REPUBLIC OF INDONESIA MINISTRY OF PUBLIC WORKS DRECTURATE GENERAL OF HICKWAYS

THE FEASIBILITY STUDY OF THE LOCAL ROAD DEVELOPMENT IN THE REPUBLIC OF INDONESIA

KABUPATEN REPORT 30

KABUPATEN GOWA

MARCH 1986

JAPAN INTERNATIONAL GOOPERATION AGENCY

REPUBLIC OF INDONESIA MINISTRY OF PUBLIC WORKS DIRECTORATE GENERAL OF HIGHWAYS

THE FEASIBILITY STUDY OF THE LOCAL ROAD DEVELOPMENT IN THE REPUBLIC OF INDONESIA

KABUPATEN REPORT 30

KABUPATEN GOWA

MARCH 1986

JAPAN INTERNATIONAL COOPERATION AGENCY

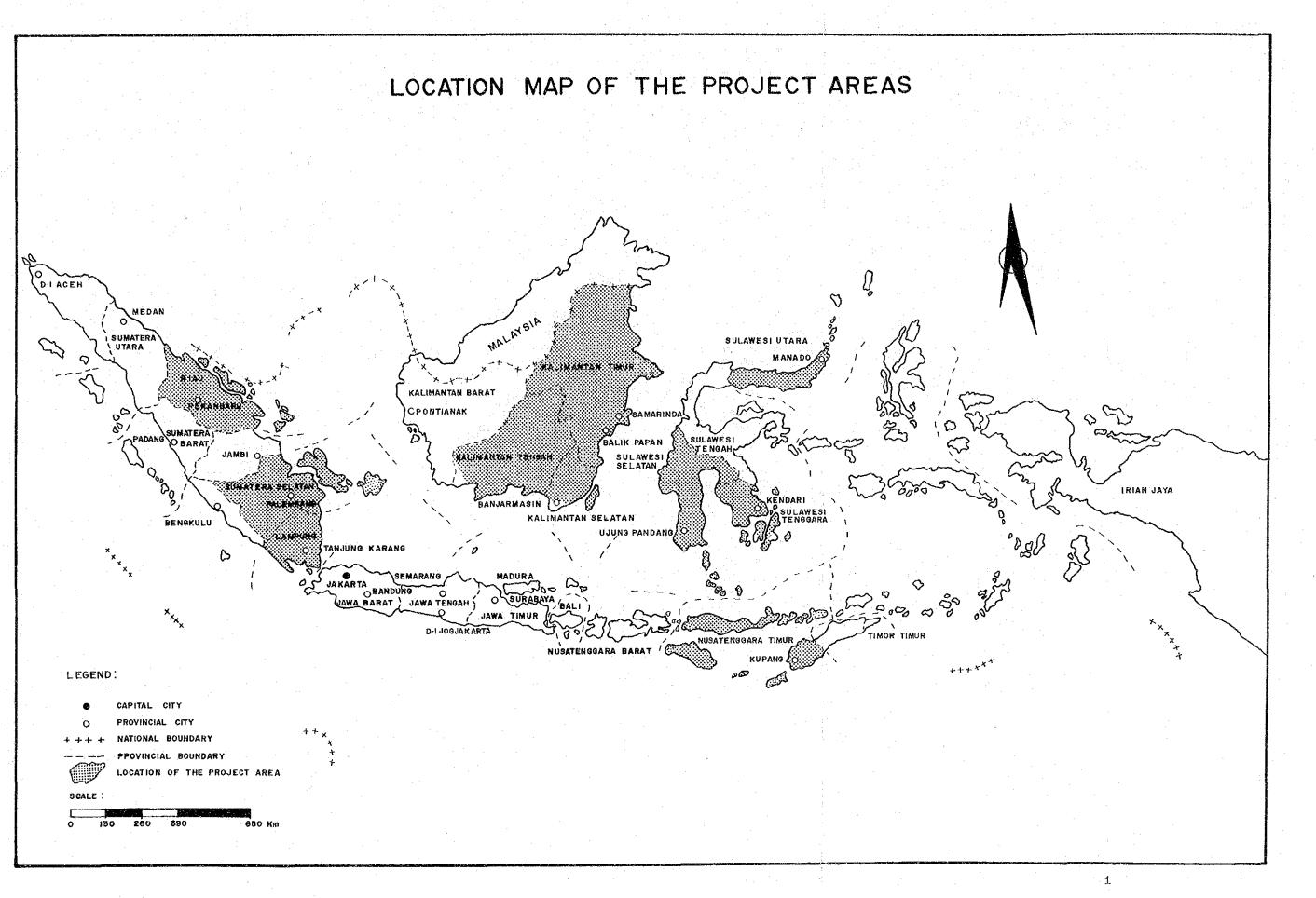
国際協力等	業団	
受入 '87.5.21	108	
<u>養録</u> 16453	61.4	
No. 10433	SDF	

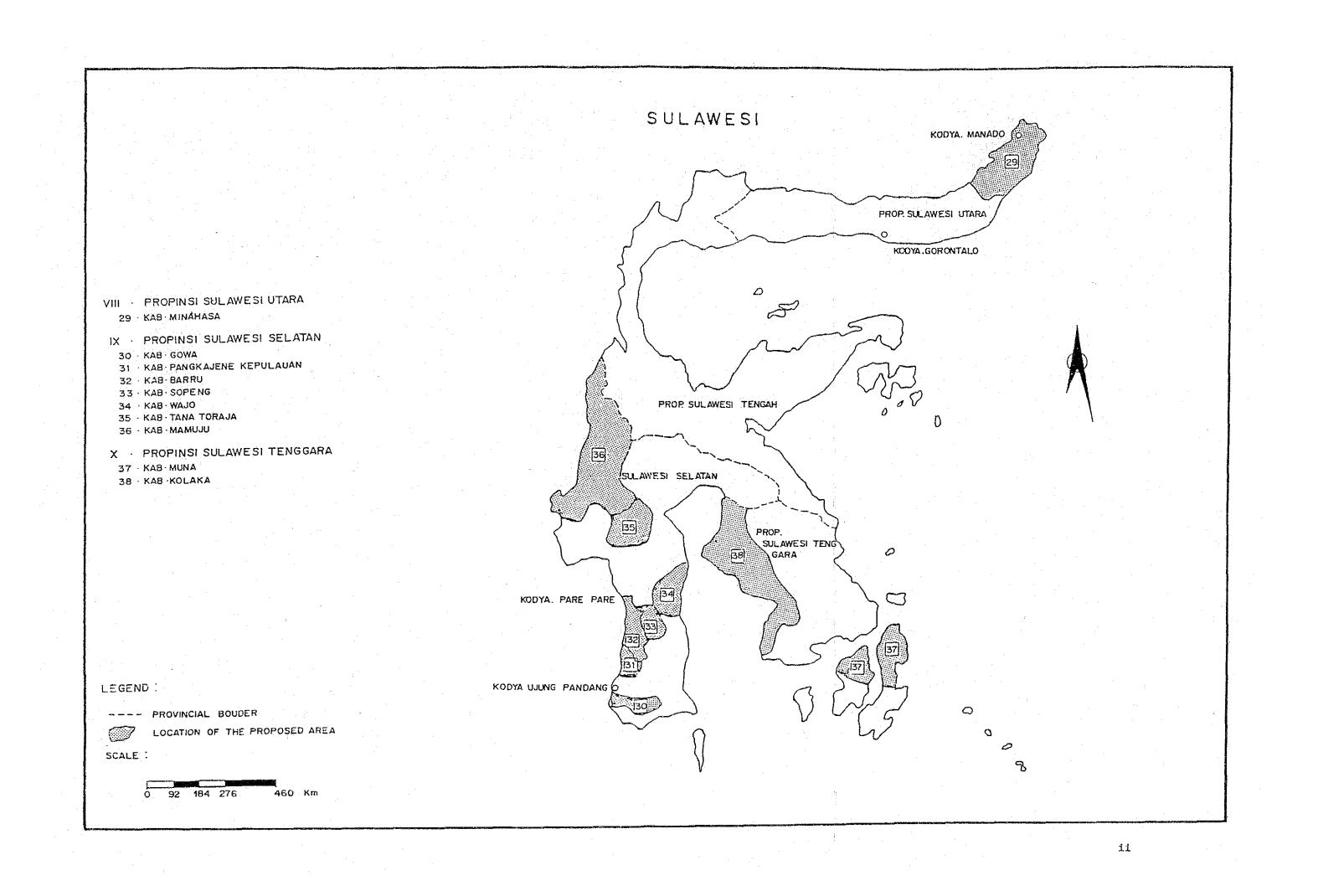
· .		
والمرابعة المرابعة ا		• •
国際協力專	目常团	
受入 '87. 5. 21	108	
AB	61.4	
登録 16453	SDF	

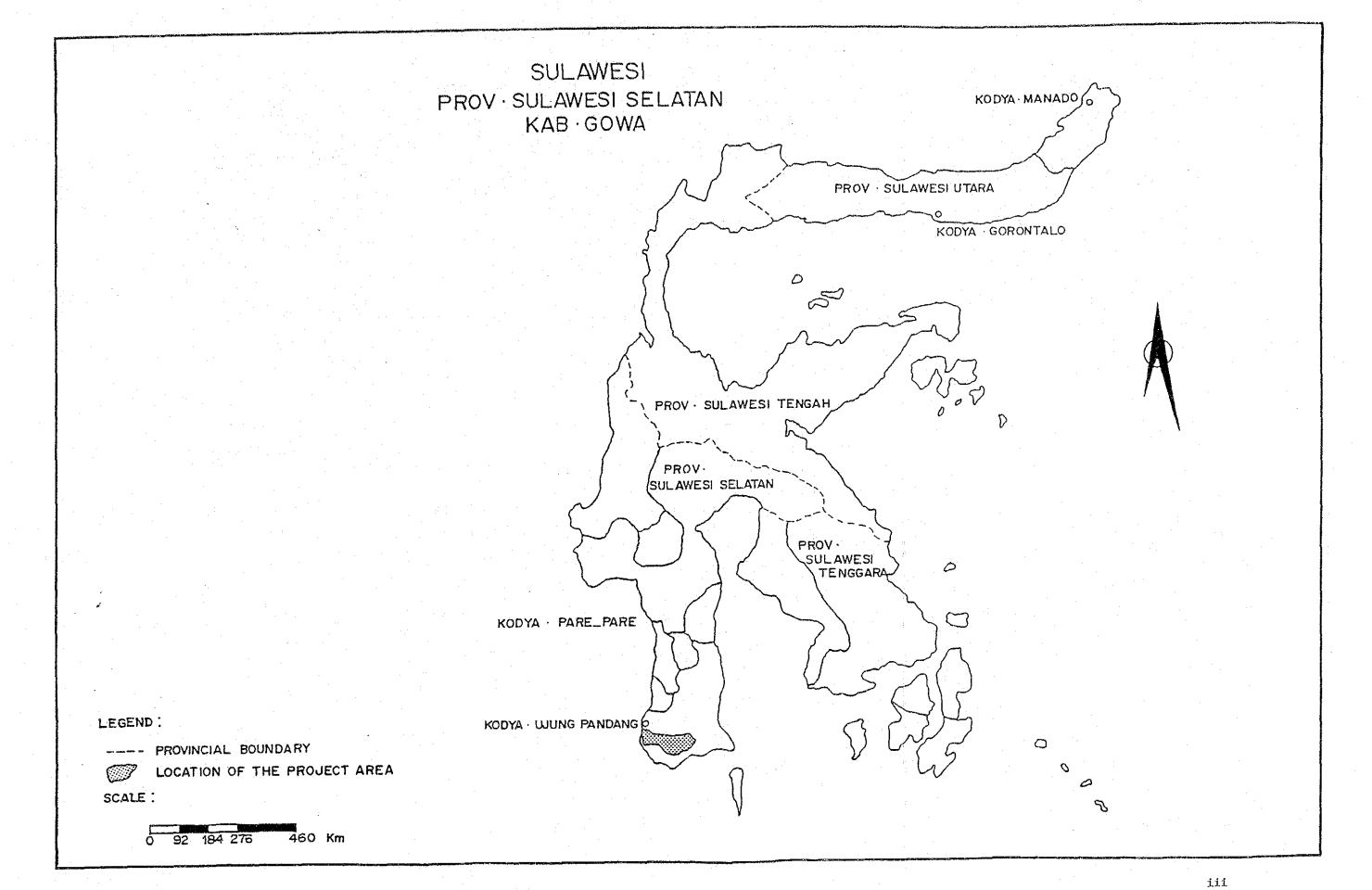
			÷ •	
	· .			
1			-	

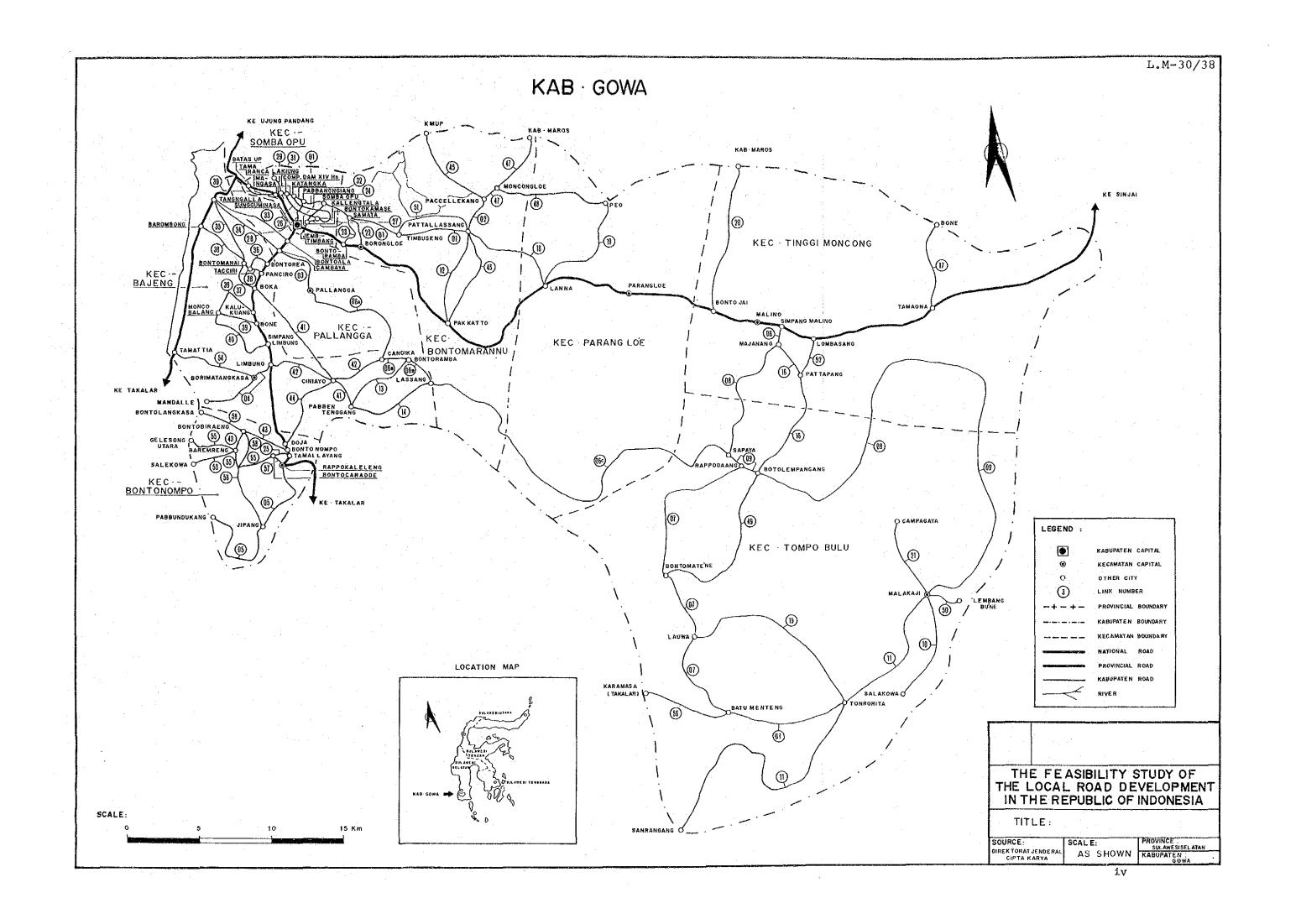
PREFACE

This is the Kabupaten Report of the Feasibility Study of the Local Road Development in the Republic of Indonesia for Kabupaten Gowa in Sulawesi Selatan Province. The report has been prepared by the Study Team of the Japan International Cooperation Agency (hereinafter called JICA).


Based upon a request from the Government of Indonesia, the Government of Japan arranged for JICA to conduct the Study and JICA accordingly organized a Study Team. The study was carried out using data which were generally prepared by the Kabupaten, routed through the province, under the instructions of Bina Marga of the Ministry of Public Works and Bangda of the Ministry of Home Affairs.


Since the study period was limited, without cooperation of Bina Marga, Bangda and local governments of both province and Kabupaten in collecting the data, the study would not have been completed within the period.


The report consists of the results of the feasibility study and proposed implementation programme of the local road development in the Kabupaten.


The simplified economic feasibility evaluation methodology utilized for the study was established by the Study Team in Phase I Study through a pilot study of seven (7) model Kabupatens, and is described in the Main Report.

The purpose of the study for the Kabupaten is mainly to estimate the total Project Cost for the local road development but only limited data is available for study base. Therefore a detailed survey and design for the improvement of the Kabupaten roads should be carried out before commencing the Project together with a review of this report.

