | Dolopo      | -            | Ponorogo      | 1              | 15.5                    | ACSR 300 MCM |
| 27. | Manisrejo   | -            | Ponorogo      | 1              | 29.5                    | ACSR 300 MCM |
| 28. | Ponorogo    |              | Pacitan       | 2              | 62.2                    | ACSR 300 MCM |
| 29. | Ponorogo    | _            | Trenggalek    | 2              | 38.8                    | ACSR 300 MCM |
| 30. | Trenggalek  | -            | Tulungagung   | 2              | 33.0                    | ACSR 300 MCM |
| 31. | Kertosono   | -            | Manisrejo     | 1              | 1.6                     | ACSR 300 MCM |
| 32. | Tulungagung | -            | Blitar        | 2              | 28.0                    | ACSR 300 MCM |
| 33. | Blitar      | -            | Wlingi        | 2              | 12.0                    | ACSR 300 MCM |
| 34. | Kertosono   | -            | Ploso         | 2              | 25.0                    | ACSR 300 MCM |
| 35. | Sengguruh   | -            | Karangkates   | 1              | 12.772                  | ACSR (3/0)   |
| 36. | Tulungagung | _            | Kediri        | 2              | 29.2                    | ACSR 300 MCM |
| 37. | Madium      | _            | Maospati      | 2              | 10.25                   | ACSR 300 MCM |

TABLE EP-2(3)

| No.                  | s                                                    | ecti | on                                                                    | Curcuit<br>No.   | Route<br>Length<br>(km)                   | Conductors                              |
|----------------------|------------------------------------------------------|------|-----------------------------------------------------------------------|------------------|-------------------------------------------|-----------------------------------------|
|                      | (111) 30 kV                                          | Sub  | -transmission                                                         | Line             |                                           |                                         |
| 1.                   | Probolinggo                                          | -    | Leces                                                                 | 2                | 9.831                                     | CU 35                                   |
| 2.                   | Probolinggo                                          | -    | Winongan                                                              | 2                | 38.164                                    | CU 35                                   |
| 3.                   | Leces                                                | -    | Lumajang                                                              | 1                | 33.253                                    | ACSR (1/0)                              |
| 4.                   | Mendalan                                             | -    | Jombang                                                               | 1                | 39.9392                                   | CU 25                                   |
| 5.                   | Mendalan                                             | _    | Kediri                                                                | 2                | 33.809                                    | ACSR (1/0)                              |
| 6.                   | Kediri                                               | -    | Tulungagung                                                           | 2                | 27.791                                    | CU 35                                   |
| 7.                   | Tulungagung                                          | -    | Blitar                                                                | 2                | 28.781                                    | ACSR (1/0)                              |
| 8.                   | Tulungagung                                          | -    | Trenggalek                                                            | 2                | 32.684                                    | ACSR (1/0)                              |
|                      |                                                      |      |                                                                       |                  |                                           |                                         |
|                      | Sub-Tot                                              | al   | (111)                                                                 |                  | 243.705 (4                                | 114.765 km-cct)                         |
|                      |                                                      |      | (III)<br>transmission L                                               | ine              | 243.705 (4                                | 114.765 km-cct)                         |
| 1.                   |                                                      |      |                                                                       | ine<br>2         | 2.682                                     | 114.765 km-cct)<br>CU 35                |
| 1.                   | (IV) 25 kV                                           |      | transmission L                                                        |                  | ·                                         |                                         |
| _                    | (IV) 25 kV<br>Giringan                               |      | transmission L<br>Golang                                              | 2                | 2.682                                     | CU 35                                   |
| 2.                   | (IV) 25 kV<br>Giringan<br>Golang                     |      | transmission L<br>Golang<br>Mranggen                                  | 2                | 2.682<br>6.014                            | CU 35<br>CU 35                          |
| 2.<br>3.             | (IV) 25 kV<br>Giringan<br>Golang<br>Dungus           |      | transmission L<br>Golang<br>Mranggen<br>Dolopo                        | 2<br>2<br>2      | 2.682<br>6.014<br>11.2                    | CU 35<br>CU 35<br>CU 50                 |
| 2.<br>3.<br>4.       | (IV) 25 kV<br>Giringan<br>Golang<br>Dungus<br>Dolopo |      | transmission L<br>Golang<br>Mranggen<br>Dolopo<br>Ponorogo            | 2<br>2<br>2      | 2.682<br>6.014<br>11.2<br>16.162          | CU 35<br>CU 35<br>CU 50<br>ACSR (1/0)   |
| 2.<br>3.<br>4.<br>5. | (IV) 25 kV Giringan Golang Dungus Dolopo Dolopo      |      | transmission La<br>Golang<br>Mranggen<br>Dolopo<br>Ponorogo<br>Ngebel | 2<br>2<br>2<br>1 | 2.682<br>6.014<br>11.2<br>16.162<br>10.75 | CU 35 CU 35 CU 50 ACSR (1/0) ACSR (3/0) |

Note: /1 - Figures in parentheses show the line length of the line (Circuit No. x Route Length).

(Source: Ref. EP-01 - 07 & 08)

TABLE EP-3(1) EXISTING SUBSTATION TRANSFORMERS
IN EAST JAVA SYSTEM

(As of 1983/84)

|     | Name                  | Voltage Ratio<br>(KV) | Capacity<br>(No.) x (MVA) | Total Capacity<br>(MVA) |
|-----|-----------------------|-----------------------|---------------------------|-------------------------|
| 1.  | Sawahan               | 70/20/6               | 2 x 10                    | 46                      |
|     |                       | 70/20                 | 1 x 20                    |                         |
|     |                       | 70/6                  | 1 x 6                     |                         |
| 2.  | Tandes                | 150/20                | 1 x 30                    | 30                      |
| 3.  | Segoromađu            | 150/70                | 1 x 50                    |                         |
|     | (Gresik)              | 70/20                 | l x 20                    | 70                      |
| 4.  | Krembangan<br>(Perak) | 70/20                 | 2 x 20                    | 40                      |
| 5.  | Ujung                 | 70/20/6               | 1 x 20                    | 32                      |
|     |                       | 70/6                  | 2 x 6                     |                         |
| 6.  | Lamongan              | 150/20                | 1 x 20                    | 20                      |
| 7.  | Babat                 | 150/20                | 1 x 20                    | 20                      |
| 8.  | Bojonegoro            | 150/20                | 1 x 20                    | 20                      |
| 9.  | Driyorejo             | 70/20                 | 1 x 20                    | 20                      |
| 10. | Waru                  | 150/70                | 3 x 39                    |                         |
|     |                       | 150/70                | 2 x 50                    | 317                     |
|     |                       | 150/20                | 1 x 30                    |                         |
|     |                       | 70/20                 | 2 x 20                    |                         |
|     |                       | 70/20                 | 1 x 30                    |                         |
| 11. | Sukolilo              | 150/20                | 1 x 30                    |                         |
|     |                       | 70/20                 | 1 x 10                    | 90                      |
|     |                       | 70/20                 | 1 x 20                    |                         |
|     |                       | 70/20                 | 1 x 30                    |                         |
| 12. | Buduran<br>(Sidoarjo) | 70/20                 | 1 x 20                    | 20                      |
| 13. | Ngage1                | 70/6                  | 2 x 3                     | 22                      |
|     |                       | 70/20/6               | 1 x 16                    |                         |

TABLE EP-3(2)

(As of 1983/84)

|     | Name             | Voltage Ratio<br>(KV) | Capacity (No.) x (MVA) | Total Capacity<br>(MVA) |
|-----|------------------|-----------------------|------------------------|-------------------------|
| 14. | Bangil           | 150/70                | 2 x 35                 | 80                      |
|     |                  | 70/20/6               | 1 x 10                 |                         |
| 15. | Pandaan          | 70/20                 | 1 x 20                 | 20                      |
| 16. | Probolinggo      | 150/70                | 1 x 35                 |                         |
|     |                  | 70/30                 | 1 x 6                  | 61                      |
|     |                  | 70/30/6               | 1 x 10                 |                         |
|     |                  | 70/20                 | 1 x 10                 |                         |
| 17. | Porong           | 70/6                  | 1 x 1                  | 5                       |
|     |                  |                       | 1 x 4                  |                         |
| 18. | Sukorejo         | 70/6                  | 1 x 1,5                | 11.5                    |
|     |                  | 70/20                 | 1 x 10                 |                         |
| 19. | Plered           | 70/20                 | 1 x 20                 | 28                      |
|     |                  | 70/6                  | 1 x 6                  |                         |
|     |                  | 30/6                  | 2 x 1                  |                         |
| 20. | Gondan Wetan     | 70/20                 | 1 x 6                  | 6                       |
| 21. | Winongan         | 30/20/6               | 1 x 6                  | 6                       |
| 22. | Jember           | 150/70/20             | 1 x 20                 | 20                      |
| 23. | Banyuwangi       | 150/70/20             | 1 x 20                 | 20                      |
| 24. | Lumajang         | 30/6                  | 1 x 3                  | 3                       |
| 25. | Klakah           | 30/6                  | 1 x 0.2                | 0.2                     |
| 26. | Leces            | 30/6                  | 2 x 3                  | 6                       |
| 27. | Blimbing         | 70/6                  | 1 x 3                  |                         |
|     |                  | 70/6                  | 1 x 10                 | 33                      |
|     |                  | 70/20                 | 1 x 20                 |                         |
| 28. | Kebonagung       | 150/70                | 1 x 35                 | 45                      |
|     | (Malang Selatan) | 70/20                 | 1 x 10                 |                         |
| 29. | Polehan          | 70/6                  | 2 x 6                  | 32                      |
|     |                  | 70/20                 | 1 x 20                 | •                       |
| 30. | Turen            | 70/6                  | 1 x 3.3                | 13.3                    |
|     | •                | 70/20                 | 1 x 10                 | ·                       |
| 31. | Lawang           | 70/6                  | 1 x 4                  | 24                      |
|     |                  | 70/20                 | 1 x 20                 |                         |

TABLE EP-3(3)

(As of 1983/84)

|     | Name         | Voltage Ratio<br>(KV) | Capacity<br>(No.) x (MVA) | Total Capacity (MVA) |
|-----|--------------|-----------------------|---------------------------|----------------------|
| 32. | Sengkaling   | 70/6                  | 1 x 4                     | 10                   |
|     |              | 70/20                 | 1 x 6                     |                      |
| 33. | Sengguruh    | 70/6                  | 1 x 3                     | 3                    |
| 34. | Karangkates  | 70/6                  | 1 x 5                     | 5                    |
| 35. | Kediri       | 150/70                | 1 x 35                    | 52                   |
|     |              | 70/20                 | 1 x 10                    |                      |
|     | ·            | 30/6                  | 2 x 3.5                   |                      |
| 36. | Pranggang    | 30/6                  | 2 x 1                     | 2                    |
| 37. | Tulungagung  | 70/30/20              | 1 x 10                    | 23                   |
|     |              | 70/30                 | 1 x 10                    |                      |
|     |              | 30/6                  | 1 x 3                     |                      |
| 38. | Blitar       | 30/6                  | 1 x 1                     | 1                    |
| 39, | Blitar Baru  | 70/20                 | 1 × 6                     | 6                    |
| 40. | Trenggalek   | 30/6                  | 1 x 1                     | 1                    |
| 41. | Mojokerto    | 150/70                | 1 x 35                    | 51                   |
|     |              | 70/20/6               | 1 × 16                    |                      |
| 42. | Kertosono    | 70/20                 | 1 x 10                    | 10                   |
| 43  | Jombang      | 30/6                  | 1 × 1                     | 3                    |
|     |              | 30/6                  | 1 x 2                     |                      |
| 44. | Ploso        | 70/20                 | 1 × 6                     | 6                    |
| 45. | Madium       | 25/6                  | 1 x 1.5                   |                      |
|     |              | 25/6                  | 1 x 2                     | 9.5                  |
|     |              | 25/20/6               | 1 x 6                     |                      |
| 46. | Manisrejo    | 150/70                | 1 x 35                    | 55                   |
|     | (New Madium) | 70/25/20              | 1 × 10                    |                      |
|     |              | 70/20                 | 1 × 10                    |                      |
| 47. | Ponorogo     | 70/25/20              | 1 × 10                    | 13                   |
|     |              | 25/20/6               | 1 x 3                     |                      |
| 48. | Dolopo       | 70/25/20              | 1 × 10                    | 10.8                 |
|     |              | 25/6                  | 1 x 0.8                   |                      |
| 49. | Caruban      | 70/6                  | 1 x 6                     | 6                    |
| 50. | Mranggen     | 25/20                 | 1 x 9                     | 11                   |
|     | -            | 25/6                  | 1 x 2                     |                      |

TABLE EP-3(4)

(As of 1983/84)

|     | Name          | Voltage Ratio<br>(KV) | Capacity<br>(No.) x (MVA) | Total Capacity (MVA) |
|-----|---------------|-----------------------|---------------------------|----------------------|
| 51. | Pacitan       | 70/30/6               | 1 x 3                     | 3                    |
| 52. | Perak Tie Tr. | 150/70                | 1 x 35                    | 35                   |
| 53. | Barata        | 70/20                 | 2 x 10                    | 20                   |
| 54. | Petrokimia    | 70/20                 | 1 x 20                    | 50                   |
|     |               | 150/20                | 1 x 30                    | 50                   |
| 55. | Semen Gresik  | 70/20                 | 2 x 20                    | 64                   |
|     |               | 70/20                 | 1 x 24                    |                      |
| 56. | Ispat Indo    | 70/11                 | 2 x 20                    | 40                   |
| 57. | Gudang Garam  | 70/20                 | 2 x 10                    | 20                   |
| 58. | Mojowarno     | 30/6                  | 1 x 0.63                  | 0.63                 |
| 59. | Ngoro         | 30/6                  | 1 x 0.63                  | 0.63                 |
| 60. | Kandangan     | 30/6                  | 1 x 63                    | 0.73                 |
|     | •             | 30/0.2                | $1 \times 0.1$            |                      |
| 61. | Kasémbon      | 30/6                  | 1 x 0.125                 | 0.125                |
| 62. | Brenggolo     | 30/6                  | 1 x 0.125                 | 0.125                |
| 63, | Ngadiluwih    | 30/6                  | $1 \times 0.2$            | 0.2                  |
| 64. | Keras         | 30/6                  | $1 \times 0.2$            | 0.2                  |
| 65. | Kunir         | '30/6                 | $1 \times 0.63$           | 0.63                 |
| 66. | Srengat       | 30/6                  | 2 x 0.2                   | 0.4                  |
| 67. | K.D. Lurah    | 30/0.38               | 1 x 0.1                   | 0.1                  |
| 68. | Durenan       | 30/6                  | 1 x 0.63                  | 0.63                 |
| 69. | Malasan       | 30/6                  | 1 x 0.2                   | 0.2                  |
| 70. | Katrengan     | 25/0.22               | 1 x 0.025                 | 0.025                |
| 71. | Dungus        | 25/0.22               | 1 x 0.1                   | 0.1                  |
| 72. | Ngetal        | 30/6                  | 1 x 0.2                   | 0.2                  |
| 73. | Jenangan      | 25/6                  | $1 \times 0.2$            | 0.2                  |
| 74. | Tongas        | 30/6                  | 1 x 0.2                   | 0.2                  |
|     | TOTAL         |                       |                           | 1,676.625            |

(Source: Ref. EP-07 & EP-08)

TABLE EP-3(5) ON-GOING SUBSTATION EQUIPMENT IN EAST JAVA

PELITA III

(As of 1983/84)

| No. | Name of Substations    | Voltage<br>Ratio<br>(kV) | Capacity<br>(No. x MVA) | Total<br>Capacity<br>(MVA) |
|-----|------------------------|--------------------------|-------------------------|----------------------------|
| 1.  | Maospati               | 70/20                    | 1 x 6                   | 6                          |
| 2.  | Leces                  | 150/20                   | 1 x 20                  | 20                         |
| 3.  | Lumajang               | 150/20                   | 1 x 20                  | 20                         |
| 4.  | Pacitan                | 70/20                    | 3 x 3                   | 9                          |
| 5.  | Krembangan             | 70/20                    | 1 x 10                  | 10                         |
| 6.  | Probolinggo (Unit S/S) | 70/20                    | 1 x 10                  | 10                         |
| 7.  | Tandes                 | 150/20                   | 1 x 20                  | 20                         |
| 8.  | Waru                   | 150/20                   | 1 x 60                  | 60                         |
| 9.  | Sukolilo               | 150/20                   | 1 x 60                  | 60                         |
|     | TOTAL                  |                          |                         | 215                        |

(Source: PLN PIRING Jatim)

TABLE EP-4 GENERATED AND SOLD ENERGY IN EAST JAVA

|                          | 1974/75     | 75/76        | 76/77 | 77/78 | 78/79         | 79/80 | 80/81    | 81/82      | 82/83    |
|--------------------------|-------------|--------------|-------|-------|---------------|-------|----------|------------|----------|
| PRODUCTION (Gwh)         |             |              |       |       |               |       |          |            |          |
| Hydro                    | 433         | 514          | 477   | 451   | 631           | 683   | 616      | 833        | 631      |
| Steam oil                | 141         | 129          | 192   | 267   | 310           | 512   | 785      | 987        | 1,524    |
| Diesel                   | 37          | 40           | 48    | 57    | 55            | 67    | 80       | 83         | 44       |
| Steam coal               | -           | -            | -     | -     |               | -     | -        | -          |          |
| Gas turbine              | _           |              |       | -     | -             | -     | _        | -          | -        |
| Geo-thermal              | <del></del> | <del>-</del> |       |       | <del></del> _ | -     | <u> </u> | <b>_</b> _ | <b>.</b> |
| Total                    | 611         | 683          | 717   | 775   | 996           | 1,262 | 1,481    | 1,903      | 2,199    |
| Increase (%)             | -           | 11.8         | 5.0   | 8.1   | 28.5          | 26.7  | 17.4     | 28.15      | 15.6     |
| LOSSES (GWh)             |             |              |       |       |               |       |          |            |          |
| Station use              | 15          | 13           | 16    | 19    | 26            | 58    | 70       | 70         | 90       |
| T/C loss                 | 29          | 33           | 42    | 46    | 37            | 58    | 71       | 137        | 140      |
| Distribution loss        | 107         | 109          | 123_  | 152   | 199           | 186   | 269      | 246        | 292      |
| Total                    | 151         | 155          | 181   | 217   | 262           | 302   | 410      | 453        | 522      |
| %W.R.T. Production       | 24.8        | 22.7         | 25.2  | 28.0  | 26.3          | 24.0  | 27.7     | 23.8       | 23.7     |
| SALES (GWh)              |             |              |       |       |               |       |          |            |          |
| Residental               | 204         | 224          | 241   | 266   | 319           | 393   | 459      | 553        | 641      |
| Commercial               | 60          | 78           | 78    | 82    | 94            | 108   | 192      | 211        | 232      |
| Industry                 | 172         | 200          | 190   | 197   | 301           | 372   | 459      | 655        | 863      |
| Public                   | 24          | 27           | 28    | 35    | 39            | 46    | 51       | 56_        | 62       |
| Total                    | 460         | 529          | 537   | 580   | 753           | 919   | 1,161    | 1,475      | 1,798    |
| Increase (%)             |             | 15.0         | 1.6   | 8.0   | 29.8          | 22.0  | 26.4     | 27.0       | 21.8     |
| MVA CONNECTED            |             | •            |       |       |               |       |          |            |          |
| Residental               | 67          | 75           | 83    | 100   | 128           | 167   | 208      | 252        | 301      |
| Commercial               | 40          | 42           | 45    | 51    | 57            | 65    | 120      | 130        | 149      |
| Industry                 | 104         | 113          | 119   | 143   | 192           | 247   | 231      | 304        | 357      |
| Public                   | 8           | 9            | 10    | 17    | 14            | 15    | 21       | 24         | 27       |
| Total                    | 219         | 239          | 257   | 311   | 391           | 494   | 580      | 710        | 834      |
| Increase (1)             | -           | 9.0          | 7.6   | 21.1  | 25.6          | 26.3  | 17.4     | 22.5       | 17.5     |
| NO. OF CONSUMERS (1,000) |             |              |       |       |               |       |          | •          |          |
| Residental               | 210         | 200          | 231   | 255   | 301           | 367   | 445      | 519        | 617      |
| Commercial               | 16          | 17           | 19    | 21    | 23            | 27    | 30       | 33         | 35       |
| Industry                 | 2           | 2            | 2     | 2     | 2             | 2     | 5        | 2          | 3        |
| Public                   | 2           | 2            | 2     | 3     | 3             | 4     | 5        | 6          |          |
| Total                    | 230         | 241          | 254   | 281   | 329           | 400   | 482      | 560        | 662      |
| Increase (%)             | -           | 4.9          | 5.4   | 10.4  | 17.3          | 21.5  | 20.7     | 17.0       | 18.4     |

(Source: REf. EP-04)

# TABLE EP-5

### WAITING BIG CUSTOMERS IN EAST JAVA

|    | ·                                   |                                |                      | (As of 1982/83)                                                   |
|----|-------------------------------------|--------------------------------|----------------------|-------------------------------------------------------------------|
|    | Name of Customers                   | Required Capacity<br>& Voltage | Year to be connected | Status                                                            |
| ı. | PT. Petrokimia Gresik               | 1) 8.13 MVA/20 kV              | Aug. 1983            | Data on electric requirement                                      |
|    |                                     | 2) 9.38 MVA/20 kV              | Jun. 1985            | is not yet officially fixed                                       |
| 2. | PT. Pabrik Kertas Leces             | 1) 6.0 MVA/6 kV                | 1983                 | Waiting more detail inform-                                       |
|    | •                                   | 2) 6.0 MVA/6 kV                | 1985                 | ation                                                             |
| 3. | PT. Surabaya Agung                  | 1) 10.0 MVA/70 kV              | 1983                 | Waiting more detail                                               |
|    | Industri Pulp dan Kertas            | 2) 8.0 MVA/70 kV               | 1985                 | information                                                       |
| 4. | PT. Gudang Garam                    | 1) 12.0 KVA/70 kV              | 1982                 | Contract was signed on                                            |
|    | (Cigarette)                         | 2) 12.0 KVA/70 kV              | 1983                 | Oct. 1981                                                         |
| 5. | PT. Pakerin                         | 1) 2.0 MVA/20 kV               | 1982/83              | Negotiation will be done by                                       |
|    | (Paper)                             | 2) 3.0 HVA/20 kV               | 1983/84              | PLN Wilayah XII                                                   |
|    |                                     | 3) 5.0 MVA/20 kV               | 1984/85              |                                                                   |
| 6. | PT. Ciwi Kimia<br>(Paper)           | 1) 24.0 MVA/70 kV              | Oct. 1983            | Existing contract: 5.54 MVA, 20 kV                                |
|    |                                     | 2) 12.0 MVA/70 kv              | 1985/86              | Draft contract for addition is under processing.                  |
| 7. | Perum Kertas Banyuwangi<br>(Paper)  | 7.5 MVA                        | 1982                 | Contract will be made by PLN Wilayah XII                          |
| 8. | PT. Semen Madura                    | 62.5 MVA/50 kV                 | Jun. 1985            | Connection schedule will be changed from June. 1985 to Oct. 1985. |
| 9. | PT. Semen Madura<br>(Packing plant) | 6.25 MVA/20 kV                 | Jun. 1985            | Contract was signed on<br>May 26, 1982.                           |
|    | TOTAL                               | 21.5 MVA in 1982               | /83                  |                                                                   |
|    |                                     | 62.13 MVA in 1983              | /84                  |                                                                   |
|    |                                     | 5.0 MVA in 1984                | /85                  |                                                                   |
|    |                                     | 104.13 MVA in 198              | \$                   |                                                                   |

(Source: Ref. EP-02)

193.76 HVA

|                | Tariff Level              | Power Limit         | Load Charge<br>in<br>Rp./kVA |                                | Consumption<br>Charge in<br>Rp./kWh             |                |  |
|----------------|---------------------------|---------------------|------------------------------|--------------------------------|-------------------------------------------------|----------------|--|
|                |                           |                     | 1/1983                       | <sup>2</sup> / <sub>1984</sub> | 1983                                            | 1984           |  |
| s <sub>1</sub> | Small consumer            | 200 VA              | 3/                           | · <u>-</u>                     | •                                               | _              |  |
| s <sub>2</sub> | Social bodies             | 250 A - 200 kVA     | 1,600                        | 2,100                          | 35                                              | 43.50          |  |
| R              | Simple household          | 250 VA - 500 kVA    | 1,600                        | 2,100                          | 56                                              | 70.50          |  |
| R <sub>2</sub> | Small household           | 501 VA - 2,200 VA   | 1,600                        | 2,100                          | 67                                              | 84.50          |  |
| R3             | Medium household          | 2,201 VA - 6,600 VA | 2,800                        | 3,680                          | 97                                              | 126.50         |  |
| R4             | Big household             | 6,601 VA            | 2,800                        | 3,680                          | 117.5                                           | 358            |  |
| U <sub>1</sub> | Small cormerce            | 250 VA - 2,200 VA   | 2,800                        | 3,680                          | 99.5                                            | 134            |  |
| υ <sub>2</sub> | Medium commerce           | 2,201 VA - 200 kVA  | 2,800                        | 3,680                          | 108.5                                           | 150            |  |
| υ <sub>3</sub> | Big commerce              | 201 kVA up          | 1,750                        | 2,300                          | $\frac{4}{\text{WBP}} = 111$ $\text{LWBP} = 70$ | 158<br>99      |  |
| U <sub>4</sub> | Temporary connection      | •                   | -                            |                                | 221                                             | 307            |  |
| 1              | Industry (low voltage)    | 3.8 kVA - 99 kVA    | 1,750                        | 2,300                          | WBP = 81.5<br>LUBP = 50                         | 106<br>66      |  |
| r2             | Industry (low voltage)    | 100 kVA - 200 kVA   | 1,750                        | 2,300                          | WBP = 77<br>LWBP = 48                           | 100<br>62.50   |  |
| r 3            | Industry (medium voltage) | 201 kVA up          | 1,600                        | 2,100                          | WBP = 68.5<br>LWBP = 43                         | 96.50<br>60.50 |  |
| 14             | Industry (high voltage)   | 5,000 kVA up        | 1,500                        | 1,970                          | WBP = 58 $LWBP = 37$                            | 81.50<br>52    |  |
| G <sub>1</sub> | Office (low voltage)      | 250 VA - 200 kVA    | 2,800                        | 3,680                          | 71                                              | 96             |  |
| G <sub>2</sub> | Office (medium voltage)   | 201 kVA up          | 1,500                        | 1,970                          | WBP = 72 $LWBP = 47$                            | 99<br>65       |  |
| J              | Street lights             | -<br>-              | _                            |                                | 56.5                                            | 76.50          |  |

<sup>1/</sup> Source: PLN Surat Keputusan Direksi No.003/DIE/83 of Jan. 11, 1983

<sup>2/</sup> Source: PLN Surat Keputusan Direksi No.030/DIR/84 of March 1st, 1984

| Tariff | Power  | Monthly | Fee (Rp.) |
|--------|--------|---------|-----------|
| Level  | Limit  | 1/ 1983 | 2/ 1984   |
| s,     | 60 VA  | 1,240   | 1,550     |
| T      | 75 VA  | 1,555   | 1,940     |
|        | 100 VA | 2,010   | 2,510     |
|        | 125 VA | 2,560   | 3,200     |
|        | 150 VA | 3,015   | 3,765     |
|        | 175 VA | 3,480   | 4,350     |
|        | 200 VA | 4,020   | 5,025     |

<sup>4/</sup> WBP = Peak load hour (18:00 - 22:00 local time)
LBWP = Off-peak load hour (22:00 - 18:00 local time)

# TABLE EP-7(1) PLANNING OF SUBSTATION EQUIPMENT IN EAST JAVA SYSTEM

# PELITA IV (1984/85 - 1988/89)

| No. | Name of Substation | Voltage<br>Ratio<br>(kV)      | Capacity<br>(No. x MVA)             | Total<br>Capacity<br>(MVA) |
|-----|--------------------|-------------------------------|-------------------------------------|----------------------------|
|     | (I) Committed      |                               |                                     |                            |
| 1.  | Kenjeran           | 150/20                        | 1 x 50                              | 50                         |
| 2.  | Rungkut            | 150/20                        | 1 x 50                              | 50                         |
| 3.  | Krembangan         | 70/20                         | 1 x 30                              | 30                         |
| 4.  | Sidoarjo           | 70/20                         | 1 x 20                              | 20                         |
| 5.  | Tandes             | ( <sup>150/70</sup><br>150/20 | $\frac{2 \times 50}{1 \times 50}$ ) | 150                        |
| 6.  | Krian              | 150/20                        | 2 x 20                              | 40                         |
| 7.  | Gilitimur          | 150/20                        | 1 x 10                              | 10                         |
| 8.  | Tanjungan          | 150/20                        | 1 x 2                               | 2                          |
| 9.  | Situbondo          | 150/20                        | 1 x 15                              | 15                         |
| 10. | Bondowoso          | 150/20                        | 1 x 15                              | 15                         |
| 11. | Nganjuk            | 70/20                         | 1 x 10                              | 10                         |
| 12. | Kediri             | 150/20                        | 1 x 30                              | 30                         |
| 13. | Sengkaling         | 70/20                         | 1 x 20                              | 20                         |
| 14. | Kebonagung         | 150/20                        | 1 x 30                              | 30                         |
| 15. | Porong             | 70/20                         | 1 x 20                              | 20                         |
| 16. | Darmogrand         | 150/20                        | 1 x 50                              | 50                         |
| 17. | Ngagel             | 150/20                        | 1 x 20                              | 20                         |
| 18. | Simpang            | 150/20                        | 1 x 50                              | 50                         |
| 19. | Polehan            | 70/20                         | 1 x 10                              | 10                         |
| 20. | Kebonagung         | 150/70                        | 1 x 35                              | 35                         |
| 21. | Segoromadu         | ( <sup>150/70</sup><br>150/70 | 2 x 50<br>1 x 30                    | 130                        |
| 22. | Rungkut            | 150/20                        | 1 x 50                              | 50                         |
| 23. | Babatan            | 150/20                        | 1 x 50                              | 50                         |
| 24. | Tuban              | 150/20                        | 1 x 20                              | 20                         |
| 25. | Ngawi              | 150/20                        | 1 x 10                              | . 10                       |

TABLE EP-7(2)

| No.   | Name of Substation        | Voltage<br>Ratio<br>(kV)                                         | Capacity<br>(No. x MVA) | Total<br>Capacity<br>(MVA)                                                                                    |
|-------|---------------------------|------------------------------------------------------------------|-------------------------|---------------------------------------------------------------------------------------------------------------|
| 26.   | Bangkalan                 | 150/20                                                           | 1 × 10                  | 10                                                                                                            |
| 27.   | Sampang                   | 150/20                                                           | 1 × 10                  | 10                                                                                                            |
| 28.   | Pamekasan                 | 150/20                                                           | 1 × 10                  | 10                                                                                                            |
| 29.   | Sumenep                   | 150/20                                                           | 1 x 10                  | 10                                                                                                            |
| 30.   | Kertosono                 | 70/20                                                            | 1 x 10                  | 10                                                                                                            |
| 31.   | New Madium<br>(Manisrejo) | 150/20                                                           | 1 x 20                  | 20                                                                                                            |
| 32.   | Mobile trafo              | 150/20                                                           | 1 x 30                  | 30                                                                                                            |
| 33.   | Kraksaan                  | 150/20                                                           | 1 x 20                  | 20                                                                                                            |
|       | Sub-Total (I)             |                                                                  |                         | 1,037                                                                                                         |
|       | (II) Proposed             |                                                                  |                         | a de la companya de |
| 1.    | Kepanjen                  | 70/20                                                            | 1 x 10                  | 10                                                                                                            |
| 2.    | Besuki                    | 150/20                                                           | 1 x 20                  | 20                                                                                                            |
| 3.    | Surabaya 12 <sup>A</sup>  | 150/20                                                           | 1 x 50                  | 50                                                                                                            |
| 4.    | Jombang                   | 70/20                                                            | 1 x 10                  | 10                                                                                                            |
| 5.    | Trenggalek                | 70/20                                                            | 1 x 10                  | 10                                                                                                            |
| 6.    | Mojokerto                 | 150/70                                                           | 1 x 50                  | 50                                                                                                            |
| 7.    | Probolinggo               | 150/20                                                           | 1 x 20                  | 20                                                                                                            |
| 8.    | Kediri                    | 150/20                                                           | 1 x 50                  | 50                                                                                                            |
| 9.    | Kraksaan                  | 150/20                                                           | 1 x 20                  | 20                                                                                                            |
| 10.   | Segoromadu                | (150/70<br>150/20                                                | 2 x 50<br>1 x 30)       | 130                                                                                                           |
|       | Sub-Total (II)            | ∰ v gelverkjens ∰radise (∰radis literali vande veljene (þ. vajar |                         | 370                                                                                                           |
| ····• | TOTAL                     |                                                                  |                         | 1,407                                                                                                         |

(Source: PLN PIRING Jatim)

# TABLE EP-8(1) PLANNING OF TRANSMISSION LINES IN EAST JAVA SYSTEM

# PELITA IV (1984/85 - 1988/89)

| No. | Section                       | Circuit No. | Route Length<br>(km) |
|-----|-------------------------------|-------------|----------------------|
|     | (I) 150 kV Transmission Lines |             |                      |
| 1.  | Sukolilo - Kenjeran           | 1           | 6                    |
| 2.  | Sukolilo - Waru               | +1          | 11.05                |
| 3.  | Gresik - Krian                | 2           | 12                   |
| 4.  | Krian Branch                  | 4           | 0.9                  |
| 5.  | Waru - Mojokerto              | +1          | 35.6                 |
| 6.  | Bangil - Probolinggo          | 2           | 27.5                 |
| 7.  | Krian - Babatan               | 2           | 4.5                  |
| 8.  | Gilitimur - Bangkalan         | 1           | 15.6                 |
| 9.  | Bangkalan - Sampang           | 1           | 57                   |
| 10. | Sampang - Pamekasan           | 1           | 25.3                 |
| 11. | Pamekasan - Sumenep           | 1           | 50                   |
| 12. | Probolinggo - Kraksaan        | 2           | 15                   |
| 13. | Kraksaan - Paiton             | 2           | 15                   |
| 14. | Sukolilo - Kenjeran           | +1          | 6                    |
| 15. | Ngawi incoming                | 2           | 5                    |
| 16. | Babat - Tuban                 | 1           | 40                   |
| 17. | Gresik - Tajungan             | 2           | 2.5                  |
| 18. | Tajungan - Gilitimur          | 2           | 1.85                 |
| 19. | Gilitimur - Labang            | 2           | 3                    |
| 20. | Labang - Sekarbungu           | 2           | 1.9                  |
| 21. | Kebonagung incoming           | 2           | 1.5                  |
| 22. | Kebonagung - Sengkaling       | 2           | 7.5                  |
| 23. | Jember - Bondowoso            | 1           | 42                   |
| 24. | Bondowoso - Situbondo         | 1           | 36                   |
| 25. | Leces - Jember                | +1          | 84.2                 |
| 26. | Jember - Banyuwangi           | +1          | 82                   |

TABLE EP-8(2)

| No.          | Section                       | Circuit No. | Route Length<br>(km) |
|--------------|-------------------------------|-------------|----------------------|
| 27.          | Mojokerto - Kediri            | +1          | 69                   |
| 28.          | Kediri - Manisrejo (Madiun)   | +1          | 71                   |
| 29.          | Bangil incoming               | 1           | 1                    |
| 30.          | Lumajang Branch               | 1           | 7.5                  |
| 31.          | Darmo Grand Branch            | 2           | 2.5                  |
| 32.          | Sukolilo - Ngagel             | 2           | 2.25                 |
|              | (under ground)                | 2           | 2.25                 |
| 33.          | Ngagel - Simpang              | 2           | 2.75                 |
|              | (under ground)                |             |                      |
| <b></b>      | Sub-Total (I)                 |             | 744.9                |
|              |                               |             | (853.350 km-ce       |
|              | (II) 70 kV Transmission Lines | ·           |                      |
| 1.           | Sukolilo - Waru               | 2           | 11.05                |
| 2.           | Sukolilo - Ngagel             | 2           | 0.5                  |
| 3.           | Sidoarjo incoming             | +2          | 1.0                  |
| 4.           | Kebonagung - Sengguruh        | 1           | 21                   |
| 5.           | Nganjuk incoming              | . 2         | 1.7                  |
| 6.           | Sengkaling Branch             | 2           | 1                    |
| 7.           | Porong incoming               | +1          | . 1                  |
| 8.           | Sawahan - Mojokerto           | 2           | 18,5                 |
| <del></del>  | Sub-Total (II)                |             | 55.75                |
|              |                               |             | (89.5 km-cet)        |
| <del>-</del> | TOTAL                         |             | 800.65               |
|              |                               |             | (942.85 km-cct)      |

Note: The symbol "+" means additional circuit stringing on the existing towers.

(Source: PLN PIRING Jatim)

# ANNEX MP

# DAM DEVELOPMENT STUDY

#### ANNEX MP

The Supporting Report of Dam Development Study (ANNEX MP) comprises of 14 series. The contents of ANNEX MP are compiled in the form of Note-MP. In ANNEX MP, a series of Note-MP is taken up as an independent chapter. Therefore, Tables and Figures are attached to each related Note-MP. The title of each Note-MP forming ANNEX MP is shown as follows:

| NOTE ME | <b>'-1</b> | RESERVOIR | LIFE |
|---------|------------|-----------|------|
|         |            |           |      |

NOTE MP-2 OPERATION OF KARANGKATES - LAHOR RESERVOIR

NOTE MP-3 SPILLWAY CAPACITY

NOTE MP-4 GENTENG I SCHEME

NOTE-MP-5 KONTO RIVER II SCHEME

NOTE MP-6 BABADAN SCHEME

NOTE MP-7 KUNCIR SCHEME

NOTE MP-8 SEMANTOK SCHEME

NOTE MP-9 KEDUNGWARAK SCHEME

NOTE MP-10 BENG SCHEME

NOTE MP-11 LUMBANGSARI SCHEME

NOTE MP-12 KEPANJEN SCHEME

NOTE MP-13 TRANSBASIN FROM SOLO RIVER

NOTE MP-14 REFERENCE, SUMMARY OF PROJECT

# NOTE MP-1

# RESERVOIR LIFE

# TABLE OF CONTENTS

|         |                                                                                                      | Page    |
|---------|------------------------------------------------------------------------------------------------------|---------|
| 1.      | KARANGKATES AND LAHOR RESERVOIR                                                                      | MP-1.1  |
| 2.      | SOLEREJO RESERVOIR                                                                                   | MP-1.3  |
| 3.      | WLINGI RESERVOIR                                                                                     | MP-1.4  |
|         |                                                                                                      |         |
|         | LIST OF TABLE                                                                                        |         |
| TABLE 1 | COMPARISON OF RESERVOIR AREA AND STORAGE OF KARANGKATES DAM                                          | MP-1.6  |
| TABLE 2 | RELATIONSHIP BETWEEN RESERVOIR STORAGE (C) AND RESERVOIR WATER DEPTH (h) (KARANGKATES AND LAHOR DAM) | MP-1.7  |
| TABLE 3 | ESTIMATED RESERVOIR STORAGE OF KARANGKATES                                                           | MP-1.8  |
| TABLE 4 | ESTIMATED RESERVOIR STORAGE OF LAHOR DAM                                                             | MP-1.9  |
| TABLE 5 | RELATIONSHIP BETWEEN RESERVOIR STORAGE (C) AND RESERVOIR WATER DEPTH (h) (SELOREJO DAM)              | MP-1.10 |
|         | LIST OF FIGURES                                                                                      |         |
| FIG. 1  | RESERVOIR AREA AND STORAGE CURVE OF KARANGKATES DAM (ORIGINAL, 1972)                                 | MP-1.11 |
| FIG. 2  | RESERVOIR AREA AND STORAGE CURVE OF LAHOR DAM (ORIGINAL, 1977)                                       | MP-1.12 |
| FIG. 3  | SEDIMENT RATING CURVE AT BLOBO                                                                       | MP-1.13 |
| FIG. 4  | SEDIMENT RATING CURVE AT SUMBEREJO                                                                   | MP~1.14 |
| FIG. 5  | SEDIMENT RATING CURVE AT METRO                                                                       | MP-1.15 |
| FIG. 6  | ESTIMATED RESERVOIR STORAGE OF KARANGKATES DAM                                                       | MP-1.16 |
| FIG. 7  | RESERVOIR AREA AND STORAGE CURVE OF SELOREJO DAM                                                     | MP-1.17 |
| RIC 0   | CHASS SECTION OF WILINGS BESEDVATE                                                                   | MD_1 19 |

#### NOTE MP - 1 RESERVOIR LIFE

#### 1. Karangkates and Lahor reservoirs

#### (1) Reservoir Sediment Survey

The original storage capacities of these two reservoirs were estimated during the design stage as shown on Fig. 1 and 2.

Intensive reservoir sediment survey was commenced in the Karangkates reservoir in 1977 and in the Lahor reservoir in 1984, and has been continued. Results of these survey in the Karangkates reservoir are as follows:

| 1977- 80 | 1,600 | 0.87           | NK                  |
|----------|-------|----------------|---------------------|
| 1977- 82 | 2,045 | 1.11           | HRS                 |
| 1981- 83 | 1,426 | 0.77           | BRBDEO              |
|          | * .   | 1977- 82 2,045 | 1977- 82 2,045 1.11 |

The survey result of the Lahor reservoir is not yer processed by BRBDEO.

#### (2) Check on new topographic maps

Aerophoto shooting was made over the Karangkates reservoir in 1982 when the reservoir water level was lowered below EL. 260.0 m. In 1983, topographic maps of 1 to 2,500 scale with the contour interval of 2.5 m were prepared. From these maps, the storage capacity above EL. 260.0 m is checked by plainmetering.

Below EL. 260.0 m, the following methods are adopted.

- (a) Plotting the location of beacons for sediment survey on the 1 to 5,000 scale maps reduced from 1 to 2,500 scale maps.
- (b) Putting the elevations obtained by 1982 sediment survey along the cross section line.
- (c) Drawing up the contour lines referring to the topography above EL. 260.0 m.
- (d) Measuring the area and calculation of storage capacity.

Results of the above works are as shown in Table 1 together with the original storage capacity. From this table, it is known that the gross storage below EL. 272.5 m has changed from 343 x  $10^6$  m<sup>3</sup> in 1972 to 314.8 x  $10^6$  m<sup>3</sup> in 1982. Difference is 28.2 x  $10^6$  m<sup>3</sup>. In terms of the effective storage, the change is from 253.0 x  $10^6$  m<sup>3</sup> to 234 x  $10^6$  m<sup>3</sup>.

If difference of 28.2 x  $10^6~\rm m^3$  is assumed to be caused all by the reservoir sediment, the sediment inflow from the catchment area of 2,050 km² in this period is calculated at 28.2 x  $10^6~\rm m^3$  per annum or 1.38 mm per annum.

Taking into account the density of the available cross section lines in large reservoir area and the unavoidable errors in drawing up the contour lines based on the sounding data, the obtained sediment yield rate of 1.38 mm per annum is considered to indicate only a rough figure of reservoir sediment in this period.

Aerophoto shooting and mapping when the water level is lowered near to the low water level is considered the most reliable method to estimate the storage capacity more accurately.

(3) Reservoir sediment based on sediment discharge measurement records

Other method to estimated the reservoir sedimentation is estimation from the water discharge and sediment rating curve, which is developed from the sediment discharge measurement records.

In the catchment area of the Karangkates reservoir, sediment measurement has been carried out at Blobo on the Brantas river, Sumberejo on the Lesti river and Metro on the Metro river. From the measurement records, the sediment rating curves are developed as shown on Fig. 3, 4 and 5 and can be expressed by the following formula;

Blobo  $Qs = 1.2 \times Q^{2.1}$ Sumberejo  $Qs = 1.2 \times Q^{2.4}$ Metro  $Qs = 4.0 \times Q^{2.0}$ 

Where; Qs ; sediment load in ton per day
Q ; water discharge in m<sup>3</sup>/sec

Data on bed load are very scare in and around the study area. In this study the bed load amount is assumed to be 10% of the total sediment amount referring the emperical values in the Brantas river basin.

Using the above formula and the discharge for the Brantas river, Lesti river and Metro river sub-basins estimated from the estimated discharge at the Karangkates damsite as mentioned later, the annual sediment production in the catchment area at the damsite is estimated at 3,235 x 10<sup>3</sup> ton/year consisting of;

Brantas river sub-basin 1,140 x  $10^3$  ton/year Lesti river sub-basin 1,892 x  $10^3$  ton/year Metro river sub-basin 203 x  $10^3$  ton/year

Assuming the unit weight of sediment as 1.4 ton/m³, the annual sediment production in volume is estimated at 2.3 x 106 m³. Then, the

sediment yield rate is 1.1 mm per annum.

If the trap efficiency of the Karangkates reservoir is 90%, the sediment yield rate in terms of the deposited amount in the reservoir is 1 mm per annum. This figure well coincides with the figures obtained by the reservoir sediment survey.

To this end, as for the sediment in the Karangkates reservoir, 1 mm per annum over the catchment area of 2,050  $\rm km^2$  is taken and used further study.

Since data on the reservoir sediment in the Lahor reservoir is yet to be made available, the same figure as 1 mm per annum is applied to the Lahor reservoir.

#### (4) Sediment distribution in reservoir

The storage capacity is affected not only by the amount of the reservoir sediment but also the distribution pattern of the sediment in the reservoir.

Sediment distribution study is made by the modified empirical area reduction method, in which the reservoir is classified according to reservoir water depth and storage capacity. Based on the original relationships between water depth and capacity as shown in Table 2., the Karangkates and Lahor reservoirs are classified in US - Type I and US - Type II, respectively.

The storage capacity resulted from the sediment distribution study is as shown in Table 3. and Fig. 6 for the Karangkates reservoir and Table 4 for the Lahor reservoir.

Results are summaried as shown below;

|                | Effective | Stor ge Ca | Capacity (MCM) |  |
|----------------|-----------|------------|----------------|--|
| ·              | K.Kates   | Lalor      | Total          |  |
| Original       | 253.0     | 29.4       | 282.4          |  |
| 1982           | 232.5     | 28.6       | 261.1          |  |
| 2000           | 195.6     | 27.6       | 223,2          |  |
| After 50 years | 150.5     | 25.4       | 175.9          |  |

The obtained storage capacity curves are used for further study.

#### 2. Selorejo Reservoir

#### (1) Reservoir sediment survey

The sediment survey in the Selorejo reservoir was commenced in 1977, and has been continued since 1982. For the period from 1977 to 1982, the reservoir sedimentation volume was estimated as follows;

|                    | Catchment<br>area<br>(sq.km) | Annual<br>sediment<br>volume (MCM) | Sediment<br>yield<br>rate (mm) |
|--------------------|------------------------------|------------------------------------|--------------------------------|
| Konto river arm    | 185                          | 0.175                              | 0.95                           |
| Kwayangan river    | 53                           | 0.057                              | 1.08                           |
| Konto river, total | 238                          | 0.232                              | 0.98                           |

Judging from the above figures, the reservoir sediment in the Selorejo reservoir can be said to be 1 mm per annum from its catchment area.

#### (2) Storage capacity

The original storage capacity curve of the Selorejo reservoir is as shown on Fig. 7. According to the water depth and storage capacity relations shown in Table 5, the Selorejo reservoir is classified into US - Type II reservoir. Taking the annual sediment volume of 238,000 m<sup>3</sup>, the present and future storage capacity is estimated by the empirical area reduction method.

Results are as shown below

|                                                                                                                | Effective stora | ge capacity (MCM) |
|----------------------------------------------------------------------------------------------------------------|-----------------|-------------------|
| •                                                                                                              | HWL EL. 620 m   | HWL EL. 622 m     |
| en de la companya de | Dec Apr.        | May - Nov.        |
|                                                                                                                | (Flood season)  |                   |
| Original                                                                                                       | 46.5            | 54.6              |
| 1982                                                                                                           | 44.9            | 52.9              |
| 2000                                                                                                           | 42.4            | 49.5              |
| After 50 years                                                                                                 | 39.4            | 46.5              |

The above figures are used for the reservoir study.

### 3. Wlingi Reservoir

The Wlingi dam is located 22 km downstream of the Karangkates dam and has a catchment area of 2,890 km $^2$ . Of this catchment area, 2,050 km $^2$  is controlled by the Karangkates dam, and 160 km $^2$  by the Lahor dam. Then, the remaining sub-basin is 680 km $^2$ .

The effective capacity of 5.2 x  $10^6$  m<sup>3</sup> is for daily regulation of flow for peak power generation. The dead storage capacity of 14.8 x  $10^6$  m<sup>3</sup> is provided for the inflow of sediment mainly from the mountain side of Mt. Kelud in the right side of the reservoir.

Among the tributaries, Putih river and Ganggang river flow into the reservoir in the location close to the dam embankment at an acute angle to the dam axis.

During design and construction, it was considered that if a sediment banks were formed in high and flat shape between the mouths of two tributaries and the dam embankment, there would be possibilities of direct attack of floods from two tributaries against the dam embankment.

Condition of the sediment development in the reservoir is checked based on the sounding survey data in 1982. Cross sections near the dam, No. 140, 138, and 136, are as shown on Fig. 8. Judging from these cross sections, it can be said that the sediment development near the dam embankment is little, and there would be few possibilities of direct attack of floods against the dam embankment, for the time being. If the sediment from the Putih river and Ganggang river form a high deposit between the river mouth and the dam in future and the dam em embankment becomes dangerous against the direct attack of floods, it will be neccessary to divert floods from the Putih river and Ganggang river to the downstream of the Wlingi dam through a diversion channel.

Table 1 COMPARISON OF RESERVOIR AREA AND STORAGE OF KARANGKATES DAM

| Elevation | Origina                       | 1 (1972)                                      | Survey                                     |                                            |
|-----------|-------------------------------|-----------------------------------------------|--------------------------------------------|--------------------------------------------|
| (EL.m)    | Area<br>(x10 <sup>6</sup> m²) | Storage<br>(x10 <sup>6</sup> m <sup>3</sup> ) | Area<br>(x10 <sup>6</sup> m <sup>2</sup> ) | Storage (x10 <sup>6</sup> m <sup>3</sup> ) |
| 186.0     | 0.00                          | 0.00                                          |                                            |                                            |
| 190.0     | 0.07                          | 0.01                                          |                                            |                                            |
| 195.0     | 0.08                          | 0.26                                          |                                            |                                            |
| 200.0     | 0.10                          | 1.00                                          |                                            |                                            |
| 205.0     | 0.25                          | 2.38                                          |                                            |                                            |
| 210.0     | 0.50                          | 4.51                                          | 0.0                                        | 0.0                                        |
| 215.0     | 0.70                          | 7.88                                          | 0.37                                       | 0.92                                       |
| 220.0     | 1.10                          | 12.00                                         | 0.93                                       | 4.18                                       |
| 225.0     | 1.70                          | 18.00                                         | 1.52                                       | 10.32                                      |
| 230.0     | 2.30                          | 28.00                                         | 2.23                                       | 19.70                                      |
| 235.0     | 3.25                          | 42.00                                         | 3.09                                       | 32.99                                      |
| 240.0     | 4.40                          | 60.00                                         | 4.15                                       | 51.09                                      |
| 245.0     | 5.50                          | 85.00                                         | 5.28                                       | 74.66                                      |
| 246.0     | 6.10                          | 90.00                                         |                                            | 80.34                                      |
| 250.0     | 6.70                          | 114.00                                        | 6.10                                       | 103.09                                     |
| 255.0     | 7.80                          | 150.00                                        | 7.10                                       | 136.08                                     |
| 260.0     | 9.40                          | 197.00                                        | 8.26                                       | 174.47                                     |
| 262.5     | 10.20                         | 220.00                                        | 9.41                                       | 196.55                                     |
| 265.0     | 11.40                         | 245.00                                        | 10.60                                      | 221.56                                     |
| 267.5     | 12.50                         | 274.00                                        | 11.71                                      | 249.04                                     |
| 270.0     | 13.70                         | 305.00                                        | 13.01                                      | 280.34                                     |
| 272.5     | 15.00                         | 343.00                                        | 14.56                                      | 314.81                                     |
| 275.0     | -16.5                         | 385.0                                         | 16.19                                      | 353.26                                     |
| 277.5     | 19.0                          | 425.0                                         | 17.19                                      | 395.97                                     |
| 280.0     | 21.0                          | 480.0                                         | 20.03                                      | 443.47                                     |

Note: (1) Original area and storage data (1972) is estimated based on Fig. MP-1.1.

