REPUBLIC OF INDONESIA MINISTRY OF PUBLIC WORKS DIRECTORATE GENERAL OF HIGHWAYS

THE FEASIBILITY STUDY OF THE LOCAL ROAD DEVELOPMENT IN THE REPUBLIC OF INDONESIA

KABUPATEN REPORT 7

KABUPATEN BELITUNG

MARCH 1986

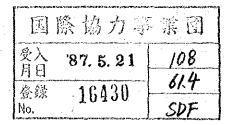
JAPAN INTERNATIONAL COOPERATION AGENCY

SDF

86-46(1/38)

JICA LIBRARY 1034236[8]

REPUBLIC OF INDONESIA MINISTRY OF PUBLIC WORKS DIRECTORATE GENERAL OF HIGHWAYS


THE FEASIBILITY STUDY OF THE LOCAL ROAD DEVELOPMENT IN THE REPUBLIC OF INDONESIA

KABUPATEN REPORT 7

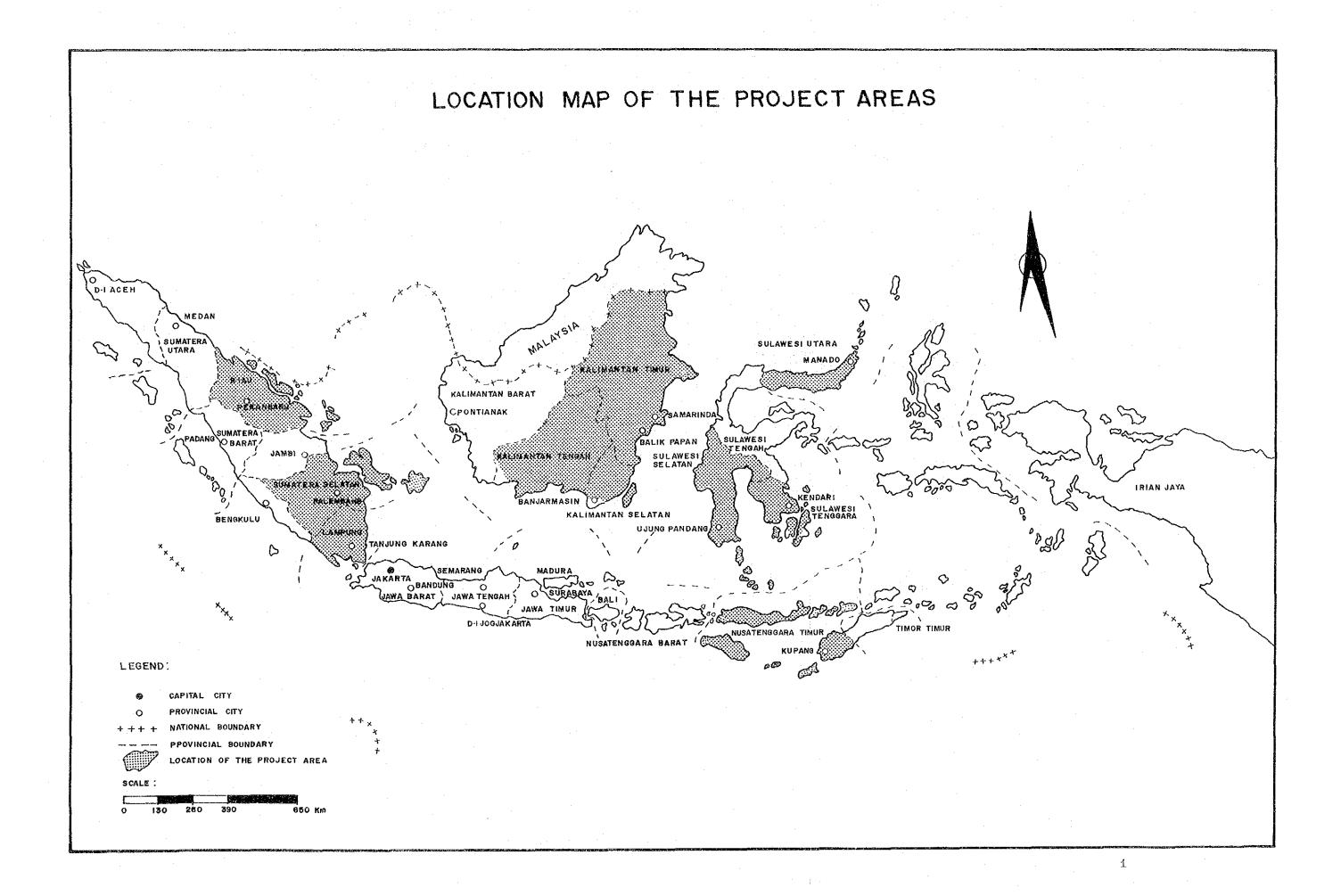
KABUPATEN BELITUNG

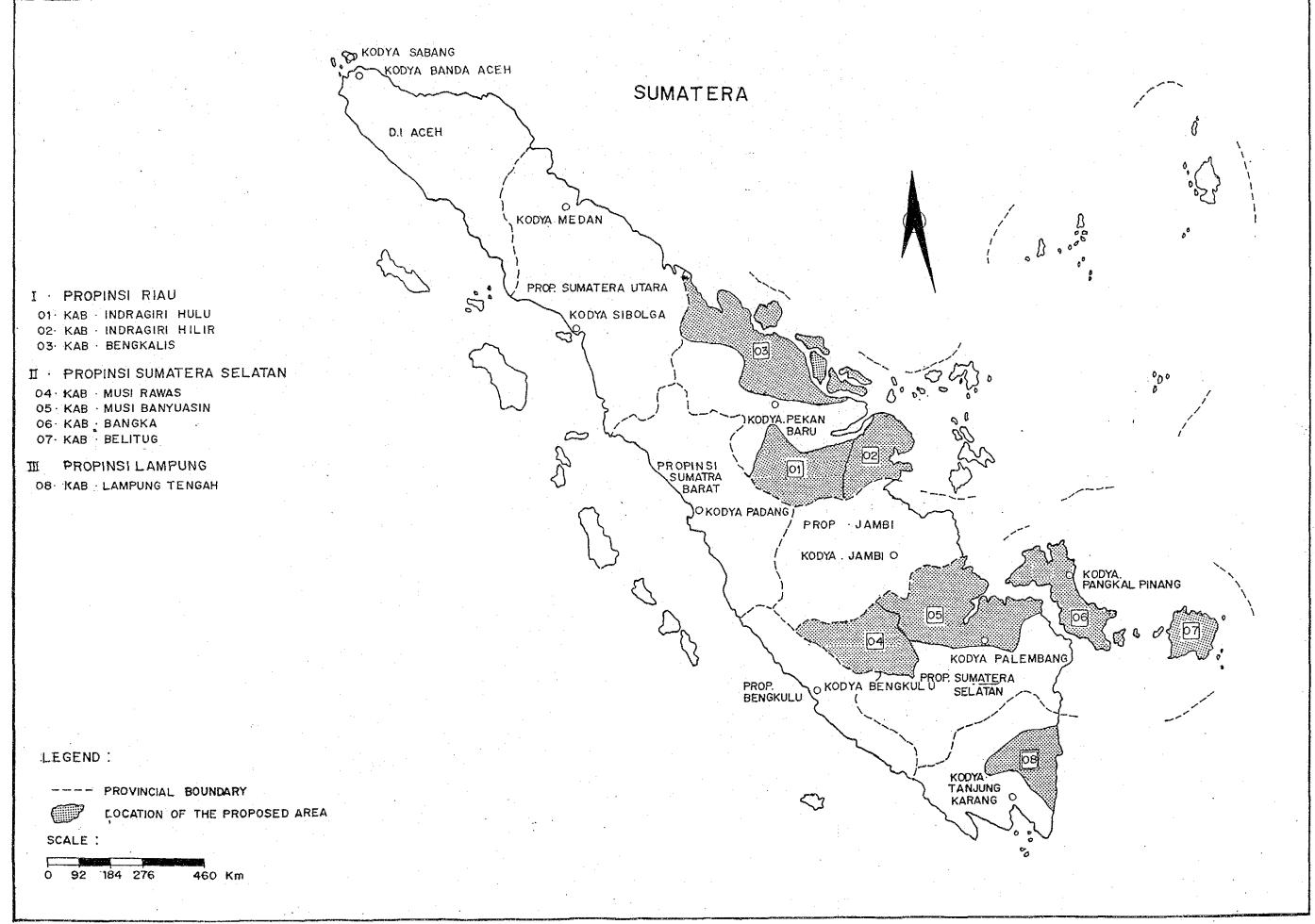
MARCH 1986

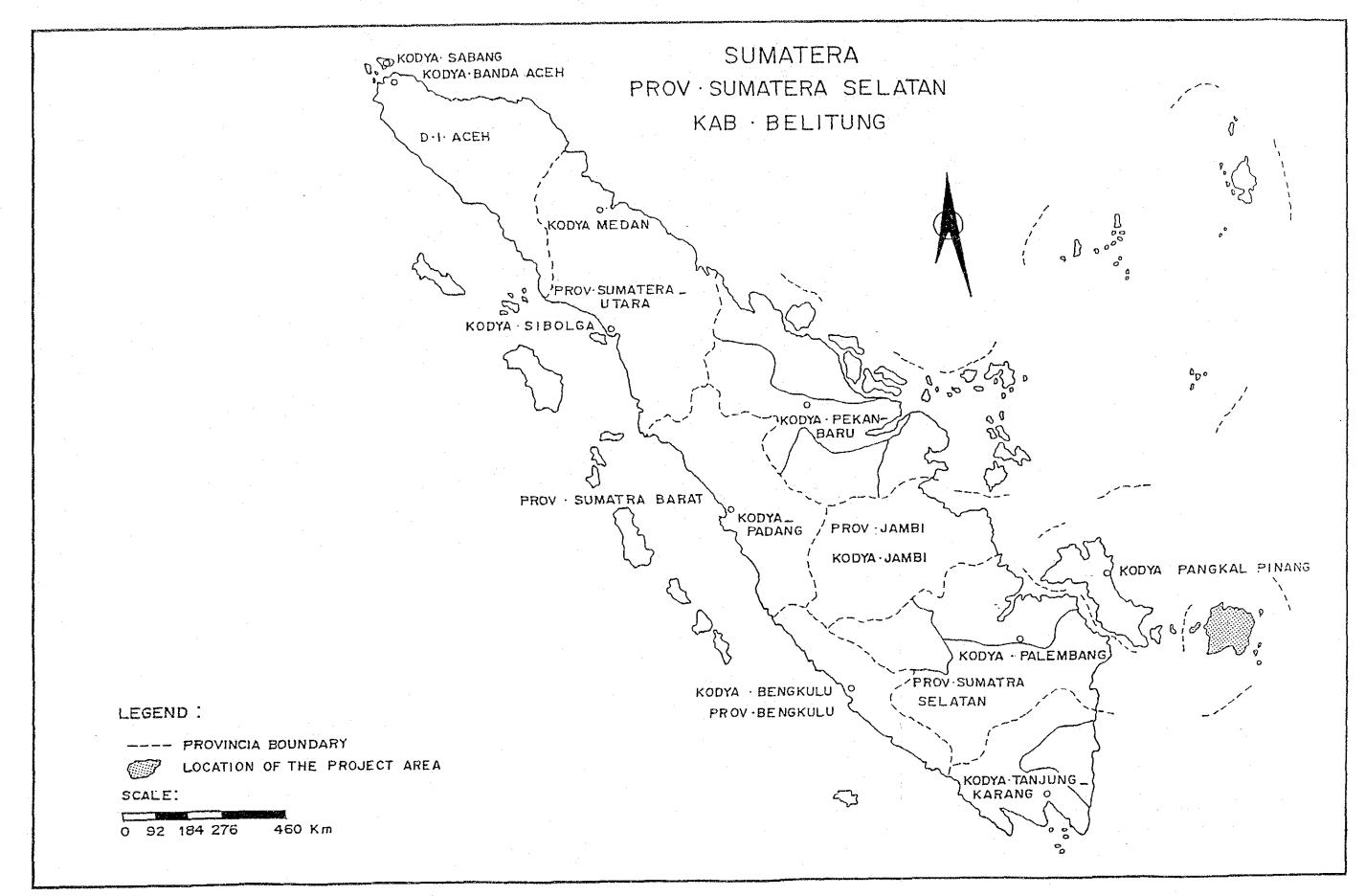
JAPAN INTERNATIONAL COOPERATION AGENCY

PREFACE

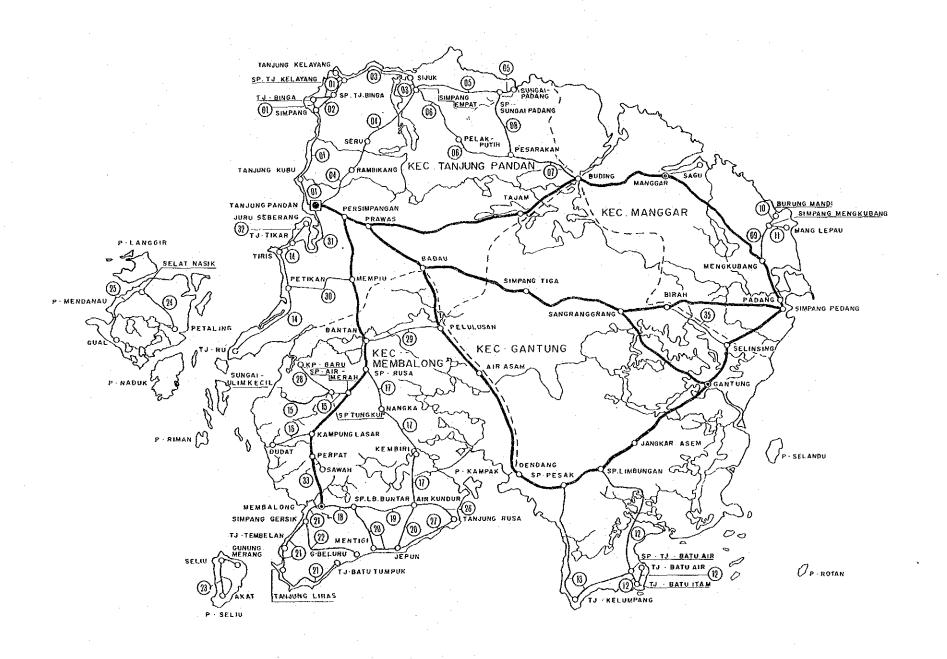
This is the Kabupaten Report of the Feasibility Study of the Local Road Development in the Republic of Indonesia for Kabupaten Belitung in Sumatra Selatan Province. The report has been prepared by the Study Team of the Japan International Cooperation Agency (hereinafter called JICA).


Based upon a request from the Government of Indonesia, the Government of Japan arranged for JICA to conduct the Study and JICA accordingly organized a Study Team. The study was carried out using data which were generally prepared by the Kabupaten, routed through the province, under the instructions of Bina Marga of the Ministry of Public Works and Bangda of the Ministry of Home Affairs.

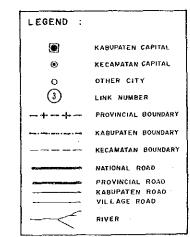

Since the study period was limited, without cooperation of Bina Marga, Bangda and local governments of both province and Kabupaten in collecting the data, the study would not have been completed within the period.

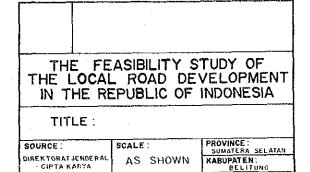

The report consists of the results of the feasibility study and proposed implementation programme of the local road development in the Kabupaten.

The simplified economic feasibility evaluation methodology utilized for the study was established by the Study Team in Phase I Study through a pilot study of seven (7) model Kabupatens, and is described in the Main Report.


The purpose of the study for the Kabupaten is mainly to estimate the total Project Cost for the local road development but only limited data is available for study base. Therefore a detailed survey and design for the improvement of the Kabupaten roads should be carried out before commencing the Project together with a review of this report.

