PEPUBLIC OF INDONESIA " MINISTRY OF PUBLIC WORKS " DIRECTURATE GENERAL OF HIGHWAYS

THE PEASIBILITY STUDY OF THE LOCAL ROAD DEVELOPMENT IN THE REPUBLIC OF INDONESIA

KABUPATEN REPORT 38

KABUPATÈN KOLAKA:

MARCH 1986

JAPAN INTERNATIONAL COOPERATION AGENCY

_JKIN LIBRARY 1034267€3J

REPUBLIC OF INDONESIA MINISTRY OF PUBLIC WORKS DIRECTORATE GENERAL OF HIGHWAYS

THE FEASIBILITY STUDY OF THE LOCAL ROAD DEVELOPMENT IN THE REPUBLIC OF INDONESIA

KABUPATEN REPORT 38

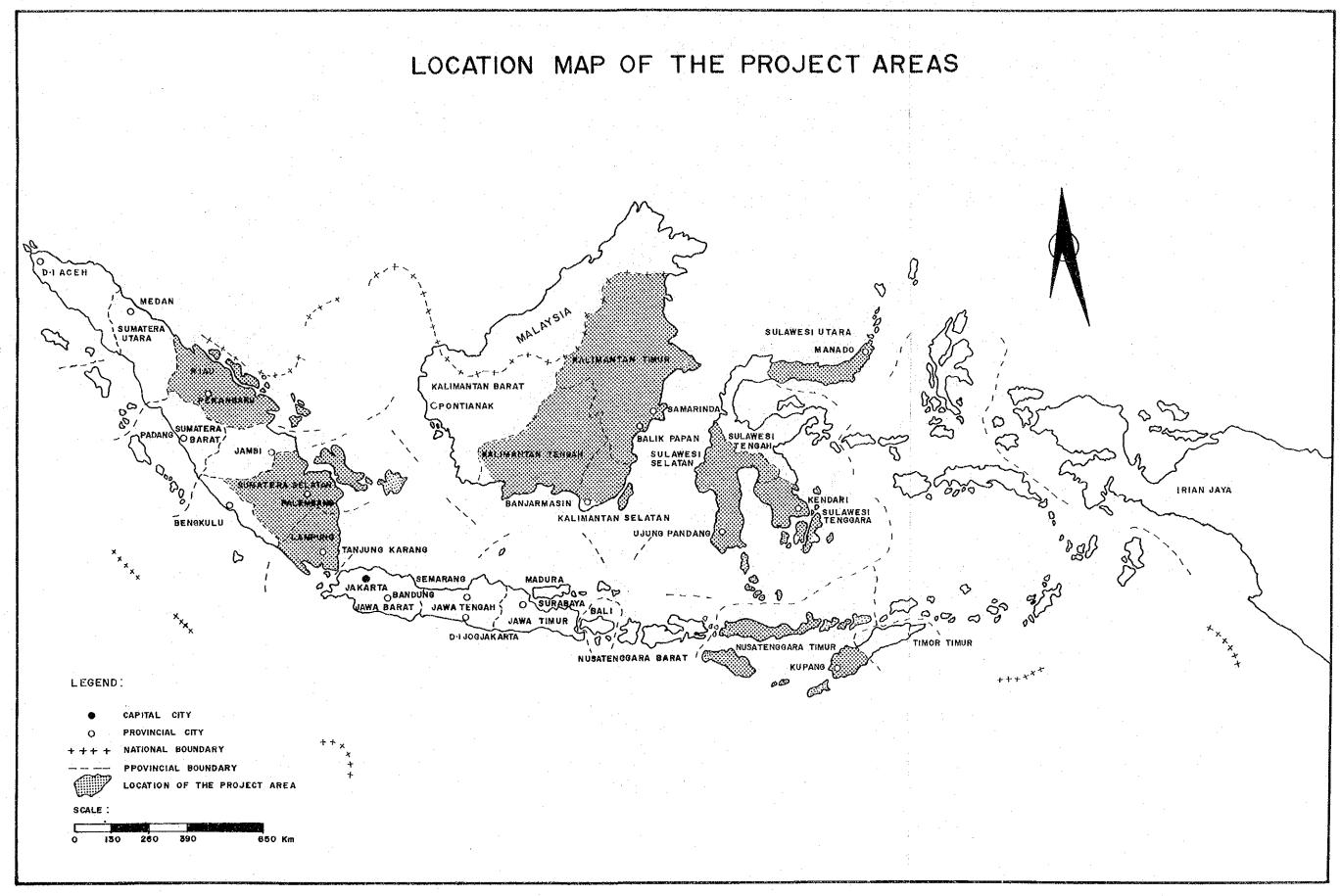
KABUPATEN KOLAKA

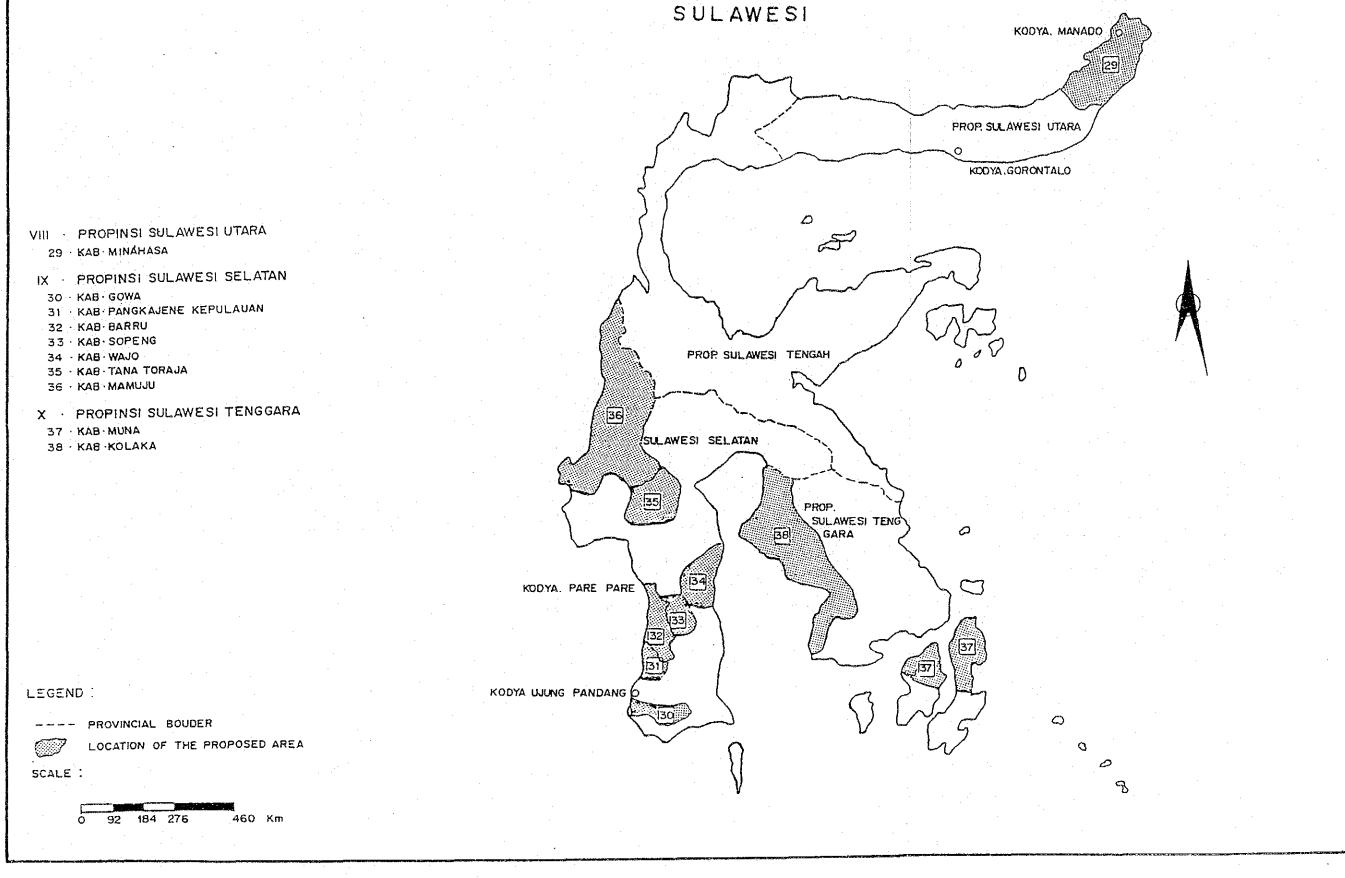
MARCH 1986

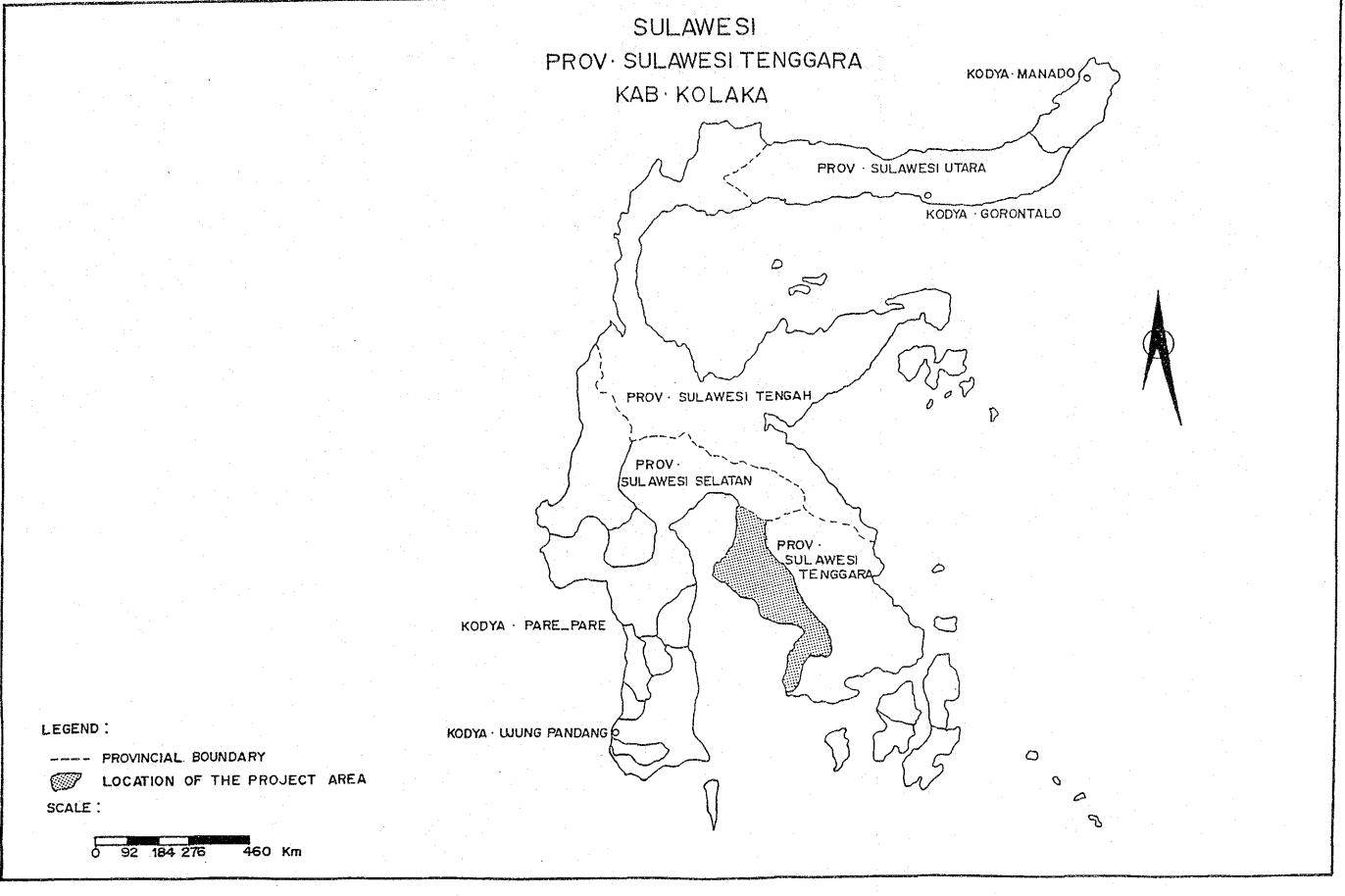
JAPAN INTERNATIONAL COOPERATION AGENCY

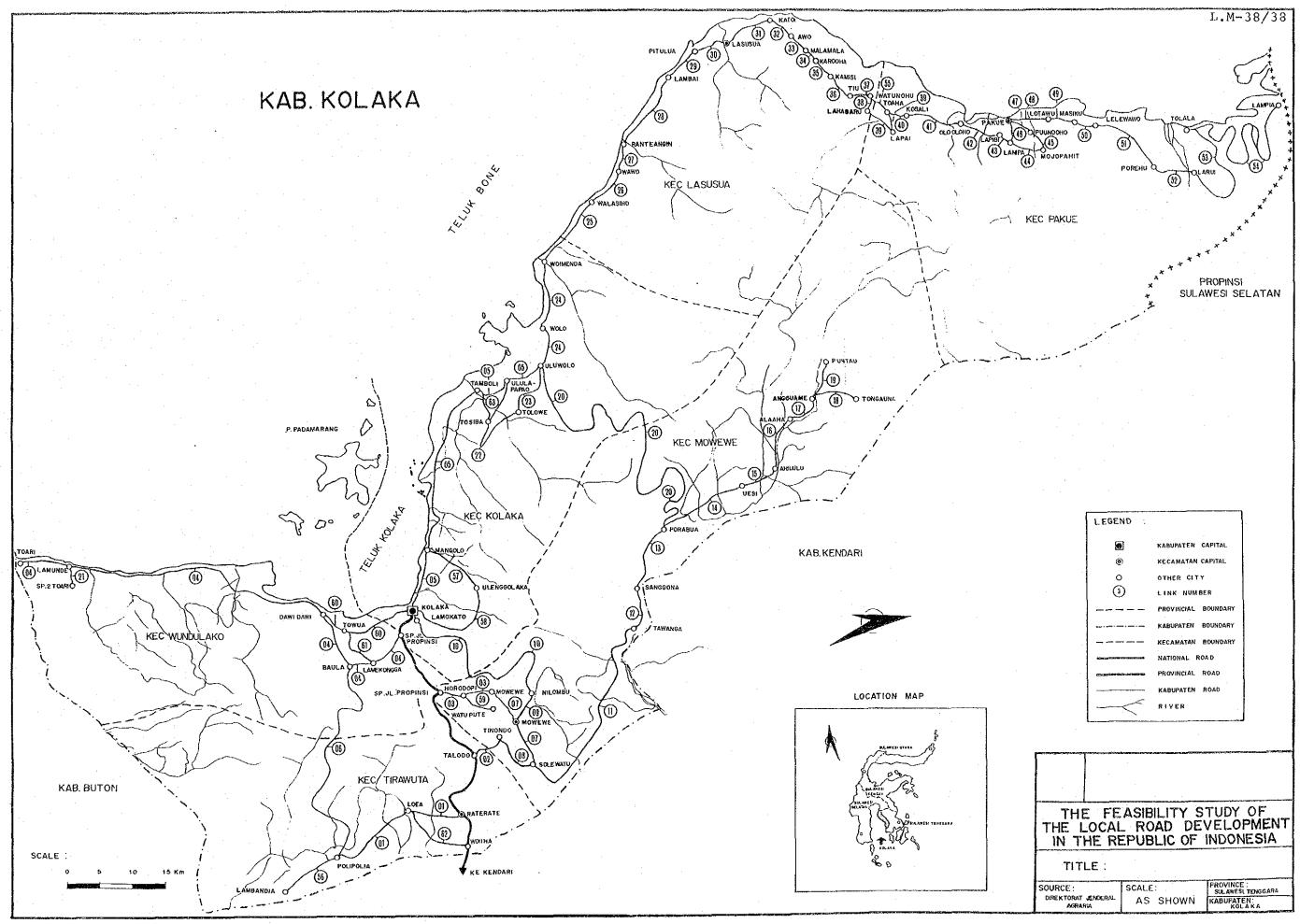
PREFACE

This is the Kabupaten Report of the Feasibility Study of the Local Road Development in the Republic of Indonesia for Kabupaten Kolaka in Sulawesi Selatan Province. The report has been prepared by the Study Team of the Japan International Cooperation Agency (hereinafter called JICA).


Based upon a request from the Government of Indonesia, the Government of Japan arranged for JICA to conduct the Study and JICA accordingly organized a Study Team. The study was carried out using data which were generally prepared by the Kabupaten, routed through the province, under the instructions of Bina Marga of the Ministry of Public Works and Bangda of the Ministry of Home Affairs.


Since the study period was limited, without cooperation of Bina Marga, Bangda and local governments of both province and Kabupaten in collecting the data, the study would not have been completed within the period.


The report consists of the results of the feasibility study and proposed implementation programme of the local road development in the Kabupaten.


The simplified economic feasibility evaluation methodology utilized for the study was established by the Study Team in Phase I Study through a pilot study of seven (7) model Kabupatens, and is described in the Main Report.

The purpose of the study for the Kabupaten is mainly to estimate the total Project Cost for the local road development but only limited data is available for study base. Therefore a detailed survey and design for the improvement of the Kabupaten roads should be carried out before commencing the Project together with a review of this report.

		CONTENTS	
PREFACE	٠.		
Chapter 1		BACKGROUND OF THE KABUPATEN	
	1.1	Topographic and Meteorological Conditions	38-1
		1.1.1 Location and Topography	38-1
		1.1.2 Meteorological Conditions	38-2
	1.2	Socio-Economic Conditions	38-4
* .		1.2.1 Population	38-4
•		1.2.2 Land Use	
		1.2.3 Agriculture	38-8
		1.2.4 Other Economic Activities	38-11
	1.3	Present Status of Kabupaten Roads	38-12
		1.3.1 Outline of Road Networks	38-12
•		1.3.2 Road Inventory	38-13
		1.3.3 Bridge Inventory	38-17
		1.3.4 Traffic	38-21
Chapter 2		ESTIMATIONS OF FUTURE TRAFFIC VOLUME AND BENEFIT	·.
	2.1	Future Traffic Volume	38-22
	•	2.1.1 Traffic Growth Rate	38-22
		2.1.2 Present and Future Traffic Volume	38-23
	2.2	Benefit	38-26
•		2.2.1 Benefit Estimation Method	38-26
		2.2.2 Benefit	38-28
Chapter 3		ENGINEERING	•
	3.1	Design Criteria and Specification	38-29
		3.1.1 Geometric Design Criteria	38-29
		3.1.2 Loading Specification	38-29
	3.2	Pavement Design	38-32
		3.2.1 Design Conditions	38-32
		3.2.2 Pavement Structure	38-33
	3.3	Design of Bridges and Other Structures	38-34
•	,	3.3.1 Standard Bridge	38-34

3.3.2 Other Structures

				•				. ,	
		3.4	Salact	ion of Eq.	inment Tv	pes			38-39
		J• 4	3.4.1		7	dered for			30 37
				Selection	n				38-40
			3.4.2	Combinati	ions of Eq	uipment fo	or Major		00 (0
				* •	1.5	ince			
		3.5	Worksh	op and Lal	oratory .		• • • • • • •		38-43
·			3.5.1	Policy of	f the Kabu	paten Worl	cshop		38-43
						and Tool			
	•		3.5.3	Laborato	ry		• • • • • •	• • • • • • • •	38-44
				· · · · · · · · · · · · · · · · · · ·					
	Chapter 4		CONSTR	UCTION ANI	D MAINTENA	MCE COST I	ESTIMATI	ons	
		4.1	Unit P	rice	• • • • • • • •	• • • • • • •		• • • • • • • •	38-46
			4.1.1	Unit Labo	our Price				38-46
	•		4.1.2	Unit Pric	ce of Mate	rials		• • • • • • • • •	38-47
			4.1.3	Hourly E	quipment C	Cost			38-48
		4.2	Unit C	onstructio	nn Cost by	Work Type	2		38-49
		7+2		and the second second	and the second of the second o	ridges	and the second second		
			and the second second						
•		·					٠.		
	Chapter 5		RESULT	S OF ECONO	OMIC FEASI	BILITY EVA	ALUATION		
		5.1	Prelim	inary Scr	eening				38-51
		5.2	Evalua	tion				• • • • • • • • •	.38-52
			5.2.1						
	· ·		5.2.2	Secondary	, Analysis		• • • • • • •		38-52
			5.2.3	Ranking o	of Feasibl	e Road Li	nks		38-52
				•					
	Chapter 6		IMPLEM	ENTATION F	ROGRAMME			. •	
		6.1	Implem	entation S	Schedule .				38-55
			6.1.1	Project (Cost			• • • • • • • •	38-55
			6.1.2	Proposed	Road Link	s			38-56
			6.1.3			on and Main			38-60
	•		6.1.4		1.1	laintenance			
	•					* * * * * * * * * * * *			38-63
			6.1.5	Other Cos	sts	******			38-66
			6.1.6	Quantitie	es by Work	Type			38-66
	e e						• .		•
				*					
					ii				
								· · · · · · · · · · · · · · · · · · ·	
					•				

	6.2	Organization and Construction System	38-68
•		6.2.1 Organization	38-68
		6.2.2 Construction System	38-68
Appendix	A-1	Input Data for Estimation of the Producer's Surplus Benefit	38 - ∧-1
.*	A-2	Engineering Data	38-A-2
	A-3	Construction and Maintenance Cost for Proposed Road Links	38-A-18
**	A-4	Construction and Maintenance Quantities for all Proposed Road Links	38-A-23
	A-5	Construction and Maintenance Costs for all Proposed Road Links	38-A-26
	A-6	Ouantities of Bridges on Proposed Road Links	38-A-29

Chapter 1 BACKGROUND OF THE KABUPATEN

