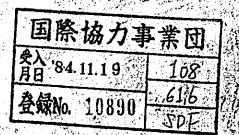
REPUBLIC OF INDONESIA

MINISTRY OF COMMUNICATIONS DIRECTORATE GENERAL OF LAND TRANSPORT
AND SINLAND WATERWAYS

TENDER DOCUMENTS FOR NEW RAILWAY LINE FOR CENGKARENG AIRPORT CONSTRUCTION PROJECT


STRUCTURAL CALCULATION SHEETS

PACKGE III MELECTRICAL WORK

. AUGUST 1984¥

" JAPAN INTERNATIONAL COOPERATION AGENCY (JICA)

フィシュ作成

INDEX

- SI SUBSTATIONS -----
- § 2 SUPPORTING STRUCTURE FOR

 OVERHEAD CONTACT SYSTEM ---- 33

			No	***************************************
S	/ SUE	STATION	S	
			•	

- I VOLTAGE DROP CALCULATION OF FEEDING
 CIRCUITS
- 1-1 <u>Calculation</u> of Installation Intervals of Susbstations
 - (1) Parallel Feeding

When the distance between substations is $L(\kappa m)$, the average distance between trains is $d(\kappa m)$, the maximum current of the train in the center of line is Im(A), the current of other train is I(A) and the line resistance is $R(\Omega/\kappa m)$, the permissible voltage drop ΔV shall be calculated as follows;

$$\Delta V = \frac{LR}{4} \left\{ \frac{\dot{U}}{2} \left(\frac{L}{d} - I \right) + Im \right\}$$

But the operation condition of the new line is esteemed that the schedule speed shall be 60 Km/h and the headway shall be 10 minutes in the future.

Therefore the average train intervals shall be 10 km.

On the other hand, the total length of the new line shall be about 20 km, and the maximum

cengkareng and Jakarta Kota, taking the system down of Kapuk substation into consideration.

Here, i= 0 in above formula

From
$$\Delta V = \frac{LRIm}{4}$$

$$L = \frac{4 \times \Delta V}{Im R}$$

Here . AV = 400 V

Im=1,970 A

R = 0.042 2/Km (Double Feeders)

Therefore L = 19.3 Km

Taking the system down of Kapuk substation into consideration, L will be 9.6 km.

(2) One Direction Feeding

When the distance between the substation and the end of feeding line is $L(\kappa m)$, the maximum current is Im and the line resistance is $R(\Omega/\kappa m)$, The permissible voltage drop ΔV shall be calculated as follows;

No	<u>J.</u>	

Therefore $L = \Delta V$ Im R

Here $\Delta V = 400V$

R=0.062 \(\Omega/km\) (Single Feeder)

Im=2,070 (A), as the total of the starting

current of the train (1.970A) and the power

for the mounted auxiliary loads in staying

train (100A)

Therefore L = 3.1 km

1-2 Voltage Drop Calculation of Feeding Circuits

The calculated results of voltage drop under each condition are as shown in Table 1. In each case, the feeding voltages satisfy the allowable minimum voltage 1100 v or more. The DC bus circuit voltage in SS will be 1523 v due to the following reason: The DC bus voltage E in SS will be calculated using the following formula.

$$E = Ed \left\{ 1 + \varepsilon \left(1 - \frac{I}{Id} \right) \right\}$$

Here.