KAB · BELITUNG




SCALE :

LOCATION MAP

CONTENTS

PREFACE		**	
Chapter	1		BACKGROUND OF THE KABUPATEN
		1.1	Topographic and Meteorological Conditions 7-1
			1.1.1 Location and Topography 7-1
•			1.1.2 Meteorological Conditions 7-2
		1.2	Socio-Economic Conditions
			1.2.1 Population 7-4
			1.2.2 Land Use 7-6
		4	1.2.3 Agriculture 7-8
			1.2.4 Other Economic Activities 7-1
· .		1.3	Present Status of Kabupaten Roads
	-		1.3.1 Outline of Road Networks
			1.3.2 Road Inventory 7-1
		٠	1.3.3 Bridge Inventory 7-1
			1.3.4 Traffic
Chapter	2		ESTIMATIONS OF FUTURE TRAFFIC VOLUME AND BENEFIT
* .		2.1	Future Traffic Volume 7-2
- N			2.1.1 Traffic Growth Rate 7-2
			2.1.2 Present and Future Traffic Volume 7-2
		2.2	Benefit 7-2
			2.2.1 Benefit Estimation Method 7-2
• *		-	2.2.2 Benefit 7-2
Chapter	3		ENGINEERING
		3.1	Design Criteria and Specification 7-2
			3.1.1 Geometric Design Criteria 7-2
		-	3.1.2 Loading Specification 7-2
		3.2	Pavement Design 7-3
			3.2.1 Design Conditions 7-3
			3.2.2 Pavement Structure 7-3
	•	3.3	Design of Bridges and Other Structures 7-3
			3 2 1 Standard Bridge

			3.3.2 Other Structures	7-36
		3.4	Selection of Equipment Types	7-39
			3.4.1 Points to be Considered for the Selection	7-40
			3.4.2 Combinations of Equipment for Major Works and Maintenance	7-40
		3.5	Workshop and Laboratory	7-43
			3.5.1 Policy of the Kabupaten Workshop	
			3.5.2 Workshop Equipment and Tools	7-43
			3.5.3 Laboratory	7-44
Chapter	4		CONSTRUCTION AND MAINTENANCE COST ESTIMATIONS	· ·
		4.1	Unit Price	7-46
			4.1.1 Unit Labour Price	7-46
			4.1.2 Unit Price of Materials	7-47
			4.1.3 Hourly Equipment Cost	7-48
		4.2	Unit Construction Cost by Work Type	7-49
		٠	4.2.1 All Works Except Bridges	7-49
			4.2.2 Bridges	7-50
		• • •		
Chapter	5		RESULTS OF ECONOMIC FEASIBILITY EVALUATION	
		5.1	Preliminary Screening	7-51
		5.2	Evaluation	7-52
			5.2.1 Primary Analysis	7-52
			5.2.2 Secondary Analysis	7-52
			5.2.3 Ranking of Feasible Road Links	7-52
Chapter	6		IMPLEMENTATION PROGRAMME	
		6.1	Implementation Schedule	7-54
			6.1.1 Project Cost	7-54
-			6.1.2 Proposed Road Links	7~55
	-		6.1.3 Annual Construction and Maintenance Cost	7-59
			6.1.4 Construction and Maintenance Equipment Cost	762
			6.1.5 Other Costs	
			6 1 6 Quantities by Work Type	7 65

	6.2	Organization and Construction System	7-67
		6.2.1 Organization	7-67
		6.2.2 Construction System	7-67
Appendix	A-1	Input Data for Estimation of the Producer's Surplus Benefit	7-A-1
	A-2	Engineering Data	7-A-2
	A-3	Construction and Maintenance Cost for Proposed Road Links	7-A-17
	A-4	Construction and Maintenance Quantities for all Proposed Road Links	7-A-26
	A-5	Construction and Maintenance Costs for all Proposed Road Links	7-A-29
	A-6	Quantities of Bridges on Proposed Road Links	7-A-32
	A-7	Construction and Maintenance Cost of Bridges on Proposed Road Links	7-A-33

Chapter 1 BACKGRAOUND OF THE KABUPATEN

1.1 Topographic and Meteorological Conditions

1.1.1 Location and Topography

Kabupaten Belitung is a solitary island in the Jawa Sea, being 370 kilometers from Jawa Island.

As in Bangka Island, tin mining and copra plantations have been conducted since the time of the Dutch rule, so that large and small ponds due to the old mining are to be found here and there around the central plateu. This mining still continues.

The features of the island present comparatively undulating hills and unsurpassed views due to the coral reefs which surround most of the shoreline.

The area of the Kabupaten, including the adjacent small island, is about 4,620 square kilometers, approximately 5 percent of the total of Sumatera Selatan Province. It consists administratively of 4 Kecamatans.

1.1.2 Meteorological Conditions

The average number of rainy days and the average amount of yearly rainfall in Kabupaten Belitung are 213 days and 2,979 mm respectively.

One year in the Kabupaten consists of a rainy season and a dry season. The dry season is from July through September in general. However this is variable as Table 1-1-1 shows.

The number of working days which is necessary for planning the construction schedule in chapter 6, is estimated at 170 days using the following formula based upon the data shown in the table referred to above.

Working Days =
$$365$$
 - Holidays - Rainy Days + (Rainy Days $\times \frac{\text{Holiday}}{365}$) + (0.10 x Rainy Days)

Where

- Holidays consist of 52 Sundays and 13 national holidays; and
- 10% of rainy days are assumed to be workable days.

Table 1-1-1

PROVINCE : Sumatera Selatan KABUPATEN : Belitung

METEOROLOGICAL CONDITIONS

STATION : Buluh Tumbang

	1 6	0 8 6		9	8 1		1 9	8 2		1 9	8 3		1.4	4 8 6
MONTH	RAINY DAYS RAINFALL RAINY (mm)	RAINFALL (mm)	I	DAYS	RAINFALL RAINY DAYS (mm)	RAINY	DAYS	RAINFALL (mm)	RAINFALL RAINY DAYS (mm)	1	RAINFALL RAINY DAYS (mm)	RAINY	DAYS	RAINFALI (mm)
January	***			'			17	192		27	897		24	214
February	. 1			. 1	ı		12	80	•	18	240		16	106
March	\$	1		t			25	365		r1	202		21	387
April	•			ı	ı		21	225		17	212		23	425
Мау	1	1		ı	3		67	246		25	162		23	508
June		1		ı	1		6	97		13	182		12	113
July		ı		1	ı		4	57		8	142		18	370
August	1	ı		1	1.		īŲ	1		9	40		∞	59
September	`I			ł		-	Ø.	121		٥١	09	.*	18	232
October		1.		1	ŧ		17	155		24	25		25	426
November		ŧ	·*	. 1	1		23	315		28	583		26	425
December	1	1		1	1		28	651	` '	30	375		27	474
Total	ī	•		l	ŧ		183	2,506	2.	226	2,692		231	3,738

1.2 Socio-Economic Conditions

1.2.1 Population

The population of Kabupaten Belitung in 1984 was 173,379 which was approximately 3.3% of the 5,259,200 total population of Sumatera Selatan Province as shown in Table 1-2-1.

The population density was 0.38 persons per ha which was lower than the provincial density of 0.49.

The recent annual average growth rate of population of the Kabupaten is 1.8% which is lower than both the provincial rate of 3.3% and the national rate of 2.2%. This may be the result of out flow from the Kabupaten and because there is no transmigration programme.

The population of each Kecamatan and its proportion to the Kabupaten population is shown in Table 1-2-2.

Table 1-2-1

POPULATION BY KABUPATEN

		and the second		and the second s	
DESCRIPTION	POPULATION	AAGR (%)	AREA (ha)	POPULATION DENSITY (persons/ha)	SURVEY YEAR
KABUPATEN:					
MUSI RAWAS	397,143	3 · 1	1,520,000	0.26	1982
MUSI BANYUASIN	860,597	4.5	2,619,125	0.33	1984
BANGKA	436,687	2 · 7	1,159,184	0.38	1984
BELITUNG	173,379	1.8	462,305	0.38	1984
PROVINCE:				•	
SUMATRA SELATAN	4,944,300		10,368,800		1982
	5,099,700	3.3	10,368,800	0.49	1983
	5,259,200	•	10,368,800		1984
Jawa IS. (Excluding					
DKI JAKARTA)	91,126,900	1.7	13,159,700	6.92	-
INDONESIA	161,579,500	2 • 2	191,944,300	0.84	. -

Notes :

1. Sources:

Kabupaten: Kabupaten concerned with the study.

Province : Jawa and Indonesia;

Statistical yearbook of Indonesia 1984, published by

the Central Statistics Bureau.

2. AAGR : Average Annual Growth Rate.

Table 1-2-2

POPULATION BY KECAMATAN

Year : 1984

PROVINCE : SUMATERA SELATAN

KABUPATEN : BELITUNG

KECAMATAN	POPULATION	PROPORTION (%)
MEMBALONG	13,892	8.0
GANTUNG	26,894	15.5
MANGGAR	48,267	27.8
TANJUNG PANDAN	84,326	48.7
TOTAL	173,379	100

1.2.2 Land Use

In Kabupaten Belitung, 27,855 ha of the current available land use area, which is approximately 6.0% of the 462,305 ha total area of the Kabupaten, is used for living purposes and for industrial activity of the inhabitants of the Kabupaten. It is the total value of columns (1) through (6) in Table 1-2-3.

The current available land use area consists of 22,519 ha of agricultural harvest area and 5,336 ha of residential area which are 80.8% and 19.2% of the current available land use area respectively.

The agricultural harvest area consists of 2,377 ha of paddy field and 20,142 ha of plantation area which are 10.6% and 89.4% of the agricultural harvest area respectively.

It can be realized from the land use that the main agricultural production in the Kabupaten is plantation.

PROVINCE : SUMATRA SELATAN

CABUPATEN	WET PADDY	UPLAND PADDY	OTHER CUL-	PLANTATION	RESIDENTIAL	USABLE OPEN	RIVER &	FOR	OTHERS	TOTAL AREA	SURVEY
	FIELD	FIELD I	FIELD TIVATED AREA	AREA	AREA	SPACE	LAKE	AREA			YEAR
MUSI RAWAS	32,554 (2.1)	i	6,639 (0.4)	112,803 (7.4)	21,000 (1.4)	.	10,264 (0.7)	1,203,055 (79.1)	134,685 (8.9)	1,520,000	1982
MUSI BANYDASIN	131,486 (5.0)	78,455	1	249,271 (9.5)	60,667 (2.3)	•	77,121	265,181 (10.1)	1,756,944 (67.1)	2,619,125	1983
	68 (0.01)	7,938	467,252 (40.3)	77,553 (6.7)	5,631 (0.5)	6,870 (0.6)	16,611 (1:4)	347,741 (30.0)	229,520 (19.8)	1,59 ,184 (100)	1984
BELITUNG	488	1,889	ż	20,142 (4.4)	5,336 (1.2)	•	•	404,352 (87.5)	30,098	462,305	1984

Notes :

1. The value in () denotes the proportion 2. Source : Kabupaten concerned with the study

1.2.3 Agriculture

The cultivated area and food crop production in Kabupaten Belitung in 1984 were 2,188 ha and 8,010 ton respectively as shown in Table 1-2-4. Of food crops, the area and production of paddy which consists of wet paddy and upland paddy was 801 ha and 456 ton respectively which are 36.6% and 5.7% of the total food crops. The yield rate of paddy production is 0.57 ton per ha. Thus, paddy is an insignificant agricultural crop of the Kabupaten. In general the agricultural crops show small developed growth rates.

Because the island is located in the Jawa Sea, it seems that Kabupaten Belitung is not suitable for production of agricultural crops judging from the geographical, weather and agronomical points of view. Therefor, yearly approximately 95% of the 23,000 tons which are required for the consumption of the Kabupaten have to be imported from other Kabupatens.

The commodity crops, of which rubber, palm and clove (cengke) are major, are produced in the plantations. The area and production of plantation crops in 1983 were 9,105 ha and 3,185 ton respectively with current growth rates being 6.8% and 11.8% respectively. Thus the plantation crop which is an export product is important agriculturally. Some changes are expected considering the international balance of supply and demand.

It is desirable that future agricultural development in the Kabupaten should be enhanced to promote production of plantation crops and the processing industries.

Table 1-2-4

AREA AND PRODUCTION OF FOOD CROPS

KABUPATEN : BELITUNG

CULTIVATED AREA

							(ha)			
		YEAR								
ITEM	1979	1980	1981	1982	1983	1984	(%)			
PADDY	1,025	1,134	1,134	1,075	759	801	-4.8			
OTHERS	1,401	638	784	1,054	1,011	1,387	-0.2			
TOTAL	2,426	1,817	1,918	2,129	1,770	2,188	-2.0			

PRODUCTION

							(ton)
			Y	EAR			AAGR
ITEM	1979	1980	1981	1982	1983	1984	(%)
PADDŸ	465	536	536	526	383	456	-0.4
OTHERS	7,185	3,052	3,484	4,458	5,143	7,554	1.0
TOTAL	7,650	3,588	4,020	4,984	5,526	8,010	0.9

YIELD RATE

							n/ha)
	, , , , , , , , , , , , , , , , , , , ,		YE	AR			AAGR
ITEM	1979	1980	1981	1982	1983	1984	(%)
PADDY	0.45	0.47	0.47	0.50	0.50	0.57	4.8

Notes :

1. AAGR : Average annual growth rate

2. Source : Kabupaten concerned with the study

Table 1-2-5 AREA AND PRODUCTION OF PLANTATION CROPS Year: 1983

PROVINCE : SUMATRA SELATAN

KABUPATEN	AREA	PRODUCTION	AAGR (%)			
	(ha)	(ton)	AREA	PRODUCTION		
MUST RAWAS	112,803	35,421	1.2	14.4		
MUSI BANYUASIN	140,989	40,076	5.1	3.5		
BANGKA	77,636	28,227	3.4	5.7		
BELITUNG	9,105	3,187	6.8	11.8		

Table 1-2-6 POPULATION OF AGRICULTURAL SECTOR

PROVINCE : SUMATRA SELATAN

KABUPATEN	AGRICULTURAL SECTOR	TOTAL POPULATION	PROPORTION (%)	AAGR (%)	SURVEY YEAR
MUSI RAWAS	346,000	397,143	87.1	3.5	1982
MUSI BANYUASIN	466,000	860,597	54.2	4.6	1984
BANGKA	224,100	436,687	51.3	2.1	1984
BELITUNG	-	173,379	-	_	1984

Notes :

- 1. AAGR : Average annual growth rate
- 2. Source : Kabupaten concerned with the Study

1.2.4 Other Economic Activities

Notable economic activities in Kabupaten Belitung are the industries related to tin. However, these industries are based on foreign investment capital, therefore due to lack of data it is impossible to make further analysis of the impact on the whole industrial activities in the Kabupaten.

The following shows the current growth of tin production.

	1980	1984	AAGR (%)
Production (ton)	146,651	271,534	16.7

Notes: 1. AAGR: Average annual growth rate

2. Source : Kabupaten data

However, it should be noted that future development of the tin industry relys much upon the international market.

1.3 Present Status of Kabupaten Roads

1.3.1 Outline of Road Networks

The road networks in Kabupaten Belitung are highly consolidated with the provincial roads taking an important role as a regional trunk road which runs through the Kabupaten.

These provincial roads consists of four provincial roads which have the same origin, that is, Tanjung Pandan, the Kabupaten capital. Three of the provincial roads lead to Manggar via three different routes and include a so-called "Service road". The three roads also form a circular route.

The routes are :

- Simpang Pedang via Prawas, Badau and Sangranggrang as the service road
- 2. Simpang Pedang via Prawas, Buding, Peniruhan and Mengkubang
- Simpang Pedang via Prawas, Badau, Pelulusan, S.P Pesak and Limbungan, and Gantung.

The fourth provincial road is the road leading from Tanjung Pandan to Membalong and acting as a regional trunk road for the southeastern part of the Kabupaten.

The Kabupaten roads, are developed mainly in both the northern areas of Tanjung Pandan and the southwestern coastal areas of the Kabupaten. This is because these areas are the only areas available for regional development in the Kabupaten apart from the tin industry.