1.1 Topographic and Meteorological Conditions

1.1.1 Location and Topography

Kabupaten Kolaka is located in the northwestern part of Sulawesi Tenggara Province, and appears geographically as a long and slender shape which lies along Bone Bay.

Kabuapten Kolaka is surrounded by mountains and is itself almost entirely mountainous, i.e the northern mountain Mengkoka of 2,790 meter, the central mountain Batuwila of 2,000 meter and the southern mountain Mendoka of 981 meter above sea level. Accordingly the height above sea level of the northern area is greater than that of the southern area. Kecamatan Pakue Lasusua is located in the northern part of the Kabuapten and has few flat areas because it is almost all mountainous. Kecamatan Mowewe has the same conditions as Kecamatan Pakue, however the Kanaweha River rising in the north of the Kabupaten flows southwards for a while and turns into the neighboring Kabupaten Kendari, where narrow lowlands lie along the Kecamatan Kolaka which is located in the middle of the Kabupaten includes Kolaka city, the capital of the Kabuapten, which has a narrow flat area around it. Kecamatan Wundulako, which is located in the southern part of the Kabupaten is also mostly covered by mountains, while a few hills, are found in the southern coastal area. Kecamatan Tirauta, which is located in the middle southeastern part of the Kabupaten is flat. This is formed by part of the low swampy area which ectends from the neighboring Kabupaten Kendari, the central area of Sulawesi Tenggara Province.

The Kabupaten has an area of 8,855 square kilometers, approximately 32 percent of the total of the province. It consists administratively of 6 Kecamatans.

1.1.2 Meteorological Conditions

The average number of rainy days and the average amount of yearly rainfall in Kabupaten Kolaka are 128 days and 1,680 mm respectively.

One year in the Kabupaten consists of a rainy season and a dry season. The dry season is in general from July through November. However this is variable as Table 1-1-1 shows.

The number of working days per year, which is necessary for planning the construction schedule in chapter 6, is estimated at 240 days using the following formula based upon the data shown in the table referred to above.

Working Days = 365 - Holidays - Rainy Days + (Rainy Days
$$\frac{\text{Days } \times (\text{Holiday}) + (0.10 \times \text{Rainy Days})}{365}$$

Where

- Holidays consist of 52 Sundays and 13 national holidays; and
- 10% of rainy days are assumed to be workable days.

Pable 1-1-1

METEOROLOGICAL CONDITIONS

KABUPATEN	: Kolaka	:1		3	SIALLON : NOLAKA	ıaka	-			
	1	086	1 9	8 1		1982	1	983	1	984
MONTH	RAINY DAYS	RAINY DAYS RAINFALL (mm)	RAINY DAYS	RAINFALL (mm)	RAINY DAYS	YS RAINFALL (mm)	. RAINY DAYS	RAINFALL (mm)	RAINY DAYS	RAINFALL (mm)
January	σ _ν	295	7	147	, -	13 170	(
February	11	178	. 13	207	• •	16 152				
March	6	148	91	183		26 372		\$ **		-
April	18	339		215	. 4	22 260				
May		167	16	254		14 192			•	
June	12	126	<u>~</u>	127		10 95				
July	9	43	23	271		F-4	:			. •
August	rul rul	09	4	15		_ب				· .
September			6	70		3 41				
October	· • • • • • • • • • • • • • • • • • • •	77	σı	127	:	2 10				
November		82	16	195		4 16				
December	15	229	14	148		9 55				
Total	115	1,711	149	1,959	120	20 1,370		l		I

1.2 Socio-Economic Conditions

1.2.1 Population

The population of Kabupaten Kolaka in 1982 was 159,790 which was approximately 15.9% of the 1,002,100 total population of Sulawesi Tenggara Province as shown in Table 1-2-1.

The population density was 0.18 persons per ha which was lower than the provincial density of 0.38.

The recent annual average growth rate of population of the Kabupaten is 5.7% which is higher than both the provincial rate of 3.1% and the national rate of 2.2%. This may be a result of the on-going transmigration programme.

The population of each Kecamatan and its proportion to the Kabupaten population is shown in Table 1-2-2.

Table 1-2-1

POPULATION BY KABUPATEN

DESCRIPTION	POPULATION	AAGR (%)	AREA (ha)	POPULATION DENSITY (persons/ha)	SURVEY YEAR
KABUPATEN:					
MUNA	187,653	3.0	488,725	0.38	1984
KOLAKA	159,790	5.7	885,495	0.18	1982
PROVINCE:	÷				
SULWESI TENGGARA	1,002,100		2,768,600		1982
	1,031,200 1,061,200	3.1	2,768,600 2,768,600	0.37	1983 1984
JAWA IS.(Excluding DKI JAKARTA)	91,126,900	1.7	13,159,700	6.92	-
INDONESIA	161,579,500	2 - 2	191,944,300	0 - 84	-

Notes :

1. Sources:

Kabupaten; Kabupaten concerned with the study

Province; Jawa and Indonesia:

Statistical yearbook of Indonesia 1984, published by the Central statistics Bureau.

2. AAGR ; Average Annual Growth Rate.

Table 1-2-2

POPULATION BY KECAMATAN

Year: 1982

PROVINCE KABUPATEN	: SULAWESI TENGGARA : KOLAKA		
KECAMATAN		POPULATION	PROPORTION (%)
WUNDULAKO		48,370	30.3
TIRAUTA		25,052	15.7
MOWEWE		8,545	5.3
KOLAKA		39,989	25.0
LASUSUA		19,920	12.5
PAKUE		17,914	11.2
TOTAL		159,790	100

1.2.2 Land Use

In Kabupaten Kolaka, 32,199 ha of the current available land use area, which is approximately 3.6% of the 885,495 ha total area of the Kabupaten, is used for living purposes and for industrial activity of the inhabitants of the Kabupaten. It is the total value of columns (1) through (6) in Table 1-2-3.

The current available land use area consists of 28,179 ha of agricultural harvest area and 4,020 ha of residential area which are 87.5% and 12.5% of the current available land use area respectively.

The agricultural harvest area consists of 12,178 ha of paddy field, 7,012 ha of plantation and 8,989 ha of other cultivated area which are 43.2%, 24.9% and 31.9% of the agricultural harvest area respectively.

