REPUBLIC OF INDONESIA MINISTRY OF PUBLIC WORKS DIRECTORATE GENERAL OF WATER RESOURCES DEVELOPMENT

MASTER PLAN STUDY ON LOWER ASAHAN RIVER BASIN DEVELOPMENT

INTERIM REPORT (APPENDIX II)

October 1985.

JAPAN INTERNATIONAL COOPERATION AGENCY

INTERIM REPORT FOR MASTER PLAN STUDY

ON

LOWER ASAHAN RIVER BASIN DEVELOPMENT

LIST OF REPORT

EXECUTING SUMMARY MAIN REPORT

国際協力事	「業団
受入 月日 '86. 2.27	108
登録No. 12494	SDS

APPENDIX I

APPENDIX A	METEOROLOGY AND HYDROLOGY
APPENDIX B	SOIL MECHANICS
APPENDIX C	SOCIO-E CONOMY
APPENDIX D	AGRICULTURE AND IRRIGATION
APPENDIX E	SED IMENTATION
APPENDIX II	
APPENDIX F	PRESENT CONDITIONS OF RIVERS
APPENDIX G	FLOOD DISCHARGES AND DAMAGES
APPENDIX H	FLOOD CONTROL PLAN
APPENDIX I	REGULATION OF WATER LEVEL OF LAKE TOBA

APPENDIX III DRAWINGS OF URGENT FLOOD CONTROL PLAN

DATA BOOK

VOL. I		DATA ON RAINFALL, WATER LEVEL AND DISCHARCE
VOL. I	I	RIVER SURVEY RESULTS
VOL. I	II	DAILY DISCHARGE RECORD AT SIRUAR AND
		SIMOREA, DAILY WATER LEVEL RECORD OF LAKE
		TOBA
VOL. T	V A.	OUTPUT OF COMPUTER ON FLOOD DISCHARGE
		ANALYS IS
	в.	OUTPUT OF COMPUTER ON HYDRAULIC ANALYSIS OF
	·	RIVER CHANNEL

APPENDIX F PRESENT CONDITIONS OF RIVERS APPENDIX F

APPENDIX F PRESENT CONDITIONS OF RIVERS

TABLE OF CONTENTS

		Page	!
1.	Present Conditions of Rivers	F. 1	
	1.1 River System	F. 1	Ì
	1.2 Characteristics of Rivers	F. 1	į
	1.3 Cross-Sections and Longitudinal Profiles of River Channel	F. 3	}
	1.4 Discharge Capacity of River Channels	F. 4	ŀ
2.	River Facilities	F. 5	į
	2.1 River Dikes	F. 5	÷
	2.2 Bridge, Drainage Outlets and Intakes	F. 6	}

LIST OF 'FABLES

Table F−1	Catchment Area and Distance of Major Points from River-mouth	F 7
Table F-2	List of Existing Survey Results on Plan, Profiles and Cross-Sections of River Channel	F. 8
Table F-3	List of River Survey by JICA Study Team	f. 9
Table F-4	Manning's Roughness Coefficient under Existing Conditions of Channel applied for Calculation	F.11
Table F-5	Estimated Discharge Capacity of Existing Channel	F.12
Table F-6	River Improvement Works (1982 - 1984)	F.14
Table F-7	Creeping Distance of Existing Dike	F.15
Table F-8	Dimension of Main Bridge	F.16
Table F-9	Existing Intakes along Asahan and Silau River	F.17

LIST OF FIGURES

•			Page
Fig.	F-1	General Map of River Basin	F.18
Fig.	F2	Location Map of River Survey	F.19
Fig.	F-3	River Profile	F.20
Fig.	F-4	Discharge Capacity of Existing River Channel	F.24
Fig.	F5	Location Map of Existing Dikes	F.25
Fig.	F-6	Typical Cross-Section of Existing Dikes	F.26
Fig.	F-7	Profile of Highway Bridges	E.27
Fig.	F-8	Profile of Intakes	F.30

F.ii

1. Present Conditions of Rivers

1.1 River System

The major rivers dissecting the study area are the Bunut river in the northern part, the Asahan and Silau rivers in central part and the Kualuh river in the southern part. A general map of the said river basins is shown in Fig.F-1. The catchment area and distance at major points from the river mouth are shown in Table F-1.

1.2 Characteristics of Rivers

(1) Bunut river

The Bunut river, a big tributary of the Kiri river, has a catchment area of 621 sq.km with its 59 km length. The Bunut river originates in low hills of about 300 m in elevation, about 25 km southwestward from Kisaran. The river flows northeastward in parallel with the Silau river up to Kisaran. Downstream from Kisaran, the river flows northward throug rubber and oil palm estates and paddy field. Afterwards, the river joins the Silau Tua river at Kwala Sikasim and finally joins to the Kiri river near Labuhan Ruku. Downstream from Kisaran, three irrigation intake weirs are constructed and the lands on both banks have been developed for paddy field. To protect the land from flooding the dike of 14 km in total length has been built downstream from Serbangan intake weir.

(2) Asahan river

The Asahan river has a catchment area of 6,863 sq.km including Lake Toba catchment area of 3,674 sq.km, with 150 km length. The Asahan rive: originates from Lake Toba. The lake has vast natural regulating function by its wide water surface area of 1,100 sq.km. The water level of the lake is being controlled at about EL. 905 m by Regulating dam located at 14 km downstream from the outlet of Lake Toba.

The Asahan river flows down northeastward on steep slopes of mountain along deep and narrow valleys up to Bandar Pulau, about 65 km from Lake Toba through Siguragura and Tangga dams for hydropower generation. Downstream from Bandar Pulau, the river flows eastward and the river slo decreases gradually and the surrounding topography changes from hill to plain. The lands on both banks of the river have been developed for rubber and oil-palm estates. At a point about 3 km upstream from highway bridge at Pulau Raja, the river joins the Sakur river.

Downstream from Pulau Raja, the river flows northeastward with meanderings on the alluvial plain. The river slope decreases gradually toward downstream, being 1/4,000 and 1/13,000 respectively in the vicinity of Pulau Raja and Tanjung Balai. The dike of about 11 km in length is built on the right bank to protect the area of Padang Mahondang. In the downstream reaches from Padang Mahondang, the swamp area extends widely to the right bank and partly to the left bank.

At Tanjung Balai, the Asahan river joins the Silau river and finally empties into the Strait of Malacca. Downstream from Tanjung Balai the river widens gradually toward the sea, being 200 m and 1500 m respectively in the vicinity of Tanjung Balai and the river-mouth.

(3) Silau river

The Silau river, a big tributary of the Asahan river, has a catchment area of 1,180 sq.km with a total length of about 100 km. The river originates on the eastern slope of Mt.Parparean and flows northeastward along steep and narrow valleys. At Samba huta, it joins the Ambalutu river. Downstream from the confluence, the topography changes from hill to plain and the land beside the river has been developed for estates of rubber and oil palm. Afterwards, the river flows eastward and joins the From Jati Sari to Kisaran, the river flows Piasa river at Jati Sari. northward with meanderings on the plain. The river slope decreases gradually toward downstream from 1/800 to 1/1,500. In the downstream reaches from Kisaran, the river flows eastward and finally joins to the Asahan In this stretch, there are some irrigation inriver at Tanjung Balai. The lands on both banks of the river have takes and drainage outlets. The continuous dike has been built on been developed for paddy field. both banks to protect the land from floodings.

- F.2 -

(4) Kualuh river

The Kualuh river has a catchment area of 3,820 sq.km of wide area with its total length of 165 km. The Kualuh river originates on the northeastern slope of Mt.Sihabuhabu and flows northeastward along steep and narrow valleys. Near Pulo Dogom, the river joins the Harimau river. Downstream from Pulo Dogom, the river flows eastward and the surrounding topography changes from hill to plain. The river slope decreases gradually toward downstream. At Kuala Tani, the river joins the Natas river. In the stretch between Pulo Dogom and the confluence of the Natas river, estates of rubber and oil palm and paddy field extend to both banks of the river. To protect the paddy field, the dike has been built on the left bank in the downstream reaches of highway bridge. Afterwards, the river flows with meanderings on the alluvial plain and joins the Kanopan river at Teluk Binjai and the Kuo river at Kuala Bangka. The swamp area extends widely to the right bank downstream from the confluence of the Natas river and the left bank downstream from the confluence of the Kanopan river. Afterwards, the Kualuh river flows northward and finally empties into the Strait of Malacca at Tanjung Leidong. Downstream from the confluence of the Kuo river, the Kualuh river widens gradually toward the sea, being 200 m and 4000 m respectively in the vicivity of Kualuh Bangka and the estuary.

1.3 Cross-Sections and Longitudinal Profiles of River Channels

The existing survey results on cross-sections of the river channels are collected and those are listed in Table F-2. In order to check the collected survey results and to obtain additional cross-sections, check and supplemental survey were carried out by the Study Team during the period from November 1984 to July 1985. The items and quantity of the survey are listed in Table F-3, and the survey location is shown in Fig.F-2.

Based on the surveyed cross-sections of river channel, the longitudinal profiles of the rivers are prepared as shown in Fig.F.3 and the cross-sections are compiled in Data Book.

- F.3 -

1.4 Discharge capacity of River channels

The discharge capacity of the existing river channel are estimated based on water level calculation by the nonuniform flow method with regard to the Bunut, Asahan, Silau, Kualuh and Kanopan rivers. In the calculation, the values of Manning's roughness coefficient shown in Table F-4 are applied in this study considering the existing channel conditions.

The estimated discharge capacities are shown in Table F-5 and Fig.F-4. From the figure, the following facts are revealed :

(1) Bunut River

- (a) The channel upstream from highway bridge at Bunut has comparatively high discharge capacity more than 80 cms.
- (b) Downstream from the bridge, the capacity decrease to 70 cms near the confluence with the Beluru river.
- (c) Downstream from the confluence with Silau Tua river, the capacities increase toward the river-mouth of the Kiri river from 130 to 500 cms.

(2) Asahan river

- (a) The channel upstream from highway bridge at Pulau Raja has comparatively high discharge capacity of 1300 cms.
- (b) Downstream from the bridge, the discharge capacities decrease gradually toward downstream. Near the confluence of the Nantalu river, the capacity decreases to extremely low value of 200 cms.
- (c) Downstream from the confluence of the Lebah river, the capacities increase toward the river-mouth from 200 to 3,500 cms.

(3) Silau River

- (a) The channel upstream from Kisaran has comparatively high discharge capacity more than 950 cms.
- (b) In the vicinity of Kisaran, the capacity is 700 cms. Downstream from Kisaran, the capacity decreases from 600 to only 150 cms.

(4) Kualuh River

(a) The channel upstream from highway bridge at Gunting Saga has

· F.4 -

comparatively high discharge capacity of 1,100 cms.

- (b) Downstream from the bridge, the capacities decrease gradually toward downstream. Near the confluence with the Pamengke river, the capacity decreases to low of 200 cms.
- (c) Downstream from the confluence, the capacities increase toward the river-mouth from 350 to 1,500 cms.
- (d) The discharge capacities of the downstream reaches of the Kanopan river are from 50 to 100 cms.

2.3 River Facilities

2.1 River Dikes

In the study area, the river dikes of 86 km in total length have been constructed in the middle and lower reaches. The dike length for each river is as follows:

	Dike	length (km)	
River	Mainstream	Tributary	Total
Bunut river	14	· _	14
Silau river	28	-	28
Asahan river	11	4	15
Kualuh river	22	7	29
Total	75	11	86

The location of these existing dikes is shown in Fig. F-5. Almost all the dikes are constructed in the form of cross-section with crown width of 2.0 to 3.5 m, side slope of 1:1 to 1:2 and height of 1 to 4 m as illustrated in Fig. F-6. River improvement and rehabilitation works during 1982 to 1984 are listed in Table F-6.

The stability of existing dike body is examined using the formula of seepage line, because the existing dikes were constructed close to the stream course and the stability of dike body seems insufficient against percolation during high-water period. The formula and criteria applied are as follows:

- F.5 -

 $L = c x (k x h x t/e)^{1/2}$ Eq(F.1) Creep distance (m) Ĺ where. : Constant (2.0 m/hr) с Coefficient of permeability k : Void ratio of dike body : e Mean water depth (m) h : Duration of high water (hr) t

In this equation, dike body is defined as stable when the calculated creep distance is smaller than the allowable distance.

The assumed condition and the result of calculation are shown in Table F-5. From the table, it is preliminary concluded that the existing dikes are generally not stable against permeability, except some dikes which has smaller permeability coefficient than 0.03.

2.2 Bridge, Drainage Outlets and Intakes

The river facilities such as bridge, drainage outlet, intake exist along the river courses. The location and dimension of bridges are listed in Table F-8 and the profiles of major bridges are shown in Fig. F-7. The dimension of drainage outlets and irrigation intakes are prepared in Table F-9 and the profiles of intakes are shown in Fig. F-8.

Table F-1 Catchment Area and Distance of Major Points from River-mo	Table F-1	1 Catchment Area	and Distance	of Major	Points	from	River-mouth	ι
---	-----------	------------------	--------------	----------	--------	------	-------------	---

•	River	Point (Catchment	Distance
			area	·
		· · · · · · · · · · · · · · · · · · · ·	(Km2)	(Km)
	Bunut river			
	Mainstream	Highway Br.	115	25
	Mainstream	Confluence of Silau	292	4
	In the crock	Tua River		
	Silau Tua river	Confluence to Bunut river	323	4
	Mainstream	Confluence to Kiri river	621	0
· .	Asahan River			
	Mainstream	Outlet of Lake Toba	· _	152
	Mainstream	Regulating dam	3,674	135
	Mainstream	Sigura-gura dam		130
	Mainstream	Tangga Dam	3,820	125
	Mainstream	No.3 dam site (under planning)	3.888	117
	Mainstream	Confluence of Sakur river	4,160	80
	Sakur river	Confluence to Mainstream	311	
	Mainstream	Pulau Raja	4,471	77
	Mainstream	Simpang Empat	4,727	41
	Mainstream	Confluence of Silau river	5,101	15
	Mainstream	River-mouth	6,284	0
•	<u>Silau river</u>			
	Mainstream	Confluence of Piasa river	659	36
	Piasa river	Confluence to Silau river	330	~~
	Mainstream	Kisaran	1,036	. 23
	Mainstream	Confluence to Asahan river		0
-	Kualuh river			
•	Mainstream	Pulo dogom	1,116	117
	Mainstream	Highway Br.	1,171	102
	Mainstream	Confluence of Natas river	2,090	81
	Natas river	Confluence to Kualuh river		-
	Mainstream	Confluence of Kanopan rive		56
	Mainstream	Rivermounth	3,815	0

- F.7 -

	River Channel	
	of Existing Survey Results on Plan, Profile and Cross-section of River Channel	
	, Profile and	
	sults on Plan	
	ng Survey Rea	
	st of Existin	
	Table F.2 Li	

River	Survey Year	Surveyed Stretch	Kind of Survey	Scale	Survey Company
Asahan River	1982	River-mouth Confluence of Silau River Length: 15.8 km (Ave. interval of C-section: 50 m)	Plan Profile Cross-section	1/2,000 V: 1/200, H: 1/2,000 V: 1/200, H: 1/400	PT. Yarmaya
	I	Confluence of Silau River Confluence of Tarum River Length: 69.5 km (Ave. interval of C-section: 200 m)	Plan Profíle Cross-section	15,000 V: 1/200, H: 1/5,000 V: 1/200, H: 1/500	PT. Esconsoil
	1982	Upstream from Confluence of Tarum River Length: 12.8 km (Ave. interval of C-section: 50 m)	Plan Frofile Cross-section	1/2,000 V: 1/200, H: 1/2,000 V: 1/200, H: 1/400	PT. Yaramaya
Silau River	1981	Confluence of Asahan River Confluence of Plasa River Length: 20.5 km (Ave. interval of C-section: 50 m)	Plan Profile Cross-section	1/2,000 V: 1/200, H:1/2,000 1/200	PT. Nusantara Survey

- F.8 -

.

Table F.3 List of River Survey by JICA Study Team (1/2)

Kind of Survey	River	Stretch	Quantity	Interval (Ave)
Checking Survey				
1. Bench Mark Leveling	I	INALUM B.M - Kisaran B.M	82 km	1
2. Bench Mark Setting	Asahan Silau	Rívermouth - Confluence of Sakur R. Tg. Balaí - Confluence of Piasa R.	67 25	1.2 km 1.4 km
3. Profile Leveling	Asahan Silau	Rivermouth - Confluence of Sakur R. Tg. Balai - Confluence of Piasa R.	82 km 35 km	х 1-1- ¹
۲ ۲۰۰۰ 4. Longitudinal River ۵ Water Level Survey	Asahan Silau	Rivermouth - Confluence of Sakur R. Tg. Balaí - Confluence of Piasa R.	67 points 25 points	1.2 km 1.4 km
5. Cross-section Leveling	Asahan Silau	Rivermouth - Confluence of Sakur R. Tg. Balai - Confluence of Piasa R.	67 sections 25 sections	1.2 km 1.4 km
Supplemental Survey	•		·	
1. Bench Mark Leveling	I	Pulau Raja B.M - Aek Kanopan B.M Sungai Bajangkar B.M - Tg. Tiram B.M Aek Kanopan B.M - Teluk Binjai B.M Nantalu R.(MBK7)- Leidong R.(Air hitam)	18 KB 18 KB 35 KB 15 KB 15 KB	1111
2. Bench Mark Setting	Kualuh Bunut Nantalu Lebah Kanopan	Rivermouth - Highway Br. Rivermouth - Bunut Confluence of Asahan R10 km upstream point Confluence of Asahan R14 km upstream point Teluk Binjai - Pernangkaan	5 4 5 15 5 4 5 15	2.4 km 1.8 km 3.3 km 7.0 km 1.8 km

Table F.3 List of River Survey by JICA Study Team (2/2)

	River	Stretch	Quantity	Interval (Ave)
3. Profile Leveling	Kualuh	Rivermouth - Highway Br.	100 km	1
	Bunut	Rivermouth - Bunut	44 km	I
	Nantalu	Confluence of Asahan R10 km upstream point	10 km	ł
	Lebah	Confluence of Asahan R14 km upstream point	14 km	
	Kanopan	Teluk Binjai – Pernangkaan	7 km	I
4. Tonsitudinal River	Kualuh	Rivermouth - Highway Br.	42 points	2.4 km
Water Level Survey	Bunut	Rivermouth - Bunut	25 points	1.8 km
	Nantalu	Confluence of Asahan R10 km upstream point	4 points	3.3 km
. Cross section Leveling	Kualuh	Rivermouth - Highway Br.	42 sections	2.4 km
	Bunut	Rivermouth - Binut	25 sections	1.8 km
	Nantalu	Confluence of Asahan R10 km upstream point	4 sections	3.3 km
	Lebah	Confluence of Asahan R14 km upstream point	3 sections	7.0 km
	Kanopan	Teluk Binjai – Pernangkaan	5 sections	1.8 km

F.10 -

	Channel stretch	Manning's
1.	Bunut River	
	River-mouth - B 8 (0.1 km downstream from Balai river)	0.025
. `	B 8 - B 17 (0.5 km downstream from Panca Arga Intake)	0.030
	B 17 - B 26 (Highway bridge)	0.035
2.	<u>Asahan River</u>	
	River-mouth - P 55 (0.4 km downstream from Lebah river)	0.023
	P 55 - P 160 (0.3 km downstream from Nantalu river)	0.025
	P 160 - P 245 (16.4 km upstream from Nantalu river)	0.028
	P 245 - P 360 (Tarum river)	0.030
3.	Silau River	
	Asahan river - P 40 (2.75 km upstream from Bandar Jepang river)	0.030
	P 40 - P 510 (Highway bridge at Kisaran)	0.035
•	Kualuh River	
	River-mouth - K 19 (0.5 km upstream from Kanopan river)	0.025
	K 19 - K 31 (0.5 km upstream from Nantalu river)	0.028
	K 31 - K 42 (Highway bridge)	0.030
	Kanopan River	
	Kualuh river - KP 3 (5.4 km downstream from Road bridge)	0.028
	KP 3 - KP 5 (8.2 km upstream from Road bridge)	0.035

. .

Table F-4 Manning's Roughness Coefficient under Existing Channel Conditions applied for Calculation of Discharge Capacity

- F.11 -

Table F-5 Estimated Discharge Capacity of Existing Channel (1/2)

	Channel s	tretch Dis	charge	Capacity	(cms)
•	<u>Bunut River</u>	(including a part of the Kiri riv	ver)	. *	
	River-mouth	- B 4 (0.9 km upstream of Road H	3r.)	500	
	в 4 - в 6	(3.2 km downstream of Balai R.)	300	
	B 6 - B 10	(3.3 km upstream of Balai R.)		200	
	B 10 - B 12	(1.9 km upstream of Silau Tua	R.)	130	
	B 12 - B 18	(1.1 km upstream of Panca Arga Intake)	 L	.70	
	B 18 - B 22	(0.6 km upstream of Serbangan Intake)		70	
	B 22 - B 26	(Highway Br.)		80	
2.	<u>Asahan River</u>				
	River-mouth	- A 10 (0.4 km upstream from Silau river)		3500	
	A 10	- P 20 (0.2 km downstream from Kepayang river)		450	
	P 20	- P 60 (0.6 km km upstream from Lebah river)	·	200	
	P 60	- P 135 (5 km downstream from Nantalu river)		350	
	P 135	- P 215 (10.6 km upstream from Nantalu river)		200	
	P 215	- P 275 (14.5 km downstream from Highway bridge at Pulau	Raja)	250	
	P 275	- P 348 (Highway bridge)		350	
	P 348	- P 360 (Confluence of Sakur ri	ver)	1300	

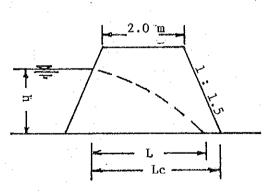
Table F-5 Estimated Discharge Capacity of Existing channel (2/2)

1

2

	Channel st	retch	Discharge	Capacity	(cms)
3.	Silau River				
	Asahan river	- P 100 (5.7 km downstrea intake, Sijambi/Simpang		150	
	P 100	- P 230 (4.1 km downstrea intake, Tasikmalaya/Air		200	
	Р 230	- P 340 (2.6 km downstrea intake, Silau/Srikamah		400	
	P 340	- P 410 (0.9 km downstrea Railway bridge)	m from	300	
	P 410	- P 460 (0.2 km upstream Kisaran road bridge)	from	600	
	Р 460	- P 510 (near highway bri	dge)	700	
	P 510	- P 733 (Confluence of Pi	asa river)	950	
4.	<u>Kualuh River</u>				
	River-mouth	- K 11 (5.9 km downstream	of Kuo R.)	1500	
	K 11 - K 18	(1.5 km downstream of K	anopan R.)	1100	
	К 18 - К 22	(5.6 km upstream of Kan	opan R.)	350	
	к 22 - к 26	(2.9 km upstream of Pam	engke R.)	200	
· .	К 26 — К 29	(0.4 km upstream of Sid	ari R.)	350	
	к 29 — к 36	(6.6 km upstream of Sim	angalam R.)	300	
	к 36 - к 39	(5.5 km downstream of H	ighway Br.)	350	
	к 39 - к 42	(Highway Br.)	•	500	
5.	Kanopan River	<u>.</u>			
	Kualuh river	- KP 2 (4.1 km upstream f Kualuh river)	rom	100	
	KP 2 - KP 4	(Road bridge)	· · ·	90	
	КР 4 - КР 5	(8.2 km upstream from R	oad bridge)	50	

Table F.6 River Improvement Works (1982 - 1984)


Site	Year	Location	Budget (million Rp.)	. Remarks
A. Asahan River				
1. Kec. Pulau Rakyat	1982	P 310 - 255 P 260	100.0	Reconstruction of broken Dike (82 Apr. Flood) Lining of river channel L = 0.415 km
2. Kec. Pulau Rakyat	1984	P 322 - 309 P 323 - 324	50.0	Heightening $L = 1.75 \text{ km}$ and New Dike $L = 0.55 \text{ km}$
3. Kec. Pulau Rakyat	1984	P 276 - 275 P 323 - 322	50.0	Reconstruction of broken Dike $L = 46 \text{ m}$ and New Dike $L = 0.31 \text{ km}$ (including
4. Kec. Pulau Rakyat	1984	P 321 - 278	50.0	drainage canal L = ∠.1 km) Reconstruction of broken Dike L = 62 m
5. Kec. Pulau Rakyat	1984	P 276 - 275	19.84	Kenabilitation of Sildgen Dike L = 1.00 Km Reconstruction of broken Dike L = 22 m
B. Silau River	•	·		
1. Kec. Air Joman	1983	P 155 - 165	251.1	Rehabilitation (R); L = 605 m (L):L = 598 m
2. Kec. Simpan Empat	1984	P 155	258.8	Heightening (R); L = 1.00 km (L): L = 1.00 km

Note : Collected from DPUP, North Sumatra

- F.14 -

Table F-7 Creeping Distance of Existing Dike

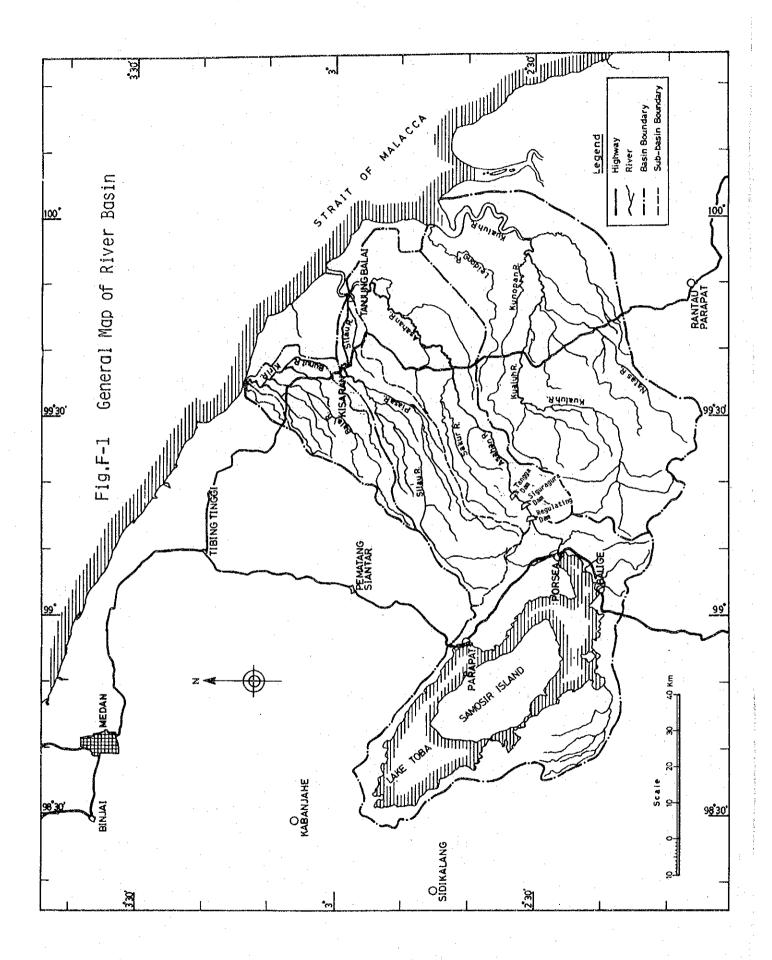
	Item		Case		
		1	2	3	
1.	Coefficient of permeability (k=0.2 m/hr)				
	- Void ratio of dike	0.5	1.0	1.5	
	- Mean water depth (m)	1.4	1.4	14	
	- Duration of flood (hr)	48	48	48	
	- Creep distance of seepage line (m)	10.4	7.3	6.0	
	- Allowable creep distance (m)	5.0	5.0	5.0	
2.	Coefficient of permeability (k=0.1 m/hr)				
	- Void ratio of dike	0.5	1.0	1.5	
	- Mean water depth (m)	1.4	1.4	1.4	
	- Duration of flood (hr)	48	. 48	48	
	- Creep distance of seepage line (m)	7.3	5.2	4.2	
	- Allowable creep distance (m)	5.0	5.0	5.0	
~					
3.	Coefficient of permeability (k=0.03 m/hr)				
	- Void ratio of dike	0.5	1.0	1.5	
	- Mean water depth (m)	1.4	1.4	1.4	
	- Duration of flood (hr)	48	48	48	
	- Creep distance of seepage line (m)	4.0	2.8	2.3	
	- Allowable creep distance (m)	5.0	5.0	5.0	

