Name	Furpo-	Location	Administrative		Specification	1
<u> </u>	5e	e Q	office	Leagth (a)	Width (m)	Lovest elevation o girder (m, SHVP)
-	Highway		•	÷	· •	-
Porong	Railway	•	PJKA, Pereng	151	4,4	-
Porong	Highway	-	-	· •	-	-
.	Railway	-	PJKA, Nojckerto	215	4.4	-
(ev Kojokerto	Bighyay	47.5 + 50				
ojokerto	Sighvay	50.8 + 180	Binamarga, Kojokertø	163	7.5	21.78
atudakon	Trolly	54.6 + 180	Sugar Factory, Gempolki	rep 123	3.8	24.34
2 \$ \$0	Eighvay	27.8 + 130	Binasarga, Jombang	152	6.0	33.36
1050	Railway	77.8 + 190	PJKA, Mediun	169	4.6	33.31
(ertosono		100.0 + 40	PJKA, Kertosono	179	4.7	45,00
(ertosono	Highway	100.6 + 40	Binamarga, Kediri	169	7.0	46.17
fongbirg		127.6 + 160	Sugar Factory, Krican	127	4.5	61,10
tediri	Sighuay	131.8 + 120	Binawarga, Kediri	161	7.7	63,92
lew Kediri	Highway	133.6 + 100	Binanarga, Kediri	153	9.0	67+00
eli	Trolly					
-	Railvay					
-	Highway					

Bridge

Intake

Nале Р	 po. Location			Specificat	ioa
8	 	····	Тура	Width (m)	Creat elevation (@, SHVP)
Voor II	-	(L)	Open chanael	•	-
Yoor I	-	(L)	Open channel	-	-
Jatikulon	47,4 + 170	(R)	Culvert	0.8	15,19
Mlisip	47.6 + 51	(L)	Open channel	8.0	13,10
Laseri	54,2 + 140 I	(L) –	Culvert	2.0	18,09
Gedek	55.4 + 99	(L)	Culvert	1,0	19.02
Gusbongan	58.0 + 100	ίú	Culvert	1,0	19.63
Sotovuluh	58,8 + 150		Culvert	1.2	20.79
Kedungsari	60.0 + 60		Culvert	2.0	19.06
atespinggir	62.6 + 33		Culvert	1,0	21.17
Keboan	64.2 + 82		Culvert	0.5	22,65
Bebekan	68.4 + 49		Culvert	1.25	23.62
Gotan	73.0 + 79		Culvert	1.8	25.97
Jatialerek	84.0 + 186		Culvert	1.5	30.83
Tunggorono	89.6 + 13		Open channel	9.5	33.57
Turipinggir	89.6 + 118		Open channel	2.0	32.70
Pengkol	93.2 + 179		Culvert	1.Ö	35.19
Kedungkudi	95.4 + 170		Culvert	0.9	36.22
Besuk	101.0 + 38		Culvert	1, 15	40.13
Banjareari	110.8 + 181		Culvert	2,0	46.32
Friçan Kriçan	128.4 + 60		Opeb channel	20.0	54.36

Note : (L) or (R) : Left side or Right side

Pumping station

		Administrative	Specification					
Nале	Location	Office	Type	Nos	Capacity (m/min)	Inlet Elevation of suction pipe (m,SHVP)		
Aficomoto	49.4 + 114	Ajinomoto Factory	Centrifugal	3	3 x 5.6	15,40		
Geapolkerep	56.6 + 111	Sugar Factory	Centrifugal	ź	2 x 26.6	18.73		
Kenturua	66.2 + 35	Sugar Factory	Centrifugal	ī	1 x 18.0	23.80		
Tapen	69.4 + 31	Sugar Factory	Centrifugal	2	2 x 25.0	23.71		
Bunder I	86.2 + 100	Irrigation	Centrifugal	3	3 x 10.5	30.41		
Bunder II	95.6 + 98	Irrigation	Centrifugel	3	3 x 10.5	37.83		

-{--¹

Note : Source : REF. RC 04

Table RC-2 EXISTING MAJOR RIVER STRUCTURE IN THE WIDAS BASIN

.

Bridge

.)

•	_			#iminigtratife	Specification			
****	Puspose	Location		office	Leagth Vidth Lovest eler		Lovest elevation o girder (m. SEVP)	
Videa #.								
Leaghoog	HickyAT	+			63.40		40.38	
2	Highway	¥-51	. k		50.30	-	44.20	
-	Highver	K- 4 + 180	2.18					
-	Righvay	¥-12 + 280	6,28		42.15		47.50	
-	Highway	¥+22 + 120	11.12		31 80		50.92	
-	Highway	¥-25 + 190	12.69		58.80		53.22	
-	Eighvay	A-20 + 550	17.22		51.25		59.04	
•	Bailvay	8-11 + 180	22.18		16.70		65.93	
-	Bighvay	Y-45 + 250			45.45		64.74	
ulo B.								
-	Bighvay	1- 3 + 240	1.74		15.50		44,76	
-	Highway	Q-10 + 350	5-35		16.60		42.15	
•	Highway	u-12 + 330	6.33		21.80		45,14	
-	Eighvay	8-19 + 100	9.5		13.70		19.76	
*	Highway	0-25 + 200	12.70		23.95		52.80	
-	Eighvay	0+27 + 220	13.72		NN,00		53.49	
-	Righway	0-28 + 27¢	14.27	PJKA	56.50		54,58	
•	Highvay	5-31 + 320	15.82		24.50		55.75	
-	Highrey	0-35 + 300	17.80		26.10		58.88	
•	Tighver	W+36 + 50	18.05		11.40		57.275	
-	Eighviy	0-38 + 250	19.25			•		
-	Bighvay	0-10 + 250	20.25					
Kuacis P.								
-	Bigbvay	Ke- 5 + 120	2.62		14.20		47.67	
-	Highvay	Ke- 7 + 130	3.63					
-	Eighwey	Ke- 8 + 250	4.25 5.50		14.40		19.06	
-	Highest	Kc-11 Kc-15 + 200	8.20		10.80		49.47	
-	<u>H</u> ighvoy Highvoy	te-16 + 170	8.17		19.00 14.80		52.59	
-	Highvay	Ke-19 + 150	9.65		9.50		52.26	
-	Eighvey	Kc-21	10.50		20.15		53,36 55,82	
-	Righway	Ec-21 + 310			23.50		56.55	
-	Bighvay	Te-24 + 120			23.55		59.10	
-	Eighway	Ke+25 + 40			21.95		60.18	
-	Highway	Ic-26 + 70	13.07		33.20		62.40	
-	Bighvay	Kc-29	14.50		17.20		66.81	
-	Highvay	Kc-33 + 170						
-	Highway	Ic-34 + 250						
-	Bi Chvar		17.41					
-	Righway	Ke-37 + 150						
•	Highvay	Kc-41	20.50					
Kedungacko		~ ~ ~ ~ ~		•	E1 30		62 63	
-	Eighway	E - 7 + 170	3.67	ðinnsarga Dafa	51,20 80,10		45.62	
•	Railway		3.20	PJKA	40.00		48.76	
-	Highvay Highvay	E -20 + 130			40.80		48,61	
-	dr.genal	F -<0 4 430	144.3		F2 + VV		10101	

Gate or Day

				Specification				
База	Purpose	Location		total vidth (=)	Gate height (#)	Foe. of span	Creat elevation (=,SEVP)	
viđas P.								
Ngudikan Gelatik		¥-49 ¥-49 + 1.95	21.5	45 54	2.50 3.75	1 16	74.61	
llo 2. & Xuncir Airi								
Keduagjedet Tirîpan Keliperso Kubcir		g-26 + 470 g-40 + 250 Vinorg r+	13.47 21,25 38.00	21 10.04 24.05	2.30 2.00	1		
Luncir B.								
Ispa≜ Kežonggerlt Kuncir		Kc-13 Kc-35 + 75 Kc-41	\$.50 17.58 20.50	17.85	2+20 3+10 1+90	3		

Note s

Source : Topo map with a scale of 192500

•

1.101. RC-3

```
BRIDGE
```

Xese	Purpose	Location	Administrative	*	Specification	
, EAU			Office	Length. (=)	Vidth (=)	Lovest Elevation of girder (a. Save)
It thung t Agrove	•					
Kendel	Righvey	at 7 + 105	BHTA/TA Irr.	110.6	7	83.63
Gampurdaret	Bighway	54 + 175	- ** -	90.8	7	82.06
Tanbangan	Bigdysy	62 + 100	· · · · · · · · · · · · · · · · · · ·	25	5,42	81.80
Geraikaa	Highver	81 + 28		56.1	5.5	82.30
Gantung I	Bighvay	85 + 100		60	2	83.89
Gantung II	Righway	95		42	5,42	83.005
Cluvok	Highway	97 + 188		42	5.42	81.68
Tulungegung	Bighway	114 + 157	_ #_	41,5	9	83.445
Senburg	Bighvay	121 + 50	_*_	24.6	. 3	52.120
Grobogan	Bighvay	129				
Gantong	Bighvay	134		42	5.5	\$2.57
Cluvok I	Highway	Kess conflu	ea ce -"-	20	5.12	-84.17
Cluvok II	Highway	with Farit	lguag -"-	20	5,42	84.17
it Paya						
Tanggulvelahan	Eighvar	CBE 45 1.4"	TA Isr	70	3	78.37
Singkil	Highway	CBX 35 2.4	_* -			79.03
Suvare	Bighvay	COL 7 5.2	_*-	70	3	£0.58
Bandung'	Rigbuay	CK8 0 5.9	•*-			83.03
Keragayu	Eighvay	CNB 47 6.2	_*-	54	3	83.69
Srikssdi	Highway	CNB 26 8.3	- ^p -	54 54	3	84.37
Sukorase	Sighway*	CSR 17 13.2	_*-	40		
Benda	Elgavay	CSR 5 15.15	-*-	50	10	85.37

DROP STRUCTORE

X 84 4	Location	Drop Height (=)		
arit Agung		- 4-		
Dros I	at 9 + 100 (confluence with Parit Raym)	0,69		
Dree II	91 + 90 (coafluence with Davir B)	53,0		
Drop III	101 + 102 (confluence with Ressinen Kirl)	0.67		
Drop IV	120 + 150 (upper and of Parit Agung)	4.30		
Drop A	8 + 39 (lover end of Perit Rays)	7.79		
Drop B	57 + 150 (lover end of Ngasinan Tanan)	8.81		
Drop C	90 + 112 (lower end of Davit R.)	8.92		
Drop D	100 + 57 (lover and of Ngasinan Kiri)	7.17		
Drop I	120 + 50 (lower and of Song R.)	5.30		

TUNNEL

Хала	T77+	59-	ecification		
		Elevation of Inlat (8, SEVP)	Elevation of outlet (w,SHVP)	Leagth (a)	Disseter (a.
South Talungagang I South Talungagung II	Civele Rorse shoe	64.5 63.5	43.8	950 1,160	7.9 7.5

GATE

	· · · · · · · · · · · · · · · · · · ·		Specification				
K410	Purpose	Location	Totel vidth (=)	Gate beight (m)		Crest eleve- tion (s.SEVP)	
Fgepen	Irrigation	Ngepen r.	-	-	-	-	
Jabung	Irrigation	Jati r.	-	•	-	· •	
Vidro	Irrigation, Flood control	Taving r.	29.5	4.28	•	95.25	
Bagoog	Flood costrol	Bagong	· •	•	-	•	
Bendo	Irrigation, Flood control	Fgastnes	36.6	7.21	2	86.29	
Sundergeyan	Irrigation, flood control	Ressinan Mgrowb	13.2	7.0	3	81.00	
	•••••	Ngaalaga Tunas	20.0	6.0	5	81.00	
Clavek	Irrigation, flood control	Neasigns Riel	8.0	5.3	2	75.70	
Tulungagung	rlood control	NACOVO E.	12.0	3.0	3	79.30	
Inlat Tunnel (I)	Vater supply	Farit Agung C	2.5	7.5	ĩ	63.75	
Jolet Tussel (11)	Water supply	Parit Agung C	7.5	7.5	1	63.3	

Note

.

Source 4 Ref. RG 05

TABLE RC-4 EXISTING DRAINAGE PURPS IN SURABATA URBAN ABER

I. GENUNGSARI PUNP STATION

%. Cratesge Area & about 75 ba

2. Pumps = 2 waits, Mooluel total capacity is 1.4 m3/s

Pusp Zo.	Tjp+	Disater { 28 }	Capitility (# /#)	Fourt	Installation	Pentrks
1. Borizont	al-tuo-way-centrifugal pump	600	0.7	fleetria #3- tor (29.5kv)	Before the world war'it	965 xpa.
2. - do -		600	0.7	- 60 -	- 60 -	965 rpe.

Renauka

1

a. Existing drainings even is about \$ he.

b. Estimated existing pump capacity is about 0.5 a 3/s.

IC. DARKO POWP STATION

1. Grainage Area : about 150 ha

Z. Puspa : 5 units, Scainel total especity is 5,15 m3/s

Pusp Xo.	Type	Distrier (4a)	6+P35543	Pover	Installetten	festra.
1. forfatat	al-one-say-centrifugel pump	400	0.26	Electria mo- tor	Before the world war II	
2. Tertical	-axial-flow-pump	600	3.1	- 60 -	- 60 -	
3 20 -		900	1.3	- do -	- do -	
4 do - (Ingersoll-Rand)	900	1.47	-do- (145ka)	1969	517 rgs. 8+ 10ft

Rezerks.

e. Exteting drainage area is about 245 ha.

b. Estimated existing pusp copacity is about 2.97 m³/s.

ILL. KUPANG PERP STATION

1. Creizege Arez ; about 210 bs.

2. Puape e S unite, Roeinel total capacity is 5.62 a³/c.

Pusy Ro.	Type	Distator (en)	Copycity (= /o)	Poviz	Installation	Penarka
1. Berleost		100	0.57	glectric sotor	Before the world wer II	
2 60 -		400	0,67	- 40 -	- 40 -	
3 do -		100	0.67	- 40 -	• do -	
1 do -		400	0.67	- 49 -	- 60 -	
5. Vertical	asis1-flow pump	900	1, 17	-do- (145 kw)	1969	417 zpe. 8. 10 fi
6 do -		900	1.47	-do- (165 kw)	1959	17 200 He 10 f

Resarks.

s. Existing drainage ares is about 214 ha.

b. Estimated existing pump capacity is about 3.94 m3/s

TV. REPUTRAN PUPP STATEON

). Orainage Area : about 15 ha 2. Fueps : 1 unit, Scainal total capacity is 0.12 a^3/a .

Pung Type Ko,		(sa)	(= /+)	5axes	Installation	Reserve
1. Ecriscutal-ode-vey-can (Indre type)	trifugel pump	250	0.12	ficesl englas	1953	30 hp. 200 spc.

Looi d

Recarks

s. Existing drainage area is about 29 ha

b. Estimated existing puop capacity is about 0.12 m3/8

V. PESAPEN FORP STATION

1. Droisage from 1 76 be 2. Puops : 3 units, Booinsl total capacity is 1.51 m³/s

Fump Ko.	Type	Diameter { ## }	Capacity (= /o)	Paver	Installation	Redarks
1. Sorizonta { Indra t	1-one-way-centrifugal pump	250	0.12	Qiesel eagine	1955	
2 40 -		250	0.12	- do -	1965	
3. Vestical-	sziel-flow pump	750	1,2?	Electric motor	197ð (under Installation)	465 rf#.

1.7

.

ł

Feastha

e. Existing drainage area is about 83 ha

b. Estimated existing pusp caracity is about 1.51 a3/a.

Hote & Source :Ref. RC 12

Table RC-5 DISCHARGE RATING CURVES INCLUDING FLOOD PLAIN

(1) Main Brantas

		Li	scharge (m ³ /	sec)	
Section No.	200	500	1000	1 300	1500
10 Km	5.07	5.74	6.36	6.60	6.77
20 Km	8.49	8.64	9.54	9,95	10.19
30 Km	11.13	12.17	12.83	13.17	13.27
40 Km	15.83	16.36	17.17	17.50	17.61
50 Km	19.21	19.84	20.50	20.87	21.07
60 Km	24.33	24.97	25.70	26.00	26.21
70 Km	29.06	29.65	30.37	30.70	30.90
80 Km	35.61	36.36	37.09	31,45	37.68
90 Km	41.50	42.07	42.83	43.00	43.10
100 Km	47.87	48.71	49.08	49.39	49.57
120 Km	55.63	56.75	57.46	57.62	57.74
130 Km	63.86	65.03	66.38	66.83	67.09
140 Km	72.50	73.55	74.84	75.34	75.61
150 Km	81.61	82.25	82.98	83.22	83.53

(Unit: EL.m)

(2) K. Widas

()

. .

		Discharge (m ³ /sec)							
	·	150	300	450	600	900			
5	Km	42.26	42.77	43.05	43.27	43.67			
10	Km	44.05	44.40	44.72	44.91	45.24			
15	Km	47.54	47.71	47.87	47.99	48.23			
20	Km	54.03	54.11	54.27	54.33	54.43			

(Unit: EL.m)

		(Main Brantas up to 139 K) (UX11: 10++6_12-)					
				00 .C. TEAR .)			
YEAL		<u>\$</u>		25			
			_1055331		-115661		
1925 1916	45426.	90699 91524	103576. . 111131	117016. _121555+	_129586. _125726	122419.	
1927	41952.	97515.	115877.	127269.	131093.	\$33622.	
		_151652 124050.	120834 126011.	132049+ 135332+	_136659 162556.	322779.	
	49355	1156624	_133418	_144267	14E670.	150932-	
1903	51546.	115356.	137047.	156485+ 156942+	155059.	157418.	
1995	54972.	125512.	169131.	167708	162703.	171269.	
1994		_110733	_155571 162259.	170276 170151.	_175927 183556.		
1995	61572. 	136506.	1677329.	_125876	191542.	194419.	
1957	£7027.	145858.	175675.	193939.	199855. _208536	202593.	
1998	<u>63985.</u> 72955.	<u>155160.</u> 161934.	<u>184352,</u> 192374,	202364+ _211165+	217609.	220917.	
2000		_165932+	_200758	_220375+_	_ 227091	_230542+	
2001	71273. 	1724534	206327.	2224490.	233400.	238949.	
2003	£2723,	183548+	212055.	239421	246731.	250427.	
	<u>85072</u> E7510.	_]E7 <u>270.</u>	_724310 230756	246251+ 252335+	253772 261076.	265095.	
2005	91315.	100112.	_237446	267614.	202653	23,273.9	
\$005	92642.	2113-5.	251582.	267308.	276513. 284668.	280731.	
\$005 9005	94313.	217972.	259050.	284424.	293128.	297603.	
2010	161130.	_224685	<u></u> .	_252937 301769	<u> </u>	<u>306516</u> . 315704.	
2011 2012	104174, 107327,	231241.	274835. _223175		_320459	_325358.	
2013	10/327	2352124	291228.	320442.	330262.	335313.	
2015	<u>117963,</u> 117515,	257623	<u>300807.</u> 110123.	310318 340545	_350927.	_165653+_ 356361+	
2016	121176.	285036.	319796.	3511484	101939.	367452.	
2017	124952.	277462. _286212	_153925 16231	382196. 373623	373303. 385096	379023.	
2019	13951.	295272	351033.	325606	397334,	403427.	
2220		_20036 312535	_362243 : 371509.	392£31 457599.			
2321		022251	_321055	4164884		437966	
2023	141051.	321796	390890. _401023	429295. _440428	42426. _453964.	449278, _463934,	
2025	151353 155875.	_217316 246972.	411463.	451675.	465790.	472343.	
2:26	159257.	_355126	472219.	441714	490528.	493064.	
2027	184057. 	36445C. 374049	433301.	475895. {888447		_522200	
2058	172554.	381940.	456425.	\$01369.	51674D. 530525.	524734	
2233	<u> </u>	_ <u>194112</u> 464613.	467101.	<u>514690.</u> 528410.	566676.	553050.	
2332	187529.	_415355+	493974		.559250	_567258~	
2033	102066. 197213.	4288C6. 438097.	\$07239. _\$20904	_\$\$71!\$• _\$ <u>7</u> 2!\$ <u>\$</u>	574212.	581117. 598341.	
2015	202540.	445029.	\$34995.	587633.	605724.	615045.	
2012	2029	_402163 474720.	_549512+_ 564472+	620022.	_622156 639115.	631744. 648953.	
2036	219516.	467673.	579851.	636963.	656520.	686629.	
2039	225524.	501039+ 514*C7+	595781. _632355	654422.	674579, _673133,_	684967. 201806	
2011	237627.	527469	627815+	689620.	710867.	721817.	
2042	243726.	_541509 555436.	_643921 669429.	707317+ 725521+	_729111+_ 747878,	240344. 759402.	
2043	2564261	_569263	622331				
2645	76*263.	584501.	695CE3,	763511.	787044.	799174, 819921	
2022		414741.	- 78148E.	131715.		£41264.	
		_4312014 _					
2010	291541. 299151	647217. 666592.	770381. 790586.	846267. 	872361. 895262	885813. 909055.	
5.564	107010	A63376.	211374		G1870A.	012647.	
2052		<u>76</u> 02584 7157584	_8;2762 854769.	9,14±10+_ 938590+	<u>941024.</u> 987953.	957570+. 982885	
	123448. 	. 737793		_951870	. 993502.	10019324	
2035	349319. <u>769</u> 36 <u>5</u> .	2575204	920212. 926657.	\$39470. 1015812	1019995, 1047152.	10357331	
2637	357212.	792213.	949357.	1047539.	1075097.	1091689.	
		4/3678	774743.	_1070213		<u>1120391</u> . 1150942.	
2019	121213	tt+17c.	1027751.	11296564	1163399	1181867.	
	190151	FF7473.	1955618.	1159454.	1195236.	12136434	
2043	621158.	934063.	1111191.		7265626.	1280139.	

Table RC- ⁶ (1) ESTIMATED ANNUAL FLOOD DAMAGE (Main Brantas up to 139 K)

			ERAN PERF	QD CLIERF .)
. YEPP	.)2		10		
	*************		********		*************
_1984 1985	42776.	91237 \$4885.	1((222 112820.	 123523.	
		\$1326		. 120206+	_ 13311933
1987 1976 -	48422.	102143. 107546	122635.	- 134712.	138865. 340
1929	55487.	112145	123126.	1404824 \$484874	164752+347 350922+353
1990	57046.	11/049.	139049.	1527.9.	357446. 350
1991	54910.	121027	145013.	159290. 168133.	166199. 186
1593	55726.	1276.4	157752.	17:210.	172619. 181
_1996			_144551+_	130748+_	126316129
1995	61004. 	166356+	171655.	188347. 196699	194357. 197
1997	19754.	157147.	186831.	205215.	211535. 214
F993 1959		122°64 171678.		214134 222413.	224220705224 2352 92225
2000	E(3*6.	17:5:3	_212250		240309
2001	£2615.	167475	\$18156+	23-025.	247004. 230
2562		_12:640 191977,	_224252+_	248380 253345.	25 <u>1951</u> ,257 261155,265
2504	19811,	154513.	217674.	261200	_232622. 272
2005	92300.	205255.	244059.	267166.	276377. 280
2102	95066 97242.	231216 2173*6	251146 _258502.		256416+268 292754+297
2008	100721.	221797.		252324	
2005 2010	103767.	237544	232253.	301075. 	310378, 315 319658, 324
2011	110019.	211105	290769.	319465.	329343. 334
_2012		2:1917	_ 299604		
2013	116213.	259617.	328770. 	339258. 269215	369755. 355
2315	124176.	275895	322146.	301563.	371726. 377
	127928+	_263 625 + _	238383+_	371556*_	
2017 2018	131992.	202677	.200346 20036	387449. 395617	395379. 4D1
2019	140473.	312226	371463.	495192.	420844. 427
2620	146952 142655.	-322253	323329+- 393142+	421240 432635.	434300441 445433. 452
		3319(9	403263		
2023	152409-	347754	413684.	456616.	463717. 475
_292\ 2625	169461 166876.	156773+ 36f0t5+			
2.,20	153932.			491106-	_506349514
2027	172363. 177923	3855D). 395863	458614.	517312 517312	\$19660. \$27 533375
2029	182625,	406123.	463172,	531615.	\$47505. 556
2030	167426 152479.	416921			
2037	127625	428627.	509245. 522826	555620. 574670	577066, 586 592524, <u>6</u> 01
2033	262927.	451294.	\$36920.	\$96115.	602452. 617
2ù34 2ù35	201391.				
_2636					
2037	225666.	\$02211.	\$97523.	656749.	677768. 687
2632		515422. 530021.	813858. 330682.	874898. 897395.	. 695677. 706
_2010		\$14627			
2041	251132. 257542	552541. 572253	6845F2. 	730466.	753187. 764
2043	264156.		699136.	1891734 7884594	7923(6. 204
			217161		
2645	277957. 	61*291.	735700+	202657. 	233820. 846 255461
	292560. 305177 J61014.			272320+- 891205.	
2651	324370.	721520.	852661.	947245	975229. 985
3563	132903 347672.	- 246528			
				1620578.	1052358 1068
3684	260024	****	011074	6647414	1010333 1003
2017	379419.	246130.	10044741	1104155.	1132545. 1156
2658	119512.		.1031294	_1133=42+ .	_11619121187
2059		884726	1058892.	1163984.	1206241. 1218
2:62	4336*2.	267622	11475554		1299665. 1119
2383		52°6964	1777535.	3294421.	1334751+ 1355

. È

TableRC-6 (2)ESTIMATED ANNUAL FLOOD DAMAGE
(Main Brantas up to 159 K)

				ťu	5131-105-6			
YEFK		5. /	10	?>	\$0	100		
1985				7039	2016			
1925	2455.	\$793.	7116.	£020.	2364.	8555		
_1986 — _1987		(043 (305.		5366 5728.	€724 9101.	2524 9310		
.1926			5673		4495			
1959	2946.	6564. 7163.	8423.	\$\$CD.	9907.	10133		
<u>1990</u> 1991	<u>?:14.</u> 3208.	7475.	*7 <u>15</u>	<u>- 6513.</u> 16344.	<u>)0137.</u> 10786.	-10523		
1992	3349					11512		
1993	34°5. 3085	. 8161. 	-9192 	11265. 11757	\$17464	12614		
1995			10882.	-12271.	12259 12794.	12538 13086		
1996	3576.	5259.			1115	12659		
1997 1998	4151. 4334.	***** 16091.	11856.	11370.	13946.	14258		
1999		11536.	12924.	16571.	15192.	15538		
2000	4725	1001	13494	_**!3.	_15562	16223		
2065	.494C. 2955.	15271. 11551.	13625. 	_ \$5593. 13527	16259. 16670.	16630 17631		
2:03	5071.	11*41.	14574		17355	174.88		
2006	. 3055	12123.	14976.	16216.	17532.	17960		
2005 2005	5339. 5476.	12453.	15252.	17234. _12257	17995.	15409 18695		
2007	5617.	12916.	16105.	17177.	1.910	19398		
2008		1769.		11443.	19469.	19919		
2009	5915. 4572.	13935. 16198	1697E.	19188.	19996.	20459 21019		
2011	. 2753	14573.	17915.	2(23).	21109.	21599		
2012		14972.	1E409	_2(192	_23695+_	22200		
2013	£579.	15366. UL11	16921 . 	21374.	22303.	22823		
2015	5517.	16251.	20002	22056.	22575.	24137		
2016	<u></u>				24252	24230		
2017 2018	7344.	17597 . 17691	22162. 21774	21917.	24983. 	25548		
2619	7729.	15203.	122405	25332.	26442.	27066		
2020			23644	_24676		_27644		
5055	2928. 2379	15195. 15670	23636.	21725.	27899 . 	28557		
2023	2572.	26139.	24629.	2*679.	20315.	30608		
.2024		2:6+3 21583.		22758 24516.		_30747		
2025	9026	21219	20206.	;;;;,,	30519. 31527.	31550 <u>12357</u>		
2027	9478.	22272.	27466.	316474	32418.	33168		
20288502	9977.	<u>228611</u>	25149 28675.	_31440		34045		
2029 2029		24073		32672.	34517.	31929		
2031	16492.	24657.	30396.	14398.	35923.	36779		
2032	1048,	_21100	<u></u>	36234+	35867 37641,			
2034	11327-	21144.		_17)94	_3:240	35774		
2035	11625.	272514	32221.	32364.	39821.	40835		
203e 2037	<u>11542.</u> 12256.	-21:26-			42048	61 <u>9</u> 29 63057		
2038	12575.	20379.	16516.			44220		
2039	12921.	30356.	37560.	62462.	41354.	45419		
2040	13265 13656.	_312)1 32022.		13615 11718.	45580;			
2042					. 47899.			
2043	36292.	37860.	11516.	47020.	49120.	56363		
2644	15026 .	<u>14(05.</u> 35375.	43664.	4:222	<u>50377</u> 51670.	29552 57915		
2646	154C6+		_ 4783			54276		
2047	15862.	37213.	45939.	52(40.	56370.	55682		
2048			42342					
2050	12954.	4:170.	E DADA .	84203.	\$\$721.	40143		
2051	17496.	41222.	10902	57673.	60259. 61841 63469.	61717		
2053		 4?497.	53605		516411 63669.	76660 <u>-</u> 85004		
2056	12420. 	_4454E+		82345+	85245	66723		
2035	10368.	11177.	54471	.1665.	AA820.	68490		
3062	25432	16176	COKA 2.	A7163 -	70172.	<u>70310</u> 72183		
2058		69456		69241		74111		
2059	21522.	56774.	42725.	71C93.	74292.	78096		
3644	53407.	23436	4/110	****	11110	78139 80243		
2062	22305.	56985.	17514.		#0151.	\$3169		
2063	23931.	57445.	69749	1067.	£2679.	84619		

ŝ j

.

Table RC-6 (3) ESTIMATED ANNUAL FLOOD DAMAGE (K.Widas River Basin)

RC-46

÷

.