Area under EL. 260m (Survey in 1982) are estimated based on cross section survey data.

<sup>(2)</sup> Area above EL. 260m (Survey in 1982) are estimated based on aerophoto shooting map.

Table 2 RELATIONSHIP BETWEEN RESERVOIR STORAGE (C)
AND RESERVOIR WATER DEPTH (h)
(KARANGKATES AND LAHOR DAM)

|                   | (Karangk                                       | ates Dam | <b>)</b> |                   | (Lahor Dam)                                    | •        |          |
|-------------------|------------------------------------------------|----------|----------|-------------------|------------------------------------------------|----------|----------|
| Elevation (El. m) | Storage<br>(x 10 <sup>6</sup> m <sup>3</sup> ) | h<br>(%) | C (%)    | Elevation (El. m) | Storage<br>(x 10 <sup>6</sup> m <sup>3</sup> ) | ት<br>(ኢ) | C<br>(%) |
| 186.0             | 0.0                                            | 0.0      | 0.0      | 220.0             | 0.0                                            | 0.0      | 0.0      |
| 205.0             | 1.0                                            | 20.0     | 0.3      | 225.0             | 0.2                                            | 9.5      | 0.5      |
| 210.0             | 2.0                                            | 28.0     | 1.0      | 230.0             | 0.5                                            | 19.0     | 1.4      |
| 215.0             | 4.0                                            | 34.0     | 1.2      | 235.0             | 1.0                                            | 28.6     | 2.8      |
| 220.0             | 12.0                                           | 39.0     | 3.5      | 240.0             | 1.9                                            | 38.1     | 5.3      |
| 225.0             | 18.0                                           | 45.0     | 5.2      | 245.0             | 3.2                                            | 47.6     | 8.9      |
| 230.0             | 28.0                                           | 51.0     | 8.2      | 250.0             | 5.0                                            | 57.1     | 13.9     |
| 235.0             | 42.0                                           | 57.0     | 12.2     | 253.0             | 6.7                                            | 62.9     | 18.6     |
| 240.0             | 60.0                                           | 62.0     | 17.5     | 255.0             | 8.0                                            | 66.7     | 22.2     |
| 245.0             | 85.0                                           | 68.0     | 24.8     | 257.5             | 10.0                                           | 71.4     | 27.1     |
| 250.0             | 114.0                                          | 74.0     | 33.2     | 260.0             | 12.6                                           | 76.2     | 34.9     |
| 255.0             | 150.0                                          | 80.0     | 43.7     | 262.5             | 16.0                                           | 81.0     | 44.3     |
| 260.0             | 197.0                                          | 86.0     | 57.4     | 265.0             | 20.2                                           | 85.7     | 56.0     |
| 265.0             | 245.0                                          | 91.0     | 71.4     | 267.5             | 24.6                                           | 90.5     | 68.      |
| 270.0             | 305.0                                          | 97.0     | 88.3     | 270.0             | 30.1                                           | 95.2     | 83.}     |
| 272.5             | 343.0                                          | 100.0    | 100.0    | 272.7             | 36.1                                           | 100.0    | 100.0    |

Table 3 ESTIMATED RESERVOIR STORAGE OF KARANCKATES DAM

(Unit: x 10<sup>6 m<sup>3</sup>)</sup>

|                      | Ociginal          | Estimated Storage |                            |                              |                         |                |                 |                            |
|----------------------|-------------------|-------------------|----------------------------|------------------------------|-------------------------|----------------|-----------------|----------------------------|
| Elevation<br>(El. m) | Storage<br>(1972) | US-<br>TYPE I     | After 10<br>US-<br>TYPE II | O years (<br>US-<br>TYPE III | 1982)<br>US-<br>TYPE IV | JP-<br>11 3941 | JP-<br>TYPE III | After 50 year<br>US-1YPE 1 |
| 186.0                | 0.00              | 0.00              | 0.00                       | 0.00                         | 0.00                    | 0.00           | 0.00            | 0.00                       |
| 190.0                | 0.01              | 0.00              | 0.00                       | 0.00                         | 0.00                    | 0.00           | 0.00            | 0.00                       |
| 195.0                | 0.26              | 0.21              | 0.00                       | 0.00                         | 0.00                    | 0.09           | 0.12            | 0.01                       |
| 200.0                | 1.00              | 0.82              | 0.00                       | 0.00                         | 0.00                    | 0.48           | 0.58            | 0.24                       |
| 205.0                | 2.38              | 1.94              | 0.29                       | 0.00                         | 0.00                    | 1.32           | 1.50            | 0.53                       |
| 210.0                | 4.51              | 3.66              | 1.19                       | 0.00                         | 0.00                    | 2.73           | 2.99            | 0.95                       |
| 215.0                | 7.88              | 6.45              | 3.23                       | 0.92                         | 0.40                    | 5.21           | 5.54            | 1.88                       |
| 220.0                | 12.00             | 10.80             | 6.94                       | 3.58                         | 2.82                    | 9.26           | 9.67            | 3.75                       |
| 225.0                | 18.00             | 17.19             | 11.43                      | 8.60                         | 7.91                    | - 13.97        | 15.87           | 6.99                       |
| 230.0                | 28.00             | 26.12             | 21.42                      | 16.59                        | 16.10                   | 24.14          | 24.65           | 12.07                      |
| 235.0                | 42.00             | 38.69             | 33.86                      | 28.73                        | 28.50                   | 36.61          | 37.14           | 20.10                      |
| 240.0                | 60.00             | 56.06             | 51.29                      | 46.19                        | 46.19                   | 53.97          | 54.49           | 32.23                      |
| 245.0                | 85.00             | 78.72             | 74.24                      | 69.49                        | 69.64                   | 76.72          | 77.22           | 49.00                      |
| 246.0                | 90.00             | 83.95             | 79.55                      | 74.90                        | 75.08                   | 81.98          | 82.47           | 52.98                      |
| 250.0                | 114.00            | 107.20            | 103.22                     | 99.11                        | 99.34                   | 105.40         | 105.86          | 71.02                      |
| 255.0                | 150.00            | 141.92            | 138.65                     | 135.40                       | 135.62                  | 140.43         | 140.81          | 98.85                      |
| 260.0                | 197.00            | 183.32            | 180.93                     | 178.69                       | 178.85                  | 182.23         | 182.51          | 133.13                     |
| 265.0                | 245.00            | 232.88            | 231.50                     | 230.30                       | 230.37                  | 232.25         | 232.42          | 175.69                     |
| 270.0                | 305.00            | 292,20            | 291.81                     | 291.51                       | 291.52                  | 292.03         | 292.08          | 228.82                     |
| 272.5                | 343.00            | 322.50            | 322.50                     | 322.50                       | 322.50                  | 322.50         | 322.50          | 256.90                     |

Note (1) US ; United States

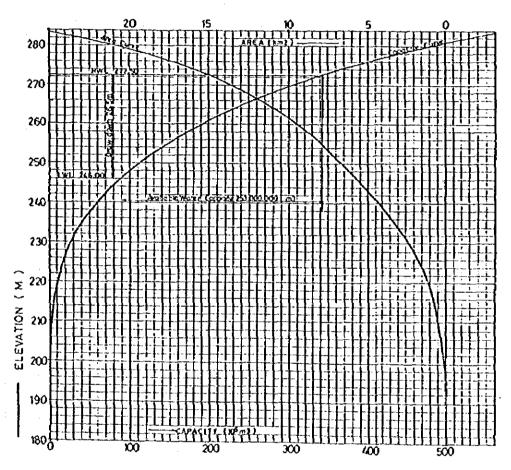
<sup>(2)</sup> JP | Japan

<sup>(3)</sup> Estimated Storage is given by applying Modified Empirical Area - Reduction Method

<sup>(4)</sup> Original Storage (1972) is based on Fig.

<sup>(5)</sup> Sediment deposit after 50 years is estimated considering effect of Sengguruh dam (under construction) and the annual sediment deposit rate is estimated to be 0.84 mm per annum.

TABLE 4 ESTINATED RESERVOIR STORAGE OF LAKOR DAM


|           |          | ( Unit: x 10 <sup>6</sup> m <sup>3</sup> ) |
|-----------|----------|--------------------------------------------|
|           | Original | Estimated Storage                          |
| Elevation | Storage  | After 5 years ( 1982 )                     |
| ( El.m )  | ( 1977 ) | US - TYPE II                               |
| 220,00    | 0.0      | 0.00                                       |
| 225.00    | 0.2      | 0.08                                       |
| 230.00    | 0.5      | 0.32                                       |
| 235.00    | 1.0      | 0.77                                       |
| 240,00    | 1.9      | 1.52                                       |
| 245.00    | 3.2      | 2.68                                       |
| 250.00    | 5.0      | 4.58                                       |
| 253.00    | 6.7      | 6.28                                       |
| 255.00    | 8.0      | 7.69                                       |
| 257.50    | 10.0     | 10.08                                      |
| 260.00    | 12.6     | 12.47                                      |
| 262.50    | 16.0     | 16.01                                      |
| 265.00    | 20.2     | 19.54                                      |
| 267.50    | 24.6     | 24.47                                      |
| 270.00    | 30.0     | 29.39                                      |
| 272.50    | 36.1     | 35.3                                       |

NOTE: (1) US ; United States

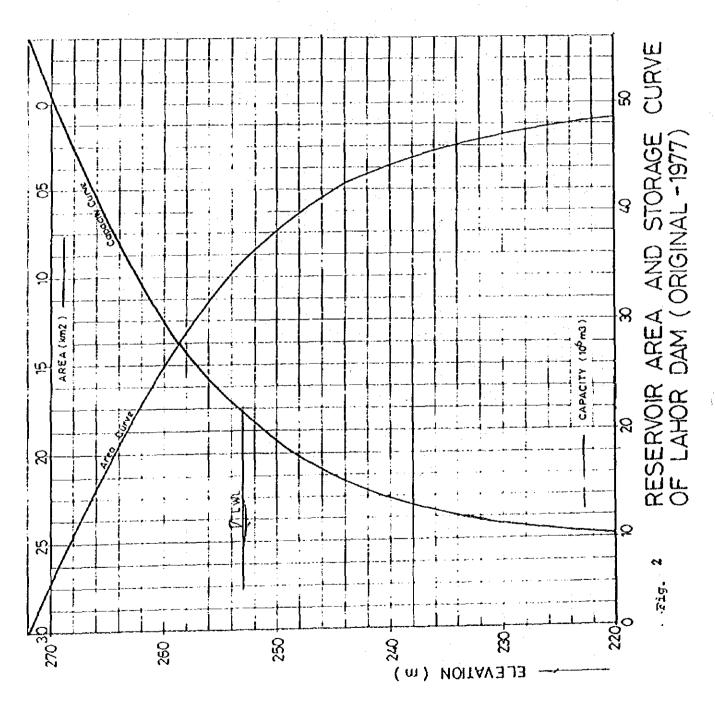
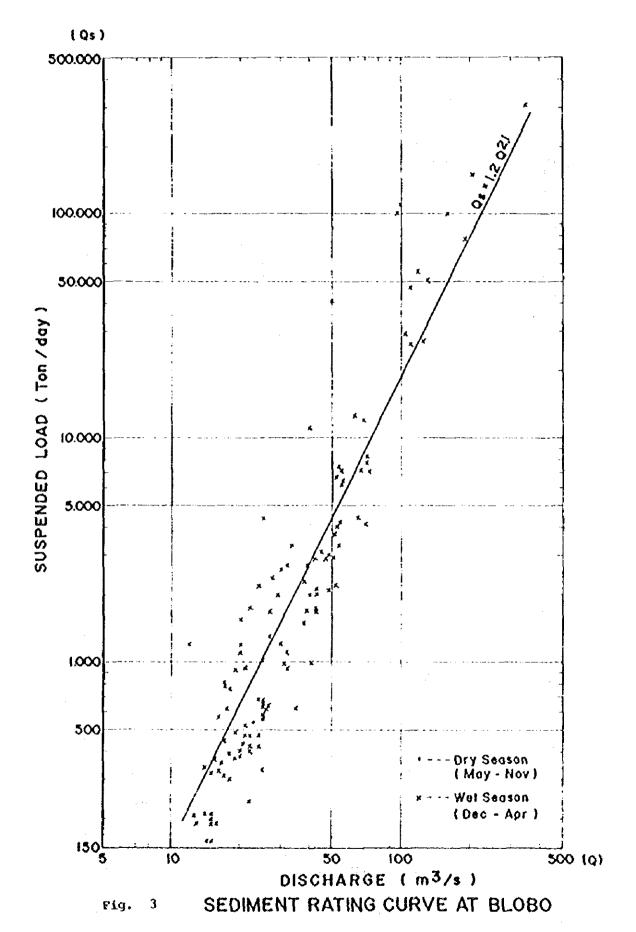

(2) Estimated storage is given by applying Modified Empirical Area - Reduction Method

Table 5 RELATIONSHIP BETWEEN RESERVOIR STORAGE (C)
AND RESERVOIR WATER DEPTH (h)
(SELOPEJO DAM)


| Elevation | Storage                      | h     | С     |
|-----------|------------------------------|-------|-------|
| (E1.m)    | $( \times 10^6 \text{ m}^3)$ | (%)   | (%)   |
| 597.0     | 0                            | 0     | 0     |
| 580.0     | 0.055                        | 2.3   | 0.1   |
| 585.0     | 0.530                        | 14.0  | 0.9   |
| 590.0     | 2.015                        | 25.6  | 3.2   |
| 595.0     | 5.000                        | 37,2  | 8.0   |
| 600.0     | 9.815                        | 48.8  | 15.8  |
| 605.0     | 16.855                       | 60.5  | 27.1  |
| 610.0     | 26.490                       | 72.1  | 42.5  |
| 615.0     | 38.760                       | 83.7  | 62.2  |
| 620.0     | 54.220                       | 95.3  | 87.0  |
| 622.0     | 62.300                       | 100.0 | 100.0 |



RESERVOIR AREA AND STORAGE CURVE OF KARANGKATES DAM (original; 1972)



MP-1.12



MP-1.13

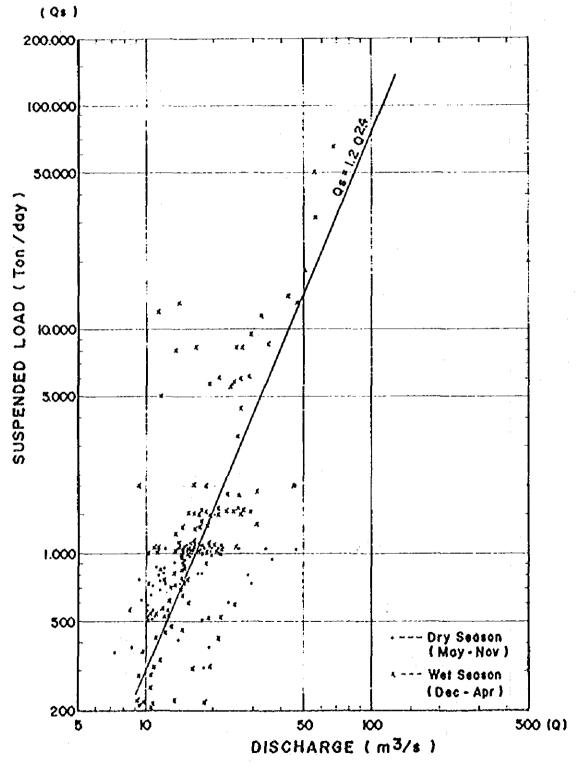



Fig. 4 SEDIMENT RATING CURVE AT SUMBEREJO

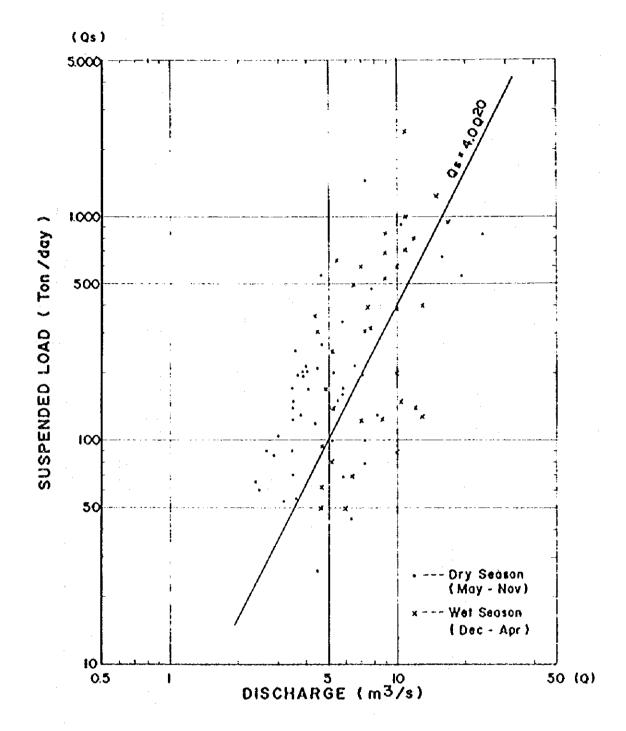
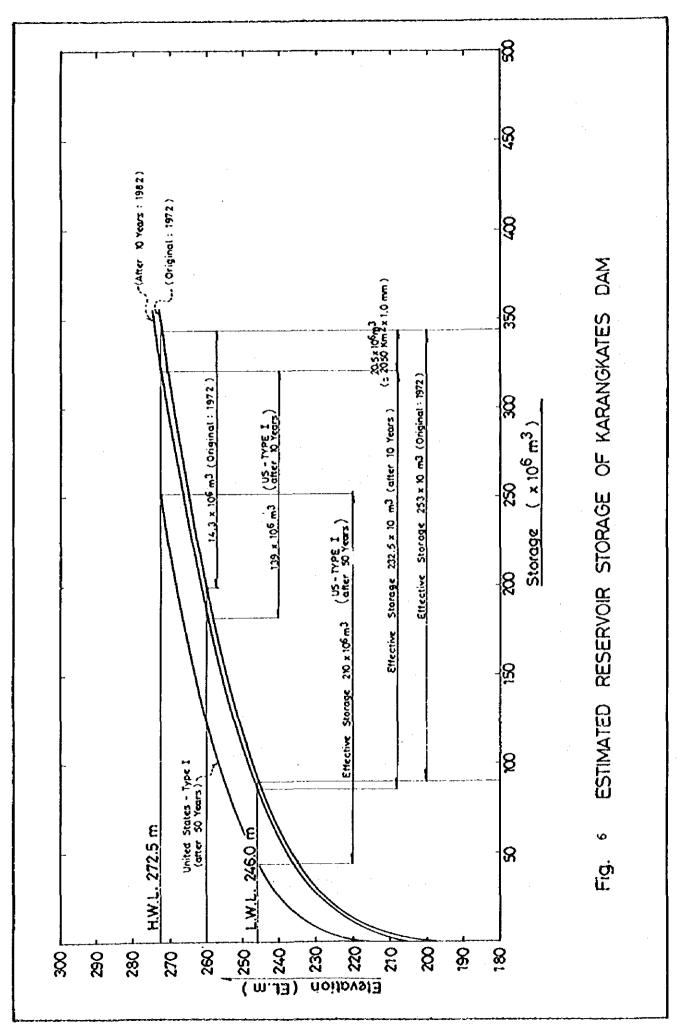
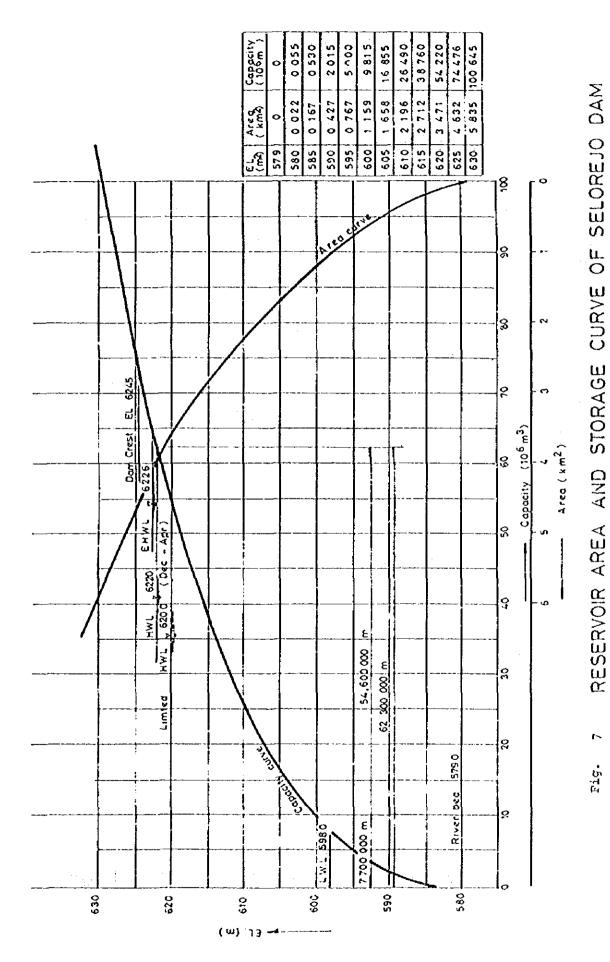





Fig. 5 SEDIMENT RATING CURVE AT METRO





MP-1.17

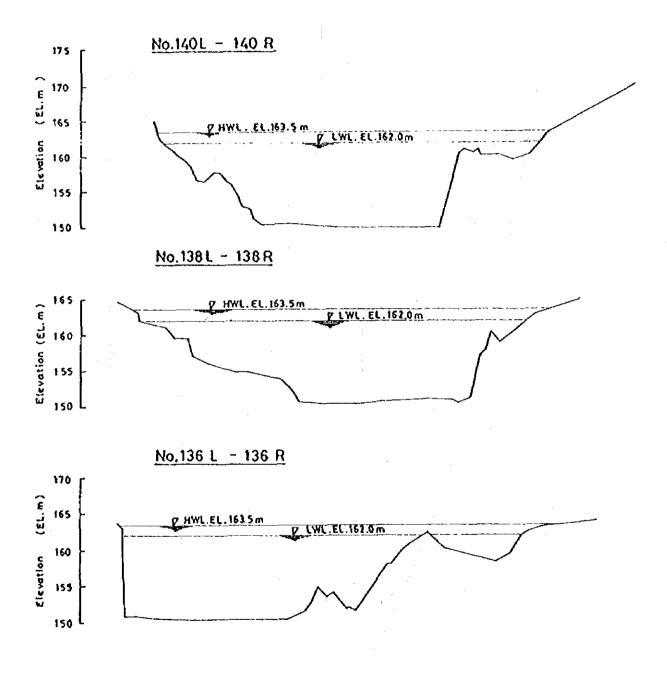



Fig. 8 CROSS SECTION OF WLINGI RESERVOIR

# NOTE MP-2

# OPERATION OF KARANGKATES-LAHOR RESERVOIR

# TABLE OF CONTENTS

|       |      |                                                                                                 | Page    |
|-------|------|-------------------------------------------------------------------------------------------------|---------|
| 1.    | PRES | ENT OPERATION RULE AND OPERATION PERFORMANCE                                                    | MP-2.1  |
| 2.    | RUNO | FF SEDIMENTATION                                                                                | MP-2.2  |
| 3,    | LIMI | TATION OF RESERVOIRS                                                                            | MP-2.3  |
| 4.    | COND | ITIONS FOR RESERVOIR OPERATION CONSIDERATION                                                    | MP-2.3  |
| 5.    |      | CAST OF DRY SEASON INFLOW INTO KARANGKATES-LAHOR RVOIR                                          | MP-2.5  |
| 6.    | RESE | RVOIR OPERATION RULE                                                                            | MP-2.5  |
|       |      |                                                                                                 |         |
|       |      | LIST OF TABLES                                                                                  |         |
| TABLE | 1    | MONTHLY BASIN RAINFALL IN THE KARANGKATES BASIN                                                 | MP-2.7  |
| TABLE |      | ESTIMATED MONTHLY INFLOW TO THE KARANGKATES RESERVOIR (INCLUDING INFLOW TO THE LAHOR RESERVOIR) | MP-2.8  |
| TABLE | 3    | MONTHLY INFLOW TO THE SELOREJO RESERVOIR                                                        | MP-2.9  |
| TABLE | 4    | TANK MODEL COEFFICIENT OF KARANGKATES BASIN                                                     | MP-2,10 |
| TABLE | 5    | TANK MODEL COEFFICIENT OF SELOREJO BASIN                                                        | MP-2.11 |
| TABLE | 6    | MONTHLY RUNOFF AT KARANGKATES DAMSITE                                                           | MP-2.12 |
| TABLE | 7    | MONTHLY RUNOFF AT SELOREJO DAMSITE                                                              | MP-2.13 |
| Table | 8    | EQUATION OF INFLOW FORECASTING                                                                  | MP-2.14 |
| TABLE | 9    | WATER REQUIREMENT FOR PEAK POWER OUTPUT (5 HRS) (KARANGKATES DAM)                               | MP-2.15 |
| TABLE | 10   | RESERVOIR OPERATION RESULTS (1966 YEAR, T # 1/5)                                                | MP-2.16 |
| TABLE | 11   | RESERVOIR OPERATION RESULTS (1972 YEAR, T = 1/10)                                               | MP-2,17 |

|          | ·                                                                                    | Page    |
|----------|--------------------------------------------------------------------------------------|---------|
| TABLE 12 | RESERVOIR OPERATION RESULTS (1976 YEAR, T = 1/2)                                     | MP-2.18 |
| TABLE 13 | RESERVOIR OPERATION RESULTS (1982 YEAR, T = 1/4)                                     | MP-2.19 |
| TABLE 14 | SCHEDULED WATER LEVEL AND POSSIBLE OUTFLOW                                           | MP-2.20 |
| TABLE 15 | AMOUNT FOR RESERVOIR FILLING                                                         | MP-2,21 |
|          |                                                                                      |         |
|          | LIST OF FIGURES                                                                      |         |
|          |                                                                                      |         |
| FIG 1    | OPERATION RECORD OF KARANGKATES RESERVOIR                                            | MP-2.22 |
| FIG 2    | MONTHLY RAINFALL IN THE KARANGKATES BASIN                                            | MP-2.23 |
| FIG 3    | SIMULATED RUNOFF AT KARANGKATES DAMSITE (1) - (6)                                    | MP-2.24 |
| FIG 4    | SIMULATED RUNOFF AT SELOREJO DAMSITE (1) - (6)                                       | MP-2.30 |
| FIG 5    | MASS CURVE AT KARANGKATES DAMSITE                                                    | MP-2.36 |
| FIG 6    | MASS CURVE AT SELOREJO DAMSITE                                                       | MP-2.37 |
| FIG 7    | RELATIONSHIP BETWEEN MONTHLY RUNOFF AND RAINFALL IN RAINY SEASON (KARANGKATES BASIN) | MP-2.38 |
| FIG 8    | WATER REQUIREMENT FOR PEAK POWER OUTPUT (KARANGKATES DAM)                            | MP-2.39 |
| FIG 9    | SCHEDULED WATER LEVEL                                                                | MP~2.40 |

#### Note MP - 2 Operation of Karangkates-Lahor Reservoir

### 1. Present operation rule and operation performance

At the completion of the Karangkates dam, an operation rule was worked out with an emphasis on the irrigation water supply. The rule was made based on the mass curve method. This operation rule, however, was complicated and difficult to operate the reservoir. There was a request of making an operation rule simple and easy to implement.

In 1978, when the Lahor dam was completed, the operation rule was revised putting an emphasis on simplication of operation rule and maximization of power out put. This revision was made based on the inflow data in the period from 1972 to 1975. As the results of case studies on different water level settings (high water level, low water level and timing to reach the certain water level), the following rule curve was recommended as the optimum one fom the viewpoint of power generation;

RESERVOIR WATER LEVEL (EL. m)

|      | First 10-day | Middle 10-day | Last 10-day |
|------|--------------|---------------|-------------|
| Jan. | 261.85       | 262.85        | 263.90      |
| Feb. | 265.00       | 266,10        | 166.90      |
| Mar. | 268.05       | 269.15        | 270.30      |
| Apr. | 270.80       | 271.30        | 271.80      |
| Мау  | 271.86       | 271,93        | 272.00      |
| June | 272.00       | 272.00        | 272.00      |
| July | 271.65       | 271.30        | 270.90      |
| Aug. | 270.05       | 269.15        | 268.10      |
| Sep. | 266.90       | 265.65        | 264.30      |
| Oct. | 263.30       | 262.30        | 261.10      |
| Nov. | 260.75       | 260.40        | 260.00      |
| Dec. | 260.25       | 260.50        | 260.80      |

Since 1978, no study on operation rule has been made so far. Therefore, the above rule curve is still effective.

Actual operation of Karangkates - Lahor reservoir is made in the following manner;

- (a) At the beginning of the dry season, BRBDEO prepares a schedule of water release from the reservoir according to the present rule curve
- (b) The schedule is submitted to the Coordination Committee

organized among BRBDEO, PLN, Irrigation Services, PDAM, Surabaya, and other water users, and the schedule is authorized by the Committee.

- (c) If there is no deficit in the water supply for the irrigation, the water release is made according to the schedule.
- (d) If water deficit occurs in the Irrigation water supply, the Irrigation Services request BRBDEO to release more water than scheduled.
- (e) BRBDEO examines the request, and operates the reservoir to the extent as possible, according to the request.

The actual operation performance records are as shown in Pig. 1. In the water rich years like 1981 and 1983, the reservoir water level was lowered up to the elevation of 260 m or so as indicated by the rule curve. But in the drought years like 1980 and 1982, the reservoir water level was lowered to the level near B1. 250 m according to the request. According to BRBDEO, in December, 1982, to lower the water level down to L.W.L of E1. 246 m was planned. Fortunately, the rainfall started in the middle of December, and the reservoir water level recovered as shown on Fig. 1. From these facts, it can be said that the Karangkates - Lahor reservoir has been operated not only based on the rule curve but also according to water requirement in the middle and lower reaches.

### 2. Runoff Sedimentation

For examination of the reservoir operation, long-term and reliable discharge data are needed. Especially, data on the drought years are important, since the reservoir operation will become critical in such years.

At Karangkates and Selorejo damsites, discharge measurement records are available since early 1950s. However, they contain gaps and doubtful values. Therefore, it become necessary to generate more reliable and continuous discharge data by other means.

Since rainfall observation is rather simple and rainfall records can be cross-checked among the records obtained at stations nearby, a method to estimate discharge from the rainfall is selected for obtaining reliable and continuous discharge data. For obtaining the relationships between rainfall and runoff, the Tank Model method is used.

Monthly rainfall amount in the Karangkates basin are estimated as shown in Table 1 and Fig. 2.

The evapotranspiration is estimated by the modified Pennman method from the meteorological data.

For calibration of the coefficients of the Tank Model, reliable discharge data are needed. Both Karangkates and Selorejo damsites, outflow through turbines and valves, overflow from spillway and reservoir water level have been recorded on the hourly basis since the commence-

ment of operation. Using these data and the storage capacity curves estimated in the previous section, inflow into the reservoirs are estimated by the following formula:

Qinflow = (Change in storage ) / 86,400 + Qoutflow

The estimated inflow into the Karangkates - Lahor reservoir and the Selorejo reservoir is presented on the monthly mean basin in Table 2 and 3, respectively.

Using the trial and error method, the best sets of the tank coefficients are sought for. Finally, the sets of the tank coefficients shown in Table 4 and 5 are found to be capable of covering the rainfall into the runoff with the acceptable accuracy as shown on Fig. 3 and 4.

Using these coefficients, and inputting the rainfall in the period from 1951 to 1983, the daily runoff at damsite for 33 years has been generated. Results are presented in Table 6 for the Karngkates - Lahor site and Table 7 for othe Selorejo site.

#### 3. Limitation of Reservoirs

From the generated daily runoff, the mass curves are prepared as shown on Fig. 5 and 6. Using the effective storage fully, the possible constant outflow from the reservoir is obtained as shown in Table 5 and 6. From these Tables, the probable possible constant outflow in the dry season is estimated as follows:

| Probability         | Constant outflow i | Constant outflow in dry season |  |  |  |
|---------------------|--------------------|--------------------------------|--|--|--|
|                     | K.Kates-Lahor      | Selorejo                       |  |  |  |
| Once in +2 years    | 51,36 m³/sec       | 10.13 m³/sec                   |  |  |  |
| in 5 years          | 41.98              | 8.95                           |  |  |  |
| in 10 years         | 38.24              | 8.39                           |  |  |  |
| in 15 years         | 35.74              | 8.23                           |  |  |  |
| minimum in 33 years | 34.78              | 7.95                           |  |  |  |

Since the storage capacities of the Karangkates - Lahor and Selorejo reservoirs are already fixed, it is impossible to take water more than the above in the dry season with corresponding recurrence period. Only remaining measure is change of the pattern of outflow from the reservoirs according to the pattern of the water demands within the total amount of possible outflow.

#### 4. Conditions for reservoir operation consideration

The 1978 rule curve for the Karangkates - Lahor reservoir aimed maximization of the energy production in the hydropower plan. Since large scale thermal plants are scheduled to enter into the system in the coming decades, requirement of the energy from the Karangkates

power station will decrease. But the value of the installed capacity using the characteristics of the hydropower will increase according to the lowering the load factor in the system.

According to the water balance study, water deficit is foreseenable in the near future and onward. Water has no alternative, but the electric power has alternative sources of supply.

In this context, study on the reservoir operation for the Karangkates - Lahor reservoir is oriented to water supply.

It is desirable to use the storage capacity fully every year as far as water demands exist. However, since the onset of the rainy season is irregular and amount of inflow at the beginning of the rainy season is unknown in advance, it is very risky to empty completely the reservoir at the fixed time of the year. Foe example, if the reservoir is emptied at the end of November, and the onset of the rainy season delays upto the end of December, the reservoir can not cope with the water requirement in December. Since the Karangkates - Lahor reservoir is only one reservoir which can contribute to the emergency case of late onset of rainfall, it will be necessary to keep the minimum reserve in the reservoir. Such minimum requirement is examined as follows;

(a) The ten-day mean inflow with the recurrence period of once in 5 years in December is calculated by the Gumbel's method as follows;

| Dec. | 1st ten-day | 33.61 m <sup>3</sup> /sec      |
|------|-------------|--------------------------------|
| Dec. | 2nd ten-day | $42.42 \text{ m}^3/\text{sec}$ |
| Dec. | 3rd ten-day | 57.51 m³/sec                   |

(b) As for the water demand in the lower reaches, the following figures in December, 1982 are taken.

| Period   | Irrigation | Domestic  | Industry  | City Water | Total      |
|----------|------------|-----------|-----------|------------|------------|
| Dec. 1st | 25.71      | 3.52 m³/s | 2.64 m³/s | 15.00 m³/s | 46.37 m³/S |
| Dec. 2nd | 29.71      | 3.52      | 2.64      | 15.00      | 50.87      |
| Dec. 3rd | 45.26      | 3.52      | 2,64      | 15,00      | 66.42      |

(c) Therefore, the deficit and the amount to be supplemented from the reservoir are;

| Period   | Deficit    | Amount to be supplemented              |
|----------|------------|----------------------------------------|
| Dec. 1st | 12.76 m³/s | 11.02 x 10 <sup>6</sup> m <sup>3</sup> |
| Dec. 2nd | 8.45       | 7.30                                   |
| Dec. 3rd | 8.91       | 8.47                                   |
| Total    |            | 26.79 × 10 <sup>6</sup> m <sup>3</sup> |

- (d) If the reservoir reserves the amount of 26.79 x 10<sup>6</sup> m³ over the low water level of Eb. 246.0 m, the operational low water level becomes Eb. 250.50 m according to the storage capacity curve.
- (e) By reserving the above amount, the reservoir can cope with the once in five years drought in December.

#### 5. Forecast of dry season inflow into Karangkates - Lahor reservoir

Except years when rainfall occurs in the dry season, the dry season inflow into the reservoir is governed mainly by the rainfall amount during the previous rainy season. The relationships between the amount of rainfall in the previous rainy season and the dry season runoff are checked using the runoff data in the years when the dry season rainfall was little. Results are as shown on Fig. 7. The relationships are further examined by regression anlysis between the monthly rainfall and monthly mean runoff. Results are as shown in Table 8. By collecting rainfall records in the catchment area of the Karangkates - Lahor reservoir by the beginning of the dry season, the nearly minimum inflow into the reservoir can be forecasted by the formula shown in the table. Then, all the parties concerning to use of water in Brantas river can know the available amount of water including the stored water in the reservoirs in the dry season. This will be beneficial to the water users in planning the water use schedule in the dry season.

The above forecasting method is rather simplified. Since the Tank Model is already developed for the Karangkates - Lahor basin, the following forecasting method is recommendable;

- Prepare two programs, one is for forecasting the dry season runoff, and the other is for tracing the runoff.
- By inputting the rainfall data in the rainy season, and assuming the dry season rainfall is nil, run the first program for forecasting the dry season runoff.
- For the second program, rainfall data will be inputted from time to time for calculation of the water depths in the tanks.
- The above method will depend on the capacity of rainfall data collection. It is considered possible to collect in ten-day interval through the present communication system, and estimation in this interval will be still viable.

## 6. Reservoir operation rule

Before entering the reservoir operation study, the following conditions are confirmed again;

- The reservoir operation rule will be made with a priority on water supply to the downstream area.

- The hydropower will be guaranteed water necessary to make peak power production for 5 hours a day at the head given by the reservoir water level at that time, unless the reservoir water level is lowered below EL. 246 m. The required amount of water at each reservoir water level is as shown in Table 9 and on Fig. 8.
- The reservoir will release water consisting of the inflow and the storage between BL. 272.5 m anf Bl. 250.5 m during the dry season from June to December, keeping an emergency reserve of 26.8 x 10<sup>6</sup> m<sup>3</sup> between El. 250.5 m and Bl. 246 m, under the drought hydrological condition with the recourence period of once in five years.

Taking the above conditions as given, the remaining works of the reservoir operation study are as follows;

- To determine a pattern of water release during the dry season
- To determine an operation pattern in the reservoir filling stage
- (1) Water release pattern in the dry season with 50% or less dependability

Although there are fluctuation in the irrigation water requirement, the water demand is in almost same level throughout the dry seasons. However, the flow in the river decreases according to the progress of the dry season. Therefore, it is considered that if the release from the reservoir can be increased according to the decrease of the river flow, it will be beneficial to the water users. This pattern will also be beneficial to the hydropower, as decrease of the power head by water release will be compensated by the increase in the amount of released water. In this context, release pattern with 'HQ constant method' is introduced. This method means that the release 'Q' multiplied by head 'H' at that time will have to have certain value through out the dry season. HQ value changes according to inflow into the reservoir or setting of the operational low water level. Several trials are made as shown in Table 10 to 13. Finally, the water level setting as shown in Table 14. and Fig. 9 is found to reach the water level of EL. 250.5 m at the end of November and to be recommendable.

#### (2) Reservoir filling

The amount to be used for the reservoir filling is calculated as the balance between the expectable inflow with the recurrence period of once in five years and the power discharge, required for the 5 hour peak power generation at the head given by the reservoir water level at that time. Table 15 shows the results of this calculation.

Table | MONTHLY BASIN RAINFALL IN THE KARANGKATES BASIN

(Unit: Km) Year Jan Feb Mar Apr May Jun Jul Aug 0ct Nov Dec Total Sep 64.6 137.8 1951 329.9 315.3 134.9 59.8 24.5 77.8 413.5 1,622.5 63.4 25.1 15.9 1952 311.1 384.3 368.6 72.8 86.5 20.9 3.2 18.8 92.5 152.3 450.0 387.4 2.348.4 253.7 214.0 294.5 252.9 239.5 1953 7.6 58.3 5.6 2,2 11.2 134.3 323.1 1.796.9 392.3 292.8 270.8 306.5 1954 216.6 133.7 48.5 91.9 47.6 150.2 450.2 427.7 2,828.8 1955 274.6 289.6 241.9 196.4 134.5 141.7 340.7 71.8 63.9 158.5 380.€ 254.6 2,548.5 1956 324.4 227.0 137.2 89.5 81.0 123.6 125.9 112.2 27.0 114.3 198.0 329.6 1,889.7 1957 301.0 298.7 468.3 117.8 71.2 3.0 247.1 24.7 3.1 19.1 101.7 299.7 1,955.4 1958 237.8 289.8 325.0 262.2 128.6 94.6 106.0 47.6 20.4 65.4 134.3 493.1 2,204.8 1959 295.4 288.6 329.8 117.7 203.7 76.3 16.1 1.0 20.8 47.6 180.2 502.7 2,079.9 1960 272.5 281.6 328.6 210.6 196.2 73.3 22.6 5.2 5.1 56.1 215.6 218.8 1,830.1 1961 362.0 237.6 171.6 160.2 73.9 3.1 6.4 0.0 4.5 13.2 131.1 303.7 1,467.3 1962 488.9 275.6 291.5 275.5 63.6 36.4 22.7 37.8 1.0 108.1 228.6 503.2 2,332.9 1963 338.9 333.0 354.3 110.7 11.3 7.8 0.0 0.0 3.4 8.7 33.1 290.4 1,491.6 1964 172.4 165.1 320.7 154.3 105.9 85.6 4.7 403.7 195.5 238.8 1,891.0 11.7 32.6 279.2 270.4 199.2 147.7 1965 53.9 1.1 6.6 0.0 1.7 4.4 119.0 331.1 1,414.3 354.1 326.8 190.2 1966 343.7 68.6 41.9 0.9 4.7 3.3 100.6 196.4 249.7 1,880.9 1967 407.3 267.7 164.3 181.4 22.1 0.0 0.0 0.0 1.0 39.4 123.8 387.2 1.594.2 1968 275.7 223.2 359.4 196.0 272.4 235.8 201.1 43.0 19.6 95.0 244.5 357.3 2,523.9 1969 366.1 275.9 499.3 157.8 60.0 34.7 4.0 0.0 7.3 51.9 122.7 299.9 1,879.6 1970 337.7 261.6 282.8 213.8 147.4 56.7 36.9 0.0 34.8 70.3 245.0 275.6 1,962.6 1971 378.6 222.1 316.4 66.1 180.1 77.1 4.1 4.1 12.6 156.9 234.1 363.7 2,015.9 1972 316.0 163.8 287.0 71.8 104.9 0.0 0.0 0.0 0.0 0.0 94.9 223.0 1,261.4 324.4 249.3 296.7 291.5 371.3 78.1 53.2 18.2 145.4 105.2 208.2 241.7 2,383.2 1974 169.8 295.8 159.5 158.4 148.7 36.0 25.0 61.3 79.3 224.6 231.2 209.6 1,789.2 330.1 305.3 345.8 291.2 152.2 13.2 18.5 18.5 189.8 344.7 405.9 322.4 2,737.6 1976 237.5 220.1 272.1 75.0 24.6 1.8 6.8 0.0 4.5 95.0 294.5 145.5 1,377.4 1977 274.9 272.4 338.7 157.8 54.2 47.3 0.0 0.0 2.3 4.0 96.2 380.4 1,628.2 1978 349.4 240.0 304.9 172.1 262.7 220.5 133.5 40.9 71.7 144.8 263.1 318.4 2,522.0 388.7 242.5 274.7 202.4 243.3 1979 112.7 2.0 3.0 9.1 55.0 155.0 284.9 1,973.3 1980 252.5 188.9 156.6 216.2 36.3 0.7 8.9 10.6 7.8 77.3 284.3 377.8 1,617.9 1981 332.2 237.7 188.7 163.6 182.9 93.1 143.6 22.9 102.0 131.0 365.1 304.2 2,267.0 1982 277.2 304.2 224.1 199.9 1.8 2.3 0.4 1.0 0.0 2.2 52.2 360.6 1,426.0 1983 422.4 359.3 252.3 257.4 260.4 30.4 4.1 0.7 7.8 151.4 267.9 303.9 2,318.0 Mean 315.7 267.8 281.4 175.7 131.1 61.5 50.8 21.8 31.8 96.3 209.5 324.9 1,966.7

Table 2 ESTIMATED KONTHLY INPLOW TO THE KARANGKATES
RESERVOIR ( INCLUDING INPLOW TO THE LAHOR RESERVOIR )

|       | <del></del> |       |      |      |      | ( Unit     | : em ) |
|-------|-------------|-------|------|------|------|------------|--------|
|       | 1978        | 1979  | 1980 | 1981 | 1982 | 1983       | Mean   |
| Jan.  | 98          | 155   | 100  | 115  | 138  | 113        | 119.8  |
| Feb.  | 76          | 133   | 83   | 81   | 127  | 112        | 105.0  |
| Ear.  | 110         | 132   | 84   | 83   | 129  | 107        | 107.5  |
| Apr.  | 77          | 151   | 84   | 74   | 103  | 109        | 95.5   |
| Хау   | 102         | 151   | - 59 | 82   | 58   | 145        | 99.5   |
| June  | 138         | 112   | 40   | 67   | 47   | <b>7</b> 8 | 80.3   |
| July  | 113         | 63    | 36   | 103  | 44   | 55         | 69.0   |
| Aug.  | 69          | 51    | 35   | 50   | 40   | 42         | 47.8   |
| Sep.  | 66          | 42    | 27   | 49   | 30   | 33         | 41.2   |
| Cct.  | 68          | 39    | 33   | 56   | 26   | 65         | 47.8   |
| Nov.  | 91          | 55    | 67   | 95   | 26   | 87         | 70.2   |
| Dec.  | 118         | 94    | 101  | 135  | 78   | 95         | 103.5  |
| Total | 1,127       | 1,150 | 755  | 990  | 847  | 1,041      | 985    |

Note: (1) The values above are estimated by reservoir water level and outflow data.

<sup>(2)</sup> C.A. = 2,210 km<sup>2</sup> (K. Kates 2,050 km<sup>2</sup>, Lahor 160 km<sup>2</sup>).

Table 3 MONTHLY INFLOW TO THE SELOREJO RESERVOIR

(Unit: mm)

|       | 1978  | 1979       | 1980  | 1981  | 1982  | 1983  | Mean    |
|-------|-------|------------|-------|-------|-------|-------|---------|
| Jan.  | 166   | 165        | 124   | 284   | 271   | 118   | 188.0   |
| Feb.  | 152   | 123        | 136   | 219   | 264   | 120   | 169.0   |
| Mar.  | 144   | 145        | 121   | 156   | 229   | 133   | 154.7   |
| Apr.  | 113   | 139        | 122   | 138   | 189   | 129   | 138.3   |
| May   | 126   | 142        | 92    | 137   | 117   | 128   | 123.7   |
| Jun.  | 129   | 102        | 67    | 109   | 95    | 83    | 97.5    |
| Jul.  | 108   | 88         | 63    | 103   | 89    | 76    | 87.8    |
| Aug.  | 79    | 78         | 57    | 78    | 85    | 69    | 74.3    |
| Sep.  | 81    | 69         | \$5   | 96    | 72    | 61    | 72.3    |
| Oct.  | 79    | 69         | 63    | 106   | 70    | 79    | 77.7    |
| Nov.  | 78    | 65         | 80    | 122   | 69    | 92    | 84.3    |
| Dec.  | 116   | <b>7</b> 5 | 110   | 166   | 92    | 93    | 108.7   |
| Total | 1,372 | 1,261      | 1,089 | 1,713 | 1,641 | 1,181 | 1,376.2 |

Note: (1) The values above are estimated by reservoir water level and outflow data.

