REPUBLIC_OF INDONESIA

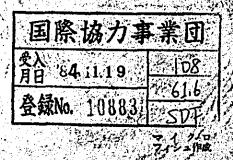
MINISTRY-OF COMMUNICATIONS ***
*DIRECTORATE GENERAL OF LAND TRANSPORT

AND INLAND WATERWAYS**

TENDER DOCUMENTS FOR NEW RAILWAY LINE FOR CENGKARENG AIRPORT CONSTRUCTION PROJECT

STRUCTURAL CALCULATION SHEETS

PACKAGE CIVIL AND ARCHITECTURAL WORK


11.of 11

AUGUST 1984

108 61.6 SDF LIBRARY

JAPAN INTERNATIONAL COOPERATION AGENCY
(JICA)

STRUCTURAL CALCULATION SHEETS CONTENTS

1 OF 11 \$\$1. P. C. GIRDERS \$\$2. R. C. GIRDERS

2 OF 11 \$\$3. PIERS \$\$4. ABUTMENTS

3 OF 11 \$\$5. VIADUCT V047 \$\$6. VIADUCT V048

4 OF 11 \$\$7. VIADUCT V089

5 OF 11 888. VIADUCT V094

6 OF 11 889. VIADUCT OF PLATFORM VP2 8810. VIADUCT OF PLATFORM VP5 8811. R. C. GIRDER OF PLATFORM RCP1

7 OF 11 8812. VIADUCT V129

8 OF 11 8813. BOX CULVERTS

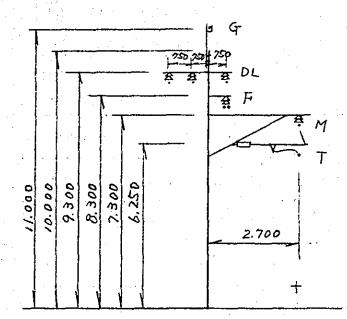
9 OF 11 8814. BUILDINGS

10 OF 11 \$\$15. CALCULATION OF MECHANICAL FOR AIRPORT TERMINAL STATION, KOTA INTAN STATION AND SIGNAL CABINS

\$\$16. LIGHT INTENSITIES (LUX)

11 OF 11 \$817. SUPPORTING STRUCTURE FOR OVERHEAD CONTACT SYSTEM

JIMA LIBRARY


§§ 17. SUPPORTING STRUCTURE

FON

OVERHEAD CONTACT SYSTEM

Moment Calculation of General Supporting Structure Between Stations

Standard Supporting Structure

G: Ground Wire St 55 mm2

DL: Distribution Line

0E-Cu 38 mm2

F: Feeder Wire Cu 300 mm?

M: Messenger Wire St 90mm2

T: Trolley Wire Cu 110 mm2

1. Vertical Load

: 			·		
T 1	Wire	Unit	SPAN		
Item	Classifi cation	Weight (19f/m)	60 M	50 M	40 M
Feeder Wire	Ca 300 mm2 × 2	2.715	325.8	271.5	2/7.2
Messenger Wire	St90 mm2	0.697	41.8	34.9	27.9
Trolley Wire	Ca 110 mm2	0.9877	59.3	49.4	39.5
Distribution Line	0E-Cu38min x 3	0.405	72.9	60.8	48.6
Ground Wire	St55mm2	0.446	26.8	22.3	17.8
Rigid Contilever				70	:
Total Weight (kgf)			596 b	508.9	421.0

2. Horizontal Load

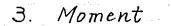
2-1 Wind Load

Ttom	Wire	Unit		SPAN	
Item	Classifi Cation	Wind Load (87/m)	60 M	50 M	40 M
Heeder Wire	Cu300 mm x 2	0.5625 ×1.2	40.5	33.8	27.0
Messenger Wire	St90 mm2	0.3	18.0	15.0	12.0
Trolley Wire	Ca 110 mm²	0.3085	18.5	15.4	12.3
Distribution Line	0E-Cu38mm2 3	0.295 × 3	\$3.1	44.3	35.4
Ground Wire	Stss mm²	0.24	14.4	12.0	9.6
Concrete Pole 0.35 × 20 195 7795 7×10 M=70			70.0	70.0	70.0
Total Wind Load (rgf)			212.4	188.4	164.2

2-2 Tension (Temperature 20°C Velocity of the Wind 20 m/sec)

-	Wire	Standard SPAN			
Item	Classifi cation	Tension (Kgf)	60 M	50 M	40 M
Feeder Wire	Ca 300 mm²	1,200	1.320	1.360	1.430
Messenger Wire	St 90 mm2	1,000	1.120	1.140	1.160
Trolley Wire	Cu110 mm2	900	900	900	900
Distribution Line	0E-Cu 38 m m²	200	220	230	250
Ground Wire	St55 mn12	300	370	380	400

2-3 Cross Tension Load


C: Cross Tension (Kgf)
S: Span (M)

 $C = \frac{ST}{R}$

T: Tension (Kgf)

R: Truck Curve Radius (M)