Table RC-7 REQUIRED WORK QUANTITY OF ONGOING BRANTAS MIDDLE REACH RIVER IMPROVEMENT PROJECT

;

Item	Unit	Stage I	Stage II	Total
1. Dredging works	10 ³ m ³	7,160	8,700	15,860
2. Excavation in high water channel	10 ³ m ³	194	1,005	1,199
3. Embankment works	10 ³ m ³	485	731	1,216
A. Revetment works				
- Wet massonry	m	8,837	26,000	34,837
- Gabion mattress	I Ťi	5,316	10,000	15,316
- Groyne	Bi	4,658	6,500	11,185
• Modification works				
- Irrigation intakes	places	3	-	3
- Syphons	places	1	-	1
- Minor roads	m	2,225	7,650	9,875
- Irr. & drainage channel	m	4,450	7,650	12,106

Table RC-8(1) CONSTRUCTION COST FOR KUNCIR DAM SCHEME

I. Vidos					(Unit ; Rp. 10 ⁶)	
l t e p	Cait Cost	Schepe 1		Schege 2		
	(Rp)	Quantity	Cost	Quantity	Cost	
Excavation $(10\frac{3}{3}\frac{3}{2})$	2,000/=3	7.440	14,680	7,669	15,338	
Eabankment (10's')	1,900/m	2,248	2,372	1,245	2,372	
Revetuent - Vetussonry (m ²)	22,000/s ²	29,080	640	29,680	640	
Bridge - Sighway ₁ V ₂ = 5 a	1 + 10 / 5	5.750	5.750	5,750	5,750	
Land (10 ³ a ²)	scol.	7.455	11 199	7,465	11.199	
Building class III (nos)	1,500/g ² 0.5x10 ⁶ /pos	130	65	130	65	
Total			34,905		35.364	
X. Kedungsoko	······································				8	
					(Unit : Ro. 10 ⁵	
lter	Unit Cost	Scheat 1			Scheze 2	
	(Rp)	Quantity	Cost	Quality	Cast	
Excertion (10)23)	2.000/=	818	1,636	966	1,972	
Esbankmont (10 a)	1.900/*	529	626	329	626	
Revelient - Veliasonry (a ²)	22,000/a ²	1,670	51	1,670	77	
Bridge - Eighvay $V = 9 \ge (m^2)$	1.35:10 ⁶ /s ² 24 x 10 /y 1.509/s	1,350	1.796	1,350	1,796	
- Signary 7 - (-) - Sailwaw (n)	24 - 10 /-	150	3,500	150	3,600	
- Railway (p) Land (10'z')	1 miles	517	158	547	821	
Building class JII (nos)	0.5210 /005	45	23	45	23	
			8,539		8,875	

K. 810

(Ualt : \$9.10⁵)

Item	Bait Cost Schepe 1			Schese 2	
	(Rp)	Questity	Cost	Quantity	Cost
Excavation (10^{3})	2,000/03	434	853	1,135	2.270
Enbankment (10's')	1,900/a	270	51.3	340	848
Revetoent - Vetassonry (s ²)	22,000/=2	8,890	196	6,930	195
Bridge - Bighway V + S a	1 x 10 ⁶ /a	2,500	2,500	2,500	2,500
Sluice (e) 3	80 x 10 /a,	30	2,400	30	2,100
Land (10 m)	1,500/21	1,340	2 010	1,340	2,010
Building class III (BOS)	0.5 x10°/aca	65	35	65	33
Total			8,520		10,055

X. Kuncie

(Unit | Rp. 10⁶)

Itea	Calt Cost	Calt Cost			2
	(Rp)	Quality	Cost	Quality	Çast
Excavation $\begin{pmatrix} 10 \\ 3 \\ 3 \end{pmatrix}$ Embarkment $\begin{pmatrix} 10 \\ 9 \end{pmatrix}$	2,000/s 1,900/n	326 296	652 563	712	1,424 675
Feretzent - Yetzasopry (2 ²)	22,000/a ²	4,690	104	4,690	104
Bridge - Sighvay ¥ = 5 m (m ²) Sluice - 2(m) Land (10 ⁻ m) Building class 111 (nos)	k z 10 ⁶ /a ² 80 z 10 ⁹ /a 1.500/a ² 0.5z10 ⁹ /nos	2,750 30 1,013 65	2,750 2,400 1,520 23	2,750 30 1,013 45	2,750 2,400 1,520 23
fotal	••••	.,	8,012		8,896

Note : Price level in Sept. 1984 is adopted_US3 1 - Rp. 1030

Table RC=8 (2) CONSTRUCTION COST FOR KUNCIR DAM SCHEME

1.4.2.	Unit cost	Schen	ne 1
Item	(Rp)	Quantity	Cost
Excavation (10 ³ m ³)	2,000/m ³	4	8
Dam concrete (10 ³ m ³) (including all facilitie	83,000/m ³ es)	310	25,730
			0r 770
Total Backwater levee in K. Wi	das	(Uni	25,738
Backwater levec in K. Wi	· · · · · · · · · · · · · · · · · · ·		t : Rp 10 ⁶)
Backwater levec in K. Wi	das Unit cost (Rp)		t : Rp 10 ⁶) and 2
Backwater levee in K. Wi I t e m	Unit cost	Scheme 1	t : Rp 10 ⁶) and 2
	Unit cost (Rp)	Scheme 1 Quantity	t : Rp 10 ⁶) and 2 Cost

US\$ 1 = Rp. 1030

	н. - С		Economic Price					
			1984			1995	×	
		US\$/ton	Rp./ton	Balance	US\$/ton	Rp./ton	Balance	
1. F	'OB Bangkok	285	293,550		411	423,330		
F (xternal Trans- portation Cost (Bangkok- Surabaya)	27	27,810	265,740	27	27,810	395,520	
	landling Charge Warehouse Cost		7,600	258,140		7,600	387,920	
£	nland Trans- xortation Cost Surabaya- kojokerto) <u>/1</u>		2,750	255,390		2,750	385,170	
R	Celling Price of Rice at Ex-mill Mate			255,390			385,170	
	ealing Price of Paddy (1 : 0.68)			173,665			261,916	
5. M	lilling Charge		5,875	167,790		5,875	256,041	
	Pransportation Cost		1,970	165,820		1,970	254,071	
	arm Gate Price f Paddy			165,820			254,071	

Table RC-9 ECONOMIC PRICE OF PADDY (FOR EXPORT)

Source	:	"Price Prospects for Major Primary Commodities" December 1983
Notes	:	Projected price at 1984 constant price Exchange rate US\$ 1 = Rp. 1,030
<u>/1</u>	:	Surabaya-Mojokerto 50 km which reflects the average distance between Surabaya and Brantas Basin.

.

Table RC-10	ECONOMIC	PRICE OF	MAIZE	(FOR	IMPORT	SUBSTITUTION)
-------------	----------	----------	-------	------	--------	---------------

				Economi	c Price		
			1984			1995	
		US\$/ton	Rp./ton	Balance	US\$/ton	Rp./ton	Balance
1.	Projected Price	132	135,960		139	143,170	
2.	External Trans- portaiton Cost (CIF Surabaya)	34	35,020	170,980	34	35,020	178,190
3.	Port Handling and Warehouse Cost		8,870	179,850		8,870	187,060
4.	Inland Trans- portation Cost (Surabaya- Mojokerto)		2,750	182,600		2,750	189,810
5.	Transportation Cost (Farm to Wholesalers)		-1,960	180,640		-1,960	187,850
	Farm Gate Prices			180,640			187,850

Source : "Price Prospects for Major Primary Commodities" December, 1983

ļ

.

Wonorejo Dam and Irrigation Project (Tulungagung II) November, 1984.

Table RC-11 ECONOMIC PRICE OF SOYBEANS

			Economic Price					
			1984			1995		
		US\$/ton	Rp./ton	Balance	US\$/ton	Rp./ton	Balance	
1.	Projected Price	300	309,000		330	339,900		
2.	External Trans- portation Cost (CIF Surabaya)	34	35,020	344,020	34	35,020	374,920	
3.	Port Handling and Warehouse Cost		8,870	352,890		8,870	383,790	
4.	Inland Trans- portation Cost (Surabaya - Mojokerto)		2,750	355,640		2,750	386,540	
5.	Transportation Cost (Farm to Wholesalers)		-1,960	353,680		-1,960	384,580	
	Farm gate Prices	;		353,680			384,580	

Source : Price Prospects for Major Primary Commodities by IBRD December, 1983.

,

Table RC-12 ECONOMIC PRICE OF PEANUTS

			Economic Price					
			1984		1995			
		US\$/ton	Rp./ton	Balance	US\$/ton	Rp./ton	Balance	
1.	Projected Price				451 <u>/1</u>	464,530		
2.	External Trans- portation Cost (CIF Surabaya)				34	35,020	499,550	
3.	Port Handling and Warehouse Cost					8,870	508,420	
4.	Inland Trans- portation Cost (Surabaya- Mojokerto)					2,750	511,170	
5.	Transportation Cost (Farm to Wholesalers)					-1,960	509,210	
	Farm Gate Price			985,700-	<u>′2</u>		509,210	

Notes: <u>/1</u> Wonorejo Dam and Irrigation Project (Tulungagung II) Because of no data on peanuts in "Price Prospects for Major Primary Commodities" by IBRD, the above report is referred to.

> <u>/2</u> Owing to no data on world price of peanuts, 985,700 Rp. are average price in East Java in August, 1984. Therefore, it must be treated as financial price.

Year	Mortgage (106) Rp. per Household	Rural	use Urban) Rp.	Industry (10 ³) Rp.	Commercial Sector (10 ³) Rp.	Hotel Store (10 ³) Rp.	Deflator
1979	2.3						62.8
1980	2.6						68.9
1981	2.6						72.8
1982	2.8						81.8
1983	3.7			370		, * *	88.8
1984	4.04	32.9	39.1	220	180	145	100.0
1990	7.93	64.9	76.7	432	353	285	167.0
2000	24.5	199.5	237.1	1,334	1,091	879	397.0

Table RC-13 FUTURE PROJECTION OF UNIT COST PER m²

Notes: Mortage rate is tentatively applied to projection of future increase of unit cost. Price deflator is derived from Combined CPI of 17 cities (Statistik Indonesia 1983).

Table RC-14 FUTURE UNIT COST PER m² AT 1984 CONSTANT PRICE

	Hous		Industry	Commercial Sector	Hotel/Restaurant
Year	Rural (10 ³)	Urban Rp.	(10 ³) Rp.	(10 ³) Rp.	and Store (10 ³) Rp.
1984	32.9	39.1	220	180	145
1990	38.6	45.9	258	211	171
2000	50,3	59.7	336	275	221
2020	80,9	96.1	541	442	356
2040	124.3	147.6	831	679	547
2060	182.9	217.1	1,222	999	805

.

ł

	Ho	use		00000	(10 ⁻³) Rp.
Year	Rural	Urban	Industry	Commercial	Hotel
1984	905	2,580	302,500	107,910	23,925
1990	1,062	3,030	354,750	126,500	28,200
2000	1,383	3,940	462,000	164,860	36,470
2020	2,230	6,340	743,875	264,980	58,740
2040	3,420	9,740	1,142,630	407,060	90,260
2060	5,030	14,330	1,680,250	598,900	132,830

Table RC-15 FUTURE INCREASE OF BUILDING COST AT 1984 CONSTANT PRICE

.

.

.

Table RC-16 PROJECTION OF POPULATION AND HOUSES

	1985	2000	2020	2060
(1) East Java (2)+(3)				
Population	31,328,400	37,587,700	45,727,600	64,920,424
(2) Other Area				
Population	28,160,600	33,895,100	41,235,400	45,481,820
(3) SMA				
Population	3,465,000	6,119,000	13,056,000	19,438,604
Brantas Basin exc. SMA				
Urban (Population)	1,819,700	2,635,400	4,318,400	5,271,877
Accommodated person	4.88	5.55	6.00	6.00
No. of Houses		479,163	-	
	(1	.68%) (2	2.05%) (0	1.5%)
Rural (Population)	6,436,400	6,701,600	7,671,600	7,977,468
Accommodated person	4.88	5.00	5,55	5.55
No. of Houses			1,394,836).19%) (0	1,451,731).1%)
: 				
U + R (Population	8,256,100	9,337,000	11,990,000	13,249,345

Note: Parentheses indicates an annual increase rate of houses.

Table RC-17 FUTURE INCREASE OF BUILDINGS

•	*****				Unit: 8
	Hou	ise		Commercial	Hotel
Year	Rural	Urban	- Industry	Commercial	noter
1984			· · · · · · · · · · · · · · · · · · ·		
	0.11	1.68	1.5	1.5	2.0
2000	0.19	2.05	1.0	1.5	1.0
2020	••••	2.00			
	0.1	0.5	0.5	1.5	1.0
2040	:				_
	0.1	0.5	0.5	1.5	1.0
2060					

Annual rate of Increase (Building

Table RC-18 ESTIMATED VALUE OF HOUSEHOLD EFFECT IN 1983

			Unit: Rp.
Particular	Percent (%)	Monthly Expenditure	Estimated Amount of Household Effect
1. Food, Beverage, and Tobacco	79.01	36,557	1,219
 Household furnishing & equipment 	6.05	2,800	504,000
3. Clothing & other wear	5.63	2,607	62,570
4. Personal effects	4.02	1,860	111,600
5. Others	5.29	2,448	-
Total	100.0	46,274	679,390

Notes: Amount of household effects was estimated by assuming the following;

- Food, beverage and tobacco: Equivalent to one day family expenditure to these things

- Household furnishing and equipment: Equivalent to fifteen years family expenditure to these things
- Clothing and other wear: Equivalent to two years family expenditure to these things
- Personal effects: Equivalent to five years family expenditure to these things.

Source: PBME Widas and PBME Tulungagung in 1982/83

Year	Properties	Deflator	Adjusted Deflator	Properties const., price 1984 = 100
1981	530,551	112,2	75.5	
1982	547,121	122.9	82.6	
1983	679,390	137.4	92.4	
1984	745,403	148.7	100.0	745,403
1990	2,053,531		236.0	870,140
2000	11,117,787		989	1,124,144
2020				1,778,412
2040				2,684,390
2060				3,888,407

Table RC-19 FUTURE INCREASE OF HOUSEHOLD EFFECT

Note: It is assumed that value of properties (current price) will increase at a growth rate of 18.4% up to 2000 year. CPI (Consumer Price Index) is assumed to increase at a rate of 15.4% p.a. up to 2000, which is based on rate of increase of CPI between 1970 and 1983.

Table RC-20 PROJECTION OF FUTURE PER CAPITA INCOME

Year	GRDP of East Java (const, price 1984 = 100) 10 ⁹ Rp.	Population (East Java) 10 ³	Monthly per Capita Income (const, price 1984 = 100) Rp.	No. of Buildings
1984	11,324	30,868	30,500	454,016
1990	15,792	33,139	38,730	511,296
2000	25,723	37,153	57,680	623,267
2020	56,346	46,184	101,748	760,504
2040	112,116	56,757	164,614	927,959
2060	223,087	69,117	268,973	1,132,286

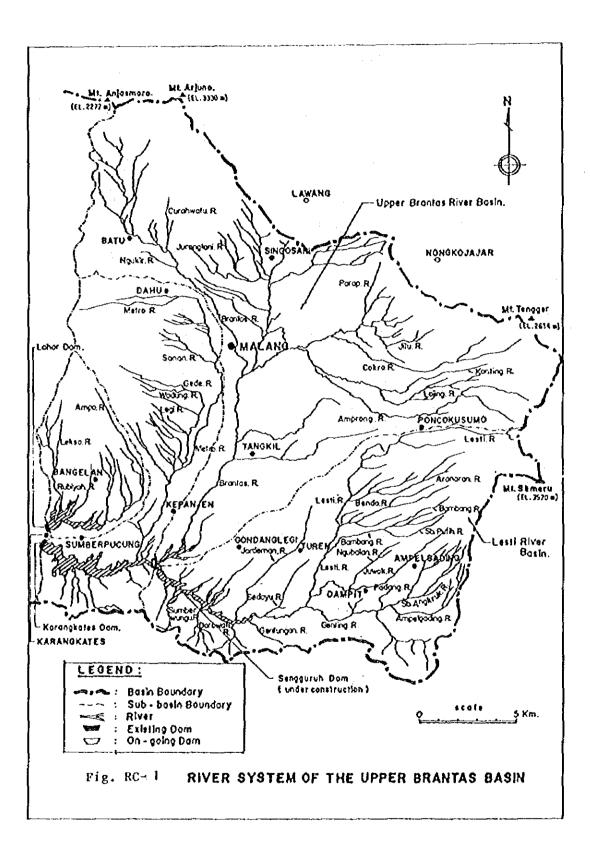
Note: GRDP of East Java is assumed to grow at about 15.2% p.a. nominally from that of East Java (8,532.8 x 10^9 Rp.) in 1982. The number of buildings is assumed to increase at rate of 2% annually during 1984 ~ 2000 and at 1% p.a. during 2000 - 2060.

The population projection (East Java) in 1990 and 2000 is shown in section of 3.4. The estimation of GRDP of East Java up to 2000 is already shown in section of 2.3.

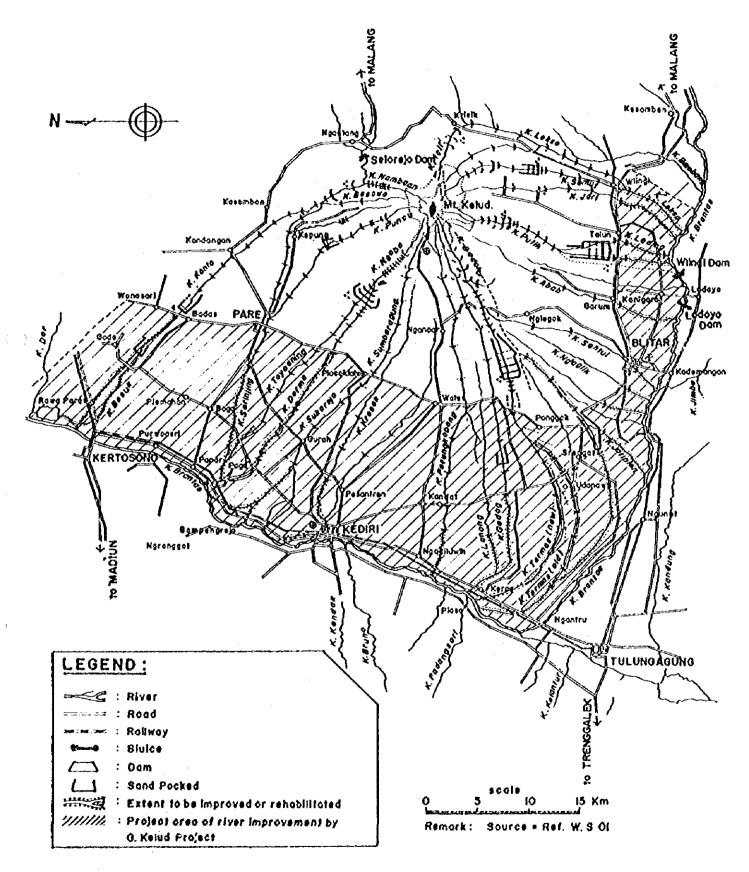
			per 1984 cc	instant price
Year	Household Effect	Hotel/Restaurant and Store	Industry	Commercial
1984	745,403	1.82 x 10 ⁶ Rp.	7.2 x 10 ⁶ Rp.	32 x 106
1990	870,140	2.39×10^{6}	14.16 x 106	37.4×10^6
2000	1,124,144	3.27 x 10 ⁶	17.87 x 10 ⁶	42.0×10^{6}
2020	1,778,412	5.14 x 10^{6}	34.1 × 10 ⁶	68.0 x 10 ⁶
2040	2,684,390	7.47 x 10 ⁶	64.4 x 10 ⁶	98.0 x 10 ⁶
2060	3,888,407	10.84 x 10 ⁶	95.3 x 10 ⁶	145 x 10 ⁶

Table RC-21 ESTIMATED VALUE OF PROPERTIES PER BUILDING BY SECTOR

Table RC-22 PROJECTION OF UNIT VALUE OF FISH PER HA IN EAST JAVA


Year	Deflator	Value of Fish (10 ⁶) Rp.	ha	Unit Yield (ton/ha)	Value/ha (10 ⁶) Rp. current	Value/ha (10 ⁶) Rp. 1984 = 100
1977	58.1	9,099	33,700	0.73	0.27	0.46
1978	62.8					
1979	67.8					
1980	75.6	18,604	37,566	0.64	0.49	0.65
1981	84.6	26,213	38,958	0.79	0.67	0.79
1982	90.2		3	· .		
1983	92.5		r f í			
1984	100.0	32,945	38,958	0.84	0.84	0.84
1 						
1990						0.94
1 1 1 1						
2000				1.15		1.15
2020						1.65
2040						2.28
2060						3.06

Source: Statistik Indonesia, 1979 and 1983.


Year	Deflator	Value/ha 10 ³ Rp. (current price)	Value/hr 10 ³ Rp. (const, price 1984 = 100)
1984	100	130	130
1990	236	333	142
2000	989	1,602	162
2020			207
2040			262
2060			320

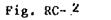
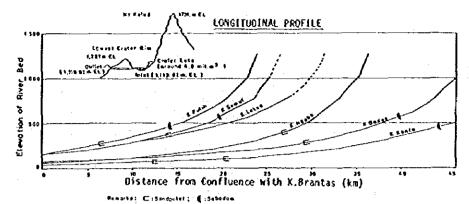

ì

Table RC-23 PROJECTION OF FISH POND FACILITY VALUE



₹, ÷

RIVER SYSTEM OF G. KELUD BASIN.

RIVER SLOPE

Elevation River	- 100	- 200	- 300	- 400	- 500	- 600	- 700	- 800	- 900	-1000	-1,109	-1,200
Lekso	- ·	160- 1/1375	1/61	1/50	1/36 5	1731.5	1/18 5	1/15.5	1/14	1/8	1/3	1/5
Seriot	۰. ۲	-	215 1/55.9	1842.5	1732 5	1/17.5	1/20 5	ากร	125	¥85	-	- ·
Putih	-	150 - 17 60	¥55	¥40	1/ 30	1/225	1/17	1/13	1/95	¥8	1/6	14
Badak	75 - 17480	1/136	V56 5	¥42.5	V 30	W 285	145.5	11105	V9	1/3	1/8	1135
Gedak	75 • V390	1/11 2.5	1/50	V425	1/ 32.5	V 255	1/11.95	1/ 7.5	- ,	-	-	-
Petung- Kobong	75 - 1/220	1/120	1150	W 37. S	1/27.5	¥225	V)7	- '	-	-	-	-
Sutoreja	55- 1/188 9	1/ 99	1741	1/30	1/30	1/15	1/18.5	1/17	103	¥4.5	-	-
Ngoba	55 - V216 7	1/ 97.5	1743	1/345	W 2 2 5	11185	11125	¥ 8	1185	170	V 8	1145
Serinjing	40 - 1/300	1/102.5	1/42.5	1/29	1/21	1/15 5	1/16.5	1/13	1/7.5	1/ 2.5	1/4	1/4
Konto	40 - 17381.7	1/106	1/51.5	1/45	1/30.5	1/ 65	1/10.5	1/10	V7	17 6	V S	va

Remark. Sourse : Ruf. #\$03

Basin <u>No.</u> I

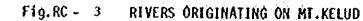
X XI

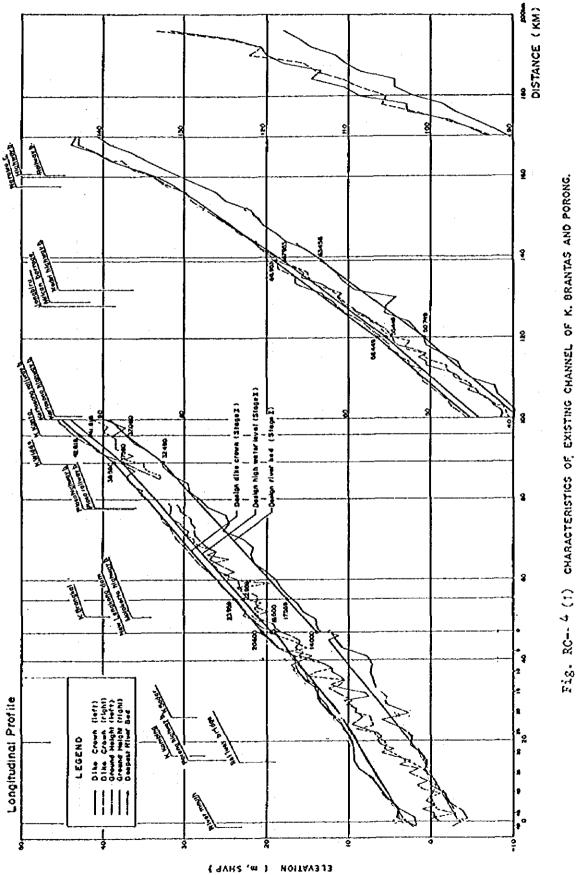
Total

River Lekso

Jari Putih Abab

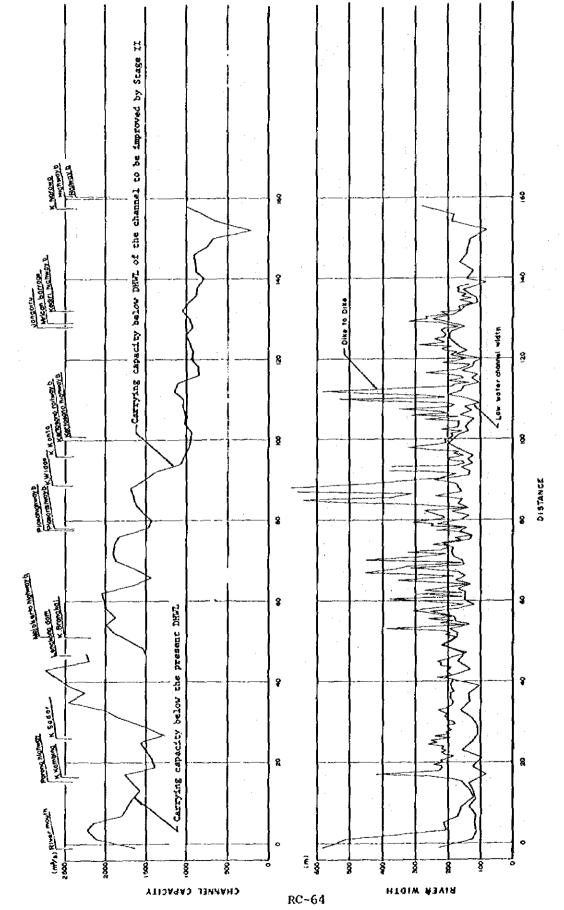
Badak Putungkobong

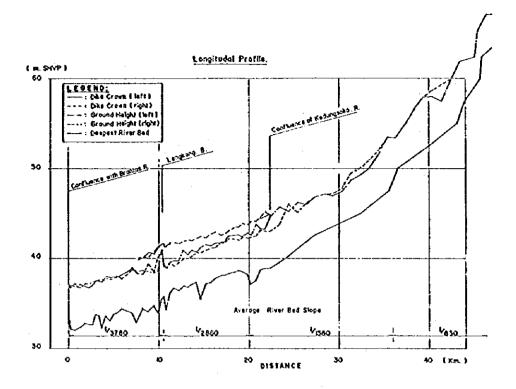

Sukorejo

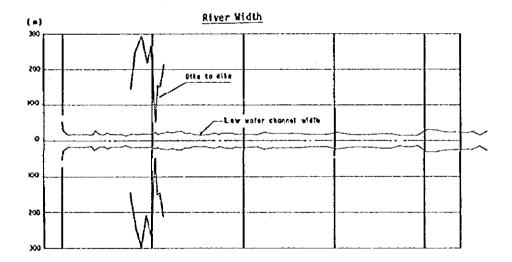

Ngobo Serinjing Konto Catchment Area(Km²) 93.5 59.6 77.6 105.0 505.2 112.4

174.0 155.2 204.8 247.2 267.6

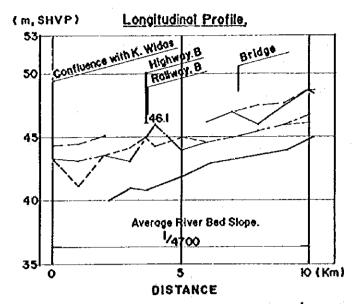
2,003.1







CHARACTERISTICS OF EXISTING CHANNEL IN BRANTAS AND PORONG Fig. RC-4 (2)


ţ

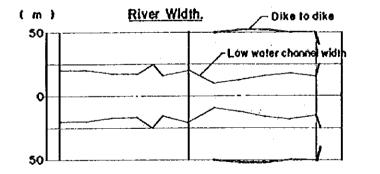
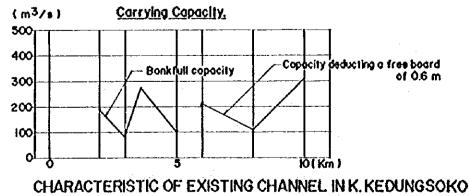
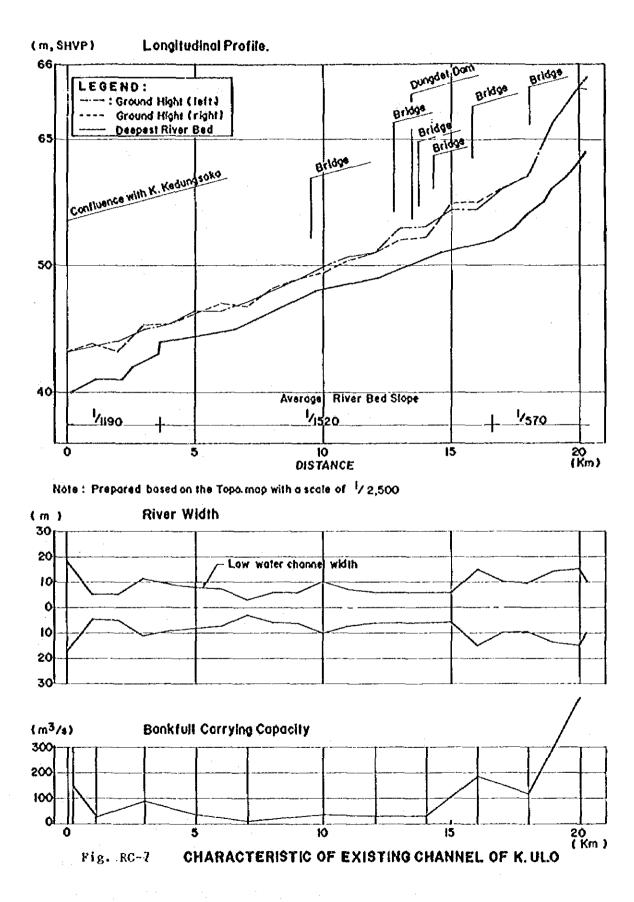
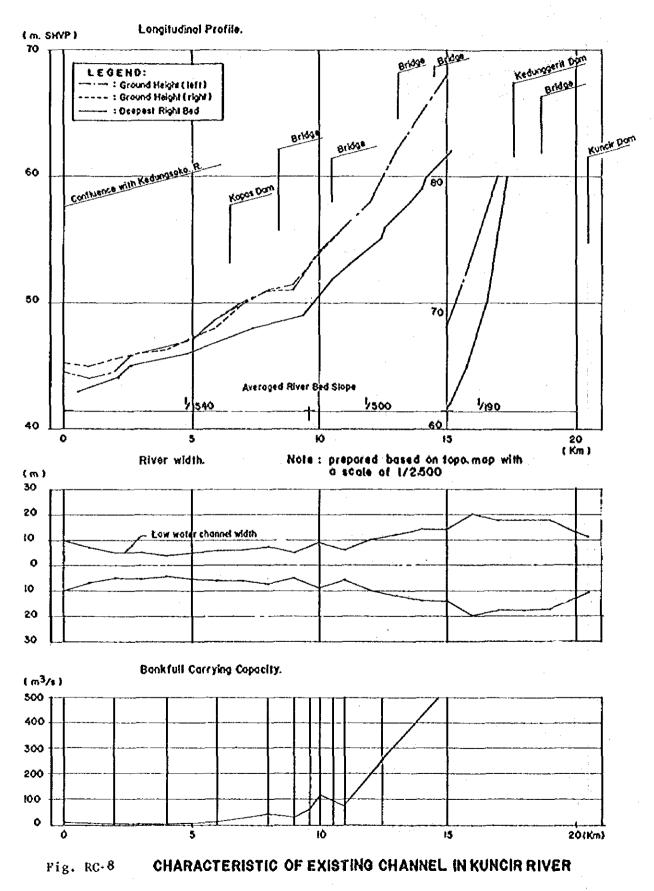
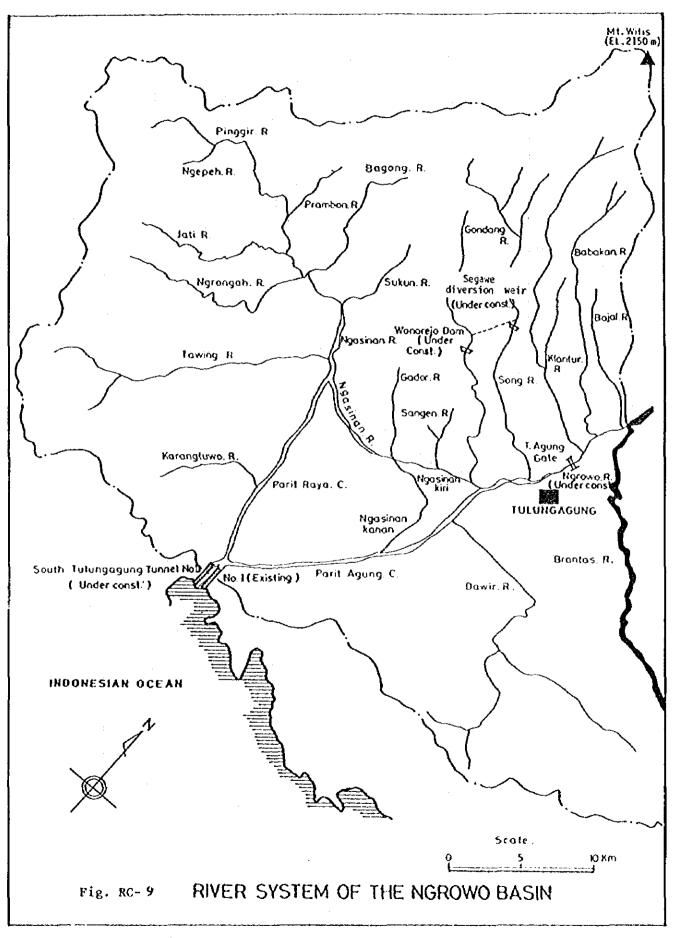