1.3.2 Road Inventory

From the road inventory data prepared by the Kabupaten, the number and total length of Kabupaten roads to be studied in Kabupaten Belitung are confirmed as 35 links and 429 Km respectively. These figures exclude Kabupaten roads with no data.

According to the data the present status of the Kabupaten roads is as follows:

(1) Density of Kabupaten Roads

The density of the Kabupaten roads is 0.93 m per ha. This is higher than the national density of 0.48 m per ha but distinctly lower than 2.11 m per ha which is the density in Jawa Island, excluding DKI Jakarta, as shown in the following table. Thus, the Kabupaten is presently progressing with road development.

	Total Length (km)	Area (ha)	Density (m/ha)
Kabupaten : Belitung	429	462,305	0.93
Province : Sumatera Selatan	2,905	5,760,614	0.50
Jawa Is.(Excluding DKI Jakarta)	27,715	13,159,700	2.11
Indonesia	92,038	191,944,300	0.48

- Notes: 1. The value for the province is the total value for the Kabupatens included in with the study.
 - 2. The sources of data are as follows: Kabupaten and Province: Bina Marga Inventory Jawa and Indonesia: Statistical Yearbook of Indonesia 1984, published by the Central Statistics Bureau

(2) Kabupaten Road Surface Type

The type of surface on the Kabupaten roads in the Kabupaten is shown in Table 1-3-1.

The legend used in the table is as follows: ASP : Asphalt

Table 1-3-1 EXISTING ROAD LENGTH BY SURFACE TYPE

							lkal									lka	1
102 1	7) [asf	1	HR 1	ι.ι	1 11	JIAL I	. !	102	7)	1	ASP 1	1881	1	L.L	1010	L
LINK	11	25	!	1		1	25 1		LINK	19				 	5		5
LIIIK	2 1	1.2	ţ	1.	-	ŧ	2.1	- 1	LINK	19	1	1	5	t	5) 1	0
LTIIK	3 }	.3	1	0		1	13-1	1	LIIIK	21)	ł		20	1.		1 2	0
LHK	4 1	23		1		1	23 1	-	LHK	21	1	11 1	10	Ť		1 2	1
LHK	- 5 l	. 1		t		1	16 1		LIIK	22	1	†		1	13	1	J
LIIK	6 1		i	1	27	1	27 1	ļ	LIIIK	23	ı	1		1	10		0
LIIK	7		ł	2	10	•	121		LLIIK	- 24	1	1	q	ŧ	1.7	l	9
LINK:	8		1	. 1	11	ł	11.4	1	LINK	25	ł		9	ļ	41		J
LINK	9 1		1	1 1	5	t	6 1	. 1	LINK	26	i	. , 1	B	ł		1 - 1	Ü
LINK	10			2		1	2	1	FINK	27			10	ļ		1 1	
LIIII	11 1		1	ł	2	1	3 1		LINK	28	ļ	1		1	B	l	Ð
LIHK	12.1		ł	1	25	1 .	25	ļ	l Llik.	. 29	1	1	8	ŧ	b	1	2
LINK	13	3	ì	27 1		} .	32:1		LINK	- 30	ı	· · · 1	12	1,		1 (2
LIIIK	1	* -	ł	ŧ	23	į	23 1	. :	LINK	31	ţ	. 1		1		l	
LINK	15 I			8 1	5	ŧ	13 1		LINK	32		. 1	•			1	
FIHK	16 1		1	1	7	ŧ			Lilik			1	2	1		ŀ	2
	17 1	4	l'	1 1	19		24		LINK			•		1		1	
			!			i 		. !	LTINK	35) 		12			 	2
									1 10	ΛL	1	72 1	156	•	201	1 - 42	9

KRK : Gravel/Stone/Telford/Water Bound Macadam

TNH : Earth
LL : Others

Comparison of the proportion of surface type in the Kabupaten with other regions is as follows:

	ASP	KRK	TNH/LL
Kabupaten : Belitung	16.8		83.2
Province : Sumatera Selatan	13.7	10.7	75.6
Jawa Is.(Excluding DKI Jakarta)	56.2	25.0	18.8
Indonesia	26 0	26.6	47.4

Thus, in the Kabupaten the proportion of Kabupaten roads with asphalt surface is lower than either that of Indonesia or of Jawa Island. The proportion of low grade roads such as earth roads and others is distinctly high. This means that the road classification in the Kabupaten is low.

(3) Surface Condition of Kabupaten Roads

The surface condition of the Kabupaten roads classified as good, fair, poor and bad which are shown as BA, SD, RU and RB respectively, are summarized in Table 1-3-2.

Comparison of the proportions of the various surface conditions of the Kabupaten roads in the Kabupaten with other regions is as follows:

•		Good	<u>Fair</u>	Poor	Bad
Kabupaten	: Belitung	48.9	20.9	16.3	13.7
Province	: Sumatera Selatan	43.3	31.7	17.3	7.7
Jawa Is.(E	kcluding KI Jakarta)	45.6	29 . 8	19.6	5.0
Indonesia		43.5	21.8	21.1	13.6

PROVINCE : SUMATERA SELATAN

KABUPATEN	BELI	rung			•	(1)
1 102 1 21 1	ASP	1	INI	l	l.L	
i loz i BA i	SO I RU	RD I BA	i 58 i RU i	ne t en	I SDI RUI	AD (
1 1 RK 1 1 59 1	27 19			1		1
1118K 21 3	70 1 70	101		· ·	1 1 1	1
1 1 tok 3 1 70 1	30 1	1 58	28 14] []	1
111HX 11 86 1	1 IU .:	ĺ	l I ji		t to t	- 1
1 till 5 1 99 f		l , l '	1 1	1 57	1 20 1 20 1	1
11180 4 1	1 1 1	1 1	1 1 1	1 1 56	1 13 1 26 1	11
11188 71 1	1	1 1 45	1 15 1 20 1	1 1 41	1 1 1 27 1	i
1 LINK 0 1 1	l !	l l	1 1	1 . 1 10	3 1 10 1	69 1
I LIKK 9 1 1	1	l 1 15	t 25 t l	1 1 41	1 35 1 4 1	. 1
1 Link 16 1 1	1 1	1 - 1 75	1 25 1 1	E e E	1 1 1	l, 1
		ł ;	1 1 1	1 1 75	1 25 1 I	ľ t
1 1 188 12 1 4	1	1 1	1 1	1 62	1 - 26 1 - 11 3	1
1 1 18X 13 1 3 1	1 12 1 23	1 1 3	1 23 1 7 1	0 3	1 1 1	i 1.
FLINK 14.1	l l'	1. 1	1 1	1 - 1 70	1 24 1 - 6 1	1.
I LIHK 15 I . I	1	! 1 19	1 61 23 1	52 51	1 26 1 20 1	1
I LIRK 16 1 I		E I .	1 . 1	1 20	1 31 41	26 1
1 LRRK 17 F 1	1 13 1 9	1 79 1	t 20 t	1 80 1 39	1 - 65 1 16 1	33 !
1 LIXX 18 1 (1 1	1 1	1 .	1 1 80	1 181 21	
1 L1HX 19 T	1 1	1 1 62	1 30 1 2 1	1 4 1	1 22 1 1	1 1
LIHK 20	l I	1 1 76	1 13 1 .10 :	t El	1 1 1	1 1
1 LINK 21 1 B8 1	1 17 1	1 1 66	1 191 191	1 1	1. 1	l t
1 LINK 27 1 1	1	ll,	1 }	1 . 1 84	1 30 1 6	i i
1 L1RK 23 1 1	1	t it	1 .4	1 78	1 15 1 57 1	
TELLER ZEE	l {	1 1 60	1 22 1 8	l le i	1 1	
1 LINK 25 1	1.	1 1 12	1 18 1 10	1 60 1 15	1 10 1 12 1	67.1
1 Ulik 28 1 1	1 1	1 1 69	72 1 9.	! [1 1	
1 t 18K 27 1 1	1	! ! 53	1, 30 l, 17 i	1 - 1	1 : L 1	1 1
1 t 18x 28 f	1 1	1 1	1	1 . 1 36	1 31 45	1 11
	l į	1 1 37	1 20 1 15	1 20 1 72	75 1 72	32 1
1 L16K 30 1 1	1 1	1 1 15	1 41 1 20	1 25 1	1 1	
1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	t 1 '	! !	1 1 .	l l	11	l 1
1 1 1HX 32 1	1 1	1 1	1	1 1	1 1	1 1
1 L1NK 33 1 1	1 1	1 1 35	1 50 1 15	I 1 I	1 1	1 1
I LINK 11 1	l i	1 1	1. 1 - 1.00	1 1	1 1	1 1
I LIKK 35 1	}	1 23	1 30 1 28	1 18 1		, , , , , , , , , , , , , , , , , , ,
I AVERAGE I 51	1 22 1 16	1 11 1 48	1 23 1 13	1 161 49	1 19 1 17	1 13 1
t LENGIN I	72 Ke	l	156 K≠	1	701 Ka	1
1 (Ka) 1 37 :	1 161 17	1 81 75	1 38 1 20	1 25 1 90	1 36 1 39	76 1

The surface condition level of the Kabupaten roads in the Kabupaten is almost same as or surpasses either that of Indonesia and of Jawa Island. The proportion in good or fair condition is relatively high.

Therefore, it seems that road maintenance is carried out diligently in the Kabupaten.

(4) Terrain Conditions of Kabupaten Roads

The difficulty of road improvement is mainly dependent upon the terrain conditions.

The terrain conditions of the Kabupaten roads in the Kabupaten are classified as flat, hilly, mountainous and swampy which are shown as DT, BK, GN and RW, are summarized in Table 1-3-3.

The proportions of terrain conditions in the Kabupaten are 69.0% flat, 27.0% hilly, 1.0% mountainous and 3.0% swampy.

There is very few mountainous area in the Kabupaten. Road construction is anticipated to be not so difficult because of the small proportion of swamp.

1.3.3 Bridge Inventory

A bridge inventory showing the existing condition of bridges on the Kabupaten roads in Kabupaten Belitung was prepared by the Kabupaten.

The bridges types are classfied as timber, concrete, steel and others which are shown in the inventory as KY, BT, BJ and LL respectively.

The inventory shown in Table 1-3-5 indicates a total of 85 bridges with a total length of 809 m of which 43 or 50.6% are timber, 32 or 37.6% are concrete and 7 or 8.2% are others. Steel bridges account for only 4 or 3.5% of the total. On the other hand, 31 bridges with a total length of 686 m are required to be newly constructed.

Table 1-3-3 EXISTING ROAD LENGTH BY TERRAIN CONDITION

PRUV : SUNNTERA BELATAN				KAB	: DEL	I TUNG
						(ka)
1 102 (3)	1 10	RN	l BK	l GN	I TOTAL I
t Etak	1 t	22 I	1	!	!	25 1
1 LINK	2.1	2 1		ł	{	1 - 21
LIME	3 }	13 1		1	}	13 1
LEHK	4 1	21 1		ł		23 1
ELEMK.				1 12	1	16 1
LLINK				1 20	\$ 1	27
1 LINK			1	1 11	!	1 12 1
	8 1			1 11	!	1 11
	9 1	6 1		1	\	1 - 61
ELINK	10-1	2 1		}	š	2.1
	11 1			1	1	1 31
LINK		25 1		1.	•	25 !
LINK				}	}	32.4
LINK			· •	ŧ	1	1 23 1
LINK				6		1 13 1
LINK				. 4		7.1
LINK				1	1	24
LINK				1	ì	1 51
LINK					i	1 10 1
† UNK				ì	1	20 1
LINK				1	1	21 1
LINK				į		1 13 1
LINK				. 4	1 3	
	24 1			1 8		9 1
	25			1 10		1 13 1
	26				Ì	1 8 1
	27 !					1 10 1
LUNK	78 I	-			}	1 81
LIRK	29 1			9	:	1 - 12 1
LINK	30			1 11		1 12 1
LLINK	31	1		1	i	1
Link		1				, ,
1 Link	33 1	2 !		i	!	1 2 1
1 LINK				:	ì	
L LINK;				1 3	1	12 1
i tot	AL !	294	15	1 117	1 3	1 429 1
l RAI	10 1	69 1	3	1 27	1 1	1 (%) 1

Table 1-3-4 NUMBER AND LENGTH OF BRIDGES

*.	((((BRIDGE))))					(0811) • 3			((((BRIDGE))))						(UHIT: •)	
	1 1		KISTIKO 1	HDI E1151	£1 5						STING 1		EIISI I	TOTAL		
	I LINK HO I	HD.	LENGIN I	HU.	LEHGIH I	Ho.	LENGIN I	 !	LIRK RO 1	но.	LEHOTH 1	KO.	LENGIN 1	но.	LENGIN	
		72	176.00		 I	22	176.60 1	•		•••••		1				
	i i i		60.00		i	6	60.00			•	65.00 I		1	4 .	65.00	
	1 3 1		64.00		1	5			63 i	6	00.				11.00	
	iii	Ĭ	18.00		;	d d	61.00		84 25	3	112.00		1	. 1	112.00	
			175.00 1		- ;	\overline{n}	16.00				76.00 1		1	•	26.00	
	1 6 1	,	77.00			10	175.00 1			3	13.80 1		!	3	13.80	
	1 11		59.00 1		1	7	79.00 1		F8	l	3.00 l		!	1	3.00	
	1 0 1		16.00 1				50.00 1		67 I	.7	18.00			?	18.00	
	1 11 1		76.50 I			4	16.00 1		70 1	11	39.00 I	1	3.00 1		17.00	
	1 12 1	13		•		15	76.50 l		17 1	5	41.00 i		!	5	11.00	
	1 13 1		28.00.1	7	6.00 1	5	34.00			1.	30.00 1		1		30.00	
		5	46.50		!	5	46.50]		71 1	1	13.00 1		1	1	43.00	
	1 15 1	?	6.00		!	2	5.00 l			ŧ	34.00 1		1	1	34.00	
	1 16 1		37.00 1		!	8	37.00 1		16 (7	25.00 I		t	7	25.00	
	1 17 1		10.00 I			1	10.00 [6	35.00 1		1	6	35.00	
	1 17 1		10.00 1	Ì	2.00 1	5	70.00 1			10	167.00 1		1	18 .	187.00	
	70 1	1	71.00		į.	3	21.00 1			17	109.40		ŧ	. 17	160.40	
	1 21 1	•	39.00		1	- 4	39.00 i	1	81 1	16	133.00 i		1	16	133.00	
	1 22 1	7	76.00 1		ŧ	1 .	76.00 f			1	59.00 1		ı	7	57.0	
	1. 23 1	4	27.50 1		1	4	77.50 l	. 1	83 i	5	13.00 1	i	75.00 I	8	88.00	
	1 14 1		13.00 1			ě	13.00 1	ł	B4 (5	28.00 l	2	20.00 1	1	46.0	
	1 76 1	1	10.00 1		ı	1	10.00 i			i	2.00 l		ı	ł	2.0	
	1 21 1		527.00 (1	2	577.00 1			5	13.00 1	1	10.00 1	6	53.0	
	1 78 1	2	61.00 1		1	?	61.00 [1	7.00 t		1	3	1.0	
	1 27 1	-	72.50		1	5	22.50 l			7	5.00		1		5.0	
	1 30 l	3	15.50 1		. 1	3	15.50 8			t	3.00 1		· I	ı	3.0	
	1 25 1	4	38.00 1		I	1	38.00 I	, 1		ı	3.00 i		1	. !	3.0	
	1 33 1		93.00 1		ŀ	10	93.00 1			2	6.00 \$		1	2	6.0	
	1 31 1	ı	, 9.00 1		I	ł	9.00 l	1	90 1	7	63.00 I		I	2	63.0	
	1 39 1	8	59.00 l		ł	8 -	59.00	•	97 1	1	2.00 1		ı	ı	2.0	
	1 31 1	8	16.00		1	8	16.00 I	ı	100 1	6	48.00 I		1	Ь	₹0.0	
	1 38 1	8	77.50 f		1	9	22.50 1	1	101 1	3	28.00 l		•	7	78.0	
	31 1	5	71.50 [1	5	21.50 1	ı		•	22.00 1	1	4-00 i		76.0	
	1 40 [1	18.60 1		- 1	4	18.60 1	1		ı	65.00 ł		1	-	65.0	
	1 11	1	35.50 I		1	7	35.50 l				1	1	57.00 l		51.0	
	1 (3)	6	18.50 [6	18.50 (3	17.50 1			3	17.5	
		16	81.00 1		1	15	81.00 I			2	11.00 1		,	1	14.0	
	1 45 1	. 6	76.70		ļ	- 6	26.70			_	70.54	1	79.00		79.0	
	1 16 1	12	59.00 1		!	12	58.00 I			9	89.50 1			9	89.5	
	1 48 1	?	11.50 1		1	?	41.50 8			9	28.00 I			8	28.0	
	1 17 1	1	24.70 1		,	?	24.20				6.00 i			2	6.0	
	1 50 1	ŀ	1.00		į		1.00 1			1	12.50 l 2.00 l			1	17.5	
	1 51 1	į	73.00 1			1	23.00 l			I In				 -	2.0	
	1 57 h	1	3.00			6	3.00 t			10	€0.00 } 36.00		,	10	10.0 36.0	
	1 53 1	6	36.50 1 39.50 l		; 1	5	38.50			ì	5.00 1		,	1	5.(
	1 54 f 1 55 f	5 10	116.00 1		ż	10	116.00 1			i	3.00 t				3.(
	1 54 1	13	93.00 1		ï	13	B3.00 I			3	15.00 1		!	3	15.0	
	1 57 1	,,	39.00 i		i	6	37.00				136.00 1			Ĺ	136.6	
	1 50 I		105.00		i	22	105.00			3	19.00 I		,	,	17.	
	1 60 1	1	5.50		i	7	5.50			. 4	15,00 1		,	4	15.0	
	1 61 1	í	7.00			i	7.00 1			5	35.00 1				35.0	