It can be realized from the land use that the main industrial production in the Kabupaten is food crops, especially paddy.

PROVINCE : SULAWESI TENGGARA

											11101
KABUPATEN	WET PADDY FIELD	UPLAND PADDY OTHER FIELD TIVATED	PADDY OTHER CUL- FIELD TIVATED AREA	PLANTATION AREA	RESIDENTIAL AREA	USABLE OPEN SPACE	RIVER & LAKE	RIVER & FORESTRY LAKE AREA	OTHERS	OTHERS TOTAL AREA	SURVEY YEAR
MUNA	12 (0.1)	3,367 (0.7)	53,999	26,322 (5.4)	4,260 (0.9)	142,000 (29.1)	1,062 (0.2)	221,440 (45.3)	36,278	488,725	1984
KOLAKA	12,178	1 2	8,989	7,012 (0-8)	4,020	1			80,000	885,495 (100)	1982

Notes :

1. The value in () denotes the proportion 2. Source : Kabupaten concerned with the study

1.2.3 Agriculture

The cultivated area and food crop production in Kabupaten Kolaka in 1982 were 10,429 ha and 31,441 ton respectively as shown in Table 1-2-4. Of food crops, the area and production of paddy, which consists of wet paddy and upland paddy, was 7,554 ha and 29,818 ton respectively which are 72.4% and 94.8% of the total food crops. The yield rate of paddy production is 3.95 ton per ha. Thus, paddy is the most predominant agricultural crop of the Kabupaten.

As the table shows, average annual growth rates of area and production of paddy in 1979 through 1982 were -4.0% and 24.6% respectively which indicate favorable increase of the paddy productivity although the area is decreasing. This is because the portion of wet paddy field has increased. It is desirable that productivity of paddy increases further and this depends upon the future development of irrigation.

The population of the agricultural sector which is assumed from the employment in the Kabupaten is 87.4% of the total population as shown in Table 1-2-6. Thus this is an agricultural Kabupaten.

A future requirement for agriculture in the Kabupaten is to further progress paddy cultivation by proceeding with the transmigration programme. In addition, increase in cultivation and improvement of productivity of other food crops are essential.

Table 1-2-4 AREA AND PRODUCTION OF FOOD CROPS

.

KABUPATEN : KOLAKA

CULTIVATED AREA

	4					4 1 1	(ha)
				YEAR			AAGR
ITEM	1979	1980	1981	1982	1983	1984	(%)
PADDY	8,549	8,036	7,213	7,554	_		
OTHERS	3,183	4,689	3,503	2,875	_		
TOTAL	11,732	12,725	10,716	10,429			

PRODUCTION

4						1.4	(ton)
			Y	'EAR			AAGR
ITEM	1979	1980	1981	1982	1983	1984	(%)
PADDY	15,404	26,365	22,129	29,818	- .	1 <u>-</u>	-
OTHERS	844	1,023	1,026	1,623		· <u>~</u> ·	
TOTAL	16,248	27,388	23,155	31,441	-	_	

YIELD RATE

			YE	AR			AAGR
ITEM	1979	1980	1981	1982	1983	1984	(%)
PADDY	1.8	3.28	3.07	3.95		_	

Notes :

- 1. AAGR : Average annual growth rate
- 2. Source : Kabupaten concerned with the study

Table 1-2-5

KABUPATEN	AREA PRODUCTION	N AAGR (%) AREA PRODUCTION
MUNA	22,244 57,038	8 30.9 25.7
KOLVKV		<u> </u>
Table 1-2-6	POPULATION OF AGRICULTURAL S	SECTOR
PROVINCE : SULAWE	SI TENGGARA	
KABUPATEN	AGRICULTURAL TOTAL	L PROPORTION AAGR SURVEY

POPULATION

187,653

159,790

(%)

0.7

4.0

(%)

63.6

87.4

YEAR

1984

1982

Notes:

KOLAKA

MUNA

- 1. AAGR : Average annual growth rate
- 2. Source : Kabupaten concerned with the Study

SECTOR

119,000

140,000

1.2.4 Other Economic Activities

According to the distribution of employees by industry in Kabupaten Kolaka, the primary industry consists mainly of the agricultural and forest sectors employing about 88% of the workforce.

The other sectors employ 4% in the mining and manufacturing sectors which are the secondary industry and 8% in the commercial and services sectors which are the tertiary industry.

				(1982)
<u>Item</u> No	of Man Power (Person)		Share(%)	Remark
Agriculture	119,570		87.43	
Live Stock		•		88.36%
Fishery	1,265		0.93	
Industry	1,380		1.01	
Mining	4,321		3,16	4.17%
Commerce	2,363		1.73	59
Service	5,368		3.93	7.47%
Others	2,472		1.81	
Total	136,739	٠.	100	

The manufacturing industry as one of the secondary industries is mainly composed of processing industries using the materials of timber and various kinds of food. However, they are mainly small-scale domestic-cottage industries and therefore there is little possibility of future rapid development. The mining industry also shows current stagnation because nickel production has declined recently.

In Central Sulawesi Province the agricultural sector is a major industry and recently production volume per ha. Has been increased as a result of promoting the use of modern agricultural techniques to an intensive agricultural sector.

Furthermore, sice production of nickel descresed sharply, the agricultural sector's ratio in increasing in Central Sulawesi Province. It seems that this is no a little related to the influence of the transmigration programmes.

1.3 Present Status of Kabupaten Roads

1.3.1 Outline of Road Networks

In Kabupaten Kolaka there is a provincial road which connects the provincial capital Kendari and the Kabupaten capital Kolaka crossing the Kabupaten from east to west. It is a trunk road connecting two road links running from north to south on both the east and west sides of the mountain range.

The Kabupaten road which runs from the northern boundary with South Sulawesi Province to the southern boundary with Kabupaten Buton along the west coastline of the Kabupaten forms a trunk road in the region west of the mountain range. Most of the Desas in Kecamatan Pakue, Lasusua, Kolaka and Wundulaka are on this Kabupaten road.

The inland areas which have potential for development, i.e. near Pakue, Lapai, Tosiba, Ulunggolaka, Baula and Lamunde, have small road networks connecting to the north-south trunk road. The Kabupaten roads on the east side of the mountain range are formed by the following links:

- A link starting from Puurau or Tongauna of Kecamatan Mowewe, connecting to the provincial road at Talodo via Porabua and Solewatu.
- A link leaving the provincial road at Reterate, running to Lambandia in the southern area of the Kabupaten via Polipolia.

Since the southern area of the Kabupaten has the highest potential for agricultural development, the Solewatu-Talodo section of the above first link and all of the above second link are an important part of the development strategy.

The Kabupaten road connecting to Solewatu and the provincial road via Mowewe have similar characteristics.

There are two more roads which connect to regional trunk roads on both sides of the mountain range, i.e Porabua to Uluwolo in the central part of the Kabupaten and Polipolia to Baula in the southern part of the Kabupaten.

1.3.2 Road Inventory

From the road inventory data prepared by the Kabupaten, the number and total length of Kabupaten roads to be studied in Kabupaten Kolaka are confirmed as 63 links and 754 Km respectively. These figures exclude Kabupaten roads with no data.

According to the data the present status of the Kabupaten roads is as follows:

(1) Density of Kabupaten Roads

The density of the Kabupaten roads is 0.85 m per ha. This is higher than the national density of 0.48 m per ha but distinctly lower than 2.11 m per ha which is the density in Jawa Island, excluding DKI Jakarta, as shown in the following table.

	Total Length (km)	Area <u>(ha)</u>	Density (m/ha)
Kabupaten : Kolaka	754	885,495	0.85
Province : Sulawesi Tenggara	1,268	1,374,220	0.92
Jawa Is.(Excluding DKI Jakarta)	27,715	13,159,700	2.11
Indonesia	92,038	191,944,300	0.48

Notes: 1. The value for the province is the total value for the Kabupatens included in the study.

The sources of data are as follows:

Kabupaten and Province: Bina Marga Inventory

Jawa and Indonesia: Statistical Yearbook of

Indonesia 1984, published

by the Central Statistics

Bureau

(2) Kabupaten Road Surface Type

The type of surface on the Kabupaten roads in the Kabupaten is shown in Table 1-3-1.

The legend used in the table is as follows:

ASP : Asphalt

KRK : Gravel/Stone/Telford/Water Bound Macadam

Table 1-3-1 EXISTING ROAD LENGTH BY SURFACE TYPE

														(Ka)														ž1	Kal
				:					·					1081	. . : .	·			12 W W				4						 #
102 (7)	1	Vá	P	l	kR	K	1, 1	[HIH]		919	1	L.L I	TOTAL	1	ł	102 (71	i	ASP	١.	KNK	ı	THI	1 - 8	8	L,L	1 10	INL
LINK	 I	1		6	 ì	 I	0	 I	6	- -		 I		22	. <u>.</u>	Ī	LIHK	33	1		i	3	Ι.	*****					
LINK		ì			i I		٠.		6			i	i	-			LINK				į	: 7	1		ŀ			ľ	
LINK		ì			, !		6		•		•	i	i		•		LINK				ı	3	ţ				1	i	
LINK		i		l0					30	٠.	io	i .		•	•	1	LINK	36	Ĺ		ł	3	ŧ	1	1]	1 -	
LINK		i			i		В		34		••	ì	. 1	***		1	LINK	37	i		Į.	3	ì		ŀ		1	1	
FINK		i			i I		•		38			í				ł	LHK	30	1		ŧ		1	2	•			ţ	
LINK		i			I		5					i	2			ţ	LTIK	39	I		1		ı	ų	i		l	1	
LIHK		i			i I		3		2			ì	3 1	-	•	ŧ	LINK	40	1		1		ı	3.	1			I	
LINK		i			, . \$			I .	5			i		-		1	LINK	11	ı		1		•	4	1		1 4	1::	
LINK.					' I				Đ.			, i	ï			İ	LINK	42	1		ŧ		ŀ	. 3	1		1 3	į	
LINK	11							•	34				ı			ł	LHK	43	1		i		ţ	2				1	
					[•			: 1 .	1			1	1				LINK		1		ı		1	4	ł		1 1	1	
LINK.				٠.	1 1				ģ.			1	!	9			LIHK	45			F		ı	2	1		1 . 5	!	
LINK	13				 			1				ł			-	ł	LHIK	46	i		1		1		1		11 . 7	1 .	1
LINK					} 1			1	14			1]	ì	١	LINK	47	1.		ŧ		ţ	4	1.		F 1	1	
LIHK					! 1				9				1	1 B	-	i	LENK	48	ŀ		ŧ		ţ	4	1		1 7	ı	
LINK	16				{ 			! !	5			1			į	i	LINK	49	١		ļ		ŧ	. 2	ł		2	1	
LINK	17				! !			1	5 6			1		, , , ,	-		LINK	50	t		1		ı	3	ŧ		i	1	
FINK					l E			1	6			1			i	1	LINK	51	ı		i		1	10	1		1	1	1
LUK					1		٠.	:	ı			1	63				LINK	52			i		ļ	5	ŧ		1 1	1	
LIXK	20				;		3	1	-	 		1	0.3		i		ETHK	53			1		1	1.9	1		1	i	7
LINK					!																			,			42	i	4
LIKK	22				!		3		٠.			}	,			-		54			!		1	. 3			1 42		. 7
LINK.				٠.	!		2		ł			!	ė		!	•		55			•		1		!		! ! 		
LINK							٠.	!				!	18					56			!		,	4.1	1 .		!. 7 9		
LINK	25						3			1		i .	8				LINK	57			!		!	45	1		1 7	1	ı
LINK					!		5		į	1 .		1	_		1		LTHK	58			Ļ÷		1	15			1	ŀ	١
LIIK					!		!			t .		•	3		1	-	FINK	59					1	5			1	1	
LINK					l :		4		. 1			!	5				LHIK	60			!		1	16			! •	1 .	1
LTHK					1			1	5			!	_		1		LIHK				I		1	ь			i	,	
Link					1		2		10			ļ	8				LINK				1		!	11			1		: [
LIIK					1		5		2			1	ı		!	1	LEHK	63	ł		ı		I	H	ł		1	1	I
f HHK	32	1			i		4	1		i		ı		1 4	1	-		;											
																1	101	AL.	ı	16	1	88	1	397	ŧ	10	1 213	İ	- 15

TNH : Earth
LL : Others

Comparison of the proportion of surface type in the Kabupaten with other regions is as follows:

	ASP	KRK	TNH/LL
Kabupaten : Kolaka	6.1	13.0	80.9
Province : Sulawesi Tenggara	4.3	25.9	69.8
Jawa Is.(Excluding DKI Jakarta)	56.2	25.0	18.8
Indonesia	26.0	26.6	47.4

Thus, in the Kabupaten the proportion of Kabupaten roads with asphalt surface is much lower than either that of Indonesia or of Jawa Island. The proportion of low grade roads such as earth roads and others is distinctly high. This means that the road classification in the Kabupaten is low.

(3) Surface Condition of Kabupaten Roads

The surface condition of the Kabupaten roads classified as good, fair, poor and bad which are shown as BA, SD, RU and RB respectively, are summarized in Table 1-3-2.

Comparison of the proportions of the various surface conditions of the Kabupaten roads in the Kabupaten with other regions is as follows:

	Good	Fair	Poor	Bad
Kabupaten : Kolaka	34.7	29.1	26.8	9.4
Province : Sulawesi Tenggara	30.6	21.5	36.8	11.1
Jawa Is.(Excluding DKI Jakarta)	45.6	29.8	19 6	5.0
Indonesia	43.5	21.8	21.1	13.6

The surface condition level of the Kabupaten roads in the Kabupaten is lower than both that of Indonesia and of Jawa Island. The proportion in good condition is relatively low.