<u>Carrying Capacity</u> 1 m³/s) 600 600 400 200 0 10 20 30 40 (Km)

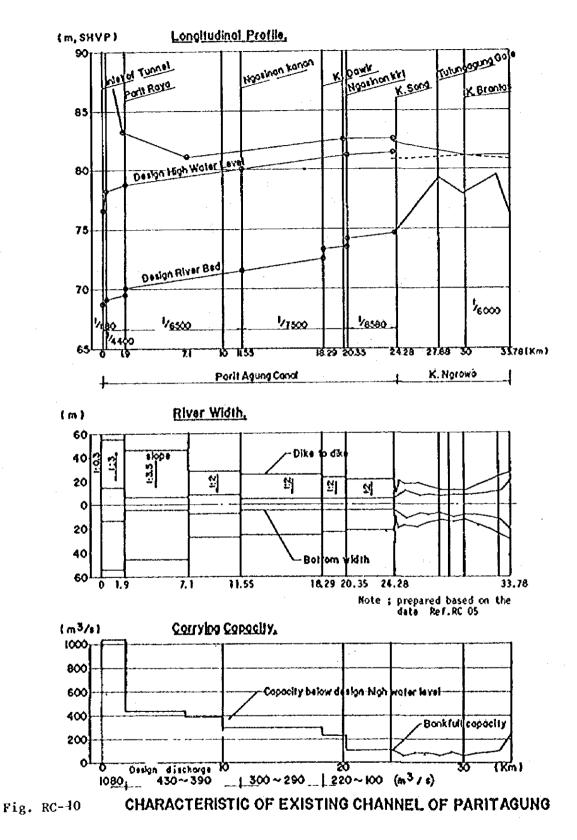
FIG. RC-5 CHARACTERISTIC OF EXISTING CHANNEL IN WIDAS RIVER

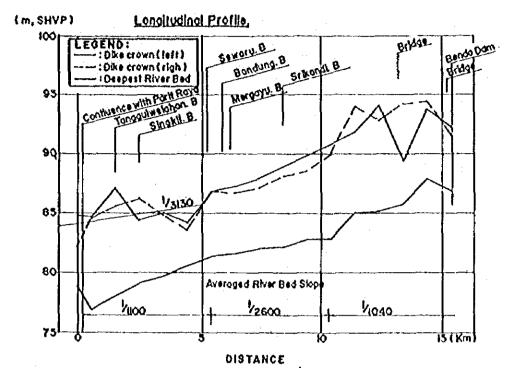
LEGEND:			
·	; Dike crown (left)		
	: Dike crown (right)		
	: Ground Height (left)		
	: Ground Height (right)		
	: Deepest River Bed		

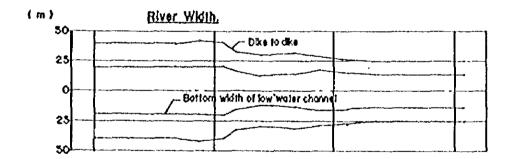

Fig. RC-6

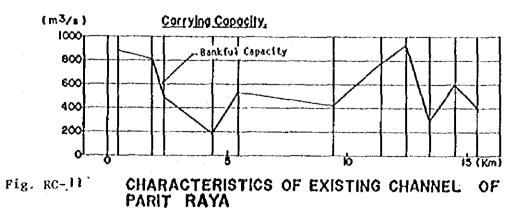

RC-66



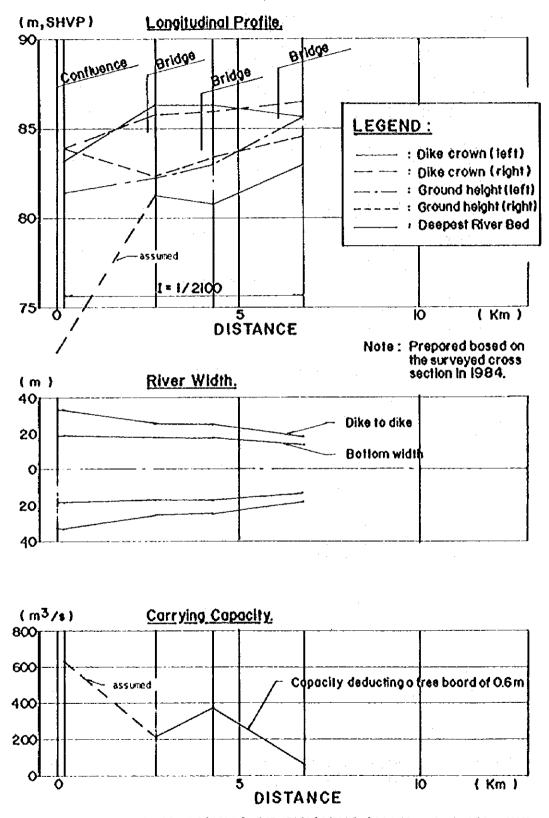
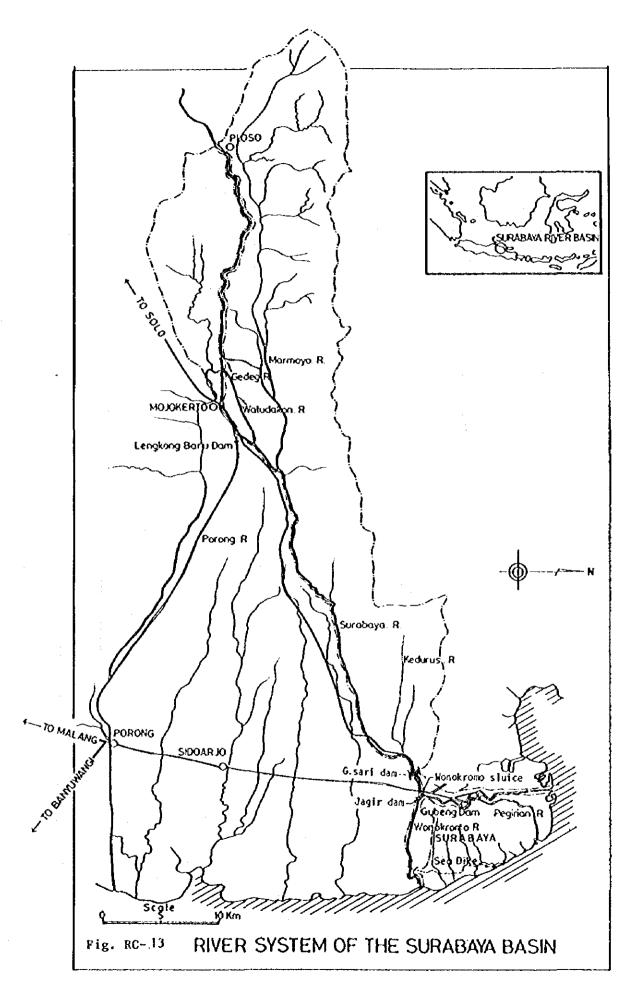
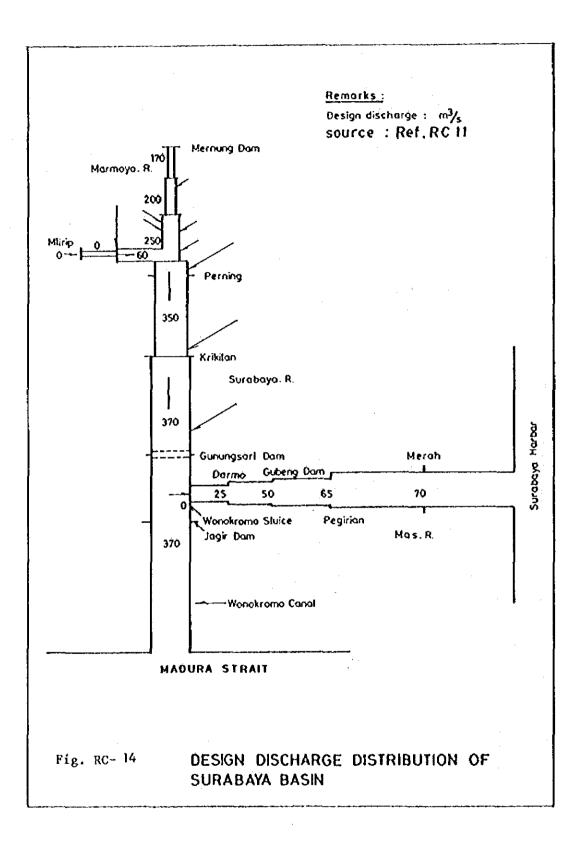
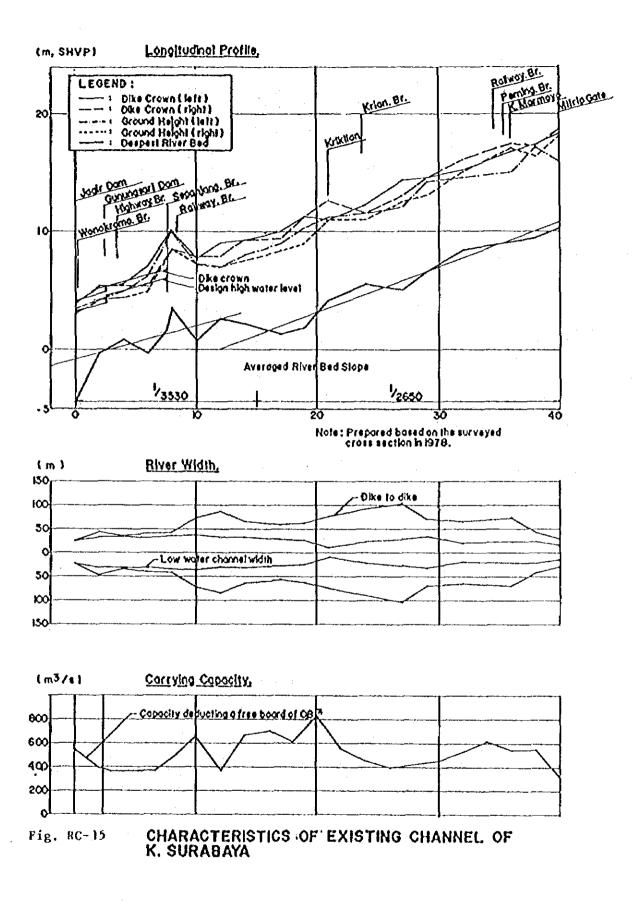
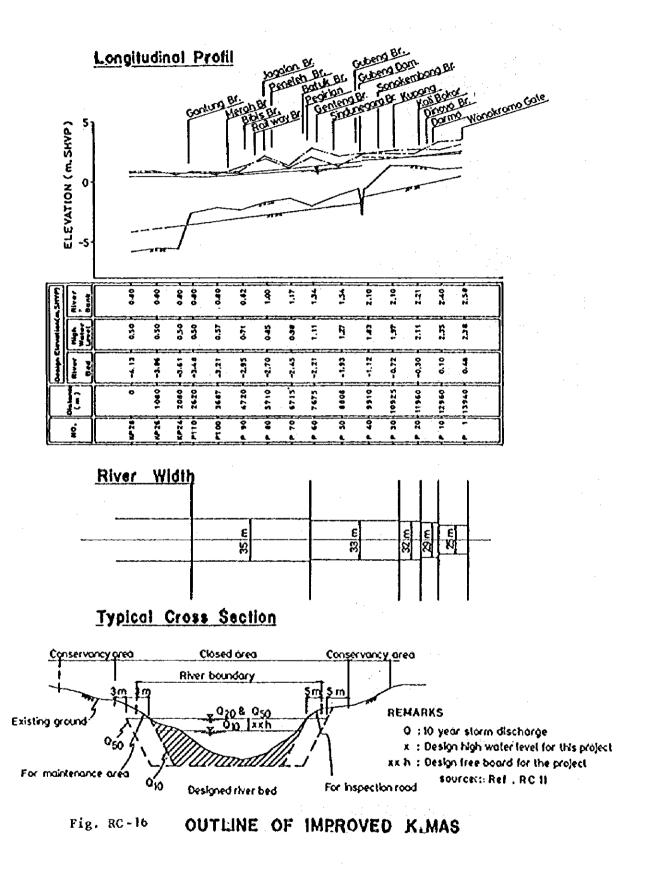

ì

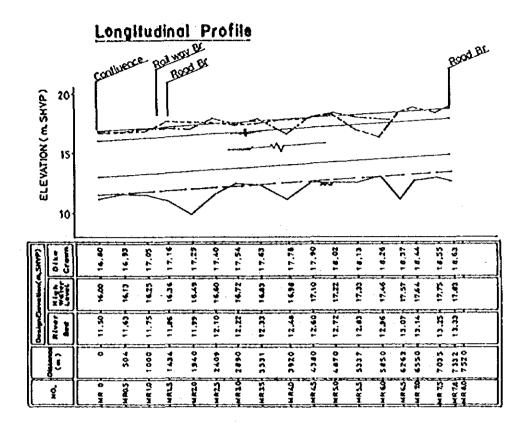
R





Note : Prepared based on the river plain map with a scale of ν 0000.


Fig. RC-:12 CHARACTERISTICS OF EXISTING CHANNEL OF K.DAWIR

Typical Cross Section

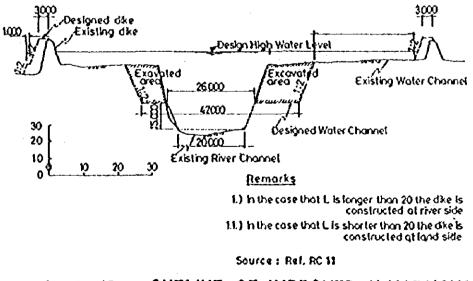
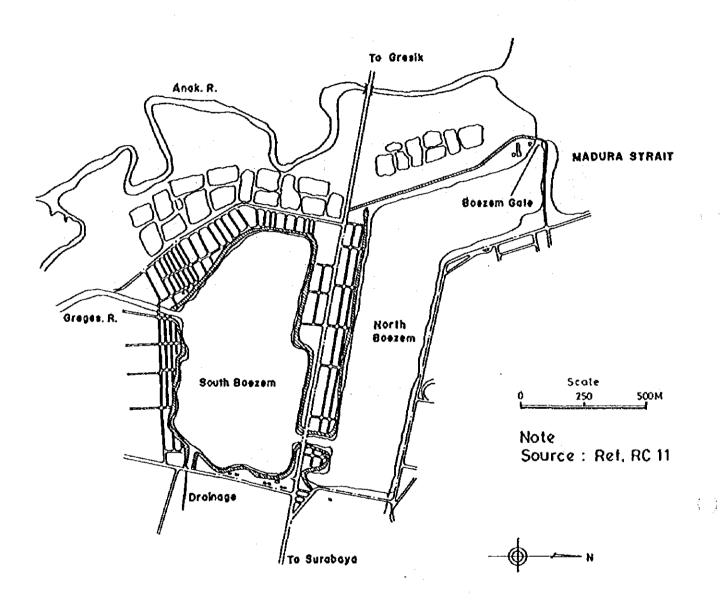



Fig. RC- 17 OUTLINE OF IMPROVED K.MARMOYO

finance : Inspection Road

Fig. RC- 18 OUTLINE OF MOROKREMBANGAN BOEZEM

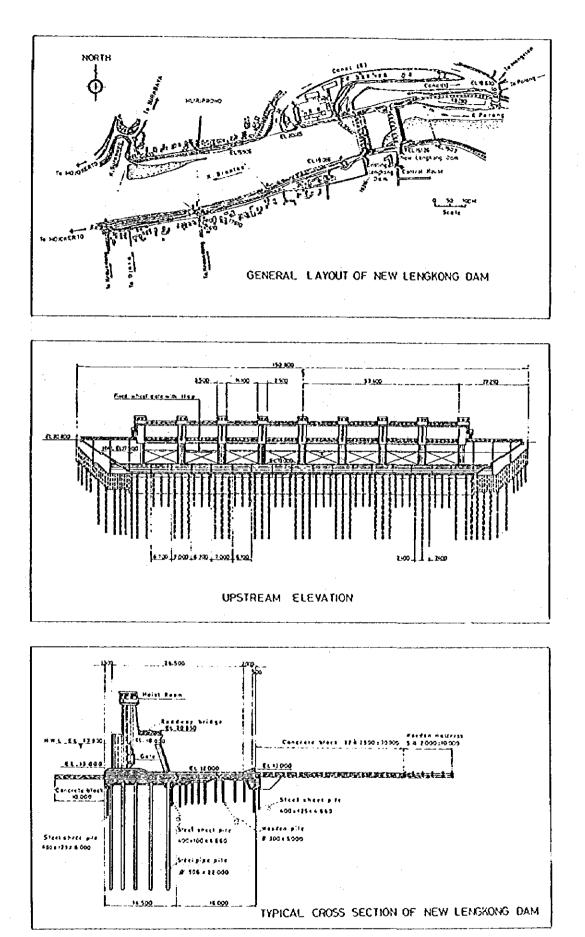
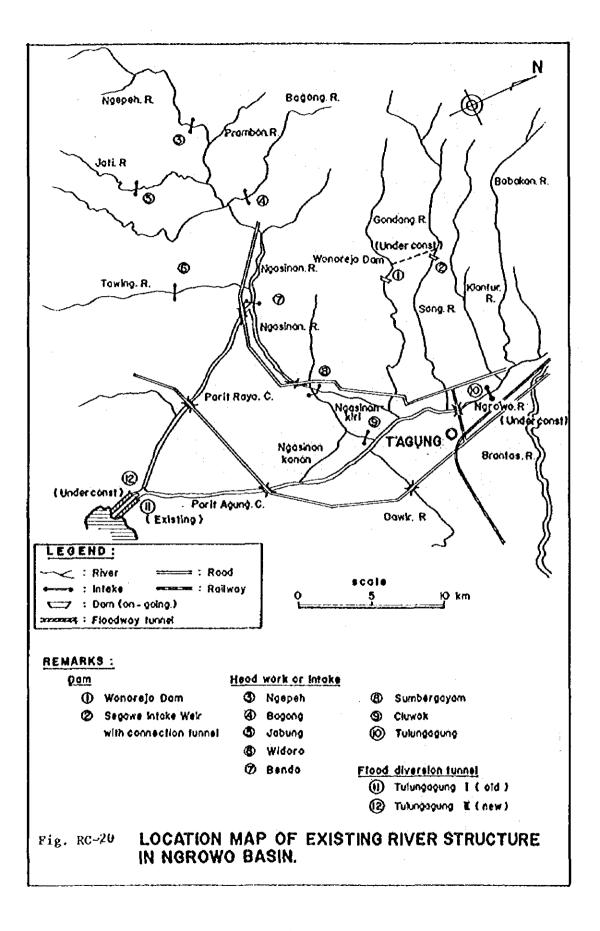
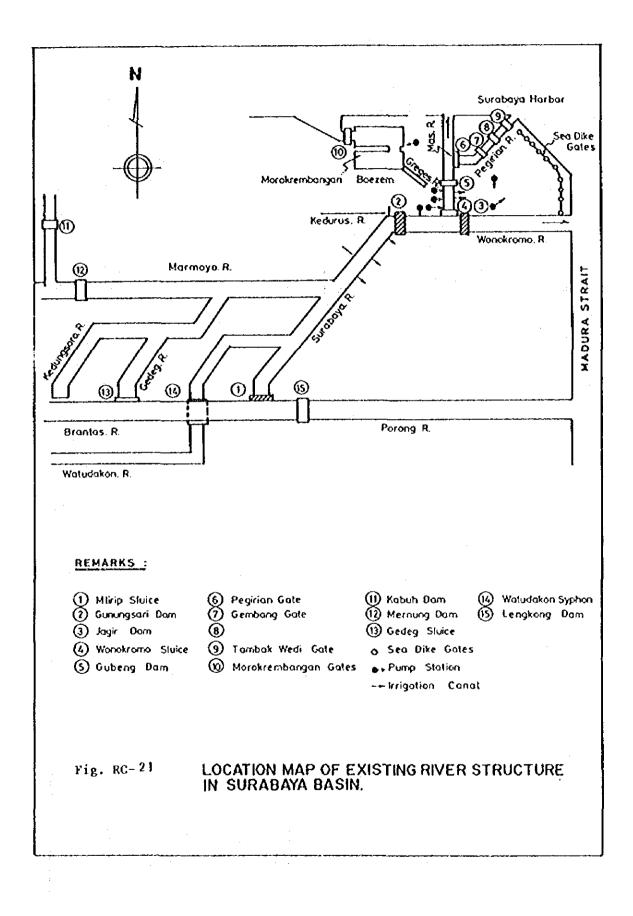
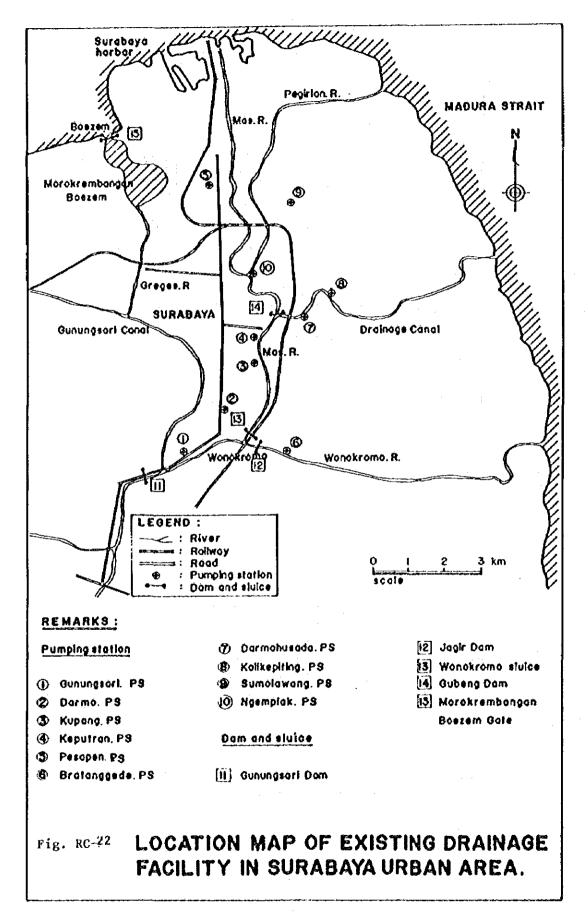
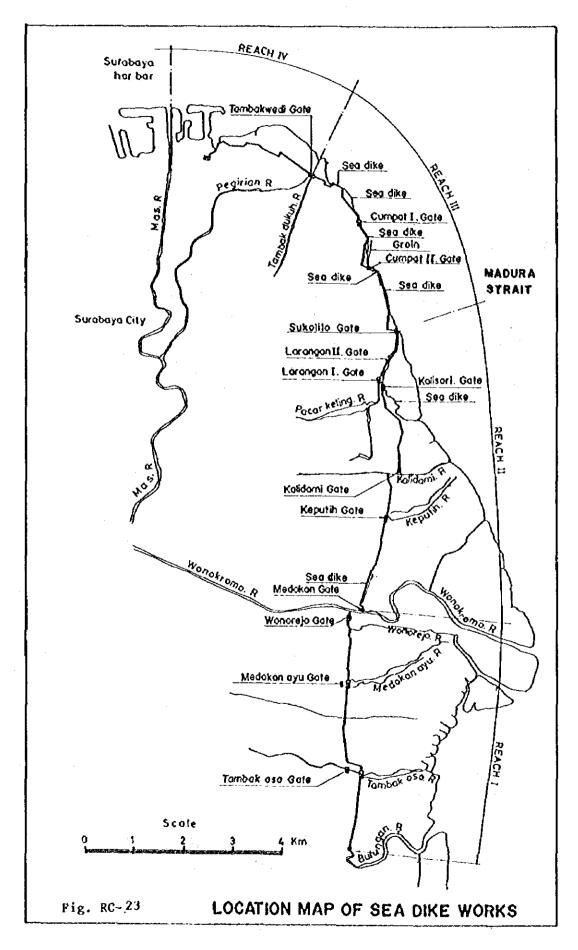
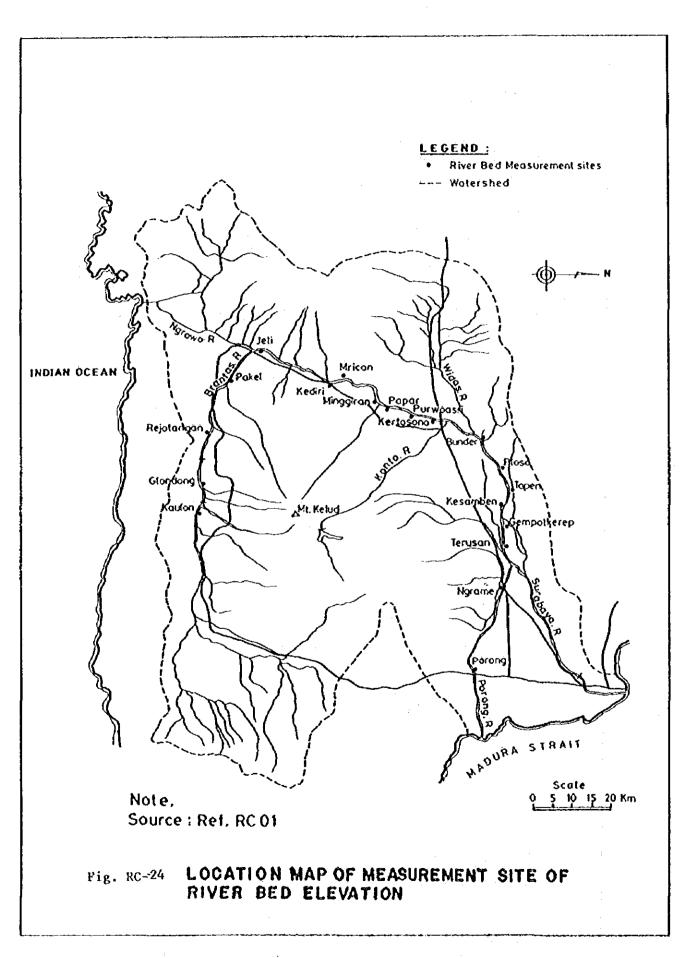
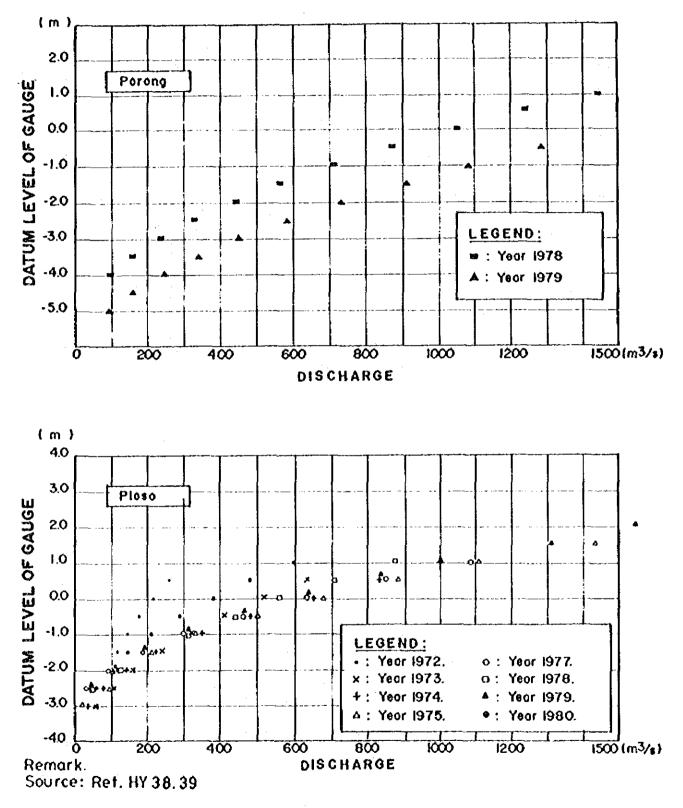





