

Fig. 4.4.5. PROPOSED RIVER CROSS-SECTION (10/26)

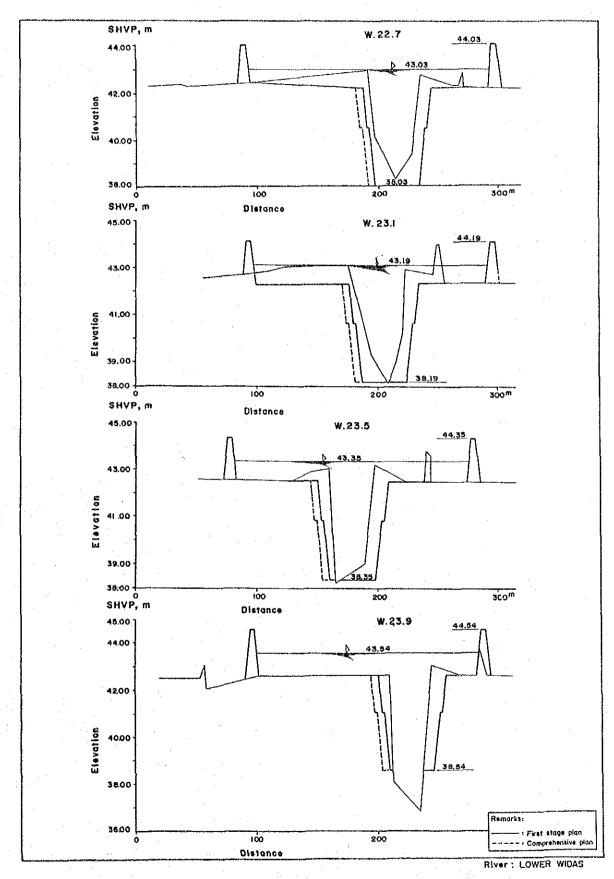


Fig. 4.4.5. PROPOSED RIVER CROSS-SECTION (11/26)

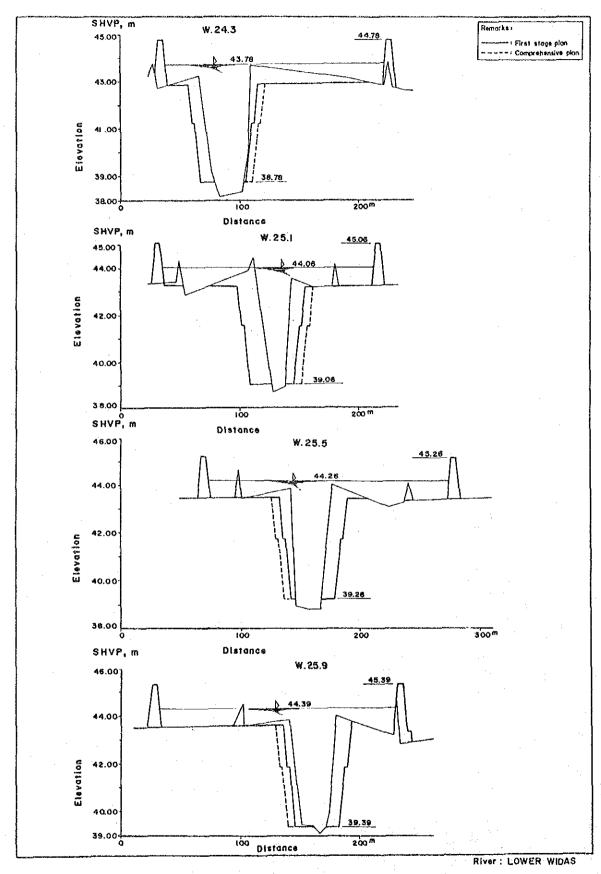


Fig. 4. 4. 5. PROPOSED RIVER CROSS-SECTION (12/26)

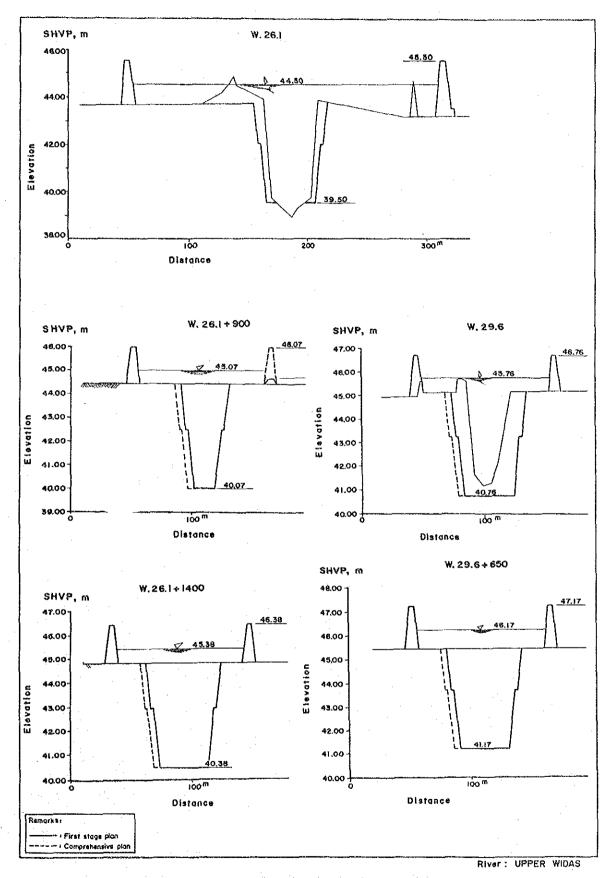


Fig. 4.4.5. PROPOSED RIVER CROSS-SECTION (13/26)

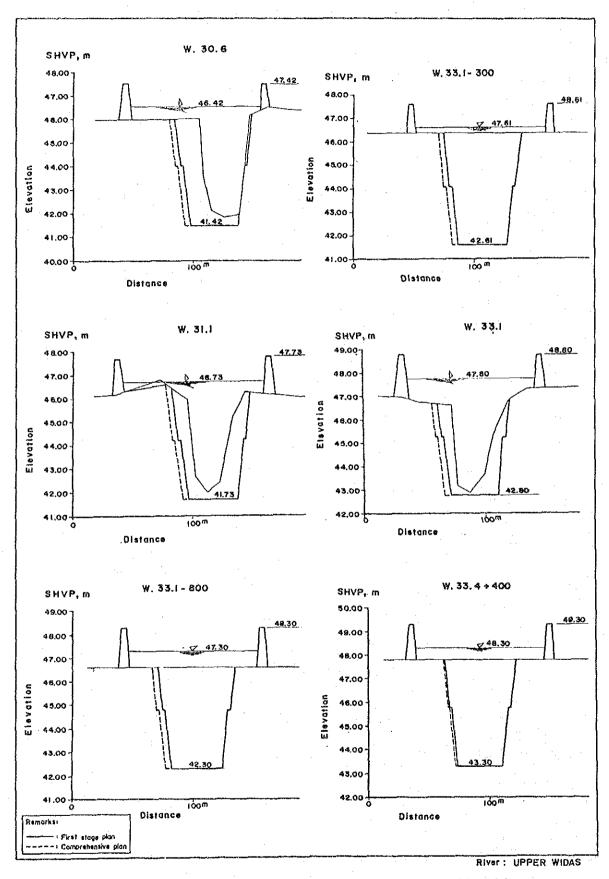


Fig.4.4.5. PROPOSED RIVER CROSS-SECTION (14/26)

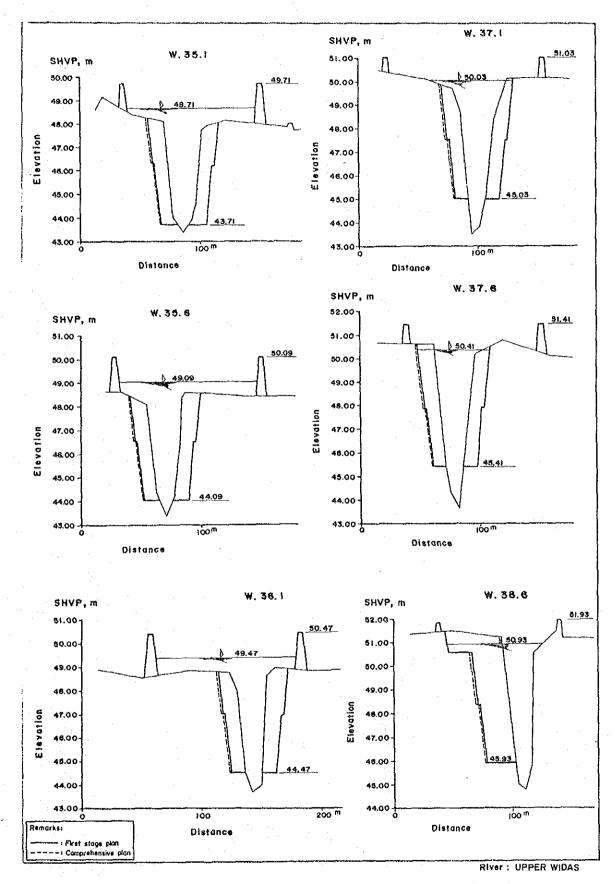


Fig. 4.4.5. PROPOSED RIVER CROSS-SECTION (15/26)

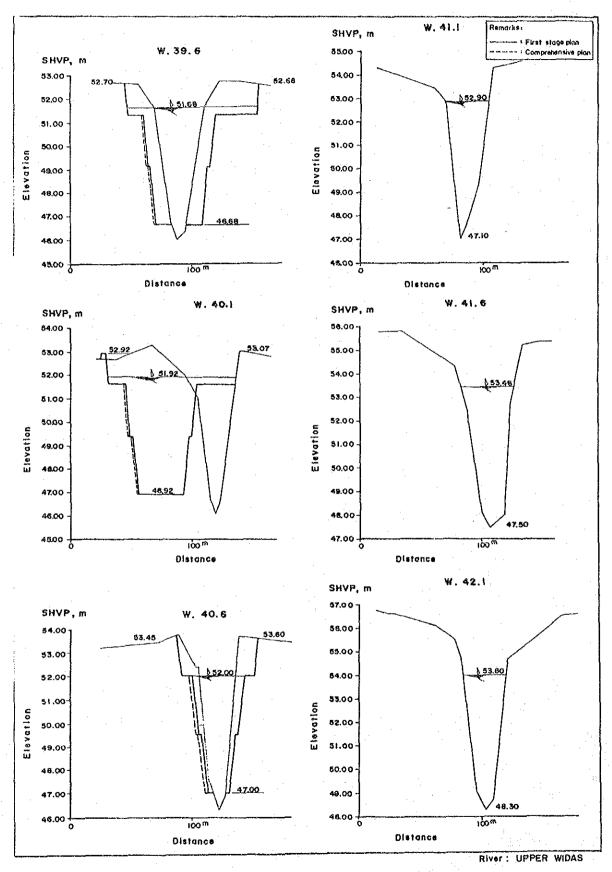


Fig.4.4.5. PROPOSED RIVER CROSS-SECTION (16/26)

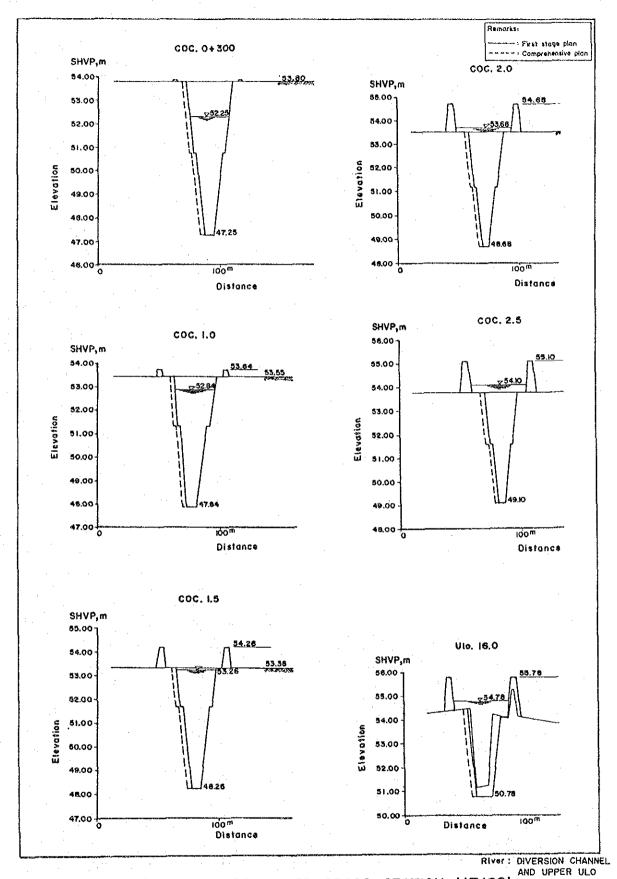


Fig. 4.4.5. PROPOSED RIVER CROSS-SECTION (17/26)

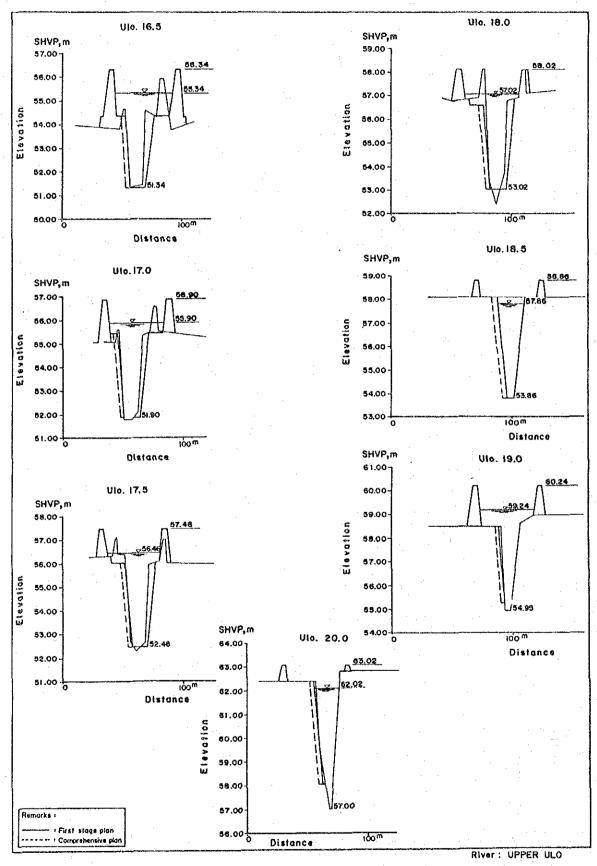


Fig. 4.4.5. PROPOSED RIVER CROSS-SECTION (18/26)

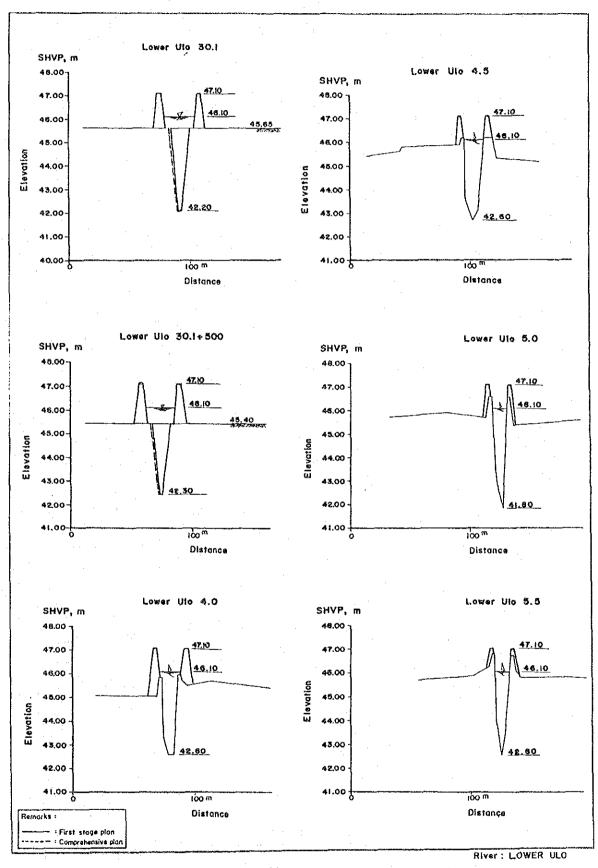


Fig.4.4.5. PROPOSED RIVER CROSS-SECTION (19/26)

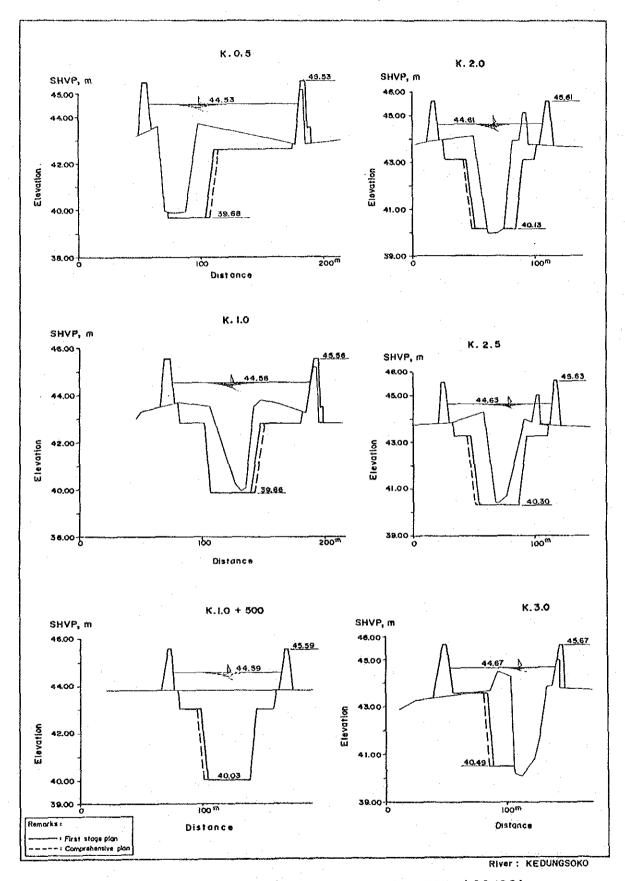


Fig. 4.4.5. PROPOSED RIVER CROSS-SECTION (20/26)

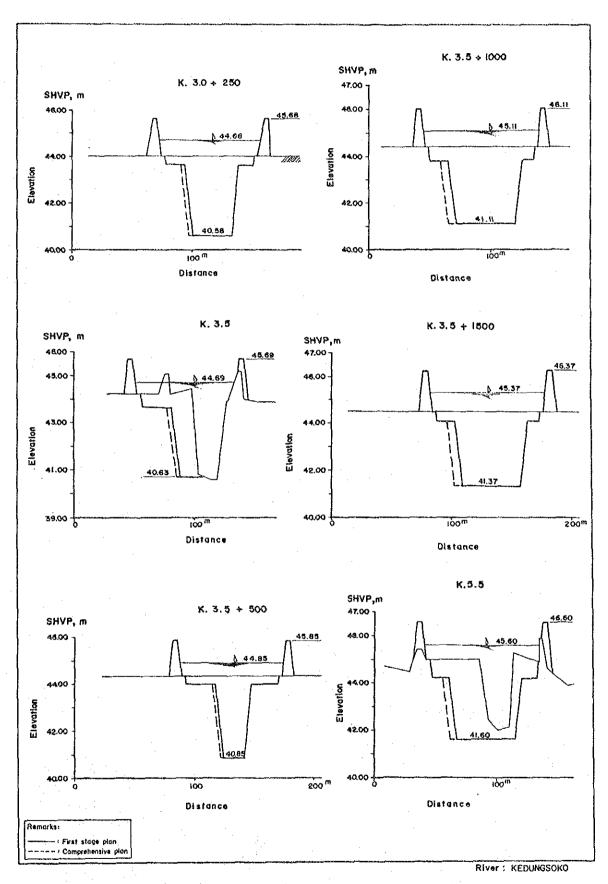


Fig. 4.4.5. PROPOSED RIVER CROSS-SECTION (21/26)

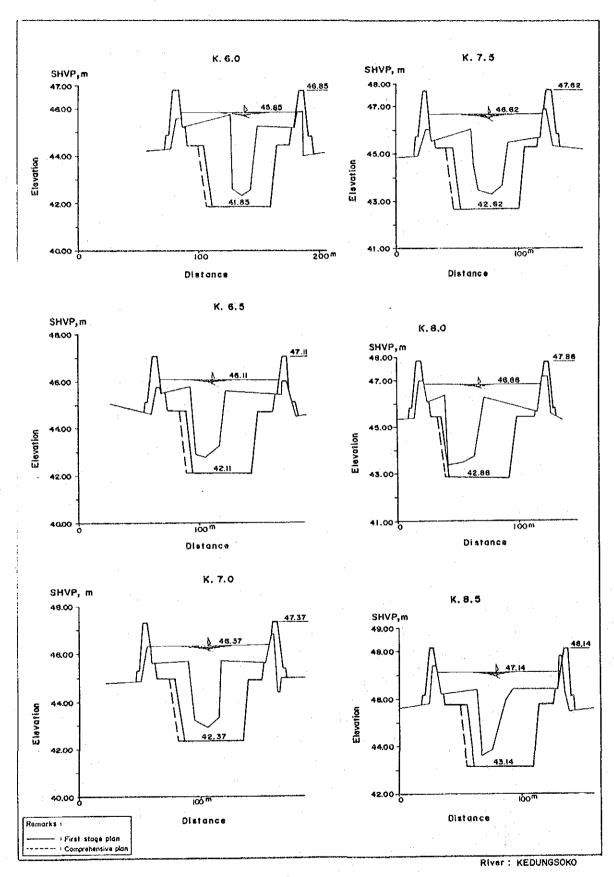


Fig. 4.4.5. PROPOSED RIVER CROSS-SECTION (22/26)

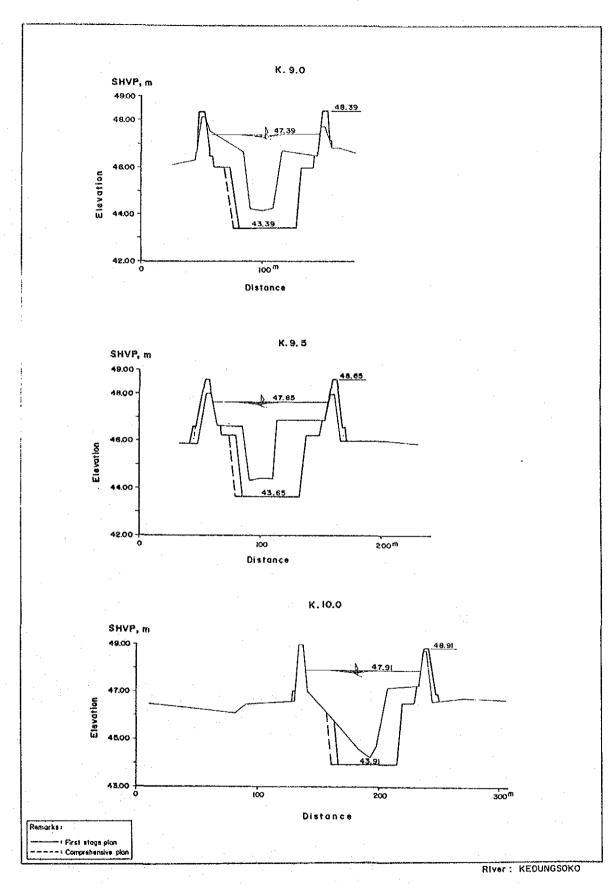


Fig.4.4.5. PROPOSED RIVER CROSS-SECTION (23/26)

Fig. 4.4.5. PROPOSED RIVER CROSS-SECTION (24/26)

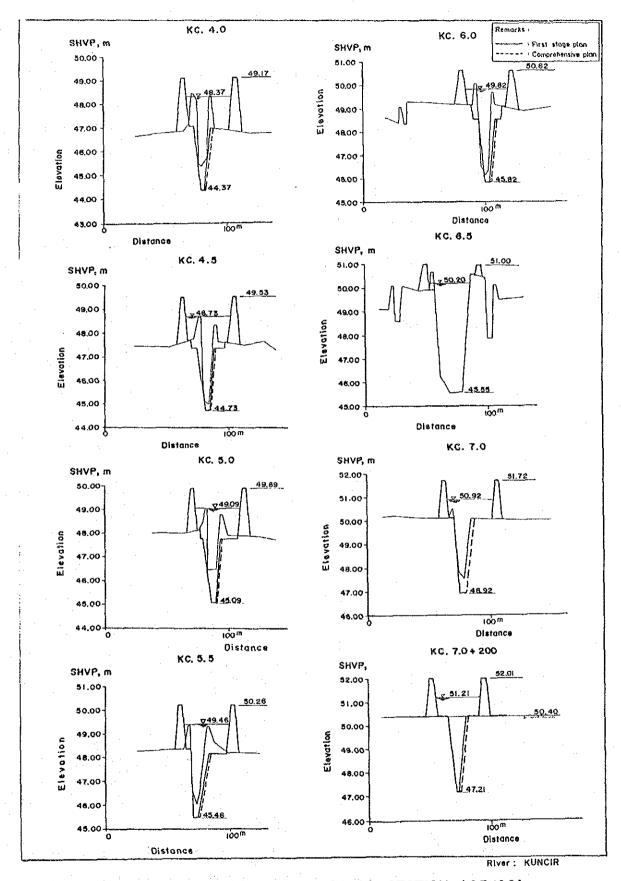


Fig. 4.4.5. PROPOSED RIVER CROSS-SECTION (25/26)

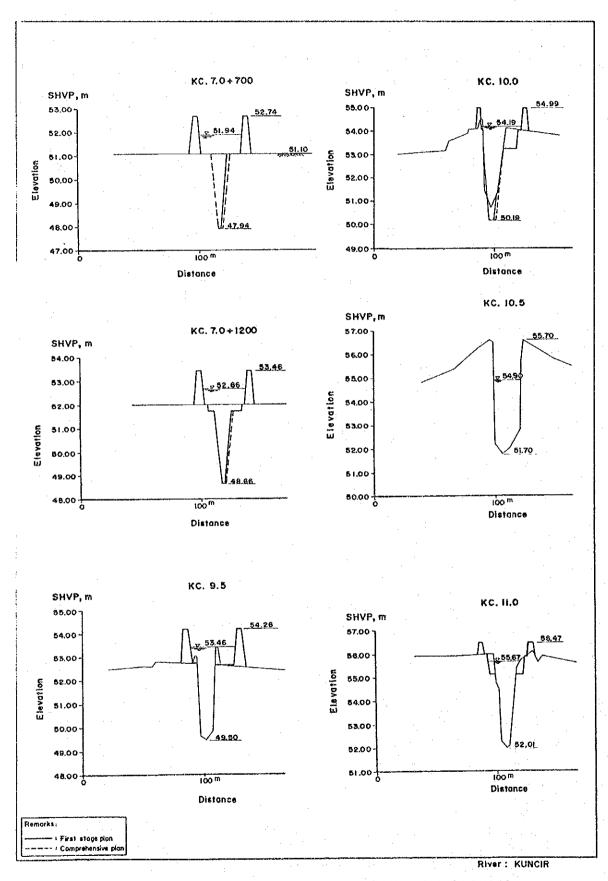


Fig.4.4.5. PROPOSED RIVER CROSS-SECTION (26/26)

4.5 Proposed Related River Structure

4.5.1 General

The proposed comprehensive flood control plan involves such related river structures of diversion weir, drop structure, drainage culvert or sluice and so on.

In the Widas flood control and drainage project, the comprehensive flood control plan is formulated for 25-yr probable flood and the stage-wise development is considered according to the implementation program of the above project. The first stage plan is taken up as priority project for immediate implementation and is designed for 10-yr probable flood. However, such related river structures are to be constructed by construction works of the first stage plan in principle to avoid reconstruction or reimprovement by construction works of comprehensive plan which will be subsequently proceeded.

Therefore, the feasibility design of the related river structures is made for the comprehensive plan and those results are described below.

4.5.2 Related river structure except bridge

1. Objective river structures to be planned

The objective structures except bridge are selected based on the results of inventory survey and proposed river improvement works by comprehensive plan. The proposed structures to be improved/reconstructed are classified into 2 categories of major and minor as shown below.

Major structure

Kuncir diversion weir Drainage sluice and side overflow dike in controllable retarding basin Irrigation head works

Minor structure

Drainage culvert/intake sluice Drop structure Syphon Bank protection works

The objective structures to be planned are listed below.

Structure	Lower Widas	Upper Widas	Lower Ulo	Diversion channel & Upper Ulo	K.soko	Kuncir	Total	Remark
Major								
Kuncir diversio	n	444	- .	1	· <u>-</u>		1	Replace
Related structu	re							
in retarding ba	sin							
Sluice	2	· -			3	-	- 3	New
Side over-	400m	550m	_		360m	_	2,070	n ''
flow dike	x2			•	x2			
Irrigation head								
Tiripan dam				1	_	-	1	Replace
Malangsari da	m			· .	1		1	Improve
Kapas dam		_	-		_	1	1	Ĩŧ
Kramat dam	: -	-	-	,,	-	1	,1	11
Drainage culver	t							•
Type I	4	1	1	4	–	5	15	FF
II	3	1	1	_	3	1	9	11
III		-	-	_		1	1	11
Intake sluice								
Type I	_	-	1	_	_	1	2	11
II	_	_	-	v 1	-	-	1	11
Drop structure	• 		1	1	_	_	2	F1
Syphon		- .	1	2		1	4	11

2. Classification of feasibility design

Feasibility design on the river structures are divided into 2 categories of major and minor.