Ed: DC rating voltage

1500 V

E: Voltage regulation of transformer 6 %

Id: Rating current of rectifier 2000 A

I: Load current

When the load current in SS is 1970 A,

Table 1 Calculation of Voltage Drop

	Condition	Headway: 10 min. 8 car thain Resistance of Feeding (ircult: R=0.062 (12/km) (Single Feeder) Leuking Cuttent Ratio: 30% (single Feeder) Max. Current: I = 1970 A
		Starting at JIAC. Stm. Starting at S. Stm A and the center of both SS Simultamous Starting of 2 trains at kota Intan Stm. L=2.96 km L=8.03 km L=8.03 km Single Feeder Cengkareny SS (engkareny SS (engkareny SS) Cengkareny SS (engkareny SS) Cengkareny SS (engkareny SS) Starting at S. Stm A and the center of both SS Simultamous Starting of 2 trains at kota Intan Stm. L=8.03 km Double Feeders Kapuk SS Kapuk SS Kapuk SS Kapuk SS Kapuk SS L=8.03 km Double Feeders L=8.03 km Double Feeders L=8.03 km Double Feeders L=8.04 L=8.05 km Double Feeders L=8.05 km Double Feeders L=8.05 km
Imal Freding	Estimated Load	$I_{A} = 1970 + 100 = 2070 \cdot A$ $I_{B} = 1970 \cdot A$
No	Calculation Feeder Voltage (v)	
1 Feeding	s Estimated Load	Starting at the center of both \$5 Starting at Kota Intan, Powering at the center of both \$5 L=16.17 km Double Feeders Cengkareng \$5 L=16.17 km Double Feeders Cengkareng \$5 Lay S. Stn. A S. Stn. B Kota Intan VI = 1970 A VI = 1970 A VI = 1970 A L=8.085 km L=8.085 km L=6.32 km L=6.32 km L=6.32 km
Expanded	Calculation Feeding Voltage (v)	$IA = \frac{1}{2} = 985 A$ $IA = \frac{1}{2} \{(l_1 + l_3)I_1 + l_5I_7\} = 905$ $E = IA l_1 R = 334 (V)$ $1523 - 334 = 1/89 (V)$ $1523 - 307 = 1/2/6 (V)$

Z CALCULATION OF RECTIFIER CAPACITY IN EACH SUBSTATION

The capacity of rectifier will be required to satisfy both of one hour maximum load Y and momentary over load Z of train load.

2-1 One Hour Maximum Load Y

One hour maximum load is calculated as follows:

$$Y = n_1 \times \frac{60}{R} L \times K \times Z + \alpha \cdot n_2 \times \frac{60}{R} \times \frac{L}{S} \times Z$$

Here n: Number of cals in one train

h : Head way

L: Share distance

K: Rate of power consumption

of train

35 Kwh/1000t-km

a: Power for air conditioner

Mz: Number of air conditioned car in

one train

2M2T /cat

4M4T 2 car

S: Schedule speed 40-60 km/h

2 - 2 Momentary Overload Z

The monentary overload & will be required to satisfy.

The following formula (1) and (2). The formula (2)

means the capacity which enables 2 trains in

front of SS to start simultaneously.

$$\mathbf{z}_{i} = \mathbf{Y} + \mathbf{c} \sqrt{\mathbf{Y}} \tag{1}$$

$$Z_2 = Im \times 2 \times / 5^{kV}$$
 (2)

Here Y: One hour maximum load

C: 1.7 VIm

In: Maximum cuttent of train

Formula 11) is gained from the actual results of JNR, and has a better conformity to the more close headway load.

Comparing Zi with Zz, there is a following temdency.

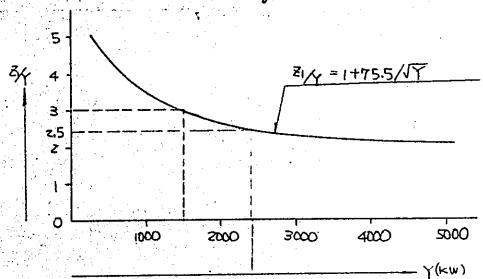
Headway close Z, > Z2

Headway not close Z, < 22

2-3 Overload Capacity of Rectifier

The ratio between one hour maximum load and momentary overload is about 300 % in Japan. From this result the overload capacity of tectifier is specified as 300 %, I wimute.

From He formula (1)


In = 1970 A (total of statting cuttent

1890 A and air conditioning

load 80A)

Z/Y = 1+ 15.5/

It is as shown in Fig. 1

Area where the capacity of Area where the capacity of rectifier rectifier is determined by Z. is determined by Y

Fig. 1 Relation between Z, and Y

Generally speaking the value of Zi/r is 300% or less in the close overhead line which has a bigger one hour maximum load compared with a momentary overload.

2-4 Calculation of rectifier capacity

The rectifier capacity P will be determined as follows, considering the safety for overload capacity, namely 250 % of overload capacity, and spare factor & (25%).

