REPUBLIC OF INDONÉSIA MINISTRY OF PUBLIC WORKS DIRECTORATE GENERAL OF HIGHWAYS

THE FEASIBILITY STUDY OF THE LOCAL ROAD DEVELOPMENT IN THE REPUBLIC OF INDONESIA

KABUPATEN REPORT 16

KABUPATEN BULUNGAN

MARCH 1986

JAPAN INTERNATIONAL COOPERATION AGENCY

No. 7

REPUBLIC OF INDONESIA MINISTRY OF PUBLIC WORKS DIRECTORATE GENERAL OF HIGHWAYS

THE FEASIBILITY STUDY OF THE LOCAL ROAD DEVELOPMENT IN THE REPUBLIC OF INDONESIA

KABUPATEN REPORT 16

KABUPATEN BULUNGAN

MARCH 1986

JAPAN INTERNATIONAL COOPERATION AGENCY

	E	際協力導	国業司
	受入 月日	87. 5. 21	108
	 登録 No.	16439	61.4 SDF
· · · · ·			

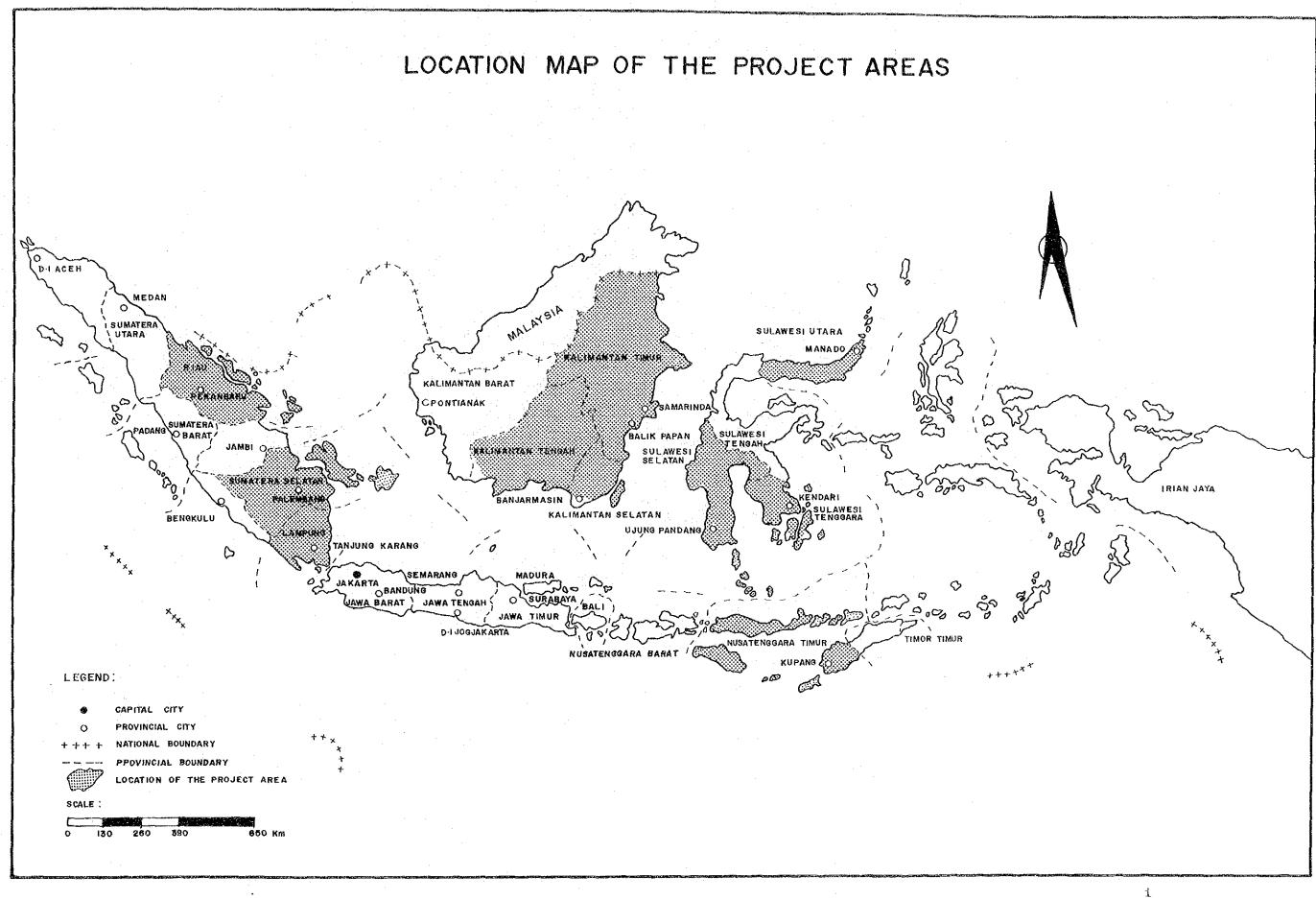
-

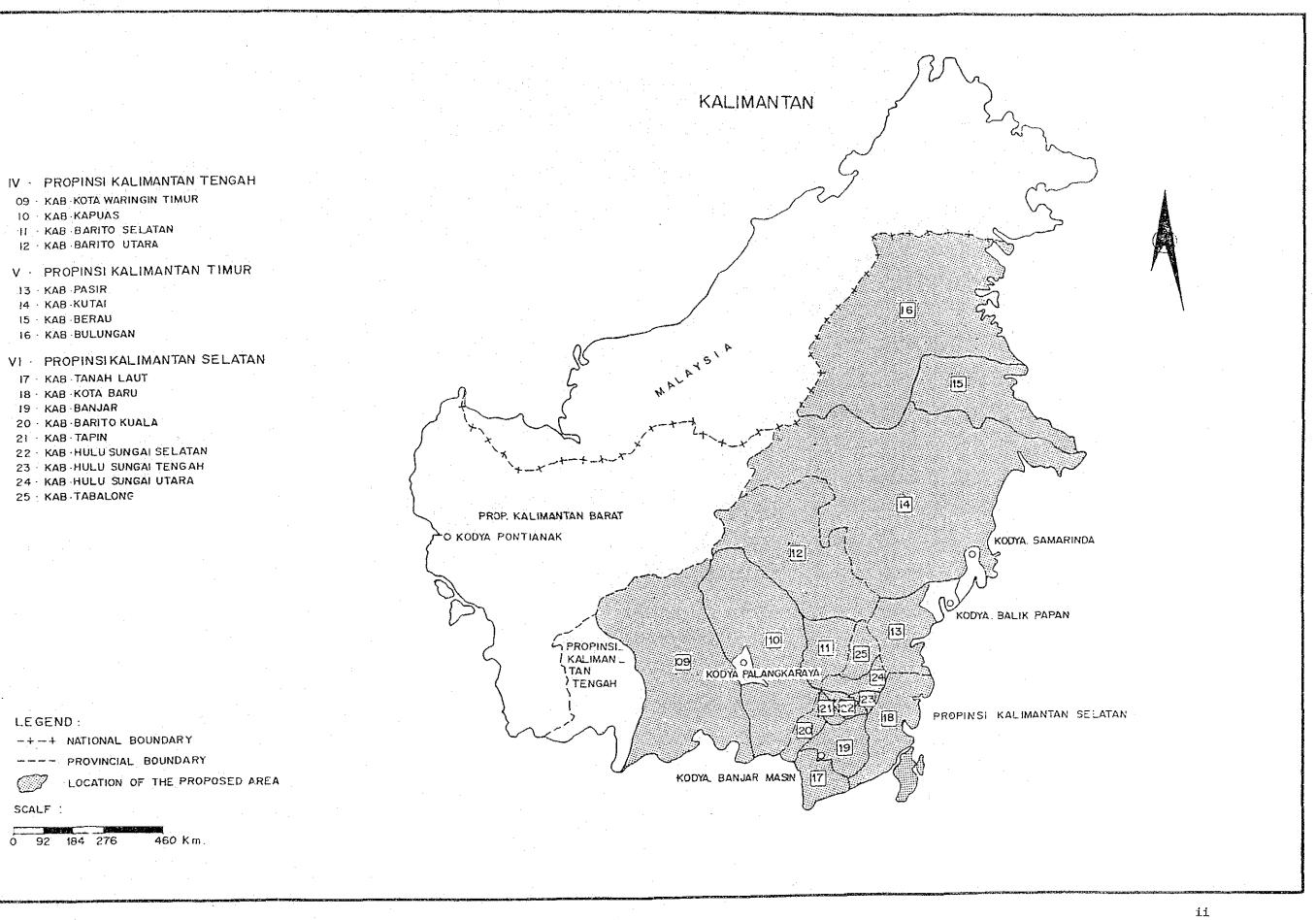
• •

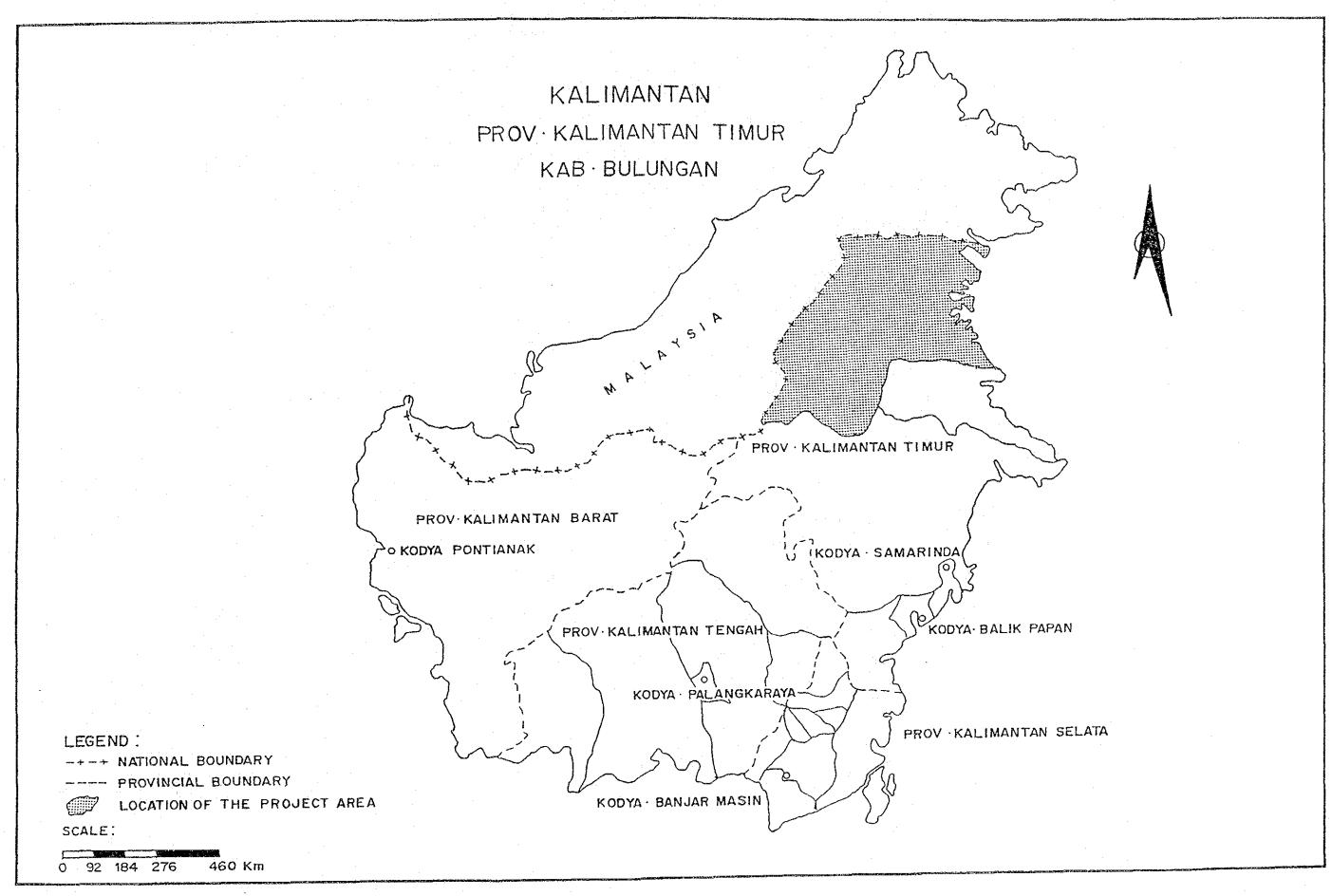
E	際協力率	國業团
受入 月日	87. 5. 21	108
登録 No.	16439	61.4 SDF

PREFACE

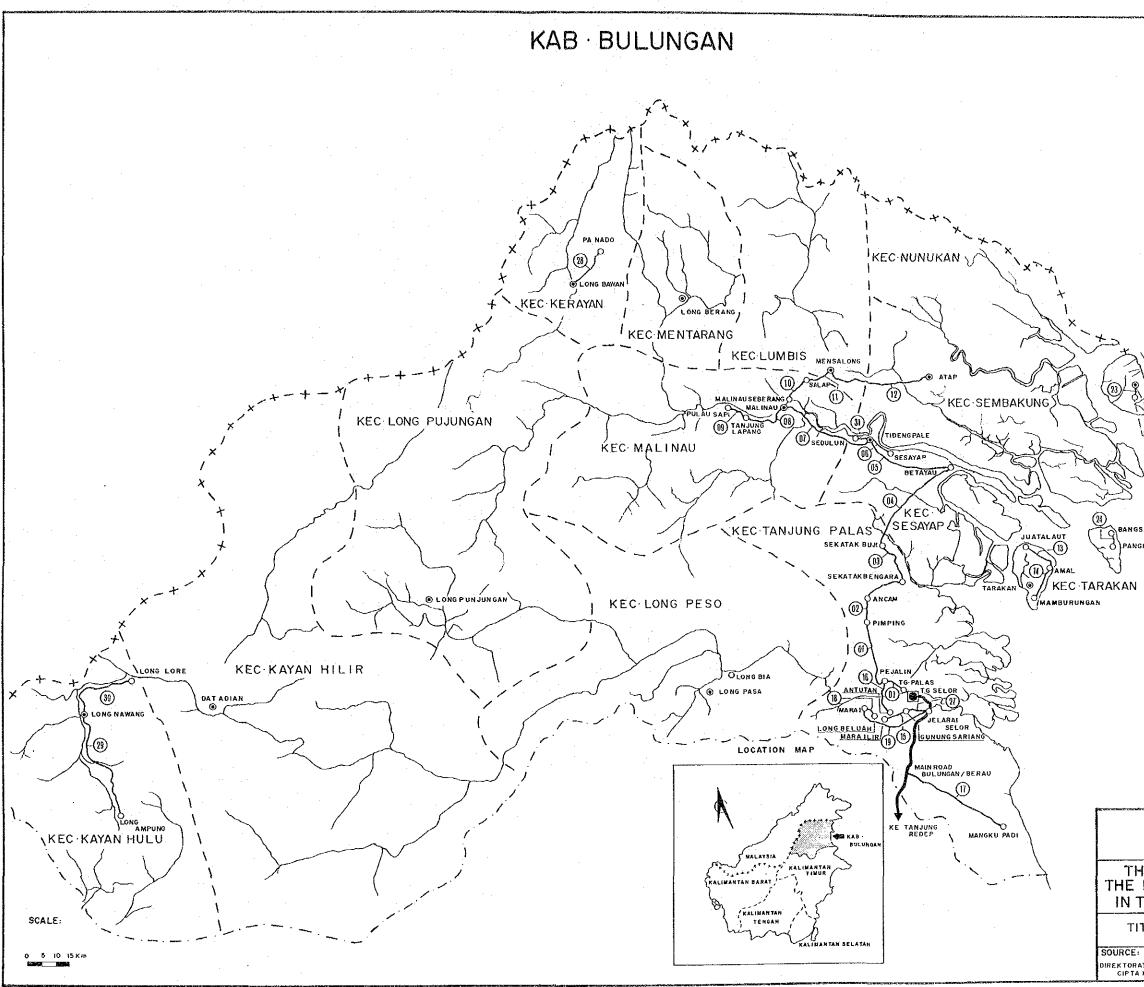
This is the Kabupaten Report of the Feasibility Study of the Local Road Development in the Republic of Indonesia for Kabupaten Bulungan in Kalimantan Timur Province. The report has been prepared by the Study Team of the Japan International Cooperation Agency (hereinafter called JICA).


Based upon a request from the Government of Indonesia, the Government of Japan arranged for JICA to conduct the Study and JICA accordingly organized a Study Team. The study was carried out using data which were generally prepared by the Kabupaten, routed through the province, under the instructions of Bina Marga of the Ministry of Public Works and Bangda of the Ministry of Home Affairs.


Since the study period was limited, without cooperation of Bina Marga, Bangda and local governments of both province and Kabupaten in collecting the data, the study would not have been completed within the period.


The report consists of the results of the feasibility study and proposed implementation programme of the local road development in the Kabupaten.

The simplified economic feasibility evaluation methodology utilized for the study was established by the Study Team in Phase I Study through a pilot study of seven (7) model Kabupatens, and is described in the Main Report.


The purpose of the study for the Kabupaten is mainly to estimate the total Project Cost for the local road development but only limited data is available for study base. Therefore a detailed survey and design for the improvement of the Kabupaten roads should be carried out before commencing the Project together with a review of this report.