(2) C.A. =  $236 \text{ km}^2$ 

# Table 4 TANK MODEL COEFFICIENT OF KARANGKATES BASIN

# (1) Top tank

|        | Height (mm) | Coefficient |
|--------|-------------|-------------|
| Hole 3 | . 45        | 0.30        |
| Hole 2 | 15          | 0.20        |
| Hole 1 | 0           | 0.15        |
| Bottom | -           | 0.45        |

Maximum depth = 70 mm

# (2) Lower tank

| Tank No. | Height (mm) | Coefficient | Bottom Coefficient |
|----------|-------------|-------------|--------------------|
| No. 2    | 0           | 0.05        | 0.03               |
| No. 3    | 0           | 0.015       | 0.015              |
| No. 4    | 0           | 0.004       | 0.000              |

# (3) River channel tanks

|        | Height (mm) | Coefficient |
|--------|-------------|-------------|
| Hole 2 | 2           | 0.15        |
| Hole 1 | 0           | 0.15        |

# (4) Initial Depth (mm)

| Tank No.                    | Zone 1 | . 2 | 3   | 4    |
|-----------------------------|--------|-----|-----|------|
| No.1<br>Free of water Depth | 30     | 30  | 40  | 40   |
| Moisture Depth              | 50     | 50  | 100 | 200  |
| No. 2                       | 50     | 100 | 150 | 200  |
| No. 3                       | 50     | 100 | 150 | 200  |
| No. 4                       | 50     | 100 | 500 | 1500 |

- (5) Depth in river channel = 10 mm
- (6) Evaporation coefficient = 0.65

# Table 5 TANK MODEL COEFFICIENT OF SELOREJO BASIN

# (1) Top tank

|        | Height (mm) | Coefficient |
|--------|-------------|-------------|
| Hole 3 | 40          | 0.20        |
| Hole 2 | 20          | 0.10        |
| Holè 1 | 0           | 0.04        |
| Bottom | •           | 0.40        |
|        |             |             |

Maximum depth = 70 mm

# (2) Lower tank

| Tank No. | Height (mm) | Coefficient | Bottom Coefficient |
|----------|-------------|-------------|--------------------|
| No. 2    | 0           | 0.050       | 0.050              |
| No. 3    | 0           | 0,025       | 0.025              |
| No. 4    | e           | 0.010       | 0.000              |

# (3) River channel tanks

|        | Height (mm) | Coefficient |
|--------|-------------|-------------|
| Hole 2 | 2           | 0.15        |
| Hole 1 | 0           | 0.15        |

# (4) Initial Depth (mm)

| Tank No.                    | Zone 1 | 2   | 3   | 4    |
|-----------------------------|--------|-----|-----|------|
| No.1<br>Free of water Depth | 30     | 30  | 40  | 40   |
| Moisture Depth              | 50     | 50  | 100 | 200  |
| No. 2                       | 50     | 100 | 150 | 200  |
| No.3                        | 50     | 100 | 150 | 200  |
| No.4                        | 50     | 100 | 500 | 2000 |

- (5) Ocpth in river channel = 10 mm
- (6) Evaporation coefficient = 0.65

MONTHLY RUNOFF AT KARANGKATES DANSITE Table 6

|                         | Annual         |              |              |              | <del></del>    | <del></del>  | Ru           | noff (s      | m)                   |            | <del></del> | <del></del> |              |                  | Runoff           |
|-------------------------|----------------|--------------|--------------|--------------|----------------|--------------|--------------|--------------|----------------------|------------|-------------|-------------|--------------|------------------|------------------|
| Year                    | Rainfa<br>(mm) | 11<br>Jan    | Feb          | Har          | Apr            | May          | Jun          | Jul          | Aug                  | Sep        | Oct         | Nov         | Dec          | Total            | Coeffi-<br>cient |
| 1951                    | 1,663          | 104          | 119          | 90           | 54             | 43           | 42           | 34           | 29                   | 23         | 22          |             |              |                  |                  |
| 1952                    | 2,349          |              | 103          | 156          | 109            | 62           | 44           | 33           | 2 <del>9</del><br>27 | 24         | 22<br>26    | 19<br>124   | 88           | 667<br>971       | 0.40             |
| 1953                    | 1,797          |              | 107          | 112          | 122            | 143          | 81           | 60           | 43                   | 34         | 20<br>31    | 30          | 134<br>67    | 955              | 0.41             |
| 1954                    | 2,829          |              | 122          | 133          | 147            | 128          | 97           | 72           | 58                   | 45         | 44          | 131         | 194          | 1,285            | 0.45             |
| 1955                    | 2,549          |              | 150          | 137          | 112            | 97           | 84           | 130          | 104                  | 70         | 67          | 146         | 126          | 1,368            | 0.54             |
| 1956                    | 1.890          |              | 124          | 114          | 79             | 65           | 68           | 68           | 65                   | 52         | 47          | 55          | 137          | 1,025            | 0.54             |
| 1957                    | 1,955          | 106          | 132          | 220          | 133            | 91           | 61           | 96           | 69                   | 47         | 41          | 37          | 84           | 1,119            | 0.57             |
| 1958                    | 2,205          | 78           | 115          | 138          | 135            | 102          | 69           | 82           | 52                   | 39         | 35          | 35          | 128          | 1,007            | 0.46             |
| 1959                    | 2,080          | 146          | 121          | 146          | 112            | 99           | 81           | 57           | 43                   | 35         | 33          | 38          | 150          | 1,060            | 0.51             |
| 1960                    | 1.886          | 123          | 112          | 144          | 137            | 117          | 76           | 65           | 45                   | 36         | 34          | 41          | 69           | 997              | 0.53             |
| 1961                    | 1,467          | 124          | 110          | 89           | 78             | 66           | 42           | 34           | 28                   | 2\$        | 23          | 21          | 52           | 693              | 0.47             |
| 1962                    | 2,333          | 164          | 115          | 132          | 115            | 95           | 52           | 38           | 30                   | 25         | 24          | 62          | 163          | 1,015            | 0.44             |
| 1963                    | 1,492          | 125          | 137          | 157          | 108            | 72           | 46           | 37           | 31                   | 27         | 26          | 22          | 59           | 849              | 0.57             |
| 1964                    | 1,891          | 51           | 41           | 92           | 73             | 51           | 49           | 30           | 21                   | 17         | 95          | 85          | 58           | 663              | 0.35             |
| 1965                    | 1,414          | 89           | 96           | 98           | 86             | 51           | 34           | 27           | 22                   | 19         | 18          | 16          | 61           | 617              | 0.44             |
| 1966                    | 1,881          | 93           | 121          | 133          | 112            | 75           | 45           | 32           | 25                   | 20         | 20          | 24          | 67           | 768              | 0.41             |
| 1967                    | 1,594          | 137          | 98           | 85           | 87             | 53           | 32           | 25           | 21                   | 18         | 17          | 15          | 72           | 662              | 0.42             |
| 1968                    | 2,524          | 94           | 75           | 106          | 112            | 113          | 103          | 110          | 67                   | 41         | 35          | 45          | 111          | 1,011            | 0.40             |
| 1969                    | 1,880          | 136          | 132          | 210          | 155            | 95           | 72           | 50           | 42                   | 35         | 34          | 32          | 78           | 1,072            | 0.57             |
| 1970                    | 1,963          | 102          | 106          | 118          | 109            | 96           | 68           | 48           | 38                   | 31         | 30          | 46          | 75           | 867              | 0.44             |
| 1971                    | 2,016          | 128          | 104          | 122          | 96             | 78           | 64           | 47           | 35                   | 29         | 34          | 66          | 106          | 909              | 0.45             |
| 1972                    | 1,261          | 127          | 88           | 108          | 73             | 68           | 42           | 33           | 28                   | 25         | 23          | 20          | 32           | 667              | 0.53             |
| 1973                    | 2,388          | 70           | 70           | 106          | 120            | 147          | 97           | 65           | 42                   | 37         | 36          | 41          | 73           | 904              | 0.38             |
| 1974                    | 1,789          | 69           | 83           | 94           | 84             | 76           | 47           | 37           | 31                   | 28         | 43          | 67          | 73           | 731              | 0.41             |
| 1975                    | 2,738          | 109          | 124          | 143          | 139            | 120          | 76           | 52           | 42                   | 56         | 94          | 147         | 162          | 1,266            | 0.45             |
| 1976                    | 1,377          | 135          | 106          | 142          | 95             | 65           | 48           | 42           | 38                   | 34         | 33          | 61          | 56           | 856              | 0.62             |
| 1977                    | 1,628          | 87           | 91           | 121          | 111            | 71           | 46           | 37           | 30                   | 26         | 24          | 22          | 73           | 739              | 0.45             |
| 1978                    | 2,522          | 115<br>(98)  | 89<br>(76)   | 118<br>(110) | 89<br>(77)     | 122<br>(102) | 102<br>(138) | 100<br>(113) | 56<br>(69)           | 39<br>(66) | 42<br>(68)  | 63<br>(91)  | 111<br>(118) | 1,044<br>{1,127} | 0.41<br>(0.45)   |
| 1979                    | 1,973          |              | 119<br>(133) | 122<br>(132) | (121)<br>(121) | 128<br>(151) | 103<br>(112) | 68<br>(63)   | 50<br>(51)           | 40<br>(42) | 37<br>(39)  | 37<br>(55)  | 76<br>(94)   | 1,040<br>(1,150) | 0.53<br>(0.58)   |
| 1980                    | 1,618          | 93<br>(100)  | 80<br>(83)   | 74<br>(84)   | 82<br>(84)     | 68<br>(59)   | 43<br>(40)   | 35<br>(36)   | 30<br>(35)           | 26<br>(27) | 25<br>(33)  | 49<br>(67)  | 113<br>(101) | 717<br>(755)     | 0.44<br>(0.47)   |
| 1981                    | 2,265          | 135<br>(115) | 101<br>(81)  | 93<br>(83)   | 77<br>(74)     | 92<br>(82)   | 63<br>(67)   | 71<br>(103)  | 48<br>(50)           | 34<br>(49) | 45<br>(56)  | 70<br>(95)  | 138<br>(135) | 966<br>(990)     | 0.43<br>(0.44)   |
| 1982                    | 1,424          |              | 129<br>(127) | 129<br>(124) | 97<br>(103)    | 74<br>(58)   | 47<br>(47)   | 39<br>(44)   | 33<br>(40)           | 29<br>(30) | 28<br>(26)  | 25<br>(26)  | 52<br>(78)   | 811<br>(847)     | 0.57<br>(0.59)   |
| 1983                    | 2,328          |              | 131<br>(112) | 129<br>(107) | 107<br>(109)   | 119<br>(145) | 89<br>(78)   | 55<br>{55}   | 39<br>(42)           | 31<br>(33) | 30<br>(65)  | 60<br>(87)  | 87<br>(95)   | 1,023<br>(1,041) | 0.44<br>(0.45)   |
| Kean                    | 1,969          | 114.9        | 107:6        | 107.6        | 104.9          | 89.1         | 64           | 54.8         | 41.3                 | 33,2       | 36.2        | 53.         | 94.7         | 920              | 0.47             |
| Mean<br>(1978<br>-1983) | 2,202          |              | 108<br>(102) | 111<br>(108) | 95<br>(96)     | 101<br>(100) | 75<br>(80)   | 61<br>(69)   | 43<br>(48)           | 33<br>(41) | 35<br>(48)  | 51<br>(70)  | 96<br>(104)  | 934<br>(985)     | 0.46<br>(0.49)   |

Note: (1) Runoff is estimated by tank model.
(2) The values parenthesized are estimated by reservoir water level and outflow data.

MONTHLY RUN-OFF AT SELOREJO DAMSITE

|                        | 11                        |                 | <del></del>        |                  | <del></del>        | <del></del>        |                    |                  |                  |                 |             |                     |                    |                      | Runoff            |
|------------------------|---------------------------|-----------------|--------------------|------------------|--------------------|--------------------|--------------------|------------------|------------------|-----------------|-------------|---------------------|--------------------|----------------------|-------------------|
| Year                   | Annual<br>Rainfal<br>(mm) | l<br>Jan        | Feb                | Mar              | Apr                | Hay                | Runo<br>Jun        | ff (mm)<br>Jul   | Aug              | Sep             | Oct         | Nov                 | Dec                | Total                | Coeffi-<br>cient  |
| 1950                   | 2,568                     | 83              | 238                | 265              | 119                | 83                 | 76                 | 11               | 55               | 47              | 55          | 134                 | 149                | 1,374                | 0.54              |
| 1951                   | 1,750                     | 131             | 163                | 161              | 112                | 90                 | 78                 | 79               | 63               | 59              | 54          | 45                  | 86                 | 1,123                | 0.64              |
| 1952                   | 2,309                     | 152             | 184                | 193              | 131                | 101                | 78                 | 67               | 61               | 54              | 50          | 95                  | 113                | 1,279                | 0.55              |
| 1953                   | 1,829                     | 103             | 128                | 123              | 126                | 149                | 91                 | 77               | 63               | 55              | 49          | 50                  | 106                | 1,121                | 0.61              |
| 1954                   | 2,823                     | 175             | 163                | 154              | 149                | 127                | 101                | 88               | 85               | 72              | 71          | 130                 | 179                | 1,494                | 0.53              |
| 1955                   | 3,040                     | 207             | 186                | 205              | 420                | 170                | 146                | 154              | 130              | 105             | 108         | 160                 | 155                | 2,146                | 0.71              |
| 1956                   | 2,418                     | 178             | 208                | 200              | 149                | 140                | 158                | 116              | 100              | 83              | 99          | 100                 | 153                | 1,685                | 0.70              |
| 1957                   | 2,321                     | 131             | 173                | 276              | 166                | 146                | 108                | 125              | 97               | 78              | 70          | 69                  | 152                | 1,591                | 0.69              |
| 1958                   | 2,289                     | 119             | 119                | 160              | 141                | 120                | 94                 | 112              | 80               | 64              | 62          | 67                  | 131                | 1,269                | 0.55              |
| 1959                   | 2,422                     | 241             | 172                | 174              | 142                | 132                | 108                | 95               | 79               | 67              | 64          | 71                  | 201                | 1,546                | 0.64              |
| 1960                   | 2,645                     | 170             | 285                | 210              | 210                | 200                | 138                | 124              | 103              | 87              | 83          | 104                 | 122                | 1,835                | 0.69              |
| 1961                   | 2,095                     | 287             | 167                | 167              | 144                | 133                | 99                 | 85               | 73               | 64              | 58          | 66                  | 102                | 1,443                | 0.69              |
| 1962                   | 3,263                     | 271             | 324                | 210              | 247                | 178                | 134                | 117              | 106              | 87              | 86          | 131                 | 176                | 2,067                | 0.63              |
| 1963                   | 2,075                     | 327             | 235                | 235              | 168                | 134                | 108                | 97               | 86               | 73              | 76          | 60                  | 76                 | 1,675                | 0.81              |
| 1964                   | 2,463                     | 79              | 90                 | 146              | 129                | 117                | 111                | 81               | 67               | 64              | 137         | 109                 | 103                | 1,232                | 0.50              |
| 1965                   | 1,705                     | 185             | 144                | 191              | 151                | 116                | 92                 | 80               | 70               | 60              | 53          | 45                  | 74                 | 1,262                | 0.74              |
| 1966                   | 2,283                     | 96              | 143                | 186              | 128                | 109                | 82                 | 69               | 59               | 50              | 55          | 75                  | 119                | 1,172                | 0.51              |
| 1967                   | 2,182                     | 203             | 194                | 175              | 144                | 118                | 90                 | 79               | 70               | 60              | 53          | 55                  | 127                | 1,367                | 0.63              |
| 1968                   | 2,887                     | 148             | 160                | 178              | 168                | 154                | 133                | 144              | 117              | 94              | 90          | 116                 | 167                | 1,672                | 0.58              |
| 1969                   | 1,609                     | 162             | 168                | 172              | 142                | 113                | 93                 | 80               | 70               | 60              | 58          | 58                  | 71                 | 1,246                | 0.77              |
| 1970                   | 2,383                     | 104             | 151                | 183              | 126                | 110                | 92                 | 75               | 63               | 56              | 56          | 100                 | 112                | 1,229                | 0.52              |
| 1971                   | 3,039                     | 184             | 247                | 208              | 178                | 164                | 144                | 117              | 100              | 90              | 101         | 126                 | 229                | 1,887                | 0.62              |
| 1972                   | 1,707                     | 196             | 148                | 235              | 158                | 151                | 110                | 95               | 83               | 70              | 64          | 57                  | 76                 | 1,442                | 0.84              |
| 1973                   | 2,636                     | 97              | 109                | 155              | 126                | 142                | 111                | 87               | 74               | 75              | 83          | 97                  | 143                | 1,300                | 0.49              |
| 1974                   | 2,920                     | 298             | 219                | 228              | 227                | 165                | 127                | 114              | 108              | 108             | 123         | 120                 | 137                | 1,975                | 0.68              |
| 1975                   | 2,850                     | 168             | 173                | 207              | 207                | 171                | 129                | 111              | 102              | 111             | 128         | 172                 | 176                | 1,855                | 0.65              |
| 1976                   | 2,410                     | 250             | 197                | 612              | 172                | 146                | 114                | 104              | 92               | 77              | 84          | 90                  | 82                 | 2,019                | 0.84              |
| 1977                   | 1,827                     | 144             | 159                | 273              | 136                | 115                | 92                 | 75               | 65               | 55              | 49          | 40                  | 53                 | 1,258                | 0.69              |
| 1978                   | 2,180                     | 148<br>(166)    | 137<br>(152)       | 142<br>(144)     | 100<br>(113)       | 108<br>(126)       | 107<br>(129)       | 91<br>(108)      | 72<br>(79)       | 59<br>(81)      | 54<br>(79)  | 51<br>(78)          | 65<br>(116)        | 1,132<br>(1,372)     | 0.52<br>(0.63)    |
| 1979                   | 1,816                     |                 | 103<br>{123}       | 113<br>(145)     | 94 (139)           | 120<br>(142)       | 86<br>(102)        | 68<br>(88)       | 55<br>(78)       | 46<br>(69)      | 42<br>(69)  | 44<br>(65)          | 72<br>(75)         | 954<br>{1,261}       | 0.53<br>(0.69)    |
| 1980                   | 2,168                     | 122<br>(124)    | 127<br>(136)       | 140<br>(121)     | 124<br>(122)       | 103<br>(92)        | 76<br>(67)         | 65<br>(63)       | 56<br>(51)       | 48<br>(55)      | 48<br>(63)  | 51<br>(80)          | 129<br>(110)       | 1,096<br>(1,089)     | 0.51<br>(0.50)    |
| 1981                   | 2,878                     | 255<br>(284)    | 174<br>(219)       | 172<br>(156)     | 139<br>(138)       | 154<br>(137)       | 121<br>(109)       | 113<br>(103)     | 93<br>{78}       | 90<br>(96)      | 95<br>(106) | 125<br>(122)        | 166<br>(166)       | 1,699<br>(1,713)     | 0.59<br>(0.60)    |
| 1982                   | 1,941                     | 244<br>(271)    | 248<br>(264)       | 229<br>(229)     | 169<br>(189)       | 134<br>(117)       | 107<br>(95)        | 96<br>(89)       | 85<br>(85)       | 72<br>(72)      | 63<br>(70)  | 55<br>(69).         | 100<br>(92)        | 1,602<br>(1,641)     | 0.83<br>(0.85)    |
| 1983                   | 2,389                     | 185<br>(118)    | 128<br>(120)       | 143<br>(133)     | 158<br>(129)       | 167<br>(128)       | 102<br>(83)        | 83<br>(76)       | 69<br>(69)       | 59<br>(61)      | 63<br>(79)  | 94<br>(9 <b>3</b> ) | 110<br>{93}        | 1,361<br>(1,181)     | 0.57<br>(0.49)    |
| Mean                   | 2,356                     |                 |                    |                  |                    |                    | 106.9              | 95.1             | 80.9             | 70.6            | 73.1        | 87.                 | 3 123.9            | 1,483                | 0.63              |
| (Mean<br>1978<br>-1983 | 2,229                     | 177.0<br>(189.0 | 3 152.8<br>){169.0 | 3 156.5<br>X154. | 5 130.7<br>7X138.3 | 7 131.0<br>3X123.1 | ) 99.8<br>)) (97.5 | 86.0<br>5) (87.8 | 71.7<br>) (74.3) | 62.3<br>) (72.3 | 60.6        | 71.0<br>(84.3       | ) 107.0<br>3(108.1 | ) [,307.<br>)X1,376. | 3 0.59<br>2X0.62) |

Note: (1) Runoff is estimated by tank model.
(2) The values parenthesized are estimated by reservoir water level and outflow data.

Table 8 EQUATION OF INFLOW FORECASTING

|                |               |              | · · · · · · · · · · · · · · · · · · · | <del> </del> |               |  |  |  |
|----------------|---------------|--------------|---------------------------------------|--------------|---------------|--|--|--|
|                | Ĵun.          | Jul.         | Aug                                   | Sept.        | Oct.          |  |  |  |
| A <sub>O</sub> | -11.0899638   | -15.5299962  | -2.87097038                           | -0.61494647  | 3.07925388    |  |  |  |
| Aį             | 0.0149239665  | 0.0525167239 | 0.0384507892                          | 0.042389943  | 0.0313118965  |  |  |  |
| A <sub>2</sub> | 0.0297891733  | 0.0101756963 | 0.0107804442                          | 0.005352747  | 0.0105785789  |  |  |  |
| A3             | 0.0083712475  | 0.0242773289 | 0.169692058                           | 0.020534444  | 0.01038751    |  |  |  |
| A <sub>4</sub> | -0.0541001518 | 0.0124031042 | -0.020504488                          | -0.014334763 | -0.0272584739 |  |  |  |
| A5             | 0.0987755701  | 0.0498220939 | 0.0459776609                          | 0.034219894  | 0.0369615015  |  |  |  |
| <b>A</b> 6     | 0.169481819   | 0.0461714545 | 0.0428709541                          | 0.010738026  | 0.031367007   |  |  |  |
| Α7             | 0.0506207894  | 0.0559367462 | 0.0027992661                          | -0.004698774 | -0.022273360  |  |  |  |
| RR             | 0.973412      | 0.963390     | 0.931206                              | 0.883487     | 0.879276      |  |  |  |

$$Q_1 = A_0 + A_1 \times R_{11} + A_2 \times R_{12} + A_3 \times R_1 + A_4 \times R_2 + A \times R_3 + A_6 \times R_4 + A_7 \times R_5$$

where,

: Monthly runoff (mm) Qi constant monthly runoff in November R11 monthly runoff in December  $R_{12}$ monthly runoff in January  $R_1$ monthly runoff in February R<sub>2</sub> monthly runoff in March R<sub>3</sub> monthly runoff in April  $R_4$ monthly runoff in May R5 Correlation coefficient

Table 9 WATER REQUIREMENT FOR PEAK POWER OUTPUT (5 hrs)
(Karangkates Dam)

| Water Level<br>(EJm) |      | (24 hrs.) | (5 hrs) | Peak Output<br>(kW) |
|----------------------|------|-----------|---------|---------------------|
| HWL 272.5            | •    | 27.7      | 133.0   | 105.0               |
| 271.0                | )    | 28.1      | 134.9   | 105.0               |
| 270.0                | )    | 28.5      | 136.8   | 105.0               |
| 269.0                |      | 28.9      | 138.7   | 105.0               |
| 268.0                | •    | 29.4      | 141.1   | 105.0               |
| 267.0                | •    | 29.8      | 140.6   | 105.0               |
| 266.0                | ,    | 30,3      | 145.4   | 105.0               |
| . 265.0              | )    | 30.9      | 148.3   | 105.0               |
| 264.0                | 1    | 31.5      | 151.2   | 105.0               |
| 263.0                | •    | 32.1      | 154.1   | 104.8               |
| 262.0                | 1    | 31.9      | 153.1   | 102.7               |
| 261.0                | •    | 31.6      | 151.7   | 100.5               |
| 260.0                | •    | 31.3      | 150.2   | 98.2                |
| 259.0                | )    | 31.1      | 149.3   | 96.2                |
| 258.0                | •    | 30.8      | 147.8   | 94.2                |
| 257.0                | •    | 30.5      | 146.4   | 92,2                |
| 256.0                | 1    | 30.3      | 145.4   | 90.2                |
| 255.0                | •    | 30.0      | 144.0   | 88.3                |
| 254.0                | •    | 29.7      | 142.6   | 86.2                |
| 253.0                | , ;; | 29.5      | 141.6   | 83.9                |
| 252.0                | , '  | 29.2      | 140.2   | 81.9                |
| 251.0                | 1    | 29.0      | 139.2   | 79.7                |
| 250.0                | ١,   | 28.7      | 137.8   | 77.7                |
| 249.0                | •    | 28.4      | 136.3   | 75.5                |
| 248.0                | •    | 28.2      | 135.4   | 73.5                |
| 247.0                | •    | 27.9      | 133.9   | 71.4                |
| LWL. 246.0           | )    | 27.6      | 133.0   | 69.4                |

| Ta | b) | Le | - 1 | U |
|----|----|----|-----|---|
|----|----|----|-----|---|

|                                         |                                               | Jun.   | Jul.   | Aug.   | Sep.   | Oct.   | Nov.   | Dec.   | Jan.   | Feb.          | Mar.   | Apr.   | Нау    | Annual |
|-----------------------------------------|-----------------------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|---------------|--------|--------|--------|--------|
| Monthly Mea<br>Possible Ou              |                                               | 39.14  | 35.17  | 35.99  | 37.41  | 39,61  | 43.50  | 30.34  | 49.14  | 87.98         | 70.23  | 74.57  | 44.14  |        |
| Water Level<br>End of Mont              |                                               | 272.40 | 270.94 | 268.09 | 264.03 | 258.09 | 250.50 | 258.90 | 272.50 | 272.50        | 272.50 | 272.50 | 272.49 | -      |
| Storage at<br>of Nonth                  | the End<br>(x10 <sup>8</sup> m³)              | 352.64 | 329.58 | 288.23 | 236.45 | 174.80 | 116.10 | 182.36 | 354.23 | 354.23        | 354.23 | 354.23 | 354.08 |        |
| ⊖ Zonthly<br>H Output                   |                                               | 105.0  | 105.0  | 105.0  | 105.0  | 100.8  | 85.6   | 90.7   | 104.2  | 105.0         | 105.0  | 105.0  | 105.0  |        |
|                                         | Energy<br>(MWB)                               | 15,750 | 16,275 | 16,275 | 15,750 | 15,621 | 12,837 | 14,065 | 16,149 | 14,700        | 16,275 | 15,750 | 16,275 | 185,72 |
| Monthly Heathly                         |                                               | 17.7   | 17.7   | 17.6   | 17.0   | 16.0   | 14.4   | 0      | 22.9   | 58.7          | 40.5   | 44.6   | 19.4   |        |
| ionthly                                 | Energy<br>(MAH)                               | 5,847  | 3,833  | 3,837  | 3,479  | 3,844  | 5,687  | .0     | 11,515 | 31,220        | 23,825 | 25,416 | 8,919  | 127,42 |
| Monthly<br>Operati                      |                                               | 11.0   | 7.0    | 7.0    | 6.8    | 7.8    | 13.3   | . 0    | 7.4    | 19.0          | 19.0   | 19.0   | 14.4   |        |
| Monthly<br>Energy                       |                                               | 21,597 | 20,108 | 20,112 | 19,229 | 19,466 | 18,525 | 14,065 | 27,665 | 45,920        | 40,100 | 41,166 | 25,194 | 313,1  |
| Morthly Hea<br>Possible Ou              |                                               | 39.53  | 33.20  | 33.83  | 34.94  | 36.58  | 39.13  | 31.40  | 62.28  | 87.98         | 70.23  | 74.57  | 44.08  |        |
| Water Level<br>End of Hont              |                                               | 272.46 | 271.35 | 268.96 | 265.56 | 260.85 | 255.69 | 262.36 | 272.50 | 272.50        | 272.50 | 272.50 | 272.50 |        |
| Storage at of Honth                     | the End<br>(x10 <sup>E</sup> m <sup>3</sup> ) | 353.72 | 335.94 | 300.38 | 255.01 | 201.51 | 154.06 | 217.56 | 354.23 | 354.23        | 354.23 | 354.23 | 354.23 |        |
| ⊋ Monthly<br>H Output                   |                                               | 105.0  | 105.0  | 105.0  | 105.0  | 103.9  | 93.7   | 99.1   | 105.0  | 165.0         | 105.0  | 105.0  | 105.0  |        |
| •                                       | Energy<br>(ISAH)                              | 15,750 | 16,275 | 16,275 | 15,750 | 16,112 | 14,059 | 15,353 | 16,268 | 14,700        | 16,275 | 15,750 | 16,275 | 188,8  |
| Monthly  Monthly  Monthly               |                                               | 17.7   | 17.7   | 17.7   | 17.2   | 16.4   | 15.3   | 0      | 34.9   | 58.7          | 40.5   | 44.6   | 19.4   |        |
| មី Monthly                              | Energy<br>(MWH)                               | 5,634  | 2,838  | 2,846  | 2,605  | 2,481  | 3,682  | . 0    | 19,119 | 31,220        | 23,825 | 25,416 | 8,889  | 128,5  |
| Monthly<br>Operati                      |                                               | 10.6   | 5.2    | 5.2    | 5.1    | 4.9    | 8.1    | o      | 12.1   | 19.0          | 19.0   | 19.0   | 14.4   |        |
| - Honthly Energy                        |                                               | 21,384 | 19,113 | 19,121 | 18,355 | 18,593 | 17,741 | 15,353 | 35,387 | 45,920        | 40,100 | 41,166 | 25,164 | 317,3  |
| Monthly Mea<br>Fossible Ou              |                                               | 38.53  | 30.91  | 31.35  | 32.17  | 33.33  | 34.96  | 31.33  | 77.02  | <b>87.</b> 98 | 70.23  | 74.57  | 44.08  |        |
| Water Level<br>End of Mont              |                                               | 272.50 | 271.77 | 269.88 | 267.15 | 263.53 | 260.11 | 265.78 | 272.50 | 272.50        | 272.50 | 272.50 | 272.50 |        |
| Storage at of Month                     |                                               | 354.23 | 342.57 | 313.64 | 275.46 | 230.69 | 194.05 | 257.73 | 354.23 | 354.23        | 354.23 | 354.23 | 354.23 |        |
| Monthly Gutput                          |                                               | 105.0  | 105.0  | 105.0  | 105.0  | 105.0  | 101.2  | 104.2  | 105.0  | 105.0         | 105.0  | 105.0  | 105.0  |        |
| S WOUTHIN                               | Energy<br>(MWH)                               | 15,750 | 16,275 | 16,275 | 15,750 | 16,275 | 15,176 | 16,157 | 16,275 | 14,700        | 16,275 | 15,750 | 16,275 | 190,9  |
| 기술 Monthly<br>일 및 Output<br>일 및 Monthly |                                               | 17.7   | 17.7   | 17.7   | 17.4   | 16.8   | 16.0   | 0      | 47.7   | 58.7          | 40.5   | 44.6   | 19.4   |        |
| Honthly                                 | Energy<br>(MAH)                               | 5,535  | 1,672  | 1,676  | 1,550  | 1,323  | 1,532  | o      | 27,799 | 31,220        | 23,825 | 25,416 | 8,889  | 130,4  |
| <b>3</b>                                | Kean<br>on Hour<br>(Krs.)                     | 10.4   | 3.1    | 3.1    | 3.0    | 2.5    | 3.2    | o      | 15.4   | 19.0          | 19.0   | 19.0   | 14.4   |        |
| 9                                       | Mean                                          |        |        |        |        |        |        |        |        |               |        | 41,166 |        |        |

Case.1 ... Q-h = 3,170 Case.2 ... Q-h = 3,000 Case.3 ... Q-h = 2,800 Note:

Q: Possible outflow (m<sup>3</sup>/s) h: Effective head (m)

Table 11 RESERVOIR OPERATION RESULTS (1972 Year, T = 1/10)

| · · · · · · · · · · · · · · · · · · ·                   | Jun.   | Jul.   | Aug.   | Sep.   | Oct.   | Nov.   | Dec.   | Jan.   | Feb.   | Mar.           | Arr.   | May    | Armua )  |
|---------------------------------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|----------------|--------|--------|----------|
| Monthly Mean<br>Possible Outflow<br>(m <sup>3</sup> /s) | 37.41  | 36.26  | 37.09  | 38.37  | 40.36  | 43,91  | 28.58  | 29.65  | 31.52  | 54.15          | 100.16 | 118.84 |          |
| Water Level at the<br>End of Month (EL.m)               | 272.19 | 270.67 | 268.08 | 264.58 | 259.22 | 250.50 | 249.57 | 259.23 | 266.32 | 272.50         | 272.50 | 272.50 | -        |
| Storage at the End of Month $(x10^6 m^3)$               | 349.33 | 325,60 | 288,08 | 242.95 | 185.34 | 116.10 | 110.26 | 185.45 | 264,58 | 354.23         | 354.23 | 354.23 | -        |
| C Monthly Mean<br>E Output (MW)                         | 105.0  | 105.0  | 105.0  | 105.0  | 102.2  | 88.4   | 76.3   | 85.3   | 102.2  | 105.0          | 105.0  | 105.0  | -        |
| Monthly Energy (MWH)                                    | 15,750 | 16,275 | 16,275 | 15,750 | 15,841 | 13,255 | 11,822 | 13,215 | 14,308 | 16,275         | 15,750 | 16,275 | 180.791  |
| Monthly Mean<br>Couput (NW)                             | 17.7   | 17.7   | 17.6   | 17.0   | 16.2   | 14.7   | 0      | 0      | 0      | 27.1           | 71.5   | 90.4   |          |
| Monthly Energy (MWH)                                    | 4,955  | 4,367  | 4,367  | 4,020  | 4,208  | 5,846  | 0      | 0      | o      | 14,752         | 40,771 | 53,242 | 136,528  |
| Monthly Mean Operation Hour (Brs.)                      | 9.3    | B. 0   | 8.0    | 7.9    | 8.4    | 13.4   | 0      | o      | o      | 8.3            | 19.0   | 19.0   | •        |
| Energy (MWH)                                            | 20,705 | 20,642 | 20,642 | 19,770 | 20,049 | 19,101 | 11,822 | 13,215 | 14,308 | 31,027         | 56,521 | 69,517 | 317, 319 |
| Monthly Mean<br>Possible Outflow<br>(m³/s)              | 36.03  | 33.20  | 33,73  | 34.55  | 35.77  | 37.68  | 30.58  | 31,20  | 30.32  | 73.77          | 100.16 | 118.84 | -        |
| Water Level at the End of Month (EL.m)                  | 272.41 | 271.44 | 269,55 | 267.01 | 263.32 | 258.14 | 256.88 | 263.91 | 270.11 | 272.50         | 272.50 | 272.50 | -        |
| Storage at the End of Month $\{x   (0^{\delta_m^3})\}$  | 352.90 | 337.37 | 308,85 | 273.61 | 228.27 | 175.24 | 164.05 | 235.09 | 317.12 | 354.23         | 354.23 | 354.23 |          |
| Monthly Mean Output (MW)                                | 105.0  | 105.0  | 105.0  | 105.0  | 105.0  | 100.1  | 92.3   | 97.8   | 105.0  | 105.0          | 105.0  | 105.0  | -        |
| Nonthly Energy (MWH)                                    | 15,750 | 16,275 | 16,275 | 15,750 | 16,275 | 15,011 | 14,312 | 15,16? | 14,700 | 16,275         | 15,750 | 16,275 | 187,810  |
| Monthly Mean Q Output (MW)                              | 17.7   | 17.7   | 17.7   | 17.4   | 16.8   | 15.9   | 0      | o      | 0      | 48.5           | 71.5   | 90.4   |          |
| Output (MW)  Monthly Energy (MWH)                       | 4,262  | 2,838  | 2,851  | 2,688  | 2,497  | 2,822  | 0      | o      | o      | 26,202         | 40,771 | 53,242 | 138,17   |
| Monthly Mean Operation Hour (Krs.)                      | 8.0    | 5.2    | 5.2    | 5.2    | 4.8    | 5.9    | 0      | o      | o      | 14.7           | 19.0   | 19.0   |          |
| E Monthly Mean<br>Energy (MWH)                          | 20,012 | 19,113 | 19,126 | 18,438 | 18,772 | 17,834 | 14,312 | 15,162 | 14,700 | 42,477         | 56,521 | 69,517 | 325,98   |
| Monthly Mean<br>Possible Outflow<br>(m³/s)              | 35.54  | 30.90  | 31.24  | 31.81  | 32.65  | 33.88  | 31.63  | 31.45  | 30+00. | 87 <b>.4</b> 9 | 100.16 | 118.84 | -        |
| Water Level at the End of Month (Et.m)                  | 272.49 | 271.91 | 270.50 | 268.57 | 265.79 | 262.10 | 260.77 | 266.82 | 272.47 | 272.50         | 272.50 | 272.50 |          |
| Storage of the End of Month ( $\kappa 10^6 m^3$ )       | 354.18 | 344.81 | 322.95 | 294.82 | 257.86 | 214.68 | 200.€8 | 271.05 | 353.87 | 354.23         | 354.23 | 354.23 |          |
| Floothly Mean Cutput (NW)                               | 105.0  | 105.0  | 105.0  | 105.0  | 105.0  | 104.7  | 100.6  | 103.1  | 105.0  | 105.0          | 105.0  | 165.0  |          |
| Monthly Energy (MMH)                                    | 15,750 | 16,275 | 16,275 | 15,750 | 16,275 | 15,708 | 15,599 | 15,981 | 14,700 | 16,275         | 15,750 | 16,275 | 190£1    |
| Monthly Mean Output (MM) Monthly Energy                 | 17.7   | 17.7   | 17.7   | 17.6   | 17.2   | 16.5   | 0      | 0      | 6,3    | 57.5           | 71.5   | 90.4   |          |
| Monthly Energy (MWH)                                    | 4,012  | 1,672  | 1,676  | 1,601  | 1,497  | 1,186  | 0      | 0      | 547    | 33,974         | 40,771 | 53,242 | 140,17   |
| Honthly Hean Operation Hour (Hrs.)                      | 7.6    | 3.1    | 3.1    | 3.0    | 2.6    | 2.4    | 0      | 0      | 1.1    | 19.0           | 19.0   | 19.0   | ,        |
| Bonthly Mean                                            |        |        |        |        |        |        |        |        |        |                |        |        |          |

Note: Case. 1 ... Q·h = 3,260 Case. 2 ... Q·h = 3,000 Case. 3 ... Q·g = 2,800

Q: Possible outflow (m<sup>3</sup>/s) h; Effective head (m)

Table 12 RESERVOIR OPERATION RESULTS (1976 Year, T # 1/2)

|                                                                | Jun.   | Jul.   | Aug.   | Sep.    | Oct.   | Nov.   | Dec.   | Jan.   | Feb.   | Kar.   | Apr.    | Мау    | Annual  |
|----------------------------------------------------------------|--------|--------|--------|---------|--------|--------|--------|--------|--------|--------|---------|--------|---------|
| Konthly Mean                                                   |        |        |        |         |        |        |        |        |        |        |         |        |         |
| fossible Outflow (m <sup>3</sup> /s)                           | 46.17  | 46.89  | 48.30  | 50.53   | 54.44  | 60.50  | 29.66  | 31.11  | 49.54  | 99.68  | 91.92   | 58.98  | -       |
| Water Level at the<br>End of Month (EL.m)                      | 271.68 | 269.59 | 266.30 | 261 .58 | 253.52 | 250.50 | 256.40 | 266.72 | 272.50 | 272.50 | 272.50  | 272.50 | -       |
| Storage at the End of Month (x10 <sup>6</sup> m <sup>3</sup> ) | 341.21 | 309.47 | 264.38 | 209-13  | 137.10 | 116.10 | 159.94 | 269.79 | 354.23 | 354.23 | 354.23  | 354.23 | -       |
| Monthly Mean Gotput (MW)                                       | 105.0  | 105.0  | 105.0  | 104.5   | 94.0   | 77.3   | 85.3   | 99.1   | 105.0  | 105.0  | 105.0   | 105.0  | -       |
| Monthly Energy     (MWH)     ∴                                 | 15,750 | 16,275 | 16,275 | 15,680  | 14,564 | 11,601 | 13,220 | 15,360 | 14,700 | 16,275 | 15,750  | 16,275 | 181,725 |
| Monthly Mean Soutput (184) Monthly Energy                      | 17.7   | 17.7   | 17.3   | 16.6    | 19.0   | 23.4   | a      | 0      | 19.4   | 70.6   | 65.8    | 29.3   | -       |
| Monthly Energy (MAR)                                           | 9,380  | 9,812  | 9,758  | 9,163   | 11,174 | 13,335 | 0      | 0      | 10,117 | 41,573 | 37,496  | 17,233 | 169,042 |
| Monthly Mean<br>⊕ Operation Hour<br>⊕ (Hrs.)                   | 17.7   | 17.9   | 18.2   | 18.4    | 19.0   | 19.0   | 0      | 0      | 11.8   | 19.0   | 19.0    | 19.0   | -       |
| Honthly Mean<br>Energy (MWH)                                   | 25,130 | 26,087 | 26,033 | 24,843  | 25,739 | 24,936 | 13,220 | 15,360 | 24,817 | 57,848 | \$3,246 | 33,508 | 350,767 |
| Monthly Mean<br>Possible Outflow<br>(m <sup>3</sup> /s)        | 44.16  | 44.62  | 45.69  | 47.33   | 49.99  | 53.10  | 31.35  | 31.72  | 69.85  | 99.68  | 34.92   | 58.98  | -       |
| Water Level at the End of Month (EL.m)                         | 272.01 | 270.36 | 267.69 | 263.97  | 258.18 | 257.96 | 261.95 | 270.39 | 272.50 | 272.50 | 272.50  | 272.50 | -       |
| Storage at the End of Month $(x10^6m^3)$                       | 346.43 | 320.78 | 282.71 | 235,73  | 175.62 | 173.61 | 213.12 | 321.35 | 354.23 | 354.23 | 354.23  | 354.23 |         |
| Monthly Mean My Output (MW)                                    | 105.0  | 105.0  | 105.0  | 105.0   | 100.8  | 91.0   | 98.5   | 104.8  | 105.0  | 105.0  | 105.0   | 105.0  | -       |
| Monthly Energy (MWH)                                           | 15,750 | 16,275 | 16,275 | 15,750  | 15,631 | 13,655 | 15,268 | 16,237 | 14,700 | 16,275 | 15,750  | 16,275 | 187,641 |
| 를 및 Output (MW)                                                | 17.7   | 17.7   | 17.5   | 16.9    | 16.1   | 17.7   | O      | 1.1    | 41.2   | 70.6   | €5.8    | 29.3   | -       |
| បី អ្នំ Monthly Energy<br>១ (Mill)                             | 8,379  | 8,716  | 8,755  | 9,228   | 8,787  | 10,104 | . 0    | 568    | 21,473 | 41,573 | 37,496  | 17,233 | 171,313 |
| ionthly Mean<br>⊋ Operation Hour<br>☐ (Brs.)                   | 15.8   | 15.9   | 16.1   | 16.2    | 17.6   | 19.0   | o      | 1.0    | 18.1   | 19.0   | 19.0    | 19.0   | _       |
| Energy (MWH)                                                   | 24,129 | 24,931 | 25,030 | 23,978  | 24,418 | 23,760 | 15,268 | 16,805 | 36,173 | 57,848 | 53,246  | 33,508 | 359,154 |
| Honthly Hean<br>Possible Outflow<br>(m³/s)                     | 42.47  | 42.17  | 42.93  | 44.10   | 45.89  | 47.56  | 31.32  | 38.90  | 83.44  | 99.68  | 94.92   | 58.98  | -       |
| Water Level at the<br>End of Month (EL.m)                      | 272.28 | 271.07 | 269.01 | 266.15  | 261.97 | 263.09 | 266.37 | 272.50 | 272.50 | 272,50 | 272.50  | 272.50 | -       |
| Storage at the End of Month $(x10^{5}m^3)$                     | 350.81 | 331.73 | 301.04 | 262.44  | 213.31 | 225.66 | 265.24 | 354.23 | 354.23 | 354.23 | 354.23  | 354,23 | -       |
| ? Monthly Mean<br>? Output (MW)                                | 105.0  | 105.0  | 105.0  | 105.0   | 104.7  | 100.9  | 105.0  | 105.0  | 105.0  | 105.0  | 105.0   | 105.0  | -       |
| S Konthly Energy (MWH)                                         | 15,750 | 16,275 | 16,275 | 15,750  | 16,229 | 15,132 | 16,275 | 16,275 | 14,700 | 16,275 | 15,750  | 16,275 | 190,961 |
| Monthly Mean Q Output (MW)                                     | 17.7   | 17.7   | 17.6   | 17.2    | 16.6   | 16.0   | 0      | 10.0   | 54.2   | 70.6   | 65.8    | 29.3   | -       |
| S Honthly Energy (MWH)                                         | 7,533  | 7,513  | 7,589  | 7,229   | 7,194  | 7,346  | 0      | 5,324  | 28,638 | 41,573 | 37,496  | 17,233 | 174,870 |
| Monthly Mean  Operation Hour  (Hrs.)                           | 14.2   | 13.7   | 13.9   | 14.0    | 14.0   | 15.3   | 0      | 6.4    | 19.0   | 19.0   | 19.0    | 19.0   |         |
| E Monthly Mean                                                 |        |        |        |         |        |        |        |        |        |        | 53,246  | 40     | *** *** |

Note: Case. 1 ... Q·h = 4,180 Case. 2 ... Q·h = 4,000 Case. 3 ... Q·h = 3,800

<sup>1 ...</sup> Q·h = 4,180 Q; Fossible outflow (m<sup>3</sup>/s)
2 ... Q·h = 4,000 h; Effective head (m)

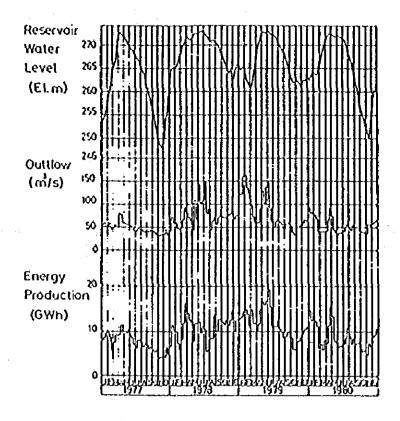
Table 13 RESERVOIR OPERATION RESULTS (1982 Year, T = 1/4)

|                                                                   | Jun.   | Jul.   | Aug.   | Sep.   | Oct.   | Nov.   | Dec.         | Jan.   | Feb.   | маг.           | Apr.   | Мау    | Annoal  |
|-------------------------------------------------------------------|--------|--------|--------|--------|--------|--------|--------------|--------|--------|----------------|--------|--------|---------|
| Monthly Mean<br>Possible Outflow<br>(m <sup>3</sup> /s)           | 41.44  | 40.31  | 41.18  | 42.57  | 44.77  | 49.80  | 28.88        | 44.35  | 115.70 | 106.25         | 88.90  | 96.17  |         |
| Water Level at the<br>End of Month (EL.m)                         | 272.28 | 270.89 | 268.36 | 264.89 | 259.52 | 250.50 | 255.66       | 272.50 | 272.50 | 272.50         | 272.50 | 272.50 |         |
| Storage at the End<br>of Month (x10 <sup>6</sup> m <sup>3</sup> ) | 350.75 | 328.92 | 291.97 | 246.72 | 188.23 | 116.10 | 153.78       | 354.23 | 354.23 | 354.23         | 354.23 | 354.23 | -       |
| ⊋ Month Mean<br>볼 Output (Mail)                                   | 105.0  | 105.0  | 105.0  | 105.0  | 103.6  | 88.8   | 78. <b>9</b> | 103.2  | 105.0  | 105.0          | 105.0  | 105.0  | -       |
| · 9 Honthly Energy<br>(MiH)                                       | 15,750 | 16,275 | 16,275 | 15,750 | 15,910 | 13,320 | 12,236       | 16,003 | 14,700 | 16,275         | 15,750 | 16,275 | 184,519 |
| Monthly Mean                                                      | 17.7   | 17.7   | 17.6   | 17.1   | 16.2   | 15.2   | 0            | 15.2   | 86.8   | 77.4           | 59.8   | 67.9   | -       |
| 6 Houthly Everdy (MM)                                             | 7,012  | 6,524  | 6,571  | 6,169  | 6,163  | 7,952  | 0            | 8,449  | 46,203 | 45,608         | 34,106 | 40,008 | 214,966 |
| Monthly Mean  Operation Hour  (Hrs.)                              | 13.2   | 11.9   | 12.0   | 12.1   | 12.7   | 17.4   | 0            | 5.8    | 19.0   | 19.0           | 19.0   | 19.0   | -       |
| Energy (MWH)                                                      | 22,762 | 22,799 | 22,846 | 21,919 | 22,273 | 21,273 | 12,236       | 24,452 | 60,903 | 61,883         | 49,856 | 56,283 | 399,485 |
| Monthly Mean Fossible Cutflow {m³/s}                              | 49.36  | 37.60  | 38.18  | 39.14  | 40.57  | 42.88  | 30.65        | 61.55  | 115.70 | 106.25         | 88.90  | 96.17  | -       |
| Water Level at the<br>End of Month (EL.m)                         | 272.45 | 271.54 | 269.63 | 267.02 | 263.16 | 257.52 | 260.94       | 272.50 | 272.50 | 272.50         | 272.50 | 272.50 | -       |
| Storage at the End of Month $(x10^5m^3)$                          | 353.54 | 338.99 | 310.07 | 273.74 | 226.48 | 169.65 | 202.64       | 354.23 | 354.23 | 354.23         | 354.23 | 354.23 | -       |
| Monthly Mean  G Output (KW)                                       | 105.0  | 105.0  | 105.0  | 105.0  | 105.0  | 99.4   | 93.0         | 104.8  | 105.0  | 105.0          | 105.0  | 105.0  | -       |
| Monthly Energy (Mid)                                              | 15,750 | 16,275 | 16,275 | 15,750 | 16,275 | 14,904 | 14,414       | 16,240 | 14,700 | 16.275         | 15,750 | 16 275 | 188,883 |
| Monthly Mean Cutput (MW)                                          | 17.7   | 17.7   | 17.7   | 15.6   | 16.8   | 15,9   | 0            | 33.2   | 86.8   | 77.4           | 59.8   | 67.9   | -       |
| S Output (MM) S Monthly Energy (MWH)                              | 6,469  | 5,164  | 5,212  | 4,983  | 4,871  | 5,217  | 0            | 18,910 | 46,203 | <b>45,6</b> 08 | 34,106 | 40,008 | 216,753 |
| Honthly Hean<br>☐ Operation Hour<br>☐ (Ers.)                      | 12.2   | 9.4    | 9.5    | 9.6    | 9.4    | 11.0   | 0            | 9.2    | 19.0   | 13.0           | 19.0   | 19.0   | -       |
| Energy (MWH)                                                      | 22,219 | 21,439 | 21,497 | 20,733 | 21,146 | 20,122 | 14,414       | 35,151 | 60,903 | 61,883         | 49,856 | 56,283 | 405,636 |
| Monthly Hean<br>Fossible Outflow<br>(m <sup>3</sup> /s)           | 40.10  | 35.30  | 35.68  | 36.35  | 37.34  | 38.85  | 31.67        | 75.05  | 115.70 | 106.25         | 88.90  | 96.17  | -       |
| Water Level at the<br>End of Month (EL.m)                         | 272.50 | 271.97 | 270.54 | 268.54 | 265.63 | 261.61 | 264.31       | 272.50 | 272.50 | 272.50         | 272.50 | 272.50 | -       |
| Storage at the End of Month $(x10^{\ell_{\rm Th}3})$              | 354,23 | 345.82 | 323.61 | 294.49 | 255.89 | 209.51 | 239.77       | 354.23 | 354.23 | 354.23         | 354.23 | 354.23 | -       |
| Monthly Rean Coutput (MW)                                         | 105.0  | 105.0  | 105.0  | 105.0  | 105.0  | 104.5  | 101.2        | 105.0  | 165.0  | 105.0          | 105.0  | 165.0  | -       |
| g Northly Energy                                                  | 15,750 | 16,275 | 16,275 | 15,750 | 16,275 | 15,670 | 15,693       | 16,275 | 14,700 | 16,275         | 15,750 | 16,275 | 190,963 |
| g & Monthly Mean                                                  | 17.7   | 17.7   | 17.7   | 17.6   | 17.1   | 16.5   | 0            | 47.8   | 86,8   | 77.4           | 59.8   | 67.9   | -       |
| G Cutput (MM)  G Cutput (MM)                                      | 6,334  | 3,994  | 4,022  | 3,891  | 3,671  | 3,506  | 0            | 27,109 | 46,203 | 45,608         | 34,106 | 49,008 | 218,652 |
| Monthly Mean  Operation Hour  Hrs.)                               | 11.9   | 7.3    | 7.3    | 7.4    | 7.3    | 7.1    | o            | 12.2   | 19.0   | 19.0           | 19.0   | 19.0   | -       |
| E Monthly Mean                                                    | 33.624 | 30 360 | 20.203 | 10 641 | 20 146 | 19.126 | 15.693       | 43,384 | £0 903 | £.1 001        | 43.856 | 56.283 | 409 615 |

Pote: Case. 1 ... Q·h = 3,630 Case. 2 ... Q·h = 3,400 Case. 3 ... Q·h = 3,200

<sup>...</sup> Q·h = 3,630 Q; fossible outflow (m³/s)
... Q·h = 3,490 h; Effective head (m)

Table: 14 SCHEDULED WATER LEVEL AND POSSIBLE OUTFLOW


|       | Firs                      | t 10-day                      | Secor                     | d 10-day                      | Last 10-day               |                               |  |  |
|-------|---------------------------|-------------------------------|---------------------------|-------------------------------|---------------------------|-------------------------------|--|--|
| Month | Water<br>Level<br>(EL. m) | Possible Outflow (m /s) T=1/5 | Water<br>Level<br>(EL. m) | Possible Outflow (m /s) T=1/5 | Water<br>Level<br>(EL. m) | Possible Outflow (m /s) T=1/5 |  |  |
| June  | 272.5                     | 42.20                         | 272.50                    | 38.37                         | 272.40                    | 34.91                         |  |  |
| July  | 272.08                    | 35.00                         | 271.61                    | 35.14                         | 270.94                    | 35.35                         |  |  |
| Augt. | 270.17                    | 35.64                         | 269.26                    | 35.97                         | 268.09                    | 36.36                         |  |  |
| Sept. | 266.88                    | 36.87                         | 265.54                    | 37.41                         | 264.03                    | 38.03                         |  |  |
| Oct.  | 262.39                    | 38.74                         | 260.53                    | 39.55                         | 258.09                    | 40.54                         |  |  |
| Nov.  | 255.43                    | 41.93                         | 252.51                    | 43.54                         | 250.50                    | 45.39                         |  |  |
| Dec.  | 251.02                    | 28.80                         | 252.34                    | 29.20                         | 256.02                    | 29.70                         |  |  |
| Jan.  | 259.77                    | 30.70                         | 262.99                    | 31.60                         | 266,73                    | 40.39                         |  |  |
| Feb.  | 269.78                    | 36.29                         | 270.60                    |                               | 271.20                    |                               |  |  |
| Mar.  | 271.60                    |                               | 271.90                    |                               | 272.10                    |                               |  |  |
| Apr.  | 272.30                    |                               | 272.40                    |                               | 272.50                    |                               |  |  |
| Мау . | 272.50                    |                               | 272.50                    | •                             | 272.50                    |                               |  |  |

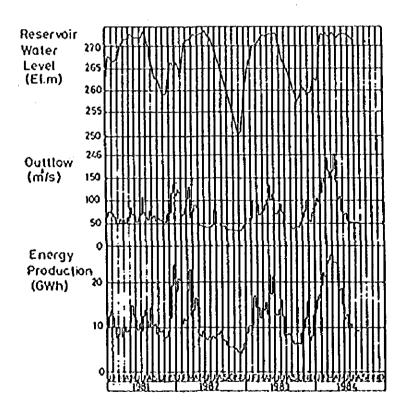
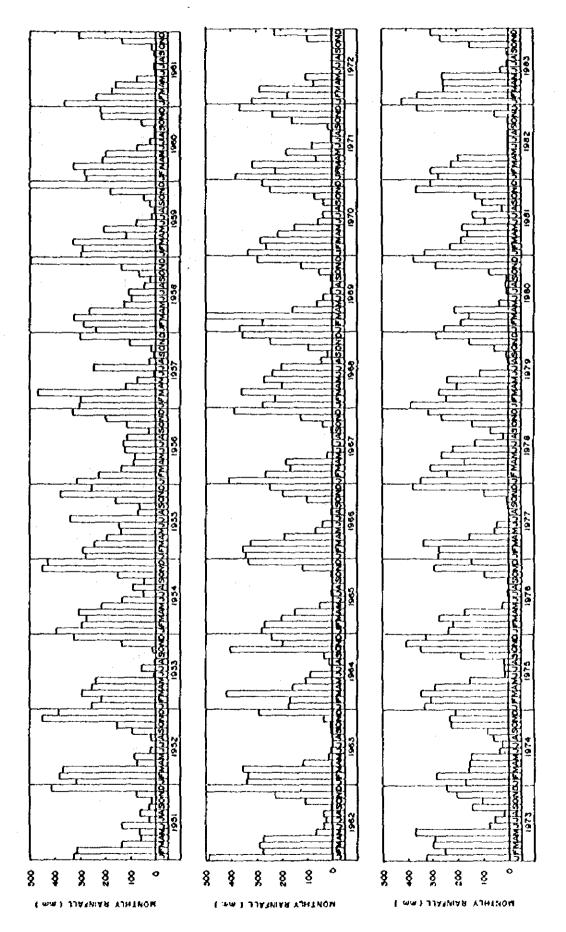
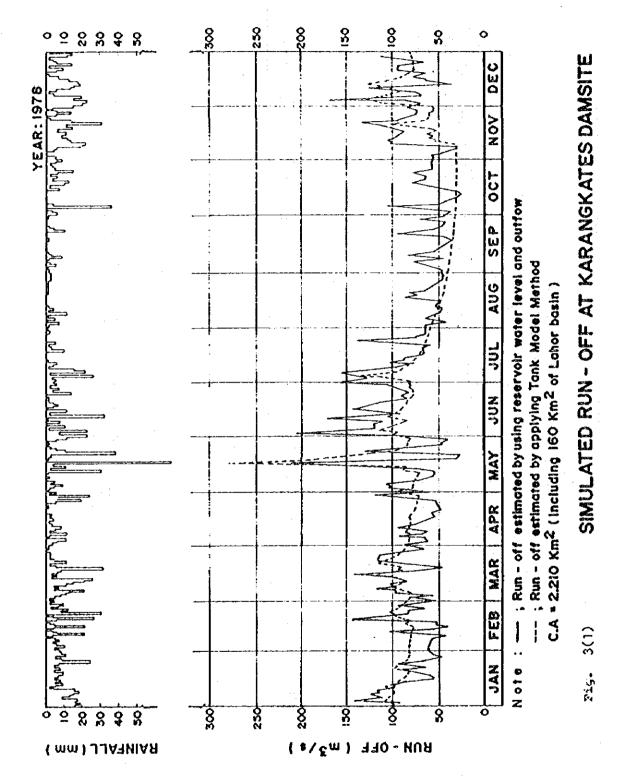
Note: Each water level shows the water level at the end of each period.