	· ·	•	
			CONTENTS
	· · · ·		
	PREFACE		
	Chapter 1		BACKGROUND OF THE KABUPATEN
		1.1	Topographic and Meteorological Conditions 30-1
			1.1.1 Location and Topography 30-1
			1.1.2 Meteorological Conditions 30-2
		1.2	Socio-Economic Conditions
-	•		1.2.1 Population 30-4
			1.2.2 Land Use 30-6
:			1.2.3 Agriculture 30-8
			1.2.4 Other Economic Activities 30-11
		1.3	Present Status of Kabupaten Roads
		• .	1.3.1 Outline of Road Networks 30-12
		· .	1.3.2 Road Inventory 30-13
	an in tar. An an		1.3.3 Bridge Inventory 30-17
			1.3.4 Traffic 30-22
•		· · ·	
	Chapter 2		ESTIMATIONS OF FUTURE TRAFFIC VOLUME AND BENEFIT
	•		
· . ·	•	2.1	Future Traffic Volume
			an private state of the second
			Future Traffic Volume
			Future Traffic Volume30-232.1.1Traffic Growth Rate30-23
		2.1	Future Traffic Volume30-232.1.1Traffic Growth Rate30-232.1.2Present and Future Traffic Volume30-24
		2.1	Future Traffic Volume30-232.1.1 Traffic Growth Rate30-232.1.2 Present and Future Traffic Volume30-24Benefit30-27
		2.1	Future Traffic Volume30-232.1.1 Traffic Growth Rate30-232.1.2 Present and Future Traffic Volume30-24Benefit30-272.2.1 Benefit Estimation Method30-27
	Chapter 3	2.1	Future Traffic Volume30-232.1.1 Traffic Growth Rate30-232.1.2 Present and Future Traffic Volume30-24Benefit30-272.2.1 Benefit Estimation Method30-27
	Chapter 3	2.1	Future Traffic Volume 30-23 2.1.1 Traffic Growth Rate 30-23 2.1.2 Present and Future Traffic Volume 30-24 Benefit 30-27 2.2.1 Benefit Estimation Method 30-27 2.2.2 Benefit 30-27
	Chapter 3	2.1	Future Traffic Volume30-232.1.1 Traffic Growth Rate30-232.1.2 Present and Future Traffic Volume30-24Benefit30-272.2.1 Benefit Estimation Method30-272.2.2 Benefit30-29ENGINEERING
	Chapter 3	2.1	Future Traffic Volume30-232.1.1 Traffic Growth Rate30-232.1.2 Present and Future Traffic Volume30-24Benefit30-272.2.1 Benefit Estimation Method30-272.2.2 Benefit30-29ENGINEERINGDesign Criteria and Specification30-30
	Chapter 3	2.1	Future Traffic Volume30-232.1.1 Traffic Growth Rate30-232.1.2 Present and Future Traffic Volume30-24Benefit30-272.2.1 Benefit Estimation Method30-272.2.2 Benefit30-29ENGINEERINGDesign Criteria and Specification30-303.1.1 Geometric Design Criteria30-30
	Chapter 3	2.1	Future Traffic Volume30-232.1.1 Traffic Growth Rate30-232.1.2 Present and Future Traffic Volume30-24Benefit30-272.2.1 Benefit Estimation Method30-272.2.2 Benefit30-29ENGINEERINGDesign Criteria and Specification30-303.1.1 Geometric Design Criteria30-303.1.2 Loading Specification30-30Pavement Design30-30
	Chapter 3	2.1	Future Traffic Volume30-232.1.1 Traffic Growth Rate30-232.1.2 Present and Future Traffic Volume30-24Benefit30-272.2.1 Benefit Estimation Method30-272.2.2 Benefit30-29ENGINEERINGDesign Criteria and Specification30-303.1.1 Geometric Design Criteria30-303.1.2 Loading Specification30-30Pavement Design30-30
	Chapter 3	2.1	Future Traffic Volume30-232.1.1 Traffic Growth Rate30-232.1.2 Present and Future Traffic Volume30-24Benefit30-272.2.1 Benefit Estimation Method30-272.2.2 Benefit30-272.2.2 Benefit30-29ENGINEERINGDesign Criteria and Specification30-303.1.1 Geometric Design Criteria30-303.1.2 Loading Specification30-30Pavement Design30-333.2.1 Design Conditions30-33
	Chapter 3	2.1 2.2 3.1 3.2 3.3	Future Traffic Volume30-232.1.1 Traffic Growth Rate30-232.1.2 Present and Future Traffic Volume30-24Benefit30-272.2.1 Benefit Estimation Method30-272.2.2 Benefit30-29ENGINEERINGDesign Criteria and Specification30-303.1.1 Geometric Design Criteria30-303.1.2 Loading Specification30-303.1.2 Loading Conditions30-333.2.1 Design Conditions30-333.2.2 Pavement Structure30-33
	Chapter 3	2.1 2.2 3.1 3.2 3.3	Future Traffic Volume30-232.1.1 Traffic Growth Rate30-232.1.2 Present and Future Traffic Volume30-24Benefit30-272.2.1 Benefit Estimation Method30-272.2.2 Benefit30-29ENGINEERINGDesign Criteria and Specification30-303.1.1 Geometric Design Criteria30-303.1.2 Loading Specification30-333.2.1 Design Conditions30-333.2.2 Pavement Structure30-33Design of Bridges and Other Structures30-35
	Chapter 3	2.1 2.2 3.1 3.2 3.3	Future Traffic Volume30-232.1.1 Traffic Growth Rate30-232.1.2 Present and Future Traffic Volume30-24Benefit30-272.2.1 Benefit Estimation Method30-272.2.2 Benefit30-29ENGINEERINGDesign Criteria and Specification30-303.1.1 Geometric Design Criteria30-303.1.2 Loading Specification30-30Pavement Design30-333.2.1 Design Conditions30-333.2.2 Pavement Structure30-33Design of Bridges and Other Structures30-353.3.1 Standard Bridge30-35
	Chapter 3	2.1 2.2 3.1 3.2 3.3	Future Traffic Volume30-232.1.1 Traffic Growth Rate30-232.1.2 Present and Future Traffic Volume30-24Benefit30-272.2.1 Benefit Estimation Method30-272.2.2 Benefit30-29ENGINEERINGDesign Criteria and Specification30-303.1.1 Geometric Design Criteria30-303.1.2 Loading Specification30-30Pavement Design30-333.2.1 Design Conditions30-333.2.2 Pavement Structure30-33Design of Bridges and Other Structures30-353.3.1 Standard Bridge30-35

Chapter Chapter Chapter	3.4 3.5 4 4.1	 3.4.1 Points to be Considered for the Selection
Chapter	3,5	 3.4.1 Points to be Considered for the Selection
Chapter	4	Selection30-413.4.2Combinations of Equipment for Major Works and Maintenance30-41Workshop and Laboratory30-443.5.1Policy of the Kabupaten Workshop30-443.5.2Workshop Equipment and Tools30-443.5.3Laboratory30-45CONSTRUCTION AND MAINTENANCE COST ESTIMATIONS30-47
Chapter	4	Works and Maintenance
Chapter	4	3.5.1Policy of the Kabupaten Workshop30-443.5.2Workshop Equipment and Tools30-443.5.3Laboratory30-45CONSTRUCTION AND MAINTENANCE COST ESTIMATIONSUnit Price30-47
Chapter		3.5.1Policy of the Kabupaten Workshop30-443.5.2Workshop Equipment and Tools30-443.5.3Laboratory30-45CONSTRUCTION AND MAINTENANCE COST ESTIMATIONSUnit Price30-47
Chapter		3.5.2Workshop Equipment and Tools
Chapter		3.5.3 Laboratory 30-45 CONSTRUCTION AND MAINTENANCE COST ESTIMATIONS Unit Price 30-47
Chapter		Unit Price 30-47
	4.1	
		A 1 1 Muit Labour Price 30-47
		4.1.2 Unit Price of Materials 30-48
		4.1.3 Hourly Equipment Cost 30-49
	4.2	Unit Construction Cost by Work Type
		4.2.1 All Works Except Bridges 30-50
	•	4.2.2 Bridges 30-51
Chapter	5	RESULTS OF ECONOMIC FEASIBILITY EVALUATION
Chapter	5.1	Preliminary Screening 30-52
Chapter	5.2	Evaluation
Chapter	·	5.2.1 Primary Analysis 30-53
Chapter		5.2.2 Secondary Analysis 30-53
Chapter		5.2.3 Ranking of Feasible Road Links 30-53
	6	IMPLEMENTATION PROGRAMME
	6.1	
		6.1.1 Project Cost 30-56
		6.1.2 Proposed Road Links 30-57
		6.1.3 Annual Construction and Maintenance Cost
		6.1.4 Construction and Maintenance
		Equipment Cost 30-65
		6.1.5 Other Costs 30-68
		6.1.6 Quantities by Work Type 30-68
	· .	ii

н. 1. т.	6.2	Organization and Construction System	30-70
	÷.,	6.2.1 Organization	30-70
	на. На	6.2.2 Construction System	30-70
			· ·
ppendix	A-1	Input Data for Estimation of the Producer's Surplus Benefit	30-A-1
	A-2	Engineering Data	30-A-2
	A-3	Construction and Maintenance Cost for Proposed Road Links	30-A18
•	A-4	Construction and Maintenance Quantities for all Proposed Road Links	30-A-40
	A5	Construction and Maintenance Costs for all Proposed Road Links	30-A-43
	A-6	Quantities of Bridges on Proposed Road Links	30-A-46
	A-7	Construction and Maintenance Cost of Bridges on Proposed Road Links	30-a-48

Chapter 1 BACKGROUND OF THE KABUPATEN

1.1 Topographic and Meteorological Conditions

1.1.1 Location and Topography

Kabupaten Gowa has a rectangular shape long in the east-west direction. It is bordered on the south by Kabupatens Takalar and Jeneponto, on the east by Kabupatens Bantaeng, Bulukumba and Sinjai, and on the north by Kabupaten Maros. On the west it faces the Makassar Strait and the provincial capital of Sulawesi Selatan, Ujungpandang, stands on the coast bordered by the Kabupaten.

The flat area formed by the River Jeneberang basin continues from the west coast to the center of the Kabupaten and changes into hills towards the east. Finally in the westernmost region of the Kabupaten it changes to mountains where the highest peak of Sulawesi Selatan Province, mountain Lompobatang, stands at 2871 meter height. Thus the Kabupaten can be roughly divided topographically into the flat area of the western half and the mountainous area of the eastern half.

The Kabupaten has an area of 1,883 square kilometers, approximately 3 percent of the total of the province. It consists administratively of 8 Kecamatans.

1.1.2 Neteorological Conditions

The average number of rainy days and the average amount of yearly rainfall in Kabupaten Pangkajene Kepulauan are 149 days and 2,767 mm respectively.

One year in the Kabupaten consists of a rainy season and a dry season. The dry season is from April through October in general. However this is variable as Table 1-1-1 shows.

The number of working days which is necessary for planning the construction schedule in chapter 6, is estimated at 220 days using the following formula based upon the data shown in the table referred to above.

Working Days = $365 - \text{Holidays} - \text{Rainy Days} + (\text{Rainy Days} \\ \times \frac{\text{Holiday}}{365} + (0.10 \times \text{Rainy Days})$

Where 👘

- Holidays consist of 52 Sundays and 13 national holidays; and

- 10% of rainy days are assumed to be workable days.

Table 1-1-1

METEOROLOGICAL CONDITIONS

983 r-ł 1982 STATION : Baring r--t 198 PROVINCE : Sulawesi Selatan KABUPATEN : Pangkajene Kepulauan 1980

4 ø σ r--1

MONTH RAIN	Y DAYS	RAINY DAYS RAINFALL RAINY DA (mm)	RAINY D.	AYS	YS RAINFALL (mm)	RAINY I	DAYS	RAINY DAYS RAINFALL RAINY DAYS RAINFALL (mm)	RAINY	DAYS	RAINFALI (mm)	L RAINY DAYS	A ST	RAINFALL (mm)
January	20	25		27	26	. •	22	25	.*	19	23		25	20
February	14	53		16	20		21	31		Ś	10		20	31
March	15	43		18	24		21	22		13	11		21	22
April	17	18		11	28	•	14	6		17	∞		22	77
May		14		14	ω	:	ŝ	12		15	13		23	13
June	٢	6	:	11	10		9		· · · ·	14	16		10	80
July	5	10		13	14		÷.	- t 		4	e M		2	ι Υ
August	t-	്റ		r	1		ŀ			ı	f	•	4	18
September	6	υ Γ		ъ	6		L	. 1 °		1	· J .		13	14
October	Ó	11		ø	28	·	r-4	00	· .	9	10		9	20
November	17	19		18	22		ς Γ	10		22	29		16	18
December	28	32		25	40		20	17		24	42		16 C	39
Total	143	248	•	166	229	• - •	113	145		139	165		183	222

30-3

1.2 Socio-Economic Conditions

1.2.1 Population

The population of Kabupaten Gowa in 1983 was 368,552 which was approximately 5.8% of the 6,376,100 total population of Sulawesi Selatan Province as shown in Table 1-2-1.

The population density was 1.90 persons per ha which was higher than the provincial density of 0.88.

The recent annual average growth rate of population of the Kabupaten is 0.6% which is lower than both the provincial rate of 1.7% and the national rate of 2.2%. This is caused by outflow of population to other Kabupatens and cities.

The population of each Kecamatan and its proportion to the Kabupaten population is shown in Table 1-2-2.

Tab	1e	1-7-	r

POPULATION BY KABUPATEN

DESCRIPTION	POPULATION	AAGR (%)	AREA (ha)	POPULATION DENSITY (persons/ha)	SURVEY YEAR
KABUPATEN:		······································	·		······································
GOWA	368,552	0.6	188,332	1.90	1983
PANGKAJENE KEPULAUAN	224,630	06	111,229	2.02	1984
BARRU	137,392	0.5	117,472	1.17	1982
SOPPENG	239,335	0.5	135,944	1.76	1984
WAJO	379,948	0.5	250,619	1.52	1984
TANA TORAJA	340,015	0.6	195,000	1.73	1984
MAMUJU	124,315	6.0	1,105,781	0.11	1984
PROVINCE:					
SULAWESI SELATAN	6,278,200		7,278,100		1982
oommeet oblittin	6,376,100	1.7	7,278,100	0.88	1983
	6,475,000		7,278,100		1984
JAWA IS.(Excluding	· .				
DKI JAKARTA)	91,126,900	1.7	13,159,700	6.92	-
INDONESIA	161,579,500	2.2	191,944,300	0.84	· <u>-</u>

Notes :

1. Sources:

Kabupaten; Kabupaten concerned with the study

Province ; Jawa and Indonesia:

Statistical yearbook of Indonesia 1984, published by the Central statistics Bureau.

2. AAGR

; Average Annual Growth Rate.

		Year : 1983	· · · · · ·	an an the start of
PROVINCE :	SULAWESI SELATAN		n an	a an
KABUPATEN :	GOWA			na Anglasian a
KECAMATAN		POPULA	TION	PROPORTION
				(%)
BONTONOMPO		47	,162	12.8
BAJENG		50	,978	13.8
TOMPOBULU		70	,764	19.2
TINGGI MONCONG		44	,444	12.1
PARANG LOE		21	,790	5.9
BONTO MARANNU		35	,537	9.6
PALANGGA		57	,408	15.6
SOMBAOPU		40	,469	11.0
TOTAL		368	,552	100

Table 1-2-2

POPULATION BY KECAMATAN

Year : 1983

1.2.2 Land Use

In Kabupaten Gowa, 84,900 ha of the current available land use area, which is approximately 45.2% of the 188,332 ha total area of the Kabupaten, is used for living purposes and for industrial activity of the inhabitants of the Kabupaten. It is the total value of columns (1) through (6) in Table 1-2-3.

The current available land use area consists of 75,200 ha of agricultural harvest area and 9,700 ha of residential area which are 88.6% and 11.4% of the current available land use area respectively.

The agricultural harvest area consists of 41,400 ha of paddy field and 33,800 ha of plantation area which are 55.1% and 44.9% of the agricultural harvest area respectively.

It can be realized from the land use that the main industrial production in the Kabupaten is food crops, especially paddy.

	· .	· ·	• . •	· .	•	·			• • • •	· · ·	. ·
Table 1-2-3	·			LAND USE	USE		- 				
			-		· ·	-			•		
PROVINCE : SULAWESI SELATAN	SELATAN		:	+ 1 -							
											(ha)
KABUPATEN	WET PADDY Field	UPLAND PADDY FIELD 7	OTHER CUL- TIVATED AREA	PLANTATION AREA	RESIDENTIAL AREA	USABLE OPEN SPACE	RIVER & LAKE	FORESTRY AREA	OTHERS	TOTAL AREA	SURVEY YEAR
GOWA	28,800 (15.3)	12,600 (6.7)	1	33,800 (17.9)	9,700 (5.1)	1	1	78,900 (41.9)	24,532 (13.0)	188,332 (100)	1981
PANGKAJENE KEPULAUAN	20,800 (18-7)	554 (0.5)	3,308 (3.0)	10,079 (9.1)	2,538 (2.3)	2,142 (1.9)	5,972 (5.4)	10,754 (9.7)	55,084 (49.5)	111,229 (100)	1983
BARRU 30-	12,653 (11.1)	•	6,262 (5.5)	· .	2,870 (2.5)	n Nora y N	2,362 (2.1)	77,325 (67.5)	13,000 (11.3)	114,472 (100)	1982
C SOPPENG	36,098 (28-7)	721 (0.6)	35,968 (28-6)	10,162 (8.1)	750 (0.6)	•	36,607 (29.1)	5,501 (4.4)	1 8 10 1 1	125,807 (100)	1983
WAJO	56,220 (22.4)	2,154 (0.9)	26,128 (10.4)	14,400 (5.7)	6,422 (2.6)	48,600 (19.4)	39,000 (15.6)	47,753 (19.1)	10,730 (4.3)	250,619 (100)	1984
TANA TORAJA	28,328 (14.5)	3	5,662 (2.9)	11,036 (5.6)		I3,000 (6.7)	H .	137,165 (70.3)	int. Dere	195,191	1983
MANUJU	5,946 (0.5)	3,979 (0.4)	10,141 (0.9)	•	3		.) 	•	1	1,105,781 (100)	1984
Notes :											-

The value in () denotes the proportion
 Source : Kabupaten concerned with the study

1.2.3 Agriculture

The cultivated area and food crop production in Kabupaten Gowa in 1983 were 123,186 ha and 322,205 ton respectively as shown in Table 1-2-4. Of food crops, the area and production of paddy, which consists of wet paddy and upland paddy, was 27,300 ha and 127,901 ton respectively which are 22.2% and 39.7% of the total food crops. The yield rate of paddy production is 4.70 ton per ha. Furthermore, the production of maize, cassava and other vegetables amounts to 194,304 ton accounting for 60% of the total food crops. It particular it is remarkable that vegetables account for no less than 147,000 ton of the above amount.

Accordingly it is understood that the Kabupaten acts as a food provisioning area due to its location adjacent to the large city, Ujung Pandang.

As the table shows, average annual growth rates of area and production of paddy in 1979 through 1983 were 1.0% and 6.0% respectively which indicate favorable development of the paddy production. It is desirable that productivity of paddy increases and this depends upon the future development of irrigation and the increase of double crop fields.

The population of the agricultural sector which is assumed from the employment in the Kabupaten is 61.3% of the total population as shown in Table 1-2-6. Thus this is an agricultural Kabupaten.

A future requirement for agriculture in the Kabupaten should be plant breeding and stable production of commodity crops to increase agriculture in consumable crops. Table 1-2-4 AREA AND PRODUCTION OF FOOD CROPS

KABUPATEN : GOWA

	na series Na series de la composición	C	ULTIVATED A	REA			n an Ang Ngang
					at in the second se		(ha)
		· .	YI	EAR			AAGR
ITEM	1979	1980	1981	1982	1983	1984	(%)
PADDY	26,118	25,834	27,332	31,982	27,300	-	· . ·
OTHERS	28,623	47,848	47,641	33,768	44,548	-	a dia a
TOTAL	54,741	73,682	74,973	65,750	71,848		. 1.4
	· · · ·	· · · · · · · · · · · · · · · · · · ·	PRODUCTIO	N	······································		
· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·		the second states		(ton)
	·			EAR		·	AAGR
ITEM	1979	1980	1981	1982	1983	1984	(%)
PADDY	102,439	115,225	127,518	168,774	127,901	-	
OTHERS	50,829	100,235	77,109	28,191	287,429		
TOTAL	153,268	215,460	204,627	196,965	415,330		* .
		·····					
	•		YIELD RAT	Ľ		(to	n/ha)
			Y	EAR			AAGR
ITEM	1979	1980	1981	1982	1983	1984	(%)
PADDY	3,92	4.46	4.67	5.30	4.70	-	· · · · ·
						· · · ·	

Notes :

1. AAGR : Average annual growth rate

2. Source : Kabupaten concerned with the study

AREA AND PRODUCTION OF PLANTATION CROPS Table 1-2-5 Year : 1983

KABUPATEN	- <u></u>	AREA (ha)	-	PRODUCTION (ton)	AREA	PRODUCTION
GOWA PANGKAJENE KEPULAUAN		- 11,200		4,025	 2.8	-
BARRU SOPPENG		- - -		: ************************************		ан сайтаан ал сайтаан а Сайтаан ал сайтаан ал с Сайтаан ал сайтаан ал с
WAJO TANA TORAJA	· .	21,437 11,306		19,396 11,400	 7.1	11.0
MAMUJU				•	-	·· _

POPULATION OF AGRICULTURAL SECTOR Table 1-2-6

PROVINCE : SULAWESI SI	7T. ልጥል እ		an for en an The second an th	ын 	n Maria
KABUPATEN	AGRICULTURAL SECTOR	TOTAL POPULATION	PROPORTION (%)	AAGR (%)	SURVEY YEAR
GOWA	226,000	368,552	61.3	0.05	1983
PANGKAJENE KEPULAUAN	146,000	224,630	64,8	2_0	1984
BARRU	89,000	137,392	64,8	1.0	1982
SOPPENG	166,000	293,335	69.4	0.25	1984
WAJO	243,000	379,948	63.8	4 0	1984
TANA TORAJA	260,000	340,015	76.4	3.0	1984
MAMUJU	101,000	124,315	81.5	6.0	1984

Notes :

1. AAGR : Average annual growth rate

2. Source : Kabupaten concerned with the Study

1.2.4 Other Economic Activities

Due to the lack of data, it was obliged to omit the analysis on the notable economic activities excluding agriculture in Kabupaten Gowa.

30-11

1.3 Present Status of Kabupaten Roads

1.3.1 Outline of Road Networks

The regional trunk roads of Kabupaten Gowa consist of two provincial roads which run across the Kabupaten from east to west and from north to south. The provincial road which starts from Ujung Pandang is divided into two provincial roads at Jembtimbang, the Kabupaten capital, and these lead towards the south neighbouring Kabupaten Takalar and the east neighbouring Kabupaten Sinjai. There is one provincial road which runs along the west coastal line of the Kabupaten and is a supporting road to the said regional trunk roads.

The west part of the Kabupaten is covered by a flat area and its Kabupaten road networks are of high density. However the east part of the Kabupaten is mostly a mountainous area, therefore its Kabupaten roads are not as highly developed as those of the west part.