PROVIN	CE	: SU	LAW	ESI	TENG	GARA	A.	•												•
KABUPA							V		. '						٠.		÷			{ T }
1 102 t 71 1		- ASP		1		KAK		I	******	110			•••••	Bì	B	1		J, J		
	BA, I	50 I	RU I	RB I.	BA 1	SD	RU (RB 1	Bà I	SD I	RÙ I	RB I	BA I	SO I	RU (RB 1	BA 1	SD I	ł 48	RB (
LLINK II LLINK 7 I	46.1	31 1	11 1	12 1	10	31	16 1	14 1			 				}	 			۱ ا ا	 .
ELINK 3 I ELINK 4 I	93 1	2 1	5 I	. !	47 I I 97 (58 I I J i	1 1 5 f	1	16 I 16 I	24 1	1 1		47. I		:11	1	1 1	1	1	1
ILINX 5 I ILINX 6 I ILINX 1 I	-	į	1	. 1	97 1	10 1	3 }	, 1 1		17-1	69 I	14 l			i	1	60 I	7 l	95 J	5 1
ILINK 81 ILINK 91 ILINK 101	1		- I	. !	90 ŧ	- Cl	6 t	. ! !	60 i	71	6 I 95 I	į		 	 	!	90 l !	8 I I	21	
1 1 100X 11 1 1 1 100X 12 1	i	i	İ	į	i	i	į	i	1		75 I 10 I	4 4 90 1	. !	{ 	1	!	!		95	\$
f WX 12 f WX 13 f WX 13		.		 	1]		! !	 		93 95 95	5 1			· · · · · · · · · · · · · · · · · · ·	1	1	1	1 1	9
timx 16 1 timx 17 1	1	.	1	1	- I.	1	- [] 		1	95 I 95 I 95 I	5 1	1		 	. 1 . 1	 		. [†
FINK 10 FINK 14	1	1	1		į Į		1	i			95 I	5.1		1	, 1	!	i !	į Į	60 I	10
1 1 1 HK 25 1 1 1 1 HK 22 1 1 1 1 HK 23 1	1	1 † !	· 1	1	81 I 61 I 50 I	 	18 t 26 t	 		 	· [. I	 			1 1 1	1 50 I	49 1	 	
1 1 HK 24 1 1 1 HK 25 1	- i	ĺ	į	!	97 I	11	2 !	1	 		l I		 		1	f	37 I 49 I	23 I 26 I	36 I 25 I	5 !
i 1 198 26 1 1 198 27 1 1 198 20	1	1	1	- !	99 I 99 I 68 I	12 1 1 1 12 1	1 1	, i	59 1 27 1	I	3 1	: :			• •	1	17 1 93 1	17 t 17 t	1 1 66 1	\$ [. [
LINX 29 LINX 30 LINX 31	· 1	1	1	1	99 I 76 I	1 11 24 1	; ;	} 	79 71 99	23 1	6 I				1		12 s 12 s	10 t 10 t	3 1 1	71
LINK 32 1 NK 33	i	1	į	1	91 I 65 I	21 1	1	į	İ		·			1	1	1	1	1	J	1
LJHX 34 LJHX 35 LLHX 36			1 1	. l	1 66 1 66 1 69	34 1 34 1 52 1	. l	i I	67	: 	 	1		 	; ;	1	i i	1	1 1	
LIHX 37 LIHX 39 LIHX 39	1	; [1 1	1	1	42 1	· ‡) 		35 1	65 I 59 I			.! !	· . • • • • • • • • • • • • • • • • • •	 	. ; i	1 1	 	99 1 1
118K 40 1	i !	i I	i	i	į	i !	į	1	32	55 I 58 I	13 1 24 1	18			1	!	1	13 1	50 1	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	l l	1	1 	1	1	1 1 1	1	! !		i 58 i I I I 41 i	42 50 58	50		1	1	1	 	, 17 I 	50 f 1	33 ! !
1 BK 45 1 1 BK 45 1 1 BK 47 1	1 1	} !	!	l 1	! ! !	1	 	1	 		49 J 18 1	. 1		 	 	! ! !	10 1 13 1	50 1 20 1	40 34 1	33 (
1 1 HK 49 1	İ	1	i		1	i !	1	!	: I	i 49 I I 68 I	89 I	1			i I	. !	. 1 50 I	55 I 50 I	(5 <u>1</u>	1
	1	} }	1	1	1	1	1	1	. 		97 (99 (1.	ıl ı			i	1	 	1 99	
LINK 51 LINK 51 LINK 55	! • • • •	. i	1	1 5		1	!	1	17	47 i	30 I	-7 (1 	l ; } ;	i	1 7 1 16 1	36 1	99 1 40 1	1 72
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	i .	į	1	!	!	1	į	!				:	t I	1	! !		13 I 69 I	19 I 19 I	8 I 13 I	! !
1	1	1	1	 	! !	1 1	1	1	3	61	91 1 91 1	!	l	† •	! !	! ! ! !	 		· ! 	
LINK 61 LINK 67 LINK 63) 1 1	1	. I	1 1	 	1 1 1	1	 	() ()	5 1	91 1 91 1	1	ľ	i i		 (. 1 I J	 	; ;	
AVERAGE I		17.1	8 1			24 1	4.1	1.1	18	2[1]	55 1		97		l 11	0 1	37 1	17 1	37 (11
LENGIN I		16 K	9	!		98	Ϋ́£	. 1	١.	397	Xe .		١.	Į į) ka	ı		213	k e	
(Ya) i	35.1	18	4.3	· 3 f	67.1	21 1	4.1	1 (11 11 1	1 93 1	222	24	10							

Therefore besides improvement for poor roads in or bad condition it is desirable that the asphalted portion is increased.

(4) Terrain Conditions of Kabupaten Roads

The difficulty of road improvement is mainly dependent upon the terrain conditions.

The terrain conditions of the Kabupaten roads, classified as flat, hilly, mountainous and swampy which are shown as DT, BK, GN and RW, are summarized in Table 1-3-3.

The proportions of terrain conditions in the Kabupaten are 41.0% flat, 20.0% hilly, 36.0% mountainous and 3.0% swampy.

Road construction is anticipated to be rather difficult because of the relatively large proportions of hilly and mountainous areas.

1.3.3 Bridge Inventory

A bridge inventory showing the existing condition of bridges on the Kabupaten roads in Kabupaten Kolaka was prepared by the Kabupaten.

The bridge types are classfied as timber, concrete, steel and others which are shown in the inventory as KY, BT, BJ and LL respectively.

The inventory shown in Table 1-3-4 and Table 1-3-5 indicates a total of 52 bridges with a total length of 437 m of which 42 or 80.8% are timber, 1 or 1.9% are concrete and 19 or 17.3% are others. However 167 bridges with a total length of 2028 m are required to be newly constructed.

The number of existing bridges by span length is as follows:

Bridge Type	<u>(3</u>	<u>_5</u>	<u>{8</u>	<u> </u> u>	<u>Total</u>						
Timber	-	10	20	5	2	-	4	1	-	-	42
Concrete	-	1	-	-	-	-	-	-	-	**	1
Steel	-	-	-		-	~	_	-	-	-	•
Others	-	2	5		1	-	-	1	• -	-	9
Total	-	13	25	5	3	-	4	2	-		52

Thus, most of the existing bridges on the Kabupaten roads are timber and the majority of spanlengths is within the range of 5~m to 8~m.

Table 1-3-3 EXISTING ROAD LENGTH BY TERRAIN CONDITION

OV :	SULA	HESI T	ENGGARA		: KI										
		1.148				(Ka)				· .					(Ka
102 (3) [BK	I GN	1 DT	RW	I TOTAL	- 	1 102 (3)	1 8K	l GI	1 (. DT -1	RW	i TOTA
LINK	1	15				 I 22		 I I INV	 4k	1 7 -	 }	 l	3	4	
LINK	2 1	- 1				1 6		LINK	47			i	2 1		•
LINK	3 1	5		1				LINK	48			. i	4 1		
LINK	4 1	59			! 	I 80		LINK		-		L	2 1]
L INK	5	15		. 6	' .	1 42		LINK	50			3	·		
LINK	6 1					1 39		LINK)	i		I I
LINK	7 1		3			1 7		LINK					2 1		
LINK	9 1	1				1 8		LINK) [
ŁINK	9 1	3							54			i	33 l		4
LINK	10 1		1 5			1 10		LINK	55			H	5 1		Ì
LINK	11-1	5				35		LINK	56			1-1	4		
LINK	12.1		1 6			1 7		LINK	57			1	4 (i
LINK	13 1		1 . 9	1:		1 9	1 .	LINK	58	t	1.1	1	15 1	٠.	l İ
LINK	[4]		1 14		ł	1. 14	1	LINK	59	1	1	1	5 1		į
LTHK	15 1	•	1 .1	I 5.		16	1 .	LINK	60	I	1	. [16 1		
LIHK	16 1		1,	I 8	l	1 8	1	LINK	61.	l		ì	6.1		ļ
LTIK	17		1	1 5	l' .	5	1	I LINK	62	1	ì	ł	² I[]		
LINK	18 1		1 6	}	1	6	1	LINK	63	Į.	I	Į.	- 11-1		1 1
LINK	19 1		1.	1 6		1 6									
LINK	20 1	3	52	1. 9.		1 64		ror	AL	1 (50	1 27) [312 1	22	1 75
LTHK	21 1		-	1 3		1 3								منتسست	
LINK	22 1	4				:1 13		RAT	10	20	1 3	6 1	41	3	i (%)
LINK	23	<u>i</u>		4.4.5		1 9								*****	
	24 !	3				1 18									
LINK	25 1	4				1 11									
LINK	26 1	3				6									
LINK	27 1		1 2			1 4									
1 1 N 1	28	2				.1 16									
		. 2				1 5 1 20									
LINK	29 1		1 7		1 4	20	Į								
LINK	30 [3			1										
FINK Fink Fink	30 I 31 I			5		1 8	1								
FINK FINK FINK	30 I 31 I 32 I			j 5		1 8 1 4	 				•				
FINK FINK FINK FINK	30 I 31 I 32 I 33 I	1		J 5 I 4 I 3	! !	8 4 3	 	•	٠				•	1	
FINK FINK FINK FINK FINK	30 31 32 33 34	1		1 5 1 4 1 3 1 2	 	8 4 3 2	 	• • • • • • • • • • • • • • • • • • •						1.	
FINK FINK FINK FINK FINK FINK	30 31 32 33 34 35	1	1 2 1 1 1	1 5 1 4 1 3 1 2 1 3	 	1 8 1 4 1 3 1 2 1 3	 	•					•	1.	
FINK FINK FINK FINK FINK FINK	30 31 32 33 34 35 36	1		1 5 1 4 1 3 1 2 1 3 1 3	 	8 4 3 2 3 4	 								
FINK FINK FINK FINK FINK FINK FINK	30 31 32 33 34 35 36 37	1	1 2 1 1 1	1 5 1 4 1 3 1 2 1 3 1 3	 	B 4 1 3 3 1 2 1 3 1 4 1 4 1 4	 								
FINK FINK FINK FINK FINK FINK FINK	30 31 32 33 34 35 36 37 38	. 1	1 2 1 1 1	1 5 1 4 1 3 1 2 1 3 1 3 1 1	 	8 4 1 3 1 2 1 3 1 4 1 2 2 1 2 1 3 1 4 1 2 2 1 3 1 4 1 2 2 3 3 3 3 3 3 3 3									
FINK FINK FINK FINK FINK FINK FINK FINK	30 31 32 33 34 35 36 37 38 39	. 1	1 2 1 1 1	5 1 4 1 3 1 2 1 3 1 1 1 1 2 1 6	 3	1 8 4 1 3 1 2 1 3 1 4 1 1 2 1 9	 								
FINK FINK FINK FINK FINK FINK FINK FINK	30 31 32 33 34 35 36 37 38 39 40		1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 1 4 1 3 1 2 1 3 1 1 1 2 1 6 1 3	 	1 8 1 4 1 3 1 2 1 3 1 4 1 4 1 2 1 9 1 3									
FINK FINK FINK FINK FINK FINK FINK FINK	30 31 32 33 34 35 36 37 38 39 40 41		1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 5 1 4 1 3 1 2 1 3 1 3 1 1 2 6 1 3 1 5	 	1 8 4 1 3 1 2 1 3 1 4 1 4 1 2 1 9 1 3 1 8									
FINK FINK FINK FINK FINK FINK FINK FINK	30 31 32 33 34 35 36 37 38 39 40	1	1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 1 4 1 3 1 2 1 3 1 1 1 2 1 6 1 3	 	B 4 1 3 1 2 1 3 1 4 1 2 1 9 1 3 1 8									
FINK FINK FINK FINK FINK FINK FINK	30 31 32 33 34 35 36 37 38 39 40 41 42	1	1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 5 1 4 1 3 1 2 1 3 1 3 1 1 2 6 1 3 1 5		B									

Table 1-3-4 NUMBER AND LENGTH OF BRIDGES

(UV : 5	SULNI				: KOLUKA		UNIT: A	
					EXIST !			
							~=~=	
I. UNK NO	!	NO.	LENGTH (NO.	LENGTH !	NO.	LENGTH	
7	1		1	6	42.00		42.00	
. 8	1		1	. 1	10.00 1	1	10.00	
9	1		1	3	21.00 1	3	21.00	
11	ł		1	23	227.00 1	23	227.00	
12	1			2	36.00 1		38.00	
13	T				36.00 1			
14	1.		<u> - - - - - - </u>	13	123,00 1			
15	1		1	· i	20,00		20.00	
19	ł		1	4	58.00 (4	58.00	
18	;		1	1	40.00	1	40,00	
. 19	1		1	1	15.00	l	15.00	
. 20	1:			10	110.00 1	- 10	110.00	
21	1	F.	11.00			1	11.00	
22	1	f	75.50	1.	14.00	7	07.50	
23	1.	10	98.00 1		1	0	80.00	
24		16	142.00	1	20.00 }	17	162,00	
26	Į.	3	20.60 1	1	40.00	4	60.60	
27	ļ	1	5.00 1		· ·	. 1	5,00	
28	1	6	37.00.1	2	57.00 1	8	94.00	
31)	1	1	6.00	8	188.00	9:	191.00	
31	ţ	2	14.60 1			2	14.60	
32.	1	4	20.00			Ą	20.00	
35	1	2	17,40 1		ł	2	17,40	
36	1			. 1	40,00 (1	40.00	
37	1		1	3	94.00	3	94.00	
28	!		;	1	6.00 }	1	6.00	
39	}		1	Ü	75.00	11	75.00	
40	- [1	4 -	48.00 [4	48.00	
41	ļ		•	4	38.00	4	38.00	
42	1		1	3	35.00	3	35.00	
43	١.,		1	1	30.00	ŀ	30.00	
44	}		ŀ	5	53.00 1	5	53.00	
46	f		1	3	21.00	3	24,00	
47	ļ		!	4	31.00 (4	31.00	
48	1		1	3	47.00	3	49,00	
49	1		!	6	72.00	b	72.00	
50	1		1	3	13.00	3	13.00	
51	I		ţ.	4	61.00	4	61.00	
52	1 -		!	ı	7.00 1	. 1	7.00	
53	1		1	14	102.00 !	11	192.09	
. 54	1		+	Ш	111.00 [il	111.00	
57	1		+	3 1		J	76.00	
59					6,00 (ı	6.00	