Fig. RC-19


OUTLINE OF NEW LENGKONG DAM





RC-82

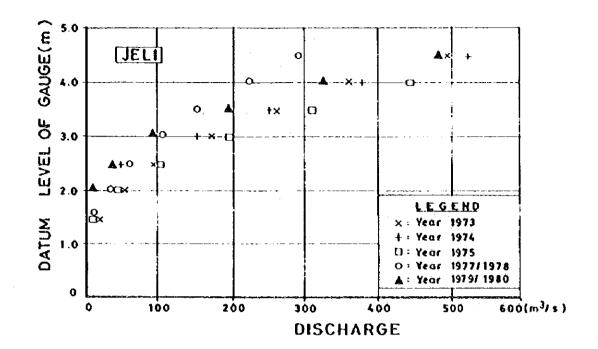



Fig. RG-25 (2) COMPARISON OF DISCHARGE RATING CURVE IN THE BRANTAS RIVER

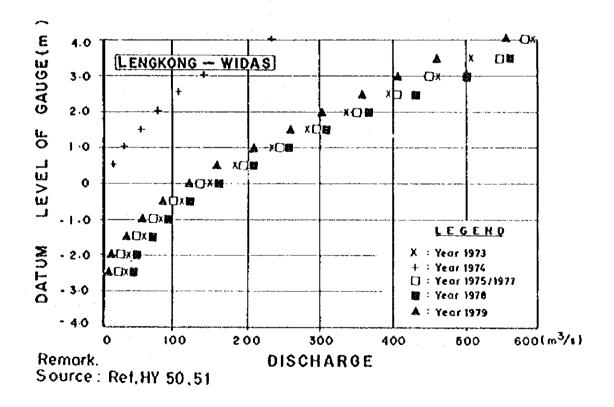
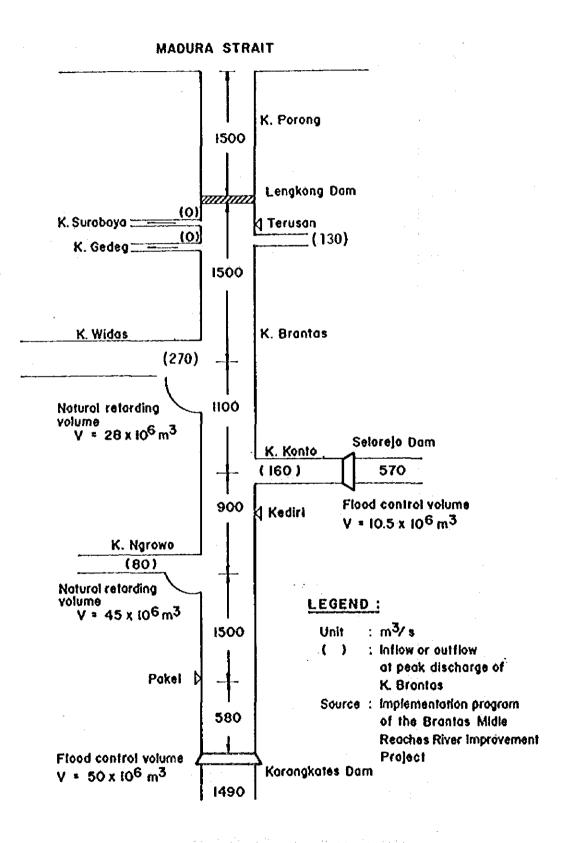
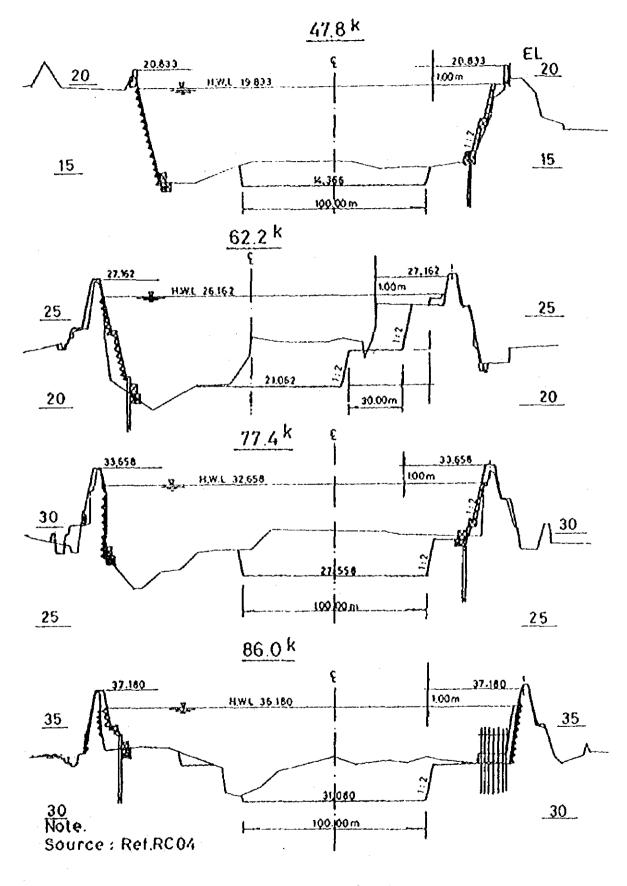
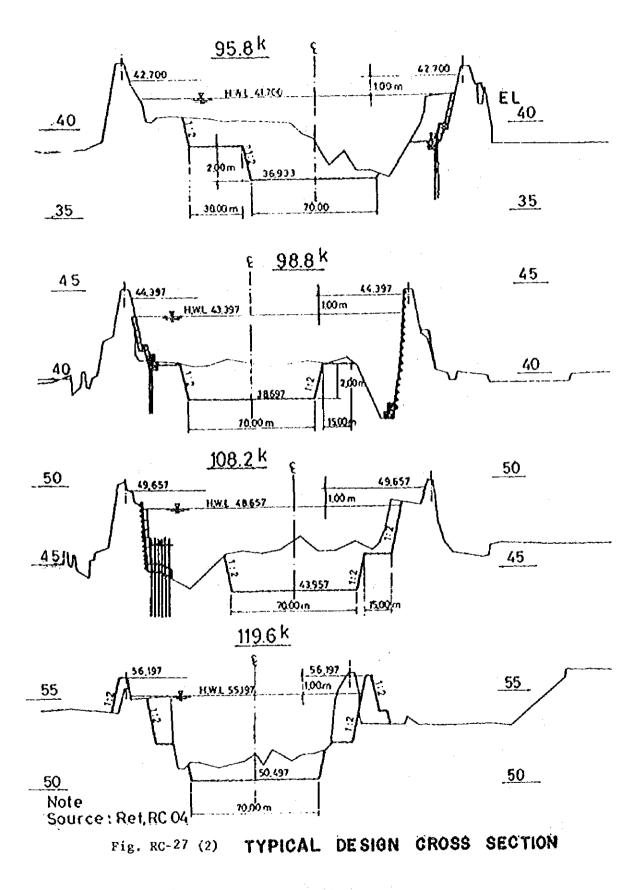
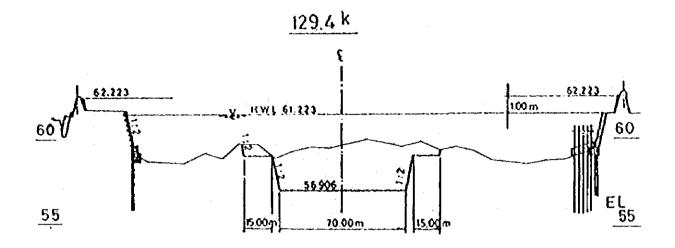


Fig. RC-25 (3) COMPARISON OF DISCHARGE RATING CURVE IN THE BRANTAS RIVER


Fig. RC- 26 EXISTING DESIGN DISCHARGE DISTRIBUTION OF K. BRANTAS AND K. PORONG (50 yr Probable flood.)

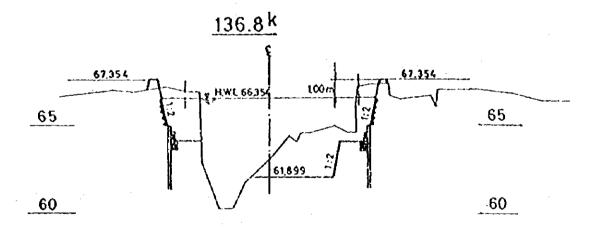
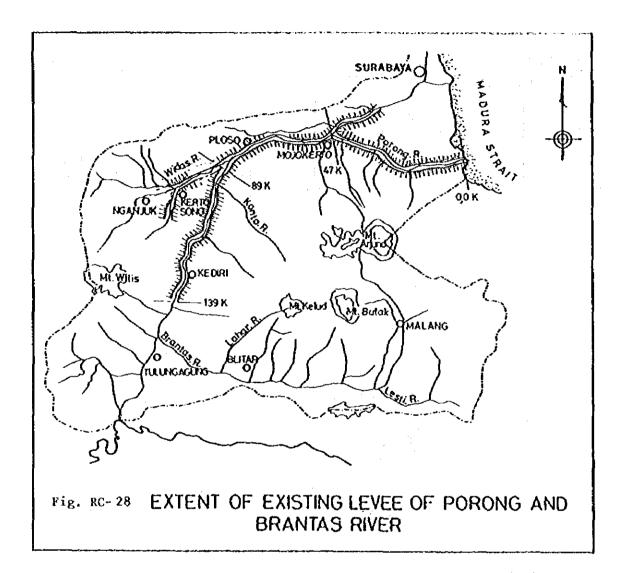


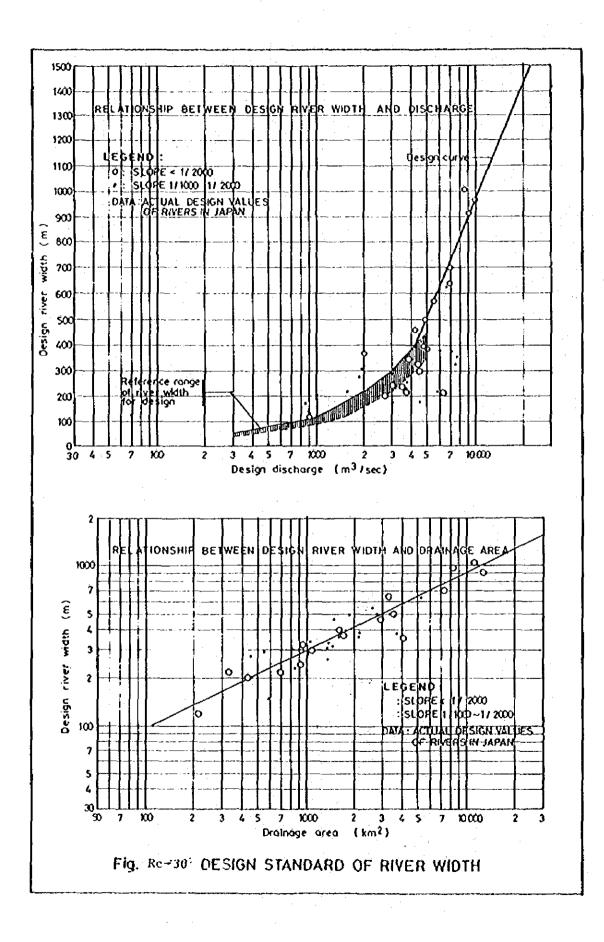
Fig. RC- 27 (1) TYPICAL DESIGN CROSS SECTION

.



Note Source : Ref. RC'04

1


Fig. RC- 27(3) TYPICAL DESIGN CROSS SECTION



ł

LOCATION MAP OF SURABAYA RIVER IMPROVEMENT PROJECT. Stage II.

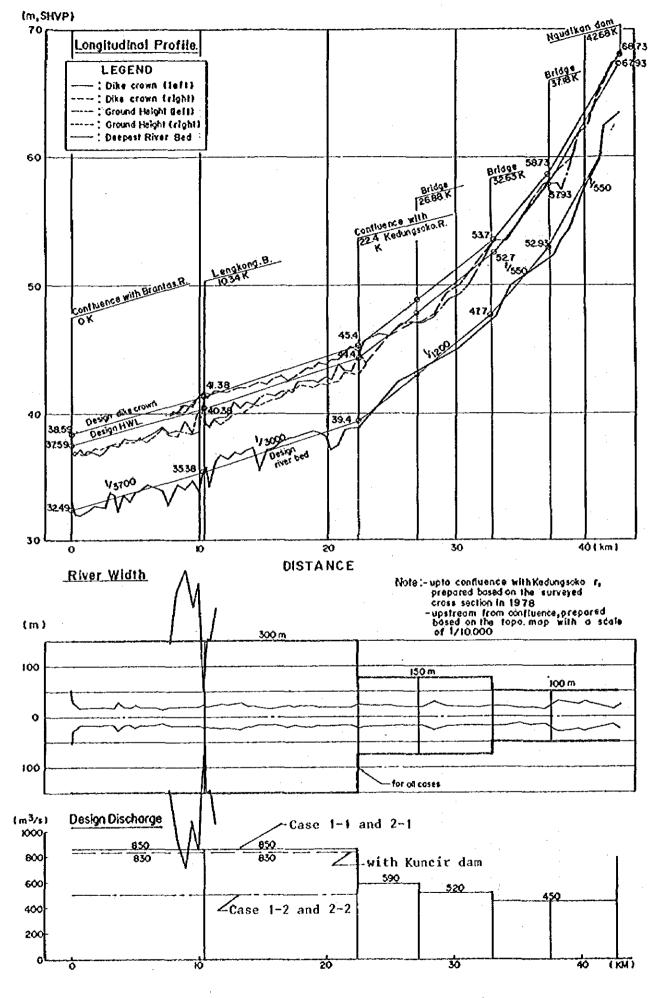
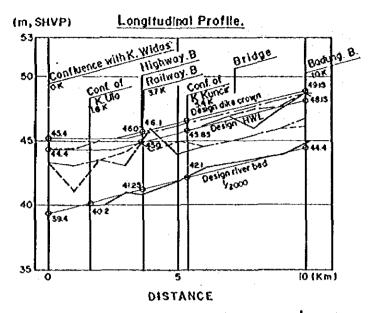
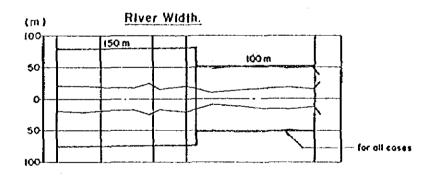




Fig. RC- 32 DESIGN PROFILE OF K. WIDAS.

Note : Prepared based on the Topo, map with a scale of $\frac{1}{2}$ 500

LEG	END:	
<u> </u>	: Dike crown Lle	£1.)
	: Dike crown f ri	ght t
· ·	: Ground Height [iaff)
	: Ground Height L	right)
	: Despest River 8	ed

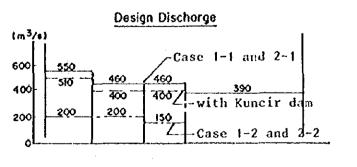
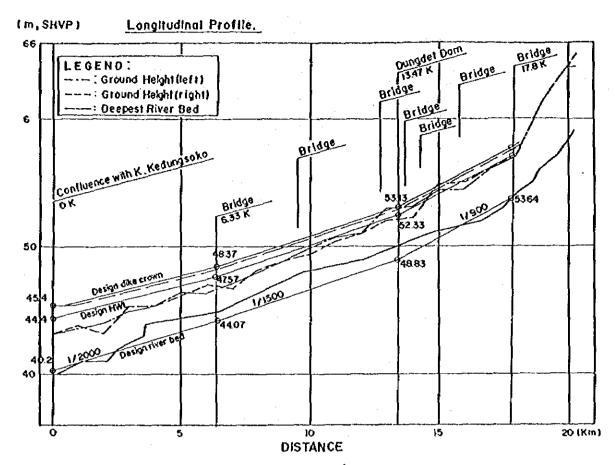



Fig. RC- 33

1

DESIGN PROFILE OF K. KEDUNGSOKO

Note : Prepared based on the Topo, map with a scale of \$1/2,500

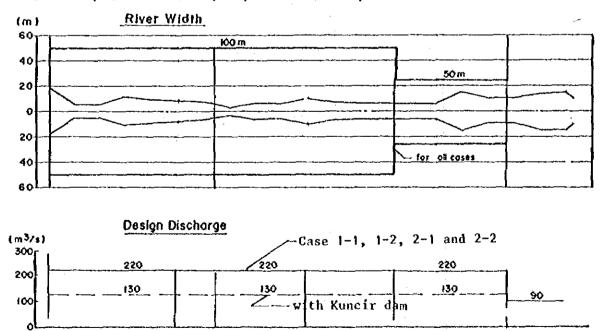
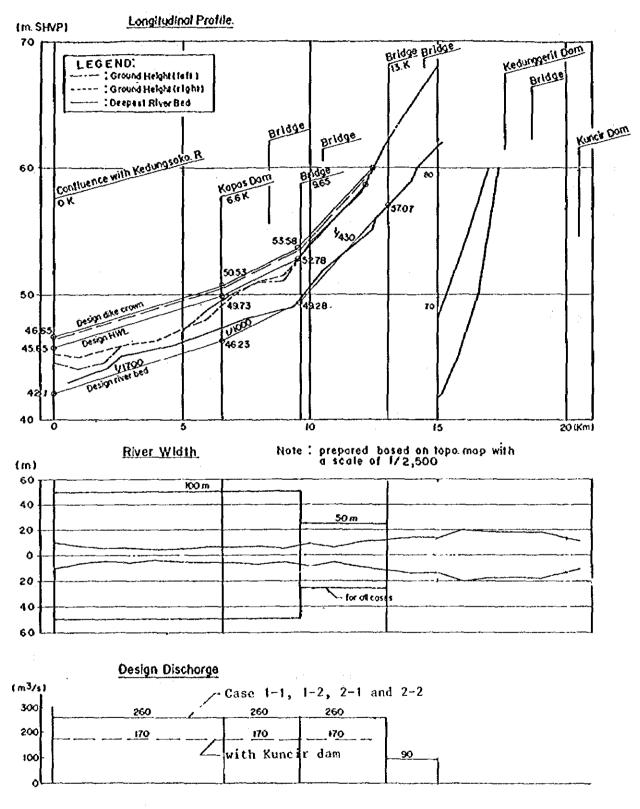
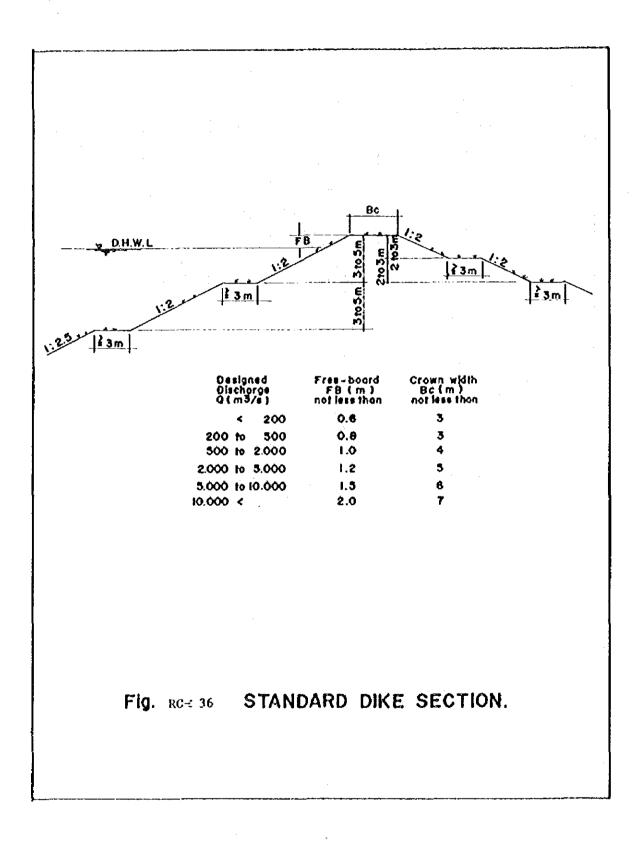




FIg. RC= 34 DESIGN PROFILE OF K. ULO.

.

FIG. RC-2 35 DESIGN PROFILE OF K. KUNCIR.

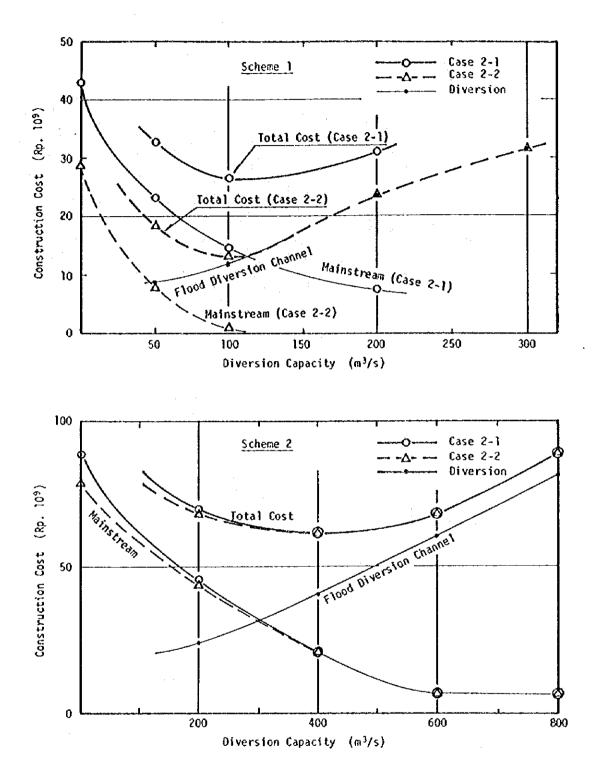
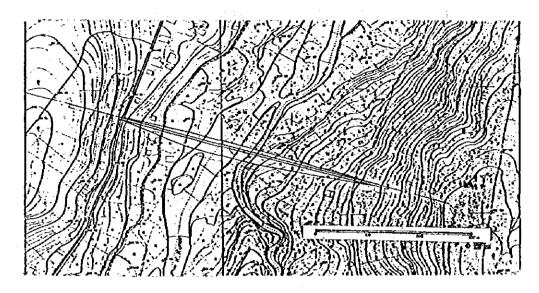



FIG. RC- 37. COST COMPARISON OF LITERHATIVE FLOOD DIVERSION CAPACITY

Location of Dam Axis.

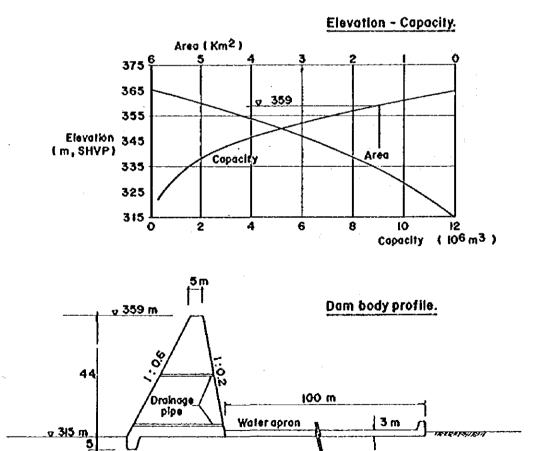


Fig. RC-38

GENERAL FEATURES OF PROPOSED KUNCIR DAM.

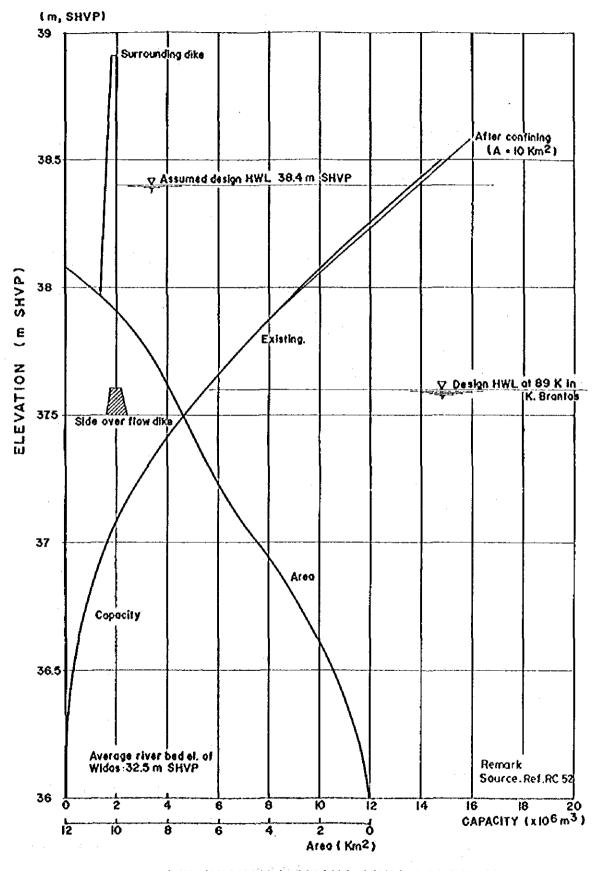
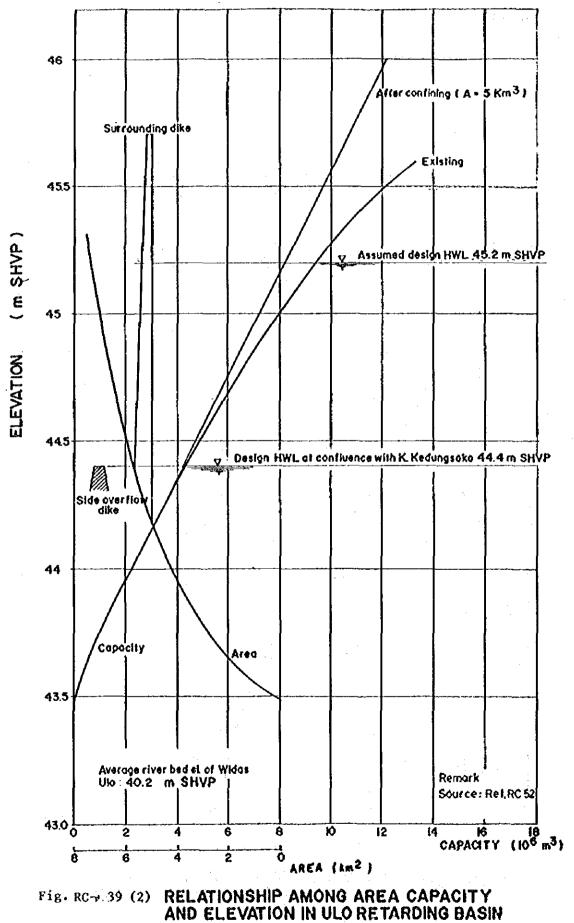



Fig. RC-39 (1) RELATIONSHIP AMONG AREA CAPACITY AND ELEVATION IN WIDAS RETARDING BASIN

кс-104

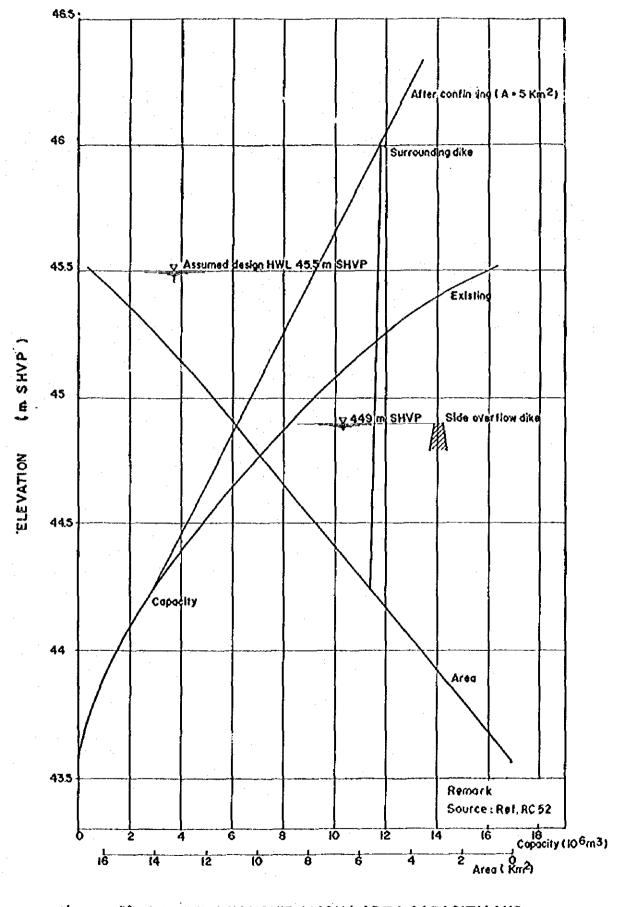
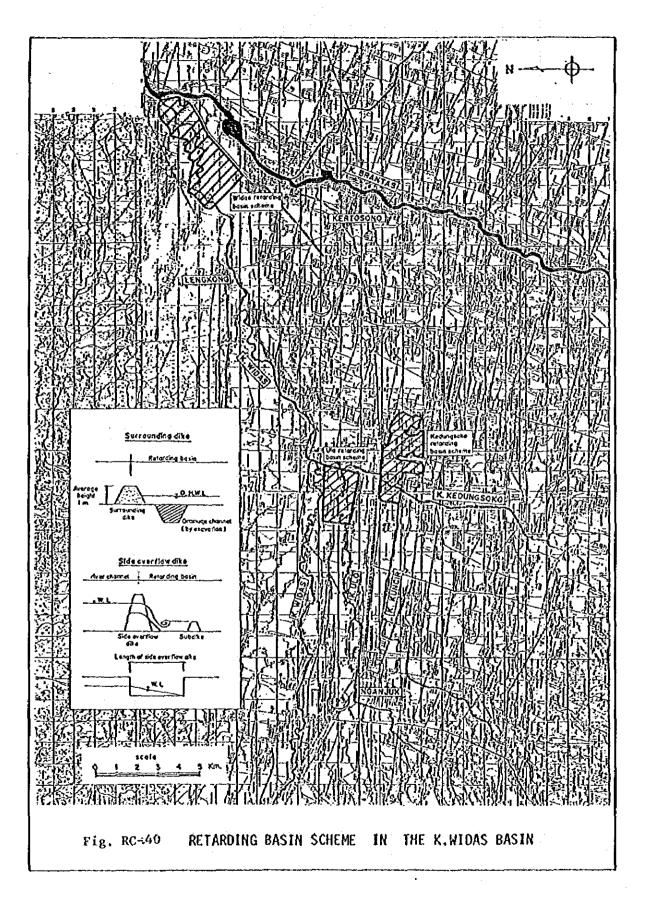



Fig. RC- 39 (3) RELATIONSHIP AMONG AREA CAPACITY AND ELEVATION IN KEDUNGSOKO RETARDING BASIN.