The Kabupaten road which starts from Tamattia, its junction with the provincial road running along the west coastal line, leads to Simpang Malino, its junction with the regional trunk road which runs from east to west. Simpang Malino is located in the central northeast area of the Kabupaten, and the above Kabupaten road is playing an important road for the southern regional development.

Regarding the Kabupaten road networks in the southeast part of the Kabupaten it seem to be necessary to develop roads connecting with the neighbouring Kabupaten around Malakaji as a center.

1.3.2 Road Inventory

From the road inventory data prepared by the Kabupaten, the number and total length of Kabupaten roads to be studied in Kabupaten Gowa are confirmed as 54 links and 446 Km respectively. These figures Kabupaten roads with no data.

According to the data the present status of the Kabupaten roads is as follows:

(1) Density of Kabupaten Roads

The density of the Kabupaten roads is 2.37 m per ha. This is distinctly higher than the national density of 0.48 m per ha and also higher than 2.11 m per ha which is the density in Jawa Island, excluding DKI Jakarta, as shown in the following table. Thus, the Kabupaten progressive in density of Kabupaten roads.

	Total Length (km)	Area <u>(ha)</u>	Density (m/ha)
Kabupaten : Gowa	446	188,332	2.37
Province : Sulawesi Selatan	2,730	2,104,377	1.30
Jawa Is.(Excluding DKI Jakarta)	27,715	13,159,700	2.11
Indonesia	92,038	191,944,300	0.48

Notes : 1. The value for the province is the total value for the Kabupatens included in the study.

2. The sources of data are as follows:

Kabupaten and Province : Bina Marga Inventory

Jawa and Indonesia : Statistical Yearbook of

Indonesia 1984, published

by the Central Statistics

Bureau

(2) Kabupaten Road Surface Type

The type of surface on the Kabupaten roads in the Kabupaten is shown in Table 1-3-1.

The legend used in the table is as follows: ASP : Asphalt

Table 1-3-1 EXISTING ROAD LENGTH BY SURFACE TYPE

FRUY : SULAMESI SELATAN KAB : GOMA

-

									•									(Ka)																	(Ka)	• • •
	~~ 	ÍÖ	2	(7)		• • •	ASF		 	TA	 {	,}	BT	8 1	 .	۲.۲		TOTAL	1	1	102	17	n	1	AS	P	}	TNH	1	BIB	1	-	1.1	. 1	TOTAL	1
. * .	 ł		KK.			• •• ••	 0		i !		3	 1		 !		~ • •		12	1		LINK					2		-	I		1	ł.,		1	2	ł
			NIK.						1.		Ĵ			j			1	3		1	LINK		32	ł		Ì	Ľ		ł			ł		1	1	1
			IIK.				8	}			Ĵ	ì					ľ	4		1	LINK		33	ł	. •		1	- 2	ł	2		ł		١	4	1
			IIK.					,				i.					į				LINK		34	1			! .		1	ł		ł :		ł	6	ł
			NK					, 	i İ	•		;	Ŀ				1	14		-	LINK		35	ļ			1	4	ł		1	ł		4	- 4	ţ.
			11K.				ĥ	1	i J								i i	9		1	LINK		36	ł			1	- 2	ľ			1		1	2	1
			NK				U	•	•.	7	50	1					1	. 30		ł	LINK		17	ł			Ľ	3	I.		1	l		1	3	ł
			HK						1 1			1		. 1					1	1	LINK		1Ð	I		δ.	ł		ł		ł	Į		i ł	6	ļ
		L			, 1			4	•			1		י 5 1	i		-	45	-	ł	FI W		39.	ł		с.,	ł	1	ŀ	7		ł		.ł	7	L
								. 1) 1			1		, , 7			1	10		ł	LINK		ŧ)	ł			Ľ	5	ł	7	2	1		ł	7	ł
			HK.		÷.,			i		,	'n	1		/ 1			i		-	.1	LINK	1	11	ł			1.	3	Į.	. 8	1	[ł	11	ł
		L						i	i L		19 7			i			ł	39 7		ł	LINK		12	ť			ł		ł	. 5	1	!		ł	9	ł
			łK						ì		1	1		ì			1			-	LINK	; (3	l			Ľ	5	ł			!		- 1	5	ł
				<u></u> 13				i	i			1		51			i	6		• }	LINK		4	ł			1	4	1	2	2	1		1	ę	1
				- 14				1			7			1			1	1	÷.		LINK		15	1	· .		ł	- 7	ł		1	t		{	7	ł
				- E				1		I	4			1			1	14	ļ		LINK		16				ł	4	T					ł	4	
÷			NK	11				1	ł			1		ł			1		1		LINK		17	1			1	6	Ł			1		1	6	ł
		LI		_D				I				ł		1			ł		ł		LINY		4 B	1			1	7	Ŧ			ł		11	8	١
			llk.								9			1			1	9			LINK		19				ł	ß	1		.	t	'	1	8	1
		U			ł		5				9	1		1			ł	14	ļ		LIN		50		•		Ì	-	÷.			1.		Ì		1
		ιļ		20	1.1			1	6			1		ł			ł	1	ł		LINK		51 -			2	ł	-	ł			1		1		ł
			łK	21				J			6	ŧ		I	1		ł	6			LINK		52			5	}	. 2	1			ļ		ı i		1
		LI						1	ľ		2			I			ł	2			LIN		53		.:		į.		Ì			• •				1
		ĻĽ		23							3	L.		ł			1	3			LINK		54				ì	3	i		; ;			Ì		ŀ
		U			;	•	- 2					ł		ł			ł	2			LINK		55				ł	-	i		5			i	1999 - E. E. E.	1
		LI		25	1			J.			÷	ł		2			ŧ.	2	ł		LINK						1	- 13				ļ		1	13	
		LI	HK	- 28	1		3					ŀ.		ļ			1	3	ļ		LINK						1	1						j	· .	1
1		11	NK.	27	1			1			ì	ł		ł	1		Ì	5	1		- 1 i i														-	
		LU		26			2		l ,			ţ		ł			ł	2	ţ		LINK						1	14	1					1	14	
1		Lİ	ΝK	29				1			1	ł		1			1	1	ł	1.	LIN						1		1		1	•		1	- 4	-
ł		U	łk	30	1		I	ł				ł		1			ł	t	Ļ	1	LINK		50	1		3	1		1	. 30)	1		‡ •	33	1
					•			•									• 			-	10	TAI		ł	5	i0	1	230		15	5			2 1	446	1
																:				-	RI	 11	 U	}	 ا	3	1	5,2	1	3	5	 }		0 1	(%)	1

30-14

KRK : Gravel/Stone/Telford/Water Bound Macadam

- TNH : Earth
- LL : Others

Comparison of the proportions of surface type in the Kabupaten with other regions is as follows:

		and the second second second second second second second second second second second second second second second	
	ASP	KRK	TNH/LL
Kabupaten : Gowa	13.0	35.0	52.0
Province : Sulawesi Selatan	13.0	46.0	41.0
Jawa Is.(Excluding DKI Jakarta)	56.2	25.0	18.8
Indonesia	26.0	26.6	47.4

Thus, in the Kabupaten the proportion of Kabupaten roads with asphalt surface is much lower than either that of Indonesia or of Jawa Island. The proportion of low grade roads such as earth roads and others is comparatively high. This means that the road classification in the Kabupaten is low.

(3) Surface Condition of Kabupaten Roads

The surface condition of the Kabupaten roads classified as good, fair, poor and bad which are shown as BA, SD, RU and RB respectively, are summarized in Table 1-3-2.

Comparison of the proportions of the various surface conditions of the Kabupaten roads in the Kabupaten with other regions is as follows:

	Good	Fair	Poor	Bad
Kabupaten : Gowa	40.3	36.3	19.7	3.7
Province : Sulawesi Selatan	41.1	27.3	25.8	5.8
Jawa Is.(Excluding DKI Jakarta)	45.6	29.8	19.6	5.0
Indonesia	43.5	21.8	21 1	13.6

EXISTING ROAD CONDITION BY SURFACE TYPE

PROVINCE : SULAWESI SELATAN

KABUPATEN : GOWA	
------------------	--

02 1 71 1	ļ.		. 45	57		t	- 1	Ħ		t	81			1	ł	i st	•
92	1 8/	11	50 I	間間	I AD	l bà i	SD	I RU	L AB	1 BA	I SD I	RU	1 89	87	I SD	I RU	I RB
likik 1 i		3 L	16										!	 !	t		
188 2. 188 - 3.		1) ••	1 10 1 1 1		(5 		1 1	 		1 () 1 ()	1	1		1 1
180 1		i i	13		i	i i	· · ·			1	i	i j	1	1	i 👘	ł	i i
117 5		1	1		1 .			ł	1 1	I II.				l .	₹		1
118 6 188 - 7		51	5			 		1 ·	-	1 90 1			1 1 .	t .	i	• . •	i
IN} 8		i	, i	i i	t	İ		ļ			t i		l		1		1
		1			:								• •	•	1. 1		1
HK 0 XK 1		1					23	1 - 23 -		1 7 1:	1)) 1		1 	1 1	1		l
141 12		i	· Ì	i i		i i	53						•	i	1	1	ł
lkr 3		t	. 4	1.1				1						I			1
100 11 108 15		1	1	! 		 				1 1 :	1		ł	} 	; †	ł	1.
INK ID I		i		i i	Í	i i		1		i ·	1		• •	I	l.	1	I
IIIX 17 1		ł						1			1	н. н. 1	Į .	l	1		ł. *
1111 1111 11		i i	101	1	1	27 11				1 			1 L	l. It	1 .	1	• •
INY 20 I		ì				i ïi		i			i	i -	1		1	ł	1
IIX 21		1	1				15				!		1	1	1	1 1	1
HK 22 1 NK 23 1		1	1			43 33	50 40			1		1	l t	f 1	1	• †	1 .
IRX 24 1		Ĥ.								1	i i		1	1	i ·	l –	ť
18 25 1		ł				1			-	93	8		ł	l .	1	1.	1
N) 26 1 NK 27 1			27 1				80						1	1 1 ·	ł	• 	;
NE 28 1		ii.	35 1								i i		Ì		1	1	i i
HK 29 I		1	- 1 1			50 1	50		1	1		l	t .	1	1	ļ.,	1
K 10 K 31			20 1 52 1										 \$	1	t e	t ·	1
HK 32		1	80 8							1	1	1	1 . 	1	Î.	1	t
NK 13 1		1	6		1, 1	70 1	30			1 83			1	t .		ł	1
88 34 1 88 35 1		1				1 18 1	32	-		1 96			1	 	1		1 1
HX 35 1		i				S I	35			, 			1. 		i	i star	i
NK 37 1		ł	1			171	40 1			£ s ji			l j	1	1	ļ	1
时 18 1			91							 			l ,		1 	7 E	1
NT 19 NX 10		1	1			1	20			42* 3					i	i	1
88 11 1		1	t	1		1 13 1	31			1 63			i	1	1	ł 🕚	t ii
HK 12 1		1				. <u> </u>	· · .			1 25		1 A A A A A A A A A A A A A A A A A A A		h		1	1
X 3 K 1		i.	1			12 	62 75			1 : 1	1 25		-	il -		1	1
RK 45 I		i	Ī		l .	56 1	43			1	i	İ	i	il .	1	1	t i
1812 16 1812 17		1	1							1.			1 1	t 	ł	1	1
MK 19		i	1				23 81				t i	L . L	f ·	ι. 1	1 40	I 60	i
HK 19 1		t	19		1	I 10 İ	18	27	25	t ⁱⁿ	1	1	1	\$	1	1	1
97K 50 18K 51		1	75 1			t -		1 55 		1 1 · · ·			}` }) 1	1 ·		j i
NK 52 1		i	19.4			1 09 1				1				1 80 I			
Hr - 53 1		1	1	ا ، ا	L .	l į I	1	1	I	1 92	8		1	1			l
HŘ 54 1 Hř 55 1		1				1 37 1 1 40 1				1 96 1 75			1 I 1		1		1
₩X 56		1				i sva I. j					1913 1. 1913		-	1	1		1
HNK 57	1	ł	ļ	1	1	1 71,1	29			1	I	ŀ	1	1	Ì.	1	ļ
IKK 58 I		1				1 26 1								t;	-	1	1.
INK 59 INK 80		31				1		1 1 ·	lt − L −						1	1	1
VERAGE					•••••				• • • •					 1 40			
	••		· · · · · ·				· · · · · · · ·	0 KB	••••••		•••••						
								· · · ·									

The surface condition level of the Kabupaten roads in the Kabupaten is higher than both that of Indonesia and of Jawa Island. The proportion in good condition is fair. Accordingly it seems that road maintenance is carried out diligently in the Kabupaten.

(4) Terrain Conditions of Kabupaten Roads

The difficulty of road improvement is mainly dependent upon the terrain conditions.

The terrain conditions of the Kabupaten roads, classified as flat, hilly, mountainous and swampy which are shown as DT, BK, GN and RW, are summarized in Table 1-3-3.

The proportions of terrain conditions in the Kabupaten are 54.0% flat, 38.0% hilly and 8.0% mountainous. There is no swampy area in the Kabupaten.

1.3.3 Bridge Inventory

A bridge inventory showing the existing condition of bridges on the Kabupaten roads in Kabupaten Gowa was prepared by the Kabupaten. The bridge types are classfied as timber, concrete, steel and others which are shown in the inventory as KY, BT, BJ and LL respectively. The inventory shown in Table 1-3-4 and Table 1-3-5 indicates a total of 86 bridges with a total length of 678 m of which 2 or 2.3% are timber, 68 or 67.4% are concrete and 23 or 26.7% are others. Steel bridges account for only 3 or 3.6% of the total. On the other hand, 26 bridges with a total length of 297 m are required to be newly constructed.

Table 1-3-3 EXISTING ROAD LENGTH BY TERRAIN CONDITION

46.611	SULAWEST SELATAN	
DOUD	 CHINGLEF WEIDION	
FRUY	 JULNALUI JLLNINN	

•

•						•				• •	(Ka)		·		•. :								(Kn)	
1	102 (3)		DI	1	Bł	(GN	Į	OTAL	• 		102 (3)		Dĭ		8K	1	GN		TOTAL	
	LÍNK	1		12	 					1.	12	1		I LINK	31	1	1	1	1	1			2	1
	LINK	2 1	ļ.	3																				
	LINK	3	1	4	L	•					.4	Ł	• :	I LINK I LINK I LINK I LINK I LINK I LINK	33		4	I		÷	. :	I	4	İ
	LINK	4	ŧ -	6	Ì	÷				Ĺ	6	Ľ	• ,	I LINK	-34	1	. 6			ł		÷,	6	ł
	LINK	5	1	14	I	 	Ì	.		[14 9 30	1		I LINK	35	i - #	- 4	1		ł	• •	1	- 4	
	LINK	6 1	ł	9	L		1			l	: 9.	1		LINK	36	. I .	2	1		ł		1	2	
	LIK	7			Ł	3(ł	30	Ľ		I LINK	37	1	3	I		ł		1	3	•
	L I NK	8			ł		1			I .		ŀ.	•	I LINK	38		6	ł		.1	. •	. 1	6	I
	L J HK	9		3 -	ł	- 13	1		23	۱.	45	1		I LINK	39		- 7	ł		ł		I	- 7	
	LINK	10				7				I.	40 7 39	1		F U INK	40		1	1		ł			1	
	LINK	11	ł		i	39	9	l		I.	39	ŧ.		I LINK	.41	. t	- 1	1		ł		÷	11	
	L I NK	12	1	7	I.		ł	ļ			j 7	ł.		I LINK	42		9		•	1			9	ł
	LINK	13	ł	6	ł.		1			l	.6	Ł	. •	I LINK	43		5			1		1	5	į
	LINK	E4		7	Ł			÷		ł	7	L	· .	I LINK	44		. 6	1		1	:	1	6	1
	L HNK	15	!	14	Ł		ł			ł	14	L		I LINK I LINK I LINK I LINK I LINK I LINK I LINK I LINK I LINK	45	i I	7	ł		1			1	
	LINK	16		•	ŧ		1	ļ		ł		Ľ	• .	F LINK	46	ł	3	ł	~ -1	F		1	. 1	
	LINK	17	ŧ.		I	1	1			1 -	5	ł		I LINK	47	ł	4	l	2					
	LINK	18	ł	4	L		5			ł	9	I.		I LINK	48	1	. 5		3 8 2	L		1	8	
	LINK	19	1	0	ŧ	1(0		1	1	14	l		L L I NK.	49	ţ		I	8	Ŀ		ł	8	
	LINK	20	1.		I	ł	1	1		1		L		LINK	50	1		ł	2	I.		1	2	
	LINK	21	ŧ.	· • • .	l	1	6	ł	•	ł÷,	6	I		I LINK	51	I	2	1	.1	Ŧ		I	2	
	LINK	22		2	L		I			Ĺ	2	Ł		I LINK	52	ł		ł	3	i		1	3	
	LINK	23		- 3	Ľ		I			Ł	3	I		I LINK I LINK I LINK I LINK I LINK	53	1	1	ł	•	I		1	3	
	LINK	24		2	1			1		1	2	J.		I LINK	54	1	6	1		1		1	6	
	LIIK	25		2	ł			Į		ł	2	ł		I LINK	55	ţ	6	ł		1		1	6	
	L FNK	26		. 3	ł	÷ .		I		ł	3	1	÷	I LINK	56	1		I	13	ł		1	13	
	LINK	27		4	I		1	l		I,	5	Ì		I <u>l</u> ink	57	ļ.	1	I		ł		ł	1	
	LINK	28		. 2	l			ł	- -	L	2	Ł	ъ.́	I LINK	59	ł	14	I		F		·	- 14	
		29	 . •	1	1			1.		1	1	ľ		I LINK	59	ł	- 4	ŧ		ł	•	1	- 4	•
-	LINK	30		!	1			l 		1	1	1		I LINK I LINK I LINK I LINK I LINK I LINK I LINK I LINK I LINK I LINK I LINK	60	1	4	1	18	1	. 1	1	-33	
																							446	

30-18

RATIO I.

Ŧ

54 1

38 I -

8 I (X) I

Table 1-3-4 NUMBER AND LENGTH OF BRIDGES

.