PROV : SUNATERA SELATAN KAD : BANGKA

		((⟨ BR	IDGE >>>			(No)			(((BR	IDGE >>	>	·	(Na)
1 103 (10)		KY	I BT I	LL	i Dj	I TOTAL	I	1 [03 (18)	I KY	1 81	l ll	l Đj	I TOTAL
LINK		1	22			!	1 27		LINK 64			1	l I	-
I LINK	2	1	3	l 5 l		İ	8		LINK 65			!	1	1 4
1 LINK	3	1	5	1 1 1		Į	1 5	•	LINK 67		1	!	İ	1 2
LINK	4.	ì	3	! [1]			1 • 1		I LINK 68		1	1 1		1 1
I LIHK	. 5	ì	22	i 1	١.	i	22		I LINK 69			ļ	!	1 2
LINK	6	1	10	i i	j	ł	1 10		I LINK 70		1 7		i	1 11
I LINK	7	l	9	1 1	1	l	1 7		I LINK 72			ļ ,		1 5
LINK	8		4		-	t	1 4		FLINK 73			l •	1	1 4
I LINK	11	ł	8	1 . 1	7		1 15		FLINK 74			•	1	1 7
LUNK	12			!!!	3	1	1 3		1 L1NX 75				j	1 . 4
	13		5		\$74	i	1 5		1 LINK 76			} • •	1	1 2
LINK	15			1 2.1		!	7		I LINK 77			1 [l }	1 6
1 LINK	16		_	1 7 1			1 8		I LINK 79			; ;	!	1 18
LINK			4			1.	1 4		I LINK 80			} 4		1 17
LINK	19			1 1	4		1 4.		LINK 81			 	} . •	1 16
LINK	20		3			1	1 3	-	1 FINK 82		l l 5		1 1	1 5
1 FINK	21			3 1	4		4		1 FINK 84			, 1 5	1 ‡	, s
LINK	22		7			!	7				1 1		1	1 1
I LIRK	23		4]	1 4		I LINK 95 I LINK 96				1	1 5
LINK				1 61		!	1 6		ILINK 87			; 3		1 3
LUKK	26		ş			i •	1 1		1 LINK 88		; 1 1			1 2
1 LINK				2 1		1	1 2		LINK 91			, , !	, i	1 1
LINK	28			l 51		!	1 5		LLINK 95		•	1	, 1	1 6
T LINK	29		•	i şi			1 3		LINK 97					1 2
I LINK				1 31			1 4		LINK 90			: 	i i	1 2
T TINK			10			1	1 10		1 LINK 99		, }			1 1
LINK			i		•	1			I LINK, 100		1 4		i I	1 6
LINK			5			, ,	8		LINK 101		, 9			1 9
	37			. 8		}	1 8		1 LINK 102				İ	1 4
LINK	38			1 81		, 1	1 8		LINK 103				1	1 1
LINK	39			. 51		ļ	1 5		I LINK 104		1	ļ.	l	Ĺ
LINK	40		4			1	1 4		LINK 105		1	1 2	1 -	f. 3:
LINK	41			. 31		I 2	1 7		1 LINK 106		ì '	}	1	1 2
LINK			6			Į	1 6		ELENK 107		l ji	ĺ	i	1
LURK			16	i , i		l	1 16	t	I LINK 108	1 4	1 2	1 3	ţ	9
LLINK			2				1 6		1 LINK 109	1 4	J :	1 3	1	1 8
LETHK				1 12 1		1			LTHX 112	1	! . !	1	i .	1 2
LINK			6			f :			I EINK II6	Ţ	1	I.	į į	1 1
FINK	49	1	2	1 3 1	2	Į	1 7		ELINK 117			-	F .	1 1
1 ETHK	50	i i	i	1 1		1	1 1		I LINK ITA		1 7	1	ļ (
I LINK			.1	1 1	}	j	1 [1 LINK 119			1	!	1 4
LINK			1			t.	1 1	•	I LINK 120				j	
LUDIK			6	1 1		1	1 6		1 LINK 122				1	
LINK				!!!			1 5	-	1 LINK 124					1 3
LINK			5				1 10		1 LIIIK 125.			!	ነ	1 6
LLINK			13] [3		I LINK 126				i ,	1 3
LUNK				1 4 1			1 6	•	LINK 127				•	1 4
LETRK			10				1 22	1	I LINK 128	1 6	1	1	i	1 6
LIIK						!	1 2			1 311				
FINK				1 1			1 1		1 JOTAL	1 346	1 146	1 67	1 12	1 57!
LINK			l ·				1 4		L DATIO	1 /1	. 21			
LLINK	9?	ı	2	ţ	1 4	1	1 6		l RAT LO	1 61	l 26	l 12	. 2	[(X)

The number of existing bridges by span length is as follows:

Bridges Type		a t		S	pan I	ength	(m)				
A CONTRACTOR OF THE CONTRACTOR	<u>(3</u>	<u>(5</u>	<u>{8</u>	<u>(10</u>	<u>{12</u>	<u> </u>	<u> </u>	(18	<u> </u>	(99	<u>Total</u>
Timber	14	24	3	1		-			-	1	43
Concrete	4	21	4	. 1	1	-	-			. 1	32
Stee1	1	1	1	-	-				_	-	3
Others	3	3	1	=-	-	••		-		7	7
Total	22	49	9	2	1	-	•		_	2	85

Thus, most of the existing bridges on the Kabupaten roads are timber and concrete and the majority of spanlengths is within the range of 3 m to 5 m.

1.3.4 Traffic

Inventories of the average daily traffic (ADT) on the Kabupaten roads in Kabupaten Bangka were prepared by the Kabupaten and are shown in Chapter 2.

From the inventories, total value of average daily trips by vehicle type and their proportions in the Kabupaten in 1985 are summarized as follows:

	SEDAN	BUS	TRUCK	MOTOR- CYCLE	TOTAL
Total Trips	3,821	3,530	4,217	13,747	18,452
Proportion (%)	15.09	13.94	16.66	54.30	100.00

Source : Bina Marga Inventory

The proportions of registered vehicles by vehicle type are as follows:

	SEDAN	BUS	TRUCK	MOTOR-	TOTAL
	4-8-4	· · · · · · · · · · · · · · · · · · ·		CYCLE	
Proportion (%)	.	-	- ·	-	-

Source : Kabupaten.

Thus, the proportion of motorcyles in the Kabupaten is by far the highest.

From the above tables the following can be observed:

- Number of total trips might be underestimated
- Proportions are probably reasonable.

Essentially, for estimation of future traffic volumes past and present traffic data together with the trend in the number of registered vehicles are important basic data. However the data obtained for the study was traffic count data for each road link in 1985 and of low reliability.

Therefore the future traffic volumes are estimated by the calculation process recommended in chapter 3 of the Main Report.

Chapter 2 ESTIMATIONS OF FUTURE TRAFFIC VOLUME AND BENEFIT

2.1 Future Traffic Volume

2.1.1 Traffic Growth Rate

The traffic growth rate used for estimation of the future traffic volume on the Kabupaten roads was estimated by the following calculation process.

Growth of Production Basis "A":

Annual Population Growth Growth of the Total of the Kabupaten X Cultivated Area

Growth of Productivity "B":

Growth of the Total X Growth of the Paddy Paddy Field Area Production per ha

Traffic Growth Rate: Initial estimated figure:

 $\overline{GR'} = \sqrt{A \times B}$

Traffic Growth Rate GR Final adjusted figure:

VGR' X Trend of GDP/Capita of the Province Concerned

Results of the estimation are shown in Table 2-1-1.

Table 2-1-1

TRAFFIC GROWTH RATE ESTIMATION

A)	Growth Rate of Population	:	1.80 (%)
B)	Growth Rate of Cultivated A	rea :	2.50 (%)
C)	Orowth Rate of Rice field		3.90 (%)
D)	Orowth Rate of Rice yield r	ate :	4.40 (%)
E)	Growth Rate of GDP / capita	3	6.70 (%)
a)	Geometrical Mean (A x B)		2.15 (%)
h)	Geometrical Mean (C x D)	:	4,15 (%)
(;)	Geometrical Mean (a x b)	,3	3.14 (%)
d)	Geometrical Mean (c x E)		4.91 (%)

7-23

2.1.2 Present and Future Traffic Volume

The future traffic volumes on the Kabupaten roads in 1998 for the Project life time of ten years were estimated by the following formula:

 $Tn = Te (1 + r)^{T}$

Where :

In : Future traffic volume n years later

Te: Traffic volume in 1985

r : Traffic growth rate

The results are shown in Table 2-1-2 together with the traffic volume in 1985.

Table 2-1-2

EXISTING AND FUTURE TRAFFIC VOLUME

35 1 0 0 0 10

											4			(SPD	: 1/2 >			
				TNVE	NTORY (1905)		1	RATE	ı		AFTER 13	YEARS	(1998)		1	CLASS	-1
_	LIHK NO	1.	KBL	BUS	TRUK	SPD	TOTAL	1		1	MBL	BUS	TRUK	SPD	TOTAL	1	~~~~	1
	1	ı	6	2	4	20	22	1	4,9%		- 11	. 4	7	37	41	 	1110	
	2	ŀ	0	0	0	5	. 3	ı	4.9%	ļ	0	0	0	9	6		1110	1
	3 -	l	4	0	. 4	10	13	1	4.9%	1	7	0	7	19	24	1	HIC	•
	4	1	0	0	2	15	10	1	4.92	1	0	.0	4	28	19	1	HIC	F
	5	I	0	0	5	5	8	- 1	4.9%	H	- 0	0	. 9	9	15	1	1110	. 1
	6	ŧ,	6	0	4	15	18	H	4.9%	1	, H	0	7	28	-34	1	HIC	Į
	7	ı	4	0	3	15	15	1	4.9%	F	7	0	6	- 28	29	ĺ	HIC	ļ
	8	i	0	0	. 0	0	0	ı	4.97	ŧ	0	0	. 0	0	0	I	HIC	ı
	: 9	ì	2	0	2	20	14	1	4.7%	L	4	0	. 4	37	26	ì	HIC	ļ
	10	1	2	0	0	20	12	, E	4.9%	1	. 4	0	0	37	22	1	HIC	.1
	Ħ	f	- 1	0	. 0	10	6	Į	4.9%	ł	2	0	0	19	- 11	ŧ	1110	-
	12	i	3	0	0	10	.8	-1	4.9%	1	. 6	. 0	- 0	19	15	ļ	1110	1
	13	1	4	. 0	0	20	14	ij	4.9%	L	7	0	0	37	26	1	1116	
	14	1	- 4,	0	2	- 20	16	H	4.7%	1	- 7	0	4	37	30	ŧ	1110	1
	15	1	3	0	4	10	12	ı	4.9%	1	6	0	7	19	22	ł	1110	-
	16	1	2	0	1.1	5	b	ł	1.9%	1	4	0	2	9	11	ł	HIC	
	17	1	2	0	2	10	q	1	4.7%	1	Ą	0	4	19	17	١	THE	1
	18	ļ	2	0	ŧ	20	13	-1-	4.9%	1.	4	0	. 2	37	24	ł	1110	- [
	19	1	- 2	. 0	1	5	- 6	ı	4.9%	1	4	0	2	9	11	1	HIC	Ė
	20	1	2	0	3.	20	15	1	4.9%	1	4	0	ę	37	28	1	HIC	1
	21	1.	4	0	4	20	18	1	4.7%	Ĺ	7	0	· 7	37	34	ł	HIC	1
	22	ı	. 4	0	1	20	15	1	4.7%	į	7	0	2	37	28	1	HIC.	- 1
	23	1	0	0	0	0	0	1	4.9%	í	0	0	0	0	. 0	1	HIC	1
		1	- 0	0	. 0	0	. 0	1	4.9%	ŧ,	0	0	0	0	0	ì	HIC	į
	25	I	0	0	0	3	2	1		ł	0	0	0	6	4	ı	HIC	:
	26	I	2	. 0	l	5	6	ì	4.9%	i	4	0	. 2	9	11	1	3111	
	27	ļ	1	0	4	15	13	1	4.7%	Ļ	2	•	7	28	24	l	HIC	,
	28	Ŧ	2	0	3	3	7	1	4.9%	Ŧ.	4	0	6	å	13	ı	HIC	İ
	29	1	Û	0	4	4	. 6	١	4.9%	J.	0	. 0	7	7	11	1	1110	į
	30	ŀ	0	0	0	10	5	I	4.9%	1	. 0	0	0	19	9	I	HIC	
	31	١,	0	· ()		0	0	i	4.9%	1	0	0	0	0	0	ı	HIC	!
	32	1	0	0	0	0	. 0	F	4.7%	ŀ	. 0	0	0	. 0	0		HIC	
	33	1	0.	0, -	2	2	3	1	4.9%	ł	Û	0	4	4	6		HIC	
	34	1	- 0	0	0	0	0	, E	4.9%	1.	0	0	0	0	0	1	1110	

9 1 1110 1

2.2 Benefit

2.2.1 Benefit Estimation Method

Generally, estimation of the benefit on each Kabupaten road due to the Project was made by analyzing the direct benefit i.e. the VOC reduction benefit, which was estimated by comparing "with project" and "without project" based upon the future traffic volume on the road. However for the following road links it was decided to estimate the indirect benefit through the producer's surplus benefit.

- a) Road links with present traffic volume (ADT) less than 60 equivalent 4-wheel vehicles.
- b) Road links with no 4-wheel vehicle operation at present.

The indirect benefit was changed into the future traffic volume and the VOC reduction benefit was estimated.

The VOC adopted for the estimation is shown in Table 2-2-1.