	L.M-16/38
(1) (1) SU NUNUKAN IELISUN	UNGAI PANCANG JNGAT NYAMUK NGAT TAIWAN
LTENGAH	
ALAN BUNYU	
LEGEND :	
ALAN BUNYU	KABUPATEN CAPITAL Kecamatan capital
LEGEND :	
LEGEND :	KECAMATAN CAPITAL Other City Link Number
ALAN BUNYU LEGEND :	KECAMATAN CAPITAL OTHER CITY Link Number National Boundary
LEGEND :	KECAMATAN CAPITAL OTHER CITY Link Number National Boundary Kabupaten Boundary
ALAN BUNYU LEGEND :	KECAMATAN CAPITAL OTHER CITY Link Number National Boundary
ALAN BUNYU LEGEND : 	KECAMATAN CAPITAL OTHER CITY LINK NUMBER NATIONAL BOUNDARY KABUPATEN BOUNDARY KECAMATAN BOUNDARY NATIONAL ROAD FROVINCIAL ROAD
ALAN BUNYU LEGEND	KECAMATAN CAPITAL OTHER CITY LINK NUMBER National Boundary Kabupaten Boundary Kecamatan Boundary National Road Provincial Road Kabupaten Road Village Road
ALAN BUNYU LEGEND	KECAMATAN CAPITAL OTHER CITY LINK NUMBER National Boundary Kabupaten Boundary Kecamatan Boundary National Road Provincial Road Kabupaten Road
ALAN BUNYU LEGEND	KECAMATAN CAPITAL OTHER CITY LINK NUMBER National Boundary Kabupaten Boundary Kecamatan Boundary National Road Provincial Road Kabupaten Road Village Road
ALAN BUNYU LEGEND	KECAMATAN CAPITAL OTHER CITY LINK NUMBER National Boundary Kabupaten Boundary Kecamatan Boundary National Road Provincial Road Kabupaten Road Village Road
ALAN BUNYU LEGEND	KECAMATAN CAPITAL OTHER CITY LINK NUMBER National Boundary Kabupaten Boundary Kecamatan Boundary National Road Provincial Road Kabupaten Road Village Road
ALAN BUNYU LEGEND :	KECAMATAN CAPITAL OTHER CITY LINK NUMBER NATIONAL BOUNDARY KABUPATEN BOUNDARY NATIONAL ROAD PROVINCIAL ROAD YILLAGE ROAD RIVER BILITY STUDY OF
ALAN BUNYU LEGEND : 0 3 -+-+- E FEASI OCAL R	KECAMATAN CAPITAL OTHER CITY LINK NUMBER NATIONAL BOUNDARY KABUPATEN BOUNDARY NATIONAL ROAD PROVINCIAL ROAD YILLAGE ROAD RIVER BILITY STUDY OF OAD DEVELOPMENT
ALAN BUNYU LEGEND : 0 3 -+-+- E FEASI OCAL R HE REPU	KECAMATAN CAPITAL OTHER CITY LINK NUMBER NATIONAL BOUNDARY KABUPATEN BOUNDARY KECAMATAN BOUNDARY NATIONAL ROAD PROVINCIAL ROAD KABUPATEN ROAD VILLAGE ROAD RIVER
ALAN BUNYU	KECAMATAN CAPITAL OTHER CITY LINK NUMBER NATIONAL BOUNDARY KABUPATEN BOUNDARY NATIONAL ROAD PROVINCIAL ROAD YILLAGE ROAD RIVER BILITY STUDY OF OAD DEVELOPMENT

: :				
. · ·				
м. -	· · · ·		CONTENTS	
PRE	FACE			
Che	pter l	BACKGR	OUND OF THE KABUPATEN	
:	- · ·	1	aphic and Meteorological Conditions	16 1
	ل ە.		Location and Topography	
			Meteorological Conditions	
	•		· 사람은 이 사람이 있는 사람은 사람들은 것은 아파 가장	
	1	1000 - Alfred 1944	Economic Conditions	
	· · ·	1.2.1 1.2.2	Population Land Use	
		1.2.3	Agriculture	
	- -	1.2.4	Other Economic Activities	
	•			
	. 1	· · · · · · · · · · · · · · · · · · ·	t Status of Kabupaten Roads	
		· · · · ·	Outline of Road Networks	
		1.3.2	Road Inventory Bridge Inventory	
		•	Traffic	
		1.514		10-22
Cha	pter 2	ESTIMA	FIONS OF FUTURE TRAFFIC VOLUME AND BENEFIT	
	2	.1 Future	Traffic Volume	16-23
			Traffic Growth Rate	
		2.1.2	Present and Future Traffic Volume	16-24
	2	.2 Benefi	E	16-26
		2.2.1	Benefit Estimation Method	16-26
		2.2.2	Benefit	16-28
		· .		
Cha	npter 3	ENGINE	ERING	. · ·
	· · · 3	.1 Design	Criteria and Specification	16-29
		3.1.1	Geometric Design Criteria	16-29
		3.1.2	Loading Specification	16-29
	3	.2 Pavemen	nt Design	16-32
		1.1	Design Conditions	
		3.2.2	Pavement Structure	16-33
	3	.3 Design	of Bridges and Other Structures	16-34
		-	Standard Bridge	
			i	

¢

									. · · · · ·		n in pro- na in the transformed and the t
			3.3.2	Other	Struci	tures	••••	• • • • • • •			16-36
		3.4	Select	ion of	Equip	nent I	ypes			* * * * * * *	16-39
			3.4.1	Points Select	to be	e Cons	idered	for the			1640
			3.4.2	Combin	ation	s of E	Squipmen nance	t for M	ajor		
		3.5	Worksh	on and	Labor	atory					16-43
				· · · · ·	11 B. M. M.	ta serie de la composición de la compos	upaten	1. A. 18 (1997)	100 B 100		
			3.5.2				nt and T				
			3.5.3								
						e .	di je		· .		
Chapter	4						ANCE CO				
		4.1	Unit P	rice	••••						16-46
						· .					
			4.1.2	Unit P	rice	of Mat	cerials				16-47
			4.1.3	Hourly	Equi	pment	Cost				16-48
		4.2	Unit C	onstruc	tion	Cost l	oy Work	Туре			16-49
							Bridges				
						· · ·					· · · · ·
Chapter	5						SIBILITY				•
•		5.1	Prelim	inary S	creen	ing .				*****	16-51
		5.2									
•					-						
		i de la composición de la comp					is				
			5.2.3	Rankir	ng of i	Feasil	ole Road	Links			16~52
Chapter	6		IMPLEM	ENTATIO)N PRO	GRAMMI	3				· .
	•	6.1	Implem				* * * * * * *				
			6.1.1	-							
			6.1.2	Propos	sed Ro	ad Lin	nks				16-55
			6.1.3				ion and				16-59
			6.1.4	Constr Equipr	nent C	n and ost .	Mainten	ance			16-62
			6.1.5				• • • • • • • • •				
			6.1.6	Quanti	ities	by Wo	rk Type				16-65

íí

. .

6.2	Organization and Construction System	L6-67
	6.2.1 Organization J	1667
	6.2.2 Construction System	16-67
Appendix A-1	Input Data for Estimation of the Producer's Surplus Benefit	16-A-1
A-2	Engineering Data	16-A-2
	Construction and Maintenance Cost for Proposed Road Links	16-A-18
	Constrution and Maintenance Quantities for all Proposed Road Links	16-A-26
	Construction and Maintenance Costs for all Proposed Road Links	16-A-29
A-6	Quantities of Bridges on Proposed Road Links	16-A-32
	Construction and Maintenance Cost of Bridges on Proposed Road Links	16-A-33

Chapter 1 BACKGROUND OF THE KABUPATEN

1.1 Topographic and Meteorological Conditions

1.1.1 Location and Topography

Bulungan is the northernmost Kabupaten in Kalimantan Timur Province. It is directly bordered on the northwest by the Sabah and Serawak Provinces of the Republic of Malaysia, on the south by Kabupatens Kutai and Berau, and on the east faces the Sulawesi Sea.

The central and southern areas of the Kabupaten are mountainous districts covering approximately 70 to 80 percent of the total Kabupaten area. Their ridges stretch from the west national boundary through to the south Kabupaten boundary. In the rest of the Kabupaten several river basins shape flat plains and form low swampy areas on the river mounths. From the north the Sebuku, the Sembakung, the Sesayap, the Sekatak and Kayan Rivers flow into the Sulawesi Sea. In the waters around the estuaries of the rivers such as the Sebuku, the Sembakung and the Sesayap several islands are formed. Of these the islands of Bunju and Tarakan both produce oils, while Subatik and Nunukan are busy in trade with the Sabah province of Malaysia. The national boundary crosses in an eastwest direction in the centre of Subatik Island.

The area of the Kabupaten is about 64,000 square kilometers, approximately 32 percent of the total of Kalimantan Timur Province. It consists administratively of 13 Kecamatans.

1.1.2 Meteorological Conditions

The average number of rainy days and the average amount of yearly rainfall in Kabupaten Bulungan are 94 days and 1,452 mm respectively. The number of working days per year, which is necessary for planning the construction schedule in chapter 6, is estimated at 250 days using the following formula based upon the data shown in the table referred to above.

Working Days = 365 - Holidays - Rainy Days + (Rainy Days Days x(Holiday) + (0.10 x Rainy Days) 365

Where :

- Holidays consist of 52 Sundays and 13 national holidays; and

- 10% of rainy days are assumed to be workable days.

1 Kalimantan Timur STA Bulungan 1 9 8 0 1 9 8 1 (mm) (mm) (mm)

I

16-3

1.2 Socio-Economic Conditions

1.2.1 Population

The population of Kabupaten Bulungan in 1984 was 198,570 which was approximately 13.1% of the 1,518,800 total population of Kalimantan Timur Province as shown in Table 1-2-1.

The population density was 0.03 persons per ha which was lower than the provincial density of 0.07 and indicates the underpopulation of the Kabupaten becuase it is a vast area in a remote regional.

The recent annual average growth rate of population of the Kabupaten is 5.0% which is almost the same as the provincial rate of 5.7% and higher than the national rate of 2.2%. This may be a result of the on-going transmigration programme and development of oil bases in the Kabupaten.

The population of each Kecamatan and its proportion to the Kabupaten population is shown in Table 1-2-2.

Table 1-2-1

-1

POPULATION BY KABUPATEN

DESCRIPTION	POPULATION	AAGR (%)	AREA (ha)	POPULATION DENSITY (persons/ha)	SURVEY YEAR
KABUPATEN:	· · · · · · · · · · · · · · · · · · ·				
PASIR	94,620	4.5	2,004,000	0.05	1984
KUTAI	440,129	6.3	9,102,700	0.05	1983
BERAU	48,900	4.3	3,270,000	0.01	1984
BULUNGAN	198,570	5.0	6,400,000	0.03	1984
PROVINCE:		•			
KALIMANTAN TIMUR	1,362,800		20,244,000		1982
	1,438,700	5.7	20,244,000	0.07	1983
	1,518,800		20,244,000		1984
JAWA IS. (Excluding					
DKI JAKARTA)	91,126,900	1.7	13,159,700	6.92	-
INDONESIA	161,579,500	2.2	191,944,300	0.84	-

Notes :

1. Sources:

Kabupaten; Kabupaten concerned with the study

Province ; Jawa and Indonesia:

Statistical yearbook of Indonesia 1984, published by the Central statistics Bureau.

2. AAGR ; Average Annual Growth Rate.

	25,113
 	198,570

PROVINCE : KALIMANTAN TIMUR KABUPATEN : BULUNGAN		
KECAMATAN	POPULATION	PROPORTION (%)
KAYAN HULU	4,964	2.5
KAYAN HILIR	834	0.4
LONG PUJUNGAN	3,447	1.7
MALINAU	18,105	9.1
LONG PESO	6,714	3.4
TANJUNG PALAS	36,108	18.2
TARAKAN	73,918	37.2
SESAYAP	6,182	3.1
SEMBAKUNG	6,210	3.2
MENTARANG	2,430	1.2
KERAYAN	8,920	4.5
LUMBIS	5,625	2.8
NUNUKAN	25,113	12.7
TOTAL	198,570	100

Table 1-2-2

POPULATION BY KECAMATAN

Year : 1984

1.2.2 Land Use

In Kabupaten Bulungan, 32,766 ha of the current available land use area, which is approximately 0.5% of the 6,765,000 ha total area of the Kabupaten, is used for living purposes and for industrial activity of the inhabitants of the Kabupaten. It is the total value of columns (1) through (6) in Table 1-2-3.

The current available land use area consists of 29,974 ha of agricultural harvest area and 2,792 ha of residential area which are 92.5% and 8.5% of the current available land use area respectively.

The agricultural harvest area consists of 20,697 ha of paddy field, 2,785 ha of plantation and 6,492 ha of other cultivated area which are 69.0%, 9.3% and 21.7% of the agricultural harvest area respectively.

It can be realized from the land use that the main industrial production in the Kabupaten is food crops, especially paddy.

Table 1-2-3

LAND USE

PROVINCE - KALIMANTAN TIMUR

KABUPATEN	WET PADDY FIELD	UPLAND PADDY OTHER FIELD TIVATED	OTHER GUL- IIVATED AREA	:	RESIDENTIAL AREA	PLANTATION RESIDENTIAL USABLE OPEN RIVER & FORESIRY AREA AREA SPACE LAKE AREA	RIVER & LAKE	FORESTRY AREA	OTHERS	OTHERS TOTAL AREA	SURVEY YEAR
PASIR	7,881 (0.4)	19,666 (1.0)		21,557 (1.1)	3,204 (0.2)	ľ	32,685 (1-6)	32,685 1,038,033 880,974 (1.6) (51.8) (44.0)	880,974 (44-0)	2,004,000 (100)	1984
ту 1.6-7		52,400 (0.6)	94,000 (1.0))	25,000 (0.3)	45,300 (0.5)		34,500 8,831,500 20,000 (0.4) (97.0) (0.2)	20,000 (0.2)	9,102,700 (100)	1982
BERAU	I	ľ	•	. 1	I	1	I	,1	1	. 1	- ∦
BULUNGAN	7,203 (0.1)	13,494 (0.2)	6,492 (0.1)	2,785 (0.04)	2,792 (0.04)	•	-	- 6,732,000 225 (99.5) (0.003)	225 (0.003)	(100) (100)	1982

Notes :

The value in () denotes the proportion
 Source : Kabupaten concerned with the study

.

1.2.3 Agriculture

The cultivated area and food crop production in Kabupaten Bulungan in 1984 were 22,006 ha and 68,353 ton respectively as shown in Table 1-2-4. Of food crops, the area and production of paddy, which consists of wet paddy and upland paddy, was 18,482 ha and 56,633 ton respectively which are 84% and 82.8% of the total food crops. The yield rate of paddy production is 3.06 ton per ha. Thus, paddy is the most predominant agricultural crop of the Kabupaten.

As the table shows, average annual growth rates of area and production of paddy in 1979 through 1984 were 3.7% and 16.5% respectively which indicate favorable development of the paddy production. It is desirable for future paddy production that the existing wet paddy fields and paddy fields which can yield twice a year are increased through the development of irrigation.

The commodity crops are produced in the plantations. The area and production of plantation crops in 1983 were 2,954 ha and 465 ton respectively with current growth rates of 17.0% and 9.5% as shown in Table 1-2-5. Thus the plantation crop which is exported is an important agricultural product. Some changes are expected considering the international balance of supply and demand.

The population of the agricultural sector which is assumed from the employment in the Kabupaten is 75% of the total population as shown in Table 1-2-6. Thus this is an agricultural Kabupaten.

Future agricultural development is desirable by increasing the cultivated area for food crops suitable for future demand in a scheme of forestry development linked to the transmigration programme.

16-8

KABUPATEN : BULUNGAN

				EAR			<u>(ha)</u> AAGR
ITEM	1979	1980	1981	1982	1983	1984	(%)
PADDY	15,390	16,690	16,730	20,731	17,220	18,482	
OTHERS	1,082	1,667	1,682	1,532	3,506	3,524	
TOTAL	16,472	18,357	18,357	22,263	20,726	22,006	
		· · · · · · · · · · · · · · · · · · ·		······································			
· .			PRODUCTI	ON			
							(ton)
			YI	EAR			AAGR
ITEM	1979	1980	1981	1982	1983	1984	(%)
PADDY	26,433	31,649	32,829	23,582	34,639	56,633	
OTHERS	4,600	5,863	6,237	5,756	10,780	11,720	
TOTAL	31,033	37,512	39,066	29,338	45,419	68,353	
				· .	······	· · · ·	
			YIELD RA	TE			
						(to	on/ha)
			Y.	EAR			AAGR
ITEM	1979	1980	1981	1982	1983	1984	(%)
PADDY	1.72	1.90	1.96	1,14	2.01	3.06	

CULTIVATED AREA

Notes :

1. AAGR : Average annual growth rate

2. Source : Kabupaten concerned with the study

Table 1-2-5AREA AND PRODUCTION OF PLANTATION CROPS
Year : 1983

KABUPATEN		AREA	PRODUCTION	Α	AGR (%)
	·	(ha)	(ton)	AREA	PRODUCTION
PASIR		10,021	4,645	0.7	0
KUTAI	7	-		_	
BERAU	÷.,	6,814	3,771	17.5	28.7
BULUNGAN	÷	2,954	465	17.0	9.5

Table 1-2-6POPULATION OF AGRICULTURAL SECTOR

PROVINCE : KALIMANTAN TIMUR

KABUPATEN	AGRICULTURAL SECTOR	TOTAL POPULATION	PROPORTION (%)	AAGR (%)	SURVEY Year
PASIR	83,000	94,620	87.6	4.5	1984
KUTAI	358,000	440,129	81.4	6.0	1982
BERAU	37,000	48,900	76.1	5.4	1984
BULUNGAN	149,000	198,570	75.2	5.5	1984

Notes :

1. AAGR : Average annual growth rate

2. Source : Kabupaten concerned with the Study

1.2.4 Other Economic Activities

Notable economic activities excluding agriculture in Kabupaten Bulungan are fishery, livestock, forestry and petroleum sectors. The fishery and the livestock sectors, among the above sectors, are based upon the local investment capital in the Kabupaten. Then the following table show their current growth rates.

	1980	1984	AAGR (%)
Catch (ton)	14,746	15,965	2.0
	1980	1984	AAGR (%)
Livestock	614	5,032	70.0

Yearly approx. the catch of 14,000 tons and the livestock of 4,000 tons excluding the consumption of the Kabupaten itself are respectively exported out of the Kabupaten. Both sectors are intending to increase renarkably as shown in the above tables.