PROV : SULANESI SELATAN KAB : GDWA

			<<<< BRIDE	E >>>)		(UNIT: m)
1		EXI	STING	NOT	EXIST]	TOTAL
1	LINK HO I	NO.	LENGTH	NO.	LENGTH	I NO.	LENGTH
1	11.	3	20.00			1 3	20.00
1	2	2	43.60	12	161.00	1 14	204.60
ł	5 1	- 3	15,00 1			1 3	15.00
ł	6 1	. n 4	18.00 1			1. 4	18.00
ł	7 1	l	4.00 1	2	7.00	1 3	11.00
1	- 9 t.	18	126.00 (18	126.00
ł	10	5	40.00			15	40.00
l	11 1	3	31.50 /	3	35,00	6	65.50
ļ	12 1	5	27.50		4 ¹ 11	15	27.50
ł	13 -1	1	4.00 1		، ئە • • • • •	È	4.00
ł	18 1	4	13,00 1			1 4	13.00
ļ	19 1	4	54.00 ;		· · · · ·	1 4	54.00
l	21	ŧ	4.00 1	1	7.00	12	11.00
ł	23	3	15.00 1			1 3	15,00
ł	24	2	9,00 1			1 2	9.00
ł	27 }	3	11.00			1 3	11.00
1	28	E.	4.00 t			l . 1	4.00
ľ	32 1	1	4.00 1			t t	4.00
ł	34 🕴	1 -	12.00		1. (*	l L-	12.00
ł	35	1.	10,00			t i	10.00
1	40 1	1	9.00	· ·		1 . L	9.00
ł	41	3	0.04 1			3	0.04
ł	45 1	1	3.00 (1 1	3.00
ł	47	3	22.00	••		1 3	
1	48 1		1	}.	4.00		4.00
l	49 ;			3	35.00	1 3	
ļ	50 J			1	4.00	1	4.00
ł	53	2	13.50			1 2	13.50
l	54 1	ł	4.50	. •		l 1	4.50
	55 1	2	11.75			12	11.75
1	56 1		. 1	3	44,00		44.00
Ľ	59 1	1 - 1	6.00 1			1	6.00
ł	60 (6	143.00	· ·	·	16	143.00
 	TOTAL I	86	678.39	26	297.00	1 112	975.39

30-19

Table 1-3-5

NUMBER OF EXISTING BRIDGES BY BRIDGE TYPE

PROV : SULANEST SELATAN KAB : GUNA

			· (ü	BI	ND	GE >>)) }	: 		nin F		(Ho)	•
]	103	(18)	1		BT		U	1	BJ	1	KY	1	IOTAL	1
1	LINK	1			2	ľ	l.	1		1			3	1
ł	LINK	. 2	ł	••••		ţ	2	ł	·	ł		ł	2	1
ł	LINK	5	ł		3	1.	1 - E	ł		1		1	3	l
ł	LINK	6	ł		3	I,	:1	ł		ł	· · ·	ł	4	
1	LINK	7	ł			ł	t	ł		1		ł	1	1
ł	LINK	9	ł		16	ŀ	t	1	- 1	1		1	18	;
ł	LINK	10	ľ		5	Ê		ł	·	1	· ·	1	5	l
Ì	LHK	11	ł		1	1	1	1	1	ł		ł	3	1
1	LINK	12	ł		4	1	1	ł		1		ŧ.	5	ł
ł	L I NK	13	ł		1	ľ		ł		ł		Î	1	ł
ł	LINK	18	ł		2	ł.	2	ł	· · · ·	ł		l	- 4	
Ì	LINK	19	l		3	t.		I	. 1	I.		\$	4	
1	LINK	21	ł			1	. 1	ł	1	1		ł	1	J
ł	LINK	23	1		Ĩ	T	·· 2	1		1.	· ·	ł	3	
ì	LINK	24	ł		1	ŧ.	1					ŧ.	2	ł
ł	LINK	27	ł		1	1	2	1		1	;	l	3	ł
i	LINK	28	ł		- 1	ł	į	ł		I	· · .	l	i	
ł	ĹĦĸ	32	ľ			1	1	ł				ļ	l I	Ì
ł	LINK	34	ł		1	I		ł		ł		ł	1	ł
1	L NAK	35	ł			ł,		1		ŀ	i t	Ł	1	
1	LINK	40	ł		1	ΈĽ		ł		1	•	l	1	ł
1	LIIK	41	ł		3	I.		ł		ł		L	3	1
1	LINK	- 45	ł			ł	1	ł	н. 1997 - Ал	ł		ł	- 1	ł
1	LIW	47	1		3	Ľ		ł		ł		Ł	3	•
ł	L INK	48	ł		÷.,	1		ł		ł,		l		ł
ł	LINK		ł			ł	· · · ·	ł		1		Ł		ł
ł	LINK	50	ł	÷.,		I.		ł		ł		ł		1
ł	LINK	53	1		1	l	· ·	ł		Ł	1 I.	l	2	ł
ł	LINK	54	1			1.	. 1	I		ł	· ·	ł	1	; l
ł	LINK	55	ł		2	t.		ł		!		L	2	ł
ł	LINK	56	ł			ł.		ł		l		ł		1
Ì	LINK		ł		1	ł	-	ł		1		ļ	i	ł
{	LINK	60	!		3	1	3	1		1		 	6	
1	ŢD	TAL	;		58	1	23	ţ	3	1	2	1	86	
!	RA	T 10	1		67		27	} 	3		2	!	(%)	

The number of existing bridges by span length is as follows:

Bridge Type			•				ngth (
·	<u>(3</u>	<u>(5</u>	<u>{8</u>	<u> <10</u>	$\sqrt{12}$	<u><14</u>	<u>{16</u>	(18	<u>{20</u>	<u>(99</u>	<u>Total</u>
Timber	. 1	-	1	-	-	_	-	-	-	-	2
Concrete	9	14	20	8	3	. 1	-	-	· _	3	58
Steel	-	2	. •	••	-		-			1	3
Others	7	14	-	-	-		-		· -	2	23
Total	17	30	21	8	3	1	-	-		6	86

and the majority of spanlengths is within the range of 3 m to 5 m.

1.3.4 Traffic

Inventories of the average daily traffic (ADT) on the Kabupaten roads in Kabupaten Gowa were prepared by the Kabupaten and are shown in Chapter 2.

From the inventories, total value of average daily trips by vehicle type and their proportions in the Kabupaten in 1985 are summarized as follows:

	and the second se		and the second second second second second second second second second second second second second second second		
	SEDAN	BUS	TRUCK	MOTOR-	TOTAL
				CYCLE	
Total Trips	1,733	490	1,704	3,293	5,580
Proportion (%)	24 00	6.79	23,60	45.61	100.00
		1		· · ·	

Source : Bina Marga Inventory

The proportions of registered vehicles by vehicle type are as follows:

and the second second second second second second second second second second second second second second second	in the second second				
·	SEDAN	BUS	TRUCK	MOTOR-	TOTAL
		·		CYCLE	
Proportion (%)	1.30	0,86	6.52	91.32	100.00
	e de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de l				

Source : Kabupaten.

Thus, the proportion of motorcyles in the Kabupaten is by far the highest.

From the above tables the following can be observed:

- Number of total trips might be underestimated

- Proportions are probably reasonable.

Essentially, for estimation of future traffic volumes past and present traffic data together with the trend in the number of registered vehicles are important basic data. However the data obtained for the study was traffic count data for each road link in 1985 and of low reliability.

Therefore the future traffic volumes are estimated by the calculation process recommended in chapter 3 of the Main Report.

Chapter 2 ESTIMATIONS OF FUTURE TRAFFIC VOLUME AND BENEFIT

2.1 Future Traffic Volume

2.1.1 Traffic Growth Rate

The traffic growth rate used for estimation of the future traffic volume on the Kabupaten roads was estimated by the following calculation process.

Growth of Production Basis "A":

Annual Population Growth Growth of the Total of the Kabupaten X Cultivated Area Growth of Productivity "B" :

Growth of the Total X Growth of the Paddy Paddy Field Area X Production per ha

Traffic Growth Rate: Initial estimated figure:

 $GR^{\dagger} = \sqrt{A X B}$

Traffic Growth Rate GR _=Final adjusted figure:

 $\sqrt{GR' X}$ Trend of GDP/Capita of the Province Concerned

Results of the estimation are shown in Table 2-1-1.

Table 2-1-1

TRAFFIC GROWTH RATE ESTIMATION

FROV : SULAWESI SELATAN KAB : GOWA

A)	Growth Rate of Population		0.60 (%)
B)	Growth Rate of Cultivated Area	:	0.20 (%)
(3)	Growth Rate of Rice field	:	1.00 (%)
D)	Growth Rate of Rice yield rate	- 3	6.00 (%)
E)	Growth Rate of GDP / capita	Ę	6.60 (%)
		<u>. 4 6</u>	¢ akka anak tang bikar stan kuni anan sun sina sun ana pa
a)	Geometrical Mean (A x B)	; ;	0.40 (%)
ы)	Geometrical Mean (C x D)	:	3.47 (7)
Ċ)	Geometrical Mean (a x b)	:	1.92 (%)
d)	Geometrical Mean (с к Е)	:	4.24 (%)
	TRAFFIC GROWTH RATE	2	4.24 (%)

2.1.2 Present and Future Traffic Volume

The future traffic volumes on the Kabupaten roads in 1998 for the Project life time of ten years were estimated by the following formula :

$$Tn = Te (1 + r)^n$$

Where :

Tn : Future traffic volume n years later

Te : Traffic volume in 1985

r : Traffic growth rate

The results are shown in Table 2-1-2 together with the traffic volume in 1985.

Table 2-1-2 (1)EXISTING AND FUTURE TRAFFIC VOLUME

PROV : SULAWESI SELATAN KAB : GONA

.

		ł	· ·	INVE	ITORY (1	985)		1	RATE	1		AFTER 13	VEARS	(1998)		I CLASS	l
LIN	K ND	t.	NBL				*					BUS			TOTAL	 1	
	1	1	100	20	80	60	230	1	4.2%	; 	172	34	137	103	395	[][B-1	
	· · 2	ŀ.	20	10	30	45	· 83	1	4.27	Į.	34	17	(† 51	77	142	111B-2	1
	3 -	1	80	10		100		ł	4.27	ŧ	137	17	- 66	172	326	1 1118-1	ł
	4	$\Gamma_{i,i}$	85 .	25	50	120	220	ł	4.27	ł	146	43	.86	206	1	1 1110-1	
	5	1.	70	5	40	120		1	4.2%	I.	- 120	- 9	-69		300	1. 11B-1	÷.
	. 6		- 14	Q.	49	31			4.27	1	24	- 0	84	53		1 1118-2	
	. 7	t i	• • •	0	l	2		1	4.27	1	0	Q .	2	3			
	8	1	0	0	0	0	0	1	4.27	1	0	Q .		. 0			
	. 9. 	i 1	15	0	45	25			4.27	1.	a 26	0	. 77	43		1 1118-2	
	10	1	15	0	5	10	25	1	4.2%	j 1	26	0	9	. 17 Te		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	11 12	н 1	0 20	0 20	30	3 50	4	1	4.27 4.27	1	0 34	0 34	3 51	5 86	19 E 19	1 111C 1 1118-2	.
	12	1	25	0	25	50	75	1	4.2%	1	43	0	43	86 86	1	1 1118-2	1.11
	14	i	5	Ű,	15	25	33	ì		ì	43 9		26	43		1 1118-2	
	15	÷	í	0	3	6	7		4.2%	i.	2	ů	. 5	10			
	16	i.	0	ò	0	0	0	ì	4.2%	i	0	0	0	0		1110	ł
	17.	Ì.	0	Ô	0	Û	- 0	I	4.22	Ì	. 0	0	0	0		I IIIC	1
	18	1	10	10	30	50	75.	I	4.27	ł	· 17	17	51	86	129	1 111B-2	21
	19	Į.	20	10	80	. 80	150	ł	4.27	4	- 34	. 17	137	. 137	257	1118-1	
	20	$\{ \cdot, \cdot \}$	Û	0	0	Û	0	ł	4.21	ł	. 0	9	Û	0	- 0 is	1 1110	1
	21	L .	l	0	2	- 5	6		4 27	4	,2	ņ	-3	9	- 10	I HIC	
	22	I.	10	0	20	40	-50	ł	4.27	ł	17	0	- 34	69	· · · · ·	1 HIB-2	2.4
	23	1	10	0	20	40	50			1	17		34	69	86	1 1118-2	
	24		125	50	60	200			4.27	Ł	214		103	343		1 1114	÷ .
	25	:	50	10	40	100	150		4.22	ł	. 96		. 69	172	257	1 1118-1	
	26	1	50	20	35 E0	. 70			4.23		86		60 ·	120		1 1118-1	
	27	i I.	60 100	30 70	50 86	100	375		4.27 4.27	1.	103 172		85 137	172 429	326 643	1 1118-1 1 111A	1 1
	28 29	+	5	70 5	90 Ú	250 .40	30	1	4.27	4	112		0	69	51	1 1118-2	, , , , , , , , , , , , , , , , , , ,
	30		20	25	60	50	135	;		;	34		103	103	232	1.1118-1	
	31	1	150	100	100	250			4.2%	į	257		172	429		1 111A	
	32	ì	60	10	50	9Ú	165		4.2%	į	103		86	154		1 111B-	
	33	Î.	20	. 0	15	50	60	1		ł	34		26	86	103	1 1110-2	2
	34	1	50	5	25	75			4.22	ł	86	. 9	43	129	202	8-	11
	35	ł	5	0	10	40	35	ł	4.27	ł.	9	0	17	69		1 1118-1	
	36	ł	. 0	0	5	. 10		ł	4.2%	ł	0		9	17.			1
	37	ł	5	0	5	20	20		4.27	ļ	9		9			1 1110	. :
	38	ł	70	10	50	60	160			1	120		86	103			
	39	1	70	5	50	70	160			1	120		86	120			
	40	1	20 (1)	5	30	50	120			1	34		51 34 -	85 £37		:-0111 ; -0111 ;	
	41 42	1 1	60 5	0	20 20	80 35	120 43	{			-103 9		34 34	60 E		1 [118-1	
	43	1	15	· 0	30	65	78	ì		i	26		-51	112		1 1118-1	
	- 44	1	20	0 0	- 30	50	75			ì	. 34		51	86		1 1118-1	
	45	ł	20	Õ	20	50	- 65				34		- 34	66		1 1119-1	
	46	1	10	łò	20	30	55			÷.	17		34	51		1 1118-1	
	47	1.	50	5	20	40					86		34	69		1 1118-1	
	48	ł	5	Û	10	31)	30	ł		ł	9		17	51	51	1 1110-1	2 [°] I
	49	ł	2	0	10	40	32		4.2%	+	3	0	17	69		1 1110-1	
	50	ł	2	Û	3	7	9	1	4.21	ł	3	0	5	12	15	1 1110	1

30--25

Table 2-1-2 (2) EXISTING AND FUTURE TRAFFIC VOLUME

PROV 1 SULANESI SELATAN KAB 1 GONA

					en el Second	. ¹					a tag	· ', '	< SPD	+ 1/2 >				
	I,		INVE	NTORY ((1985)	1	ł	RATE	1	 	AFTER 13	YEARS	(1998)		1	CLASS		
LINK ND	1	M8L	BUS	TRUK	SPD	TOTAL	1		ł	HØL	BUS	TRUK	SPD	TOTAL	1		1	
51	ł	30	20	40	60	120	1	4.2%		51	34	69	103	206		IIIB-1		
52	1	20	0	20	:40	60	ł	4.2%	1.	34	0	34	69	103	ł	1118-2	11	
53	ł.	20	0	30	100	100	ŀ	4.2%	· 1		0	- 51	172	172	1	1118-2	1	
54	ł	30	0	25	50	80	ł	9 27	1	51	0	43	86	137	ľ	1118-2	1.	
55	ł	20	0	30	70	85	ł	4.2%	ł	- 34	0	51	120	146	ł	1118-2	1	
56	Į.	.0	0	1 E. 1	2	2	1º	4.2%	1	0		. 2	3	3	ľ	3111	1	
57	Ł	15	0	5	35	38	ł	4.27	Ì	26	0	9	60	65	1	1118-2	1	
58	I.	20	0	30	50	75	1	4.2%	ţ	34	0	51	86	129	1	1118-2	1	
59	ł	14	0	- 49	31	79	1	4.27	1	24	0	84	53	136	I.	1118-2	ł	
60	ł	14	0	49	31	79	Ì	4.2%	ł	. 24	0	84	53	136	Ì	1119-2	ł. ∖	
PERCENT	1	24.00	6.79	23.60	45.61		1		1	24.00	6.79	23.60	45.61		ŀ			

2.2 Benefit

2.2.1 Benefit Estimation Method

Generally, estimation of the benefit on each Kabupaten road due to the Project was made by analyzing the direct benefit i.e. the VOC reduction benefit, which was estimated by comparing "with project" and "without project" based upon the future traffic volume on the road. However for the following road links it was decided to estimate the indirect benefit through the producer's surplus benefit.

- a) Road links with present traffic volume (ADT) less than 60 equivalent 4-wheel vehicles.
- b) Road links with no 4-wheel vehicle operation at present.

The indirect benefit was changed into the future traffic volume and the VOC reduction benefit was estimated.

The VOC adopted for the estimation is shown in Table 2-2-1.

Table 2-2-1

VEHICLE OPERATION COST ON KABUPATEN ROADS

	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	(км)
SURFACE	CONDITION	SEDAN	BUS	TRUCK	MOTORCYCLE
ASPHALT	GOOD	104.7	86.2	85.4	15.9
	Fair	125.5	101.0	98.0	18.2
1	Poor	164.1	135.2	138.5	22.8
	Bad	222.1	202.0	205.0	29.1
GRAVEL	Good	125.7	101.4	102.5	18.5
	Fair	145.0	124.6	127.1	21.1
	Poor	198.6	172.6	178.4	27.1
	Bad	242.7	228.9	231.2	31.8
EARTH	Fair	201.8	180.0	185.1	28.0
· .	Poor	240.7	218.2	225.8	31.8
	Bad	264.9	278.0	281.7	35.5

Source : Bina Marga

FUTURE TRAFFIC VOLUME ESTIMATED BY THE PRODUCER'S SURPLUS

Table 2-2-2

SULAWESI SELATAN KAD : BOWA PROV 1

(1998)

	LINK NO	CLASS	SURFACE	HOBIL	BUS	TRUCK	SEPEDA	TOTAL
	7	111B-2	KRK	16	4	15	30	50
·	10	1110	KRK	- 4	1	3	. 7	12
	11	1110-2	KRK	20	6	17	30	64
	- 14	1110	KRK	8.	2	8	15	26
	15	1110	KRK	1	2	6	13	22
	21	1HC	KRK	. 3	· 1-	- 3	6	10
	22	1110	KRK	2	0	1	3	5
	23	1110	KRK	2	1	2	1 - E	7
	29	HIC	KRK	1	Ő	ł	3	4
	35	1110	KRK	4		4	. '. g .	13
	36	1110	KRK	2		2	÷. 4	7
	37	HIC	KRK	3	1	3	6	10
	42	1110	KRK	11	3	10	20	34
	46	HIC	KRK	3	Ī	3	6	10
	48	ITIC	KNK	10	3	, h	18	31
	49	IIIC	KRK	4	I	4	. 8	13
	50	ILIC		i i j	· 0	i	2	3
	56	HIC	KRK	7	2	6	13	22
	57	1110	KRK	1	0	- 1	2	3

30--28

2.2.2 Benefit

The benefit estimation was carried out for each Kabupaten road. Table 2-2-3 shows a sample of the result of benefit estimation. In the table "surplus" and "VOC" show the estimation method utilized and III A, III B-1, III B-2 and III C show the road classification.