When
$$Z/Y > 2.5$$
 $P = \frac{Z}{2.5} \times \alpha$
When $Z/Y < 2.5$ $P = Y$

Therefore the space factor for Y will be not considered.

Considering the above mentioned conditions, the capacity of the rectifier in each substation is calculated in 3 cases; the normal operation, the system down of kapuk substation and the system down of part substation in Western line. The lesselfs are as shown in Table 2, 3 and 4.

Alt conditioned cars will be operated between JIAC.

Str. and Jatinegara, and the capacity of rectifiers will include the load for them.

(1) Cengkareny Substation

The tatio between one hour maximum load and momentary overload is 2.5 or more in Congkarong line, due to the relatively long headway. Therefore the main factor to determine the capacity of tectifier is a momentary overload.

Momentary overloads become maximum in the simultaneous starting of trains, and are 2955 kw in 2M2T and 5910 kw in 4M4T.

In Central line, 8-car operation is planned now, therefore in Cengkaren line, 8-car operation will be started in near future from the point of train management. Then the unit capacity of rectifier in Cengkareng should be 3000 kw.

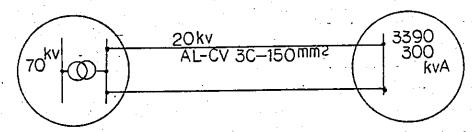
If the overload capacity of rectifler take 500%, the unit capacity would become smaller. But in Jakarta Kota SS, Z/Y is less than 2.5, as mentioned later. Therefore the unit capacity of tectifler should be 3000 kw, class S, considering the exchangeability of units and the unification of the rating.

(2) Kapuk Substation

The unit capacity of lectifier should be 3000 kw, class S, determined by the momentary overload, same as that of Cengkareng SS.

(3) Jakarta Kota Substation

In Jakarta Kota SS, Z/ will be about 3.0 in the first stage, and will become less than 2.5 in accordance with the increase of load. The installing capacity of tectifier in Jakarta Kotass will be determined by one hour maximum load, and required to be 3000 kw in the first stuge. It is planned in Western line electrification: project that 2 sets of 1500 kw rectifier will be installed in Jakarta Kota SS. But Jakarta Kota SS is an important substation, situated in the load center, supplying power for each line. Then another 3000 kw rectifier will be installed as standby unit, considering the future increase of load. In future the exchange of 1500 kw tectifier for 3000 kw tectifier will be required in accordance with the increase of load in each line


Table 3 capacity of Substations In Kapuk substation system down Jakanta Kota Kapuk Cengkaheng 2007~ ~1997 ~2006 2007~ ~2006 2007~ ~2006 ~1997 Double Single track Single Single track Double track Poubde track Single track Double track Central Cenglica -Eastern Tenjung Easteen Tanjung Congkare Western Existern Tanjung Central Conglaire Western Upstern Central Cong Kareng line Priok Priok مشا line line ىشە فشلا lime line line line line line line Tanjung Priok line Western line 2.7km Eastern line 6.3km Not work 0.734 Km Cong Kanong Quino Central line 8.13 km 903Km 2.75Fm 8.764 8,764 3,15 3.15 1.75 11.1 Share Distance L(km) 8,764 1.75 2.75 2,7 い75 2.75 2,7 2.75 3.15 2.7 Number of Cars ni (car) 8 8 8 8 4 8 8 8 8 8 8 ଚ 8 8 8 4 6 R (minute) 6 6 6 6 20 20 6 6 Head way 10 20 10 6 ZO ZO SO 1.78 (Kulkarka) 178 1,51 1.78 K 1.5 1.51 1.21 769 948 498 1587 897 948 769 498 285 794 397 897 One four maximum 1874 937 469 Y (km) Load total total 1768 total 3906 4699 Momentary 1 by 5910 5910 5910 2955 5910 5910 Overload (2) py 1624 3247 5140 9871 865S ₹ (kw) 3.3 3/4 63 3.2 5′5 2.1 You(2/2.5) x 1:25 2955 2955 4699 . 3906 3000 S00 O 3000. unit capacity (kw) 300 O 3000 1500 3000 1(1) 1(1) (1) 2.(1) Z (1) Number of Units One hour maximum load Y The number in () indicates Homentary overland Y= Mx -60 xLxKx2+Qmz 60x Lx2 Standby unit. O simultaneous start of two cars 2) According to the Statistical results note "Air conditioned cars will be S: Schedule speed 40460 km/h Z= Im XZ x 1.5 kV 2MZT: In = 945 + N 115+V x M2 = 985A C= 1.7V Im operated in Congkaring a : Power for air conditioning 60 km/car nz: Number of air conditioned cars in one train line and Central line. C=1.7V Im 2HZT - 12=1, 4H4T-Mz=2 444T = 1890 + 0 X X 16=1970A