For the major structures of diversion weir, drainage sluices and side overflow dikes in the retarding basin, and irrigation head works, the feasibility designs are made for each one.

On the other hand, the standard designs are prepared for the other minor structures of drainage culvert, drop structures, revetment works and syphon.

3. Basic idea adopted to design

The related river structures are designed for the proposed comprehensive plan. The following are the basic idea adopted to the respective structure designs.

Kuncir diversion weir

Flood diversion into the existing Kuncir is to be completely stopped in time of flood in this flood control plan. The main purpose of the existing Kuncir is limited to supply lowflow and to drain flood water

from its lower residual basin. The upper Ulo/Kuncir Kiri is improved as main floodway. The existing Kuncir diversion weir is reconstructed considering flow direction and structural aspect of the existing weir against the coming 50 years life to be expected. The open type with non-gated structure like bridge is provided on the main Upper Ulo river and the intake sluice is provided on the existing Kuncir river.

Flood control facilities in the controllable retarding basin

The control facilities in the retarding basin consists mainly of low-height side overflow dike and drainage sluice.

A fixed overflow dike with non-gated sluice is adopted to side overflow dike.

The type of drainage sluice is determined throughout hydraulic calculation results and considering site condition, as shown below.

Retarding basin	Type of sluice				
Widas	Open (2 places)				
Ulo	Open (l place)				
Kedungsoko	Culvert (2 places)				

Irrigation haed works

The objective structures are Tiripan, Malangsari, Kapas and Kramat dams. Such structures are replaced/improved so as to keep the existing intake water level.

The Tiripan dam on the Upper Ulo is replaced by new one in view of carrying capacity and its gate operation is motorized.

The Malangsari dam on the Kedungsoko is improved with extension of l span to right side for reason of increased design discharge and its gate operation is motorized.

The other 2 dams are improved with minor modification. For reference, the following are intake capacity of each dam.

Irrigation head works	Intake capacity (m^3/s)
Tiripan left	0.05
right	0.02×2
Malangsari left	0.8
Kapas left	0.2
right	0.25
Kramat right	0.3

Drainage culvert/intake sluice

Drainage culvert with flap gate is provided at outlet of small drainage channel. Intake sluice is provided at diversion points of lower Ulo and middle Kuncir which are remained as they are to supply lowflow/flushing flow.

Considering existing and future conditions, the following three are adopted to standard one.

Туре	Dimension (m)
I II III	(width) (height) (span) 1.5 x 1.5 x 1 2.5 x 2.0 x 2 2.5 x 2.0 x 3

Drop structure

Drop structure is proposed at the upper end of diversion channel and at the lower end of lower Ulo in view of river bed profile between up and dowstream reaches. The drop-height is 1 m for both ones.

Syphon

Some proposed new channels cross main irrigation canal. Syphon is provided at those crossing.

The capacity of syphon is determined considering existing canal capacity as shown below and maintenance work after construction.

Site	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	. Capaci	ty (m ³ /s)
New diversion	channel lower upper	0.6 0.3	
Lower Ulo	:	0.5	(assumed)
Kuncir		0.6	(assumed)

Bank protection works

Wetmasonry type and gabion type are employed in locations as bank protection works.

Foundation of the above structures

Foundation condition of the above structures are determined based on the geological profile in the basin prepared by geological investigation. Such data are described in ANNEX-3.

4. Results of feasibility design

The proposed related river structures are shown on Fig. 4.5.1. The feasibility designs for major structures are presented on Figs. 4.5.2, 4.5.3 and 4.5.4. The standard designs for minor structures are presented on Figs. 4.5.5 to 4.5.9.

5. Work quantity

The work quantity of the proposed structures are listed in Table 4.5.1.

4.5.3 Bridges

1. Objective bridges to be planned

The objective bridges to be taken up are determined based on the results of inventory survey and proposed river improvement works by comprehensive plan. The bridges to be improved/replaced are as follows.

s. of bridge	Remarks
14	- Including 3 foot paths
4	and l bridge in the
6	lower Ulo.
4	
7	- Including 1 foot path

2. Classification of feasibility design

The bridges to be designed are classified into 2 categories of major and minor. The major bridges are designed for respective ones. Those are as follows.

Bridge.	Grade	Remarks
Road bridge Lengkong bridge Bridge across diversion Channel Kedungsoko bridge	Provincial National National	
Railway bridge Bridge across diversion channel Kedungsoko bridge	, -	Pier protection

The others are defined herein as minor one. The standard designs are prepared for the minor ones.

3. Basic condition adopted to design

(1) Width and design load of road bridge

Bridge width is determined based on the Binamarga standard and existing bridge width/road width.

The adopted bridge width and design load for each class are as follows.

Class	Effective w	Design load (t)		
	Effective	Side walk	Total	
National	7.0	1.0	9.0	TL-45
		(for each	side)	
Provincial	7.0	.	7.0	TL-14
Rural	3 to 5	-	3 to 5	TL-10
Footpath	1.5.	. .	1.5	0.35 t/m^2

(2) Length and type of road bridge

The bridge length is set at river width of dike to dike.

The reinforced concrete bridge is adopted considering economic aspect, materials to be acquisited, construction work and maintenance after construction. The reinforced concrete bridge is divided into the following 2 types depending on span length.

	<u> </u>	
Span length	тур	е
L (m)	Superstructure	Sub structure
Less than 10 25 > L > 10	RC - slab RC - T beam	inverted T type inverted T type

The bridge classification to be adopted to design is given on Fig. 4.5.10.

(3) Type of railway bridge

The objective railway bridge is of trunk one which connects East Jawa and Central Jawa. Therefore, it is impossible stop daily operation of train for construction works. The steel bridge is adopted as the type of superstructure considering construction period and other existing bridges.

(4) Foot path

Foot path is considered to limited transportation for inhabitants. Wooden bridge/submergible reinforced concrete slab bridge is adopted depending on site condition.

(5) Foundation type

According to geological investigation results (see ANNEX-3), the objective area is divided into 3 types in geological features.

The upper reach near hilly area of the objective rivers belongs to type 1 that bearing capacity is sufficiently strong. On the other hand, the middle and lower reaches of the objective rivers belong to other categories that bearing capacity is not expected sufficiently.

In this plan, foundation condition at each site is assumed based on typical soil and geological profile obtained from the above investigation results. For type 1 area, direct foundation is adopted and for other areas, pile foundation is adopted.

4. Results of feasibility design

The proposed bridges are outlined on Fig. 4.5.11. The major bridges are planned as shown below.

Bridge	Classification of improvement
Road bridge	
Lengkong	Replacement
Kedungsoko	Replacement
Flood diversion channel	New construction
Railway bridge	
Flood diversion channel	New construction
Kedungsoko	Pier protection

The feasibility designs of the above are presented on Figs 4.5.12 to 4.5.16.

The standard designs for minor ones are given on Figs. 4.5.17 and 4.5.18.

The major dimensions of the proposed bridges are summarized in Table 4.5.2 (see General No in the Table and Figures)

5. Work quantity

The work quantity of the proposed bridges are summarized in Table 4.5.3.

Table 4.5.1 WORK QUANTITY OF PROPOSED RIVER STRUCTURES (1/6)

Drainage sluice in retarding basin

Widas (right side)

Widas (left side)

Works	Unit	8ody	Water way (River side	Water way)(Land Side)	Others	Total	Body (R	uater way ver side)(Water way Land Sice)	Other	Total
Structural work											V
Concrete volume	m ³	610	330	120		1,060	515	140	100		755
Form	m ²	120	260	96		1,076	610	110	80		800
Reinforcement bar	t	42.7	23.1	8.4		74.2	36.1	9.8	7.0		52.9
Concrete sheet pile	m2	140	78	54		274	130	60	45		235
Pile (0.4 x 0.4 RC)	m	1160				1,160	940		•	٠.	940
Pile (0.35x0.35 RC)	គា		900	620		1,610		610	610.		1,220
Revetment (Vetmasonr	y) m ²				1,550	1,550				790	790
Bed proetction (Ripr	ap)m ³				120	120				120	120
" (Wetmasonr	y) m ³				190	190				75	75
Gate	t	22.1				22.1	16.6				16.6
Inspection house	_m 2	52	•	4		. 52	42				42
Inspection straircas	e no:	s 1				1	1				1
Earth work											
Excavation	_m 3				6,300	6,300				3,480	3,480
Fill up	m ³				1,240	1,240				1,580	1,580
Embankment Temporary work	m ³									2,000	2,000
Staging	Em	³ 540				540	400	-			400

Kedungsoko (right side)					Kedu	ngsoko	(left	side)			
Vorks	Unit	Body (8	ater vay	Water	y de)	Total	Body (Vater vay liver side	Vater value value (Land sic	ie)Others	Total
Structural works						•	•				
Concrete volume	a 3	240	100	- 55		395	130	95	. 35		- 260
Form	_m 2	520	250	140		910	220	240	88	•	608
Reinforcement bar	t	16.8	7.0	3.8		27.6	9.	6.7	2.5		18.3
Concrete sheet pile	_ت ع	65	54	33		152	60	35	30		125
Pile (0.4 x 0.4 RC)	6	480				480	330	300	120		750
Pile (0,35x0.35 RC)	£2		300	195		495					
Revetment (Wet masons	y) n ²				900	900				940	940
Bed protection (Ripra					145	145				145	145
" (Wet mason)	•				320	320				275	275
Gate	ŧ	7.5				7.5	4.8				4.8
Earth work											,
Excavation	_m 3				2,800	2 800				3,150	3,150
Fill up	_3 .				2,050	2,050				2,340	2,340
Embankment	<u></u> 3	÷			2,000	2,000				2,000	2,000
•				,							
Temporary work Staging	. Em 3	160	-			160	110				100

Table 4.5.1 WORK QUANTITY OF PROPOSED RIVER STRUCTURES (2/6)

Drainage sluice in retarding basin

Ulo							Side overflow d	like	(per 10 m)
Works	Unit	ooo j		Water way)(Land Side)	Öthers	Total	Vorks	Unit	
Structural work Concrete volume Form Reinforcement bar Concrete sheet pile	t m ²	650 38.5 140	140 110 9.8 63	105 85 7.4 48		795 845 55.7 251	Structural work Concrete volume Form Reinforcement bar Concrete sheet pile	3 2 2 1 1	63 25 3.0
Pile (0.4 x 0.4 RC) Pile (0.35x0.35 RC) Revetment (Wetmasonr Bed protection (ripr " (Wetmasonr	m 'y) m ² 'ap)m ³ 'y) m ³	960	480	450	1,280 370 96	960 930 1,280 370 96	Bed protection (vetwa- sonry) Bed protection (riprap Pile (wooden Ø 0.2 m)	. 3	42 50 100
Gate Inspection house Inspection Staircase	t [°] m² • no	16.8 52 s 1				16.8 52 1	Earth work Excavation Fill up Sodding	n ³ n ³ 2	170 30 50
Earth work Excavation Fill up Embankment	m3 m3				3,850 1,360 1,200	3,850 1,360 1,200			
Temporary work Staging	Em	3 ₄₉₀				490		٠	

Syphon

Lower Ulo						Kuncii	•		
Works	Vnit	Kanhole	Center	Manhole	Total	Manhole	Center	Manhole	Total
Structural work		-							
Concrete volume	· 3	65	202	65	332	66	235	.66	367
Form		220	522	220	962	225	635	225	1085
Reinforcement bar	t	6.8	20,6	6.8	34,2	6.9	24.9	6.9	38.7
Concrete sheet pile	_m 2	12	24	12	48	12	24	12	48
Pile (0.35 x 0.35 RC)	na 🧎	60	500	60	620	60	600	60	720
Revetment (Wetmasonry)	m ²		1,400	•	1,400		1,900		1,900
Bed protection (Riprap)	n S		18		18		24		24
Gate		2.0		2.0	4.0	2.0		2.0	4.0
Earth work									
Excavation	3		14,350		14,350		17,240		17,240
Fill up	m ³		13,930		13,930		16,770		16,770
Temporary work				·		•			
Staging	Em 3		113		113		143		143

Table 4.5.1 WORK QUANTITY OF PROPOSED RIVER STRUCTURES (3/6)

Syphon

New diversion channel

Works	Unit	Manhole	Center	Manhole	Total
Structural work		•			
Concrete volume	_m 3	73	277	73	423
Form	n. 2	240	726	240	1206
Reinforcement ber	t	7.8	28,6	7.8	44
Concrete sheet pile	₽ ₂	12	34	12	48
Pile (0.35x0.35 RC)	•	60	700	60	820
Revetment (Wetmasonry)	m ²		2,390		2,390
Bed protection (Riprap)) m ³		72		72
Cate	t	2.0		2.0	4.0
Earth work					•
Excavation	щ3:		21,400		21,400
Fill up	_m 3		20,860	-	20,860
Temporary work					
Staging	E m 3		156		156

Irrigation head works

Kapas dam						Tiripan	dam	· · · · · · · · · · · · · · · · · · ·
Vorks	Unit	Body	Sluice	Others	Total	Body	Others	Total
Structural works								
Concrete volume	_m 3	960	160	750	1,870	1,200	1.740	2,940
Form	ta 2	1,530	480	1,230	3,240	1,680	2,257	3,937
Reinforcement bar	t	86.4	11.2	48.5	146.1	84.2	114.4	198.6
Concrete sheet pil	e no2	224	114	120	458	-320	150	470
Pile (0.4x0.4RC)	15	950			950	1,060		1,060
Pile (0.35x0.35R	.C) m		440	1,650	2,090	•	2,780	2 780
Revetment (wet- masonry)	₅₀ 2		·	950	950		1,620	1,620
Bed protection (Riprap)	_{ta} 3			90	90		520	520
Bed protection (Wetmasonry)				490	490		1,400	1,400
Cate	t	28.8	1.4		30,2	36.7	1.4	38.1
Inspection house	₁₀ 2	95			95	130		130
Inspection stair- case	Bos	ı			1	1	•	1
Earth work								-
Excavation	_E 3			6,000	6,000		12,600	12,600
F(11 up	2 3			4,800	4,800	•	10,080	10,080
Embankment	_m 3						1,500	1,500
Surplus				1,200	1,200			
Temporary work								
Staging	Eua 3	270	36		306	356	60	416 -
Bridge (wooden)	n 2			60	60		-	
Coffering work								
Sheet pile	_{th} 2			980	980		1,600	1,600
Removal work Concrete volume	د _ه						340	340

Table 4.5.1 WORK QUANTITY OF PROPOSED RIVER STRUCTURES (4/6)
Irrigation head works

Kramat dam						Malang	sari da	ım	
Work	Unit	Body	Sluice	Others	Total	Body & Bed Protection	11.11	Earth Wo	ork ry [otal
Structural work Concrete volume Form Reinforcement bar Concrete sheet pile Pile (0.4 x 0.4 RC Pile (0.35 x 0.35 RC) Revetment (Wetmasonry Bed Protection (Ripral " (Wetmasonry Gate Inspection house Inspection staircase	ກ) m ² ວ)ຫ ³	630 1,050 63.1 226 600	180 430 8.4 60 380	220 410 19.5 120 120 500 1,380 410 780	1,030 1,890 91.0 406 720 880 1,380 410 780 12.2 50	1,884 3,230 188.4 400 1,000 1,500 590 2,500 87.5 220 2	820 780 57.4 120 950	_д тацос	2,704 4,010 245.8 520 1,950 1,500 1,170 590 2,500 87.5 220 2
Earth work Excavation Fill up Embankment Temporary work Staging Bridge (wooden) Coffering work Sheet pile	m3 m3 m3 m3	640	17	5,080 4,060 90 800	5,080 4,060 657 90	800		3,200 1,800 1,200 510 5,400	3,200 1,600 1,200 800 510

Kuncir diversion weir

Works	Unit	Bridge (1)	Intake Sluice	Bridge (2)	Wall	Others	Total
Structural work							
Concrete volume	₂₀ 3	539	680	245	308		1,772
Form	_{01.} 2	858	730	427	420		2,435
Reinforcement bar	t	47,7	47,6	24.1	21.6		141.0
Revetment (wetmasonry)	_m 2	•				4,400	4,400
Bed protection (Riprap)	a 3	216	45	60		. 540	861
Bed protection (wet masonry)	m ³	1,060	90	120		330	1,600
Gate	t	1.8	20.3				22. i
Inspection house	m2		50				50
Inspection stair- case	nos		1				1
Earth work		•					
Excavation	_m 3					30,000	30,000
Fill up	₀₀ 3					1,400	1,400
Embankment	_m 3					39,500	39,500
Temporary work							
Staging	Em 3	855	186	190			1,231
Bridge (wooden)	m2					200	200
Coffering work							
Plank	<u></u> 2 :	1,200					1,200
Steel weight	t	120					120
Removal work							
Concrete volume	_m 3					2,730	2,730

Table 4.5.1 WORK QUANTITY OF PROPOSED RIVER STRUCTURES (5/6)

Drainage culvert

Type I							Typ	e II			
Works	Unit	Body	Water way (River side)	Water (Land s	ay ide) ^{Others}	Total	Body	Water way (River side)	Vater var (Land side	Other	s Total
Structural work									* .		
Concrete volume	_m 3	55	16	25		96	150	30	55		235
Form	_m 2	160	50	50		260	320	60	140		520
Reinforcement bar	t	4.0	. 1.0	1.	3	6.8	10.5	1.8	3.8		16.1
Concrete sheet pile	_m 2	30	45	20		95	60	60	36		156
Pile (0.4x0.4 RC)	ut.						360				360
Pile (0.35x 0.35RC)	œ.	240	60	120		420		90	180		270
Revetment (wet- masonry)	m ²		٠.	:	160	160				160	160
Bed protection (Riprap)	<u>m</u> 3									÷	
Bed protection (vetmasonry)	. ₂₂ 3	-			20	20		•		. 40	40
Gate	t	.0.5				0.5	2.0				2.0
Earth work											
Excavation	_m 3				730	730				1,600	1,600
Fill up	<u>"</u> 3				640	640		•		1,250	1,250
Embaukment	a ³				770	770				810	810
Temporary work										٠	
Staging	Em 3				30	30		1.5		140	140

Works	Unit	Body	Waterway (Riverside)	Waterway)(Landside)	Öthers	Total
Structural work						
Concrete volume	m ³	230	40	55		325
Form	m ²	560	60	110		730
Reinforcement bar	ŧ	16.0	2.5	4.0		22.5
Concrete sheet pile	m ²	85	75	45		205
Pile (0.4 x 0.4 RC)	fit.	540				540
Pile (0.35 x 0.35 RC)	m		270	300		570
Revetment (Wet- masonry)	m ³				180	180
Bed protection (Riprap)	r _m 3					*
Bed protection (Wetmasonry)					64	64
Gate	t	3.0				3.0
Earth work						
Excavation	_m 3				330	330
Embankmnet	m ³				1,640	1,640
Temporary work						
Staging	Em ³				250	250

Table 4.5.1 WORK QUANTITY OF PROPOSED RIVER STRUCTURES (6/6)

Drainage sluice

Type 1							Type	II .			100
Vorks	Unit	Body	Vater way (River side)	Water way (Land side)	Other	s Total			(Land aid	Others	Total
Structural work											
Concrete volume	m 3	55	- 16	2.5		96	150	30	55		235
Form	₂ .	160	50	50		260	320	60	140		520
Reinforcement bar	t	4.0	0,1	1.8		6.8	10.5	8.1	3.8		16.1
Concrete sheet pile	<u></u> 2	30	45	20		95	50	60	36	-	156
Pile (0.4x0.4 RC)	13						360	•			360
Pile (0.35x 0.35RC)	œ	240	60	120		420		90	180		270
Revetment (wet- masonry)	<u>.</u> 2				160	160				160	160
Bed protection (Riprep)	, a 3										
Bed protection (vetmasonry)	_m 3				20	20				40	40
Gate	٤	. 4	•			1.4	6.0				6.0
Earth work			•								
Excavation	<u></u> 3				730	730				1,600 1	,600
Fill up	ສ3				640	640				1,250 1	-
Zmbankment	m ³				770	770				810	810
Temporary work											
Staging	Em 3				30	30		•		140	140

Drop structure

Works	Unit	New Diversion Channel	Lower Ulo
Structura: work			
Concrete volume	. _m 3	145	60
Form	m ²	250	185
Reinforcement bar	t	7.3	3.0
Concrete sheet pile	m ²	150	75
Pile (0.35x0.35 RC)	m	120	60
Revetment (Wetmasonry)	⁸¹ 5	1,000	300
Bed protection (Riprap)	_m 3	. 120	18
" (Wetmasonry)	m ³	200	65
Earth work		· .	
Excavation	m ³	6,750	4,160
Fill up	m ³	6,100	3,750
Surplus	_m 3	650	410

Table 4.5.2 MAJOR DIMENSIONS OF PROPOSED BRIDGES (1/6)

Widas river

B B2 (m) 27.3 E21 m 70.3 85.0 E22 = 80.4 E22 = 50.4 B3 (m) 37.0 41.0 72.0 72.0 72.0 62.0 65.0 59.5 59.5 B3 (m) 21.4 25.0 56.0 55.0 55.0 45.0 48.0 41.0 4.0 LEVER MIDTH 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 LEVER MIDTH 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 BEPTH H1 (m) 3.9 3.9 4.0 4.2 4.2 4.2 4.3 4.7 B4 (m) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 FREE BOARD 1.0 -2.1 1.0 -1.8 -1.8 1.0 1.0 1.0 TOTAL WIDTH Bt (m) 3.8 1.5 9.92 1.5 1.5 3.8 3.8 5.8 3.8 BRIDGE LENGTH Lb (m) 103.0 43.5 258 76.7 76.7 178.0 108.0 108.0 144.0 BRIDGE LENGTH Lb (m) T-beam T-	on truction on k on Struction on k on 34.6 + 250 Roral Road on 3.0 on 590 vi in 110 65 22.65 5 59.5 .0 41.0 .0 5.0 .0 4.7 .3 0.3 0 1.0 0 1.0
CLASSIFICATION OF Truction Cruction Cr	on truction on 8 on 24.6 + 250 Rural Road on 3.0 ye ye the second of the secon
	50 34.6 + 250 Rural Road 3.0 590 V1 110 65 22.65 5 59.5 .0 41.0 .0 5.0 .7 4.7 .3 0.3 0 1.0 0 1.0
ROAD CHASS Road Path Road Path Road	Road 3.0 590 VI 110 65 22.65 5 59.5 .0 41.0 .0 4.0 .7 4.7 .3 0.3 0 1.0 0 1.0
CONDITION EFFRCTIVE Side walk 1.5 1.5 3.0 3.0 5.0 3.0 3.0 5.0 3.0 3.0 5.0 3.0 3.0 5.0 3.0 3.0 5.0 3.0 3.0 5.0 3.0 3.0 5.0 3.0 3.0 5.0 3.0 5.0 3.0 5.0 3.0 5.0 3.0 5.0	590 VI 110 65 22.65 5 59.5 0 41.0 0 4.0 7 4.7 3 0.3 0 1.0 0 1.0
DESIGN DISCHARGE (m3/aec) 240 240 240 240 530 640 590 555 No. of GENERAL VIEW VI XI V XI XI VI VI VI	7 4.7 3 0.3 0 1.0 0 1.0 0 1.0 0 1.0
No. of GENERAL VIEW V1	110 65 22.65 5 59.5 0 41.0 0 4.0 5.0 7 4.7 3 0.3 0 1.0 0 70 0
B (m) 27.3 (B ₂₁ = 50.3) 85.0 (B ₂₁ = 150.4) (B ₂₂ = 50.4) (B ₂₂ = 50.4	65 22.65 5 59.5 .0 41.0 .0 4.0 .0 5.0 7 4.7 .3 0.3 0 1.0 0 1.0
B2 (m) 27.3 B ₂₁ = 50.3 85.0 B ₂₂ = 80.4 B ₂₂ = 50.4 55.4 19.1 22.65	5 59.5 .0 41.0 .0 4.0 .0 5.0 .7 4.7 .3 0.3 .0 1.0 .0 70°
B3 (m) 37.0 41.0 72.0 72.0 72.0 62.0 65.0 59.5	0 41.0 0 4.0 0 5.0 7 4.7 3 0.3 0 1.0 0 1.0
H2 (m) H3 (m) 1.1 1.1 1.0 0.8 0.8 0.8 0.7 0.3 1.0 H4 (m) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.	0 4.0 0 5.0 7 4.7 3 0.3 0 1.0 0 1.0
H2 (m) H3 (m) 1.1 1.1 1.0 0.8 0.8 0.8 0.7 0.3 H4 (m) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 FREE BOARD H5 (m) 1.0 -2.1 1.0 -1.8 -1.8 1.0 1.0 1.0 1.0 SEEN ANGLE 0 (°) 9.30 900 800 900 900 900 900 900 900 500 TOTAL WIDTH BE (m) 3.8 1.5 9.92 1.5 1.5 3.8 3.8 5.8 3	0 5.0 7 4.7 3 0.3 0 1.0 0 1.0
H2 (m) H3 (m) 1.1 1.1 1.0 0.8 0.8 0.8 0.7 0.3 1.0 H4 (m) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.	7 4.7 3 0.3 0 1.0 0 1.0
H2 (m) H3 (m) 1.1 1.1 1.0 0.8 0.8 0.8 0.7 0.3 H4 (m) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 FREE BOARD H5 (m) 1.0 -2.1 1.0 -1.8 -1.8 1.0 1.0 1.0 1.0 SEEN ANGLE 0 (°) 9.30 900 800 900 900 900 900 900 900 500 TOTAL WIDTH BE (m) 3.8 1.5 9.92 1.5 1.5 3.8 3.8 5.8 3	0 1.0 1.0 70°
H3 (m) 1.1 1.0 0.8 0.8 0.0 0.7 0.3	0 1.0 0 1.0
H4 (m) 1.0 1	0 1.0 70°
FREE BOARD 1.0 -2.1 1.0 -1.8 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	70°
TOTAL WIDTH Bt (a) 3.8 1.5 9.92 1.5 1.5 3.8 3.8 5.8 3 TOTAL WIDTH Bt (b) 3.8 1.5 258 76.7 76.7 178.0 108.0 108.0 14	
TOTAL WIDTH BE (a) 3.8 1.9 3.2	8 3.8
1 - Innanon appropriate (-) 1 (0) 0 1 (4), 0 1 (2) 0	
RC-Slab RC-Slab T-beam T-beam T-beam T-beam T-beam	
T-beam RC-518D T-beam RC-518D	T-beam
HOS. OF SPAN 5 5 12 9 9 8 5 5	5
SPAN LENGTH L (m) 213,7 8.3 20.6 8.3 8.3 21.35 20.7 20.7 19	24 22.1
ROS. OF BEAM 2 - 6 - 2 2 3	2
BEAN REICHT h (m) 1.60 0.35 1.60 0.35 1.65 1.60 1.60	40 1.70
11 (m) 3.0 3.0	0 5.0 6) (4.04)
Width Bt 3.8 - (10.07) 3.8 3.8 5.8 (4. 9.92 3.8 3.8 5.8 (4. 9.92 3.8 3.8 5.8 (4. 9.92 3.8 3.8 5.8 (4. 9.92 3.8 3.8 5.8 (4. 9.92 3.8 3.8 5.8 (4. 9.92 - 3.8 (4. 9.92 - 3.8 5.8 (4. 9.92 - 3.8 (4. 9.92 - 3.8 (4. 9.92 - 3.8 (4. 9.92 - 3.8 (4	8 3.8
Hf 3.8 - (10.07) - 4.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3	8 4.0
Nos of Pile 12 2 32 2 14 14 20 12	14
Pile strange 2 @ 1.4 1 @ 1.0 7 @ 1.25 1 @ 1.0 1 @ 1.0 3 @ 1.0 3 @ 1.0 4 @ 1.2 2 @ 1 ment N P P	
Pile arrange- sent NSP Plle length lp (m) Plle length	
H1 (m) 9,5 [5.7]	5 9.5
	8 3.8
Bf 4.3 - (10.66)	4.3
Nos of Pile 14 2 45 2 2 14 14 22 1	14
P119 arrange- 3 @ 1.1 1 @ 1.0 8 @ 1.18 1 @ 1.0 1 @ 1.0 3 @ 1.1 5 @ 1.1 5 @ 1.06 3 @ 1 ment N @ P	
Plle length 18.0 10.0 18.0 10.0 15.0 15.0 15.0 15.0 15.0 15.0	0 15.0

Note : () is shown in case of skew angled bridge
[] is shown in case of pier located at highwater channel.