Formula applied:

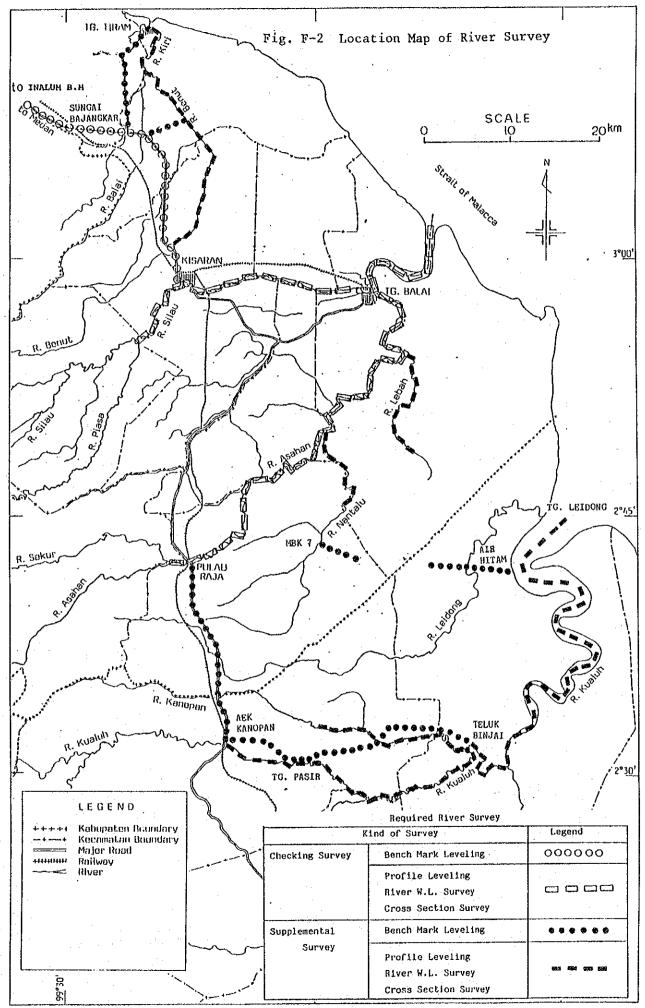
$$L = C(k.h.t/e)^{1/2}$$

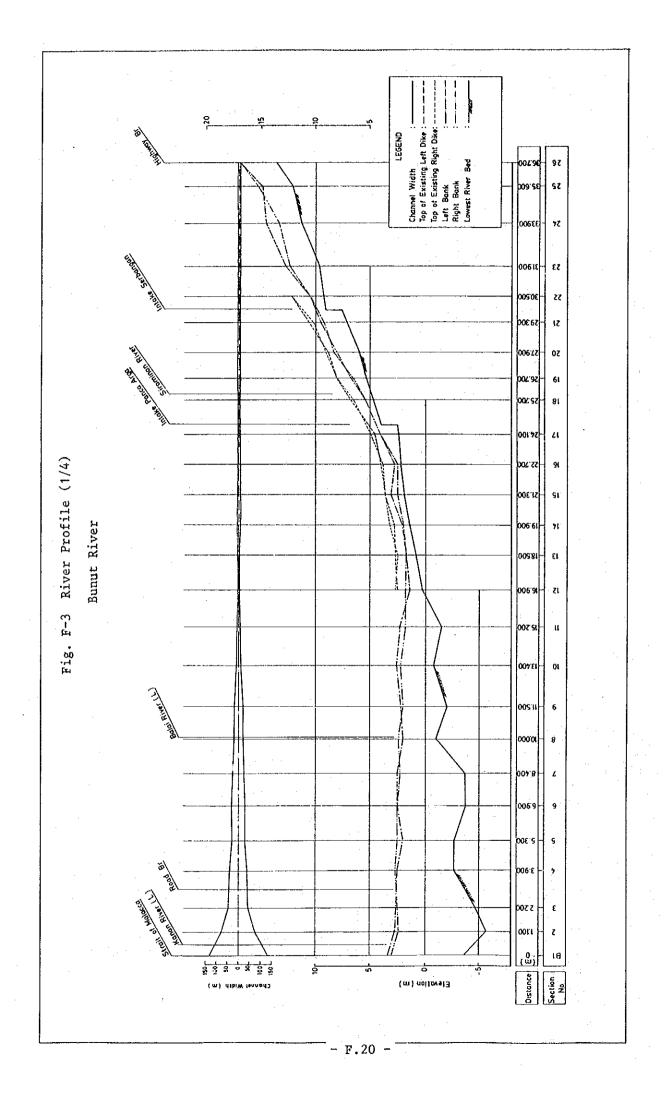
- where, L: Creep distance of seepage line (m)
 - C: Constant (2.0 m/hr)
 - k: Coefficient of permeability
 - e: Void ratio of dike body
 - h: Meam water depth (m)
 - t: Duration of flood (hr)

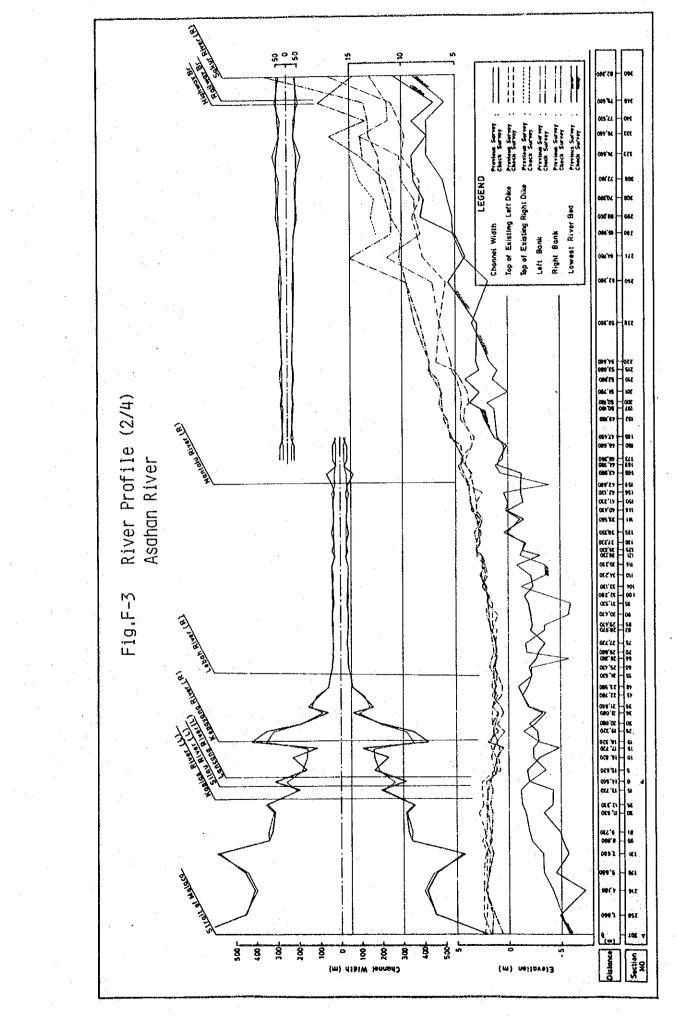
Table F.8 Dimension of Main Bridge

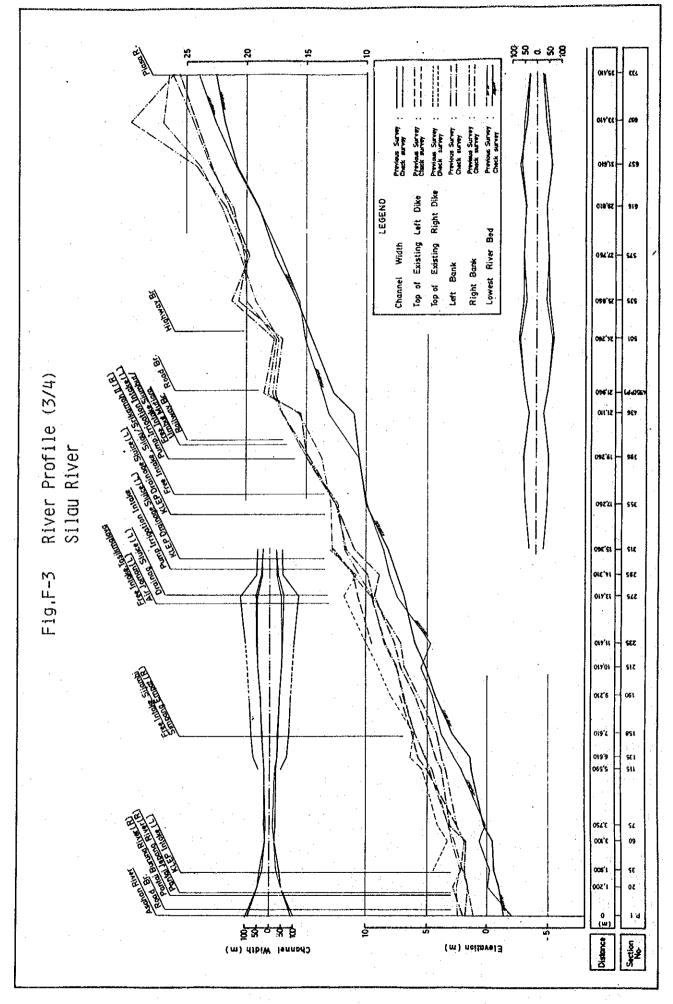

Name of Bridge	Location	Elevation of Road-face	Length (m)	Width (m) 8	Data Source	Remarks
l. Asahan R						
- Asahan Br.	P-346		28.0+33.6 +28.0 =89.6	1.0+6.0 +1.0	Bina Marga	Highway
- (Kapias kiri Br.) - (Selat Lancang Br.)	Kapias.K.R. S.Lancang R.	•	42.3 69.4	0.65+4.0+0.65 3.65	DPUP Site Survey	
2. Silau R.	:					
- Muara Silau Br.	P-3		7.5+10.5+10x 11.0+9.0=137.0	1.0+5.4 +1.0	DPUP	Reconstruction Plan is under Consideration
- Silau Br.	P-510	22.552	2(20.0+28.0) +33.6=129.6	1.0+7.0 + 1.0	Bina Marga	Highway
- Silau Br.	P-460	19.045		4.0	Bina Marga	
- (Bandar Jepang Br.)	B.Jepang R.		19.20	3.20	Site Survey	

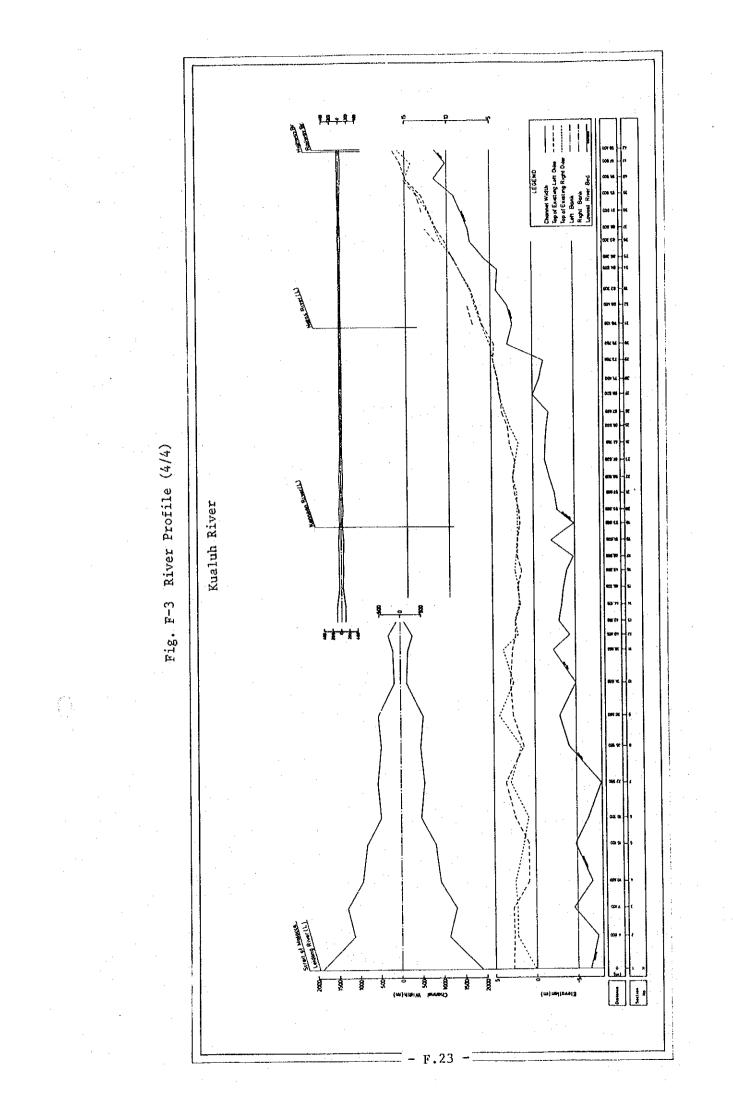
DPUP : Dinas P.U. Propínsi Dati I Sumatera Utara, Seksi Asahan

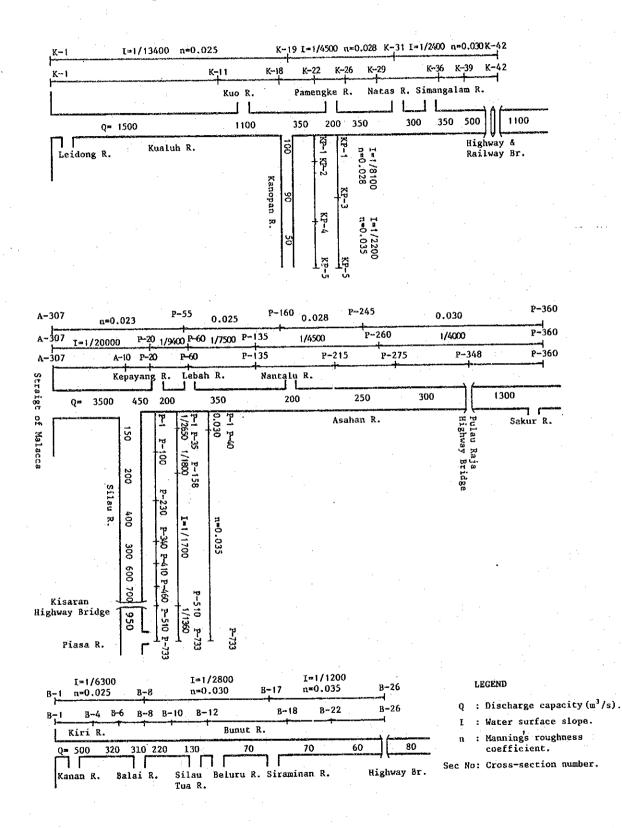

- F.16 -


Description	Location	Width (m)	Remarks	
1 Acahan River				
Padang Mahondang	P - 295 (R)	1.3 x 2	with gate	
2. Silau River				
KLEP Intake	P - 33 (L)	5.0		
Intake/Sijambi	P - 156 (R)	0.6 + 1.0 + 0.8	with gate	·
Intake/Tasik Malaya	P - 268 (L)	1.2 x 4	with gate	
Drainage Sluice	P - 278 (L)	1.0 × 2	with gate	
Pump Irrigation Intake	P - 301 (L)	0 300 x 21.5 HP x 2	not used since 1981	981
KLEP Drainage Sluice	P - 308 (L)	1.5	with gate	
KLEP Drainage Sluice	P - 347 (L)	0 800	with gate	
Intake/Srikamah Il	P - 363 (R)	1.3 x 3	with gate	
Pump Irrigation Intake	P - 395 (L)		not used since 1982	982
Intake/Siumbut-umbut	P - 408 (L)	1.2 x 3		


F.17 -


- F.18 -




- F.21 -

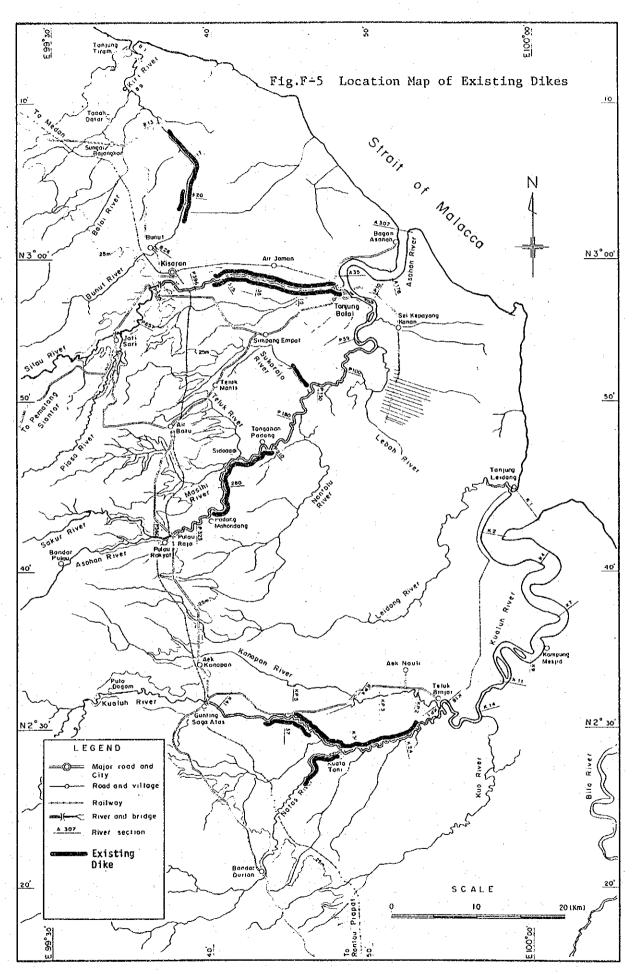

- E.22 -

Fig. F-4 Discharge Capacity of Existing River Channel

- F.24 -

÷.

- F.25 -

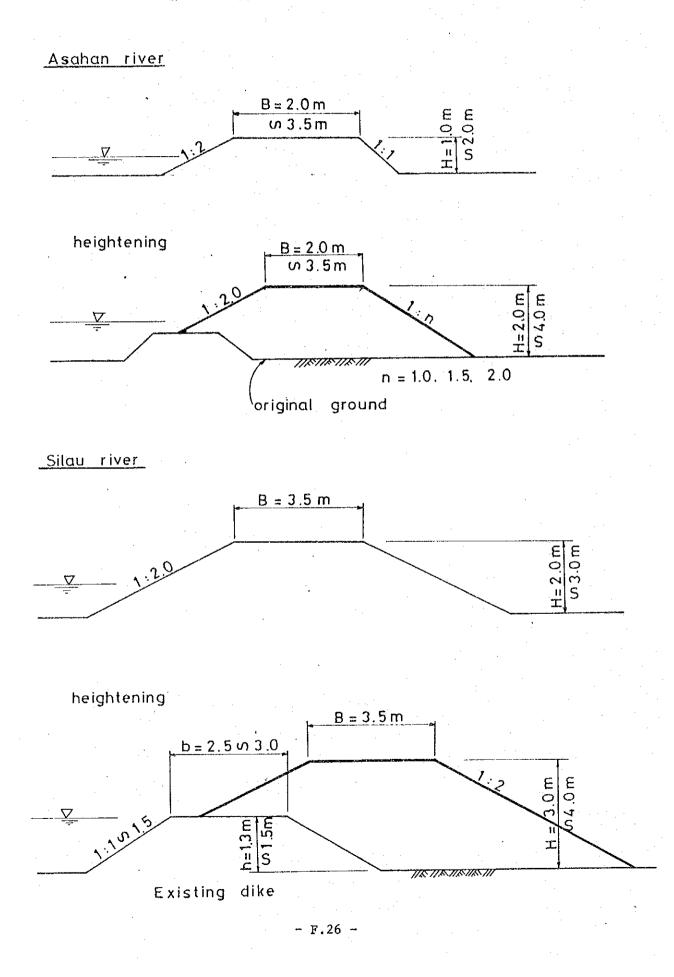
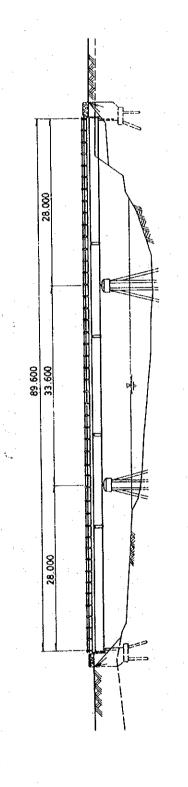
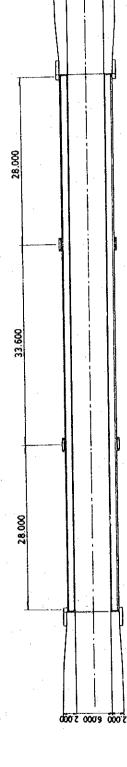
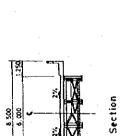
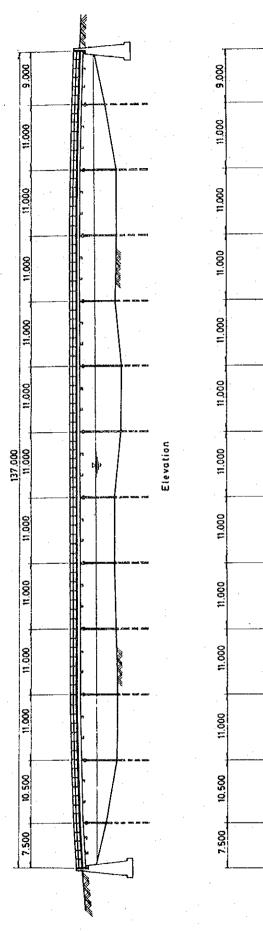




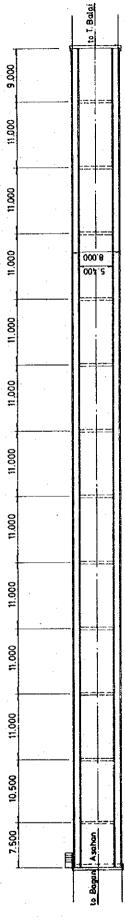
Fig. F-6 Typical Cross-Section of Existing Dike


Profile of Highway Bridges (1/3) (at Pulau Raja, Asahan River) Fig.F-7

Elevation

000 Z 000 9 000 Z




Plan

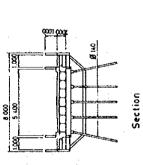
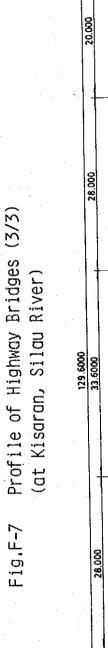
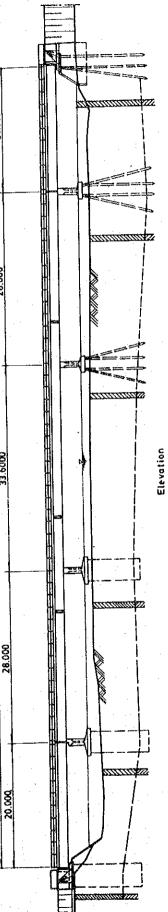
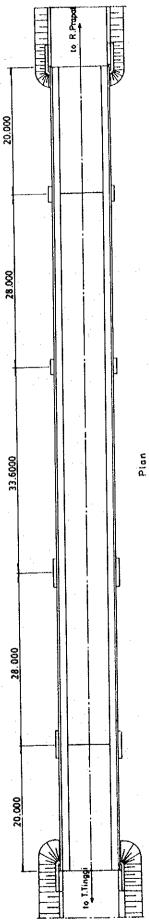
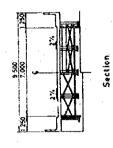

F.27 -

Fig.r-7 Profile of Highway Bridges (2/3) (at Tanjung Balai, Silau River)