										A TANK TO THE TANK					· · · · · · · · · · · · · · · · · · ·	•		•				
							Table	e 4	Cacacit	[√ o-	Subs					In D	uri Su	betatio	n(West	tern li	ne) sy:	stem d
		C.	eng Kah	ang		sapulc					•	Jakar	-ta 1	rota	•		-	- 1		 	<u></u> -	
		~(997	~2006	, , , , , , , , , , , , , , , , , , ,	~1997	~2006	2007~		学术 联			2006				2007∼				·		
		Single track track			Single								Track Double track			Pouble teach				Central		
		•	C	eng Kare	ng lù	·	-	Cangkare -ng line	vestern!	Easter Line	Priols Priols	Central	Cenglake -ng Line	Vester		Tanjung Priok Lime	لاست	Cengilea -tema -line	line	Eastern	Parjeta Pariole Usine	عشا
Not work									Kahena			Wes	<u>Em lina</u> 6.3km		0.73	1.75 km 2.7k		jung Pri Eastern		L		
		75	استلرو	8./	g km				v u)3 Km						2.75F	44	<u> </u>	inal lu	4		1
Shane Distance	رو الرائس	1	7,035			80,8		4.749	6.3	2.7	1.75	2.75	4.749	6.3	217	1.75	2.75	4.749	6.3	2.7	1,75	2.75
Number of Cari	s man	4	ව	8	4	8.	8	4	8	4	4	ક	8	8	8	8	8	8	82	8	8	8
Head way	R (minui)	ZD	20	10	20	20	10	20	6	20	20	SO	20	6	6	6	6.	(0	6	6	6	6
κ (kaus/carkin	<u> </u>		1.5	1		· · · · · · · · · · · · · · · · · · ·	ויבו		l)	<u>†</u> ?		1,51		1.7	8		1.21	i	1.78		<u> </u>
One four maxim).Ves			-				215	1794	115	74	z85	430	1794	769	498	948	860	1794	769	498	948
Load Y	(Em)	297 5°	594	1188	341	683	1365	total		24	\$3		total	<u></u>	44	39	 	total	2	486	9	
lomentary	1 by	2955	5910	5910	2955	5910	5910		<u> </u>	-5	¥10			<u> </u>	591	0		<u> </u>		5910		<u></u>
verbader E (ku)	(de ()		2433	3789	1326	2655	4153				43			· ·	946	<u></u>		<u> </u>		1013	4	
₹/4		. 9.9	9.9	5.0	8.7	8.7	43		141.5 2	5,	5	· ·			گ ر آ	1	· · ·			2,1		<u> </u>
Yor(7/2,5) x	1.25	1478	2955	2955	1478	2955	2955	3 3		.≥9	5 5			· 	44	139		,		4 86	9	·
umit capacit		3000	3000	3000	3000	3000	3000		2 00		. 3000)			30	00				3000)	
Numation of U	· ·		1(1)		1	Í			2		(1)				2 ((1)				2 (1))	
pot2		l ox	Power	for air co	onditioni	ng 60 k	w/car =	z	verload 100US SI 6 2 X 1.5	KV	. 3	•	2 185 A	۲	ccording sults z=Y+c C=1.71	厅 厅	otalisti		Standl Air con	y unit dilioned	() indi cars wi rnykaren line	II be

3 CALCULATION ON POWER RECEIVING NETWORK

3-1 Cengkareng Substation

(1) Distribution Network

PLN Cen&kareng Substation

PJKA Cen & karens Substation

Fig. 2 Distribution Network

10 k m

(2) 3-phase Short Circuit Capacity of 70 kV Bus

MAX. 2673 MVA (Data from PLN in 1982)