Table 4.5.2 MAJOR DIMENSIONS OF PROPOSED BRIDGES (2/6)

	Widas	river						· · · · · · · · · · · · · · · · · · ·	·	·	~ ~~~~~~~	,
ко.	OF INVE	NTORY SURVEY	. 6	7	8			<u></u>		ļ		
		CATION OF ENT METHOD	Replanent	Replacement	truction							
	1.0CA	TION	57.1 + 120	50.6 + 250	k m 40.1 + 50							
R	OAD	CLASS	Rus al Road	Rural Road	Rural Road							
CONE	MOITIC	EFFECTIVE WIDTH W (m)	3.0	5.0	3.0							
		CN DISCHARGE (m3/sec)	590	590	440							
	No. o	f GENERAL VIEW	ΑI	VI	VΙ							
		RIVER WIDTH BI (m)	110	110	90							
NOT.	WIDTH	B2 (m)	22.65	22.65	22.4							
COMBITION	FOR	B3 (m)	59.5	59.5	42.0					<u></u>		
E38	DATA	воттом width н4 (m)	41.0	41.0	22.0							
PROPOSED RIVER		LEVEK WIDTH B5 (m)	4.0	4.0	3.0							
OPOSE	.	LOW WATER DEPTH HI (m)	5.0	5.0	5.0							:
A.	нетсит	H2 (m)	4.7	4.7	5.0							
	FOR	H3 (m)	0.3	0.3	0			<u> </u>				
	DATA	R4 (m)	1.0	1.0	0.8			ļ				
		FREE BOARD H5 (m)	1.0	1.0	0.8		·					
	SKEW	ANGLE 0 (°)	800	900	900							
	TOTAL	WIDTH Bt (m)	3.8	5.8	3.8							
URE	BRIDGE	LENGTH 1.b (m)	109.5	108,0	88.0						<u></u>	
STRUCTURE	TYPI	OF BRIDGE	T-beam	T-beam	T-beam					<u> </u>		
SUPER S	109	S. OF SPAM	5	5	4					ļ		
Sta	SPAN	length 1. (12)	21,0	20.7	21.1					ļ		
	NOS	. OF BEAH	2	3	2							
	BRAH	HRICHT h (m)	1,60	1.60	1.60			ļ	ļ			
		TOTAL HEIGHT	5.0	5.0	5.0					ļ		
	FY	Width Bt	(3.86) 3.8	5.8	3.8			:				
	ABUTHENT	Bf	(4.06) 4.0	5.8	3.8				1		ļ	
AZ.		Nos of Pile	14	20	12			ļ		ļ		-
מתבאת		Pile arrange- ment N 69 P	3 @ 1.0	4 @ 1.2	2 @ 1.4			ļ			<u> </u>	
SUBSTRUCTURE		Pile length lp (m)	10.0	10.0	10.0			·	<u> </u>	<u> </u>		
, s		Total Height H1 (m)	9.5	9.5	9.5			ļ	<u> </u>	ļ	<u> </u>	
		Width Bt	3.8	5.8	3.8	·			ļ			
		Bf	4.3	6.3	4.3						ļ	
	PIEE	Nos of Pile	14	22	14				ļ			
		Pile arrange- ment N @ P	3 @ 1.1	5 @ 1.06	3 @ 1.1					<u> </u>	<u> </u>	
·	<u> </u>	Pile length lp (m)	10.0	10.0	10.0					<u> </u>		

uNote: () is shown in case of skew angled bridge [] is shown in case of pier located at highwater channel.

Table 4.5.2 MAJOR DIMENSIONS OF PROPOSED BRIDGES (3/6)

Kedunasoko river

Kedungsoko river													
NO. OF INVENTORY SURVEY				1	2	New	3						
		CATION OF		Replacement	Remain	New Cons- truction	Replacement						
	1,004	LOCATION			k m 3.5 + 220	k near 5.0	k n 7,0 + 250						
R	DAD	CLASS		National Road	Railway	Rural	Rural						
	ITION			9 m with (side walk)	1.067	3.0	3.0						
RIVER COMULTION	DESIGN DISCHARGE (w3/sec)		200	200	200	470							
		E GENERAL	VIEW	ΙΙ	1	V1	VΙ						
	RIVER WIDTH BI (m)			60	83	110	100						
	ухртя	B2 (±	·····	-	_	34.7	11.85						
	POR W	B3 (a	a)	35.0	39,0	33.0	67.50						
8	DATA	BOTTON V		20.0	34.0	21.0	45.0						
RIVE		FEAER A	нтап	4.0	4.0	4.0	4.0				, _ ,		
PROPOSED	DATA POR WEJCHT	LOW WA	TER	4.0	4.0	4.0	4.0						
084		H2 (a		-	-	3.1	2.8]					
		нз (•	•)	-	-	0.9	1.2						
ļ		н4 (u)	-		1	1						
		PREE BO		0.60	0.60	1.00	1.00						
	SKEW ANGLE 0 (°)			90°	90 °	30°	65°						
	TOTAL WIDTH Bt (m)			9,92		3,8	3,8						
1 32	BRIDGE LENGTH Lb (m)			80.0	82,0	100.0	108.0						
SUPER STRUCTURE	TYPE OF BRIDGE			T-bean	Steel through	I-bean	T-beam .			:			
8.8	NOS. OF SPAN			4	8	-5	5						
ans	SPAN LENGTH L (10)			14.3 ~ 21.50	7.75 - 12.23	20.7	20.7						
	NOS. OF BEAM			6	2	2	2						
	BEAM HEIGHT h (m)			1.65	1.0 ~ 1.4	. 1.60	1.60						
		TOTAL H	e) Eichj	5.0 9.0		5.0	5,0			:			
	ABUTMENT	Width (m)	Bt	9,32	-	3.8	3.8				-		
			Bf	9.92	-	4.0	4.0						
		Nos of P	ile	32 56	- '	14	. 14						
SUBSITUCTURE		Pile arr		7 6 1.25	-	3 6 1.0	3 & 1.0						
		Pile length lp (m)				15.0	15.0						
		Total He)	(5,5) .8,5	_	8.5	8.5			 			
		Width (m)	Bt	9,92	<u>-</u>	3.8	3,8						
			Bf	10.5		4.3	4,3						
		Nos of P		[32] 45	-	14	14			· · · · · · · · · · · · · · · · · · ·			
		Pilo arr ment N G	P	891.185 [791.354]	- -	3 2 1.1	3@1.1						
		Pile len lp (m)	gth	15.0	-	15.0	15.0				L		
				ا ماه که م	cooled brid								

Note : () is shown in case of skew engled bridge

^{: []} shown in case of pier located at highwater channel.

Table 4.5.2 MAJOR DIMENSIONS OF PROPOSED BRIDGES (4/6)

Diversion channel

		on char								 ···]	1
NO. OF INVENTORY SURVEY						-	-	-	New Cons-	 		
CLASSIFICATION OF THPROVENENT HETHOD			New Cons- fruction	New Cons- truction	New Cons- truction	New Cons- ! truction	New Cons- truction	truction	 			
LOCATION									 			
ь	OAD	CLAS	SS	Railway	National Road	Rurel Road	Rural Road	Rural Road	Rurul Road			
CONDITION EFFECTIVE WIDTH W (m)			1.067	9.0 (with side walk)	5.0	5.0	3.0	5.0				
	DESIGN DISCHARGE			230	230	230	230	230	230			
) RIVER CONDITION	No. of GENERAL VIEW			III	IV	VII	VIII	VIII	VIII			
		RIVER WIDTH BI (m)			50.0	50.0	40.0	40.0	50.0			
	WIDTB	B2 (5.5	5.5	5.5	2.0	2.0	7.0			
		ВЗ (<u>n</u>)	33.0	33.0	33.0	26.0	26.0	26.0			
	DATA FOR	воттон в4 (11.6	11.60	11.6	12.0	12.0	12.0			
		LEVER V		4.0	4.0	4.0	3.0	3,0	3.0	 		
PROPOSED		DEPTH I		5.0	5.0	5.0	5.0	٥.٥	5.0			
¥	HEJ CHI	H2 (2.5	2.5	2.5	3.5	3.5	3.5	 		
	FOR	нз (m)	0.5	0.5	0.5	1,5	1.5	1.5			
	DATA	H4 (1	n) .	1.0	1.0	1,0	1.0	1,0	1,0	 	·	
		FREE B		1.50	1.05	1.05	1.05	1,05	1,05	 <u> </u>	<u> </u>	
	SKEW ANGLE & (°)			81 ⁰	810	90°	60 ⁿ	90°	55°	 	ļ	
URE	TOTAL WIDTH Bt (B)				9,92	5,6	5.8	3.8	5.8			
	BRIDGE LENGTH Lb (a)			52.5	52.5	47.0	48.5	42.0	63-5	 	ļ	
STRUCTURE	TYPE OF BRIDGE			Steel through	T-beam	I-beem	T-beam	1-beam	1-beam	 		
SUPER S	NO	NOS. OF SPAN			2	2	2	2	3			
SU	SPAN	SPAN LENGTH L (m)			25.35	22.6	23.35	20.0	20.18	 		
	HOS. OF BEAM			2	6	3	3	2	3	 		
	BEAM	нејскт ь	(m)	2.0	1.7Ò	1.70	1.70	1.40	1,40			
		TOTAL H	EICHT	4.0	5.0	5.0	5.0	5.0	5.0			
į	ABUTHEN	Width (m)	Bt	6.0 (6.075)	9.92 (10.05)	5.8	5.8 (6.70)	3.8	5.8 (7.08)			
			Bf	8.0 (0.10)	9.92 (10.05)	5.8	5.8 (6.70)	3.8	5.8 (7.08)		<u> </u>	
Æ	- ₹	Nos of P	ile	16	36	20	20	12	20			
SUBSTRUCTURE		Pile arr ment l		-	8 8 1.10	4 3 1.2	4 8 1,2	2 9 1.4	4 29 1.2	 		
		Pile le lp (s	9)	15.0	15.0	15.0	15.0	15.0	15.0	 		
	PIER	Total He H1 (m		. 9.5	9.5	9.5	9.5	9.5	9.5			
		Width (m)	Bt	-	9,92 (10.05)	5.8	5.8 (6.70)	3,8	5.8 (7.08)			
			Bf	-	10.5 (10.63)	6.3	6.3 (7.27)	4.3	6,3 (7,69)	 		
		Nos of 1		28	45	22	22	14	72			
		Pile arrange- ment N Q P		3 2 1.0	8 3 1 185	5 @ 1.05	5 \$ 1.06	3 @ 1,1	5 @ 1.06			
		Pile len lp (m)	gth .	15.0	15,0	15.0	15.0	15.0	15.0			

Note : ()is shown in case of skew angled bridge

Table 4.5.2 MAJOR DIMENSIONS OF PROPOSED BRIDGES (5/6)

Upper and lower NO. OF INVENTORY SURVEY 10 11 13 New Cons-CLASSIFICATION OF Replace Replace Replace Replace IMPROVEMENT HETHOD LOCATION 19.5 + 250 3.0 (lower) 16.0 + 300 18 + 300 18.5 + 50 Roral CLASS Province Prevince CAOR CONDITION EFFECTIVE 3.0 5.0 9,0 7.0 MIDIN N (m) DESIGN DISCHARGE 35 190 190 220 220 (m3/mec) ΙX IX 1X VII ΙX No. of GENERAL VIEW RIVER WIDTR 25.0 50,0 55.0 50.0 50.0 B1 (m) WIDTH 10.3 1.0 B2 (m) 7.8 6.95 7.8 CONDITION Š 28.0 15.0 B3 (m) 20.0 30.5 20.0 DATA BOTTOM WIDTH 3.0 12.0 12,0 12.0 16.0 RIVER R4 (m) LEVER WIDTH 4.0 4.6 4.0 4.0 B5 (m) PROPOSED LOW WATER 4.6 å 4.6 4.0 DEPTH HI (m) HEIGHT 3.0 H2 (p) 3.6 4.0 4.0 4.0 1.0 0.6 0.6 H3 (w) POR 1.0 H4 (m) 1.0 1.0 1.0 1.05 1.05 1.05 1.05 1.05 H5 (as) 60⁰ SKEW AMGLE O (") 90° 55⁰ 90⁰ 5.8 TOTAL WIDTH Bt (m) 9.92 3.6 3.8 7.B 31.0 52.0 63.5 BRIDGE LENGTH LD (m) 52.0 STRUCTURE TYPE OF BRIDGE T-besm I-beam T-besm T-beam t-beam 2 NOS. OF SPAN 3 SUPER 14.6 16.77 SPAN LENGTH L (m) 16.43 20.27 16.43 6 2 NOS. OF BEAM 1.05 BEAN HEIGHT h (m) 1.15 1.15 1.15 TOTAL HEIGHT 5.0 5.0 5.0 5.0 5.0 5,8 9.92 Bt Vidth 7.8 3.8 (6,70) (12.11) (m) 9.92 Вf 3.8 7.8 (6.70) (12.11) 24 24 36 Nos of Pile SUBSTRUCTURE Pile arrange-ment N & P 5 @ 1.36 2 9 1.40 5 @ 1,3*b* 8 8 1,10 2 8 1.40 Pile length 10 10 10 10 Total Height 9.5 9.0 9.0 H1 (m) Width Bt 9.92 (12.11) 5.8 3.8 7.8 (6.70)(m) 10.5 6.3 Вſ 8.3 4.3 (12.82) (7.27) 18 Nos of Pile 45 12 12 Pile arrange 4 @ 1.325 8 @ 1,165 2 @ 1.65 2 9 1,65 5 6 1.46 ment N C P Pile length 10 lp (m)

Note -: () is shown in case of skew angled bridge

Table 4.5.3 MAJOR DIMENSIONS OF PROPOSED BRIDGES (6/6)

	Kuncir	river				,	, _						
HO. OF INVENTORY SURVEY			3	7	8	9		13	15		······································		
	CLASSIFICATION OF IMPROVEMENT METHOD			Replace	Replace	Replace	Replace	New Cons- truction	Ropluce	Replacement			
	1.064	TION		k ø 1.0 - 50	k m 2,5 + 120	k m 4.0 + 250	k m 5.5 + D	k m 7.0 + 600	k m 9.5 + 150	k m 10.5 + 0			
	DAD	C1.AS	ss	Rural Road	Footpath	Rurul Road	Rural Road	Provincial Roud	Provincial Road	Provincial Road			_
	CONDITION EFFECTIVE WIDTH W (m)			3,0	1,5	5.0	5.0	7.0	7,0	7.0			
	DESIGN DISCHARGE (m3/sec)			95	95	95	95	95	95	95			
		f General	. AIRA	VII	Х	VII	VII	AII	Vli	VII		·	
	RIVER WIDT			50.0	40.0	40.0	40.0	40.0	40.0	40.0			
ð	и лотн	B2 (12.B	7.8	7,8	7.8	8.6	8.6	8.6			
CONDITION	POR	вз (m)	16.0	16.0	16.0	16.0	16.0	16.0	16.0			
03 XX	DATA	BOTTOM 84 (5.0	5.0	5,0	5.0	4.0	4.0	4.0			
D RIVER		FEARE #		3,0	3.0	3.0	3.0	3.0	3.0	3,0			
PROPOSED	DATA POR HEIGHT	LOW WA		4.0	4.0	4.8	4.0	4.0	4.8	- 4.0		<u> </u>	
Ž.		Н2 (2.7	2.7	2.7	2.7	3.1	3,1	3.1			
		нз (že)	1.3	1,3	1.3	1,3	0.9	0.9	0.9			
		H4 (1	m)	0.80	0.80	0.80	0.80	0.80	0.80	0.80			
		PREE B		0.85	0.80	0.85	0,85	0.85	0.85	0.85			
	SKEW ARGLE O (°)			90°	90°	90°	90°	70°	90°	90°			
	TOTAL WIDTH Bt (20)			3.8	1.5	5.8	5.8	7.8	7.8	7.8	· .		
19	BRIDGE LENGTH Lb (E)			52.0	40.0	42.0	42.0	44.5	42.0	42.C			
STRUCTURE	TYPE OF BRIDGE			T-beam	Wooden	T⊷bes≖	T-beam	1-beam	I-beam	T-beam			
SUPER S	NOS. OF SPAN			2	טו	2	2	2 .	2	. ?			
SOS	SPAN LENGTH L (b)			25.1	4.0	20,1	20.1	21.35	20.1	20.1			
	NOS. OF BEAM			2	-	3	3	4	4	4	, <u></u>		
	ţ.	BEAM HEIGHT b (m)		1.70		1,4	1.4	1.65	1.4	1.4			
		TOTAL H	eight e	5.0	-	5.0	5.0	5.0	5.0	5.0			
	ABITHENT	Width (m)	Bt	3.8	-	5.8	5.8	7.8 (8.3)	7,8	7.8			
		(/	Br	3.8	-	5.8	5.8	7.8 (8.3)	7.8	7.8			
<u></u>		Nos of P	ile	12.0	-	20	20	28	28	28			
истик		Pile arr	range-	2 @ 1.4	-	4 8 1.2	4 9 1,2	6 9 1.13	6 @ 1.13	6 6 1.13			
SUBSTRUCTURE		Pile length lp (m)		10	-	10	10	10	10	- 10			
	PIER	Total He		8.5	-	8.5	8.5	8.5	8.5	8.5			
		Width (m)		3.8	-	5.8	5.8	7.8 (8.3)	7.8	7.0			
		(111)	Bf	4.3	-	6.3	6.3	8,3 (8.83)	8.3	8.3			
		Nos of F	lle	14.0	_	20	20	28	28	20			
		Pile arr ment N 6	ange-	3 @ 1.1	-	4 29 1.06	4 @ 1.06	6 @ 1.217	6 20 1.217	6 @ 1.217			
	,	Pile len lp (m)	gth	10	-	10	10	10	10	10			
L			نــــــــن				L———-						

Note : () is shown in case of akew angled bridge

Table 4.5.3 WORK QUANTITY OF PROPOSED BRIDGES (1/7)

Whole			T-69.		·		γ		·
	Unit	Widas River	Uto Diversitor Charinet	Ulo River	Kedungsoko River	Kuncir River			Total
Structural Work		1							
Pavement 1 = 0.065	m m2	3083	126	315	648	156			4328
- do - 1 = 0.075		540	801	155	-	420	· · · · · · · · · · · · · · · · · · ·		1916
		1806	368	809	560	900	· · · · · · · · · · · · · · · · · · ·		4443
	m - m2	4802	1244	912	1072	1058	ļ		9088
Concrete volume		20228	4757	4174	4115	4424	}		37698
Form oreo	- m 2	888.1					 		1685.
Reinforcement bar	_ t		240.2	169.4	195.8	192.2			72.0
Steel weight (Plate) Stogling			72.0	-			 	-	-
2 Stooling		21247	2149	2341	3514	4454	·	 -	33705
l impar	m3	ļ	<u> </u>		<u> </u>	8.4	ļ	_	8.4
Additional Work	set	1 -	1	1	1	1 .	1	-	
v,									
Structural Work									
Concrete volume	m ³	6333	1696	1780	1615	1399	<u> </u>		12823
Form area	m2	8012	2231	2299	2005	1614		_	16161
Reinforcement bar	t	313.8	93.1	93.3	83.6	74.8	l		658.6
Pile ([] 0.4x 0.4 RC)	m	20828 .	6465	4490	5670	4100			41553
		520	-	-		-			520
Pile (0.35 x 0.35 RC) Earth Work Excavation (Machine)		-		<u> </u>	1			-	
Executation (Machine)	m 3	2354	1245	1461	872	1186]		7118
,		13398	3265	3741	3112	1226			24742
- 80 - (Muli Fower)		11580	3322	3840	2781	1226	ļ		22749
		4172	1188	1360	1202	804			8726
Surplus soll			1.00						
Coffering Work	:	1]
Plank	m ²		396				ļ		396
Sheet pile	m ²	21523	4145	5202	4931	2369			38170
Steel weight (Strut, Walli	ng) t	1313	345	373	320	128	J		2479
Temporary bridge Work				ļ			ļ.:		.
Wooden bridge	m _S	595	-	49		80			724
Steel bridge	m 2	-	-	317	305	237			859
Removal Work				[
Steel weight	-	53	1	4	65	32			154
Reinforced concrete.	m3	402	 	183	86	128			799
Reinforced concrete (Super-Structure) -do-	m3	119	-	32	33	360			544
(Sub-Structure)	m3	2346	 	1488	473	374	1		4681
© 1767 McCom/		2340		1100	 ''` -		<u> </u>		1.00.
Banking Work		27586	16209	13547	11234	23643			92219
Approach road		27300	10203	1,0347	11234	2073	 	 	76677
Protection Work		9622	5801	4188	2656	4678	 		25945
Revetment		8622	├──	1100			-		391
Riprap		- - -		 	391	<u> </u>		 	- 391
Temporary Work			-	 		\	}	 	800
Staging (Wooden)	m ²	500		<u> </u>	300	ļ <u>.</u>			
Staging (Steel)	m2		315	ļ -	2419				315 11316
Bonking of access road	m3	4275	4622		2419		<u></u>		11310

Table 4.5.3 WORK QUANTITY OF PROPOSED BRIDGES (2/7)

	₩	idas	river	
_				

WIGGS LIVE!		Т.	k m	k m	k m	k m	k m	k n	Sut -
	Unit	k m	6.3 + 2(10	l	15.1 + 80		l	29.1-300	Tot.eì
Structural Work		1	<u> </u>						
Payement t = 0.065 m	m ²	324		-	,	-	534	324	1182
2 do - t = 0.075 m		-	 						
- do - 1 = 0.085 m	m2	1		1806		-	-	-	180c
Concrete volume		263	23	1860	40	40	444	263	2933
Form area	m 2	1140	96	7536	169	169	1896	1140	12146
Daioloscoment has	1	47.5	4,1	352.8	7.3	7,3	82.4	47.5	548.9
2 Steel weight (Plate)	<u> </u>		 		 		 	-	·
Steel weight (Plate) Staging	m ₃	1381	236	6282	300	270	2693	781	13945
Timber	m3	1		-			2077		13743
1 Illings		1	 		1	1	1	1	1
Additional Work	set	-	1		<u>'</u>	<u>'</u> -	ļ	ļ	
\ \sigma	<u> </u>		 -]	 	l 	 	 -	
		ļ	ļ				ļ <u>-</u>		
			 -	 -					
Character 1 Wast	<u> </u>		 	 	 		 		
Structural Work				2102			7115	375	3455
Concrete volume	m3	373	 	2102	 		605	ļ	
Form area	m2	531	- '-	2258			. 838	532	4159
Reinforcement bar	1	19.0	ļ <u>-</u> -	99.2	-		30,4	19.0	
Pile (□ 0.4×0,4 RC)	m	1440		8658		200	1890	1260	1324E
Pile (□ 0.35x0.35 RC) Earth Work Excavation (Machine)	m	 -	120		200	200	<u> </u>	<u> </u>	
g Earth Work			<u> </u>]	<u> </u>	<u> </u>]	
	: m 3	153		222			158	123	64 b
- do - (Man Power)	m 3	718	-	2127		-	1834	1195	5874
S Fill up soll	m3	645	<u> </u>	1249			1524	1016	4434
Surplus soil	m ³	227		1100	-	-	460	302	2089
		l			<u></u>]		
Coffering Work					L				<u> </u>
Sheet pile	. m.5	1247		5182	-		2665	1648	10742
Steel weight (Strut, Waling)	t	79	-	186	L -	-	177	119	561
Temporary bridge Work									
Wooden bridge	m ²	-					252	-	252
Steel bridge	w S	-	<u> </u>	·-	_	·-	-	-	
Removal Work		1]]]	
Steel weight	+	-	 -	-	-	-	47	-	47
Reinforced concrete (Super-Structure) -do-	m3		-	261	-		-	ļ .	261
(Sub-Standard)	m3	<u> </u>	1 -	119		-		-	119
(Sub-Structure) Wet Masonry	m3		-	62		-	737		797
Wet Masonry Banking Work		<u> </u>	 	<u> </u>	<u> </u>	<u> </u>		 	
Approach road	_m 3	2947	 -	5943		-	3046	3499	15435
Protection Work	<u> </u>		<u> </u>	t	†	 	 	 	
Revetment	m ²	829	 	1042	-		629	829	3527
Temporary Work		1	 	 		 		 	<u> </u>
Staging (Wooden)	_m 2		140		200	160			500
Banking of access road	3	31>0	1125		-				423
Building of access 1000	<u>-</u>	\		<u> </u>	 -	 	 		

Table 4.5.3 WORK QUANTITY OF PROPOSED BRIDGES(3/7)

	Widas river		· · · · · · · · · · · · · · · · · · ·				T	T		
		Unit	k ^m 32,1+300	k m	k m 34.6+250	k m	k m 38,6+250	k m 40.1+50	Sub - Total	Total
			32.1+300	33.14330	54.64250	77.117211	70,012,0			
	Structural Work		ļ. <u></u>					264	1901	3083
	Povement t = 0.065 m	m _S	540	423	345	329	540	264	ļ	ļ
	_ do _ t = 0.075 m	m ²					ļ		540	541
	- do - 1 = 0.085 m	2			- <u>-</u> -		-		-	1804
	Concrete volume	m3	385	3QB	305	270	385	216	1869	4802
	Form greg	m2	1650	1435	1250	11,65	1650	932	6062	20224
s)	Reinforcement bor	t	70.0	56.0	55.0	49.0	70.0	39.2	-339.2	880.
Structure	Steel weight (Plate)	t	-	-		-		<u> </u>	-	
ţrţ	Staging	m3	- 2571	640	1208	516	2112	257	7304	21247
	Timber	m3	-		-	-			-	-
Super	Additional Work	set	1	. 1	1	1	1	1	1	1
	Structural Work									
	Concrete volume	m 3	573	667	394	375	573	296	2878	6333
•	Form orea	m2	706	922	558 ;	532	706	429	3853	8012
	Reinforcement bar	1	29.0	33.8	20.2	19.0	29.0	15.2	146.2	313.
	Pile (DO.4xO.4RC)	m	1920	1620	1260 .	640	1280	660	7560	20826
ş	Pile (0.35 x 0.35 RC)	m	-		-	-	-	-	-,	5211
to	Earth Work				-					
Structure	Excavation (Machine)	m 3	284	298	225	234	284	381	1706	2354
	- do - (Man Power)	m 3	1654	1883	877	1255	857	998	7524	13398
Sub	Fill up soll		1449	1722	845	1169	848	1113	7146	11580
	Surplus soll	m ³	489	459	256	320	293	266	2083	4172
					-					
:										
			 		-					
			1							
				l				•		
	Coffering Work					<u> </u>				
	Coffering Work		2211	2543	1406	17119	1554	1338	10781	21523
	Sheet pile	m 2	2211	2563	1406	17119	1554	1338	10781	
	Sheet plie Steel weight (Strut, Waling)	m ²	2211	2563	1406	ļ	1554	1538	10781	21523
	Sheet pile Steel weight (Strut, Waling) Temporary bridge Work	1	161	188	95	125	83	100	752	1313
	Sheet pile Steel weight (Strut, Woling) Temporary bridge Work Wooden bridge	t m²	161	188	95	125	83	100	752	
	Sheet pile Steel weight (Strut, Waling) Temporary bridge Work Wooden bridge Steel bridge	1	161	188	95	125	83	100	752	1313
	Sheet pile Steel weight (Strut, Waling) Temporary bridge Work Wooden bridge Steel bridge Removal Work	m ²	161	188	95 - -	125	155	100	752 343 -	1313 595
	Sheet pile Steel weight (Strut, Waling) Temporary bridge Work Wooden bridge Steel bridge Removal Work Steel weight	m ²	188	188	95	125	155	100	752 343 -	1313 59: -
	Sheet pile Steel weight (Strut, Waling) Temporary bridge Work Wooden bridge Steel bridge Removal Work Steel weight	t m2 m2 t m3	188		95	125	155		752 343 - , 6 141	595 - 53 402
	Sheet pile Steel weight (Strut, Woling) Temporary bridge Work Wooden bridge Steel bridge Removal Work Steel weight Reinforced concrete (Super-Structure) -do- (Sub-Structure)	t m2 m2 t m3 m3	188	188		125	83 155 - - 70		752 343 	59: - 53 402
ıer	Sheet pile Steel weight (Strut, Woling) Temporary bridge Work Wooden bridge Steel bridge Removal Work Steel weight Reinforced concrete (Super-Structure) -do- (Sub-Structure) Wet Masonry	t m2 m2 t m3	188		95	125	155		752 343 - , 6 141	595 53 402 119
ao I	Sheet pile Steel weight (Strut, Woling) Temporary bridge Work Wooden bridge Steel bridge Removal Work Steel weight Reinforced concrete (Super-Structure) -do- (Sub-Structure)	t m2 m2 t m3 m3 m3	188	188		125	83 155 - - 70 - 516	100	752 343 	1313 595 53 402 119 2346
ao I	Sheet pile Steel weight (Strut, Woling) Temporary bridge Work Wooden bridge Steel bridge Removal Work Steel weight Reinforced concrete (Super-Structure) -do- (Sub-Structure) Wet Masonry	t m2 m2 t m3 m3	188	188		125	83 155 - - 70		752 343 	595 53 402 119
ao I	Sheet pile Steel weight (Strut, Waling) Temporary bridge Work Wooden bridge Steel bridge Removal Work Steel weight Reinforced concrete (Super-Structure) -do- (Sub-Structure) Wet Masonry Banking Work	t m2 m2 t m3 m3 m3	161 188 71 1031	188	95	125	83 155 - - 70 - 516	100	752 343 	595 53 402 119
ao I	Sheet pile Steel weight (Strut, Waling) Temporary bridge Work Wooden bridge Steel bridge Removal Work Steel weight Reinforced concrete (Super-Structure) -do- (Sub-Structure) Wet Masonry Banking Work Approach road	t m2 m2 t m3 m3 m3	161 188 71 1031	188	95	125	83 155 - - 70 - 516	100	752 343 	1313 595 53 402 119 2346
Other	Sheet pile Steel weight (Strut, Waling) Temporary bridge Work Wooden bridge Steel bridge Removal Work Steel weight Reinforced concrete (Super-Structure) -do- (Sub-Structure) Wet Masonry Banking Work Approach road	t m2 m2 t m3 m3 m3	188	188	2176	6	70 	1106	752 343 	1313 595 53 402 119 2346
ao I	Sheet pile Steel weight (Strut, Waling) Temporary bridge Work Wooden bridge Steel bridge Removal Work Steel weight Reinforced concrete (Super-Structure) -do- (Sub-Structure) Wet Masonry Banking Work Approach road Protection Work Revetment	t m2 m2 t m3 m3 m3	188	188	2176	6	70 	1106	752 343 	1313 59: 53 402 119 2346