(

ANNEX WS

WATERSHED MANAGEMENT STUDY

ANNEX WS

2

TABLE OF CONTENTS

		Page
Note WS-1	SOIL CONSERVATION	ws-1
NÒTE WS-2	SEQUENCE OF SABO AND REFORESTATION WORKS IN THE UPPER BRANTAS	ws-3
NOTE WS-3	BALANCE OF ERUPTED MATERIAL	ws-4
NOTE WS-4	REFERENCE	ws-10

LIST OF TABLES

TABLE WS-1	REFORESTATION IN THE K. LESTI BASIN	WS-12
TABLE WS-2	SPECIES OF REFOREST AREA IN THE K. LESTI BASIN	WS-12
TABLE WS-3	RECORD OF ERUPTION OF G. KELUD SINCE YEAR 100	WS-13
TABLE WS-4	DESIGN SEDIMENT CAPACITY	WS-14
TABLE WS-5	SEDIMENT VOLUME EXISTING LAHAR POCKETS AND OTHER STRUCTURES	ws-15
TABLE WS-6	LAND USE IN THE UPPER K. KONTO BASIN	WS-16
TABLE WS-7	EXISTING SABO FACILITIES IN THE UPPER K. KONTO BASIN	ws-17
TABLE WS-8	LAND USE IN ERODIBLE AREA IN THE K. KONTO BASIN	ws-18
TABLE WS-9	SPECIES OF REFOREST AREA IN THE K. KONTO BASIN	WS-18
TABLE WS-10	MEAN MONTHLY RAINFALL IN THE K. LESTI BASIN	WS-19
TABLE WS-11	AVERAGE RAIN EROSIVITY IN 10 YEARS	WS-20
TABLE WS-12	TRAP EFFICIENCY OF THE SENGGURUH RESERVOIR	WS-21
TABLE WS-13	RIVER BED MOVEMENT	ws-22
TABLE WS-14	ANNUAL DEPOSIT VARIATION	ws-23
TABLE WS-15	UNIT SEDIMENT YIELD OF KAULON CATCHMENT AND KAULON TO JABON CATCHMENT	ws-24

Page

1

TABLE	WS-16	AN ESTIMATION OF ANNUAL SEDIMENT YIELD BETWEEN KAULON AND JABON	WS-25
TABLE	WS-17	AMOUNT OF VOLCANIC DERRIS TO MAIN 5 RIVERS	WS-26
TABLE	WS-18	RIVER BED MOVEMENT ON THE K. BRANTAS BETWEEN KAULON AND JABON (1977 - 1983)	ws-27
TABLE	WS-19	ANNUAL DEPOSIT VARIATION BETWEEN KAULON AND JABON (1977 - 1983)	ws-28
TABLE	WS-20	ANNUAL SEDIMENT LOAD THROUGH JABON	WS-29
TABLE	WS-21	SEDIMENT BALANCE DURING 15 YEARS	ws-30

LIST OF FIGURES

FIG.	WS-1	LAND USE IN THE K. LESTI BASIN	WS-31
FIG.	ws-2	LAND USE IN ERODIBLE AREA IN THE K. LESTI BASIN	ws-32
FIG.	ws-3	REFORESTATION/NATURAL FOREST AREA IN THE K. LESTI BASIN	ws-33
FIG.	ws-4	GRADIATION OF SEDIMENT LOAD IN THE K. LESTI AT CLUMPRIT	ws-34
FIG.	WS-5	SEDIMENT AREA OF PROPOSED SABO DAMS	WS-35
FIG.	ws-6	TYPICAL DESIGN OF SABO DAM	ws-36
FIG.	ws-7	RELATION BETWEEN DAM WIDTH AND CONSTRUCTION COST	WS-37
FIG.	ws-8	LAND USE IN THE LAHAR AREA	WS-38
FIG.	ws-9	LAND USE IN THE UPPER K. KONTO BASIN	WS-39
FIG.	WS-10	EXISTING SABO FACILITIES IN THE UPPER K. KONTO BASIN	ws-40
FIG.	ws-11	REFORESTATION AREA IN THE UPPER K. KONTO BASIN	ws-41
FIG.	WS-12	LAND USEIN ERODIBLE AREA IN THE UPPER K. KONTO BASIN	WS-42
FIG.	WS-13	LOCATION OF DEMONSTRATION PLOT IN THE UPPER K. BRANTAS AREA	WS-43

		-
FIG. WS-14	NOMOGRAPH FOR SOIL ERODIBILITY ESTIMATION (K). (WISCHMEIR, JONSON CROSS, 1971)	ws-44
FIG. WS-15	ANNUAL SEDIMENT YIELD IN THE SENGGURUH CATCHMENT AREA	ws-45
FIG. WS-16	SEDIMENT INFLOW INTO K. BRANTAS ARM	ws-46
FIG. WS-17	SEDIMENT INFLOW INTO X. LESTI ARM	WS-47
FIG. WS-18	DEPOSIT IN THE SENGGURUH RESERVOIR WITH WATERSHED MANAGEMENT WORK	ws-48
FIG. WS-19	RIVER BED MOVEMENT ON THE K. BRANTAS	ws-49
FIG. WS-20	CATCHMENT AREA AROUND G. KELUD	WS-50
FIG. WS-21	PROPOSED SEDIMENT BALANCE DURING 15 YEARS	WS-51
FIG. WS-22	SEDIMENT BALANCE BASED ON THE ERUPTION IN 1966	WS~52

Page

NOTE WS-1 SOIL CONSERVATION

1. Soil Conservatión

Taking into consideration decrease in the storage capacity in the Karangkates reservoir due to sedimentation, several experimental and demonstration plots were started since 2 to 4 years ago for obtaining data on soil erosion under different vegetation covers and conditions of terracing and for demonstration of effects of terracing to the inhabitants. The plots are at Dampit, Wajak, Wagir and Gabes in the upper Brantas basin and at Bantur and Donomulya in the southern hilly range as shown in Fig. WS-13.

The plots are operated by BRBDEO through the Brawijaya University and results are reported annualy. According to the reports, the following findings are presented in the reports.

For assessing the effect of soil conservation works, the following Universal Soil Loss is used;

 $\mathbf{A} = \mathbf{a} \times \mathbf{R} \times \mathbf{K} \times \mathbf{L} \times \mathbf{S} \times \mathbf{C} \times \mathbf{P}$

Where, A : avearge annual soil loss in Mg/ha (metric tons/ha) α : constant

- R : rainfall and runoff erodibility index
- K : soil-erodibility factor, which is average soil loss in t/a per unit erosion index for a particular soil (if K is Mg/ha; $\alpha = 0.1$)
- LS : topographic factor
- C : cropping-management factor, which is the ratio of soil loss for given conditions
- P : conservation practice factor, which is ratio of soil loss for a given practice to that for the slope farming.

The rain erosivity index (R) is obtained by the following equation which was improved by Utomo et.al. (1983).

R = 2.80 + 4.15 M

From the monthly rainfall shown in Table WS-10, the rain-erosivity index is estimated as shown in Table WS-11.

The soil erodibility index (K) is obtained by soil erodibility monograph after Wishmeir et.al. (1971), soil erodibility monograph is shown in Fig.ws-14. The soil erodibility index of the soils in the basin is estimated as follows;

Soil Type	к	Total Measurement
Grey regosol	0.22	2
Brown regosol	0.36	2
Association of yelowish brown andosol and brown regosol	0.11	5
Association of brown latosol and grey regosol	0.24	4
Brown andosol	0.21	4
Association of brown andosol and gley humus	0.24	4
All of brown andosol, yelowish brown andosol and litosol	0.08	3

Location	Value (K)	Class
Wagir	0.22	moderate
Donomulyo	0.14	low
Bantur	0.24	moderate
Wajak	0.12	low
Dampit	0.20	moderate
Gabes	0.10	very low

The topographic factor LS is given by the following equations;

$$L = (l/22)^2$$

and

$$S = \frac{(0.43 + 0.30s + 0.040 s^2)}{6.574}$$

s = field slope in percent

CP values are measured as shown below.

Location	Crop	Conservation Practice	Observation Period	R	ĸ	LS	СР
Wagir	maize	W/O terrace	Nov.25-Feb.17	378.5	0.22	0.98	0.209
	maize	W/ terrace	- ob -	378.5	0.22	0.98	0.101
Donomulyo	cassava	W/O terrace	Nov.25-Feb.21	376.5	0.14	0.95	0.200
	cassava	W/ terrace	- do -	376.5	0.14	0.95	0.120
Bantur	maize + cassav	-	Nov.25-Feb.29	267.3	0.24	0.98	0.170
	maize + cassava	W/ terrace	- do -	267.3	0.24	0.99	0.083
Dampit	maize + cassava	W/O terrace	Nov.25-Feb19	308.0	0.20	0.95	0.168
	maize + cassava	W/ terrace	- do -	308.0	0.20	0.95	0.062
Wajak	sweet	W/O terrace	Nov.25-Feb.22	368.0	0.12	0.95	0.223
	sweet	W/ terrace	- do -	368.0	0.12	0.95	0.097
Gabes		raised bed	Nov.25-Feb.22	384.6	0.10	1.0	0.087
		W/ terrace	- do -	384.6	0.10	1.0	0.085

NOTE WS-2 SEQUENCE OF SABO AND REFORESTATION WORKS IN THE UPPER BRANTAS

Sediment inflow in the Sengguruh reservoir is examined in detail as shown in Fig. WS-15, in relation to the distribution of erodible areas in the Brantas and Lesti arms. The sediment yield rates are assumed at 3.94 mm/year in the Brantas arm and 8.72 mm/year in the Lesti arm. (further breakdown of 6.5 mm/year in the Main Report)

Table WS-12 shows changes in the trap efficiency in the Sengguruh reservoir according to the progress of sedimentation, in case of no sabo and reforestation works in the upstream area. The objective of the sabo and reforestation works is to elongate the reservoir life up to 50 years. Fig. WS-16 and 17 show variation of sediment inflow according to implementation of the works. Order of construction of sabo dams is from bigger storage capacity. Timing of construction of sabo dams is examined through trial and error. Finally, by implementation of the sabo and reforestation works as shown in Fig. WS-16 and 17, the sediment deposit in the reservoir can be controlled as shown in Fig. WS-18.

NOTE WS-3 Balance of Erupted Material

1. Sediment Yield from Lahar Area

The sediment yield from the Lahar area in a certain period can be calculated through estimation of the following value;

- (1) Increase or decrease of river deposit in the river stretches concerned.
- (2) Inflow of sediment into the river stretches from the upstream end and from the side.
- (3) Outflow from the downstream end of the river stretches.

Then, the sediment yield from the Lahar area can be calculated as;

(a) + (o) - (b)

The following is citation from the study made by the Brantas Middle Reaches River Improvement Project.

The river bed movement in the main reaches of Brantas river is as shown in Fig. WS-19 and Table WS-13. The river deposit in the section between Kaulon and Jabon for 15 years after the 1951 eruption is estimated as follows; (see Table WS-14).

Total	$28.8 \times 10^6 \text{ m}^3$
1961 - 1966	$3.58 \times 10^6 m^3$
1956 - 1960	$2.34 \times 10^6 \text{ m}^3$
1951 - 1955	22.88 x 10^6 m ³

The sediment volume transported downstream from the Lahar area which is composed of bed load, suspended load and wash load, has been estimated between Kaulon and Jabon. Brantas Middle Reaches River Improvement Project has formulated the equations showing the relations between the sediment loads and discharge using the sediment record from 1972 to 1977. The equation for each kind of sediment load is shown below.

Suspend	ed le	oad	qs ≈	2.323 x 10 ⁻³ (HU) ^{0.562}
Wash lo	ađ		Qw =	$278 \times 10^{-7} Q^{2.156}$
Bed loa	d		dp =	(0.5297 x ToU) / (SG/P - 1) / Pg
Where,	Qs	1	Suspended load	(m ³ /sec/m) - (see Fig. N2-1)
	Qw	:	Wash load	(m ³ /sec) - (see Fig. N2-2)
	qb	:	Bed load	(m ³ /sec/m) - (see Fig. N2-3)

ws-4

н	:	Water depth	(m)
U	1	Friction velocity	(m ³ /sec)
Q	:	Discharge	(m ³ /sec)
То	1	Shearing stress on bed	
SG	:	Spesific gravity	(m ³ /sec)
P	:	Density of water	-
g	:	Gravity acceleration	(m/sec ²)

Wash load is defined as a fine sand smaller than 0.1 mm in diameter.

The sediment inflow from the area outside the Lahar area is estimated as shown in Table WS-15.

The estimated sediment inflow and outflow to and from the stretches between Kaulon and Jabon is as shown in Table WS-16. From this table, the sediment yield can be calculated for the period from 1951 to 1965, as follows:

Deposit Increase) + Outflow from Jabon) - Inflow from non-Lahar area) 28.8 x 10^{6} m³ + 24.6 x 10^{6} m³ + 70.5 x 10^{6} m³ - 19.95 x 10^{6} m³ - 48.30 x 10^{6} m³ = 55.65 x 10^{6} m³ (Bed and suspended loads : 33.45 x 10^{6} m³ (Bed and suspended loads : 33.45 x 10^{6} m³ (22.20 x 10^{6} m³

2. Balance of Erupted Materials

For planning of the debris control in the southern and western areas of Mt. Kelud and the river improvement in the Brantas Middle Reaches, balance of the material erupted from Mt. Kelud has been examined by Mt. Kelud Project and BRBDEO. The results are as shown in Fig. WS-20 and WS-21. Procedures and assumptions for these balances are reffered to RECCOMENDA-TION REPORT ON SEDIMENT AND DEBRIS CONTROL IN THE BRANTAS RIVER AND THE AREA AFFECTED BY MT. XELUD ERUPTION, as explained hereunder.

(1) Modelled cycle period of one eruption

Taking the average of intervals of the recent three eruptions, 15 years is set as the modelled cycle period.

(2) Volume of eruption products

Taking the average of the total estimated volume of the recent three eruptions, 200 x 10^6 m is set as the modelled volume of one eruption.

(3) Classification between ladu/lahar materials and pyroclastics

Based on the investigation by GOI on the 1966 eruption, two thirds of the total volume are assumed as ladu and lahar materials and the remaining as pyroclastics. Then,

Ladu and lahar materials	$: 130 \times 10^6 m^3$
Pyroclastics	: 70 x 10 ⁶ m ³

(4) Distribution of pyroclastics

BRBDEO assumed that two thirds of the total pyroclastics fall uniformly in the area within 25 km from the crater and the remaining in the area between 25 and 50 km. From this assumption, the pyroclastics are assumed to fall in 36.8 x 10 m³ in the lahar area and in 33.2 x 10 m³ in the area outside of the lahar area.

(5) Total amount in lahar area

Adding the pyroclastics of 36.8 x 10^6 m³ to the ladu and lahar materials of 130 x 10^6 m³, the total amount in the lahar area is estimated at 166.8 x 10^6 m³.

(6) Sediment carried off to Brantas river

Based on the sediment discharge analysis for the period from 1951 to 1966 as previously mentioned, the sediment volume carried off to Brantas river is estimated at 59.1 x 10^6 m³ in total, cosisting of the wash load of 25.6 x 10^6 m³ and the bed and suspended load of 33.5 x 10^6 m³. Difference of 3.6 x 10^6 m³ between 22.0 x 10^6 m³ and 25.6 x 10^6 m³ in the wash load comes from inclusion of the upstream area of Konto and Semut river, outside of lahar area.

(7) Amount retained in lahar area

Subtracting the sediment carried off to Brantas river from the total amount in the lahar area, the amount retained temporarily and/or permanently in the lahar area is estimated at 107.7 x 10 10^6 m³.

(8) Uncontrollable amount

BRBDEO assumes that one third of the total eruption products will remain permanently in the lahar area, reffering to the cases in Japan. This amount will not come out to the control facility sites and is named as "Uncontrollable deposit". The controllable deposit which will move to the control facility sites is calculated by subtracting the uncontrollable deposit from the amount retained in the lahar area. (9) Amount brought to deposit zone

Summing up the bed and suspended load of 33.5×10^6 m³ and the controllable deposit of 42.7 x 10^6 m³, the amount broght to the deposit zone is estimated at 76.2 x 10^6 m³.

(10) Amount carried out off to Brantas river

At the time of preparation of balance, the debouches of rivers flowing out from the lahar area were narrow and shallow owing to sedimentation and majority of the runoff in the upstream of the rivers was diverted for irrigation use. Taking into account these conditions, it was difficult to expect large sediment discharge capacity at each debouch. Then, assuming possible channel improvement at the debouches, the following annual sediment discharge capacities are taken;

• • • • • • • •		with channel, improvement
K. Lékso/K.Semut	0.06 x 10 ⁶ m ³	
K. Putih	0.06	
K. Badek	0.08	+ 0.08 x 10^6 m ³
K. Gedek		0.10
<. Pantungkobang	0.04	
(. Sukorejo	0.02	
<. Ngobo	0.03	+ 0.12
K. Serinjing	0.03	
K, Konto	0.04	+ 0.11
rotal	0,36	0.41

Then, the total amount to be carried off to Brantas river in the modelled cycle period is calculated at 11.6 x 10^6 m³.

(11) Deposit retained in deposit zone

Then, the deposit to be ratined in the deposit zone or amount to be controlled by the sabo facilities is calculated at 64.6 x 10^6 m³.

Distribution of volcanic debris among the major 5 rivers is estimated based on GOI investigation data on the 1966 eruption as shown in Table WS-17, and as summarized below.

DISTRIBUTION OF VOLCANIC DEBRIS

River	Distribution (%)
K. Semut	17.5
K. Putih	24.9
K. Badak	31.9
K. Ngobo	16.2
K. Konto	9.5

The sediment balance during 15 years in lahar area divided into main 5 tributaries has been proposed as shown in Table WS-21. The amount to be controlled by the control facilities then, becomes 64.6 $\times 10^6$ m³ per once modelled cycle period.

3. Check of Balance of 1966 Eruption

Check of the balance of materials erupted by the 1966 eruption is made hereunder.

The riverbed movement in the period from 1977 to 1983 is as shown in Table WS-18. From this table, the changes in the river deposit are calculated as shown in Table WS-19. Combined with the changes in the river deposit before 1966, the following figures are obtained.

1966 - 1970	$9.80 \times 10^6 \text{ m}^3$
1970 - 1977	$-4.6 \times 10^6 \text{ m}^3$
1977 - 1983	-8.96 x 10 ⁶ m ³
Total	$-3.76 \times 10^6 \text{ m}^3$

Of the above, decrease in 1977 - 1983 is considered to include the dredged volume in 1981, 1982 and 1983 by the Middle Reaches Project. The dredged volume is reported as $4.37 \times 10^6 \text{ m}^3$ in total (0.57 $\times 10^6 \text{ m}^3$ in 1981, 1.87 $\times 10^6 \text{ m}^3$ in 1982 and 1.93 $\times 10^6 \text{ m}^3$ in 1983).

The sediment discharges through the Jabon site are calculated using the discharge - sediment discharge relationships and the ten-day mean discharge at Jabon as shown in Table WS-20. The total sediment inflow into the stretch between Kaulon and Jabon is calculated as sum of the change in the river deposit and the sediment discharge through Jabon. This figure should not be minus. Then, if minus value appears, it is assumed as zero.

The sediment inflow from the lahar area is calculated by subtracting

the sediment inflow from the area outside of the lahar area. This figure also should not be minus. If minus volume appears, it is assumed as zero. The results are as shown in Table WS-21. The sediment discharge from the lahar area after the 1966 eruption is estimated at 27.54 x 10^6 m³ of the bed and sediment loads and 25.65 x 10^6 m³ of the wash load.

According to Mt. Kelud Project, the sediment deposit kept by the lahar pockets, sabo dams, etc. is reported as $14.55 \times 10^6 \text{ m}^3$ as of the end of 1983.

Using the above figures, the sediment balance after the 1966 eruption is drawn as shown in Fig. WS-22. In this case, the uncontrollable deposit is calculated as an end result.

NOTE WS-4 REFERENCE

Number	Name of Report	Author	Date of	Issue
WS 01	MT. KELUD VOLCANIC DEBRIS CONTROL PROJECT FEASIBILITY REPORT	DGWRD	Мау	1969
WS 02	REPORT ON THE FIELD STUDY IN GN. KELUD INTERIM REPORT PART-II	K. TAKANASHI (Colombo Plan Expert)	Aug.	1978
WS 03	REPORT ON THE BASIC CONCEPTS FOR DEBRIS CONTROL WORK IN GN. KELUD PROJECT AREA	K. TAKANASHI (Colombo Plan Expert)	Nov.	1978
WS 04	RECOMMENDATION REPORT ON SEDIMENT AND DEBRIS CONTROL IN THE BRANTAS RIVER AND IN THE AREA AFFECTED BY MT. KELUD ERUPTION (REVISED)	NIPPON KOEI CO., LAD IN ASSOCIATION WITH C.T.I. ENGINEERING CO., LTD.	. Jan.	1979
WS 05	SANDPOCKETS IN PROYEK GUNUNG KELUD (PART - I)	K.S. DJASMANI BIE K. TAKANASHI	Mar.	1980
WS 06	REPORT ON THE TECHNICAL COOPERATION IN THE FIELD OF SABO WORKS AT MT. KELUD PROJECT IN INDONESIA (FINAL REPORT)	T. TAKANASHI (Colombo Plan Expert)	Mar.	1981
WS 07	VOLCANIC ACTIVITY OF MOUNT KELUD AND ASSOCIATED DISASTER PREVENTION WORKS	VOLCANIC DISASTER PREVENTION PROJECT OF MOUNT KELUD	Мау	1983
WS 08	KANTONG LAHAR DI DAERAH LAHARAN GUNUNG KELUD	PROJECT PENANG- Gulangan Akibat Bencana Alam Gunung Kelud	Oct.	1983
WS 09	RENCANA PELITA IV	PROYEK PENANGAKIBAT LETUSSN GUNUNG KELUD	-	1984
WS 10	THE BASIC CONCEPT FOR OVERALL PLAN IN MT. KELUD PROJECT	VOLCANIC DISASTER PREVENTION PROJECT OF MOUNT KELUD		1984

i.

ť

WS-10

LIST OF REFERENCE (2/2)

Number	Name of Report	Author	Date of Issue
WS 11	LAPORAN AKHIR PROYEK SABO DAM TOKOL	BRBDO	Feb. 1979
WS 12	LAPORAN AKHIR PROYEK SABO DAM MENDALAN	BRBDO	Oct. 1979
WS 13	STUDI PENGEMBANGAN DAN PENGENDALIAN EROSI KARANGKATES BAGIAN HULU PROYEK BENDUNGAN KARANGKATES	UNIVERSITAS BRANWIJAYA	Apr. 1982
WS 14	PENELITIAN VEGETASI, HIDRO LOGY DAN SEDIMENTASI PROYEK BENDUNGAN KARANGKATES	UNIVERSITAS BRAWIJAYA	Sept. 1983
WS 15	PETAK PERCONTOHAN PENGEM- BANGAN SUMBER-SUMBER AIR DAN PENGENDALIAN EROSI DI GUBUK KLAKAH KABUPATEN MALANG	BADAN PELAKSANA PROYEK INDUK PENGEM- BANGAN WILAYAH SUNGA KALI BRANTAS	
WS 16	PENELITIAN HYDRO-OROLOGI DI PROYEK BENDUNGAN SELOREJO (BUKU I)	LAPORAN KEMAJUAN	1983
WS 17	PENELITIAN HIDRO-OROLOGI DI PROYEK BENDUNGAN KARANGKATES (BUKU I - BUKU III)	LAPORAN AKHIR	1983
WS 18	PENELITIAN VEGETASI, HIDROLOGI DAN SEDIMENTASI PADA PROYEK PENGEMBANGAN KARANGKATES HULU	UNIVERSITAS BRAWIJAYA	Jun. 1984
WS 19	PENELITIAN VEGETASI, HIDROLOGI DAN SEDIMENTASI PADA PROYEK PENGEMBANGAN KALI KONTO HULU	LAPORAN AKHIR	Jun. 1984
WS 20	EVALUATION OF FOREST LAND KALI KONTO UPPER WATERSHED, EAST JAVA (VOLUME I - VOLUME VI)	RESEARCH INSTITUTE FOR NATURE MANAGE- MENT LOERSUM, THE NETHER- LAND	Apr. 1984

Table WS-1 REFORESTATION IN THE K. LESTI BASIN

				(Ha)	
Management area	PELITA I (1969-'74)	II ('74-'79)	III (79-'84)	1V ('84-89)	Naturalforest
Poncokusumo	10.5	42.1	101.0	53.0	579.2
Bambangan Utara	68.0	82.0	72.0	43.5	2214.5
Bambangan Selatan	41.0	71.5	169.0	112.8	2361.7
Dampit	82.5	18.0	105.8	308.0	3013.7
 Total	208.0	213.6	447.8	517.8	8169.1
	g. WS-3.	210.0			

Source : Information from Perum Perhutani Unit II Jawa Timur.

Table	WS-2	SPECIES	ØF	REFOREST	AREA	IN	THE	к.	LESTI	BAS	IN
		. · ·					. •			1 0.	ì

· · ·	· .		a ta sa	(8	;)
*		Bamba	•		· · · · · · · · · · · · · · ·
Kind.of.treel	Poncokusumo	. Utara	Selatan	Dampit	Total
Tectona grandis	-	-	-	6.17	6.17
Pinus SPP	-		-	0.96	0.96
Swietenia madagoni	4.26	5.48	5.06	6.22	21.02
Agathis Splp	-	1.93	-	-	1.93
Michelia Velutina	15.11	10.07	15.17	12.44	52.79
Pterospermum SPP	0.77	3.14	2.60	2.92	9.43
Calliandra calytir	rus -	1.18	4.76	-	5,94
Others	0.21	0,39	0.39	0.77	1.76
Total	20.35	22.19	27.98	29.48	100.

Source : Information from Perum Perhutani Unit II Jawa Timur.

Table	WS-3	RECORD	OF	ERUPTION	OF	G.	KELUD
		SINCE	YEAF	۱۵۵۵ ۲			

Year of Eruption	Volume of Crater Water	Erupted Materials	Lahar Travel Balance	Damage
1000			· · ·	
1311				
1334				
1376				
1385				
1395	No data			
1411				
1451				
1462				
1481				
1586				Life; 10,000
May 1, 1752				
Jun. 10, 1771	No data			
June 5, 1891				
Oct. 13, 1826				65 desa
1835	No data			
May 16, 1848				Life 21, 11 desa Coffee tree 100,000
Jan. 3, 1964				Life; many
May 22, 1901				Life; many
May 19, 1919	$38 \times 10^{6} \text{m}^{3}$	$323 \times 10^6 \text{m}^3$	37.5 km	Life; 5,110, 104 des 9,000 houses, 1,571 cattle 135 km ² - crop land
Aug. 31, 1951	$1.8 \times 10^{6} \text{m}^3$	200 x 10 ⁶ m ³	6.5 km	Life; 7 70 km ² - crop land
Apr. 26, 1966	20.5 x 10 ⁶ m ³	90 x 10 ⁶ m ³	31 km	Life; 286, 138 desa 2,620 houses, 21 bridges 86 dams 11,581 km ² crop land

Table WS-4

DESIGN SEDIMENT CAPACITY

1	106	a ³ }

ţ.

	54	Sabo dam		Check dag		Consolization dam		r pocket	
Name of River	Nos	Capacity	Nos	Capacity	Nos	Capacity	Nos	Capacity	Total
K. Konto	1	0.58	5	0.032	1	0.007	2	1.31	1.93
K. Serinjing	-	-	3	0.095	2	0.044	1	0.32	0.46
K. Ngobo	-		9	0.72	-	-	1	1.12	1.84
K. Dermo + Toyoaning	-	-	-	-	10	0.12	-	-	0.12
K. Sukorejo	-	-	1	0.02	-	-	-	-	0.02
K. Petung Ko- bong	-	-	1	0.02	-	-	-	-	0.02
K. Gedog	-	-	1	0.09	1	0.007	1	0.15	0.167
K. Badak + Termas + Jatiplen	1	0.28	2	0.061	6	0.35	2	8.45	9.14
K. Putih	1	0.5	1	0.032	5	0.092	1	2.57	3.19
K. Semut	1	0.47	-		4	0.1	1	1.66	2.23
K. Lekso	-	•	2	0.29	-	-	•	-	0.29
Total	4	1.33	25	1.279	29	Ú.718	9	15.58	19,407

Source : WS .12

.

		Completed	Design capacity (10 ⁶ m ³)		Yolum
Area	Name	(Y)	(10° m°)	(<u> </u>	(%)
. Lahar pocket					
K.Konto	Badas	1977	0.665	355, 133	53
K.Konto	Rolag 70	1979	0.645	416,217	64
K.Serinjing	K.Serinjing	1973	0.32	227, 500	71
K.Ngebo	Pulo	1970	1.12	839, 882	75
K.Gedog	Gedog	1970	0.15	131,215	87
K.Badak	Salam	1970	4.69	3,340,845	71
K.Jatiplen	Jatilengger	1968	3.76	2,821,550	75
K.Patih	K.Puțih	1971	2.57	1,985,480	77
K.Semut	K.Semut	1972	1.66	1,251,985	75
Sub-total			15.58	11,369,788	73
. Other structure			3.83	3,183,542	83
Total			19.41	14,553,330	75

TableWS-5SEDIMENT VOLUME EXISTING LAHAR POCKETSAND OTHER STRUCTURES

Source : 1 WS 10

•

2 Information from Project of G. Kelud.

-

Table WS-6 LAND USE IN THE UPPER KALI KONTO BASIN

	Land categories	Area (ha)	Propotiona extent (2)
1.	Forest land		
	Natural forest	12,975	54.51
	Reforest area	2,465	10.36
	Sub-total	15,400	64.87
2.	Upland field		• •
	Upland field with annual crops	3,783	15.89
	Upland field with perennial crops	757	3.18
	Sub-total	4,500	19.07
3.	Paddy field		
	Technical irrigation	748	3.14
	Semi-technical irrigation	678	2.85
	Traditional irrigation	368	1.55
	Sub-total	1,794	7.54
4.	Grass land	4	0.02
5.	Homestead/settlement	1,268	5.33
5.	Miscellaneous	754	3.17
	Total	23,800	100

Source 1 WS - 22

WS-16

Name of faciliti	les	Completed	Design storage capacity	Bxisting sediment	Remarks
		(y)	(m ³)	volume (m3)	
Sabo dam					
Tokol		1975	183,800	187,600	K. Konto
Sub-total			183,800	187,600	•
Check dam					
K. Konto				· · · · · ·	
 Mantung 	1	1973	35,025	35,025	
2.	2	1973	50,400	50,400	
3.	3	1973	8,550	8,550	
4.	4	1973	39,200	39,200	
5.	5	1973	65,080	65,080	
6. Lebaksari	1	1973	52,650	52,650	
7.	2	1973	49,800	49,800	
8.	3	1973	15,840	15,840	Heightening 1978
9.	4	1973	92,245	92,255	1980
10. Kedungrejo	1	1973	23,100	23,100	1978
11.	2	1973	64,350	64,350	1978
12.	3	1973	95,555	95,555	1980
13.	4	1973	51,330	51,330	1978
14.	5	1973	33,075	33,075	1978
15.	6	1973	21,750	21,750	1980
16. Ngeprih	1	1973	10,555	10,555	1978
17.	2	1973	31,620	31,620	1978
18.	3	1973	26,220	26,220	
19. Kaweden		1973	63,375	63,375	1980
20. Tokol	1	1979	1,125	1,125	
21.	2	1979	5,340	5,340	
22.	3	1979	23,840	23,840	
23.	4	1981	12,500	12,500	
24.	5	1979	22,835	22,835	198
25.	6	1979	52,205	52,205	
Sub-total			947,575	947,575	
K. Pinjal					
26. Pinjal	1	1981	2,220	2,210	
Sub-total			2,210	2,210	
K. Kwayangan	•	1072	16,720	16 120	Heightening 1979
27. Kwayangan	I	1973		16,720	ierSuccurik 1313
28.	II	1973	27,940 24,192	27,940	
29. 30.	III IV	1973 1973	18,910	24,192 18,910	
Sub-total		··	87,762	87,762	
Total			1,221,347	1,225,147	

Table US-8 LAND USE IN ERODIBLE AREA IN THE UPPER K. KONTO BASIN

Land use in erodible area	Area (km²)	Percent (X)
Reforest area	8.78	47.59
Upland field	7.67	41.57
Homestead / settlement	1.02	5.53
Paddy field	0.98	5.31
Тока 1	18.45	100.0

Table WS-9 SPECIES OF REFOREST AREA IN THE UPPER KALL KONTO BASIN

	Kanagement area	Kawi Utara	Kavi Barat	Kelud L.	Anjasmoro	To	otal
Spec	cies	(ha)	(ha)	(ha)	(ha)	(ha)	(%)
3.	Pulp wood			1. J.			
	Pinus merkusii	178	80	258	231	747	30
	Fuel wood				۰.		
	Calliandra calothyrsus	105	2	· <u>-</u>	407	514	2
•	Timber						
	Agathis loranthifolia	28	167	· +	90	285	Ľ
	Swietenia spp.	-	51	203	4	258	. 10
	Eucalyptus deglupta	207	. –	-	12	219	!
	Maesopsis eminii	4	22	- 157	9	192	
	Anthocephalus cadamba	-	_	120	3	123	
	Other species	24	5	. 90	8	127	
	TOTAL	546	327	828	764	2,465	10

.