Table 2-2-1 VEHICLE OPERATION COST ON KABUPATEN ROADS

		· .	· · · · · · · · · · · · · · · · · · ·		(KM)
SURFACE	CONDITION	SEDAN	BUS	TRUCK	MOTORCYCLE
ASPHALT	GOOD	104.7	86.2	85.4	15.9
	Fair	125.5	101.0	98.0	18.2
	Poor	164.1	135.2	138.5	22.8
	Bad	222.1	202.0	205.0	29.1
GRAVEL.	Good	125.7	101.4	102.5	18.5
	Fair	145.0	124.6	127.1	21.1
	Poor	198.6	172.6	178.4	27.1
	Bad	242.7	228.9	231.2	31.8
EARTH	Fair	201.8	180.0	185.1	28.0
	Poor	240.7	218.2	225.8	31.8
	Bad	264.9	278.0	281.7	35.5

Source : Bina Marga

Table 2-2-2

FUTURE TRAFFIC VOLUME ESTIMATED BY THE PRODUCER'S SURPLUS

PROV : SUMATERA SELATAN KAB : BELITUNG

(1998)

							(1998 >
LINK NO	CLASS	SURFACE	MODIL.	BUS	TRUCK	SEPEDA	TOTAL
1	1118-2	KRK	19	1	17	106	70
2	1110	KRK	. 2	0	1	9	8
3	1110	KRK	10	0	. 9	55	47
4	111B-2	KRK	16	1	. 17	102	B _. 7
5	1118-2	KRK	13	0	12	72	61
6	1118-2	KRK	21	1	19	115	99
7	1110	KRK	. 8	0	ø	47	40
9	HIC	KRK	8	0	. 8	47	40
. 9	111B-2	KRK	31	1	29	176	149
10	1110	KRK	8	0	7	44	37
11	1118-2	KRK	12	. 0	11	66	56
12	1118-2	KRK	14	0	13	. 77	66
13	1118-2	KRK	18	1	16	. 99	95
14	1118-2	KRK	17	i	15	94	80
15	1110	KRK	5	0	4	27	23
- 16	1110	KRK	3	0	3	16	14
17	1110	KRK	8	. 0	8	47	40
19	HIC	KRK	2	. 0	2	10	9
19	1110	KRK	3	0	3	20	16
20	1110	KRK	7	0	. 6	37	32
21	1110	KRK	7	0	ь	39	33
22	1110	KRK	5	0	4	25	22
23	1110	KRK	4	0	4	. 23	20
24	1110	KRK	7	0	b	38	- 32
25	1110	KRK	10	0	9	55	47
26	1110	KAK	3	. 0	3	16	14
27	1110	KRK	3	0	3	- 20	16
28	1110	KRK	3	0	3	16	14
29	1110	KRK	4	0	4	23	20
30	111C	KRK	9	0	8	51	43
33	HIC	KRK	1	0	1	4	4
35	1110	KRK	7	0	ь	37	32

2.2.2 Benefit

The benefit estimation was carried out for each Kabupaten road. Table 2-2-3 shows a sample of the result of benefit estimation. In the table "surplus" and "VOC" show the estimation method utilized and III A, III B-1, III B-2 and III C show the road classification.

Table 2-2-3

RESULTS OF BENEFIT ESTIMATION

KABUPATEN : BELITUNG

1000Rupiah	10	(-							
I LINK 10	}	LINK 9	;	TINK 8	LINK 7	LINK 6 1	LINK 5 1	LINK 4 I	FINK 3 !	LINK 2 !	LINK I I	}
2 Ks	1	6 Ks	ì	11 Ka	12 Km 1	27 Km l	16 K# 1	23 Km 1	13 Km i	2 K# 1	25 Kg !	
1 1110	1	1118-2	1	1110	IIIC I	II1B-2 1	I11B-2 1	IIIB-2	1111	IIIC	1118-2	1
l Surplus		Surplus	}	Surplus	Surplus !	Surplus 1	Surplus !	Surplus !	Surplus !	Surplus !	Surplus :	YEAR !
1 . 0	1	0	 !	0	0 1	0	0	0 1	0	0 1	0 1	1988
1 1088	Ì	3629	1	5209	1916	8769	2789	606 1	5056 1	104	4284 !	1989 !
1086	1	3629	ŀ	5252	1933 [9031 1	2948	652	5093	104	4335 1	1990 1
1075	ł	3704	ł	5673	2088 1	9385 1	3113.1	1 088	5473 1	109 1	4644 - 3	1991 1
1 1095	ŧ	3704	1	5717	2104	9790 1	3145	709 1	5510	107 ;	4713	1992 ;
1 1095	ł	3704	1	6216	2286 1	10425 !	3321 1	717	5911 1	109 ;	5038 1	1993 :
1158	ł	3824	;	6303	2319 1	11077	3502	769 1	6270	107 :	5107 !	1994 1
1158	ł	3824	1	6767	2491 1	11805	3693 1	820	6403 }	113 1	5467 !	1995 :
1 1165	1	1889	١	7267	2872 1	12533	3890 1	880 1	7146 1	113 }	5965 1	1996 1
1 1165	ł	3886	Į	7774	2861 ;	13292 1	4247	937 1	7258 1	118 1	6493 1	1997 1
1 1172	ł	3961	;	8360	3076 1	14656	4603 1	1015 }	8038	165	6905	1998 1
11279	1	37751	1	64538	23746	110963	35251 l	7765	62178 1	1153	52951 !	SUN I
l -325	!	1416	 !	-1565	-29211 1	-31946 ;	-36828 :	-78247 \$	-10111 ;	-6511 1	-58818 ;	cost !
-163	i	236	1	-142	-2434	-1183	-2302	-3402	-778	-3256	-2353 1	/Ke i

Chapter 3 ENGINEERING

3.1 Design Criteria and Specification

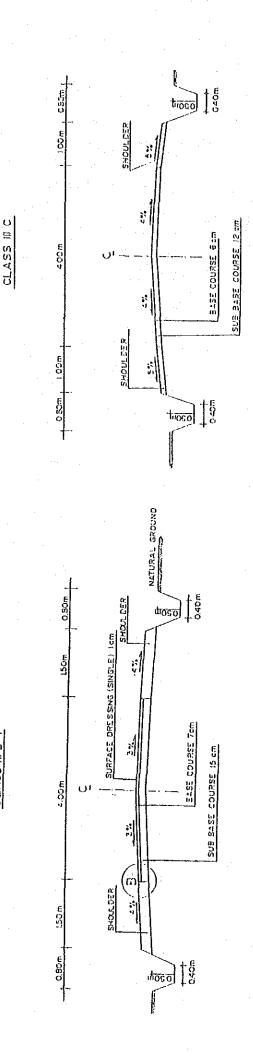
3.1.1 Geometric Design Criteria

Currently a technical standard for improvement of Kabupaten roads i.e. PETUNJUK TEKNIS INPRES PENUNJANGAN JALAN KABUPATEN, TAHUN 1984-1985 is established by Bina Marga.

The geometric design criteria in the above standard are recommended to be adopted in general for the Project. Following discussions with Bina Marga, exceptions to this are allowed for Pavement width and pavement type to minimize the construction cost of the Kabupaten road improvement, if necessary. The geometric design criteria adopted for the Project are shown in Table 3-1-1. The typical cross sections of Kabupaten roads are shown in Fig. 3-1-1.

3.1.2 Loading Specification

The LOADING SPECIFICATIONS FOR HIGHWAY BRIDGES BY DIRECTORATE GENERAL BINA MARGA is used in principle as the basic specification of loading and the TECHNICAL STANDARD FOR KABUPATEN ROADS compiled by Bina Marga shows that the design live load for bridges on Kabupaten roads is 70% of the Bina Marga live road. However, after discussions with Bina Marga the following loads were decided as the design live loads for the standard bridges of Kabupaten roads:


- a. 50% of Bina Marga live load (hereinafter BM 50) is applied for concrete and timber bridges on roads of III Λ classification.
- b. 10-ton truck load is applied for timber bridges on roads of Ill B-1, III B-2 and III C classification.

DESIGN CRITERIA FOR KABUPATEN ROADS

	- E-E-GERA) AL (-)	و نیو اوستان کی دورو		MOUNT- AINOUS	et	AS PRACTI-	CABLE	12	Ιę	3.5	3.0	0.75	0.5	5.0	0.4				
	SS III C	GRAVEL	50	d ATTIH	rt	30	AS PRACTICABLE	8	12	3.5	3.0	1.0	0.5	5.5	4-0	12	8	7	5
	CLASS			FLAT TO ROLLING	H	50	30	5	7	3.5	3.0	1.0	0.75	5.5	4.5		-		
	В-2			MOUNT- AINOUS	1+	30	AS PRACTI-	80	12	4.5	3.5	1.0	0.5	6.5	5.5				
	III	GRAVEL	200 - 50	ATTIH	+ ₁	40	30	7	Q.	4.5	3.5	1.0	0.75	6.5	5.0	12	1,0	7	'n
ROADS	CLASS		2	FLAT TO ROLLING	+	9	30	7	7	4.5	3.5	7.5	1.0	7.5	5.5				
KABUPATEN R	1	(SINGLE)		MOUNT- AINOUS	+ +	30	AS PRACTI-	80	10	4.5	3.5	1.0	0.75	6.5	0.2				
FOR KAB	III B	SEAL (S	500 - 200	HILLY	17+	0.40	30	9	œ	4.5	3.5	1.5	1.0	7.5	5.5	1.2	10	3	77
CRITERIA	CLASS	ASPHALT	50	FLAT TO ROLLING	+1	70	30	7	7	4.5	3.5	1.5	1.0	8.0	5.5				
DESIGN (Ą	(DOUBLE)		MOUNT- AINOUS	<u>+</u>	40	30	∞	10	0.9	4.5	1.5	0.75	0.6	6.0				
	CLASS III	SEAL	3000 - 500	HILLY	+	60	30	5	7	6.0	4.5	2.5	1.0	0.6	6.0	16	12	3	7
	כד	ASPHALT	30	FLAT TO ROLLING	+1	70	30	+7		6.0	4.5	2.0	1.5	10.0	6.0				
	TION	fa)	: ADT year average	N I	ES	DESIRABLE	MINIMUM	DESIRABLE	MAXIMUM	DESIRABLE	MINIMUM	DESIRABLE	MINIMOM	DESIRABLE	MINIMIM	DESIRABLE	MINIMOM	PAVEMENT	SHOULDER
	CLASSIFICATION	SURFACE TYPE	orune 10 ch)	다. 작 작	TRAFFIC LANES		(Km/hr)		(F)		£		E				(X)	(6)	(4)
Table:3-1-1	ROAD C	SUR	IRAFFIC VOLUME (Forecast 10 th	₽	TR	DESIGN	SPEED	GRADIENT	(PRILING)	PAVEMENT	WIDIE	SHOULDER	MICIM	ROAD BED	HIGIM	RIGHT	OF WAY	ROAD	CAMBER
Tab						<u></u>			30										

7-30

tiosoi | 9

CLASS III B-1

7-31

3.2 Pavement Design

3.2.1 Design Conditions

From the engineering data prepared by the Kabupaten it is noted that the pavement structure of the Kabupaten roads seems to have been determined without adequate designs, therefore the Kabupaten roads generally have insufficient capacity. The standards generally used for highway pavement design such as Road Note 29, Road Note 31 and AASHTO are not suitable for Kabupaten roads with small traffic volumes and loads.

Therefore formulae suitable for the pavement design of Kabupaten roads are recommended as described in Chapter 5 of the Main Report.

The following are important factors for the design of pavement thickness.

1) Design Traffic Volume

As the pavement thickness is designed for each road classification the design traffic volume of which the target year is 1998, is adopted for each classification as follows:

Road Classification	Design Traffic Volume (vpd)
III A	1,000
III B-1	500
III B-2	200
III C	50

2) Strength of Roadbed

The CBR value of the existing roadbed is a very important factor for the pavement design but no results are available from CBR tests on the Kabupaten roads.

CBR of the laterite is generally in the range of CBR 4 to 10. However site CBR tests should be conducted before construction to finally decide the pavement thickness.

3.2.2 Pavement Structure

Fig. 3-2-1 shows the standard pavement structure adopted for the Kabupaten roads.

Fig. 3-2-1

PAVEMENT STRUCTURE

				(cm)
CBR		ROAD CLASS		
	111 A	III B - 1	III B - 2	III C
6	14 8 IIII	14 7 11	14 6	1 9

= SURFACE DRESSING (ASPHALT)

= BASE COURSE (CRUSHER - RUN)

= SUBBASE COURSE (SANDY GRAVEL)

3.3 Design of Bridges and Other Structures

3.3.1 Standard Bridge

There are so many bridges to be improved or to be constructed on the Kabupaten roads in the Project Area that it is very difficult to prepare an individual design for each bridge. Therefore, standardization is recommended as being necessary for the bridge design with conclusions as described below.

(1) Bridge Type

1) Superstructure

The following two types have been finally selected with the agreement of Bina Marga after studying the actual rural conditions of bridge construction. Fig. 3-3-1 shows the cross sections of standard types.

- a. Timber beam bridge (hereinafter timber bridge) for roads class III B-1, III B-2 and III C.
- b. Reinforced concrete T-girder bridge (hereinafter RC-bridge) for roads class III A.

2) Substructure

Taking account of the actual combinations of super and substructure types noted from the field survey, the following two types are recommended as standard because of ease of construction and economy.

- a) Timber pile bents for timber bridge
- b) Rubble in Mortar masonry for RC bridge

3) Foundation

There is no information of subsoil conditions in the inventory data. However, timber piles of 20 cm diameter are generally recommended as piles of this type are in common use.

The pile length is suggested to be a minimum of 3 meters under the bottom of the foundation. The length and number of piles should be decided in order to be adequate for the condition of the foundation materials.

(2) Bridge Width

The effective bridge widths for the standard bridges have been decided as follows through discussions with Bina Marga considering the actual width of Kabupaten roads:

- a) Timber bridge: 4.0 m in general
- b) RC bridge : 4.5 m in general

(3) Span Length

The range of span lengths are determined as:

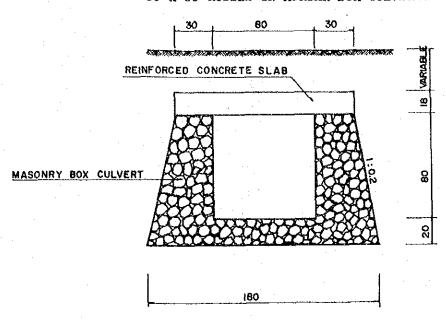
- a) Timber bridge: 3.0, 5.0 and 8.0 m
- b) RC bridge : 3.0, 5.0, 10.0 and 15.0 m

3.3.2 Other Structure

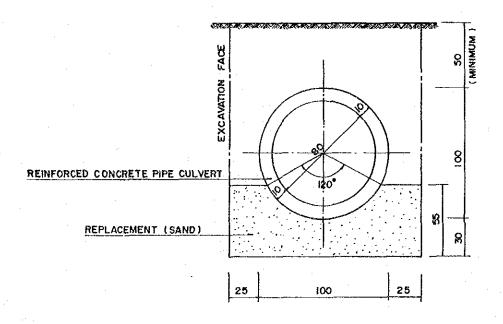
Culverts and retaining walls shown in Fig. 3-3-2 and Fig. 3-3-3 are recommended as standard structures.

(1) Culvert

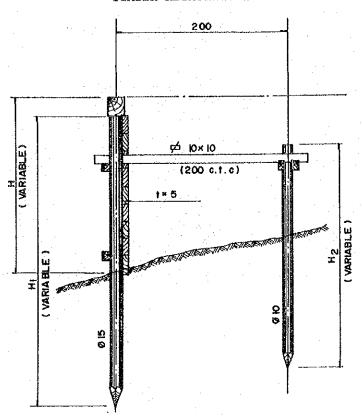
The following two culvert types have been adopted for the transverse drainage.

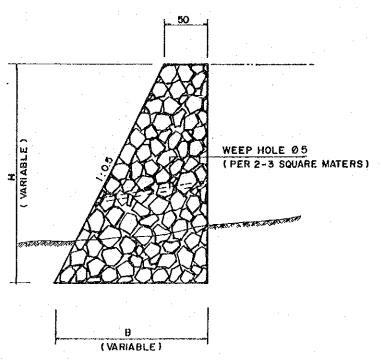

- a) Reinforced concrete pipe culvert \$ 80 cm
- b) Rubble in mortar box culvert with RC slab 80 cm X 80 cm

(2) Retaining Wall


The following two types of retaining walls have been adopted because of ease of construction, economy and familiarity in Indonesia.

- a) Rubble in mortar retaining wall
- b) Timber retaining wall


80 \times 80 Rubble in mortar box culverts


Ø 80 RENFORCED CONCRETE PIPE CULVERT

TIMBER RETAINING WALL

RUBBLE IN MORTAR WALL

3.4 Selection of Equipment Types

From the results of comparison of two types of Kabupaten road construction methods, i.e. equipment intensive method and labour intensive method construction methods for major works were basically decided as shown in Table 3-4-1.