MIN. 2096 MVA (

Converting it into % Z

MAX. 0.38% (on the base of 10 MVA)

MIN. 0.48% (

(3) The Capacities and % Z of 70 kV/20 KV Transformers

Capacity 60 MVA (on the arrangement with PLN)

% Z 13 %

Number One set

Converting it into % 2

13% × 10MVA = 2.17%

(4) % Z of 20 KV Transmission Line

On the calculation of the short circuit capacity, usually the reactance alone shall be used.

Converting it into % Z (on the base of 10MVA)

%XI = PMVA XL SL x 100 E2(KV)

Then

% XL = 0.25 (%/km)

(5) % & upto The Power Receiving Point of Cengkareng

Substation of PJKA

MAX. 0.38+2.17+0.25 x 10 km = 5.05%

MIN. 0.48+2.17+0.25 x 10 Km = 5.15%

(6) 3-phase Short Circuit Capacity in the Power

Receiving Point of Cengkareng Substation of PJKA

Ps = 100 × 10,000

then

MAX. 198 MVA

MIN. 194 MVA

(7) Voltage Regulation

Assuming The Ero as the terminal voltage at the power receiving point, the voltage regulation % Reg shall be calculated as follows:

here

I: Load current

L: Distance between PLN substation and

Cengkareng substation of PJKA .= 10 km

R: Resistance of 20kV distribution line = 0.26(Q/km) (Refer to 3-6)

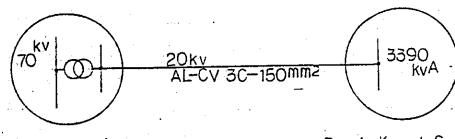
XL: Reactance of 20KV distribution line

cosq: Power factor 0.8

sing: Reactive factor 06

The load current shall be as follows, considering

the fluctuating load.


= 155A

therefore.

% Reg = 3.7 %

3-2 Kapuk Substation

(1) Distribution Network

PLN Duri kosabi Substation PJKA Kapuk Substation

8Km

Fi8.3 Distribution Network

(2) 3-phase Short Circuit Capacity of 70 KV Bus

MAX. 3160 MVA (Data from PLN in 1982)

MIN. 2463 MUA (

,)

Converting it into % &

MAX. 031% (on the base of 10 MVA)

MIN. 0.40 % (

(3) The capacities and %2 of 70kV/20kV Transformers

Capacity 60 MVA (on the arrangement with PLN)

% & 13%

Number One set

converting it into % &

13% × 10 MVA = 217%

- (4) % Z of 20kV Transmission Line

 Using the same method as in Cengkareng Substation

 % XL = 0. 25 (%/km).
- (5) % Z up to the Power Receiving Point of Kapule
 Substation of PJKA

MAX. 0.31 + 2.17 + 0.25 x 8 Km = 4.48 %

MIN. 0.40+2.17+0.25 x8 Km = 4.57%

(6) 3-phase Short Circuit Capacity in the Power

Receiving Point of Kapuk Substation of PJKA

Ps=100 ×10,000

then

MAX. ZZ3 MVA

MIN. 219 MVA

Using the same method as in Cengkareng Substation

2.8 % is gained.

3-3 Jakarta Kota Substation

(1) Distribution Network

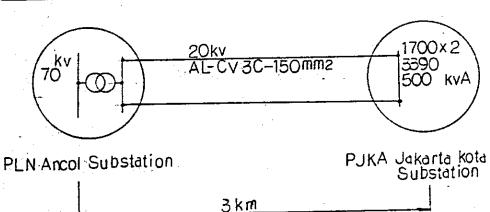


Fig. 4 Distribution Network

(2) 3-phase Short Circuit Capacity of 70KV Bus

MAX. 1251 MVA (Data from PLN in 1982)

MIN. 1203 MVA ("

Converting it into % &

MAX. 0.80% (on the base of 10MVA)

MIN. 0.83% (

(3) The capacities and % & of 70kV/20kV Transformers

Capacity 60MVA (on the arrangement with PLN)