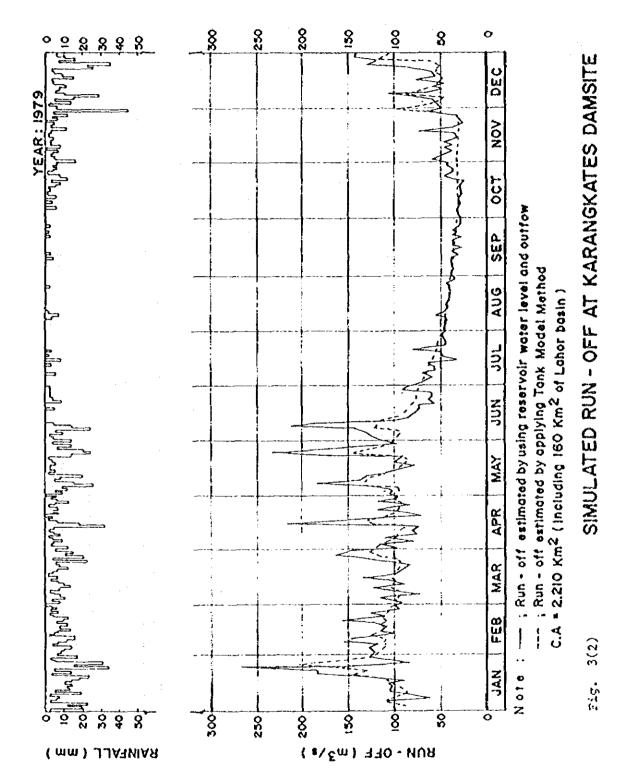
Table 15 AMOUNT FOR RESERVOIR FILLING

|          | Expectable<br>Inflow | to be required<br>for Peak Power | Amount for Reservoir Filling | Water Level<br>(EL. m) |
|----------|----------------------|----------------------------------|------------------------------|------------------------|
|          | (m³/s)               | (5 hrs)                          | $(\times 10^6 \text{ m}^3)$  |                        |
| Dec. IST | 33.6                 | 28.8                             | 4.16                         | 251.02                 |
| 2ND      | 42.4                 | 29.2                             | 11.42                        | 252.34                 |
| 3RD      | 57.5                 | 29.7                             | 26.43                        | 256.02                 |
| Jan. IST | 64.0                 | 30.7                             | 28.77                        | 259.77                 |
| 2ND      | 68.0                 | 31.6                             | 31.44                        | 262.99                 |
| 3RD      | 73.5                 | 31.0                             | 40.39                        | 266.73                 |
| Feb. IST | 71.2                 | 29.2                             | 36.29                        | 269.78                 |
| 2ND      | 76.0                 | 28.5                             | -                            | 270.00                 |
| 380      | 80.6                 | <b></b> -                        | -                            | -                      |
| Mar. IST | 75.8                 | -                                | -                            | -                      |
| 2ND      | 81.4                 | -                                | -                            | ~                      |
| 3RD      | 71.1                 | <u>.</u>                         | -                            | -                      |

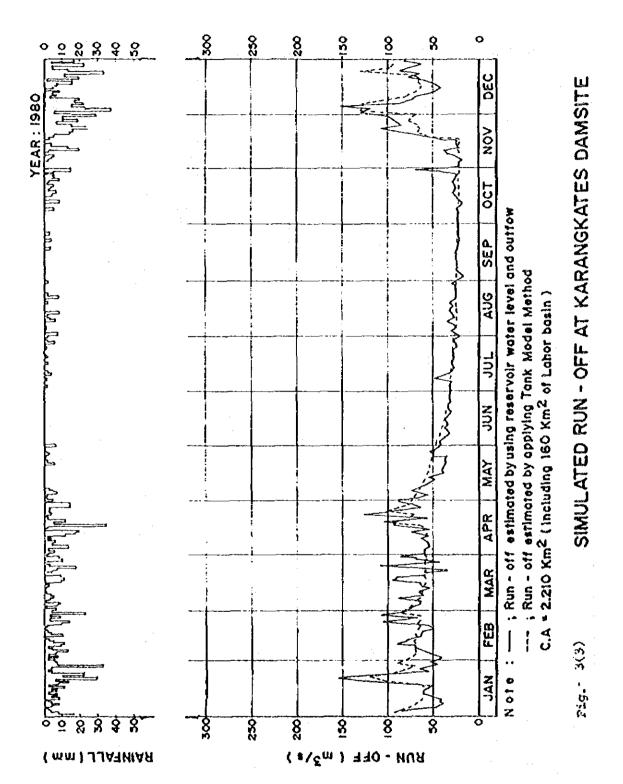
Note: Expectable inflow is estimated by Gumbel's method.

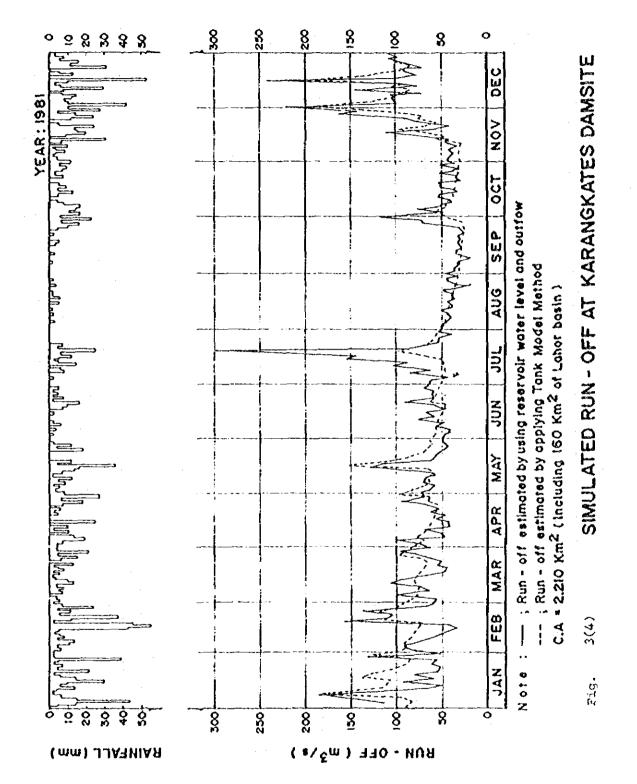


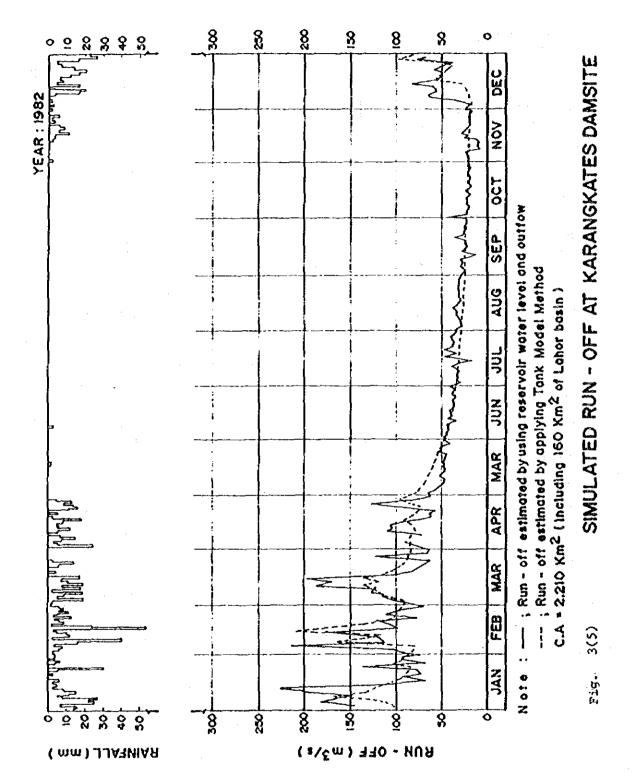




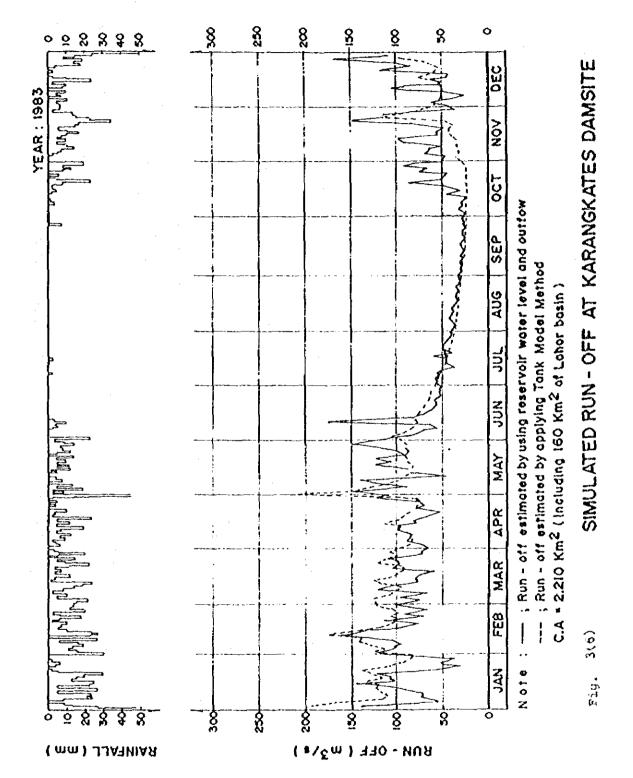


Fig. 1 OPERATION RECORD OF KARANG KATES RESERVOIR

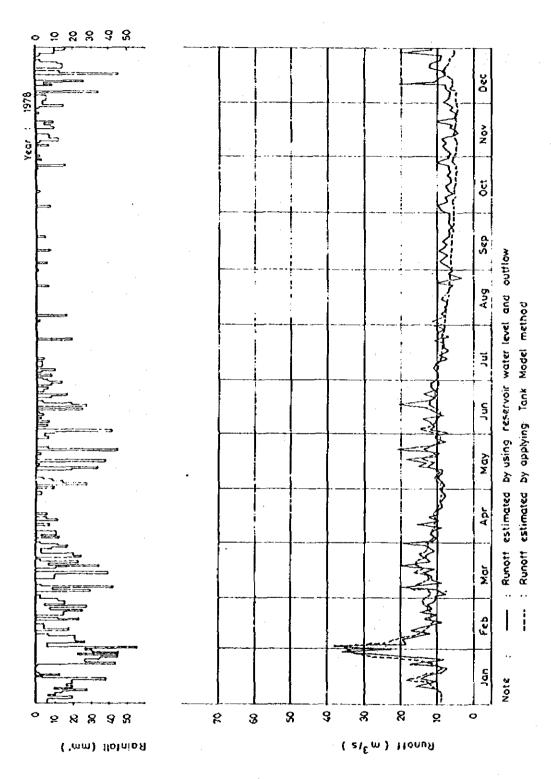



MONTHLY RAINFALL IN THE KARANGKATES BASIN

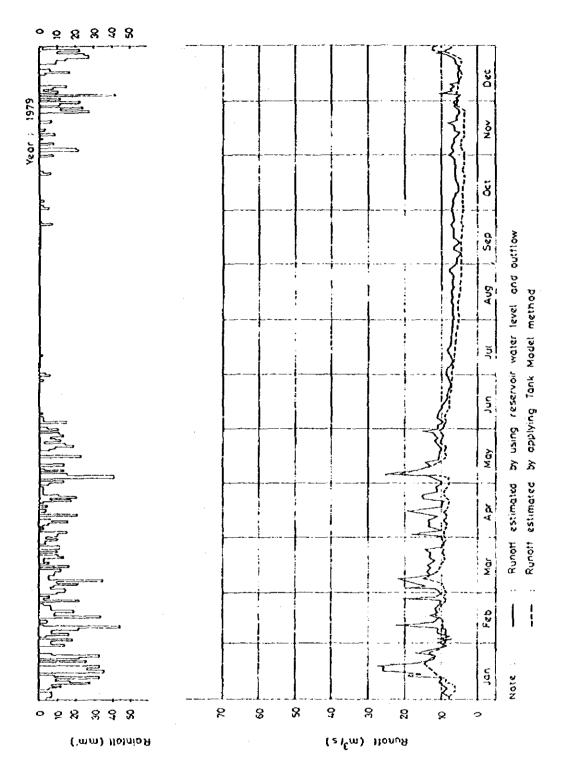




MP-2.24





MP-2.25

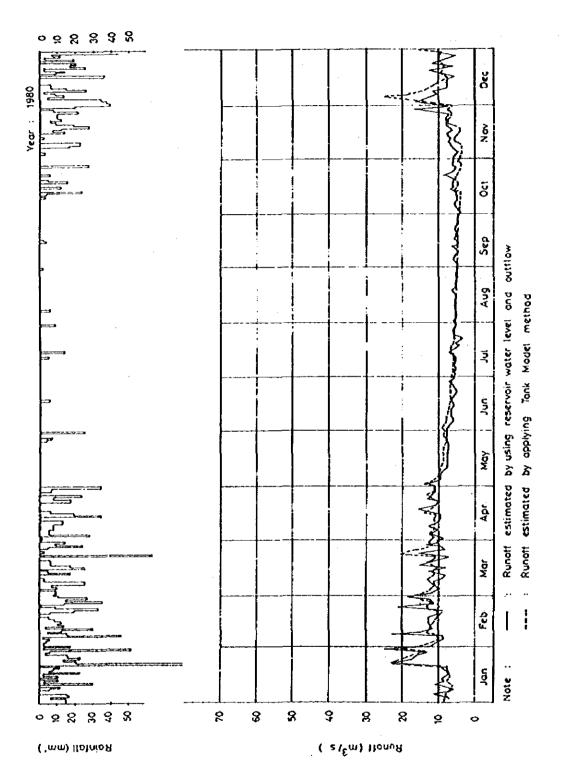




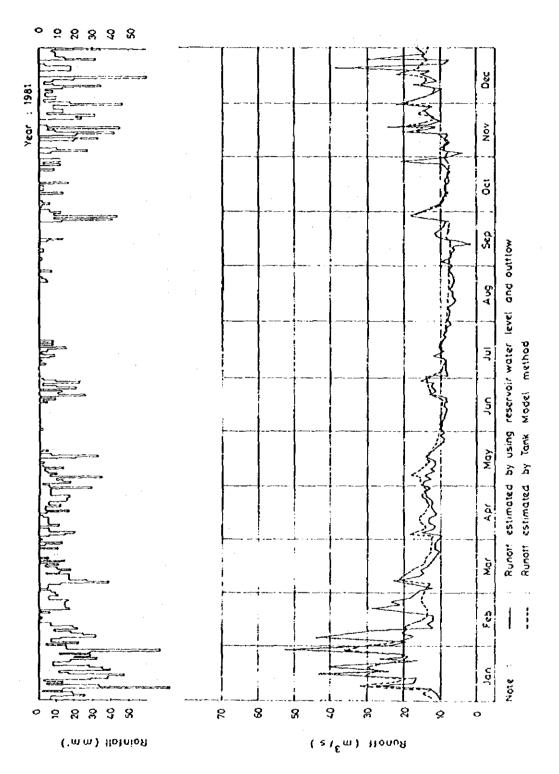








SIMULATED RUNOFF AT SELOREJO DAMSITE

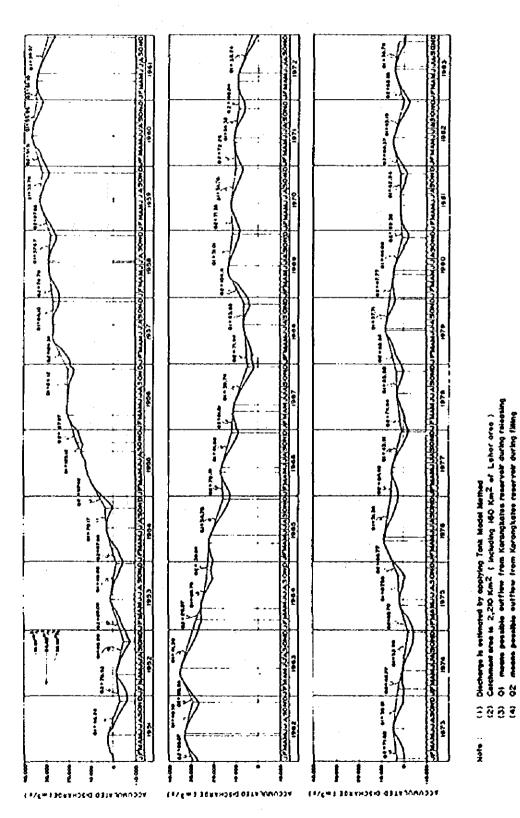



SIMULATED RUNOFF AT SELOREJO DAMSITE

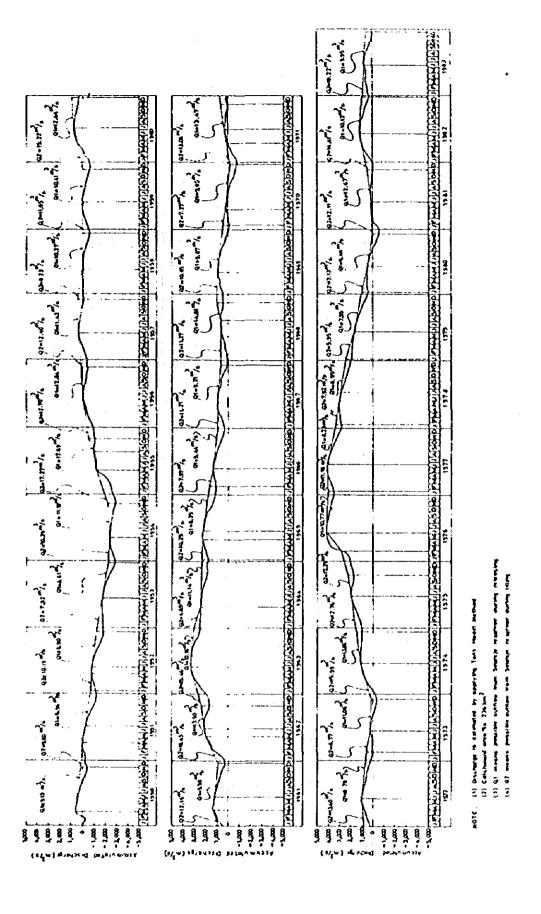
MP-2.31

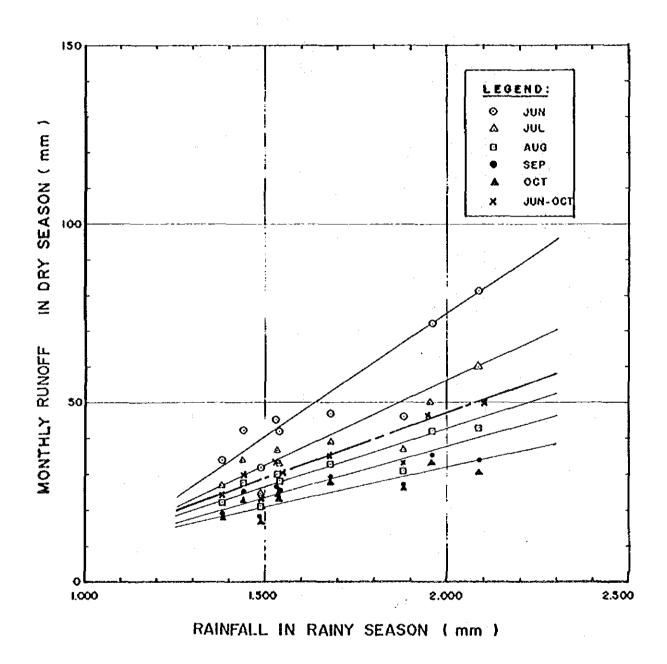





MP-2.32

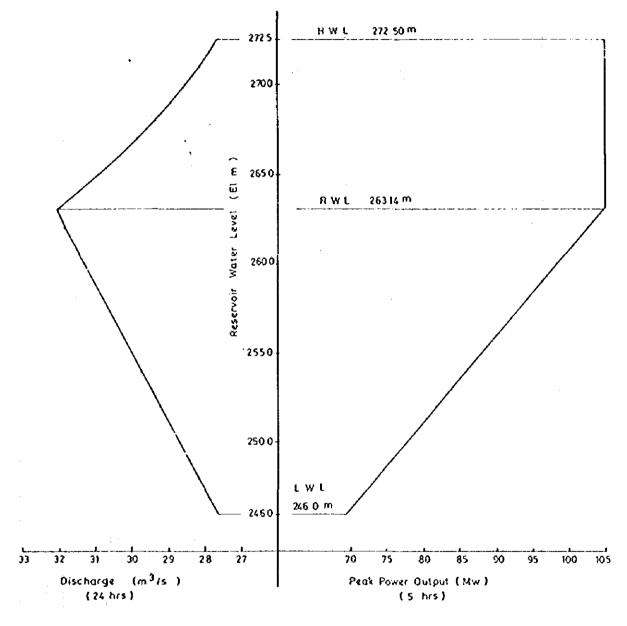



SIMULATED RUNOFF AT SELOREJO DAMSITE


SIMULATED RUNOFF AT SELOREJO DAMSITE

SIMULLATED RUNOFF AT SELOREJO DAMSITE




-MASS CURVE AT KARANGKATES DAMSITE.





Note: RAINY Season; from November to next May.

RELATIONSHIP BETWEEN MONTHLY RUNOFF AND RAINFALL IN RAINY SEASON (KARANGKATES BASIN)



Conditions : No all-peak power generation is taken into account

Pig. 8 WATER REQUIREMENT FOR PEAK POWER OUTPUT (KARANGKATES DAM)

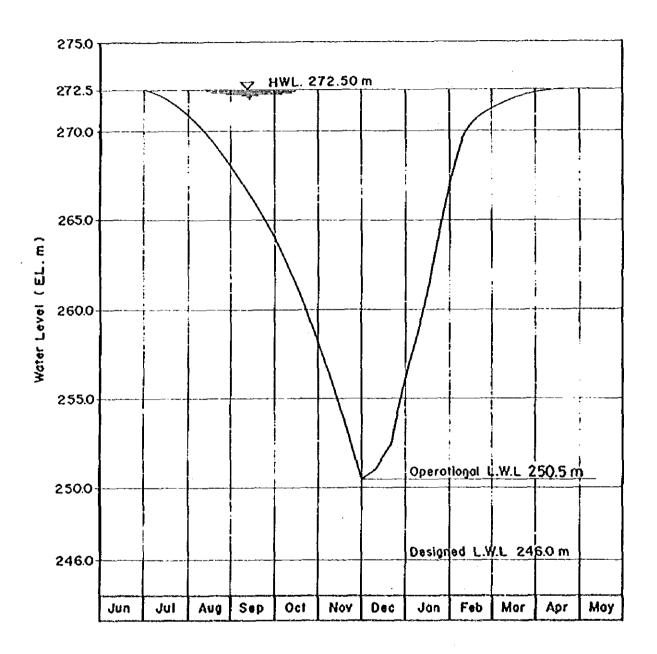



Fig. 9 SCHEDULED WATER LEVEL.

## NOTE MP-3

## SPILLWAY CAPACITY

## TABLE OF CONTENTS

|       |                                                      | Page    |
|-------|------------------------------------------------------|---------|
| 1.    | DESIGN FLOOD                                         | MP-3.1  |
| 2.    | REQUIRED FREEBOARD                                   | MP-3.1  |
| 3.    | KARANGKATES DAM                                      | MP-3.2  |
| 4.    | LAHOR DAM                                            | MP-3.3  |
| 5.    | SELOREJO DAM                                         | MP-3.3  |
| 6.    | WILLING DAM                                          | MP-3.4  |
|       |                                                      |         |
|       | LIST OF TABLES                                       |         |
| TABLE | 1 PROBABLE 3-DAY RAINFALL                            | MP-3.5  |
| TABLE | 2 DESIGN STORM AND AREAL WEIGHT OF KARANGKATES BASIN | MP-3.6  |
| TABLE | 3 DESIGN STORM AND AREAL WEIGHT OF LAHOR BASIN       | MP-3.7  |
| TABLE | 4 DESIGN STORM AND AREAL WEIGHT OF SELOREJO BASIN    | MP-3.8  |
| TABLE | 5 DESIGN STORM AND AREAL WEIGHT OF WLINGI BASIN      | MP-3.9  |
| TABLE | 6 BASIN CONSTANTS FOR STORAGE FUNCTION METHOD        | MP-3.10 |
| Table | 7 CHANNEL CONSTANTS FOR STORAGE FUNCTION METHOD      | MP-3.10 |
| TABLE | 8 STANDARD FOR FREEBOARD                             | MP-3.1  |
| TABLE | 9 WAVE HEIGHT AND WATER HEIGHT DUE TO EARTHQUAKE     | MP-3.1  |

## LIST OF FIGURES

|       |                                                       | Page    |
|-------|-------------------------------------------------------|---------|
| FIG 1 | PLOOD RUNOFF MODEL                                    | MP-3,13 |
| FIG 2 | WAVE HEIGHT BY APPLYING SMB METHOD AND SAVILLE METHOD | MP-3.14 |
| FIG 3 | FLOOD RUNOFF AT KARANGKATES DAMSITE                   | MP-3.15 |
| FIG 4 | FLOOD RUNOFF AT LAHOR DAMSITE                         | MP-3,16 |
| FIG 5 | FLOOD RUNOFF AT SELOREJO DAMSITE                      | MP-3,17 |
| FIG 6 | FLOOD RUNOFF AT WLINGI DAMSITE                        | MP-3,18 |

#### Note MP-3 Spillway Capacity

The spillways of the existing dams were designed according to the old design standards and available hydrological data during the design stage of each dams. At present, hydrological data for more than 10 years are additionally available, and the design standards of spillway have been changed to the more severe ones. The spillway capacities adequate at the time of the design seem to be insufficient against floods estimated including newly available hydrological data.

In this context, review of the spillway capacities is made.

#### 1. Design flood

For checking the capacities of existing dams, the following probable floods are taken into account:

200 year probable flood times 1.2 10,000 year probable flood for extra-ordinary condition

Procedures to estimate the above probable floods are as follows;

- Daily areal rainfall is calculated for the catchment area upstream of each dam
- Annual maximum three-day continuous rainfall is sampled
- Probable three-day rainfalls are calculated by the the Gumbel's method
- Rainfall pattern applicable for each catchment area is selected for the rainfall records which caused big floods
- Maximization of the selected rainfall pattern up to the rainfall amount of the estimated probable three-day rainfall is made
- The probable three-day rainfall with hourly distribution over three days is put into the storage function model whose constants are examined and determined in the Hydrological Study.

The probable three-day rainfalls are estimated as shown in Table 1. The design storm and areal weights of rainfall gauging stations in and around each basin under study are as shown in Table 2 to 5. The basin and channel constants of the Storage function are determined in the Bydrological Study, as shown in Table 6 and 7 referred to Pig.1.

#### 2. Required freeboard

As for the freeboard to be required for each dam, the Japanese standard shown in Table 8 is applied. The standard requires estimation of wave height and water height due to earthquake. Wave height is calculated based on the Sverdrup - Munk - Bretschmeider and Saville

method as shown in Fig. 2. Water height due to earthquake is calculated by the Sato's equation. Results are shown in Table 9.

Applying the Japanese standard, the freeboard of each dam is determined as follows;

| Karangkates dam | 3.0 m |
|-----------------|-------|
| Lahor dam       | 1,9 m |
| Selorejo dam    | 1.7 m |
| Wlingi dam      | 2.5 m |

The present setting of the designed high water level and the crest elevation satisfies the above requirement.

In case of the extra-ordinary condition like 10,000 years probable flood, the heighest flood water level is set lower than or equal to the level 1 m below the top of the impervious zone of dam. In case of gated spillway, an allowance of 0.5 m for gates is added to the above.

#### 3. Karangkates Dam

The spillway and the water level setting of the Karangkates dam are as follows:

| Gated weir            | <pre>length; elevation ;</pre>     | 10 m<br>EL. 267.00 m              |
|-----------------------|------------------------------------|-----------------------------------|
| Non-gated weir        | <pre>length ; elevation ;</pre>    | 50 m<br>EL. 272.5 m               |
| Top elevation of core | BL 278.5 m                         |                                   |
| Flood water level     | EL. 275.5 m (de<br>EL. 277.5 m (in | esign)<br>case of abnormal flood) |

For the above conditions, the estimated probable floods are put in with retarding effect in the reservoir.

## Results are as follows ;

| Probable flood                                    | Allowable   | Highest     | Pe     | ak      |
|---------------------------------------------------|-------------|-------------|--------|---------|
|                                                   | water level | water level | Inflow | Outflow |
| · <del>····································</del> |             | EL. m       | m'/sec |         |
| 200 year x 1.2                                    | 275.50      | 267.17      | 3,939  | 1,046   |
| 10,000 year                                       | 277,00      | 278.42      | 6,241  | 1,764   |

According to the newly estimated probable floods, it can be said that the spillway capacity of the Karangkates dam may be insufficient shown on Fig. 3. Careful study on necessary countermeasures is recommended.

#### 4. Lahor Dam

The spillway and the water level setting of the Lahor dam are as follows:

Non-gated weir length :

elevation; EL. 272.6 m

35 m

Top elevation of core Eb. 277.5 m

Flood water level EL. 274.5 m

For the above conditions, the estimated probable floods are put in. Results are follows;

| Probable flood | Allowable   | Highest     | Pe     | ak      |
|----------------|-------------|-------------|--------|---------|
|                | water level | water level | Inflow | Outflow |
| ·<br>          |             | EL. m       | m 3    | /sec    |
| 200 yéar x 1.2 | 275.60      | 275.18      | 645    | 295     |
| 10,000 year    | 276.50      | 277.58      | 2,776  | 816     |

According to the newly estimated probable floods, it can be said that the spillway capacity of the Lahor dam may be insufficient as shown on Fig. 4. Careful study on necessary countermeasure is recommended.

#### 5. Selorejo Dam

The spillway and the water level setting of the Selorejo dam are as follows;

Gated weir length; 10 m x 3 nos

elevation ; EL.620 m during flood

season

EL. 622 m during non-

flood season

Top elevation of core EL. 624.5 m

Flood water level EL. 622.6 m

For the above conditions, the estimated probable floods are put in. Results are as follows;

| Probable flood | Allowable   | Highest     | Pe     | ak      |
|----------------|-------------|-------------|--------|---------|
|                | water level | water level | Inflow | Outflow |
|                |             | EL. m       | m³/sec |         |
| 200 year x 1.2 | 622.60      | 622,78      | 818    | 280     |
| 10,000 year    | 623,50      | 625.74      | 2,009  | 779     |

According to the newly estimated probable floods, it can be said that the spillway capacity of the Selorejo dam is insufficient as shown on Fig. 5. Careful study on necessary countermeasures is recommended.

#### 6. Wlingi Dam

The spillway and the water level setting of the Wlingi dam are as follows:

Gated weir

length

; 10.6 m x 4 nos

elevation

; 153.5 m

Top elevation of core

EL. 166.5 m

Flood water level

EL. 164.5 m

For the above conditions, the estimated probable floods are put into the reservoir. Results are as follows;

| Probable flood  | Allowable   | Highest     | Peak   |         |
|-----------------|-------------|-------------|--------|---------|
|                 | water level | water level | Inflow | Outflow |
| <del></del>     | <del></del> | EL.m        | m³/:   | sec     |
| 200 years x 1.2 | 164.50      | 163.70      | 2.927  | 2,900   |
| 10,000 year     | 165.00      | 166.10      | 4,596  | 3,983   |

Table 1 PROBABLE 3-DAY RAINFALL

| (Uni | ٠ |   | _ m_ ) |
|------|---|---|--------|
| font | · | • | mm)    |

| Return Period | K.Kates | Lahor | Wlingi | Selorejo |
|---------------|---------|-------|--------|----------|
| 2             | 83      | 124   | 82     | 118      |
| \$            | 108     | 165   | 107    | 148      |
| 10            | 125     | 191   | 124    | 169      |
| 20            | 141     | 217   | 141    | 188      |
| 50            | 162     | 250   | 162    | 213      |
| 100           | 178     | 274   | 178    | 232      |
| 200           | 194     | 298   | 194    | 250      |
| 500           | 215     | 331   | 215    | 275      |
| 1,000         | 230     | 356   | 230    | 294      |
| 10,000        | 282 .   | 437   | 283    | 356      |

Table 2 DESIGN STORM AND AREAL WEIGHT
OF KARANGKATES BASIN

|       |      | (Uni      | t: mm) |         |             |        |
|-------|------|-----------|--------|---------|-------------|--------|
|       | Jan. | . 1981 St | orm    |         |             |        |
|       | 6    | 7         | 8      |         |             |        |
| 7     | 0.0  | 0.0       | 0.4    |         |             |        |
| 8     | 0.0  | 2.3       | 0.1    |         |             |        |
| 9     | 0.1  | 0.5       | 0.1    |         | •           |        |
| 10    | 0.1  | 0.6       | 0.1    | <u></u> |             |        |
| 11    | 0.0  | 2.4       | 0.2    | Basin   | Station     | Areal  |
| 12    | 0.0  | 2.9       | 0.0    | No.     | name        | weight |
| 13    | 0.2  | 3.1       | 0.0    | 1       | Batu        | 0.108  |
| 14    | 0.0  | 4.9       | 0.0    | 2       | Singosari   | 0.092  |
| 15    | 0.1  | 3.7       | 0.0    | 3       | Kayutangan  | 0.097  |
| 16    | 0.6  | 4.0       | 0.0    | 4       | Wagir       | 0.035  |
| 17    | 0.8  | 3.8       | 0.0    | 5       | Jabung      | 0.065  |
| 18    | 2.8  | 0.5       | 0.0    | . 6     | Tumpang     | 0.042  |
| 19    | 4,0  | 1.0       | 0.1    | 7       | Poncokusumo | 0.121  |
| 20    | 2,6  | 0.2       | 0.0    | 8       | Tangkil     | 0.064  |
| 21    | 17,8 | 0.1       | 0.0    | 9       | Dampit      | 0.121  |
| 22    | 14.0 | 0.0       | 0.0    | 10      | Gondanglegi | 0.118  |
| 23    | 6.6  | 0.0       | 1,2    | 12      | Kesamben    | 0.004  |
| 24    | 3.3  | 0,5       | 0.3    | 13      | Birowo      | 0.017  |
| 1     | 1.6  | 0.0       | 0.2    | 44      | Pujon       | 0.025  |
| 2     | 0.5  | 0.0       | 0.2    | Total   | Total       | 1.000  |
| 3     | 0.9  | 1.4       | 0.0    |         |             |        |
| 4     | 0.2  | 0.5       | 0.0    |         |             |        |
| 5     | 0.2  | 0.7       | 0.0    |         |             |        |
| 6     | 0.2  | 0.8       | 0.0    |         |             |        |
| Total | 57.6 | 34.7      | 3.7    |         |             |        |

 $R_{3day} = 96.0 \text{ nm}$ 

Table 3 DESIGN STORM AND AREAL WEIGHT
OF LAHOR BASIN

(Unit: em) 1984 Mar. Storm 2 3 4 7 0.00.0 0.08 0.0 0.0 0.0 9 0.00.0 0.010 0.00.0 0.0 11 0.0 0.0 0.0 12 0.011.7 2.0 13 0.0 2.3 2.0 Basin Station Areal No. name weight 14 6.0 1.0 5.0 15 11.0 2.0 0.01 Batu 0.00816 4.0 0.0 4 1.0 Wagir 0.15517 7.0 6.0 1.0 11 Kepanjén 0.507 18 0.01.0 1.0 12 Kesamben 0.060 19 0.0 1.0 1.0 14 Doko 0.246 14.0 20 7.0 0.0 15 Semen 0.016 21 0.0 5.0 0.0 44 Pujon 0.008 22 0.0 2.0 0.0 Total 1.000 23 0.0 0.0 1.0 24 0.02.0 0.0 1 0.0 0.0 0.0 2 0.0 1.0 0.0 3 0.0 1.0 0.04 0.0 1.0 0.0 5 0.0 0.00.06 0.0 0.0 0.0

 $R_{3day} = 80.0 \text{ rm}$ 

35.0

38.0

Total

7.0

Table 4 DESIGN STORM AND AREAL WEIGHT
OF SELOREJO BASIN

(Unit: mm)

|       | Nar  | 1984 S | toın |       |             |
|-------|------|--------|------|-------|-------------|
|       | ż    | 3      | 4    |       |             |
| 7     | 0.0  | c.o    | 0,1  |       |             |
| 3     | 0.0  | 0.0    | 0.0  |       |             |
| 9     | 0.0  | 0.0    | 0.0  |       |             |
| 10    | 0.0  | 0.0    | 0,0  |       |             |
| 11    | 0.0  | 0.0    | 0.0  |       |             |
| 12    | 0.0  | 0.0    | 0.0  |       |             |
| 13    | 0.0  | 0.0    | 4.0  |       |             |
| 14    | 0.0  | 0.0    | 3.0  |       |             |
| 15    | 0.0  | 0.0    | 4.0  |       |             |
| 16    | 0.0  | 0.0    | 12.0 |       |             |
| 17    | 0.0  | 0.0    | 2.0  | Basin | Station     |
| 18    | 0.0  | 0.0    | 11.0 | No.   | name        |
| 19    | 13.0 | 8.0    | 1.0  | 43    | Sekar       |
| 20    | 1.0  | 8.0    | 0.0  | 44    | Pujon       |
| 21    | 0.0  | 7.0    | 0.0  | -     | <del></del> |
| 22    | 1.0  | 0.0    | 1.0  |       |             |
| 23    | 0.0  | 1.0    | 0.0  |       |             |
| 24    | 0.0  | 1.0    | 0.0  |       |             |
| 1     | 0.0  | 0.0    | 0.0  | •     | e - 1       |
| 2     | 0.0  | 0.0    | 0.0  |       |             |
| 3     | 0.0  | 0.0    | 0.0  |       |             |
| 4     | 0.0  | 0.0    | 0.0  |       | -           |
| 5     | 0.0  | 0.0    | 0.0  |       |             |
| 6     | 0.0  | 0.0    | 0.0  |       |             |
| Total | 15.0 | 24.0   | 38.0 |       |             |

Areal weight

0.4220.578

 $R_{3day} = 77.0$  mm

Table 5 DESIGN STORM AND AREAL WEIGHT OF WLINGI BASIN

(Unit: num)

|       | Mar  | 1984 St | orm |              |                 |                |
|-------|------|---------|-----|--------------|-----------------|----------------|
|       | 2    | 3.      | 4   |              |                 |                |
| 7     | 0.0  | 0.0     | 0.0 |              |                 |                |
| 8     | 0.0  | 0.0     | 0.0 | Basin<br>No. | Station<br>name | Areal<br>weigh |
| 9     | 0.0  | 0.0     | 0.0 |              |                 |                |
| 10    | 0.00 | 0.0     | 0.0 | . 1          | Batu            | 0.077          |
| 11    | 0.0  | 0.0     | 1.0 | 2            | Singosari       | 0.065          |
| 12    | 0.0  | 0.0     | 1.0 | 3            | Kayutangan      | 0.025          |
| 13    | 0.0  | 0.0     | 2.0 | 4            | Wagir           | 0.057          |
| 14    | 2.0  | 1.0     | 1.0 | 5            | Jabung          | 0.046          |
| 15    | 5.0  | 1.0     | 0.0 | 6            | Tunpang         | 0.030          |
| 16    | 13.0 | 1.0     | 1.0 | 7            | Poncokusumo     | 0.086          |
| 17    | 8.0  | 3.0     | 0.0 | 8            | Tangkil         | 0.046          |
| 18    | 3.0  | 2.0     | 1.0 | 9            | Dampit          | 0.086          |
| 19    | 1.0  | 3.0     | 0.0 | 10           | Gondanglegi     | 0.084          |
| 20    | 3.0  | 5.0     | 0.0 | 11           | Kepanjen        | 0.111          |
| 21    | 0.0  | 2.0     | 0.0 | 12           | Kesamben        | 0.036          |
| 22    | 0.0  | 1.0     | 0.0 | 13           | Birowo          | 0.058          |
| 23    | 0.0  | 1.0     | 0.0 | 14           | Doko            | 0.058          |
| 24    | 0.0  | 1.0     | 0.0 | 15           | Semen           | 0.047          |
| 1     | 0.0  | 0.0     | 0.0 | 16           | Wlingi          | 0.041          |
| 2     | 0.0  | 0.0     | 0.0 | 17           | Lodoyo          | 0.012          |
| 3     | 0.0  | 0.0     | 0.0 | 18           | Garum.          | 0.003          |
| 4     | 0.0  | 0.0     | 0.0 | 19           | Badak           | 0.002          |
| 5     | 1.0  | 0.0     | 1.0 | 43           | Sekar           | 0.012          |
| 6     | 0.0  | 0.0     | 0.0 | 44           | Pujon           | 0.018          |
| Total | 43.0 | 24.0    | 9.0 |              | Total           | 1.000          |

 $R_{3day} = 76.0 \text{ mm}$ 

Table 6 BASIN CONSTANTS FOR STORAGE FUNCTION METHOD

| No. of<br>Sub-basin | Catchment<br>Area<br>( km <sup>2</sup> ) | River<br>Length<br>( km ) | Gradient | K    | P   | T   | $\mathbf{f_1}$ | Rsa          |
|---------------------|------------------------------------------|---------------------------|----------|------|-----|-----|----------------|--------------|
| <del></del>         |                                          | <u> </u>                  |          |      |     |     |                | <del> </del> |
| . 1                 | 760.0                                    | 14.0                      | 1/25     | 28.2 |     | 0.1 |                |              |
| 2                   | 156.5                                    | 11.9                      | 1/35     | 39.0 |     | 0.0 |                |              |
| 3                   | 24.5                                     | 7.5                       | 1/55     | 38.8 |     | 0.0 |                |              |
| 4                   | 381.0                                    | 27.5                      | 1/30     | 47.1 |     | 0.7 |                |              |
| \$                  | 271.0                                    | 20.0                      | 1/60     | 55.2 |     | 0.4 |                | ٠            |
| 6                   | 236.0                                    | 31.5                      | 1/20     | 42/6 |     | 0.9 |                |              |
| 7                   | 221.0                                    | 7.5                       | 1/20     | 27.4 | 1/3 | 0.0 | 0.5            | 100          |
| 8                   | 157.5                                    | 17.5                      | 1/64     | 54.0 |     | 0.3 |                |              |
| 9                   | 212.5                                    | 15.0                      | 1/20     | 33.6 |     | 0.2 |                |              |
| 10                  | 245.4                                    | 25.0                      | 1/30     | 47.0 |     | 0.6 |                | ٠            |
| 11                  | 116.4                                    | 12.5                      | 1/40     | 39.8 |     | 0.0 |                |              |
| 12                  | 83.8                                     | 8.8                       | 1/55     | 40.8 |     | 0.0 |                |              |
| 13                  | 24.4                                     | 5.0                       | 1/45     | 31.7 |     | 0.0 |                |              |
| 27                  | 236.0                                    | 12.5                      | 1/20     | 28.9 | ·   | 0.0 |                |              |
|                     |                                          |                           |          |      |     |     |                |              |

CHANNEL CONSTANTS FOR STORAGE FUNCTION METHOD Table 7 River No. of Length Gradient λT f Remarks Channe 1 ( km ) 1 6.0 1/100 4.7 0.61 0.0 1.0

Table 8 STANDARD FOR FREEBOARD

| Dam Type   | Concrete<br>Gravity                                                                    | Rockfill                                                                      |                                                                                                                            |
|------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
|            |                                                                                        | Hd > 2.5m                                                                     | Hd ₹ 2.5m                                                                                                                  |
|            | Hf+hw+he+0.5                                                                           | Kf+hw+he+1.5                                                                  | Rf+hw+he+1.5                                                                                                               |
|            | (if (hw+he) <1.5)                                                                      | /if (hw+he) < 1.5                                                             | $\binom{\text{if (hw+he)} < 1.5}{\longrightarrow \text{Hf} + 3}$                                                           |
| Cated Weir | \> Hf + 2 /                                                                            | HE + 3 /                                                                      | Hf + 3 /                                                                                                                   |
|            | Hs+hw+ $\frac{he}{2}$ + 0.5                                                            | $Hs+hw + \frac{he}{2} + 1.5$                                                  | $Hs+hw+\frac{he}{2}+1.5$                                                                                                   |
|            | $\int if \left(hw + \frac{he}{2}\right) < 1.5$                                         | $\int \int if \left(h\omega + \frac{he}{2}\right) < 1.5$                      | $\sqrt{if(hw + \frac{he}{2})} \langle 1.5 \rangle$                                                                         |
|            | → Hs + 2                                                                               | Hs + 3                                                                        | $\left(\begin{array}{c} \text{if(hw} + \frac{\text{he}}{2}) & (1.5) \\ & \longrightarrow \text{Hs} + 3 \end{array}\right)$ |
|            | Hh + hw + 0.5                                                                          | 8h + hw + 1.5                                                                 | Rh + hw + 1.5                                                                                                              |
|            | $\begin{pmatrix} if hv < 0.5 \\ \longrightarrow llh + 1 \end{pmatrix}$                 | (if hw < 0.5 \                                                                | $\begin{pmatrix} if hw < 0.5 \\ Hh + 2 \end{pmatrix}$                                                                      |
|            | \ → Hh + 1 /                                                                           | \ Hh + 2 /                                                                    | \ Hh + 2 /                                                                                                                 |
|            | Rf + hw + he                                                                           | Hf + hw + he + 1                                                              | Hf + hw + he + 1                                                                                                           |
|            | $\begin{pmatrix} if (hw+he) \langle 2 \rangle \\ \longrightarrow Hf + 2 \end{pmatrix}$ | $\int if (hw+he) < 2$                                                         | $ \begin{pmatrix} \text{if (hw + he) } \langle 1 \rangle \\ &\longrightarrow \text{llf + 2} \end{pmatrix} $                |
|            | ,                                                                                      |                                                                               | ,                                                                                                                          |
| lon-gated  | $Hs+hw + \frac{he}{2}$                                                                 | 4                                                                             | Hs+hw + $\frac{he}{2}$ + 1                                                                                                 |
| Weir       | $\left(\text{if (hw+}\frac{he}{2}) < 2\right)$                                         | $\int if \left(hw + \frac{he}{2}\right) < 2$                                  | $\frac{1}{1}$ if $\left(hw + \frac{he}{2}\right) < 1$                                                                      |
|            | $\longrightarrow$ Hs + 2                                                               | Hs + 3                                                                        | // Hs + 2 /                                                                                                                |
|            | Hh + hw                                                                                | Hh + hw + 1                                                                   | Hh + hw + 1                                                                                                                |
|            | $\begin{pmatrix} if hw < 1 \\ \longrightarrow Hh + 1 \end{pmatrix}$                    | $\begin{pmatrix} if & hw & \langle 1 \\ \longrightarrow fh + 2 \end{pmatrix}$ | $\begin{pmatrix} if hw < 1 \\ \longrightarrow llh + 2 \end{pmatrix}$                                                       |
|            | \→ Hn + I /                                                                            | nn + Z /                                                                      | \                                                                                                                          |