	} }}	1198)GE >>)	· ·	(No)	_
1 103 (19)		LL	ΚY		BT I	IGTAL	- -
LINK 7	1	ţ		l	١		Ė
I LINK 8		1	•	1			1
LINK 9	.1			1	. !		1
i liik ii	1	1		-	1		١.
1 LIHK 12.		· - {		!	i		} ·
I LINK 13	27.7	1		1	ļ		-
1 LINK 14	ļ			!	1		1
I LINK 15	1			1			!
	1	!		!	- 1		ļ
	:1,	ı		1			!
LINK 19 LINK 20	1	1		l L	. !	i I	i
	1	. 1 1.		1	. !		i i
FLINK 21 Flink 22	1	1 2	: 4	1		 L	1
I LINK 22	1	21	. 7	ł	ļ ļ	10	1 1
LINK 24	1	2 1	14	1			}
	Í.	2 ; 1	3	, . 	1	3	!
LINK 20	1	1	٠.	ì	1		i
1 LINK 28	i	11	5	1		6	i
I LINK 30	i	' '	1	į		l	! !
FLINK 31	ì	,	2	ì	1	2	1
I LINK 32	ì	,	. 4	i		4	,
I LINK 35	i	i	2			7	i
1 LINK 36			•	i			i
I LINK 37	i	ì		: }	1		ŀ
LEINK 3B	ì		•	i			i
1 LINK 39	i	i		1	,		İ
LINK 40	1	1		1	Ì		i
LINE 41	1			Ì	Ī		
1 LINK 42	1	4		ı	. 1		ĺ
LURK 43		}		1	1		1
L LIRK 44	ļ			ł	I		l
I ETRK 46	l -	1		l	ı	ı	ĺ
LINK 47	1	1		•	- 1		i .
I LINK 48	1 -	1		1	. 1		1
1 LINK 49	1	1		1	1		1
I LINK, 50	i	I		}	1		l
LLINK 51	I	1		I	, 1		I
1 LTHK 52	1.	1		!	ı		ł
LLINK 53	į .	!		1			1
LUIK 54		!		!			1
FLINK 57 Flink 59	1	l L		1	. [l
i intal	1	9	42	1	. 1	5?	1

1.3.4 Traffic

Inventories of the average daily traffic (ADT) on the Kabupaten roads in Kabupaten Kolaka were prepared by the Kabupaten and are shown in Chapter 2.

From the inventories, total value of average daily trips by vehicle type and their proportions in the Kabupaten in 1984 are summarized as follows:

	SEDAN	BUS	TRUCK	MOTOR-	TOTAL
				CYCLE	
Total Trips	166	234	482	1,790	1,782
Proportion (%)	6.21	8.76	18.04	66.99	100.00

Source : Bina Marga Inventory

The proportions of registered vehicles by vehicle type are as follows:

•	SEDAN	BUS	TRUCK	MOTOR-	TOTAL
	· · · · · · · · · · · · · · · · · · ·		 .	CYCLE	
Proportion (%)	8.60	3.96	3,78	83,66	100.00

Source : Kabupaten.

Thus, the proportion of motorcyles in the Kabupaten is by far the highest.

From the above tables the following can be observed:

- Number of total trips might be underestimated
- Proportions are probably reasonable.

Essentially, for estimation of future traffic volumes past and present traffic data together with the trend in the number of registered vehicles are important basic data. However the data obtained for the study was traffic count data for each road link in 1985 and of low reliability.

Therefore the future traffic volumes are estimated by the calculation process recommended in chapter 3 of the Main Report.

Chapter 2 ESTIMATIONS OF FUTURE TRAFFIC VOLUME AND BENEFIT

2.1 Future Traffic Volume

2.1.1 Traffic Growth Rate

The traffic growth rate used for estimation of the future traffic volume on the Kabupaten roads was estimated by the following calculation process.

Growth of Production Basis "A":

Annual Population Growth Growth of the Total of the Kabupaten X Cultivated Area

Growth of Productivity "B":

Growth of the Total X Growth of the Paddy Paddy Field Area Production per ha

Traffic Growth Rate: Initial estimated figure:

 $\overline{GR}^{\mathsf{r}} = \sqrt{A \times B}$

Traffic Growth Rate GR =Final adjusted figure:

√GR' X Trend of GDP/Capita of the Province Concerned

Results of the estimation are shown in Table 2-1-1.

Table 2-1-1 TRAFFIC GROWTH RATE ESTIMATION

A)	Growth Rate of Population	:	5.70	(%)
EI)	Growth Rate of Cultivated Area	:	0.00	(%)
(C)	Growth Rate of Rice field	:	0.00	(X)···
D)	Growth Rate of Rice yield rate	1	20.50	(%)
E)	Growth Rate of GDP / capita		5.70	(%)

a١	Geometrical Mean (A x B)	:	2.81	(%)
b)	Geometrical Mean (C x D)	:	9.77	(%)
c)	Geometrical Mean (a x b)		6.23	(%)
d)	Geometrical Mean (c x E)		5.97	(2)

2.1.2 Present and Future Traffic Volume

The future traffic volumes on the Kabupaten roads in 1998 for the Project life time of ten years were estimated by the following formula:

 $Tn = Te (1 + r)^n$

Where :

In : Future traffic volume n years later

Te: Traffic volume in 1984

r : Traffic growth rate

The results are shown in Table 2-1-2 together with the traffic volume in 1984.

PRO	IV : SU	I AVEGT	TENGGAR	Δ	KAB :	מאם וחא				. :				
1 110	rt i su	ruwest.	TEMBER	in .	CHD 1	VOCHVU								
		****			*******							: 1/2 >		
		INVE	ITORY (1	9841	l	RATE	 		AFIER 14				I CLASS	
LINK NO I	HPL	BUS	TRUK	SPD	TOTAL I		1	HBL	BUS	TRUK	SPD	TOTAL		ا
! ! 2 !	0	16 0	0 21	400 0		6.07		9	36	70 0	901 0		I HIIA I HIIC	, l
3 1	50	150	50	200	350 l			113	338	113	450	788	1 1110	;
4 1	50	50	250	750			i i	113	113	563	1489	1633	I IIIA.	ļ
5 1	10	9	45	70	109	6.07	1	23	20	101	203		-	
6 1	3	0	9	15	19 1			7	0	18	34		1 1110	,
7 1	. 0	Ŏ	0	0	0 1	6.07	1	Ó	Ŏ	0	0		I IIIC	,
8 1	ò	ò	2	5	5 i		i.	Ŏ	ŏ	5	11		i iiic	ļ
9 1	Õ	Ŏ	0	Õ	0 1	6.07	i	ò	ŏ	0		0	1 1110	
10 1	ō	Ŏ	Ō	0	0 1	6.07	i	0	ō	0	0	0	1 1110	
11 1	Ö	0	. 0	0	0 1	6.07	i	ō	Ō	0	Ô	Ď	1 111C	
12 1	ò	ņ	ō	Ŏ	0 1	6.0%	i.	Ô	Ö	0	. 0	0.	1 111C	
13 1	0	9	0	0	0 1	6.02	Ĺ	Ò	Ó	0	0		1 1110	
14 1	- 0	0	Ó	0	0.1		Ĺ	0	0	0	0		3111	
15 1	0	0	0	0	0 1	6.0%		. 0	0	0	0		1 111C	
16	0	Ç	0	0	0 1	6.0%	1	0	0	.0	0	0	1 1110	
17 1	0	0	0	0	0 1	6.0%	1	0	0	. 0	0	0	1 111C	
18 1.	0	0	. 0	. 0	1 0	6.0%	1	. 0	0	0	0	0	J HIC	
19 1	0	0 -	0	0	0 1	6.07	1	0	0	0	0	0	1 1110	
20 1	0	0	0	0	0 1		1	0	.0	0	0	0	1 1110	
21 1	3	0	4	10	12 1	8 07	1	7	. 0	9	23	27	1 1116	
22	- 6	0	15	45	44 1	6.0%	1	14.	0	- 34	101	99	1 1119-2	?
23 1	4	. 0	. 6	24	22 1		1	9.	0	14	54	50	1 111C	
24	2	1	3	10	11 1	6.07	1	5	2	7	23	25	I HIIC	
25 I	10	0	5	20	25	6.07	1	23	0	- 11	45	56	1 1118-2	2
26 1	0	Û.	0	5	3 1	6.07	1	. 0	0	Ō	11	7	1 111C :	
27 1	0	0	2	- 5	5 (6.0%	1	. 0	0	5	11	11	11116	
28	0	0	8	7	12 1	6.0%	1	. 0	0	18	16	27	3111	
29	. 0	0	10	0	10 1	6.0%	ı	0	0	23	0	23	HILC	
30 l	. 0	0	0	0	· 0 I	6.0%	1	0	0	0	. 0	0	HILC	
31 1	1	. 0	0	10		6.07	l,	2	0	0	23	14	I IIIC	:
32 1	0	0	. ,0	0			1	0	0	0	0		1 IIIC	
33 1	0	0	0	15	0 1		!	0	0	0	34	18	1 1110	
31	0	Ó	. 0	8	4 1		Ł	. 0	. 0	0	18	9	1 1116	
35 I	0	. 0	0	15		6.0%	1	0	0	0	34	18	I IHIC	
36 I	. 5	0	- 7	10	17		1	11	0	16	23		1 1110	
37 1 38 1	0	0	0	10		6.0%	. 1	0	0	0	23		1 1110	
39 1	0	.0		5		6.0%	1	. 0	0	0	5	2	1 1116	
40 I	0	0	0	2	3 1 1 1		1	0	0	0	j]	7	1 1110	
· 41 J	. 0	0	0	4	2 1		 	. () ()	0	0	5	2	HIC	
42 1	. 0	0) ·	0	0 1		i	0	0	0	9		3111	
43 1	Ů	0	0	0	0 1		i	0	0	0	0	0	1 1110	
44	10	0	. 0	. 0	0 1		i	. 0	0	Ò	0	0	1 1110	
45 [0	Ŏ	0	0	0 1		i	. 0	0	. 0	0	0	1 111C 1 111C	
46 I	ŏ.	Ů	. 0	Ŏ	0 1		Ť.	0	0.	. 0	0	0	1 IIIC	
47	Ŏ	0	0	. 6	3 1	6.07	i	ő	ő	0	14	7	1 1110	
48 1	ŋ	0	0	2	il		j:	Ŏ	ő	. 0	5	2	1 1110	
49	0	Ó	Ó	2		6.0%	ï	Ŏ	0	0	5	2	1 1110	
50- 1	0		-	_						v	U	_		

Table 2-1-2 (2) EXISTING AND FUTURE TRAFFIC VOLUME

PROV	ţ	SULAWEST	TENGGARA	. KAB	1	KOLAKA
------	---	----------	----------	-------	---	--------

	1		INVE	NTORY (1984)		1	RATE	ŧ.		AFTER 14	YEARS	(1778)		ì	CLASS	1
LIHK NO		HBL	bus	1RUK	SPD	TOTAL	1	*****	1	HBL	BUS	TRUK	SPD	TOTAL	l		
51	1	0	0	0	0	0	1	6.0%		0	0	Ó	0	0		1110	-
52	1 -	0	0	0	. 0	Ó	1	6.0%	1	0	0	0	0	0		HIC	1
53	Ì	0	0	0	0	0	1	6.0%	1	0	0	0	Ò	0		1110	
54	ì	0	0	. 0	0	0	1	6.0%	1	0	0	0	0	0		HIC	
55	ı	. 0	0	0	. 4	2	1	6.0%	1	0	0	0	9	5		1110	-
56	F	2	8	15	4	27	1	6.07	ï	5	18	34	ġ	- 61		1118-2	J
57	ì	4	0	3	45	30	ţ	6.0%	:1	q	0	. 1	101			1119-2	
- 58	ı	0	0 -	. 0	0	. 0	1	6.01	1	0	0	0	0	0		HIC	
59	Į.	0	. 0	. 0	. 6	. 3	ı	6.0%	1	0	0	0	14	. 7		HIC	
60	1	0	. 0	0	0	0	1	6.0%	i	0	0	ò	0	. 0		IIIC	
61	1	10	0	15	36	43	ł	6.0%	1	23	0	34	81	97		1118-2	j
62	ŧ	0	0	. 0	0	. 0	1	6.0%	i	0	0	0	Ō	0		1110	
63	1	2	0	. 3	18	14	1	6.0%	1	5	. 0	7	41	32		HIE	

2.2 Benefit

2.2.1 Benefit Estimation Method

Generally, estimation of the benefit on each Kabupaten road due to the Project was made by analyzing the direct benefit i.e. the VOC reduction benefit, which was estimated by comparing "with project" and "without project" based upon the future traffic volume on the road. However for the following road links it was decided to estimate the indirect benefit through the producer's surplus benefit.

- a) Road links with present traffic volume (ADT) less than 60 equivalent 4-wheel vehicles.
- b) Road links with no 4-wheel vehicle operation at present.

The indirect benefit was changed into the future traffic volume and the VOC reduction benefit was estimated.

The VOC adopted for the estimation is shown in Table 2-2-1.