Table 2-2-3

RESULTS OF BENEFIT ESTIMATION

KABUPATEN : GONA

<u> </u>	. •	· · ·	· .	۰.											•		i tana s	· · ·	, i	10	00Rupi ah	1
1		1	LINK I	ł,	LINK 2		LINK 3	1	LINK 4	l	LINK	5	ļ	LINK 6		LINK 7 I						
ł		1	12 Ka	1	3 Ka	ļ	4 Ka	1	6 Ka	1	14	KR	1	9. Ka	1	30 Ka I	45 Ka	1	7 Ka	1	39 Km	l
i		1	111B-1	1	1118-2	1	1118-1	!	i118-i	1	1118	-1 1	 !	111B-2	1	111B-2	1118-2		1110		1118-2	1
ł	YEAR		VOC	1	YOC	ļ	VOC		VOC	1	VO			VOC	ł	Surplus I	VOC	1	Surplus	l	Surplus	1
1	1988	1.	0	· .	0		0	1	0	•		0		0	1	0	0	1	0	1	0	
ł	1989	1	40831		8237	ł	425	ł.	1036	1	326	88	1	226	1	45614 1	20592	ł	585	ł	74288	1
	1990	$\mathbf{I}^{(1)}$	42561	1	8585	ł	443	Ĺ	1085	ł.	339	25	ł	231	Ł	45772 1	21189	1	565	1	78243	1
l	1991	1.	44453	ł	8940	Ľ	464	ł	1125	L.	353	66	ł	243	ŧ	47322 1	22328	ł	565	Ľ	78448	ł
ł	1992	Ŧ	46356	T.	9288	Ŧ.	482	ł	1174	ł	370	02		255	ł	48805 1	23185	1	565	1	78448	1
ł.	1993	۱.	48269	ł ·	9753	ţ.	505	ł	1222	ł	386	80 (l	264	ł	48964 1	24355	1	565	ł.	82403	1
ľ	1994	1	50171	1	10206	ł	525	1	1278	1	401	18	1	273	ł	48764 1	25211	ł	565	ł	82403	1
1	1995	1.	52257	1	10456	ŀ	546	ł.	1333	Ť	420	18	t ^{se}	285	ł	51997 1	26381	I.	565	ŀ	86357	1
	1996		54671		11023		569	ł	1382	Ì	437	31-1	ł	297	ł	51997 1	27520		565		84562	1
ŧ	1997	ł.	57092		11384	l	594	I.	1444	Ŀ	454	53	l	312	į.	52155 1	28690		573	ł	88765	1
1	1998	1	59350	1	11849	Ì	619	1	1508	1	475	78	I	324	ł,	55189	29860	ļ	640	ł	92720	1
1	SUN	1	496011		99721	1	5172	{	12587	1	3966	39	1	2710	1.	496780 1	249311	1	5733	Ì	828637	1
:	COST	 	229878	1	48563	ł	-18651		-25102	1	1598	43		-30793	1	192541	-13781	1.	-21701		360060	1
1	/Ka	ł	19157	ł	16188	ł	-4663	:	-4184	ł	ं ।14	17	1	-3421	ł	6418	-306	ł	-3100	ł	9232	1

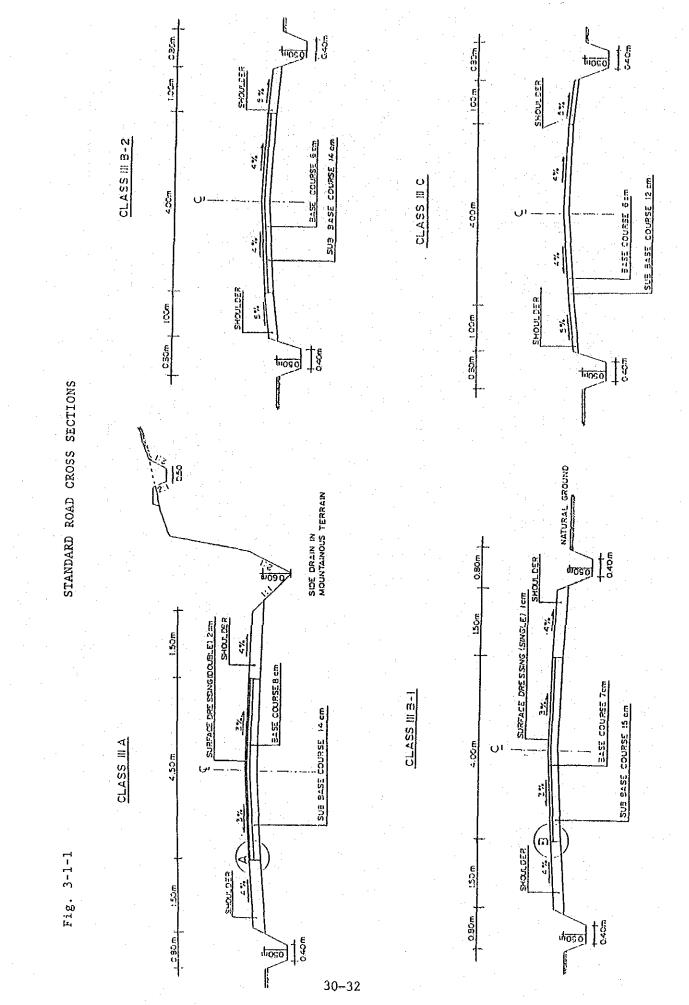
Chapter 3 ENGINEERING

3.1 Design Criteria and Specification

3.1.1 Geometric Design Criteria

Currently a technical standard for improvement of Kabupaten roads i.e. PETUNJUK TEKNIS INPRES PENUNJANGAN JALAN KABUPATEN, TAHUN 1984-1985 is established by Bina Marga. The geometric design criteria in the above standard are recommended to be adopted in general for the Project. Following discussions with Bina Marga, exceptions to this are allowed for Pavement width and pavement type to minimize the construction cost of the Kabupaten road improvement, if necessary. The geometric design criteria adopted for the Project are shown in Table 3-1-1. The typical cross sections of Kabupaten roads are shown in Fig. 3-1-1.

3.1.2 Loading Specification


The LOADING SPECIFICATIONS FOR HIGHWAY BRIDGES BY DIRECTORATE GENERAL BINA MARGA is used in principle as the basic specification of loading and the TECHNICAL STANDARD FOR KABUPATEN ROADS compiled by Bina Marga shows that the design live load for bridges on Kabupaten roads is 70% of the Bina Marga live road. However, after discussions with Bina Marga the following loads were decided as the design live loads for the standard bridges of Kabupaten roads:

- a. 50% of Bina Marga live load (hereinafter BM 50) is applied for concrete and timber bridges on roads of III A classification.
- b. 10-ton truck load is applied for timber bridges on roads of III B-1, III B-2 and III C classification.

Table 3-1-1

DESIGN CRITERIA FOR KABUPATEN ROADS

T#T=C 27021				-	DESTON	CKLIEKLA	ruk Kab	KABUFALEN KUAN	сця Лу					
ROAD (ROAD CLASSIFICATION	CATION		CLASS III	A	CLASS	SS III B	3 - 1	CLASS	III	B-2	CLA	CLASS III	υ
Ins	SURFACE T	Easi	ASPHALT	SEAL (DOUBLE	DOUBLE)	ASPHALT	SEAL (SINGLE)	(INCLE)		GRAVEL			GRAVEL	
TRAFFIC VOLUME (Forecast 10 th per day)	voluME t l0 th ay)	C VOLUME : ADT ast 10 th year average day)		3000 - 500	0	2(500 - 200			200 - 50			50	
€ ⊶1	다 22 23 24	N I	FLAT TO ROLLING	ATTIH	AINOUS AINOUS	FLAT TO ROLLING	ATTIN	MOUNT-	FLAT TO ROLLING	ATTIH	AINOUS	FLAT TO ROLLING	HILLY	A INOUS
TR	TRAFFIC LA	LANES	+ - -	+1	+ 	1+	1 +	+ ~	+	+	+	ы	-1	
DESIGN		DESIRABLE	70	60	07	20	40	30	60	40	e Son	50	30	AS PRACTI- CABLE
SPEED	(Km/hr)	WINTINIW	30	30	30	30	30	AS PRACTL	30	30	AS PRACTI-	30	AS PRACTICABLE	ICABLE
GRADIENT		DESIRABLE	4	Ŋ	8	4	9	8	4	4	8	5	8	. 12
(FIMITING)	(%)	MUMIXAM	L 4	4	10	7	80	10	7	6	12	7	12	. 16
PAVEMENT	~~~~	DESIRABLE		6.0	6.0	4.5	4.5	4.5	5.4	4.5	4.5	3.5	3.5	3.5
HIDIM	(F	MUMINIM	4.5	4.5	45	3.5	3.5	3.5	3-5	3.5	3.5	3.0	3.0	3.0
SHOULDER		DESIRABLE	2.0	1.5	1.5	1.5	1.5	1.0	1.5	1.0	1.0	1-0	1.0	0.75
HIDIM	(W)	MINIMUM	1.5	L.0	0.75	1.0	1.0	0.75	1.0	0.75	0.5	0.75	0.5	0.5
ROAD SED		DESIRABLE	10.0	9-0	0.6	8.0	7.5	6.5	7.5	6.5	6.5	5.5	5.5	5.0
WIDTH	2 T T T	MUKINIM	6.0	6.0	6.0	5.5	5.5	5.0	5.5	5.0	4.5	4.5	4.0	4.0
RIGHT		DESIRABLE	-	16			12			12			12	
OF WAY	(ਸ਼)	MUMINIM		12			10 1			10			80	
ROAD	(16/	PAVEMENT		ع			З			7			4	
CAMBER		SHOULDER		7			4			5		· .	5	
													-	

3.2 Pavement Design

3.2.1 Design Conditions

From the engineering data prepared by the Kabupaten it is noted that the pavement structure of the Kabupaten roads seems to have been determined without adequate designs, therefore the Kabupaten roads generally have insufficient capacity. The standards generally used for highway pavement design such as Road Note 29, Road Note 31 and AASHTO are not suitable for Kabupaten roads with small traffic volumes and loads.

Therefore formulae suitable for the pavement design of Kabupaten roads are recommended as described in Chapter 5 of the Main Report.

The following are important factors for the design of pavement thickness.

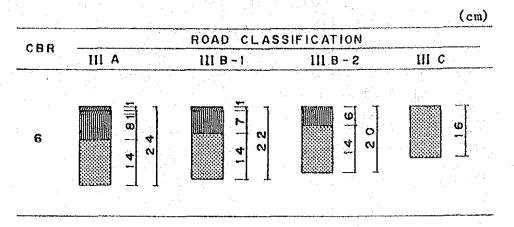
1) Design Traffic Volume

As the pavement thickness is designed for each road classification the design traffic volume of which the target year is 1998, is adopted for each classification as follows:

Road Classification	Design Traffic Volume (vpd)
III A	1,000
III B-1	500
III B-2	200
III C	50

2) Strength of Roadbed

The CBR value of the existing roadbed is a very important factor for the pavement design but no results are available from CBR tests on the Kabupaten roads.


CBR of the laterite is generally in the range of CBR 4 to 10. However site CBR tests should be conducted before construction to finally decide the pavement thickness.

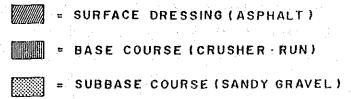

3.2.2 Pavement Structure

Fig. 3-2-1 shows the standard pavement structure adopted for the Kabupaten roads.

```
Fig. 3-2-1
```

PAVEMENT STRUCTURE

3.3 Design of Bridges and Other Structures

3.3.1 Standard Bridge

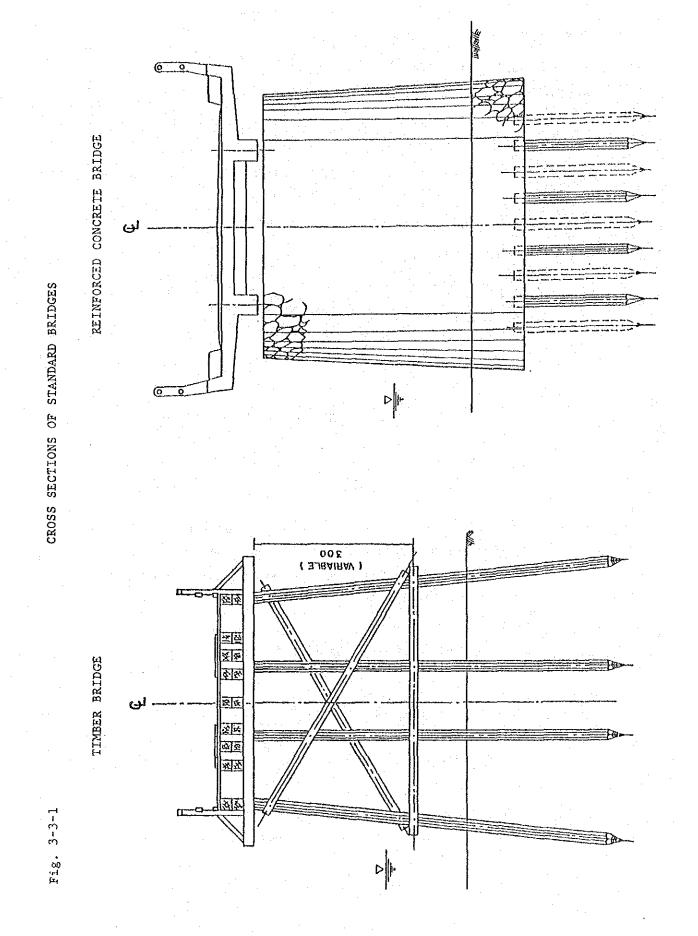
There are so many bridges to be improved or to be constructed on the Kabupaten roads in the Project Area that it is very difficult to prepare an individual design for each bridge. Therefore, standardization is recommended as being necessary for the bridge design with conclusions as described below.

- (1) Bridge Type
 - 1) Superstructure

The following two types have been finally selected with the agreement of Bina Marga after studying the actual rural conditions of bridge construction. Fig. 3-3-1 shows the cross sections of standard types.

- a. Timber beam bridge (hereinafter timber bridge) for roads class III B-1, III B-2 and III C.
- b. Reinforced concrete T-girder bridge (hereinafter RC-bridge) for roads class III A.

2) <u>Substructure</u>


Taking account of the actual combinations of super and substructure types noted from the field survey, the following two types are recommended as standard because of ease of construction and economy.

- a) Timber pile bents for timber bridge
- b) Rubble in Mortar masonry for RC bridge

3) Foundation

There is no information of subsoil conditions in the inventory data. However, timber piles of 20 cm diameter are generally recommended as piles of this type are in common use.

The pile length is suggested to be a minimum of 3 meters under the bottom of the foundation. The length and number of piles should be decided in order to be adequate for the condition of the foundation materials.

(2) Bridge Width

The effective bridge widths for the standard bridges have been decided as follows through discussions with Bina Marga considering the actual width of Kabupaten roads:

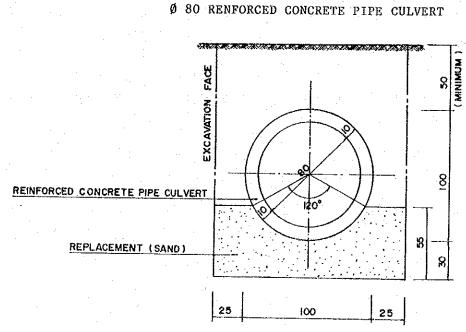
- a) Timber bridge: 4.0 m in general
- b) RC bridge : 4.5 m in general
- (3) Span Length
 - The range of span lengths are determined as:
 - a) Timber bridge: 3.0, 5.0 and 8.0 m
 - b) RC bridge : 3.0, 5.0, 10.0 and 15.0 m

3.3.2 Other Structure

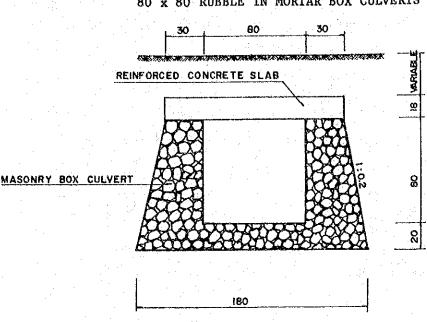
Culverts and retaining walls shown in Fig. 3-3-2 and Fig. 3-3-3 are recommended as standard structures.

(1) <u>Culvert</u>

The following two culvert types have been adopted for the transverse drainage.

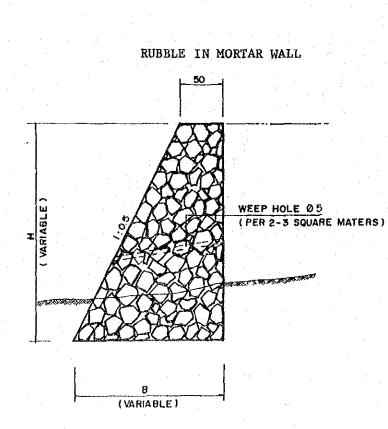

- a) Reinforced concrete pipe culvert ϕ 80 cm
- b) Rubble in mortar box culvert with RC slab 80 cm X 80 cm

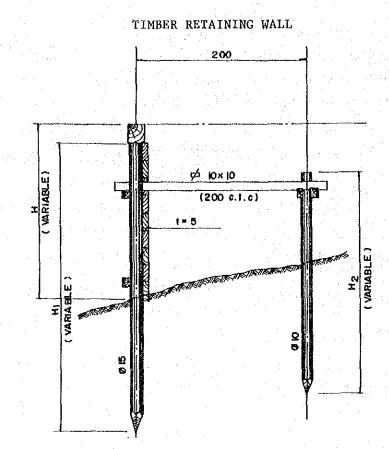
(2) <u>Retaining Wall</u>


The following two types of retaining walls have been adopted because of ease of construction, economy and familiarity in Indonesia.

a) Rubble in mortar retaining wall

b) Timber retaining wall





80 x 80 RUBBLE IN MORTAR BOX CULVERTS

STANDARD CULVERTS

Fig. 3-3-2

STANDARD RETAINING WALLS

Fig. 3-3-3

3.4 Selection of Equipment Types

From the results of comparison of two types of Kabupaten road construction methods, i.e. equipment intensive method and labour intensive method construction methods for major works were basically decided as shown in Table 3-4-1.

Table	3-4-1	CONSTRUCTION METHODS FOR	ł
	11001	MAJOR WORKS	

N	1ETHOD	• • • • • • • • • • • • • • • • • • •	WORK TYPE	
ł	Squipment Intens	ive	Earthwork, Base Course and Subbase Course	
I	abour Intensive		Surface Dressing, Drainage,	
			Bridge and Other Structures	

3.4.1 Points to be Considered for the Selection

Full consideration was given to the following points in studying the selection of equipment type.

- a. Most of the construction in the Project is pavement works for road improvement.
- b. The pavement width adopted is equal to or less than 4.5 m and therefore large sized equipment is omitted from the selection process.
- c. Equipment should be capable of with standing the heavy rainfall and poor soil quality. Equipment for construction in swampy areas is considered if necessary.
- d. Uniformity of equipment types with existing equipment is considered to facilitate repair of the equipment in the provincial work shop.
- e. Since the scale of the construction is small and transportation of equipment will frequently be necessary, wheel type equipment has been selected as much as possible as this can move by itself or by being towed.
- f. The road like to be improved are scattered all over the Kabupatens and therefore a low bed truck or equivalent is necessary for transportation of crawler type equipment. It is desirable to protect the existing pavement from damage caused by the movement of crawler type equipment on the existing roads.
- g. The capacity of the equipment has been decided taking into consideration the construction volume and the combination of equipment in the main work.

3.4.2 Combinations of Equipment for Major Works and Maintenance

The combinations of equipment for major works and maintenance are listed in Table 3-4-2 and 3-4-3 respectively.

Table 3-4-2 EQUIPMENT OF ONE WORK GANG FOR MAJOR TYPES OF WORK

TYI	PE OF WORK	· · · · · · · ·	EQUIPMENT RE	SQU.	IRED
1.	Site Clearing in Light Bush		Bulldozer 90 HP Dump Truck 3.0 Ton	1~	Wheel Loader 1.2 m ³
2.	Excavation & Embankment	÷ 1			· · ·
	i) Normal Fill		Bulldozer 90 HP Vibratory Roller 4.0 Ton (D&T)		Water Tank Truck 4,000 Ltr
	ii) Fill by Borrow Material		Bulldozer 90 HP Dump Truck 3.0 Ton	1-	Wheel Loader 1.2 m ³
	iii) Fill in Swamp		Swamp Bulldozer 90 HP Water Tank Truck 4,000 Ltr	1-	Vibratory Roller 4.0 Ton (D&T)
	iv) Excavation to Spoil		Bulldozer 90 HP Wheel Loader 1.2 m ³	4-	Dump Truck 3.0 Ton
3.	Subgrade Preparation		Motor Grader 75 HP Vibratory Roller 4.0 Ton (D&T)	1-	Water Tank Truck 4,000 Ltr
+ -	Subbase Course		Motor Grader 75 HP Vibratory Roller 4.0 Ton (D&T)	1-	Water Tank Truck 4,000 Ltr
5.	Base Course	1 -	Ton		Water Tank Truck 4,000 Ltr
		1-	Portable Crusher/Screens 30-40 Ton/H	3	
).	Cement Stabilizing	1 - 1 -	Motor Grader 70 HP Bulldozer 90 HP Wheel Loader 1.2 m ³ Flat Bed Truck 3.0 Ton	1-	Vibratory Roller 4.0 Ton (D&T) Road Stabilizer Water Tank Truck 4,000 Ltr
· .	Surface Course	1- 1-	Asphalt Sprayer 850 Ltr Tyre Roller 8-15 Ton Portable Crusher/Screens 30-40 Ton/H		Flat Bed Truck 3.0 Ton
;.	Concrete	1 -	Concrete Mixer 0.5 m ³ Water Pump 200 Ltr/Min Concrete Vibrator 3.3 HP		Flat Bed Truck 3.0 Ton Hand-Guided Vibrator Roller 1000 Kg

Table 3-4-3 EQUIPMENT OF ONE WORK GANG FOR MAINTENANCE

TYPE OF WORK	EQUIPMENT REQUIRED
Road	1- Motor Grader
and an an an an an an an an an an an an an	1- Tyre Roller 8-15 Ton
	1- Hand-Guided Vibratory Roller 1000 Kg
	1- Flat Bed Truck 3.0 Ton
	1- Dump Truck 3.0 Ton
Bridge and Other Structure	1- Flat Bed Truck With Crane 3.0 Ton

3.5 Workshop and Laboratory

3.5.1 Policy of the Kabupaten Workshop

A workshop will be provided for each Kabupaten. The function of the workshop is to cope with requests from the construction site. The main service will be routine maintenance while the secondary service will be light repairs which can be carried out by changing parts. Dismantling and assembling of units which need setting or adjustment using special equipment or facilities will not be carried out in the Kabupaten workshop. Such repairs are planned to be carried out by the provincial workshop or the regional Workshop of Bina Marga.

Accordingly the main tasks of the Kabupaten workshop are as follows:

- 1) Administration for and storage of equipment
- 2) Routine maintenance and light repair of equipment
- 3) Storage and supply of spare parts
- 4) Operation of equipment including crushing plant.

3.5.2 Workshop Equipment and Tools

Equipment and tools for the workshop are recommended as shown in Table 3-5-1.