% Z 13%

Number Two sets

Converting it into % &

13% × 10MVA = 1.08 %

(4) % & of 20 KV Transmission Line

Using the same method as in Cengkareng Substation
%XL = 0.25 (%/km)

(5) % Z upto the Power Receiving Point of Jakarta Kota Substation of PJKA

MAX. 0.80 + 1.08 + 0.25 x 3 km = 2.63%

MIN. 0.83 + 1.08 + 0.25 x 3 km = 2.66 %

(6) 3-phase Short Circuit Capacity in the Power

Receiving Point of Jakarta Kota Substation of PJKA

Ps = 100 × 10,000

Then

MAX. 380 MVA

MIN. 876 MUA

(7) Voltage Regulation

Using the same method as in Cengkareng Substation 2.2% is gained.

3-4 Intertupting Capacity of Circuit Breakers for POWER Receiving

The interrupting capacity of circuit breakers shall be
the same capacity in these three substations, considering
of exchangeability! Therefore the calculation of
3-phase short circuit currents shall be made for
Jukarta kota substation, which shall have the
maximum 3-phase short circuit capacity, as follows.

$$I_5 = \frac{380 \text{ MVA}}{\sqrt{3} \times 20 \text{ kV}} = 11 \text{ kA}$$

The interrupting capacity of the circuit breakers shall be 25 KA, considering of the increase of the power source capacity of PLN network in the future.

3-5 Selection of Power Receiving Cable Sizes

The study shall be made on the condition that the same cable size shall be adopted -jot these three substations.

The short circuit capacity of CV table shall be calculated as follows, on the conditions that the basic temperature is 90° and the maximum.

momentary allowable temperature is 230°C.

Here

S: Cable size (mm2)

+: fault continuing time

Assuming += 10 sec.

S = 82 MM2

Taking the increase of the power source capacity of PLN in the future into the consideration,

22kV CV simple-core 150 mm² cables shall be adopted. The continuous allowable current

fating of this cables is 335A, and the load

current in Jakarta kota substation is 210A.

3-6 Line Constant of Cable

The resistance and inductance of 22 kV Al CV cable 3-core 150 mm² (aluminium conductor cross-linked polyethylene insulated polyvinyl chroride sheathed cables) between PLN SS and FLN Switch House, shall be calculated in this section. A composition of 22 kV Al CV 3-core 150 mm² in JAPAN is shown in Fig. 5.

(1) Resistance

The resistance of conductor in temperature
To shall be calculated as follows:

R= R20 { /+ d (T1 - 20)}

Here R20: resistance at conductor

temperature 20°C, 0.201 (SI/km)

a : temperature (oefficient 0.00403 (1/°c)

The allowable continuous temperature rise of CV cable is 90°C, therefore we can get a following value, putting 90 in Ti of the above

formula

$$R = 0.26 \quad (\Omega/km)$$

In the data from PLN, R is az SZ/km. This value seems to be the value at conductor temperature 20°C.

(Z) Inductance

the inductance of cable is calculated using the following formula. Here the inductance means the self and mutual inductance per each phase.

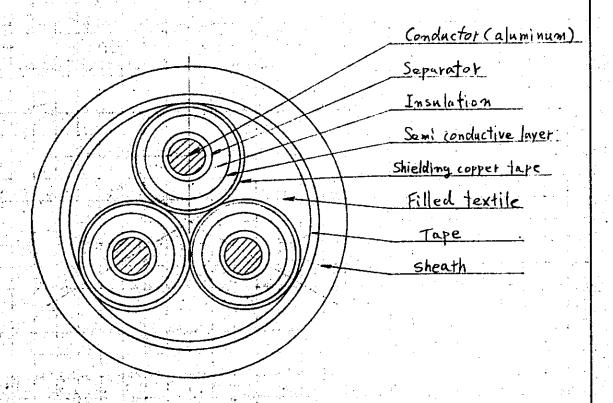
$$L = (2ln \frac{2S}{d} + X_0) \times 10^{-1} (mH/km)$$

Here

Xo: 0.5

s: interval between each conductor

center (mm)


d: outer diameter of conductor (mm)