Table 2-2-1 VEHICLE OPERATION COST ON KABUPATEN ROADS

				· · · · · · · · · · · · · · · · · · ·	(KM)
SURFACE	CONDITION	SEDAN	BUS	TRUCK	MOTORCYCLE
ASPHALT	GOOD	104.7	86.2	85.4	15.9
	Fair	125.5	101.0	98.0	18.2
	Poor	164.1	135.2	138.5	22.8
	Bad	222.1	202.0	205.0	29.1
GRAVEL	Good	125.7	101.4	102.5	18.5
	Fair	145.0	124.6	127.1	21.1
	Poor	198.6	172.6	178.4	27.1
	Bad	242.7	228.9	231.2	31.8
EARTH	Fair	201.8	180.0	185.1	28.0
•	Poor	240.7	218.2	225.8	31.8
	Bad	264.9	278.0	281.7	35.5

Source : Bina Marga

PROV	SULAWES I	TENGGARA	KAB	2	KOLAKA

:	· ·	. 14					(1998)
LIHK NO	CLASS	SURFACE	KOBIL	8US	TRUCK	SEPEDA	TOTAL
2	1110	KRK	3	4	9	. 29	30
6	1118-1	ASP	23	36	73	273	271
7	HIC	KRK	0	0	. 1	3	3
8	HIC	KRK	· 0	0	1	4	3
9	1110	KRK	. 0	0	1	2	2 .
10	1110-2	KRK	5	: 8	. 16	59	59
11	1110	KRK	1.1	2	· 4	16	15
12	HIC	KRK	0	0	1	3	3
13	HIIC	: KRK	0	. 1	1	- 4	4
14	1110	. KRK	1	1	2	b	7
15	IIIC	KRK	0	0	1	3	3
16	HIC	KRK	. 0	. 0	1	4	3
17	1110	KRK	0	0	1	2	2
18	3111	KRK	. 0	0	1	3	3
19	1110	KRK	. 0	0	i	3	3
20	1118-2	KRK	10	14	29	109	108
21	1110	KRK	. 0	1	· 1	4	4
22	1110	KRK	4.1	5	10	39	39
23	1110	KRK	2	4	7	27	27
24	111B-2	KRK	5	7	14	53	53
25	1110	KRK	3	5	10	37	37
26	IIIC	KRK	2	3	5	19	20
27	HIC	KRK	ī	2	3	13	13
28	1118-2	KRK	5	7	14	51	52
29	1110	KRK	1	2	4	61	15
30	1110	KRK	2	3	6	22	22
31	1110	KRK	2	3	. 7	25	25
32	HIC	KRK	. î	2	i	- 16	15
33	HIIC	KRK	i	ī	3	10	10
34	1110	KRK	1	î	2	8	7
35	1110	KRK	•		2	10	10
36	1110	KRK	i	2	.3	13	13
37	1110	KRK	•	i	3	. 10	10
38	HIC	KRK	i		2	6	7
39	1110	KRK	3	4	9	33	33
40	1110	KRK	. 1	2	. 3	13	13
41	1110	KRK	. 3	į	9	. 34	33
42	1110	KRK	. 2	3	7	25	25
43	1110	KRK		1	2	8	8
7. 14	1110	KRK	2	3	6	21	22
45	1110	KRK	3	4	8.		30
46	1110	KRK	3	4	8	29	30
47	HIC	KRK	2	2	. 5	17	18
48	1110	KRK	2	3	7	25	25
49	1110	KRK	2	2	5	17	18
50	1110	KRK	1	2	3	13	13
51	1110	KRK	4	. 6	11	42	42
52	3111	KRK	2	3	7	25	25
53	1118-2	KRK	8	11	23	25 84	84
- 54	1118-2	KRK	17	25	23 51	189	188
			3		8	29	30
55 54	HIC.	KRK		: 4 13	26		30 97
56	1110-2	KKK	9			97 27	27
57	1110	KRK	2 4 .	4	· 7 12	27	44
58 50	1110	KRK		6		44	2
59	2111	KBK	0	8	. 7	2	
60	1110	KRK	3	4		27	28
. 61	1110	KRK	1	1'	2	110	8
62	1110-2	KRK	i <u>!</u>	16	32	119	119
63	1110	KRK	2	4	9	33	33

2.2.2 Benefit

The benefit estimation was carried out for each Kabupaten road. Table 2-2-3 shows a sample of the result of benefit estimation. In the table "surplus" and "VOC" show the estimation method utilized and III A, III B-1, III B-2 and III C show the road classification.

Table 2-2-3

RESULTS OF BENEFIT ESTIMATION

KABUPATEN : KOLAKA

														100					1	0008upi ah)
1	1	LINK 1	1	LINK 2	i	LINK 3	ı	LINK 4	j	LINK 5	ı	LINK 6		LINK 7	l	LINK B	Į	LINK 9	ı	LINK 10	1
1	l	22 K∎	1	6 Ke	1	6 Km	ì	80 Km	ı	42 Km	1	39 Km		7 Ke	ŀ	8 Ks	ı	5 Km	I	10 Km	I
	1	IIIA	ı	IIIC	1	1110	ı	1114	ı	1119-1	ŀ	111B-1	1	1110	ı	1110	ı	3111	ı	I11B-2	Ī
I YEAR	1	VOC	ı	Surplus	ı	VOC	ı	VOC	į	VOC	1	Surplus	1	Surplus	1	Surplus	ì	Surplus	Į	Surplus	I
1. 1988	1	0	 I	0	1	0	1	0	 ا	0	1	0	1	0	1	0	ì	. 0	ı	0	į
1 1989		63304	Ĺ	1282		24219		705476					ĺ	1	ı	8	į	- 24	İ	5792	İ
1 1990		67978		1324	*:	25670		747692		137167		141159		i	Ĺ	8	1	24	ş	6330	1
1 1991		71885		1528		27191		791555		146138		153578			i	16		24	i	7304	1
1 1992		75424		1567		28924		840884	٠.	153889		172644		3		89	i	24	1	7940	1
1 1993		80509		1936		30526		898337	•	163020		191608		3		89		24		8526	1
1 1994		85226	-	2149		32339			-	172150		215227		.15		99				9992	
1 1995		90830		2372		34362		999344	-	182581		237178		15		97				11093	
1 1996		95641		2414		36327	-	1057200	-	193170	-	263459		17		97		47		12170	
1 1997		101797		2657		38502		1120530		205219		290185				97				13731	
1 1998		107644		3239		40888		1189320	-	217405		321240		17			•	264			
I SUM	1	840038	ı	20466	ı	318948	ļ	9281440	}	1699093	1	2110713	1	90	1	695	ı	766	ļ	98203	}
I COST	 1	373649	1	-9994		154707	1	5016349	1	769872	1	983426	1	-25161	 	-28437	1	-17639	ŀ	19437	ı
₹ /Km	ł	16784	ı	-1666	1	25785	ŧ	62704	ţ	18330	i	25216	1	-3594	1	-3555	ļ	-3528	ļ	1944	1

Chapter 3 ENGINEERING

3.1 Design Criteria and Specification

3.1.1 Geometric Design Criteria

Currently a technical standard for improvement of Kabupaten roads i.e. PETUNJUK TEKNIS INPRES PENUNJANGAN JALAN KABUPATEN, TAHUN 1984-1985 is established by Bina Marga.

The geometric design criteria in the above standard are recommended to be adopted in general for the Project. Following discussions with Bina Marga, exceptions to this are allowed for Pavement width and pavement type to minimize the construction cost of the Kabupaten road improvement, if necessary. The geometric design criteria adopted for the Project are shown in Table 3-1-1. The typical cross sections of Kabupaten roads are shown in Fig. 3-1-1.

3.1.2 Loading Specification

The LOADING SPECIFICATIONS FOR HIGHWAY BRIDGES BY DIRECTORATE GENERAL BINA MARGA is used in principle as the basic specification of loading and the TECHNICAL STANDARD FOR KABUPATEN ROADS compiled by Bina Marga shows that the design live load for bridges on Kabupaten roads is 70% of the Bina Marga live road. However, after discussions with Bina Marga the following loads were decided as the design live loads for the standard bridges of Kabupaten roads:

- a. 50% of Bina Marga live load (hereinafter BM 50) is applied for concrete and timber bridges on roads of III Λ classification.
- b. 10-ton truck load is applied for timber bridges on roads of Ill B-1, III B-2 and III C classification.

Table 3-1-1

DESIGN CRITERIA FOR KABUPATEN ROADS

				MOUNT- AINOUS	1	AS PRACTI- CASLE	384.€	12	16	3.5	3.0	0.75	0.5	5.0	0.4		-		
1	SILLC	GRAVEL	50	HILLY M	·	30	AS PRACTICABLE	8	12	3.5	3.0	1.0	0.5	5.5	7.0	12	∞	7	īΩ
	CLASS	Ö		FLAT TO H ROLLING H		50	30	5	7	3.5	3.0	1.0	0.75	5-5	4.5				
	B-2			MOUNT- AINOUS	11	30	AS PRACTI-	8	12	4.5	3.5	1.0	0.5	6.5	4.5				
	TII	GRAVEL	200 - 50	хттн	+1	40	30	1	6	6.5	3.5	1.0	0.75	6.5	5.0	12	10	7	iU
	CLASS)	2(FLAT TO ROLLING	+	09	30	7	1	4.5	3.5	1.5	1.0	7.5	5.5		į.		
	3-1	INGLE)		MOUNT- AINOUS	1+	30	AS PRACTI-	8	10	4.5	3.5	1.0	0.75	6.5	5.0				
	CLASS III B	SEAL (SINGLE)	500 - 200	нттгх	<u>+</u>	70	30	9	8	4.5	3.5	1.5	1.0	7.5	5.5	1.2	10	3	7
	CLAS	ASPHALT	5(FLAT TO ROLLING	1+	70	30	7		5.4	3.5	1.5	0.1	8.0	5.5				
	A	DOUBLE)	0	MOUNT- AINOUS	+ + -	07	30	80	10	0-9	4.5	1.5	0.75	0.6	6.0				
	CLASS III A	ASPHALT SEAL (DOUE	3000 - 500	HILLY	+	9	30	5	7	6.0	4.5	1.5	1.0	0.6	6.0	16	12	m	77
	ชี	ASPHALT	30	FLAT TO ROLLING	+	70	30	7	7	6.0	4.5	2.0	1.5	0.01	6.0				
	ATION	<u> </u>	: ADT year average	N H	MES	DESIRABLE	MINIMOM	DESIRABLE	MAXIMUM	DESIRABLE	MINIMOM	DESIRABLE	MINIMUM	DESIRABLE	MINIMIM	DESIRABLE	MINIMUM	PAVEMENT	SHOULDER
	CLASSIFICATION	SURFACE IY	OLUME 10 th)	다 자 자	TRAFFIC LANES		(Km/hr)		(%)	(3)) E		E	(2)	/ ***		(왕)	(6)	
	ROAD CI	SURI	TRAFFIC VOLUME (Forecast 10 th	<u>[-</u> 1	TRA	DESIGN	SPEED	GRADIENT	(LIMITING)	PAVEMENT	WIDIM	SHOULDER	WIDIE	ROAD BED	WIDIH	RIGHT	OF WAY	ROAD	CAMBER
L				L	L	<u>L_</u>		<u> </u> 8–3		L	·	<u> </u>				~~	l		

38-30

3.2 Pavement Design

3.2.1 Design Conditions

From the engineering data prepared by the Kabupaten it is noted that the pavement structure of the Kabupaten roads seems to have been determined without adequate designs, therefore the Kabupaten roads generally have insufficient capacity. The standards generally used for highway pavement design such as Road Note 29, Road Note 31 and AASHTO are not suitable for Kabupaten roads with small traffic volumes and loads.

Therefore formulae suitable for the pavement design of Kabupaten roads are recommended as described in Chapter 5 of the Main Report.

The following are important factors for the design of pavement thickness.

1) Design Traffic Volume

As the pavement thickness is designed for each road classification the design traffic volume of which the target year is 1998, is adopted for each classification as follows:

Road	Classification	<u>Design T</u>	raffic	Volume	(vpd)
	III A		1,000		
	III B-1		500	*.	
	III B-2		200		
	III C		50		

2) Strength of Roadbed

The CBR value of the existing roadbed is a very important factor for the pavement design but no results are available from CBR tests on the Kabupaten roads.

CBR of the laterite is generally in the range of CBR 4 to 10. However site CBR tests should be conducted before construction to finally decide the pavement thickness.

3.2.2 Pavement Structure

Fig. 3-2-1 shows the standard pavement structure adopted for the Kabupaten roads.

Fig. 3-2-1

PAVEMENT STRUCTURE

				(cm)
CBR		ROAD CLAS	SIFICATION	
	III A	III B - 1	III B - 2	III C
6	8 4	2 7 1	9 0	9
	14 2	4 5	4 0	

= BASE COURSE (CRUSHER - RUN)

SUBBASE COURSE (SANDY GRAVEL)

3.3 Design of Bridges and Other Structures

3.3.1 Standard Bridge

There are so many bridges to be improved or to be constructed on the Kabupaten roads in the Project Area that it is very difficult to prepare an individual design for each bridge. Therefore, standardization is recommended as being necessary for the bridge design with conclusions as described below.

(1) Bridge Type

1) Superstructure

The following two types have been finally selected with the agreement of Bina Marga after studying the actual rural conditions of bridge construction. Fig. 3-3-1 shows the cross sections of standard types.

- a. Timber beam bridge (hereinafter timber bridge) for roads class III B-1, III B-2 and III C.
- b. Reinforced concrete T-girder bridge (hereinafter RC-bridge) for roads class III A.

2) Substructure

Taking account of the actual combinations of super and substructure types noted from the field survey, the following two types are recommended as standard because of ease of construction and economy.

- a) Timber pile bents for timber bridge
- b) Rubble in Mortar masonry for RC bridge

3) Foundation

There is no information of subsoil conditions in the inventory data. However, timber piles of 20 cm diameter are generally recommended as piles of this type are in common use.