Note: Hf ; high water level

Hs ; surcharge water level

Hh ; designed flood water level

hw ; wave height

he ; water height due to earthquake

hd ; design flood outflow depth

## Table 9 WAVE HEIGHT AND WATER HEIGHT DUE TO EARTHQUAKE

(1) hw; Wave Height

| Dam         | Туре  | Distance between  Damsite and the end  of Reservoir | Slope of<br>Surface | ħ¥    |
|-------------|-------|-----------------------------------------------------|---------------------|-------|
|             |       | (k <sub>D</sub> )                                   | (upstream)          | ( m ) |
| Karangkates | rock  | 11                                                  | 1 : 2.2             | 1.5   |
| Lahor       | rock  | 6                                                   | 1:2.2               | 0.9   |
| Wlingi      | rock  | 4                                                   | 1 ; 3.0             | 0.7   |
| Selorejo    | earth | 4                                                   | 1:3.0               | 0.7   |

## (2) he: Water Height due to earthquake

| Dam         | H.W.L.<br>(EL.m) | Riverbed<br>(EL.m) | Ho=HWL-Riverbed<br>(m) | he<br>(w) |
|-------------|------------------|--------------------|------------------------|-----------|
| Karangkates | 272.5            | 186                | 86.5                   | 0.56      |
| Lahor       | 272.7            | 206                | 66.7                   | 0.49      |
| Wlingi      | 163.5            | 139                | 24.5                   | 0.30      |
| Selorejo    | 620.0            | 579                | 41.0                   | 0.38      |

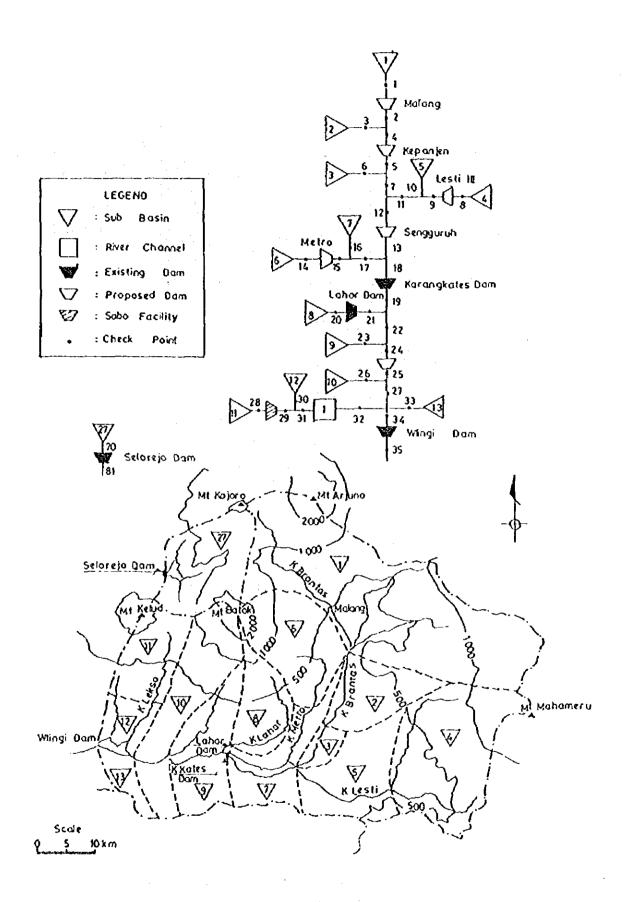
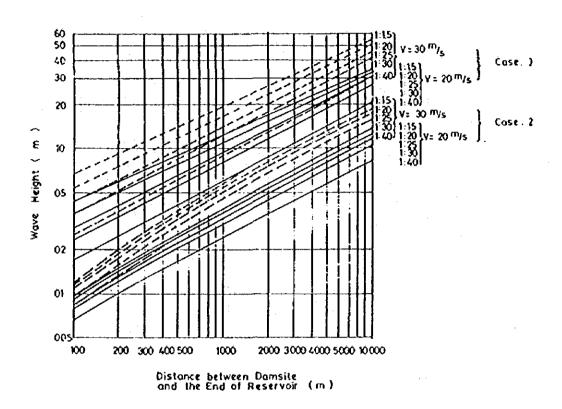




Fig. 1 FLOOD RUNOFF MODEL

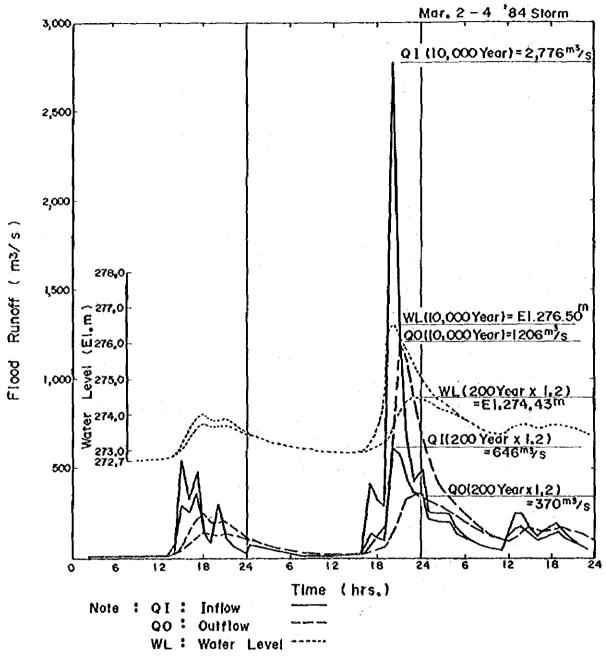


## Note:


Case 1 ; Smoose surface

Case 2 : Rough surface

V : Maximum Wind Velocity ( m /s )


----; In case of V = 20 m/s

WAVE HEIGHT BY APPLYING SMB METHOD AND SAVILLE METHOD



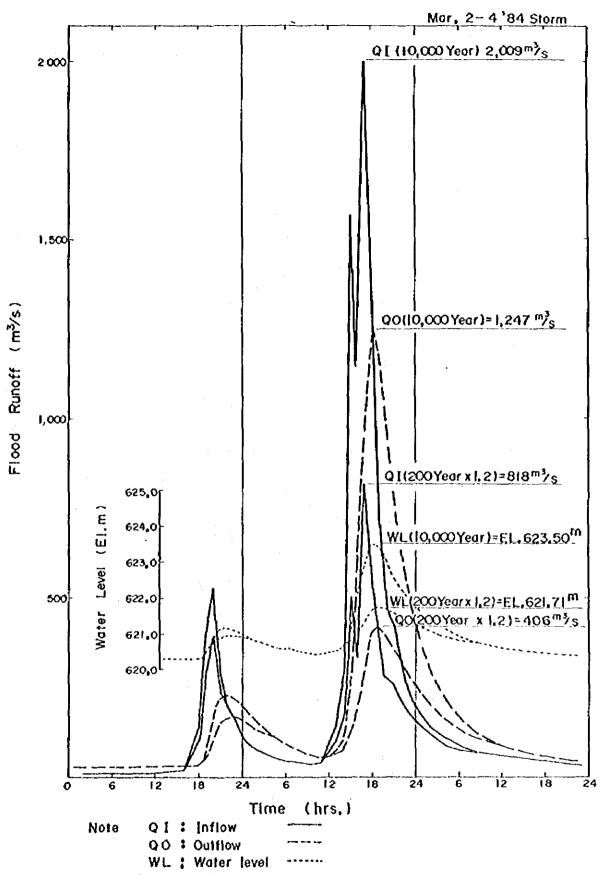

Reservoir routing is result of elongation by 60 m

Fig. 3 FLOOD RUNOFF AT KARANGKATES DAMSITE



Reservoir routing is result of elongation by 40 m

Fig. 4 FLOOD RUNOFF AT LAHOR DAMSITE



Reservoir routing is result of elongation by 60 m

Fig. 5 FLOOD RUNOFF AT SELOREJO DAMSITE

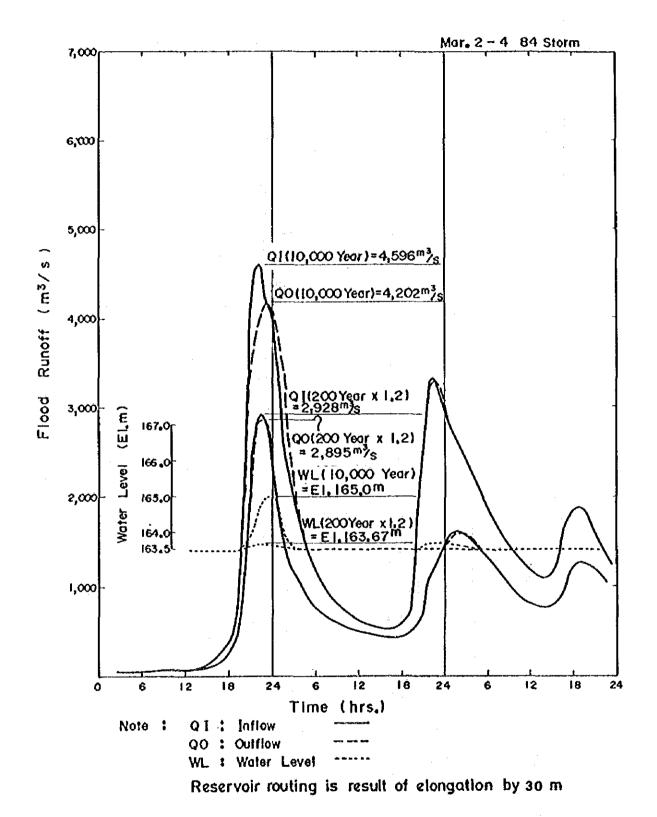



Fig. 6 FLOOD RUNOFF AT WLINGI DAMSITE

## NOTE MP-4

## GETENG I SCHEME

## TABLE OF CONTENTS

|       |                                                            | Page     |
|-------|------------------------------------------------------------|----------|
| 1.    | OBJECTIVES OF SCHEME                                       | MP-4.1   |
| 2.    | NATURAL CONDITIONS                                         | MP-4.1   |
| 3.    | POSSIBLE DEVELOPMENT                                       | MP-4.2   |
| 4.    | DEVELOPMENT SCALE                                          | MP-4.2   |
| 5.    | PRELIMINARY LAYOUT                                         | MP-4.2   |
| 6.    | COST ESTIMATION                                            | MP-4.4   |
| 7.    | ANTICIPATED BENEFIT                                        | MP-4.4   |
|       | LIST OF TABLES                                             |          |
| TABLE | 1 ESTIMATED RUNOFF (1) - (4)                               | MP-4.6   |
| TABLE | 2 ENERGY POTENTIAL AT GENTENG I                            | MP-4,10  |
| TABLE | CONSTRUCTION COST ESTIMATE FOR GENTENG I SCHEME (1) - (2)  | MP-4,11  |
|       | LIST OF FIGURES                                            |          |
| FIG 1 | STORAGE CAPACITY OF GENTENG I RESERVOIR                    | MP-4.13  |
| FIG 2 | GENERAL LAYOUT OF GENTENG I PROJECT                        | MP-4.14  |
| FIG 3 | GENERAL PLAN OF GENTENG I PROJECT                          | MP-4.19  |
| FIG 4 | MAIN STRUCTURE OF GENTENG I PROJECT                        | MP-4, 16 |
| FIG 5 | INTAKE STRUCTURE AND POWER FACILITIES OF GENTENG I PROJECT | MP-4.17  |

#### NOTE MP-4 GENTENG I SCHEME

#### 1. Objectives of Scheme

This scheme is envisaged as a storage reservoir with hydropower plant. The reservoir can store sediment which will flow into the downstream reservoir.

#### 2. Natural Conditions

#### Location and Topography

The site is selected on Genteng river, a tributary of Lesti river, 2 km south-east from Dampit. The catchment area at the proposed damsite is 98.7 km<sup>2</sup>. Topographically, it is possible to divert water in Juwok and Gangsil river in the north and in Manjung river in the east through connection tunnels to the Genteng I reservoir. If all are diverted, the catchment area can be increased to 160.5 km<sup>2</sup>.

The damsite is in the narrow gorge between Mt. Nawang of 496 m high in the right bank and a mountain of 463 m high. In the right and left sides of the damsite, there are lower parts which need saddle dams.

#### Hydrology

Lowflow is calculated from that at the Lesti III damsite by multiplying the area ratio. Mean monthly runoff from the catchment area of 160 km² is estimated as follows:

Unit : m<sup>3</sup>/s

|      |      |      |      | •    |      |      |      | `    | ,,,,, | , .  |      |
|------|------|------|------|------|------|------|------|------|-------|------|------|
| Jan. | Feb. | Mar. | Apr. | Мау  | Jun. | Jul. | Aug. | Sep. | Oct.  | Nov. | Dec. |
| 14.6 | 17.7 | 15,9 | 15.2 | 11.6 | 8,4  | 6.5  | 5.2  | 4.5  | 4.6   | 6.2  | 10.4 |

Ten-day mean runoff is as shown in Table 1.

Probable floods are estimated by the Nakayasu's Unit Hydrograph method. Results are as follows.

| Probability Once in 25 years | Probable Flood Peak Discharge<br>916 m <sup>3</sup> /s |
|------------------------------|--------------------------------------------------------|
| 100                          | 1226                                                   |
| 200                          | 1380                                                   |
| 1,000                        | 1735                                                   |
| 10,000                       | 2240                                                   |

#### Geology

At the proposed damsite, test boring was carried out by BRBDEO.

The base rock at the damsite is the volcanic breccia with intersecting sand stone, volcanic sand and massive andesite layers. The abutment are covered by the weathered breccia consisting of clay and andesite gravel, which has to be removed. The thickness of the weathered breccia is less than 10 m. The volcanic sand layer beneath the right abutment has unknown degree of consolidation. Detailed investigation by large bore hole is needed.

The permeability of the bed rock is in an order of  $1 \times 10^{-4}$  -  $5 \times 10^{-5}$  cm/sec.

#### 3. Possible Development

The catchment area receives large rainfall due to its high elevation and the runoff from it is large. Since this site locates the upstream end of the Brantas basin, the regulation effect of discharge will be extended to the reservoirs in the downstream.

In this context, development of the topographically maximum is intended, although it is necessary to provide three saddle dams.

#### 4. Development Scale

The high water level of the reservoir is set at E1. 436 m, taking it into account that the height of the saddle dams be as low as 10 m or so. The low water level is set at E4. 408.5 m, taking into consideration of the probable large inflow of sediment from the mountain side of Mt. Semeru. Then, effective storage capacity is 70 x  $10^{\circ}$  m, as shown in the stage. Storage capacity curve on Fig. 1.

By the above setting, the hydropower potential at the assumed rated head is estimated as shown in Table 2

#### 5. Preliminary Layout

Preliminary layout is drawn based on 1 to 2,500 scale map as shown on Fig. 2 to 5. The rockfill type dam of 82 m high is planned. The diversion system consisting of two tunnel of 7.5 m in diameter is arranged in the left side. The spillway is arranged in the depression in the left side.

The powerhouse with installed capacity of 18,000 kW is planned at the end of diversion tunnels.

## Principal features are as follows;

#### PRINCIPAL FAETURES OF GENTENG I SCHEME

| Location                |              | 2 km south-east from Dampit                   |
|-------------------------|--------------|-----------------------------------------------|
| River basin             |              | Lesti river                                   |
| Stream                  |              | Genteng river                                 |
| Hydrology               |              | 20 2 2                                        |
| Catchment area          | own          | 98.7 km <sup>2</sup>                          |
|                         | by 3 transba | SIN 160.5 KM                                  |
| Average runoff          |              | 10.1 m <sup>3</sup> /s                        |
| 10,000 year probable fl | lood         | 2,240 m <sup>3</sup> /sec.                    |
| Danamain                |              |                                               |
| Reservoir               |              | TV 426 0 =                                    |
| High water level        |              | EL. 436.0 m                                   |
| low water level         |              | EL. 408.5 m                                   |
| Gross storage capacity  | • •          | 86,000,000 m <sup>3</sup>                     |
| Effective storage capac | _            | 70,000,000 m <sup>3</sup> 4.1 km <sup>2</sup> |
| Reservoir surface area  | at HWL       | 4.1 Km <sup>2</sup>                           |
| Transbasin Scheme       |              |                                               |
| K. Juwok - K. Gangsil   |              | $7.0 \text{ km}_{2}^{2}$                      |
| Catchment area          |              | 7.0 km <sup>2</sup>                           |
|                         |              | 1.0 km                                        |
| Tunnel length           | _            | 1.0 Kill                                      |
| K. Gangsil - K. Genteng |              | 20 km <sup>2</sup>                            |
| Catchment area          |              |                                               |
| Tunnel length           |              | 0.,75 km                                      |
| K. Manjung              |              | 35 km <sup>2</sup>                            |
| Catchment area          |              |                                               |
| Tunnel length           |              | 2.0 km                                        |
| Dam                     |              |                                               |
| Туре                    |              | Center core Rockfill Dam                      |
| Crest elevation         |              | EL. 441.0 m                                   |
| Crest length            |              | 460 m                                         |
| Height above river bed  |              | 78 m                                          |
| Dam height              |              | 82 m                                          |
| Upstream slope          |              | 1:2.6                                         |
| Downstream slope        |              | 1:2.0                                         |
| Embankment volume       |              | 3,000,000 m <sup>3</sup>                      |
| EMBANAMENT VOI UNE      |              | 3,000,000 M                                   |
| Spillway                |              |                                               |
| Туре                    |              | Center flow type                              |
| Crest elevation         |              | EL. 436.0 m                                   |
| Crest width             |              | 130 m                                         |
| Chuteway                |              | 375 m                                         |
| Plunge pool             |              | 100 m                                         |
| rango poez              |              |                                               |
| Diversion Tunnel        |              |                                               |
| Туре                    |              | Circuler section x 2 nos                      |
| Design discharge        |              | 916 m <sup>3</sup> /sec.                      |
| Diameter                |              | 7.5 m                                         |
| Length                  |              | 700 m / 1 nos                                 |
| -                       |              | -                                             |

Intake

Dimension Sill elevation 5 m x 8 m EL, 400 m

Intake tunnel

Type Diameter Length Circular section 4.4 m 70 m

Penstock

Type Diameter Length conduit 2.1 m - 3.1 m 250 m

Powerhouse

Type Building dimension Open air type 17 m x 25 m x 13 m

Power and Energy

Average firm discharge
Max. plant discharge
Head gross
rated
Installed capacity
Dependable capacity
Annual energy

38 m<sup>3</sup>/sec. 72 m 63 m 18,600 kW 18,600 kW 54.9 Gwh

 $10.7 \, \text{m}^3/\text{s}$ 

#### 6. Cost Estimation

The construction is estimated at Rp. 91,102 million. Breakdown is as shown in Table 3

#### 7. Anticipated Benefit

The anticipated benefits from the scheme are as follows:

#### Positive Benefit

Water supply

 $70 \times 10^6 \text{ m}^3 \times \text{Rp. } 100 = \text{Rp. } 7,000 \times 10^6/\text{year}$ 

#### Power Benefit

Capacity Benefit

18.600 kW x Rp.  $58.2 \times 10^3$  kW = Rp. 1,082.5 x  $10^6$ /year Energy Benefit

 $\frac{10^6}{x}$   $\frac{10^6}{10^6}$  kWh x Rp. 121/kWh = Rp. 6,640 x  $\frac{10^6}{year}$ 

Sediment Control

 $16 \times 10^6 \text{ m}^3 \times \text{Rp. } 100 \text{ / } 50 \text{ years} = \text{Rp.} 32 \times 10^6 \text{/year}$ 

## Negative Benefit

Since paddy field area is small in the reservoir area, the land value is cost as Rp. 0.5 x  $10^6$ /ha. Then, negative benefit is 410 ha x Rp. 0.5 x  $10^6$ /ha = Rp. 205 /ha

## Net Benefit

The net benefit is estimated Rp. 14,549  $\times$  10<sup>6</sup> / year.

# + ESTIMAEO RUNGEF +

Table .1(1)

GENTENS L

|          |               |         |         |         |            |         |         |         |         | ><br>~~*~** |        |
|----------|---------------|---------|---------|---------|------------|---------|---------|---------|---------|-------------|--------|
| . Mor    | ith!          | 1951 !  | 1952 !  | 1953 !  | 1954 . ! - | 1955 !  | 1956 !  | 1957 !  | 1958 !  | 1959 !      | 1960   |
| llan.    | Ist!          | 2.58 !  | 14.61 ! | 21.73 ! | 6.57 !     | 17.57 ! | 22.23 ! | 11.51 ! | 9.87 !  | 18.41 !     | 18.04  |
| !        | 206!          | 3.30 !  | 15.22 ! | 20.15 ! | 8.37 !     | 16.59 ! | 21.79 : | 11.86 ! | 8.50 !  | 19.02       | 19.56  |
| !        | 3rd!          | 6.12 !  | 15.26 ! | 17.69 ! | 10.11 !    | 13.82 ! | 20.00 ! | 13.43 ! | 8.39 !  | 15.87 !     | 18.20  |
| Feb.     | Ist!          | 10.23 ! | 18.57 ! | 18.84 ! | 12.51 !    | 15.77 ! | 21.05 ! | 17.34 ! | 9.59 !  | 16.93 !     | 19.02  |
| !        | 266!          | 15.07 ! | 22.35 ! | 17.05 ! | 12.29 !    | 14.85   | 19.87 ? | 17.17 ! | 9.16 !  | 17.39 !     | 18.18  |
| !<br>    | 3rd!          | 23.81 ! | 27.24 ! | 19.23 ! | 14.87 !.   | 17.11 ! | 20.97 ! | 23,49 ! | 11.99 ! | 20.28 !     | 19.42  |
| Mar.     | Ist!          | 19.18 ! | 25.22 ! | 13.71 ! | 10.99 !    | 11.65 ! | 17.76 ! | 19.10 ! | 12.53 ! | 16.37 !     | 17.61  |
| !        | 2nd!          | 17.71 ! | 26.01 ! | 13.45 ! | 11.18 !    | 11.77 ! | 15.59 ! | 20.52   | 14.15 ! | 17.68       | 15.68  |
| !        | 3r <b>d</b> ! | 13.91 ! | 23.12 ! | 11.74 ! | 11.78 !    | 12.14 ! | 11.70 ! | 20.02 ! | 13.58 5 | 16.82 !     | 14.55  |
| !Apr.    | 1st!          | 12.28 ! | 23.12 ! | 11.07 ! | 20.01 !    | 14.83 ! | 10.67 ! | 21.27 ! | 14.64 ! | 16.99 !     | 17.59  |
| !        | 2nd:          | 9.66 !  | 20.02 ! | 10.08 ! | 23.18 !    | 15.27 ! | 9.05 !  | 18.90 ! | 13.72 ! | 14.87       | 16.71  |
| !        | 3r d!         | 7.64 !  | 16.17   | 11.97 ! | 26.01 !    | 14.51 : | 7.83 !  | 15.67 ! | 12.02 ! | 13.26 !     | 15.34  |
| Kay      | 15t!          | 6.03 !  | 12.81 ! | 15.21 ! | 26.74 !    | 13.47 5 | 6.77 !  | 12.82 ! | 11.89 ! | 11.46 !     | 15.07  |
| -        | 266           | 5.95 !  | 10.14 ! | 17.03 ! | 26.17 !    | 12.35 ! | 6.12 !  | 10.53 ! | 12,15 ! | 9.53 !      | 14.67  |
| !        | 3rd!          | 4.52 !  | 7.83 !  | 14.43 ! | 21.39 !    | 9.53 !  | 5.36 !  | 7.93 !  | 9,79 !  | 8.01 !      | 11.81  |
| June     | ist!          | 4,42 !  | 7.18 !  | 13.28 ! | 20.01 !    | 8.78 !  | 5.51 !  | 7.39 !  | 9.43 !  | 8.71 !      | 10.65  |
|          | 2nd!          | 6.54 !  | 5.97 !  | 10.70 ! | 20.25 !    | 8.96 !  | 5.17 !  | 6.44 !  | 7.86 !  | 7.48 !      | 8.57   |
| !        | 3rd!          | 6.36 !  | 5.11 !  | 8.81 !  | 20.56 !    | 9.03 !  | 4.91 !  | 5.78 !  | 8.66 !  | 6.48 !      | 8.51   |
| July     | Ist!          | 5.41 !  | 4.51 !  | 7.11 !  | 19.57 !    | 11.09 ! | 4.74 !  | 5.30 !  | 9.81 !  | 5.87 !      | 7.43   |
|          | 2nd:          | 4.53 !  | 4.09 !  | 6.04 !  | 16.70 !    | 12.55 ! | 7.37 !  | 9.30 !  | 8.93 !  | 5.23 !      | 6.28   |
| !        | 3rd!          | 3.55 !  | 3.45 !  | 4.81 !  | 12.86 !    | 15.15 ! | 7.16 !  | 9.47 !  | 6.97 !  | 4.35 !      | 4.96   |
| Aug.     | Ist!          | 4.68 !  | 3.58 !  | 4.76 !  | 11.85 !    | 16.66 ! | 7.28 !  | 9.78 !  | 7.56 !  | 4.47 !      | 4.87   |
|          | 2nd:          | 5.97 !  | 3.43 !  | 4.39 !  | 9.58 !     | 14.90 ! | 7.35 !  | 8.33 !  | 6.51 !  | 4.24 !      | . 4.45 |
| !        | 3rd!          | 4.85 !  | 3.01 !  | 3.75 !  | 7.01 !     | 13.98 : | 7.08 !  | 6.46 !  | 5.18 !  | 3.70 !      | 3.78   |
| Sep.     | lst!          | 4.57 !  | 3.95 !  | 3,94 !  | 6.45 !     | 13.98 ! | 6.98 !  | 6.21 !  | 5.10 !  | 3.95 !      | 3.94   |
| !        | 2nd:          | 3.98 !  | 6.70 !  | 3.80 !  | 5.53 !     | 11.89 ! | 6.21 !  | 5.58 !  | 4.68 !  | 3.84 :      | 3.79   |
| !        | 3rd!          | 3.58 !  | 7.97 !  | 3.70 !  | 1.89 !     | 9.74 !  | 5.65 !  | 5.13 !  | 4.38 !  | 3.79 !      | 3.67   |
| Oct.     | ist!          | 3.30 !  | 9.00 !  | 3.82 !  | 4.43 !     | 7.99 !  | 5.25 !  | 4.80 !  | 5.43 !  | 3.73 !      | 3.58   |
| !        |               | 3.11 !  | 8.02 !  |         | 4.11 !     |         | 4.98 !  | 4.56 !  | 5.10 !  | 3.68 5      | 3.51   |
| <u>!</u> |               |         | 7.63 !  | 3.20 !  | 3.73 !     | 10.27 1 | 4.34 !  | 3.99 !  | 4.24 !  | 3.31 !      | 3.16   |
| Nov.     |               | 2.88 !  | 10.44 ! | 3.48 !  | 7.76 !     | 14.83 ! | 4.66 !  | 4,25 !  | 4,37 !  | 3.81 !      | 3.46   |
|          |               | 2.82 !  | 12.20 ! | 3.44 !  | 9.95 !     | 17.47 ! |         | 4.14 !  | 4.16 !  | 3.57 !      | 4,78   |
| <b>!</b> | 3rd!          | 2.77 !  | 12.59 ! | 3.41 !  | 12.44 !    | 18.72 ! | 5.83 !  | 4.20 !  | 4.01 !  | 4.07 !      | 8.19   |
| Dec.     |               | 4.67 !  | 11.32 ! | 3.38 !  | 14.87 !    |         | 9.19 !  | 6.99 !  |         | 8.11 !      | 7.03   |
| !        |               |         |         |         | 17.65 !    |         | 11.84 ! |         |         |             | 7.07   |
| !        | 3rd!          | 10.53 ! | 18.82 ! | 4.93 !  |            | 17.84 ! | 10.79 ! | 9.81 !  | 14.63 ! | 14.27 !     | 7.89   |
|          |               | ) (4 I  | 12.32 ! | 0 17 )  | 12 50 1    |         | 0 65 1  | 1A EJ 1 | 0 00 I  | 0 17 1      | 10.25  |

Table 1(2)

\* ESTIMAED RUNDES \*

## SENTENS I

| 1 No  | oth!   | 1981 !   | 1962 !  | 1963 !              | 1964 !  | 1965 !                                | 1985 !  | 1967 !           | 1988 !             | 1969 !           | 1970 !  |
|-------|--------|----------|---------|---------------------|---------|---------------------------------------|---------|------------------|--------------------|------------------|---------|
|       |        |          |         |                     |         |                                       |         |                  |                    |                  |         |
| Wan.  |        | 13.06 !  | 9.72 !  | 12.54 !             | 13.86 ! | 10.59 !                               | 11.39 ! | 22.90 !          | 16.99 !            | 19.08 !          | 8.93 !  |
| !     | 2nd!   | 18.26 !  | 12.85 ! | 11.39 !             | 13.82 ! | 11.66 !                               | 11.96!  |                  | 17.39 !            | 20.07 !          | 11.40 ! |
| !     | 3rd!   | 17.34 !  | 13.27 ! | 11.46 !             | 13.75 ! | 10,93 !                               | 11.56 ! | 21.95 !          | 14.37 !            | 19.93 !          | 13.96 ! |
| !Feb. | Ist!   | 18.26 !  | 16.69 ! | 13.98 !             | 15.41 ! | 14.19 !                               | 11.61 ! | 22.17 !          | 14.83 :            | 21.46 !          | 17.26 ! |
| !     | 2nd !  | 19.52 !  | 17.08   | 13.75 !             | 15.88 ! | 15.08 !                               | 12.19 ! | 22.42 !          | 14.08 !            | 20.00 !          | 18,41 ! |
| !     | 3rd!   | 23.39 !  | 19,94 ! | 18.36 !             | 16.82 ! | 19.09 !                               | 19.11   | 25.82 !          | 15.08 !            | 23.32 !          | 23.69 ! |
|       |        |          |         |                     |         |                                       |         |                  |                    |                  |         |
| Mar.  | ist!   | 17.32 !  | 18.85 ! | 15.87 !             | 15.15 ! | 14.36 !                               | 17.58 : | 18.08 !          | 14.63              | 17.07 !          | 19.20 ! |
| !     | 2nd!   | 17.27 !  | 18.16 ! | 18.45 !             | 15.78 ! | 13.20 !                               | 18.88   | 15.11            | 15.15 !            | 16.61 !          | 18.89 ! |
| !     | 3rd!   | 14.61 !  | 18.91   | 19.03 !             | 15.30 ! | 10.11 !                               | 17.77   | 11.65 !          | 14.47 !            | 17.81 !          | 15.63 ! |
|       |        |          |         |                     |         |                                       | 40 01 1 |                  | 40 F4 I            | 55 56 1          | 45 62 2 |
| !Apr. |        | 15.69 !  | 24.14 ! | 20.97 !             | 15.93 ! | 9.13 !                                | 19.24 ! | 11.15!           | 18.54 !            | 22.28 !          | 15.82 ! |
| :     | 2nd!   | 15.24 !  | 23.66 ! | 19.00 !             | 18.91 ! | 9.51 !                                | 17.69 ! | 9.33 !           | 19.68 !            | 21.69 !          | 13.57 ! |
| !     | 3rd!   | 13.53 !  | 24.17 ! | 18.15 !             | 19.24 ! | 8.28 !                                | 16.36 ! | 7.99 !           | 19.31 !            | 19.07 !          | 12.86 ! |
| May   | tst!   | 11.30 !  | 21.99 ! | 13,19 !             | 17.67 ! | 1 18.4                                | 14.07 ! | 6.55 !           | 19.83 !            | 15.69 !          | 11.68 ! |
|       | 200!   | 10.39 !  | 18.36 ! | 10.54 !             | 14.94   | 5.81 !                                | 11.45 ! | 5.48 !           | 21.18 !            | 12.51 !          | 11.65 ! |
| į     | 3rd!   | 7.93 !   | 13.28 ! | 7.63 !              | 13.12 ! | 4.57 !                                | 8.29 !  | 4.29 !           | 17.95 !            | 9.88 !           | 10.55 ! |
|       |        |          |         |                     |         |                                       |         | *                | ~~~~~              |                  |         |
| !June | Ist!   | 7.18 !   | 11.45 ! | 6.80 !              | 13.21 ! | 4.41 !                                | 9.07 !  | 4.19 !           | 17.32 !            | 8.80 !           | 9.94 !  |
| ļ     | 2nd!   | 6.05 !   | 9.00 !  | 5.68 !              | 10.85 ! | 4.03 !                                | 7.63 !  | 3.81 !           | 16.12 !            | 7.29 !           | 9.03 !  |
| !     | 3rd:   | 5.26 !   | 7.25 !  | 4.89 !              | 8.61 !  | 3.74 !                                | 6.26 !  | 3.54 !           | 15.04 !            | 6.17 !           | 7.53 !  |
| 10.1. |        |          |         | 4 77 1              |         |                                       | F 22 6  | 7 75 1           | 17 37 1            | E 10 1           | 6.32 !  |
| Huly  |        | 4.70 !   | 6.00 '  | 1.33 !              | 6.89 :  | 3.54 !                                | 5.28 !  | 3.35 !<br>3.21 ! | 13.73 !<br>15.13 ! | 5,38 !<br>4.83 ! | 5,47 !  |
| :     | 2nd!   | 4.31 !   | 5.12 !  | 3.94 !              | 5.67 !  | 3.39 !                                | 4.59 !  | 2.83 !           | 12.71 !            | 4.04 5           | 5.12 !  |
| :     | 3rd!   | 3.66 !   | 4.69 !  | 3,33 !              | 4.38 !  | 2.99 !                                | 3,74 !  | Z.03 :           | 12.71 :            | 7,01 :           | 9,14 :  |
| !Aug. | ist!   | 3.82 !   | 1.06 !  | 3.46 !              | 4.21 !  | 3.21 !                                | 3.77 !  | 3.03 !           | 11.53 !            | 4.17 !           | 6.13 !  |
| !     | 2.14!  | 3.67 !   | 3.75 !  | 3.32 :              | 3.78 !  | 3.15 !                                | 3.52 !  | 2.97 !           | 9.23 !             | 3.97 !           | 5.34    |
| •     | 3r d ! | 3.21 !   | 3.20 !  | 2.92 !              | 3.16 5  | 2.82 !                                | 3.04 5  | 2.88 !           | 6.82 !             | 2.18             | 4.35 !  |
|       |        |          |         |                     |         |                                       |         |                  |                    |                  | 4 70 4  |
| !Sep. |        | 3.48 !   | 3.35    | 3,13 !              | 3.26 !  | 3.07 !                                | 3.21 !  | 2.87 !           | 8.15 !             | 3.73 !           | 4.38 !  |
| !     | 2nd!   | 3.66 !   | 3.23 !  | 3.07 !              | 3.10 !  | 3.04 !                                | 3.12 !  | 2.85 !           | 5.20               | 3.66 !           | 4.10    |
| !     | 3rd!   | 3.36 !   | 3.14 !  | 3.02 !              | 2.99 !  | 3.01 !                                | 3.05 !  | 2.82 !           | 4,53 !             | 3.60 !           | 3.89 !  |
| !Oct. | 1611   | 3.32 !   | 3.07 !  | 2.98 !              | 5.20 !  | 2,99 !                                | 2.89 !  | 4.05 :           | 5.26 !             | 3.55 !           | 3,74 !  |
| !     | 2nd !  | 3.28 !   | 3.15 !  |                     | 8.56    | 2.97 !                                |         | 3.73 !           | 4.74 !             | 3.52 !           | 3,63 !  |
| į     | 3rd:   | 2.95 !   | 3.46 !  | 2.65 !              | 9.21 !  | 2,68 !                                | 2.66 !  | 3.11 !           | 3.81               | 3.18.!           | 3.23 !  |
|       |        | *****    |         |                     |         |                                       |         |                  |                    |                  |         |
| !Nov. | lst!   | 3.50 !   | .6.61 ! | 2.88 !              | 11.22 ! | 2.93 !                                | 2,89 !  | 3.21 !           | 5.54 5             | 3,87 !           | 3.94 !  |
|       | 2nd!   | 3.40 }   | 7.39 !  | 2.88 !              | 11.25 ! |                                       | 5.27 !  | 3.05 !           | 5.73 !             |                  | 4.90 5  |
| 1     | 3rd!   | 3.31 !   | 7.83    | 2.83 !              | 9.76 !  | 2.93 !                                | 9,54 !  | 2.95 !           | 7.31 5             | 3.63 ;           | 5,15 !  |
| 44444 | 4      | 9 As -   | 44 85 4 | A AA 1              | A 44 1  |                                       | 42 AT I | 7 43 1           | 5 16 I             | 4 AE 1           | ורמו    |
| !Dec. |        | 3.24 !   | 11.25 ! | 2.80 !              | 9.18!   | 4.51 !                                | 12.23 ! | 7.42 !           | 9.18 !             | 4.25 !           | 4,87 !  |
| !     |        | 4.84 !   | 13.69 ! |                     | 8.53 !  | 7.76 !                                | 14.04 ! | 9.47 !           | 13.72 !            | 6.61 !           | 5.19 !  |
| !     | 3rd!   | 6.09 !   | 12.59 ! | Y <sub>1</sub> 5/ ! | 7.68 !  | 8.21 !                                | 15,34 ! | 11.42 !          | 18.71 !            | 7.79 !           | 7.75 !  |
| Moan  | 1511   | 8.86 !   | 11,91   | 8.50                | 10.72   | 6.71 !                                | 9.50 !  | 8.77 !           | 12.74 !            | 10.43 !          | 9.40 !  |
|       |        | ******** |         |                     |         | · · · · · · · · · · · · · · · · · · · |         |                  | *******            |                  |         |

### + ESTIMAED RUNGEF +

Table 1(3)

BENTENG I

| . No | nth!  | 1976 !  | 1972 !  | 1973 !   | 1974 !  | 1975 !  | 1976 !  | 1977 !  | 1978 !   | 1979 !  | 1980   |
|------|-------|---------|---------|----------|---------|---------|---------|---------|----------|---------|--------|
| Jan, | lst!  | 9.58 !  | 15.02 ! | 8.19 !   | 14.29 ! | 9.82 !  | 22.85 ! | 10.55 ! | 13.85 !  | 16.26 ! | 15.68  |
| !    | 2nd!  | 12.38 5 | 17.25 ! | 10.47 !  | 13.61 ! | 12.96 ! | 21.83 ! | 11.25!  | 14.00 !  | 18.28 ! | 17.75  |
| !    | 3rd!  | 12.77 ! | 15.72 ! | 11.51 !  | 12.56 ! | 14.92 ! | 17.94 ! | 11.92 ! | 11.96 !  | 17.39 ! | 17.01  |
| Feb. | lst!  | 13.67 ! | 17.84 ! | 14.82 !  | 13.48 ! | 19.80 ! | 18.17 ! | 14,15 ! | 12.50 !  | 19.24 ! | 18.23  |
|      | 2nd!  | 13.77 ! | 18.33 ! | 18.10 !  | 13.75 ! | 21.51 ! | 18.52 ! | 14.66 ! | 11.70 !  | 18.77 ! | 16.67  |
| !    | 3rd!  | 17.15 ! | 19.01 ! | 25.79 !  | 18.63 ! | 26.66 ! | 18.31 ; | 18.68!  | 13.89 !  | 21.25 ! | 17.54  |
| har. | Ist!  | 14.87 ! | 16,57 ! | 21.72 !  | 15.48 ! | 21.75 ! | 16.68 ! | 14.03 ! | 11.75 !  | 15.29 ! | 14.83  |
|      | 20d!  | 15.83 ! | 17.27 ! | 21.25 !  | 15.24 ! | 22.76 ! | 16.37 ! | 13.40 ! | 12.43 !  | 15.33 ! | 13.67  |
| 1    | 3r d! | 16.19 ! | 15.48 ! | 19.27 !  | 12.28 ! | 22.10 ! | 13.98 ! | 13.35 ! | 12.89 !  | 14.83 ! | 11.57  |
| for. | ist!  | 18.18 ! | 14.88 ! | 20.68 !  | 12.96 ! | 23.33 ! | 13.86 ! | 15.90 ! | 14.73 :  | 15.81 ! | 11.98  |
|      | 2nd!  | 16.83 ! | 12.68 ! | 21.61 !  | 11.26 ! | 22.14 ! | 11.52 ! | 14.61 ! | 13.56 !  | 15.22 ! | 12.51  |
|      | 3rd!  | 13.89   | 11.81 ! | 20.61 !  | 9.22 !  | 21.83 ! | 9.48 !  | 13,34 ! | 12.61 !  | 13.85 ! | \$2.72 |
| Xav  | lst!  | 12.31   | 11.86 ! | 20.05 !  | 9.77 !  | 19.89 ! | 7.84 !  | 11.18 : | 11.59 !  | 14.44 ! | 11.95  |
| ,    | 2nd!  |         | 10.38 ! | 18.20 !  | 8,74 !  | 17.38 ! | 6.62 !  | 9.08 !  | 11.41 !  | 13.08 ! | 10.08  |
|      | 3rd!  | 7.67 !  | 7.71 !  | 15, 19 ! | 7.65 !  | 12.88 ! | 5.24 !  | 6.79 !  | 10.52 !  | 11.30 ! | 7.59   |
| June | ist!  | 7.07 !  | 8.91 !  | 14.52 !  | 7.12 !  | 11.28 ! | 5.18 !  | 6,26 !  | 11.82 !  | 13.20 ! | 6.91   |
| - 4  | 200!  | 8.01 !  | 5.80 !  | 11.73 !  | 6.03 !  | 9.04 !  | 4.73 !  | 5.41 !  | 12.00 ;  | 11.78 ! | 5.89   |
|      | 3rd!  | 5.26 !  | 5.01 !  | 9.51 !   | 5.27 !  | 7.43 !  | 4.42 !  | 4.81 !  | 12.38 !  | 11.31 ! | 5.18   |
| July | ist!  | 4.73 !  | 4.45 !  | 9,13 !   | 4.73 !  | 6.31 !  | 4.20 !  | 4.39 !  | 13.32 !  | 9.58 !  | 4.67   |
|      | 200!  | 4.35 !  | 4.08 ?  | 8.78 1   | 4.35 !  | 5,51 !  | 4.04 1  | 4.08 !  | 11.96 !  | 7.86 !  | 4.31   |
|      | 2kq;  | 3.31 !  | 3.43 !  | 6.63 !   | 3.71 !  | 4.50 !  | 3.57 !  | 3.51 !  | 9.23 !   | 5.98 !  | 3.68   |
| Aug. | 1st!  | 3.89 !  | 3.57 !  | 5.99 !   | 3.89 !  | 4.56 !  | 3.84 !  | 3.70 !  | 8.25 !   | 5.67 !  | 3.86   |
| •    | 2nd!  | 3.75 !  | 3.42 !  | 5.06 !   | 3.76 !  | 4,27 !  | 3.76 !  | 3.58 !  | 6.77 !   | 5.04 !  | 3.73   |
|      | 3rd!  | 3.31 ;  | 3.00 !  | 4.01 !   | 3.33 !  | 3.70 1  | 3.37 !  | 3.17 !  | 5.16     | 4.17 !  | 3.29   |
| Seo. | Ist!  | 3.56 !  | 3.22 !  | 3.95 !   | 3.59 !  | 3.94 !  | 3.66 !  | 3.42 !  | 4.91 !   | 4.28 !  | 3.54   |
| •    | 2001  | 3.50 !  | 3.15 !  | 5,21 !   | 3.54 !  | 8.55 !  | 3.62 !  | 3.36 !  | 4.37 !   | 4.05 !  | 3,48   |
|      | 3rd!  | 3.45 !  | 3.10 ;  | 8,45 !   | 3.50 5  | 10.69 ! | 3.58 !  | 3.31 !  | 4.00 !   | 3,89 !  | 3.42   |
| Oct. | 1st ! | 3.41 !  | 3,05 !  | 9.39 !   | 6.48 !  | 11.22 ! | 4,35 !  | 3.26 !  | 3.79 1   | 3.78 !  | 3.38   |
|      | 2nd!  | 3.37 !  | 3.01 !  | 8.57 !   | 9.17 !  | 10.19 ! | 4.37 !  | 3.23 !  | 3.59 !   | 3.69 !  | 3,34   |
|      |       | 3.03 !  | 2.70 !  | 6.77 !   | 9.28 !  |         | 3.72 !  |         | 3.13 !   | 3.30 !  | 3.79   |
|      | Ist!  | 3.30    | 2,96 !  | 7.70 !   | 11.25 ! | 16.95 ! | 4.16 !  | 3.15 !  | 4.23 1   | 3.58 !  | 4,18   |
|      | 2nd!  | 3.28 !  |         | 8.16 !   |         |         | 8.71 !  |         |          |         | 5,49   |
|      | 3cd!  | 3,26 !  | 2.88 !  | 10.64 !  | 11.37 ! | 18.57 ! | 11.11 ! | 3.36 !  | 9.38 !   | 3,50 !  | 8.24   |
|      | ist!  | 4,47 !  | 2.86 !  | 12.89 !  | 10.47 ! |         | 11.45 ! |         |          | 6.40 !  | 10.50  |
|      |       | 9.68 !  | 4.03 !  | 13.81 !  | 8.97 !  | 22.88 ! | 11.15 ! | 9,20 1  |          |         | 11.65  |
|      | 3rd!  | 11.60 ! | 4.92 !  | 12.06!   | 7.62 !  | 20.30 ! | 9.83 !  | 10.46 ! | \$3.76 ! |         | 12.52  |
| Mean | lst!  | 8.41 !  | 8.33 !  | 12.50 !  | 9.11 !  | 14.48 ! | 9.27 !  | 7.98 !  | 10.18 !  | 10.46 ! | 9.02   |
| ,    |       | +       |         |          |         |         | ,       |         |          |         |        |

### Table 1(4)

### SENTENG I

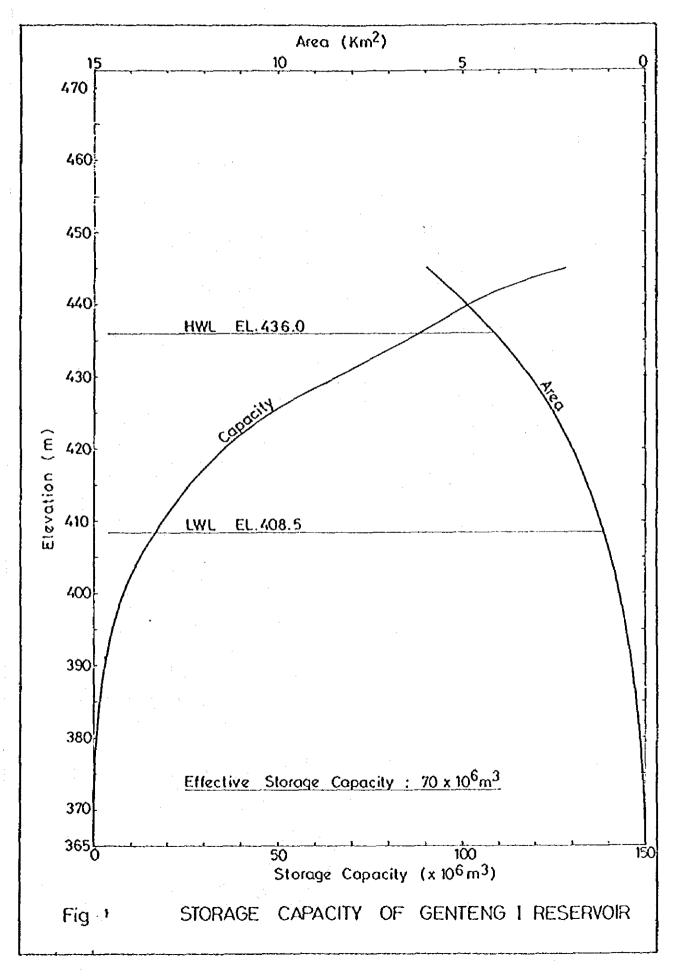
| . No  | nth!   | 1981 !  | 1982 !                      | Nean :  |
|-------|--------|---------|-----------------------------|---------|
|       |        |         |                             |         |
| 1120. | ist!   | 18.17 ! | 17.50 !                     | 14.17   |
| !     | 2nd!   | 20.89 ! | 16.75 !                     | 15.16 ! |
| i     | 306!   | 18.94 ! | 13.77 !                     | 14.49 ! |
|       |        |         |                             |         |
| !Feb. | ist!   | 21.02 ! | 14.47 !                     | 16.34 ! |
| !     | 2nd:   | 21.70 ! | 14.83 !                     | 16.63 ! |
| !     | 364!   | 25.30 ! | 17.41 !                     | 20.08 ! |
|       |        |         |                             |         |
| !Mar. |        | 18.66 ! | 13.90 !                     | 16.49 ! |
| !     | 2nd!   | 16.16 ! | 13.06 :                     | 16.37 ! |
| !     | į, dį  | 12.68   | 10.16 !                     | 14.97 5 |
|       |        |         |                             |         |
| lapr. |        | 11.47 ! | 9.50 !                      | 16.20 ! |
| ·!    | 2nd!   | 9.23 !  | 9.14 !                      | 15.31 ! |
| !     | 3rd:   | 9.60 !  | 8.87 !                      | 14.22 ! |
|       |        |         |                             |         |
| -     | ist!   | 9.37 !  | 7.64 !                      | 13.69 ! |
| !     | 2nd!   | 14.83 ! | 8.47 !                      | 11.98 ! |
| !     | 3/4!   | 15.98 ! | 5.11 !                      | 9.73 !  |
|       |        |         |                             |         |
| เลย   | ist!   | 17.49 ! | 5.03 !                      | 9.39 !  |
| !     | 2nd:   | 15.31 5 | 4.60 !                      | 8.33 !  |
| !     | 300!   | 13.51 ! | 4.30 !                      | 7.52 !  |
|       |        |         |                             |         |
| !July | Ist!   | 11.25 ! | 4.09 !                      | 6.91 !  |
| •     | 2nd!   | 15.31 ! | 3.93 !                      | 6.72 !  |
| !     | 3rd!   | 13.93 ! | 3.47 !                      | 5.81 !  |
|       |        |         |                             |         |
| !Aug. | ist!   | 13.80 ! | 3.73 !                      | 5.85 !  |
| !     | 2nd!   | 11.65 ! | 3.67 !                      | 5.32 !  |
| 1     | 3rd!   | 8.57 !  | 3.29 !                      | 4.46 !  |
|       |        |         |                             |         |
| !Sep. | ist!   | 7.84 !  | 3.57 !                      | 4.53 !  |
| 1     | 246    | 6.37 !  | 3.53 !                      | 4.48 !  |
| •     | 3r d ! | 5.53 !  | 3.50 !                      | 4.44 !  |
|       |        |         |                             |         |
| !0ct. | 1st!   | 1.87 !  | 3.47 !                      | 4.64 !  |
| !     | 2nd    | 4.45 !  | 3.43 !                      | 4.88 !  |
| !     | 3r d ! | 3.78 !  | 3.09 !                      | 4,44 !  |
| +     |        |         |                             |         |
| Nov.  | ist?   | 3.93 !  | 3.37 !                      | 5.47 !  |
| !     | 2nd!   | 5.64 !  | 3.34 !                      | 6.18 !  |
| ţ     |        |         | 3.31 !                      |         |
|       |        |         |                             |         |
| !Dec. | ist!   | 14.21 ! | 5.05 !<br>8.11 !<br>11.85 ! | 8.80 !  |
| !     | 2nd1   | 18.12 ! | 8.11 !                      | 10.88 ! |
| !     | 3rd!   | 14.82 ! | 11.85 !                     | 11.61 ! |
| +     |        | •       |                             |         |
| :Kean | ist!   | 12.84 ! | 7.50 !                      | 10.07 ! |
|       |        |         |                             |         |