And the following tables show the current growth of the forestry and the petroleum productions. Timber production indicates a high growth tendency.

· · · ·	1980	1984	<u>AAGR (%)</u>
Timber production (m^3)	92,094	282,045	32.3
	1980	1984	AAGR (%)
Petroleum production (ton)	679,800	889,353	7.0

Notes : 1. AAGR : Average annual growth rate 2. Source : Kabupaten data

1.3 Present Status of Kabupaten Roads

1.3.1 Outline of Road Networks

In Kabupaten Bulungan there is one provincial road which leads to T.G. Selor, the Kabupaten capital, from the south neighbouring Kabupaten Berau. A Kabupaten road runs toward the north along the east coastal areas of the Kabupaten, and then along the route of the Sesayapo river.

Only the areas along the Kabupaten road form a flat area. Besides the above Kabupaten road, Kabupaten roads are developed in both Sebalik and Tarakan Islands.

1.3.2 Road Inventory

From the road inventory data prepared by the Kabupaten, the number and total length of Kabupaten roads to be studied in Kabupaten Bulungan are confirmed as 51 links and 522 Km respectively. These figures exclude Kabupaten roads with no data.

According to the data the present status of the Kabupaten roads is as follows:

(1) Density of Kabupaten Roads

The density of the Kabupaten roads is 0.08 m per ha. This is distinctly lower than the national density of 0.48 m per ha and far lower than 2.11 m per ha which is the density in Jawa Island, excluding DKI Jakarta, as shown in the following table. Thus, the Kabupaten lags behind in density of Kabupaten roads.

	Total Length (km)	Area (ha)	Density (m/ha)
Kabupaten : Bulungan	522	6,400,000	0.08
Province : Kalimantan Timur	1,340	20,776,700	0.06
Jawa Is.(Excluding DKI Jakarta)	27,715	13,159,700	2.11

Indonesia

Notes : 1. The value for the province is the total value for the Kabupatens included in the study.

> 2. The sources of data are as follows: Kabupaten and Province : Bina Marga Inventory Jawa and Indonesia : Statistical Yearbook of Indonesia 1984, published by the Central Statistics

Bureau

92,038 191,944,300

0.48

(2) Kabupaten Road Surface Type

The type of surface on the Kabupaten roads in the Kabupaten is shown in Table 1-3-1.

The legend used in the table is as follows:

ASP : Asphalt

16-13

Table 1-3-1 EXISTING ROAD LENGTH BY SURFACE TYPE

									÷		÷.,							(Kn)									:				÷.,			(Ke)
102 (17	1	1 14 1	1 NI		4 - 4	KNK	1	ļ	L	1		ASP	1		818	1	IUINL	í		Ī	102 (71	1	1111	1	KRK	1	LiL		ASP 1	010	11	UTAL
LINK				1	1		24	1		****	ï			1			1	25	1		- 1	EINK	 77	1	 j	1	•••••	1		j.			j	7
LINK		2		12	1		20			•	1			ł			I					LINK						Í.		1	1	i ''''	Ł	- 14
LINK		3								24				I						,		LINK				1		ì		t.			Ì.	20
LIIK		4		24	1	•	• .	ſ			4		•	ŧ				-24				1. A. A. A.	30		22		t = -t	i	19.10	1	'	1	ſ	22
148		5 i	t	12				ł			÷			ł			ł	12				LINK			2			Ì		ł	1	1 .	Ļ	2
INK		6	È	17	! !			1		••	Ì	'		1			ï	12				LINK	32			1		ł		I.	2		ŧ.	;
IHK		7			I			Į			1	2		ł			ł		ł			LINK				i	• •	ŧ	· 1	Ľ	<i>.</i>		Ì.	
1NK		8		13				ł			1			1			I	13				LINK				1		1		Ł	2	1	ł	
lik	. '	9			ł		3	ł			1			1			ł	· · 3	1			LINK	35	-	1.1	f		ſ	2	ŧ		1.	ł.	1
HIK	ł	0	L.	7	t	:	15	ł			1				• 1		1	15	ł	:		LIIK	36	ł		1		t		ŧ.	. 3	1 2	L	. 1
HK	1	1		- 16	1			1			ł			ł			l	16	ł		1	LINK	37	ł		ł		1	-	Ł	ł	t .	1	
1HK					1						t			1			I	43	1		1	LINK	30	1	2	1		1		I.		l I	L	
HIK	ļ	3					31				1			ł			۱	37	۱		1	LIIK	37	l	l	ł		ł		I.		1	1	
UIX,				. (ł			ł			ł			ł		ł		1	L HIK	10	ł		ł		ł		ł		ł	ł	
HIK	1	5: 1	l <u>.</u>	- 16	1		24	1			ł			1		1	l	40	I			LINK	41	1		ł		ł	1			I	t	
IHK				1				t			ł			ł			l	ł				LIAK	42			1		t		ł	•		1	
HK	Ľ	7		23				I			F			1			I	23							-	1		1		1	_	•	1	
IIK				15	1						ł			ł					ł			UNK	44			-1		1	•	ŀ	-		1	
HK	ł	7			l						ł			1			ł		-			FHX	45			1.		1		1			ł	
HIK			-				20				ł			ł			1					ETAK	46			1		ł		1			1	
IHK							15				ł			1		- ¹ -			-			LINK	47			1		ł	,	1		1 I	1	
HIK					i			-		•	l			1			1	15				E THK	49				•	. † 1	1	1	с	1	1	
1NK	-	3					3				ļ			1			1	. 3	-								• •	1		•		1 1	ì	
1111				-	1		÷							;			1	10				L L L L L L L L L L L L L L L L L L L				1 		1		1	4	1	i	
INK				1				1		1	1			1			1	5 7								51			÷ .	ì			i	
1118	2	6	i	1	1			ł			I			1			ł		ŧ			L L L L L L L L L L L L L L L L L L L				1		ł	·	ł	1	•	ł	
																			•	•	-	1 101	 1 A F		161	 	164		 זה	 1	19	1 1	:- 	52

16-14

. .

KRK : Gravel/Stone/Telford/Water Bound Macadam

TNH : Earth

LL : Others

Comparison of the proportion of surface type in the Kabupaten with other regions is as follows:

	ASP	KRK	TNH/LL
Kabupaten : Bulungan	3.4	32.7	63.9
Province : Kalimantan Timur	5.8	37.5	56.7
Jawa Is.(Excluding DKI Jakarta)	56.2	25.0	18.8
Indonesia	26.0	26.6	47.4

Thus, in the Kabupaten the proportion of Kabupaten roads with asphalt surface is much lower than either that of Indonesia or of Jawa Island. The proportion of low grade roads such as earth roads and others is distinctly high. This means that the road classification in the Kabupaten is low.

(3) Surface Condition of Kabupaten Roads

The surface condition of the Kabupaten roads classified as good, fair, poor and bad which are shown as BA, SD, RU and RB respectively, are summarized in Table 1-3-2.

Comparison of the proportions of the various surface conditions of the Kabupaten roads in the Kabupaten with other regions is as follows:

	Good	<u>Fair</u>	Poor	Bad
Kabupaten : Bulungan	56.1	25.7	15.1	3.1
Province : Kalimantan Timur	38.1 -	29.7	23.2	9.0
Jawa Is.(Excluding DKI Jakarta)	45.6	29.8	19.6	5.0
Indonesia	43.5	21.8	21.1	13.6

Table 1-3-2EXISTING ROAD CONDITION BY SURFACE TYPE

PROVINCE : KALIMANTAN TIMUR

KABUPATEN : BULUNGAN

			; BU																••••••		
02 (<u>7</u> 1							KRI				Ĺ.			i - 1	ASP			 .+)) 	ð 	
02	1	BA I	50 I		RØ I		SD I	RU	RS	I RA	1 50 1	RU	I AB	1 01 1	t SD I	RU 1	RÐ	1 8A 1	50	RŲ 1	RB
IHK I		97.1		11												. 1	.			1	
18X 2		1		33 1				!		1	1			1					· · ·		
184、3		. 1		50 I						1	1 10 1	10	\$ 1	• •		. 1			i i	i	
.18X - 4 18K - 5		t 1		30 1			· 1			1 - E -	1 1		1	1	i	1			i	i	
168 6		i		50 1			i		1	, t	1		1	i	ie i	i				1	
18X - 7		1 I				i i	i		-	i	i		ł i	1	i i		- 11	1	1	1	
IKK 8		70 1		9 i			11	. 1		i	i i		i i	Í .	1	1		l I	. t	1	
	i.	1	1	1			15 1	10	5	1	1		t : 1	É. P	1 1	1	• .	1 . j	1	- E I	
INK 10		· 1	. 1	· · -		1 90 1	i 10 1	1		1 .	1 1	ł	1	1	1 I	1		1	1 · · · · • I	- 1	
IRK (LT	1	78 1	21	1	1 ⁻ . 1	1.1	1			ł	t I	1	ł.	1	t – s I	1.1		1	: I	1	
INK 12	1	. t	20 1	50 t	30 1	t .1	1	. 1	l	1.	I .	1	i .	1	1 1	1		1		t	
INK 13	1	1	1	I	1 1	i 90 i	10 1	· 1	L	ŧ.	:	t i	1	1	1 1	· · ·]		1		I	
IKK 14		I	70	30 1	l 1	1	1	. 1	t i	Her Ter	1	1	t' -	I	1 1	1	1.1	1		. 1	
NK 15	t	<i>10</i> (15 (i 01 i	5	1 70 1	15 [f0 (5	4	1	I '	ł	1	(I	. 1		1		1	
XK 15	1	. I	90 I	. 40 I		l 1	· 1	· 1		ł	1	·	1	t		I		1			
LKK 17	1	ŧ	1	99 1	1 I I	F - 1	- 1	1	l	l –	•	l.	1	1	I 4	·		 1		1 I	
RK 18		1	70 i	30 1		1 - 1	1 - J. 1	. !	Ļ.	1	1	1	I .	La la la		· • •		Į .			
INK 19		l	1	1	l' I	1 1	1	1	l	1.00	1		t i	1 (E.)				l, -			
XK 20		1	- 1	- 1	l .				}	\$	I	1	1	1	t j	· . 1		1			
版 21		·· •				90		· 1	l	t.	1	l'	1	ļ							
HK 22		1		10 1		1 1	- 1 C - 2		l.,	1. J.	1	3	1	1	1 1			<u>.</u>			
RK 23		- 1		I				· .		1	I		1	1	1 1						
XK 24		50 1		10 1			-		1	1	1			1.	1. I	: !		4			
INK 25		70		101				10	5	1 70	1 15	1 10	1 9	i .	1 1			•			
IKK 26		77		13 1						4 -	ļ	1	1	1	1 ł	1		1			
INK 27		1		90 1					н.,	1.0	1	5	1	£ .				1 4		1 1	
1KK 28		50 I		25						1	1	1	1	1				, ,	1		
IXX 29		. 1 6A 1		50 1		• •	1		i	1	:	4 ·	:	1						i i	
NK 30		50 I 87 I		10 1		• •		1	1	3 4	1	* 1	1	1.				1.			
IRK 31 18K 32		8/1					1	1		1		L	1 1	1 75	1 10 1	5	10	ì			
INK 33		i	1	ţ				,	l I	1	i 70	1 30	1	1 10	1 1			í í		i i	
NX 34					1	• •		:	ł	1	1 10		ì	1 50	ં ગાં	20		i	1	i 1	
INK 35		1		1				•		95	i 5		1	i	1			i	i	i i	
IKK 36			i	i		 1 1		- 1		1	i	•	i	1 85	1 14 1		1	1 99	1 1	1	ł
IKK 37		· 1	i			i i	i	•		i -	i	i ·	i	1 10			l i	1 1	1 · .	t .	
HK 10		50 İ	40 İ	10 1	i i	1 1	i	. 1		1	i –	1	È	1	1 1	1	1	1	t :	1	
NK 17		99 I		1		i ı	- F			i la l	1 .		1	-) ·) I	(t	1	l :		
8X 10	1	99	11	1		ŧ., I		1	1	1 N.	L	ł	1	1	1 1	. 1	1	I I	I	t j	
RK 41	1	1	. 1	· 1	1 - 1		4		Ι.	1 70	1 20	t 10	1	1	1 1	t	<u>ا</u> ا	1 .	1	1 1	
IK 42	1	30 I	70 1	1 I.	L	1 1	8		11111	I.	1	L i s	I Č	1 11	1 1 17 1	5	1 2	1.1	1 -	1 1	
IKX 43	1	70 t	30 1	- 1	1.1	1 1	1	1	1	1	1	ł	1	1	1 1	.	ł	1	I .	i	
HK 11		ł	1	ļ	I		· • • •		1 · ·	I I	1	1	1	1 . 10	1 30 1		l .	1	1	ł	
HK 45	1	1	1.	1	1		1	ł		1	1	1	1	1			1	1 99			
XX 15		1	1	ł		1			l	1	1	Į	1	1	1		1.	1 65			1
KX 17		1	1	1						1	1		1	1	1 1		I	1 99		1	i
HK 48		. !		<u> </u>			1			1	1 50	1 50	1.	1	£ - 1		i I	۲ ۱	1	1	6 1
KX 19		10 1				5 I	. !		1	1	1	1	;	1 .					1	ι. Ι	
HK 50 HV 51		99 1				1 I I I	. I		1	* 1 ·	1	* }	1	1 74	1 161		 0	1	1	:	
NX 51		1. 103			22					;	2.1	1 7	:		1 101				ł		
KK 52 KK 53	4	1	I,	1			ļ	. 1		1	i i	i		1 99						; ;	Ì
VERASE	1		33 f																	1 1	
LENGIN	1		303	Ke i		t	164	Ka -		ł	. 3	0 Ke		1.1	16	i Ka		1	7	Ko	
(Ka)			106 1																		

The surface condition level of the Kabupaten roads in the Kabupaten is higher than both that of Indonesia and of Jawa Island. The proportion in good condition is relatively high. It seems that road maintenance in the Kabupaten is carried out diligently in spite of the low asphalted portion.

(4) Terrain Conditions of Kabupaten Roads

The difficulty of road improvement is mainly dependent upon the terrain conditions.

The terrain conditions of the Kabupaten roads, classified as flat, hilly, mountainous and swampy which are shown as DT, BK, GN and RW, are summarized in Table 1-3-3.

The proportions of terrain conditions in the Kabupaten are 31.0% flat, 48.0% hilly, 20.0% mountainous and 1.0% swampy.

1.3.3 Bridge Inventory

A bridge inventory showing the existing condition of bridges on the Kabupaten roads in Kabupaten Bulungan was prepared by the Kabupaten.

The bridges types are classfied as timber, concrete, steel and others which are shown in the inventory as KY, BT, BJ and LL respectively.

The inventory shown in Table 1-3-5 indicates a total of 84 bridges with a total length of 1,118 m of which 82 or 97.6% are timber, and 1 or 1.2% are others. Eight bridges with a total length of 228 m are required to be newly constructed.
 Table 1-3-3
 EXISTING ROAD LENGTH BY TERRAIN CONDITION

, - ⁻

I LINK IA I

1 LINK 16 1

I LINK IB I

I LINK 17 I

1 LINK 20 1

1 LINK 21 1

I LINK 22 |

I LINK 23 I .

LINK 24 1

I LINK 25 1

1 LINK 26 L

1 LINK 27 1

I LINK 20 1

1 LINK 17 1

1 LINK 15 1 0 3 L

KAB 1 BULUNGAN PROV 1 KALIHANTAN TIHUR a station and (Ka) BK T OT I GN I RN I 10TAL I 1 102 (3) 1 . ***** ------- **4 1** - ²² 1 - 24 1 1 LINK 1 1 21 1 25 1 1. 1. 1. ILINK 21 32 1 ł 32 1 I LINK 3 I 24 t 1 1 24 1 1 LINK 4 1 24 1 1 11 1 24 1 12 1 1 1 1 1 1 1 ILINK 51 1 12 1 i I . LINK 61 12 1 121 ÷ - 1 LINK 71 1 1 1 13 1 1 1 3 1 1 1 15 1 1 1 9 1 7 1 I LINK 91 ł 13 1 I LINK 9 F 1 31 I LINK TO I 1 15 1 I LINK II I 1 161. 1 1 LINK 12 1 .43 1 1 1 43 1 1 I LINK 13 I 1 37 1 37 1 1

4-1

1

1

2 i j

ł

15 1

1

10 1

21

11

ł

ł

21

1

35 1

23 1

15 1

20 1

4.

1

- 1

- E

1

5 F.

ł

ł

1 15 1

<u>t</u>

. 1

. 1

1

31

1.

3.1

6.1

7.1

14 1

1

1

Ł

Ł

Ł

1 20 1

1

ł.