Table 4.5.3 WORK QUANTITY OF PROPOSED BRIDGES (4/7)

Diversion channel	· · · · · · · · · · · · · · · · · · ·	· wo	National	Rural	Rural	Rural	Rural		
	Unlt	Railway	Road	Road 1	Road 2	Road 3	Road 4		Tota!
Structural Work				-,,					
Pavement t = 0.065 m	m ²			-	-	126	-		126
- do - 1 = 0.075 m	m ²	-	-	235	248		318		801
- do t = 0.085 m	m2	-	368	-		-			368
Concrete volume	m3		534	190	207	97	216		1244
Form area	m 2	-	1641	748	780	634	954		4757
Deleforgement has	t	_	107.0	35.6	38.4	19.6	39.6		240.5
Steel weight (Piote) Staging	t	72.0			_		-		72.0
2 Staging	m3		654	377	384	225	509		2149
Timber	Em	_			-	-	-		-
Additional Work	set	1	1 ,	1	1	1	1		1
00			·						
Ctauctural Week									
Structural Work	_D 3		200	212	230	162	376	:	1696
Concrete volume	m2	316 421	399 542	213 286	305	213	464		2231
Form area	m-	22.2	21.7	11.1	12.0	7.3	18.8	:	93
Reinforcement bar	mi —	900	1755	930	930	690	1260		6465
PHe (I 0.4x0.4RC)									
Execution (Machine) -do- (Man Power)	m3		372	262	222	. 176	213		1245
Excavation (Machine)	m3						807		3265
		610	726	413	403	306 375	751		3322
q · · · · · · · · · · · · · · · · · ·		441	789 309	506 170	460 165	108	268		1188
Surplus soil	m3	168	309	170	103	100	200		
		<u> </u>			·				
				·					
Coffering Work				· · · · · · · · · · · · · · · · · · ·	ļ				
Plank	m2	396	-	-	-		-		396
Sheet pile	m ²	514	989	563	553	420	1106	·	4165
Steel weight (Strut, Waling)	ł	79	73	41	40	31	81		345
Temporary bridge Work									ļ
Wooden bridge	m2								
Stael bridge	m 2						<u> </u>		
Removal Work		<u> </u>					ļ		ļ
Steel weight	t								
Reinforced concrete (Super-Structure) -do-	m 3		-		-		-		
(Sub - Structure)	m3	-	- :	-		-	-	 	-
	m3			-		-	<u> </u>		-
Wet Masonry Banking Work	<u> </u>			· · · · · · · · · · · · · · · · · · ·					16.200
Approach road	m3	<u> </u>	4013	2851	3302	2631	3412		16209
Protection Work		<u> </u>							
Revetment	m ²	1010	1162	1002	899	829	899		5801
Temporary Work					<u></u>				
Staging (Steel)	m2	315	-	_					315
Banking of access road	m ³	3110	1512	-		-			4622
banking of access road		7,10	1,7,12						

Table 4.5.3 WORK QUANTITY OF PROPOSED BRIDGES (5/7)

U	pper and lower Ulo			····	<u> </u>	·	1		ı	r
		Unit	k m 16.0+300	k in	k in 18,5+ 50	k m 19.5+250	Near to k m 3.0 + 0			Total
	Structural Work	:			I					
	Payement t = 0.065 m	m ²	_	-	156	159	-			315
	. do . t = 0.075 m	m ²	-		-	-	155			155
	_ do _ t = 0.085 m	. m2	364	445	-	-				009
	Concrete volume	m3	189	448	98	99	78			912
		m2	·	 	501	510	400	~····		4174
	Form area		936	1827 84,9	18.0	18.6	14.0			169,4
<u>5</u>	Reinforcement bur	<u>t</u>	33.9							_
Structure	Steel weight (Plate)	t m3	ļ	l			276			2341
1	Staging		525	927	291	322	276			-
	Timber	m3								ļ
Super	Additional Work	841	1.	1	1	1	1			11
"									<u> </u>	
	Structural Work									
	Concrete volume	m3	438	674	219	219	230			1780
1	Form area	m2	530	802	327	327	313			2299
	Reinforcement bor	1	22.6	35,6	11.4	11.4	12.3			93.3
	Pile (0.4x0.4 RC)	m m	960	1620	460	460	990			4490
	Earth Work									
Ē	Excavation (Machine)	m3	420	358	247	247	189			1461
Structure		_m 3	952	1200	605	605	379			3741
	-do- (Mon Power)		<u> </u>				391			3840
Sub-	Fill up soll	m3	1008	1095	673	673 178	177			1360
ő	Surplus soil	m3	364	463	178	170				
			ļ							
				<u></u>						
			<u> </u>							
			<u> </u>						 	
	Coffering Work									-
	Sheet pile	m ²	1360	1650	832	832	528			5202
Ì	Steel weight (Strut, Waling)	t	95	120	60	60	38			373
ł	Temporary bridge Work								<u></u>	<u> </u>
}	Wooden bridge	m ²	-	_	49				<u> </u>	49
ŀ	Steel bridge	m ²	150	167		- :				317
ł	Removal Work				-					ļ <u>.</u>
ł	Steel weight	t	-	-	4	-	-			4
}	Reinforced concrete.	m3	99	78	- 6	. ~	-			183
	Reinforced concrete (Super-Structure) -do-	_m 3	15	17	-	-	-			32
	(Sub-Structure) Wet Mosonry	m3	1012	238	238		-			1488
Other		111 -	<u></u> -							
ő	Banking Work	m3	25.12	4139	1919	1919	3051		1	13547
	Approach road	10-	2519	4139	1913					
	Protection Work	m ²							 	4188
	Revetment	m.e	844	989	786	786	783		 	4100
		<u> </u>	-l	 		 	ļ	_	 	
			<u> </u>				 			
			 	ļ		ļ				
- 1					<u> </u>	<u> </u>	<u></u>	L	<u> </u>	l

Table 4.5.3 WORK QUANTITY OF PROPOSED BRIDGES (6/7)