### Table 2 + ENERGY POTENTIAL AT SENTENG-I

HKK: TINU

| • | !RA3Y | Jan. ! | FE9. ! | NAR, ! | APR. ! | YAY !  | JUNE ? | JULY ! | AUG. ! | SEP. ! | oct. !        | NOV. ! | DEC.! | 101AL ! |
|---|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------------|--------|-------|---------|
| ! | 1951! | [831;  | 6649!  | 7825!  | 4435!  | 2541!  | 2576!  | 2075!  | 2398!  | 1818!  | <b>{4</b> 06! | 12691  | 3614! | 38523!  |
| ! | 1952! | 6989?  | 98111  | 11494! | 8892!  | 4732!  | 2137!  | 1858!  | 1547!  | 2791!  | 3810!         | 5282!  | 7338! | 87288!  |
| į | 1953! | 9197!  | 7588!  | 8008!  | 4969!  | 7214!  | 4886!  | 2765!  | 1930!  | 1715!  | 1804!         | 1548!  | 1844: | 51451!  |
| : | 1954! | 3907!  | 5502!  | 5267!  | 10375! | 11491! | 9119!  | 7559!  | 4374!  | 2529!  | 1895!         | 4520!  | 7633! | 74176!  |
| 1 | 19551 | 7401!  | 8643!  | 5513!  | 6883?  | 5143?  | 40131  | 6043;  | 7037   | 5339   | 41883         | 7649!  | 8539! | 745045  |
| ţ | 1956! | 9899!  | 8965!  | 6930!  | 4133!  | 2816!  | 2331!  | 2996!  | 3361!  | 2824!  | 2249!         | 2216!  | 4932! | 53724!  |
|   | 1957  | 5719!  | 7992!  | 9242!  | 8372!  | 48075  | 2740!  | 3751!  | 3780!  | 2536!  | 2061!         | 1887 ! | 4204! | 57298!  |
| ! | 1958! | 4138!  | 4249!  | 6240!  | 6054   | 5219!  | 3890!  | 3959!  | 2984!  | 2123!  | 2278!         | 1880!  | 5525! | 48523!  |
| į | 1959! | 8229!  | 7578!  | 78791  | 6765!  | 4458!  | 33991  | 2381!  | 1916!  | 1739!  | 1656!         | 1886!  | 5467! | 53189!  |
| i | 1960! | 8439!  | 8198!  | 7384!  | 7443!  | 6407!  | 4107!  | 2873!  | 2020!  | 1709!  | 1584!         | 2183!  | 3415! | 56027!  |
| į | 1961! | 7556!  | 8470!  | 7598!  | 6665!  | 45801  | 2773!  | 1954!  | 1857 ! | 1536!  | 1476!         | 1530!  | 2215! | 479941  |
| Ţ | 1962! | 5572!  | 7455!  | 8643!  | 10791! | 8240!  | 4153!  | 2341!  | 1698!  | 1457!  | 1499!         | 3273!  | 5816! | 60943!  |
| į | 19831 | 5178!  | 6360!  | 8284!  | 6414!  | 4816!  | 2604!  | 1789!  | 1498!  | 1382!  | 1324!         | 1284!  | 2981! | 46220!  |
| į | 1964! | 6388!  | 6961!  | 7161!  | 8108!  | 7053!  | 4898!  | 2605!  | 17191  | 14011  | 3582!         | 4832!  | 3922! | 58835!  |
| • | 1965! | 5138!  | 6678!  | 5799!  | 4036!  | 2645!  | [830!  | 1532!  | 1418!  | 1367!  | 1335!         | 1317!  | 3193! | 36296!  |
| 1 | 1988! | 5407!  | 5880!  | 8397!  | 7990!  | 5193!  | 3442!  | 2096!  | 1594!  | 1408!  | 1330!         | 2503!  | 6469! | 51894?  |
| i | 1957  | 10733! | 97821  | 8897!  | 42631  | 2511   | 17301  | 1450!  | 1338!  | 1283!  | 16791         | 1380!  | 44169 | 474785  |
| ! | 18881 | 7525!  | 6369!  | 6802!  | 8626!  | 9109!  | 1269!  | 6423!  | 4237!  | 2381!  | 2132!         | 2785!  | 6189! | 898\$2! |
| ŗ | 1989! | 9157!  | 9013!  | 7987!  | 9452!  | 5821!  | 3337!  | 2197!  | 1794!  | 1647!  | 1584!         | 1685!  | 2913! | 56592!  |
| ! | 1970! | 5350!  | 8190!  | 8289!  | 6334!  | 5238!  | 3973!  | 2777!  | 2437!  | 1854!  | 1637!         | 2097!  | 2786! | 50967!  |
| ! | 1971! | 5398!  | 6171!  | 7273!  | 7302!  | 4626!  | 2749!  | 1973!  | 1891!  | 1575!  | 1516!         | 1475!  | 4034! | 45789!  |
| į | 19721 | 74311  | 7988   | 7627!  | 5903!  | 4606!  | 2656!  | 1841!  | 1542!  | 1419!  | 1353!         | 130B!  | 1844: | 45525!  |
| ţ | 1973! | 47035  | 8029!  | 9621!  | 9431!  | 82405  | 5381!  | 3778!  | 2318   | 2610!  | 3803!         | 3973   | 59825 | 67868!  |
| ! | 1974! | 6254!  | 6317!  | 66281  | 5013!  | 4037!  | 2761!  | 1973!  | 1696!  | 1593!  | 38?7!         | 5172!  | 4171! | 49498!  |
| ŗ | 1975! | 5876!  | 9391!  | 10318! | 10070! | 7712!  | 4160!  | 2514!  | 1934!  | 3475!  | 5410!         | 7913!  | 9978! | 78778!  |
| ! | 1976! | 9628!  | 7672!  | 7261!  | 5226!  | 3032!  | 2145!  | 1824!  | 1695!  | 1628!  | 1921!         | 3595!  | 5016! | 50847!  |
| ŀ | 1977! | 5234!  | 6560!  | 6314!  | 6574!  | 4157!  | 2471!  | 1848!  | 1614!  | 1512!  | 1451!         | 1443!  | 4140! | 43325!  |
| 1 | 1978! | 6147!  | 5294?  | 57511  | 81471  | 5183!  | 5577!  | 5312!  | 3103!  | 1991!  | 1622!         | 30491  | 6355! | 55540!  |
| ţ | 1979! | 80471  | 8251!  | 7037!  | 6699!  | 5990!  | 5441!  | 3601!  | 2293!  | 1832!  | 1661!         | 1592!  | 4426! | 56876!  |
| į | [680] | 7818!  | 7599!  | 1816   | 5576!  | 4553!  | 2695!  | 1953!  | 1680!  | 1565!  | 1632!         | 2685!  | 5386! | 49328!  |
| ! | 1981! | 89801  | 9440!  | 7312!  | 4543!  | 6271!  | 6943!  | 6284!  | 5199!  | 2929!  | 2023!         | 3009!  | 6992! | 69930!  |
| ! | 1982! | 7406!  | 8487!  | 5718!  | 4124!  | 29581  | 2088!  | 1774!  | 16521  | 1589!  | 1544!         | 1502!  | 3927! | 40774!  |
| ! | HEAN! | 6789   | 7425!  | 7396!  | 8857   | 53851  | 3786!  | 3003!  | 2412)  | 2018!  | 2129!         | 2799!  | 4864! | 54851   |
|   |       |        |        |        |        |        |        |        |        |        |               |        |       |         |

Table 3(1) CONSTRUCTION COST ESTIMATE FOR GENTENG I SCHEME


| Item No. | Work         |                   | Vnit              | Quantity    | Unit<br>Price<br>(10 <sup>3</sup> Rp) | Amount<br>(10 <sup>6</sup> Rp) |
|----------|--------------|-------------------|-------------------|-------------|---------------------------------------|--------------------------------|
| 1        | Civil Works  |                   |                   | ÷           |                                       | 59,997                         |
| 1-1      | Preparatory  | Works             | LS                |             |                                       | .4,444                         |
| 1-2      | Diversion We | orks              |                   |             |                                       |                                |
|          | Excavation   | ı (earth)         | <sub>m</sub> 3    | 56,000      | 3.5                                   | 196                            |
|          |              | (rock)            | £#                | 56,000      | 7.5                                   | 420                            |
|          |              | (tunnel)          | ú,₃               | 82,000      | 43.4                                  | 3,559                          |
|          | Steel Supp   | ort               | ton               | 610         | 653.3                                 | 399                            |
|          | Concrete     |                   | m3                | 28,000      | 124.4<br>609.8                        | . 2,861<br>610                 |
|          | Reinforce    | ent bar<br>·total | ton               | 1,000       | 007.0                                 | 8,044                          |
| 1-3      | Dam Suo      | cotat             |                   |             |                                       | 0,077                          |
| I-3      | Excavation   | (earth)           | <sub>m</sub> 3    | 186,000     | 3.5                                   | 651                            |
|          | HOTTRACTOR   | (rock)            | տ3<br>m3          | 80,000      | 7.5                                   | 600                            |
|          | Embankment   | (core)            | <sub>m</sub> 3    | 494,000     | 5.5                                   | 2,717                          |
|          |              | (filter)          | $\epsilon_{ m m}$ | 142,000     | 4.8                                   | 682                            |
|          |              | (rock)            | <sub>m</sub> 3    | 2,484,000   | 7.8                                   | 19,375                         |
|          | Concrete     |                   | <sub>m</sub> 3    | 7,000       | 74.6                                  | 662                            |
|          | Reinforcemen | it bar            | ton               | 210         | 609.8                                 | 128                            |
|          | Curtain & b  | lanket grout      | M                 | 34,000      | 72                                    | 2,448                          |
|          | Sub          | total             |                   |             |                                       | 27,263                         |
| 1-4      | Spillway     |                   |                   |             |                                       |                                |
|          | Excavation   | (earth)           | $m_3^3$           | 100,000     | 3.5                                   | 350                            |
|          |              | (rock)            | m3                | 200,000     | 7.5                                   | 1,500                          |
|          | Concrete     |                   | <sub>m</sub> 3    | 61,500      | 94.6                                  | 5,818                          |
|          | Reinforcemen | it bar            | ton               | 1,230       | 609.8                                 | 750                            |
|          | Slope protec | ction             | m <sup>2</sup>    | 5,300       | 279                                   | 148                            |
|          | Sub          | total             |                   |             |                                       | 8,566                          |
| 1-5      | Waterway     |                   |                   |             |                                       |                                |
| _ •      | Excavation   | (rock)            | 3                 | 7,000       | 7.5                                   | 53                             |
|          | BXCAVALION   | (shaft)           | <sup>ւււ</sup> 3  | 4,100       | 43.4                                  | 178                            |
|          | Steel suppor | -                 | ton               | 4,100<br>24 | 653.3                                 | 16                             |
|          | Concrete     | . C               | ນ3                | 5,400       | 124.4                                 | 672                            |
|          | Reinforcemen | it bar            | ton               | 110         | 609.8                                 | 67                             |
|          | Consolidatio | n grout           | ជា                | 2,800       | 72                                    | 202                            |
|          | Sub          | total             |                   |             |                                       | 1,187                          |

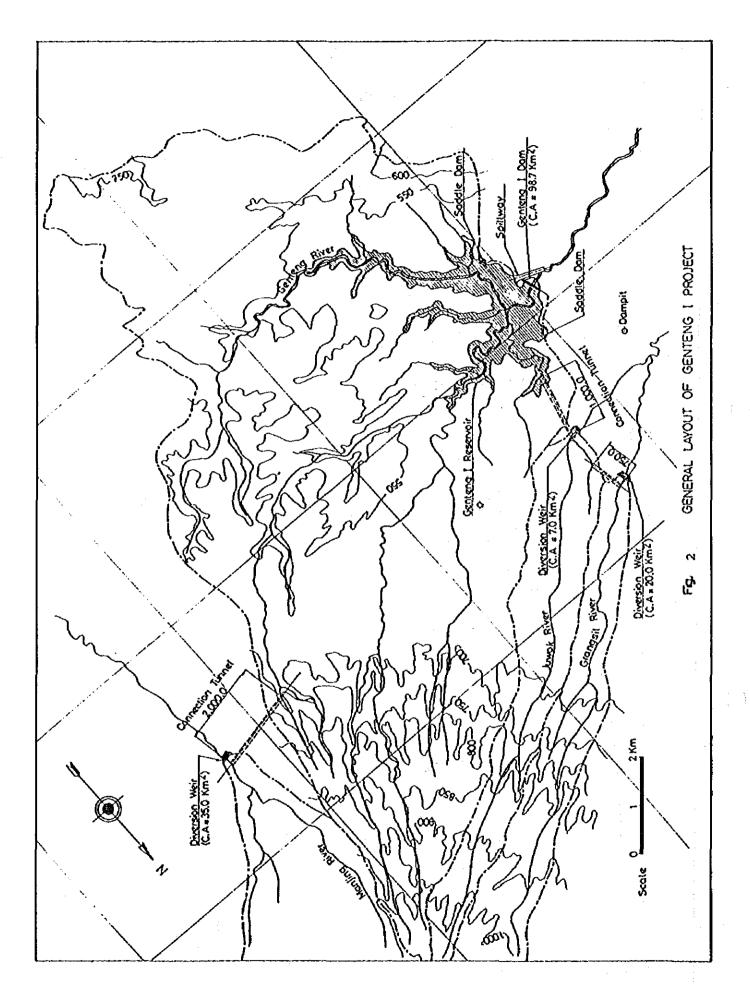
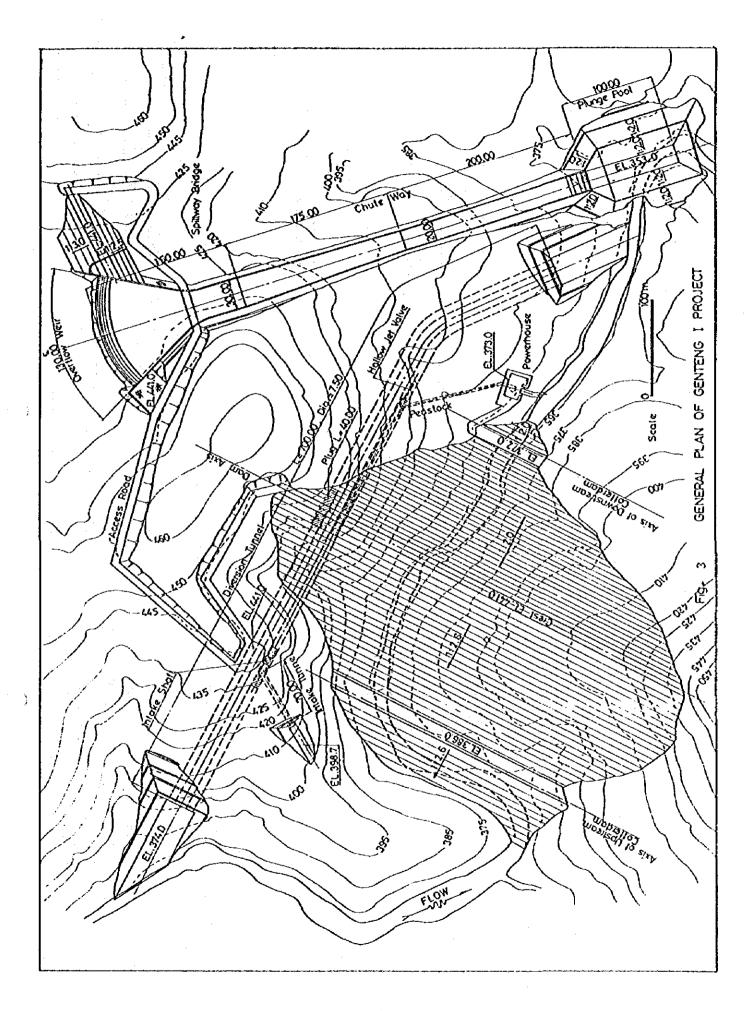
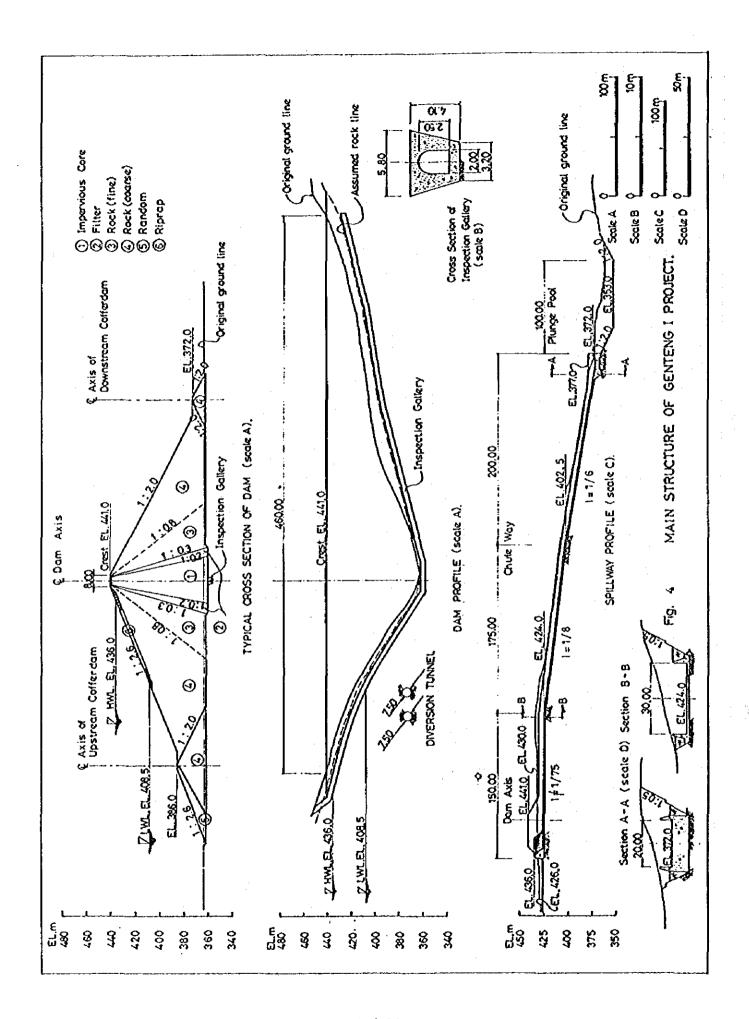
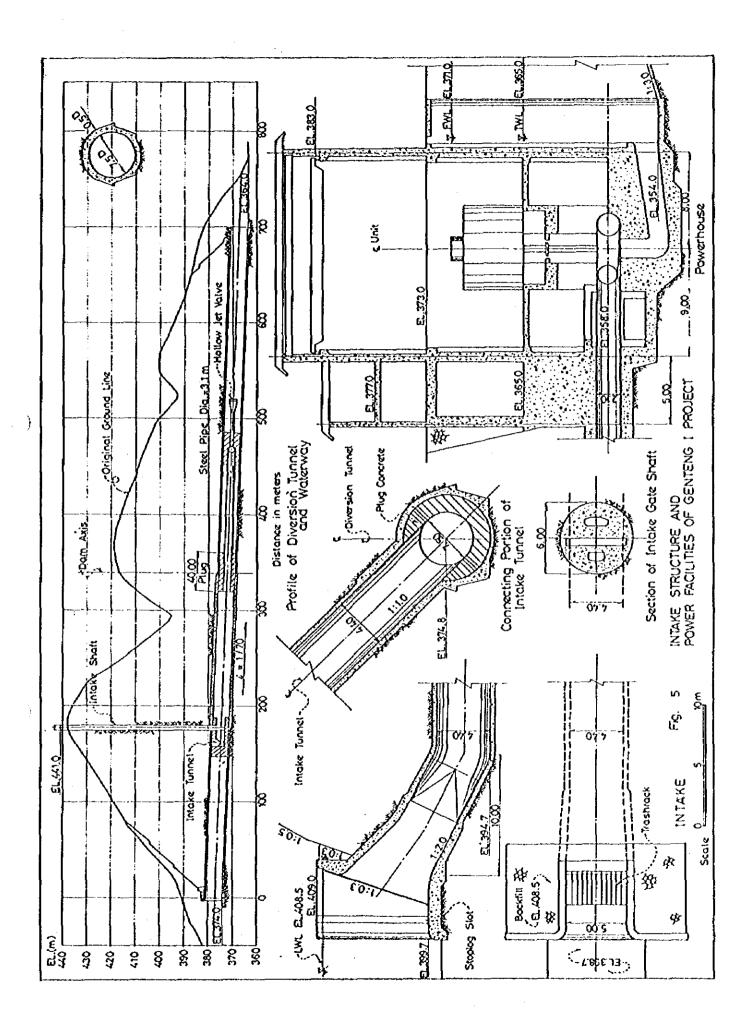

<sup>--</sup> to be continued --

Table (3(2)


# CONSTRUCTION COST ESTIMATE FOR GENTENG I SCHEME


| Item No. | Work                              | Unit             | Quantity | Unit<br>Price<br>(10 <sup>3</sup> Rp) | Amount<br>(10 <sup>6</sup> Rp) |
|----------|-----------------------------------|------------------|----------|---------------------------------------|--------------------------------|
| 1-6      | Powerhouse                        |                  |          |                                       |                                |
|          | Excavation                        | E <sub>m</sub> 3 | 19,500   | 7.5                                   | 146                            |
|          | Concrete                          | <sub>m</sub> 3   | 5,500    | 94.6                                  | 520                            |
|          | Reinforcement bar                 | ton              | 270      | 609.8                                 | 165                            |
|          | Backfill                          | m <sup>3</sup>   | 1,500    | 3.5                                   | 5                              |
|          | Slope protection                  | <u>m</u> 2       | 600      | 27.9                                  | 17                             |
|          | Architectural works               | L.S.             |          |                                       | 623                            |
|          | Utility works                     | L.S.             |          |                                       | 664                            |
|          | Sub-total                         |                  |          |                                       | 2,141                          |
| 1-7      | Transbasin Scheme                 |                  | • .      |                                       |                                |
|          | Intake weir                       | L.S.             |          |                                       | 1,563                          |
|          | Connection tunnel                 | L.S.             |          |                                       | 6,391                          |
|          | Miscellaneous                     |                  |          |                                       | 398                            |
| •        | Sub-toal                          |                  |          |                                       | 8,352                          |
| 2. Metal | l Works                           |                  |          |                                       | 1,981                          |
| i. neta. | L HULKS                           |                  | - ±      |                                       |                                |
| 2-1      | Gates, Stop lóg                   | ton              | 42       | 5,150                                 | 216                            |
| 2-2      | Penstock                          | ton              | 547      | 2,884                                 | 1,578                          |
| 2-3      | Hollow Jet Valve                  | tón              | 15       |                                       | 188                            |
|          | erating Equipment<br>ncluding T/L | L.S.             |          |                                       | 6,908                          |
|          | Total                             |                  |          |                                       | 68,886                         |
| 4. Eng   | ineering Service                  |                  |          |                                       | 6,889                          |
| 5. Adm   | inistration                       |                  |          |                                       | 3,444                          |
| 6. Bas   | e Cost                            | _                |          |                                       | 79,219                         |
| 7. Phys  | sical Contingency                 |                  |          |                                       | 11,883                         |
| Gra      | nd Total                          |                  |          |                                       | 91,102                         |






MP-4.14







### NOTE MP-5

### KONTO RIVER II SCHEME

### TABLE OF CONTENTS

|       |                                                               | Page    |
|-------|---------------------------------------------------------------|---------|
| l.    | OBJECTIVES OF SCHEME                                          | MP-5.1  |
| 2.    | NATURAL CONDITIONS                                            | MP-5.1  |
| 3.    | POSSIBLE DEVELOPMENT                                          | MP-5.2  |
| 4.    | PRELIMINARY LAYOUT                                            | MP-5.2  |
| 5.    | CONSTRUCTION COST                                             | MP-5.4  |
| 6.    | ANTICIPATED BENEFITS                                          | MP-5.4  |
|       | LIST OF TABLES                                                |         |
| TABLE | 1 ESTIMATED RUNOFF, SELOREJO (1) - (4)                        | MP-5.5  |
| TABEL | 2 ESTIMATED RUNOFF, K. KONTO II (1) - (4)                     | MP-5.9  |
| TABLE | 3 ESTIMATED RUNOFF, TRANSBASIN TO K. KONTO (1) - (4)          | MP-5.13 |
| TABLE | 4 ENERGY POTENTIAL AT K. KONTO II (1) - (2)                   | MP-5.17 |
| TABLE | 5 CONSTRUCTION COST ESTIMATE FOR K. KONTO II SCHEME (1) - (2) | MP-5.19 |
|       | LIST OF FIGURES                                               |         |
| FIG 1 | STORAGE CAPACITY OF KONTO II RESERVOIR                        | MP-5.21 |
| FIG 2 | GENERAL LAYOUT OF KONTO II PROJECT                            | MP-5.22 |
| F1G 3 | GENERAL PLAN OF KONTO II PROJECT                              | MP-5,23 |
| FIG 4 | MAINDAM AND SPILLWAY OF KONTO II PROJECT                      | MP-5.24 |
| FIG 5 | WATERWAY OF KONTO II PROJECT                                  | MP-5,25 |
| FIG 6 | DIVERSION TUNNEL AND POWER FACILITIES OF KONTO II PROJECT     | MP-5,26 |

#### NOTE MP - 5 KONTO RIVER 11 SCHEME

#### 1. Objectives of Scheme

The objectives of the scheme are envisaged as follows;

- Water supply
- Hydropower generation
- Flood control
- Sediment control (enlongation of lifetime of the Selorejo reservoir)

#### Natural Conditions

#### Location and Topography

The site is selected on Konto river, 3 km downstream from Pujon and 10 km upstream from the Selorejo dam. The catchment area at the damsite is 107 km<sup>2</sup>. Konto river has formed a deep gorge with the bottom width of about 150 m. The riverbed elevation is around EL. 885 m and the elevation of the shoulder of the abutments is around EL. 1010 m. The width of the valley at the level of the shoulder is around 600 m.

#### Hydrology

Run-off at the damsite is estimated from the discharge at the Selorejo damsite by multiplying area ratio (107  $\rm km^2/236\rm km^2)$ . The discharge at the Selorejo damsite is that estimated by the tank  $\rm modell$  method as shown in Table 1. The monthly mean run-off is as follows;

|      |      |      |      |      |      |      |      | Un   | it m <sup>3</sup> | /s   |      |
|------|------|------|------|------|------|------|------|------|-------------------|------|------|
| Jan. | Feb. | Mar. | Apr. | Мау  | Jun. | Jul. | Aug. | Sep. | Oct.              | Nov. | Dec. |
| 7.00 | 7.76 | 8.08 | 6.58 | 5.41 | 4.43 | 3.82 | 3.24 | 2.92 | 2.93              | 3.61 | 4.95 |

The mean run-off is estimated at 5.06  $^{3}$ /s. Ten-day run-off is as shown on Table 2. The run-off available from the upstream of Brantas river by a transbasin plan as described later is estimated also by area-ratio as shown in Table 3.

#### Probable floods are estimated as follows;

| Probability | Probable Flood Pcak   |
|-------------|-----------------------|
| 25 years    | 405 m <sup>3</sup> /s |
| 100         | 568                   |
| 200         | 646                   |
| 1,000       | 826                   |
| 10,000      | 1,084                 |
|             |                       |

#### Geology

There is no geological data at this moment. Additional boring investigation is proposed.

According to the reconnaissance survey, the andesite and volcanic breccia outcrops are found in the abutment.

#### 3. Possible Development

#### Storage Development

The Selorejo reservoir has a storage capacity to regulate the runoff throughout the year. However, the capacity is insufficient to carry out an inter-seasonal regulation (shift of water from the rainy season to the dry season).

The topographic condition of the Konto river II damsite allows a storage of about  $73 \times 10^6 \, \mathrm{m}^3$  in gross as shown on Fig. 1. By using this storage capacity together with the Selorejo reservoir, it will become possible to make the inter-seasonal regulation.

### Hydropower Potential

Konto river has a steep gradient in the stretches where the dam is located. A gross head of about 350 m is attainable within a distance of about 6.5 km. This hydropower potential is worth for development.

### Transbasin from the upstream of Brantas river

Within a distance of about 8 km from the reservoir area, the Brantas river exist.

The catchment area of Brantas river at this point is about 60 km<sup>2</sup>. Discharge from this catchment is now used for hydropower generation at Karangkates, Wlingi and Lodoyo. If this discharge is diverted to the Konto river II reservoir, the discharge can be used for power generation at Konto river II, Selorejo Mendalan, and Siman. Difference of the total head is as follows;

| K. Brantas |       | K. Konto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |
|------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| K. Kates   | 78 m  | K. Konto II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 310 m |
| Wlingi     | 35 m  | <b>Selorejo</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 37 m  |
| Lodoyo     | 12 m  | Mendalan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 148 m |
|            | 125 m | pro de productivo de la compansión de la | 599 m |

The transbasin scheme is worth for considering.

#### 4. Preliminary Layout

Preliminary layout of the scheme is drawn as shown on Fig. 2. to 6. The dam type is assumed as rock-fill type. The diversion tunnels and spillway are arranged in the right abutment. The headrace tunnel is also arranged in the right side. Principal features of the scheme is as follows;

#### PRINCIPAL FEATURES OF KONTO II PROJECT

1

. }

```
Location
                                3 km downstream from Pujon
                                10 km upstream from Selorejo Dam
River Basin
                                Konto River Basin
Stream
                             : Konto River
Hydrology
                                            107 km
     Catchment area
                                            5.09 + 2.09
     Average run-off
                                            5 m³/séc
     Dependable run-off for power
                                            1,100 m<sup>3</sup>/sec
     10,000 year probable flood
Reservoir
                                            EL. 1000.0 m
     High water level
                                            EL. 944.0 m
     Low water level
                                            73 x 106 m<sup>3</sup>
     Gross storage capacity
                                            63 \times 106 \text{ m}^3
     Effective storage capacity
     Reservoir surface area at HWL
                                            22 km<sup>2</sup>
Trans-basin Scheme
     Upstream of K. Brantas - Konto
                                            61 \text{ km}^2
     Catchment area
     Tunnel length
                                            7900 m
  Dam
     Type
                             : Zoned Rockfill type
     Crest elevation
                             : EL. 1004.0 m
     Crest length
                             : 585 m
     Height above river bed: 116 m
                            : 120 m
     Dam height
     Upstream slope
                             : 1:2.6
     Downstream slope
                                1:2.0
                            :
                                9.3 \times 10^{6} \text{ m}^{3}
     Embankment volume
                            :
  Spillway
     Type
                             : Side channel-Flip bucket type
                               EL. 1,000.0 m
     Crest elevation
                                130 m
     Crest width
     Chuteway
                                385 \text{ m long}, 15 \text{ m} - 10 \text{ m wide}
 Diversion Tunnel
     Type
                                Circular Tunnel x 2 lines
                                400 m<sup>3</sup>/sec
     Design discharge
                                4.5 m ø
     Diameter
                                930 m (No.1), 945 m (No.2)
     Length
  Intake
                                8.0 m high and 5.0 m wide
     Dimension
                             : EL. 937.0 m
     Sill elevation
 Headrace tunnel
                             : Circular tunnel
     Туре
     Diameter
                                3.5 m ø
     Length
                                5,525 m (including intake tunnel of
                                          235 m long)
 Surge Tank
                                Port type
     Type
                                8 m in diameter, top elevation of
     Riser shaft
                                    EL. 101.6 m)
                                1.3 m ø
     Port diameter
                            .
     Up-surging water level: EL. 1,014.3 m
     bown-surging water level ; EL. 929.7 m
```

Penstock |

: Steel conduit Туре

Diameter : 2.5 m ø

: 1,645 (including penstock tunnel of Length

550 m long)

Powerhouse

Open air type Type

25 m long x 23 m wide x 33 m high Building dimension

Power and Energy

5 m<sup>3</sup>/sec Average firm discharge: Max. plant discharge : 24 m<sup>3</sup>/sec Head gross 350 m

310 m raged (effective):

Installed capacity :  $31 \text{ MW} \times 2 \text{ units} = 62 \text{ MW}$ 

Dependable capacity 62 MW : 179.6 Gwh Annual energy

By the above setting, the hydropower potential at the assumed rated head is estimated as shown in Table 4.

#### 5. Construction Cost

The total construction cost is estimated at Rp. 202,741 million. Breakdown of the estimated cost is as shown in Table 5.

### Anticipated Benefits

The anticipated benefits of the scheme are as follows;

#### Water supply benefit

 $63 \times 10^6 \text{ m}^3 \times \text{Rp. } 100 = \text{Rp. } 6,300 \times 10^6/\text{year}$ 

#### Power Benefit

Capacity Benefit

 $62,000 \text{ kW} \times \text{Rp.} 58.2 \times 10^3/\text{kW} = \text{Rp.} 3,608.4 \times 10^6/\text{year}$ 

Energy Benefit ( K. Konto II + Transbasin )  $179.614 \times 10^3$  kWh x Rp. 90 / kWh = Rp. 16,165.3 x  $10^6$ /year Energy Benefit in the downstream

 $9.8 \times (599 - 125 - 310) \times 2.9 \times 0.8 \times 0.85 \times 24 \times 365$ 

 $= 27.764 \times 10^3$  kWh  $27.764 \times 10^3$  kWh x Rp. / kWh = Rp. 2,498.8 x  $10^6$ /year

#### Sediment Control Benefit

 $10 \times 106 \text{ m}^3 \times \text{Rp. } 100/\text{m}^3/50 \text{ years} = \text{Rp. } 20 \times 10^6/\text{year}$ 

#### Negative Benefit

In the reservoir area, use of the land as paddy fields is very limited. Therefore the submerged area is valued as other use.

### Net Benefit

Rp.  $28,482.5 \times 10^6/\text{year}$ 

### + ESTIMAED RUNOFF +

Table: 1(1)

( )

SELOREJO

| ! No        | o <b>th</b> ! | 1950 !  | 1951 !  | 1952 !  | 1953 :                    | 1954 !  | 1955 !          | 1956 !  | 1957 !  | 1958 !  | 1959 :  |
|-------------|---------------|---------|---------|---------|---------------------------|---------|-----------------|---------|---------|---------|---------|
| !Jan.       | Ist!          | 7.76 !  | 10.49 ! | 7.57 !  | 9.00 !                    | 11.62 ! | 23.48 !         | 16.23 ! | 11.60 ! | 11.03 ! | 26.78 ! |
| ŧ           | 2nd!          | 7,68 !  | 9.33 !  | 19,77 ! | 9.28 !                    | 11.10 ! | 17.66 !         | 13.90 ! | 11.39 ! | 9.48 !  | 24.08 ! |
| !           | 3rd!          | 6.41    | 14.50 ! | 12.90 ! | 9.03 !                    | 22.85 ! | 14.06 !         | 16.84 ! | 11.54 ! | 10.95 ! | 13,55   |
| ısah        | lst!          | 5.90 !  | 12.96 ! | 11.97 ! | 15.02 !                   | 22.13 ! | 21.01 !         | [6.80 ] | 18.75 ! | 10.57 ! | 12.38 ! |
| ., 40,<br>1 | 2001          | 7.05 !  | 16.73 ! | 24.54 ! | 12.22                     | 11.71 ! | 17.78 !         | 22.27 ! | 11.92 ! | 11.65 ! | 20.33 ! |
|             | 3rd!          | 65.02 ! | 18.54 ! | 15.24 ! | 9.68 :                    | 13.27 ! | 14.99           | 19.67   | 20.66 ! | 12.85 ! | 17.74   |
| <br>        | 4-81          | 51.10 ! | 16.57 ! | 15,78 ! | 9.39                      | 11.83 ! | 13.64 !         | 19.69 ! | 28.28 ! | 11.69 ! | 14.96 ! |
| :sar +      | 1st!<br>2nd!  | 10.10 ! | 13.87 ! | 20.77 ! | 11.15 !                   | 16,00 ! | 23.27           | 13.70 ! | 19.25 ! | 18.47 ! | 16.39   |
| !           | 3rd!          | 10.12 ! | 12.24 ! | 14.67 ! | 11.76 !                   | 12.89 ! | 17.37 !         | 14.80 ! | 25.41   | 12.21   | 14.77   |
|             |               |         |         |         | *****                     | ******* |                 |         |         |         | *       |
| !Apr.       | 1st!          | 13.49 ! | 11.38 ! | 13.24 ! | 12,85 !                   | 14.62 ! | 14.95 !         | 13.47 ! | 16.55   | 12.85 ! | 14.00   |
| !           | 2nd!          | 10.23 ! | 9.85 !  | 12.42 ! | 10.09 !                   | 14.15 5 | 72.02 !         | 13.49 ! | 15.04 ! | 14,45 ! | 11.83 ! |
| !           | 3rd!          | 8.86 !  | 9.40 !  | 10.10 ! | 11.55 !                   | 11.92 ! | 27.82 !         | 13.48 ! | 13.62 ! | 11.31 ! | 12.84   |
| ilay        | lst!          | 7.62 !  | 8.59 !  | 9.28 !  | 17.63 !                   | 12.02 ! | 16.29 !         | 11.61 ! | 13.42 ! | 10.86 ! | 11.73   |
| <u>,</u>    | 2nd!          | 7.43 !  | 7.87 !  | 8.68 !  | 12.02 !                   | 10.48 * | 14.95 !         | 11.33 ! | 13.57 ! | 11.33 ! | 11.15 ! |
| !           | 3rd!          | 1.18.3  | 7.39 !  | 8.79 !  | 9.95 !                    | 11.10 ! | 13.80 !         | 13.78 ! | 11.71   | 9.88 !  | 12.05 ! |
| Jone        | 1st!          | 5,79 !  | 7.13 !  | 7.70 !  | 8.98 !                    | 9.68 !  | 13.45 !         | 19.83 ! | 10.52 ! | 9,29 !  | 10.48 ! |
| , ywne<br>L | 2nd!          | 8.57 !  | 7.15 !  | 6.99 !  | 8.24 !                    | 9.39 !  | 13.72 !         | 11.71 ! | 9.78 !  | 8.23 !  | 9.89 !  |
| •           | 3rd!          | 8.41 !  | 7.06 !  | 8.67 !  | 7.71 !                    | 8.46 !  | 12.73 !         | 11.59 ! | 9.15 !  | 8.01 !  | 9.04    |
| <br>L I     | <br> st!      | 7.07 !  | 8.04 !  | 6.23 !  | 7.24 !                    | 8.58 !  | 13,69 !         | 10.73 ! | 9,25 !  | 12.49 ! | 9.00 !  |
|             | 264!          | 6.18 !  | 6.64 !  | 5.91 !  | 6.86 !                    | 7.63    | 12.45           | 10.27 ! | 9.73 !  | 9.18 !  | 8.33 !  |
| !           | 3rd:          | 5.46 !  | 6.37 !  | 5.84 !  | 6.23 !                    | 7.02 !  | 14.45 !         | 9.72 !  | 13.73   | 8.03 !  | 7.87    |
|             |               |         |         |         |                           |         | · · · · · · · · |         |         | * * * * |         |
| Bug.        | Ist!          | 5.20 !  | 5,83 !  | 5.41 !  | 5.88 !                    | 7.12 !  | 12.15 !         | 9.10 !  | 9.29 !  | 7.16 !  | 7.25 !  |
| !           | 200!          | 5.01 !  | 5.71 !  | 5.22 !  | 5.58 !                    | 8.70 !  | 11.52 !         | 8.87 !  | 8.55 !  | 6.94 !  | 6.91 !  |
| !<br>       | 3rd!          | 4.39 !  | 5.26 !  | 5.49 !  | 5.32 !                    | 6.82 !  | 10.67 !         | 8.55 !  | 7.94 !  | 6.71 !  | 6.67 !  |
| !Sep.       | lst!          | 4.08 !  | 5.05 !  | 5.10 !  | 5.26 !                    | 7.28 !  | 9.88 !          | 7.97 !  | 7.48 !  | 6.12 !  | 6.32 !  |
|             | 2nd!          | 4,23 !  | 5.84 !  | 4.76 !  | 4.94 !                    | 6.65 !  | 9.36!           | 7.54 !  | 7.14 !  | 5.76 !  | 6,11 !  |
| !           | 3rd!          | 4,54 !  | 5.34 !  | 1.82 :  | 4.71 !                    | 5.90 !  | 9.31 !          | 7.28 !  | 6.70 !  | 5.50 !  | 5.85 !  |
| Oct.        | lst!          | 4.62 !  | 5,49 !  | 4.45 !  | 4,50 !                    | 5.80 !  | 8.36 !          | 7.31 !  | 8.59 !  | 5.60 !  | 5.92 !  |
|             | 2nd!          | 5.20 !  | 4.82 !  | 4.02 !  | 4.26 !                    |         | 9.23 !          | 11.74 ! | 6.17 !  | 5.62 !  | 6.01 !  |
| Ţ           | 3rd!          | 4.67 !  | 4.1B !  | 4.66 !  | 4.20 !                    | 6.83 i  | 10.40 1         | 7.36 !  | 5.87 !  | 5.24 !  | 5.16 !  |
| Nau.        | lst!          | 8.81 !  | 4,14 !  | 7.72 !  | 4.58                      | 10.72 ! | 14.54 !         | 9.92 !  | 6.12 !  | 6.87 !  | 5.30 !  |
|             | 200           | 6.95 !  |         | 8.38 !  | 4.41 !                    | 10.59 ! |                 | 8.34 !  | 6.17 !  |         | 5.45 !  |
|             | 3rd!          | 20.75 ! | 4.17    | 9.82 !  | 4.61 !                    | 14,15 ! | 12.98 !         | 9,17 !  | 6.67 !  | 5.06 !  | 8.72 !  |
| 800         |               | 11.86 ! | 7.98 !  | 8.01 !  | 4.02 !                    | 17.66 ! | 11.36 !         | 17.92 ! | 11,34 ! | 9.08 !  | 16.23 ! |
|             | Ist!<br>2nd!  | 14.04 ! |         |         | 6.24 !                    |         | 10.34 !         |         |         | 11.73 ! | 19.57 ! |
|             | 3rd!          | 13.43 ! |         | 9.71 !  | 17.01 !                   | 12.78 ! |                 |         | 10.15 ! |         | 17.30 ! |
|             |               |         |         |         | • • • • • • • • • • • • • |         |                 |         | 11 05 1 |         |         |
| nean        | Ist!          | 19.64 ! | 8.45 !  | , 16°4  | 8.38 !                    | 16.18 ! | 16.08 !         | 12.61 ! | 11.95 ! | 9.51 !  | 11,611  |
|             |               |         |         |         |                           |         |                 |         |         |         |         |

## + ESTIMAED RUNOFF +

SELOREJO

Table \_\_1(2)

|             |               |         | + .     |         |         |         |         |         |         |         |         |
|-------------|---------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| ! No        | alh!          | 1960 !  | 1761 !  | 1962 !  | 1763 !  | 1984 !  | 1985 !  | 1988 !  | 1967 !  | 1968 !  | 1969 !  |
| Man.        | Ist!          | 15.62 ! | 28.11 ! | 14.62 ! | 22.38 ! | 7,46 !  | 9.82 :  | 8.54 !  | 14.85 ! | 14.81 ! | 12.82   |
| )           | 2nd!          | 11.48 ! | 24.12 ! | 16.98 ! | 37.32 ! | 6.37 1  | 16.20 ! | 9.32 !  | 14.75 ! | 10.62 ! | 15.15 ! |
| į           | 3rd!          | 17.49 1 | 23.18 ! | 38.57 ! | 26.87 ! | 7.06 !  | 22.27 ! | 7.58 !  | 23.40 ! | 13.63 ! | 14.81 ! |
| !Feb.       | lst!          | 29.53 ! | 18,22 ! | 36.00 ! | 28.28 1 | 8.27 !  | 12.35 ! | 7.04 !  | 18.74 ! | 14,21 ! | 16.75 ! |
| !           | 2nd!          | 18.49 ! | 16.45 ! | 31,10 ! | 21.96 ! | 8.33 !  | 14,12 ! | 16.75 ! | 13.70 ! | 15.48 ! | 14.20 ! |
| !           | 3rd!          | 33.19 ! | 16.08 ! | 26.69 ! | 20.03 ! | 9.00 !  | 15,34 ! | 19.15 ! | 25.81 ! | 15.82 ! | 18.49 ! |
| !Mar.       | fell          | 22.41 ! | 17.11 ! | 21.22 ! | 23.42 ! | 13.02 ! | 13.08 ! | 15.67 ! | 18.40 ! | 16.79 ! | 13.37 ! |
| •           | 2nd           | 15.23 ! | 13.64   | 19.21 ! | 19.50 ! | 14.10 ! | 21.49 ! | 18.33 ! | 13.43 ! | 15.90 ! | 16.27 ! |
| •           | 3rd!          | 17.86 ! | 13.48 5 | 15.50 ! | 19.24 ! | 11.61 : | 15.99 ! | 15.35 ! | 15.42 ! | 14.43 ! | 15.86!  |
| !Apr.       | <br>[c]:      | 24.90 ! | 12.93 ! | 15.30 ! | 18.31 ! | 13.76 ! | 16,27 ! | 12.98 ! | 14.85 ! | 18.56 ! | 14.02 ! |
| t.          | 2nd:          | 17.31 ! | 13.75 ! | 28.11 ! | 15.00 ! | 11.37 ! | 13.30   | 10.81 ! | 12.66 ! | 13.63 ! | 12.95 ! |
| <u>.</u>    | 3rd!          | 15.23 ! | 12.55 ! | 24.09 ! | 14.49 ! | 9.99 !  | 11.71   | 11.04 ! | 11.90 ! | 13.60 ; | 11.89 ! |
| !Kay        | <br>tett      | 17.24 ! | 13.16 ! | 19.46 ! | 12.80 : | 19.22 ! | 10.83 ! | 10.98 ! | 11.07 ! | 14.35 ! | 10.63 ! |
| . HBy       | 2nd!          | 20.36 ! | 11.75 ! | 14.54 ! | 11.79 ! | 11.33 ! | 9.87 !  | 9.54 !  | 10.29 ! | 13.37 ! | 9.80 !  |
| !           | 3rd!          | 15.45 ! | 10.30 ! | 13.27 ! | 11.01 ! | 9.37 !  | 9.85 !  | 8.48 !  | 7.97 !  | 13.04 ! | 9.36 !  |
| !June       | <br>[c]       | 13.26 ! | 9.74 !  | 12.49 ! | 10.52 ! | 12.70 ! | 8,85 !  | 8.43 !  | 8.68 :  | 11.87 ! | 9.28 !  |
| t want      | 2nd!          | 12.27 ! | 8.89 !  | 12.75 ! | 9.78 !  | 9.03 !  | 8.51 !  | 7.32 !  | 8.11 !  | 12.05 ! | 8.31 !  |
| !           | 3rd!          | 12.04 ! | 8.32 !  | 11.39 ! | 9.31 !  | 8.55 !  | 7.79 !  | 6.71 !  | 7.65 !  | 11.71 ! | 7.76 !  |
| !July       | íst!          | 12.34 ! | 7.92 !  | 11.05 ! | 8.89 !  | 7.80 !  | 7.38 !  | 8.63 !  | 7.29 1  | 11.93 ! | 7.53 !  |
| !           | 2nd!          | 10.53 ! | 7.60 !  | 10.30 ! | 8.52 !  | 7.12 !  | 7.07 !  | 5,95 !  | 6.95 !  | 14.07 ! | 7.07 !  |
| į           | 3rd!          | 9.88 !  | 7.07 !  | 9.51 !  | 8.17 !  | 6.41 !  | 6.74 !  | 5.62 !  | 8.63 !  | 12.15 ! | 83,6    |
| !Aug.       | <br>[s[]      | 9.36 !  | 6.73 !  | 9.39 !  | 7.88 !  | 5.97 !  | 6.45 !  | 5,35 !  | 6.36 !  | 10.95 ! | 6.44 !  |
| !           | 2nd!          | 9.06 !  | 6.45 !  | 9.92 !  | 7,57 !  | 5.69 !  | 8.22 !  | 5,13 !  | 6.14 !  | 10.09 ! | 6.16 !  |
| !           | 3rd!          | 8.75 !  | 8.19 !  | 1 14.8  | 7.27 !  | 5.94 !  | 5,98 !  | 5.21 !  | 5.91 !  | 9.98 !  | 5.87 :  |
| !Sep.       | 1681          | 8,23 !  | 5.92 !  | 8.18 !  | 6,91 !  | 5.14 !  | 5.69 !  | 4,77 !  | 5.66 !  | 8.85 !  | 5.58 !  |
| . ucps<br>] | 2nd!          | 7.89 !  | 5.68 !  | 7.94 !  | 6.62 !  | 8.95 !  | 5.44 !  | 4,57 5  | 5.42 !  | 8.68 !  | 5.31 !  |
| !           | 3rd!          | 7.62 !  | 5.73 !  | 7.70 !  | 6.30 !  | 5.41 !  | 5.17 !  | 4.38 !  | 5.17 !  | 8.16 !  | 5.37 !  |
| !Oct.       | tet i         | 7,33 !  | 5.22 !  | 7.25 !  | 7.61 !  | 10.42 ! | 4.90 !  | 4,58 !  | 4.92 !  | 8,31 !  | 4,88 !  |
| !           | 2nd!          | 7.03 !  | 5.08 !  | 7.15 !  | 6.32 !  | 16.64 ! | 4.83 !  | 5,52 !  | 4.75 !  | 7.68 !  | 4,51 !  |
|             | 3rd!          | 7.50 :  | 4.90 !  | 8.28 !  | 6.21 !  | 9.28 !  | 4.35    | 4,53 !  | 4.41 !  | 7.74 !  | 5,77 !  |
| !Nov.       | <br>[g]       | 7.28 !  | 5.97 !  | 17.12 ! | 6.38 !  | 10.17 ! | 4,11 !  | 5.31 !  | 4.95 !  | 9.05 !  | 5.53 !  |
| !           | 2nd!          | 9.10 !  | 6.72 !  | 10.07 ! | 5.24 !  | 10.31 ! | 3.85    |         | 5.08    |         | 4.57 !  |
| !           | 316!          | 12,10 ! | 5.23 !  | 8.52 !  | 4,75    |         | 4.36 !  | 9,55 !  | 4.94 !  | 10.15 ! | 5.85 !  |
| !Dec.       | 1611          | 10.30 ! | 6.52 !  | 16.28 ! | 5,11 !  | 9,56 !  | 4,36 !  | 12.98 ! | 8.78 !  | 11.78 ! | 5,10 !  |
|             | 2nd!          | 9.29    | 7.44 1  | 12.70 ! | 8.40    | 8.48    |         | 9.67    |         | 16.15 ! | 6.54 !  |
| !           | 3rd!          | 12.39 ! | 12.56   | 17.33 ! | 6.58 !  | 9.04 !  | 8.43 !  | 8,86 !  |         | 16.59 ! | 6.93 !  |
| !Kean       | { <b>c</b> }! | 13,76 ! | 18.61   | 15.52 ! | 12,58 ! | 9.21 !  | 9,45 !  | 8.84 !  | 10.29 ! | 12.48 ! | 9.17 :  |
| 1) € 91     | 136:          | 10110 ; | 10.01   | *4107 . |         |         |         |         |         |         |         |