1

Ł

1 15 1

31

10 1

1 . 71

51

71

14 1

1 15 1 1

11

73 1

15 1

1 J

401-

1 11

	•								1		that.	
	102 1	3)	1.	OĶ	- I	DI	1	GN	RW	1	TOTAL	1
1	LINK	27	1	20	1		ł		**** * ****	1	20	
		30		177 1	1		ŧ	22	f.	ł	22	
	LINK	31	÷.	. 1	1	1	ł		t		2	1
	LINK	32	÷		1	1	Ŧ	1 J.	Í	1	2	1
į.		33	į.	1	1		Ð		1 - ¹	1	-1	
ŀ	LINK	34	1	-	1	2	ł		1	1	2	
Ŧ	LĴNK	35	1	• • •	1	1. E.	ŧ		1 2	1	2	
	LINK	36	Ŧ		1	3	1	2	1	1	5	
	LINK	37	1		1	1	ł		t	ŧ	1	
	LINK	38	ŀ		Ŧ	2	t		1:	ł	2	
t	LINK	39	ŧ		ł		1	1	1	ł	ŧ	
ł	L 1HK	40	I		I	1	ł		1	ł	I	
Ł	LINK	41	ŧ		ł		ł		1	1	· 1	
ł	LINK	42	ł		1	4	ł		1	t	ł	
ļ	LINK	43	t		ł	- 1	ł	•	t en co	١	· 1	
ŀ	LINK	.44	ł	· *	J.	1	ł		1 1	ŧ	2	
t	LIKK	45	Ĩ		ł	1	t	· ·	1	ł	i	
I	LINK	46	ł	·	1	3	I		[·t	3	
ł	LINK	47	٩Ì		ł	1	ľ	1	ł	1	1	
l	LINK	48	1	· .	1	1	1	1.1	1	÷Ł	1	
Į.	LINK	49	ł	1.	1	i	ł		ŧ.,.,.	I	1	
Ľ	LINK	50	Ì		l	1	I		1	ł	1	
Ľ	LINK	51	ł		١	3	Ì	1	1 i ji	4	- 4	
	LINK	52	Į.		ł	5	ł		t i	ł	5	i.
!	LINK	53	• •		1		1		1	- 1	1	
I	TOT	AL.	ł	252	ļ	161	ł	105	1 3	1	522	
T.	RAT	 1A	1	48	11	31	 .	20	! !		· (X)	

(Ka)

1	6-	.1	8.

Table 1-3-4

PROV : KALIMANTAN TINUR KAB : BULUNGAN

I 2 3 4 5 6 8 10 11 12 13 14 15 16 17		ND. 8 1 1 2 3 3 7 6 2 1 10	LENGTH 1 100.00 1 15.00 1 15.00 1 15.00 1 30.00 1 45.00 1 35.00 1 47.00 1 85.00 1 125.00 1 6.00 1	NO.	LENGTH	0 1 1 2 3 3 7 6	LENGTH 100.00 15.00 15.00 30.00 45.00 35.00 47.00 85.00 60.00 25.00
2 3 4 5 6 8 10 11 12 13 14 15 16		1 1 2 3 3 7 6 2 1	15.00 15.00 30.00 45.00 35.00 47.00 85.00 1 25.00 6.00	4	60.00 I	11233764	15.00 15.00 30.00 45.00 35.00 49.00 85.00 60.00
3 4 5 6 10 11 12 13 14 15 16		1 2 3 7 8 2	15.00 15.00 30.00 45.00 35.00 49.00 85.00 1 25.00 6.00		60.00 I	1 2 3 7 6 4	15.00 15.00 30.00 45.00 35.00 49.00 85.00 60.00
4 5 8 10 11 12 13 14 15 16		1 2 3 3 7 5 2 1	15.00 30.00 45.00 35.00 49.00 85.00 25.00 6.00	4	60.00 I	1 2 3 3 7 6 4	15.00 30.00 45.00 35.00 49.00 85.00 60.00
5 6 8 10 11 12 13 14 15 16		2 3 7 6 2 1	30.00 1 45.00 1 35.00 1 49.00 1 85.00 1 1 25.00 1 6.00 1	4	60.00 I	2 3 7 6 4	30.00 45.00 35.00 49.00 85.00 60.00
6 8 10 11 12 13 14 15 16		3 3 7 6 2 1	45.00 35.00 47.00 85.00 25.00 6.00	4	60.00 I	3 3 7 6 4	45.00 35.00 49.00 85.00 60.00
8 10 11 12 13 14 15 16		3 7 6 2 1	35.00 49.00 85.00 25.00 6.00	4	60.00 I	3 7 6 4	35.00 49,00 85.00 60.00
10 11 12 13 14 15 16		7 6 2 1	49.00 85.00 25.00 6.00	4	60.00	7 6 4	35.00 49,00 85.00 60.00
11 12 13 14 15 16	4 1 4 -	6 2 1	85.00 	4	 	6 4	85.00 60.00
12 13 14 15 16	4 1 4 -	2 1	25.00 6.00	4	60.00 	4	60.00
13 14 15 16	4 1 4 -	ł	25.00 6.00	4	60.00 I		
14 15 16	1 1 -	ł	6.00		1		
15 16	1 -	-					
16		10	ADP AA'S			1	6.00
			125.00		1	10	125.00
17	1	1	25.00		· · · · · · · · · · · · · · · · · · ·	1	25.00
		8	120.00 1		1	- 8	120.00
18	ł			4	168.00 1	4	168.00
20	ł	6	57.00 1		1	6	57.00
21	1	7	68.00 1			7	68.00
22	I	2	30.00 1		1	2	30.00
23	1	2	34.00		· · · · •	2	34.00
25	1	1	12.00 1		1	1	12.00
26	1	1	40.00 1		·	1	40.00
27	ł	1	10.00 1		1		10.00
28	1	3	65,00 1		(3	65.00
29	1	i	40.00 1		1	1	40.00
30	1	2	30.00 1		1	2	30.00
31	İ.	i	5.60 1		1	1	5.60
32	4	i	11.00				11.00
42	1	1	8 70 1		1		8.70
51	ł	l	16.60 1		1	i	16.60

	<<< DRIDGE >>>) [(No)		
;		101			I KYI BJI				11 1 70701		
	1	103-	(18)	i 	К1 	1 مسم	194 •••••••	1 	LL.	1 101HL	. 1
e e e	İ	LINK	()	: [8	1		l ¹		L	1
	ł	E THK	2	1	14 A.	ţ.	• •	1 .		1 1	1
	ł	LINK		T	1	ł		1		1 24	1
Ý.	ł	LINK				12		ŧ.,		1	1
1	Î	LINK	5	ł	2	1	e eta	1		1 2	1
•	ŧ	LINK	6	4	3	1		1		1 3	1
۰ ۲۰	ł	LINK	6	ł	3	1	e' Thi	1		1 3	ł
	ł		10		7	1	114	ţ	1.	1 7	1
	ł	LINK	: 11	1	6	ŧ.,		ł		6	1
	I	LINK	12	1		1	· :	1	÷	i .	1
	ł	LINK	13	4	2	ł		1		; 2	ł
		LINK			1	1	1.11	1		1 1	1.
	Ì	LINK		ł	10	1.		1		1 10	
	ļ	LINK			1		· ·	ł	4	1 1	1
	ł	LINK			8	Ł	. :	1 -		1 8	1
	ì	LINK				11		1		1 2	1
	ł	LINK	20	ł	6	1	н 11 г. С	1		1 6	1
	ł	LINK	21	.1	1			1	ť.	1 7	1
	1	LINK	22	ł	2	1		I		1 . 2	1
	ł	LINK		ł	2	1		1			1
	ł	LIŇK	25	1	1			1		1 1	1
	ł	LINK				Ì	1				
	ì	LINK			. 1	1		1		1 1)
		LINK			3		•	1		1 3	1
		LINK	29	ł				1		1	1
		LINK			2		· ·	1		: 2	
		LINK			ī	1		;			}
	1		32			I.	·	1			
	1	LINK			•	1	· .	1	1		1
•	ł	LINK			1	1		1			
	ľ	то то	TAL	 I	82	1	i	 	1.	1 84	1

Table 1-3-5NUMBER OF EXISTING BRIDGES BY BRIDGE TYPE

The number of existing bridges by span length is as follows:

Bridges Type	<u>(3</u>	<u>(5</u>	<u>\8</u>	<u><10</u>	Span (12	Lengt (14	h (m) (<u>16</u>	<u><18</u>	<u>(20</u>	<u>(99</u>	Total
Timber	2	17	33	2	1	1	20	1	2	3	82
Concrete	-	-	-	-	-	م	-	-	-	-	-
Steel	-	- -	-	4 2 4		1	-	-	-	-	1
Others	1	-	-	-	-	-	-	-	-		1
Total	3	17	33	2	1	2	20	1	2	3	84

Thus, most of the existing bridges on the Kabupaten roads are timber and the majority of spanlengths is less than 3 m.

,

1.3.4 Traffic

Inventories of the average daily traffic (ADT) on the Kabupaten roads in Kabupaten Bulungan were prepared by the Kabupaten and are shown in Chapter 2.

From the inventories, total value of average daily trips by vehicle type and their proportions in the Kabupaten in 1985 are summarized as follows:

	SEDAN	BUS	TRUCK	MOTOR- CYCLE	TOTAL
Total Trips	916	108	519	1,771	3,314
Proportion (%)	27.64	3.26	15.66	53.44	100.00

Source : Bina Marga Inventory

The proportions of registered vehicles by vehicle type are as follows:

·	SEDAN	BUS	TRUCK	MOTOR-	TOTAL
				CYCLE	
Proportion (%)	0	4.97	1 75	93.28	100.00

Source : Kabupaten.

Thus, the proportion of motorcyles in the Kabupaten is by far the highest.

From the above tables the following can be observed:

- Number of total trips might be underestimated

- Proportions are probably reasonable.

Essentially, for estimation of future traffic volumes past and present traffic data together with the trend in the number of registered vehicles are important basic data. However the data obtained for the study was traffic count data for each road link in 1985 and of low reliability.

Therefore the future traffic volumes are estimated by the calculation process recommended in chapter 3 of the Main Report.

Chapter 2 ESTIMATIONS OF FUTURE TRAFFIC VOLUME AND BENEFIT

2.1 Future Traffic Volume

2.1.1 Traffic Growth Rate

The traffic growth rate used for estimation of the future traffic volume on the Kabupaten roads was estimated by the following calculation process.

Growth of Production Basis "A":

Annual Population Growth Growth of the Total of the Kabupaten X Cultivated Area

Growth of Productivity "B" :

Growth of the Total X Growth of the Paddy Paddy Field Area Y Production per ha

Traffic Growth Rate: Initial estimated figure:

 $\overline{GR}^{\dagger} = \sqrt{A X B}$

Traffic Growth Rate GR _Final adjusted figure:

V/GR' X Trend of GDP/Capita of the Province Concerned

Results of the estimation are shown in Table 2-1-1.

Table 2-1-1

TRAFFIC GROWTH RATE ESTIMATION

	سو بلک میں ایک جی جی جی جی جارہ ہے۔ اس بلی ہیں ہیں ہیں ہیں ہیں ایک اس ہیں ہیں ہیں جس سے اس جی جی اس جا ایک ا			
A)	Growth Rate of Population	:	5,00 (%)
E()	Growth Rate of Cultivated Area	2	6.00 (2)
C)	Growth Rate of Rice field	. \$	4.00 (7)
D)	Growth Rate of Rice yield rate	5	10,00 (7.)
E)	Growth Rate of GDP / capita	:	3.90 (%)
 а)	Geometrical Mean (A × B)	a a	5.50 (
а, b)			6.96 (
	Geometrical Mean (C x D)	÷		
c)	Geometrical Mean (a x b)		6.23 (
d) -	Geometrical Mean (c x E)	3	5,06 (7, }

2.1.2 Present and Future Traffic Volume

The future traffic volumes on the Kabupaten roads in 1998 for the Project life time of ten years were estimated by the following formula :

 $Tn = Te (1 + r)^n$

Where :

Tn : Future traffic volume n years later

Te : Traffic volume in 1985

r : Traffic growth rate

The results are shown in Table 2-1-2 together with the traffic volume in 1985.

PROV : KALINANTAN TINUR KAB I BULUKBAN

					1	•	INVE	NTORY (1985)		1			Å		YEARS	(1998)		I CLASS	1
			1 INK	NÖ	 		*******	******	*****	******	ولسع			NØL		53 66 (2 6		TOTAL	******	
		6 4 14													******		*****	101HL		1
				1	11	- 0	0		15					1.0	0	4	29		1110	1
2.		2		2 -	ł	0	<u>,</u>	Û	Û		1		1	0	Ø	0	ð			1
				3 8	1 . 6	Q 0	0	0	0	0	1	5.1%	ł	Ō	0	0	0	0		ļ
			. '	ז 5	1 ·]	0	0	0		- j - 0 ∧	1	5.12	1	0	0	0	0.	0		
				5	•	Ő	· 0	0	0	0		5.12	1	0	Q A	0	0			4
				7	1	ě	. 0		Ŭ.		÷		ł	. 0	0	0	0 0	0	C C	1
	•			9 ·	;	800	50	150	350	1175			÷	1520	- 95	285	665		1-111A	4
				9 9		0	0	0	0	0	i		ì	1020	0	203 ()	0			1
				0	1	0	Ó	0	Ŏ	Ő	i	5.1%	i	ç	0	Û	. 0			1
				ł	1	.0	0	1	2	2	i	5.1%	i	Ō	Ŏ	2	4			
				2	ľ	0	0	0	· · 0	0	i	5.11	i	Ū.	ŏ	0	0			i
					1	0	. 0	. 0	Ö	0	i	5.1%	i	ō	ŏ	Õ	ŏ			1
		· .	1	4		0	0	5	5	- 8	j	5.12	ł	0	ŷ	9	9		1 1110	j
			ł	5	ł	0	Ő	0	0	0	ł	5.17	I	0	Q	Û	Û		1 1110	1
			· 1	6	ł	0	Q	0	0	0	ł	5.17	ł	. 0	0	0	0		1 11IC	1
			-1	7	1	. Q	0	0	Q	0	1	5.12	1	0	0	0	0	0	I HIC	4
				8	1	.0	0	0	0	. 0	1	5.1%	1	0	0	0	0	Q		ł
				•	I.	• 0	. 0	0	Û	0	1	5.17	1	0	0	0	0	0	I THIC	1
				0	1	0	0	0	0	0	1	5.12	1	. 0	0	0		-		1
				-	t .	0	0	0	0	. 0	1	5.17	ų.	0.	0	0	0	0		
				2	ļ	0	0	0	. 0	0	1	5.1%	J.	0	0	0	. 0	0	1.1110	1
			÷	3	ι 1	0	0	. 0	0	0		5.12	ļ	. 0	0	0	0	0		1
				4	1	0	0 50	0	5	350		5.17	1	0	0	0	- 9	6		
				6	4 ·	0	50 0	100	200 5	250	-	5.17	11	0	95 0	190 2.	380	475	1 1118-	1 1
				7	;	. õ	0	0	· 0	0	1	5.11 5.11	1	0	0	0	9 0	8 0	1 111C 1 111C	i I
			2		1	Ū	. 0	0	ŏ	ů 0	1	5.12	1	Ő	Ő	0	. 0	0		1
			2		i	ŏ	ŏ	Ů	õ	ŏ	1	5.1%	i	Ŏ	Õ	ŏ	0	ŏ		1
			3		1	0	Ō	Ó	0	, Q	1	5.1%	i	0	Ō	0 0	Ō	ò	1 1110	i
			3		ŧ	0	0	0	20	10	1		ł	Ō	0	0	39	19		Ì
			3	2	I.	20	0	Ð	20	38	- 1	5.17	Ŧ	38	0	15	38	72	1 1118-	2
			3	3	1	3	0	0	7			5, 17	3	6	0	0	13	13	1 1110	- 1
				4		22	0	9	30			5.12		42	0	15	57		B-	21
				5		0	0	200	700			5.1%		0	0	380	1330			1
			3			20	0	10	40	50		5.17	1	38	0	19	76		1 1119-	
			3		 	8	0.	2	15			5.17		15	0	4	28			1
			3		} }	0 19	0	0	10 10		1			0 35	0	0 4	19 57			1 7 1
					۱. ۱	0	0	2	30 5	36 3	1		. F 	36	0	4 0	57 9	68 6		21
			4		1	° O	0	3	4	5				Ő	Ő	6	, 19			1
			4		, ,	ò	Ō	Ő	10		1			Ö	Ő	õ	19			1
					ł	Ō	Ŏ	Ŏ	200	100			÷	Ő	ç	ŏ	380		1 111B-	
					ł	0	0	0	9		İ		1	Ō	0	0	17	9		1
				-	1	0	0	0	3	2			ł	0	0	0	6	4	1 1110	Ì
			4	f	1	0	0	0	20	10				0	0	0	38		11110	ł
					1	0	. 0	Ó	1	1	ł	5.12		0	0	0	2		I THC	;
					1	0	0	0	2	1	I	5.17		0	0	0	4		1 1110	I
					ł	0	0	0	3	2	1			0	0	0	6			1
					1	0	0	0	7		1			0	0	0	13			
			5		1	15	0 a	5	30	35				28	0	9 01	57			
•				2 3	1	5 4	9 0	20 2	20 3	43		5.1X 5.17	l I	9 0	15	30 4	6 38		1 1118-1	
					4	N 1	U	1		6	- F	J. 14	i	9	0	9	6	13		- [
		·	• 	• •	•	•		-												
		·					3.26						·	27.64			53.44			

.

2.2 Benefit

12*

2.2.1 Benefit Estimation Method

Generally, estimation of the benefit on each Kabupaten road due to the Project was made by analyzing the direct benefit i.e. the VOC reduction benefit, which was estimated by comparing "with project" and "without project" based upon the future traffic volume on the road. However for the following road links it was decided to estimate the indirect benefit through the producer's surplus benefit.

a) Road links with present traffic volume (ADT) less than 60 equivalent 4-wheel vehicles.

b) Road links with no 4-wheel vehicle operation at present.

The indirect benefit was changed into the future traffic volume and the VOC reduction benefit was estimated.

The VOC adopted for the estimation is shown in Table 2-2-1.

	An an an an an an an an an an an an an an				(км)
SURFACE	CONDITION	SEDAN	BUS	TRUCK	MOTORCYCLE
ASPHALT	GOOD	104.7	86.2	85.4	15.9
,	Fair	125.5	101.0	98.0	18.2
	Poor	164.1	135.2	138.5	22.8
	Bad	222.1	202.0	205.0	29.1
GRAVEL	Good	125.7	101.4	102.5	18.5
	Fair	145.0	124.6	127.1	21.1
	Poor	198.6	172.6	178.4	27.1
	Bad	242.7	228.9	231.2	31.8
EARTH	Fair	201.8	180.0	185.1	28.0
	Poor	240.7	218.2	225.8	31.8
• • •	Bad	264.9	278.0	281.7	35.5

Table 2-2-1 VEHICLE OPERAT

VEHICLE OPERATION COST ON KABUPATEN ROADS

Source : Bina Marga

. .