	Kedungsoko river		·	, 					r	ſ
		Unit	k in 3.5 + 200	k m 35.0+220	Near to k	k 7.0 +250			l	Total
		31111	Highway	Railway	5.0 + 0				\ }	<u></u>
	Structurel Work			<u> </u>						
	Pavement t = 0.065 m	m ²	-	~	324	324				648
	- do- t = 0.075 m	m ²	-			-				-
	do t = 0.085 m	m ²	560					·		560
	Concrete volume	m3	546	-	263	- 263				1072
	Form area	m2	1835	-	1140	1140				4115
œ	Reinforcement bar	t	100.8		. 19.5	47.5				195.8
Structure	Steel weight (Plate)	t	-	***						
5	Staging	m3	1703		762	1049				3514
Š	Timber	m3	-	-	. –					-
Ď.	Additional Work	set	1		1	1				1
Super		•					_			
								<u> </u>		
									<u> </u> ;	
									<u> </u>	
	Structural Work]			
	Concrete volume	m3	886		350	379				1615
	Form Grea	m2	1093		488	425				2005
	Reinforcement bor	1	46.3		17.8	19.5				83.6
	Pile (□ 0.4x0.4RC)	m	3150		1260	1260				5670
5	Earth Work		3130		1.00	, ,				
₹	Excavation (Machine)	m3	662	-	123	87				872
Structure	-do- (Man Power)	m3	1358		1013	741				3112
1	Fill up soll	m3	1318	_	862	601				2781
Sub	Surplus soil	m3	701		274	227				1202
0,	Solpius voii									
	~~~~~~									
										[
	Coffering Work								·	
	Sheet pile	w _S	2195		1466	1270				4931
	Steet weight (Strut, Waling)	1	145		101	74				320
	Temporary bridge Work		143							
	Wooden bridge	m ²				-				,-
	Steel bridge	m ²	305		- :			·	<u> </u>	305
	Removal Work	107	303							i
i	Steel weight	t	65			-				65
	Reinforced concrete.	m3	{			<u>-</u>			1	86
ļ	Reinforced concrete (Super-Structure) -do-		86	<del>-</del> -					<del>                                     </del>	33
<b>L</b> .	(Sub - Structure)	_m 3	473		<del></del>	,				473
Other	Wet Mosonry	1110	1/3					\		<u> </u>
ŏ	Banking Work	m 3	3436		3499	4279		· · · · · · · · · · · · · · · · · · ·		11234
	Approach road					<del></del>			<b></b>	
	Protection Work	m _S	ļ					\		2656
	Revetment	m ³	728	482 391	723	723			ļ	391
į	Riprap ( t = 0.50 m )	ш.	-		-	<del></del>  -	<del></del>	<u> </u>	<del> </del>	
	Temporary Work	m ²	ļ <u>.</u>	300	<del></del>				<del>                                     </del>	300
	Staging (Wooden)	m ²	-	300		-			1	2419
	Banking of access road	m.	1850	569		-		L _ — — —	1	1

Table 4.5.3 WORK QUANTITY OF PROPOSED BRIDGES (7/7)

1	Kuncir river		<u>.</u>		T	T			·····	r
		Unit	k m	k m	k m	х ф	k m	k m	x a	Total
		Unit	1.0 -50	2.5 +120	4.0 + 250	5.5 + 0	7.0 + 0	9.5 +150	10.5 + 0	
	Structural Work									
	Pavement t = 0.065 m	m2	156		-	-	-	-		156
	_ do _ 1 = 0,075 m	m2	-	-	210	210		-	-	420
	dot ≈ 0.085 m	m ²	-		-	-	312	294	294	900
	Concrete volume	m3	172		1,43	143	218	191	191	1058
		m 2	<del> </del>	l		634	896	830	830	4424
	Form area		600	<u> </u>	634	26,0	40.0	34,6	34.6	192.2
e e	Reinforcement bar	t	31.0	<del>-</del>	26.0	20.0	-			
Structure	Steel weight (Plate)	t								445.4
ב ג	Staging	m3	449		683	706	555	986	1075	4454
1 1	Timber	m3	-	8.4						8.1
Ö.	Additional Work	set	1	11		1	1	1	1	
Super						· ·				
				l !						
	Structural Work	,,								
	Concrete volume		137	-	208	208	288	279	279	1399
		m2	{ <b></b>		286	286	368	359	359	1614
	Form Grea	†	214		11.1	11.1	15.7	14.8	14.8	74.8
	Reinforcement bar		7.3		600	600	840	840	840	4100
	Pile (□ 0.4x0.4RC)	m	380							
Structure	Earth Work									1106
3	Excavation (Machine)	m 3	130		160	360	234	278	224	1186
St	-do- (Mon Power)	_m 3	144		174	142	426	198	142	1226
1	Fill up soil	m3	195		220	193	457	318	225	1226
gns	Surpius soli	₂₀ 3	78		115	109	203	158	141	804
										<u> </u>
			L		·				:	
							`		<u> </u>	
	Coffering Work	<del></del>								
	Sheet pile	m ²	208		374	341	612	445	389	2369
	Steel weight (Strut, Waling)	1	18	-	22	19	43	26	-	128
	Temporary bridge Work					:				
			22		58	-	-	-		80
	Wooden bridge	m 2	<del> </del>	ļ			_	114	123	237
	Steel bridge			<del></del> -			<del></del>		[	
	Removal Work		<del>                                     </del>		_		-		32	32
	Steel weight	t m3	ļ- <u>-</u>		8	-		77	43	128
	Reinforced concrete (Super-Structure) -do-				<u> </u>			35	335	360
· [	(Sub - Structure)	m3						25 204	22	374
- E	Wet Masonry	m3	50	22	76		<del> </del>	204		
Other	Bankiny Work							ļ		<u> </u>
U	Approach road	m3	3310		4161	4161	4375	3818	3818	23643
	Protection Work					<u> </u>			-	<u> </u>
	Revetment	m2	701		760	760	819	819	819	4678
								·		
Ì							·			ļ
										ļ
			1					]	<u></u>	L
l				L	L	L	<del></del>	· · · · · · · · · · · · · · · · · · ·		

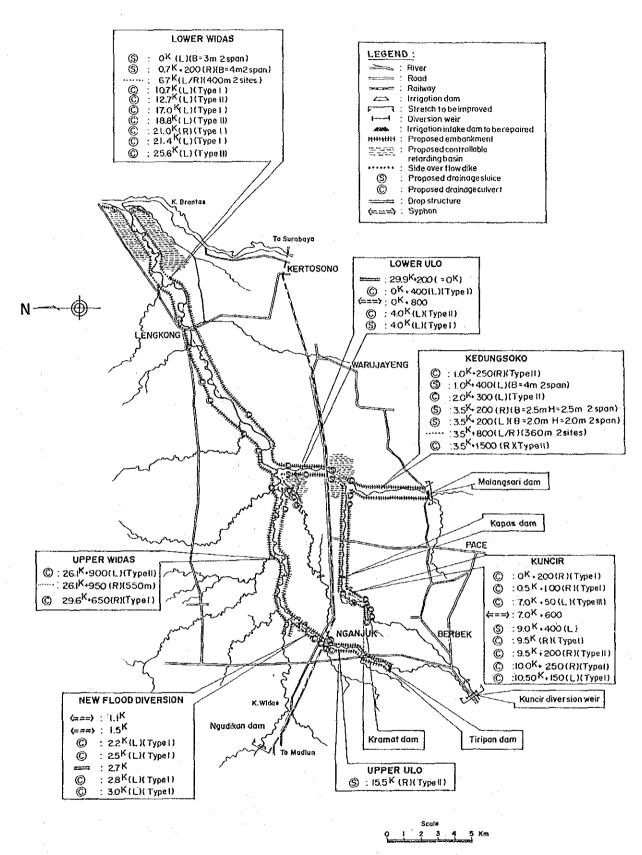



Fig. 4.5.1 OUTLINE OF PROPOSED STRUCTURES OF COMPREHENSIVE PLAN

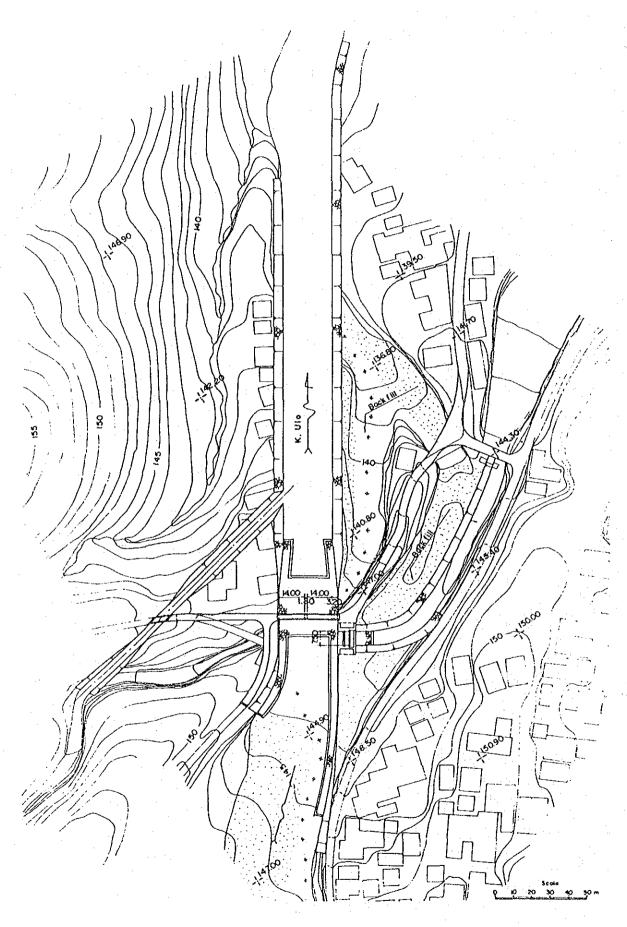



Fig. 4.5.2 PROPOSED DIVERSION WEIR AT UPPER ULO (1/2)

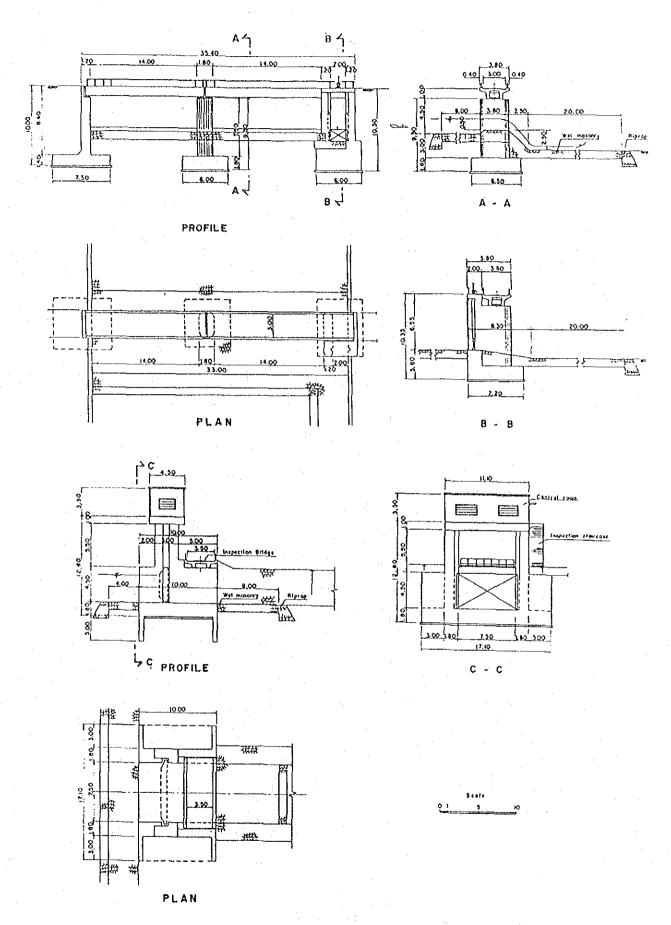
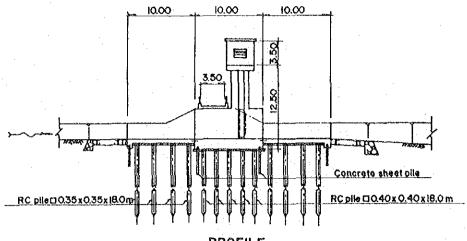
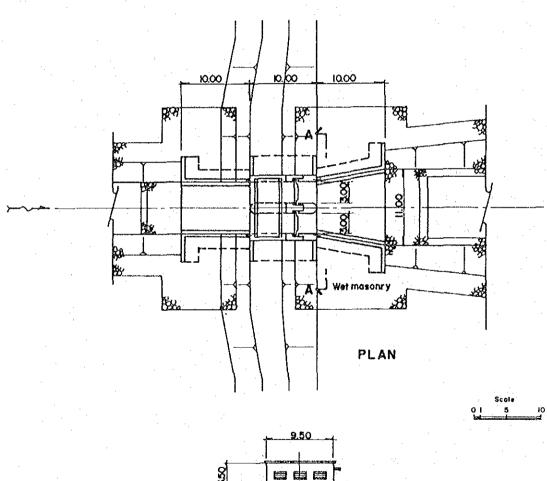
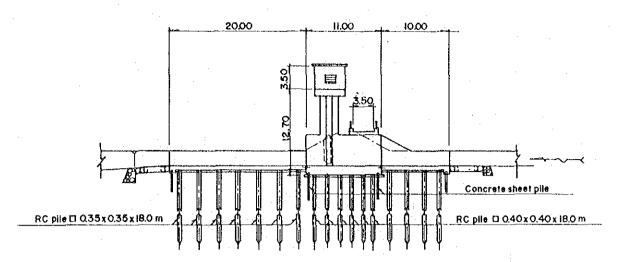





Fig. 4.5.2 PROPOSED DIVERSION WEIR AT UPPER ULO (2/2)




PROFILE



9.50 88 82 21 22 32 32 32

SECTION A - A

Fig. 4.5.3 PROPOSED DRAINAGE SLUICE IN WIDAS RETARDING BASIN (LEFT SIDE) (1/6)





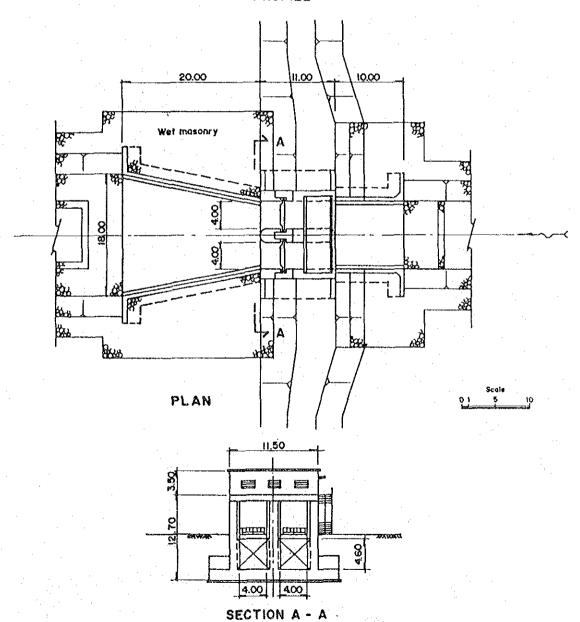
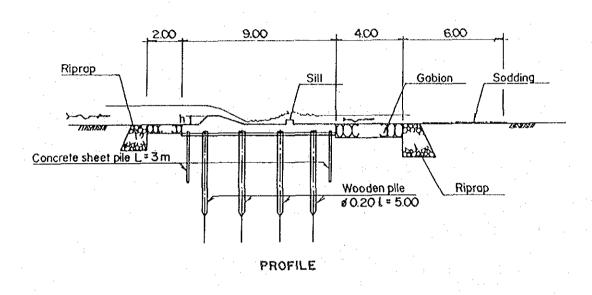
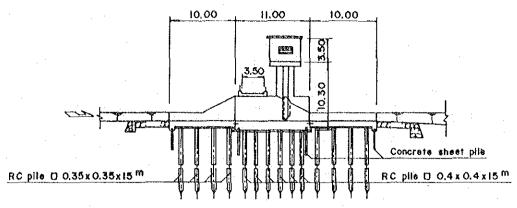
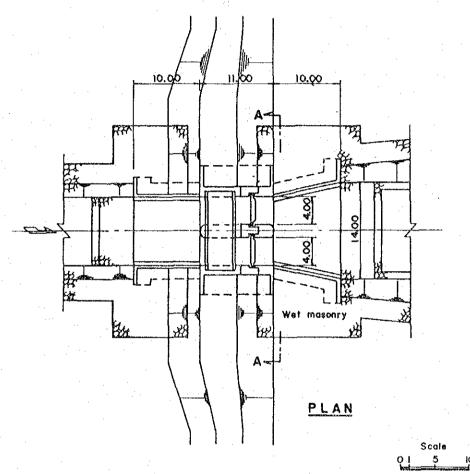





Fig. 4.5.3 PROPOSED DRAINAGE SLUICE IN WIDAS RETARDING BASIN (RIGHT SIDE) (2/6)




Retarding basin	Height of side overflow dike, h	Overflow depth
Widas	0.5 m	0.5 m
Vlo	0.2 m	0.5 m
Kedungsoko	0.4 m	0.5 m

FIg. 4.5.3 STANDARD DESIGN OF SIDE OVERFLOW DIKE (3/6)



PROFILE



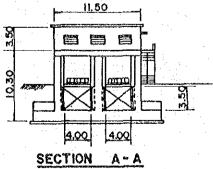
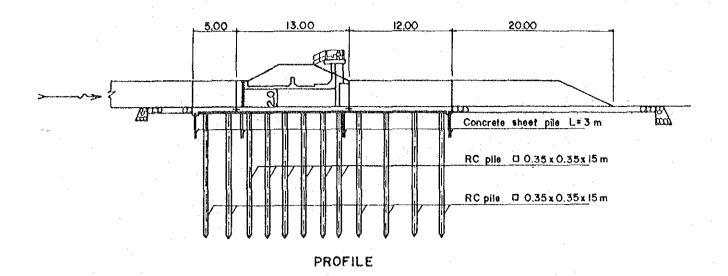




Fig. 4.5.3 PROPOSED DRAINAGE SLUICE IN ULO RETARDING BASIN (4/6)



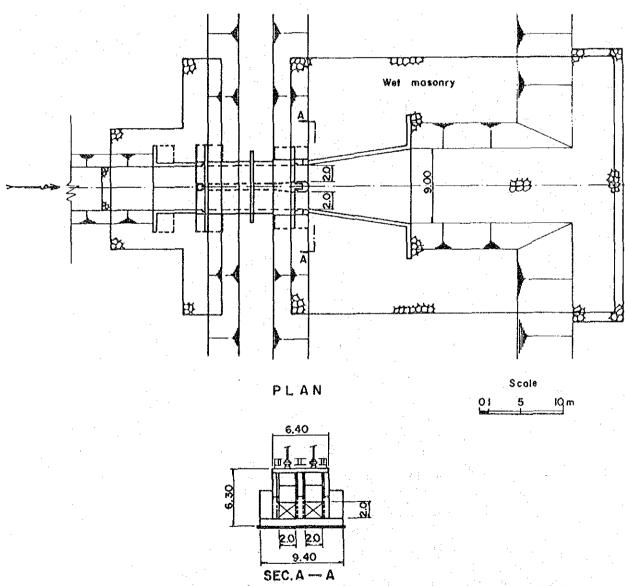
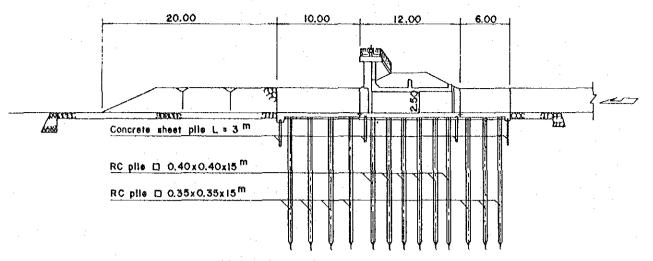
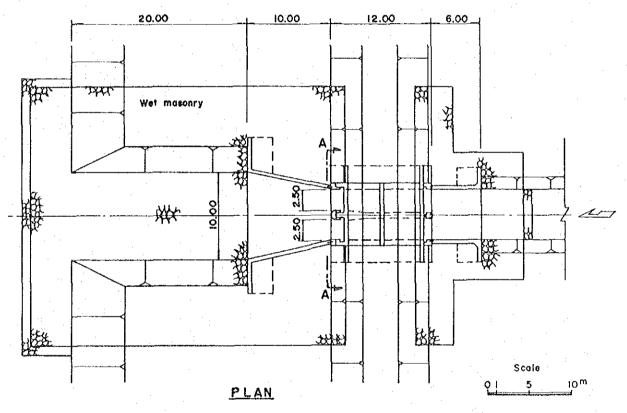
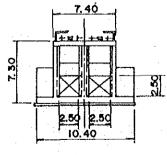






Fig. 4.5.3 PROPOSED DRAINAGE SLUICE IN KEDUNGSOKO RETARDING BASIN (LEFT SIDE) (5/6)



#### PROFILE





SEC. A - A

Fig. 4.5.3 PROPOSED DRAINAGE SLUICE IN KEDUNGSOKO RETARDING BASIN ( RIGHT SIDE ) ( 6/6)

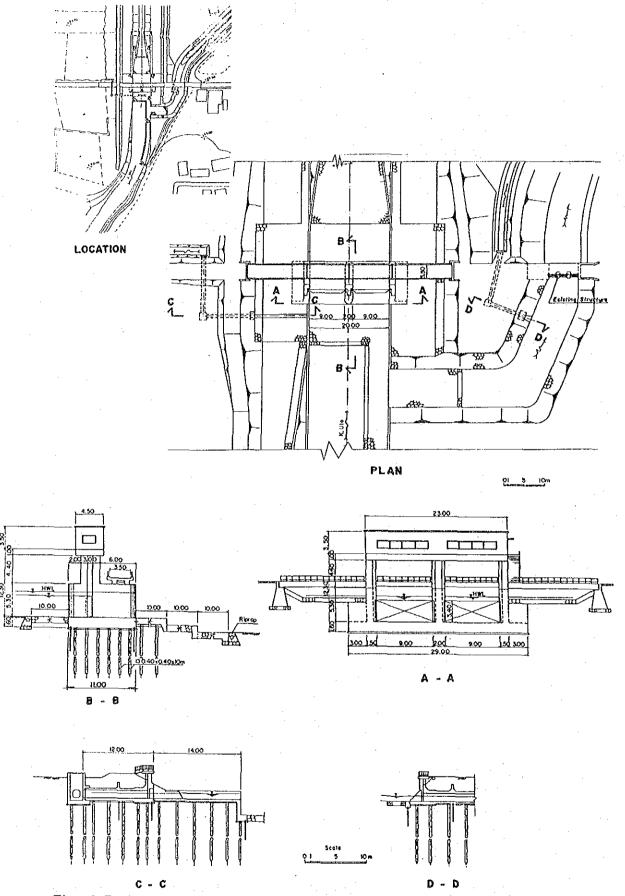



Fig. 4.5.4 PROPOSED TIRIPAN IRRIGATION HEAD WORKS (1/4)



Fig. 4.5.4 PROPOSED MALANGSARI IRRIGATION HEAD WORKS (2/4)

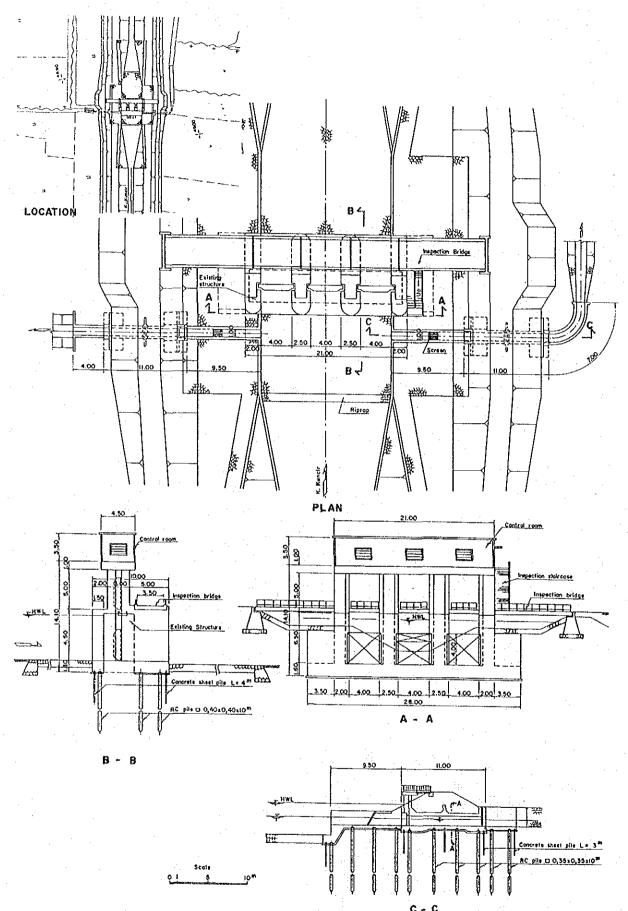



Fig. 4.5.4 PROPOSED KAPAS IRRIGATION HEAD WORKS (3/4)

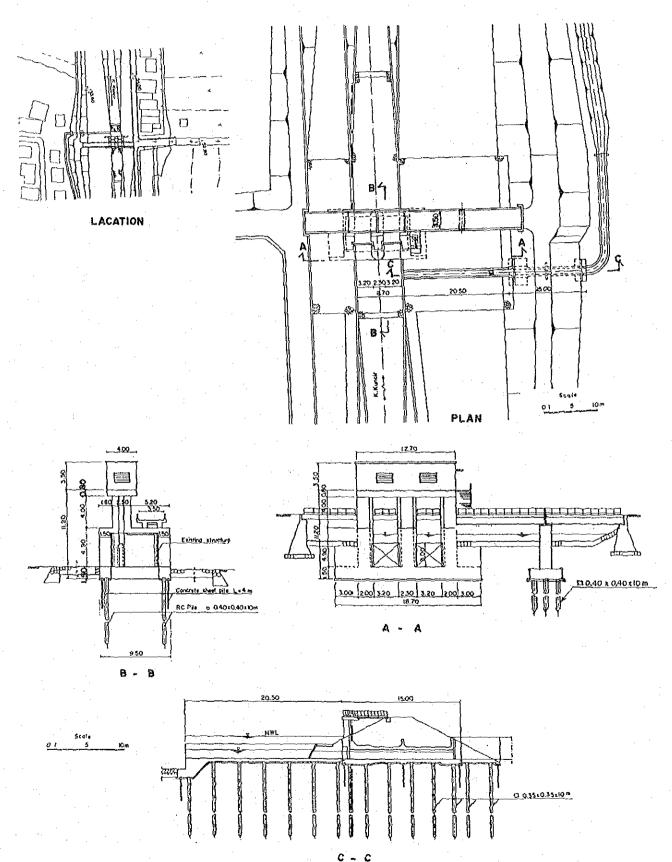



Fig. 4.5.4 PROPOSED KRAMAT (TANJUNG) IRRIGATION HEAD WORKS (4/4)

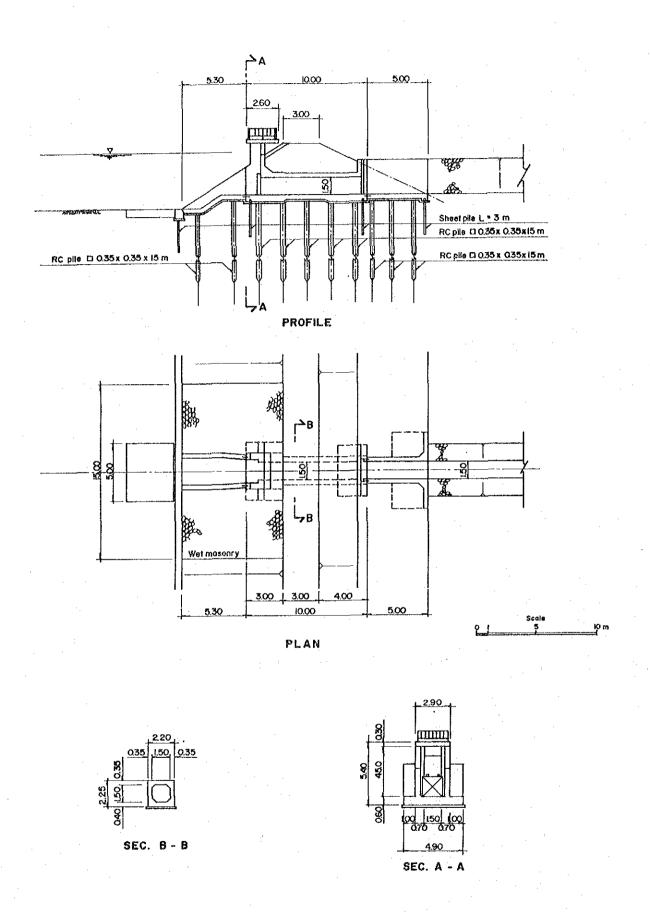



Fig. 4.5.5 STANDARD DESIGN OF DRAINAGE CULVERT TYPE 1 (1/3)

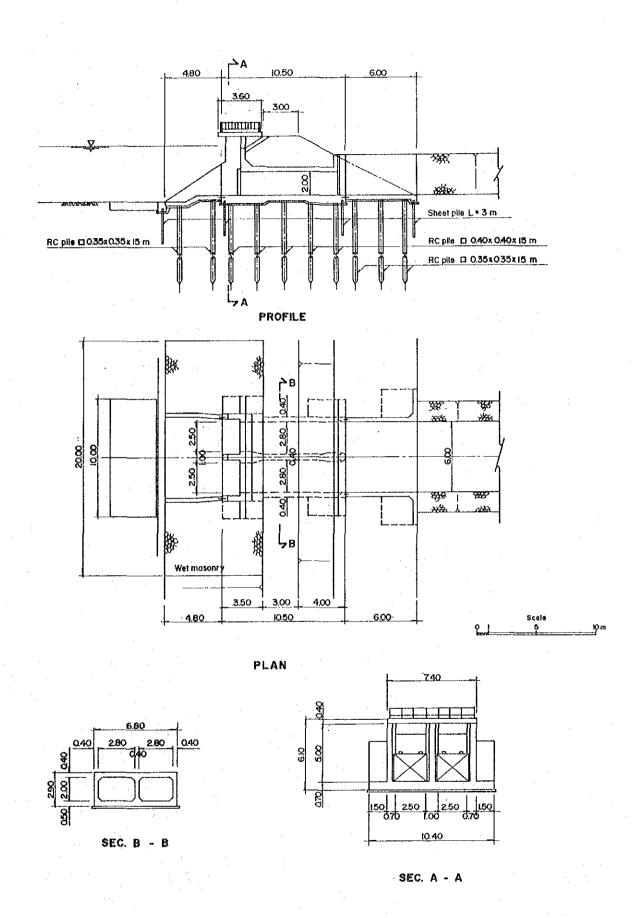



Fig. 4.5.5 STANDARD DESIGN OF DRAINAGE CULVERT TYPE II (2/3)

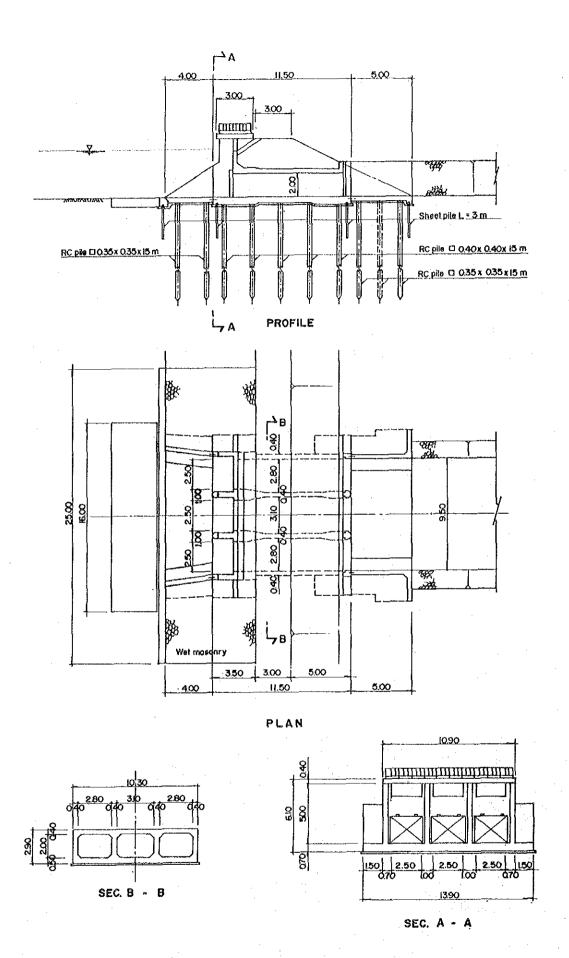
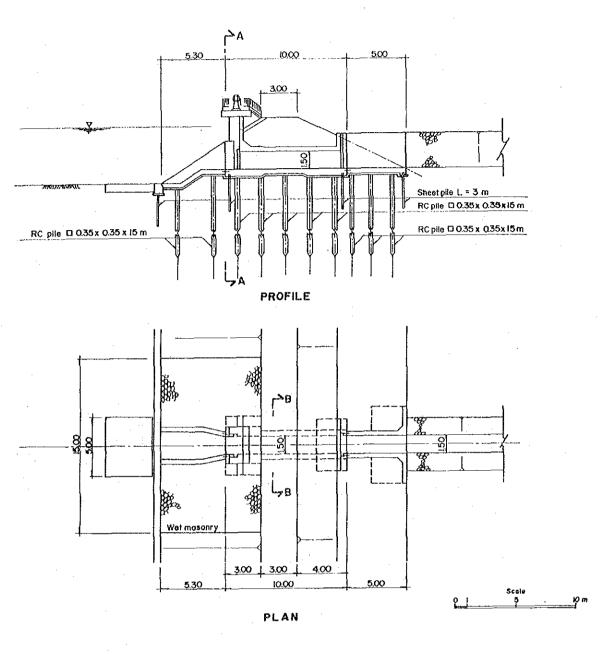
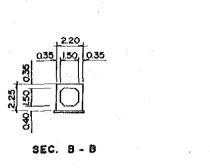





Fig. 4.5.5 STANDARD DESIGN OF DRAINAGE CULVERT TYPE III (3/3)





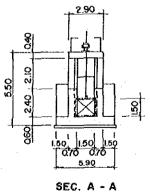



Fig. 4.5.6 STANDARD DESIGN OF INTAKE SLUICE TYPE I (1/2)

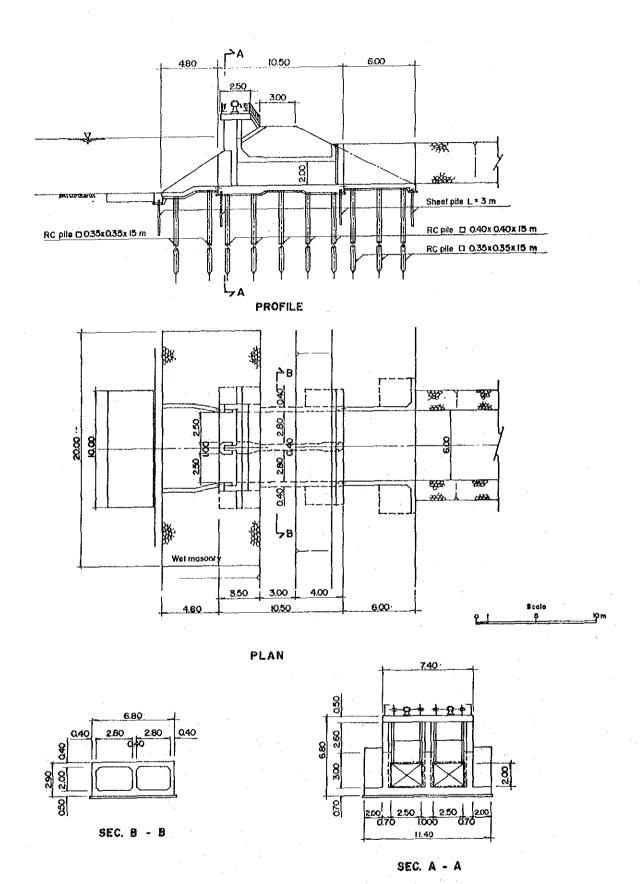
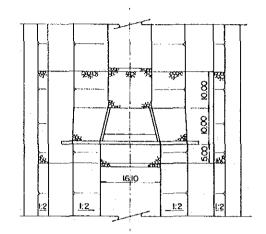
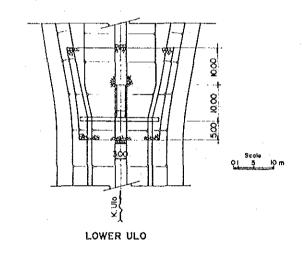
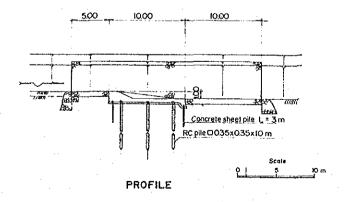
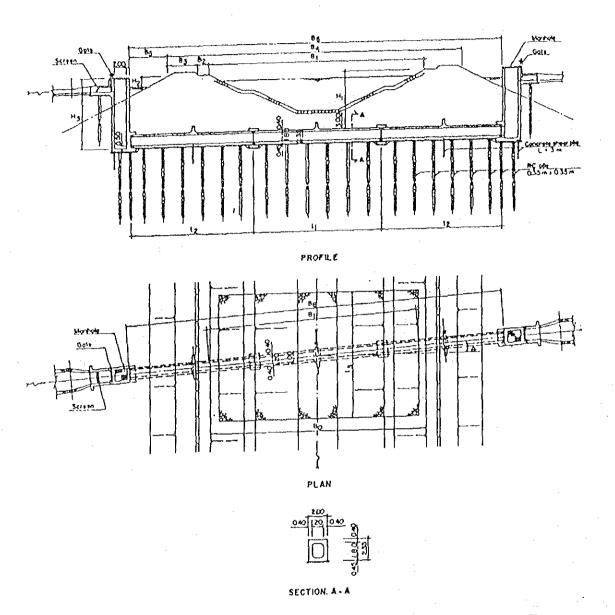




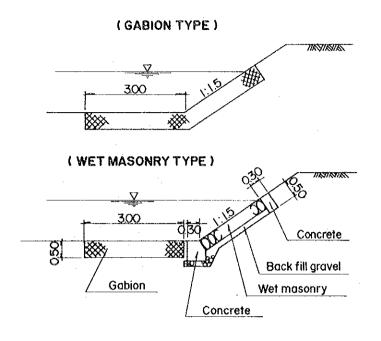

Fig. 4.5.6 STANDARD DESIGN OF INTAKE SLUICE TYPE II (2/2)



#### NEW DIVERSION CHANNEL





Fig. 4.5.7 STANDARD DESIGN OF DROP STRUCTURE

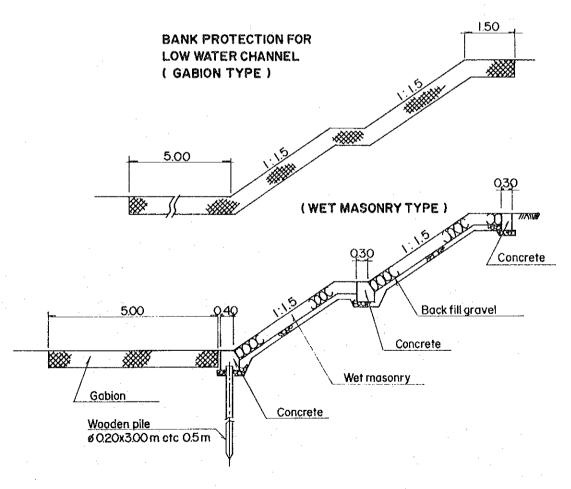
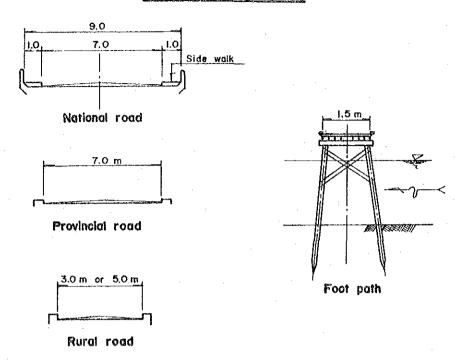


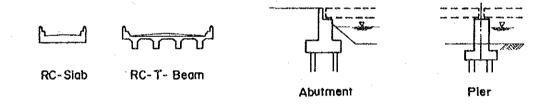
		80	ø	е,	0,2	83	84	85	Bg
Lecon		40 m	27*	44 89 m	3.03m	6.17 N	67.3 m	224	768 0
New Diversion thannel		25	27	28.06		449	370	7.18	51.4
Lower US#		40	20	42.57		3.19	490	6.01	62.5
Kunch	·	1.0	L.*		<u> </u>				
H.	н.	нз		1,	12	13	Pila lengih	Soc 4	Remorks
	Q5 M	11.70		240 m	240 m	40 m	tO m	11552	2 Sil##
60 m		10.2		170	17.2	35	10	11223	
4.5	1.5			220	203	35	10	10642	
46	i 4	10.5	o	240			·	L	

Fig. 4.5.8 STANDARD DESIGN OF SYPHON

# BANK PROTECTION FOR HIGH WATER CHANNEL





Fig. 4.5.9 STANDARD DESIGN OF BANK PROTECTION

### Effective bridge width



#### Cross-section of super structure

## Type of sub-structure



# Relationship between bridge length and river width

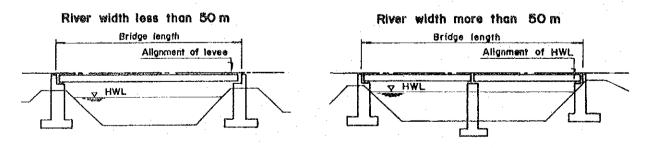



Fig. 4.5.10 CLASSIFICATION OF BRIDGES TO BE PLANNED

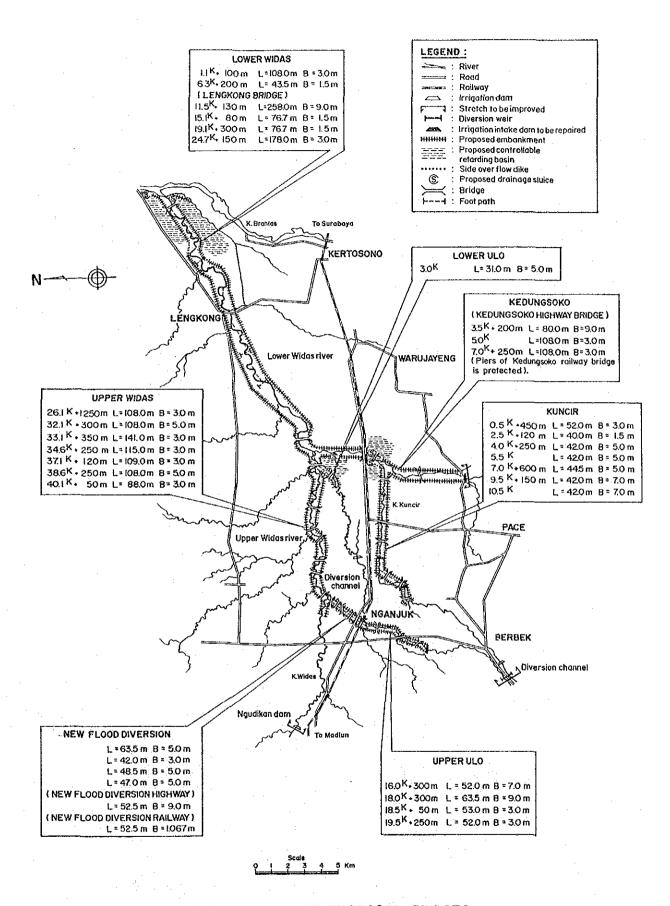
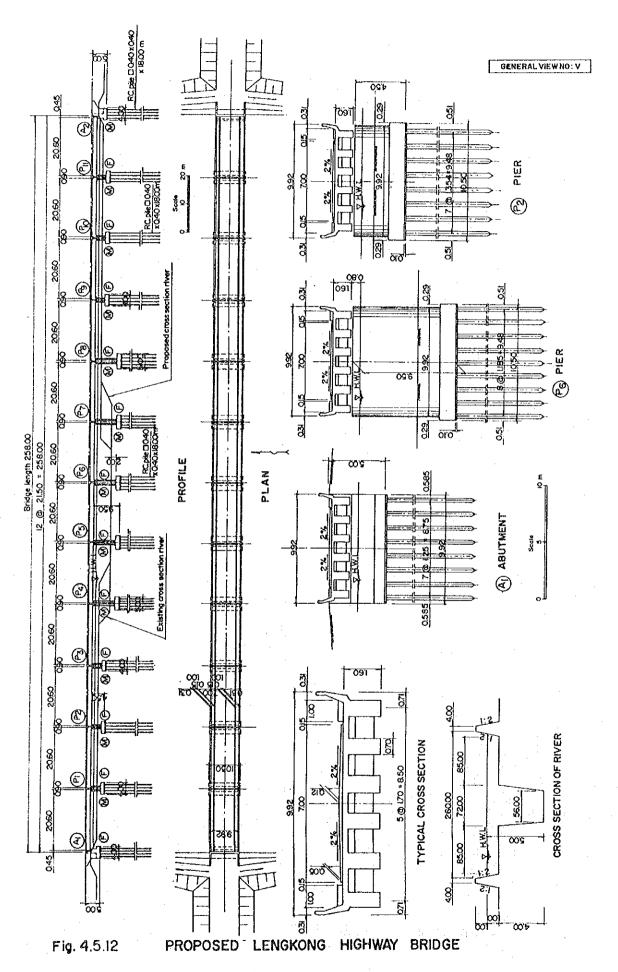




Fig. 4.5.II OUTLINE OF PROPOSED BRIDGES OF COMPREHENSIVE PLAN



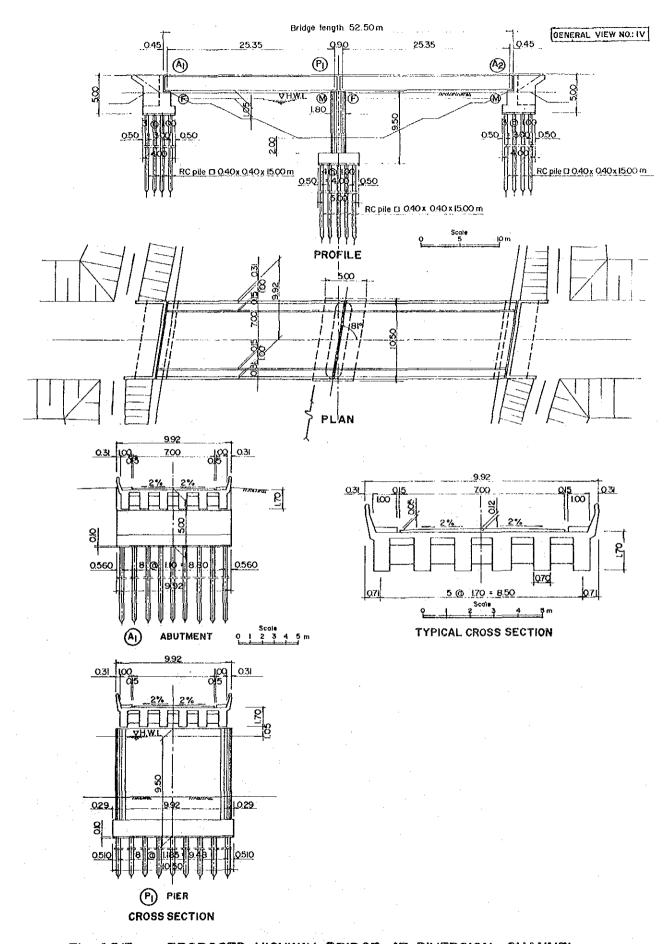
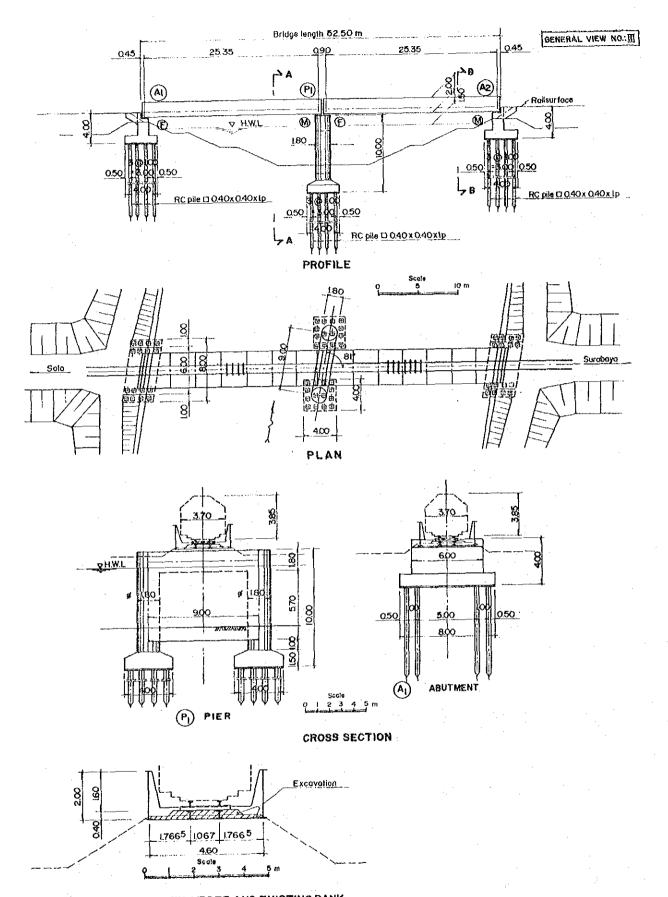




Fig. 4.5.13 PROPOSED HIGHWAY BRIDGE AT DIVERSION CHANNEL



RELATION BETWEEN GIRDER AND EXISTING BANK

Fig. 4.5.14 PROPOSED RAILWAY BRIDGE AT DIVERSION CHANNEL

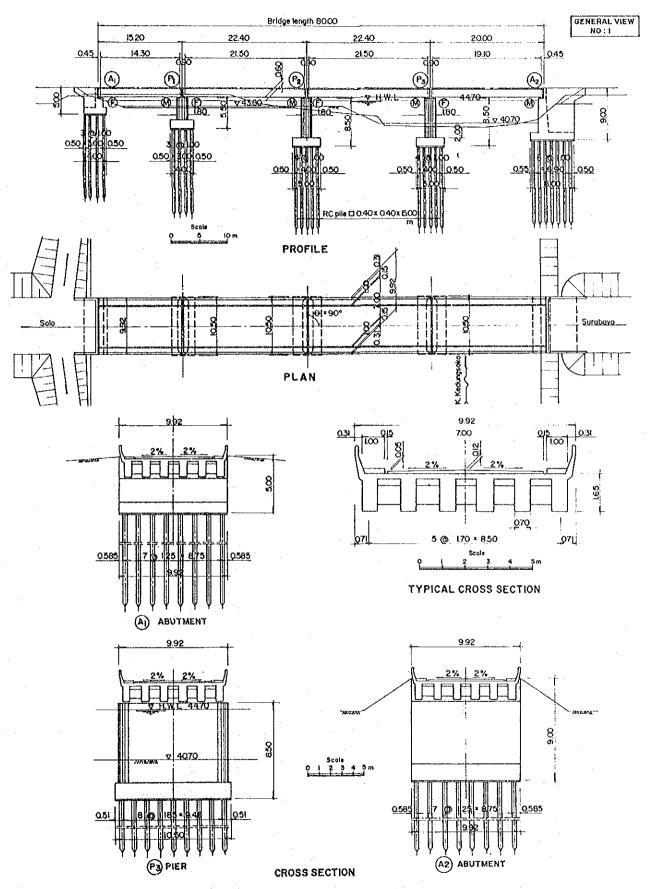
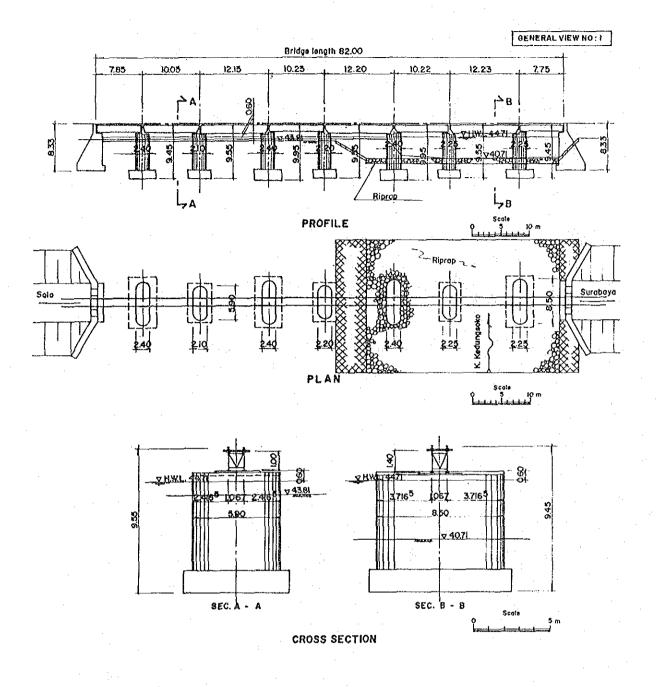




Fig. 4.5.15 PROPOSED KEDUNGSOKO HIGHWAY BRIDGE



Note: Base structure is based on data collected at PJKA office and data obtained from Warujayeng Project.

Fig. 4.5.16 PIER PROTECTION OF EXISTING KEDUNGSOKO RAILWAY BRIDGE

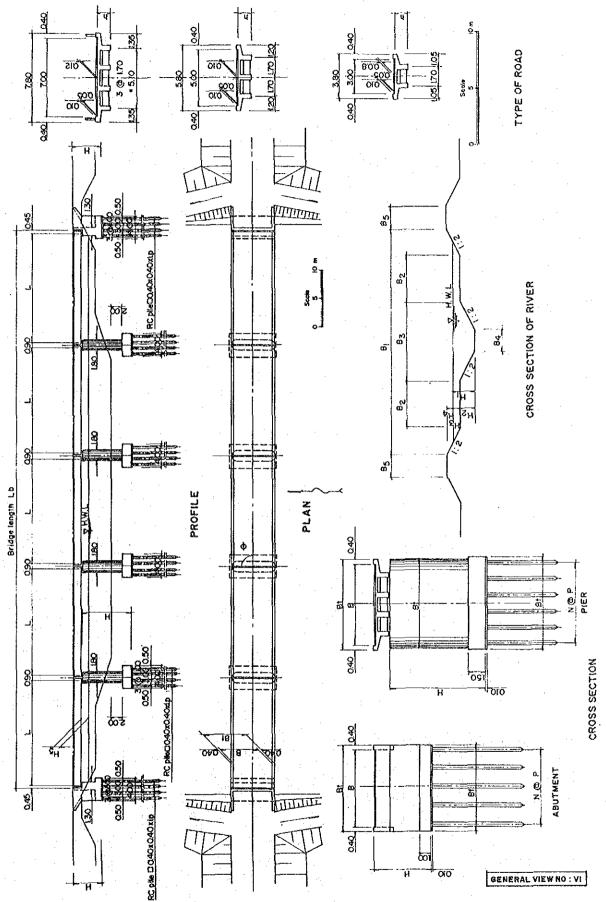



Fig. 4.5.17 STANDARD DESIGN OF BRIDGE (1/4)

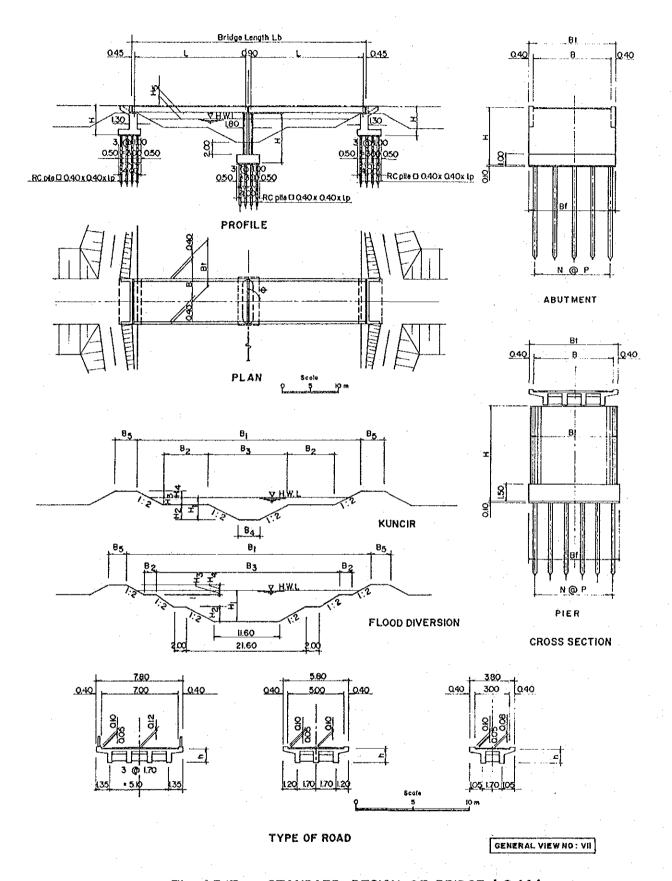



Fig. 4.5.17 STANDARD DESIGN OF BRIDGE (2/4)

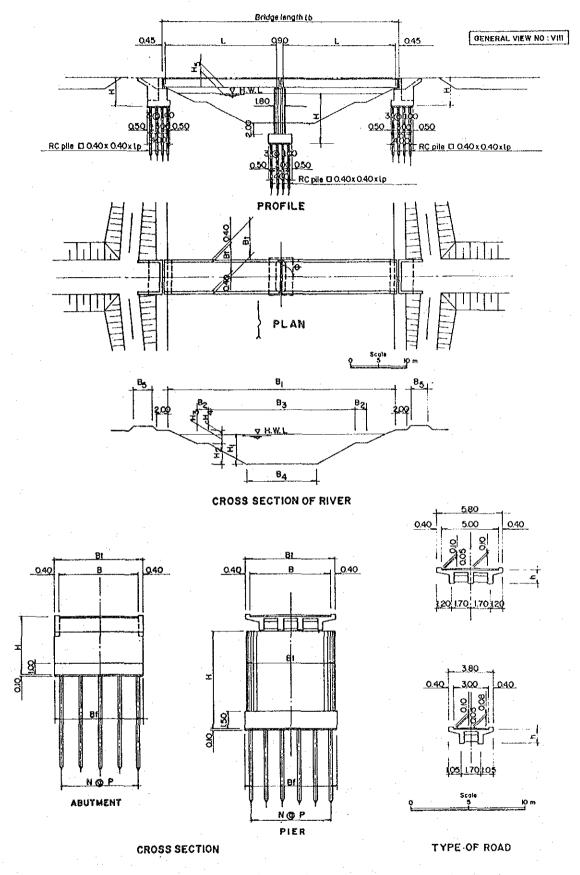



Fig. 4.5.17 STANDARD DESIGN OF BRIDGE (3/4)

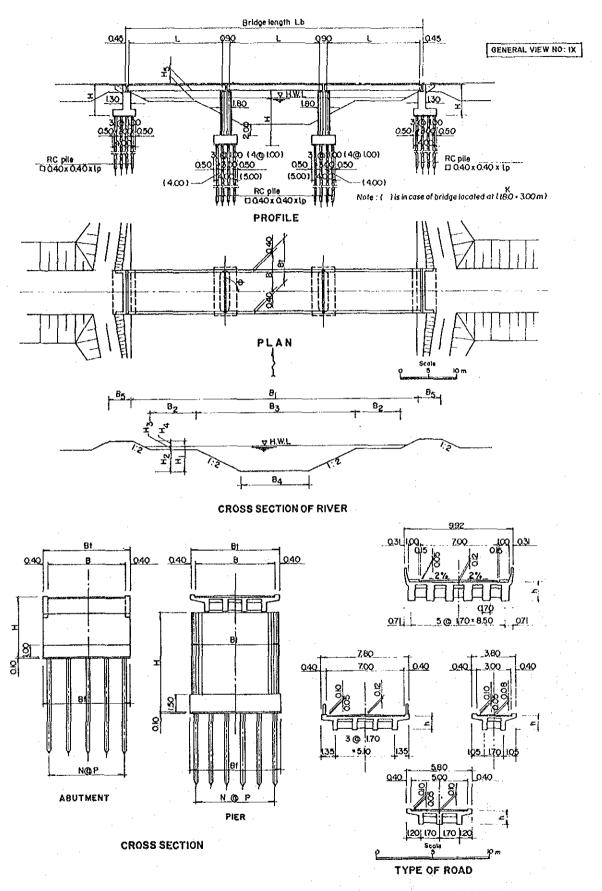



FIg. 4.5.17 STANDARD DESIGN OF BRIDGE (4/4)

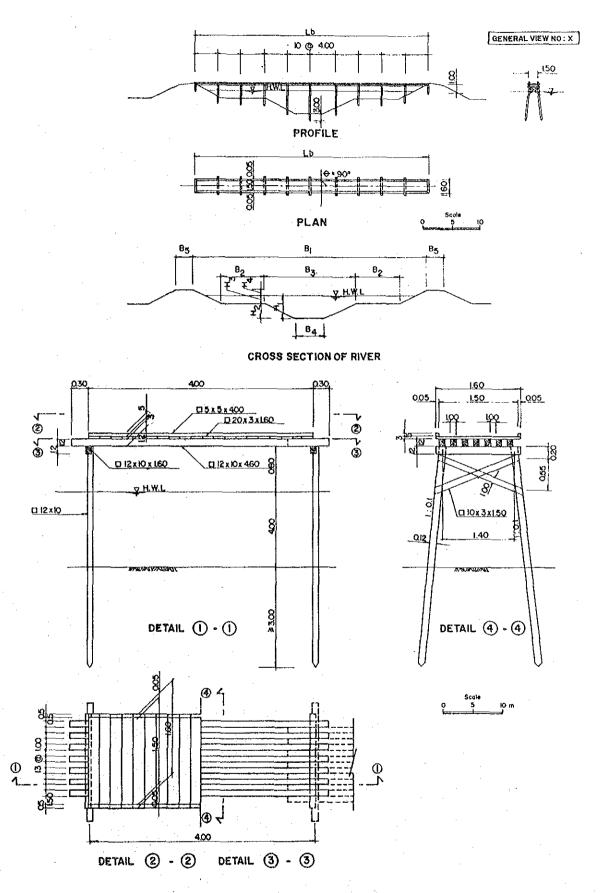



Fig. 4.5.18 STANDARD DESIGN OF FOOT PATH (1/2)

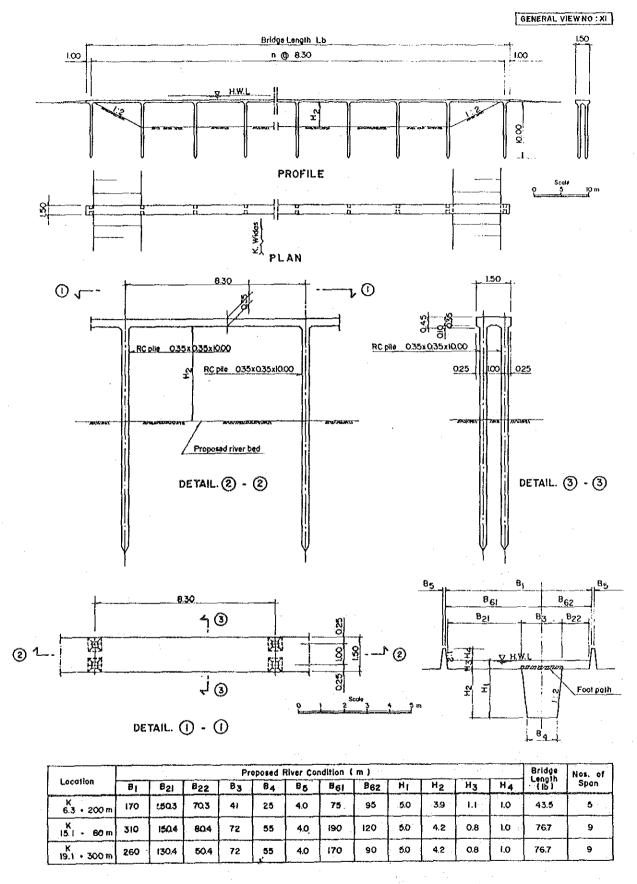



Fig. 4.5.18 STANDARD DESIGN OF FOOT PATH (2/2)

4.6 List of Data

Number Name of	Data		Author	Date of Issue
River cross-	section wit	h l km in	terval	and the state of t
- Ngrempoh	: Surve	yed in 19	85 BRBDEO	
- Jaan	:	do	do	
- Tributary	:	do	đo	
- Tretes	:	do	do	
- Ngrembek	:	do	do	
- Tributary	:	do	do	
- Plangkeng	:	do	do	
- Wotrangkul	:	do	do	
- Secong	:	do	do	
- Winong	:	đo	do	•
- Gonggang-M	alang :	do	do	
Inundation map for re Update project cost for Waru-Turi project Sketch of irrigation - Kapas - Kramat - Kedunggerit - Kuncir diversi	estimate load works	Waru	st Java Turi Project U East Java do do do	Oct. 1985
Construction drawing  - 8 provincial  - Lengkong brid  - K.Soko bridge  - 2 railway bri  Proposed irrigation c	bridges ge dges	B B	inamarga Nganjuk inamarga, Nganju do JKA Madiun	
around near diversion	•		EJIP	1985
Operation diagram of connect Solo and Sura		85 P	JKA Madiun	1984
Classification of roa Kabupaten Nganjuk	i in	Р	U East Java	
Contour map in retard (rought contour; 1/25		В	RBDEO	

ANNEX - 5

FLOOD DAMAGE

# ANNEX - 5 FLOOD DAMAGE

5.	Analysis of Damageable Property Value	5.1
5.1	Unit Value of Crops	5.1
5.2	Unit Value of Indoor Movables	5.7
	LIST OF TABLES	
	BIST OF TABLES	
*		
5.3.1	FLOOD HYDROGRAPH FOR DAMAGE ESTIMATED (1/4 - 4/4)	5.14
5.3.2	DISCHARGE AND OVERFLOW VOLUME IN MCM (1/5 - 5/5)	5.18
5.3.3	INUNDATION AREA, DEPTH DURATION (1/8 ~ 8/8)	5.23
5.3.4	PROBABLE FLOOD DAMAGE (1/8 - 8/8)	5.31
5.3.5	AVERAGE ANNUAL FLOOD DAMAGE	5.39
5.3.6	PROBABLE FLOOD DAMAGE IN THE FUTURE (1/13 - 13/13)	5.40
	LIST OF FIGURES	
5.1.1	KEDUNGSOKO RETARDING BASIN (1/3 - 3/3)	5.53
5.1.2	WIDAS RETARDING BASIN (1/2 - 2/2)	5.56
5.1.3	WIDAS SOUTH (1/5 - 5/5)	5.58
5.1.4	WIDAS EXTENSION (1/5 - 5/5)	5.63
5.1.5	ULO RETARDING BASIN (1/3 - 3/3)	5.68
5.1.6	WARUJAYENG (1/5 - 5/5)	5.71
5.1.7	widas north (1/5 - 5/5)	5.76
5.3.1	DISTRIBUTION OF RESIDENTIAL AREA IN FLOOD PLAIN.	5.81

# 5. Analysis of Damageable Property Value

Since the summary of property value is presented in Main Report, this chapter explains the detailed procedures which are not clarified in main report. The explanation concerning Figures and Tables attached to main report is excluded in this chapter.

### 5.1 Unit Value of Crops

Since agricultural conditions are different by areas within the Widas river basin in terms of cropping pattern, unit yield and cropping intensity, farm land is classified into the following area.

- Ulo Retarding Basin
- Widas Retarding Basin
- Kedungsuko Retarding Basin
- Widas North
- Widas South
- Widas Extension Area.

For assessing unit value of crops, the selected crops are as follows.

- Paddy, Maize, and Soybean

The damageable value of crops specified above is calculated with te following parameters.

- Unit yield
- Cropping pattern
- Planted area
  - Seasonal frequency of floods
  - Economic prices of crops
  - Production cost

Having discussed the procedures taken in the calculation of unit value of crops, several parameters mentioned above are examined in along with area classification.

### (1) Unit yield

- Ulo, Widas and Kedungsuko Retarding Basin

Unit yield of selected crops is based on that in desa related to respective retarding basin. Data relating to crop yield is collected from Kecamatan office.

# - Widas South

Unit yield of crops is based on that in Kec. Nganjuk since flood plain almost covers that area.

#### - Widas North

Crop yield is derived from that in Kec. Rejoso because north-west part of flood plain covers Kec. Rejoso.

## - Warujayeng Area

Crop yield is derived from the average yield among Kecamatan relating Warujayeng area since flood plain covers those areas in the north-south direction.

## - Widas Extension Area

Crop yield is based on average yield among desas relating to Widas Extension area.

Crop yields of selected crops are summarized by area as below.

Unit	ton/	na

	Paddy	Maize	Soybean
Widas South	4.82	2.63	0.75
Widas North	4.79	2.51	0.83
Widas Extension Area	4.75	2.35	0.75
Warujayeng	5.10	3.30	0.87
Vlo Retarding basin	4.82	2.34	0.67
Widas Retarding basin	3.91	1.89	_
Kedungsoko Retarding basin	4.64	2.84	0.81

## (2) Cropping Pattern

- Ulo, Widas and Kedungsoko Retarding basin

Cropping pattern is based on that in respective desa relating the above retarding basins. It is survayed by the Study Team.

### - Widas South

Cropping pattern relating to Kec. Nganjuk is taken up as that in Widas South.

# - Widas North

Cropping pattern relating to areas excluding Widas Extension Area is taken up as that in Widas North.

## - Warujayeng

Average cropping pattern relating to areas which covers Warujayeng area is taken up as that in Warujayeng.

### - Widas Extension Area

Average cropping pattern relating to four irrigation unit existing in Kec. Gondang and Lengkong is taken up as that in Widas Extension Area.

# (3) Planted Area

- Ulo, Widas and Kedungsoko Retarding Basin

Owing to no information of cropping intensity within retarding basins, planted area is based on collected data on planted area and farm land of desa relating to retarding basins.

#### - Other areas

Planted area is based on cropping intensity which was already examined by the Study Team. Planted area of other crops except selected ones is incorporated into planted area of paddy or polowijo (maize or soybean).

## (4) Seasonal frequency of floods

This is on the basis of rainfall data.

### (5) Economic Price of crops

This is derived from Primary Price Prospect of Commodities issued by the World Bank.

#### (6) Production Cost

Farm inputs are based on the Kabpaten average amount of inputs.

Crop damage is defined as the difference in the net income of crops and accumulated production cost between in with-flood and in without-flood condition. The detailed results concerning unit value of crops by area are shown in Fig from 5.1.1 to 5.1.7. The summary of these results is shown below.

Unit Value of Crops per Ha by Area

Unit : Rp

	Paddy	Maize	Soybean	Polowijo Avarage
Vlo retarding basin	72,130	6,660	2,600	4,752
Widas retarding basin	19,970	23,210	<u>.</u>	
Kedungsoko retarding basin	85,840	23,040	460	16,720
Widas South	287,000	31,750	3,920	3,860
Widas North	309,300	4,800	7,600	6,850
Warujayeng	307,630	7,800	3,690	5,660
Widas Extension	214,720	3,440	1,070	2,560

Since the flood plain is also classified into & block areas which are different from area classification specified above, a recalculation is required to evaluate unit value of crops per ha by block area.

A manual work was carried out to examine to which area each mesh of farm land existing in the flood plain belongs. Then damageable value of crops was calculated by block areas. The results are shown below.

A ₁ block	Paddy (No of mesh)	Damageable value (10 ⁶ Rp)	Polowijo (No of mesh)	Damageable value (10 ⁶ Rp)
Widas North	19	146.9	19 + 2	3.6
Widas Retarding Basin	14	25.2	14 + 1	1.2
Widas Extension	10	53.7	10 + 3	0.83
Warujayeng	17	130.7	17 + 3	2.83
Total	60	356.5	69	8.5
Average value per mesh		5.94		0.12
A ₂ Block	Paddy (No of Mesh)	Damageable value	Polowijo (No of Mesh)	Damageable value
	·	(10 ⁶ Rp)		(10 ⁶ Rp)
Widas Extension	50	268.4	50 + 11	3.9
Warujayeng	93	715.2	93 + 19	15.8
Total	143	983.6	173	19.7
Average value per mesh		6.88		0.11