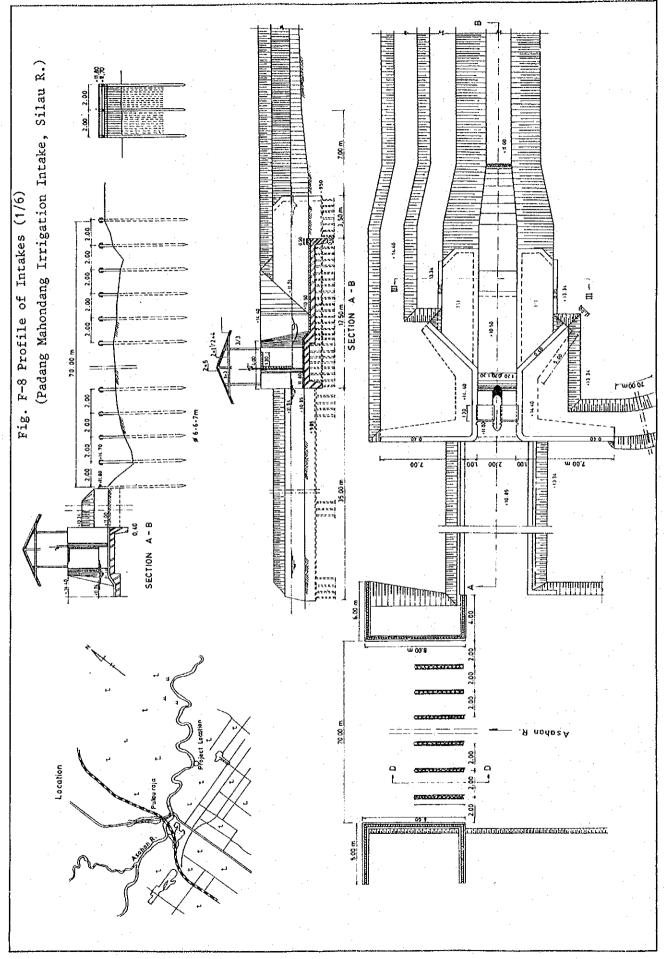


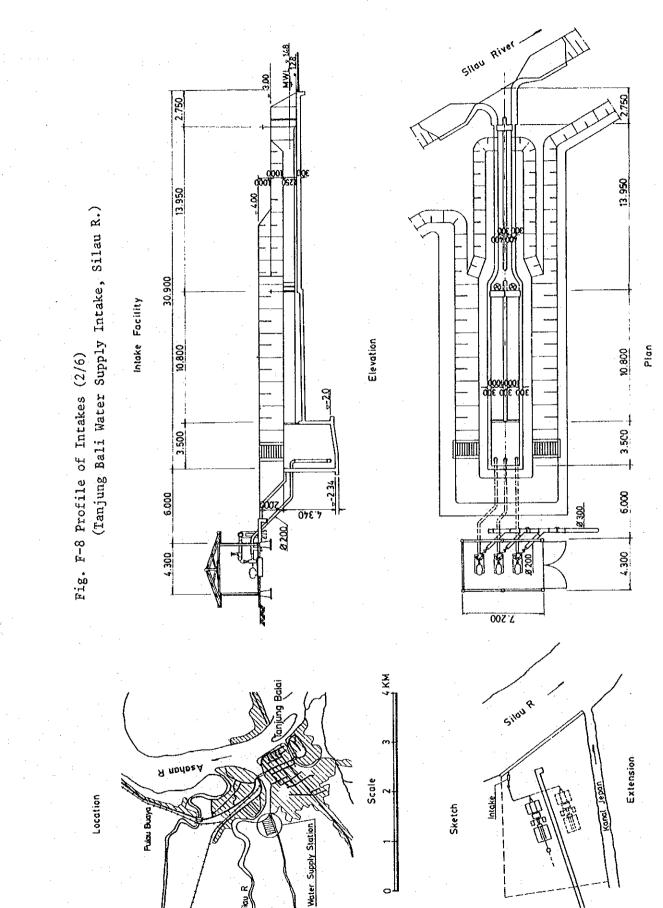



Plan



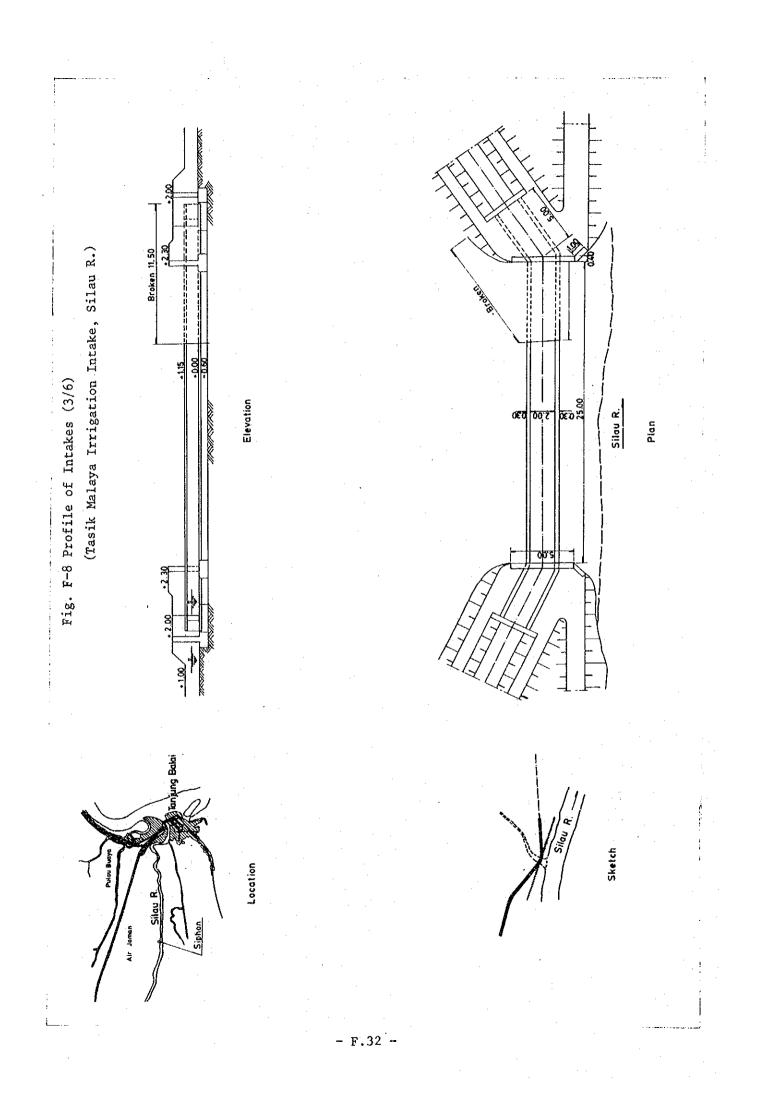
- F.28 -

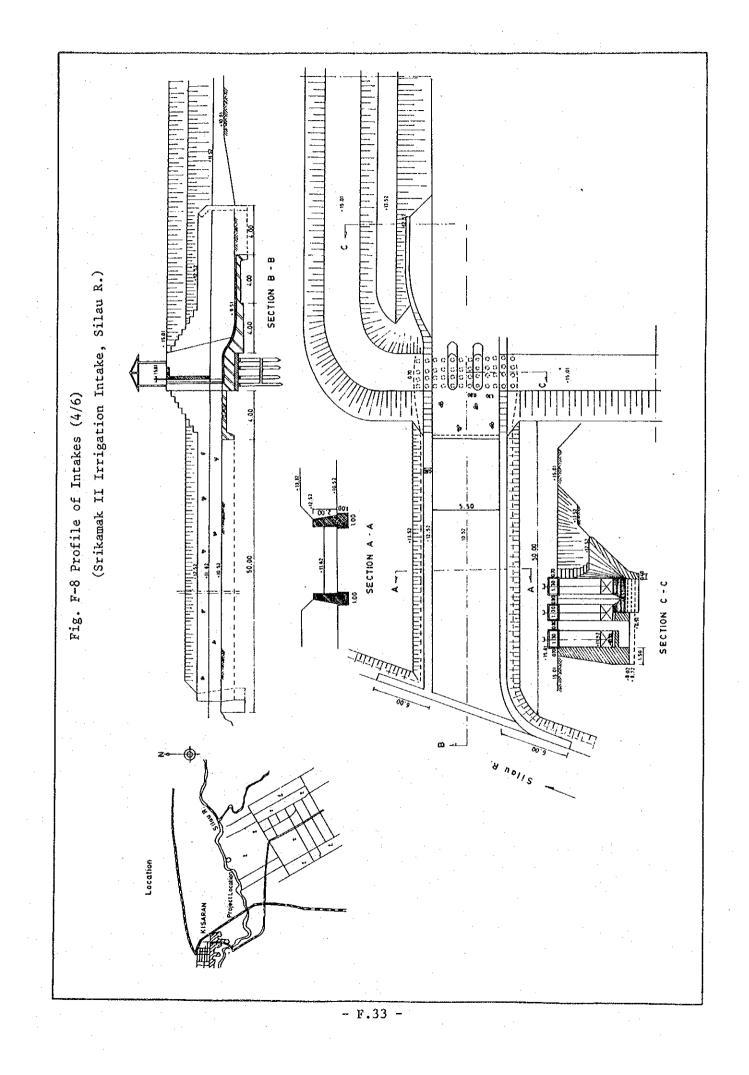


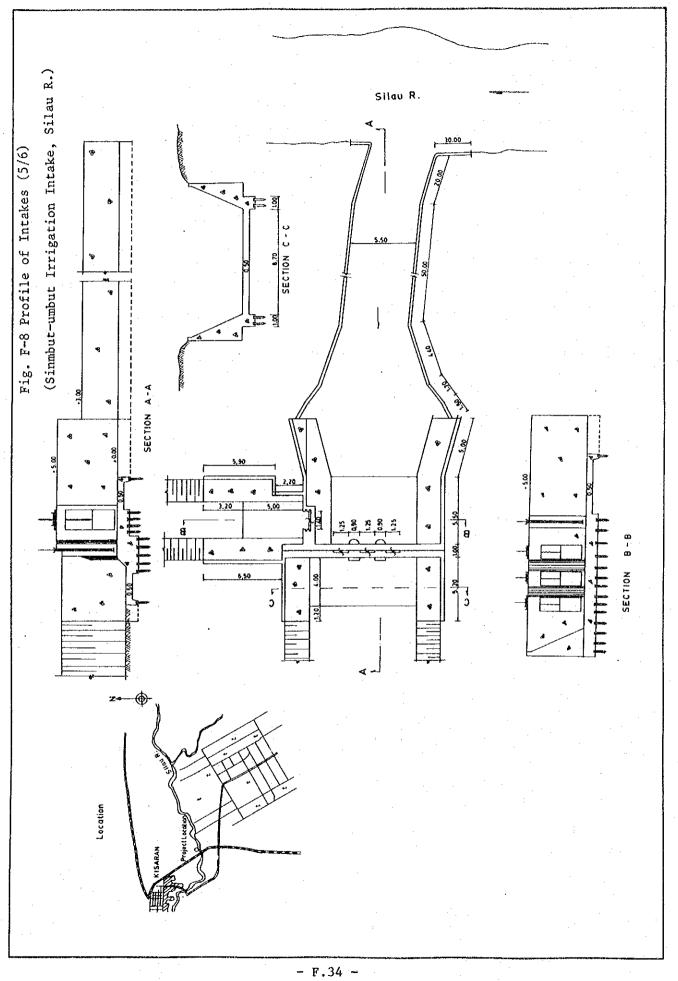


- F.29 -

- F.30 -


E.30 -




- F.31 -

.

Sildu R

APPENDIX G FLOOD DISCHARGES AND DAMAGES

APPENDIX G. FLOOD DISCHARGE AND DAMAGES

TABLE OF CONTENTS

		Page
1.	General	G. 1
2.	Flood Discharge	G. 1
	2.1 Past Major Floods	G. 1
	2.2 Flood Discharge Analysis of Asahan and Silau Rivers	G. 2
	2.3 Flood Discharge Analysis of Kualuh and Kiri River Basins	G. 6
3.	Flooding Mechanism	G. 7
	3.1 Flooding Characteristics	
	3.2 Flooding Conditions	G. 9
4.	Flood Damages	G.10
	4.1 Methodology	G.10
	4.2 Probable Flood Damages	G.18
	4.3 Average Annual Flood Damages	G.19

LIST OF TABLE

Table G- 1	Annual Maximum Discharge Records	G.20
Table G- 2	General Features of Storage Function	G.21
Table G- 3	Storage Function for Sub-basins of Asahan and Silau Rivers	G.22
Table G- 4	Discharge-Storage Relation of Existing Channel of Asahan and Silau Rivers	G.24
Table G- 5	Assumed Existing Channel Condition of Asahan and Silau Rivers	G.26
Table G- 6	Probable Peak Flood Discharges of Asahan and Silau Rivers under Existing Condition	G.27
Table G- 7	Probable Peak Flood Discharge of Asahan and Silau Rivers	G.28

Table G- 8	Discharge - Storage Relation of Improvemed Channel of Asahan and Silau Rivers	G.30
Table G- 9	Improved Channel Condition of Asahan and Silau Rivers	G.35
Table G-10	Estimated Flooding Condition due to Past Floods	G.36
Table G-11	Estimated Flooding Condition due to Probable Floods	G.37
Table G-12	Storage Function for Sub-basins of Kualuh River	G.38
Table G-13	Discharge - Storage Relation of Existing Channel of Kualuh River	G.39
Table G-14	Assumed Existing Channel Condition of Kualuh and Kiri Rivers	G.40
Table G-15	Storage Function for Sub-basins of Kiri River	G.41
Table G-16	Discharge - Storage Relation of Existing channel of Kiri River	G.42
Table G - 17	Probable Peak Flood Discharge of Kualuh and Kiri Rivers under Existing Condition	G.43
Table G-18	Probable Peak Flood Discharge of Kualuh and Kiri Rivers (with channel improvement)	G.45
Table G-19	Discharge - Storage Relation of Improved Channel of Kualuh River	G.46
Table G-20	Discharge - Storage Relation of Improved Channel of Kiri River	G.47
Table G-21	Improved Channel Condition of Kualuh and Kiri Rivers	G.48
Table G-22	Estimated Flood Damage of Past Floods	G.49
Table G-23	Estimated Flood Damage of Probable Floods	G.51
Table G-24	Average Floor Space of House/Building in Study Area	G.56
Table G-25	Unit Price of House/Building in 1985	G.57
Table G-26	Estimated Value of Household Effects in 1980	G.58
Table G-27	Groth Rate of Per-capita Regional Income and Consumer Price Index (CPI) in Medan	G.59
Table C-28	Damage Rate of Inundation and Sedimentation for House/ Building, Household Effects and Stored Goods	G.60
Table G-29	Number of Houses/Buildings in Each Kecamatan and Kotamadya of Flood Prone Area	G.61
Table G-30	Number of Households in Each Kecamatan and Kotamadya of Flood Prone Area in 1980	G.62

Page

· .		Page
Table G-31	Estimated Value of Stored Goods in Commercial Sector in 1980	G.63
Table G-32	Estimation of Property in Small Industry	G.64
Table G-33	Unit Values of House/Building, Household Effects and Stored Goods in 1985 for Flood Damage Estimation	G.66
Table G-34	Economic Price of Paddy (for Import)	G.67
Table G-35	Damage Rate of Agricultural Crops	G.68
Table G-36	Economic Price of Maize (for Import)	G.69
Table G-37	Economic Price of Soybean (for Import)	G.70
Table G-38	Unit Price of Agricaltural Crops for Flood Damage Estimation	G.71
Table G-39	Probable Flood Damages under Present Condition	G.72
Table G-40	Probable Flood Damages in AD 2005	G.77
Table G-41	Average Annual Flood Damages	G.82

LIST OF FIGURES

Fig.	G- 1	Sub-basins of Rivers	G.84
Fig.	G-2	Runoff Simulation Model of Asahan and Silau Rivers under Present Condition	G.85
Fig.	G- 3	Discharge Hydrograph of Major Floods in Asahan and Silau Rivers	G.86
Fig.	G- 4	Typical Rainfall Pattern	G.89
Fig.	G- 5	Flood Frequency of Asahan and Silau Rivers	G.90
Fig.	G- 6	Typical Rainfall Distribution during Three Months	G.91
Fig.	G- 7	Runoff Simulation Model of Asahan and Silau Rivers for Alternative Schemes	G.93
Fig.	G- 8	Runoff Simulation Model of Kualuh and Kiri River	
		Basins	G.96
Fig.	G- 9	Discharge Hydrograph of Major Floods in Kualuh River	G.98
Fig.	G-10	Possible Flooding Area	G.99
Fig.	G-11	Contour Map of Study Area	G.100
Fig.	G-12	Probable Flooding Area	G.101

1. General

This APPENDIX G presents detailed description with regard to flood discharge analysis and flood damage study including their methodology and basic approaches.

The runoff mechanism of major past floods is simulated with regard to the Asahan, Silau and Kualuh river basins. Probable flood discharge is estimated under the conditions of both existing and alternative flood control schemes on the basis of simulation analysis of the past floods. Detailed discussion for the alternative schemes is presented in APPENDIX H (FLOOD CONTROL PLAN).

Probable flood damages and average annual flood damages are estimated based on the flood-runoff analysis.

2. Flood Discharge

2.1 Past Major Floods

Water-level data were available at Pulau Raja, Kisaran and Pulo Dogom since 1977, 1973 and 1979 respectively, although it might be subjected to error in estimating flood-peak stages. Because some of them were obtained from thrice-daily staff-gage readings at 7 A.M., 12 A.M. and 5 P.M. while a series of heavy rainfall usually happens before midnight and flood due to them reaches the water-level gaging stations within 6 or 7 hours. The annual maximum discharges which were given by converting corresponding water levels are shown in Table G-1.

It is recognized that the flood of Jan.1984 was the most remarkable for Pulau Raja and Pulo Dogom while Kisaran experienced the biggest one in December 1973. The basin seems to have encountered annual maximum floods as often in September through January and also in May. It should be noticed that the discharges at Pulau Raja have been affected by the regulation of the dams upstream since February 1981. The maximum flood

- G.1 -

peak from the residual drainage area upstream from Pulau Raja seems to be recorded in September 1977 when Kisaran also experienced the second biggest flood in peak discharge since 1973.

On the other hand, the Asahan and Silau river basins might be experienced most remarkable damage due to the same flood in December 1973 according to verbal information from the site. The maximum discharge of the flood seems to be 800 m3/s on the basis of discontinuous hydrograph at Kisaran. In addition average basin rainfalls both of Pulau Raja and Kisaran in December 1, 1973 are situated in first and secondary ranks since 1963, that is, exceedance probabilities are 1/11 and 1/22 at least, respectively.

2.2 Flood Discharge Analysis of Asahan and Silau Rivers

2.2.1 Flood Runoff from Asahan and Silau River Basins

The Asahan and Silau river basins were divided into sub-basins as shown in Fig.G-1. The flood simulation model to analyze flood runoff mechanism of the Asahan and Silau river basins was installed by the Study Team. The model simulates hydraulic behavior in the basin as it responds to various flow conditions. It incorporates river basin components of sub-basins, channels, dams and retarding basins as shown in Fig.G-2. The storage-function method was selected among analytical tools to calculate flood runoff from each sub-basin and channel. Its general features are shown in Table G-2. The storage coefficients which compose the storage functions depend on both basin and channel conditions. Hydrological conditions during the floods of May 1975, Sept./Oct.1977, May 1982 and Jan.1984 were selected to determine the storage coefficients taking into account completeness of hydrological data, size of peak flood discharge and volume, duration of high water and amount of flood damage. The former two floods occurred before the construction of the Regulating and Tangga dams while the others occurred after the completion of the dams.

Average basin rainfalls to be hydrological input to the simulation model as well as falling pattern were estimated by use of isohyetal maps during the same periods because of poor records in mountainous area of which rainfall volume seems to be predominant in flood times.

Hydraulic response of the simulation model to rainfall input has to show almost the same discharge hydrographs which were observed at Pulau Raja and Kisaran if the storage coefficients are reasonable. The storage coefficients of sub-basin which were determined after several trials are shown in Table G-3. The discharge - storage relations of channels were also determined as shown in Table G-4 assuming channel conditions which is shown in Table G-5. Calculated hydrographs of flood discharge are shown in Fig.G-3 with actually observed records to demonstrate their coincidence.

(1) Runoff from residual area

After verification of the simulation model probable flood discharge was calculated with an assumption that hourly distribution of rainfall during the Sept./Oct.1977 flood would be emerged. Because peak discharge from the residual drainage area of Pulau Raja which excludes runoff from Lake Toba is the biggest in the recorded period since 1977, and Kisaran experienced the second biggest peak in discharge since 1973. In addition accumulated rainfall of the 1977 flood on hourly basis shows highly concentrated pattern as compared with those of others as shown in Fig.G-4, which would provide the biggest discharge in peak. Although the Dec.1973 flood should also be taken into consideration as a typical runoff pattern which might possibly be design flood, both data on hourly rainfall distribution and water level hydrograph at Pulau Raja are not recorded.

Probable one-day rainfall volume was taken up for the calculation of probable discharge because of the reasons below ;

- (a) All the rainfalls are daily measured at 7 A.M. every day,
- (b) Concentration time is 6 or 7 hours,
- (c) Most of rainfall series which bring floods start in the evening,
- (d) Time interval between rainfall series is longer than the concentration time.

G.3 -

(2) Runoff from Lake Toba

Data on water level of Lake Toba is available during the period of 1916 through 1932, and also from 1957 to 1984. On the other hand, outflow of Lake Toba has been observed at Siruar/Regulating dam since 1956. Annual maximum water level and outflow of Lake Toba by present regulation rule were calculated using 10-day average net inflow estimated from the above data with an assumption that initial water level of Lake Toba is EL.905.0 m at the beginning of flood. On the basis of the calculation result probable maximum outflow which was regulated by the Regulating dam was estimated as follows;

50 100 15 20 25 30 Return period (year) : 2 5 10 Max. outflow (m3/s) : 400 400 400 400 400 400 315 400 400

Detail description is presented at APPENDIX K.

(3) Flood overlapping study

Major floods in the past of which daily discharge was bigger than 170 m3/s for the residual area of Pulau Raja and also 200 m3/s for Kisaran were picked up by the Study Team in consideration of discharge capacity of existing channel. Seasonal distribution of the flood fre-quency is shown in Fig.G-5. The following flood characteristics were recognized from the frequency analysis ;

- (a) Flood is often appeared during September through January and also in May,
- (b) From a viewpoint of flood size, bigger floods occur in September through January.

Objective flood of Sep./Oct.1977 is recognized as a typical flood which satisfies the above characteristics. Considering that major floods have often been observed from September to January, big flood might possibly occur in December when the Regulating dam spills the annual maximum discharge.

On the other hand, from a viewpoint of rainfall records since 1963 when most of rainfall gaging stations started their operations, it is

- G.4 -

recognized that the residual area received much rainfall during three months from October to December in 1963 and 1969 as shown in Fig.G-6. In the same period the Regulating dam spilled remarkable outflow.

In conclusion, it is assumed that the basin receives the probable outflow from the Regulating dam in addition to the probable flood discharge from the residual area at the same time.

(4) Probable flood discharge

On the basis of the above conclusion, probable peak flood discharge was calculated at major points under present conditions. They are shown in Table G-6. Probable peak discharges under the conditions of proposed flood control schemes is also shown in Table G-7. They were calculated by use of discharge - storage relations of improved channels as shown in Table G-8, which were given with an assumption of channel conditions in Table G-9. The runoff simulation model of the alternative schemes are shown in Fig.G-7. Detailed description with regard to the alternative schemes is presented in APPENDIX H.

2.2.2 Flooding in Lower Area

In addition to the runoff simulation mentioned above, flooding condition in lower areas of the Asahan and Silau rivers was also analyzed. The lower area which has suffered from habitual inundation is recognized in the right bank of the Asahan downstream from Pulau Raja and the both sides of the Silau downstream of Kisaran. In the analysis flooding mechanism was classified into two types, that is, storage type and diffusion type in consideration of topographic features.

The diffusion-type flooding is appeared in the upper part of the area, and its topographic feature shows gentle slopes. The excess water over the river bank flows downward on the flood-plain without standing, while flow width varies depending on the discharge. On the basis of information on damage due to the past floods of Sept./Oct.1977, May 1982 and Jan.1984, the flooding conditions were estimated assuming Manning's n and slope as 0.08 and 1/2,000 respectively. They are shown in Table G-10.

- G.5 -

On the other hand, the storage-type flooding is appeared in the downstream part of the area. Its topographic feature is almost flat, and store the overflow water over the river bank because of the shortage of drainage capacity. Maximum water level, inundation area and stored volume were estimated by use of the flowing equation ;

dS(t)/dt = I(t) - O(t) Eq(G.1) where, S(t): storage (m3)

I(t): inflow (m3/s)

- O(t): outflow (m3/s)
 - t : time (sec)

The estimated maximum flooding condition during the flood time is shown in Table G-10.

Flooding condition due to probable floods was also estimated as shown in Table G-11. In the calculation of the diffusion-type flooding, it is assumed that overflow water spreads down with constant depths of 0.6 m and 0.5 m for the Asahan and Silau rivers respectively in consideration of the past flooding condition. Because the overbank flow spreads so widely without much difference in depths even though inflow discharge is increased. The maximum flooding condition in the storage-type flooding area was also estimated by use of hydrographs of probable floods as shown in Table G-11.

2.3 Flood Discharge Analysis of Kualuh and Kiri River Basins

The same methodology as those of the Asahan and Silau river basins was used to analyze flood runoff from the Kualuh and Kiri river basins. Flood-runoff simulation model was provided by the Study Team as shown in Fig.G-8, of which sub-basins are shown in foregoing Fig.G-1.

The simulation model of the Kualuh river basin was examined to determine storage coefficients of sub-basins under the hydrological conditions in major past floods of Sep.1983 and Jan.1984. Simulated discharge hydrographs during the flood times are shown in Fig.G-9 with observed data. Estimated storage coefficients are also shown in Table G-12. As for runoff calculation of channels discharge - storage relations were provided

- G.6 -

as shown in Table G-13 assuming channel conditions shown in Table G-14.

The storage coefficients of the Kiri river basin were estimated in consideration of those of the Asahan and Silau river basins because discharge hydrograph of any flood has not been recorded. They are shown in Table G-15. Discharge - storage relations and assumed channel conditions are also shown in Tables G-16 and G-14 respectively.

Probable flood discharge of the both river basins was calculated at major points under present conditions. They are shown in Table G-17. Probable flood discharge under the conditions of the alternative flood control plans, which is explained in APPENDIX H, is also shown in Table G-18. It is assumed that discharge - storage relations are changed by improved channel conditions. They are shown in Table G-19 to G-21.

3. Flooding Mechanism

3.1 Flooding Characteristics

The river basins are situated in heavy rainfall zone by the monsoons and characterized by the topographic features of river profiles with steep slope. Such heavy rainfall frequently brings about inundation in lowlying area of the lower basin.

After heavy rainfall in the mountainous areas, the river stage rises rapidly in the middle reaches and river water overtops the bank exceeding the dicharge capacity. The flooding in the plain thus may be caused by the following two factors :

- (a) Overbank flow of flood water due to small discharge capacity of channel.
- (b) Insufficient capacity of drainage system in low-lying area.

Fig.G-10 shows possible flooding areas based on the data collected from DPUP, North Sumatra and the informations obtained through field survey.

- G.7 -

The flooding conditions for each river are as follows :

(1) Bunut river

As the drainage area of the Bunut river is small of 120 km2 at Serbangan irrigation weir, flood discharge and inundated area were comparatively small even in the September 1983 flood. After construction of dikes of 14 km in total length, flood damage has been further reduced.

(2) Silau river

The Silau river has continuous dikes on the both banks in the stretch between Kisaran and near Tanjung Balai. But those dikes have often been destroyed, especially in the downstream reaches, even by discharges less than its discharge capacity. It seems that those dikes are as a whole not firm and maintained with insufficiency.

(3) Asahan river

The Asahan river also has dike of 11 km long on the right bank in the downstream reaches of Pulau Raja. This dike has occasionally been destroyed by floods due to the same reasons as those of the Silau river.

The overtopping excess water runs eastward and the area on the right bank is inundated. The duration of inundation is considerably long as two or three months.

In the downstream reaches from the existing dike, the discharge capacity is smaller than that of the upstream reaches so that the excess water above capacity intrudes into the broad swamp on the right bank through various small tributaries, and the whole swamp area becomes a huge flood-plain.

In the swamp area, an intricate channel network and several rivers exist, but this system is completely inadequate to evacuate the water. As a consequence, this area is inundated for considerable long time.

(4) Kualuh river

The most floods overflow mainly to the left bank area in the middle

- G.8 -

reaches downstream from highway bridge due to the topography. The area which consists of considerably large paddy field had often suffered from floodings before the present dikes were constructed in total length of 29 km. Since then floodings have been reduced remarkably.

3.2 Flooding Conditions

According to the data on the past floods collected from DPUP, North Sumatra and the informations obtained through the field survey, the floods in the last eight years from 1977 to 1984 are as follows :

Bunut river	:	Sep.1983	
Silau river	:	Sep.1977, Apr.1983, May 1983, Feb.1984,	
		Apr.1984, May 1984 and Sep.1984.	
Asahan river	:	Oct.1977, Dec.1978, Mar.1980, Apr.1982,	
		May 1982 and Jan.1984.	
Kualuh river	:	Sep.1983, Oct.1983 and Jan.1984.	

Out of them, the following floods are selected for the estimation of flooding conditions and damage.

Asahan river	:	Sep.1977,	May 1982	and	Jan.1984
Silau river	:	Sep.1977,	May 1982	and	May 1984

In order to estimate flooding conditions, a contour map of the study area is made as shown in Fig.G-11 based on the existing data on topography. Both the contour map and results of discharge analysis in the lower area, provided flooding conditions such as inundated area, depth and duration of the said floods as shown in Table G-22.

The flooding conditions for probable floods of 2-, 10-, 30- and 100- year were also estimated as shown in Table G-23. The probable inundation area of the 10-yr and 30-yr floods are presented in Fig.G-12.