(mm)

Nonth	K. Lesti basin		Lover part
	K. Lesti Dasiu	of K.Lesti basin	of K.Lesti basio
JAN.	277.29	293.60	254.35
FEB.	257.78	261.74	252.21
MAR.	252.62	264.65	235.70
APR.	186.89	170.14	210.44
MAY	158.00	156.68	159.85
JUN.	67.31	71.43	61.49
JUL.	45.99	51.29	38.55
AUG.	17.35	19.39	14.49
SEP.	58.25	57.84	58.82
OCT.	124.01	125.25	122.26
NOV.	247.29	259.87	229.63
DEC.	291.23	296.15	284.30
Total	1,984.00	2,028.03	1,922.09

Remarks : Rainfall data from 1974 to 1983

Table WS-11 AVERAGE RAIN EROSIVITY IN 10 YEARS

Rata-rata Erosivitas Hujan di Daerah Penelitian selama 10 tahun.

	· · · ·		· · · · · · · · · · · · · · · · · · ·			
Vonth		Ri	ain Erosiv	ity Index		
Month	Wagir	D. Mulyo	Bantur	Dampit	Wajak	Gabes
Jan.	139.08	156.27	142.98	138.00	151,12	150.33
Feb.	127.44	126.72	94.14	116.63	128.34	107.33
Mar.	104.06	119.66	91.90	117.09	115.05	113.81
Apr.	86.92	44.38	45.05	79.99	107.71	50.07
May	49.15	66.71	70.24	69.78	84.14	40.27
June	16.04	34.01	34.01	40.60	30.23	15.20
July	15.46	13.38	22,22	19.08	18,77	11.80
Aug.	11.85	9.31	6.28	10.89	9,35	11.22
Sept.	28.98	19.85	32,14	26.91	42.01	15.29
Oct.	43.51	64.14	78.74	45.13	74,05	41.18
Nov.	98.49	61.02	85,30	96,09	98,66	76.05
Dec.	112.94	99.74	91.85	107.63	95.67	93.72
Total	833.92	815.19	794,85	867.82	955.1	726.27

	Capacity	Inflow	C/1	Trap efficiency	Sedimed inflow	Accumulated sediment	Deposit voluma	Accumulated
Period	(10 ⁶ ,3) (1)=21.5(7)	(10 ^{6 3} /Y) (2)	(3)=(1)/(2)	(1) (4)	(10 ⁶ , ³ /¥) (5)	infloy (10 m) (6)	$(10^{6} \text{ m}^{3}/\text{Y})$ $(7) = (4) \times (5)$	volume (105m ³) (8)
0-1	21.5	1740.79	0.0124	61	2.26		1.379	1.379
1-2	20.121	1740.79	0.0116	60	2,26	4.52	1,356	2.735
2-3	18.765	1740.79	0.0108	58.5	2,26	6.78	1.322	4.057
3-4	17.443	1740.79	0.01	57	2.26	9.04	1.288	5.345
4-5	16.155	1740.79	0.0093	S 5	2.26	11.3	1.243	6.588
5-6	14.912	1740.79	0.0086	54	2.26	13.56	1.22	7.808
6-7	13.692	1740.79	0.0079	52	2,26	15.82	1.175	8.983
7-8	12.517	1740.79	0.0072	50	2,26	18.08	1.13	10,113
8-9	11,387	1740.79	0.0065	47.5	2.26	20.34	1.047	11.187
9-10	10.313	1740.79	0.0059	45.5	2.26	22.6	1.028	12.215
10-11	9,285	1740.79	0.0053	43	2.26	24.86	0,972	13.187
11-12	8.313	1740.79	0.0048	41	2.26	27.12	0.927	14.114
12-13	7.386	1740.79	0.0042	38	2,26	29.38	0.859	14.973
13-14	6.527	1740.79	0.0037	34.5	2.26	31.64	0.780	15.753
14-15	5.747	1740.79	0.0033	32	2.26	33.9	0,723	16.476
15-16	5.024	1740.79	0.00029	29	2,26	36.16	0.655	17.131
16-17.	4.369	1740.79	0.0025	25	2.26	38.42	0,656	17.696
17-18	3.804	1740.79	0.0022	22	2.26	40.68	0.497	18,193
18-19	3.307	1740.79	0.0019	13	2.26	42.94	0.407	13.6
19-20	2.90	1740.79	0.0017	15	2.26	45,2	0.339	18,939
20-21	2.561	1740.79	0.0015	12	2.26	47.46	0.271	19,21
21-22	2.290	1740.79	0.0013	7.5	2.26	49,72	0.170	19,38
22-23	2.120	1740.79	0.0012	5	2.26	51.98	0,113	19,493
23-24	2.007	1740.79	0.0012	5	2,26	54.24	0.117	19.606
24-25	1.894	1740.79	0.0011	3	2.26	56.5	0.068	19.674
25-26	1.826	1740.79	0.001	0	2.26	58,76	-	-

Table WS-12 TRAP EFFICIENCY OF THE SENGGURUH RESERVOIR

Table . WS-13 RIVER BED HOVEMENT

Gauge			long Rej	otange	en Panke	l Jeli	Jongb						n Terusa (Jabon		
fear	(^{D=} W=	10.7) 50	(D=14.5 W=70) (^{D*} **	15.5 0 150 ¥	=15.0 x D= =165 x W=	27.7 125	(D=11.2) W=150	(W=12)	.0, D=23 5 (N=14	0,1 (D=1 10,1 (W=1		13.8, (^D 150 W	=32.0, =130	Remarks
1950	149.90	124.	70 1	07.50	90.50	76.60	55.	95		39.30	26,90	•		0.60	
1951	150.20	125.	00 1	07.80	90.55	76.80	56.	05		39.55	27.00			0.80	
1952	150.92	126.	52 1	08.30	90.90	77.30	56.	35		40.10	27.20			1.79	
1953	150.22	126.	.87 1	Ó8.50	91.40	77.27	56.	80		40.36	27.49			1.89	
1954	150.92	126.	40 1	08.80	91.26	71.32	56.	66		40.40	27.60			2.15	-
1955	151.05	126.	11 1	08 .50	91.40	77.20	56.	68		40.64	27.90			2.50	
1956	150.92	126.	50 I	09.00	91.70	76.90	56.	63		40.57	27.80			2.60	
1957	150.91	126.	31 1	09.20	91.48	76.74	56.	56 49	.41	40.40	27.61	21.25	16.61	2.62	
1958	150.58	126.	30 1	09.40	91.74	77.04	56.	56 49	.65	40.87	27.54	21.37	16.60	2.69	
1959	150.60	126.	18 1	09.60	91.61	77.10	56.	71 49	.40	49.97	27.37	21,15	16.64	2.60	
1960	150.51	125.	99 1	09.80	91.64	77.40	56.	70 49	.61	41.25	27.21	21.03	16.64	2.63	D : Distance
1961	150.64	125.	68 1	09.70	91.65	77.27	56.	94 49	.80	41.04	27.00	21.21		2.71	(kma)
1962	150.50	126.	20 1	09.60	91.60	77.16	56.	64 49	.77	40.46	27.42	20.91		2.75	Из
963	150.50	126.	10 1	09.60	91.69	77.17	56.	81 49	.67	41.25	27.42	21.24		2.89	River width
1964	150.30	126.	21 1	09 . 40	91.42	77.10	56.	95 49	.92	40.45	27.31	21.44		2.81	(m)
965	150,18	126.	56 1	09.8 8	91.20	77.31	57.	23 50	.00	41.10	27.55	21.08		2.90	o : Assumed
1966	150.37	127.	88 1	09.60	91.37	77.48	56.	81 49	.90	41.45	27.72	21.99	16.91	2.95	figure
967	150.50	128.	52 10	09.70	91.57	77.31	57.	14 49	.95	40.65	27.89	21.93	16.68	3.10	
968	150.90	127.	91 J	10.00	91.45	77.72	57.	12 50	.56	41.30	28.64	21.55	16.92	3.50	
969	150.55	128.	25 1	09.61	91.53	78.22	57.	31 50	.05	42,18	28,30	22,28	16.96	3.79	
970	150.21	128.	24 1	10.08	91.66	78.25	57.	39 50	.10	42.16	28.12	21.93	16.76	3.96	
971	149.88	128.	21 14	09.94	91.61	78.06	57.	33 49	.78	41.99	28.33	21.24	o 16.88	o 3.50	
972	150,41	128.	68 10	09.97	o 91.60	o 77.98	57.	34 49	.98	o 41.85	27.86	21.12	17.01	o 3.00	
973	150.53	126.	79 1	10.67	91.57	77.90	. 57.	58 49	.97	41.70	28.31	21.57	16.95	02.50	
974	150.45	126.	28 1	10.12	91.64	77.86	57.	44 49	. 59	42,13	28.16	21.62	16,65	2.00	
915	150.22	126,	03 1	10.03	91.58	77.56	57.	33 49	.99	41.90	28.08	21.58	16.35	1.93	
976	150.40	125.	51 1	10.73	o 91.69	77.68	57.	26 50	.07	41.63	27.06	21.73	16.22	1.59	
977	150.53	125.	18 11	10.63	91.79	77.81	57.	54 50	. 39	41.73	27.60	21.73	16.21	1.82	

(Unit: EL. in meter)

÷ 5

1 -

WS-22

Table WS-14 ANNUAL DEPOSIT VARIATION

								-	(Unit:	10 ⁶ " ³)
	Kaulon - Pakel	Pakel - Jongbiru	Jongbiru - Kertosono	Kertosono - Ploso	Ploso - Porong	Total	Kaulon - Jongbiru	Kaulon - Kertosono	Kaulon - Ploso	Kaulor Jabon
1951	0.83	0.84	0.66	0.58	1.33	4.24	1.67	2.33	2.91	3.60
1952	2.63	2.45	1,58	1.23	5.32	13.21	5,08	6.66	7.89	10.66
1953	0.99	1,32	1.32	0.74	1.33	5.70	2,31	3.63	4.37	5.06
1954	0.16	-0.29	-0.18	0.39	2.04	2.12	-0.13	-0.31	0.08	1.14
1955	-0.53	-0.15	0.48	0.87	3.37	4.04	-0.68	-0.20	0.67	2.42
Sub total	4.08	4.17	3.86	3.81	13.39	29.31	8.25	12,11	15.92	22,88
1956	1.46	-0.62	+0.22	-0.29	0	0.33	0.84	0.62	0.33	0.33
1957	-0.06	-0.89	-0.44	-0.58	-0.80	-2.77	-0.95	-1.39	-1.97	-2.39
1958	0.54	1.21	0.92	0.65	0.31	3.63	1.75	2,67	3.32	3.51
1959	0.10	0.28	-0.24	-0.13	-0.80	-0.79	0.38	0.14	0.01	-0.67
1960	0.22	0.94	0.67	0.19	-0,38	1.64	1.16	1.83	2.02	1.56
Sub total	2.26	0,92	0.69	-0.16	-1.67	2.04	3.18	3.97	3.71	2.34
1961	-0.38	0,06	0.35	-0.68	0.78	0.13	-0,32	0.03	-0.65	-0.43
1962	0.12	-0.93	-0.80	-0.26	-0.68	~2.55	-0.81	-1.61	-1.87	-1.99
1963	0.04	0.43	1.14	1,29	1.64	4.54	0.47	1.61	5.90	3.72
1964	-0.64	0.56	-0.22	-1,49	0.83	-0.96	-0.08	-0.30	-1.79	-1.44
1965	0.79	0.85	1.04	1.46	-0.98	3.16	1.64	2.68	4.14	3.72
Sub total	-0.07	0.97	1.51	0.32	1.59	4.32	0.90	2.41	2.73	3.58
1966	0.29	-0.03	-0.18	0.87	4.40	5.35	0.26	0.68	0.95	3,29
1967	0.94	0.33	-0.44	-0.87	-0.19	~0.23	1.27	0.83	-0.04	-0.06
1968	-0.09	1.06	1.76	2.26	1.66	6.65	0.97 5	2.73	4,49	4.82
1969	-0.31	1.93	0.11	0.87	2.01	4.61	1.62	1.73	2.60	3.90
1970	0.83	0.46	0.16	-0.32	-1.16	-0.03	1.29	1.45	1.1)	-0.11
Sub total	1.66	3.75	1.41	2.81	6.72	16.35	5.41	6.82	9.13	11.84
1971	-0.42	-0.75	-0,82	0.06	-1.90	-3.83	-1.17	-1.99	-1.93	-3.12
1972	0.08	-0.26	0.24	-1.00	-1.50	-2.44	-0,18	0.06	-0.94	-1.65
1973	0.17	0,13	0.04	0.49	0.35	1.18	0.30	0.34	0.83	2.34
1974	-1.09	-0.26	-0.38	0.45	-1.69	-2.97	-1.35	-1.73	-1.28	-1.31
1975	-0.49	-1.18	0.43	-0.52	-1.29	-3.05	-1.67	-1.24	-1.76	-2.26
1976	0.93	0.37	-0.18	-2.10	-2.06	-3.04	1.30	1.12	-0.98	-2.04
1977	-0.25	1.03	0.92	1.03	1.10	1.83	0.78	1.70	2.73	3.37
iub total	-1.07	-0.92	0.25	-1.59	-6.99	-10.32	-1.99	-1,74	-3.33	-4.67
TOTAL	6.85	8.89	7.72	5.19	13.04	41.70	15.75	23.47	28.16	35.97

WS-23

.

Site			Jabon		Kaulo	n Karangkates
Catchment basin area "	Total Difference	(km ²) (")	8,218	5,598	2,620	2,05 (A ₁) 570(A ₂)
Bed and sus- pended load						
Sediment discharge (10 ⁶ m ³ /year)	At site Difference		1.50	0.71	0.87	
Unit sediment yield (m ³ /km ² /year)				130		330 (q _B) Applied to the basin upstream from Kaulon
Wash load						
Sediment discharge (10 ⁶ m ³ /year)	At site Difference		4.60	4.19	0.41	(Q _w)
Unit sediment Yield				750		- 440 (q_) (refer ^w to Remarks)

ł

 Table WS-15
 UNIT SEDIMENT YIELD OF KAULON CATCHMENT

 AND RAULON TO JABON CATCHMENT

Remarks : Unit sediment yield for was load in the basin upstream from Kaulon, q_w was obtained through the following calculation. Where, the trap efficiency of Karangkates reservoir was asssumed to be 90%.

$$Q_{w} = q_{w} \times A_{2} + (q_{w} + q_{B}) \times A_{1} \times (1 - 0.9)$$

then, $q_{w} = (Q_{w} - 0.1.q_{B}.A_{1})/(A_{2} + 0.1.A_{1})$
 $= \frac{0.41 \times 10^{6} - 0.1 \times 350 \times 2050}{570 + 0.1 \times 2050} = 440$

Source : WS - 04

WS+24

		Bed and	suspended 1	oad naterial	L	¥3	ish load mate	rial -	Lahar
	Deposit increase (1)	Through Jabon (2)	Sub total (3)=(1)+(2)	Non-lahar area yield (4)	Lahar area yield (5)=(3)-(4)	Through Jabon (6)	Non-lahar area yield (7)	Lahar area yield (8)*(6)-(7)	area yield Total (9)=(5)+(8
1950 - 1951	3.60	1.64	5.24	1.33	3.91	4.70	3.22	1.48	5.39
1951 - 1952	10,40	1.64	12.04	1.33	10.71	4.70	3.22	1.48	12.19
1952 - 1953	4.50	1.64	6.14	1.33	4.81	4.70	3.22	1.48	6.29
1953 - 1954	2.00	1.64	3.64	1.33	2.31	4.70	3.22	1.48	3.79
1954 - 1955	1.30	1.64	2.94	1.33	1.61	4.70	3.22	1.48	3.09
Sub total	21.60	8.20	30.00	6.65	23.35	23.50	16.10	7.40	30.75
1955 - 1960	3.50	8.20	11.70	6.65	5.05	23.50	16.10	7.40	12.45
1960 - 1965	3.50	8.20	11.70	6.65	5.05	23.50	16.10	7.40	12.45
Sub total	7.00	16.40	23.40	13.30	10.10	47.00	32.20	14.80	24.90
Total (1950-1965)	28.80	24,60	53.40	19.95	33.45	70.50	48.30	22.20	55,65
1965 - 1966	2.00	1.64	3.64	1.33	2.31	4.70	3.22	1.48	3.79
1966 - 1967	3.00	1.64	4.64	1,33	3.31	4.70	3.22	1.48	4.79
1967 - 1968	3.00	1.64	4.64	1.33	3.31	4.70	3.22	1.48	4.79
1968 - 1969	3.00	1.64	4.64	1.33	3.31	4.70	3.22	1.48	4.79
1969 - 197Ó	0.80	1.64	2.44	1.33	1.11	4.70	3.22	1.48	2.59
Sub total	11.60	8.20	20.00	6.65	13.35	23.50	16.10	7.49	20.75
1970 - 1971	~1.00	1.64	0.64	1.33	-0.63	4.70	3.22	1.48	0.79
1971 - 1972	-2.00	1.64	-0.36	1.33	-1.69	4.70	3.22	1,48	-0,21
1972 - 1973	-1.10	1.58	0.48	0.65	-0.17	4.60	3.11	1.49	1.32
1973 - 1974	-0.70	1.58	0.88	0.65	0.23	4.60	3.11	1.49	1.72
1974 - 1975	-0.80	1.58	0.78	0.65	0.13	4.60	3.11	1.49	1.62
1975 - 1976	-0.50	1.58	1.08	0.65	0.43	4.50	3.11	1.49	1.92
1976 - 1977	1,50	1.58	3.08	0.65	2.43	4.60	3.11	1.49	3.92
Sub total	-4.60	11.18	6.58	5,91	0.67	32.40	21.99	10.41	11.08
Total (1965-1977)	7.20	19.38	26.58	12.55	14.02	55.90	38.09	17.81	31.83
Total (1950-1977)	36.00	43.98	79.98	32.51	47.47	126.40	86.39	49.01	87.48

Table - WS-16 . AN ESTIMATION OF ANNUAL SEDIMENT YIELD BETWEEN KAULON AND JABON

					(<u>10⁶ m³</u>)				
	Catchment		Amount of volcanic debris								
River	basin area (Xn ²)	flow - distance (Km)	L adu	Prizary Ishar	Secondary lehar	Total	Percon- tage (%)				
K. Semut	93.5	19.30	1.5	2.35	6.13	9.98	17.5				
K. Putih	77.6	23.7	3.0	3.70	7.50	14.20	24.9				
K. Badak	505.2	47.2	2.7	11.50	4.0	18.20	31.9				
K. Ngobo	204.8	37.0	0.35	3.60	5.30	9.25	16.2				
K. Konto	267.6	53.0	0.2	0.7	4.50	5.40	9.5				
Total	1,148.7		7.75	21.85	27.43	57.03	100.0				

Remarks; (1) The amounts show those derived from G. Kelud eruption in 1966 until the end of 1966, investigated by GOI.

Source : WS 04

.

Table WS-18.RIVER EED MOVEMENT ON THE K. BRANTASBETWEEN KAULON AND JABON (1977 ~ 1983)

(Elevation in meter)

	1977	1978	1979	: 	1980	1981	1982	1983
Kaulon	150.53	• 150.51	° 150.49	• 19	50.47	• 150.45	* 150.43	* 150.41
Balance	-0	.02 -1	0.02	-0.02	-0.0)2 - (0.02	-0.02
Gelondong	125.18	124.69	124.92	1:	24.47	123.16	123.06	123.03
Balance	-0	.79 (0,23	-0.45	~1.;	91 -0	. 10	-0.03
Rejotangan	110.63	111.46	110.03	11	11.41	110,81	110.61	110.69
Balance	-0	.17 +(0.43	0.38	-0.0	50 -0	0.20	0.08
Pakel	91.79	• 9L.72	• 91.65	• 9	91.58	91.52	91.57	• 91.57
Balance	~0	-107 -1	0.07	-0.07	-0.6	×6 (.05 ·	0.00
Jelí	77.81	• 77.83	• 77.85	• :	77.87	77.89	77.62	• 77.62
Balance	a	.02	D.02	0.02	0.0)2 -(0.27	0.00
Mrícan (Jong biru)	57.54	57.49	57.73		57.47	57.19	57.00	56.70
Balance	-0	.05	0.24	-0,26	-0.2	28 -0	0.19	-0.30
Minggiran	50.39	50.21	50.50		50,78	51.05	50.53	51.27
Balance	-0	.18 0	0.29	0.28	0.2	27 -0	.52	0.74
Xertosono	41.73	41.44	41.42	. 4	1.56	41.37	41.27	41.26
Balance	-0	-19-1	0.02	0.14	-0.1	19 -0	0.10	-0.01
Plosò	27,60	27.13	27.03		27.42	28.30	28,12	27.51
Balance	-0	.47 -(0.10	0.39	0.8	38 -0	.18	-0.61
Kesamben	21,73	21.53	21.52	2	21.66	21.30	20.84	21.41
Balance	-0	.20	-0.01	0.14	-0.3	16 -0	.46	0.57
Tersan (Jabon)	16,21	16.16	15.80	1	15.17	14.97	14.70	14.62
Balance	-0	.05 -0	0.36	-0.63	-0.2	10 -0	.27	-0.08

Remarks: Balance : Between river bed elevation and that in the next year

* : Assumed figure based on river bed movement of 1950 to 1977

Source : Based on measured record by Irrigation Section, DPU, East Java

WS-27

			KUOTON I	NID UNDU		1,031		6 3	
		<u></u>					(10 ⁶ m ³)		
		1978	1979	1980	1981	1982	1983	Total	
Kaulon D=10.7	D=50	-0.22	-0,06	-0.13	-0.36	-0.03	-0.01	-0.69	
Glondong D=14.5	W=70	-0,49	-0.10	-0.04	~0,97	-0.15	0.03	-1.72	
Rejotangar D=15.5		-0,28	-0.58	0.36	-0.77	-0.17	0.09	-1.35	
Pakel D=15.0	₩=165	-0.06	-0.06	-0.06	-0.05	-0.27	0.00	-0.50	
Jeli D=27.7	₩=125	-0.05	0.45	-0.42	-0.45	-0.80	-0,52	-1.79	
Jongbiru D=11.2	₩=150	-0.19	0.45	0.02	-0.01	-0.60	0.37	0.04	
Minggiran D=16.0	w=125	-0.47	0.27	0.42	0.08	-0.62	0.73	0.41	
Kertosono D=23.1	W=140	-1,23	-0.19	0.86	1.12	-0.45	-1.00	-0.89	
Ploso D=15.3	₩=160	-0.82	-0.13	0.65	0.64	-0.78	-0.05	-0.49	
Kesamben D=13.8	w≠150	-0,26	-0.38	-0.51	-0,58	-0.76	-0.51	-1.98	
Jabon								. *	

()

Table WS-19	ANNUAL DEPOSIT VARI	ATION BETWEEN
	KAULON AND JABON (1	977 - 1983)

Remarks: D: Distance of site to site (km)

-0.21

W: Mean width of river (m)

-4.07

Total {Kaulon to

Jabon)

WS-28

1.15

-1.35

-4.63

0.15

-8.96

.

(Unit:	$1,000m^3$)
--------	--------------

	Suspended	Wash	Bed	Total
lear	Load	load	Load	Load
1951	1,427	3,820	175	5,422
1952	1,822	6,357	241	8,421
1953	1,568	4,399	198	6,166
1954	1,969	5,660	256	7,886
1955	2,506	9,038	345	11,889
	0/000	5,000	0.0	
1956	1,736	3,751	214	5,701
1957	1,720	5,813	223	7,756
1958	1,795	4,806	228	6,831
1959	1,980	7,911	270	10,163
1960	1,806	5,750	236	7,793
1961	1,213	2,048	140	3,402
1962	1,634	4,148	205	5,989
1963	1,605	6,392	214	8,213
1964	1,413	2,265	164	3,843
1965	1,084	1,939	124	3,148
1966	1,400	3,474	171	5,047
1967	1,196	2,245	140	3,581
1968	2,019	5,112	259	7,390
L969	1,310	3,007	158	4,476
1970	1,485	3,097	180	4,763
1971	1,800	5,013	231	7,045
1972	942	1,111	101	2,155
1973	1,807	4,702	228	6,738
1974	1,713	4,130	214	6,058
1975	2,336	9,871	328	12,536
1976	1,388	4,838	176	6,404
1977	1,149	1,884	131	3,165
1978	1,943	4,396	245	6,586
1979	1,806	5,818	237	7,862
1980	1,303	2,321	153	3,778
1981	1,533	3,275	189	4,997
1982	1,284	2,991	155	4,431
1983	1,552	2,823	187	4,562
lean	1,613	4,370	204	6,188

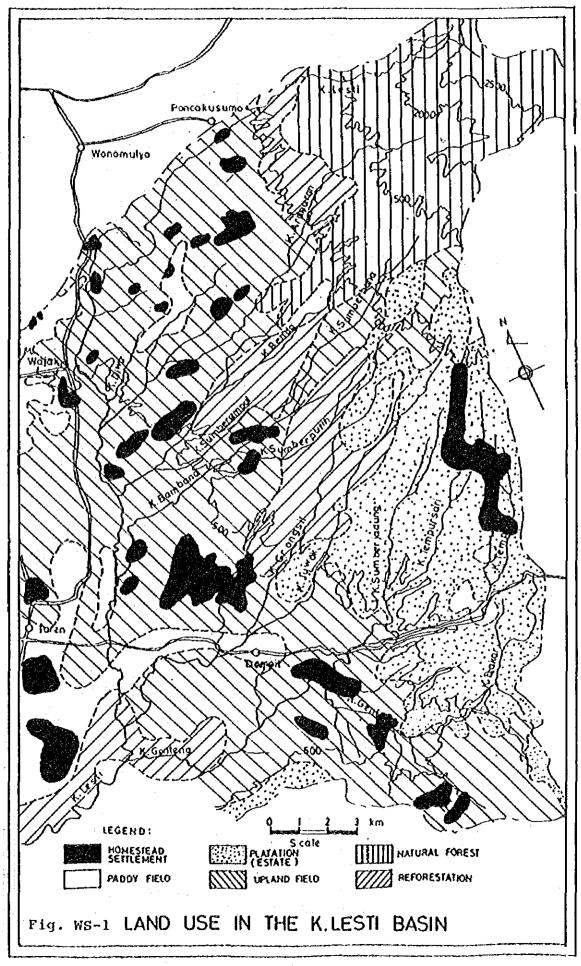
Based on 10-day mean discharge.