Table 3-4-1

CONSTRUCTION METHODS FOR MAJOR WORKS

METHOD	WORK TYPE
Equipment Intensive	Earthwork, Base Course and Subbase Course
Labour Intensive	Surface Dressing, Drainage,
	Bridge and Other Structures.

3.4.1 Points to be Considered for the Selection

Full consideration was given to the following points in studying the selection of equipment type.

- a. Most of the construction in the Project is pavement works for road improvement.
- b. The pavement width adopted is equal to or less than 4.5 m and therefore large sized equipment is omitted from the selection process.
- c. Equipment should be capable of with standing the heavy rainfall and poor soil quality. Equipment for construction in swampy areas is considered if necessary.
- Uniformity of equipment types with existing equipment is d. facilitate of equipment the considered to repair the provincial work shop.
- e. Since the scale of the construction is small and transportation of equipment will frequently be necessary, wheel type equipment has been selected as much as possible as this can move by itself or by being towed.
- f. The road like to be improved are scattered all over the Kabupatens and therefore a low bed truck or equivalent is necessary for transportation of crawler type equipment. It is desirable to protect the existing pavement from damage caused by the movement of crawler type equipment on the existing roads.
- g. The capacity of the equipment has been decided taking into consideration the construction volume and the combination of equipment in the main work.

3.4.2 Combinations of Equipment for Major Works and Maintenance

The combinations of equipment for major works and maintenance are listed in Table 3-4-2 and 3-4-3 respectively.

Table 3-4-2 EQUIPMENT OF ONE WORK GANG FOR MAJOR TYPES OF WORK

TYPE OF	WORK	EQUIPMENT REQUIRED
l. Site Bush	Clearing in Light	1- Bulldozer 90 HP 1- Wheel Loader 1.2 m ³ 2- Dump Truck 3.0 Ton
2. Exca	vation & Embankment	
i)	Normal Fill	1- Bulldozer 90 HP 1- Vibratory Roller 4.0 Ton (D&T) 1- Water Tank Truck 4,000 Ltr
ii)	Fill by Borrow Material	1- Bulldozer 90 HP 1- Wheel Loader 1.2 m ³ 3- Dump Truck 3.0 Ton
iii)	Fill in Swamp	1- Swamp Bulldozer 90 HP 1- Vibratory Roller 1- Water Tank Truck 4.0 Ton (D&T) 4,000 Ltr
iv)	Excavation to Spoil	1- Bulldozer 90 HP 4- Dump Truck 3.0 Ton 1- Wheel Loader 1.2 m ³
3. Subg	rade Preparation	1- Motor Grader 75 HP 1- Water Tank Truck 1- Vibratory Roller 4.0 4,000 Ltr Ton (D&T)
4. Subb	ase Course	1- Motor Grader 75 HP 1- Water Tank Truck 1- Vibratory Roller 4.0 4,000 Ltr Ton (D&T)
5. Base	Course	1- Motor Grader 75 HP 1- Vibratory Roller 4.0 Ton 1- Water Tank Truck 4,000 Ltr
		1- Portable Crusher/Screens 30-40 Ton/H
б. Ceme	nt Stabilizing	1- Motor Grader 70 HP 1- Bulldozer 90 HP 1- Wheel Loader 1.2 m ³ 1- Vibratory Roller 4.0 Ton (D&T) 1- Road Stabilizer
		1- Flat Bed Truck 3.0 Ton 1- Water Tank Truck 4,000 Ltr
7. Surf	ace Course	1- Asphalt Sprayer 1- Flat Bed Truck 850 Ltr 3.0 Ton 1- Tyre Roller 8-15 Ton 1- Portable Crusher/Screens 30-40 Ton/H
8. Conc	rete	1- Concrete Mixer 0.5 m ³ 1- Flat Bed Truck 1- Water Pump 200 Ltr/Min 1- Concrete Vibrator 3.3 HP 1- Flat Bed Truck 3.0 Ton 1- Hand-Guided Vibrator Roller 1000 Kg

Table 3-4-3 EQUIPMENT OF ONE WORK GANG FOR MAINTENANCE

TYPE OF WORK		EQUIPMENT REQUIRED
Road	·	1- Motor Grader
		1- Tyre Roller 8-15 Ton
		1- Hand-Guided Vibratory Roller 1000 Kg
r _e - e		1- Flat Bed Truck 3.0 Ton
	e ^e	1- Dump Truck 3.0 Ton
Bridge and Other	Structure	1- Flat Bed Truck With Crane 3.0 Ton

3.5 Workshop and Laboratory

3.5.1 Policy of the Kabupaten Workshop

A workshop will be provided for each Kabupaten. The function of the workshop is to cope with requests from the construction site. The main service will be routine maintenance while the secondary service will be light repairs which can be carried out by changing parts. Dismantling and assembling of units which need setting or adjustment using special equipment or facilities will not be carried out in the Kabupaten workshop. Such repairs are planned to be carried out by the provincial workshop or the regional Workshop of Bina Marga.

Accordingly the main tasks of the Kabupaten workshop are as follows:

- 1) Administration for and storage of equipment
- 2) Routine maintenance and light repair of equipment
- 3) Storage and supply of spare parts
- 4) Operation of equipment including crushing plant.

3.5.2 Workshop Equipment and Tools

Equipment and tools for the workshop are recommended as shown in Table 3-5-1.

Table 3-5-1

WORKSHOP EQUIPMENT AND TOOLS

DESCRIPTION	QUANTITY
Upright Drilling Machine	l Set
Electric Hand Drill	1
Electric Portable Grinder	1
Disc Grinder	1
Bench Electric Grinder	1 -
Engineer's Vice	1
DC Electric Welder with Engine	1 Set
Portable Hydraulic Jack, Screw Head	1
Hydraulic Jack	1
Grease Gun	2
Suction Pump for Oil Recovery	2
High Pressure Grease Pump	1

continued

DESCRIPTION	QUANTITY
Drum Opening Spanner	1
Silicon Normal Charger	1 :
Tyre Changer Air Operated	1
Tyre Service Tool Set	1
Tyre Pressure Gauge	. 1
Automatic Tyre Inflator	1
Plug Cleaner and Tester	· · · · 1 · · · · · ·
Mechanics Tool Set, Heavy Equipment	. 1
Mechanics Tool Set, Large Vehicle	1
Portable Air Compressor	.1
Electric Cord Reel, 15 A, 50 m	1
Oil Measure, Polyethylene	1
Funnel 200 mm, Steel	3
Hand Truck (Cart), 4-Wheel	1
Nylon Sling, 10 ton	2
Chain Block, 1 ton	2
Wire Rope (for sling), 1.8 ton	2
Wire Rope (for sling) 3.2 ton	2
Generator	.1

3.5.3 Laboratory

For quality control of construction in the Project it is recommended that a laboratory is provided for each Kabupaten. For each laboratory, provision of laboratory test equipment for the following tests is recommended:

- Physical characteristic, compaction and strength tests for the road bed and pavement materials.
- Slump and strength tests for the bridge concrete.

In the laboratory a fixed water tank should be provided for CBR tests and curing of concrete specimens.

The proposed laboratory equipment is listed in Table 3-5-2.

Table 3-5-2

LABORATORY TEST EQUIPMENT

DESCRIPTION	QUANTITY
Soil Moisture Test Set (JIS A1203)	1
Liquid Limit Set (JIS A1205)	1
Plastic Limit Set (JIS Al206)	. 1
Compaction Set (JIS A1210)	1
CBR Laboratory Set, Mechanical (JIS A1211)	1
Sand Density Apparatus (JIS A1214)	1
Aggregate Test Sieve Set	. 1
Portable Cone Penetrometer	1 :
Compression & Bending Test Machine	1
Cylinder Mould (JIS A1132, 1108)	9 -
Slump Test Apparatus (JIS AllOI)	2

To conduct the surveys necessary for road and structure construction such as centering, profile leveling, cross section leveling etc., the surveying equipment listed in Table 3-5-3 recommended.

Table 3-5-3

SURVEYING EQUIPMENT

DESCRIPTION	QUANTITY
Transit	1
Leve1	1
Stalf	3

Chapter 4 CONSTRUCTION AND MAINTENANCE COST ESTIMATIONS

4.1 Unit Price

With regard to the unit prices of materials and labor, the data were collected from each Kabupaten through Bina Marga. The collected data were compared with those of Jakarta using BAHAN BANGUNAN DKI-JAKARTA MAY & JUNE 1985 compiled by PUSAT INFORMASI TEHNIK PEMBANGUNAN, and then finalized.

4.1.1 Unit Labour Price

The unit labour prices of Kabupaten Belitung and other Kabupatens in Sumatera Selatan Province are shown in Table 4-1-1.

Table 4-1-1

UNIT LABOUR PRICE

		1.61					(Rp)
KABUPATEN	MAN	SKL LAB	CAP	MAS	LAB	DRIV	OPE
Musi Rawas	2,750	2,200	3,850	3,850	1,650	3,500	5,000
Musi Banyuasin	2,500	2,500	3,000	3,000	2,000	2,500	3,000
Bangka	3,000	2,750	3,500	3,500	2,250	3,000	3,500
Belitung	3,000	2,750	5,000	3,750	2,250	4,000	3,000
Average	2,813	2,250	3,838	3,525	2,025	3,250	3,625

Notes :

MAN : Mandur

SKL LAB : Skilled Labour

CAP : Carpenter

MAS : Mason

LAB : Labourer

DRIV : Driver

OPE : Operater

4.1.2 Unit Price of Materials

Table 4-1-2 shows the unit price of materials for Kabupaten Belitung together with for other Kabupatens in Sumatera Selatan Province.

Table 4-1-2 UNIT PRICE OF MATERIALS

and the second s						
<u> </u>						(Rp)
MATERIAL	UNIT	MUSI	MUSI	BANGKA	BELITUNG	AVERAGE
	·	RAWAS	BANYUASIN	·	:	
Bitumen	L	380	365	300	280	330
Asphalt oil	L .	800	300	850	850	700
Gasoline	L	250	250	250	250	250
Sand	M^3	7,000	6,000	5,500	4,000	5,625
Cement	bag	4,000	4,000	4,800	4,000	4,200
River Stone	M^3	8,000	25,000	7,500	6,000	11,625
Steel moulds	Set	7,000	7,000	7,000	7,000	7,000
Timber	M^3	90,000	120,000	155,000	150,000	128,750
Paint	L	3,500	2,500	3,500	3,000	3,125
Reinforcing Steel	Kg	800	1,000	800	900	.875
Tying Wire	Kg	1,200	1,500	1,100	1,100	1,225
Equivalent Royalty	ϵ_{M}	250	250	250	250	250

4.1.3 Hourly Equipment Cost

The hourly equipment cost for Kabupaten is shown in Table 4-1-3.

Table 4-1-3

HOURLY EQUIPMENT COST

PROVINCE : SUMATERA SELATAN

KABUPATEN : BELITUNG

					(UNIT	: Rp)	(6.8	5 >	
CODE NO	EOUIPHENT NAME	CLASS		OCAL COST OPERATION !	>>>>> Sub-total		OREIGN COST OPERATION SI	>>>> JB-TOTAL	TOTAL COST
	Bulldozer	120 HP	156	12,471	12,647	7,769	1,014	8,783	21,430
	Bulldozer/Ripper	120 KP	170	13,492	13,662	9,500	1,560	10,060	23,722
	Swamp Bulldozer	120 HP	178	13,731	13,909	8,879	1,630	10,509	24,418
	Bulldozer	70 HP	99	8,496	8,595	4,914	641	5,555	14,150
	Bulldozer/Ripper	90 HP	106	9,080	9,186	5,300	973	6,273	15,459
	Bulldozer	65 HP	70	6,172	6,242	3,500	456	3,954	10,198
	Bulldozer/Ripper	65 HP	. 77	6,617	6,694	3,819	701	4,520	11,214
	Swamp Bulldozer	90 HP	106	9,070	9,176	5,284	970	6,254	15,430
	Swamp Bulldozer	65 HP	91	6,488	6,569	4,050	743	4,793	11,362
	Motor Grader	110 HP	139	10,870	11,009		1,270	8,189	19,198
	Hotor Grader	75 HP	96	7,450	7,546	4,779	877	5,656	13,202
	Hotor Grader	65 HP	. 86	6,557	6,643	4,300	789	5,099	11,732
	Road Stabilizer	H=1850 mm	172	3,348	3,520	8,594	420	9,014	12,534
	Vibratory Roller	4 ton	58	3,260	3,318	2,900	378	3,278	6,596
	Hand-guide Vib. Roller	1000 Kg	47	583	630	849	29	877	1,507
	Tire Roller	8-15 tan	63	7,196	7,259	3,106	101	3,207	10,466
	Vibratory Roller (D&T)	4 ton	58	3,260	3,318	2,900	378	3,278	6,596
	Hand-guide Vib. Roller	600 Kg	33	397	430	600	20	620	1,050
	Rough Terrain Crane	10 ton	201	12,672	12,873	10,039	737	10,776	23,649
	Hydraulic Excavator; Wheel	0.3 m3	83	7,627	7,710	4,109	536	1,645	12,355
	Wheel Loader	1.2 a3	141	8,262	8,403	7,019	916	7,935	16,338
	Wheel Loader	0.3 m3	46	2,882	2,928	2,269		2,565	5,493
	Water Tank Truck	4000 ltr.	48	2,757	2,805	869	117	986	3,791
	Fuel Tank Truck	4000 ltr.	49	2,763	2,812	882	119	1,001	3,813
	Dump Truck	3.0 ton	81	3,452	3,533	1,469		1,667	5,200
	Flat Bed Truck with Crane	3.0 tan	35	3,007	3,042	1,716	126	1,842	4,884
	Dump Loader Truck	12 ton	77	18,446	18,523	3,838	125	3,963	22,486
	Dump Truck	5.0 ton	121	5,703	5,824	2,189	295	2,484	8,300
	Flat Bed Truck	3.0 ton	. 12	2,586	2,578	563	41	604	3,202
	Portable Crusher/Screening	30-40 t/h	376	21,101	21,477	18,800	2,454	21,254	42,731
	Concrete Mixer	0.5 m3	297	2,338	2,635	5,400	410	5,810	8,445
	Water Pump	200 1/min	11	253	264	188	6	194	458
	Concrete Vibrator	3.3 HP	5	219	224	73	2	75	299
	Asphalt Sprayer	850 ltr.	57	742	799	1,019	137		1,955

4.2 Unit Construction Cost by Work Type

4.2.1 All Works Except Bridges

The unit construction costs by work type, excluding bridge construction costs, have been estimated using the combination of equipment described in Clause 3.4 and the unit prices already listed. The results are summarized in Table 4-2-1.

Table 4-2-1 UNIT COST BY WORK TYPE EXCEPT BRIDGE WORK

					the second secon
PROV		SUMATERA	Principal to real to the first	1.3 10 104	201, 24-2 A
THE	•	141 11161 1 1 1463		KAB :	BEL I TUNG
1 1 1 1 1 1 1 Y	4	199 (1991 1991	147 E. L. 1 T. 1 T. 1 T. 1 T. 1	1757124 8	W-L-L- I - L-/1714

					(Rp)	
I T E H	9 IB (b) 6점 에 RP 47 LE 53 에 b) 10 10 10 10 10 10 10 10 10 10 10 10 10	UNIT	LOCAL	FORE16N	TOTAL	
, , , , , , , , , , , , , , , , , , ,			********			
Gite Clearance in Li	ight Bush	s 2	160	91	251	
Subgrade Preparation		e2	20	11	31	
Normal Fill		.3	1,662	961	2,523	
Fill in Swamp		3	2,457	1,050	3,507	
Normal Excavation to	Spoil -	a 3	972	521	1,493	
Sub Dase Course	. •	# 3	3,108	1,344	4,452	
Base Course		a 3	4,263	2,295	6,558	
Shoulder		a 2	291	145	436	
Asphalt Patching		a 2	3,874	1,349	5,222	•
Surface Dressing (S	ingle)	2 2	651	561	1,212	
Surface Dressing (Di	· · · · · · · · · · · · · · · · · · ·	m2	805	188	1,686	
Earth Orain		Ì	995	117	1,114	
Earth Drain in Swamp	o (by machine)	a3	1,193	473	1,666	
Pipe Culvert D80cm		g	44,157	45,685	89,842	
Rasonry Culvert (80)		6	62,922	37,509	100,431	
Retaining Wall and I	· ·	#2	15,825	215	16,070	
Retaining Wall and		#3	45,110	11,471	56,581	
Gabion Protection	. •	n3	11,739	120	11,859	
Manual routine main	tenance of road	Ks	163,676	7,248	170,924	
Routine maintenance		Kn	93,278		131,146	
Routine maintenance		Ks	186,973	87,939	274,912	•
Routing maintenance		Κø	397,400	134,800	522,200	

4.2.2 Bridges

The unit construction costs by bridge type including the cost of demolition of existing bridges are shown in Table 4-2-2.