Table 1(3) # ESTIMAED RUNOFF #

SELOREJO

|          |       |         |          | ******* |         |         |         |          |         |         |         |
|----------|-------|---------|----------|---------|---------|---------|---------|----------|---------|---------|---------|
| ! No     | nth!  | 1970 !  | 1971 - 1 | 1972 :  | 1973 !  | 1974 !  | 1975 !  | 1976 !   | 1977 !  | 1978 !  | 1979 !  |
| !Jan.    | ist!  | 5.84 !  | 11.52 !  | 17.47 ! | 7.55 !  | 25.70 ! | 11.75 ! | 13.56 !  | 6.90 !  | 8.52 !  | 6.84 !  |
| į.       | 2n6!  | 9.36 !  | 17.15 !  | 19.82   | 8.86 !  | 34.09 ! | 17.71 1 | 23.06 !  | 14.88 ! | 9.89 !  | 11.87 5 |
| !        | 3r d! | 11.99 ! | 19.50 !  | 14,67   | 9.25 !  | 19.72 ! | 15.03 ! | 28.73 !  | 16.00 ! | 21.74 ! | 10.97 ! |
| !Feb.    | 1st!  | 14.50 ! | 26.43 !  | 14.17 ! | 12.16 ! | 20.58   | 18.54 ! | 18.98 !  | 13.19 ! | 17.79 ! | 9.53 !  |
|          | 2nd!  | 14.53 ! | 26.91 !  | 13.89 ! | 9.47 !  | 23.20 ! | 17.24 ! | 18.83 !  | 14.00   | 9.90 !  | 11.17   |
| ļ.       | 3rd!  | 15.32 ! | 17.65 !  | 13.68 ! | 10.34 : | 29.14   | 16.89 ! | 20.04 !  | 20.33 ! | 12.15 ! | 9.12 !  |
| !Mar.    | ist!  | 12.75 ! | 16.56 !  | 20.78 ! | 18.03 5 | 26.17 ! | 16.36 ! | 122.22 ! | 32.03 ! | 12,22 ! | 10.89 ! |
| ļ.       | 2nd!  | 18.30 ! | 16.36 !  | 19.72 ! | 11.13 ! | 18.71 ! | 17.49 ! | 26.57 !  | 22.43 ! | 12.97 : | 9.88 !  |
| !        | 3rd!  | 17.11 ! | 21.67 !  | 21.52 ! | 12.03 ! | 15.89 5 | 20.72 ! | 16.76 !  | 18.25 ! | 12.26 ! | 9.11 !  |
| !Apr.    | 1st!  | 12.69 ! | 17.36 !  | 14.81 ! | 13.25 ! | 18.78   | 22.32 ! | 17.15 !  | 13.04 ! | 10.14 ! | 8.73 !  |
| •        | 2nd?  | 10.95 ! | 18.49 !  | 14.43 ! | 10.69 ! | 27.66 ! | 15.32 ! | 14.80 !  | 12.60 ! | 9,21 !  | 8.38 !  |
| !        | 3rd!  | 10.97 ! | 14.39 !  | 13.91 ! | 10.54 ! | 15.59 ! | 17.33 ! | 15.02 !  | 11.60 : | 7.96 !  | 8.51 !  |
| !Kay     | ist!  | 10.09 ! | 14.46 !  | 15.20 ! | 10.34 ! | 14.95 ! | [5.62 ! | 14.08 !  | 10.89 ! | 8.48 !  | 12.94 ! |
| !        | 2nd!  | 9.85 !  | 14.16 !  | 13.33 ! | 12.36 ! | 15.76 ! | 15.29 ! | 12.89 5  | 9.99 !  | 10.22 ! | 9.36 !  |
| !        | 3rd!  | 9.22 !  | 14.77 !  | 11.53 ! | 14.14 ! | 13.10 ! | 14.33 ! | 11.67 !  | 9.65 !  | 9.51 1  | 9.41 !  |
| ! June   | lst!  | 9.22 !  | 15.19 !  | 10.70 ! | 11.54 ! | 12.28 ! | 12.67 ! | 10.97 !  | 9.22 !  | 10.08 ! | 8,83 !  |
| į        | 2nd!  | 8.53 !  | 12.26 !  | 9.94 !  | 9.54 !  | 11.54 ! | 11.70 ! | 10.34 !  | 8.19 !  | 9.85    | 7.58 !  |
| !        | 3rd!  | 7.47 !  | 11.98 !  | 9.31 !  | 9.27 !  | 10.79 ! | 10.95 ! | 9.77 !   | 7.79 !  | 9.34    | 6.97 !  |
| !July    | ist!  | 6.93 !  | 11.04 !  | 8.81 !  | 8.27 !  | 10.75 ! | 10.52 ! | 9,84 !   | 7.03 !  | 8.81    | 6,59 !  |
| !        | 264!  | 6.76 !  | 10.25 !  | 8.36 !  | 7.74 !  | 9.92 !  | 9.67 !  | 9.01 !   | 6.63 !  | 7.78 !  | 5.92 !  |
| !        | 3rd!  | 8.26 !  | 9.61 !   | 7.93 !  | 6.94 !  | 9.45 !  | 9.29 !  | 8.55 !   | 6.28 5  | 7.49 !  | 5.46 !  |
| !kug.    | ist!  | 5.80 !  | 9.14 !   | 7.74 !  | 6.50 !  | 9.95 !  | 9.17 !  | 8.71 !   | 5.98 !  | 7.00    | 5.12 !  |
| !        | 2nd:  | 5.58 !  | 8.48 !   | 7.26 !  | 6.59 !  | 9.06 !  | 9.26 !  | 7.94 !   | 5.70 !  | 6.21    | 4.82 !  |
| !        | 3rd!  | 5.28 !  | 8.55 !   | 6.96 !  | 6.37 !  | 9,41 !  | 8.55 !  | 7.89 !   | 5.47 !  | 5.92 !  | 4.55 !  |
| !Sep.    | lst!  | 5.08 !  | 9.06 !   | 6.88 !  | 8.06 !  | 8.97 !  | 8.28 !  | 7.30 !   | 5.25 !  | 5.62 !  | 4.33 !  |
| !        | 2nd!  | 4.94 !  | 7.92 !   | 6.37 !  | 6.51 !  | 11.54 ! | 12.47 ! | 6.98 !   | 5.04 !  | 5.41    | 4.16 !  |
| !        | 3rd!  | 5.36 !  | 7.52 !   | 6.07 !  | 7.91 !  | 1 89.8  | 9.43 !  | 6.66 !   | 1.82 !  | 4.99 :  | 4,14 !  |
| !Oct.    | 1st!  | 4.56 !  | 7.87 !   | 5.77 :  | 6.53 !  | 10.82 ! | 10.12 ! | 7.43 !   | 4.59 !  | 4.89 !  | 4.00 :  |
| !        | 265!  | 4.88 !  | 7.03 !   | 5.46 !  | 7.80 !  | 11.65 ! | 9.22 !  | 7.98 !   | 4.35 !  | 4.59 !  | 3.62 :  |
| !        | 3rd!  | 5.49 !  | 11.52 !  | 5.77 !  | 7.69 !  | 10.20 ! | 14.21 ! | 6.85 !   | 4.09 5  | 4,70 1  | 3.57 !  |
| !Nov.    | Ist!  | 6.27 !  | 10.48 !  | 1.91 !  | 9.34 !  | 9.85 !  | 17.60 ! | 6.65 !   | 3,89 !  | 4.54 !  | 4.31 !  |
| !        | 2n4!  | 10.35 ! | 10.27 !  | 4.91 !  | 8.38 !  | 11.98 : | 13.74 ! | 6.44 !   |         | 4.96 !  | 3.46 !  |
| !        | 3rd!  | 10.68 ! | 13.58 !  | 5.69 !  | 8.67 !  | 10.82 ! | 15.57 ! | 11.41 !  | 3.34 !  | 4.37 !  | 4.13 !  |
| !Dec.    | 151!  | 8.85 !  | 21.41 !  | 7.19 !  | 13.64 ! | 9.87 !  | 19,15 ! | 7.62 !   | 4.70 !  | 4.98 !  | 6.44 !  |
| <b>!</b> | 2nd!  | 8.85 !  | 25.25 !  | 6.74 !  | 13,45 ! |         | 14.89 ! | 7.26 !   | 5.24 !  | 6.45 !  | 1.50 !  |
| !        | 3rd!  | 11.67 ! | 14.35 !  | 6.13 !  | 10.85 ! | 12.11 ! | 12.62 ! | 6.76 !   | 4.13 !  | 5.68 !  | 7.82 !  |
| Hean     | Ist!  | 9.22 !  | 14.13 !  | 19.77 ! | 9,73 !  | £4.84 ! | 13.90 ! | 15.12 !  | 9.48 !  | 8.47 !  | 7.14 !  |
|          |       |         |          |         |         |         |         |          |         |         |         |

### Table 1(4)

# \* ESTIMATO RUNOFF \*

### SELOREJO

|            |         | +                  |         |         |         |
|------------|---------|--------------------|---------|---------|---------|
| ! Month !  | 1980 !  | 1981 !             | 1992 !  | 1983 :  | Hean !  |
| !Van. 1st! | 7.15 !  | 17.00 !            | 25,42 ! | 17,16 ! | 13.88 ! |
| ! 2nd!     |         |                    |         |         | 15.83 ! |
|            |         | 25.13 !<br>25.04 ! |         |         | 16.67 ! |
| ! 3cd!     | 17.18 ! | 23.04 :            | 18.34 ! | 10.31 ; | 10.01   |
| !Feb. ist! |         | 20.36              |         |         |         |
| ? 2nd!     | 10.77 ! | 15.21 !            |         |         |         |
| ! 3rd!     | 13,45 ! | 14.79              | 23.20 ! | 13.03 ! | 18.45 ! |
| !Mar. 1st! | 12.39 ! | 15.71 !            | 18.65 ! | 14.22 ! | 21.07 ! |
| ! 2nd!     | 11.12 ! | 17.05 !            |         | 12.56 ! |         |
| . 210:     | 13.45 ! |                    | 16.70 ! |         | 15.28 ! |
| : 3/0:     | [3.4]:  | 12,1/ :            | 10.10 : |         | 13.20 : |
| !Apr. 1st! | 11.09 ! | 12.83 !            |         |         | 14.69 ! |
| ! 2nd!     | 11.76 ! | 12.11 !            | 14.74 ! | 11.38 ! | 15.41 ! |
| ! 3rd!     | 11.10 ! | 13.07 !            | 14.56 ! | 19.19 ! | 13.27 ! |
| !Hay 1st!  | 10 kg 1 | 15.08 !            | 12 92 1 | 19.42   | 12 91 1 |
| ! 2nd!     |         | 13.70 !            |         |         |         |
| ! 3rd!     | 8.02 !  |                    |         |         |         |
| . 319;     | 0.77 ;  |                    | 14.77 : | 11130 : |         |
| :Vune Ist: | 7.81 !  | 10.68 !            |         | 10.21 ! | 10.54 ! |
| ? 2nd!     | 6.76 !  | 10.12 !            | 9.68 !  | 9.29 !  | 9.55 !  |
| ! 3rd!     | 6.28 !  | 12.32 !            | 9.22 !  | 8.45 !  | 9.12 !  |
| !July 1st! | 5.86 !  | 10.31              | 8,80 !  | 7.77 !  | 8.90 !  |
| ! 2nd!     |         | 10.26 !            |         | 7.25 !  |         |
| . 3rd!     | 5.38 !  | 9.45               |         |         |         |
| . 914,     |         |                    |         | ••••••  |         |
| !Aug. Ist! | 5.24 !  |                    |         |         |         |
| ! 2nd!     | 1.88 !  | 8.10 !             |         |         | 7.15 !  |
| : 3rd!     | 4.66 !  | 7.97 !             | 7.18 !  | 5.81 !  | 6.82 !  |
| !Sep. 1st! | 4.52 !  | 7.51 !             | 6.86 !  | 5.57 !  | 6.49 !  |
| ! 2nd!     | 4.41 !  | 7.48 !             | 6.54 !  |         | 6.52 !  |
| ! 3rd!     | 4.13 !  | 9.56               | 6.27 !  |         |         |
| . 010.     | ••••••  |                    |         |         | •••••   |
| !Oct. Ist? | 3.90 !  | 9.79 !             | 5.90 !  | 5.13 !  | 6.35 !  |
|            |         | 7.95 !             |         |         |         |
|            | 4.26 !  | 7.55 !             | 5.21 !  | 6.22 !  | 8.44 !  |
| !Nov. ist! | 1 69 7  | 7 04 1             | 5 17 !  | 7 21 1  | 7.55 1  |
| ! 2nd!     | 5.00 1  | 13 49 1            | 5.40 1  | £ 17 1  | 7.40 1  |
| ! 366!     | 7.76 1  | 13.68 !            | 4.17 1  | 12.15   | 1 21.8  |
| . 010.     |         |                    |         |         |         |
| !Dec. ist! | 15.65 ! | 13.81 !            | 5.37 !  | 8.03 !  | 10.38 ! |
| ! 2nd!     | 8,59 !  | 16,30 !            | 12.71 ! | 7.49 !  | 11,08 ! |
| ! 3rd!     |         |                    |         |         |         |
| !Rean ist! |         | 12.72 !            |         |         | 11.13 ! |
|            |         |                    |         |         |         |

# Table (2(1) + ESTIMAED RUNOFF +

### K.KONTO II

| ! Mg       | inth!           | 1959 !  | 1951 :           | 1952 !  | 1953 ! | 1954 !  | 1955 !  | 1956 !  | 1957 !  | 1958 ! | 1959 !  |
|------------|-----------------|---------|------------------|---------|--------|---------|---------|---------|---------|--------|---------|
| Nan.       | 15t!            | 3.53 !  | 4.77 !           | 3.44 !  | 4.09 * | 5.28 !  | 10.48 ! | 7.38    | 5.28 !  | 5.02 ! | 12,19 ! |
| !          | 2nd!            | 3.49 !  | 4.24 !           | 8.59 !  | 4.22 ! | 5.05 !  | 8.03 !  | 6.32 !  | 5.18 !  | 4.31 ! | 10.96 ! |
| !          | 3rd!            | 2.93 !  | 6.64 !           | 5.87 !  | 1.10 ; | 10.39 ! | 6.40 !  | 7.86 !  | 5.25 !  | 4.98 ! | 6.16 !  |
| Teb.       | lst!            | 2.68 !  | 5.87 !           | 5.45 !  | 6.83 ! | 10.07 ! | 9.56 !  | 7.64 !  | 8,53 !  | 4.81 ! | 5.63 !  |
| !          | 265!            | 3.21 !  | 7.61 !           | 11.17 ! | 5.56 ! | 5.33 !  | 8.09 !  | 10.13 ! | 5.42 !  | 5.30 ! | 9.25 !  |
| !          | 3rd!            | 27.59 ! | 8.43 !           | 6.93 !  | 4.40 ! | 6.03 !  | 6.82 !  | 8.95 !  | 9.40 !  | 5.81 ! | 8.07 !  |
| Mar.       | 15t!            | 23,25 ! | 7,54 !           | 7.17 !  | 4.27 ! | 5,38 !  | 6.21 !  | 8.96 !  | 12.87 ! | 5.32 ! | 6.80 !  |
| !          | 2nd!            | 4.59 !  | 6.31 !           | 9.45 !  | 5.07 ! | 7.28 !  | 10.59 ! | 8.51 !  | 8.76 !  | 8.40 ! | 7.46 !  |
| 1 .        | 3rd!            | 4.60 !  | 5.57 !           | 6.67 !  | 5.35 ! | 5.86 !  | 7.90 !  | 6.73 !  | 11.56 ! | 5.55 ! | 6.72 !  |
| 10ar       | 1st!            | 6.13 !  | 5.17 !           | 6.02 !  | 5.81 ! | 6.65 !  | 6.80 :  | 6.13 !  | 7.53 !  | 5.85 ! | 6.37 !  |
| 1          | 2nd!            | 4.65 !  | 4.4B !           | 5.65    | 4.59 ! | 6.44 !  | 32.77 ! | 6.14 !  | 6.84 !  | 6.57 ! | 5.38 !  |
| į          | 300!            | 4.03 !  | 4.27 !           | 4.60 !  | 5.25 ! | 5.42 !  | 12.85 ! | 6.22 !  | 6.20 !  | 5.14 ! | 5.84 !  |
| !Nay       | Ist!            | 3.46 !  | 3.91 !           | 4.22 !  | 8.02 ! | 5.47 !  | 7.41 !  | 5.28 !  | 6.10 !  | 4.94 ! | 5.34 !  |
| .3147<br>I | 2nd!            | 3.38 !  | 3.58 !           | 3.95 !  | 5.47 ! | 4.77 !  | 6.80 !  | 5.15 !  | 6.17 !  | 5.15 ! | 5.07 !  |
| !          | 3rd!            | 3.11 !  | 3.36 !           | 4.00 !  | 4.53 ! | 5.65 !  | 6.28 !  | 6.27 !  | 5.33 !  | 4.39 ! | 5.48 !  |
| !June      | 1.17            | 2.63 !  | 3.24 !           | 3.50 !  | 1.08 ! | 4,40 !  | 8.17 !  | 9.02 !  | 4.78 !  | 4.23 ! | 4.77 !  |
| 1.4606     |                 | 2.99 !  | 3.24 :<br>3.25 ! | 3.17 !  | 3.75 ! | 4.27 !  | 6.24 !  | 5.33 !  | 4.45 !  | 3.74 ! | 4.50 !  |
| i          | 3rd!            | 3.84 !  | 3.21 !           | 3.03 !  | 3.50 ! | 3.85 !  | 5.79 !  | 5.27 !  | 4.17 !  | 3.51 : | 4.11 !  |
|            |                 |         |                  |         |        |         |         |         |         |        |         |
| !July      | Ist!            | 3.22 !  | 3.66 !           | 2.83 !  | 3,29 ! | 3.90 !  | 6.23 !  | 4.88 !  | 4.21 !  | 5,68 ! | 4.09 !  |
| !          | 2nd!            | 2.81 !  | 3.02 !           | 2.69 !  | 3.12 ! | 3,47 !  | 5.86 !  | 4.67 !  | 1.12 !  | 4.18 ! | 3.19 !  |
| !          | 3rd!            | 2.48 !  | 2.90 !           | 2.56 !  | 2.83 ! | 3.19 !  | 6.57 !  | 4.42 !  | 8.25 !  | 3.87 ! | 3.58 !  |
| !Aug.      | lst!            | 2.37 !  | 2.65 !           | 2,46 !  | 2.67 ! | 3.24 !  | 5.53 !  | 4.14 !  | 4.23 !  | 3.39 ! | 3.30 !  |
| !          | 200!            | 2.28 !  | 2.80 !           | 2.37 !  | 2.54 ! | 3.96 !  | 5.24 !  | 4.03 :  | 3.89 !  | 3.15 ! | 3.14 !  |
| !          | 3rd!            | 1.99    | 2.39 !           | 2.49 !  | 2.42 ! | 3.10 !  | 4.85 !  | 3.89 !  | 3.61 !  | 3.05 ! | 3.03 !  |
| !Sep.      | ist!            | 1.85 !  | 2.30 !           | 2.32 !  | 2.39 ! | 3,28 !  | 4.49 !  | 3.62 !  | 3.40 !  | 2.78 ! | 2.87 !  |
| !          | 2nd!            | 1.92 !  | 2,56 !           | 2.17 !  | 2.75 ! | 3.02 !  | 4.25 !  | 3.43 !  | 3.25 !  | 2.62 ! | 2.78 !  |
| !          | 3rd!            | 2.08 !  | 2.43 !           | 2.19 !  | 2.14 ! | 2.68 !  | 4.25 !  | 3.31 !  | 3.05 !  | 2.50 ! | 2.86 !  |
| !0ct.      | <br>1st+        | 2.10 !  | 2,49 !           | 2.02 !  | 2.05 ! | 2.65 !  | 4,03 !  | 3.32 !  | 3.00 !  | 2.55 ! | 2.69 !  |
|            | 2nd!            | 2.36 !  | 2,10 !           | 1.87    | 1.94 ! | 2.78 !  | 4,20 !  | 5.34 !  | 2.81 !  | 2.55 ! | 2.73 !  |
| •          | 3rd!            | 2.12 !  | 1.90 !           | 2.12 !  | 1.91 ! | 3.11 !  | 4.73 !  | 3.35 !  | 2.67 !  | 2.38 ! | 2.34 !  |
| !Nov.      | 1611            | 4.01    | 1.88 !           | 3.51 !  | 2.13 ! | 4.88 !  | 6.62 !  | 4.51 !  | 2.78 !  | 3,12 ! | 2.41 !  |
|            | 2nd!            | 3.16 !  | 1.86 !           | 3.81    | 2.00 ! |         | 7.34 !  | 3.79 !  | 2.81 !  | 2.83 ! | 2.48 !  |
| !          | 3rd!            | 9.44 !  | 1.90 !           | 4.47 !  | 2.19 ! | 8.44    | 5.90 !  | 4.17 5  | 3.03 !  | 2.30 ! | 3.97 !  |
| !Dec.      | baaraa.<br>Seki | 5.40 !  | 3.63 !           | 3.64 !  | 1.83 ! | 8.03 !  | 5.17 !  | 8.15 !  | 5.16 !  | 4,13 ! | 7.33 !  |
| 10601      | 2nd!            | 6.39 !  | 2.63 !           | 5.55 !  | 2.84 ! |         | 4.70 !  |         | 8.63 !  | 5.34 ! | 8.91 !  |
| :          | ård!            | 6.11 !  | 4.00 !           | 4.42 !  | 7.74 ! | 5.91    | 8.50 !  | 4.56 !  | 4.62 !  |        | 7.87 !  |
| !Hean      | i               | 4.84 !  | 3.84 !           | 4.35 !  | 5.81 ! | 5.09 !  | 7.32 !  | 5.74 !  | 5.43 !  | 4.32 ! | 5.28 !  |
|            |                 |         |                  |         |        |         |         |         |         |        |         |

### 2(2) ESTIMAED RUNOFF

Table

K.KONIO II

|          |      |         |         |         |         |        |         |        |         |        | •••••  |
|----------|------|---------|---------|---------|---------|--------|---------|--------|---------|--------|--------|
| ! ño     | oth! | 1960 !  | 1961 !  | 1962 !  | 1963 !  | 1964 ! | 1965 !  | 1966 ! | 1967 !  | 1968 ! | 1969 ! |
| !Jan.    | 158! | 7.11    | 12.79 ! | 8.65 !  | 10.18 ! | 3.39 ! | 4.47 !  | 3.89 ! | 6.75 !  | 8.74 ! | 5,83 ! |
| !        | 2nd! | 5.22 !  | 10.97 ! | 7.73 !  | 16.98 ! | 2.90 ! | 7.37 !  | 4.24 ! | 6.71 !  | 4.83 ! | 8.89 ! |
| !        | 3rd! | 7.95 !  | 10.82 ! | 17.55 ! | 12.22 ! | 3.21 : | 10.13 ! | 3.45 ! | 10.65 ! | 6.20 ! | 6.74 ! |
| !Feb.    | Ist! | 13.44 ! | 7.38 !  | 16.38 ! | 11.95 ! | 3.76 ! | 5.89 !  | 3.20 ! | 8.52 !  | 6.46 ! | 7.62 ! |
| •        | 2nd! | 8.41 !  | 7.48 !  | 14.15 ! | 9.99 !  | 3.79 ! | 6.43 !  | 7.62 ! | 6.23 !  | 7.03 ! | 6.45 ! |
| !        | 3rd! | 15.10 ! | 7.31 !  | 12.14 ! | 9,11 !  | 4.09 ! | 6.98 !  | 8.71 ! | 11.74 ! | 7.11 ! | 8.41 ! |
| :Bar.    | lst! | 10.19 ! | 7.78 !  | 9.65 !  | 10.85 ! | 5.92 ! | 5.95 !  | 7.13 ! | 8.37 !  | 7.64 ! | 6.08 ! |
| ! .      | 2nd  | 6.93 !  | 6.20 !  | 8.74 !  | 8.87 !  | 6.42 ! | 9.77 !  | 8.34 ! | 6.11 !  | 7.23 ! | 7.40 ! |
| !        | 3rd! | 8.13 !  | 6.13 !  | 7.05 !  | 8.75 !  | 5.29 ! | 7.27 3  | 6.98 ! | 8.56 !  | 6.57 ! | 7.21 ! |
| Aor.     | ist: | 11.33 ! | 5.88 !  | 6.96 !  | 7.42 !  | 6.26 ! | 7.40 !  | 5.70 ! | 6.75 !  | 8.44 ! | 6.38 ! |
| !        | 2nd! | 7.87 !  | 6.24    | 12.79 ! | 6.83 !  | 5.17 ! | 6.05 !  | 4.92 ! | 5.76 !  | 6.20 ! | 5.89 ! |
| !        | 3rd! | 6.93 !  | 5.71 !  | 10.98 ! | 6.59 !  | 4,54 ! | 5.33 !  | 5.02 ! | 5.41 !  | 6.19 ! | 5.41 ! |
| Kay      | ist! | 7.84 !  | 5.99 !  | 8.85 !  | 5.87 !  | 4.65 ! | 4.93 !  | 4.99 ! | 5.04 !  | 6.53 ! | 4.83 ! |
| <u>.</u> | 2nđ! | 9.26 !  | 5.35 !  | 6.62 !  | 5.36 !  | 5.15 ! | 4.49 !  | 4.34 ! | 4.68 !  | 6.08 ! | 4.46 ! |
| !        | 3rd! | 7.03 !  | 4.68 !  | 6.04 !  | 5.01 !  | 4.26 ! | 4.48 !  | 3.86 ! | 4.53 !  | 5.93 ! | 4.26 ! |
| June     | 15t! | 6.03 !  | 4.43 !  | 5.68 !  | 4.78 !  | 5.78 ! | 4.02 !  | 3.83 ! | 3.95 !  | 5.40 ! | 4.22 ! |
| !        | 2nd! | 5.58 !  | 4.04 1  | 5.80 !  | 4.45 !  | 4.10 ! | 3.87 !  | 3.33 ! | 3.69 !  | 5.84 ! | 3.78 ! |
| į        | 3rd! | 5.48 !  | 3.79 !  | 5.18 !  | 4.23 !  | 3.89 ! | 3,54 !  | 3.05 ! | 3.48 !  | 5.33 ! | 3.53 ! |
| liuly.   | ist! | 5.61 !  | 3.60 !  | 5.03 !  | 4.04 !  | 3.55 ! | 3.35 !  | 3.01 ! | 3.31 !  | 5.43 ! | 3.42 ! |
| !        | 2nd! | 4.79 !  | 3.46 !  | 4.68 !  | 3.87 !  | 3,24 ! | 3.22 !  | 2.10 ! | 3.16 !  | 6.41 ! | 3.21   |
| !        | 3rd! | 4.49 !  | 3.22 !  | 4.33 !  | 3.72 !  | 2.92 ! | 3.06 !  | 2.56 ! | 3.02 !  | 5.52 ! | 3,04 ! |
| Aug.     | 158! | 4.26 !  | 3.06 !  | 4.27 !  | 3.58 !  | 2.71 ! | 2.93 !  | 2.43 ! | 2.89 :  | 4.94 ! | 2.93 ! |
| !        | 2041 | 4.12 !  | 2.93 !  | 4.51 !  | 3.44 !  | 2.59 ! | 2.83 !  | 2.33 ! | 2.79 !  | 4.59 ! | 2.80 ! |
| !        | 3rd! | 3.98 !  | 2.81 !  | 3.93!   | 3.30 !  | 2.70 ! | 2.71 !  | 2.37 ! | 2.69 !  | 4.54 ! | 2,67 ! |
| !Sep.    | ist! | 3.74 !  | 2.69 !  | 3,72 !  | 3.15 !  | 2.33 ! | 2.59 !  | 2.17 ! | 2.57 !  | 4.03 ! | 2.54 ! |
| !        | 2nd! | 3.58 !  | 2.58 !  | 3.61 !  | 3.01 !  | 3.16 ! | 2.47    | 2.08 ! | 2.46 !  | 3.95 ! | 2.41 ! |
| !        | 3rd! | 3.46 !  | 2.61    | 3.50 !  | 2.87    | 2.46 ! | 2.35 !  | 1.99 ! | 2.35 !  | 3.71 ! | 2,44 ! |
| !Oct.    | 1st! | 3.33 !  | 2.37 !  | 3.30 !  | 3.46 !  | 4.74 ! | 2.23 !  | 2.08 ! | 2.24 !  | 3.78 ! | 2,22 ! |
|          | 2nd: | 3.20 !  | 2.31 !  |         | 2.97 !  | 7.57 ! |         | 2.51 ! |         | 3.49 : | 2.05 ! |
|          | 3rd! |         | 2.23 !  |         |         | 4.22 ! | 1.98 !  |        | 2.01 !  | 3.52 ! | 2.62 ! |
| . Koy.   | Ist! | 3.31 !  | 2.72 !  | 7.79 !  | 2.90 !  | 4,63 ! | 1.87 !  | 2,41 ! | 2.25 !  | 4.11 ! | 2.51 ! |
| !        |      | 4,14 !  | 3.06 !  |         | 2.38 !  |        | 1.75 !  |        | 2.31 !  | 5.69 ! | 2,09 ! |
| !        | 3rd! | 5.51 !  | 2.38 !  | 2.83 ;  | 2.16 !  | 4,26 ! | 1.98 !  | 4.33 ! | 2.24 !  | 4.82 ! | 2.86 ! |
|          | 1st! | 4.69 !  | 2.97 !  | 7.40 !  | 2.32 !  | 4,35 ! | 2.43 !  |        | 3,99 !  | 5.36 ! | 2.32   |
|          | 2nd! | 4.23 !  |         | 5.78 !  |         | 3.95 ! |         |        |         | 7.35 ! | 2.97 ! |
|          | 3rd! |         | 5.70 !  | 7.88 !  | 2.99 !  |        | 3.83 !  | 4.03 ! | 6,39 !  | 7.55 ! | 3.15 ! |
| Mean     | 158! | 6.26 !  | 1,92 1  | 7.06 !  | 5,72 !  | 4,19 ! |         | 4.02 ! |         | 5.68 ! | 4,26 ! |
|          |      |         |         |         |         | *****  |         |        |         |        |        |

# Table 2(3) + ESTIMATO RUNOFF +

K.KONTO 11

| Kor      | ith! | 1970 ! | 1971 !  | 1972 ! | 1973 ! | 1974 !  | 1975 !  | 1976 !  | 1977 1  | 1978 ! | 1979 |
|----------|------|--------|---------|--------|--------|---------|---------|---------|---------|--------|------|
| lan.     | 158! | 2.65 ! | 5.24 !  | 7.95 ! | 3.43 ! | 11.69 ! | 5.34 !  | 8.17 !  | 3.11 !  | 2.98 ! | 3.11 |
| !        | 2nd! | 1.26 ! | 7.80 !  | 9.02 ! | 4.03 ! | 15.51 ! | 8.06 !  | 10.49 ! | 8.77 !  | 4.50 ! | 5.40 |
| !        | 3rd! | 5.45 ! | 8.87 !  | 6.67 ! | 4.21 ! | 8.97 !  | 8.84 !  | 13.07 ! | 7.28 !  | 9.89 ! | 4.99 |
| Feb.     | 1st! | 6.60 ! | 12.02 ! | 8.45 ! | 5.53 ! | 9.36 !  | 7.52 !  | 7.72 !  | 8.00 1  | 8.09 ! | 4.33 |
| !        | 2nd! | 8.81 ! | 12.25 ! | 6.37 ! | 4.30 ! | 10.56 ! | 7.84 !  | 8.57 !  | 6.37 !  | 4.50   | 5.09 |
|          | 3rd! | 6.97 ! | 8.03 !  | 6.22 ! | 4.70 ! | 9.16 !  | 7.68 !  | 9.12 !  | 9.25 !  | 5.53 ! | 4.15 |
| Har.     | Ist! | 5.80 ! | 7.54 !  | 9,45 ! | 8.20 ! | 11.91 ! | 7.44 !  | 55.62 ! | 14.57 ! | 5.56 ! | 4.95 |
|          | 2nd! | 8.37 ! | 7.44 !  | 8.97 ! | 5.08 ! | 8.51 !  | 7.96 !  | 12.09 ! | 10.20 ! | 5.90 ! | 4.49 |
| !        | 3rd! | 7.78 ! | 9.86 !  | 9.79   | 5.47 ! | 7.23 !  | 9.43 !  | 7.62 !  | 8.30 ;  | 5.58 ! | 4.14 |
| Apr,     | ist! | 5.73 ! | 8.04 !  | 6.73 ! | 6.03 ! | 8.55 !  | 10.38 ! | 7.80 !  | 5.93 !  | 4.61 ! | 3.97 |
|          | 2nd! | 4.58   | 7.50 !  | 8.58 ! | 4.86 ! | 12,58 ! | 7.42 !  | 6.73 !  | 5.73 !  | 4.19 ! | 3.81 |
| ı        | 3rd! | 4.99 ! | 6.54 4  | 6.33 ! | 4.79 ! | 7.09 !  | 7.89 !  | 6.83 !  | 5.28 !  | 3.62 ! | 3.87 |
| May      | Ist! | 4.59 ! | 6.58 :  | 6.92 ! | 1.98 ! | 6.80 !  | 7.10 !  | 8.41 !  | 4.95 !  | 3.95 ! | 5.83 |
| •        | 266! | 4.48 ! | 6.44 !  | 6.06 ! | 5.62 ! | 7.47 !  | 6.95 !  | 5.86 !  | 4.54 !  | 4.65 ! | 4.26 |
| l        | 3rd! | 4.19 ! | 6.72 !  | 5.25 ! | 6.43 ! | 5.96 !  | 6.52 !  | 5.36 !  | 4.39 !  | 4.33 ! | 4.28 |
| June     | Ist! | 4.20 ! | 6.91 !  | 4.87 ! | 5.25 ! | 5.59 !  | 5.76 !  | 4,99 !  | 4.19 !  | 4.58 ! | 4.01 |
|          | 2nd! | 3.88 ! | 5.58 !  | 4.52 ! | 4.34 ! | 5.25 !  | 5.32 !  | 4.70 !  | 3.72 !  | 4.48 ! | 3.45 |
|          | 3rd! | 3,39 ! | 5.45 !  | 4.23 ! | 4.22 ! | 4.91    | 4.98 !  | 4,44 !  | 3.54 !  | 4.25 ! | 3.17 |
| July     | ist! | 3.15 ! | 5.02 !  | 4.01 ! | 3.76 ! | 4,89 !  | 4.79 !  | 4.48 !  | 3,20 !  | 4.02 ! | 3.00 |
| -        | 2nd! | 3.07 ! | 4.86 !  | 3.80 ! | 3.52 ! | 4.51 !  | 4.40 !  | 4.10 !  | 3.02 }  | 3.54 ! | 2.69 |
|          | 3rd! | 2.85 ! | 4.37 !  | 3.61 ! | 3.15 ! | 4.30 !  | 4.22 !  | 3,89 !  | 2.86 !  | 3.41 ! | 2.48 |
| Aug.     | ist! | 2.64 ! | 4.16 !  | 3.52 ! | 2.95 ! | 4.52 !  | 4.17 :  | 3.98 !  | 2.71 !  | 3.18 ! | 2,33 |
| -        | 2nd! | 2.54 ! | 3.95 !  | 3.30 ! | 2.99 ! | 4.12 !  | 4.21 !  | 3.61 !  | 2.59 !  | 2.82 ! | 2.19 |
| <u> </u> | 3rd! | 2.40 ! | 3.39 !  | 3.16 ! | 2.90 ! | 4.28    | 3.89 :  | 3.50 !  | 2.49 !  | 2.69 ! | 2.07 |
| Sep.     | 1st! | 2.30 ! | 4.12 !  | 3.03 ! | 2.76 ! | 4.09 !  | 3.77 !  | 3.32 !  | 2.39 !  | 2.58 ! | 1.97 |
|          | 2nd! | 2.24 ! | 3.60 !  | 2.90 ! | 2.96 ! | 5.25 !  | 5.67 !  | 3.17 !  | 2.29 :  | 2.46 ! | 1.89 |
| !        | 3ed: | 2.41 ! | 3.42 !  | 2.75 ! | 3.60 ; | 4.09 !  | 4.29 !  | 3.03 !  | 2.19 !  | 2.27 ! | 1.88 |
| Oct.     | ist! | 2.07 ! | 3.59 !  | 2.62   | 2.97 ! | 4.92 !  | 4.60 !  | 3.38 !  | 2.08 !  | 2.22 ! | 1.82 |
|          | 2nd! |        | 3.20 !  |        |        |         |         |         |         |        |      |
|          | 3rd! | 2.59 ! | 5.24 !  | 2.62 ! | 3.50 ! | 4.64 !  | 6.46 !  | 3.11 !  | 1.86 !  |        |      |
| Nov.     | ist! | 2.85 ! | 4.77 !  | 2,23 : | 4.25 ! | 4.48 !  | 8.01 !  | 3.02 !  | 1.77 !  |        | 1.96 |
|          | 2nđ! |        |         | 2.23 ! | 3.81 ! |         | 6.25 !  |         |         |        | 1.57 |
|          | 3rd: | 1.86 ! | 6.18 !  | 2.59 ! |        | 4.92 !  | 7.08 !  | 5.19 !  | 1.52 !  | 1.99 ! | 1.98 |
|          | Ist! |        | 9.74 !  |        |        |         |         | 3.47 !  | 2.13 !  |        | 2.93 |
|          | 2nd! |        | 11.49 ! |        |        |         |         |         |         |        |      |
| !        | 3cd! | 5.31 ! | 6.52 !  | 2.79 ! | 4.94 ! | 5.51 !  | 5.74 !  | 3.08 !  | 1.88 !  | 2.58 ! | 3.58 |
|          |      |        | 6.43 !  |        |        |         |         |         |         |        |      |

### Table 2(4)

# \* \$SEIMAEO RUNOFF \*

### K.KONTO II

| : Heath :  | 1980 ! | 1981 !  | 1982    | 1983 ! | Kean !  |
|------------|--------|---------|---------|--------|---------|
|            |        |         |         |        |         |
| :Jan. Ist: |        |         |         |        | 6.22 !  |
|            | 3.28 ! |         | 9.53 !  |        | 7.20 !  |
| ! 3rd!     | 7.82 ! | 11.39 ! | 8.34    | 4.89 ! | 7.58 !  |
| ********** |        |         |         |        |         |
| !Feb. ist! | 5.34 ! | 9.26 !  | 10.40 ! | 5.89 ! | 7.54 !  |
| ? 2nd?     | 4.90 ! | 8.92    | 12.03 ! | 5.23 ! | 7.36 !  |
| ! 3rd!     | 6.12 ! | 6.73!   | 10.55 ! | 5.93 ! | 8.39 !  |
| *          |        |         |         |        |         |
| !Mar. 1st! |        |         | 8,49 !  |        |         |
|            |        |         | 11.65 ! |        |         |
| ! 3rd!     | 6.12 ! | 5.90 !  | 7.60 !  | 5.10 ! | 6.95 !  |
|            |        |         |         |        |         |
| !Apr. 1st! | 5.04 ! | 5.84 !  |         | 5.70 ! |         |
| ? 2nd!     | 5.35 ! | 5.51 !  | 6.71 !  | 5.17 ! |         |
| ! 3rd!     | 5.05 ! | 5.95 !  | 8.62 !  | 8.73 ! | 6.04 1  |
|            |        |         |         |        |         |
| !Hay Ist!  |        |         |         |        |         |
| ! 2nd!     |        |         | 5.34 !  |        | 5.38    |
| ! 3rd!     | 3.65 ! | 5.44 !  | 4,99 !  | 5.27 ! | 5.02 !  |
|            |        |         |         |        |         |
| !June 1st! | 3.55 ! |         |         |        |         |
| ! 2nd!     | 3.07 ! | 4.60 !  |         |        |         |
| ! 3rd!     | 7.85 ! | 5.61 !  | 4.19 !  | 3.84 ! | 4.15 !  |
|            |        |         |         |        |         |
| Holy 1st!  |        | 4.69 !  | 4,00 !  |        | 4.05 !  |
| ! 2nd?     | 2.69   |         |         |        |         |
| ! 3rd!     | 2.44 ! | 4.30 !  | 3.69 !  | 3.11 ! | 3.67 !  |
| ********   |        |         |         |        |         |
| !Aug. 1st! |        |         | 3.54 !  |        |         |
| ! 2nd!     |        |         | 3.41 !  |        |         |
| ! 3rd!     | 2.12 ! | 3.67 !  | 3.26!   | 2.64 ! | 3.10 !  |
| *********  |        |         |         |        |         |
| !Sep. Ist! | 2.05   | 3.42 !  | 3.12 !  |        |         |
| ! 2nd!     | 2.01 ! | 3.40 !  | 2,97 !  | 2.44 ! |         |
| ! 3:4!     | 1.88 ; | 4.35 !  | 2.83 !  | 2.39 ! | 2.84 !  |
|            |        |         |         |        |         |
| !Oct. 1st! | 1.77   | 4.45 !  | 2,68 !  | 2.33 ! | 2.89 !  |
| ! 2nd!     | 2.09 ! | 3.61 !  | 2,53 !  | 2.36 ! | 2,9/ !  |
| : 3rd:     |        | 3.43 !  | 2.37 !  | 2.83 ! | 2.93 !  |
|            |        |         |         |        | in 44 4 |
| !Nov. ist! | 1.17   | 3.57 !  | 7.35    | 3.28 ! | 3.45 !  |
| ! 2nd!     |        |         | 2.46 !  |        |         |
|            |        |         | 2.03 !  |        |         |
|            |        |         |         |        |         |
| !Dec. ist! | 7.17 ! | 6.28 !  | 2,44 ?  | 2,62 ! | 5,77    |
| : 2nd!     | 3.95 ! | 1.42 !  | 3./8!   | 3.41 ! | 3,93    |
|            | 4,58 ! |         | 3.84 !  |        |         |
|            |        |         |         | 4 10 1 |         |
| !Neam Ist! |        |         |         |        |         |
| *********  |        | ******* |         |        |         |

# Table 3(1) ESTIMAED RUNOFF I

( )

TRANS-BASIN TO K, KONTO

| ! <b>K</b> o | <br>nth ! | 1950 !  | 1951 ! | 1952 !   | 1953 ! | 1954 !  | 1955 !  | 1956 ! | 1957 ! | 1959 ! | 1959 ! |
|--------------|-----------|---------|--------|----------|--------|---------|---------|--------|--------|--------|--------|
| !Jan.        | ist!      | 2.02 !  | 2.73 ! | 1.97 !   | 2.34 ! | 3.02 !  | 8.12 !  | 4.23 ! | 3.02 ! | 2.87 ! | 6.98 ! |
| !            | 2nd!      | 2.00 !  | 2.43 ! | 5.15 !   | 2.41 ! | 2.89 !  | 4.60 !  | 3.62 ! | 2.96 ! | 2.47 ! | b.27 ! |
| !            | 3rd!      | 1.68 !  | 3,80 ! | 3.36 !   | 2.35 ! | 5.95    | 3.86 !  | 4.38 ! | 3.00 ! | 2.85 ! | 3.53 ! |
| !Feb.        | tst!      | 1.53 !  | 3,37 ! | 3.12 !   | 3.91 ! | 5.76 !  | 5.47 !  | 4.37 ! | 1.88 ! | 2.75 ! | 3.22 ! |
| •            | 2nd!      | 1.84 !  | 4.35 ! | 8.39 !   | 3.18 ! | 3.05 !  | 4.63 !  | 5.80 ! | 3.10 ! | 3.03 ! | 5.29 ! |
| !            | 3rd!      | 16.94 ! | 4.83 ! | 3.97 !   | 2.52 ! | 3.45 !  | 3.90 !  | 5.12 ! | 5.38 ! | 3.31 ! | 4.62 ! |
| !Har.        |           | 13.31 ! | 4.31 ! | 4.10     | 2.44 ! | 3.08 !  | 3.55 !  | 5.13 ! | 7.37 ! | 3.04 ! | 3.89 ! |
| !            | 2nd!      | 2.63 !  | 3.81 ! |          | 2.90 ! | 4.17 !  | 6.06 !  | 4.87 : | 5.01 ! | 4.81 ! | 4.27 ! |
| !            | 3: 6!     | 2.63 !  | 3.19 ! | 3.82 !   | 3.05 ! | 3.35 !  | 4.52 !  | 3.85 ! | 8.62 ! | 3.18 ! | 3.85 ! |
| !Apr.        | tst!      | 3.51 !  | 2.96 ! | 3.45 !   | 3.34 : | 3.81 !  | 3.87 !  | 3.51 ! | 4.31 ! | 3,35 ! | 3.61 ! |
| !            | 2nd!      | 2.65 !  | 2.58 ! | 3.23 !   | 2.63 ! | 3.69 !  | 18.76 ! | 3.51 ! | 3.91 ! | 3.76 ! | 3.08 ! |
| •            | 3rd!      | 2.31 !  | 2.45 ! | 2.63 !   | 3,01 : | 3,10 !  | 7.25 !  | 3.56 ! | 3.55 ! | 2.94 ! | 3.34 ! |
| !Nay         | 15t!      | 1.98 !  | 2.24 ! | 2.41 !   | 4.59 ! | 3.13 !  | 4.24 !  | 3.02 ! | 3.49 ! | 2.83 ! | 3.05 ! |
| !            | 2nd!      | 1.93 !  | 2.05 ! | 2.26 !   | 3.13 ! | 2.73 !  | 3.89 !  | 2.95 ! | 3.53 ! | 2.95 ! | 2.90 ! |
| !            | 3rd!      | 1.78 !  | 1.92 ! | 2.29 !   | 2.59 ! | 2,87 !  | 3.59 !  | 3.59 ! | 3.05 ! | 2.51 ! | 3.14 ! |
| !June        | Ist!      | 1.51 !  | 1.85 ! | 2.00 !   | 2.34 ! | 2.52 !  | 3.50 !  | 5.16 ! | 2.74 ! | 2.42 ! | 2.73 ! |
| !            | 2nd!      | 1.71 !  | 1.86 ! | 1.82 !   | 2.14 ! | 2.44 !  | 3.57 !  | 3.05 ! | 2.55 ! | 2.11 ! | 2.57 ! |
| !            | 3rd!      | 2.20 !  | 1.84 ! | 1.75 !   | 2.00 ! | 2,20 !  | 3.31 !  | 3.02 ! | 2.38 ! | 2.03 ! | 2.35 ! |
| !July        | ist!      | 1.84 !  | 2.09 ! | 1.62 !   | 1.88 ! | 2.23 !  | 3.56 !  | 2.79 ! | 2.41 ! | 3.25 ! | 2.34 ! |
| !            | 264!      | 1.61    | 1.73 ! | 1.54     | 1.78 ! | 1.93 !  | 3.24 !  | 2.67   | 2.53 ! | 2.39 ! | 2.17 ! |
| !            | 3rd!      | 1.42 !  | 1.88 ! | 1.47 !   | 1.82 ! | 1.83 !  | 3.76 !  | 2.53 ! | 3.57 ! | 2.10 ! | 2.05 ! |
| !Aug.        | ist!      | 1.35 !  | 1.51 ! | - 5.41 1 | 1.53 ! | 1.85 !  | 3.16!   | 2.37 ! | 2.42 ! | 1.34 ! | 1.89 ! |
| !            | 2nd!      | 1.30    | 1.48 ! | 1.36 !   | 1.45 ! | 2.28    | 3,00 !  | 2.31 ! | 2.22 ! | 1.60 ! | 1.80 ! |
| !            | 3rd!      | 1.14 !  | 1.37 ! | 1.43     | 1.38 ! | 1.77 !  | 2.78 !  | 2.22 ! | 2.07 ! | 1.75 ! | 1.73 ! |
| !Sep.        |           | 1.06 !  | 1.31 ! | 1.35 !   | £.37 ! | 1.87 !  | 2.57 !  | 2.07 ! | 1.94 5 | 1.59 ! | 1.54 ! |
| !            | 266!      | 1.10 !  | 1.47 ! | 1.24 !   | 1.78 ! | \$,73 ! | 2.43 !  | 1.98 ! | 1.86 ! | 1.50 ! | 1.59 5 |
| !            | 3rd!      | 1.18 !  | 1.39 ! | 1.25 !   | 1.22 ! | 1.53 !  | 2.43 !  | 1.89 ! | 1.74 ! | 1.43 : | 1.52 ! |
| !Oct.        | Ist!      | 1.20 !  | 1.43 ! | 1.16 !   | 1.17 ! | 1.51 !  | 2.30 !  | 1.90 ! | 1.71 ! | 1.46 ! | 1.54 ! |
|              | 266!      | 1.35 !  |        | 1.04 !   | 1.11 ! | 1.59 !  | 2.40 !  | 3.06 ! | 1.61   | 1.46 ! | 1.56 ! |
| •<br>        | 3rd!      | 1,21 !  | 1.09 5 | 1.21     | 1.69 ; | 1.78 !  | 2.71 !  | 1.91 ! | 1.53 ! | 1.36 ! | 1.34 : |
| !Nay.        | Ist!      | 2.29 !  | 1.08 ! | 2.01 !   | 1.22 ! | 2,79 !  | 3.79 !  | 2.58 ! | 1.59 ! | 1.79 5 | 1.38 ! |
|              | 2nd!      | 1.81 !  | 1.06 ! |          |        | 2.76 !  | 4.20 !  |        |        |        | 1,42 ! |
| !            | 3rd!      | 5.40 !  | 1.08 ! | 2.56 !   | 1.20 ! | 3.68 !  | 3.38 !  | 2.39 ! | 1.73 ! | 1.32 ! | 2.27 ! |
| !Dec.        | 1st!      | 3,09 !  |        | 2.08 !   |        |         |         | 4.67 ! | 2.95 ! | 2.36 ! | 4,23 ! |
|              | 2nd!      | 3.65 !  |        |          | 1.62 ! | 4.40 !  | 2.69 !  |        | 4.94 ! |        | 5.10 ! |
| !            | 3rd!      | 3,50 !  | 2.29 ! | 2.53 !   | 4,43 5 | 3,38 !  | 4.87 !  | 2.61 ! | 2.64 ! | 3.56 ! | 1.51 ! |
| !Hean        | ist!      | 2.77 !  | 2.20 ! | 2.49 !   | 2.18 ! | 2,91 !  | 4,19 !  | 3.28 ! | 3.11 ! | 2.47 1 | 3.02 ! |
|              |           |         |        |          |        |         |         |        |        |        |        |