	Wire	R=/	.000	R=500
Item	Classification	60 M	50 M	40 M
Fleeder Wire	Cu 300 mm² x 2	158.4	136.0	228.8
Messenger Wire	St 90 mm²	67.2	57.0	92.8
Trolley Wire	Ca 110 mn12	54.0	45.0	72.0
Distribution Line	0E-Cα 38 mm² x 3	39.6	34.5	80.0
Ground Wire	St st mn12	22.2	19.0	32.0
Total Cross	Tension (Mgf)	341.4	291.5	485.6
Total Wind	Load (gf)	2/2.4	188.4	164.2
Total Horizon	tal Load (1897)	\$53.8	479.9	649.8

3-1. By Weight

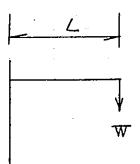
 $M_{i} = WL$

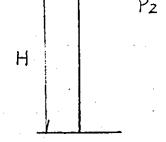
W: Weight (Kgf)

L: Length (M)

3-2 By Wind pressure Load

 $M_2 = P_1 H$


P: Wind pressure Load (kgf)


H: Height (M)

3-3 By Cross Tension

M3 = P2 H

Pz: Cross Tension (kgf)

PI

3-4 Total Moment $M = M_1 + M_2 + M_3 \qquad (Rgf - M)$

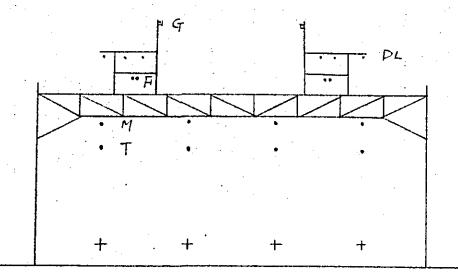
3-1 By Weight

т _	Wire	Langetine	SPAN 60m Som 401			
Item	Classification	Lenght (M)	60 m	50 m	40 m	
Heeder Wire	Cu 300 mm × 2	0.75	244.4	2036	162.9	
Messenger Wire	St 90 mm2	2.7	112.9	94.2	75.3	
Trolley Wire		2.7	160.1	133.4	106.7	
Distribution Line		1.5	-36.5	-30.4	-24.3	
Ground Wire	St 55 m m ²	0	0	0	0	
Rigid Con		2.7/2	90.5	94.5	94.5	
Tota	e M,	(Kgf-M)	575.4	495.3	415.1	

3-2 By Wind pressure Load

T	wire	Height		SPAN	
Item	Classification	Height (M)		50M	
Heeder Wire	Си 300 mm ² × 2	∂,3	336 ^{.2}	280.5	224.1
Messenger Wire	St90 mm2	7.3	131.4	109.5	87.6
Trolley Wire	Ca //0 mm²	6.25	115.6	96.3	76.9
Distribution Line	0E-Cu38************************************	9,3	493.8	412.0	229. ²
Ground Wire	St 55 mm2	11.0	158.4	132.0	105.6
Concrete	Pole	5.0	350.0	350.0	350.0
Total	Mz (Kg	gf-M)	1585.4	1.380.3	1.073.4

3-3 By Cross Tension


+	wire	Height	R=	1.000	R=500
Item	Classifi cation	Height (M)	60 M	50 M	4011
Feeder Wire	Cu 300 mm × 2		1	1.128.8	
Messenger Wire	St90 mm2	7.3	490.6	416.1	677.4
Trolley Wire	Ca 110 mm2	6.25	337 ⁵	28/.3	450.0
Distribution Line	 	9,3	૩68 ^{,૩}	320 ?	\$\$8.º
Ground Wire	·		242.0	. 209.0	352.0
Total	Мз (Кд	<i>f-M</i>)	z.75-3 !	2.356 [!]	3.936 ^{.4}

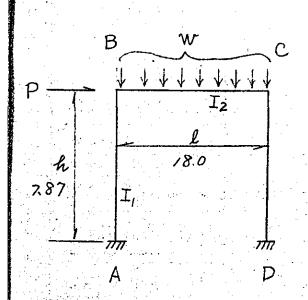
3-4 Total Moment (Kgt-M)

	Stra	ight Se	ction	curve.	Section
Item	60 M	50 M	40 M	R=1000 60 M	R=500 40 M
Total Moment by Weight (M1)	575.4	495.3	115.1	575.4	415.1
Total Moment by Wind Load (Mz)	1585. ⁴	1.380.9	10734	1.585.4	1.073.4
Total Moment by Cross Tension(M3)				2.753.1	3.936.4
Total Moment (Outside of Curve)	2.160.8	1.875 ⁶	1.488.5	4.9/3.9	* 5424.9
Total Moment (Inside Curve)	1.010.0	885.0	८ ६ ८. ³	3.763 -	4.594.7
Concrete Pole	N 5.000	N5.000	N5.000	N5.000	* N6.500 N5.000

* This case is not concerned with this project design.