Table 4-2-2

BRIDGE COST

FROV : SUMATERA SELATAN

KAB : BELITUNG

UNIT LOCAL FORE 1GN LIEN Superstructure (limber: Span 3m: 101) 57,745 4,082 62,027 Superstructure (Timber; Span 5m; 101) **#**2 64,184 4,507 69,691 85,014 90,933 Superstructure (Timber:Span 8m; 101) #2 5,919 Superstructure (limber; Span 3m; PH50) #2 71,850 5,047 76,897 83,908 Superstructure (Timber(Span 5m; BH50) 79,440 5,468 A2. Superstructure (Timber: Span 8m; PM50) #2 99,483 6,922 106,405 157,039 Superstructure (Concrete; Span 3m; BH50) n2 61,697 95,341 106,628 169,715 Superstructure (Concrete; Span 5m; BN50) a2 63,087 Superstructure (Concrete: Span 8m; BM50) œ2 64,780 116,193 180,973 Superstructure (Concrete; Spanios; BM50) **m**2 70,735 132,047 202,782 Superstructure (Concrete; Span15m; BH50) 82 75,821 155,643 231,464 504,733 37,981 542,714 Substructure (Pier; for Timber; 101) KO 1,348,395 171,829 1,520,224 Substructure (Abut; for Timber; 101) NO 742,310 Substructure (Pier; for 71mber; 8H50) NO 56,220 798,530 Substructure (Abut; for Timber; BMSO) NO 1,527,554 171,921 1,719,475 Substructure (Pier; for Concrete; BM50) NO 1,807,455 456,543 2,265,998 Substructure (Abut: for Concrete: BH50) HD 3,779,057 964,550 4,743,607 Denolition of Bridge (Timber-)Timber) **a**2 15,897 1,550 17,447 1,550 Demolition of Bridge (Timber-)Concrete) 15,877 17,447 n2 Demolition of Bridge (Concrete) 91,528 82 .73,157 164,695 Haintenance of Timber Bridge (New) a2 10,319 1,232 11,551 Maintenance of Concrete Bridge (New) 2,140 4,869 #2 2,729 Haintenance of Timber Bridge (Exist) 9,001 2,459 11,459 #2 Maintenance of Concrete Bridge (Exist) 02 4,270 2,397

Chapter 5 RESULTS OF ECONOMIC FEASIBILITY EVALUATION

5.1 Preliminary Screening

The road links to be improved should be effective for development of the Project Area. The road links where improvements were assumed to be inefficient for development of the Project Area were generally screened out using the following cut-off criteria.

- (1) Very short roads, less than 2 Km long, which have no connection with the trunk road network.
- (2) Roads not connected to the network at any point
- (3) Unpreferred roads, due to poor suitability for transportation compared to other existing alternative roads serving the same purpose.
- (4) Road in good condition according to the Bina Marga road inventory which lists improvement projects carried out in the last two or three years
- (5) Roads with asphalt surface in good condition
- (6) Urban roads, except those forming part of a longer route
- (7) Roads serving single large organizations rather than the general public
- (8) Roads with no inventory data
- (9) Kabupaten roads also assigned as provincial roads

The road links to be screened out in Kabupaten Belitung are shown in Table 5-1-1.

Table 5-1-1

ROAD LINKS TO BE SCREENED OUT

KABUPATEN : BELITUNG

CRITERIA NO	ROAD LINK NO
(8)	31,32,34

5.2 Evaluation

5.2.1 Primary Analysis

The Kabupaten roads were classified by using the future traffic volume on the road links in 1998. The primary analysis of the IRR was carried out using the construction and maintenance costs. Road links where IRRs were more than 10% were defined as feasible links.

Results of primary analysis are shown in Table 5-2-1.

5.2.2 Secondary Analysis

From the infeasible road links evaluated by the primary analysis, road links where the IRRs were between 1% and 10%, i.e. road links which could become feasible if down graded by one rank, in classification were down graded and the costs re-estimated. Using these costs, a secondary analysis of IRR was carried out. Road links where these IRRs were then more than 10% were also defined as feasible links. This reflected that even though the road classification was rather low the road link should be improved.

Results of secondary analysis are shown in Table 5-2-2.

5.2.3 Ranking of Feasible Road Links

From the results of the primary and secondary analysis, road links where the IRRs were more than 10% were selected and their NPVs and B/Cs were estimated. The ranking of feasible road links from the economic evaluation are decided in the order of the NPVs, i.e. the larger the NPV the higher the road link priority as shown in Table 5-2-3.

Table 5-2-1 RESULTS OF PRIMARY ANALYSIS

LINK NO	NG
2 2 Km	
2 2 Km	
3	
4 23 Km	
5 16 Km 1118-2 0.078 Surplus 6 27 Km 1118-2 0.078 Surplus 7 12 Km 1110 0.078 Surplus 8 11 Km 1110 0.078 Surplus 9 6 Km 1118-2 0.078 Surplus 10 2 Km 1110 0.078 Surplus 11 3 Km 1118-2 0.078 Surplus 12 25 Km 1118-2 0.078 Surplus 14 23 Km 1118-2 0.078 Surplus 15 13 Km 1118-2 0.078 Surplus 16 7 Km 1110 0.078 Surplus 17 24 Km 1110 0.078 Surplus 18 5 Km 1110 0.078 Surplus 19 10 Km 1110 0.078 Surplus 19 10 Km 1110 0.078 Surplus 20 20 Km 1110 0.078 Surplus 21 21 Km 1110 0.078 Surplus 22 13 Km 1110 0.078 Surplus 23 10 Km 1110 0.078 Surplus	
6 27 Km IIIB-2 0.078 Surplus 7 12 Km IIIC 0.078 Surplus 8 11 Km IIIC 0.078 Surplus 9 6 Km IIIB-2 0.078 Surplus 10 2 Km IIIC 0.078 Surplus 11 3 Km IIIB-2 0.078 Surplus 12 25 Km IIIB-2 0.078 Surplus 14 23 Km IIIB-2 0.078 Surplus 15 13 Km IIIB-2 0.078 Surplus 16 7 Km IIIC 0.078 Surplus 17 24 Km IIIC 0.078 Surplus 18 5 Km IIIC 0.078 Surplus 19 10 Km IIIC 0.078 Surplus 20 20 Km IIIC 0.078 Surplus 21 21 Km IIIC 0.078 Surplus 22 13 Km IIIC 0.078 Surplus	٠.
7 12 Km IIIC 0.078 Surplus 9 11 Km IIIC 0.078 Surplus 9 6 Km IIIB-2 0.078 Surplus 10 2 Km IIIC 0.078 Surplus 11 3 Km IIIB-2 0.078 Surplus 12 25 Km IIIB-2 0.078 Surplus 14 23 Km IIIB-2 0.078 Surplus 15 13 Km IIIB-2 0.078 Surplus 16 7 Km IIIC 0.078 Surplus 17 24 Km IIIC 0.078 Surplus 18 5 Km IIIC 0.078 Surplus 19 10 Km IIIC 0.078 Surplus 19 10 Km IIIC 0.078 Surplus 20 20 Km IIIC 0.078 Surplus 21 21 Km IIIC 0.078 Surplus 22 13 Km IIIC 0.078 Surplus	
B	
9 6 Km IIIB-2 0.078 Surplus 10 2 Km IIIC 0.078 Surplus 11 3 Km IIIB-2 0.078 Surplus 12 25 Km IIIB-2 0.078 Surplus 1 25 Km IIIB-2 0.078 Surplus 1 4 23 Km IIIB-2 0.078 Surplus 15 13 Km IIIC 0.078 Surplus 16 7 Km IIIC 0.078 Surplus 17 24 Km IIIC 0.078 Surplus 18 5 Km IIIC 0.078 Surplus 19 10 Km IIIC 0.078 Surplus 19 10 Km IIIC 0.078 Surplus 20 20 Km IIIC 0.078 Surplus 21 21 Km IIIC 0.078 Surplus 22 13 Km IIIC 0.078 Surplus	
10	
11 3 Km	
12 25 Km	
1 25 Km 1118-2 0.078 Surplus 14 23 Km 1118-2 0.078 Surplus 15 13 Km 111C 0.078 Surplus 16 7 Km 111C 0.078 Surplus 17 24 Km 111C 0.078 Surplus 18 5 Km 111C 0.078 Surplus 19 10 Km 111C 0.078 Surplus 20 20 Km 111C 0.078 Surplus 21 21 Km 111C 0.078 Surplus 22 13 Km 111C 0.078 Surplus 23 10 Km 111C 0.078 Surplus	
14 23 Km IIIB-2 0.078 Surplus 15 13 Km IIIC 0.078 Surplus 16 7 Km IIIC 0.078 Surplus 17 24 Km IIIC 0.078 Surplus 18 5 Km IIIC 0.078 Surplus 19 10 Km IIIC 0.078 Surplus 20 20 Km IIIC 0.078 Surplus 21 21 Km IIIC 0.078 Surplus 22 13 Km IIIC 0.078 Surplus 23 10 Km IIIC 0.078 Surplus	
15 13 Km IIIC 0.078 Surplus 16 7 Km IIIC 0.078 Surplus 17 24 Km IIIC 0.078 Surplus 18 5 Km IIIC 0.078 Surplus 19 10 Km IIIC 0.078 Surplus 20 20 Km IIIC 0.078 Surplus 21 21 Km IIIC 0.078 Surplus 22 13 Km IIIC 0.078 Surplus 23 10 Km IIIC 0.078 Surplus	
16 7 Km IIIC 0.078 Surplus 17 24 Km IIIC 0.078 Surplus 18 5 Km IIIC 0.078 Surplus 19 10 Km IIIC 0.078 Surplus 20 20 Km IIIC 0.078 Surplus 21 21 Km IIIC 0.078 Surplus 22 13 Km IIIC 0.078 Surplus 23 10 Km IIIC 0.078 Surplus	
17 24 Km IIIC 0.078 Surplus 18 5 Km IIIC 0.078 Surplus 19 10 Km IIIC 0.078 Surplus 20 20 Km IIIC 0.078 Surplus 21 21 Km IIIC 0.078 Surplus 22 13 Km IIIC 0.078 Surplus 23 10 Km IIIC 0.078 Surplus	
18 5 Km IIIC 0.078 Surplus 19 10 Km IIIC 0.078 Surplus 20 20 Km IIIC 0.078 Surplus 21 21 Km IIIC 0.078 Surplus 22 13 Km IIIC 0.078 Surplus 23 10 Km IIIC 0.078 Surplus	
19 10 Km 111C 0.078 Surplus 20 20 Km 111C 0.078 Surplus 21 21 Km 111C 0.078 Surplus 22 13 Km 111C 0.078 Surplus 23 10 Km 111C 0.078 Surplus	
20 20 Km HIC 0.078 Burplus 21 21 Km HIC 0.078 Burplus 22 13 Km HIC 0.078 Surplus 23 10 Km HIC 0.078 Burplus	
21 21 Km HIC 0.078 Surplus 22 13 Km HIC 0.078 Surplus 23 10 Km HIC 0.078 Surplus	
22 13 Km 111C 0.078 Surplus 23 10 Km 111C 0.078 Surplus	
23 10 Km IIIC 0.078 Surplus	
25 13 Km HIC 0.078 Surplus	
26 8 Km 111C 0.078 Surplus	
27 10 km HIC 0.078 Surplus	
28 8 Km IIIC 0.078 Surplus	
29 12 Km HIC 0.078 Surplus	
30 12 Km 111C 0.078 Surplus	
33 2 Km 111C 0.078 Surplus	
35 12 Km IIIC 0.078 Surplus	

Table 5-2-2 RESULTS OF SECONDARY ANALYSIS

PROVINCE :	SUMATERA	BELATAN	KABUPATEN	• DELITUNG
LINK NO	ГЕМВТН	CLASS	IRR(%)	REMARK
13	32 Km	HIC	6.155	Surplus

Table 5-2-3 RANKING OF FEASIBILITY ROAD LINKS

Chapter 6 IMPLEMENTATION PROGRAMME

6.1 Implementation Schedule

6.1.1 Project Cost

The total Project Cost for the Kabupaten is composed of the cost of construction and maintenance, supplementation as described later, and workshop, laboratory and survey equipment. The total Project Cost for the Kabupaten is summarized in Table 6-1-1.

Table 6-1-1

TOTAL PROJECT COST (1)

KABUPATEN: Belitung

 $(Rpx10^6)$

GOST	FOREIGN CURRENCY	LOCA CURRENC		TOTAL
CONSTRUCTION	282	1,13	8	1,420
MAINTENANCE	99	37	1	470
SUPPLEMENTATION	387		- . · .	387
WORKSHOP EQUIPMENT & TOOLS	28			28
LABORATORY EQUIPMENT	12		.	12
SURVEY EQUIPMENT	5	· · · · · · · · · · · · · · · · · · ·	. ••	5
TOTAL	813	1,50	9	2,322

The total Project Cost can be divided into costs as shown in Table 6-1-2.

Table 6-1-2

TOTAL PROJECT COST (2)

 $(Rpx10^6)$

COST	FOREIGN CURRENCY	LOC CURREN	
CIVIL WORK	103	1,4	1,602
CONSTRUCTION & MAINTENANCE EQUIPMENT	623		- 623
SPARE PARTS	42		10 52
WORKSHOP/LABORATORY/SURVEY EQUIPMENT	45		45
TOTAL	813	1,5	09 2,322

The cost for civil work is composed of the cost of labour and materials, operation cost excluding spare parts, indirect cost and transportation cost of equipment, and ownership cost for existing equipment.

6.1.2 Proposed Road Links

(1) Road Link to be Improved

The road links to be improved were generally selected taking into consideration the following criteria:

- (1) Feasible road links
 - Feasible road links from the primary evaluation
 - Feasible road links from the secondary evaluation
- (2) Road links selected from the engineering points of view
- (3) Road links selected because of basic human needs.

The road links finally proposed to be improved in the Kabupaten are the 9 links with the total length of 174 km which is 41% of the 429 km total length of Kabupaten roads studied. The proposed road links are shown in Table 6-1-3.

Table 6-1-3

ROAD LINKS TO BE IMPROVED

KABUPATEN : BELITUNG

REASON FOR SELECTION	ROAD LINK NO
Feasible	
- Primary - Secondary	• •
Engineering Point of View	-
Basic Human Needs	3,6,7,12,13,14,19,20,30

As the table shows there are no feasible road links from the economic evaluation. Therefore the following minimum required road links are selected regardless of any result of economic evaluation from the view point of basic human needs:

- Road links which connect the Kabupaten capital with the Kecamatan capital provided the population density of the Kecamtan is greater than the mean for the Kabupaten; and
- Road links connecting isolated Kabupaten or Kecamatan capital to a trunk road.