- G.9 -

4. Flood Damages

4.1 Methodology

4.4.1 Basic Strategy

Flood damages are estimated in principle, from properties in flooding area multiplied by the damage rate depending on the flooding conditions. The damages are estimated for respective properties such as house/building, household effects, stored goods, agricultural crops, public facilities and others. Damages consist of direct and indirect damages. Direct damages are further classified into three categories such as damages to buildings including properties therein, agricultural products and public facilities.

Flood damages under future condition in the year of AD 2005 are also estimated for the establishment of the long-term plan in the study area.

All the monetary values are expressed by the economic prices as of the end of March in 1985. The conversion rate of foreign and local currencies are assumed at ;

US \$ 1 = Rp 1,100 = Japanese ¥ 250

The methods adopted to the estimation of damages for respective properties are discussed further in the following paragraphs.

4.1.2 Damages to House and Household Effects

(1) Damages to houses

The unit value of residence/farmhouse under present conditions is estimated as :

Vh = Af x Cev Eq(G.2) = 75 m2 x Rp 22,400/m2 = Rp 1,680,000/house in urban area

= $45 \text{ m}^2 \times \text{Rp} \ 13,400/\text{m}^2 = \text{Rp} \ 605,000/\text{house in rural area}$ where, Vh : unit value of a house (Rp/house),

> Af : average floor space for a house (m2), and Cev: evaluated price for unit area (Rp/m2).

A weighted-mean floor space of residence/farmhouse are estimated as shown in Table G-24. As for the price of unit area for a house, weightedmean price of temporary, small, semi-parmanent and parmanent houses is applied as shown in Table G-25.

Damages to residence/farmhouses in AD 2005 are estimated based on the increases of unit value and population. Unit value of residence in urban area, e.g. in Tanjung Balai, is assumed to increase to Rp 1,875,000 for a house though the number of houses does not change.

Unit value of residence/farmhouse in rural area is estimated using the average groth rate of population and increase of unit value. Groth rate of 1.2 % per annum (1980 to 1983 in Kabs. Asahan and Labuhan Batu) is applied for the estimation under future condition. Evaluated price for unit area of house is assumed to increase to Rp 17,600/m2.

(2) Damages to household effects

The values of total household effects in residence or farmhouse are estimated as follows :

Vhe = Qhe x P Eq(C.3) = Rp 857,800/house x 2.29 = Rp 1,960,000/house in urban area = Rp 528,900/house x 2.29 = Rp 1,210,000/house in rural area where, Vhe: value of household effects per house (Rp/house), Qhe: standard value of household effects for each house (Rp/house), and P : index for estimation of current value in 1985. (= 2.29 = 1.30 x 1.76)

The standard value of house household effects are estimated using the data on monthly family expenditure in 1980 as shown in Table G-26. The average period of use and duration life of property are considered for the estimation.

Groth rate of per-capita regional income and consumer price index (CPI) of North Sumatra, which are provided in Table G-27, are applied for the estimation of the index P. Future increase of household effects is estimated based on the increase of GRDP in commercial sector. The annual groth rate of 4.5 % is adopted considering the circumstances of surrounding area.

(3) Damage rate

The rates of damage to house/building and hosehold effects are presented in Table G-28 applying Japanese standards which are also adopted in the similar projects in Indonesia.

4.1.3 Damages to Commercial Sector

(1) Damages to building

The unit value of buildings in commercial sector such as store, trade, restaurant and hotel is estimated as follows :

 $Vs = Af \times Cev$ Eq(G.4)

= 150 m2 x Rp 25,000/m2 = Rp 3,750,000/building in urban area = 100 m2 x Rp 15,000/m2 = Rp 1,500,000/building in rural area

where, Vs : unit value of building in commercial sector (Rp/building),

Af : average floor space for a building (m2), and

Cev: evaluated price for unit area (Rp/m2).

The existing buildings of commercial sector are assumed to be parmanent and semi-parmanent houses for urban and rural areas respectively.

Damages to buildings in AD 2005 are estimated based on the increases of unit value and number of buildings. Unit value of building in urban area is assumed to increase to Rp 4,500,000/building though the number of building is not change.

Unit value of building in rural area is estimated using the average increase of GRDP in commercial sector. The annual groth rate of 4.5 % is adopted for the estimation.

(2) Damages to household effects in commercial sector

Numbers of house/building and household in each Kecamatan and Kodya Tanjung Balai in and around the flood prone area are presented as shown Tables G-29 and G-30. Total number of houses/buildings except "others", which is one of the items for number of house/building, corresponds to the number of households, because owners and their families in Indonesia generally live in their stores, restaurants, hotels and small industries. Considering the above matters, the value of household effects in commercial sector are estimated in similar manner as that in residence/farmhouse, e.g.,

Vhe = Qhe x P Eq(G.5)
= Rp 857,800/building x 2.29 = Rp 1,960,000/building
in urban area
= Rp 528,900/building x 2.29 = Rp 1,210,000/building

in rural area

Increase of household effects in AD 2005 is estimated based on the increase of GRDP in commercial sector. The annual groth rate of 4.5 % is adopted for the estimation.

(3) Damages to stored goods

The value of stored goods in commercial sector is estimated as follows :

Vc = (Vsf + Vsd + Vsc + Vsfl + Vsp) x P Eq(G.6) = Rp 1,234,000/building x 1.76 = Rp 2,170,000/building where, Vc : value of stored goods in commercial sector, Vsf : stock value of food and beverage, Vsd : stock value of furnishing/durable goods, Vsfl: stock value of fuel, light, water for house, Vsp : stock value of personal goods, and P : index for estimation of current value in 1985.(= 1.76)

The total stock value is estimated as shown in Table G-31 with their 1980-prices. The quantity of stored goods in a store in 1985 is assumed to be same as those in 1980, and the average increase of CPI is applied for the index P. The value of Rp 2,170,000/building is also applied for that of the Kualuh river area in Kab. Labuhan Batu.

Increase of stored goods in commercial sector in AD 2005 is estimated

based on the increase of GRDP in commercial sector. The annual groth rate of 4.5 % is adopted for the estimation.

(4) Damage rate

The rates of damage to buildings, household effects and stored goods in commercial sector are shown in Table G-28 applying the standard in Japan.

4.1.4 Damages to Small Industry

(1) Damages to buildings

The unit value of small industry is estimated as follows : Vi = Af x Cev Eq(G.7) = 200 m2 x Rp 25,000/m2 = Rp 5,000,000/workshop in urban area = 200 m2 x Rp 20,000/m2 = Rp 4,000,000/workshop in rural area where, Vi : unit value of small industry (Rp/workshop), Af : average floor space for a workshop (m2), and Cev: evaluated price for unit area (Rp/m2).

Damages to workshop in AD 2005 are estimated based on the increases of unit value and number of workshops. Unit value of workshop in urban area is assumed to increase to Rp 6,000,000/workshop though the number of workshops is not change.

For the workshops in rural area, damages are estimated using the average increases of workshops and unit value. Average increase of 4 % per annum in Kab.Asahan from 1980 to 1983 is adopted and unit value of workshop is assumed to increase to Rp 4,800,000/workshop.

(2) Damages to household effects in small industry

In the flood prone area of the Asahan and Silau rivers, workshops of handicraft, brick and clothes occupy about 85 % of total workshops. As same as the commercial sector, owners and their families are assumed to live in their workshops. The values of total household effects in small industry are estimated in the same manner as that of ordinary house, e.g.,

Vhe = Qhe x P Eq(G.8) = Rp 857,000/workshop x 2.29 = Rp 1,960,000/workshop

- G.14 -

in urban area

= Rp 528,900/workshop x 2.29 = Rp 1,210,000/workshop
in rural area

Future increase of household effects is estimated based on the increase of GRDP in commercial sector. The annual groth rate of 4.5 % is adopted for the estimation.

(3) Damages to property in small industry

The value of stored goods in a small industry is estimated as follows :

Vi = Vsp + Vsm + Veq Eq(G.9) = Rp 10,340,000/workshop

where, Vi : value of property in a small industry,

Vsp: stock value of products,

Vsm: stock value of raw materials, and

Veq: value of machines and equipments.

The stock value of products and raw materials are estimated to be equivalent to half of monthly gross output and 82 % of monthly input cost, respectively. The gross output and input cost per workshop are estimated by the GRDP in industry sector in Kab. Asahan.

The value of machines and equipments is estimated to be equivalent to ten times of annual capital cost which is calculated by the following equation :

Cc = Pi/N - Clb Eq(G.10) where, Cc : annual capital cost (Rp/workshop),

Pi : GRDP in industry sector in Kab. Asahan (Rp/yr),

N : number of establishment in Kab. Asahan, and

Clb: total labor cost for one workshop.

Detail process of the estimation is presented in Table G-31.

Increase of stored goods in workshop in AD 2005 is estimated based on the increase of GRDP in industry sector. The annual groth rate of 7 % is adopted for the estimation considering the circumstances of surrounding area.

(4) Damage rate

The rates of damages to buildings, household effects and property of workshop for small industry are shown in Table G-28 applying the standards in Japan.

4.1.5 Damages to Other Building

The unit value of other buildings such as local government office, mosque, church, school, etc., are estimated as follows :

Vo = Af x Cev Eq(G.11)

= 250 m2 x Rp 25,000/m2 = Rp 6,250,000/building in urban area
= 200 m2 x Rp 25,000/m2 = Rp 5,000,000/building in rural area

Damages in AD 2005 are assumed to be Rp 7,500,000/building and Rp 6,000,000/building for urban and rural areas respectively, based on the increase of unit value. In the rural area, increase of population (1.2 % per annum) is also considered.

Damages to property in this category are assumed to be equivalent to 10 % of the value of building.

Unit values of house/building, household effects and stored goods are summarized in Table G-33.

4.1.6 Damages to Agricultural Crops

(1) Wetland paddy

The unit value of wetland paddy are estimated as follows : Vp = Yp x Pp Eq(G.12) = 2.5 ton/ha x Rp 193,000/ton = Rp 482,500/ha for the Asahan and Kualuh river areas in 1985 = 3.0 ton/ha x Rp 193,000/ton = Rp 564,000/ha for the Silau and Bunut river areas in 1985 where, Vp : value of paddy field in net area (Rp/ha), Yp : unit yield rate of paddy (ton/ha), and

- G.16 -

Pp : unit price of paddy (Rp/ton).

a. Unit price of paddy

Based on the price of rice predicted by the World Bank (IBRD), the firm-gate price of paddy (dry stalk paddy) is estimated at Rp 193/kg and Rp 251/kg in 1985 and 2005 respectively as shown in Table G-34. The unit yield rates of 2.5 ton/ha is adopted for the Asahan and Kualuh rivers. For the Silau and Bunut rivers, 3.0 ton/ha is adopted.

b. Cropping pattern and flood season

The representative cropping pattern in the study area is as follows:

Stage :	Transplanting	Tillering	Booling	Heading	Ripening
Month :	Oct.	Nov.	Dec.	Jan.	Feb.

On the other side, the area has a flood season from September to January which meets growing period of paddy.

c. Reduction rate

In consideration of growing stage of paddy in flood season, the yield reduction rates for respective flooding condition are presented in Table G-35.

(2) Upland crops

The upland crops are further classified into upland paddy, maize and soybean. These are the major crops in the Study Area.

For the damage estimation of upland paddy, the unit yield rate is assumed at 2.0 ton/ha and the unit price in Table G-34 is applied.

The unit prices of maize and soybean are estimated as shown in Tables G-36 and G-37 respectively, and prices per unit area are listed in Table G-38 with paddy price.

Their reduction rates are presented in Table G-35.

(3) Rubber, oil palm and other crops

Flood damages to other products such as cassava, sweet potato, peanut, and estate products of rubber and oil palm are assumed at 5 % of the sum of the wetland paddy and upland crops.

4.1.7 Damages to Public Facilities

Damages to public facilities such as river dike, road, bridge, irrigation intake, canal and drainage outlet are assumed at 30 % of the direct damages.

4.1.8 Indirect Damages

The indirect damages which are accrued from the losses due to interruption of smooth traffic and other economic activities in the flooding area were assumed at 10 % of the total direct flood damages.

4.2 Probable Flood Damage

4.2.1 Damages under Present Condition

Table G-39 shows the calculation result of probable flood damages under present conditions. Total flood damages are summarized below.

	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	(Rp million)			
River	2-yr	5-yr	10-yr	15-yr	30-yr	50-yr	100-yr	
Bunut River	1,139	2,111	2,597	3,083	4,493	5,904	5,985	
Asahan River	7,673	9,780	11,573	13,303	17,693	19,462	21,231	
mainstream Silau river	1,595 6,078	2,932 6,848	4,034 7,539	4,136 9,167	4,269 13,424	4,339 15,123	4,409 16,822	
Kualuh River	1,553	2,587	5,099	5,994	6,890	7,487	8,084	
mainstream Kanopan river	995 558	1,355 1,232	3,193 1,906	3,743 2,251	4,294 2,596	4,662 2,825	5,029 3,055	
Total	10,365	14,478	19,269	22,380	29,076	32,853	35,300	

4.2.2 Damages under Future Condition

Probable flood damges under future condition in the year of AD 2005 are estimated based on the increases of property and unit value. The calculation results of probable flood damages under the future conditions are presented in Table G-40 summarizing below.

·				(Rp_milliom)			
River	2-yr	5-yr	10-yr	15-yr	30-yr	50-yr	100-yr
Bunut River	1,600	3,246	4,069	4,892	7,286	9,679	9,797
Asahan River	14,471	17,991	21,006	24,804	33,904	37,620	41,299
mainstream Silau river	2,467 12,004	4,701 13,290	6,506 14,500	6,672 18,132	6,902 27,038	7,014 30,606	7,125 34,174
Kualuh River	2,142	4,189	8,339	9,905	11,470	12,513	13,556
mainstream Kanopan river	1,248 894	2,190 1,999	5,236 3,103	6,188 3,717	7,139 4,331	7,774 4,739	8,408 5,148
Total	18,213	25,426	33,414	39,601	52,696	59,812	64,652

4.3 Average Annual Flood Damages

The average annual flood damages were estimated as a cumulus of flood-damages segments derived from probable flood damages multiplied by the corresponding probability of flood occurrence.

The average annual flood damages in the year of 1985 and 2005 are estimated as shown in Table G-41 and summarized belows :

	· · · · · · · · · · · · · · · · · · ·	(Rp million)
River	AD 1985	AD 2005
Bunut River	1,352	2,048
Asahan River	5,993	11,192
mainstream Silau River	1,564 4,429	2,491 8,701
Kualuh River	1,940	3,027
mainstream Kanopan River	1,162	1,761 1,266
Total	9,285	16,267

- G.19 -

Discharge Pulo Dogom (Kualuh R.) (cms.) 450 3.26 ы. Т. Т. E Nov.22 Date W.L. Discharge 236(260) 464(530) (cms) Kisaran (Silau R.) 230 590 292 187 196 187 2.00 2.90 1.75 3.30 1.75 1.80 2.25 1.97 E May 20-21 Sep.30 - Oct.3 Sep.30 May 21 Dec.21 Nov. 20 Mar.17 Date Dec.2 Discharge 373(440) Pulau Raja (Asahan R.) (cms) 324 278 333 I W.L. 3.10 3.62 3.36 3.41 E ı l i Sep.29 Dec.13 Nov. 3 Dec.22 Date I ł I 1973 1977 1979 1974 1975 1976 1978 1980 Year

Remarks ; Discharge with parentheses is estimated by runoff culculation.

674 (666)

4.02

Jan.25

258

2.10

May 24

521 (510)

4.31

Jan.25

1984

416

3.13

Oct.23

285

2.22

May 29

317

3.32

Nov.17

1981

463

3.31

Oct.18

346(370)

2.47

May 24

491(460)

4.18

May 23

1982

544

3.60

Dec. 8

236

2.00

Dec. 18

295

3.20

Sep.13.

1983

Table G.1 Annual Maximum Discharge Records

- G.20 -

Table G.2 General Features of Storage Function

Equation for drainage area

p s = k q (storage equation)

r - q = ds/dt (continuity equation)

$$Q = 1/3.6 \quad f \quad A \quad q \quad (t + T) + 1/3.6 \quad (1 - f) \quad A \quad q \quad (t + T) + Q$$

where ; Q : runoff from a drainage area (cms)

Q : base flow (cms)
B
A : drainage area (sq.km)
f : primary runoff percentage
1
T : lag time (hr)
1
q,q : specific discharge from the primary
1 2 or saturation area (mm/hr)
r : rainfall intensity (mm/hr)
s : storage in a drainage area (mm)

k,p : coefficients

Equation for a channel

S = k 0 - T 0 (storage equation) I - 0 = ds/dt (continity equation) Q (t) = 0 (t - T) 1

where ; Q : runoff from a channel exit (cms)

0 : discharge in a channel (cms)

I : inflow to a channel (cms)

S : storage in a channel (cms.hr)

- G.21 -

Sub-basin No.	Drainage area	Coefficient			Lag-time	
· · · · · · · · · · · · · · · · · · ·	(km2)	K P		£1	(hr)	
Asahan river	5702.1					
100	3674.0	-	-	-		
101	146.0	57.46	0.333	1.0	0.591	
102	68.0	58.01	0.331	1.0	0.419	
103	107.9	50.72	0.367	1.0	1.087	
104	168.7	27.89	0.587	1.0	1.911	
105	139.9	43.99	0.411	1.0	2.028	
106	153.8	39.04	0.451	1.0	2.038	
107	28.0	23.55	0.670	1.0	0.226	
108	197.1	22.65	0.691	1.0	1.198	
109	96.7	11.40	1.000	1.0	0.398	
110	233.8(74.5)	11.40	1.000	1.0	1.648(0.91	
111	233.5(195.3)	11.40	1.000	1.0	0.667	
112	79.9	11,40	1.000	1.0	0.292	
113	227.4	11.40	1.000	1.0	1.436	
114	147.4	11.40	1.000	1.0	0.439	
(124)	(159.3)	(11.40)	(1.000)	(1.0)	(0.737)	
(125)	(85.1)	(15,12)	(0.810)	(1.0)	(1.066)	
(126)	(289.5)	(11.40)	(1,000)	(1.0)	(1.420)	

Table G.3Storage Function for Sub-basins of
Asahan and Silau Rivers (1/2)

.

Remarks ; Data with parentheses are used for floodway scheme which is discussed in APPENDIX H.

Sub-basin No.	Drainage area	С	oefficien	: E	Lag-time
	(km2)	K	Р	£ 1	(hr)
Silau river	1,201.4				
115	136.1	56.87	0.336	1.0	0.935
116	125.4	27.45	0.594	1.0	1.259
117	65.5	23.11	0.680	1.0	0.915
118	184.1	60.10	0.322	1.0	0.753
119	181.1	47.32	0.388	1.0	0,940
120	227.4	25.14	0.637	1.0	1.360
121	85.4	24.17	0.657	1.0	1.147
122	45.2	15.09	0.949	1.0	0.368
123	151.2	11.40	1.000	1.0	1.264

Table G.3	Storage Function	for Sub-basins of
	Asahan and Silau	Rivers (2/2)

	Channel 1	Chai	Channel 2	Channe		Chai	Channel 4	Channe	-
-	Q S	0	S	o	ò	Ø	S	0	S
	0	0	0	0	0	l	I	I	I
	•	- 81	80	50	75	I	I	I	t
	50 270	50	165	100	120	I		I	ł
		100	240	200	180	ł	I	I	ı
		200	350	300	225	I	I	۱	ı
	260 750	340	478	400	270	ł	1	1	I
		500	730	500	310	ł	I	I	I
	12	700	980	700	400	I	ł	1	I
		1000	1300	950	500	ŀ.	ı	I	1
		1500	1800	1300	730	l	I	1	I
		2000	2200	2000	066	ł	I	I	1
	y loursty	Cha	Channel 7	Channe	nel 8	Cha	Channel 9	Cha	Channel 10
		0	S	o		o	s	ð	S
							(c	c
	1	1	I	.1	ł	0	0	0	⊃.
		I	ł	ŀ	t	30	250	30	280
	1	1	1	I	I	50	340	50	380
	1	I	ł	I	I	100	510	100	580
	1	I	I	i	1	200	790	200	006
	1	I	I	I	1	300	1020	300	1150
	1	I	ł	I	I	500	1440	480	1520
	1	1	1	. }	ł	200	1960	700	2260
	I i I	1	I	I	1	1000	2700	1000	3100
		I	ł	.1	I	1500	3800	1500	4300
		I	I	1	ł	2000	4700	2000	5180
	1					•			

•

- G.24 -

S : Storage (m /s.hr)

(2/2)
Rivers
Silau
and
Asahan
of
Channel
Discharge - Storage Relation of Existing Channel of Asahan and Silau Rivers (
of
Relation
Storage
์ บ
Díscharg
le G.4

Channel 12 Channel 13 Channel 14 Q S Q S Q S	0 0	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Channel 1 Q S	0 0 40 176 50 200 100 310 200 470 300 600 500 830 700 1030 1470 1500 2050 2000 2050	Channe! 16 Q S S S S S S S S S S S S S S S S S S S

Table G.5 Assumed Existing Channel Condition of Asahan and Silau Rivers

River	No.	Length	Slope	Manning n	Low-water Channel Depth Width	Channel Width	Channel Width (m)
		(KIII)			(m)	/m/	
Acahan							
VSAIIAII							
Asahan		18.0	1/1300	0.030	3.0	50	80
Sakur	6	11.5	1/800	0.030	3,0	50	100
Asahan	ŝ	2.8	1/4000	0.030	а . 5	100	200
Asahan	4	I	I	I	I	ł	I
Asahan	ŝ	ı	I	ı	1	ł	
Asahan	9	I	1	ł	1	I	1
Asahan	7	1	Í	ı	ł	I	ł
Asahan	00	I			ł	i	1
Silau							
Diasa	σ	33.8	1/200	0.040	3.0	50	100
piasa biasa	10	26.2	1/600	0.035	3.0	70	140
Silau	, , ,	25.4	1/60	0.050	3.0	50	100
Silau	12	30.3	1/700	0.035	3.0	80	100
~	13	14.7	1/500	0.030	3.0	100	200
Silau	14	14.7	1/1700	0.030	3.0	120	250
Silau	15	21.7	1/1430	0.030	1.7	130	1
Silau	16		1	I	1	1	t
Silau	17	I	l	I	I	ı	1
Silau	18	ı	. 1	1	I	I	1

- G.26 -

Table G.	ł
----------	---

G.6 Probable Peak Flood Discharges of Asahan and Silau Rivers under Existing Condition

Site		· · · · · · · · · · · · · · · · · · ·	Botu	n Douis	•	(Unit	: m3/s)
SILE	2	5	10	rn Period 15	1 (year) 30	50	100
Asahan River							
Regulation dam	315	400	400	400	400	400	400
Proposed site of Parhitean dam	394	562	650	698	807	899	1,033
Before join Sakur R.	512	675	810	882	1,061	1,182	1,403
Pulau Raja	625	826	1,001	1,106	1,355	1,523	1,839
After join Teluk R.	703	848	1,022	1,127	1,377	1,546	1,861
Flood area Inflow Outflow	904 391	1,001 429	1,081 436	1,187 440	1,437 447	1,607 453	1,923 460
After join Kepayang R.	402	440	448	452	459	464	471
After join Silau R.	753	797	810	816	828	835	861
Silau River							
Kisaran	449	457	565	670	911	1,055	1,300
Tanjung Balai	362	369	375	403	463	490	532
<u> Fributaries</u>	3				·		
Sakur River	113	157	220	253	326	374	448
Masihi & Teluk Rivers	136	140	143	145	147	149	151
Nantalu & Lebah R.	140	142	143	144	145	145	146
Sukaraja River	106	106	106	106	109	116	124
Max. Flooding W.Level							
Asahan River (EL,m)	3.59	4.07	4.08	4.09	4.10	4.11	4.13
Silau River (EL,m)	3.52	3.56	3.59	3.75	4.07	4.22	4.45

Site	· · · · · · · · · · · · · · · · · · ·	30-year flood	
	Alternative 1	Alternative 2	Alternative 3
Asahan River	100	100	100
Regulation dam	400	400	400
Parhitean dam	0.07	007	0.07
Inflow	807	807	807
Outflow	500	500	500
Before join Sakur R.	753	753	753
Pulau Raja	1,067	1,067	1,067
Floodway	591	-	-
After join Masihi R.	547	935	935
After join Nantalu R.	524		974
After join Sukaraja R.	598	1,015	1,083
After join Lebah R.	620	→ .	1,085
Retarding basin			
Inflow	· -	1,127	
Outflow	-	726	
After join Kepayong R.	626	739	1,071
After join Silau R.	1,266	1,322	1,592
Silau River			
Kisaran	911	911	911
Tributaries			
Sakur River	326	326	326
Masihi & Teluk R.	147	147	147
Nantalu River	29	88	88
Sukaraja River	109	109	109
Lebah River	53	45	61
		·	
Retarding basin			
Max W.L (EL.m)	-	3.04	
Max Area (km2)	-	94.2	-
Max Vol. (MCM)	-	91.6	-
· · · · · · · · · · · · · · · · · · ·			
Remarks ; Alternative 1 A	sahan R.: chann	· · ·	

Table G-7 Probable Peak Flood Discharges of Asahan and Silau Rivers (1/2)

.

	Silau R. :	floodway channel improvement
Alternative 2	Asahan R.:	channel improvement combined with retarding basin
	Silau R. :	channel improvement
Alternative 3		channel improvement channel improvement

Table G-7

Probable Peak Flood Discharges of Asahan and Silau Rivers (2/2)

Alternative 2

-

Site	U	rgent pl	an			t : m3/s erm plan	
	•-• <u> </u>			⊽	vith Dam	ern pron	without
• /************************************	5-yr	10-yr	15-yr	15-yr	30-yr	50-yr	Dam 30-yr
Asahan River							
Regulation dam	400	400	400	400	400	400	400
Parhitean dam		·.				· · ·	
Inflow	562	650	698	698	807	899	807
Outflow	562	650	698	500	500	600	807
Before join Sakur R.	675	810	882	690	753	896	1,061
Pulau Raja	826	1,001	1,106	941	1,067	1,250	1,355
Retarding basin							
Inflow	948	1,044	1,106	1,057	1,127	1,250	1,355
Outflow	705	719	723	720	726	734	´ 755
After join Kepayong R.	718	732	736	733	739	747	762
After join Silau R. 1	,169	1,171	1,198	1,192	1,322	1,475	1,495
Silau River							
Kisaran	469	565	670	670	911	1,055	911
ributaries			·			•	
Sakur River	157	220	253	253	326	374	326 -
Masihi & Teluk R.	140	143	145	145	147	149	147
Nantalu River	86	87	87	87	88	88	88
Sukaraja River	106	106	106	106	109	116	109
Lebah River	43	43	44	44	45	47	45
etarding basin		· .					. *
Max W.L (EL.m)	2.93	3.00	3.02	3.0	1 3.04	3.07	3.10
Max Area (km2)	89.1	92.0	93.4	92.4	94.2	96.6	98.5
Max Vol. (MCM)	82.5	87.5	90.0	88.2	91.6	96.3	100.0

1. 1

					•	·	
Discharge	- Storage	Relation of :	Improved Cha	Channel of A	Asahan and Si	Silau Rivers	s (1/5)
~ s	Channel 2 Q S	<u>Channe</u> Q	nnel 3 S	Channe 0	nnel 4 S	Channe Q	lel 5 S
0	0	0	0	0	0	0	0
125		50	75	50	230	50	145
270	50 165	100	120	100	350	100	220
410		200	180	300	690	250	370
630		300	225	500	1550	500	1200
750	340 478	400	270	600	2050	200	1650
1020		500	310	800	2600	1000	2250
1200		200	400	1000	3150	1500	3000
1550	1000 1300	950	500	1500	4250		-
1980 2600	1500 1800 2000 2200	1300	730				
Alternative 2				С	0	ł	1
1				50	380	ı	ì
as	Same as	Same	e as	100	570	I	I
Alternative 1		-		300	1150	I	ı
				500	2500	I	ı
		·		600	3400	I	ł
	-			800	4300	I	I
				1000	5400	ł	1
				1500	7400	I .	I
Alternative 3							
	Same as	Same	as S	Same	88 8	Same a	as
Alternative 1	Alternative	1 Alter	Alternative 1	Alter	Alternative 2	Alternative	lative 2

- G.30 -

														1													1				
el 10 S		0	280	380	580	900	1150	1520 -	2260	3100	4300	5180				15	Alternative 1														
Channel Q		0	30	50	100	200	300	480	700	1000	1500	2000			·	Same as	Alter				·										
nel 9 S		0	250	340	510	790	1020	1440	1960	2700	3800	4700				as	Alternative 1												·		
Channel Q		0	. 30	50	100	200	300	500	700	1000	1500	2000				Same	Alter														
nel 8 S		0	340	520	840	2900	3800	5000	5800	8000	9800					I	t	Ŧ	1	I	а ^с	I	I	1	1	1		:			
Channe I Q		0	50	100	220	450	600	800	1000	1500	2000					ı	1	I	I	I	1	I	I	ļ	ì	I				:	
nel 7 S		0	330	490	740	970	1520	2180	2950	3450	4750	6550	8200		1	1		I	i	I	I	1	I	ı	1	1					
Channe Q		0	50	100	200	300	400	500	600	700	1000	1500	2000			1	1	I	1	I	I	1	I	I	I	1					
nel 6 S	tive 1	o	315	480	860	2800	3900	4700	6400						tive 2	C	320	490	066	2000	2900	3600	4300	5500							
Channel Q	Alternative	C	50	100	270	550	800	1000	1500						Alternative		505	100	320	500	630	800	1000	1500							
										•												• .									