From Fig. 5

$$S = 1 \times 2 + 14.7 = 28.7$$

Then
$$L = 0.322 \, (mH/km)$$

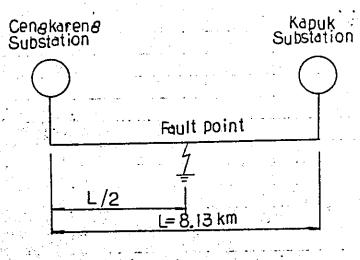
Therefore impedance Z is as follows: $Z = WL = 2\pi f L = 2 \times \pi \times 50 \times 0.322^{MH/km}$ $= 0.10 \quad (2/km)$

Insulation Hickness 7.0 mm

Fig. 5 Composition of 22 kV ALCV 3-core 150,442

In the data from PLN, Z is 0.1 Se/km. Therefore the cable's provided by PLN, seems to be the almost same composition as that of Fig. 5.

Therefore this cable has enough capacity for the load cuttent.


4 CALCULATON ON FEEDING CIRCUITS

4-1 Protection with Linked Breaking Device Chereinafter called LBD)

The protection area for the feeding circuits shall be shortened to the center between the substations with LBD, and the sensitiveness of the detection of the faults shall be improved.

For one example, to the long distance of feeding circuit between Cenykareng and kapuk substation a calculation shall be made.

The fault cuttent DI, which flows into Congkarong substation as shown in Fig. 6, shall be calculated as follows, but the fault shall be an arc fault.

Here

Ea: arc fault voltage = 300 V

Ror: internal tesistance of Congkaring substation

= 0.0525 S

t : tesistance of feeding circuit

(double feeders)
= 0.0 ×2 Ω/km

l: distance between substations

= 8.13 km

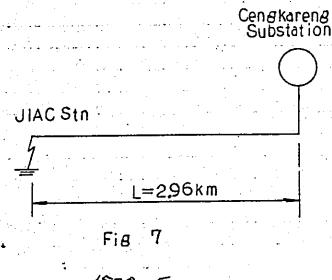
Ra: resistance at arc fault point
(at feeder branch intervals of 250 meters)

= 0.05 1

Therefore DI = 37/0 A

As the value of oI in the train' shall be 1000 A

(4M4T), this value is within protection area.


Here the values of Ea and Ra comes from

Japanese National Railways actual results.

4-2 Protection with 50 F

As for 50F, the calculation shall be made for the JIAC side of Conglearing substation. The fault shall be are fault.

The fault current aI, which flows into Cengkarenge substation as shown in Fig.7, shall be calculated as follows;

$$\Delta I = \frac{1500 - Ea}{Rot + fl + Ra}$$

Here

Ea : arc fault voltage = 300V

Rol: internal resistance of Cengkareng substation

= 0.0525 Q

r: resistance of feeding circuit
(single feeder) = 0.062 \(\Omega/km\)

L : distance between substations

= z.96 km

Ra: resistance at arc fault point

(at feeder branch intervals of 250 meters)

= 0.05 \Omega

Therefore DI = 4196 A

As the value of DI in the train shall be 1000A (4M4T), this value is within protection area. Here the values of Ea and Ra cames from Japanese National Railways' actual results.

s .		
		No. 32
•		
i	医乳腺 医中部病 机管管系统	
ı		
		SUPPORTING STRUCTURE FOR
1	\$ 2	SUPPORTING STRUCTURE TOOK
		野海湖 全直的 化多分离分别 医自己的人 医二十分的
•		OVERHEAD CONTACT SYSTEM
Ì		karangan dakan dari dan perdamban dan diberahan dan diberahan dan diberahan dan diberahan dan diberahan dan di Managan dan diberahan dan
	《集林·福兰》 第一条的水池。	
	The state of the s	
	国际	
- 1	医阴茎性 编译的 电流电路	
	以上,从外上的基础的 。	
٠.		
٠.		
Š		
1.	格特别的特色的	
÷.		

	Na	33
	•	
	Ξ,	
* Refer to the structural calcula	rtion s	heers
of Package I (110f11).		
	*	
	**	
多国际政治的 医乳腺 经有限 医神经性 医二甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基		