Inside of Station (V-Truss Beam)

G: Ground Wire StS5mm2 x 2


DL: Distribution Line OE-Cu38mm2 x 3 x &

F: Feeder Wite Ci 300 mm2 x x x x

M: Messenger Wire St 90 mm² x 4

T: Trolley Wire Cullomm2 x4

Span 60 M R= 1.000

(3) Total Moment

- (1) Moment at Weight $MA_{1} = MP_{1} = \frac{wl^{2}}{12(K+2)}$ $MB_{1} = MC_{1} = -2MA_{1}$
- (2) Moment at Horizontal Load $MA_{Z} = -MD_{Z} = -\frac{Ph}{2} \cdot \frac{3K+1}{6K+1}$ $MB_{Z} = -MC_{Z} = \frac{Ph}{2} \cdot \frac{3K}{6K+1}$

 $MA = MA_1 + MA_2$ $MC = MC_1 + MC_2$ $MB = MB_1 + MB_2$ $MD = MD_1 + MD_2$

I1: Inertia Moment of Pole (cm4)

Iz: Inertia Moment of Beam (cm4)

W: Vertical Load Unit Weight (rgf)

1: Beam Lenght (M)

h: HoriZontal Load Height (M)

P: Horizontal Load

Inertia Moment

Concrete Pole

 $N5.000 = 9.880 \text{ cm}^4$

N6.500 = 10.196 cm4

N7.500 = 10.526 Cm4

V-Truss Beam 25x75x6 = 62.149cm4

175×75×9 = 91.100 Cm4

1. Vertical Road (Span 60 M)

Item	Quantity	weight (195)
Freeder Wire Cusoonini	4	6516
Messenger Wire St90 mm²	4	167.2
Trolley Wite Callomni2	4	237 ^{.2}
Distribution Line OE-Cu 38 mm2	Ь	145.8
Ground Wire St55 mm²	ک	\$3.6
V-Truss Beam 175×75×9		(18M) 1001.0
Total Weight (2,256 ⁴

Unit Weight W= 2.256 18 = 125.3 kgf

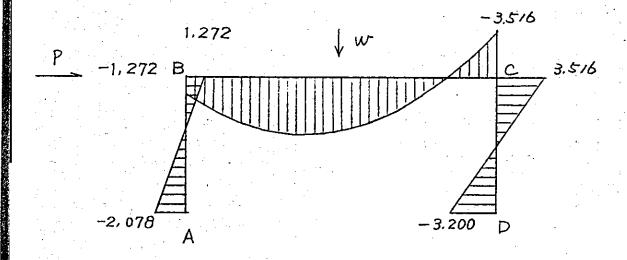
2. Horizontal Load (Span both R=1:000)

Item	Load Classification	Quantity	Load (kgt)
To be with a command	Wind	1	85.0
Fleeder Wire Cu300mm²	Cross Temsion	4	૩૩ <u>૨</u> . ઠ
Managar Wita Ottoming	Wind	4	22.3
Messenger Wite Styonim ²	Cross Temsion	7	250.0
Trolley Wire Cullomm2	Wind		19.5
	Cross Temsion	4.	170.6
Distribution Discording	Wind	. ,	125.4
Distribution Line Cu38 mm	Cross Temsion	· 6	93.4
Charles C. Hamm	Wind	. (40.2
Ground Wire Stssmm2	Cross Temsion	. 2	62.2
Concrete	Po le	2	72.0
Total Horizont	al Load (Kgf)	1.273. ²

$$K = \frac{I_z}{I_1} \cdot \frac{h}{\ell} = \frac{91.100}{9.880} \cdot \frac{7.87}{18} = 4.03$$

(1) Moment by Weight
$$MA_1 = MD_1 = \frac{wl^2}{12(K+2)} = \frac{125.3 \times 18^2}{12(4.03+2)} = 561$$

$$MB_1 = MC_1 = -2MA = -2 \times 56/ = -1/22$$


(2) Moment by Horizontal Load
$$MA2 = -MD_2 = -\frac{Ph}{2} \cdot \frac{3K+1}{6K+1} = \frac{1273.2 \times 7.87}{2} \cdot \frac{3 \times 4.03 + 1}{6 \times 4.03 + 1}$$

$$=-2.637$$

$$MB_2 = -MC_2 = \frac{Ph}{2} \cdot \frac{3K}{6K+1} = \frac{1.273.^2 \times 7.87}{2} \cdot \frac{3 \times 4.03}{6 \times 4.03 + 1}$$
$$= 2.394$$

(3) Total Moment

$$MA = MA_1 + MA_2 = 561 - 2.639 = -2.078 \text{ Ngf} - M$$
 $MB = MB_1 + MB_2 = -1.122 + 2.394 = 1.272 \text{ Ngf} - M$
 $MC = MC_1 + MC_2 = -1.122 - 2.394 = -3.516 \text{ Ngf} - M$
 $MD = MD_1 + MD_2 = 561 + 2639 = 3.200 \text{ Ngf} - M$

The designed bending moment of sooon concrete poles is sooo kgf.m. Therefore the strength of sooo N concrete poles is enough to the above loads.