Table 3-5-1

WORKSHOP EQUIPMENT AND TOOLS

DESCRIPTION	QUANTITY
Upright Drilling Machine	1 Set
Electric Hand Drill	1 .
Electric Portable Grinder	1
Disc Grinder	1
Bench Electric Grinder	1
Engineer's Vice	.1
DC Electric Welder with Engine	1 Set
Portable Hydraulic Jack, Screw Head	1
Nydraulic Jack	1
Grease Gun	2
Suction Pump for Oil Recovery	2
High Pressure Grease Pump	1

continued

DESCRIPTION	QUANTITY	: • _
Drum Opening Spanner	1	•
Silicon Normal Charger	. 1	
Tyre Changer Air Operated	1	
Tyre Service Tool Set	1	
Tyre Pressure Gauge	1	i et
Automatic Tyre Inflator	1	
Plug Cleaner and Tester	1	
Mechanics Tool Set, Heavy Equipment	1	
Mechanics Tool Set, Large Vehicle	1	
Portable Air Compressor	1	
Electric Cord Reel, 15 A, 50 m	1	• :
011 Measure, Polyethylene	1	•
Funnel 200 mm, Steel	3 -	
Hand Truck (Cart), 4-Wheel	1	
Nylon Sling, 10 ton	2	
Chain Block, 1 ton	2	
Wire Rope (for sling), 1.8 ton	2	
Wire Rope (for sling) 3.2 ton	2	
Generator	.1	÷

3.5.3 Laboratory

For quality control of construction in the Project it is recommended that a laboratory is provided for each Kabupaten. For each laboratory, provision of laboratory test equipment for the following tests is recommended:

- Physical characteristic, compaction and strength tests for the road bed and pavement materials.
- Slump and strength tests for the bridge concrete.

In the laboratory a fixed water tank should be provided for CBR tests and curing of concrete specimens.

The proposed laboratory equipment is listed in Table 3-5-2.

Table 3-5-2

LABORATORY TEST EQUIPMENT

DESCRIPTION	QUANTITY
Soil Moisture Test Set (JIS A1203)	1
Liquid Limit Set (JIS A1205)	1
Plastic Limit Set (JIS A1206)	1
Compaction Set (JIS A1210)	1
CBR Laboratory Set, Mechanical (JIS A1211)	1
Sand Density Apparatus (JIS A1214)	1
Aggregate Test Sieve Set	1
Portable Cone Penetrometer	1
Compression & Bending Test Machine	1
Cylinder Mould (JIS A1132, 1108)	9
Slump Test Apparatus (JIS AllOl)	2

To conduct the surveys necessary for road and structure construction such as centering, profile leveling, cross section leveling etc., the surveying equipment listed in Table 3-5-3 recommended.

Table 3-5-3

SURVEYING EQUIPMENT

DESCRIPTION	 QUANTITY
Transit	 1
Level	 1
Staff	3

Chapter 4 CONSTRUCTION AND MAINTENANCE COST ESTIMATIONS

4.1 Unit Price

With regard to the unit prices of materials and labor, the data were collected from each Kabupaten through Bina Marga. The collected data were compared with those of Jakarta using BAHAN BANGUNAN DKI-JAKARTA MAY & JUNE 1985 compiled by PUSAT INFORMASI TEHNIK PEMBANGUNAN, and then finalized.

4.1.1 Unit Labour Price

The unit labour prices of Kabupaten Gowa and other Kabupatens in Sulawesi Selatan Province are shown in Table 4-1-1.

Table 4-1-1

UNIT LABOUR PRICE

						(Rp)
MAN	SKL LAB	САР	MAS	LAB	DRIV	OPE
2,000	2,000	2,500	2,500	1,500	3,000	3,750
2,000	2,000	3,000	3,000	1,500	3,500	3,500
3,000	2,500	3,000	3,000	2,000	3,000	3,500
2,250	2,200	3,000	3,000	1,700	2,750	3,000
2,500	2,000	3,000	3,000	1,500	3,000	4,500
3,000	2,500	3,000	3,000	2,000	3,500	7,500
2,500	2,000	3,500	3,500	1,500	3,500	5,000
2,464	2,171	3,000	3,000	1,671	3,179	4,393
	2,000 2,000 3,000 2,250 2,500 3,000 2,500	LAB 2,000 2,000 2,000 2,000 3,000 2,500 2,250 2,200 2,500 2,000 3,000 2,500 2,500 2,000	LAB 2,000 2,000 2,500 2,000 2,000 3,000 3,000 2,500 3,000 2,250 2,200 3,000 2,500 2,000 3,000 3,000 2,500 3,000 2,500 2,000 3,500	LAB 2,000 2,000 2,500 2,500 2,000 2,000 3,000 3,000 3,000 2,500 3,000 3,000 2,250 2,200 3,000 3,000 2,500 2,000 3,000 3,000 2,500 2,000 3,000 3,000 2,500 2,000 3,000 3,000 3,000 2,500 3,000 3,000 2,500 2,000 3,500 3,500	LAB 2,000 2,000 2,500 2,500 1,500 2,000 2,000 3,000 3,000 1,500 3,000 2,500 3,000 3,000 1,500 3,000 2,500 3,000 3,000 2,000 2,250 2,200 3,000 3,000 1,700 2,500 2,000 3,000 3,000 1,500 3,000 2,500 3,000 3,000 1,500 2,500 2,000 3,500 3,500 1,500	IAR IAB 2,000 2,000 2,500 2,500 1,500 3,000 2,000 2,000 3,000 3,000 1,500 3,000 2,000 2,000 3,000 3,000 1,500 3,500 3,000 2,500 3,000 3,000 2,000 3,000 2,250 2,200 3,000 3,000 1,700 2,750 2,500 2,000 3,000 3,000 1,500 3,000 3,000 2,500 3,000 3,000 1,500 3,000 3,000 2,500 3,000 3,000 3,500 3,500 2,500 2,000 3,500 3,500 3,500 3,500

Notes :

MAN : Mandur SKL LAB : Skilled Labour CAP : Carpenter MAS : Mason LAB : Labourer DRIV : Driver OPE : Operater

4.1.2 Unit Price of Materials

Table 4-1-2 shows the unit price of materials for Kabupaten Gowa together with for other Kabupatens in Sulawesi Selatan Province.

Table 4-1-2

UNIT PRICE OF MATERIALS

			an an an an an an an an an an an an an a		(Rp)
MATERIAL	UNIT	GOWA	PANGKAJENE KEPULAUAN	BARRU	SOPPENG
Bitumen	L	275	250	325	. 250
Asphalt Oil		700	700	750.	700
Gasoline	\mathbf{L}	250	250	250	250
Sand	M3	4,000	5,000	6,000	5,250
Cement	bag	3,750	3,750	3,750	4,250
River Stone	M ³	4,000	4,500	6,000	5,250
Steel Moulds	Set	7,500	7,000	7,000	7,000
Timber	м _М З	200,000	150,000	180,000	225,000
Pain	\mathbf{L}	3,500	2,500	2,500	2,500
Reinforcing Steel	Kg	750	75	0 750	1,000
Tying Wire	Kg	1,200	1,200	1,500	1,500
Equivalent Royalty	M ³	250	250	250	250

MATERIAL	UNIT	WAJO	TANA TORAJA	MAMUJU	AVERAGE
Bitumen	L	275	400	270	295
Asphalt Oil	L	700	800	700	1,000
Gasoline	Г	250	250	250	250
Sand	· L	5,000	8,000	3,500	5,250
Cement	bag	4,000	4,500	4,500	4,070
River Stone	м ³	7,500	7,000	3,500	5,393
Steel Moulds	Set	7,500	7,000	7,000	7,143
Timber	M3	200,000	175,000	160,000	184,285
Paint	L	3,500	2,500	2,750	2,820
Reinforcing Steel	Kg	750	1,000	800	825
Tying Wire	Kg	1,500	1,500	1,100	1,357
Equivalent Royalty	M3	250	250	250	250

4.1.3 Hourly Equipment Cost

The hourly equipment cost for Kabupaten is shown in Table 4-1-3.

Table 4-1-3

HOURLY EQUIPMENT COST

PROVINCE	¥ ·	SULAWESI	SELATAN
KABUPATEN	ŧ	GOWA	

			-		(UNIT	IRp)	< 6'	85 >	
CODE No	EDUIPHENT NAME	CLASS		LOCAL COS OPERATION			FOREIGN COS Operation		TOTA Cós
	Bulldozer	120 HP	311	13,090	13,401	7,769	1,034	8,803	22,20
	Bulldozer/Ripper	120 HP.	34() 14,111	14,451	9,500	1,591	10,091	24,54
	Swamp Bulldozer	120 HP	358	14,355	14,711	8,979	1,662	10,541	25,25
	Bulldozer	90 HP	197	9,869	9,066	4,914	654	5,568	14,63
	Bulldozer/Ripper	90 HP	217	9 465	9,677	5,300	992	5,292	15,96
	Bulldozer	65 HP	14(6,585	3,500	465	3,965	10,5
	Bulldozer/Ripper	65 HP	153	6,898	7,051	3,819	714	4,533	11,5
	Swamp Bulidozer	90 HP	21.	9,455	9,667	5,284	789	6,273	15,9
	Swamp Bulldozer	65 HP	162			4,050	758	4,808	11,7
	Motor Grader	110 HP	27)					8,214	19,8
	Notor Grader	75 HP	193					5,673	
	Motor Grader	65 HP	17:				and the second second second second second second second second second second second second second second second	5,104	12,1
	Road Stabilizer	W=1850 mm	-344					9,022	12,7
	Vibratory Roller	4 ton	116					3,285	6,8
	Hand-guide Vib. Roller	1000 Kg	10					880	1,5
	Tire Roller	8-15 ton	125				and the second second second second second second second second second second second second second second second	3,209	10,8
	Vibratory Roller (DLT)	4 ton	11/					3,285	6,8
	Hand-quide Vib. Roller	600 Kg	7	422				621	1,1
	Rough Terrain Crane	10 ton	402		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			10,790	24,3
	Hydraulic Excavator; Wheel	0.3 #3	165					4,655	12,7
	Wheel Loader	1.2.#3	281					7,953	16,8
	Wheel Loader	0.3 a3	9					2,571	5,6
	Water Tank Truck	4000 ltr.	10					992	4,0
	Fuel Tank Truck	4000 ltr.	10/					1,008	4,0
	Duep Truck	3.0 ton	17					1,679	5,5
	Flat Bed Truck with Crane	3.0 ton	69					1,845	5,0
	Dump Loader Truck	12 ton	154					3,965	23,5
	Dusp Truck	5.0 ton	26					2,502	8,7
	Flat Bed Truck	3.0 ton	2					605	3,3
	Portable Crusher/Screening	30-40 t/h	752					21,302	44,1
	Concrete Mixer	0.5 a3	646					5,835	8,9
	Water Pump	200 1/min	23					194	4
	Concrete Vibrator	3.3 HP						75	3
	Asphalt Sprayer	850 Jtr.	12.					i,164	2,0

4.2 Unit Construction Cost by Work Type

4.2.1 All Works Except Bridges

The unit construction costs by work type, excluding bridge construction costs, have been estimated using the combination of equipment described in Clause 3.4 and the unit prices already listed. The results are summarized in Table 4-2-1.

GOWA

ş

Table 4-2-1 UNIT COST BY WORK TYPE EXCEPT BRIDGE WORK

PROV : SULAWESI SELATAN KAB

ITEH	UNIT	LOCAL	FOREIGN	TOTAL
Site Clearance in Light Bush	a2	163	91	254
Subgrade Preparation	62	20	H	31
Normal Fill	n 3	1,693	865	2,540
Fill in Swaap	a3	2,494	1,055	3,549
Normal Excavation to Spoil	83	986	524	1,510
Sub Base Course	n 3	3,189	1,351	4,540
Base Course	#J	4,364	2,303	6,667
Shoul der	. B 2	293	146	439
Asphalt Patching	m2	3,372	1,346	4,718
Surface Dressing (Single)	•2	587	552	1,139
Surface Dressing (Double)	R 2	734	868	1,602
Earth Drain	1 - 1 - 1	773	119	892
Earth Drain in Swamp (by machine)	# 3	1,157	475	1,632
Pipe Culvert D80cm	1. M	39,235	40,307	79,542
Hasonry Culvert (80x80cm)	9	• 53,753	34,731	89,484
Retaining Wall and Wing Wall (Timber)	s2	16,836	246	17,082
Retaining Wall and Wing Wall (Masonry)	83	37,429	11,421	48,850
Gabion Protection	шĴ	9,029	121	9,150
Nanual routine maintenance of road	Ka	121,976	7,260	129,236
Routine maintenance of earth road	Ka	91,873	37,948	129,821
Routine maintenance of gravel road	Ka	188,115	88,186	276,301
Routine maintenance of asphalt road	Ka	337,200	134,600	471,800

30--50

4.2.2 Bridges

The unit construction costs by bridge type including the cost of demolition of existing bridges are shown in Table 4-2-2.

Table 4-2-2

BRIDGE COST

PROV : SULAWESI BELATAN

Kab 👔 Gowa

				e gent Estat	(Rp)	
	1 T E H	UNIT	LOCAL	FOREIGN	TOTAL	
		**********	***********			
	Superstructure (Ilmber;Span 3m;101)	∎2	57,600	4,676	62,226	
	Superstructure (Timber;Span Sm;101)		63,802	5,107	69,909	
	Superstructure (Timber)Span Baj1011	m2	B4,511	6,706	91,217	
	Superstructure (Timber;Span 3m;BH50)	#2	71,423	5,719	77,142	:
	Superstructure (Timber;Span 5m;BH50)	a2	77,976	6,195	84,171	1.1.4
	Superstructure (limber Span 8m;8H50)	=2	98,895	7,841	106,736	
	Superstructure (Concrete;Span 3m;BHSO)	n 2	57,937	81,925		
	Superstructure (Concrete;Span 5m;BM50)	B2	57,050	91,542	150,602	
÷ .	Superstructure (Concrete;Span De;BNSO)	# 2	60,502	99,704	160,205	:
	Superstructure (Concrete;SpantOm;BN50)	2	65,879	113,234	179,113	
	Superstructure (Concrete;Span13m;BH50)	a2	70,320	133,369	203,689	
	Substructure (Pieryfor Timbery101)	NO	501,630	43,123	544,753	
	Substructure (Abut;for Timber;101)	NO	1 322 754	189,655	1,512,409	· ·
	Substructure (Pier; for Timber; BH50)	NO	737,732	63,842	801,574	
	Substructure (Abut;for Timber;0050)	ND	1,500,543	212,676	1,713,219	
	Substructure (Pier;for Concrete;8H50)	NØ	1,532,352	452,905	1,985,258	
	Substructure (Abut;for Concrete;BM50)	NO	3,265,397	959, 362	4,224,749	
	Demolition of Bridge (Timber-)limber)	#2	15,706	1,730	17,436	
	Demolition of Bridge (Timber-)Concrete)	· n2	15,706	1,730	17,436	· .
•	Demolition of Bridge (Concrete)	#2	81,154	64,824	145,978	
	Haintenance of Timber Bridge (New)	a 2	10,272	1,344	11,566	
	Haintenance of Concrete Bridge (New)	n2	2,003	2,456	4,459	
	Naintenance of Timber Bridge (Exist)	#2	8,935	2,517	11,452	
	Naintenance of Concrete Bridge (Exist)	.: . m2	4,224	2,336	6,560	:
			:			

Chapter 5 RESULTS OF ECONOMIC FEASIBILITY EVALUATION

5.1 Preliminary Screening

The road links to be improved should be effective for development of the Project Area. The road links where improvements were assumed to be inefficient for development of the Project Area were generally screened out using the following cut-off criteria.

- Very short roads, less than 2 Km long, which have no connection with the trunk road network.
- (2) Roads not connected to the network at any point
- (3) Unpreferred roads, due to poor suitability for transportation compared to other existing alternative roads serving the same purpose.
- (4) Road in good condition according to the Bina Marga road inventory which lists improvement projects carried out in the last two or three years
- (5) Roads with asphalt surface in good condition
- (6) Urban roads, except those forming part of a longer route
- (7) Roads serving single large organizations rather than the general public
- (8) Roads with no inventory data
- (9) Kabupaten roads also assigned as provincial roads

The road links to be screened out in Kabupaten Gowa are shown in Table 5-1-1.

Table 5-1-1 ROAD LINKS TO BE SCREENED OUT

KABUPATEN : GOWA

CRITERIA	NO	ROAD LINK NO
(8)		 08,16,17,20

5.2 Evaluation

5.2.1 Primary Analysis

The Kabupaten roads were classified by using the future traffic volume on the road links in 1998. The primary analysis of the IRR was carried out using the construction and maintenance costs. Road links where IRRs were more than 10% were defined as feasible links. Results of primary analysis are shown in Table 5-2-1.

5.2.2 <u>Secondary Analysis</u>

From the infeasible road links evaluated by the primary analysis, road links where the IRRs were between 1% and 10%, i.e. road links which could become feasible if down graded by one rank, in classification were down graded and the costs re-estimated. Using these costs, a secondary analysis of IRR was carried out. Road links where these IRRs were then more than 10% were also defined as feasible links. This reflected that even though the road classification was rather low the road link should be improved.

Results of secondary analysis are shown in Table 5-2-2.

5.2.3 Ranking of Feasible Road Links

From the results of the primary and secondary analysis, road links where the IRRs were more than 10% were selected and their NPVs and B/Cs were estimated. The ranking of feasible road links from the economic evaluation are decided in the order of the NPVs, i.e. the larger the NPV the higher the road link priority as shown in Table 5-2-3.