	Paddy	Damageable	_	Damageable
C Block	(No of Mesh)	value	(No of Mesh)	value
		(10 ⁶ Rp)	` .'`	(10 ⁶ Rp)
Widas North	62.5	483.3	62.5 + 2.5	11.13
Average value per mesh	· • · · · · · · · · · · · · · · · · · ·	7.73		0.17

	C Block	Paddy (No of Mesh)	Damageable value (10 ⁶ Rp)	Polowijo (No of Mesh)	Damageable value (10 ⁶ Rp)
			(10 Rp)		(10 Rp)
	Widas North	10	77.3	10	1.71
	Warujayeng	8.5	65.4	8.5	1.20
	Vlo	4	7.2	4	0.48
	Widas South Kedungsoko	12 3	86.1 1.5	12 3	1.16 1.25
	Total	37.5	237.5	: 37.5	5.80
	Average value per mesh	eranterante indonesia esta esta esta esta esta esta esta est	6.33		0.15
	n n1 .	Paddy	Damageable	Polowijo	Damageab1
	D Block	(No of Mesh)	value	(No of Mesh)	
			(10 ⁶ Rp)		(10 ⁶ Rp)
	Widas North	33.5	259.0	33.5	5.74
	Widas South	11.0	78.9	11.0	1.06
	Total	44.5	337.9	44.5	6.80
•	Average value per mesh		7.59		0.15
	E Block	Paddy (No of Mesh)	Damageable value	Polowijo (No of Mesh)	Damageabl value
			(10 ⁶ Rp)	, , , , , , , , , , , , , , , , , , , ,	(10 ⁶ Rp)
		23.5	010.2	21 5 2 5	Cor
	Warujayeng Kedungsoko	31.5 3	242.3 1.5	31.5 + 3.5	4.95 1.25
	Widas South	26	186.6	26 + 1	2.60
•	Total .	60.5	430.4	65	8.80
•	Average value per mesh		7.11	······································	0.14
•	F Block	Paddy (No of Mesh)	Damageable value	Polowijo (No of Mesh)	Damageabl value
	J. Block	(no or near)	(10 ⁶ Rp)	(no or nestry	$(10^6 Rp)$
	Widas South	22	157.9	22	2,12
•	Average value per mesh		7.18		0.10
	•	5.			

G Block	Paddy (No of Mesh)		Polowijo (No of Mesh)	
Warujayeng Widas South	21.5 30.5	165.4 218.8	21.5 30.5	3.04 2.94
Total	52	572.3	52	5.98
Average value per mesh		7.39		0.12

The Reduction of Farm Land in the future

Economic or social development will stimulate the urbanization process which eventually leads to an increase of buildings in residential area. It is expected that farm land existing in urban desa will be reduced owing to the expansion of building area.

As the indication of upper limitation of building density for urban desa, present maximum building density (desa Baranam of Kec. Kertosono) can be regarded as upper point, which is shown as below.

		:	Uni	t:Building/mesh	Unit : m²
House	Industry	Store	Restaurant	Public & Private	e Total
501	117.5	41.3	8.75	3.	71,000m ²

Further more, the same procedure is applied to get upper limitation of building density for rural desa. In this case, the minimum building density of present urban desa is considered, which is shown below (desa Baron of Kec. Baron)

·			Uni	t: Building/mesh	Unit : m²
House	Industry	Store	Restaurant	Public & Private	Total
98	3.75	6.75	3.25	1.5	13,135 m²

Remarks: The standard size of building is shown in Main Report

Based on the above data, future building density per mesh of each block area is estimated by refering to increase rate of buildings. As a result, the reduction of farm land is assumed to take place in block area of D and F where urban desas exist. It is expected that the reduction of farm land would take place in around the year of 2025 in both areas of D and F. From geographical point of view, block D covers Kec. Nganjuk and block F is related to Kec. Sukomoro, Nganjuk, and Loceret.

## 5.2 Unit Value of Indoor Movables

Since economic data; on the above items are not available, unit value of indoor movables is estimated based on forecast of basic economic and social indicators. The summary of these indicators is shown below.

Forecast of GRDP in Kab. Nganjuk

	····			
	1985	1990	2000	2050
GRDP (10 ⁶ R _P )	205,689	262,517	427,613	3038,910
Growth Rate p.a. (%)	5%	5	%	4%

Remarks: - GRDP forecast is projected at 1985 constant price

- Nominal GRDP of the year 1985 is originated from Repelita IV of Kab. Nganjuk
- Real growth rate of GRDP is estimated at 5% p.a. between 1985 and 2000, at 4% p.a. after 2000

Forecast of Basic Indicators in Kab. Nganjuk

	1985	1990	2000	2050
Population				
Urban	99,400	112,500	143,900	494,600
Rural	830,400	861,600	904,300	498,700
	929,800	974,100	1,048,200	993,300
House		•		
Urban	20,620	23,340	29,850	102,600
Rural	177,820	184,500	193,640	106,790
	198,440	207,840	223,490	209,400
Family Size	4.7	4.7	4.7	4.7

Estimated Future Increase of Each Type of Building in Kab. Nganjuk

	1985	1990	2000	2050
Manufacturing Industry	13340	14,370	16,670	35,100
Store	4.960	5,200	5,600	5,240
Restaurant	3,800	3,980	4,280	4,000
Public & Private	1,850	1,940	2,090	1,960

Remark : 1 Manufacturing establishment is estimated to increase at 1.5~% p.a.

2 Other types of buildings are estimated to increase in proportion to an increase rate of houses

Per Capita Monthly Expenditure Survey of Kab. Nganjuk in 1984

					Unit	: 10°Rp
No of People	Food	Fue1	Miscellaneous	Clothe	Durable	Total
27,292	234 ²⁰ 65%	52 14%	19 5%	20 6%	16.5 15%	360 100%

Remarks :

- 1 Total number of samples are about 27,300
- 2 Per capita monthly expenditure is calculated at about 13.200 Rp.
- 3. Since monthly per capita output is projected at 16,700 Rp in 1984. The ratio of per capita output to expenditure is estimated at 0.79

Projection of Per Capita Expenditure, House hold Expenditure

	1985	1990	2000	2050
GRDP (10 ⁶ R _P )	205,689	262,517	427,613	3,038,910
Population	929,800	974,100	1,048,200	993,300
Monthly percapita output (Rp)	18,400	22,300	34,000	255,000
Per capita expenditure Monthly house hold	14,500	17,600	26,900	201,400
expenditure (Rp)	68,200	82,700	126,400	946,600

### (1) House hold effect

Questionaries were distributed in five desas in order to carry out property survey. Total number of samples are 125 with 25 questionaries in each desa. In our estimation of house hold effect, cars and motor cycles are excluded from our survey items. As a result, the average property value per household is projected at around 0.42 x 10 Rp. Since our survey areas are mostly based on rural desas, and per capita expenditure in urban area was almost as twice as that in rural area (Statistik Indonesia), the value of household effect in urban desas is estimated to be 0.84 x 10 Rp which is double of household effect value projected by our survey.

A simple assumption is applied to project future value of house effect in such a way that the value of household effect is increased in proportion to the growth of monthy house expenditure.

## (2) Store

For the purpose of projecting stock value of store, the calculation basis is put on an estimation of now much a store must prepare goods which a person stock averagely. By using data on monthly per capita expenditure, average amount of stock, which are prepared by one store are worked out in terms of Rp. Assumptions are shown below.

- The average stock value of food per head is equivalent to half month's expenditure
- The average stock value of fuel per head is equivalent to half month's expenditure
- The average stock value of clothes per head is equivalent to four month's expenditure
- The average stock value of micellaneous goods per head is equivalent to four month's expenditure
- The average stock value of durable goods per head is equivalent to twelve month's expenditure

The procedure of calculation is shown below

Then, how much store must stock is calculated by using data on population and the number of stores.

$$20.445 \text{ Rp} \times 929800 - 4,960 = 3.8 \times 10^6 \text{ Rp}$$

The above figure is the average stock value per store. The same procedure is taken up for the estimation of future stock value per store.

## (3) Manufacturing Establishment

The following forecast of macro-economic conditions relating to manufacturing industry is required to estimate stock value per establishment.

2000	2050
427,623	3,038,910
7%	21.9%
29,932	665,605
16,670	35,100
1.79	18.9
0.94	6.68
0,85	12.26
	0.85

Remarks : < 1 GRDP share by industry is forecasted by Repelita IV

< 2 Labour forecast is estimated to increase in proportion to an growth rate of GRDP The stock value per establishment is classified into three categories. At present level (1985), The estimation of stock value is shown the following way.

- The stock value of gross output

$$0.69 \times 2.89 \times 1/24 = 0.08$$

the ratio of gross output to value added is estimated to be 2.89, based on past statistical data. The stock value is estimated to be equivalent to half month's gross output.

- The stock value of raw materials 0.96 x 1.89 x 0.8 x 1/12 = 0.09

The ratio of input costs to value added is estimated to be 1.89, based on past statistical data. Raw materials are estimated to constitute about 80% of all input costs. The stock value is estimated to be equivalent to one month's portion of raw materials.

- The value of equipments

$$\frac{0.24 \times 5 \times 0.1 + 0.24 \times 5}{2} = 0.66$$

The value of equipment is estimated to be equivalent to 5 year's expenditure. The real value of equipment is estimated to be the average between their market value and salvage value (10 %)

Then  $_{6}$  total stock value per establishment is estimated to be  $0.83 \times 10 \ \rm{Rp}.$  The same procedure is taken up for estimating future stock value per establishment.

## (4) Restaurant

Most of restaurants are making business as restaurants as well as food shops in the flood plain area. Kinds of stock value are, therefore, classified into 3 categories in the following.

- Indoor moveables inside a restaurant
- Food stock for sale
- Food stock for restaurant

The data surveyed or analyzed statistically are shown below, in order to estimate stock value per a restaurant.

(A)	Value of Indoor Mova	ls	Ur	nit: 10 Rp
	1985	1990	2000	2050
	1.3	1.6	2.4	18.0

The value of indoor movables was practically survey by the study team.

The value of them is expressed at the average between market and salvage value. Future value of them is estimated to increase in proportion to the growth rate of household espenditure.

#### (B) Food stock for restaurant

	1985	1990	2000	2050	
GRDP of Restaurant $(10^6 \text{Rp}) < 1$ Input Cost $(10^6 \text{Rp}) < 2$	3,266	4,035	• .	49,916	
Input Cost (10°Rp) < 2 No.of Restaurant < 3	515 3,800	608 3,980	987 4,280	7,487 4,000	
Stock value per restaurant	0,043	0,051	0,082	0,31	

- Note: < 1 From Repelita IV of Kab. Nganjuk
  - < 2 Derived from the ratio of input cost to GRDP of Restaurant
  - < 3 Assumed that the increase rate of restaurant will be the same as that of houses

From the above table, food stock value per restaurant can be estimated.

# (C) Food stock for sale

1985	1990	2000	2050
		2000	2000
4350	5,280	8,070	60,420
29,800	974,100	1,048,200	993,300
3.800	3,980	4,280	
1.1	1.3	2,0	15.0
	29,800	29,800 974,100 3.800 3,980	29,800 974,100 1,048,200 3,800 3,980 4,280

The method of the above item is based on how much a restaurant must prepare food which a person stocks averagely.

## (5) Public and Private buildings

Types of building corresponding to the above item are the government and private (school, theater, private business and so on) buildings. The number of these buildings existing in flood plain area is statistically sounded.

In order to estimate unit value of indoor movables, the following macrodata are presented.

Public building
GRDP of Public Sector

	1985	1990	2000	2050
GRDP (10 Rp) GRDP share of Public	205,688	262,517	427,613	3,038,910
Sector (%) < 1	8.7	9.0	9.8	9.8
GRDP of Public Sector (10 ⁶ RP)	17,918	23,626	41,906	297,813
Capital cost of Public				4
Sector $(10^6 \text{Rp}) < 2$	1453	1890	3352	23,825
No.of buildings < 3	1400	1470	1580	1480
Capital cost per building				
$(10^{6}Rp)$	1.04	1.29	2.12	16.1

Note: < 1 From Repelita IV of kab. Nganjuk

< 2 The ratio capital cost to value added was around 8%

< 3 The increase rate of buildings is assumed to be the same as that of houses

Having estimated capital cost per building, the stock value per building is estimated to be the average between the market value equivalent to 15 years' expenditure and its salvage value. The stock value is estimated to be  $8.6 \times 10^6$  Rp in 1985. The same estimation procedure is taken up to project future stock value.

Private Sector

•	1		•	
	1985	1990	2000	2050
GRDP (10 ⁶ Rp) GRDP share of Private Sector	205,689	262,517	427,613	3,038,910
(%) < 1	6.4%	7.3%	9.1%	9.1%
GRDP of Private Sector (10 ⁶ Rp)	13,214	19,069	38,913	276,540
GRDP of Service Sub-Sector	-			
$(10^{6} \text{Rp}) < 2$	2,682	3,871	7,899	56,138
	450	470	510	480
No. of Buildings < 3 GRDP per building (10 Rp)	5.9	8.2	15.5	117.0
Total labour cost per building	•			
$(10^{9} Rp) < 4$	5.3	6.8	11.0	78.9
Total capital cost per building (10 Rp)	0.6	1.4	4.5	38.0
	•			

Note: < 1 From Repelita IV of Kab. Nganjuk

< 2 The ratio of Service sub-sector to Private Sector is 20.3%

< 3 The increase rate of building is assumed to be the same as that of houses Assuming that the number of persons is 6.6 per building labour cost would be 6.6 x 0.8 x 10 Rp per building. In this case per capita labour cost is assumed to be 0.8 x 10 Rp per year.

Based on the above table, the stock value per building is estimated to be the average between the market value equivalent to 15 years expenditure and its salvage value. The stock is estimated at 9.9 x  $10^6$  Rp in 1985. The same procedure is taken up to project future stock value per building.

After estimating the stock value per public and private buildings respectively, the average stock value between public and private building is projected.

5.3 This part of ANNEX presents data of each block in terms of probable flood hydrograph, overflow volume, inundation depth and flood damage, and flood damages with future growth.

(1/4)

# FLOOD HYDROGAPH FOR DAMAGE ESTIMATE

# FLOOD HYDROGAPH FOR DAMAGE ESTINATE

BLOCK NO : A-1

BLOCK NO : A-2

			~~~														
				RETU	RN PERI								RETU	IRN PER	OD (YEA	IR)	
DAY	HOUR	ANNUAL	1.4	5	10	25	50	100	DAY	HOUR	ANNUAL	1,4	5	10	25	50	100
1	ś	84.9	113.2	113.2	113.2	113.2	1.		1	6	84.7	113.0	4.00		113.0		113.0
i	12	85.8	114.4	114.4	114.4	114.4	114.4	114.4	i	12	79.0	105.4	105,4	.114.4	105.4	105.4	105.4
1	18	84.3	112.5	111.1	112.2	111.2	111.2	111.2		18	46.9	62.6	62.9	111.1	69.7	69.2	70.1
1	24	73.8	98.5	78.8	101.2	77.5	97.9	100.1		24	47.0	62.7			143.2	150.7	164.9
2	6	72.5	96.9	78.6	100.7	100.7	104.0	104.9	2	. 6	69.9	93.3	76.7	100.4	123.6	126.3	133.0
2	12	78.7	105.0	108.4	100.9	115.0	118.3	120.2	2	12	48.9	91.9	94.9	111.5	93.0	74.6	97.8
2	18	82.8	110.5	115.4	86.6	123.6	127.4	130.1	2	18	62.4	83.3	96.2	117.2	104.1	112.7	120.7
2	24	83.1	110.8	116.7	77.2	126.1	130.2	133.9	2		61.7	82.3	87.3	121.0	101.5	103.3	107.7
3	. 6	80.3	107.1	115.0	123.3	125.1	129.3	133.7	3	6	46.2	61.6	87.9	117.4	90.4	91.5	74.1
3	12	73.5	98.0	112.1	180.0	126.4	131.3	137.6	3	12	56.7	75.7		117.0		84.6	86.8
3	18	68.2	91.0	109.2	202.1	133.1	140.4	148.8	3	18	42.0	56.0	63.3	117.7	79.9	80.9	83.2
3	24	69.2	92.3	119.5	201.7	136.2	148.2	159.6	3	24	157.1	209.5	249.5	120.2	78.6	80.8	83.8
4	b	120.6	160.9	185.8	194.7	723.1	238.3	251. I	4	6	151.3	201.8	228.2	200.0	264.7	335.1	363.5.
4	12	140.0	186.7	213.2	184.4	256.7	272.6	288.6	4	12	88.8	118.4	124.2	235.6	319.7	343.8	370.3
4	18	133.2	177.7	179.4	167.9	240.7	255.4	270.7	4	.18	75.4	100.6	104.9	216.7	185.8	194.6	204.4
4	24	121.7	162.3	184.0	151.9	213.9	231.6	245.1	4	24	82.3	109.8	110.2	196.1	169.3	177.0	184.6
5	ó	117.4	156.6	175.7	168.9	200.8	211.4	233.1	5	6	75.8	127.8	138.3	186.7	217.3	232.0	242.2
5	12	114.7	153.0	159.9	181.5	192.5	200.5	219.0	5	12	76.8	102.5	111.7	197.9	135.9	142,9	158.1
5	18	108.0	144,1	158.4	170.4	181.9	190.3	205.0	5	18	67.2	89.7	95.2	168.6	112.8	117.0	124.6
5	24	102.1	136.2	149.2	156.5	177.0	191.5	211.9	5	24	77.1	102.9	117.7	158.2	127.3	131.6	143.3
6	ś	99.5	132.7	147.2	158.8	181.7	178.7	224.3	6	6	77.7	103.7	118.3	157.1	126.9	131.4	150.9
b	12		127.5						6	12	57.8	77.1	110.8	152.7	113.5	118.8	140.9
8			114.2						6	. 18	38.1	50.8	93.0	145.2	101.2	107.3	126.0
6	24	78.3	104.5	131.9	151.7	183.5	202.8	228.5	- 6	24	60.7	81.2	104.9	156.2	144.9	175.1	217.0
7	6		101.6				224.6	251.5	7	6	58.1	. 77.5	89.4	165.1	181.4	255.2	339.4
7	12	79.5	105.0	128.9	160.3	204.7	238.6	267.4	7	12	52,1	82.9	91.7	166.0	152.0	198.8	244.0
	18	82.6	110.2	129.5	168.7	202.7	235.5	253.8	7	18	87,9	117.3	122.4	161.4	146.2	168.3	187.1
7			117.8	133.1	155.4	191.1	215.5	245.9	7	24	75.5	100.7	107.1	156.2	128.7	141.6	154.0
8		87.0			153.4			218.9	8	ó	59.5	79.4	85.0	144.9	114.4	127.1	137.9
8		80.0	106.7					192.7	8	12	43.8	58.5	65.0	130.2	103.2	166.7	127.3
3	18	69.2	92.3	101.2	116.3	132.6	151.3	170.4	8	18	33.6	44,9	46.7	111.7	93.8	108.1	119.4
			91.1						8	24	28.0	37.4	39.0	82.5	85.0	99.3	112.3
														~			~