Table 2-2-2

FUTURE TRAFFIC VOLUME ESTIMATED BY THE PRODUCER'S SURPLUS

PROV :

KALIMANTAN TIMUR KAB : BULUNGAN

(1998 >

L'ENK NO	CLASS	SURFACE	MOBIL	BUS	TRUCK	SEPEDA	TOTAL
1	1118-2	KRK	40	6	27	92	127
2	1110-2	KRK	30	- 4	17	50	80
3	1118-2	KRK	37	4	21	72	98
4	111B-2	KRK	27	3	15	52	71
5	111B-2	KRK	22	3	12	42	58
6	IIIC .	KRK	9	1	5	19	24
- 9	THC	KRK	11	1	6	21	29
10	+ HIC-	KRK	18	2	10	35	- 48
- 11 -	1118-2	KRK	24.	3	14	46	64
12	1118-2	KRK	71	9	41	130	190
13	1110	KRK	0	0	0	ð	- 0
~H	1110	KRK	0	0	0	0	0
15	H1B-2	KRK	42	5	24	81	112
16	1118-2	KRK	37	4	21	72	78
17	1118-2	KRK	37	4	21	72	98
18	1119-2	KRK	60	7	- 34 -	116	159
20	IIIB-2	KRK	31	4	19	-60	83
21	1119-2	KRK	31	4	18	60	83
23	HIC	KRK	6	i	4	12	17
24	IIIC	KRK	0	0	0	0	0
27	3111C	KRK	H	1	6	22	29
28	1119-1	ASP	188	22	107	364	499
29	THC	KRK	11	1	6	22	25
30	1110	KRK	15	2	9	29	41
31	1110	KRK	l	0	- i	2	
32	1110	KRK	0	0	0	0	(
33	1110	KRK	0	Ó	0	0	(

2.2.2 Benefit

The benefit estimation was carried out for each Kabupaten road. Table 2-2-3 shows a sample of the result of benefit estimation. In the table "surplus" and "VOC" show the estimation method utilized and III A, III B-1, III B-2 and III C show the road classification.

Table 2-2-3

RESULTS OF BENEFIT ESTIMATION

KABUPATEN : BULUNGAN

(1000Rupiah)

ĩ		1	LINK 1	Ì	LINK 2	ţ	LINK 3	1	LINK 4	1	LINK 5	1	LINK 6	ţ	LINK 8	l	LINK 9	1	LINK IO	1	LINK II	1
1		1	25 Ka	• •	32 Km	1	24 Km	1	24 Ka	1	12 Ke	l	12 Ks	ļ	13 Km	1	3 Ke	ľ	15 Ke	l	16 Ka	ŀ
-			IIIB-2		1118-2	1	1118-2	1	IIIB-2	1	1118-2	1	IIIC	ł	TIIA	I	TÜC	ł	IIIC	1	[]]B-2	ł
-	YEAR		Surplus		Surplus	1	Surplus	 .	Surpius	1	Surplus	1	Surplus	ļ	VOC	1	Surplus	ł	Surplus		Surplus	1
1	1788	 1			0	1	0	 †	0	1	0	1	0	1	0	1	0	1	0	1	. 0	T
	1989		1546		12823		9274		26140	ł	10479	ł	4713	1	621354	ł	205	ŀ	225	ł	11459	I.
	1990		1650		14169		9791	ł	28231	ł	10972	ľ	4713	ł	652486	ł	227	ł	238	1	12497	1
	1991		1788		15111	1	10351	ł	30429	ł	12551	1	5266	ł	685642	Ł	246	ł	241	ł	13535	1
	1992		1895		15662		11128		31535	ł	13044		5759	ł	720248	1	248	ł	267	ł	14090	ŀ
1	1993	ł.	2002		17020		11933		33626	I	13650	Ì.	6259	ł	756461	Ł	268	ł	293	ł	15183	1
ł	1994	Ì.	2145	ł	18415	ł	12493	t	36716	ł	14636	ł	6312	t	794731	1	290	1	320	T	16666	ł
1	1995	ł	2317		19406	1	13759	ł	39856	t	15735	I	6911	1	835451	Ľ	309	1	333	ł	17276	1
ł	1996	1:	2490	I	20800	ł	14024	ł	40961	ł	16728	t	7358	Ł	877264	1	329	1	360	t	18773	1
ł	1997	I	2630	1	22244	ł	15629	ł	44158	I	17327	ł	7857	ł	921649	ł	352	ł	387	ł	20311	1
ł	1998	۱	2038	1	24105	ł	16461	1	47249	ł	19346	1	7910	ł	968534	t	372	1	400	1	21349	1
1	SUN	!	21301	ļ	179755		125643	1	358901	1	144468	1	6295B	1	7833819	1	2846	I	3065	}	161139	}
1	COST		-77597	1	-10454	1	-13105		123188	1	41147	1	-6380	1	4561130	1	-9139	1	-52225		36229	1
ł	/Ka	ł	-3104	1	~327	ł	~546	ł	5133	l	3429	1	-532	l	350856	ţ	-3046	ł	-3482	ł	2264	ł

Chapter 3 ENGINEERING

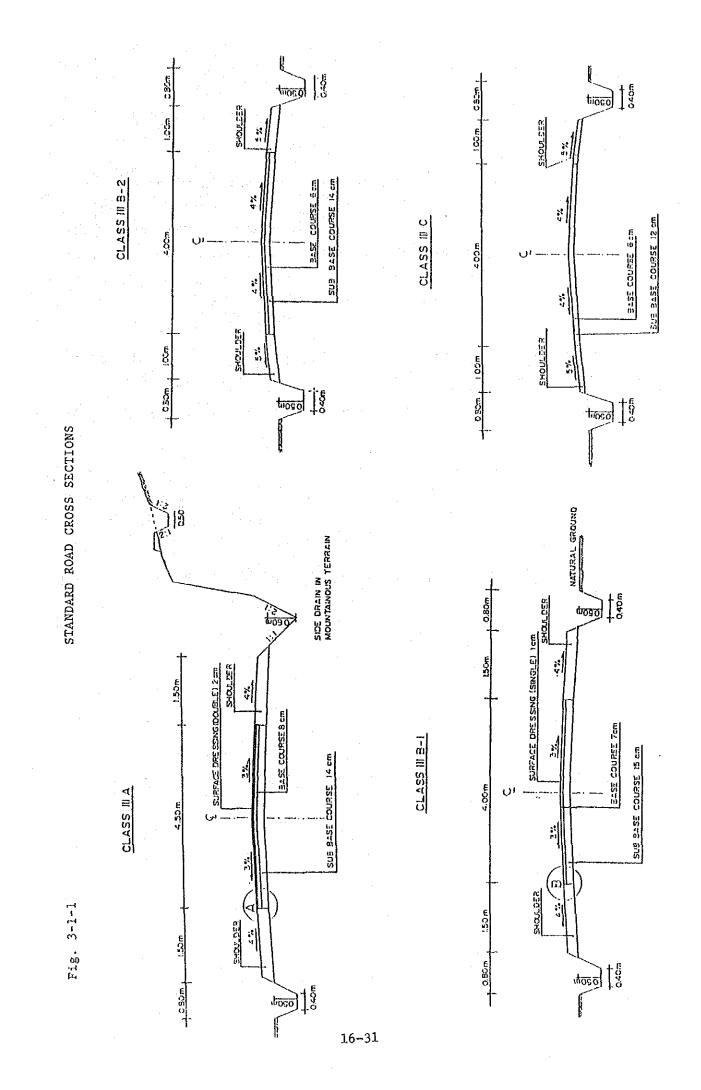
3.1 Design Criteria and Specification

3.1.1 Geometric Design Criteria

Currently a technical standard for improvement of Kabupaten roads i.e. PETUNJUK TEKNIS INPRES PENUNJANGAN JALAN KABUPATEN, TAHUN 1984-1985 is established by Bina Marga.

The geometric design criteria in the above standard are recommended to be adopted in general for the Project. Following discussions with Bina Marga, exceptions to this are allowed for Pavement width and pavement type to minimize the construction cost of the Kabupaten road improvement, if necessary. The geometric design criteria adopted for the Project are shown in Table 3-1-1. The typical cross sections of Kabupaten roads are shown in Fig. 3-1-1.

3.1.2 Loading Specification


The LOADING SPECIFICATIONS FOR HIGHWAY BRIDGES BY DIRECTORATE GENERAL BINA MARGA is used in principle as the basic specification of loading and the TECHNICAL STANDARD FOR KABUPATEN ROADS compiled by Bina Marga shows that the design live load for bridges on Kabupaten roads is 70% of the Bina Marga live road. However, after discussions with Bina Marga the following loads were decided as the design live loads for the standard bridges of Kabupaten roads:

- a. 50% of Bina Marga live load (hereinafter BM 50) is applied for concrete and timber bridges on roads of III A classification.
- b. 10-ton truck load is applied for timber bridges on roads of III B-1, III B-2 and III C classification.

16-29

.

.

3.2 Pavement Design

3.2.1 Design Conditions

From the engineering data prepared by the Kabupaten it is noted that the pavement structure of the Kabupaten roads seems to have been determined without adequate designs, therefore the Kabupaten roads generally have insufficient capacity. The standards generally used for highway pavement design such as Road Note 29, Road Note 31 and AASHTO are not suitable for Kabupaten roads with small traffic volumes and loads.

Therefore formulae suitable for the pavement design of Kabupaten roads are recommended as described in Chapter 5 of the Main Report. The following are important factors for the design of pavement thickness.

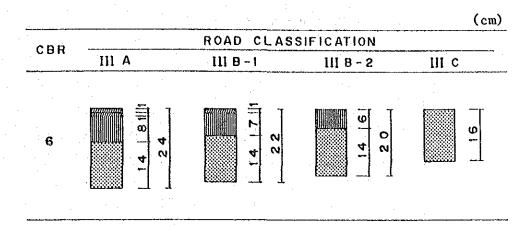
1) Design Traffic Volume

As the pavement thickness is designed for each road classification the design traffic volume of which the target year is 1998, is adopted for each classification as follows:

Road Classification	Design Traffic Volume (vpd)
III A	1,000
III B-1	500
III B-2	200
III C	50

2) Strength of Roadbed

The CBR value of the existing roadbed is a very important factor for the pavement design but no results are available from CBR tests on the Kabupaten roads.


CBR of the laterite is generally in the range of CBR 4 to 10. However site CBR tests should be conducted before construction to finally decide the pavement thickness.

3.2.2 Pavement Structure

Fig. 3-2-1 shows the standard pavement structure adopted for the Kabupaten roads.

Fig. 3-2-1

PAVEMENT STRUCTURE

= SURFACE DRESSING (ASPHALT) = BASE COURSE (CRUSHER · RUN) = SUBBASE COURSE (SANDY GRAVEL)

3.3 Design of Bridges and Other Structures

3.3.1 Standard Bridge

There are so many bridges to be improved or to be newly constructed on the Kabupaten roads in the Project Area that it is very difficult to prepare an individual design for each bridge. Therefore, standardization is recommended as being necessary for the bridge design with conclusions as described below.

(1) Bridge Type

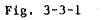
1) Superstructure

A timber beam bridge (hereinafter timber bridge has been finally selected regardless of road classification by the agreement of Bina Marga after studying the actual rurall condition of bridge construction. Fig. 3-3-1 shows the cross section of the standard type.

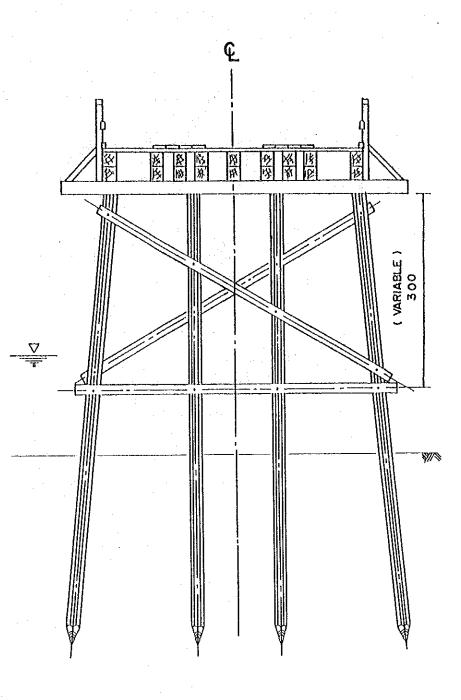
2) Substructure

Taking account of the actual combinations of super and substructure types noted from the field survey, timber pile barts are recommended as standard because of ease of construction and economy.

3) Foundation


There is no information of subsoil conditions in the inventory data. However, timber piles of 20 cm diamenter are generally recommended as piles of this type are in common use.

The pile length is suggested to be a minimum of 3 meters under the bottom of the foundation or river bed.


The length and number of piles should be decided in order to be adequate for the condition of the foundation materials.

(2) Bridge Width

The effective bridge width for the standard bridge has been generally decided as 4.0 m through discussions with Bina Marga and considering the actual width of Kabupaten roads.

CROSS SECTION OF STANDARD BRIDGE TIMBER BRIDGE

(3) Span Length

The range of span lengths are determined as:

Timber bridge: 3.0, 5.0 and 8.0 m

3.3.2 Other Structures

Culverts and retaining walls shown in Fig. 3-3-2 and Fig. 3-3-3 are recommended as standard structures.

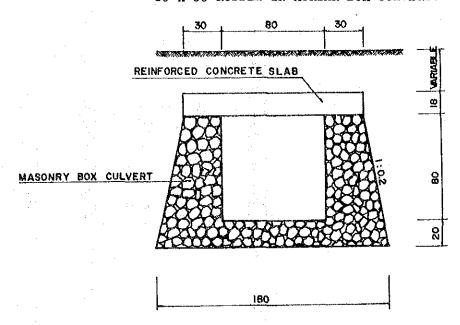
(1) Culvert

The following two culvert types have been adopted for the tranverse drainage.

a) Reinforced concrete pipe culvert Ø 80 cm m

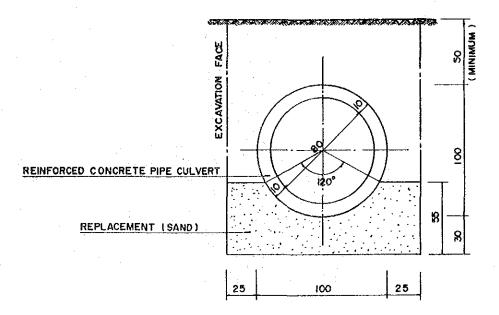
b) Rubble in mortar box culvert with RC slab 80 cm X 80 cm

(2) Retaining Wall

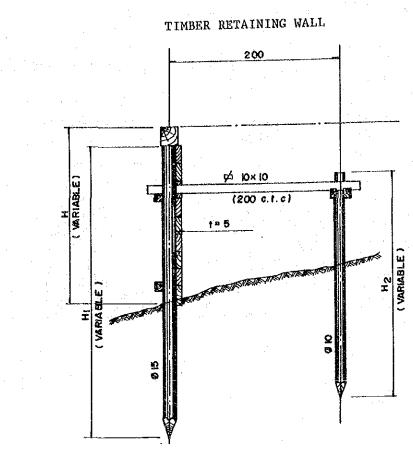

The following two types of retaining walls have been adopted because of ease of construction, economy and familiarity in Indonesia.

a) Rubble in mortar retaining wall

b) Timber retaining wall


Fig. 3-3-2

STANDARD CULVERTS


80 x 80 RUBBLE IN MORTAR BOX CULVERTS

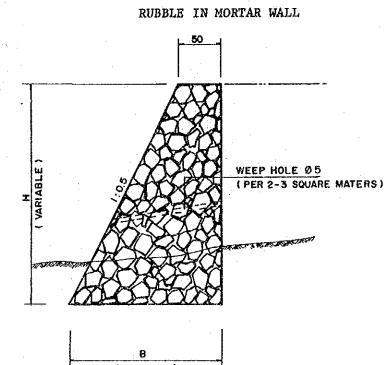

Ø 80 RENFORCED CONCRETE PIPE CULVERT

Fig. 3-3-3

STANDARD RETAINING WALLS

(VARIABLE)

16-38

3.4 Selection of Equipment Types

From the results of comparison of two types of Kabupaten road construction methods, i.e. equipment intensive method and labour intensive method construction methods for major works were basically decided as shown in Table 3-4-1.

Table3-4-1CONSTRUCTION METHODS FOR
MAJOR WORKS

METHOD	 WORK TYPE
Equipment Intensive	Earthwork, Base Course and Subbase Course
Labour Intensive	Surface Dressing, Drainage,
	Bridge and Other Structures.

3.4.1 Points to be Considered for the Selection

Full consideration was given to the following points in studying the selection of equipment type.

- a. Most of the construction in the Project is pavement works for road improvement.
- b. The pavement width adopted is equal to or less than 4.5 m and therefore large sized equipment is omitted from the selection process.
- c. Equipment should be capable of with standing the heavy rainfall and poor soil quality. Equipment for construction in swampy areas is considered if necessary.
- d. Uniformity of equipment types with existing equipment is considered to facilitate repair of the equipment in the provincial work shop.
- e. Since the scale of the construction is small and transportation of equipment will frequently be necessary, wheel type equipment has been selected as much as possible as this can move by itself or by being towed.
- f. The road like to be improved are scattered all over the Kabupatens and therefore a low bed truck or equivalent is necessary for transportation of crawler type equipment. It is desirable to protect the existing pavement from damage caused by the movement of crawler type equipment on the existing roads.
- g. The capacity of the equipment has been decided taking into consideration the construction volume and the combination of equipment in the main work.

3.4.2 Combinations of Equipment for Major Works and Maintenance

The combinations of equipment for major works and maintenance are listed in Table 3-4-2 and 3-4-3 respectively.