PREV	INCE	

E I BULAWESI BELATAN KABUPATEN I DOWA

			المراجع المار المراجع المراجع المراجع المراجع المراجع	
LINK NO	LENDTH	CLASS	IRR(%)	REMARK
19	14 Km	1110-1	37.957	VOC
12	7 Ka	IIIB-2	37.774	VOC -
31	2 Km	111A	34.282	VDC
47	6 Km	1110-2	33.659	VOC
1	12 Km	1118-1	33,067	VOC
18	- 9 Ka	1119-2	26.525	VUC
.43	5 Ka	1110-2	24.774	Vac
40	7 Km	IIIB-2	23,965	VOC
58	14 Km	1118-2	23.675	Vac
44	6 Km	1119-2	23.631	VOC
11	39 Km	1118-2	10,125	Surplus
5	14 Km	IIIB-1	15.647	VOC
45	7 Km	1118-2	15,112	VOC
39	7 Km	1118-1	14.363	VOC
54	6 Km	1118-2	11.877	VOC
41	11 Km	1118-1	0 877	VOC
28	2 Km	AIII	8.086	VOC
7	30 Km	1118-2	7,155	Surplus
27	5 Km	1118-1	6.111	VUC
52	3 Km	1118-2	4.557	VOC
32	1 Km	1118-1	3.925	VDC
33	4 Km	1118-2	0.941	VOC
9	45 Km	1110-2	0.078	VOC
10	7 Km	IIIC	0.078	Surplüs
29	1 Km	TIIC	0.078	Surplus
30	1 Km	1118-1	0.079	VOC
4	4 Km	111B-i	0.078	VOC
2	3 Km	1119-2	0.079	VOC
13	6 Km	111D-2	0.079	VOC
34	6 Km	IIIB-1	0.078	VOC
35	4 Km	IIIC	0.078	Surplus
36	2 Km	IIIC	0.078	Surplus
37	3 10	IIIC	0.078	Surplus
38	6 Km	TIB-1	0.078	Vac
14	7 Km	IIIC	0.078	Surplus
15	14 Km	1110	0.078	Surplus
.с б	9 Km	1118-2	0.078	VOC
42	9 Km	1110	0.078	Surplus
3	4 Km	1118-1	0.078	Vac
21	6 Km	IIIC	0.078	Surplus
22	2 Km	1110	0,070	Surplus
46	4 Km	IIIC	0.078	Surplus
- 23	3 Km	IIIC	0.078	Surplus
48	8 Km	IIIC	0.078	Surplus
49	6 Km	IIIC	0.078	Burplus
50	2 Km	IIIC	0.078	Surplus
51	2 Km	1119-1	0.078	Voc
24	2 Km	1116	0.079	YOC
53	3 Km	1110-2	0.078	Vinc
25	2 Km	1118-1	0.078	VOC
			ال 2018 الروي ويري منه الروي المان الروي ويري الروي الروي الروي الروي الروي الروي الروي الروي الروي الروي الرو الروي الروي	

PROVINCE I	BULAWEBI	BELATAN	KABUPATEN	: GOWA
	1821 Kda wel Net wel Ind w.R. Wel 1965	trin has bee the basis and so and so	n foil fait land toin that foil loca cant low with BAI la	
LINK NO	LENGTH	CLASE	IRR (%)	REMARK
55	6 Km	IIIB2	0,078	VOC
56	13 Km	IIIC	0,078	Surplus

56	13	Ka	IIIC	0.078	Surplus
57	1	Km	IIIC	0.078	Surplus
26	3	Km	IIIB-1	0.078	VOC
59	4	Kas	IIIB-2	0,078	VAC
60	33	Kø	1118-2	0,078	Vac .
بالمراجع والافراط والمراجع والمراجع المراجع	ومستد أبترك بنده عدط علم عالم وارم عد		, mei Gen and seit jost jost bif det fan de seit bes		. (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1)

Table 5-2-2

ي جرو

RESULTS OF SECONDARY ANALYSIS

DVINCE :	SULAWESI	SELATAN	KADUPATEN	: · · (90WA
LINK NO	LENGTH	CI.A59	IRR (2)	REMARK
32	1 Ka	1110-2	36.760	VOC
27	5. Říř	1110-2	26.705	Vac
41	11 Km	1119-2	11,265	VOC
7.	30 Km	1110	11.244	Surplus
52	- 3 - Ka	1110	9,451	VUC
20	2 Km	1110-1	8.086	VDC

Table 5-2-3 RANKING OF FEASIBILITY ROAD LINKS

PROVINCE : SULAWESI SELATAN KABUPATEN : GOWA

LINK	LENGT	H CLASS	NPV	B/C	IRR	REMARK
NO	- · ·		(1000Rp)		(7)	
17	14 Ki	m IIIB-1	251564	2.251	39.957	VOC
- 1	12 Ki	n IIIB-1	142257	1.915	33,067	VDC
11	39 Ki	a IIIB-2	120827	1.303	18,125	Surplus
12	7 K	n 1118-2	99068	2.275	39.774	VOC
58	14 K	n IIIB-2	78392	1.566	23.695	VOC
47	6 Ki	n 1119-2	67943	1 992	33.559	VDC
18	9 Ki	n IIIB-2.	60969	1.677	26.525	VDC
5	14 Ki	m IIIB-i	41712	1.210	15.647	VOC
40	7 K	n 1118-2	32395	1.536	23.965	VOC
44	6 K.	n IIIB-2	30530	1.548	23.631	VOC
43	5 Ki	n IIIB-2	29242	1.614	24.774	VDC
31	2 Ki	m IIIA	24848	1 980	34.282	VOC
27	5 Ki	n IIIB-2	15607	1.490	26.705	VOC
39	7 Ki	n IIIB-i	14232	1 158	14 363	VOC
45	7 K	n IIIB-2	13852	1.178	15.112	VOC
7	30 Ki	n IIIC	13232	1.044	11.244	Surplus
32	t Ki	n IIIB-2	4300	1.737	36, 760	VOC
54	6 K	m III0-2	3540	1.066	11.877	VOC
41	11 K	n IIIB-2	3431	1.042	11.265	VOC
SUM	202 K		1047941			1999 1999 1999 1996 1996 1996 1998 1998

30~55

Chapter 6 IMPLEMENTATION PROGRAMME

6.1 Implementation Schedule

6.1.1 Project Cost

The total Project Cost for the Kabupaten is composed of the cost of construction and maintenance, supplementation as described later, and workshop, laboratory and survey equipment. The total Project Cost for the Kabupaten is summarized in Table 6-1-1.

Table 6-1-1 TOTAL PROJECT COST (1)

KABUPATEN: Gowa

 $(Rpx10^6)$ LOCAL FOREIGN TOTAL CURRENCY CURRENCY COST 412 1,299 1,711 CONSTRUCTION 677 514 MAINTENANCE 163 399 SUPPLEMENTATION 399 WORKSHOP EQUIPMENT & TOOLS. 28 28 12 12 LABORATORY EQUIPMENT 5 5 SURVEY EQUIPMENT 2,832 1,019 1,813 TOTAL

The total Project Cost can be divided into costs as shown in Table 6-1-2.

Table 6-1-2

TOTAL PROJECT COST (2)

	- 			(Rpx10 ⁶)
COST		FORE1GN CURRENCY	LOCAL CURRENCY	TOTAL
CIVIL WORK		194	1,798	1,992
CONSTRUCTION & MAINTENANCE EQUIPMENT	• . • . •	719	• •	719
SPARE PARTS		61	15	76
WORKSHOP/LABORATORY/SURVEY EQUIPMENT		45	-	45
TOTAL		1,019	1,813	2,832

The cost for civil work is composed of the cost of labour and materials, operation cost excluding spare parts, indirect cost and transportation cost of equipment, and ownership cost for existing equipment.

6.1.2 Proposed Road Links

(1) Road Link to be Improved

The road links to be improved were generally selected taking into consideration the following criteria:

- (1) Feasible road links
 - Feasible road links from the primary evaluation
 - Feasible road links from the secondary evaluation
- (2) Road links selected from the engineering points of view
- (3) Road links selected because of basic human needs.

The road links finally proposed to be improved in the Kabupaten are the 20 links with the total length of 205 km which is 46% of the 446 km total length of Kabupaten roads studied. The proposed road links are shown in Table 6-1-3.

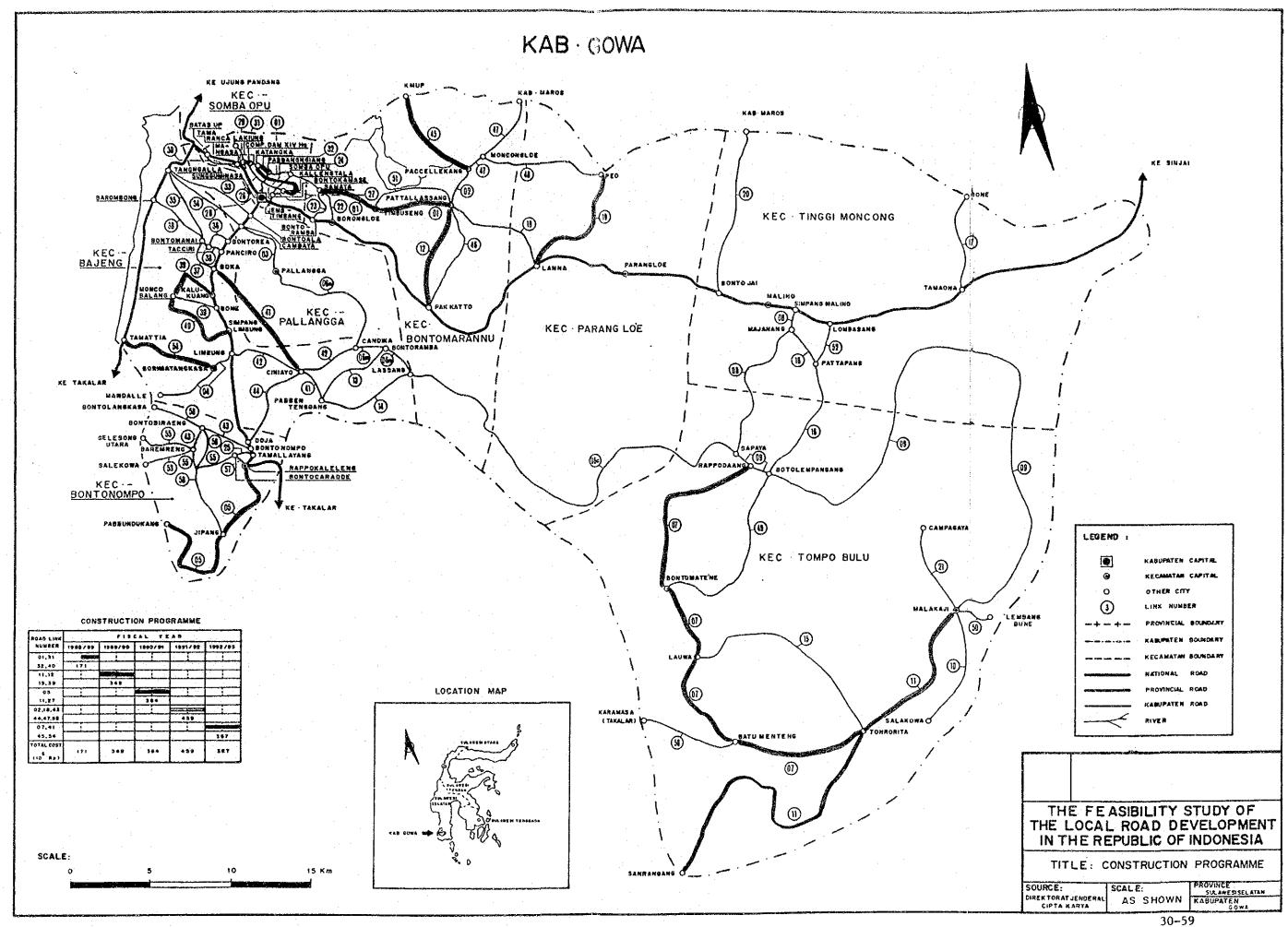
Table 6-1-3ROAD LINKS TO BE IMPROVED

KABUPATEN : GOWA

REASON FOR SELECTION	ROAD LINK NO
Feasible	
- Primary	1,5,11,12,18,19,31,39,40,43,44,45, 47,54,58
- Secondary	7,27,32,41,
Engineering Point of View	2
Basic Human Needs	

As the table shows all feasible road links are proposed to be improved.

Road Links No 2 is selected from the engineering points of view.


Because without improvement of this road link improvement of feasible road links No 45 and No 47 can not be carried out.

The order of proceeding with the improvement of the proposed road links are decided as shown in Table 6-1-4.

Table 6-1-4ROAD LINKS TO BE IMPROVED BY YEAR

PROV : SULAWESI SELATAN KAB : GOWA

	YEAR		LI	NK NO			•	. '	()	:‡'r	ate					
	1988	1	1,	31,	32,	40			en fer e r			 	 ***	 ** ~* ** ** *	,	
	1989	1	11	(30%)	, 12,	19	39							 		
	1990	1	5,	11	(70%),	27										:
:	1991	1	2,	19,	43,	44,	47,	58								
	1992	;	7,	41,	45,	54						 	 	 		

(2) Road Links to Be Maintained

It is desirable that all Kabupaten roads are maintained. Nowever, because of the limited budget it is inevitable that some road links in the Kabupatens will be left without maintenance for the time being. The budget should be used for those which are effective in producing more useful development of the Kabupaten through the road development project. The road links to be maintained are finally proposed as shown in Table 6-1-5.

Table 6-1-5(1)

ROAD LINKS TO BE MAINTAINED

PROV : SULAWEST SELATAN KAB : GOWA

(1000Rp 1

LINK	LENGTH	BA	50	RU		1 W S	GRAVEL	EARTH) TH	AREA	RC	AREA	BRIDGE	LOCAL	FORELGH	TOTAL
NO	(Ka)	{X}	(2)	(1)	(X)	(Ka)	(Ka)	(Ka)	KO	(a2)	NO	(#Z)	COST	COST	COST	COST
1	12	35.9	46.3	17.9	0.0	9	0	3	0	0.00	3	87.50	574	5,144	1,617	6,761
3	4	90,B	9.3	0.0	0.0	- 4	0	Û	Ç	0,00	0	0.00	0	1,837	567	2,404
4	6	86.8	13.2	0.0	0.0	. 6	Û	Ú (Q	0.00	0	0.00	Q	2,755	851	3,608
5	- H	40.7	44,3	11.4	3.6	0	. 1 4	0	0	0.00	3	67.50	143	1,629	. 1 194	6,120
6	9	94.8	5.2	0.0	0.0	9	1	ŷ	¢	0.00	4	84.00	- 5 51	4,330	1,427	5,765
9	45	71.8	9.0	11.1	5.1	. 0	45	¢	- 0	0,00	18	501.00	3,287	16,070	5,465	21,53
10	7	7.1	17.1	15.7	0.0	0	7	· 0	0	0.00	5	104.50	1,210	2,950	1,099	4,04
12	7	0.0	52.9	32.9	14.3	0	0	7	0	0,00	. 5	114.00	748	1,978	583	2,56
13	6	22.5	52.5	25.0	0.0	Ŭ	6	0	0	0.00	1	24.00	157	1,962	629	2,59
18	9	27.2	38.3	34.4	0.0	0	0	9	Ç	0,00	4	58,00	380	2,170		2,71
19	14	10.4	48.6	30.9	2.1	5	0	. 9	0	0,00	4	215,00	1,410	5,129	1,618	6,74
22	2	42,5	50.0	7.5	0.0	0	0	2	Q	0.00	0	0.00	, 11 Q	420	90	51
23	2	33.3	40.0	20.0	6.7	Q	0	3	. 0	0.00	3	73,50	482	952	307	1,25
24	2	92,5	0.0	17.5	0.0	. 2	0	. · · 0	0	0,00	2	31.00	203	1,049	356	- 1,40
25	2	92.5	1.5	0.0	0.0	9	2	: 0	¢.	0.00	0	0.00	0	620	191	81
26	. 3.	78.3	21.7	0.0	0.0	. 3	0	. 0	0	0,00	Û	0.00	0	1,370	426	08,1
27	5	66.0	29.8	4.4	0.0) 1	- 1	0	0,00	3	73.00	479	2,359	783	_⊢ 3 ₄ 14
28	2	52.5	35.0	12.5	0.0	. 2	0	. 0	0	0.00	j,	16.00	105	N 986		1,30
29	11	50.0	50.0	0.0	0,0	Ò) ()	1	Ö	0,00	0	0.00	O	214	45	25
30	. 1	80.0	20.0	0.0	0.0	- 1	0	0	Û	0.00	• 0	0.00	.0	459	142	. 60
31	2	25,0	52.5	22.5	0.0	- 2	. 0	0	0	0.00		0.00	0	918	284	1,20
32	1	0.0	80.0	20.0	0.0	1	. 0	0	0	0.00		16.00	105	527	179	70
33	4	16.3	23,8	0.0	0.0	. 0) 2	2	0	0.00	; 0	0.00	0	1,018	281	1,32

PROV : BULAWEBI BELATAN KAD : BOWA

		1		3 5.5		. '- . 7			1 . 1 · · · ·				ing ang sang sang sang sang sang sang san		r Aggil Ar I	1	1000Rp 1
LDRK. No	LENGTII (Ka)	DA 121	50 (1)	NU 121	R9 (1)	ASPIIAL (K=)	ORAVEL (Ko)		RT Dh		REA In21	AC Ho	AREA (n2)	BRIDGE Cost	LOCAL Cost	FUNE IGH Cost	TOTAL Cost
34	 6	96.3	3.7	0.0	0.0	0		0	0).00	 i	49.00	315	7,063	685	2,749
35		68.3	31.8	0.0	0.0				1		5.00	ð	0.00	285	1,079	244	1,323
37	i	46.1	40.0	13.3	0.0		-	3	O		0.00	- 6	0.00	0	642	136	778
38	ě.	20.9	9.2	0.0	0.0			0	Ō		0.00	Ô	0.00	0	2,755	051	3,606
39	ż	11.1	53.4	3.3	1.1		•	Ő	Ó		9.00	. 0	0.00	Ő	2,121	668	2,819
40	ż	14.3	75.7	9.3	0.)			3	Ó		0.00	÷ i	36.00	236	1,941		2,342
- ŧÏ	11	62.7	37.3	0.0	0.0		8		Ó		0.00	3		1	3,123	900	4,023
12	9	25.0	51.4	20.6	0.0		9	0	.0		00.0	Ő	0.00	0	7,791	851	3,650
- 43	5	12.0	67.0	26.0	0.0		0	5	0		0.00	0	0.00	. 0	1 069	226	1,295
4	6	0.0	58.3	41.7	0.0		2	1	0		0.00		0.00	0	1,175	312	1,919
ł5	1	55.7	47.9	1.4	0.0	-		1	Ō		0.00	i	12.00	79	1,518	311	1,892
46	i,	16.0	16.3	7.9	0.0		•	 -	0		0.00	.8	0.00	6	855	185	1,036
Ť	6	0.0	73.3	24.2	2.5	1 C C	•	6	ò		0.00	3	99.00	649	1,701	503	2,204
5	2	0.0	75.0	25.0	0.0		. 0	. 0	0		0.00	Ö	0.00	6	918	284	1,202
57	3	80.0	11.7	8.3	0.0	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	1	2	0		0.00	0	0.00	0	738	106	924
53	3	91.7	8.3	0.0	0.0	0	3	. 0	· 1	H	5.00	I.	22.00	328	1,166	370	1,544
51	6	66.5	11.9	21.7	0.0	0	3	3	- s I	I	1.25	0	0.00	129	1,612	450	2,122
55	6	69.3	20.7	10.0	0.0	0	5	- (- 1	Ŭ,	(0.00	2	38.25	251	1,926	612	
31	- 1	71.0	29.0	0.0	0.0	0	0	1	· · ŋ	1	0.00	Ð	0.00	0	· 211	15	259
58	н	25.7	58.6	15.7	0.0	0	. 0	11	. 0		0.00	. 0	0.00	0	2,974		
59	4	84.5	0.5	15.0	0.0	0	.	0	0		0.00	1	24.00	157	1,342	438	1,780
60	33	69.0	5.9	15.8	10.3	1	30	Q	0		0.00	6	572.00	3,152	13,076	1,625	11,121
SUK	314				*****	58	157	99	3	5	2.25	75	2396.40	16.319	107.077	33,418	140.195

30-61

6.1.3 Annual Construction and Maintenance Cost

The annual allocation of the total construction and maintenance cost in the five years programme for Kabupaten Gowa is finally recommended as shown in Tables 6-1-6 (1), (2) and (3) for the construction, maintenance and total respectively.

The proposed construction cost is Rp 1,711 x 10^6 and maintenance cost is Rp 677 x 10^6 which is approximately 28% of the total expenditure.