(2/4)

FLOOD HYDROGAPH FOR DAMAGE ESTIMATE

FLOOD HYDROGAPH FOR DAMAGE ESTINATE

BLOCK NO : B

BLOCK NO : C

				RETU	RN PERI	OD (YEA	R)						RETU	RN PERI	OD (YEA	 R)	
PAY	HOUR	ANNUAL	1.4	5	10	25	50	100	PAY	HOUR	AHNUAL	1.4	5	10	25	50	100
1	6	38.1	50.9		50.9	50.9	50.9	50.9	1	6	45.2	60.2	60.2	60.2	60.2	60.2	60.2
1	12	20.4	27.2	27.2	27.2	27.2	27.2	27.2	1	. 12	40.1	53.5	53.5	53.5	53.5	53.5	53.5
1	18	15.9	21.3	18.0	18.8	20.6	21.4	23.6		18	21.2	20.2	78.5	28.6	28.9	27.0	29.3
į	24	41.2	55.0	15.7	81.7	71.6	75.7	104.6		24		26.0	30.5	31.8	34.9	36.4	39.9
2	6	19.9	26.6	33.4	34.4	36.4	37.3	38.7		6	18.4	24.5	29.4	30.8	34.1	35.6	39.7
2	12	18.6	24.8	25.2	26.9	.27.1	30.1	32.4		12	14.7	19.6	21.0	21.9	23.8	24.6	26.7
2		21.3	28.4	36.5	39.8	43.6	45.5	49.3		18	27.7	36.9	44 0	47.3	51.8	56.6	60.1
2	24	14.9	19.9	22.4	23.8	25.1	28.2	27.1		24	49.7	64.9	გა. გ	69.1	69.3	70.2	71.2
3	. 6	10.2	13.6	14.8	15.5	16.2	16.5	17.1		6	51.8	69.1	71.3	73.2	75.7	77.4	79.2
3	12	7.4	9.9	10.7	11.0	11.5	11.6	12.0		12	52.9	70.5	73.4	76.0	78.8	90.8	82.7
3	18	5.7	7.7	8.2	8.4	8.7	8.8	7.1		18	53.3	71.0	74.3	77.1	80.2	82.4	84,4
Š	24	25.3	33.8	47.2	59.2	75.7	89.3	104.3	3	24	54.2	72.3	75.2	79.4	83.1	85.2	87.1
4	6	137.0	182.7	224.5	258.7	294.8	322.2	349.1	4	ò	55.7	74.2	78.4	82.0	85.6	87.8	89.9
Ą	12	62.7	83.6	92.0	97.7	104.2	109.1	114.3	4	12	56.1	74.8	79.2	83.0	86.6	89.1	91.3
4	18	38.4	51.2	55.0	58.2	61,4	64.1	65.9	4	18	56.1	74.9	79.3	83.2	87.0	37.8	92.4
4	24	92.4	123.3	137.7	152.0	165.8	178.0	185.5	4	. 24	56.3	75.1	80.5	84.5	88.5	92.4	95.6
5	ь	45.6	50.8	63.8	66.0	69.0	71.5	73.4	5	b	55.2	73.6	80.4	84.7	88.8	93.1	96.7
5	12	22.1	29.5	30.4	31.1	31.9	32.5	33.5	5.	12	52.8	70.4	78.0	83.3	87.8	92.2	96.0
5	18	18.4	24.6	25.6	26.0	27.0	27.4	29.1	5	18	49.0	65.3	73.4	79.9	95.9	90.5	94.4
. 5	24	29.3	39.1	41.5	41.8	44.3	44.6	53.0	5	24	46.2	61.6	70.2	76.5	84.1	39.5	93.6
6	b	21.6	28.8	32.1	32.2	33.8	34.3	48.2	6	6	32.1	42.8	67.6	73.0	81:4	88.0	92.7
b	12	15.4	20.6	21.4	21.4	22.1	22.8	34.0	. 6	12	18.9	25.2	62.4	68.9	76.3	85.1	90.3
. 6	18	10.7	14.3	14.8	14.7	15.3	16.2	25.2	6	18	15.0	20.0	32.0	63.4	70.9	79.9	86.7
ó	24	43.4	58.2	67.6	77.5	110.4	190.1	274.3	. 6	24	27.0	36.0	40.9	61.0	69.3	77.4	85.0
- 7	6	26.9	35.9	39.1	43.5	65.2	102.4	144.5	7	6	31.4	41.8	47.9	60.1	68.9	76.4	84.8
7	12	37.2	49.7	52.8	55.7	60.3	70.8	81.2	7	12	36.3	48.4	56.6	60.1	48.7	75.9	84.8
7	18	32.6	43.5	45.6	47.5	49.3	52.0	53.3	7	13	41.5	55.3	80.3	60.7	68.B	.75.8	84.7
7		24.4	32.6	33.9	35.1	36.1	37.3	37.8	7	24	36.9	49.2	53.8	60.6	68.4	74.8	83.5
8	6	18.9	25.2	25.9	26.6	27.2	28.0	28.3	8	6	28.0	37.3	43.4	47.8	66.5	72.6	80.9
3	17	15.1	20.2	20.7	21.2	21.7	22.3	22.4	8	12	20.0	26.7	29.4	31.7	62.7	69.8	.77.1
8		12.4	16.6	17.0	17.3	17.6	18.0	18.1	8	18	15.6	20.8	22.1	22.9	35.5	65.0	71.7
8	24	10.5			14.6	14,7	15.2	15.2	8	24	14.4	19.2	19.5	19.6	20.0	47.2	
8	24	10.5	14.0	20.7	14.6	14.9	15.2	15.2	8	24 	14.4	19.2	19.5	19.6	20.0		47.2

Table 5.3.1

(3/4)

FLOOD HYDROGAPH FOR DANAGE ESTIMATE

FLOOD HYDROGAPH FOR DAMAGE ESTIMATE

BLOCK NO : D

BLOCK NO : E

					RN PERI										OD (YEA		
DAY	HOUR	ANNUAL	1.4	5	10	25	50	100	DAY	HOUR	ANNUAL	1.4	5	10	25	50	100
1	Ь	12.3	16.5	16.5	16.5	16.5	16.5	18.5	1	6	35.1	46.9	46.9	46.7	46.7	46.9	46.9
ŧ	12	7.0	9.4	9.4	7.4	9.4	9.4	9.4	1	12	25.7	34.3	34.3	34.3	34.3	34.3	34.3
1	18	3.9	5.3	5.4	5.6	5.7	5.8	5.9	1	18	11.0	14.7	15.8	16.1	16.8	17.1	18.0
1	24	12.4	16.6	18.5	20.4	22.4	24.3	25.3	1	24	15.7	21.0	25.6	26.9	30.1	31.6	34.2
2	6	11.2	15.0	16:2	17.4	18.6	19.7	20.6	2	6	11.1	14.8	17.4	18.1	17.8	20.5	22.6
2	12	7.7	10.3	10.9	11.6	12.2	12.9	13.2	2	12	7.9	10.5	12.0	12.4	13.3	13.7	14.5
2	- 18	5.3	7.1	7.5	7.9	8.3	8.8	8,9	2	18	39.2	52.3	59.5	62.1	64.2	65.7	66,8
.2	24	6.6	8.8	10.4	11.1	12.3	13.1	14.3	2	24	52.3	67.8	75.5	79.6	93, &	85.9	88.1
3	6	7.4	9.9	12.9	13.9	15.7	16.7	18.6	3	6	52.2	69.7	75.5	79.7	83.8	85.2	88.5
3	12	5.9	7.9	9.3	9.8	10.7	11.2	12.0	3	12	50.5	47.4	71.4	76.0	80.5	83.6	86.0
3	18	9.0	12.0	14.4	15.9	18.0	19.5	21.2	. 3	18.	48.6	137	68.8	72.1	77.4	20.5	93.6
3	. 24	41.3	55.1	69.2	80.3	93.2	102.7	112.4	3	24	50.1	55.9	70.9	75.9	80.5	84.1	86.4
4	6	23.3	31.1	35.4	38.3	41.4	43.6	45.7	4	6	49.9	66.6	70.6	75.5	80.3	83.9	86.3
4	12	10.9	14.6	15.9	16.7	17.6	18.3	18.8	4	12	47.6	63.5	68.3	71.5	76.9	80.6	83.7
Ą	18	7.0	9.4	10.0	10.4	10.8	11.1	11.5	4	18	45.0	60.0	66.5	69.2	73.7	78.4	81.5
4	24	11.6	15.5	16.7	17.0	18.2	18.4	17.8	4	24	37.6	50.2	53.0	66.9	69.8	74.3	78.8
5	6	9.8	13.1	13.9	14.0	14.8	14.7	16.2	5	Ь	28.0	37.4	52.8	62.9	66.9	69.6	74.0
5	12	6.0	8.0	8.3	8.4	8.7	8.8	9.7	5	12	12.8	17.1	39.2	51.6	62.4	66.5	69.3
5	18	5.5	7.4	8.0	8.4	8.9	9.2	11.1	5	18	11.0	14.7	19.8	37.0	50.4	61.7	66.1
5	24	10.1.	13.5	16.1	17.9	20.3	25.4	39.8	5	24	20.3	27.1	29.4	34.5	45.1	56.9	64.2
- 6	P	7.5	19.1	11.5	12.4	12.3	17.8	25.2	6	6	13.8	18.4	19.5	20.6	33.9	48.7	59.5
6	12	4.9	6.6	7.2	7.7	8.8	11.7	15.9	b		9.2	12.3	12.8		14.7	34.1	47.4
. 6	18	4.7	6.3	8.8	3.7	8.4	11.3	13.8	.6	18	14.5	19.4	22.3	24.3	28.5	33.8	40.5
6		3.8	5.1	5.6	5.9	7.1	9.8	11.7	Ó	24	26.1	34.8	38.7	41.5	47.8	50.6	57.9
. 7	. 6	4.3	5.8	6.5	7.3	10.7	16.4	18.7		-	22.6	30.2	36.7	39.6	16.9	51.1	60.1
	12		19.3	21.6	24.0	28.7	34.9	36.6		12	30.2	40.3	45.2	48.2	51.1	55.0	61.6
7	18	13.5	13.0	17.3	20.7	22.3	24.5	25.0		18	30.0	40.0	44.4	47.5	50.5	53.1	60.0
7		9.3	12.4	13.1	13.8	14.4	15.4	15.6		24	26.7	35.6	38.0	40.2	44.8	48.7	52.0
8		6.7	9.3	9.3	9.6	10.0	10.5	10.6	8	6	16.6	22.2	26.2	30.7	35.2	37.9	43.2
8	12	4.8	6.4	6.9	7.1	7.4	7.7	7.8		12	12.5	16.7	17.9	18.7	20.2		27.2
8	18	3.8	5.1	5.5	5.6	5.7	5.9	6.0	8	18	10.1		14.1	14.5	15.0	15.2	16.1
8	24	3.2	4.3	4.4	4.5	4.5	4.8	4.8	8	24	8.4	11.2	11.7	12.0	12.2	12.4	12.6

(4/4)

FLOOD HYDROGAPH FOR DAMAGE ESTIMATE

FLOOD HYDROGAPH FOR DAMAGE ESTIMATE

BLOCK NO : F

BLOCK NO : S

								~-~									~
				RETU	RN PERI	OD (YEA	R)						RETU	RN PERI	OD LYEA	R)	
DAY	HOUR	ANNUAL	1.4	5	10	25	50	100	DAY	HOUR	ANNUAL	1.4	5	10	25	50	100
.1	6	5.6				7.5	7.5	7.5	. 1			42.1	42.1	42.1	42.1	42.1	
1	12 -		3.1		3.1	3.1	3, 1	3.1	1		8.8	11.8	11.8	11.8	11.8	11.8	11.8
1	18		2.7		3.1	3.2		3.4	· 1			14.4		17.1	18.5	19.1	
1		2.1		3.5	3.6	4.0	4.3	4.7	1		15.0	20.0	24.2	25.4	28.3	29.6	
2	5		2.3	2.7	2.1	3.2	3.3	3.5		ь	9.7		15.0	15.5	16.8		18.6
2		1.3	1.8	2.0	2.1	2.3	2.4	2.5	2		7.5		11.2	11.5		12.8	13.5
2	18	13.2	17.6	21.1	23.8	27.0	29.5	32.2		18	140.0	185.7	240.1			373.4	
. 2		16.6	22.2	26.9	30.4	34.3	37.1	39.9		24		113.6	129.6			162.9	
3	6	9.3	12.4	14.2	15.5	17.0	18,0	19.1		: 6	35.0			55.7	59.1	61.5	
3	12	5.4	7.2	8.1	8.8		10.1	10.7		12	20.0	26.7	28.8	30.4	32.0	33.2	34.3
3	18	8.7	11.5	13.0	14.0	15.1	16.0	16.7		18	43.8	58.4	64.5	70.5	76.8	83.0	
3	24	17.8	23.8	26.5	28.9	31.3	33.7	35.0	3	24	68.2	91.0	99.7	108.3	116.9	125.4	129.7
4	6	10.8	14.4	15.8	16.9	18.0	17.0	19.6	4	6	35.3	47.1	50.4	53.3	56.2	59.0	50.4
4	12	5.4	8.5	9.3	9.9	10.5	11.1	11.4	Ţ	12	20.7	27.7	29.5	31.1	32.7	34.4	35.2
4	. 18	8.1	10.9	12.3	13.7	15.2	17.4	24.9	4	18	25.9	34.5	38.0	41.3	44.7	49.5	56.1
4	24	5.8	7.8	8.6	9.4	10.1	11.7	17.0		24	. 17.3	23.1	24.9	26.6	28.2	31.2	37.4
5	£	3.6	4.9	4.9	5.6	6.0	7.5	10.7	5	6	13.5	18.1	19.5	20.8	22.1	25.0	29.0
5	12	2.3	3.1	3.3	3.5	3.7	4.6	6.5	5	12	9.3	12.5	13.3	14.1	14.9	16.6	18.9
5	18	3.7	5.0	5.3	5.4	5.8	13.8	15.5	5	18	14.4	19.2	20.8	21.3	22.9	28.6	31.2
5	- 24	4.2	5.7	6.2	6.3	7.0	13,1	14.7	5	24	17.0	25.4	27.1	27.5	29.6	36.6	39.4
6	6	3.0	4.1	4.3	4.4	4.8	8,4	9.5	6	6	11.9	15.9	15.7	16.9	17.9	22.1	23.6
5	12	2.0	2.7	2.8	2.8	3.1	5.2	5.9	6 5	12	8.0	10.7	11.2	11.3	11.8	14.3	15.2
6	18	2.2	3.0	3.3	3.5	7.7	9.3	10.3	. 6	18	21.0	28.0	33.8	37.3	45,4	55.0	67.4
. 6	24	2.1	2.8	3.2	3.4	8.3	9.5	10.5	6	24	27.6	36.9	45.7	50.6	62.0	71.0	86.5
7	6	2.5	3.4	4.1	4.5	7.8	8.7	9.8	. 7	6	18.3	24.5	28.2	30.6	36.7	42.0	51.6
7	12	4.2	5.6	6.4	6.9	7.4	7.7	3.3	7	12	36.8	49.1	54.7	53.1	61.5	63.1	65.3
~ 7	18	3.4	4.6	5.1	5,3	5.6	5.7	6.0	. 7	18	26.1	34.8	38.0	39.8	41.6.	42.5	44.1
7	24	2.6	3.5	3.6	3.7	3.9	4.0	4.1	7	24	19,1	25.5	27.3	28.5	29.6	30.1	31.1
8	6	1.3	2.5	2.6	2.7	2.8	2.9	2.9	: 8	ક	14.6	19.5	20.7	21.4	22.1	22.4	23.0
8	12	1.4	1.9	2.0	2.1	2.1	2.1	2.2	8	12	11.5	15.4	16.2	16.7	17.2	17.4	17.8
8	18	1.1	1.5	1.6	1.5	1.7	1.7	1.7	8	18	9.4	12.6	13.2	13.5	13.8	14.0	14.2
. 3	24	0.9	1.3		1.3	1.4	1.4	1.4		24	7,9	10.6	11.0				11.8

Table 5.3.2

(1/5)