Table 3-4-2 EQUIPMENT OF ONE WORK GANG FOR MAJOR TYPES OF WORK

······

TY.	PE OF WORK	EQUIPMENT REQUIRED	
1.	Site Clearing in Light Bush	L- Bulldozer 90 HP 1- Wheel Loader 1.2 m 2- Dump Truck 3.0 Ton	3
2.	Excavation & Embankment		
	i) Normal Fill	L- Bulldozer 90 HP1- Water Tank TruckL- Vibratory Roller 4.04,000 LtrTon (D&T)	
	ii) Fill by Borrow Material	I- Bulldozer 90 HP I- Wheel Loader 1.2 m B- Dump Truck 3.0 Ton	3
	iii) Fill in Swamp	l- Swamp Bulldozer 90 HP 1- Vibratory Roller L- Water Tank Truck 4.0 Ton (D&T) 4,000 Ltr	
	iv) Excavation to		
	Spoil .	l- Bulldozer 90 HP 4- Dump Truck 3.0 Ton L- Wheel Loader 1.2 m ³	
3.	Subgrade Preparation	 Hotor Grader 75 HP Vibratory Roller 4.0 Ton (D&T) I- Water Tank Truck 4,000 Ltr 	
+ .	Subbase Course	- Motor Grader 75 HP l- Water Tank Truck L- Vibratory Roller 4.0 4,000 Ltr Ton (D&T)	
5.	Base Course	 Motor Grader 75 HP Vibratory Roller 4.0 4,000 Ltr Ton Portable Crusher/Screens 30-40 Ton/H 	
5.	Cement Stabilizing	 Motor Grader 70 HP Bulldozer 90 HP Wheel Loader 1.2 m³ Flat Bed Truck 3.0 Ton Water Tank Truck 4,000 Ltr 	
7.	Surface Course	 Asphalt Sprayer 1- Flat Bed Truck 850 Ltr 3.0 Ton Tyre Roller 8-15 Ton Portable Crusher/Screens 30-40 Ton/H 	
3.	Concrete	- Concrete Mixer 0.5 m ³ l- Flat Bed Truck - Water Pump 200 Ltr/Min 3.0 Ton - Concrete Vibrator l- Hand-Guided Vibrate 3.3 HP Roller 1000 Kg	ory

Table 3-4-3	EQUIPMENT C	OF ONE	WORK	GANG	FOR	MAINTENANCE

·	· ·	
Table 3-4-3	EQUIPMENT OF ONE	WORK GANG FOR MAINTENANCE
TYPE OF WORK	<u>, , , , , , , , , , , , , , , , , , , </u>	EQUIPMENT REQUIRED
Road	<u></u>	1- Motor Grader
		1- Tyre Roller 8-15 Ton
		1- Hand-Guided Vibratory Roller 1000 Kg
		1- Flat Bed Truck 3.0 Ton
		1- Dump Truck 3.0 Ton
Bridge and Other	structure	1- Flat Bed Truck With Crane 3.0 Ton

3.5 Workshop and Laboratory

3.5.1 Policy of the Kabupaten Workshop

A workshop will be provided for each Kabupaten. The function of the workshop is to cope with requests from the construction site. The main service will be routine maintenance while the secondary service will be light repairs which can be carried out by changing parts. Dismantling and assembling of units which need setting or adjustment using special equipment or facilities will not be carried out in the Kabupaten workshop. Such repairs are planned to be carried out by the provincial workshop or the regional Workshop of Bina Marga.

Accordingly the main tasks of the Kabupaten workshop are as follows:

- 1) Administration for and storage of equipment
- 2) Routine maintenance and light repair of equipment
- 3) Storage and supply of spare parts
- 4) Operation of equipment including crushing plant.

3.5.2 Workshop Equipment and Tools

Equipment and tools for the workshop are recommended as shown in Table 3-5-1.

Table 3-5-1 WORKSHOP EQUIPMENT AND TOOLS

DESCRIPTION	QUANTITY
Upright Drilling Machine	1 Set
Electric Hand Drill	1
Electric Portable Grinder	1
Disc Grinder	1
Bench Electric Grinder	1
Engineer's Vice	1
DC Electric Welder with Engine	1 Set
Portable Hydraulic Jack, Screw Head	1
Hydraulic Jack	1
Grease Gun	2
Suction Pump for Oil Recovery	2
High Pressure Grease Pump	1

continued

DESCRIPTION	QUANTITY
Drum Opening Spanner	1
Silicon Normal Charger	1
Tyre Changer Air Operated	1
Tyre Service Tool Set	1
Tyre Pressure Gauge	1
Automatic Tyre Inflator	1
Plug Cleaner and Tester	1
Mechanics Tool Set, Heavy Equipment	1
Mechanics Tool Set, Large Vehicle	1
Portable Air Compressor	1
Electric Cord Reel, 15 A, 50 m	1
Oil Measure, Polyethylene	1
Funnel 200 mm, Steel	3
Hand Truck (Cart), 4-Wheel	1
Nylon Sling, 10 ton	2
Chain Block, 1 ton	2 .
Wire Rope (for sling), 1.8 ton	2
Wire Rope (for sling) 3.2 ton	2
Generator	.1

3.5.3 Laboratory

For quality control of construction in the Project it is recommended that a laboratory is provided for each Kabupaten. For each laboratory, provision of laboratory test equipment for the following tests is recommended:

- Physical characteristic, compaction and strength tests for the road bed and pavement materials.
- Slump and strength tests for the bridge concrete.

In the laboratory a fixed water tank should be provided for CBR tests and curing of concrete specimens.

The proposed laboratory equipment is listed in Table 3-5-2.

Table 3-5-2

LABORATORY TEST EQUIPMENT

DESCRIPTION	QUANTITY
Soil Moisture Test Set (JIS Al203)	-1
Liquid Limit Set (JIS A1205)	1
Plastic Limit Set (JIS Al206)	. 1
Compaction Set (JIS A1210)	1
CBR Laboratory Set, Mechanical (JIS A1211)	1
Sand Density Apparatus (JIS A1214)	1
Aggregate Test Sieve Set	- 1
Portable Cone Penetrometer	1
Compression & Bending Test Machine	1
Cylinder Mould (JIS All32, 1108)	9
Slump Test Apparatus (JIS A1101)	2

To conduct the surveys necessary for road and structure construction such as centering, profile leveling, cross section leveling etc., the surveying equipment listed in Table 3-5-3 recommended.

Table 3-5-3

SURVEYING EQUIPMENT

DESCRIPTION	QUANTITY
Transit	1
Level	1
Staff	3

Chapter 4 CONSTRUCTION AND MAINTENANCE COST ESTIMATIONS

4.1 Unit Price

With regard to the unit prices of materials and labor, the data were collected from each Kabupaten through Bina Marga. The collected data were compared with those of Jakarta using BAHAN BANGUNAN DKI-JAKARTA MAY & JUNE 1985 compiled by PUSAT INFORMASI TEHNIK PEMBANGUNAN, and then finalized.

4.1.1 Unit Labour Price

The unit labour prices of Kabupaten Bulungan and other Kabupatens in Kalimantan Timur Province are shown in Table 4-1-1.

Table 4-1-1

UNIT LABOUR PRICE

					- +	
						(Rp)
MAN	SKL	CAP	MAS	LAB	DRIV	OPE
	LAB			·····		
3,500	3,000	4,000	4,000	2,500	3,500	5,000
2,500	2,000	2,500	2,500	1,500	3,000	3,500
2,500	2,000	2,500	2,500	1,500	3,000	3,500
3,000	2,000	2,500	2,500	1,500	2,000	3,500
2,875	2,250	2,875	2,875	1,750	2,875	4,125
	3,500 2,500 2,500 3,000	LAB 3,500 3,000 2,500 2,000 2,500 2,000 3,000 2,000	LAB 3,500 3,000 4,000 2,500 2,000 2,500 2,500 2,000 2,500 3,000 2,000 2,500	LAB 3,500 3,000 4,000 4,000 2,500 2,000 2,500 2,500 2,500 2,000 2,500 2,500 3,000 2,000 2,500 2,500	LAB 3,500 3,000 4,000 4,000 2,500 2,500 2,000 2,500 2,500 1,500 2,500 2,000 2,500 2,500 1,500 3,000 2,000 2,500 2,500 1,500	LAB 3,500 3,000 4,000 4,000 2,500 3,500 2,500 2,000 2,500 2,500 1,500 3,000 2,500 2,000 2,500 2,500 1,500 3,000 3,000 2,000 2,500 2,500 1,500 2,000

Notes :

MAN	;	Mandur
SKL LAB	:	Skilled Labour
CAP	:	Carpenter
MAS	:	Mason
LAB	;	Labourer
DRIV	:	Driver
OPE	:	Operater

4.1.2 Unit Price of Materials

Table 4-1-2 shows the unit price of materials for Kabupaten Bulungan together with for other Kabupatens in Kalimantan Timur Province.

Table 4-1-2

UNIT PRICE OF MATERIALS

			· .			(Rp)
MATERIAL	UNIT	PASIR	KUTAI	BERAU	BULUNGAN	AVERAGE
Bitumen	L	300	400	400	400	375
Asphalt oil	L	600	600	600	600	600
Gasoline	\mathbf{L}	250	250	250	250	250
Sand	M ³	9,000	8,000	4,500	4,500	6,500
Cement	bag	5,000	4,500	6,000	4,500	5,000
River Stone	M ³	13,500	15,000	12,000	15,000	13,875
Steel moulds	Set	8,000	8,000	8,000	8,000	8,000
Timber	M ³	150,000	100,000	100,000	150,000	125,000
Paint	L	3,000	2,000	2,000	2,200	2,250
Reinforcing Steel	Kg	800	1,000	1,000	1,000	950
Tying Wire	Kg	900	1,200	1,200	1,200	1,125
Equivalent Royalty	M ³	250	250	250	250	250

16-47

4.1.3 Hourly Equipment Cost

The hourly equipment cost for Kabupaten is shown in Table 4-1-3.

Table 4-1-3

,

HOURLY EQUIPMENT COST

PROVINCE	2	KALIMANTAN	TIMUR
KABUPATEN	:	BULUNGAN	

		· ·		* * * * * *	(UNIT	1 Rp 1	< 9.8	5 >	
CODE No	EQUIPHENT NAME	CLASS		LOCAL CDSI OPERATION			FOREIGN COST P OPERATION S		TOTAL Cost
	Bulldozer	120 HP	272	24,563	24,835	7,76	1,029	8,798	33,633
	Bulldozer/Ripper	120 HP	298		25,877	8,49	1,583	10,082	35,959
	Swaap Bulldozer	120 HP	311		26.134	8,879	7 1,654	10,533	36.66
	Bulldozer	70 HP	173	17,226	17,399	4,91	650	5,564	22,963
	Bulldozer/Ripper	90 HP	186	•	18,004	5,299		6,286	24,290
	Bulldozer	65 HP	123		12,695	3,499		3,962	16,657
	8ulldozer/Ripper	65 HP	134		13,159	3,819		4,530	17,688
	Swamp Bulldozer	90 HP	195		17 993	5,28		6,260	24,26
	Swamp Bulldozer	65 HP	142		12,478	4,04		4,803	17,28
	Notor Grader	110 HP	243		20,985	6,919		8,208	29,19
	Motor Grader	75 HP	168	• • • • • • • • • • • • • • • • • • • •	14,349	4,77		5,669	20,01
	Motor Grader	65 HP	151		12,512	4,29		5,100	17,64
	Road Stabilizer	¥=1850 mm	301		3,699			9,020	12,71
	Vibratory Roller	4 ton	102		6,477	2,89		3,283	9,76
	Hand-quide Vib. Roller	1000 Kg	17	•	-	849		878	2,03
	Tire Roller	8-15 ton	109		16,241	3,10	5 102	3,208	19,44
	Vibratory Roller (D&T)	4 ton	102		6,477	2,89		3,283	9,76
	Hand-guide Vib. Roller	600 Kg	54		785			620	1,40
	Rough Terrain Crane	10 ton	352		24,688	10,039		10,787	35,47
	Hydraulic Excavator; Wheel	0.3 =3	144	•	15,829	4,10		4,653	20, 4 B
	Wheel Loader	1.2 #3	246		15,075	7,019		7,948	23,02
	Nheel Loader	0.3 B3	80	• •	5,407	2,26		2,569	7,97
	Nater Tank Truck	4000 ltr.	79		6 446	966		988	7,43
	Fuel Tank Truck	4000 ltr.	BÇ		6,454	883		1,004	7,45
	Duap Truck	3.0 tan	133		7,538	1,465		1,673	9,21
÷	Flat Bed Truck with Crane	3.0 ton	61		6,675	1,71		1,843	8,51
	Dump Loader Truck	12 ton	135	•	44,750	3,83		3 964	48,71
	Duep Truck	5.0 ton	198		12,629	2,18		2,494	15,12
	Flat Bed Truck	3.0 ton	20		6,206	563		604	6,81
	Portable Crusher/Screening	30-40 t/h	658		41,405	18,800		21,290	62,69
	Concrete Nixer	0.5 #3	486		3 336	5,400		5,823	9,15
	Water Pump	200 1/min	19		568	180		194	76
	Concrete Vibrator	3.3 HP	7		521	\tilde{n}		75	59
	Asphalt Sprayer	850 ltr.	92		1,293	1,019		1,161	2,45

4.2 Unit Construction Cost by Work Type

4.2.1 All Works Except Bridges

The unit construction costs by work type, excluding bridge construction costs, have been estimated using the combination of equipment described in Clause 3.4 and the unit prices already listed. The results are summarized in Table 4-2-1.

Table 4-2-1 UNIT COST BY WORK TYPE EXCEPT BRIDGE WORK

PROV : KALIMANTAN TIMUR

KAB : BULUNGAN

				(Rp)
ITEH	UNIT	LOCAL	FOREIGN	TOTAL
	ا بن ج ج با نا نا نا نا نا نا ب		**********	
Site Clearance in Light Bush	#2	278	91	369
Subgrade Preparation	a2	35	11°.	46
Normal Fill	#3	2,924	863	3,787
Fill in Swamp	#3	4,067	1,053	
Norgal Excavation to Spoil	#3	1,705	523	2,228
Sub Base Course	e3	5,293		6,641
Base Course	#3	7,317	2,300	9,617
Shoulder	∎2	499	146	645
Asphalt Patching	#2	4,997	1,512	6,509
Surface Dressing (Single)	e2	711	766	1 477
Surface Dressing (Double)	#2	924	1,207	2,131
Earth Drain	·	1,038	117	1,157
Earth Drain in Swamp (by machine)	สวี	2,008	474	2,482
Pipe Culvert D80ca	a	51,840	50,140	101,980
Kasonry Culvert (80x80cm)	6	81,531	40,282	121,813
Retaining Wall and Wing Wall (Timber)	#2	14,144	246	14,390
Retaining Wall and Wing Wall (Nasonry)	#3	60,126	11,602	71,808
Gabion Protection	n 3	20,721	120	20,841
Kanual routine maintenance of road	Ka	165,472	7,248	172,720
Routine maintenance of earth road	Ka	165,184	37,924	203,108
Routine maintenance of gravel road	Ka	329,067	88,092	417,159
Routine salutenance of asphalt road	Ke	499,700	151,200	650,900

4.2.2 Bridges

The unit construction costs by bridge type including the cost of demolition of existing bridges are shown in Table 4-2-2.

Table 4-2-2

BRIDGE COST

PROV : KALIMANTAN TIMUR KAB : BULUNGAN

				(Rp)	
ITEH	UNIT	LOCAL	FOREIGN	TOTAL	
	197 - Anger anger anger an er an bek			,	
Superstructure (Timber;Span 3m;10T)	s2	49,834	3,215	53,049	ef -
perstructure (Timber(Span Sm)101)	\$ 2	55,199	3,550	58,749	
Superstructure (Timber;Span Bm;101)	¢2	73,115	4,655	77,790	
uperstructure (Timber Span 3m BH50)	•2	61,793	3,975	65,768	
Superstructure (Timber;Span 5m;BM50)	m2	67,462	4,309	71,71	•
Superstructure (Tinber;Span 8#;BM50)	a2	85,560	5,455	91,015	÷
Superstructure (Concrete;Span 3%;BN50)	#Z	54,675	105,767	160,442	
Superstructure (Concrete;Span 5m;BM50)	a 2	56,060	118,299	174,359	
Superstructure (Concrete;Span Bm;BM50)	a2	57,678	128,919	186,597	÷
Superstructure (Concrete;Span10#;8H50)	#2	62,984	146,517	209,501	1.
Superstructure (Concrete; Span15m; BH50)	• 6 2	67,745	172,712	240,457	11
Substructure (Pier;for Timber;101)	NO	434,033	29,776	463,809	•
ubstructure (Abutifor Tinber;101)	NO .	1,243,048	143,803	1,386,851	
Substructure (Pier) for Timber; BMSO)	NO	638,325	44,057	682,382	P. L
Substructure (Abut;for Timber;BH50)	NO	1,396,980	159,216	1,556,196	
Substructure (Pier;for Concrete;BH50)	HO	2,390,993	467,275	2,050,260	• •
Substructure (Abut) for Concrete(0850)	NO	5,007,201	982,926	5,990,207	
Demolition of Bridge (Timber-)Timber)	e2	14,125	1,266	15,391	
Demolition of Bridge (Timber-)Concrete)	n2	14,125	1,266	15,391	
Demolition of Orldge (Concrete)	#2	107,156	79,820	186,975	
Naintenance of Tløber Bridge (New)	#2	9,710	1,054	10,764	
Haintenance of Concrete Bridge (New)	u2 .	2,390	3,001	5,381	
Naintenance of Timber Bridge (Exist)	62	11,930	2,370	14,300	•
Haintenance of Concrete Bridge (Exist)	· #2	7,551	2,443	9,994	

Chapter 5 RESULTS OF ECONOMIC FRASIBILITY EVALUATION

5.1 Preliminary Screening

The road links to be improved should be effective for development of the Project Area. The road links where improvements were assumed to be inefficient for development of the Project Area were generally screened out using the following cut-off criteria.