Discharge - Storage Relation of Improved Channel of Asahan and Silau Rivers (3/5) Table G-8

Channel 6	Chai	Channel 7	Channel 8	Channel 9	Channel 10
0	o	S	Q S	0 s	Q S
Alternative 3					
· · ·	c	c		Samo ac	Same as
1	Þ	S			
1	50	375	Alternative 2	Alternative 1	Alternative 1
1	100	555			
1	200	845			
1	400	1300			
1	500	1730			
 	700	2850			•
1	1000	4300			
1	1500	6100			
1	2000	7700			
1					

Channel 14 0 S	0 0 0 30 245 50 50 330 245 80 100 500 180 200 770 300 300 980 500 300 980 700 590 1460 1000 900 2000 1500 1460 1500 2000 4250	Same as Alternative 1	Same as Alternative 1	
Channel 13 Q S	0 0 0 40 185 50 210 100 325 200 490 500 630 630 630 1060 1060 1400 1500 2100 2650	Same as Alternative 1	Same as Alternative	
Channel 12 Q S	0 0 30 360 50 490 100 740 200 1130 500 1450 700 2400 1500 4050 1500 4050 1500 4850	Same as Alternative 1	Same as Alternative 1	
Channel 11 Q S Alternative 1	0 0 40 176 50 200 100 310 200 470 300 600 500 830 1030 1470 1500 2050 2000 2600	Alternative 2 Same as Alternative 1	Alternative 3 Same as Alternative	

	Channe		Channe	anel 17.	Char	nel 18
1	0	S	Ø	S	Ŏ	S
	Alternative	ve 1				
	0	0	0	0	0 1	0
	50	200	50	380	50	145
	100	330	100	570	100	220
	200	980	200	1600	200	340
	300	1400	300	2300	320	440
	500	2100	500	3400	500	780
	200	2650	700	4400	700	1100
	1000	3400	1000	5600	1000	1400
	1500	4400	1500	7200	1500	1950
i	Alternati	<u>ve 2</u>				
	ł	9	ł	1	ł	ł
	I	ı	I	1	I	ı
		t .	1	I	ł	1
	I	I	ł	I	1	t
	I	1	I	ı	1	ı
	I	I	I	i	I	ł
	I	ł	I	ł	1	I
		I	1	1	ł	I
	1	1	I	I	1	I
	1	ı	I	I	1	I
	1	ł	I	I	I	1
I	lternative	ها ا				
	Same	as.	Same as		Same	as
		•	1			

ahan and Silau Rivers (5/5)

- G.34 -

River No.						
	Length (km)	Slope	Manning n	Depth (m)	Width (m)	Channel Width (m)
Asahan						
Asahan 1	18.0	1/1300	0.030	3.0	50	80
Sakur 2	11.5	1/800	0.030	3.0	50	100
	2.8	1/4000	0.030	3.5	100	200
Asahan 4	•	1/3500	0.030	3.0	85	500
	S.	1/3500	0.030	3.0	70	500
	•	1/3500	0.028	3.0		500
	15.0	1/3500-1/4600	0.025	2.9	110 (80)	500
	9.2	1/18000	0.023	3.0	110	800
Silau						
Piasa 9	33.8	1/200	0,040	3.0	50	100
Piasa 10	26.2	1/600	0.035	3.0	70	140
Silau 11	25.4	1/60	0.050	3.0	50	100
Silau 12	30.3	1/700	0.035	3.0	80	100
	14.7	1/500	0.030	3.0	100	200
ilau	14.7	1/1700	0.030	3.0	120	250
ilau 1	21.7	1/1430	0.030	1.7	130	255
	10.0	1/2500	0.030	1.5	70	480
Silau 17	15.3	1/3400	0.030	1.5	06	480
ilau 1	•	1/3400	0.030	2.1	160	480

Table G-10 Estimated Flooding Condition due to Past Floods

	A	sahan			Silau	
Flood	Overbank inflow (*) (m3/s)	Width (m)	Depth (m)	Overbank inflow (*) (m3/s)	Width (m)	Depth (m)
1977	239	2000	0.60	326	4000	0.48
1982	257	2000	0.63	169	2500	0.43
1984	305	5000	0.40	52	1000	0.36

Diffusion-type Flooding Area

(*) Peak discharge - carrying capacity (200 m /s)

		Asahan			Silau	
Flood	W.L (E1.m)	Area (km2)	Volume (10 m3)	W.L (E1.m)	Area (km2)	Volume (10 m3)
1977	3.12	133.6	81.3	3.58	12.4	13.1
1982	3.15	138.8	86.4	3.22	9.3	8.9
1984	3.64	191.7	172.8	3.03	7.6	6.6

Storage-type Flooding Area

- G.36 -

Table G-11 Estimated Flooding Condition due to Probable Floods

Return	Asahan		Silau	· · · · · · · · · · · · · · · · · · ·
Period (yr)	Overbank (*) inflow(m3/s)	Width (km)	Overbank (*) inflow(m3/s)	Width (km)
100	1639	13.7	1100	12.5
50	1323	11.1	855	9.7
30	1155	9.7	711	8.1
15	906	7.6	470	5.3
10	801	6.7	365	4.1
5	626	5.2	257	2.9
2	425	3.6	249	2.8

Diffusion-type Flooding Area

(*) Paek discharge - Carrying capacity (200 m3/s)

Storage-type Flooding Area

Return		Asahan		:	Silau	
Period	Max. W.L	Max.Area	Max.Volume	Max.W.L	Max.Area	Max.Volume
(yr)	(E1.m)	(km2)	(10 m6)	(E1.m)	(km2)	(10 m6)
100	4.13	243.2	270.3	4.45	21.7	28.0
50	4.11	241.6	265.4	4.22	18.7	22.8
30	4.10	240.9	263.1	4.07	16.9	19.6
15	4.09	239.8	259,9	3.75	13.8	15.0
10	4.08	239.3	258.1	3.59	12.5	13.2
5	4.07	238.2	254.8	3.56	12.2	12.9
2	3.59	186.1	164.0	3.52	11.9	12.4

Sub-basin No.	Drainage area	С	oefficien	t	Lag-time
·	(km2)	K	Р	£1	(hr)
201	529.6	37.82	0.395	1.0	2.402
202	58.6	21.20	0.622	1.0	1.016
203	459.4	34.85	0.421	1.0	1.006
204	292.8	33.08	0.439	1.0	2.088
205	381.5	40.73	0.373	1.0	1.431
206	70.7	29.77	0.477	1.0	0.793
207	71.6	12.51	0.940	1.0	0.920
208	235.2	32.32	0.447	1.0	1.016
209	52.6	11.40	1.000	1.0	0.201
210	194.8	11.40	1.000	1.0	1.162
211	148.0	21.41	0.617	1.0	0.823
212	75.1	15.08	0.812	1.0	0.591
213	134.2	11.40	1,000	1.0	0.748
214	117.1	24.72	0,551	1.0	0.960
215	306.6	11.40	1.000	1.0	1.572
216	375.4	11.40	1.000	1.0	2.018
217	85.1	15.12	0.810	1.0	1.066
218	224.8	11.40	1.000	1.0	1.274
219	96.3	11.40	1,000	1.0	0.829
Total	3909.4				

Table G-12 Storage Function for Sub-basins of Kualuh River

- G.38 -

ı River
f Kualub
Channel of K
of Existing
Relation of
. Storage
Discharge -
Table G-13

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Q S Q	00						d			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 0		S	ð	S	Ø	S	0	S	ð	S
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30 135 30 350 50 340 30 120 50 490 50 185 50 470 100 520 50 170 120 540 50 540 300 1350 300 1950 560 3200 5600 5500 1000 700 1000 5600 5600 5500 1500 1500 2500 1500 2500 1500 2500 1500 2500		c	C	C	C	0	0	0	0	0
50 185 50 470 100 520 50 170 100 740 100 280 100 700 170 720 105 260 220 1200 500 540 300 1350 300 1950 500 4100 700 10500 500 730 450 1750 430 3700 500 4100 700 10500 700 1000 3250 1000 7100 1000 6800 1500 25000 700 1700 2000 5400 2000 11500 2000 1600 30500 700 1700 2000 5400 2000 11500 2000 2000 30500 700 1700 2000 5000 1000 6800 1500 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 </td <td>50 185 50 470 100 520 170 100 720 100 740 300 540 300 1350 300 170 720 105 260 5500 5600 5600 5600 5600 5600 5600 5600 5600 5600 5600 5600 5500 5600 5600 5600 5600 5600 5600 5500 5600 5600 5600 5500 5600 5600 5500 5600 5600 5500 1500 700 10500 700 10500 700 1500 5700 1500 5500 5500 5500 5500 5500 5500 5500 5500 5500 5500 5500 500</td> <td>30.</td> <td>135</td> <td>30</td> <td>350</td> <td>50</td> <td>340</td> <td>30</td> <td>120</td> <td>50</td> <td>490</td>	50 185 50 470 100 520 170 100 720 100 740 300 540 300 1350 300 170 720 105 260 5500 5600 5600 5600 5600 5600 5600 5600 5600 5600 5600 5600 5500 5600 5600 5600 5600 5600 5600 5500 5600 5600 5600 5500 5600 5600 5500 5600 5600 5500 1500 700 10500 700 10500 700 1500 5700 1500 5500 5500 5500 5500 5500 5500 5500 5500 5500 5500 5500 500	30.	135	30	350	50	340	30	120	50	490
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	100 280 100 700 170 720 105 260 220 1200 300 540 300 1350 300 1950 360 3200 560 560 560 560 560 560 560 560 560 560 560 560 560 560 550 4100 700 10500 5600 5500 560 5500 560 5500 560 5500 560 5500 5600 5500 5600 5500 5600 5500 5600 5500 5600 5500 5500 5500 5500 2500 5500 2500	50.5	185	205	470	100	520	50	170	100	740
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	300 540 300 1350 300 1350 300 540 500 5500 5500 5500 5500 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000 <td>100</td> <td>280</td> <td>100</td> <td>700</td> <td>170</td> <td>720</td> <td>105</td> <td>260</td> <td>220</td> <td>1200</td>	100	280	100	700	170	720	105	260	220	1200
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	500 730 450 1750 430 3700 500 4100 700 10500 700 900 700 2450 700 5400 850 6200 950 18500 1000 1100 1000 5400 3250 1000 7100 1500 5500 7500 2500 7500 2500 2500 2500 2000 10800 2000 30500 30500 2000 1700 2000 11500 2000 11500 2000 10800 2000 30500 2000 1700 2000 11500 2000 11500 2000 10800 2000 30500 700 <	300	540	300	1350	300	1950	360	3200	500	5600
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	700 900 700 2450 700 5400 850 6200 950 18500 25000 2000 1100 1000 3250 1000 7100 1000 6800 1500 25000 30500 2000 1700 2000 5400 2000 11500 2000 10800 2000 30500 2000 1700 2000 11500 2000 10800 2000 30500 2000 1700 2000 11500 2000 10800 2000 30500 0	500	730	450	1750	430	3700	500	4100	700	10500
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1000 1100 1000 2500 7100 7100 6800 1500 25000 2000 1700 2000 5400 2000 11500 2000 10800 2000 30500 2000 1700 2000 5400 2000 11500 2000 10800 2000 30500 0	200	006	700	2450	200	5400	850	6200	950	18500
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2000170020005400200011500200010800200030500 $\frac{\text{Channel 8}}{0}$ $\frac{\text{Channel 19}}{2}$ $\frac{\text{Channel 110}}{2}$ $\frac{\text{Channel 11}}{2}$ $\frac{\text{Channel 110}}{2}$ $\frac{\text{Channel 110}}{2}$ $\frac{\text{Channel 8}}{2}$ $\frac{\text{Channel 19}}{2}$ $\frac{\text{Channel 110}}{2}$ $\frac{\text{Channel 110}}{2}$ $\frac{\text{Channel 110}}{2}$ $\frac{\text{Channel 8}}{2}$ $\frac{\text{Channel 19}}{2}$ $\frac{\text{Channel 110}}{2}$ $\frac{100}{2}$ $\frac{100}{2}$ $\frac{100}{2}$ $\frac{100}{2}$ $\frac{100}{2}$ $\frac{100}{20}$ $\frac{100}{20}$ $\frac{1000}{20}$ $\frac{1000}{20}$ $\frac{100}{2000}$ $\frac{1000}{2000}$ $$	1000	1100	1000	3250	1000	7100	1000	6800	1500	25000
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Channel 8 Channel 9 Channel 10 Channel 11 Channel 1 0 0 5 0 5 0 <td>2000 1</td> <td>1700</td> <td>2000</td> <td>5400</td> <td>2000</td> <td>11500</td> <td>2000</td> <td>10800</td> <td>2000</td> <td>30500</td>	2000 1	1700	2000	5400	2000	11500	2000	10800	2000	30500
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Quality Q S </td <td>r</td> <td></td> <td></td> <td></td> <td>E 4 C</td> <td></td> <td>Cha</td> <td>nel 11</td> <td>Cha</td> <td></td>	r				E 4 C		Cha	nel 11	Cha	
0 0	0 0	- - - - -		0		o		Ø		o	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 100 100 100 100 100 170									Ċ	¢
20 250 20 290 50 2900 50 240 30 70 900 50 1500 100 4400 30 420 50 70 900 50 1500 300 8400 50 1100 100 100 1500 100 5600 500 17000 1700 1700 300 7000 140 10500 700 17000 1700 1700 700 16000 1000 38000 1500 25000 17000 630 700 16000 1000 38000 1500 25000 20000 630 700 16000 1000 35000 1000 31000 1000 1000 2000 2000 2000 2000 2000 2000	20 250 20 290 50 290 50 240 30 40 400 30 550 100 4400 30 420 50 70 900 50 1500 300 8400 50 1100 100 100 1500 100 5600 500 12000 100 4200 170 300 7000 140 10500 700 17000 150 8800 340 450 12000 500 25000 1000 25000 630 700 16000 1000 38000 1500 35000 1000 31000 1000 1000 20000 2000 59000 2000 42000 48000 2000 8800 340	0	0	0	0	0	o	0	0	0	
40 400 30 550 100 4400 30 420 50 70 900 50 1500 300 8400 50 1100 100 100 1500 100 5600 500 17000 1700 1700 1700 300 7000 140 10500 700 17000 1700 1700 450 12000 500 25000 1000 2500 340 700 16000 1000 38000 1500 25000 1000 630 700 16000 1000 38000 1500 35000 1000 31000 1000 1000 20000 20000 20000 42000 2000 2000 2000	40 400 30 550 100 4400 30 420 50 70 900 50 1500 300 8400 50 1100 100 100 1500 100 5600 500 12000 100 4200 100 300 7000 140 10500 700 1700 4200 170 700 16000 1000 25000 700 17000 1500 340 700 16000 1000 38000 1500 25000 1000 630 1000 20000 29000 2000 42000 1000 31000 1000 1000 20000 2000 2000 2000 2000 2000 2000 1000 20000 2000 2000 2000 2000 2000 2000 1000 20000 2000 2000 2000 2000 2000 2000 1000 2000 2000 2000 2000 2000 2000 2000 1000 </td <td></td> <td>250</td> <td>20</td> <td>290</td> <td>50.</td> <td>2900</td> <td>20</td> <td>240</td> <td>30</td> <td></td>		250	20	290	50.	2900	20	240	30	
70 900 50 1500 300 8400 50 1100 100 100 1500 100 5600 500 12000 100 4200 170 300 7000 140 10500 700 17000 150 8800 340 450 12000 500 25000 1000 2500 500 630 700 16000 1000 38000 1500 35000 630 700 16000 1000 38000 1500 35000 1000 31000 1000 1000 20000 2000 2000 42000 2000 2000 2000	70 900 50 1500 300 8400 50 1100 100 100 100 100 100 100 100 100 170 <th100< th=""> <th100< th=""> <th100< th=""></th100<></th100<></th100<>	40	400	30	550	100	4400	30	420	50	
100 1500 100 5600 500 12000 100 4200 170 300 7000 140 10500 700 17000 150 8800 340 450 12000 500 25000 1000 25000 630 700 16000 1000 38000 1500 31000 630 1000 20000 29000 2000 42000 20000 2000 2000	100 1500 100 5600 500 12000 100 4200 170 300 7000 140 10500 700 17000 150 8800 340 450 12000 500 25000 1000 25000 500 20000 630 700 16000 1000 38000 1500 35000 1000 31000 1000 1000 20000 2000 59000 2000 42000 2000 48000 2000 Remarks ; Q : Discharge (m3/s)	70	006	50	1500	300	8400	50	1100	100	
300 7000 140 10500 700 17000 150 8800 340 450 12000 500 25000 1000 25000 630 630 700 16000 1000 35000 1500 31000 630 1000 20000 29000 2000 42000 2000 2000	300 7000 140 10500 700 17000 150 8800 340 450 12000 500 25000 1000 25000 500 20000 630 700 16000 1000 38000 1500 35000 1000 31000 1000 1000 20000 2000 59000 2000 42000 2000 48000 2000 Remarks; Q:Discharge (m3/s)	100	1500	100	5600	500	12000	100	4200	170	
450 12000 500 25000 1000 25000 630 700 16000 1000 38000 1500 35000 1000 31000 1000 1000 20000 20000 59000 20000 42000 2000 2000	450 12000 500 25000 1000 500 500 630 700 16000 1000 38000 1500 35000 1000 31000 1000 1000 20000 2000 59000 2000 42000 48000 2000 Remarks ; Q : Discharge (m3/s) 1000 2000 2000 2000 2000	300	2000	140	10500	700	17000	150	8800	340	
700 16000 1000 38000 1500 35000 1000 31000 1000 1000 20000 2000 59000 2000 42000 2000 48000 2000	700 16000 1000 38000 1500 35000 1000 31000 1000 1000 20000 2000 59000 2000 42000 2000 48000 2000 Remarks; Q:Discharge (m3/s)	450	2000	500	25000	1000	25000	500	20000	630	
1000 20000 2000 59000 2000 42000 2000 48000 2000	1000 20000 2000 59000 2000 42000 2000 48000 2000 Remarks; Q: Discharge (m3/s)	700	6000	1000	38000	1500	35000	1000	31000	1000	
	; Q : Discharg	1000	0000	2000	59000	2000	42000	2000	48000	2000	

٠

.

- G.39 -

Table G-14 Assumed Existing Channel Condition of Kualuh and Kiri Rivers

นี่ ระกวงกับออบว่านับกั ระวระว	Slope 1/1900 1/1900 1/1600 1/1600 1/2600 1/2200 1/200	Manning n 0.035 0.035 0.035 0.035 0.035 0.035 0.028 0.028 0.028 0.028 0.028	Depth Width (m) (m) (m) (m) (m) (m) 3.0 50 3.0 10 3.0 10 3.0 10 3.0 10 3.0 10 3.0 10 3.5 50 3.5 20 3.6 15 2.5 20 3.0 120-400	Width (m) 10 10 10 10 15 120-4000	(m) 2000 10 1000 2500 200
ж - 284 20 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1/1900 1/70 1/1600 1/2600 1/2600 1/2600 1/2200 1/2200 1/13400 1/13400	0.035 0.040 0.035 0.035 0.035 0.035 0.035 0.038 0.038 0.028 0.028		50 100 40 50 15 120 4000 120 4000	2000 10 150 500 1000 2500 2500 2500 2000
- 26,420 - 26,4	1/1900 1/70 1/1600 1/2400 1/2600 1/2600 1/2200 1/2200 1/3100 1/13400 1/8000	0.035 0.040 0.035 0.035 0.035 0.035 0.035 0.035 0.038 0.038		50 100 40 50 15 120 4000	2000 10 500 1000 2500 2500 2000 2000 200
ж 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1/70 1/1600 1/2600 1/2600 1/4500 1/4500 1/2200 1/8100 1/13400 1/13400	0.040 0.035 0.035 0.035 0.035 0.028 0.028 0.028		10 100 40 50 15 10-4000	10 150 500 1000 2500 2500 1000
ж 5 5 4 3 20 7 3 9 8 7 6 5 4 3 7 10 9 8 7 6 5 4 3 7 10 9 8 7 6 5 7 3 5 3 7 5 7 3 9 8 7 1 3 7 2 0 7 3 7 0 7 3 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0	1/1600 1/2400 1/4500 1/4500 1/8100 1/13400 1/13400	0.035 0.030 0.035 0.028 0.028 0.028 0.028		100 40 50 15 10-4000	150 500 2500 2500 2500 1000
R 8 7 6 5 4 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1/2400 1/2600 1/4500 1/8100 1/9300 1/13400	0.030 0.035 0.028 0.028 0.028 0.028	00000004 0000000	40 30 50 15 10 120 4000	500 1000 2500 2000 1000 2000
R. 12. 12. 12. 13. 10. 13. 12. 12. 12. 12. 12. 13. 13. 13. 13. 13. 13. 13. 13. 13. 13	1/2600 1/4500 1/2200 1/8100 1/13400 1/13400	0.035 0.028 0.028 0.028 0.028 0.025	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	30 50 15 20 120-4000	1000 2500 2000 1000
R. 8 7 6 8 7 7 7 6 8 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1/4500 1/2200 1/8100 1/13400 1/8000	0.028 0.035 0.028 0.028 0.028	.00004	50 15 20 120-4000	2500 50 2000 1000
R. 12. 22. 13. 22. 13. 22. 13. 22. 13. 20. 15. 22. 22. 22. 22. 22. 22. 22. 22. 22. 2	1/2200 1/8100 1/13400 1/13400	0.035 0.028 0.030 0.025	4 9 7 0 0 0 0 0	15 20 10 120-4000	50 2000 1000 2500-6000
R. 20. 21. 22. 23. 23. 23. 23. 23. 23. 23. 23. 23	1/8100 1/9300 1/13400 1/8000	0.028 0.030 0.025	4.0 7.0 7.0	20 10 120-4000	2000 1000 2500-6000
R. 10 9 53. 53. 53. 53. 53. 53. 53. 53. 53. 53.	1/9300 1/13400 1/8000	0.030 0.025	3.0 4.0	10 120-4000	1000 2500-4000
R. 10 53. 22. 22. 55 4 32. 56 5 4 32. 56 5 4 32. 57. 57. 57. 57. 57. 57. 57. 57. 57. 57	1/13400 1/8000	0.025	4.0	120-4000	2500-4000
R. 22. 23. 23. 23. 5 4 8 5 6 9. 6 9. 13. 9. 13. 13. 13. 13. 13. 13. 13. 13. 13. 13	1/8000				>>>+
R. 12 22. 3 4 2 23. 5 4 3 2 13. 5 9. 10.		0.030	3.0	10	1000
то ст. т. ст. 	1/10000	0.030	4.0	50	1000
т. 					
	1/620	0.035	3.0	10	20
	1/1200	0.035	2.5	10	1000
<i>€</i> €	1/2800	0.030	2.0	20	1000
	1/310-	0.035	3.0	10	20
•	1/440	0.035	3.0	10	20
	1/2000	0.030	2.5	10	500
18.	1/820	0.035	3.0	10	20
4.	1/1600	0.035	2.5	10	500
9 15.2	1/6300	0.025	4.0	60	300
12.	1/4200	0.030	3.0	30	80

- G.40 -

Sub-basin No.	Drainage area		oefficien		Lag-time
	(km2)	K	· P	f1	(hr)
301	86.1	22.87	0.636	1.0	1.350
302	30.6	17.27	0.793	1.0	0.317
303	65.0	14.99	0.886	1.0	0.444
304	112.3	16.30	0.829	1.0	1.400
305	114.2	25,55.	0,583	1.0	1.608
306	72.5	21.16	0.676	1.0	0.965
307	62.6	21.10	0.678	1.0	0.656
308	21.7	11.40	1.000	1.0	0.196
309	55.7	24.86	0.596	1.0	0.576
310	42.7	15.89	0.846	1.0	0.601
311	77.6	19.35	0.725	1.0	1.127
312	14.7	11,40	1.000	1.0	0.176
313	39.2	11.40	1.000	1.0	0.333
314	72.6	11.40	1,000	1.0	1.127
Total	867.5				

Table G-15 Storage Function for Sub-basins of Kiri River

- G.41 -

nel 5 S		0	60	105	190	330	460	570	720			nel 10	S		0	160	210	330	700	1550	2050	2750		
Channe1 Q		0	30	80°	150	300	500	700	1000			Channe1	б		0	30	50	100	200	500	700	1000		
mel 4 S		0	35 35	50	80	200	300	370	480				S		0	200	340	520	780	1000	2300	3200	4400	
<u>Channe</u> Q		0	30	50	100	300	500	700	1000		·	Channe1	ð	-	0	20	50	100	200	300	500	700	1000	
nel 3 S		0	40	130	340	880	2300	3000	3500	4100			S		0	30	60	170	650	. 006	1200	1400	1600	
Channel Q		0	20	50	100	200	400	600	800	1000		Channe1	Ø		0	30	50	100	250	400	600	800	1000	(-) (-)
mel 2 S		0	60.	100	350	920	1600	3300	4400	5400		1.	s		0	95	150	240	420	800	1000	1300	·	
Channel Q		0	20	40	100	200	300	500	200	1000		Channel	ø		0	30	60	100	200	500	700	1000		
nel 1 S		0	60	80	100	170	260	500	630	810		nel 6	S		0	50	60	120	360	1500	2000	2600	3100	2
Channel Q	-	0	30	20	70	120	200	500	700	1000		Channel	Ø		0	20	30	50	100	250	400	600	800	

Table G-16 Discharge - Storage Relation of Existing Channel of Kiri River

.