WS-29

Table WS-21 SEDIMENT BALANCE DURING 15 YEARS

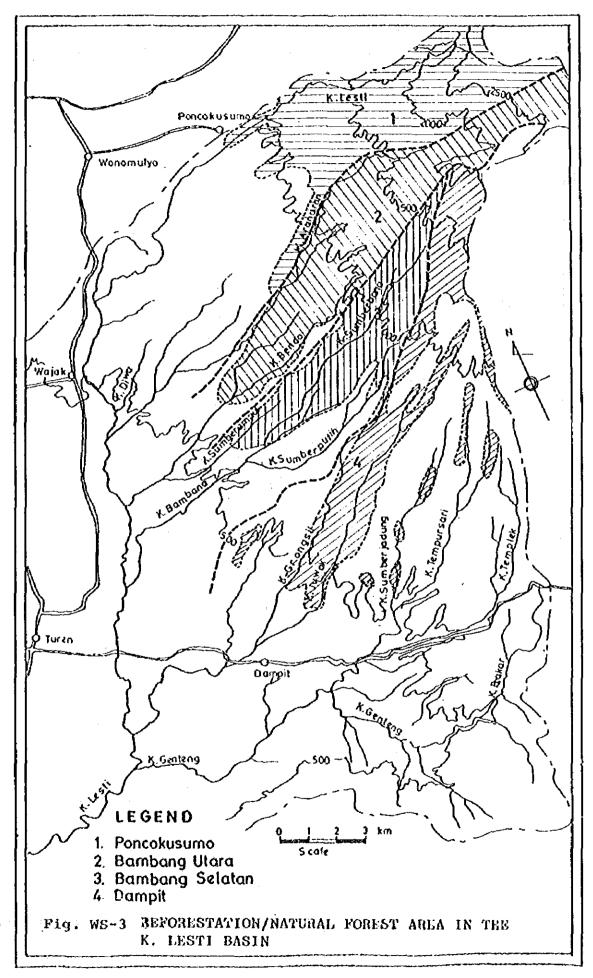
BY BRDDEO

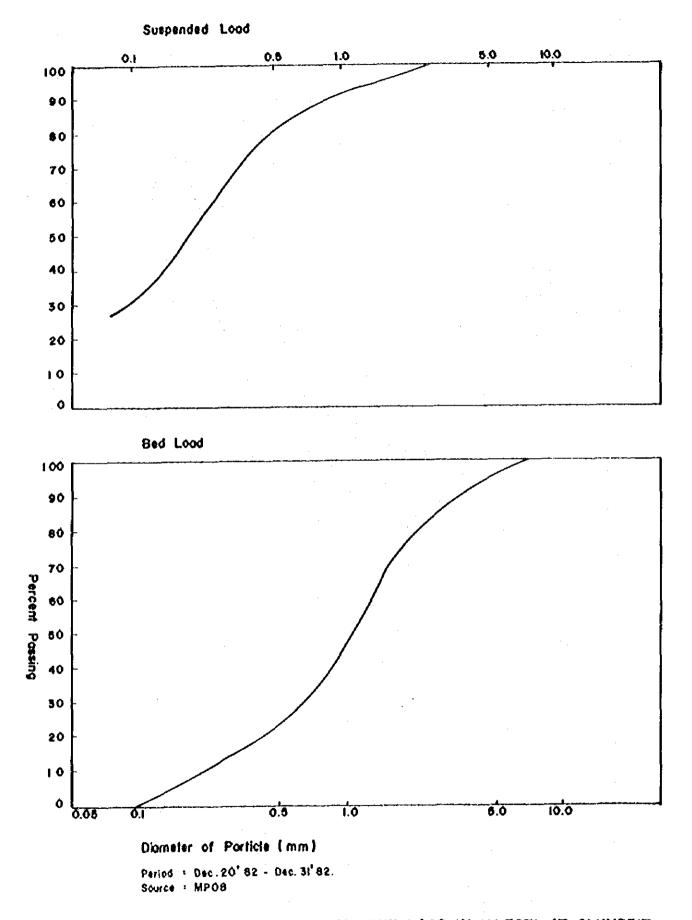
				(10^6 m^3)				
(1) Total volcanie product	(2) * Sediment carried off to the Brantas	(3) Controllable sediment retained in tributaries	(4)=(2)+(3) Sub total	(5) Sediment to be carried off to the Brantas un- der proposed condition	(6)=(4)+(5) Excess over proposed amount to be arrested			
29.6	4.9	7.5	12.4	0.9	11.5			
34.2	6.9	10.6	17.5	0.9	16.6			
53.1	8.8	13.6	22.4	4.5	17.9			
30.5	6.1	6,9	13.0	3.0	10.0			
21.4	6.8	4.1	10.9	2.3	8.6			
166.8	33.5	42.9	76.2	11.6	64.6			
	Totel volcanic product 29.6 34.2 53.1 30.5 21.4	Total volcanic productSediment carried off to the Brantas29.64.934.26.953.18.830.56.121.46.8	Totel volcanic productSediment carried off to the BrantasControllable sediment retained in tributaries29.64.97.534.26.910.653.18.813.630.56.16.921.46.84.1	Total volcanic productSediment carried off to the BrantasControllable sediment retained in tributariesSub total29.64.97.512.434.26.910.617.553.18.813.622.430.56.16.913.021.46.84.110.9	Total volcanic productSediment carried off to the BrantasControllable sediment retained in tributariesSub totalSediment to be carried off to the Brantas un- der proposed condition29.64.97.512.40.934.26.910.617.50.953.18.813.622.44.530.56.16.913.03.021.46.84.110.92.3			

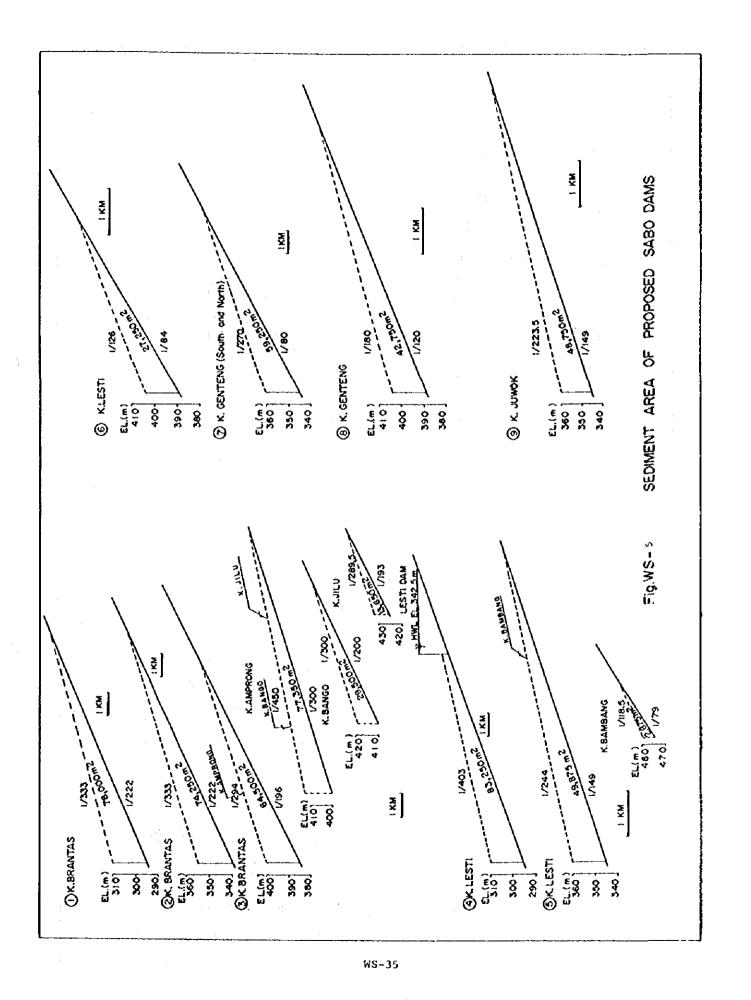

Remarks : * Bed and suspended load Source : WS 04

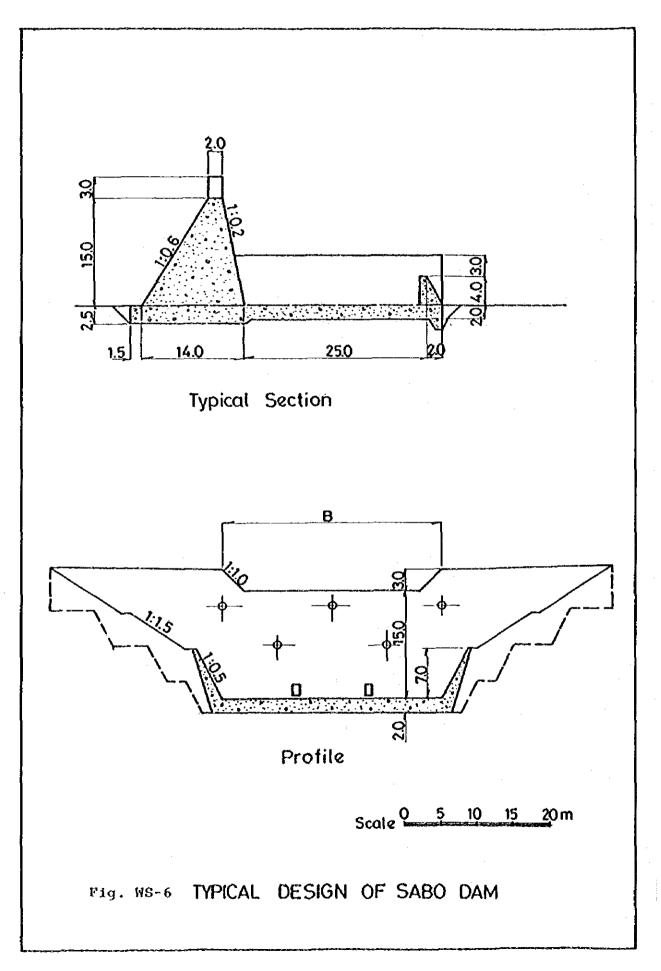

BY G. KELD PROJECT

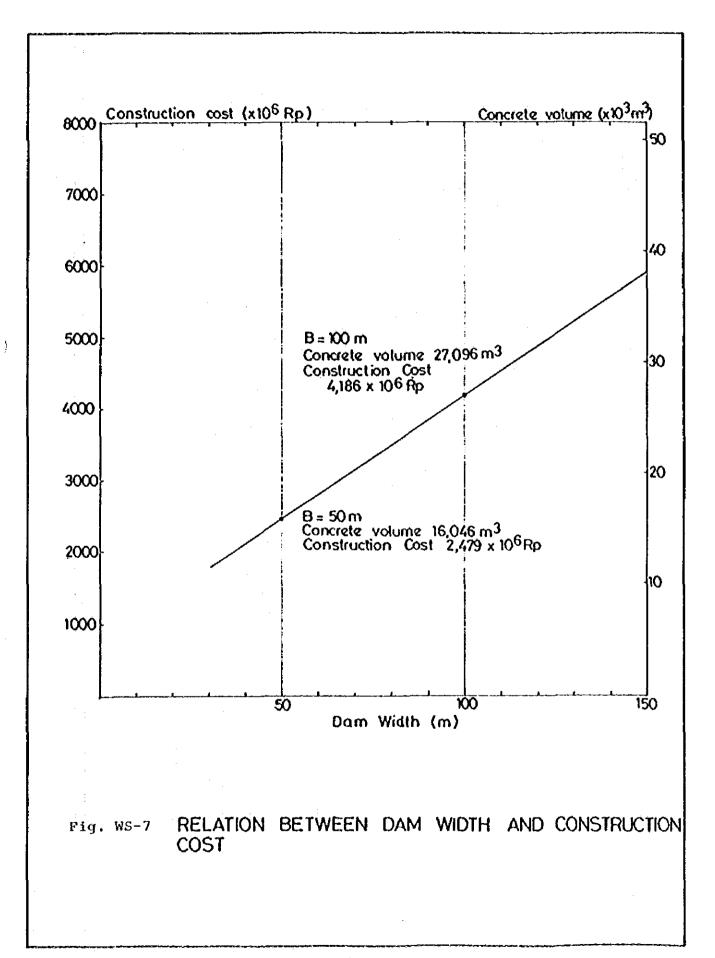
Name of river	Length	Excess	Sediment	
(Area)	(km)	(10 ⁶ m ³)	(%)	
K. Kontó	40	6.54	9.90	
K. Serinjing	39	0.84	1.27	
K. Ngóbo	37.5	9,14	13.85	
K. Dermo-Sukorejo	39	5.24	7.94	
K. Gedog	25	1,21	1.83	
K. Badak-Termas	40	18.20	27.58	
K. Putih	26	13.54	20.52	
K. Semut	18	7.14	10.82	
K. Lekso	7	4.15	6.29	
Total		66.00	100.00	

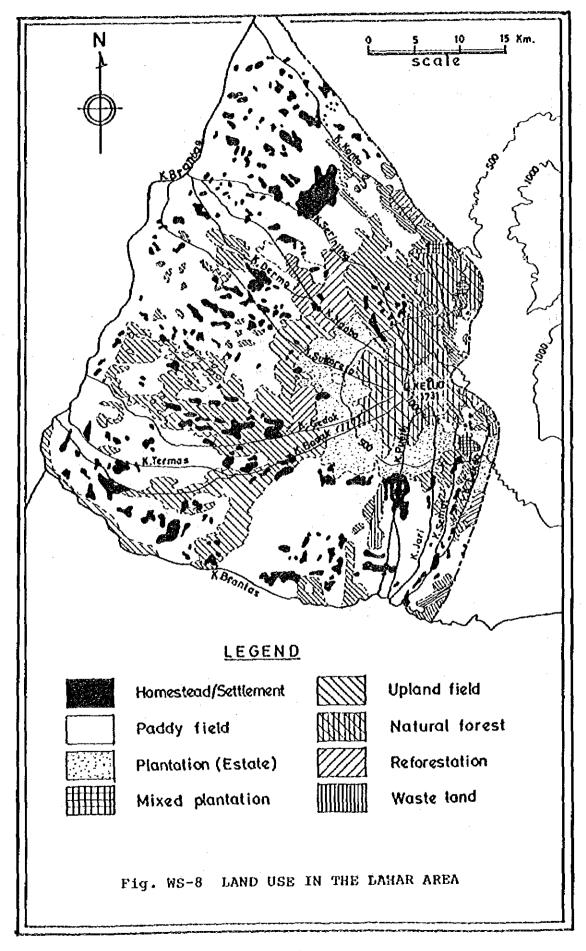

.


Source ; Information from G. Kelud Project

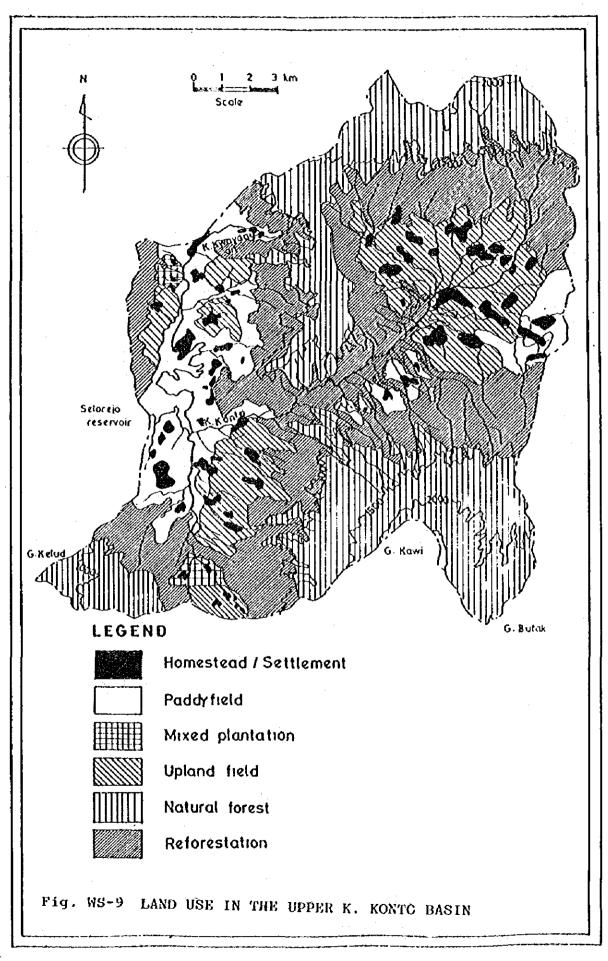

1

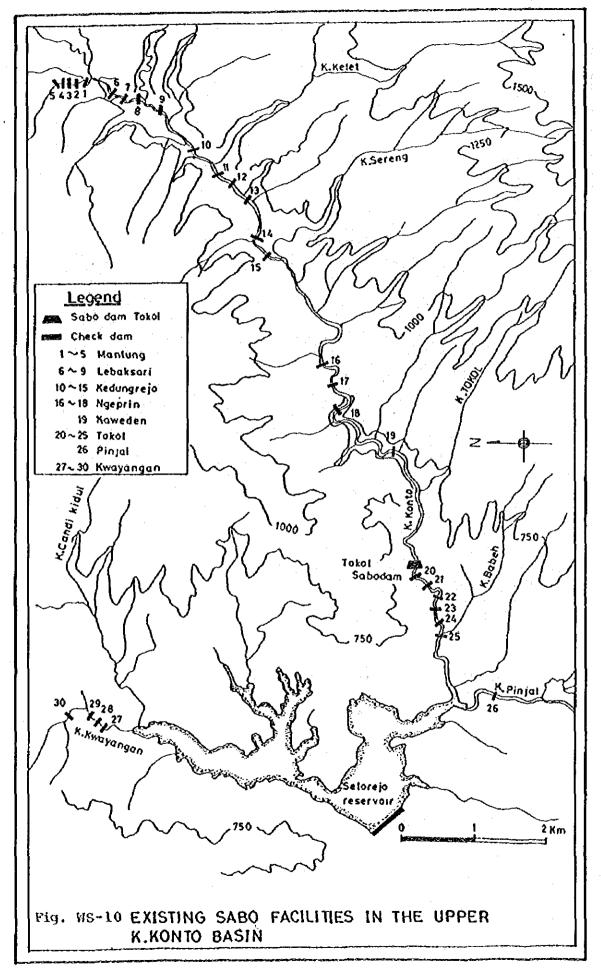


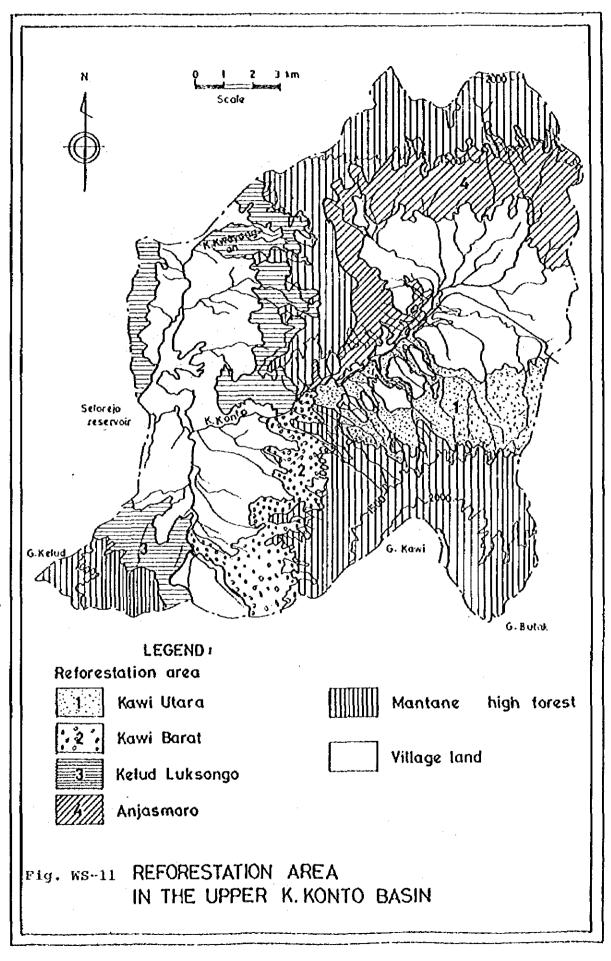


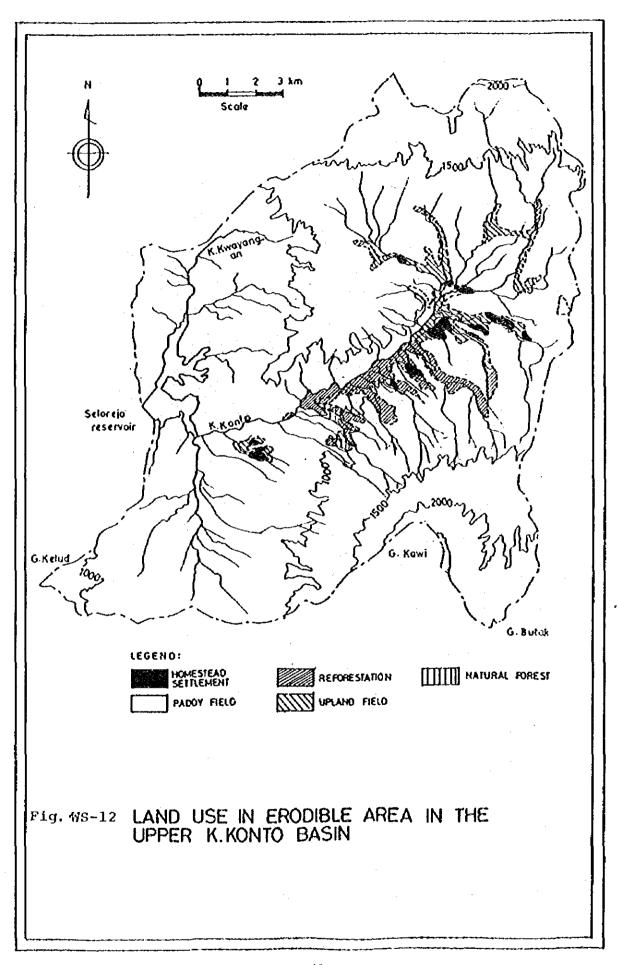


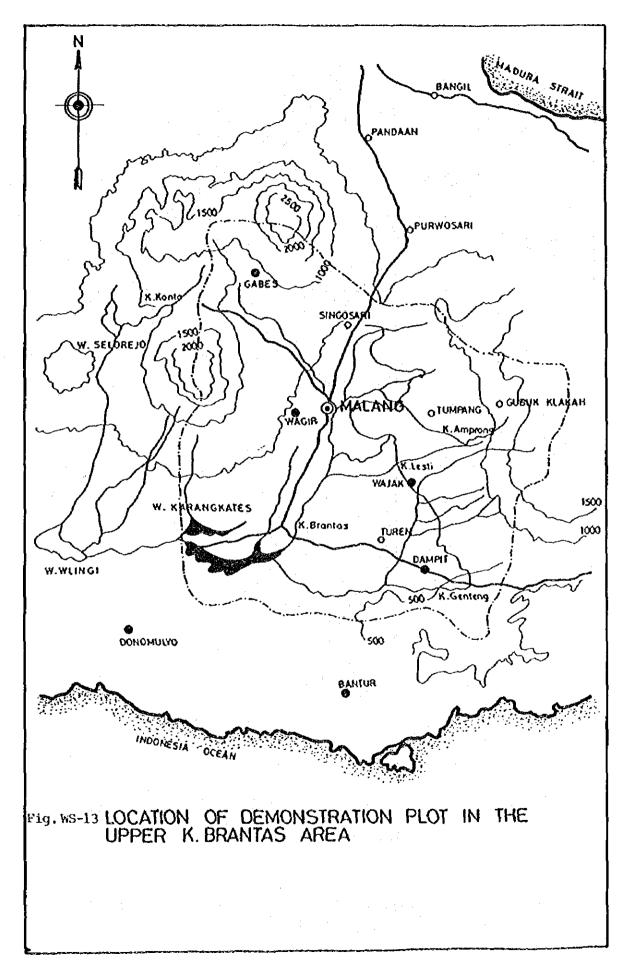
₩S-34

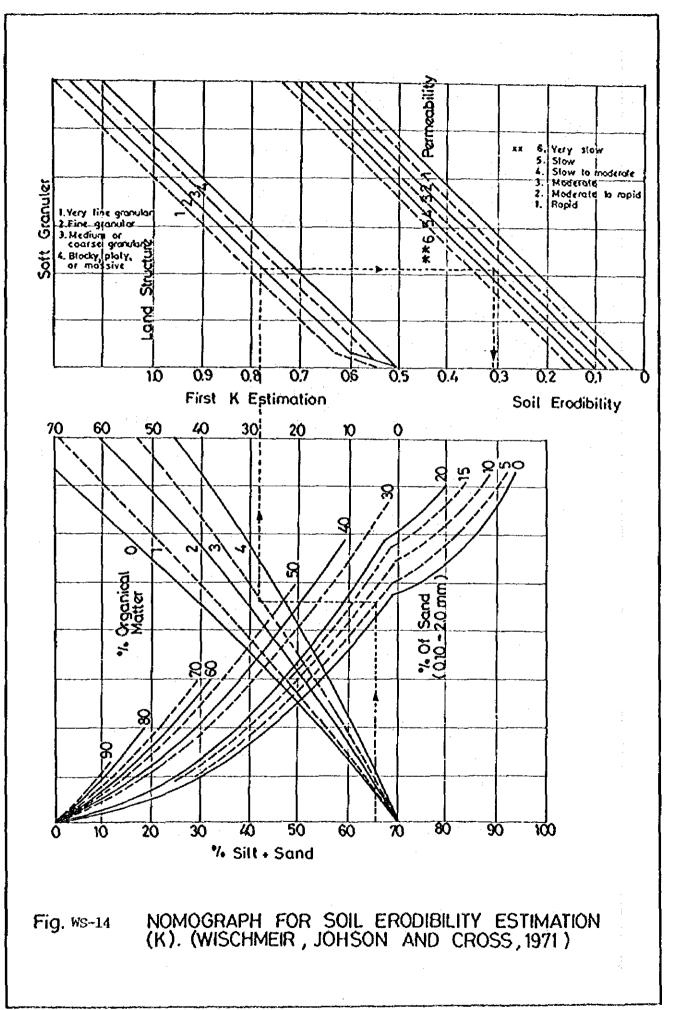


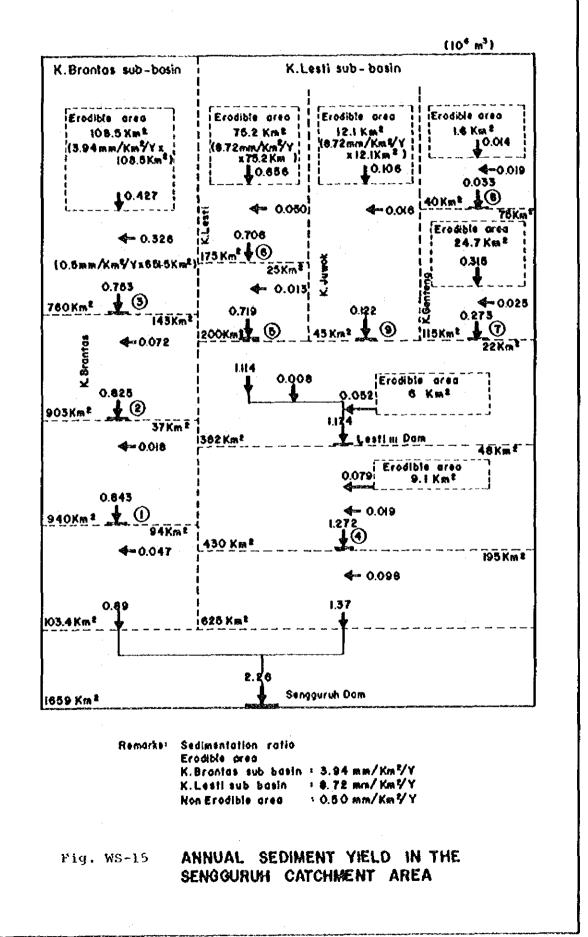





•,






() .