The pile length is suggested to be a minimum of 3 meters under the bottom of the foundation. The length and number of piles should be decided in order to be adequate for the condition of the foundation materials.

(2) Bridge Width

The effective bridge widths for the standard bridges have been decided as follows through discussions with Bina Marga considering the actual width of Kabupaten roads:

- a) Timber bridge: 4.0 m in general
- b) RC bridge : 4.5 m in general

(3) Span Length

The range of span lengths are determined as:

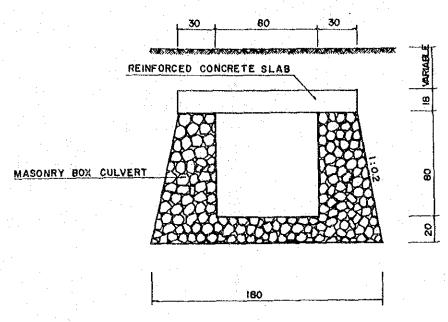
- a) Timber bridge: 3.0, 5.0 and 8.0 m
- b) RC bridge : 3.0, 5.0, 10.0 and 15.0 m

3.3.2 Other Structure

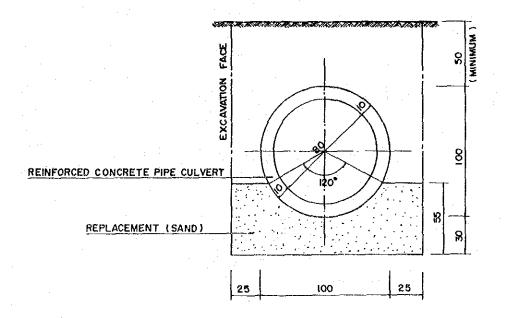
Culverts and retaining walls shown in Fig. 3-3-2 and Fig. 3-3-3 are recommended as standard structures.

(1) Culvert

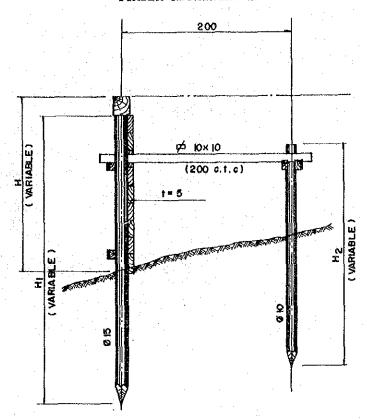
The following two culvert types have been adopted for the transverse drainage.

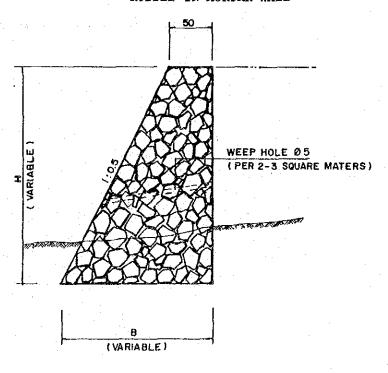

- a) Reinforced concrete pipe culvert \$ 80 cm
- b) Rubble in mortar box culvert with RC slab 80 cm X 80 cm

(2) Retaining Wall


The following two types of retaining walls have been adopted because of ease of construction, economy and familiarity in Indonesia.

- a) Rubble in mortar retaining wall
- b) Timber retaining wall


80 x 80 RUBBLE IN MORTAR BOX CULVERTS


Ø 80 RENFORCED CONCRETE PIPE CULVERT

TIMBER RETAINING WALL

RUBBLE IN MORTAR WALL

3.4 Selection of Equipment Types

From the results of comparison of two types of Rabupaten road construction methods, i.e. equipment intensive method and labour intensive method construction methods for major works were basically decided as shown in Table 3-4-1.

Table 3-4-1

CONSTRUCTION METHODS FOR MAJOR WORKS

метнор	WORK TYPE
Equipment Intensive	Farthwork, Base Course and Subbase Course
Labour Intensive	Surface Dressing, Drainage,
	Bridge and Other Structures.

3.4.1 Points to be Considered for the Selection

Full consideration was given to the following points in studying the selection of equipment type.

- a. Most of the construction in the Project is pavement works for road improvement.
- b. The pavement width adopted is equal to or less than 4.5 m and therefore large sized equipment is omitted from the selection process.
- c. Equipment should be capable of with standing the heavy rainfall and poor soil quality. Equipment for construction in swampy areas is considered if necessary.
- d. Uniformity of equipment types with existing equipment is considered to facilitate repair of the equipment in the provincial work shop.
- e. Since the scale of the construction is small and transportation of equipment will frequently be necessary, wheel type equipment has been selected as much as possible as this can move by itself or by being towed.
- f. The road like to be improved are scattered all over the Kabupatens and therefore a low bed truck or equivalent is necessary for transportation of crawler type equipment. It is desirable to protect the existing pavement from damage caused by the movement of crawler type equipment on the existing roads.
- g. The capacity of the equipment has been decided taking into consideration the construction volume and the combination of equipment in the main work.

3.4.2 Combinations of Equipment for Major Works and Maintenance

The combinations of equipment for major works and maintenance are listed in Table 3-4-2 and 3-4-3 respectively.

EQUIPMENT OF ONE WORK GANG FOR MAJOR TYPES OF WORK

			TIPES OF WORK		
TYPE OF	WORK	····	and the second section of the section of the section o	***************************************	***************************************
TILE OF	HORK		EQUIPMENT RI	EQU.	IRED
Bush	Clearing in Light ation & Embankment	1- 2-	Bulldozer 90 HP Dump Truck 3.0 Ton	1-	Wheel Loader 1.2 m ³
ii)	Normal Fill Fill by Borrow Material	1-	Vibratory Roller 4.0 Ton (D&T) Bulldozer 90 HP		Water Tank Truck 4,000 Ltr Wheel Loader 1.2 m ³
iii)	Fill in Swamp	1-	Dump Truck 3.0 Ton Swamp Bulldozer 90 HP Water Tank Truck 4,000 Ltr	1-	Vibratory Roller 4.0 Ton (D&T)
	Excavation to Spoil		Bulldozer 90 HP Wheel Loader 1.2 m ³	4-	Dump Truck 3.0 Ton
3. Subgra	ade Preparation		Motor Grader 75 HP Vibratory Roller 4.0 Ton (D&T)	1-	Water Tank Truck 4,000 Ltr
4. Subbas	se Course		Motor Grader 75 HP Vibratory Roller 4.0 Ton (D&T)	1 -	Water Tank Truck 4,000 Ltr
5. Base (Course	1-	Motor Grader 75 HP Vibratory Roller 4.0 Ton Portable Crusher/Screens 30-40 Ton/H		Water Tank Truck 4,000 Ltr
6. Cement	t Stabilizing	1 - 1 -	Motor Grader 70 HP Bulldozer 90 HP Wheel Loader 1.2 m ³ Flat Bed Truck 3.0 Ton	1-	4.0 Ton (D&T) Road Stabilizer
7. Surfac	ce Course	1-	Asphalt Sprayer 850 Ltr Tyre Roller 8-15 Ton Portable Crusher/Screens 30-40 Ton/H		Flat Bed Truck 3.0 Ton
8. Concre	ete] -	Concrete Mixer 0.5 m ³ Water Pump 200 Ltr/Min Concrete Vibrator 3.3 HP		Flat Bed Truck 3.0 Ton Hand-Guided Vibratory Roller 1000 Kg

Table 3-4-3 EQUIPMENT OF ONE WORK GANG FOR MAINTENANCE

TYPE OF WORK	EQUIPMENT REQUIRED
Road	1- Motor Grader
	1- Tyre Roller 8-15 Ton
	1- Hand-Guided Vibratory Roller 1000 Kg
	1- Flat Bed Truck 3.0 Ton
	1- Dump Truck 3.0 Ton
Bridge and Other Structure	1- Flat Bed Truck With Crane 3.0 Ton

3.5 Workshop and Laboratory

3.5.1 Policy of the Kabupaten Workshop

A workshop will be provided for each Kabupaten. The function of the workshop is to cope with requests from the construction site. The main service will be routine maintenance while the secondary service will be light repairs which can be carried out by changing parts. Dismantling and assembling of units which need setting or adjustment using special equipment or facilities will not be carried out in the Kabupaten workshop. Such repairs are planned to be carried out by the provincial workshop or the regional Workshop of Bina Marga.

Accordingly the main tasks of the Kabupaten workshop are as follows:

- 1) Administration for and storage of equipment
- 2) Routine maintenance and light repair of equipment
- 3) Storage and supply of spare parts
- 4) Operation of equipment including crushing plant.

3.5.2 Workshop Equipment and Tools

Equipment and tools for the workshop are recommended as shown in Table 3-5-1.

Table 3-5-1

WORKSHOP EQUIPMENT AND TOOLS

DESCRIPTION	QUANTITY
Upright Drilling Machine	l Set
Electric Hand Drill	1
Electric Portable Grinder	1.
Disc Grinder	1
Bench Electric Grinder	I
Engineer's Vice	. 1
DC Electric Welder with Engine	1 Set
Portable Hydraulic Jack, Screw Head	1
Hydraulic Jack	l.
Grease Gun	2
Suction Pump for Oil Recovery	2
High Pressure Grease Pump	. 1

continued

DESCRIPTION	QUANTITY
Drum Opening Spanner	1
Silicon Normal Charger	1
Tyre Changer Air Operated	1
Tyre Service Tool Set	1
Tyre Pressure Gauge	1
Automatic Tyre Inflator	1
Plug Cleaner and Tester	1
Mechanics Tool Set, Heavy Equipment	\mathbf{i}
Mechanics Tool Set, Large Vehicle	1 .
Portable Air Compressor	1
Electric Cord Reel, 15 A, 50 m	1
Oil Measure, Polyethylene	1
Funnel 200 mm, Steel	3
Hand Truck (Cart), 4-Wheel	1
Nylon Sling, 10 ton	2
Chain Block, 1 ton	2
Wire Rope (for sling), 1.8 ton	2.
Wire Rope (for sling) 3.2 ton	2
Generator	1

3.5.3 Laboratory

For quality control of construction in the Project it is recommended that a laboratory is provided for each Kabupaten. For each laboratory, provision of laboratory test equipment for the following tests is recommended:

- Physical characteristic, compaction and strength tests for the road bed and pavement materials.
- Slump and strength tests for the bridge concrete.

In the laboratory a fixed water tank should be provided for CBR tests and curing of concrete specimens.

The proposed laboratory equipment is listed in Table 3-5-2.

Table 3-5-2

LABORATORY TEST EQUIPMENT

DESCRIPTION	QUAN'	TITY
Soil Moisture Test Set (JIS Al203)		1
Liquid Limit Set (JIS A1205)	• ;	1
Plastic Limit Set (JIS Al206)		1
Compaction Set (JIS A1210)		1
CBR Laboratory Set, Mechanical (JIS A1211)		1
Sand Density Apparatus (JIS A1214)		1
Aggregate Test Sieve Set		t i
Portable Cone Penetrometer		1 .
Compression & Bending Test Machine	٠.	l
Cylinder Mould (JIS All32, 1108)	9	9
Slump Test Apparatus (JIS A1101)	:	<u>2</u> .

To conduct the surveys necessary for road and structure construction such as centering, profile leveling, cross section leveling etc., the surveying equipment listed in Table 3-5-3 recommended.

Table 3-5-3

SURVEYING EQUIPMENT

DESCRIPTION	QUANTITY
Transit	1
Level	1
Staff	3

Chapter 4 CONSTRUCTION AND MAINTENANCE COST ESTIMATIONS

4.1 Unit Price

With regard to the unit prices of materials and labor, the data were collected from each Kabupaten through Bina Marga. The collected data were compared with those of Jakarta using BAHAN BANGUNAN DKI-JAKARTA MAY & JUNE 1985 compiled by PUSAT INFORMASI TEHNIK PEMBANGUNAN, and then finalized.

4.1.1 Unit Labour Price

The unit labour prices of Kabupaten Kolaka and other Kabupatens in Sulawesi Tenggara Province are shown in Table 4-1-1.

Table 4-1-1

UNIT LABOUR PRICE

							(Rp)
KABUPATEN	MAN	SKL LAB	CAP	MAS	LAB	DRIV	OPE
Muna	2,500	2,250	3,000	3,000	1,750	2,000	2,500
Kolaka	3,300	3,000	3,500	3,500	2,200	3,000	4,000
Average	2,900	2,625	3,250	3,250	1,975	2,500	3,250

Notes:

MAN : Mandur

SKL LAB : Skilled Labour

CAP : Carpenter

MAS : Mason

LAB : Labourer

DRIV : Driver

OPE : Operater

4.1.2 Unit Price of Materials

Table 4-1-2 shows the unit price of materials for Kabupaten Kolaka together with for other Kabupatens in Sulawesi Tenggara Province.

Table 4-1-2	UNI	r Price (OF MATER	IALS
	20			(Rp)
MATERIAL	UNIT	MUNA	KOLAKA	AVERAGE
Bitumen	L	300	400	350
Asphalt oil	L	800	850	825
Gasoline	L	250	250	250
Sand	мЗ	7,500	4,000	5,750
Cement	bag	5,000	4,750	4,875
River Stone	м3	3,500	5,000	4,250
Steel moulds	Set	8,500	8,500	8,500
Timber	_M 3	125,000	110,000	117,500
Paint	L	3,000	3,000	3,000
Reinforcing Steel	Kg	750	800	775
Tying Wire	Kg	1,200	1,200	1,200
Equivalent Royalty	ϵ_{M}	250	250	250

4.1.3 Hourly Equipment Cost

The hourly equipment cost for Kabupaten is shown in Table 4-1-3.