- G.42 -

	:				(Unit	: m3/s)
				(year)		· · · · · · · · · · · · · · · · · · ·
2	5	10	15	30	50	100
661	729	880	978	1101	1270	1378
657	673	795	885	1001	1170	1299
547	575	605	676	765	877	967
760	791	828	914	1022	1155	1265
669	691	705	714	734	782	822
698	719	732	741	769	816	857
747	772	789	799	812	828	849
÷.,						
51	63	70	73	80	88	95
77	92	101	105	113	121	129
197	231	253	266	287	307	325
251	294	321	338	364	390	413
290	339	353	366	389	412	433
	 657 547 760 669 698 747 51 77 197 251 	661 729 657 673 547 575 760 791 669 691 698 719 747 772 51 63 77 92 197 231 251 294	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	661729880978657673795885547575605676760791828914669691705714698719732741747772789799516370737792101105197231253266251294321338	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Return Period (year)25101530506617298809781101127065767379588510011170547575605676765877760791828914102211556696917057147347826987197327417698167477727897998128285163707380887792101105113121197231253266287307251294321338364390

Probable Peak Flood Discharges of Kualuh and Kiri Rivers under Existing Condition (1/2) Table G-17

.

- G.43 -

						· •	~ / `
· · · · · · · · · · · · · · · · · · ·		·		<u> </u>		(Unit	m3/s)
Site				n Period			
	2	5	10	.15	30	50	100
Tributaries							
Tembus R.	221	265	324	362	411	468	521
Simangalam R.	110	11 1	111	111	112	112	115
Natas R.	214	218	226	240	258	279	299
Kanopan R.	82	82	83	83	83	84	84
Kuo R.	43	43	43	43	43	44	44
Leidong R.	54	54	54	54	54	54	54
Silau Tua R.	78	93	102	108	117	125	132
Balai R.	57	. 67	74	78	85	92	98
Kanan R.	34	41	46	48	53	57	61

Table G-17 Probable Peak Flood Discharges of Kualuh and Kiri Rivers under Existing Condition (2/2)

.

.

- G.44 -

12

Síte F	eak Discharge	Site Peak D	ischarg
Ditt -	(m3/s)		13/s)
ain Stream		Main Stream	
Pulo Dogon	1101	Bunut	80
Guntung Saga Atas	1001	Desa Gajah	110
After join Simanga	1am R. 797	After join Silau Tua R.	298
After join Natas H	1055	After join Balai R.	377
After join Kanopar	R. 1006	After join Kanopan R.	394
After join Kuo R.	1036		
After join Leidong	; R. 930		·
ributaries		Tributaries	
Tembus R.	411	Silau Tua R.	117
Simangalam R.	112	Balai R.	85
Natas R.	258	Kanan R.	53
Kanopan R.	118		
Kuo R.	43		
Leidong R.	54		

Table G-18 Probable Peak Flood Discharge of Kualuh and Kiri Rivers (with Channel Improvement)

Remarks ; Probability of rainfall volume is taken up for 30-year return period.

- G.45 -

e1 6	δ	0	210	330	640	1800	4000	5000	7000	8/00	el 12	S		0	450	620	910	1200	7500	3500	9500	32500	
r hann	δ	0	50	100							Channel	Ø		0							1000.		
L K	S	0	120	170	260	3200	4100	6200	6800	10800	nel 11	S		0	240	420	1100	4200	8800	20000	31000	48000	
el han	a	0	30	50	105	360	500	850	1000	2000	Channe	0		0	20	30	50	100	150	500	1000	2000	
Н	s	0	250	380	580	1900	3700	4600	5500	0006	nnel 10		2	0	2700	4100	6200	9400	13500	17500	21000	33000	
Relation of Imp Channel	ð	0	50	100	200	400	600	800	1000	2000	Channe		7	0	50	100	200	400	600	800	1000	2000	
3 86	S	0	350	470	700	1350	1750	2450	3250	5400	9 [euu		2	0	290	550	1500	5600	10500	25000	38000	59000	(¹ / ¹ / ¹ / ¹ /
1	ð	0	30	50	100	300	450	700	1000	2000	Channe		7	0	20	30	50	100	140	500	1000	2000	100000
0is	S	0	135	185	280	540	730	006	1100	1700	Channel 8		0	0	60	100	250	380	500	670	820	960	
Table G-19] 1 Chann	σ	0	30	202	100	300	500	700	1000	2000			2	C	20	205	100	150	000	300	400	500	•
Tab Channel 1		0	460	200	1100	2300	6400	16000	19000		7 1 2 2 2	Cnanne 1 /	0	C	100	140	076	250	200	760	1000	14:00	
Cha	0	C	2 C	001	200	300	500	800	1000		01.	en o	2	Ċ	200	2 C		2 0		000	300	500	

- G.46 -

nel 5 S	0 60 190 330 460 720	nel 10 S	0 160 210 210 200 2750 2750 2750
<u>Channe</u> Q	0 30 300 500 700 1000	Channe Q	000 1000 1000 1000 1000 1000 1000 1000
nel 4 S	0 50 80 300 370 480	nnel 9 S	0 340 520 780 1000 3200 4400
Chann. 0	10000000000000000000000000000000000000	Channe Q	0 20 3000 1000 1000 1000
nel 3 S	0 40 150 620 620 1000 1400 2100	Channel 8 Q S	0 30 60 170 650 900 1400 1600 1600 3/s.hr)
Channe 0	20 20 200 200 200 200 200 200 200 200 2	Cha 0	0 0 5 30 0 100 0 250 0 400 0 800 0 800 0 1000 0 1000 Discharge (n storage (m3,
Channel 2 0 S	0 60 100 450 700 1300	Channel 7 Q S	0 240 420 800 1000 1300 1300 1300 1300 1300 1300
Cha	0 20 200 200 200 200 200 200 200 200 20	o Ch∉	0 30 60 700 700 1000 Remarks
annel 1 S	8 1 1 0 8 6 8 1 1 0 8 6 8 1 2 6 6 8 1 2 6 6	annel 6 S	0 50 1200 25000 25000 25000 3100
Cha	0 50 120 700 700 700	<u>с</u> на Q	0 200 800 800 800 800 800 800 800 800 80
		:	

- G.47 -

Table G-21 Improved Channel Condition of Kualuh and Kiri Rivers

•

River No. Length Slope Manning n Depth Width (m) 1 26.4 1/7900 0.035 3.0 70 2000 2 49.3 1/7900 0.035 3.0 100 150 2 49.3 1/700 0.035 3.0 100 100 2 4 1/7600 0.035 3.0 100 150 3 20.6 1/2500 0.035 3.0 100 150 5 10.5 1/2500 0.035 3.0 100 150 6 12.6 1/300 0.033 3.0 100 100 10 4/7.4 1/13400 0.033 2.0 100 1000 11 31.3 1/8000 0.033 3.0 100 1000 12 22.5 1/900 0.033 3.0 100 1000 11 31.3 1/8000 0.033 2.0 100 <th></th> <th></th> <th></th> <th></th> <th></th> <th>Low-water</th> <th>r Channel</th> <th>Channel Width</th>						Low-water	r Channel	Channel Width
R. 1 26.4 1/1900 0.035 3.0 50 2 49.3 1/70 0.040 3.0 10 4 17.7 1/1600 0.035 3.0 10 5 17.7 1/1600 0.035 3.0 10 6 12.5 1/2600 0.035 3.0 40 7 15.9 1/2200 0.035 3.0 40 7 15.9 1/2200 0.035 3.0 10 10 47.4 1/13400 0.033 3.0 10 11 31.3 1/13400 0.033 3.0 10 11 31.3 1/1000 0.033 3.0 10 12 12.4 1/2200 0.035 3.0 10 12 13.1 1/1200 0.035 3.0 10 21 13.1 1/1200 0.035 3.0 10 21 13.1 1/200 0.035 <th>River</th> <th>No.</th> <th>Length (km)</th> <th>Slope</th> <th></th> <th>Depth (m)</th> <th>Width (m)</th> <th>(m)</th>	River	No.	Length (km)	Slope		Depth (m)	Width (m)	(m)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								
40.3 $1/70$ 0.040 3.0 100 17.7 $1/1600$ 0.035 3.0 100 17.7 $1/1600$ 0.035 3.0 40 17.6 $1/2500$ 0.035 3.0 40 17.6 $1/2500$ 0.035 3.0 40 7.6 $1/3700$ 0.028 3.5 50 7.6 $1/3700$ 0.033 2.6 10 47.4 $1/13400$ 0.033 2.5 20 31.3 $1/19300$ 0.033 3.0 10 31.3 $1/19300$ 0.033 3.0 10 22.5 $1/10000$ 0.033 3.0 10 22.5 $1/10000$ 0.033 2.5 10 13.1 $1/1200$ 0.035 2.5 10 13.1 $1/1200$ 0.033 2.5 10 13.1 $1/140$ 0.033 2.5 10 13.1 $1/16300$ 0.033 2.6 </td <td></td> <td>.</td> <td>9</td> <td>1/1900</td> <td>0.035</td> <td>3.0</td> <td>50</td> <td>2000</td>		.	9	1/1900	0.035	3.0	50	2000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		- ~	6	1/70	0,040	3.0	10	10
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-	، ۱	0	1/1600	0.035	3.0	100	150
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	·) - 1	17.7	1/1600	0.030	3.0	05	600
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		- v^	10.5	1/2600	0.035	3.0	30	1000
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		9 49	12.6	1/2500	0.028	о . С	50	1000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	·		•	1/2200	0.035	2.0	15	50
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			•	1/3700	0.028	2.5	20	100
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$) J	-	1/9300	0.030	3.0	10	1000
31.3 $1/8000$ 0.030 3.0 10 22.5 $1/10000$ 0.030 4.0 50 22.5 $1/10000$ 0.030 4.0 50 12.4 $1/1200$ 0.035 3.0 10 13.1 $1/1200$ 0.035 2.5 10 13.1 $1/1200$ 0.035 2.0 20 9.4 $1/310$ 0.035 2.5 10 13.1 $1/440$ 0.035 3.0 10 13.1 $1/440$ 0.035 3.0 10 13.1 $1/440$ 0.035 2.5 10 13.1 $1/4200$ 0.035 2.5 10 12.6 $1/4200$ 0.035 2.5 10 12.6 $1/4200$ 0.035 2.5 10 12.6 $1/4200$ 0.036 3.0 30		, (<u></u>	. ~	1/13400	0.025	4.0	120-4000	2500-4000
22.5 $1/10000$ 0.030 4.0 50 12.4 $1/620$ 0.035 3.0 10 13.1 $1/1200$ 0.035 3.0 10 8.2 $1/1200$ 0.035 2.5 10 9.4 $1/1200$ 0.035 2.5 10 13.1 $1/1200$ 0.035 2.5 10 13.1 $1/440$ 0.035 2.5 10 13.1 $1/4200$ 0.035 2.5 10 13.1 $1/4200$ 0.035 2.5 10 12.6 $1/4200$ 0.035 2.5 10 12.6 $1/4200$ 0.035 2.5 10 12.6 $1/4200$ 0.035 2.5 10 12.6 $1/4200$ 0.035 2.5 10				1/8000	0.030	3.0	10	1000
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-	12	3	1/10000	0.030	4.0	50	1000
12.4 $1/620$ 0.035 3.0 10 13.1 $1/1200$ 0.035 2.5 10 9.4 $1/1200$ 0.035 2.5 10 9.4 $1/2800$ 0.035 2.0 20 13.1 $1/440$ 0.035 3.0 10 13.1 $1/440$ 0.035 3.0 10 13.1 $1/2000$ 0.035 3.0 10 13.1 $1/2000$ 0.035 2.5 10 13.0 $1/800$ 0.035 2.5 10 18.0 $1/1600$ 0.035 2.5 10 12.6 $1/4200$ 0.035 2.5 10 12.6 $1/4200$ 0.035 3.0 30	kiri R			 				
13.1 $1/1200$ 0.035 2.5 10 8.2 $1/2800$ 0.030 2.0 20 9.4 $1/2800$ 0.035 2.0 10 13.1 $1/440$ 0.035 3.0 10 13.1 $1/440$ 0.035 3.0 10 13.1 $1/2000$ 0.035 3.0 10 18.0 $1/2000$ 0.035 2.5 10 15.2 $1/1600$ 0.035 2.5 10 12.6 $1/4200$ 0.025 4.0 60 12.6 $1/4200$ 0.030 3.0 30		•	12.4	1/620	0.035	3.0	10	50
8.2 1/2800 0.030 2.0 20 9.4 1/310 0.035 3.0 10 13.1 1/440 0.035 3.0 10 13.1 1/440 0.035 3.0 10 10.0 1/2000 0.035 3.0 10 18.0 1/820 0.035 2.5 10 15.2 1/1600 0.035 2.5 10 15.2 1/4200 0.035 2.5 10 15.2 1/4200 0.025 4.0 60 12.6 1/4200 0.036 3.0 30		7		1/1200	0.035	2,5	10	100
9.4 1/310 0.035 3.0 10 13.1 1/440 0.035 3.0 10 10.0 1/2000 0.035 3.0 10 18.0 1/820 0.035 3.0 10 18.0 1/1600 0.035 2.5 10 15.2 1/1600 0.035 2.5 10 15.2 1/4200 0.035 2.5 10 12.6 1/4200 0.036 3.0 30		ŝ	•	1/2800	0.030	2.0	20	200
13.1 1/440 0.035 3.0 10 10.0 1/2000 0.030 2.5 10 18.0 1/820 0.035 3.0 10 4.8 1/1600 0.035 3.0 10 15.2 1/1600 0.035 2.5 10 15.2 1/4200 0.025 4.0 60 12.6 1/4200 0.030 3.0 30	-	t~ (•	1/310	0.035	3.0	10	20
10.0 1/2000 0.030 2.5 10 18.0 1/820 0.035 3.0 10 4.8 1/1600 0.035 2.5 10 15.2 1/1600 0.025 4.0 60 12.6 1/4200 0.030 3.0 30		Ś	•	1/440	0.035	3.0	10	20
18.0 1/820 0.035 3.0 10 4.8 1/1600 0.035 2.5 10 15.2 1/6300 0.025 4.0 60 12.6 1/4200 0.030 3.0 30	-	· \0		1/2000	0.030	2.5	10	500
4.8 1/1600 0.035 2.5 10 15.2 1/6300 0.025 4.0 60 12.6 1/4200 0.030 3.0 30		7	•	1/820	0.035	3.0	10	20
15.2 1/6300 0.025 4.0 60 12.6 1/4200 0.030 3.0 30		8		1/1600	0.035	2.5	10	500
12.6 1/4200 0.030 3.0 30		5		1/6300	0.025	4.0	60	300
		0		1/4200	•	3.0	30	80

- G.48 -

Table G-22 Estimated Flood Damage of Past Floods (1/2)

1. Asahan river

·		· · · · · · · · · · · · · · · · · · ·		
ltem	Unit		Flood	
		Sep.1977	May 1982	Jan.1984
) Inundated area				
House/building	nos.	562	565	1249
Paddy	ha	1980	2010	2740
Uplands crops	110	30	150	570
Oil palm	11	-	-	570
Rubber	11		_	_
Others(including swamp)	11	13690	14340	22390
Total	n	15700	16500	25700
IULAL		13700	10500	20100
) Average inundated depth			•	
House/building	m	0.50	0.50	0.64
Paddy	11	0.60	0.60	0.74
Upland crops	н	0.40	0.40	0.50
0il palm	11	. —	-	-
Rubber	H,			
Others	n .	0.50	0.50	0.64
3) Maximum inundated depth				
House/building	m	1.40	1.40	1.90
Paddy	<u>ś</u> 1	1.62	1.65	2.14
Upland crops	п	0.50	0.50	0.55
Oil palm	17			-
Rubber ·	11	-	-	-
Others	17	1.40	1.40	1,90
) Inundated				
duration	day	5	81	69
) Peak discharge			1	• •
at Pulau Raja	cms	450	486	512

Note : based on the computation results on the topographic map and field survey.

- G.49 -

Table G-22 Estimated Flood Damage of Past Floods (2/2)

2. Silau river

	Item	Unit		Flood	
			Sep.1977	May 1982	May 1984
i)	Inundated area				
	House/building	nos.	7300	3860	3405
	Paddy	ha	4658	3036	1329
	Upland crops	11	46	30	30
	Oil palm	п	100		
	Rubber	11	101	-	-
	Others	n	855	527	459
	Total	11	5760	3593	1818
2)	Average inundated depth				
	House/building	m	0.60	0.57	0.50
	Paddy		0.70	0.60	0.60
	Uplands crops	10	0.50	0.50	0.50
1	Oil palm	11	0.50	-	·
	Rubber	11	0.50		_
	Others	13	0.60	0.57	0.50
) .	Maximum inundated depth				
	House/building	m	1.58	1.22	0.85
	Paddy	11	1.83	1.47	1.10
	Upland crops	18	1.08	1.00	0.80
	Oil palm	11	0.50	-	·
	Rubber	11	0.50	_ · ·	-
	Others	11	1.58	1.22	0,85
)	Inundated				
	duration	day	6	4	8
)	Peak discharge				
	at Kisaran		570	420	310

Note : based on the computation results on the topographic map and field survey.

Table G-23 Estimated Flood Damage of Probable Floods (1/5)

1. Bunut river

.

.

Item	Unit		Probabl	e Flood	······································
	······································	2-yr	10-yr	30-yr	100-yı
) Inundated area					
House/building	nos.	759	1710	2799	3589
Paddy	ha	1615	2280	3290	4150
Uplands crops	11	19	36	68	96
Oil palm	H	-	-	-	
Rubber	11	10	90	225	355
Coconut palm	<u>11</u>	25	170	400	525
Others	11	81	144	217	319
Total	· n	1740	2720	4200	5450
) Average inundate	ed depth				
House/building	m	0.75	1,10	1.40	1.70
Paddy	11	0.75	1.10	1.40	1.70
Upland crops	· • • • • • • • • • • • • • • • • • • •	0.75	1.10	1.40	1.70
Oil palm	11	~	_		_
Rubber	11	0.20	0.45	0.75	1.50
Coconut palm	11	0.75	0.90	1.05	1.25
Others		0.75	1.10	1.40	1.70
) Maximum inundate	ed depth				
House/building	m .	0.80	1.15	1.45	1.75
Paddy	H	1.10	1,50	1.75	2.10
Upland crops	1. U	0.80	1.15	1.45	1.75
Oil palm	B	-	-		-
Rubber	11	0.25	0.50	0.80	1.50
Coconut palm	11	0.80	1.15	1.55	1.75
Others	11	0.80	1.15	1.45	1.75
Inundated					
duration	day	2	3	4	4
) Peak discharge					
at Bunut	cms	51	70	80	95

- G.51 -

Table G-23 Estimated Flood Damage of Probable Floods (2/5)

2. Asahan river

	Item	Unit	· · · · · · · · · · · · · · · · · · ·	Probab	le Flood	
			2-yr	10-yr	30-yr	100-yr
1)	Inundated area					
	House/building	nos	733	1387	1441	1486
	Paddy	ha	2434	4866	5103	5467
	Uplands crops	11	160	876	966	1076
	Oil palm	11	-	-	166	608
÷	Rubber	n	-	-		_
	Others(including swamp)	11	13996	23675	28925	32129
	Total	11	16590	29417	35160	39280
2)	Average inundated depth				· _	
	House/building	m	0,51	0.65	0.78	0.80
	Paddy	51	0.61	0.75	0.88	0.90
	Upland crops	11	0.50	0.50	0.51	0.52
	Oil palm	11	-		0,50	0.50
	Rubber	11	-	-	-	-
	Others	1. H	0.51	0.65	0.78	0.80
3)	Maximum inundated depth					
	House/building	m	1.59	2.08	2.10	2.13
	Paddy	11	1.84	2.33	2.35	2.38
	Upland crops	н	0,50	0.58	0,60	0.63
	0il palm	11	_	-	0.50	0.50
	Rubber	Ħ			-	-
	Others	"	1.59	2.08	2.10	2.13
)	Inundated		more	more	more	more
	duration	day	than 5	than 7	than 7	than 7
)	Peak discharge					
	at Pulau Raja	cms	625	1001	1355	1839

- G.52 -

Table G-23 Estimated Flood Damage of Probable Floods (3/5)

3. Silau river

		Unit		Probab1	e Flood	
	Item	Unit	2-yr	10-yr	30-yr	100-yı
			-)-		<u> </u>	
1)	Inundated area					
	House/building	nos.	6350	7364	9581	11809
	Paddy	ha	3270	4686	4932	5387
	Upland crops	н	33	47	49	54
	Oil palm	п		100	1092	1300
	Rubber	13	-	101	1598	1805
	Others	ti -	802	864	1754	3932
	Total ·	11	4105	5770	9425	12478
2)	Average inundated depth					i.
	House/building	m	0.57	0.57	0.68	0.80
	Paddy	n	0.67	0.67	0.78	0.90
	Uplands crops		0.50	0.50	0.50	0.50
	Oil palm	11	· _ ·	0.50	0.50	0.50
	Rubber	15	- '	0,50	0.50	0.50
	Others	11.	0.57	0.57	0.68	0.80
3)	Maximum inundated depth				.*	
	House/building	m	1,52	1.59	2.07	2.25
	Paddy	n	1.77	1.84	2.32	2.70
	Upland crops	11	1.02	1.09	1.57	1.95
	Oil palm	н	-	0.50	0,50	0.50
	Rubber	ti -	-	0.50	0.50	0.50
	Others	11	1.54	1.59	2.07	2.25
)	Inundated					
	duration	day	5	6	6	6
)	Peak discharge					
	at Kisaran	cms	449	565	911	1300

- G.53 -

Table G-23 Estimated Flood Damage of Probable Floods (4/5)

^{4.} Kualuh river

	Item	Unit		Probabl	e Flood	
			2-yr	10-yr	30-yr	100-yr
1) 1	Inundated area					
]	House/building	nos.	397	1498	2028	2557
]	Paddy	ha	1730	6785	8110	9430
Ţ	Upland crops	н	140	345	435	530
	Oil palm	. 11	-		-	-
	Rubber	. 18			170	350
(Others	11	3160	7600	8905	10190
5	Total	11	5030	14730	17620	20500
2) /	Average inundated depth					
I	House/building	m	0.30	0.45	0.50	0.55
	Paddy	11	0.30	0.45	0.50	0.55
	Uplands crops	н	0.30	0.45	0.50	0.55
	Oil palm	11	_	<u> </u>	-	-
	Rubber		· _	<u> </u>	0.10	0.25
-	Others	11	0.30	0,45	0.50	0.55
3) 1	Maximum inundated depth					
.]	House/building	m	1.00	1.75	2.00	2.25
	Paddy	11	1.00	1.75	2.00	2,25
	Upland crops	11	1.00	1.75	2.00	2.25
	Oil palm	18	·		~	-
	Rubber	. 11	_ ·		0,15	0.30
	Others	H j	1.00	1.75	2.00	2.25
4)	Inundated		more	more	more	more
	duration	day	than 7	than 7	than 7	than 7
5)	Peak discharge					
•	at Pulo Dogom	cms	661	880	1101	1378

- G.54 -

Table G-23 Estimated Flood Damage of Probable Floods (5/5)

5. Kanopan river

.

.

	Item	Unit	· · · · · · · · · · · · · · · · · · ·	Probab	le Flood	
			2-yr	10-yr	30-yr	100-yı
1)	Inundated area					
	House/building	nos.	252	885	1089	1176
	Paddy	ha	713	2310	3074	3265
	Upland crops	11	23	77	185	212
	Oil palm	11	-	-	_	-
	Rubber	11	-		30	50
	Others	n	1324	2333	4303	4783
	Total	ri	2060	4720	7592	8310
2)	Average inundated depth					
	House/building	m	0.40	0.55	0.70	0.75
	Paddy	11	0.45	0,60	0.70	0.75
	Uplands crops •	n	0.45	0.50	0.55	0.60
	Oil palm	11			· _	_
	Rubber	H	-		0.20	0.25
	Others	n .	0.40	0.55	0.70	0.75
3)	Maximum inundated depth			· .		
	House/building	m	0.75	1.25	1.50	1.75
	Paddy	11	1.25	1.75	2.00	2.25
	Upland crops	н	0.75	1.25	1.50	1.75
	Oil palm	11		**	. –	-
	Rubber	in .	-		0.20	0.25
	Others	н.,	0.75	1.25	1.50	1.75
4)	Inundated		more	more	more	more
	duration	day	than 7	than 7	than 7	than 7
5)	Peak discharge					
	at Highway bridge	cms	108	109	109	110

- G.55 -

Table G-24 Average Floor Space of House/Building in Study Area

Floor Space Average	Average		Urbi	Urban Area			Rura	Rural Area	
(m2)	(m2)	Tg.Balai	Asahan	Total	Space(m2)	Asahan	L.Batu	Total	Space(m2)
			·				-		
- 19	15	217	650	967	13,005	10,686	6,200	16,886	253,290
20 - 29	25	672	856	1,528	38,200	30,612	19,048	49,660	1,241,500
30 - 39	35	648	3,035	3,683	128,905	34,690	21,437	56,127	1,964,445
40 - 49	45	884	1,956	2,840	127,800	32,210	22,504	54,714	2,462,130
50 - 69	60	2,206	1,748	3,954	237,240	15,976	14,196	30,172	1,810,320
70 - 99	85	1,396	2,638	4,034	342,890	5,963	10,812	16,775	1,425,875
100 - 149	125	373	3,183	3,556	444,500	836	2,194	3,030	378,750
150 - 199	175	150	425	575	100,625	162	227	389	.68,075
200 - 299	250	117	170	287	71,750	225	145	370	92,500
300 -	300	67	52	101	30,300	548	206	754	226,200
Total	ł	6,712	14,713	21,425	1,535,215	131,998	96,969	228,967	9,923,085
Ave.(m2/house)	use)			71.66	56			43.34	34

Source : Penduduk Sumatera Utara No.4, Hasil Sensus Penduduk 1980 ; Bíro Pusat Statistik, Jakarta.

- G.56 -

Description	Unit Price (Rp/m2) /1	Ratio in the Area /2	Weighted Mean (Rp)
I. <u>Urban Area</u>	<u></u>		
Parmanent house	25,000	0.80	20,000
Semi-parmanent house	15,000	0.10	1,500
Small house	10,000	0.05	500
Temporary house	7,000	0.05	350
Total	-	1.00	22,350
1. Rural Area			
Parmanent house	25,000	0.15	3,750
Semi-parmanent house	15,000	0.35	5,250
Small house	10,000	0.30	3,000
Temporary house	7,000	0.20	1,400
Total	_	1.00	13,400

Table G-25 Unit Price of House/Building in 1985

Note ; /1 House depreciation rate of 50 % is considered.