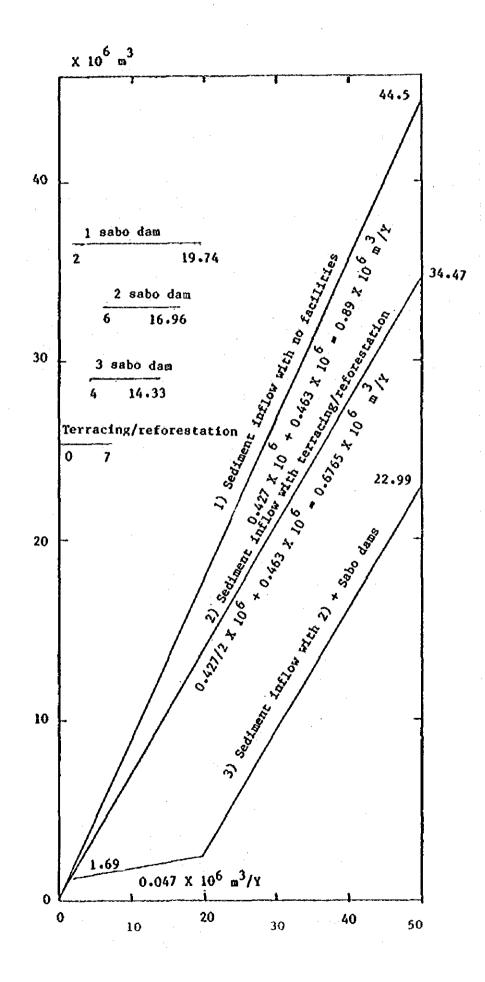
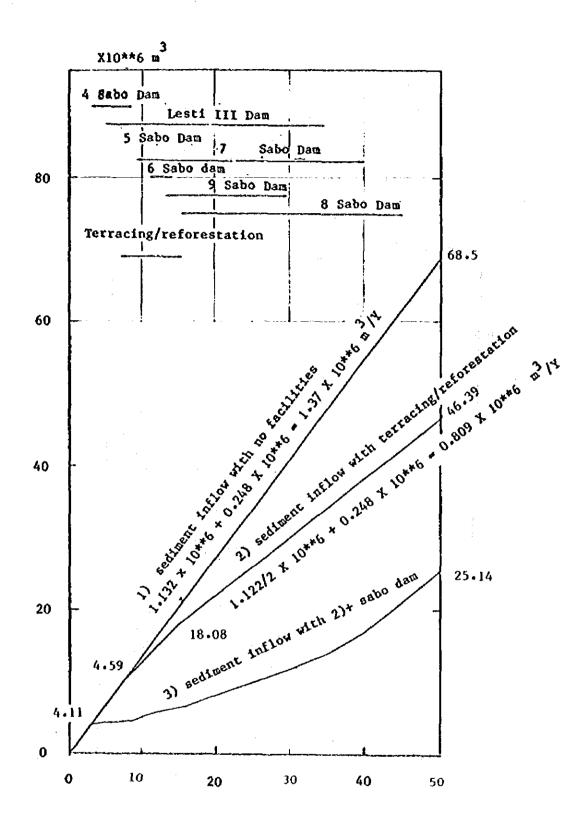
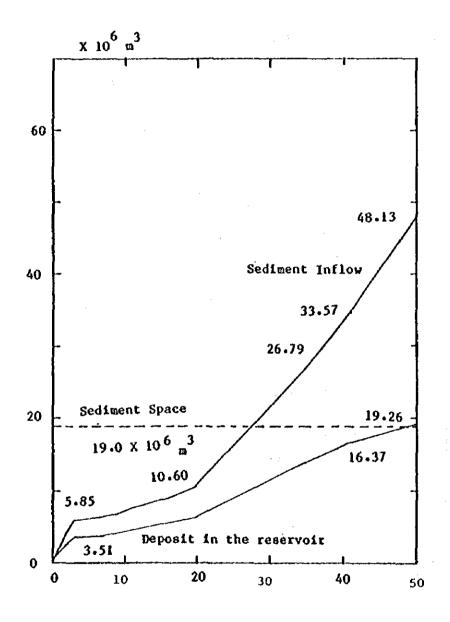
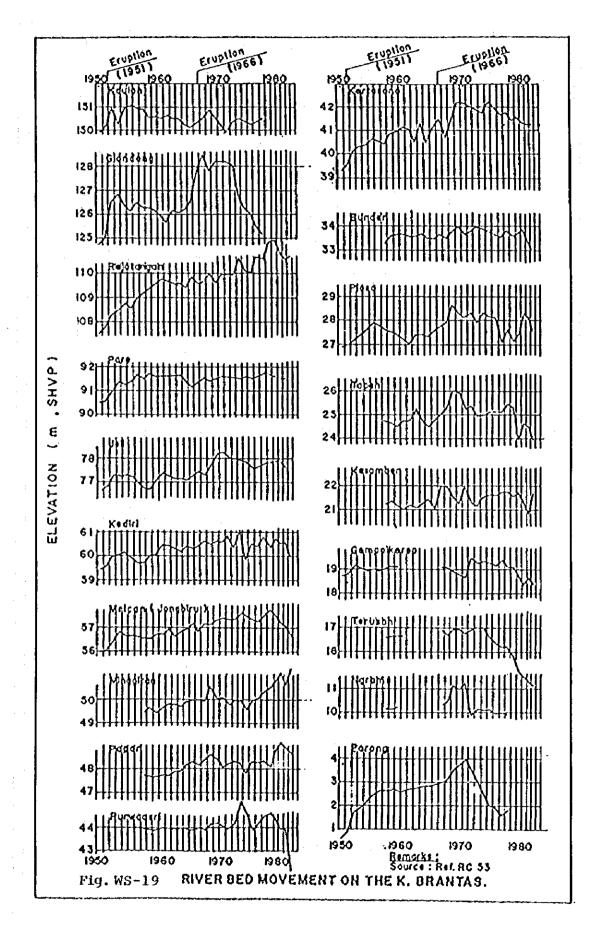
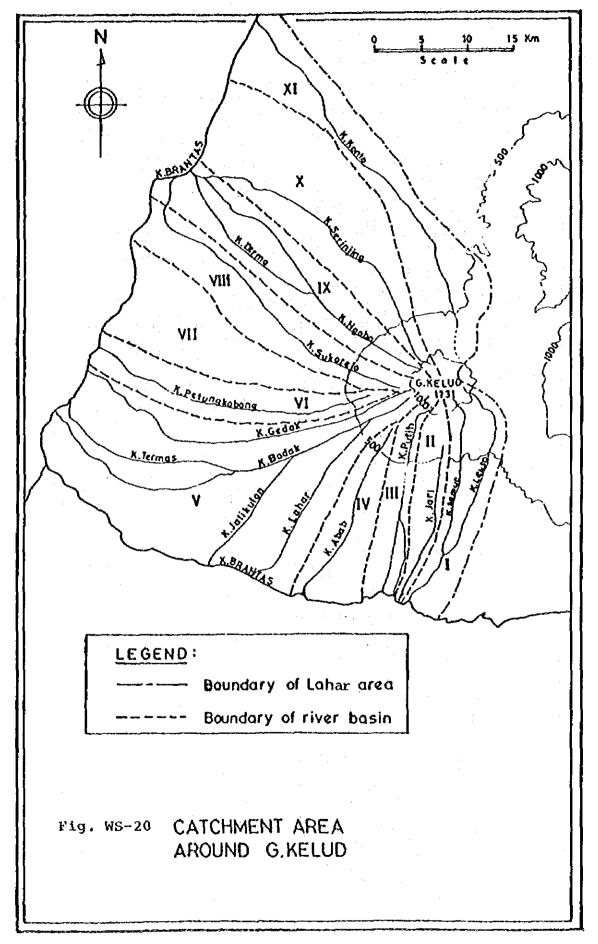
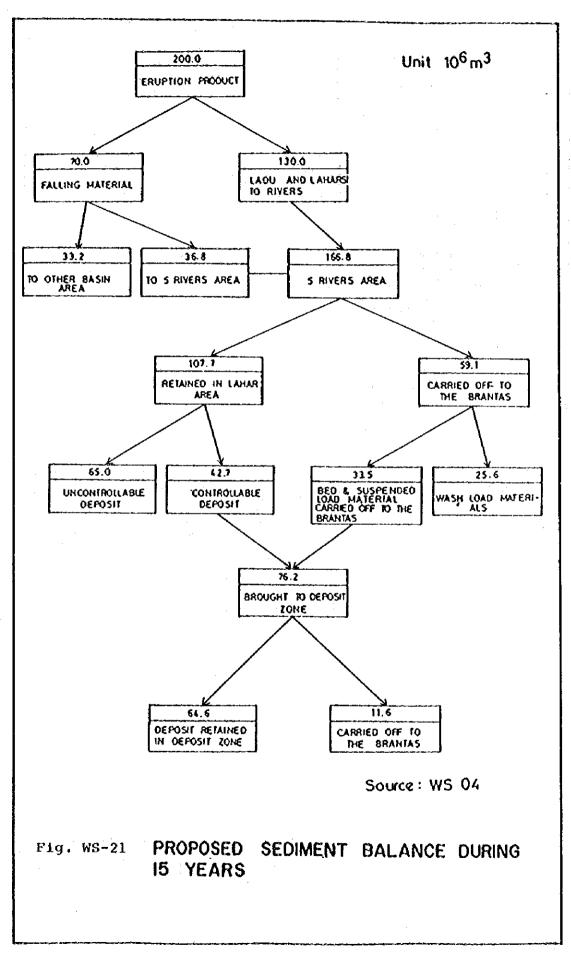
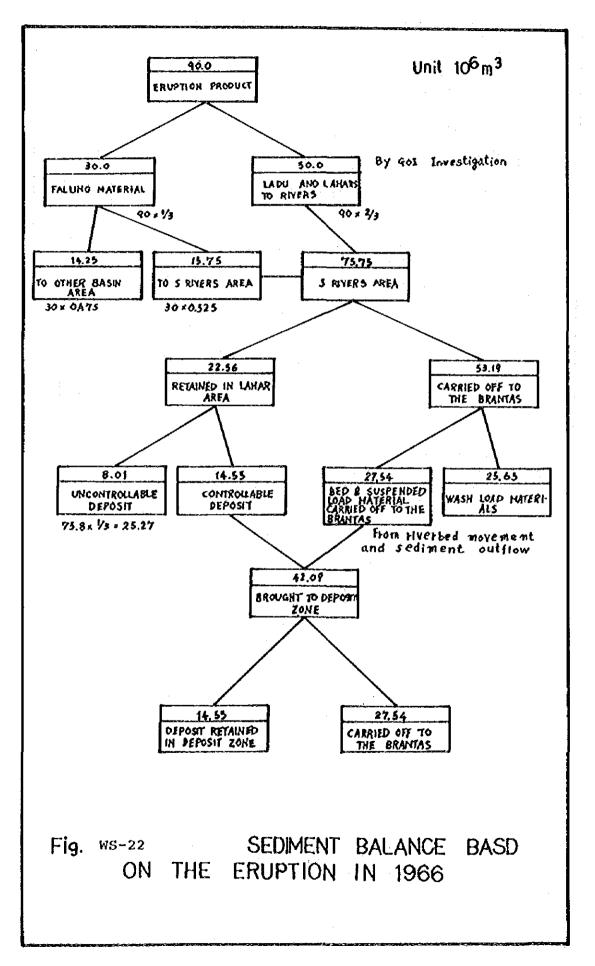



Fig. WS-16 SEDIMENT INFLOW INTO K, BRANTAS ARM

ws-46

F19. WS-17 SEDIMENT INFLOW INTO KILESTI ARM


Fig. WS-18 DEPOSIT IN THE SENCGURUH RESERVOIR WITH WATERSHED MANAGEMENT WORK

()

ELECTRIC POWER DEVELOPMENT STUDY

ANNEX EP

ANNEX EP

TABLE OF CONTENTS

Page

NOTE	EP-1	EVALUATION CRITERIA FOR HYDROPOWER PLANTS	EP-1
NOTE	EP-2	EXTENSION/IMPROVEMENT OF KALI KONTO RIVER BASIN PROJECT	EP-4
NOTE	ЕР-3	KARANGKATES RESERVOIR WATER LEVEL HEIGHTENING BY 2 METERS	EP-5
NOTE	EP-4	LIST OF DATA	EP-7
NOTE	EP-5	SUMMARY OF THE PROJECT	EP-8
		KESAMBEN HYDROPOWER DEVELOPMENT PROJECT	
		SOUTH TULUNGAGUNG HYDROPOWER PROJECT	

LIST OF TABLES

TABLE EP-1	EXISTING POWER PLANTS IN EAST JAVA (1) - (2)	EP-18
TABLE EP-2	EXISTING TRANSMISSION LINES $(1) \sim (3)$	EP-20
TABLE EP-3	EXISTING SUBSTATION TRANSFORMERS IN EAST JAVA SYSTEM (1) - (5)	EP-23
TABLE EP-4	GENERATED AND SOLD ENERGY IN EAST JAVA	EP-28
TABLE EP~5	WAITING BIG CUSTOMERS IN EAST JAVA	EP-29
TABLE EP-6	BASIC POWER TARIFF IN INDONESIA	EP-30
TABLE EP-7	PLANNING OF SUBSTATION EQUIPMENT IN EAST JAVA SYSTEM (REPELITA 1V) (1) ~ (2)	EP-31
TABLE EP-8	PLANNING OF TRANSMISSION LINES IN EAST JAVA SYSTEM (REPELITA IV) (1) - (2)	EP-33

.

.

NOTE EP-1

1

EVALUATION CRITERIA FOR HYDROPOWER PLANTS

1. Classification of Alternative Power Plants

To assess the selected hydro potential sites in Brantas river basin, various thermal power plants are considered as alternative power plants in this study as follows:

- (a) Gas turbine plant is applied as a peak load supply with annual plant factor of 20% to 40%.
- (b) Oil fired steam power plant is applied as a middle load supply with annual plant factor of 40% to 50%.
- (c) Coal fired steam, geo-thermal, combined cycle and unclear power plants can be considered as a base load supply with annual plants factor of 60% to 70%. To simplify the case study, coal-fired steam plant is applied.

2. Capital Cost of Alternative Power Plants

The current unit construction costs which have been used in the thermal projects by PLN seem to be reasonable and the following is applied as the price level of Sept. 1984.

	Power Plant	Plant Size	Unit Cost <u>/l</u>	Unit Cost as of Sept. 1984 <u>/2</u>
		(MW)	(US\$/kW)	(US\$/kW)
(a)	Gas turbine	100	300	310
(b)	Oil fired steam	200	699	720
(c)	Coal-fired steam	400	L;054	1,080
(d)	Coal-fired steam	600	944	970
(e)	Geo-thermal	55	1,096	1,120
(f)	Nuclear	1,000	1,698	1,740

Note: /1 - Price at April 1984 (Ref. EP-03)

/2 - Price escalation is assumed at 5% per annum

3. Fuel Cost

The current fuel prices as of April 1984 are summarized as follows:

Type of Fuel	US\$/k1	S.G	US\$/ton <u>/1</u>	Kcal/kg	US\$/Kcal
HSD	224.53	0.844	266.03	11,000	74.2
IDO	227.17	0.87	261.11	10,000	61.1
мғо	163.52	0.99	165,17	10,000	19,8
			(198.20)/2		
Coal	-		45	5,300	8.5

Note: /1 - International market prices (Ref. EP-03)

 $\frac{2}{2}$ - Domestic market price which is ca. 20% higher than the International price (Ref. EP-03)

In this study, the domestic market price of MFO (Marine Fuel Oil) is reasonable to be applied.

4. Operation and Maintenance Costs and Service Life Years

Following operation and maintenance costs and service life years are assumed:

		Fixed Cost (%)	Variable Cost (US\$/kWh)	Service Life Years
(a)	Coal-fired	2.0	0.06	25
(b)	Geo-thermal	2.0	0.06	25
(c)	Oil fired	2.0	0.06	25
(d)	Gas turbine	2.5	0.03	20
(e)	Bydro	1.0	-	50

5. Adjustment Factors of Thermal Plant against Hydropower Plant

Following assumption is made due to difference of the sites and characteristics of each power sources.

	Station	T/L		Scheduled	Adjustment	Factor (P.U)
	Use (%)	Loss (%)	Outage (%)	Outage (%)	for kW	for kWH
Coal-fired	7.0	2.0	8.0	12.0	1.252	1.039
Geo-thermal	5.0	5.0	6.0	8.0	1.171	1.049
Oil fired	6.0	2.0	7.0	10.0	1.198	1.028
Gas turbine	5.0	1.0	7.0	8.0	1.148	1.007
Hydro	0.3	5.0	0.5	2.0		-

6. Capacity and Energy Values

Based on the above assumption, the capacity and energy values of alternative power plants are summarized as follows:

(a) kW value at 12% discount rate

	Capital Cost	Service Life	Capital Recovery	0 & M Cost	Annual Equiv. Cost	Adjustment Factor	kW Value
	(US\$/kW)	(years)	(%)	(%)	(%)	(P.U)	(US\$/kWh)
Coa1-400	1,080	25	12.75	2.0	14.75	1.252	199.4
Coal-600	970	25	12.75	2.0	14.75	1.251	179.1
Geo~55	1,120	25	12.75	2.0	14,75	1.252	206.8
011-200	720	25	12.75	2.0	14.75	1.252	133.6
Gas-100	310	20	13.39	2.5	15.89	1.148	56.5

(b) kWh Value

. .

	Fuel Cost (US\$/ 10 ⁶ kcal)	Thermal <u>/1</u> Efficiency (%)	Heat Value (Kcal/ kWh)	Fuel Coat (US\$/ kWh)	O & M Cost (US\$/ kWh)	Adjustment Factor (P.V)	kW Value (US\$/ kWh)
Coa1-400	8.5	33	2,606	0.0222	0.0006	1.039	0.0237
Coa1-600	8.5	33	2,606	0.0222	0.0006	1.039	0.0237
Geo-55	· ~	-	-	_	+-	-	0.0400/2
0i1-200	19.8	32	2,687.5	0.0532	0.0006	1.028	0.0553
Gas-100	24.2	24	3,583	0.0867	0.0003	1.007	0.0876

Note: $\underline{/1}$ - Assumed plant factor is 50% for coal and oil and 15% for gas $\underline{/2}$ - Steam cost concluded between PLN and Pertamina (Ref. EP-03).

7. Disbursement for Capital Cost

Following disbursement rates are considered due to difference in construction period.

	Construction Period (Years)	Disbursement Pate (%)
Coa1-400	6	5/ 20/ 35/ 25/ 10/ 5
Coa1-600	6	5/ 20/ 35/ 25/ 10/ 5
0i1-200	5	5/ 25/ 40/ 20/ 10
Gas-100	2	40/ 60

EP-3

Note EP-2 Extension/Improvement of Kali Konto River Basin Project

Improvement of the existing headrace tunnel of Mendalan power station has been considered to increase capacity from $9.25 \text{ m}^3/\text{s}$ to $10.5 \text{ m}^3/\text{s}$ but found difficult with low pressure grouting (Re. Review on the Installed Capacity of Selorejo Power Station, Nippon Koei, May 1969).

While, both Mendalan and Siman power stations were constructed in 1931 and 1932 respectively, of which service life time has been over 50 years. According to the result of investigation, both power plants were already improved with new parts in 1955.

Recently, spare parts such as turbine runners, wearing parts, etc., already procured for all units in both stations and some units were already overhauled with replacement of new runners and others except for generators. Other units are also scheduled to follow.

	Mendalan (Rp. 10 ⁶)	Siman (Rp. 106	5)
O & M cost	28.1	12.8	· · · · · · · · · · · · · · · · · · ·
Repair cost $\frac{1}{1}$	32.1	18.9	For overhaul
Personnel expense /2	6.0	3.2	
Total	66.2	34.9	

Operation and maintenance (O & M) cost in 1983/84 are summarized

(Source : PLN KITLUR)

Note: /1 - Repair cost is annualised assuming that runner and wearing parts are replaced with new ones at a interval of 20 years.

/2 - Personnel expense is estimated for lack of data.

Assuming that construction costs of both power stations are Rp. 4,700 x 10^6 and Rp. 2,180 x 10^6 as a new plant, 0 & M cost will share 1.4% for Nendalan and 1.6% for Siman respectively, which intimates almost reasonable, taking account of superannuation.

There is no sufficient data to review the economical evaluation by the lowering of output and energy. However, the residual service life years will be surely prolonged by the replacement of turbine runners and wearing parts for more than 20 years.

No schedule of retirement is therefore considered within the year of 2003/04.

NOTE EP-3

KARANGKATES RESERVOIR WATER LEVEL HEIGHTENING BY 2 METERS

The present High Water Level (HWL) in Karangkates reservoir is EL. 272.5 and there is an idea to heighten HWL by 2 m from EL. 272.5 m to increase water storate to utilize it in the dry season.

As for power station equipment, it should be checked whether the existing fac-lities can be safely operated or not due to 2 m heightening of HWL.

As a result of review of the contract specifications and commissioning test data, followings are revealed:

1. Metal Works

(a) Penstock and surge tanks

Design pressure is 133 m and test result shows 125 m to 127 m. Heightening of 2 m will give a pressure of 127 m to 129 m, which is still less than the designed pressure.

(b) Intake gates

Following portions exceed allowable stress:

- Skin plate	:	2%
- Roller	:	138
- Concrete shearing stress for		
guide frame portion	:	18%

The above intimates some countermeasures to be taken up if 2 m heightening of HWL is done.

2. Generating Equipment

(a) Maximum output

Maximum output of turbines is designed at 36 MW and its operation shall be done so as not to exceed 36 MW at any head.

(b) Performance of turbine - generator

Performance test results are shown below:

		Guaranteed Value	Oscilograph	Instrument
Gen. output	(MW)	35.1	34.84 (34.65)	34.8 (34.65)
Voltage rise	(%)	30	28.26 (28.86)	26.36 (25.72)
Speed rise	(%)	35	28.8 (26.75)	28.0 (25.6)
Pressure rise	(m)	38	29.79 (30.38)	31.5 (31.0)
Max, pressure	(m)	133	125.4 (125.99)	127.11 (126.61)

It is estimated that maximum pressure will be 127 m to 129 m in case of 2 m heightening since the same pressure rise can be expected, which is still less than the designed pressure.

Regarding voltage rise and speed rise is expected to be slightly lower than the above data.

(c) Servomotors and thrust bearings

It seems that both servomotor has enough capacity to operate guide vanes and inlet valves respectively since some allowance must have been taken in the manufacturing desing. Thrust bearings seem to have enough strength for the same reason.

It is, however, recommended to confirm the above performances from the original manufactures beforehand.

(d) Cavitation and efficiency

It seems that there is no serious matter in cavitation. Turbine efficiency will be lower by ca. 0.2% at maximum output (36 MW) when compared with 89.7 m head efficiency.

Kesamben project is required to be reviewed at least in cost of dam foundation treatment due to the very poor geological condition.

Lesti III and Kepanjen projects which are under study by BREBDEO are also required to be reviewed in all respects.

Additional installation of 2 units in the Karangkates project utilizing the existing reservoir water is required to be reviewed as its entire peaking power station under some responsible discharge for irrigation and water supply. Especially, dependable output of additional units has to be reviewed in view of available inflow. NOTE EP-4

LIST OF DATA: ELECTRICAL POWER DEVELOPMENT

Number	Name of Data	Author	Date of Issue
EP-01	Reveiw Feasibility Report on Kesamben Hydropower Development Project	Persero PT. Indra Karya	March, 1982
EP-02	Final Report for Hydropower Potential Study Vol. V Appendix-4 Power Demand Forecast	Nippon Koei, Tokyo in associated with PT. Indra Karaya Jakarta	June, 1983
EP-03	The Capacity Expansion Planning for The Electric Power System in Java (1984/85 - 1993/94)	Perusahaan Umum Listrik Negara (PLN)	May, 1984
	- Justification and Timing of Coal Fired Units No.1 and No.2 at Paiton -		
EP-04	PLN Operation Statistics (74/75 - 82/83)	PLN	June, 1984
EP-05	ADB Appraisal Report for Power XVIII (For Sengguruh Hydropower Scheme)	ADB	1983
EP-06	Data Pembangkit, Area: IV	PLN, Unit Pengatur Beban Waru	23 Aug., 1983
EP-07	Laporan Pengusahaan, Area IV Periode: 1983 - 1984	PLN, Unit Pengatur Beban Waru	1984
EP-08	Hubungan Satukutub Transmisi Jatím	PLN, Unit Pengatur Beban Waru	17 June, 1984
EP-09	Feasibility Report on South Tulungagung Hydropower Project	BRBDEO assisted by Nippon Koei	July, 1984
EP-10	Feasibility Study on Five Hydro Electric Power Development Project Cibuni-3 Project (Draft)	Nippon Koei, Tokyo in associated with P.T. Indra Karya Jakarta	August, 1984

NOTE EP-5

SUMMARY OF THE PROJECT

KESAMBEN HYDROPOWER DEVELOPMENT PROJECT

REF: EP-01

- 1. BACKGROUND
 - Need of Project

The power demand in the East Java has been increasing due to the progress of industrialisation and the improvement of living standard of the people. According to the load demand forecast, peak power plants will be in short supply in 1988, for which Kesamben Hydropower plant will effectively contribute, along with development of large-scale steam power plants for base load operation.

- History of Project

Hydropower development of the Brantas River Basin has carried out by the BRBDEO since 1960. Following Selorejo, Karangkates, Wlingi and Lodoyo hydropower projects (168.7 MW in total), the Project was formulated for the purpose of promoting the Project planning and its implementation through study report in 1977.

Feasibility study was started by BRBDEO in August 1977 and completed in August 1978.

Review feasibility study was done by Persero P.T. Indra Karya to update the load demand forecast based on the actual power supply and other data and submitted to BRBDEO in March 1982.

- Present Status of Project

The Project has been proposed to GOI by BRBDEO for its implementation.

2. OBJECTIVES OF PROJECT

The purpose of the Project is hydropower development with dam. Kesamben power station is planned as a peak power station for 5 hours a day with a reservoir regulating the daily run-off and outflow from Karangkates power station.

3. PROJECT FEATURES

3.1 Project Area

- Location is 15 km downstream of Karangkates dam and 14 km upstream of Wlingi dam.

- Particular areas:

The geology of the proposed dam site can be classified mainly into 2 strata by a horizontal line; the upper stratum is relatively soft and uncompacted and does not have suitable foundation for heavy structures, and the lower stratum is relatively hard and compacted.

3.2 Project Component

(1) Reservoir

Drainage area	:	2,488 km ²
Flood water level	:	El. 180.5 m
Low water level		El. 178.5 m
Storage capacity (gross)		
Storage capacity (net)		
Design flood peak		2,361 m ³ /sec
Average run off		91.2 m ³ /sec
90% dependable run-off	;	60.0 m ³ /sec

(2) Dam

Туре	:	Rockfill, centre core
Crest el.	:	E1. 183.5 m
River bed el.	:	El. 160.0 m
Height	:	23.5 m
Crest length	:	190.0 m
Embankment volume	:	146,000 m ³

(3) Spillway

Туре	1	OGEE
Design discharge		2,361 m ³ /sec
Extra ordinary discharge	:	2,833 m ³ /sec

(4) Diversion System

(5)

(6)

Type Design discharge	:	Open canal 1,132 m ³ /sec
Power Station		
Firm peak output	:	32,000 kW
Peaking operation hour	:	5 hours
Installed capacity	:	32,000 kW
Head	:	13.20 m - 14.55 m
Maximum peak discharge	:	288 m ³ /sec
Annual energy	:	97.53 x 10 ⁶ kWh
Turbine	:	16,400 kW x 2 units
Generator	:	18,000 kVA x 2 units
Transmission Line	:	70 kV, 1 cct, 14 km

3.3 Construction Cost (Unit: US\$1,000)

	Domestic Currency	Foreign Currency	Total
- Economic cost	25,483	43,053	68,536
- Financial cost	27,259	43,841	71,010
- Direct cost	20,758	36,477	52,235
- Aministration cost	4,239	-	4,239
- Engineering service	186	3,716	3,902
- Land acquition	-	. –	-
- Contingency (Physical)			
(a) For economic cost	1,914	3,576	5,490
(b) For financial cost	2,076	3,648	5,724
- Annual O&M cost	186	-	-
- Annual disbursement			
(a) 1st year (1982/83)	8,003	2,950	10,953
(b) 2nd year (1983/84)	3,978	2,498	6,476
(c) 3rd year (1984/85)	8,639	30,244	38,883
(d) 4th year (1985/86)	6,639	8,149	14,788

3.4 Benefit (12% interest rate) (Unit: US\$1,000)

-	Annual benefit	:	12,106
-	Capitalised benefit	t	62,956
-	Capitalised cost	:	55,232
-	Net bénefit	:	7,724

3.5 Economic Evaluation

- B/C (12% interest rate) : 1.14 - IRR : 14.12%

Note: $\underline{/1}$ - 1982/83 price level $\underline{/2}$ - Exchange rate: US\$1.0 = Rp. 625 = ¥208 $\underline{/3}$ - Life period : 50 years

- 3.6 Implementation Schedule: 4 years from 1982/83 to 1985/86
- 4. WATER BALANCE: Not applicable
- 5. RECOMMENDATION

ì

5.1 Problem Encountered

- Reliability of Project: Economic viability be confirmed

5.2 Recommendation

- Further study items be made:

- (a) Dam foundation treatment due to poor geological condition
- (b) Existing 70 kV transmission line capacity between Karangkates and Kebonagung
- (c) Review of load demand forecast according to the actual power demand, if necessary.
- Other conceivable alternative be studied.

6. REFERENCES

- ANNEX MF List of Reports

.

- (1) MP-38
- (2) MP-39
- (3) MP-40

.

ţ

SUMMARY OF THE PROJECT

SOUTH TULUNGAGUNG HYDROPOWER PROJECT

REF.: EP-09

1. BACKGROUND

- Need of Project

Tulungagung drainage project is under construction, to improve the drainage condition by additional canal and tunnel from Tulungagung town up to Indonesian Ocean. Utilizing the unused drainage water and hydropotential which is created in the drainage project, hydropower project is surely contribute the rapidly increasing power demand in the East Java.

- History of the Project

The Tulungagung drainage project has been formulated in 1978/79. Implementation of the Project was started in 1980 to improve maldrainage condition in the central part of the Ngrowo river basin. The project is now under construction and scheduled to be completed in 1985. The PROJECT is a sub-project arising from the drainage project, making the maximum use of the structures thereof along with the hydropotential and drainage water. Feasibility study was therefore implemented under ADB loan and completed in July 1984.

- Present Status of Project

Detailed design was started in June 1984 under ADB loan. The PROJECT has been proposed to ADB by PLN for its construction implementation.

2. OBJECTIVES OF PROJECT

The purpose of the PROJECT is a single purpose of hydropower project with provision of intake in the drainage canal.

3. PROJECT FEATURES

3.1 Project Area

- Location

The project is located in the southern coast of the Java island. It is 30 km apart southward from Tulungagung town in the Ngrowo river basin, which is one of the major tributaries of the Brantas river in East Java Province.

- Particular Areas

The Gamping hills separate the Ngrowo river basin from the sea. The highest of the hills is around EL. 170 m and gently sloping down up to near the sea shore.

Tailrace of the Project may be affected by the tidal action. The on-going Tulungagung drainage project will separate the Ngrowo river basin at the Tulungagung gate from the Brantas river basin in 1985. About 90% of the run-off from the Brantas river basin will flow to the south and finally into Indian Ocean. Besides, some return flow from Lodoyo-Tulungagung project will flow into the drainage canals.

The Project area is in the submergence geomorphic coast of southern mountain range which is one of the inner arch mediterranean mountain belt. A series of limestone and sand stone, about 200 m thick, are laid in between G. Tanggal and G. Tumpakoyot and are surrounding the Popoh hay.

3.2 Project Component

(1) Intake

High water level

in flood season	EL. 77.000 m
in off-flood season	EL, 79.000 m
Low water level	EL. 77.000 m
Aberage inflow	33.0 m ³ /sec
Intake sill elevation	EL. 70.000 m
1	
Intake width	7.5 m x 2
Intake width Peak intake discharge	7.5 m x 2 53.4 m ³ /sec

(2) Hedrace tunnel Diameter/Length Shape

(3) Surge tank Type Diameter/height

(4) Penstock Type Diameter/Length

(5) Power facilities

Net head

Peak discharge Tail water level Installed capacity Firm capacity output Annual energy output Turbine Generator

(6) Transmission line

4.7 m / 1,077.7 m Circle

Port type 12.0 m / 32.2 m

underground 3.7 m / 634.6 m

69.0 m 53.4 m³/sec E1. 1.94 m 30,000 kW 6,100 kW 130 GWh 16,000 kW x 2 18,100 kVA x 2

70 kV, 2 cct, 35 km (connected with Trenggalek sub-station)

3.3 Construction Cost (Unit: US\$1,000)

	Domestic Currency	Foreign Currency	Total
- Economic cost	-		40,603
- Financial cost	20,080	31,320	51,400
- Direct cost	9,288	19,475	28,763
- Engineering service	425	3,302	3,727
- Administration cost	2,800	-	2,800
- Land acquisition	-		-
- Contingency (Physical)	1,890	3,423	5,313
- Annual O & M cost	-	* • _ • • •	· · · -
- Annual disbursement			
(a) 1st year (1985)	570	2,350	2,920
(b) 2nd year (1986)	2,710	5,500	8,210
(c) 3rd year (1987)	6,630	6,540	13,170
(d) 4th year (1988)	5,570	14,810	20,380
(e) 5th year (1989)	4,600	2,120	6,720

3.4 Benefit (12% interest rate) (Unit: US\$1,000)

- Annual benefit	:	3,745
- Capitalised benefit (annual)	:	3,970
- Capitalised cost (annual)	z	3,885
- Net benefit (annual)	:	85

3.5 Economic Evaluation

- B/C	(12% interest rate)		: 1.02
- EDR			: 12.3%
Note:	<u>/l</u> - Price level	:	early 1984
	/2 - Exchange rate	:	US\$1.0 = Rp. 1,015 = \$230
	$\underline{/3}$ - Life period	3	50 years

3.6 Implementation Schedule: 5 years from 1985 to 1989

- 4. WATER BALANCE: None
- 5. RECOMMENDATION
- 5.1 Problem Encountered: None
- 5.2 Recommendation: None
- 6. REFERENCES
 - ANNEX: RC-1 List of REports
 (1) RC-05

.

	Name	Installed Capacity (MW)	Year of Commissioning
(I) Hy	dropower Plants (PLTA)		
1.	Mendalan	23	
	- 1 x 5.6 MW		1930
	- 3 x 5.8 MW		1955
2.	Siman	10.8	
	- 3 x 3.6 MW		1955
3.	Selorejo	4.48	
	- 1 x 4.48 MW		1973
4.	Giringan	3.2	
	- 1 x 1.4 MW		1937
	- 2 x 0.9 MW		1955
5,	Golang	2.7	
	- 3 x 0.9 MW		1959
6.	Ngebel	2.2	
	- 1 x 2.2 MW		1968
7.	Sutami (Karangkates)	105	
	- 2 x 35 MW		1973
	- 1 x 35 MW		1976
8.	Wlingi	54	
	- 1 x 27 MW		1978
	- 1 x 27 MW		1980
9.	Lodoyo	4.5	
	- 1 x 4.5 MW		1983
10.	Widas (Micro st.)	0.62	
	- 1 x 0.62 MW		1984
	Sub-total (I)	210.6	

(As of 1983/84)

· .

Ĵ

.

	Name	Installed Capa (MW)	city Year of Commissionin
(11)	Steam Power Plants (PLTU)		
	1. Perak (oil-fired)	150	
	- 2 x 25 MW		1964
	- 2 x 50 MW		1978
	2. Gresik (oil-fired)	200	
	- 2 x 100 MW		1981
	Sub-total (II)	350	
(111)	Gas-turbine Power Plants (PI	"TG)	
	l. Perak	27.5	
	- 1 x 27.5 MW		1975
	2. Gresik	40	
	- 2 x 20 MW		1978
	Sub-total (III)	67.5	
(17)	Diesel Power Plants (PLTG)	-	Diesel units (ca. 25 MW) in remote areas are being relocated or decommissioned.
Total		628.0	

(As of 1983/84)

(Source: Ref. EP-01 & EP-03)