# e estimaed runger e

TRANS-BASIN TO K.KONTO

Table

3(2)

| Her  | ilh!          | 1860 i | 1961 ! | 1962 !   | 1492 i | 1964, !  | 1865 ! | 1966 ! | 1967 ! | 1969 ! | 1969 |
|------|---------------|--------|--------|----------|--------|----------|--------|--------|--------|--------|------|
| lan. | Ist!          |        | 7.32 ! | 3.81 !   | 5.83 ! | 1.94 !   | 2.56 ! | 2.22 ! | 3.87   | 3.86 ! |      |
|      | 2nd!          | 2.99   | 6.28 ! | 4.42 !   | 9.72 ! | 1.68 !   | 4.22 ! | 2.43   | 3.84   | 2.76 ! | 3.94 |
|      | 3r6!          | 4.56 ! | 1 91,3 | 10.05 !  | 7.00 ! | 1.84 !   | 5.80 ! | 1.97 ! | 6.69 ! | 3.55 ! | 3.86 |
| feb. | 1st!          | 7.69 ! | 4,22 ! | 2,38 !   | 6.84 ! |          | 3.37 1 | 1.83 ! | 4.88 1 | 3.70 1 | 4.36 |
|      | 2nd !         | 4.81   | 4,23 ! | 8.10 !   | 5.72 ! | 2.17 !   | 3.68 ! | 4.36 ! | 3.57   | 4.02 ! | 3.70 |
|      | 314!          | 8,64 ! | 4.19 ! | 6,95 !   | 5.22 ! | 2.34 !   | 3,99 ! | 4.99 ! | 6.72 ! | 4.07 ! | 4.82 |
| Mar. | 1st!          | 5.84 ! | 4.45 ! | 5,53 !   | 6.10 ! | 3.39 !   | 3.41 ! | 4.08 ! | 4.79 ! | 4.37 ! | 3.48 |
|      | 2nd!          | 3.97 ! | 3.55 ! | 5.00 !   | 5.08 ! | 3.67 !   | 5.59 ! | 4.77 ! | 3.50 ! | 4.14 5 | 4.24 |
|      | 3rd!          | 4,65 ! | 3.51 ! | 4.04 !   | 5.01 ! | 3,03 !   | 4.16 ! | 4,00 5 | 3.75 ! | 3,76 ! | 4.13 |
| Apr. | lst!          | 6.48 ! | 3,36 ! | 3.98 !   | 4,25 ! | 3.58 !   | 4.24 ! | 3.38 ! | 3.87 ! | 4.83 ! | 3.65 |
| •    | 2nd:          | 4,51 1 | 3.57   | 7.32 !   | 3.91 ! | 2.98 !   | 3.46 1 | 2.81 5 | 3.29 5 | 3.55 ! | 3.37 |
|      | 3r d !        | 3.96 ! | 3.27 ! | 6.27 !   | 3,77 ! | 2.60 !   | 3.05 : | 2.87 ! | 3.10 ! | 3.54 ! | 3.09 |
| May  | lst!          | 4.49 ! | 3.43 ! | 5.07 !   | 3.33 ! | 2.65 !   | 2.82   | 2.85 ! | 2.88 ! | 3.73 ! | 2.)7 |
| •    | 2nd!          | 5.30 ! | 3.06 ! | 3.79 !   | 3.07 ! | 2,95 !   | 2.57 ! | 2.48 ! | 2.68   | 3.48 ! | 2.55 |
|      | 3rd!          | 4.02 ! | 2.68 ! | 3.46 !   | 2.86 ! | 2.44 !   | 2.56 ! | 2.21 ! | 2.59   | 3.39 ! | 2.43 |
| une  | ist!          | 3.45 ! | 2.53 ! | 3.25 !   | 2.74   | 3,31 !   | 2.30 ! | 2.19 ! | 2.26 ! | 3.09 ! | 2.41 |
|      | 2nd!          | 3,19 ! | 2.31 ! |          | 2.54 ! | 2.35     | 2.22 ! | 1.90 ! | 2.11 ! | 3.34 ! | 2.16 |
|      | 3r <b>d</b> ! | 3.13 ! |        | 2.98 !   | 2.42 ! | 2.22 !   | 2.03 ! | 1.75 ! | 1,99 ! | 3.05 ! | 2.02 |
| luly | ist!          | 3.21 ! | 2.06 ! | 2.88 !   | 2.31 ! | 2.03 !   | 1.92 ! | 1.72 ! | 1.90 ! | 3.10 ! | 1.96 |
| •    | 2nd!          | 2.74 ! |        | 2.68 !   |        | 1.85 !   | 1.84 ! | 1.55 ! | 1.81 ! | 3.67 5 | 1.84 |
|      | 3r4!          | 2.57 ! | 1.84 ! | 2.48 !   | 2.13 ! | 1.67     | 1.75 ! | 1.46 ? | 1.72 ! | 3.16 ? | 1.74 |
| iug. | ist!          | 2.44 ! | 1.75 ! | 2.44 !   | 2.05 ! | 1.55 !   | 1.68 ! | 1.39 ! | 1.65 ! | 2.82 ! | 1.67 |
|      | 2nd!          | 2.36 ! | 1.68 ! | 2.58 5   | 1.97 ! | 1.48 !   | 1.62 ! | 1.33 ! | 1.60 ! | 2.63 ! | 1.60 |
|      | 3rd!          | 2.28 ! | 1.61 1 | 2.25 !   | 1.89 ! | 1.54 !   | 1.55 ! | 1.36   | 1.54 ! | 2.60 ! | 1.53 |
| Sep. | Ist!          | 2,14 ! | 1.54 ! | 2.13 !   | 1.80 ! | 1.33 !   | 1.48 ! | 1,24 ! | 1.47 ! | 2.31 ! | 1.45 |
| •    | 2nd!          | 2.05 ! | 1.48 ! | 2.07 !   | 1.72 ! | 1.81 !   | 1.41 ! | 1.19 ! | 1.41 ! | 2.26 ! | 1.38 |
|      | 3rd!          | 1.98 ! | 1.49 ! | 2.00 !   | 1.64 ! | 1.41 !   | 1.34 ! | 1.14 ! | 1.34 ! | 2.12 ! | 1.40 |
| lct. | íst!          | 1.91 ! | 1.36 ! | 1.89 !   | 1.98 ! | 2.71 !   | 1.27 ! | 1.19 ! | 1.28 ! | 2.16 ! | 1.27 |
|      | 2nd!          |        |        |          | 1.84 ! |          |        | 1.44 ! | 1.23 ! | 2.00 ! | 1.17 |
|      | 3rd!          | 1.95 ! | 1.27 ! |          |        | 2.42 !   | 1.13 ! | 1.18 ! | 1.15 ! | 2.01 ! | 1.50 |
| oy.  | ist!          | 1.89 ! | 1.55 ! | 4.46 !   | 1.86 ! | - 2.65 ! | 1.07 ! | 1.38 ! | 1.29 ! | 2.35 ! | 1.44 |
|      |               |        | 1.75 ! |          | 1.36 ! | 2.68 !   | 1.00 ! | 1.44 ! | 1.32 ! | 3.26 ! | 1.19 |
|      | 3c 6!         | 3.15 ! | 1.36 ! | 2.22 !   | 1.23 ! | 2.44 !   | 1.12 ( | 2.48 ! | 1.28 ! | 2.64 ! | 1.52 |
|      |               | 2.68 ! | 1.70 ! | 4.24 !   | 1.33 ! | 2.49 !   | 1.16 ! |        | 2,28 ! |        |      |
|      |               |        |        |          |        |          | 1.69 ! |        |        |        |      |
|      | 3rd!          | 3.22 ! |        | , 4.51 1 |        |          | 2.19 ! |        |        | 4.32 ! | 1.80 |
|      |               |        |        |          |        |          |        |        |        |        |      |

# Table 3(3) + ESTIMAED RUNOFÉ +

TRANS-BASIN TO K.KONTO

| 1303 | ith!  | 1970 ! |        | 1972 ! | 1973 ! | 1337 : | 1975 ! | 1976 !  | 1977 : | 1978 ! | 1979 |
|------|-------|--------|--------|--------|--------|--------|--------|---------|--------|--------|------|
| Jan. | Ist!  | 1.52 ! | 3.00 ! | 4.55 ! | 1.96 ! |        | 3.06 ! | 3.53 !  | 1.80 : | 1.69 ! | 1.7  |
|      | 2nd : | 2.44 ! | 4.47 ! | 5.16 ! | 2.30 ! | 8.68 ! | 4.61   | 6.01 !  | 3.87 ! | 2.57 ! | 3.0  |
|      | 3rd!  | 3.12 ! | 5.08 ! | 3.82 : | 2.41 ! | 5.13 ! | 3.91 ! | 7,48 !  | 4.16 ! | 5.86 ! | 2.8  |
| F€b. | lst!  | 3.78 ! | 6.88 ! | 3.69 : | 3.16 ! | 5.35 ! | 4.31 ! | 4.42 !  | 3.43 ! | 4.63 ! | 2.4  |
|      | 2001  | 3.78 ! | 7.01 5 | 3.62 ! | 2.46 ! | 6.04 ! | 4.49   | 4.90 !  | 3.64 ! | 2.58 ! | 2.9  |
|      | 3rd!  | 3.99 ! | 4.80 ! | 3.54 ! | 2.69 ! | 5.24 ! | 4.40 ! | 5.22 !  | 5.30 ! | 3.16 ! | 2.3  |
| Mar. | Ist!  | 3.32 ! | 4.31 ! | 5.41 ! | 4.69 ! | 6.82 ! | 4.26 ! | 31.85 ! | 8.34 ! | 3.18 ! | 2.8  |
|      | 2001  | 4.76 ! | 4.26 ! | 5.14 ! | 2.90 ! | 4.87 ! | 4.55 ! | 6.92 !  | 5.84 ! | 3.38 ! | 2.5  |
|      | 3rd!  | 4.45 : | 5.64 ! | 5.60 ! | 3.13 ! | 4,14 ! | 5.40 ! | 4.36 !  | 4.75 ! | 3.19 ! | 2.3  |
| lor. | 1st!  | 3.28 ! | 4.60 ! | 3.85 ! | 3.45 ! | 4.89 ! | 5.94 ! | 4.47    | 3.39 ! | 2.64 ! | 2.2  |
| •    | 2nd1  | 2.85 ! | 4.29 ! | 3.76 ! | 2.78 ! | 7.20 ! | 4.25 ! | 3.85 !  | 3.28 ! | 2.40 ! | 2.1  |
|      | 3rd!  | 2.85 ! | 3.75 ! | 3.62 ; | 2.74 ! | 4.05 ! | 4.5i ! | 3.91 !  | 3.02 ! | 2.07 ! | 2.2  |
| lay  | Ist!  | 2.62 ! | 3.76 ! | 3.96 ! | 2.85 ! | 3.87 ! | 4.07 ! | 3.67 !  | 2.83 ! | 2.26 ! | 3.3  |
| •    | 2nd!  | 2.56 ! | 3.69   | 3.47 ! | 3.22 ! | 4.10 ! | 3.93 ! | 3.36 !  | 2.60 ! | 2.65 ! | 2.4  |
|      | 3rd!  | 2.40 ! | 3.85 ! | 3.00 f | 3.58 ! | 3.41 ! | 3.73 ! | 3.04 !  | 2.51   | 2.48 ! | 2.4  |
| une  | 15t!  | 2.40 ! | 3.96 ! | 2.78 ! | 3.00 ! | 3.20 ! | 3.30 ! | 2.85 !  | 2.40 ! | 2.62 ! | 2.3  |
|      | 2nd!  | 2.22 ! | 3.19 ! | 2.59 ! | 2.48 ! | 3.00 ! | 3.05 ! | 2.69 !  | 2.13 ! | 2.58 ! | 1.9  |
|      | 3rd!  | 1.94 ! | 3.12 ! | 2.42 ! | 2.41 ! | 2.81 ! | 2.85 ! | 2.54 !  | 2.03 ! | 2.43 ! | 1.8  |
| uly  | 15t!  | 1.80 ! | 2.87 ! | 2.29 ! | 2.15 ! | 2.80 ! | 2.74 ! | 2.58 !  | 1.83 ! | 2.30 ! | 1.7  |
|      | 2nd!  | 1.76 ! | 2.67 ! | 2.17 ! | 2.01 ! | 2.58 ! | 2.52 ! | 2.34 !  | 1.72 ! | 2.02 ! | 1.5  |
|      | 3rd!  | 1.63 ! | 2.59 ! | 2.06 ! | 1.80 ! | 2.46 ! | 2.42 ! | 2.23 !  | 1.63 ! | 1.95 ! | 1.4  |
| lug. | Ist!  | 1.51 ! | 2.38 ! | 2.01 ! | 1.69 ! | 2.57 ! | 2.39 ! | 2.27 !  | 1.55 ! | 1.32 ! | 1.3  |
|      | 2nd!  | 1.45 ! | 2.26 ! | 1.89!  | 1.71 ! | 2.38 ! | 2.41 ! | 2.06 !  | 1.48 ! | 1.61 ! | 1.2  |
|      | 3rd!  | 1.37 ! | 2.23 ! | 1.81 ! | 1.56 ! | 2.45 ! | 2.23 ! | 2.00 !  | 1.42 ! | 1.54 ! | 1.1  |
| βeρ. | [st!  | 1.31 ! | 2.36 ! | 1.73 ! | 1.58 ! | 2.34 ! | 2.15 ! | 1.90 !  | 1.37 ! | 1.46 ! | 1.1  |
| -    | 2nd!  | 1.28 ! | 2.06 ! | 1.66 ! | 1.69 ! | 3.00 ! | 3.25 ! | 1.81 !  | 1.31 5 | 1.41 ! | 1.0  |
|      | 3rd!  | 1.39 ! | 1.96 ! | 1.58 ! | 2.06 ! | 2.34 ! | 2.45 ! | 1.73 !  | 1.25 ! | 1.30 ! | i.(  |
| kt.  | ist!  | 1.19 ! | 2.65 ! | 1.50 ! | 1.70 ! | 2.82 ! | 2.63 ! | 1.93 !  | 1.19 ! | 1.27 ! | 1.4  |
|      | 2nd!  | 1.21 ! | 1.83 ! |        |        | 3.03 ! | 2.40 ! | 2.08 !  | 1.13 ! | 1.19 ! | 0.9  |
|      | 3rd!  | 1.43 ! | 3.00 ! | 1.50 ! | 2.00 ! | 2.86 ! | 3.70 ! | 1.78 !  |        | 1.22 ! | 0.9  |
| lov. | Ist!  | 1.63 ! | 2.73 ! | 1.27 ! | 2.43 ! | 2.56 ! | 4.58 ! | 1.73 !  |        | 1.1B ! | 1.1  |
|      | 2nd!  |        |        |        |        | 3.12 ! |        |         |        |        | 0.9  |
|      | 3rd!  | 2.78 ! | 3.53 ! | 1.48 ! | 2.26 ! | 2.82 ! | 4.05 ! | 2.97 !  | 0.87 : | 1.43 ! | 1.0  |
|      |       |        |        |        |        | 2.57 ! |        |         | 1,22 ! | 1.29 ! | 1.8  |
|      |       |        |        |        |        | 3.70 ! |        | 1.89 !  |        | 1.48!  |      |
|      | 3rd!  | 3.04 ! | 3,73 ! | 1.59 ! | 2.82 ! | 3.15 ! | 3.29 ! | 1.76 !  | 1.07 ! | 1.48 ! | 2.1  |
|      |       | 2.49 ! |        |        | •      | 3,86 ! |        |         | 2.47 ! |        | 1.8  |

Table 3(4)

# ESTIMATO RUNOFF #

### TRANS-BASIN TO K.KONTO

| ! Moath !                      | 1980 ! | 1981 !           | 1982 !           | 1983 !           | Kean !           |
|--------------------------------|--------|------------------|------------------|------------------|------------------|
| !Jan. Ist!                     | 1.84 ! | 4.43 !           | 8.82 !           | 4.47 !           | 3.56 !           |
|                                | 1.88 ! |                  |                  | 5.76 !           |                  |
| ! 3rd!                         |        |                  |                  |                  |                  |
|                                |        |                  |                  |                  | *******          |
| !Feb. 1st!                     | 3.05 ! | 5.30 !           | 5.95 !           | 3.37 !           |                  |
| ! 2nd!                         | 2.80 ! | 3.96 !           | 6.83 !           | 3.00 !           |                  |
| ! 3rd!                         | 3.50 ! | 3.85 !           | 8.04 !           | 3.39 !           | 4.80 !           |
| !Nar. Ist!                     |        | 4.09 1           |                  | 3.70 !           |                  |
| ! 2nd!                         | 2.89 ! | 4.44 !           | 8.67 !           | 3.27             |                  |
| ! 3rd!                         | 3.50 ! | 3.38 !           | 4.35 !           | 2.92 !           | 3.98 !           |
| !Apr. ist!                     | 2 89 1 | 3.36 1           | 4.39 1           | 3.26 !           | 3.82 !           |
| ! 2nd!                         | 3.06 ! | 3.15             | 3.84 !           | 2.95 !           | 4.01 !           |
| ! 3rd!                         | 2.89 ! | 3.40 !           |                  | 5.00 !           | 3.46 5           |
| *******                        |        |                  |                  |                  |                  |
| !Nay 1st!                      |        |                  |                  |                  |                  |
|                                | 2.24   |                  |                  |                  |                  |
| i 2cq;                         | 2.07 ! | 3.11 !           | 2.86 !           | 3.01 !           | 2.87 !           |
| !June ist!                     | 2.03 ! | 2.18 '           | 2.67 1           | 2.66 !           | 2.74 !           |
| ! 2nd!                         |        |                  | 2.52 !           | 2.42 !           | 2.49 !           |
| ! 3rd!                         | 1.63 ! | 3.21 !           | 2.40 !           | 2.20 !           | 2.37 !           |
| *******                        |        |                  | ·                |                  |                  |
| !July 1st!                     |        | 2.69 !           | 2.29 !           |                  |                  |
| ! 2nd!                         | 1.56 ! | 2.67 !           | 2.20 !           |                  |                  |
| ! 3rd!                         | 1.40 ! | 2.46 !           | 2.11 !           | 1.78 !           | 2.07'!           |
| !Aug. Ist!                     | 1.36 ! | 2.24 !           | 2.02 !           | 1.67 !           | 1.93 !           |
| ! 2nd!                         | 1.27 ! |                  |                  |                  |                  |
| ! 3rd!                         |        |                  |                  | 1.51 !           |                  |
| 16 t-k1                        |        | 4 AC 1           |                  |                  | 1 10 1           |
| !Sep. ist!<br>! 2nd!           | 1.17 ! | 1.95 !<br>1.95 ! |                  | 1.45 !<br>1.39 ! | 1.69 !<br>1.70 ! |
| ! 2nd!<br>! 3rd!               | 1.07 ! | 2.49 !           | 1.70 !<br>1.62 ! | 1.37 !           | 1.62 !           |
| : 319:                         | 1,4/ : | 2,17 :           | 1.02 :           | 1.27 :           | 1.04:            |
| !Oct. Ist!                     |        |                  |                  |                  |                  |
|                                | 1.19 ! |                  | 1.45 !           | 1.35 !           |                  |
| ! 3rd!                         | 1.11 ! | 1.98 !           | 1.36 !           | 1.62 !           | 1.67 !           |
| !Nov. Ist!                     | 1.01 1 | 2.04 !           | 1.34             | 1.87             | 1.96.1           |
|                                | 1.32 ! |                  |                  |                  |                  |
|                                | 1.74 ! |                  |                  |                  |                  |
|                                |        |                  |                  |                  |                  |
| !Dec. 1st!<br>! 2nd!<br>! 3rd! | 4.68 ! | 3.60 !           | 1.40 !           | 2.69 !           | 2.70 !           |
| ! 2nd!                         | 2.23 ! | 4.25 !           | 3.31 !           | 1.95 !           | 2.88 !           |
| ! 3rd!                         | 2.82 ! | 3.63 !           |                  | 3.42 !           |                  |
| !Kean 1st!                     | 2.13 1 | 3.31 !           | 3.16 !           |                  |                  |
| **********                     |        |                  |                  |                  |                  |

# ENERGY POTENTIAL AT K.KONTO II

Table 4(1)

|   |       |        |        |          | U      | HYM: TIM |        | : .     |              |        |        |        |        |         |
|---|-------|--------|--------|----------|--------|----------|--------|---------|--------------|--------|--------|--------|--------|---------|
| ! | YEAR! | JAN. ! | FEB. ! | MAR. !   | APR. ! | ! YAK    | JUNE ! | JULY !  | AUS. !       | SEP. ! | oct. ! | NGV. ! | DEC. ! | TOTAL ! |
| ! | 19501 | 6357!  | 18329! | 20102!   | 9193!  | 6371!    | 5871!  | 5437!   | 4247!        | 3626!  | 42225  | 103011 | 114771 | 105838! |
| į | 1951! | 10125! | 12558! | 12388!   | 8842!  | 6939 !   | 6024:  | 6123!   | 1888!        | 4525!  | 4153!  | 3502!  | 6616!  | 86485   |
| į | 1952! | 11718! | 14169! | 14856!   | 10090! | 7795!    | 6025!  | 5179!   | 4703!        | 4144!  | 3838!  | 7315!  | 8714!  | 98550!  |
| ŀ | 1953! | 79801  | 9872   | 9448!    | 97301  | 11454!   | 7035   | 5913!   | 4887!        | 4209!  | 3777!  | 3868   | 8174   | 863321  |
| ļ | 1954! | 13500! | 12541! | 11850!   | 11485! | 9796!    | 7767!  | 6754    | <b>6582!</b> | 5576!  | 54931  | 10005  | 13777! | 115121! |
| ŗ | 1955! | 15976! | 14325! | 15804!   | 32380! | 13096!   | 11255! | 11959!  | 9989!        | 8065!  | 8330!  | 12319  | 119201 | 165317! |
| • | 1956! | 13726! | 16016! | 15423!   | 11464! | 10749!   | 12869! | 8910!   | 7725!        | 6430   | 7661!  | 7739!  | 11762! | 129807! |
| ţ | 1957! | 10086  | 13315! | 21296!   | 12754! | 11248!   | 8312!  | 9617!   | 7499!        | 6015   | 5424!  | 5352   | 11701! | 122605! |
| ! | 1958! | 9185!  | 9169!  | 12298!   | 10891! | 9261!    | 7206!  | 88221   | 61461        | 4906!  | 4793!  | 5126!  | 10116! | 97725!  |
| ţ | 1959! | 18553! | 13231! | 13430!   | 10910! | 10196!   | 8298!  | 7330!   | 6065!        | 5159!  | 49881  | 5496!  | 15471! | 119111! |
| į | 1960! | 13076! | 21972! | 16161!   | 16201! | 15402!   | 10598! | 9519!   | 7914!        | 6696   | 63805  | 8038   | 9373!  | 141336! |
| ļ | 1981! | 22112! | 12846! | 12856!   | 11081! | 10226!   | 7606!  | 6576!   | 56431        | 4893!  | 4431!  | 50591  | 70331  | 111148! |
| Ė | 1982! | 20384! | 24953! | 16215!   | 19011: | 13713!   | 10335! | 8978!   | 0131!        | 6723   | 6837!  | 10077! | 13552! | 159244! |
| İ | 1983! | 25176! | 18120! | 18077!   | 12921! | 10355!   | 8353!  | 7448!   | 6616.        | 5696!  | 5880!  | 4618:  | 5856   | 129010! |
| ! | 1984! | 8097!  | 6968!  | 11263! . | 9907!  | 8990!    | 85441  | 6201!   | 5135!        | 4936   | 10516! | 8424!  | 7955!  | 94941!  |
| į | 1965! | 14253! | 11101! | 147141   | 11646! | 8899!    | 7099   | 6169!   | 5425!        | \$600! | 40791  | 3479!  | 57131  | 972021  |
| • | 1966! | 7395!  | 11035! | 14358!   | 9827!  | 8419!    | 6311!  | 5295!   | 45775        | 3875!  | 4261!  | 5745!  | 9140!  | 99274!  |
| • | 1967! | 15613! | 14975! | 13457!   | 11118! | 9121!    | 4901!  | 6076!   | 5362!        | 4587!  | 4099!  | 4223!  | 9750!  | 105287! |
| ! | 1968! | 114041 | 123361 | 13701    | 12918! | 11887    | 102771 | 311111! | 18009        | 7256!  | 6915!  | 8747!  | 13031  | 128776! |
| į | 1969! | 12486! | 12906! | 13285!   | 10963! | 18998    | 7153!  | 6193!   | 5377!        | 4590!  | 44101  | 4502!  | 5436!  | 96003!  |
| ! | 1970! | 8010!  | 11648! | 14069!   | 9740!  | 8487!    | 7117!  | 5807    | 4853!        | 4334!  | 4307!  | 7706!  | 8617!  | 947021  |
| į | 1971! | 34141! | 19030! | 16013!   | 13695! | 12659!   | 11125! | 8991!   | 7683!        | 6914!  | 7185!  | 9886!  | 17610! | 145338! |
| ! | 1972! | 15073! | 11393! | 18104!   | 12174! | 11628!   | 8451!  | 7305!   | 6394!        | 5392!  | 1962!  | 4378!  | 5034:  | 111095! |
| ! | 1973! | 7502!  | 8434!  | 11961!   | 9729!  | 10962!   | 8564!  | 6671!   | 5670!        | 5180!  | 6432   | 74181  | 110111 | 1001711 |
| • | 1974! | 22983! | 16890! | 17590!   | 17500! | 12727!   | 9765!  | 87625   | 8283!        | 8328!  | 9508!  | 9215!  | 10558! | 152112! |
| ! | 1975! | 12977! | 13341! | 15980!   | 15932! | 13166!   | 9968!  | 8581:   | 7854!        | 8514!  | 9868!  | 13236! | 13521! | 142942! |
| ! | 1976! | 192431 | 15188! | 47168!   | 13250! | 11232!   | 8769!  | 7975!   | 70841        | 5910!  | 6475!  | 6911!  | 6297!  | 155509! |
| ! | 1977! | 111111 | 12259! | 21025!   | 10507! | 8386!    | 7109!  | 5807!   | 4990!        | 4266!  | 3791!  | 3079   | 4089!  | 96925!  |
| • | 1978! | 11373! | 10553! | 10912!   | 7705!  | 8285!    | 8261!  | 7015!   | 5567!        | 4521!  | 4136!  | 3916!  | 4991!  | 87242!  |
| ! | 1979! | 8687 ! | 7898!  | 8888     | 7228!  | 9214?    | 6597!  | 5227!   | 4217!        | 3565!  | 3261!  | 3360!  | 5519!  | 734671  |
| • | 1980! | 93831  | 9763!  | 10805!   | 9579!  | 7934!    | 58851  | 4995!   | 4307!        | 3686   | 37201  | 44211  | 9964!  | 84455!  |
| ! | 1981! | 19655! | 13373! | 13267!   | 10726! | 11829!   | 9316!  | 8737!   | 7191!        | 6927!  | 7349!  | 9540!  | 12819! | 1308851 |
| • | 1982! | 18772! | 19137! | \$7669!  | 13017! | 10337!   | 8224!  | 7381!   | 6536!        | 5538!  | 1851!  | 4247!  | 7720!  | 123438! |
| ! | 1983! | 11275! | 9843!  | 11034!   | 12158! | 128745   | 7887!  | 6363!   | 5342!        | 4570!  | 4846!  | 7205!  |        | 104851! |
| ! | MEAN! | 13495! | 13514! | 15458!   | 1223B! | 10376!   | 8242!  | 7322!   | 6232!        | 5431!  | 5635!  | 6723!  | 9540!  | 114213! |

# \* EXERCY POTENTIAL AT X.KONT 11-TRANS-RASIN &

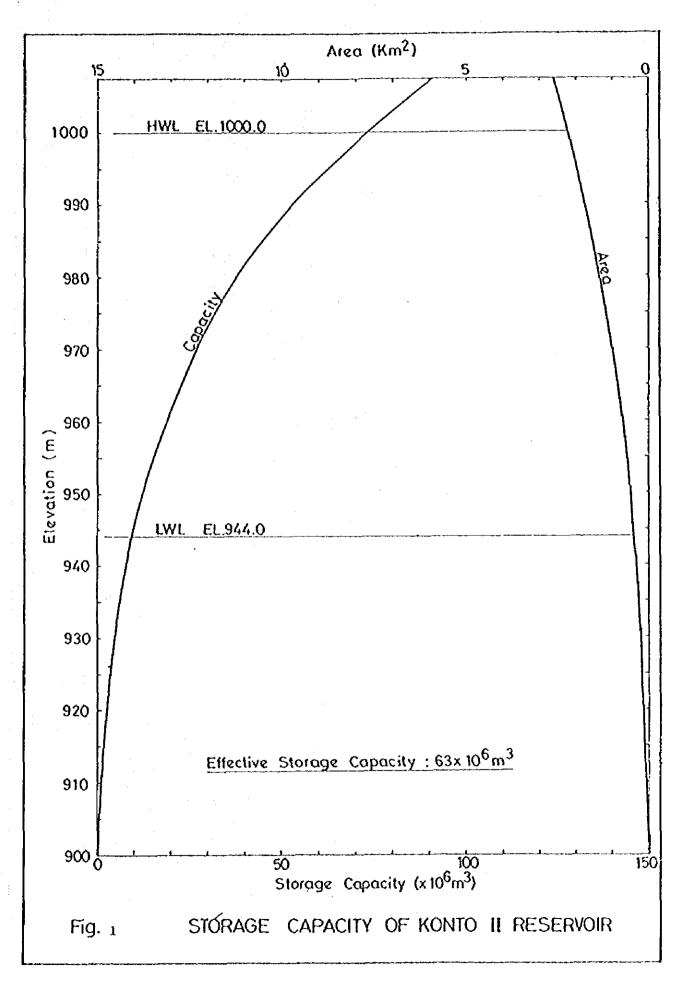
Table 4(2)

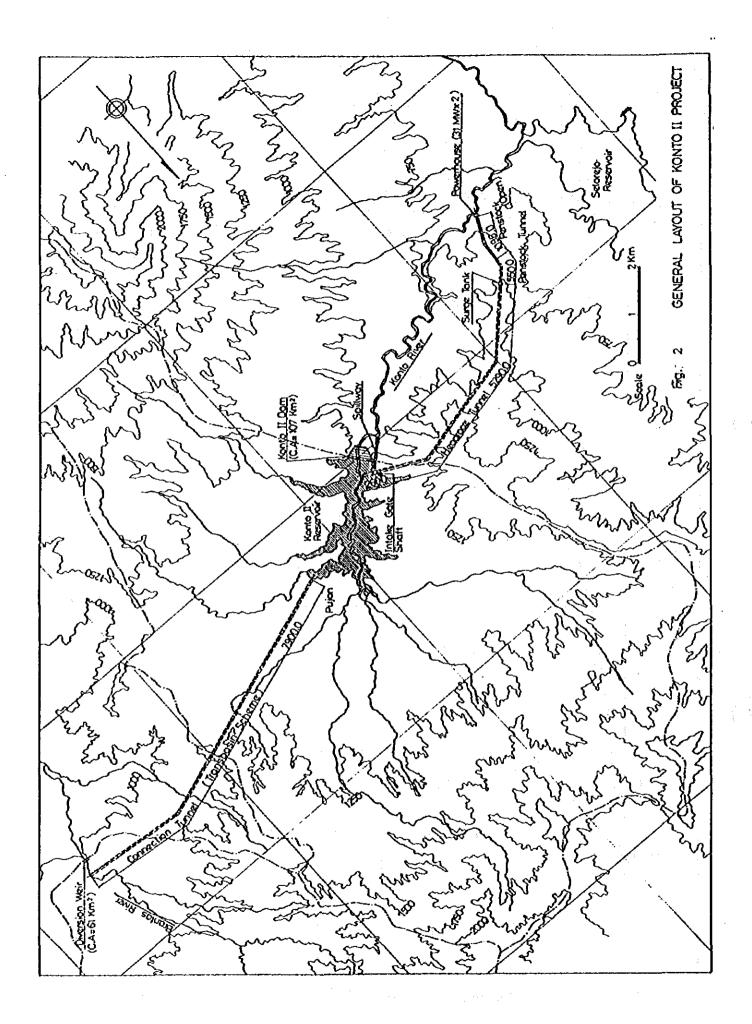
HYRE TERU

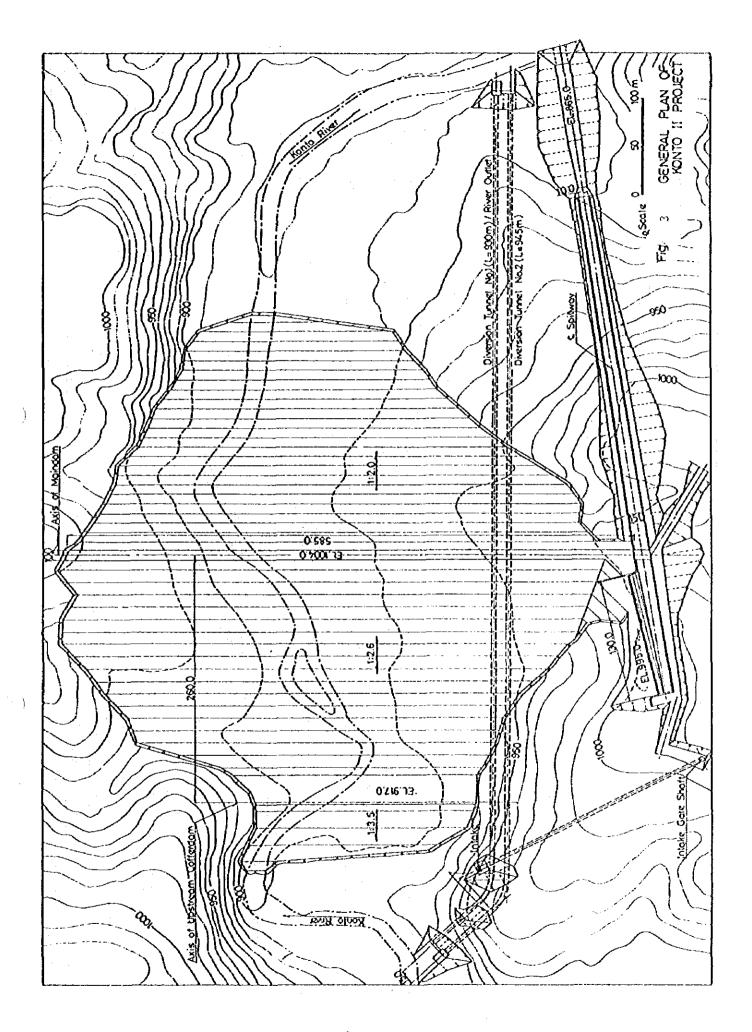
| ! | YEAR!  | JAN.!  | FEB. : | MAR. : | APR. ! | HAY :  | JUNE ! | JULY ! | AUG. ! | SEP. ! | OCT. ! | NOV. !   | DEC. !  | TOTAL ! |
|---|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|----------|---------|---------|
| į | 19501  | 9997!  | 28324! | 32088! | 14457! | 10020! | 9234!  | 8550!  | 6679!  | 5703!  | 6540!  | 16200!   | 18949!  | 166144  |
| ! | 1951!  | 15923! | 19749! | 19478! | 13592! | 10913! | 9474!  | 9629!  | 7688!  | 7116!  | 6531!  | 5508!    | 10404!  | 136009! |
|   | 1952!  | 18428! | 22283! | 23383! | 15868! | 12259! | 9175   | 8145!  | 7396!  | 8518!  | 6935!  | 11594!   | 13704!  | 1549839 |
| Ļ | 1953   | 12518! | 15575! | 148593 | 15302! | 18014! | 11063! | 9299!  | 7885!  | 6619!  | 5940!  | 6083!    | 12855!  | 135768  |
| ! | 1954!  | 21230! | 19723! | 18636! | 18962! | 15405! | 12214! | 10622! | 10351! | 8770!  | 8623!  | 15734!   | 21866!  | 181043  |
| ! | 1955!  | 25116! | 22528! | 24854! | 50921! | 20595! | 17700! | 18650! | 15709! | 12884! | 13100! | 19373!   | 18745!  | 259982! |
| ! | 1956   | 21587! | 25187! | 21256! | 18029! | 16904  | 19137! | 14059! | 12149! | 10112! | 12048! | 12171!   | 184971  | 204141  |
| ! | 1957!  | 15831! | 20940! | 33491! | 20058! | 17889! | 13072! | 15124! | 11794! | 9460?  | 8530!  | 8417!    | 18401!  | 192812  |
| ŧ | 1953!  | 14115! | 14419! | 19340! | 17128! | 14565! | 11332! | 13560! | 9888!  | 7716!  | 7538!  | 8062!    | 15909!  | 153686  |
| • | 1959!  | 29177! | 20808! | 21120! | 17157! | 160341 | 13050  | 11528! | 9538!  | 8113!  | 7813!  | 8644!    | 24331!  | 187318! |
| ! | 1950:  | 20554! | 34554! | 25415! | 25479! | 24722! | 188681 | 14970! | 12447! | 10531! | 10033! | 12641!   | 14740!  | 222269  |
| ! | 1961!  | 34774! | 20203! | 20219! | 17395! | 16083  | 11961! | 10342! | 8975!  | 7695!  | 6968!  | 7956!    | 12318!  | 374794  |
| ! | 1952!  | 32843! | 39242! | 25500! | 29945! | 21566! | 16253! | 14119! | 127875 | 10573! | 10438: | 15818!   | 21313!  | 250131  |
| • | 1983!  | 39592  | 28476! | 28428! | 20320! | 16285! | 13136! | 11713! | 10404! | 8817!  | 9216!  | 7263!    | 9210!   | 202885  |
| ! | 1984!  | 9589!  | 109591 | 17712! | 15591! | 14138! | 13437! | 9752   | 8076!  | 7763!  | 16538! | 13248!   | \$2510! | 149307. |
| ţ | 1985!  | 22415! | 17458! | 231401 | 10315! | 13995! | 11164! | 9701!  | 8532!  | 7235!  | 6447!  | 5471!    | 8981!   | 152863  |
| • | 1966!  | 11630! | 17355! | 22580! | 15154! | 13240! | 9973!  | 8328!  | 7198!  | 6093!  | 6702!  | 9035!    | 143741  | 141988  |
| 1 | 1967!  | 24554! | 23550! | 21162! | 17484! | 14344! | 10852! | 9558!  | 8433!  | 7214!  | 6447!  | 6841!    | 15334!  | 165578  |
| ! | 1968!  | 17935! | 19401! | 21547! | 20316! | 18663! | 16163! | 17473! | 14166! | 11411! | 10875! | 14070!   | 20193!  | 202517  |
| ! | 1969!  | 19636! | 20296! | 20892! | 17241! | 13632! | 11249! | 9739   | 8456!  | 7219!  | 6983!  | 7080!    | 8549!   | 150777  |
| 3 | 1970!  | 12597! | 18318! | 22128! | 15318! | 13317! | 11193! | 9133!  | 7632!  | 8817!  | 6773!  | 12120!   | 13552!  | 148730  |
| ! | 1971!  | 22238! | 29928! | 25182! | 21538! | 19909! | 17496! | 14139! | 12083! | 10874! | 12243! | 15232!   | 27694!  | 228563  |
| ŧ | 1972!  | 23704! | 17917! | 28472  | 19145! | 18288! | 13291! | 11488! | 10058! | 8480!  | 7803!  | . 9889 ; | 9176!   | 174712  |
| ! | 1973!  | 11797! | 13263! | 18911! | 15300! | 17240! | 13468? | 10491! | 8918!  | 9091!  | 10116! | 11714!   | 17317!  | 157531  |
| ! | 1974!  | 36144! | 26562! | 27682! | 27522! | 20015! | 15357! | 13779! | 139265 | 13097! | 14950! | 14492!   | 16604!  | 239216  |
| ļ | 1975!  | 20498! | 20981! | 25130! | 25055! | 20706! | 15875! | 13495  | 12352! | 13389! | 15519! | 208161   | 21263!  | 224795  |
| ţ | 1976!  | 30262! | 23888  | 74178? | 209383 | 17664! | 13790! | 12541! | 11141! | 9294!  | 10184! | 10868!   | 9906!   | 244558. |
| • | 1977!  | 17473! | 19280! | 33065! | 16524! | 13974! | 11181! | 9132!  | 7848!  | 6709!  | 5963!  | 4842!    | 6432!   | 152427  |
| ! | 1978!  | 17897! | 16596! | 17161! | 12117! | 13029! | 12992! | 11033! | 8755!  | 7110!  | 8505!  | 6159!    | 7849!   | 137199  |
| ! | 1979!  | 13862! | 12421! | 13663! | 11387! | 14491! | 10375! | 8221!  | 6833!  | 5606   | 5128!  | 5284!    | 8680!   | 115537  |
| ! | 1980!  | 14764! | 15354! | 16992! | 15065! | 12478! | 9256!  | 7856!  | 6773!  | 5797   | 5851!  | 6952!    | 15671!  | 132815  |
| ! | 1981 : | 30910! | 21032! | 20864! | 16889! | 18603! | 14698! | 13741! | 11309! | 10894! | 11557! | 15161!   | 20159!  | 2058029 |
| ŗ | 1782!  | 29522! | 30076! | 27787! | 20472! | 16256  | 12934! | 11607! | 10279! | 8709!  | 7633!  | 880!     | 12141!  | 194123  |
| ! | 1983!  | 22449! | 15480! | 17352  | 19120! | 20247! | 12404! | 100071 | 8401!  | 71885  | 7621!  | 11331!   |         | 164907  |
|   | MEAN!  | 21224! | 21253! | 24310! | 19246! | 16318! | 12982! | 11515! | 9801!  | 8542!  | 8852!  | 10573!   | IEAAAA  | 179814  |

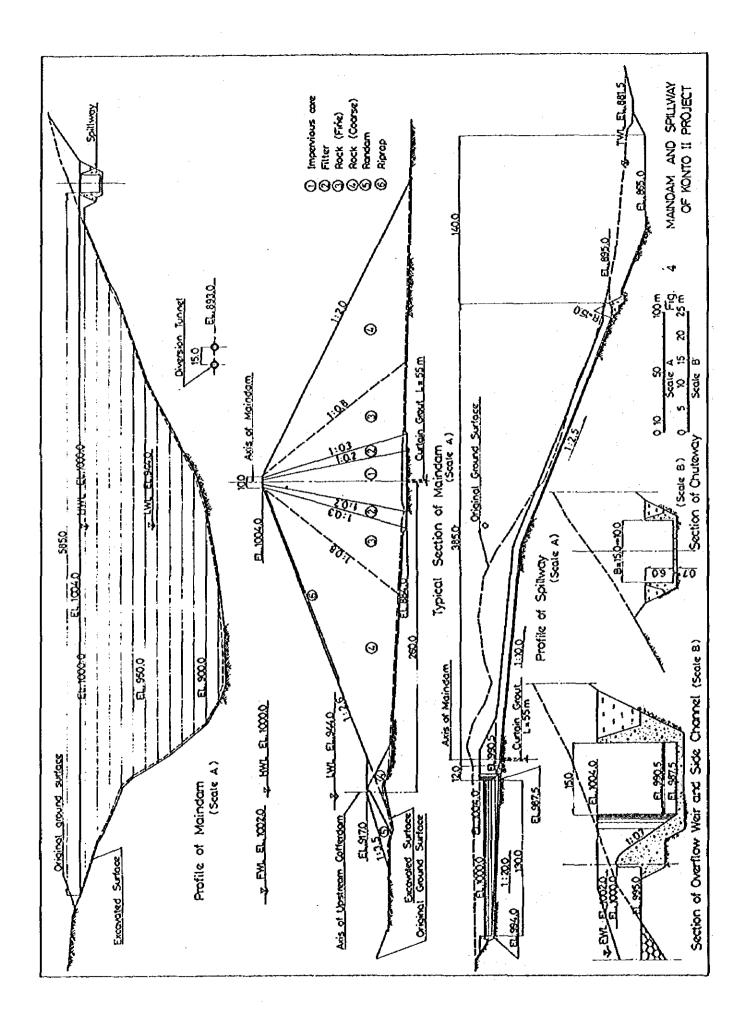
Table 5(1) CONSTRUCTION COST ESTIMATE FOR

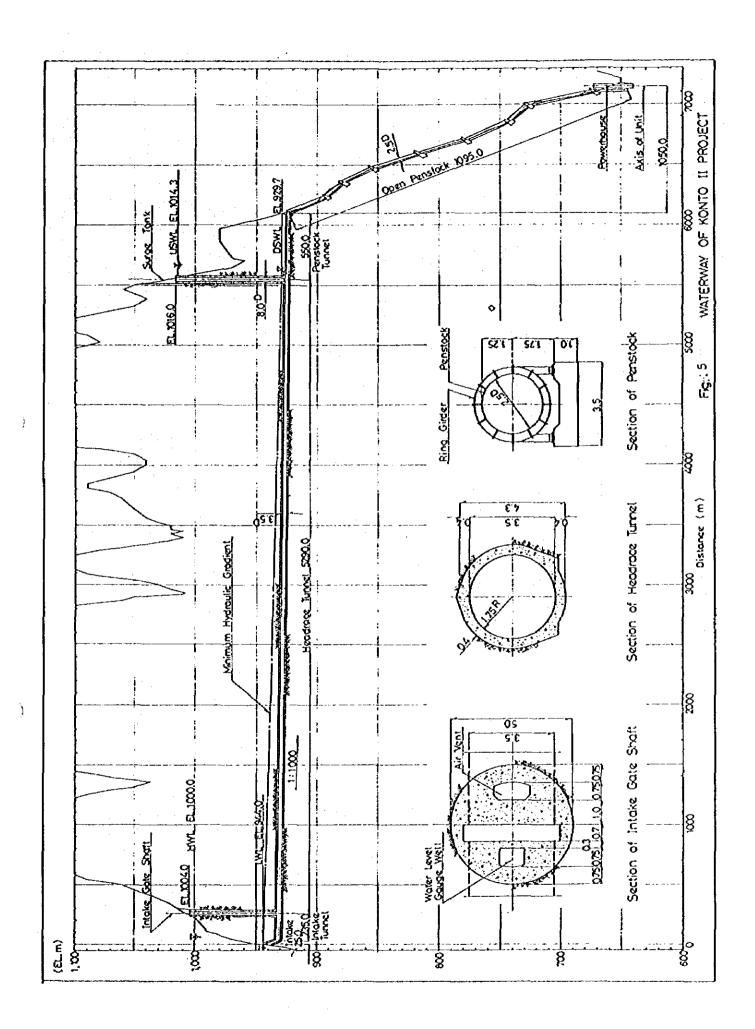
K. KONTO II SCHEME


| Item | No. Work                     |                                          | Unit                             | Quantity                                  | Unit<br>Price<br>(10 <sup>3</sup> Rp) | Amount<br>(10 <sup>6</sup> Rp)  |
|------|------------------------------|------------------------------------------|----------------------------------|-------------------------------------------|---------------------------------------|---------------------------------|
| 1.   | Civil Works                  |                                          |                                  |                                           |                                       | 114,689                         |
| 1-1  | Preparatory W                | orks                                     | L.S.                             |                                           |                                       | 8,495                           |
| 1-2  | Access Road (                | new)                                     | km                               | 4                                         | 275,000                               | 1,100                           |
| 1-3  | Relocation Ro                | ad                                       | km                               | 11                                        | 34,000                                | 374                             |
| 1-4  | Diversion Worl<br>Excavation | (s<br>(earth)<br>(rock)<br>(tunnel)      | ա3<br>ա3<br>ա3.                  | 9,200<br>9,200<br>44,900                  | 3.5<br>7.5<br>43.4                    | 32<br>69<br>1,985               |
|      | Steel support                |                                          | ton                              | 565                                       | 653.3                                 | 364                             |
|      | Concrete                     |                                          | <sub>m</sub> 3                   | 17,720                                    | 124.4                                 | 2,204                           |
|      | Reinforcement                | bar                                      | ton                              | 886                                       | 609.8                                 | 540                             |
|      | Consolidation                | grout                                    | m                                | 4,700                                     | 72                                    | 338                             |
|      | Sub-to                       | oal                                      |                                  |                                           |                                       | 5,538                           |
| 1-5  | Dam                          |                                          |                                  |                                           |                                       |                                 |
|      | Excavation                   | (earth)<br>(rock)                        | <sub>m</sub> 3<br><sub>m</sub> 3 | 400,600<br>267,000                        | 3.5<br>7.5                            | 1,402<br>2,003                  |
|      | Embankment                   | (random)<br>(core)<br>(filter)<br>(rock) | m3<br>m3<br>m3                   | 71,400<br>986,600<br>580,500<br>7,877,200 | 3.5<br>5.5<br>4.8<br>7.8              | 250<br>5,426<br>2,786<br>61,442 |
|      | Curtain & b                  |                                          | en .                             | 38,700                                    | 72                                    | 2,786                           |
|      |                              | total                                    |                                  | •                                         |                                       | 76,096                          |
| 1-6  | Spillway                     |                                          |                                  |                                           |                                       |                                 |
|      | Excavation                   | (earth)<br>(rock)                        | m3<br>m3                         | 236,000<br>235,900                        | 3.5<br>7.5                            | 826<br>1,769                    |
|      | Concrete                     |                                          | <sub>m</sub> 3                   | 42,350                                    | 94.6                                  | 4,006                           |
|      | Reinforcemen                 | nt bar                                   | ton                              | 847                                       | 609.8                                 | 517                             |
|      | Backfill                     |                                          | ե                                | 19,400                                    | 3.5                                   | 68                              |
|      | Sub-                         | otal                                     |                                  |                                           |                                       | 7,186                           |


<sup>--</sup> to be continued --


Table 5(2)


# CONSTRUCTION COST ESTIMATE FOR K. KONTO II SCHEME


| Item | No. Work                           | Unit                  | Quantity        | Unit<br>Price<br>(10 <sup>3</sup> Rp) | Amount (106 <sub>Rp</sub> ) |
|------|------------------------------------|-----------------------|-----------------|---------------------------------------|-----------------------------|
| 1-7  | Waterway                           |                       |                 |                                       |                             |
|      | Excavation (earth)                 | <sub>m</sub> 3        | 14,500          | 3.5                                   | 51                          |
|      | (rock)                             | <sub>m</sub> 3        | 33,800          | 7.5                                   | 254                         |
|      | (tunnel)                           | <sub>m</sub> 3        | 48,300          | 43.4                                  | 2,096                       |
|      | Steel support                      | ton<br><sub>m</sub> 3 | 1,400           | 653.3                                 | 915<br>5,651                |
|      | Concrete<br>Reinforcement bar      | m <sup>2</sup><br>ton | 45,430<br>2,200 | 124.4<br>609.8                        | 1,342                       |
|      | Vonsolidation grout                | m                     | 32,600          | 72                                    | 2,347                       |
|      | Sub-total                          |                       | •               |                                       | 12,655                      |
|      |                                    |                       |                 |                                       |                             |
| 1-8  | Powerhouse                         |                       |                 |                                       |                             |
|      | Excavation (earth)                 | <sub>տ</sub> 3        | 20,600          | 3.5                                   | 72                          |
|      | (rock)                             | m <sup>3</sup>        | 10,300          | 7.5                                   | 77                          |
|      | Concrete                           | m <sup>3</sup>        | 8,060           | 94.6                                  | 762                         |
|      | Reinfördement bar                  | ton                   | 403             | 609.8                                 | 246                         |
|      | Backfill                           | <sub>m</sub> 3        | 4,100           | 3.5                                   | 14                          |
|      | Architectural works                | L.S.                  |                 |                                       | 1,003                       |
|      | Utility works                      | L.S.                  |                 |                                       | 1,069                       |
|      | Sub-total                          |                       |                 |                                       | 3,244                       |
| 1-9  | Thansbasin Scheme                  |                       |                 |                                       |                             |
|      | Intake weir                        | L.S.                  | -               |                                       | 521                         |
|      | Connection tunnel                  | L.S.                  |                 |                                       | 12,623                      |
|      | Sub-total                          | •                     |                 |                                       | 13,144                      |
| 2.   | Metal Works                        |                       |                 |                                       | 16,039                      |
| 2-1  | Gates, Valve, etc.                 | tón                   | 68              | 5,150                                 | 350                         |
| 2-2  | Penstock                           | ton                   | 5,440           | 2,884                                 | 15,689                      |
|      | Generating Equipment including T/L | L.S.                  |                 |                                       | 9,430                       |
|      | Total                              |                       |                 |                                       | 153,302                     |
| 4.   | Engineering Service                |                       |                 |                                       | 15,330                      |
| 5.   | Administration                     |                       |                 |                                       | 7,665                       |
| 6.   | Base Cost                          |                       |                 |                                       | 176,297                     |
| 7.   | Physical Contingency               |                       |                 |                                       | 26,445                      |
|      | Grand Total                        |                       |                 |                                       | 202,741                     |