<u>/</u>2

our estimation based on the field survey and information in the Kec. Simpang Empat office. Table G-26 Estimated Value of Household Effects in 1980

		Monthly	Monthly Expenditure	U	TSTIMATEG AMOUNT OT	
Paticular	Per	Capita	Fai	Family *1	Household Effects	Effects
	Urban	Rural	Urban	Rural	Urban	Rural
1. Food, beverage	7,965	6,859	. 45,560	36,833	1,498 *2	1,211 *2
 Household furnishing and durable goods 	343	324	1,962	1,740	353,160 *3	313,200 *3
3. Clothing and other wear	681	494	3,896	2,653	93,504 *4	63 , 672 *4
4. Fuel, líght, water for house	2,024	660	11,577	3,544	11,577 *5	3,544 *5
5. Personal goods	1,160	457	6,635	2,454	398,100 *6	147,240 *6
 Others(tax,contribution, ceremony, etc.) 	560	193	3,203	1,036		ŀ
Total	12,733	8,987	72,833	48,260	857,839	528,867

balam Angka 1700, p.440. • DO TOOO

assuming one family consists of 5.72 and 5.37 persons for the urban and rural, respectively. Note: *1

×2

~ ~

assuming equivalent to one-day family expenditure to these things. assuming equivalent to 15-year family expenditure to these things. assuming equivalent to 2-year family expenditure to these things.

assuming equivalent to one-month family expenditure to these things. 4500

assuming equivalent to 5-year family expenditure to these things.

G.58 -

· · · · · · · · · · · · · · · · · · ·	Per-capita Re			Consumer	
Year	1975-price		Rate *1	Index	
	(Rp)	1975	1980	1977	1980
		=100	=100	=100	=100
1975	76,864.37	100.0	72.5		
1976	81,731.64	106.3	77.1		
1977	88,264.28	114.8	83.3	100.0	64.1
1978	65,268.66	123.9	89.9		
1979	100,303.87	130.5	94.6		
1980	106,015.55	137.9	100.0	156.1	100.0
1981	111,640.59	145.2	105.3	174.6	111.9
1982	(116,139.46) *3	151.1	109.5	186.3	119.3
1983		160	116	209.4	134.1
1984		170	123	239	153
1985		180	130	274	176

Table G-27 Groth Rate of Per-capita Regional Income and Consumer Price Index (CPI) in Medan

Source : Sumatera Utara Dalam Angka, 1983.

Note

: *1 assuming at 6.07 % per annum.

assuming at 14.47 % per annum. *2

*3 preliminary estimate by the document.

- G.59 -

Table G-28Damage Rate of Inundation and Sedimentation for House/
Building, Household Effects and Stored Goods

Item	Inu	ndation de	pth above :	floor level	(cm)
	0-49	50-99	100-199	200-299	300-
House/Building	0.053	0.072	0.109	0.152	0.220
Household effects	0.086	0.191	0.331	0.499	0,690
Stored goods	0.180	0.314	0.419	0.539	0.630

I. Damage Rate of Inundation

II. Damage Rate of Sedimentation

Item	Sedimentatio	n depth (cm)	
	less than 60 cm	more than 60 cm	
House/Building	0.43	0,57	
Household effects	0.50	0.69	
Stored goods	0.54	0.63	

Source : Manual for River and Sabo Works in Japan ; International Engineering Consultants Association, Japan, 1977.

Note : (1) Rate in the "less than 60 cm" is adopted for the estimation. (2) Floor height is assumed at 10 cm for I and II.

- G.60 -

<u> </u>						and the second se	: Nos.)
	Kecamatan/	Residence/	Store/	_Small	Hotel/	Others	Total
	Kotamadya	Farmhouse	Trade	Industry	Restaurant	<u></u>	
I.	Kabupaten Asal	han		·			
1.	Pulau Rakyat	11,679	151	75	17	1,372	13,294
2.	Sei. Kepayang	6,848	129	38	13	1,426	8,454
3.	Kisaran	21,910	756	145	40	2,719	25,570
4.	Air Batu	10,313	172	25	18	605	11,133
5.	Air Joman	6,826	99	20	3	355	7,303
6.	Simpang Empat	6,411	42	9	0	560	7,022
7.	Tanjung Balai	11,521	198	51	1	620	12,391
- 5	Sub-total	74,788	1,610	363	92	7,657	84,510
11.	<u>Kotamadya</u> Tanjung Balai	6,363	694	100	133	1,038	8,328
Τc	otal	81,151	2,304	463	225	8,695	92,838

Table G-29 Number of Houses/Buildings in Each Kecamatan and Kotamadya of Flood Prone Area

Source : Penduduk Kabupaten Asahan 1980.

- G.61 -

Kecamatan/ Kotamadya	Population	Number of Households	Ave. Population per Household
I. Kabupaten Asahan			<u></u>
r. Kabupaten Abunan			
1. Sei. Kepayang	36,308	7,022	5.17
2. Tanjung Balai	61,524	11,652	5,28
3. Air Joman	38,866	7,802	4.98
4. Kisaran	57,122	21,819	5.79
5. Simpang Empat	33,950	6,518	5.21
6. Air Batu	57,122	10,560	5.41
7. Pulau Rakyat	62,219	12,183	5.11
Sub-total	416,312	77,556	5.37
II. <u>Kotamadya</u> <u>Tanjung Balai</u> (*)	42,814	7,484	5.72
III. <u>Kabupaten</u> Labuhan Batu (*)		Ę	· · · .
1. Kualur Hilir	43,971	9,367	4.69
2. Kualuh Hulu	95,164	17,249	5.52
3. Aek Natas	42,271	8,520	4,96
Sub-total	181,406	35,136	5.16
Total	640,532	120,176	5.33

Table G-30 Number of Households in Each Kecamatan and Kotamadya of Flood Prone Area in 1980

Source : 1. Penduduk Kabupaten Asahan, 1980.

2. Kotamadya Tanjung Balai Dalam Angka, 1983.

3. Penduduk Kabupaten Labuhan Batu, 1983.

Note : (*) data in 1983.

. •

Rural Total Total Store *2 (Rp) 36,833 332.7 2,856.6 3,189.3 0.50 630,000 15 36,833 332.7 2,856.6 3,189.3 0.50 630,000 15 1,740 14.3 134.9 149.2 0.95 56,050 67 2,653 28.5 205.8 234.3 0.90 83,380 16 3,544 84.5 274.9 359.4 0.95 135.000 6 3,544 84.5 274.9 359.4 0.90 84,980 16 2,454 48.5 190.3 238.8 0.90 84,980 16 1,036 23.4 80.4 103.8 - - - 48,260 531.9 3,742.9 4,274.8 - 674,710 1,23 48,260 531.9 3,742.9 4,274.8 - 674,710 1,23 48,260 531.9 3,742.9 4,303 and 77,556	Paticular	Fami	Monthly Family Expen (Rp)	nthly Expenditure (Rp)	Monthly Expe the Asahan River Areas	and (Rp	ture in Silau 10 ⁶) *1	Ratio of Purchase from	Average Monthly Income per Store *3	Estimated Amount of Stored Goods
Food, beverage 45,560 36,833 332.7 2,856.6 3,189.3 0.50 630,000 157,600 Furnishing and durable goods 1,962 1,740 14.3 134.9 149.2 0.95 56,050 672,600 Clothing and other wear 3,896 2,653 28.5 205.8 234.3 0.90 83,380 166,760 Fuel, light, etc. 11,577 3,544 84.5 274.9 359.4 0.90 83,380 166,760 Fuel, light, etc. 11,577 3,544 84.5 274.9 359.4 0.90 84,980 166,760 Fuel, light, etc. 11,577 3,544 84.5 274.9 359.4 0.90 84,980 166,760 Fuel, light, etc. 11,577 3,544 84.5 274.9 359.4 0.90 84,980 166,760 Fuel, light, etc. 11,577 3,544 48.5 190.3 238.8 0.90 674,710 1,234,420 Fuel 7233 48.560 519			Urban		Urban	ral			(Rp)	(Rp)
Furnishing and durable goods1,9621,74014.3134.9149.20.9556,050672,600durable goods1,9662,65328.5205.8234.30.9083,380166,760Fuel11,5773,54484.5205.8234.30.9083,380169,960Fuel11,5773,54484.5274.9359.40.9084,98067,500Fuel11,5773,54484.5274.9359.40.9084,980169,960Personal goods6,6352,45448.5190.3238.80.9084,980169,960Others3,2031,03623.480.4103.8Others3,2031,03623.480.4103.8-674,7101,234,420Cotal72,83348,260531.93,742.94,274.8-674,7101,234,420Le172,83348,260531.93,742.94,274.8-674,7101,234,420Le772,83348,260531.93,742.94,274.8-674,7101,234,420Le772,83348,260531.93,742.94,274.8-674,7101,234,420Le772,83348,260531.93,742.94,274.8-674,7101,234,420Le772,83348,260531.93,742.94,274.8-674,7101,234,420Le <t< td=""><td>1. Food, bevera</td><td></td><td>5,560</td><td>36,833</td><td>332.7</td><td>2,856.6</td><td>3,189.3</td><td>0.50</td><td>630,000</td><td></td></t<>	1. Food, bevera		5,560	36,833	332.7	2,856.6	3,189.3	0.50	630,000	
Clothing and 3,896 2,653 28.5 205.8 234.3 0.90 83,380 166,760 Fuel, light, etc. 11,577 3,544 84.5 274.9 359.4 0.95 135.000 67,500 Fuel, light, etc. 11,577 3,544 84.5 274.9 359.4 0.95 135.000 67,500 Fersonal goods 6,635 2,454 48.5 190.3 238.8 0.90 84,980 169,960 Others 3,203 1,036 23.4 80.4 103.8 - - - - Total 72,833 48,260 531.9 3,742.9 4,274.8 - 674,710 1,234,420 Total 72,833 48,260 531.9 3,742.9 4,274.8 - 674,710 1,234,420 # 20: 1,03.8 - - 674,710 1,234,420 # 70: 73.303 and 77,556 - - - - - - - - - - - - - - -	Furnishing durable goo	and Is	1,962	1,740	14.3	134.9	149.2	0.95	56,050	
Fuel, light, etc. 11,577 3,544 84.5 274.9 359.4 0.95 135.000 67,500 Personal goods 6,635 2,454 48.5 190.3 238.8 0.90 84,980 169,960 Personal goods 6,635 2,454 48.5 190.3 238.8 0.90 84,980 169,960 Others 3,203 1,036 23.4 80.4 103.8 - - - - Total 72,833 48,260 531.9 3,742.9 4,274.8 674,710 1,234,420 e: * 1 72,833 48,260 531.9 3,742.9 4,274.8 - 674,710 1,234,420 e: * 1 72,833 48,260 531.9 3,742.9 4,274.8 - 674,710 1,234,420 e: * 1 70useholds in the area in 1980 is estimated at 7,303 and 77,556 - </td <td>3. Clothing and other wear</td> <td>•</td> <td>3,896</td> <td>2,653</td> <td>•</td> <td>205.8</td> <td>234.3</td> <td>0.90</td> <td>83,380</td> <td></td>	3. Clothing and other wear	•	3,896	2,653	•	205.8	234.3	0.90	83,380	
al goods 6,635 2,454 48.5 190.3 238.8 0.90 84,980 169,960 3,203 1,036 23.4 80.4 103.8	4. Fuel, light, for house		1,577	3,544	84.5	274.9	359.4	0.95	135.000	67,500 *7
 3,203 1,036 23.4 80.4 103.8 674,710 72,833 48,260 531.9 3,742.9 4,274.8 - 674,710 1 Households in the area in 1980 is estimated at 7,303 and 77,556 for urban and rural, respectively. 2 our estimation based on the interview survey. 3 Number of commercial sector in the area is estimated at 2,529 in 1980. 5 assuming equivalent to one-week store income to these things. 6 assuming equivalent to 2-months store income to these things. 8 assuming equivalent to 2-months store income to these things. 	Personal		6,635	2,454	48.5	190.3	238.8	06.0	84,980	
<pre>>tral 72,833 48,260 531.9 3,742.9 4,274.8 - 674,710 * 1 Households in the area in 1980 is estimated at 7,303 and 77,556 for urban and rural, respectively. * 2 our estimation based on the interview survey. * 3 Number of commercial sector in the area is estimated at 2,529 in 1980. * 4 assuming equivalent to one-week store income to these things. * 5 assuming equivalent to one-year store income to these things. * 6 assuming equivalent to 2-months store income to these things. * 7 assuming equivalent to 2-weeks store income to these things. * 8 assuming equivalent to 2-months store income to these things.</pre>	6. Others		3,203	1,036	23.4	80.4	103.8	I	1	1
 * 1 Households in the area in 1980 is estimated at 7,303 and 77,556 for urban and rural, respectively. * 2 our estimation based on the interview survey. * 3 Number of commercial sector in the area is estimated at 2,529 in * 4 assuming equivalent to one-week store income to these things. * 5 assuming equivalent to one-year store income to these things. * 6 assuming equivalent to 2-months store income to these things. * 7 assuming equivalent to 2-wonths store income to these things. * 8 assuming equivalent to 2-wonths store income to these things. 	Total	2	2,833	48,260	531.9	3,742.9	4,274.8	I	674,710	1,234,420
	・・ ・・ ・・ ・・ ・・ ・・ ・・ ・・ ・・ ・・ ・・ ・・	eholo eholo estir ming ming ming ming ming ming	I - GE22222		1 12000000	estimated iew surve area is ore incon ore incon ore incon ore incone ore incone	y. y. estim te to te to te to te to te to te to	and e thi e thi e thi e thi	in in	

Table G-31 Estimated Value of Stored Goods in Commercial Sector in 1980

- G.63 -

Table G-32 Estimation of Property in Small Industry (1/2)

- (1) <u>Number of establishment in Kab. Asahan (N)</u> : 4,788 (in 1983) 4,788 x (average groth of 1983-1985, 1.054) = 5,046 (in 1985)
- (2) <u>GRDP of industry sector in Kab. Asahan</u>: (GRDP of industry sector in North Sumatra) x (Total GRDP in Kab. Asahan)/(Total GRDP in North Sumatra) = (Rp 80.2 billion) x (Rp 121.48 billion)/(Rp 1,055.48 billion) = Rp 9.23 billion (in 1975-price level) (Rp 9.23 billion) x (average groth of industry sector, 1.203) x (average increase of CPI, 1.80) = Rp 20.0 billion (in 1985-price level)

(3) GRDP for one workshop : (GRDP of industry sector)/(Number of establishiment) = (Rp 20.0 billion)/5,046 = Rp 3,964,000/workshop (in 1985)

- (4) Gross output for one workshop: (GRDP for one workshop in Kab. Asahan) x (Gross output in North Sumatra)/(GRDP of industry sector in North Sumatra) = (Rp 3,964,000/workshop) x (Rp 306.89 billion)/(Rp 80.2 billion) = Rp 15,170,000/workshop
- (5) Input cost for one workshop : (GRDP for one workshop in Kab. Asahan) x (Input cost in North Sumatra)/(GRDP of industry sector in North Sumatra) = (Rp 3,964,000/workshop) x (Rp 206.53 billion)/(Rp 80.2 billion) = Rp 10,210,000/workshop
- (6) Labour cost for one person : (Employment cost of large/medium industry in North Sumatra)/ (Number of labours in large/medium industry in North Sumatra) x (wage disparity between large/medium and small industries, 0.8) = (Rp 20.67 billion/yr)/39,925 x 0.8 = Rp 414,200/yr.person (in 1982-price level)

(Rp 414,200/yr.person) x (average increase of CPI, 1.479) = Rp 612,600/yr.person (in 1985)

- G.64 -

Table G-32 Estimation of Property in Small Industry (2/2)

- (7) Total labor cost for one workshop (Clb) : $\frac{1}{(Rp \ 612,600/yr.person) \ x \ (5 \ person) = Rp \ 3,063,000/yr.workshop}$
- (8) Stock value of products (Vsp) :
 (Annual gross output for one workshop) x (0.5 month)
 = (Rp 15,170,000/yr.workshop)/(12 months/yr) x (0.5 month)
 = Rp 632,100/workshop
- (9) Stock value of raw material (Vsm) : (Annual material cost for one workshop) x (1.0 month) = (Annual input cost x 0.82) x (1.0 month) = (Rp 10,210,000/yr.workshop)/(12 months/yr) x 0.82 x (1.0 month)
 - = Rp 697,700/workshop
- (10) Value of equipment (Veq) :
 (Annual capital cost for one workshop, Cc) x (10 years)
 = ç(GRDP for one workshop) (Total labour cost, Clb)° x (10 years)
 = (Rp 3,964,000/workshop Rp 3,063,000/workshop) x 10 yr
 = Rp 9,010,000/workshop
- - = Rp 10,340,000/workshop

	(Unit :	Rp_1,000/house)
Item	Rural area	Urban area
I. House/Building		
(1) Residence/Farmhouse	605	1,680
(2) Commercial Sector	1,500	3,750
(3) Small Industry	4,000	5,000
(4) Others	5,000	6,250
II. Household Effects	1,210	1,960
III. Stored Goods, Properties		
(1) Commercial Sector	2,170	2,170
(2) Small Industry	10,340	10,340
(3) Others	500	625

Table G-33 Unit Values of House/Building, Household Effects and Stored Goods in 1985 for Flood Damage Estimation

Note : 1985 current price.

- G.66 -

Table G-34	Economic	Price	of	Paddy	(for	Import))
------------	----------	-------	----	-------	------	---------	---

j	Process		1985			1995	
	<u></u>	US\$/t	Rp/t	Balance	US\$/t	Rp/t	Balance
1.]	FOB Bangkok *1	246	270,600		327	359,700	
	External Trans- portation Cost						
	(Bangkok-Belawan)	17.3	19,030	289,630	17.3	19,030	378,730
	Handling Charge & Warehouse Cost						
	a. Handling Charg	e	8,917			8,917	
	b. Warehouse Cost	-	1,277	299,824		1,277	388,924
	Inland Trans- potation Cost						
	(Belawan-Kisaran)	*2	15,170	314,994		15,170	404,094
5.1	Processing Cost						
	a. Package and Handling Charge	e	-4,050	310,944	÷	-4,050	400,044
	b. Milling Charge		-11,000	299,944		-11,000	389,044
C	c. Selling Price (Paddy (b.x0.65)			194,964			252,879
. 1	Fransportation			. *			
(Cost *3		- 2,050			- 2,050	
'. I	Farm Gate Price			192,914			250,829

Source : 1. Price Prospects for Major Primary Commodities, Sep.1984.

2. Pedoman Perhitungan Tarip Bongkar Muat di Pelabuhan.

3. Pengadaan Palawija Dalam Negri Tahun 1984/1985.

- Note : Projected price in 1985 constant price. Exchange rate ; US\$ 1 = Rp. 1,100
 - *1 : Price in free on board at Bangkok in Thailand.
 - *2 : Belawan Kisaran, 185 km which reflects the average distance between Belawan and the Study Area.
 - *3 : (unit cost Rp 82/ton-km) x (average distance 25 km)

Item		Du	iration	(day)		wash-
	1-2	3-4	5-6	7-10	11-	away
· · · · · · · · · · · · · · · · · · ·						
Wetland paddy over 1.0 m	0.70	0.80	0.85	0.95	1.00	1.00
over 1.0 m	0.70	0.00	0.05	0.00	1100	1.00
0.50 - 1.0 m	0.40	0.46	0.49	0.55	0.70	1.00
below 0.50 m	0.37	0.42	0.45	0.50	0.60	1.00
Upland paddy						
over 1.0 m	0.70	0.80	0.85	0.95	1.00	1.00
0.50 - 1.0 m	0.40	0.46	0.49	0.55	0.70	1.00
1 1 0 50	0 07	0.40	0.45	0.50	0.60	1.00
below 0.50 m	0.37	0.42	0.45	0.50	0.00	1.00
						•
Maize		·· ;				
over 1.0 m	0.51	0.67	0.81	0.91	1.00	1.00
0 50 4 0	0.05	0.70	0.67	0.74	0.95	1.00
0.50 - 1.0 m	0.35	0.48	0.07	0.74	0.90	1.00
below 0.5 m	0,27	0.42	0.54	0.67	0.90	1.00
Soybean				• • •		
over 1.0 m	0.40	0.50	0,68	0.81	1.00	1.00
0.50 - 1.0 m	0.30	0.44	0.60	0.73	0.95	1.00
0,00 ~ т,0 ш	0.00	V.44	· .		0175	:
below 0.5 m	0.23	0.41	0.54	0.67	0.90	1.00

Table G-35 Damage Rate of Agricultural Crops

Source : - Manual for River and Sabo Works in Japan ; International Engineering Consultants Association, Japan, 1977.

- Ministry of Agriculture, Forestry and Fishery, Japan for the paddy damage.

Note

:

Rate for booling stage of paddy is adopted for the estimation.

- G.68 -

<u> </u>	Process	··· ••• ··· ··· ··· ··· ··· ··· ··· ···	1985	·		1995	
		US\$/t	Rp/t	Balance	US\$/t	Rp/t	Balance
1.	Projected Price	121	133,100		113	124,300	
2.	External Trans- portation Cost						
	(CIF Belawan) *1	34	37,400	170,500	34	37,400	161,700
3.	Handling Charge & Warehouse Cost						
	a. Handling Charg	е	8,917			8,917	
	b. Warehouse Cost		1,277	180,694		1,277	171,894
4.	Inland Trans- potation Cost						
	(Belawan-Kisaran)	*2	15,170	195,864		15,170	187,064
5.	Transportation Cost (farm to						
	Wholeselers) *3		- 2,050			- 2,050	
6.	Farm Gate Price	·		193,814			185,014

Table G-36 Economic Price of Maize (for Import)

Source : 1. Price Prospects for Major Primary Commodities, Sep. 1984.

2. Pedoman Perhitungan Tarip Bongkar Muat di Pelabuhan.

3. Pengadaan Palawija Dalam Negri Tahun 1984/1985.

- Note : Projected price in 1985 constant price. Exchange rate ; US\$ 1 = Rp. 1,100
 - *1 : Cost, insurance and freigh at Belawan.
 - *2 : Belawan Kisaran, 185 km which reflects the average distance between Belawan and the Study Area.
 - *3 : (unit cost Rp 82/ton-km) x (average distance 25 km)

	Process		1985			1995	
		US\$/t	Rp/t	Balance	US\$/t	Rp/t	Balance
1.	Projected Price	255	280,500		256	281,600	
2.	External Trans- portation Cost						
	(CIF Belawan) *1	34	37,400	317,900	34	37,400	319,000
3.	Handling Charge & Warehouse Cost						
	a. Handling Charg	е	8,917			8,917	
	b. Warehouse Cost	· .	1,277	328,094		1,277	329,194
4.	Inland Trans- potation Cost						
	(Belawan-Kisaran)	*2	15,170	343,264		15,170	344,364
5.	Transportation Cost (farm to					• • • •	
	Wholeselers) *3		- 2,050			- 2,050	
6	Farm Gate Price			341,214			342,314

Table G-37 Economic Price of Soybean (for Import)

Source : 1. Price Prospects for Major Primary Commodities, Sep. 1984.

2. Pedoman Perhitungan Tarip Bongkar Muat di Pelabuhan.

3. Pengadaan Palawija Dalam Negri Tahun 1984/1985.

- Note : Projected price in 1985 constant price. Exchange rate ; US\$ 1 = Rp. 1,100
 - *1 : Cost, insurance and freigh at Belawan.
 - *2 : Belawan Kisaran, 185 km which reflects the average distance between Belawan and the Study Area.
 - *3 : (unit cost Rp 82/ton-km) x (average distance 25 km)

- G.70 ~

				-	
Item	Unit Yield		0 /ton)		0 /ha)
	(ton/ha)	1985	2005	1985	2005
I. <u>Bunut and</u> <u>Silau Rivers</u>					
(1) Wetland paddy	3.0	193.0	251.0	579.0	753.0
(2) Upland paddy	2.0	193.0	251.0	386.0	502.0
(3) Maize	2.0	194.0	185.0	388.0	370.0
(4) Soybean	0.8	341.0	342.5	272.5	274.0
II. <u>Asahan and</u> Kualuh Rivers					
(1) Wetland paddy	2.5	193.0	251,0	482.5	627.5
(2) Upland paddy	2.0	193.0	251.0	386.0	502.0
(3) Maize	2.0	194.0	185.0	388.0	370.0
(4) Soybean	0.8	341.0	342.5	272.5	274.0

Table G-38 Unit Price of Agricultural Crops for Flood Damage Estimation

Note : curret price level in 1985.

.

. ۰

.

- G.71 -

Table G-39 Probable Flood Damage under Present Condition (1/5)

1. Bunut River

I. DULLE ALVEL					(Unit : Rp Million	Million)
Description	2-year	5-year	10-year	15-year	30-year	100-year
I. House Properties					:	
(1) House/Building	55.1	160.4	213.0	265.7	438.0	615.0
(2) Household Effects	150.4	400.2	525.1	650.0	1,006.0	1,375.2
(3) Stored Goods	21.4	48.0	61.3	, 74.6	110.7	148.1
Sub-total	226.9	608.6	799.4	990.3	1,554.7	2,138.3
II. Agricultural Products						
(1) Wetland Paddy	539.8	820.6	961.1	1,101.5	1,495.8	1,925.6
(2) Upland Crops	2.4	5.5	7.0	8.5	16.1	.23.7
(3) Other (1)+(2) x 5%	27.1	41.3	48.4	55.5	75.6	97.5
Sub-total	569.3	867.4	1,016.5	1,165.5	1,587.5	2,046.8
11 + 1	769.2	1,476.0	1,815.9	2,155.8	3,142.2	4,185.1
III. Public Facilities 30% (I + II)	238.9	442.8	544.8	646.8	942.7	1,255.5
IV. Indirect Damage 10% (I + II + III)	103.5	191.9	236.1	280.3	408.5	544.1
Total (Bunut River)	1,138.6	2,110.7	2,596.8	3,082.9	4,493.4	5,984.7

- G.72 -

.