- (1) Very short roads, less than 2 Km long, which have no connection with the trunk road network.
- (2) Roads not connected to the network at any point
- (3) Unpreferred roads, due to poor suitability for transportation compared to other existing alternative roads serving the same purpose.
- (4) Road in good condition according to the Bina Marga road inventory which lists improvement projects carried out in the last two or three years
 - (5) Roads with asphalt surface in good condition
 - (6) Urban roads, except those forming part of a longer route
 - (7) Roads serving single large organizations rather than the general public
- (8) Roads with no inventory data
- (9) Kabupaten roads also assigned as provincial roads

The road links to be screened out in Kabupaten Bulungan are shown in Table 5-1-1.

Table 5-1-1

ROAD LINKS TO BE SCREENED OUT

CRITERIA NO	ROAD LINK NO
(2)	28,29,30
(6)	31,32,33
(8)	07,19,22,25,26,34,35,36,37,38,39,40,41,42,43,44,
	45,46,47,48,49,50,51,52,53

KABHPATEN : BULUNGAN

5.2 Evaluation

5.2.1 Primary Analysis

The Kabupaten roads were classified by using the future traffic volume on the road links in 1998. The primary analysis of the IRR was carried out using the construction and maintenance costs. Road links where IRRs were more than 10% were defined as feasible links. Results of primary analysis are shown in Table 5-2-1.

5.2.2 Secondary Analysis

From the infeasible road links evaluated by the primary analysis, road links where the IRRs were between 1% and 10%, i.e. road links which could become feasible if down graded by one rank, in classification were down graded and the costs re-estimated. Using these costs, a secondary analysis of IRR was carried out. Road links where these IRRs were then more than 10% were also defined as feasible links. This reflected that even though the road classification was rather low the road link should be improved. Results of secondary analysis are shown in Table 5-2-2.

5.2.3 Ranking of Feasible Road Links

From the results of the primary and secondary analysis, road links where the IRRs were more than 10% were selected and their NPVs and B/Cs were estimated. The ranking of feasible road links from the economic evaluation are decided in the order of the NPVs, i.e. the larger the NPV the higher the road link priority as shown in Table 5-2-3.

. H

FF	OVINCE I	KALIMANTAN	TIMUR	KABUPATEN	: BULUNGAN
• • • • • •	LINK NO	LENGTH	CLASS	IRR (%)	REMARK
	Ð	13 Km	IIIA	163.409	VOC
	28	14 Km	IIIB1	33.134	Surplus
	12	43 Km	1118-2	14.119	Surplus
	4	24 Km	IIIB-2	0.078	Surplus
	5	12 Km	1118-2	0.078	Burplus
	.6	12 Km	IIIC	0.078	Surplus
	1	25 Km	IIIB-2	0.078	Surplus
	17	3 Km	IIIC	0.078	Surplus
	10	15 Km	IIIC	0.079	Surplus
	11	16 Km	1118-2	0.078	Surplus
	2	32 Km	1118-2	0.078	Surplus
•	13	37 Km	IIIC	0.078	Burplus
	14	4 Km	111C	0.078	Surplus
	15	40 Km	IIIB-2	0,078	Surplus
	16	1 Km	IIIB-2	0.078	Surplus
	17	23 Km	1118-2	0.078	Surplus
	18	15 Ka	IIIB-2	0.078	Surplus
	20	20 Km	1118-2	0.078	Surplus
	21	15 Km	IIIB-2	0.078	Surplus
	23	3 Km	1110	0.078	Surplus
	24	10 Km	IIIC	0.078	Surplus
	27	7 Km	IIIC	0,078	Surplus
	3	24 Km	1118-2	0.078	Surplus
	29	20 Ka	THE	0.078	Surplus
	30	22 Km	IIIC	0.078	Surplus
	31	2 Km	ilic	0.078	Surplus
	32	2 Km	IIIC	0.078	Surplus
	33	1 Km	inc	0.078	Surplus

Table 5-2-3 RANKING OF FEASIBILITY ROAD LINKS

PROVINCE : KALIMANTAN TIMUR KABUPATEN : BULUNGAN

LINK NO	LENGTH	CLASS	NPV (1000Rp)	B/C	IRR (%)	REMARK
8 28 12	13 Km 14 Km 43 Km	IIIA IIIB-1 IIIB-2	4170570 478078 180326	10.065 2.147 1.181	163.409 33.134 14.119	VOC Surplus Surplus
GUM	70 Km	, b 🗣 met ram via New true part gan	4848974			

Table 5-2-2 RESULTS OF SECONDARY ANALYSIS

Nil 16-53

Chapter 6 IMPLEMENTATION PROGRAMME

6.1 Implementation Schedule

6.1.1 Project Cost

The total Project Cost for the Kabupaten is composed of the cost of construction and maintenance, supplementation as described later, and workshop, laboratory and survey equipment. The total Project Cost for the Kabupaten is summarized in Table 6-1-1.

Table 6-1-1TOTAL PROJECT COST (1)

KABUPATEN: Bulungan

(Rpx10⁶)

COST	FOREIGN CURRENCY	LOCAL CURRENCY	TOTAL
CONSTRUCTION	591	2,342	2,933
MAINTENANCE	111	564	675
SUPPLEMENTATION	363	40	363
WORKSHOP EQUIPMENT & TOOLS	28	• • • • • • • • • • • • • • • • • • •	28
LABORATORY EQUIPMENT	12	ь	12
SURVEY EQUIPMENT	5	-	5
TOTAL	1,110	2,906	4,016

The total Project Cost can be divided into costs as shown in Table 6-1-2.

Table 6-1-2

TOTAL PROJECT COST (2)

$(Rpx10^{6})$

COST	FOREIGN CURRENCY	LOCAL CURRENCY	TOTAL
CIVIL WORK	179	2,888	3,067
CONSTRUCTION & MAINTENANCE EQUIPMENT	815	-	815
SPARE PARTS	71	18	89
WORKSHOP/LABORATORY/SURVEY EQUIPMENT	45	- -	45
TOTAL	1,110	2,906	4,016

The cost for civil work is composed of the cost of labour and materials, operation cost excluding spare parts, indirect cost and transportation cost of equipment, and ownership cost for existing equipment.

6.1.2 Proposed Road Links

(1) Road Link to be Improved

The road links to be improved were generally selected taking into consideration the following criteria:

(1) Feasible road links

- Feasible road links from the primary evaluation
- Feasible road links from the secondary evaluation
- (2) Road links selected from the engineering points of view
- (3) Road links selected because of basic human needs.

The road links finally proposed to be improved in the Kabupaten are the 8 links with the total length of 189 km which is 35% of the 547 km total length of Kabupaten roads studied. The proposed road links are shown in Table 6-1-3.

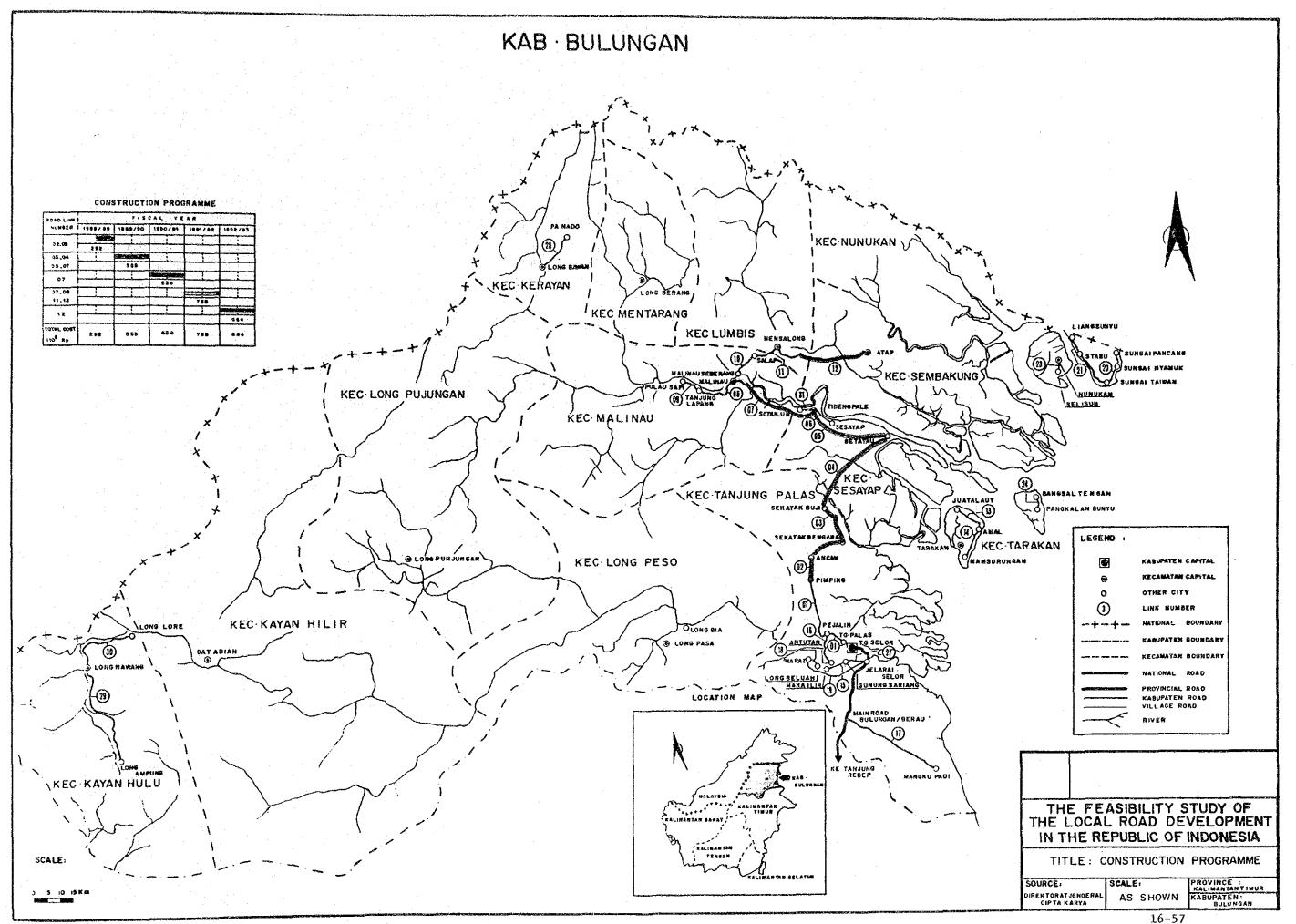
Table 6-1-3 ROAD LINKS TO BE IMPROVED

KABUPATEN : BULUNGAN

REASON FOR SELECTION	ROAD LINK NO
Feasible	
- Primary - Secondary	8,12, -
Engineering Point of View	2,3,4,5,7,11
Basic Human Needs	

As the table shows two feasible road links out of three are proposed to be improved.

Road Link No 28 does not form the local road network, therefore this road link is not selected.


The key road links which are located at the strategic point to complete the local road network near Tanjung Selor, the Kabupaten capital are selected from the engineering points of view. Road Link No 7 is screened out in the primary screening, because of no data. However this road link is also a key road link to complete the road network, therefore this road link to complete the road network, therefore this road link is proposed to be constructed as a new road.

The order of proceeding with the improvement of the proposed road links are decided as shown in Table 6-1-4.

Table 6-1-4ROAD LINKS TO BE IMPROVED BY YEAR

FROV : KALIMANTAN TIMUR KAB : BULUNGAN

YEAR		LINK NO			() : rate	·	
1988	:	2, 3 (80%)					 	
1789)	3 (20%), 4,	5,	7	(152)		 	
1990	1	7 (751)						
1991	l	7 (10%), 8,	11,	12	(20%)			
1992	1	12 (80%)					 	

(2) Road Links to Be Maintained

It is desirable that all Kabupaten roads are maintained. However, because of the limited budget it is inevitable that some road links in the Kabupatens will be left without maintenance for the time being. The budget should be used for those which are effective in producing more useful development of the Kabupaten through the road development project. The road links to be maintained are finally proposed as shown in Table 6-1-5.

Table 6-1-5

ROAD LINKS TO BE MAINTAINED

PROV I KALIMANTAN TIMUR

KAB : BULUNGAN

locorp]			164399908	*****	*****							•~~			
TOTA	FOREIGN	LOCAL	BRIDGE	AREA	RC	AREA	TH	EARTH		ASPIIAL	RB	RU	60	BA	LENGTH	LTHK
COS	COST	COST	COST	(a2)	NO	(m2)	KD	(Ke)	(Ke)	(Ke)	(2)	(X)	(2)	(2)	(Ka)	NO
20,25	3,281	16,972	5,720	0,00	0	400.00	6	1	24	• •	0.0	0.0	: 1.1	98.8	25	ł
17,16	2,591	14,574	858	0.00	0	60.00	L	12	20	0	0.0	12.5	31.3	56.3	32	2
15,01	2,430	12,505	058	0.00	0	60.00	1	Q	24	0	0.0	10.0	90.0	0.0	24	3
7,40	1,004	6,398	2,517	0.00	0	176.00	3	13	0	0	3.9	7.6	17.0	69.5	13	9
1,77		1,484	. 0	0.00	Ũ	0.00	0	. 0	. 3	. 0	5.0	10.0	15.0	70.0	3.	9
11,85	1,095	9,756	2,803	0.00	0	195.00	7	Û	15	0	0.0	0.0	10.0	90.0	15	10
15,05	2,117	12,611	3,260	0.00	0	228.00	6	0	20	. 0	0.0	0.0	10.0	90.0	20	20
12,73	2,075	10,663	3,870	0.00	0	272.00	7	0	15	0	0.0	0.0	10.0	90.0	15	21
3,7	60B	3,106	1,945	0.00	C	136.00	2	0	3	0	0.0	0.0	10.0	90.0	3	23
2,59	473	2,118	944	0.00	Q	66.00	1	0	0	2	10.0	5.0	10.0	75.0	2	32
1,6	317	1,330	Ó	0.00	Ó	0.00	0	0	0	2	0.0	20.0	30.5	49.5	2	34
1,18	191	989	Ó	0,00	0	0.00	0	0	2	0	0.0	0.0	5.0	95.0	· 2	35
3,65	666	2,985	0	0.00	0	0.00	0	Ô	2	3	0.0	0.0	8.6	91.4	5	36
82	158	665	Q	0.00	0	0.00	0	0	0	· 1	0.0	40.0	20.0	40.0	t	37
37	45	331	Ó	0.00	0	0.00	0	1	· 0	0	0.0	0.0	1.0	99.0	L	39
3,4)	615	2,804	572	0.00	0	40.02	1	1	. 0	3	1.3	3.0	30.0	65.0	4	† Z
37	45	331	0	0.00	0	0.00	0	l	0	0	0.0	0.0	30.0	70.0	. 1	13
1,64	317	1,330	0	0.00	Q	0.00	0	0	0	2	0.0	0.0	30.0	70.0	2	14
47	870	3 849	1,424	0.00	Ø	99.60	I	0	0	4	10.0	0.0	15.8	74.3	4	5i
1,87	226	1,653	Q	0.00	Q	0.00	0	5	0	0	22.0	6.0	12.0	60.0	5	52
82	58	665	0	0.00	0	0.00	0	0	Q	1	0.0	0.0	1.0	99.0	I	53
127.87	20,698	107,199	24,791	0.00	0	1733.62	38	34	128	18	~~~~			*****	180	SUN

6.1.3 Annual Construction and Maintenance-Cost

The annual allocation of the total construction and maintenance cost in the five years programme for Kabupaten Bulungan is finally recommended as shown in Tables 6-1-6 (1), (2) and (3) for the construction, maintenance and total respectively.

The proposed construction cost is Rp 2,933 x 10^6 and maintenance cost is Rp 675 x 10^6 which is approximately 19% of the total expenditure.