Table 4-1-3

HOURLY EQUIPMENT COST

PROVINCE :

SULAWESI TENGGARA

KABUPATEN

KOLAKA

		<u> </u>				t unit	: Rp)	(δ	'85 〉	
CODE NO	EQUIPMENT NAME	CLASS			OCAL COST OPERATION			FOREIGN CO OPERATION		TOTAL Cost
	Bulldozer	120 HP	. 4	28	12,641	13,069	7,769	1,048	8,817	21,886
	Bulldozer/Ripper	120 HP	. 4	68	13,676	14,144	8,499	1,613	10,112	24,256
	Swamp Bulldozer	120 HP	4	99	13,925	14,414	8,879	1,686	10,565	24,979
	Bulldozer	90 HP	2	71	8,591	8.862	4,914	663	5,577	14,439
•	Bulldozer/Ripper	90 HP	2	92	9,195	9,487	5,299	1,006	6,305	15,792
	Bulldozer	65 HP	- 1	93	6,238			472	3,971	10,402
	Bulldozer/Ripper	65 HP	2	11	6,700	6,911	3,819			11,455
	Swamp Bulldozer	90 HP	2	91	9,185				6,287	15,763
	Swamp Bulidozer	65 KP	2	23	6,577	6.800				11,617
	Hotor Grader	110 HP	3	91	11,020					19,634
	Hotor Grader	75 HP	2	63		7,817				13,503
	Motor Grader	65 HP	2	37						
	Road Stabilizer	¥=1850 es	4	73	3,463	3,936				
	Vibratory Roller	4 ton	i	60					•	6,751
	Hand-guide Vib. Roller	1000 Kg	. 1	28	605	733			880	1,613
	Tire Roller	9-15 ton	1	71	7,241	7,412	3,106	104	3,210	
	Vibratory Roller (D&T)	4 ton	1	60	3,301	3,461				
	Hand-guide Vib. Roller	600 Kg	-	90	414	504				1,126
	Rough Terrain Crane	10 ton	- 5	53	12,844	13,397	10,039	762	10,801	24,198
	Hydraulic Excavator; Wheel	0.3 m3	-2	27	7,707	7,934				
	Hheel Loader	1.2 m3	3	87	8,397					16,750
	Nheel Loader	0.3 m3	1	25	2,925	3,050				5,625
	Water Tank Truck	4000 ltr.		31	2,792	2,923			•	
	Fuel Tank Truck	4000 ltr.	1	33	2,799	2,932	882	129	1,011	
	Dump Truck	3.0 ton	2	21	3,530	3,751	1,469	216		5,436
	Flat Bed Truck with Crane	3.0 ton		95	3,028	3,123				4,969
	Dump Loader Truck	12 ton	2	12	18,494	18,696				
	Dump Truck	5.0 ton	- 3	27	5,818	6,147	2,189	322		B,658
	Flat Bed Truck	3.0 ton		31	2,593	2,624				
	Portable Crusher/Screening	30-40 t/h	1,0	34						
	Concrete Mixer	0.5 a3		10	2,522	3,332				9,179
	Water Pump	200 1/min		29	259	288	•			482
	Concrete Vibrator	3.3 HP		12	222	234				309
	Asphalt Sprayer	850 ltr.		53	782		1,020			2,105

4.2 Unit Construction Cost by Work Type

4.2.1 All Works Except Bridges

The unit construction costs by work type, excluding bridge construction costs, have been estimated using the combination of equipment described in Clause 3.4 and the unit prices already listed. The results are summarized in Table 4-2-1.

Table 4-2-1 UNIT COST BY WORK TYPE EXCEPT BRIDGE WORK

PROV : SULAWESI TENGGARA KAB : KOLAKA

				(Rp)
ITEN	UNIT	LOCAL	FOREIGN	TOTAL
			**********	. 25 25 44 64 45 45 45 45 45 45 45 45 45 45 45 45 45
Site Clearance in Light Bush	a 2	166	91	257
Subgrade Preparation	» 2	21	- 11	32
Normal Fill	a 3	1,712	986	2,578
Fill in Swamp	4 3	2,561	1,050	
Normal Excavation to Spoil	€3	1,002		
Sub Base Course	# 3		1,355	•
Base Course	a 3		2,310	
Shoul der	a2	302	146	
Asphalt Patching	52	3,941	1,518	5,459
Surface Dressing (Single)	#2	656	766	•
Surface Dressing (Double)	a 2	813	1,207	2,020
Earth Drain	4	986	120	1,106
Earth Drain in Swamp (by machine)	# 3	1,225	476	
Pipe Culvert D80cm	R	16,535	44,416	90,951
Hasonry Culvert (80x80cm)		62,B46	38,045	
Retaining Wall and Wing Wall (Timber)	a 2	12,810	246	13,056
Retaining Wall and Wing Wall (Masonry)	#3	45,070	11,820	56,890
Gabion Protection	a 3	10,908	121	11,029
Manual routine maintenance of road	K#	884,046	7,260	167,948
Routine maintenance of earth road	Ka	95,612	38,004	133,616
Routing maintenance of gravel road	· Ku	193,041	98,384	281,425
Routine maintenance of asphalt road	Ke	394,100	151,800	545,900

4.2.2 Bridges

The unit construction costs by bridge type including the cost of demolition of existing bridges are shown in Table 4-2-2.

Table 4-2-2

BRIDGE COST

PROV : SULAWESI TENGGARA KAB : KOLAKA

(Rp) UNIT LOCAL FORE 16H TOTAL 52,005 Superstructure (Timber Span 3m; 101) 82 47,921 4,094 Superstructure (Timber:Span Sm;101) 53,080 4,509 57,509 m 2 76,226 Superstructure (Timber; Span 8m; 10T) 70,304 5,922 n2 64,469 Superstructure (Timber; Span 3m; BH50) 12 59,420 5,049 70,340 Superstructure (Timber: Span 5m; BH50) 42 64,869 5,471 6,925 89,195 Superstructure (Timber; Span Bm; RH50) 82,270 42 Superstructure (Concrete; Span 3m; BH50) 90,442 144,866 12 54,424 156,897 Superstructure (Concrete(Span 5m; 8H50) 100,977 **n**2 55,920 167,556 109,933 Superstructure (Concrete; Span Ba; BMSO) n2 57,623 Superstructure (Concrete|Span10m; BH50) **#**2 63,078 124,768 197,846 68,035 Superstructure (Concrete; Span15m; BM50) **4**2 146,857 214,B92 455,515 ND 417,519 37,996 Substructure (Pier; for Timber; 101) 172,146 1,326,255 Substructure (Abutifor Timber; 101) 110 1,154,109 56,242 670,302 Substructure (Piersfor Timber; 8850) ND 614,060 192,243 1,494,827 Substructure (Abutyfor Timber; BH50) NO 1,302,584 Substructure (Pierifor Concrete; BH50) 1,698,484 473,575 2,172,059 ND 994,280 4,592,770. Substructure (Abutifor Concrete; BH50) NO 3,598,490 1,552 14,911 Demolition of Bridge [Timber-)Timber] *****2 13,359 Demolition of Bridge (Timber->Concrete) 13,359 1,552 14,911 **m**2 Denalition of Bridge (Concrete) **.** 2 84,969 70,510 155,479 8,659 9,891 Naintenance of Timber Bridge (New) **n2** 1,233 Maintenance of Concrete Bridge (New) 189,1 2,793 4,754 •2 Maintenance of Timber Bridge (Exist) 8,052 2,462 10,514 *2 Haintenance of Concrete Bridge (Exist) 4,115 2,404 6,519

Chapter 5 RESULTS OF ECONOMIC FEASIBILITY EVALUATION

5.1 Preliminary Screening

The road links to be improved should be effective for development of the Project Area. The road links where improvements were assumed to be inefficient for development of the Project Area were generally screened out using the following cut-off criteria.

- (1) Very short roads, less than 2 Km long, which have no connection with the trunk road network.
- (2) Roads not connected to the network at any point
- (3) Unpreferred roads, due to poor suitability for transportation compared to other existing alternative roads serving the same purpose.
- (4) Road in good condition according to the Bina Marga road inventory which lists improvement projects carried out in the last two or three years
- (5) Roads with asphalt surface in good condition
- (6) Urban roads, except those forming part of a longer route
- (7) Roads serving single large organizations rather than the general public
- (8) Roads with no inventory data
- (9) Kabupaten roads also assigned as provincial roads

The road links to be screened out in Kabupaten Kolaka are shown in Table 5-1-1.

Table 5-1-1

ROAD LINKS TO BE SCREENED OUT

KABUPATEN : KOLAKA

CRITERIA NO ROAD LINK NO

5.2 Evaluation

5.2.1 Primary Analysis

The Kabupaten roads were classified by using the future traffic volume on the road links in 1998. The primary analysis of the IRR was carried out using the construction and maintenance costs. Road links where IRRs were more than 10% were defined as feasible links.

Results of primary analysis are shown in Table 5-2-1.

5.2.2 Secondary Analysis

From the infeasible road links evaluated by the primary analysis, road links where the IRRs were between 1% and 10%, i.e. road links which could become feasible if down graded by one rank, in classification were down graded and the costs re-estimated. Using these costs, a secondary analysis of IRR was carried out. Road links where these IRRs were then more than 10% were also defined as feasible links. This reflected that even though the road classification was rather low the road link should be improved.

Results of secondary analysis are shown in Table 5-2-2.

5.2.3 Ranking of Feasible Road Links

From the results of the primary and secondary analysis, road links where the IRRs were more than 10% were selected and their NPVs and B/Cs were estimated. The ranking of feasible road links from the economic evaluation are decided in the order of the NPVs, i.e. the larger the NPV the higher the road link priority as shown in Table 5-2-3.

Table 5-2-1 (1) RESULTS OF PRIMARY ANALYSIS

FROVINCE	: BULAWESI	TENGGARA	KABUPATEN	: KOLAKA
LINK	IO LENGTH	CLASS	IRR (%)	REMARK
4	BO Km	IIIA	52.901	Voc
3	6 Km	IIIA	16.837	VOC
6	39 Km	1119-1	15.777	Surplus
5	42 Km	11119-1	14.700	VOC
1	22 Km	IIIA	7.131	VDC
62	11 Km	1119-2	5.123	Surplus
7	- 7 Km	HIC	0.078	Surplus
8	8 Km	1110		Surplus
9	5 Km	IIIC	0.078	Surplus
10	to Km	1118-2	0.078	Surplus
11	35 Km	HIC	0.078	Gurplus
12	7 Km	1110	0.078	Surplus
13	9. Km	1110	0.079	Surplus
14	1.4 Km	1110	0.078	Burplus
15	6 Km	iiic	0.078	Surplus
16	8 Km	1110	0.078	Surplus
17		IIIC	0.078	Surplus
10	6 Km	ilic	0.078	Surplus
17	6 Km	IIIC	0.078	Surplus
20	64 Km	1118-2	0.078	
21	3 Km	IIIC	0.078	Surplus
- 22	13 Km	1110	0.078	Surplus
23	9 Km	1110	0.078	Surplus
24	18 Km	1119-2	0.078	Surplus
25	11 Km	1110		Surplus
26	6 Km	HIIC'	0.078	Surplus
27	4 Km	1110	0.078	Surplus
28	16 Km		0.078	Surplus
29 29	5 Km	1118-2	0.078	Surplus
30	20 Km	1110	0.078	Surplus
31	B Km		0.078	Surplus
32	4 Km	IIIC	0.078	Surplus
33	3 Km		0.078	Surplus
34	2 Km	1110	0.078	Surplus
. 35 35	2 Km	1110	0.078	Surplus
36 36	3 j.m 4 km	IIIC	0.070	Surplus
37	4 Km	1110	0.078	Surplus
		IIIC	0.078	Surplus
38 39	2 Km 9 Km	IIIC	0.078	Surplus
		IIIC	0.078	Surplus .
40	3 Km	IIIC	0.078	Surplus
11	Ø Kan	IIIC	0.070	Surplus
42	6 Km	IIIC	0.078	Surplus
43	2 Km 5 Km	IIIC	0.079	Surplus.
44		IIIC	0.078	Surplus Surplus
	7 Km	1110	0.078 0.078	
46 47	7 Km. 4 Km	HIC	0.079	Surplus Surplus
48	4 Km	1110	0.078	Surplus
40 49	4 Km	1110	0.078	Surplus
50	3 Km	1110	0.078	։ Ցարիլաց ։ Ցարիլաց
, IÇ	4.7 1.411	1116		. au prus

Table 5-2-1 (2) RESULTS OF PRIMARY ANALYSIS

DVINCE :	BULLWEST	TENGGARA	KABUPATEN	i KOLAKA
ومروز دينه جنهم فرها فالمروز والوازو والمراز	n Kina tang agal Juan bulu tung Man hala wat awa g		l time pulls your man force one what was more once land o	the side and seed and allow now that they have been
LINK NO	LENGTH	CLASS	IRR(%)	REMARK
51	10 Km	1116	0.078	Surplus
52	6 Km	IIIC	0.078	Burplus
53	20 Km	1118-2	0.078	Surplus
54	45 Km	1119-2	0.078	Burplus
55	7 Km	IIIC	0.078	Surplus
56	9 Km	1119-2	0.078	Bur plus
57	9 Km	111C	0.078	Surplus
58	15 Km	1110	0.078	Burplus
59 .	5 Km	1110	0.078	Surplus
60 -	16 Km	IIIC	0.078	Surplus
61	6 Km	IIIC	0.078	Surplus
2	6 Km	IIIC	0.078	Surplus
63	11 Km	IIIC	0.078	Surplus

RESULTS OF SECONDARY ANALYSIS

PRUVINCE :	SOCOMEST	TENGGARA	KADUPATEN	; KULAKA
LINK ND	LENGTH	CLASS	188 (X)	REMARK
1 42	22 Km 11 Km	1116-1	10.500 7.121	VOC Surpliis

PROVINCE : SULAWESI TENGGARA KABUPATEN : KOLAKA

Table 5-2-3 RANKING OF FEASIBILITY ROAD LINKS

NO LINK	LENGTH	CLASS	NPV (1000Rp)	B/C	IRR (%)	REMARK
4	80 Km	IIIA	3775622	3.208	52.901	Voc
6	39 Km	1118-1	273149	1.286	15.999	Surplus
5	42 Km	1118-1	172291	1.202	14.700	VOC
3	6 Km	IIIA	43934	1,298	16.837	VOC
1	22 Km	1118-1	11479	1.023	10.580	VOC