BLOCK NO. : A-2 BASE POINT : P41

DISCHARGE AND OVERFLOW VOLUME IN HCM

CAPACITY OF LOWNATER CHANNEL 130

HAXINUN DUTFLOW IN MCH

						RIOD OF							^		۸
		1.0)5	2		5			0		5	ر ت	0	10	V
1	6	84.7	0.0	113.0	0.0	113.0	0.0	113.2	0.0	113.0	0.0	113.0	0.0	113.0	0.0
1	12	79.0	0.0	105.4	0.0	105.4	0.0	114.4	0.0	105.4	0.9	105.4	0.0	105.4	0.0
1	18	46.9	0.0	62.6	0.0	62.9	0.0	111.1	0.0	68.7	0.0	69.2	0.0	70.1	0.0
1	24	47.0	0.0	62.7	0.0	45.5	0.0	99.2	0.0	143.2	0.0	150.7	0.0	164.9	0.1
2	6	69.9	0.0	93.3	0.0	96.9	0.0	100.4	0.0	123.6	0.1	176.3	0.2	133.0	0.5
2	12	68.9	0.0	91.9	0.0	94.9	0.0	111.5	0.0	93.0	0.0	94.6	0.1	77.8	0.5
2	18	62.4	0.0	83.3	0.0	86.2	0.0	119.2	0.0	104.1	0.0	112.7	0.0	120.7	0.3
2	24	61.7	0.0	92.3	0.0	87.3	0.0	121.0	0.0	101.5	0.0	103.3	0.0	107.9	0.2
3	b	46.2	0.0	61.6	0.0	87.9	0.0	119.4	9.0	90.4	0.0	91.5	0.0	94.1	0.0
3	12	56.7	0.0	75.7	0.0	99.2	0.0	119.0	0.0	83.8	0.0	84.6	0.0	86.8	0.0
3	18	42.0	0.0	56.0	0.0	63.3	0.0	119.7	0.0	79.9	0.0	80.9	0.0	83.2	0.0
3	24	157.1	0.0	209.5	0.4	249.5	0.8	120.2	0.0	78.6	0.0	80.8	0.0	83.8	0.0
4	b	151.3	0.5	201.8	2.0	228.2	3.1	200.0	0.6	264.7	1.0	335.1		363.5	2.1
4	12	88.8	0.6	118.4	2.7	124.2	4.1	235.6	2.5	319.7	4.5	343.8	6.3	370.3	7.2
4	18	75.4	0.1	100.6	2.5	104.9	4.0	216.7	4.6	185.8	7.2	194.6	9.3	204.4	10.6
4	24	82.3	0.0	107.8	2.3	110.2	3.8	196.1	6.2	169.3	8.2		10.5	184.6	12.0
5	6	95.8	0.0	127.8	2.2	138.3	3.8	186.7	7.6	219.3	9.6	232.0	12.1	242.2	13.8
5	12	76.8	0.0	102.5	2.2	111.7	3.8	197.9	8.9	135.9	10.6	142.9	13,3	158.1	15.3
5	18	67.2	0.0	89.7	1.8	95.2	3.6	168.6	10.1	112.8	10.6		13.4	124.6	15.5
5	24	77.1	0.0	102.9	1.5	117.7	3.4	158.2	10.8	127.3	10.6	131.6	13.4	143.3	15.6
6	6	77.7	0.0	103.7	1.2	118.3	3.3	157.1	11.4	126.9	10.5	131.4	13.4	150.9	16.0
6	12	57.8	0.0	77.1	0.8	110.8	3.1	152.7	11.9	113.5	10.5	118.8	13.4	140.9	16.4
ь	18	38.1	0.0	50.8	0.1	93.0	2.8	145.2	12.3	101.2	10.3	107.3	13.3	126.0	16.4
6	24	60.9	0.0	81.2	0.0	104.9	2.5	156.2	12.8	144.9	10.3	175.1	13.6	217.0	17.3
7	6	58.1	0.0	77.5	0.0	87.4	2.2	155.1	13.4	181.4	11.0	255.2	15.4		20.5
7	12	62.1	0.0	82.9	0.0	91.7	1.7	166.0	14.2	152.0	11.8	178.8	17.5	244.0	24.0
7	18	87.9	0.0	117.3	0.0	122.4	1.6	161.4	14.9	146.2	12.2	168.3	18.7	187.1	25.9
7	24	75.5	0.0	100.7	0.0	107.1	1.5	156.2	15.6	128.7	12.4	141.6	19.2	154.0	
8	6	59.5	0.0	79.4	0.0	85.0	1.2	144.9	16.0	114.4	12.4	127.1	19.3	137.9	27.1
8	12	43.8	0.0	58.5	0.0	65.0	0.6	130.2	16.2	103.2	12.2	156.7	19.7	127.3	27.2
8	18	33.6	0.0	44.9	0.0	46.7	0,0	111.7	16.2	93.8	11.8	108.1	19.9		27.1
8	24	28.0	0.0	37.4	0.0	39.0	0.0	82.5	15.9	85.0	11.4	99.3	19.7	112.3	27.0
9	ક	46.9	0.0	62.6	0.0	62.9	0.0	111.1	15.6	68.7	10.8	69.2	19.2	70.1	26.7
9	12	47.0	0.0	62.7	0.0	65.5	0.0	99.2	15.3	143.2	10.9	150.7	19.3	164.9	26.8
9	18	69.9	0.0	93.3	0.0	96.9	0.0	100.4	15.0	123.6	10.7	126.3	19.5	133.0	
9	24	68.9	0.0	91.9	0.0	94.9	0.0	111.5	14.8	93.0	10.8	94.6	19.4	97.8	27.2
10	6	62.4	0.0	83.3	0.0	86.2	0.0	119.2	14.6	104.1	10.5	112.7		120.7	
10	12	61.7	0.0	82.3	0.0	87.3	0.0	121.0	14.5	101.5	10.2	103.3	18.7	107.9	26.9
10	18	46.2	0.0	61.6	0.0	87.9	0.0	119.4	14.4	90.4	9.8	91.5	18.6	94.1	26.6
10	24	56.7	0.0	75.7	0.0	99.2	0.0	119.0	14.3	83.8	9.4	84.6	18.1	95.8	26.2

Table 5.3.2

(2/5)

BLOCK NO. : B BASE POINT : P35

DISCHARGE AND OVERFLOW VOLUME IN MCM CAPACITY OF LOWNATER CHANNEL 100

MAXIMUM OUTFLOW IN MCM

						ERIOD OF									
		1.4	05 	2		5	·]() 	2	5	51)	10	0
i	Ь	38.1	0.0	50.9	0.0	50.9	0.0	50.9	0.0	50.9	0.0	50.9	0.0	50.9	0.(
1.	12	20.4	0.0	27.2	0.0	27.2	0.0	27.2	0.0	27.2	0.0	27.2	0.0	27.2	0.4
i	18	15.7	0.0	21.3	0.0	18.0	0.0	18.8	0.0	20.6	0.0	21.4	0.0	23,6	0.0
1	24	41.2	0.0	55.0	0.0	16.7	0.0	81.7	0.0	91.6	0.0	95.9	0.0	104.6	0.
2	6	19.9	0.0	26.6	0.0	33.4	0.0	34.4	0.0	36.4	0.0	37.3	0.0	38.9	0.
2	12	18.6	0.0	24.8	0.0	25.2	0.0	26.8	0.0	29.1	0.0	30.1	0.0	32.4	0.
2	18	21.3	0.0	28.4	0.0	36.5	0.0	39.8	0.0	43.6	0.0	45.5	0.0	49.3	0.
2	24	14.9	0.0	19.9	0.0	22.4	0.0	23.8	0.0	25. i	0.0	28.2	0.0	27.1	0.
3	6	10.2	0.0	13.6	0.0	14.8	0.0	15.5	0.0	16.2	0.0	16.5	0.0	17.1	0.
3	12	7.4	0.0	99	0.0	10.7	0.0	11.0	0.0	11.5	0.0	11.6	0.0	12.0	0.
- 3	18	5.7	0.0	7.7	0.0	8.2	0.0	8.4	0.0	8.7	0.0	8.8	0.0	9.1	0.
3	24	25.3	0.0	33.8	0.0	47.2	0.0	59.2	0.0	75.7	0.0	89.3	0.0	104.3	0.
4	6	137.0	0.1	182.7	0.4	224.5	0.9	258.7	1.3	294.8	1.8	322.2	2.2	349.1	2.
4	- 12	62.7	0.3	83.6	1.2	92.0	2.2	97.7	3.0	104.2	4.0	109.1	4.7	114.3	5.
4	18	38.4	0.0	51.2	0.9	55.0	2.0	58.2	3.0	61.4	4.0	64.1	4.8	65.9	5.
4	24	92.4	0.0	123.3	1.0	137.7	2.2	152.0	3.3	165.8	4.4	178.0	5.3	185.5	6.
5	6	45.6	0.0	8.03	1.1	63.8	2.4	66.0	3.6	69.0	4.9	71.5	6.0	73.4	6.
5	12	22.1	0.0	29.5	0.6	30.4	1.9	31.1	3.1	31.9	4.4	32.5	5.5	33.5	6.
5	18	18.4	0.0	24.6	0.0	25.6	1.1	26.0	2.3	27.0	3.7	27.4	4.8	29.1	5.
5	24	29.3	0.0	39.1	0.0	41.5	0.4	41.8	1.6	44.3	3.0	44.6	4.1	53.0	5.
6	6	21.6	0.0	28.8	0.0	32.1	0.0	32.2	1.0	33.8	2.3	34.3	3.4	48.2	4
6	12	15.4	0.0	20.6	0.0	21.4	0.0	21.4	0.2	22.1	1.6	22.8	2.7	34.0	4.
9.	18	10.7	0.0	14.3	0.0	14.8	0.0	14.9	0.0	15.3	0.7	16.2	1.8	25.2	3.
6	24	43.6	0.0	58.2	0.0	67.6	0.0	77.5	0.0	110.4	0.7	190.1	2.3	274.3	4.
7	6	26.9	0.0	35.9	0.0	39.1	0.0	43.5	0.0	65.2	0.7	102.4	3,3	144.5	6.
7	12	37.2	0.0	19.7	0.0	52.8	0.0	55.7	0.0	60.3	0.3	70.8	3.3	81.2	7.
7	18	32.6	0.0	43.5	0.0	45.6	0.0	47.5	0.0	49.3	0.0	52.0	2.9	53.3	7.
7	24	24.4	0.0	32.6	0.0	33.9	0.0	35.1	0.0	36.1	0.0	37.3	2.3	37.8	6.
8	6	18.9	0.0	25.2	0.0	25.9	0.0	26.6	0.0	27.2	0.0	28.0	1.6	28.3	5.
8	12	15.1	0.0	20.2	0.0	20.7	0.0	21.2	0.0	21.7	0.0	22.3	8.0	22.4	4.
8	18	12.4	0.0	16.6	0.0	17.0	0.0	17.3	0.0	17.6	0.0	18.0	0.0	18.1	4.
8	24	10.5	0.0	14.0	0.0	20.7	0.0	14.6	0.0	14.9	0.0	15.2	0.0	15.2	. 3.
9	. 6	15.9	0.0	21.3	0.0	18.0	0.0	18.8	0.0	20.6	0.0	21.4	0.0	23.6	2.
9	12	41.2	0.0	55.0	0.0	16.7	0.0	81.7	0.0	91.6	0.0	95.9	0.0	104.6	2.
9	18	19.9	0.0	26.6	0.0	33.4	0.0	34.4	0.0	36.4	0.0	37.3	0.0	38.9	2.
9	24	18.6	0.0	24.8	0.0	25.2	0.0	26.8	0.0	29.1	0.0	30.1	0.0	32.4	i.
10	. 6	21.3	0.0	28.4	0.0	36.5	0.0	39.8	0.0	43.6	0.0	45.5	0.0	49.3	i.
10	12	14.9	0.0	19.9	0.0	22.4	0.0	23.8	0.0	25.1	0.0	28.2	0.0	27.1	0.
10	18	10.2	0.0	13.6	0.0	14.8	0.0	15.5	0.0	16.2	0.0	16.5	0.0	17.1	0.
10	24	7.4	0.0	9.9	0.0	10.7	0.0	11.0	0.0	11.5	0.0	11.6	0.0	12.0	0.

Table 5.3.2

(3/5)

BLOCK NO. : D BASE POINT : P26

DISCHARGE AND OVERFLOW VOLUME IN HCM CAPACITY OF LOWNATER CHANNEL 20

MAXIMUM OUTFLOW IN MCM

						RIOD OF				ь.	-	-			
		1.0	05 	2	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	. 5		1() 	25	5	5() 	100)
i	b	12.3		16.5	0.0		0.0		0.0	16.5	0.0	16.5		16.5	0.0
1	12	7.0	0.0	9.4	0.0	9.4	0.0	9.4		9.4	0.0	9.4	0.0	9.4	
1	18	3.9	0.0		0.0		0.0			5.7	0.0	5.8	0.0	5.9	0.0
. 1	24	12.4	0.0		0.0	18.5	0.0	20.4	0.0	22.4	0.0	24.3	0.0	25.3	0.(
2	Ь	11.2	0.0	15.0	0.0	16.2	0.0	17.4	0.0	18.6	0.0	19.9	0.0		0.0
2	12	7.7	0.0		0.0	10.9	0.0			12.2	0.0	12.9		13.2	0.
2	18	5.3	0.0	7.1	0.0		0.0	7.9	0.0	8.3		8.8	0.0	8.9	0.0
2	24	6.6	0.0	8.8	0.0	10.4	0.0	11.1	0.0	12.3	0.0	13.1	0.0	14.3	0,
3	6	7.4	0.0	9,9	0.0	12.9	0.0	13.9	0.0	15.7	0.0		0.0	18.6	0.
3	12	5.9	0.0	7.9	0.0	9.3	0.0	9.8	0.0	10.7	0.0	11.2	0.0	12.0	0.
3	18	9.0	0.0	12.0	0.0	14,4	0.0	15.9	0.0	18.0	0.0	19.5	0.0	21.2	0.0
3	24	41.3	0.1	55.1	0.3		0.4	80.3	0.6	93.2	0.7	102.7	0.8	112.4	1.
4	. 6	23.3	0.4		0.8		.1.1	38.3	1.4		1.7	43.6	2.0	45.7	2.2
. 4	12	10.9	0.4		0.8	15.9	1.3	16.7	1.6	17.6	1.9	18.3	2.2	18.8	2.
4	18	7.0	0.3	9.4	0.8	10.0	1.2	10.4	1.5	10.8		11.1	2.2	11.5	2.
4	24	11.6	0.2	15.5	0.7	16.7	1.1	17.0	1.5	18.2	1.9	18.4	2.2	19.8	2.
5	Ь	7.8		13.1	0.6	13.9	1.1	14.0	1.4	14.8	1.8	14.9	2.1	16.2	2.
5	12	6.0	0.0	8.0	0.5	8.3	1.0	8.4		8.7		8.8	2.1	9.7	2.
5	18	5.5	0.0	7.4	0.4	8.0	0.9		1.2			9.2	1.9	11.1	2.
5	24	10.1	0.0		0.3		0.8	17.9	1.2	20.3	1.6	25.4	2.0	39.8	2.
6	6	7.5		10.1		11.5	0.8	12.4	1.1	13.9	1.6	17.8	2.0	25.2	2.
6	12	4.9	0.0	6.6	0.1	7.2	0.6			8.8		11.7	2.0	15.9	2.
6	18	4.7	0.0	6.3	0.0	6.8	0.5	3.7		8.4	1.4	11.3	1.9	13.8	2.
6	24	3.8	0.0	5.1		5.6	0.4	5.9		7.1	1.3	9.8	1.8	11.7	2.
7	6	4.3	0.0				0.2	7.3	0.6	10.9	- t . 2·	16.4	4.7	18.7	
7	12	14.4	0.0		0.0		0.2	24.0	0.6		1.2	34.9	1.8	36.6	2.
7	18	13.5	0.0	18.0	0.0		0.2	20.7	0.6		1.4	24.5	2.1	25.0	3,
7	24	9.3	0.0	12.4	0.0	13.1		13.8		14.4		15.4	2.1	15.6	3,
8	6	6.9	0.0	9.3	0.0	9.3	0.1	9.6	0.6	10.0	1.3	10.5	2.0	10.6	. 3.
8	12	4.8	0.0	6.4	0.0	6.9	0.0	7.1	0.4	7.4	1.2	7.7 5.9	1.9	7.8	2.
8	18	3.8	0.0	5.1	0.0	5.5	0.0	5.6	0.3	5.7			1.8	6.0	2.
8	24	3.2	0.0	4.3	0.0		0.0	4.5		4.6		4.8	1.6	4.8	2.
9	6	3.9	0.0	5.3	0.0	5.4	0.0	5.6	0.0	5.7		5.8	1.4	5.9	2.
9	12	12.4	0.0	16.6	0.0	18.5	0.0	20.4	0.0	22.4	0.7	24.3	1.4		2.
9	18	11.2	0.0	15.0	0.0	16.2	0.0		0.0	18.6	0.7				2.
. 9	24	7.7	0.0	10.3	0.0	10.9	0.0	11.6	0.0	12.2	0.7	12.9	1.5	13.2	2.
10	6	5.3	0.0	7.1	0.0	- 7.5	0.0	7.9	0.0	8.3	0.6	8.8		8.9	2.
10	12	6.6	0.0	8.8	0.0	10.4	0.0	11.1	0.0	12.3	0.5	13.1	1.3	14.3	. 2.
10	18	7.4	0.0	9.9	0.0	12.9	0.0	13.9	0.0	15.7	0.4	16.7	1.3	18.6	2.
10	24	5.9	0.0	7.9		9.3	0.0	9.8	0.0	10.7	0.4			12.0	2.

Table 5.3.2

(4/5)

BLOCK NO. : F BASE POINT : P12

DISCHARGE AND OVERFLOW VOLUME IN NCM CAPACITY OF LOWNATER CHANNEL

HAXIMUM OUTFLOW IN MCH

		:	**	RECUR	RENCE PE	RIOD OF	FLOOD (Y					*****			
		1.	05	2		5		1	0	2:	j	5()	. 10	9
1	6	5.6	0.0	7.5	0.0	7.5	0.0	7.5	0.0	7.5	0.0	7.5	0.0	7.5	0.0
1	12	2.3	0.0	3.1	0.0	3.1	0.0	3.1	0.0	3.1	0.0	3.1	0.0	3.1	0.0
. 1	18	2.0	0.0	2.7	0.0	3.0	0.0	3.1	0.0	3.2	0.0	3.3	0.0	3.4	0.0
1	24	7.1	0.0	2.9	0.0	3.5	0.0	3.6	0.0	4.0	0.0	4.3	0.0	4.7	0.0
2	6	1.7	0.0	2.3	0.0	2.7	0.0	2.1	0.0	3.2	0.0	3.3	0.0	3.5	0.0
2	-12	1.3	0.0	1.8	0.0	2.0	0.0	2.1	0.0	2.3	0.0		0.0	2.5	0.0
2	18	13.2	0.0	17.6	0.0	21.1	0.0	23.8	0.0	27.0	0.1	29.5	0.1	32.2	0.1
2	24	16.6	0.1	22.2	0.2	26.9	0.3	30.4	0.4	34.3	0.5	37.1	0.6	39.9	0.7
3	b	9.3	0.1	12.4	0.4	14.2	0.5	15.5	0.7	17.0	0.9	19.0	1.0	19.1	1.1
3	12	5.4	0.1	7.2	0.4	8.1	0.6	8.8	0.7	9.6	0.9	10.1	1.1	10.7	1.2
3	18	8.7	0.1	11.6	0.4	13.0	0.6	14.0	0.8	15.1	1.0	16.0	1.1	16.7	1.3
3	24	17.8	0.2	23.8	0.5	26.5	0.8	28.9	1.0	31.3	1.3	33.7	1.5	35.0	1.6
4	6	8.01	0.3	14.4	0.7	15.8	1.1	16.9	1.3	18.0	1.6	19.0	1.8	19.6	2.0
4	12	6.4	0.3	8.6	0.8	9.3	1.1	9.9	1.4	10.5	1.7	11.1	1.9	11,4	2.1
4	18	8.1	0.2	10.9	0.8	12.3	1.1	13.7	1.4	15.2	1.7	17.4	2.0	24.9	2.3
4	24	5.8	0.2	7.8	0.8	8.6	1.1	9.4	1.4	10.1	1.8	11.7	2.1	17.0	2.5
5	6	3.6	0.2	4.9	0.8	4.9	1.1	5.6	1,4	6.0	1.8	7.5	2.1	10.7	2.6
5	12	2.3	0.1	3.1	0.7	3.3	1.1	3.5	1.4	3.7	1.7	4.6	2.1	6.5	2.6
5	18	3.7	0.0	5.0	0.6	5.3	1.0	5.4	1.3	5.8	1.7	13.8	2.1	15.5	2.7
5	24	4.2	0.0	5.7	0.6	5.2	1.0	6.3	1.3	7.0	1.7	13.1	2.2	14.7	2.8
6	6	3.0	0.0	4.1	0.5	4.3	0.9	4.4	1.2	4.8	1.6	8.4	2.2	9.5	2.8
6	12	2.0	0.0	2.7	0.5	2.8	0.8	2.8	1.2	3.1	1.5	5.2	2.2	5.9	2.8
6	18	2.2	0.0	3.0	0.4	3.3	0.8	3.5	1.1	7.7	1.5	9.3	2.2	10.3	2.8
6	24	2.1	0.0	2.8	0.3	3.2	0.7	3.4	1.0	8.3	1.5	9.5	2.1	10.5	2.8
7	6	2.5	0.0	3.4	0.2	4.1	0.6	4.5	1.0	7.8	1.5	8.7	2.1	9.8	2.8
7	12	4.2	0.0	5.6	0.2	6.4	0.6	6.9	0.9	7.4	1.4	7.7	2.1	8.3	2.8
7	18	3.4	0.0	4.6	0.1	5.1	0.5	5.3	0.9	5.6	1.4	5.7	2.1	6.0	2.8
. 7	24	2.6	0.0	3.5	0.1	3.6	0.5	3,7	0.8	3.9	1.3	4.0	2.0	4.1	2.7
8	6	1.8	0.0	2.5	0.0	2.6	0.4	2.7	0.7	2.8	1.3	2.9	2.0	2.9	2.7
8	12	1.4	0.0	1.9	0.0	2.0	0.3	2.1	0.7	2.1	1.2	2.1	1.9	2.2	2.6
8	18	1.1	0.0	1.5	0.0	1.6	0.2	1.6	0.6	1.7	1.1	1.7	1.8	1.7	2.5
8	24	0.9	0.0	1.3	0.0	1.3	0.1	1.3	0.5	1.4	1.0	1.4	1.7	1.4	2.4
9	b	2.0	0.0	2.7	0.0	3.0	0.0	3.1	0.4	3.2	0.9	3.3	1.6	3.4	2.3
9	12	2.1	0.0	2.9	0.0	3.5	0.0	3.6	0.3	4.0	0.9	4,3	1.6	4.7	2.3
9	18	1.7	0.0	2.3	0.0	2.7	0.0	2.1	0.2	3.2	0.8	3.3	1.5	3.5	2.2
9	24	1.3	0.0	1.8	0.0	2.0	0.0	2.1	0.2	2.3	0.7	2.4	-1.4		2.1
10	6	13.2	0.0	17.6	0.0	21.1	0.0	23.8	0.3	27.0	0.8	29.5	1.6	32.2	2.3
10	12	16.6	0.1	22.2	0.2	26.9	0.3	30.4	0.6	34.3	1.3	37.1	2.1		2.9
10	18	9.3	0.1	12.4	0.4	14.2	0.5	15.5	0.9	17.0	1.6	18.0	2.4	19.1	3.3
10	24	5.4	0.1	7.2	0.4	9.1	0.6	8.8	1.0	9.6	1.7	10.1	2.5	10.7	3.4

Table 5.3.2

(5/5)

BLOCK NO. : G BASE POINT : P13

DISCHARGE AND OVERFLOW VOLUME IN MCM
CAPACITY OF LOWNATER CHANNEL 70
MAXIMUM OUTFLOW IN MCM 36.288

******			********			ERIOD OF			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		·	الرجيم ويدخاه فالمتاه تروجون	-		
		J.	05	2		5		1	0	2	5	5	0	10	10
1	Ь	31.5	0.0	·	0.0		0.0			42.1	0.0	42.1	0.0	42.1	0.0
1	12	8.8	0.0	11.8	0.0	11.8	0.0	11.8	0.0	11.8	0.0	11.8	0.0	11.0	0.0
i	18	10.8	0.0	14.4	0.0	16.5	0.0	17.1	0.0	18.5	0.0	19.1	0.0	20.7	0.0
1	24	15.0	0.0	20.0	0.0	24.2	0.0	25.4	0.0	28.3	0.0	29.6	0.0	32.7	0.0
2	ь	9.7	0.0	13.0	0.0	15.0		15.5	0.0	16.8	0.0	17.4		18.6	0.0
2	12	7.5	0.0	10.0	0.0	11.2	0.0	11.6		12.4	0.0	12.8	0.0		0.0
2	18	140.0	0.3	186.7	9.8	240.1	1.3	282.5		333.6	2.3	373.4	2.7	414.2	3.1
2	24		1.3	113.5	2.5	129.6	3.8	141.1	4.8	153.7	6.0	162.9	7.0	170.3	7.9
3		36.0	1.3	48.0	2.8	52.5	4.3	55.7	5.5	59.1	6.8	61.5	7.9	63.8	9.0
3	12	20.0	0.9	26.7	2.5	28.8		30.4		32.0	6.7	33.2	7.8	34.3	8.8
3	18	43.B	0.5	58.4	2.3	64.5	3.9			76.8		83.0	7.8	86.5	8.9
3	24	68.2		91.0	2.5	99.7	4.2			116.9	7.2	125.4	8.5		
4	Ь	35.3	0.4		2.6	50.4	4.4	53.3	5.9		7.6	59.0	7.0		10.3
4	12	20.7	0.0	27.7	2.2	29.5			5.7	32.7	7.4	34.4	8.9	35.2	10.1
4	18	25.9	0.0	34.6	1.8	38.0	3.7		5.3	44.7	7.1	49.5	8.6	56.1	9.9
4	24	17.3	0.0	23.1	1.4	24.9	3.3	26.8	5.0		6.8	31.2	8.3	37.4	9.7
5	6	13.5	0.0	18.1	0.9	19.5	2.8	20.8	4.5	22.1	6.3	25.0	7.8		7.3
5	12	9.3	0.0	12.5	0.3	13.3	2.2	14.1	3.9	14.9	5.7	16.6	7.3	18.9	8.8
5	18	14.4	0.0	19.2	0.0	20.8	1.7		3.3	22.9	5.2	28.6	6.8	31.2	8.3
5	24	19.0	0.0	25.4	0.0	27.1	1.2	27.5	2.8	29.6	4.7	36.6	6.4	39.4	8.0
6	6	11.9	0.0	15.9	0.0	16.7	0.6	16.9	2.3	17.9	4.2	22.1	6.0	23.6	7.6
6	12	8.0	0.0	10.7	0.0	11.2	0.0	11.3	1.7	11.8	3.6	14.3	5.4		7.0
6	18	21.0	0.0	28.0	0.0	33.6	0.0	37.3	1.3	45.4	3.2	55.0	5.2	67.4	7.0
6	24	27.6	0.0		0.0	45.7	0.0	50.6	1.0	62.0	3, 1	71.0	5.2	86.5	7.1
7	6	18.3	0.0	24.5	0.0	28.2	0.0	30.6	0.7	36.7	3.0	42.0	5.2	51.6	7.2
7	12		0.0	49.1	0.0	54.7	0.0	58.1	0.5	61.5	2.8	63.1		66.3	7.1
7	18	26.1	0.0	34.8	0.0	38.0	0.0	39.8	0.3	41.6	2.7	42.5	4.9	44.1	7.1
7	24	19.1	0.0	25.5	0.0	27.3	0.0	28.5	0.0	29.6	2.3	30.1	4.6	31.1	6.7
8	6	14.6	0.0	19.5	0.0	20.7	0.0	21.4	0.0	22.1	1.8	22.4		23.0	6.3
8	12	11.5	0.0	15.4	0.0	16.2	0.0	16.7	0.0	17.2	1.3	17.4	3.6		5.7
8	18	9.4	0.0	12.6	0.0	13.2	0.0	13.5	0.0	13.8	0.7	14.0		14.2	5.2
Ð	24	7.9	0.0		0.0	11.0	0.0	11.3		11.5			2.4	11.8	4.5
9	b	10.8	0.0		0.0		0.0	17.1			0.0	19.1	1.8	20.7	4.0
9	12	15.0	0.0	20.0	0.0	24.2	0.0	25.4	0.0	28.3	0.0	29.6	1.3	32.7	3.5
9	18	9.7	0.0	13.0	0.0	15.0	0.0	15.5		16.8	0.0	17.4	0.8	18.6	3.0
9	24	7.5	0.0	10.0	0.0	11.2	0.0	11.6		12.3	0.0	12.8	0.2	13.5	2.5
10	6	140.0	0.3			240.1	1.3	282.5	1.8	333.6	2.3	373.4	3.0		5.7
10	12	85.2	1.3		2.5		3.8	141.1		153.7	6.0	162.9	7.2		10.5
10	18	36.0	1.3		2.8	52.5	4.3	55.7	5,5	59.1	6.8	61.5	8.2	63.8	
10	24	20.0	0.9	26.7	2.5	28.8	4,0	30.4	5.2	32.0	4.7	33.2	8.0	34.3	11.4