Table 6-1-6 (1)CONSTRUCTION AND MAINTENANCE COST(CONSTRUCTION)

PROV	-	KAL IMANTAN	'1" Y KAL IPS
FREIV		KALTIAN IAN	E FLAFBK
	-		1 4 1 1 4 1 1

KAB BULUNGAN

1 WHIT : 1000Rp 1

									toookb i
	TTEN		< 1988 >	< 1989 >	< 1990 >	(1991)	< 1992 >	< TOTAL >	~~~~~
Encal	CURRENCY	•	226,250	429,754	509,536	590,645	525.802	2,280,987	(77.8%)
				1			-		
	Owner ship	Cost	2 765	4,566	5,107	6,075	5,865	24,378	(1.12)
· , ·		2.1	171,310				375,101	1,527,799	(67.02)
	Naterial		5 130	30.359	37.666	58.624	27,514	159 293	(7.02)
		Cast	17,526	57,890	67,615	78,236	40,739	271,996	(11.92)
	Contingenc	γ	29,511	56,055	66,331	77,041	68,593	297 521	(13.02)
	ie – Tri					•			
		********							~~~~~~~~~
FOREIG	H CURRENCY	1 1	66,590	125,167	125,541	194,919	139,452	651,669	(22.22)
	Owner ship				86,216			420,449	(64.5%)
	Operation		7,337						(9.22)
					10,820				(13.22)
		Cast	-	0	0	0	0	0	(0.02)
·	Contingency	Y	8,685	16,326	16,375	25,424	18,189	85,000	(13.02)

TOTAL	COST :		292,839	554,921	634,077	785,564	665,254	2,932,655	
	Öxnership	Cast	52,901	81,146	91,323	108,676	110,780	411,826	(15.22)
	Operation			291,886	•	384,971	390,220	1,587,679	
	Material				•	111,216	•	245,634	(8.42)
		Cost					48,739		(9.3%)
	Contingency				82,705	102,465		382,520	(13.02)

< Contingency : 15% >

16-59

				(MAIN]	ENANCE)				
	PROV : I	KAL I MAN	ITAN TIMU	ir i	KAB I	BULUNGA	N.		
	*****		***	30 Au 44 Jan 44 Au				(UNIT:	1000Rp }
	LTEN		< 1988 >	< 1989 >	< 1990 >	< 1991 >	< 1992 >	< TOTAL >	
	LOCAL CURRENCY								
	Owner shi p	Cost	346	797	945	931	1.191	4.210	(0.7%)
	Operation	i Cost	32,917	75.543	90.064	88.204	100 553	107 201	(70 27)
	Material	Cost	2,441	5.152	5.533	5,878	6.657	25.661	(4.52)
	Labour	Cost	11,720	26,392	31,135	30,617	38,195	138,059	(24.5%)
		******	• •• •• • • • • • • • • • • • • • • •	, a o a a a a a a a a a a a a a a a a a				**~~~*~*	
	FOREIGN CURREN	Y :	9,216	21 ₁ 064	24,882	24,507	30,922	110,591	(16.4%)
	Owner ship	o Cost	7,666	17,667	21,053	20,680	25,769	92.834	(83.92)
	Operation	n Cost	859	2,002	2,418	2,379	2,974	10,632	(9.6%)
	liacei i ai	105C	671	1,595	1,411	1,448	2,180	7,125	(6.4%)
	Labour	Cost	0	0	0 11	0	0	0	(0.02}
- -				· · ·					
	TOTAL COST :		56,640	128,948	152,559	150,137	1861218	674,802	
	Owner shir	Cost	8,012	18.464	21.998	21.611	26.959	97.044	(]4.47.)
	Operation	i Cost	33,776	77,545	92,482	90,583	112,527	406,913	(60.3%)
	Naterial	Cost	33,776 3,132	6 547	6 944	7 326	8,837	32,786	(4.9%)
	Labour	Cast	11,720	26.392	31.135	30.617	38,195	138.059	(20.5%)

Table 6-1-6 (2) CONSTRUCTION AND MAINTENANCE COS

16-60

Table 6-1-6 (3)CONSTRUCTION AND MAINTENANCE COST

(TOTAL)

	. * 		* <u>.</u>	- 				(UNET :	1000Rp)
	ITEH		< 1980 >	< 1989 >	< 1990 >	< 1991 >	< 1992 >	< TOTAL >	***
LOCAL	CURRENCY		273.674	537.638	636.213	716.275	481.398	2.845.198	(78.9%)
		· · · · · · · · · · · · · · · · · · ·							
•	Ownership	Cost	3,111	5,363	6,052	7,005	7,056	20,580	(1.0%)
	Operation	Cost	204,235	356,437	417,081	458,873	484,654	1,924,080	(67.6%)
		Cost							1 6 52)
÷	Labour	Cost	29,246	84,272	100,750	108,953	86,934	410,055	(14.4%)
	Contingenc			56,055					(10.52)

FOREIG	CURRENCY	:	75,806	146,231	150,423	219,426	170,374	762,260	(21.12)
	Owner shi p	Cost	57,802	94,247	107,269			513,282	
	Operation	Cost	8,196	12,994	14,548	16,681	18,093	70,512	(9.32)
	Naterial		1,122	22,664	12,231	54,040	3,409	93,466	(12.3%)
	Labour	Cast	0	· · · · 0	0	• • •	0		(0.02)
	Contingenc	Ŷ	8,686	16,326	18,375	25,424	18,189	85,000	(11.2%)

TOTAL	COST :		349,479	4B3,869	786,636	935,701	851,772	3,607,457	
	Owner ship	Cost	60,913	99,610	113,321	130,287	137,739	541,870	(15.02)
	Operation		212,431	369.431	434.429	475,554	502,747	1,994,592	(55.37)
	Naterial			58,175	55,430	118,542	37,580	278,420	(7.72)
	Labour			84,272	100,750	108.853	86.934	410,055	(11.42)

< Contingency : 15% >

6.1.4 Construction and Maintenance Equipment Cost

(1) Required Number of Equipment

The required numbers of construction equipment for Kabupaten Bulungan are estimated from the annual proposed construction quantities as shown in Table 6-1-7.

The proposed numbers of equipment to be purchased are finally decided considering the following number of existing equipment in the Kabupaten which are available for the Project.

- 3-Dump Truck

The proposed numbers of maintenance equipment have been decided as shown below from the proposed annual maintenance volume taking into account the capacity of the proposed maintenance gangs.

- a. Equipment for Road Maintenance
 - 1-Motor Grader 75 HP
 - 1-Tire Roller 8-15 Ton
 - 1-Dump Truck 3 Ton
 - 1-Hand Guided Vibratory Roller 1000 Kg
 - 1-Flat Bed Truck 3 Ton
- b. Equipment for Bridge Maintenance

- 1-Flat Bed Truck with Grane 3 Ton

(2) Equipment Cost

The proposed construction and maintenance equipment and their purchase costs are shown in Table 6-1-8. In the Project the supplementation cost or equipment cost supplemented is the difference between the purchase cost for newly supplied equipment and the depreciated value.

This comes about because full depreciation of the supplied equipment would not be completed within the Project Period of 5 years.

Table 6-1-7

REQUIRED NUMBER OF EQUIPMENT

BULUNGAN PROV KALIMANTAN TIMUR KAB : 8

					1.0		1
EOUIPHENT NAME	WORKABLE	EXISTING	< 1988 >	< 1989 >	< 1990 >	< 1991 >	(1992)
Bulldozer/Ripper	250	0	0.45	0.62	0.15	0.64	0.82
Swamp Bulldozer	250	0	0.00	0.20	0.96	0.28	0.60
Hotor Grader	250	0	1.02	1.28	0,52	1.54	1.22
Hand-guide Vib. Roller	250	0	0.01	0,45	0.26	0.93	0.11
Tire Rotler	250	0	0.00	0.00	0.00	0.33	0.00
Vibratory Roller (D&T)	250	0	0.71	1.26	1.24	1.51	1.46
Hydraulic Excavator; Wheel	250	0	0.00	0.47	2.35	0.68	1,44
Wheel Loader	250	0	1.13	1.63	1.64	2.01	2.45
Nater Tank Truck	250	0	0.36	0.78	0.87	0,93	0.99
Duep Truck	250	.0	8.01	14.28	16.29	17.92	17.24
Flat Bed Truck with Crane	250	0	0.01	0.42	0.32	0.51	0.14
Flat Bed Truck	250	0	0.01	0.16	0.10	0.65	0.04
Fortable Crusher/Screening	250	0	0.23	0.04	0.01	0.19	0.20
Concrete Nixer	250	0	0.01	0.10	0.03	0.28	0.00
Hater Pump	250	0	0.01	0.07	0.03	0.20	0.00
Concrete Vibrator	250	0	0.01	0.05	0.03	0.03	0.00
Asphalt Sprayer	250	0	0.00	0.00	0.00	0.33	0.00

NOTE

WORKABLE : workable days in a year

EXISTING : number of existing equipment

Table 6-1-8

EQUIPMENT PURCHASE COST

PROV : KALIMANTAN TIMUR KAB

: EUL.UNGAN

1

61,052

	EQUIPMENT NAME	CLASS	PTC / TAVADTAL		
		ULH30	CIF (JAKARTA)	PURCHASE NO.	PURCHASE COST
	Bulldozer	90 HP	40 150		
ş. î	Bulldozer/Ripper	90 HP	49,150 53,000	-	-
	Swamp Bulldozer	90 HP	52,850	•	-
	Swamp Bulldozer	65 HP	40,500	1	52,850
, i	Notor Grader	75 HP		~ 7	147 400
	Road Stabllizer	W=1850 AA	47,800 85,950	3	143,400
•	Hand-guide Vib. Roller	1000 Kg	8,500	-	0 500
	Tire Roller	8-15 ton	31,070	1	8,500
	Vibratory Roller (DLT)	4 ton	29,000	2	31,070
	Vibratory Roller	4 ton	29,000	L	58,000
	Rough Terrain Grane	10 ton	100,400	_	-
	Hydraulic Excavator; Wheel	0.3 m3	41,100	2	07 700
•	wheel Loader	1.2 m3	70,200	2	82,200
	Hater Tank Truck	4000 ltr.		1	140 ₁ 400
	Duap Truck	3.0 ton	12,750 14,700	-	12,750
·. ·	Duep Loader Truck	12 ton	56,300	14	205,800
	Flat Bed Truck with Crane	3.0 ton		1	75 400
	Flat Bed Truck	3.0 ton	25,190 11,275	2	25,190
	Portable Crusher/Screening	30-40 t/h	188,000	2	22,550
1	Concrete Nixer	0.5 m3	18,000	-	
	Vater Pupp	200 1/min		-	-
	Concrete Vibrator	3.3 HP	740	_	-
	Asphalt Sprayer	850 ltr.		-	-
	Service Car	3 ton	10,200	-	11 /00
	4 Wheel Drive Vehicle	70 HP	11,600 17,500	1	11,600
		100 cc	•	3	17,500
	Motorcycle	100 66	1,100	3	3,300
		****		****	
	•		PURCHASE COST	IUIAL	815,110
	· · ·		DWNERSHIP COST	(FORE1GN)	452,230
			POLITOWENT PORT		7/0 000
			EQUIPMENT COST	SUPPLEMENTED	362,880
·				*****	
		NOTE #	OWNERSHIP COST (F)	OREIGN) for	Existing Equipment
			Dump Truck		30,290
			Portable Crusher/	Screening	30,265
			Asphalt Sprayer		497

TOTAL

6.1.5 Other Costs

Cost other items includes the costs of workshop equipment and tools, laboratory test equipment and survey equipment which are recommended in Sub-Clause 3.5. These total costs are summarized in Table 6-1-1.

6.1.6 Quantities by Work Type

The annual construction and maintenance quantities for all proposed road links are shown in Table 6-1-9.

Table 6-1-9

CONSTRUCTION QUANTITIES FOR ALL

PROPOSED LINKS

PROV :

KALIMANTAN TIMUR KAB : BULUNGAN

ITEN	UNET	< 1980 >	(1989)	< 1990 >	< 1991 >	(1992)	< TOTAL
Site Clearance in Light Bush	e2	0.00	68062.50	10312.50	37275.00	17700.00	757756
Subgrade Preparation	e2	84000.00	262500.00	112500.00		137600.00	253250.0
Iornal Fill	#3	0.00	0.00		319700.00	240800.00	1019500.0
ill in Swamp	a3	0.00	B625.00	0.00	1150.00	0.00	1150.0
formal Excavation to Spoil	· #3 ·		3420.00	43125.00	12410.00	26640.00	90800.0
Sub Rase Course	#3	8604.80	25651.20	300.00	2649.20	4024 80	11674.0
Base Course	#3	7408.00	1152.00	12000.00	24846.00	19264.00	90366.0
Shoulder	#2	153600.00	117900.00	0.00	6159.00	8256.00	24975.0
Asphalt Patching	#2	0.00	0.00	37500.00	152800.00	103200.00	565000.0
Surface Dressing (Single)	#2	0.00		0.00	0.00	0.00	0.0
Surface Dressing (Double)	#2	0.00	0.00	0.00	58500.00	0.00	59500.0
arth Drain	•	0.00	0.00	0.00	0.00	0.00	0.(
arth Drain in Swamp (by machine)	л3 Л	0.00	28350.00	33750.00	37560.00	0.00	99660.(
'ipe Culvert DBOcu	20 10 10	10,00	9375.00	46875.00	13450.00	28800.00	98500.0
lasonry Culvert (80x80cm)	- e	0.00	461.25	206.25	221.50	0.00	877.
Retaining Wall and Hing Wall (Timber)	- 2		0.00	0.00	40,00	0.00	10.
Retaining Hall and Hing Hall (Nasonry)	82 83	0.00	12.00	60.00	309.00	0.00	380.
abion Protection		0.00	115.20	0.00	574.50	0.00	687.
	1 3	0.00	0.00	0.00	0.00	0.00	0.
uperstructure {Timber;Span 3#;101}	n 2	0.00	0.00	0.00	64.00	0.00	64.
Superstructure (Timber;Span Sm;101)	# Z	0.00	0.00	0.00	0,00		
uperstructure (Timber;Span Ba;101)	RŽ	0.00	176.25	281.25		0.00	0.
Superstructure (Timber;Span 3m;BN50)	#2	0.00	0.00	0.00	85.50	192.00	735.
uperstructure (Timber;Span 5m;8MSO)	e2	0.00	0.00	0.00	0.00	0.00	0.
Aperstructure (Timber;Span Bm;BK50)	#2 #2	0.00	0.00	0.00	0.00	0.00	0.
uperstructure (Concrete;Span 3m;BH50)	#2	0.00	0.00	0.00	0.00	0.00	0.
uperstructure (Concrete;Span 5m;BH50)	#2	0.00	0.00	0.00	0.00	0.00	0.
uperstructure (Concrete;Span 8•;BMSO)	n2	0.00	0.00	0.00	0.00	0.00	0.
uperstructure (Concrete;SpanlOm;BH50)	-2	0.00	0.00	0.00	0.00	0.00	0.
uperstructure (Concrete;Spanisa;BHSO)	#2				0.00	0.00	0.
ubstructure (Pier;for Timber;fOT)	NO	0.00	0.00	0.00	0.00	0.00	0.
ubstructure (Abut;for Timber;101)	NO	0.00	2.90	4.50	6.40	3,20	17.
ubstructure (Pierjfor Timber;8H50)	NO	0.00	5.80	9.00	4.80	6.40	26.
ubstructure (Abut;for Timber;BH50)	NO	0.00	0.00	0.00	0.00	0.00	0.
Substructure (Pierifor Concrete(BH50)	ŇD	0.00	0.00	0.00	0.00	0.00	0.
ubstructure (Abuljfor Concrete;0050)			0.00	0.00	0.00	0.00	0.
emolition of Bridge (Timber->limber)	NO D2	0.00	0.00	0.00		0.00	0.
emolition of Bridge (Timber->Concrete)	•2		63.30	196.50	90.20	0.00	350.
emotition of Bridge (Concrete)	#2 #2	0.00 0.00	0.00	0.00	0.00	0.00	0.
emotition of biloge (concrete)	87	0.00	0.00	0.00	0.00	0,00	0.
anual routine maintenance of road	Ke	77,20	177.60	216.00	207.50	257,00	937.
outine maintenance of earth road	Ke	14.00	22,00	27.00	15.50	9.00	82.
outine maintenance of gravel road	Ka	51.20	137.60	176.00	176.00	217.00	760.
outine maintenance of asphalt road	Ke	9.00	18.00	18.00	18.00	31.00	94,
aintenance of Finber Bridge (New)	s2	0.00	0.00	0.00	120.00	0,00	120.
aintenance of Concrete Bridge (New)	*2	0.00	0.00	0.00	0.00	0.00	0.
aintenance of Timber Bridge (Exist)	.2	837.81	1727.62	1793.62	1705.62	2067.62	8136.
aintenance of Concrete Bridge (Exist)	#2 #2	0.00	0.00	0.00	0.00	0,00	0130.

6.2 Organization and Construction System

6.2.1 Organization

The Bupati as head of the Kabupaten has been authorized by Law No. 13, 1980 as an official responsible for the Local Road Development Project implementation. This means that the DPUK is considered as a responsible agency for the actual execution of the Project. According to instruction letter dated June 24, 1982 Ref. No. 620/975-

/BANGDA, the Project Manager appointed by the Bupati will be responsible for the operation and maintenance of the equipment. Accordingly the Equipment Coordinator appointed from the staff of the Regional Public Works (Kantor Wilayah) by Bina Marga as a coordinator between the Governor and the Bupati will be responsible for delivery, effectual utilization and maintenance of the equipment.

The standard organization of DPUK consists of a minimum of four sections, i.e. Road Section, Housing and City Planning Section, Irrigation Section and Administration Section. For execution of the Project it is strongly recommended that the structural organization of DPUK is established. It will be necessary not only to organize new sections but also to reorganize the current structure through a review of the roles and responsibilities of each inter-related section.

It is recommended that the workshop is newly organized to consist of three sub-sections, i.e. maintenance and repair of equipment, operation and materials, and administration to execute the main tasks described in Clause 3.5.

The sub-section of laboratory would be under the relevant Road Section. The proposed organization is shown in Fig. 6-2-1.

6.2.2 Construction System

For the construction of Kabupaten roads with a ten year effective design life, it has been recommended in Clause 3.4 that the equipment intensive method should be adopted for earth work and pavement work with the exception of surface dressing. PROPOSED ORGANIZATION

: Equipment delivery flow

: New position/subsection

Current road construction in the Kabupatens is obliged to rely upon the traditional labour intensive method. It is therefore assumed that both the DPUK and the local contractors in the Kabupatens do not have sufficient experience and technique for the equipment intensive method of road construction.

For realization of the Local Road Development Project the GOI has ensured availability of the required human resources of DPUK and intends to conduct training programmes for those human resources as described in Clause 8.3 of the Main Report. This means that the GOI intends the Kabupatens to have the ability to execute the Project by force account (Swakelola).

It should be recognized from the experiences in the first local road project, which was assisted by OECF, ADB and IBRD, that because of their poor construction management and traditional labour intensive methods most of the road construction by local contractors could not be completed within the contract periods. Therefore execution of the road improvement by force account is desirable as recommended from their experience by the consultants for the first local road project.

It is strongly recommended that except for labourers the staff of the force account team should not be hired by the day as it would then not be able to consolidate the foundations for development of self reliability.

However, it will be very difficult to execute all the Projects by force account because of the need for many Kabupaten staff. The GOL has emphasized the need to promote the employment of local weak contractors in order to up-grade their capability in the road project schemes within the Fourth Five-Year Plan (REPELITA)

Taking into consideration the conditions mentioned above it is strongly recommended that the DPUK is obliged to lend some equipment with skilled operators to the local contractors in the Kabupatens for the execution of a part of the road improvement works. The types of work executed only by force account are recommended as follows:

- Routine maintenance work for the Kabupaten roads
- Laboratory tests
- Production of crushed stone
- Technical service for the equipment