Table G-39 Probable Flood Damage under Present Condition (2/5)

2. Asahan River

					(Unit : Rp	Unit : Rp Million)
Description	2-year	5-year	10-year	15-year	30-year	100-year
I. House Properties			•			
<pre>(1) House/Building</pre>	101.1	258.1	397.2	405.0	416.5	431.7
(2) Household Effects	183.9	424.7	596.6	606.9	641.6	661.9
(3) Stored Goods	31.5	59.8	82.0	83.5	88.4	91.2
Sub-total	316.5	742.6	1,075.8	1,095.4	1,146.5	1,184.8
II. Agricultural Products						
(1) Wetland Paddy	724.8	1,131.1	1,492.2	1,535.4	1,568.8	1,910.7
(2) Upland Crops	36.2	114.4	170.0	176.3	182.4	197.5
(3) Other (1)+(2) x 5%	38.1	62.3	83.1	85.6	87.6	90.4
Sub-total	799.1	1,307.8	1,745.3	1,797.3	1,838.8	1,898.6
II + I	1,115.6	2,050.4	2,821.1	2,892.7	2,985.3	3,083.4
III. Public Facilities 30% (I + II)	334.7	615.1	846.3	867.8	895.6	925.0
IV. Indirect Damage 10% (I + II + III)	145.0	266.6	366.7	376.1	388.1	400.8
Total (Asahan River)	1,595.3	2,932.1	4,034.1	4,136.6	4,269.0	4,409.2

- G.73 -

Table G-39 Probable Flood Damage under Present Condition (3/5)

Silau Rive

3. Silau River					(Unit : R	: Rp Million)
Description	2-year	5-year	10-year	15-year	30-year	100-year
I. House Properties			· · ·			
(1) House/Building	0.040	1,035.9	1,130.8	1,438.5	2,209.7	2,818.2
(2) Household Effects	1,793.2	1,920.6	2,057.8	2,680.6	4,436.1	5,727.4
(3) Stored Goods	650.3	670.4	702.1	875.1	1,255.0	1,609.4
Sub-total	3,383.5	3,627.9	3,890.7	4,994.2	7,900.8	10,155.0
II. Agricultural Products						
(1) Wetland Paddy	820.5	1,099.1	1,307.5	1,340.8	1,407.2	1,522.8
(2) Upland Crops	4.6	6.5	7.6	7.9	8°.3	8.8
(3) Other $(1)+(2) \times 5\%$	41.3	55.3	65.8	67.4	70.8	76.6
Sub-total	866.4	1,160.9	1,380.9	1,416.1	1,486.3	1,608.2
II + I	4,249.9	4,788.8	5,271.6	6,410.3	9,387.1	11,763.2
III. Public Facilities 30% (I + II)	1,275.0	1,436.6	1,581.5	1,923.1	2,816.1	3,529.0
IV. Indirect Damage 10%(I + II + III)	552.5	622.5	685.3	833.3	1,220.3	1,529.2
Total (Silau River)	6,077.4	6,847.9	7,538.4	9,166.7	13,423.5	16,821.4
Grand Total (Asahan and Silau Rivers)	7,672.7	9,780.0	11,572.5	13,303.3	17,692.5	21,230.6

- G.74 -

Table G-39 Probable Flood Damage under Present Condition (4/5)

4. Kualuh River

					(Unit : Rp Million	(Willion)
Description	2-year	5-year	10-year	15-year	30-year	100-year
T U2000 D400400						
(1) House Froperties (1) House/Building	61.3	- 108.9	- 394.6	350.7	406.7	481 4
(2) Household Effects	107.4	195.2	490.1	603.4	716.8	868.0
(3) Stored Goods	19.9	36.4	84.1	104.1	124.1	150.8
Sub-total	188.6	340.5	868.8	1,058.2	1,247.6	1,500.2
II. Agrícultural Products				·		
(1) Wetland Paddy	462.5	553.2	1,261.0	1,440.7	1,620.4	1.859.9
<pre>(2) Upland Crops</pre>	20.5	24.8	38.1	44.8	51.5	60.5
(3) Other (1)+(2) x 5%	24.1	28.9	64.9	74.3	83.6	96.0
Sub-total	507.1	606.9	1,364.0	1,559.8	1,755.5	2,016.4
II + II	695.7	947.4	2,232.8	2,668.0	3,003.1	3,516.6
III. Public Facilities 302 (I + II)	208.7	284.2	669.8	800.4	900.9	1,055.0
IV. Indirect Damage 10% (I + II + III)	90.5	123.2	290.3	346.3	390.4	457.2
Total (Kualuh River)	994.9	1,354.8	3,192.9	3,743.7	4,294.4	5,028.8

- G.75 -

Table G-39 Probable Flood Damage under Present Condition (5/5)

5. Kanopan River

5. Kanopan River					(IInit . D. Million	(; []; M;
Description						
	2-year	5-year	10-year	15-year	30-year	100-year
I. House Properties						
(1) House/Building	38.4	8.68	141.3	166.7	194.1	299.3
(2) Household Effects	81.8	196.8	311 7	407.4	503.1	630.7
(3) Stored Goods	13.1	30.1	47.1	58.1	69.0	83.6
Sub-total	133.3	316.7	500.2	633.2	766.2	943.6
II. Agrícultural Products						
(1) Wetland Paddy	240.8	510.5	780.2	877.0	973.8	1,102.9
(2) Upland Crops	3.8	8.3	12.8	19.0	25.1	33.3
(3) Other (1)+(2) x 5%	12.2	25.9	39.6	44.7	6.64	56.8
Sub-total	256.8	544.7	832.6	940.7	1,048.9	1,193.0
I + II	390.1	861.4	1,332.8	1,573.9	1,815.1	2,136.6
III. Public Facilities 30% (I + II)	117.0	258.4	399.8	472.2	544.5	641.0
IV. Indirect Damage 10%(I + II + III)	50.7	112.0	173.3	204.6	236.0	277.7
Total (Kanopan River)	557.8	1,231.8	1,905.9	2,250.7	2,595.6	3,055.3
Grand Total (Kualuh and Kanopan Rivers)	1,552.7	2,586.6	5,098.8	5,994.4	6,890.0	8,084.1

Table G-40 Probable Flood Damage in AD 2005 (1/5)

1. Bunut River

		:			(Unit : Rp Million	Million)
Description	2-year	5-year	10-year	15-year	30-year	100-year
I. House Properties		•				, , ,
(1) House/Building	90.4	263.1	349.5	435.8	718.3	1,008.5
(2) Household Effects	362.7	965.3	1,266.6	1,567.9	2,426.4	3,317.0
(3) Stored Goods	43.9	98.6	125.9	153.3	227.6	304.4
Sub-total	497.0	1,327.0	1,742.0	2,157.0	3,372.3	4,629.9
II. Agricultural Products	и 					
(1) Wetland Paddy	589.1	851.4	1,022.6	1,193.8	1,621.1	2,086.9
(2) Upland Crops	2.8	6.5	8.4	10.2	19.4	28.5
(3) Other $(1)+(2) \ge 5$ %	29.6	44 °9"	52.5	60.2	82.0	105.7
Sub-total	621.5	942.8	1,103.5	1,264.2	1,722.5	2.221.1
II + I	1,118.5	2,269.8	2,845.5	3,421.2	5,094.8	6,851.0
III. Public Facilities 30% (I + II)	335.6	681.0	853.7	1,026.4	1,528.4	2,055.3
IV. Indirect Damage 10% (I + II + III)	145.4	295.1	369.9	444.7	662.3	890.6
Total (Bunut River)	1,599.5	3,245.9	4,069.1	4,892.3	7,285.5	9,796.9
					:	

- G.77 -

Table G-40 Probable Flood Damage in AD 2005 (2/5)

2. Asahan River					(Unit : Rp Million	Million)
Description	2-year	5-year	10-year	15-year	30-year	100-year
I. House Properties						
(1) House/Building	165.7	423.2	651.2	672.1	683.0	707.8
(2) Household Effects	443.6	1,024.3	1,439.0	1,463.9	1,547.5	1,596.5
(3) Stored Goods	80.7	153.4	210.3	214.0	226.7	233.8
Sub-total	690.0	1,600.9	2,300.5	2,350.0	2,457.2	2,538.1
II Aericultural Products		• .				
(1) Wetland Paddy	942.6	1.471.0	1,940.6	1,996.8	2,040.3	2,094.8
(2) Upland Crops	43.2	135.4	201.4	208.9	216.0	233.6
(3) Other $(1)+(2) \ge 5\%$	49.3	80.3	107.1	110.3	112.8	116.4
Sub-total	1,035.1	1,686.7	2,249.1	2,316.0	2,369.1	2,444.8
II + I	1,725.1	3,287.6	4,549.6	4,666.0	4,826.3	4,982.8
III. Public Facilities 30% (I + II)	517.5	986.3	1,364.9	1,399.8	1,447.9	1,494.8
IV. Indirect Damage 10% (I + II + III)	224.3	427.4	591.5	606.6	627.4	647.8
Total (Asahan River)	2,466.9	4,701.3	6,506.0	6,672.4	6,901.6	7,125.4

---G.78 -

Table G-40 Probable Flood Damage in AD 2005 (3/5)

.

3. Silau River

3. Sılau Rıver					(Unit : Rp Million	(Million)
Description	2-year	5-year	10-year	15-year	30-year	100-year
1. nouse rioperlies (1) House/Building	1.243.7	1.400.9	1.548.0	2.087.3	2.996.3	3.786.9
(2) Household Effects	4,325.3	4,632.5	4,963.4	6,465.6	10,699.9	13,814.4
(3) Stored Goods	1,669.6	1,751.1	1,833.5	2,285.8	3,279.9	4,206.1
Sub-total	7,268.6	7,784.5	8,344.9	10,838.7	16,976.1	21,807.4
II. Agricultural Froducts						
(1) Wetland Paddy	1,067.3	1,429.4	1,700.5	1,743.7	1,830.1	1,980.4
(2) Upland Crops	5.4	7.7	9.1	9.4	9.7	10.5
(3) Other $(1)+(2) \times 5\%$	53.6	71.9	85.5	87.7	92.0	99.5
Sub-total	1,126.1	1,509.0	1,795.1	1,840.8	1,931.8	2,090.4
II + I	8,394.7	9,293.5	10,139.9	12,679.5	18,907.9	23,897.8
III. Public Facilities 30% (I + II)	2,518.4	2,788.1	3,042.0	3,803,9	5,672.4	7,169.3
IV. Indirect Damage 10%(I + II + III)	1,091.3	1,208.2	1,318.2	1,648.3	2,458.0	3,106.7
Total (Silau River)	12,004.4	13,289.8	14,500.1	18,131.7	27,038.3	34,173.8
Grand Total (Asahan and Silau Rivers)	14,471.3	17,991.1	21,006.1	24,804.1	33,939.9	41,299.2

.

- G.79 -

Table G-40 Probable Flood Damage in AD 2005 (4/5)

A Wusluh Binar

4. Kualuh River					(Unit : Rp	(Million)
Description	2-year	5-year	10-year	15-year	30-year	100-year
T House Properties			-			
(1) House/Building	70.1	183.9	497.2	590.3	683.3	807.2
(2) Household Effects	122.8	484.7	1,216:8	1,493.9	1,771.2	2,140.5
(3) Stored Goods	22.7	77.0	178.0	219.7	261.4	316.9
Sub-total	215.6	745.6	1,892.0	2,303.9	2,715.9	3,264.6
II. Agricultural Products	-		: -			·
(1) Wetland Paddy	599.1	719.3	1,640.0	1,873.7	2,107.3	2,418.9
(2) Upland Crops	26.5	29.5	45.2	53.1	61.0	71.6
(3) Other (1)+(2) x 5%	31.3	37.4	84.2	96.3	108.4	124.5
Sub-total	656.9	786.2	1,769.4	2,023.1	2,276.7	2,615.0
II + I	872.5	1,531.8	3,661.4	4,327.0	4,992.6	5,879.6
III. Public Facilities 30% (I + II)	261.8	459.5	1,098.4	1,298.1	1,497.8	1,763.9
IV. Indirect Damage 10% (I + II + III)	113.4	199.1	476.0	562.5	649.0	764.4
Total (Kualuh River)	1,247.7	2,190.4	5,235.8	6,187.6	7,139.4	8,407.9

Table G-40 Probable Flood Damage in AD 2005 (5/5)

5. Kanopan River

J. Ranopan Miver					(Unit : Rp Million	Million)
Description	2-year	5-year	10-year	15-year	30-year	100-year
					-	-
I. House Properties			•			
(1) House/Building	65.4	148.7	233.6	274.0	413.0	373.3
(2) Household Effects	199.2	479.3	758.0	984.8	1,070.7	1,509.6
(3) Stored Goods	27.2	62.5	97.6	119.7	184.0	170.5
Sub-total	291.8	690.5	1,089.2	1,378.5	1,667.7	2,053.4
II. Agricultural Products						
(1) Wetland Paddy	313.1	663.9	1,014.6	1,140.5	1,266.4	1,434.3
(2) Upland Crops	4.4	9.6	14.9	22.2	29.4	.39.0
(3) Other (1)+(2) x 5%	15.9	33.7	51.5	58.1	64.8	73.6
Sub-total	333.4	707.2	1,081.0	1,220.8	1,360.6	1,546.9
11 + 11 	625.2	1,397.7	2,170.2	2,599.3	3,028.3	3,600.3
III. Public Facilities 30% (I + II)	187.5	419.3	651.1	779.8	908.5	1,080.1
IV. Indirect Damage 10%(I + II + III)	81.3	181.7	282.1	337.9	393.7	468.0
Total (Kanopan Ríver)	894.0	1,998.7	3,103.4	3,717.0	4,330.5	5,148.4
· · · · · · · · · · · · · · · · · · ·						
Grand Total (Kualuh and Kanopan Rivers)	2,141.7	4,189.1	8,339.2	9,904.6	11,469.9	13,556.3
					-	

- G.81 -

Return		AD 19	85		AD 200	Rp Million)
Period	Damages	Annual	Damages	Damages	Annual	Damages
(year)		Segment	Cumulative		Segment	Cumulative
Bunut Riv	er					
1.01	0	-	0	0	-	0
2	1,139	279	279	1,600	392	392
5	2,111	487	766	3,246	727	1,119
10	2,597	235	1,002	4,069	365	1,484
15	3,083	93	1,095	4,892	148	1,632
30	4,493	129	1,224	7,286	207	1,839
50	5,904	68	1,292	9,679	111	1,950
100	5,985	59	1,351	9,797	97	2,047
Asahan Ri	ver					
1.43	. 0		· • 0	0		0
2	1,595	159	159	2,467	245	245
5	2,932	679	838	4,701	1,076	1,321
10	4,034	348	1,186	6,506	560	1,881
15	4,136	135	1,321	6,672	217	2,098
30	4,269	143	1,464	6,902	231	2,329
50	4,339	56	1,520	7,014	91	2,420
100	4,409	43	1,563	7,125	71	2,491
Silau Riv	er ·					
1.33	0		0	0		. 0
2	6,078	766	766	12,004	1,513	1,513
5	6,848	1938	2,704	13,290	3,793	5,306
10	7,539	720	3,424	14,500	1,390	6,696
. 15	9,167	275	3,699	18,132	539	7,235
30	13,424	384	4,083	27,038	768	8,003
50	15,123	186	4,269	30,606	374	8,377
100	16,822	160	4,429	34,174	324	8,701

Table G-41 Average Annual Flood Damage (1/2)

						Rp Million)
eturn		AD 198			AD 200	5
	nages	Annual	Damages	Damages	Annual	Damages
year)	Se	gment	Cumulative		Segment	Cumulative
aluh River					•	
1.05	0	-	0	• 0	*cm	. 0
2	995	224	224	1,248	281	281
51,	355	352	576	2,190	515	796
10 3,	193	228	804	5,236	372	1,168
15 3,	743	114	918	6,188	188	1,356
30 4,	294	137	1,055	7,139	227	1,583
50 4,	662	58	1,113	7,774	97	1,680
100 5,	029	48	1,161	8,408	81	1,761
nopan River						
1.01	0	:	0	_		
1.01	0		• 0	0	-	0
	558	137	137	894	219	219
	232	268	405	1,999	434	653
	906	157	562	3,103	255	908
	251	69	631	3,717	113	1,021
-	596	82	713	4,331	136	1,157
				4,739	59	1,216
100 3,	055	. 30 .	778	5,148	50	1,266
50 2,	825 055	35	748	4,739	59	

Table G-41 Average Annual Flood Damage (2/2)

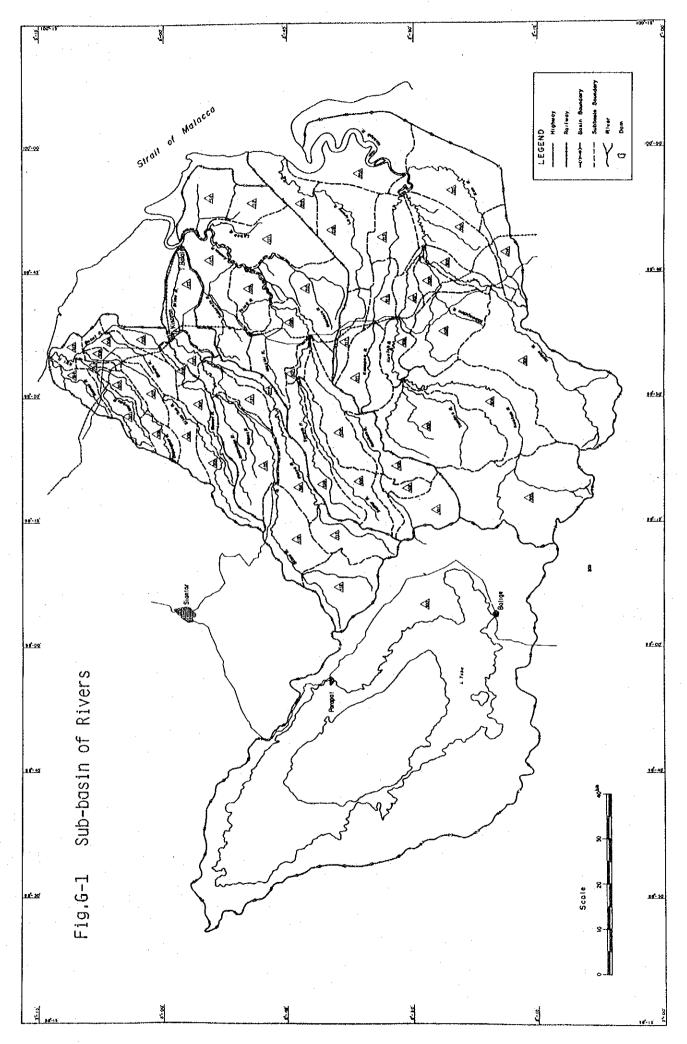
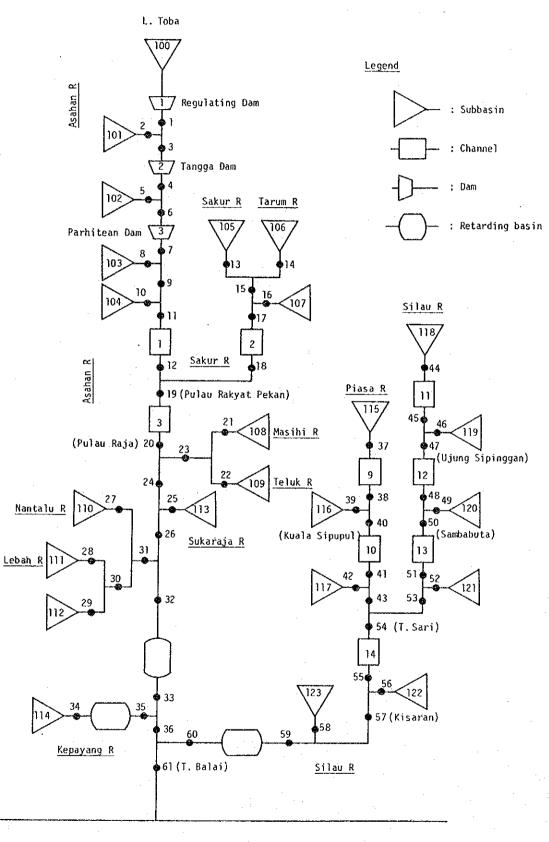
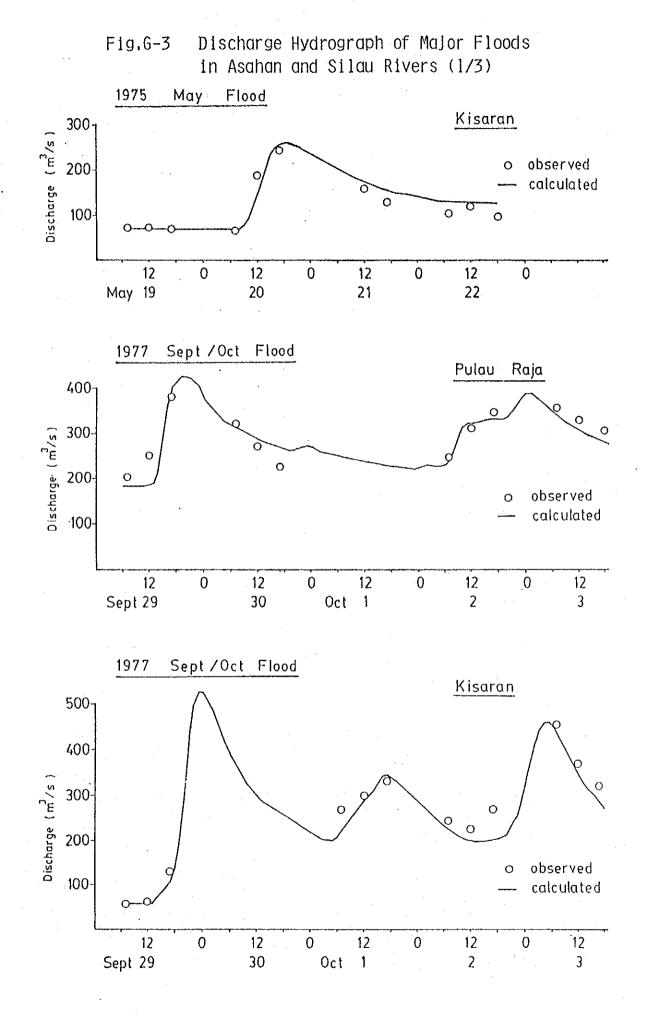
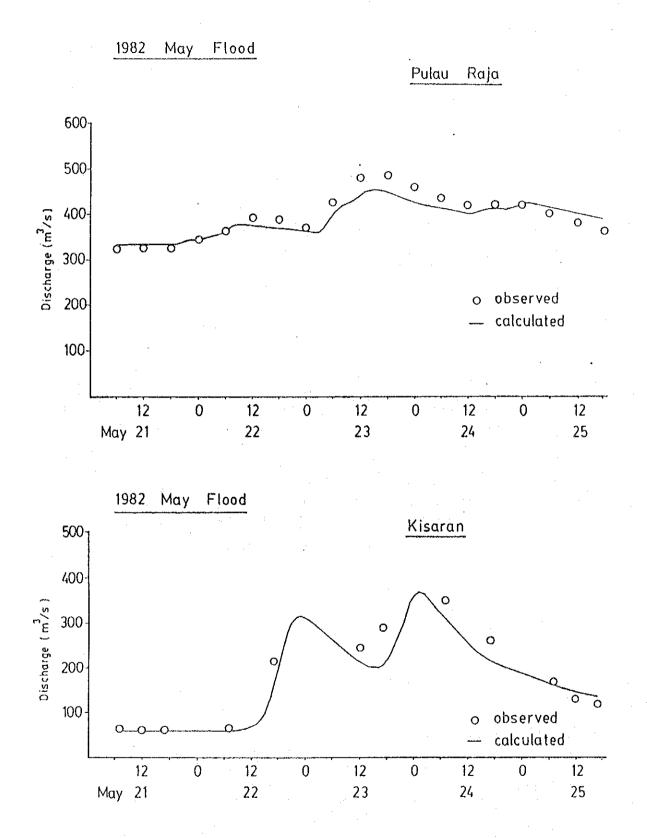



Fig.G-2


Runoff Simulation Model of Asahan and Silau Rivers under Present Condition


Strait of Malacca

- G.85 -

٠Ļ

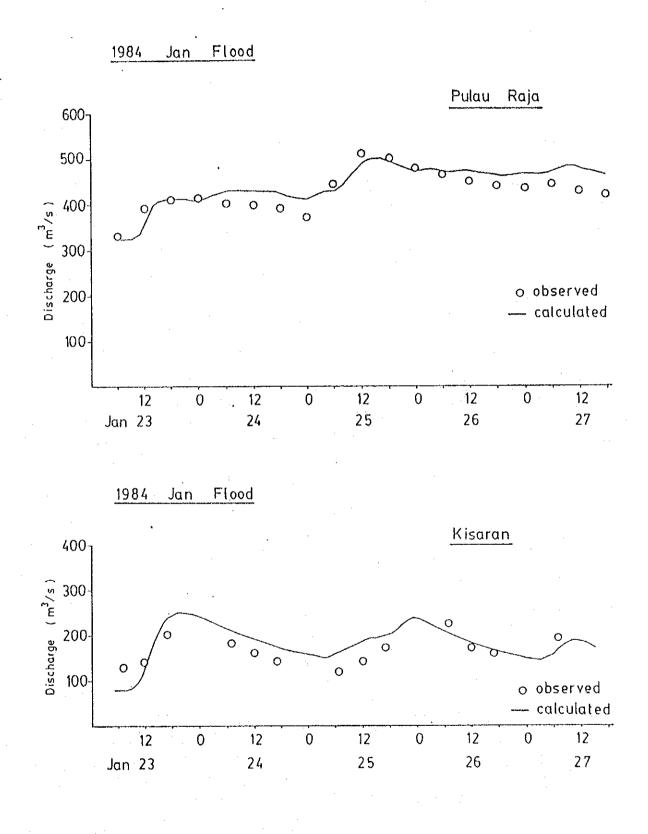

- G.86 -

Fig.G-3 Discharge Hydrograph of Major Floods in Asahan and Silau Rivers (2/3)

- G.87 -

Fig.G-3 Discharge Hydrograph of Major Floods in Asahan and Silau Rivers (3/3)

- G.88 -

Fig.G-4 Typical Rainfall Pattern

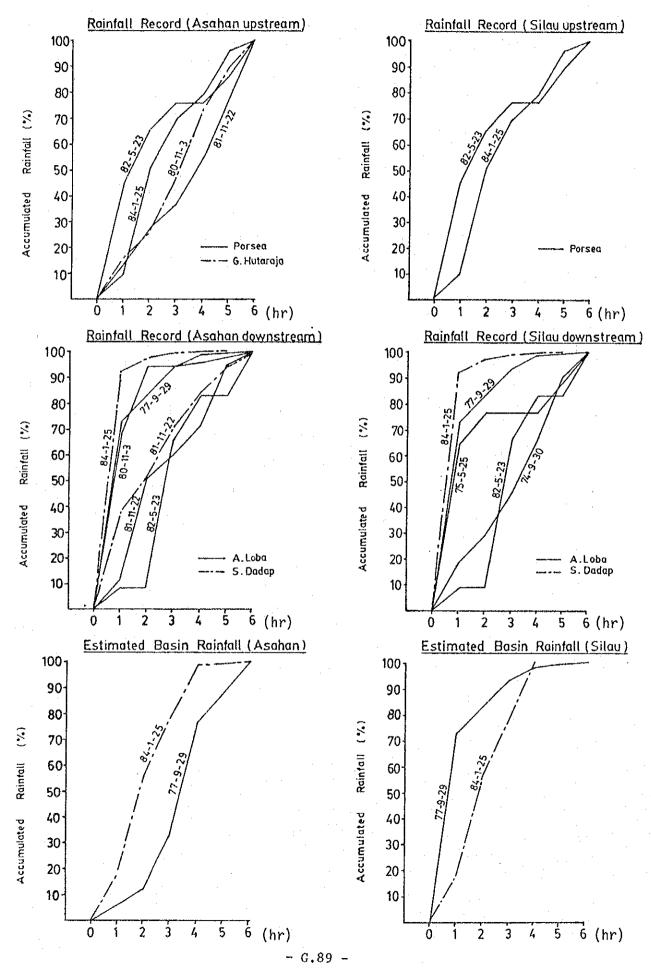
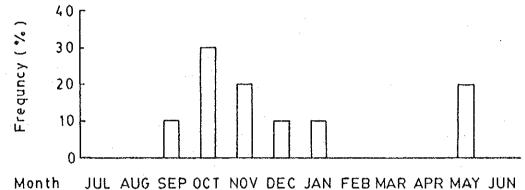
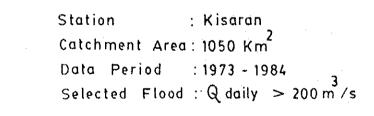
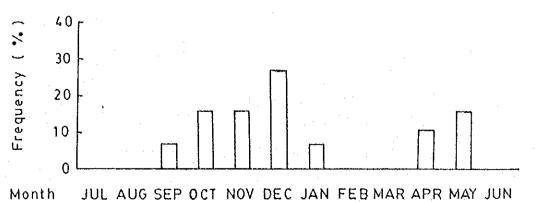





Fig.G-5 Flood Frequency of Asahan and Silau Rivers

Station : Pulau Raja (Residual Catchment downstream of Siruar) Catchment Area : 797 Km² Data Period : 1977 - 1984 Selected Flood : Qdaily > 170 m/s