Table 6-1-6 (1)CONSTRUCTION AND MAINTENANCE COST

(CONSTRUCTION)

··· · · · · · · · · · ·						
PROV		SULAWESI	SEL ATAM	KAÐ		GDWA
	-	the second of a second the		151710	ĩ	DUWM

*********	* * * * * * * * * * * *		*****	· · · · · · · · · · · · · · · · · · ·				(UNIT :	1000Kp)
	ITEN		< 1988 >	< 1989 >	(1990)	(1991)	(1992)	< TOTAL >	.) 1
LOCAL	CURRENCY	• •	103,784	223,080	240,245	347,243	258,937	1,173,289	(69.6%)
	Duner ship	Cast	1,881	4,444	4,962	5,593	5,806	22,686	(1.92)
	Operation	Cost		115,055		140,506			
	Material	Cast	-			83,116			(17.42)
	Labour	Cost				72,735			(18.3%)
	Contingency	Y.		29,097		15,293			(13.0%)
FOREIG	N CURRENCY	ł	661337	125,815	125,209	111,903	108,651	537,995	(31.42)
	Ownership	Cast	26,777	62,878	70,726	76,936	77,662	314,979	(58.5%)
	Operation	Cost	3,727	B,973	10,190	11,103	11,494	45,567	(8.51)
	Material		27,180	37,553	28,031	9,188	5,323	107,275	(19.9%)
	Labour	Cost	.0	Û		. 0	0	0	(0.02)
	Contingency	Y	8,653	16,411	16,342	14,596	14,172	70,174	(13.0%)
	************		******					*****	
TOTAL	CUST :		170,121	348,895	365,534	159,146	367,500	1,711,284	•
	Ownership	Cost	28,659	67,322	75,688	82,529	83,468	337,665	(19.72)
	Operation			124 028				623,760	(36.47)
	Haterial	Cost	50,335	77,810	67,927	92,304	23,015	311,391	(19.2%)
	Labour	Cost	15,449	34,227			56,810		(12.6%)
	Contingenc	¥	22,190	45,508	47,670	59,909	47,946	223,211	(13.02)

< Contingency : 15% >

Table 6-1-6 (2)

(MAINTENANCE)

PROV : SULAWEBI SELATAN KAB : GOWA

L UNIT 1 1000Rp 1 E F & M < 1988 > (1989) (1990) < 1991 > (1992) < TOTAL > --------103,496 108,561 121,564 129,246 514,278 (75,9%) LOCAL CURRENCY 51,411 1,682 7,984 Ownership Cost -757 1,553 1,931 2,061 1 1.6% (54.22) Operation Cost 28,117 56,406 58,504 65,675 69,934 278,636 Haterial Cost 1,143 2,405 2,683 3,162 4,308 13,701 (2.7%) 50,796 Labour 21,394 43,132 45,692 52,943 213,957 (41.6%) Cost FOREIGN CURRENCY : 16,060 32,483 34,326 38,827 163,218 (24.12) 41,522 13,105 26,376 27,443 31,017 33,279 131,220 (80.47) Ownership Cost 3,044 3,898 15,225 (9.3%) Operation Cost 1,506 3,169 3,610 4,347 16,773 (10.32) Material Cost 1,449 3,063 3,714 4,200 • <u>0</u> (0.02) Labour Cost 0 0 0 - 0 0 677,496 TOTAL COST : 67,471 135,979 112,987 160,391 170,768 Ownership Cost 13,862 27,929 29 125 32,948 35,340 139,204 (20.5%) 29,623 57,450 61,673 69 285 73,830 293,861 (43.4%) Operation Cost 30,474 (4.5%) Haterial Cost 2,592 5,468 6,397 7,362 8,655 Labour 21,394 45,692 50,796 52,943 213,957 (31.62) Cost 43,132

CONSTRUCTION AND MAINTENANCE COST

(TOTAL)

PROV : SULAWESI SELATAN

Table 6-1-6 (3)

KAB : GOWA

				· · · · ·			(UNIT:	1000Rp 1
	ITEN	< 1988 >	< 1989 >	< 1990 >	< 1991 >	< 1992 >	< total >	
. 10	ICAL CURRENCY I	155,195	326,576	348,806	468,807	368,183	1,687,567	(70.6%)
	Ownership Cost	2,638	5,997	6,644	7.574	7,867	30,670	(* 1.92)
	Operation Cost	77,879	171,461	186,519		214,789	856,829	
	Naterial Cost	24,298	42,662	42,579		22,000	217,817	
	Labour Cost	36,843	77,359	B1,728		109,753	429,214	
	Contingency	13,537	29,097	31,336	· · · · ·	33,774	153,037	(9.12)
	1						1001001	

FO	REIGN CURRENCY :	82,397	159.298	159,615	150,730	150.173	701,213	(29.4%)
				····,····				
	Ownership Cost	39,692	87,254	78,167	107.953	110.941	446,199	(63.6%)
	Operation Cost	5,233			14,793			
	Material Cost	28,629	40,616		13,308		124,048	
	Labour Cost	0	0	0	0	0		
	Contingency	8,653	16,411	16 342	14,596	14,172	70,174	(10.0%)
				· .				
	,			 				
TĐ	TAL COST :	237,592	484,874	508,421	617,537	538,356	2,388,780	
	Ownership Cost	42,520	75,251	104,813	115,477	118,808	476,869	(20.0%)
	Operation Cost		183,478	199 978	220,974	230,179	917,621	
	Naterial Cost	52,927		74,324		31,670	341,865	
	Labour Cost		77,359			109,753	429,214	
	Contingency	22,190		47 679	59,889	47,946	223 211	(9.3%)

< Contingency (15%)

6.1.4 Construction and Maintenance Equipment Cost

(1) Required Number of Equipment

The required numbers of construction equipment for Kabupaten Gowa are estimated from the annual proposed construction quantities as shown in Table 6-1-7.

The proposed numbers of equipment to be purchased are finally decided considering the following number of existing equipment in the Kabupaten which are available for the Project.

- 2-Steel Roller
- 1-Hand-guided Vibratory Roller

- 10-Dump Truck

The proposed numbers of maintenance equipment have been decided as shown below from the proposed annual maintenance volume taking into account the capacity of the proposed maintenance gangs.

a. Equipment for Road Maintenance

- 1-Motor Grader 75 HP
- 1-Tire Roller 8-15 Ton
- 1-Dump Truck 3 Ton
- 1-Hand Guided Vibratory Roller 1000 Kg
- 1-Flat Bed Truck 3 Ton

b. Equipment for Bridge Maintenance

- 1-Flat Bed Truck with Grane 3 Ton

(2) Equipment Cost

The proposed construction and maintenance equipment and their purchase costs are shown in Table 6-1-8. In the Project the supplementation cost or equipment cost supplemented is the difference between the purchase cost for newly supplied equipment and the depreciated value.

This comes about because full depreciation of the supplied equipment would not be completed within the Project Period of 5 years.

Table 6-1-7	REQUIREE	NUMBER	OF	EQUIPMENT
-------------	----------	--------	----	-----------

PROV : SULAWESI SELATAN KAB : GOWA

						$\{ f_{i} \}_{i \in \mathbb{N}}^{n}$	1.1
EQUIPHENT NAME	NORKABLE EXI	STING	< 1988 >	(1989)	(1990)	(1991)	(1992)
Bulldazer/Ripper	220	0	0.21	0.4B	0.61	0.55	0.93
Swamp Bulldozer	220	0	0.02	0.01	0.00	0.00	0.00
Hotor Grader	240	0	0.46	1.19	1.33	1.61	1.58
Hand-guide Vib. Roller	240	:4	0.12	0.11	0.13	0.54	0.20
Tire Roller	220	0	0.36	0.49	0.36	0.00	0.00
Vibratory Roller (D&T)	240	0	0.35	0.93	1.03	1.31	1.29
Hydraulic Excavator; Wheel	220	0	0.14	0.01	0.00	0.01	0.01
Wheel Loader	240	0	0.53	1.38	1.64	1.69	1.78
Water Tank Truck	240	0	0.18	0.57	0.64	0.82	0.77
Duap Truck	240	0	4.30	10.58	11.81	13.90	(5.18
Flat Bed Truck with Crane	240	0	0.02	0.06	0.11	0.61	0.14
Flat Ded Truck	240	0	0.41	0.56	0.43	0.1B	0.07
Portable Crusher/Screening	240	0	0.11	0.27	0.30	0.24	0.15
Concrete Mixer	220	0	0.02	0.01	0.02	0.03	0,03
Water Pump	220	0	0.02	0.01	0.01	0.02	0.03
Concrete Vibrator	220	0	0.01	0.01	0.01	0.01	0.02
Asphalt Sprayer	220	1	0.36	0.49	0.36	0.00	0.00

NOTE

WORKABLE :

workable days in a year

EXISTING :

number of existing equipment

\mathbf{PR}	Ó٧	2
---------------	----	---

: SULAWESI SELATAN KAB : GOWA

(1000 Rp)

الم الله الله الله الله الله الله الله ا				
EQUIPHENT NAME	CLASS	CIF (JAKARTA)	PURCHASE NO.	PURCHASE COST
Bulldozer	90 HP	49,150	.	-
Bulldozer/Ripper	90 HP	53,000	n an <mark>f</mark>	53,000
Swamp Bulldozer	90 HP	52,850	-	••••••**
Swamp Bulldozer	65 HP	40,500	-	-
Notor Grader	75 HP	47,800	2	95,600
Road Stabilizer	N=1850 M#	85,950	-	••••••••••••••••••••••••••••••••••••••
Hand-guide Vib. Roller	1000 Kg	8,500	-	
Tire Raller	8-15 ton	31,070	2	62,140
Vibratory Roller (D&T)	4 ton	29,000	•• .	
Vibratory Roller	4 ton	29,000	-	
Rough Terrain Crane	10 ton	100,400	· · · •	
Hydraulic Excavator; Wheel	0.3 #3	41,100	-	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Wheel Loader	1.2 m3	70,200	2	140,400
Water Tank Truck	4000 ltr.	12,750	1	12,750
Duap Truck	3.0 ton	14,700	5	73,500
Dusp Loader Truck	12 ton	56,300		
Flat Bed Truck with Crane	3.0 ton	25,190	2	50,380
Flat Bed Truck	3.0 ton	11,275	1	11,275
Portable Crusher/Screening	30-40 t/h	188,000	. 1	188,000
Concrete Mixer	015 m3	18,000		
Water Pump Constants Withouton	200 1/min 3.3 HP	630 740		an an <u>P</u> ara a
Concrete Vibrator		10,200		
Asphalt Sprayer Service Car	850 Itr. 3 ton	11,600	t	11,600
4 Kheel Drive Vehicle	70 HP	17,500	1	17,500
Notorcycle	100 cc	1,100	3	3,300
notortytre		1,100		
***************************************		*****************		
	· · ·	PURCHASE COST	TOTAL	719,445
			· .	

		AUNTRALIAS dogo	ICODE LOUI	310 000
		UNNERSHIP COST	(FOREIGN)	319,988
•	÷	-	:	
		CONTRACT COOL	CHIDDI ENENTED	- 200 AH2
	- - -	EQUIPHENT COST	SUPPLENENTED	399,457
		EQUIPHENT COST	SUPPLENENTED	399,457
	· · · · · · · · · · · ·	EQUIPMENT COST	SUPPLENENTED	399,45/
		EQUIPMENT COST	SUPPLENENTED	399,457
	NOTF :			
	NOTE :	EQUIPMENT COST		
	NOTE :	OWNERSHIP COST (F	QREIGN) for Ex	isting Equipment
	NOTE :	DWNERSHIP COST (F Hand-guide Yib, F	QREIGN) for Ex Roller	isting Equipment 5,522
	NOTE :	DWNERSHIP COST (F Hand-guide Vib. F Vibratory Roller	QREIGN) for Ex Roller	isting Equipment 5,522 20,428
	NOTE :	OWNERSHIP COST (F Hand-guide Vib. F Vibratory Roller Dump Truck	QREIGN) for Ex Roller	isting Equipment 5,522 20,428 98,657
	NOTE :	DWNERSHIP COST (F Hand-guide Vib. F Vibratory Roller	QREIGN) for Ex Roller	isting Equipment 5,522 20,428
	NOTE :	DWNERSHIP COST (F Hand-guide Vib. F Vibratory Roller Dump Truck Asphalt Sprayer	QREIGN) for Ex Roller	isting Equipment 5,522 20,428 98,657 1,604
		DWNERSHIP COST (F Hand-guide Vib. F Vibratory Roller Dump Truck Asphalt Sprayer TOTAL	QREIGN) for Ex Roller	isting Equipment 5,522 20,428 98,657
	NOTE : 30-	DWNERSHIP COST (F Hand-guide Vib. F Vibratory Roller Dump Truck Asphalt Sprayer TOTAL	QREIGN) for Ex Roller	isting Equipment 5,522 20,428 98,657 1,604

6.1.5 Other Costs

Cost other items includes the costs of workshop equipment and tools, laboratory test equipment and survey equipment which are recommended in Sub-Clause 3.5. These total costs are summarized in Table 6-1-1.

6.1.6 Quantities by Work Type

The annual construction and maintenance quantities for all proposed road links are shown in Table 6-1-9.

Table 6-1-9

CONSTRUCTION QUANTITIES FOR ALL

PROPOSED LINKS

PROV : SULAWESI SELATAN

KAB : GOWA

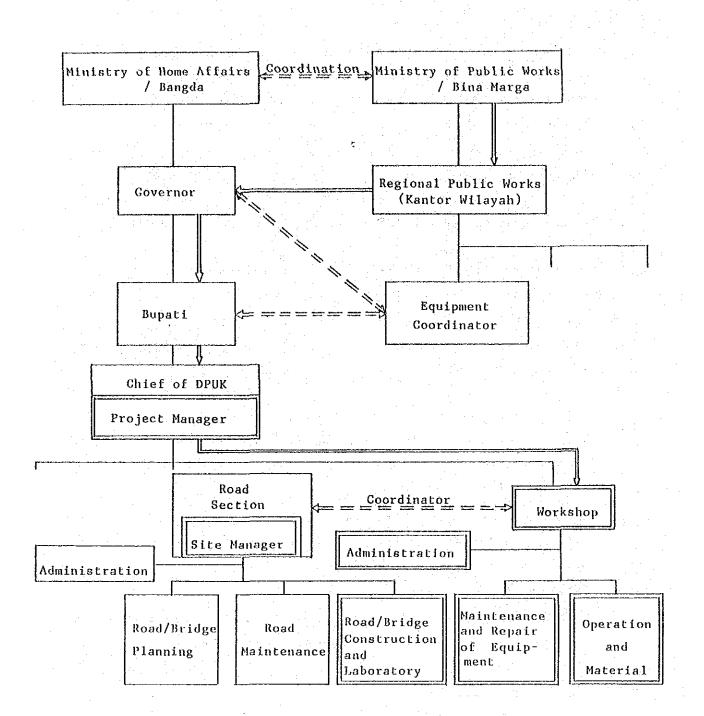
ITEN	UNIT	< 1909 >	(1989)	(1990)	(1991)	< 1992 >	< TOTAL
Site Clearance in Light Bush	a2	0.00	9000.00	21000.00	2500.00	64000.00	96500.0
Subgrade Preparation	#2	54240.00	189781.00	171800.00	305500.00	278000.00	999821.0
Normal Fill	s]	0.00	210.00	490.00	0.00	0.00	700.0
Fill in Snapp	#3	500.30	4.20	0.00	0.00	0.00	504.5
Normal Excavation to Spoil	m3	662.00	3747.00	4807.00	3585.00	4844.00	17645.0
Gub Base Course	a 3 .	5028.00	15907.00	17964.00	23930.00	25524.40	88353.
ase Course	a]	2520.00	8653.00	10712.00	9750.00	5760.00	37395.0
Shoulder	s2	62500.00	114400.00	130600.00	148000.00	154000.00	609500.
Isphalt Patching	a 2	729.00	464.00	71.00	0.00	0.00	1264.
Surface Dressing (Single)		56000.00	77000.00	56000.00	0,00	0.00	187000.
iurface Dressing (Double)	a2	0.00	0.00	0.00	0.00	0.00	0,
arth Drain		2800.00	9200.00	3200.00	19300.00	45600.00	80100.
arth Orain in Swamp (by machine)		2400.00	60.00	0.00	0.00	0.00	2460.
ipe Culvert D80cm		2.00	18.80	10.20	0.00	127.00	158.
asonry Culvert (B0xB0cm)	-	26.00	0.00	0.00	36.00	6.00	69.
Retaining Wall and Wing Wall (Timber)	A 2	0,00	0.00	0.00	0,00	0.00	0.
letaining Wall and Wing Wall (Masonry)	23	1.50	9.00	21.00	2,90	22.40	56.
abion Protection	.3	0.00	0.00	0.00	0,00	0.00	0.
uperstructure (Timber;Span 3m;10T)	a2	0.00	0.00	0.00	0.00	12.00	12.
uperstructure (Himber;Span Sm;101)	#2	0.00	4.20	9.80	274.40	34.00	322.
uperstructure (Timber;Span 8m;10T)	#2	0.00	42.00	98.00	544.00	0.00	684.
uperstructure (limber;Span 3#;BN50)	±2	0.00	0.00	0.00	0.00	0.00	0.
uperstructure (Timber;Span 5m;0H50)	#2	0.00	0.00	0.00	0.00	0,00	0
uperstructure (limber;Span 8m;8H50)	2	0.00	0.00	0.00	0.00	0.00	0.
operstructure (Concrete;Span 3#;8H50)	#2	0.00	0.00	0.00	0.00	0.00	0.
uperstructure (Concrete;Span 5m;BH50)	#2	0.00	0.00	0.00	0.00	0.00	0.
uperstructure (Concrete;Span Bm;PH50)	#2	0,00	0.00	0.00	0.00	0.00	. 0.
uperstructure (Concrete;Span10#;BM50)	#2	0,00	0.00	0.00	0.00	0.00	0.
uperstructure (Concrete;Span15a;BHSO)	*2	0.00	0.00	0.00	0.00	0.00	Ŭ.
ubstructure (Pier;for limber;101)	NO	0.00	0.60	1.40	18.00	0.00	20.
ubstructure (Abut;for limber;101)	NO	0.00	2,40	5.60	28.00	6.00	42
ubstructure (Pier;for Timber;0H50)	HO	0.00	0.00	0.00	0.00	0.00	0.
ubstructure (Abut;for Timber;BH50)	KO	0.00	0.00	0.00	0.00	0.00	0.
ubstructure (Pierifor Concrete;8H50)	NO	0.00	0.00	0.00	0.00	0.00	0.
ubstructure (Abut;for Concrete;BNSO)	KÖ	0.00	0.00	0:00	0.00	0.00	0
emolition of Bridge (Timber-)Timber)	a?	0.00	4.20	9.80	174.40	11.25	199.
evolition of Bridge (lisber-)Concrete)	#2	0.00	0.00	0.00	0.00	0.00	0.
enolition of Bridge (Concrete)	#2	0.00	0.00	0.00	0.00	0.00	0.
anual routine maintenance of road	Kn	151.50	300.00	304,50	333.00	344.00	1433.
outine maintenance of earth road	Ke	47.50	83.00	74.50	55.00	27.50	289.
outine maintenance of gravel road	Ko	78.00	159.50	156.00	192.00	220.50	614.
outine maintenance of asphalt road	Ke	26.00	57.50	74.00	86.00	85.00	329.
aintenance of Timber Bridge (New)	s2	0.00	0.00	0.00	0.00	154.00	154
aintenance of Concrete Bridge (New)	•2	0,00	0.00	0.00	0.00	0.00	0
laintenance of Timber Bridge (Exist)	n2	26.13	52.25	52.25	66.25	60.63	257
laintenance of Concrete Bridge (Exist)	A2	1163.33	2231.70	2326.15	2413.90	2486.33	10621

6.2 Organization and Construction System

6.2.1 Organization

The Bupati as head of the Kabupaten has been authorized by Law No. 13, 1980 as an official responsible for the Local Road Development Project implementation. This means that the DPUK is considered as a responsible agency for the actual execution of the Project.

According to instruction letter dated June 24, 1982 Ref. No. 620/975-/BANGDA, the Project Manager appointed by the Bupati will be responsible for the operation and maintenance of the equipment. Accordingly the Equipment Coordinator appointed from the staff of the Regional Public Works (Kantor Wilayah) by Bina Marga as a coordinator between the Governor and the Bupati will be responsible for delivery, effectual utilization and maintenance of the equipment.


The standard organization of DPUK consists of a minimum of four sections, i.e. Road Section, Housing and City Planning Section, Irrigation Section and Administration Section. For execution of Project it the is strongly recommended that the structural organization of DPUK is established. It will be necessary not only to organize new sections but also to reorganize the current structure through a review of the roles and responsibilities of each inter-related section.

It is recommended that the workshop is newly organized to consist of three sub-sections, i.e. maintenance and repair of equipment, operation and materials, and administration to execute the main tasks described in Clause 3.5.

The sub-section of laboratory would be under the relevant Road Section. The proposed organization is shown in Fig. 6-2-1.

6.2.2 Construction System

For the construction of Kabupaten roads with a ten year effective design life, it has been recommended in Clause 3.4 that the equipment intensive method should be adopted for earth work and pavement work with the exception of surface dressing. PROPOSED ORGANIZATION

Equipment delivery flow

JĮ

: New position/subsection

Current road construction in the Kabupatens is obliged to rely upon the traditional labour intensive method. It is therefore assumed that both the DPUK and the local contractors in the Kabupatens do not have sufficient experience and technique for the equipment intensive method of road construction.

For realization of the Local Road Development Project the GOI has ensured availability of the required human resources of DPUK and intends to conduct training programmes for those human resources as described in Clause 8.3 of the Main Report. This means that the GOI intends the Kabupatens to have the ability to execute the Project by force account (Swakelola).

It should be recognized from the experiences in the first local road project, which was assisted by OECF, ADB and IBRD, that because of their poor construction management and traditional labour intensive methods most of the road construction by local contractors could not be completed within the contract periods. Therefore execution of the road improvement by force account is desirable as recommended from their experience by the consultants for the first local road project.

It is strongly recommended that except for labourers the staff of the force account team should not be hired by the day as it would then not be able to consolidate the foundations for development of self reliability.

However, it will be very difficult to execute all the Projects by force account because of the need for many Kabupaten staff. The GOI has emphasized the need to promote the employment of local weak contractors in order to up-grade their capability in the road project schemes within the Fourth Five-Year Plan (REPELITA)

Taking into consideration the conditions mentioned above it is strongly recommended that the DPUK is obliged to lend some equipment with skilled operators to the local contractors in the Kabupatens for the execution of a part of the road improvement works.

30-72

The types of work executed only by force account are recommended as follows:

- Routine maintenance work for the Kabupaten roads
- Laboratory tests
- Production of crushed stone
- Technical service for the equipment