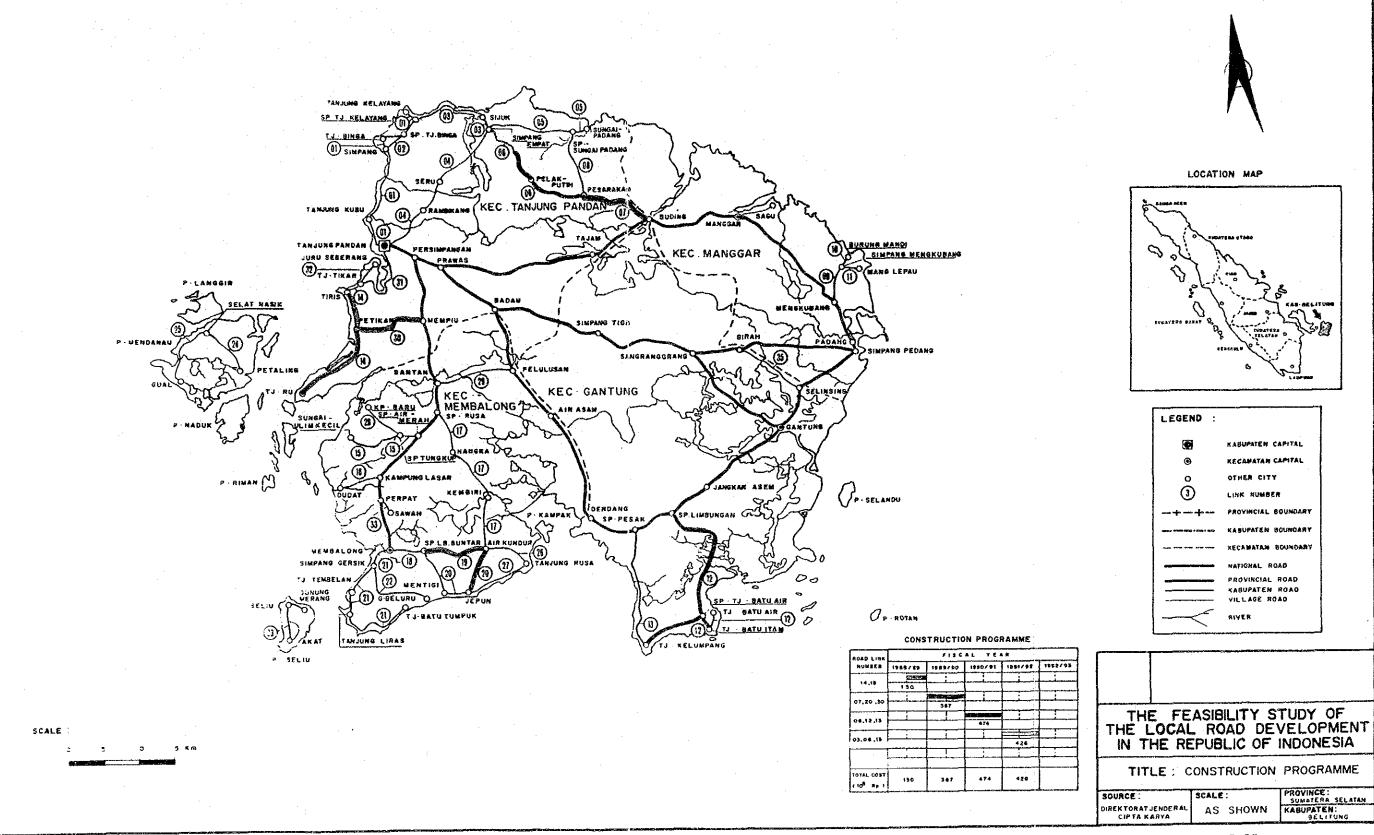

The order of proceeding with the improvement of the proposed road links are decided as shown in Table 6-1-4.

Table 6-1-4

ROAD LINKS TO BE IMPROVED BY YEAR

PROV	Ĕ	SUMATERA	SELATAN		KAB	ā	BELITUNG	
								٠.
YEAR		LINK HO		()	rate			
1988	;	14, 19	5 and 300 June 1999 (400 AM AM AM AM AM AM AM AM AM AM AM AM AM					
1989	1	7, 20, 30						
1990	ł	6 (70%), 12	2, 13 (30%)					
1991	ŀ	3, 6 (30%)	, 13 (70%)					
1992	:		or 200 TeX TeX yes new man and and MEN Way and gam and :					

KAB · BELITUNG

(2) Road Links to Be Maintained

It is desirable that all Kabupaten roads are maintained. However, because of the limited budget it is inevitable; that some road links in the Kabupatens will be left without maintenance for the time being. The budget should be used for those which are effective in producing more useful development of the Kabupaten through the road development project. The road links to be maintained are finally proposed as shown in Table 6-1-5.

Table 6-1-5

ROAD LINKS TO BE MAINTAINED

		PROV		SUM	ATERA	BE	LATA	iN	KAI	9 :	BEI	LII	UNG				
			****	نون وي خو خو خو			-						-			. 1	1000Rp }
	HO HO	LENGTH (Ka)	BA (X)	50 (1)	RU {%}	RB (1)		GRAVEL (Ke)	EARTH (Ka)	TM RO	AREA (#2)	RC NO	AREA (a2)	BRIDGE Cost	LOCAL COST	FOREIGN COST	TOTAL COST
-	1	25	59.0	21.6	18.6	0.9	25	. 0	0	0	0.00	4	160.00	3,062	15,741	4,649	20,390
	- 4	23	95.6	14.4	0.0	0.0	23	0	Q	0	0.00	6	231:00	1,538	13,661	3,819	17,480
	5	16	54.9	10.0	26.3	0.0	- 1	15	0	5	224.60	1	21.60	2,720	7,926	2,171	10,100
	7	12.	64.5	10.0	25.5	0.0	0	10	2	- J - 1	40.00	1	60.00	858	4,637	1,284	5,921
	9.	6	63.3	33.3	3.3	0.0	0	5	ŧ	1	24.00	2	48.00	595	2,431		3,126
	10	2	75.0	25.0	0.0	0.0	0	0	2	. 0	0.00	7	48.00	320	719	205	724
	11	3	75.0	25.0	0.0	0.0	. 0	3	0	0	0.00	2	48.00	320	1,257	400	1,657
	12	25	62.4	26.2	11.4	0.0	0	25	. 0	2	102.00	ŧ	24.00	1,338	9,794	2,690	12,484
	13	32	57.3	26.4	7.1	7.2	3	0	29	5	218.00	ı	24.00	2,658	11,170	2,328	13,498
	14	23	69.7	24.2	6.1	0.0	0	23	0	9	580.00	- 1	52.00	6,992	13,508	3,739	17,247
	-10	··· 5	80.0	18.0	2.0	0.0	0	5	0	0	0.00	0	0.00	. 0	1,753	476	2,229
	20	- 20	76.1	12.7	10.0	1.3	0	0	20	3	35.00	1	32.00	614	5,591	1,065	6,656
	21	21	76.6	14.9	8.6	0.0	-11	10	10	0	0.00	0	0.00	.0	0,631	2,014	10,645
	22	13	64.2	29.6	6.2	0.0	0	13	0	2	32.00	0	0.00	367	4,846	1,316	6,162
	28	6	66.0	21.9	9.4	0.0	. 0	0	9	1	28.00	0	0.00	321	2,308		2,739
٠	33	7	35.0	50.0	15.0	0.0	0	Q	7	0	0.00	ŋ	0.00	Q	514	90	-
-	SUK	236					63	99	74	29	1284.60	22	1048.60	21,701	104,487	27,374	131,861

6.1.3 Annual Construction and Maintenance Cost

The annual allocation of the total construction and maintenance cost in the four years programme for Kabupaten Belitung is finally recommended as shown in Tables 6-1-6 (1), (2) and (3) for the construction, maintenance and total respectively.

The proposed construction cost is Rp 1,420 x 10^6 and maintenance cost is Rp 470 x 10^6 which is approximately 25% of the total expenditure.

Table 6-1-6 (1) CONSTRUCTION AND MAINTENANCE COST (CONSTRUCTION)

PROV : SUMATERA SELATAN KAB : BELITUNG

			•			t UNIT :	1000Rp
1 T E H	(1988)	(1989)	(1990)	(1991)	(1992)	(TOTAL)	
(a) 25 - 45 - 45 - 45 - 45 - 45 - 45 - 45 -			,				
LOCAL CURRENCY :	104,141	267,404	378,252	310,216	0	1,060,013	(74.6%)
Ownership Cost	1,139	2,619	2,121	2,215	0	0,123	(0.82)
Operation Cost	58,755	133,801		109,869	0	412,860	(38.92)
	4,118				0	160,735	(15.22)
Labour Cost	26.546	02,282	127.712	103,492	0	340,032	
Contingency	13,584	34,879	49,337		.0	138,263	
Ownership Cost	45,888 34,311 4,879 713 0 5,985	73,885 10,444 3,412 0	96,807 64,196 9,033 10,951 0	62,279 8,756 30,339	0	33,112	(25.41) (65.22) (9.21) (12.61) (0.01) (13.02)
TOTAL COST :	150,029	369,306	475,059	426,796	0	1,420,190	
Ownership Cost	35,449	76,534	66,317	64.494	0	242,794	(17,12)
Operation Cost	63,634	144,245			Ŏ	•	(31.42)
Material Cost	4,831	17,205		84,516	Ŏ	•	(14.52)
Labour Cost	26,546	82,282	127,712	103,492	0		(23.97)
Contingency	19,549	18,040	61,964	55,669	0	185,242	(13.0%

< Contingency : 15% >

Table 6-1-6 (2) CONSTRUCTION AND MAINTENANCE COST (MAINTENANCE)

SUMATERA SELATAN KAB : PROV: **BELITUNG** (UNIT : 1000Rp) (1988) (1989) TIEN (1990) (1992) (TOTAL) LOCAL CURRENCY : 48,840 103,140 108,062 111,107 371,149 (79.9%) Ownership Cost 299 638 682 703 2,322 (0.6%) Operation Cost 20,487 43,696 48,091 46,560 0 158,834 (42.8%) Material Cast 1,942 1,590 4,640 4,882 0 16,054 (4.32) Labour Cost 26,112 54,216 56,180 57,431 0 -193,939 (52:32) FOREIGH CURRENCY : 12,741 27,276 29,013 29,937 98,967 (21.1%) Ownership Cost 10,051 21,624 23,176 23,991 78.842 (79.7%) Operation Cost 1,100 2,368 2,565 2,666 8,699 (8.9%) 0 Material 1,590 3,284 3,272 Cost 3,280 Ó 11,426 (11.52) 0 Labour Cost (0.0%) TOTAL COST : 61,581 137,075 130,416 141,044 470,116 10,350 24,694 Ownership Cost 22,262 23,858 81,164 (17.3%) 50,757 167,533 Operation Cost 21,587 46,064 47,125 (35.62) Material 3,532 7,974 7,912 8,162 27,480 Cost 0 (5.8%) Labour Cost 26,112 54,216 56,180 57,431 193,939 (41.3%)

Table 6-1-6 (3) CONSTRUCTION AND MAINTENANCE COST (TOTAL)

PROV : SUMATERA SELATAN KAB : BELITUNG (UNIT : 1000Rp) (1988) (1989) (1990) (1991) (1992) (TOTAL) LOCAL CURRENCY : 406,314 152,981 370,544 421,323 1,431,162 (75.7%) 2,603 1,437 2,918 Ownership Cost 3,287 10,445 (0.72) 571,694 (39.9%) 79,242 177,497 156,995 157,960 Operation Cost 0 93,287 59,059 176,789 (12.4%) 18,383 Material Cost 6,060 Labour Cost 52,658 136,498 103,892 160,923 533,971 (37.3%) Contingency 13,584 34,979 49,337 40,463 138,263 (9.72) FOREIGH CURRENCY : 58,629 128,178 125,820 146,517 459,144 (24.3%) 87,372 86,270 Ownership Cost 44,362 95,509 313,513 (68.3%) 12,812 11,422 41,811 (9.12) Operation Cost 5,979 11,598 0. 2,303 6,696 56,841 Material Cost 14,223 33,619 0 (12.47) 0 (0.02) Labour Cost 0 0 0 0 Ò 5,985 13,161 12,627 15,206 46,979 (10.2%) Contingency TOTAL COST : 498,722 612,134 567,840 1,890,306 211,610 90,175 45,799 98,796 89,188 323,958 (17.1%) Ownership Cost Operation Cost 85,221 190,309 168,593 169,382 . 0 613,505 (32.5%) 107,510 92,678 233,630 (12.4%) Haterial Cost 8,363 25,079 ø 160,923 136,498 533,971 (28.22) Labour Cast 52,658 183,892 48,040 185,242 (9.8%) Contingency 19,569 61,964 55,869

Contingency : 15% >

6.1.4 Construction and Maintenance Equipment Cost

(1) Required Number of Equipment

The required numbers of construction equipment for Kabupaten Belitung are estimated from the annual proposed construction quantities as shown in Table 6-1-7.

The proposed numbers of equipment to be purchased are finally decided considering the following number of existing equipment in the Kabupaten which are available for the Project.

- 8-Dump Truck

The proposed numbers of maintenance equipment have been decided as shown below from the proposed annual maintenance volume taking into account the capacity of the proposed maintenance gangs.

- a. Equipment for Road Maintenance
 - 1-Flat Bed Truck 3 Ton
- b. Equipment for Bridge Maintenance
 - 1-Flat Bed truck with Grane 3 Ton

(2) Equipment Cost

The proposed construction and maintenance equipment and their purchase costs are shown in Table 6-1-8. In the Project the supplementation cost or equipment cost supplemented is the difference between the purchase cost for newly supplied equipment and the depreciated value.

This comes about because full depreciation of the supplied equipment would not be completed within the Project Period of 5 years.

Table 6-1-7

REQUIRED NUMBER OF EQUIPMENT

FROV : SUMATERA SELATAN KAB : BELITUNG

EQUIPHENT NAME	WORKABLE	EXISTING	< 1998 >	< 1989 >	(1990 >	< 1991 >	〈 1992 〉
Bulldozer/Ripper	170	0	0.41	0.83	1.01	0.84	0.00
Swamp Bulldozer	170	0	0.03	0.21	0.01	0.01	0.00
Notor Grader	190	0	0.81	1.72	1.46	1.73	0.00
Hand-guide Vib. Roller	190	0	0.05	0.44	0.1B	0.28	0.00
Tire Roller	170	0	0.00	0.00	0.00	0.00	0.00
Vibratory Roller (D&T)	190	0	0.56	1.62	1.04	1.43	0.00
Hydraulic Excavator; Wheel	170	0	0.18	0.75	0.11	0.06	0.00
Wheel Loader	190	0	0.96	1.85	1.75	1.58	0.00
Water Tank Truck	190	0	0,28	0.92	0.48	0.73	0.00
Dump Truck	190	0	7.49	18.64	13.75	14.89	0.00
Flat Bed Truck with Crane	190	0	0.03	0.22	1.16	0.89	0.00
Flat Bed Truck	190	0	0.02	0.13	0.06	0.10	0.00
Portable Crusher/Screening	190	0	0.21	0,07	0.33	0.07	0.00
Concrete Mixer	170	0	0.01	0.14	0.02	0.27	0.00
Water Pump	170	0	0.01	0.10	0.02	0.76	0.00
Concrete Vibrator	170	0	0.01	0.02	0.01	0.08	0.00
Asphalt Sprayer	170	1	0.00	0.00	0.00	0.00	0.00

NOTE WORKABLE: workable days in a year

EXISTING: number of existing equipment

PROV : SUMATERA SELATAN

KAB : BELITUNG

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	;; 개드리역사인스쿠워플리역스스			(1000 Rp)
EQUIPMENT NAME	CLASS	CIF (JAKARTA)	PURCHASE NO.	PURCHASE COST
		(· · · · · · · · · · · · · · · · · · ·	n 194 Are are last ann sen org may an 199 agu ng ga agu agu agu agu agu ag	
Bulldozer	90 HP	49,150		e e e e e e e e e e e e e e e e e e e
Bulldozer/Ripper	90 HP	53,000	1	53,000
Swamp Bulldozer	90 HP	52,850		-
Swamp Bulldozer	65 HP	40,500	_	· 💂
Notor Grader	75 HP	47,800	2	95,600
Road Stabilizer	M≃1850 as	85,950		
Hand-guide Vib. Roller	1000 Kg	8,500	1	9,500
Tire Roller	8-15 ton	31,070	i	31,070
Vibratory Roller (D&T)	4 tan	29,000	i	29,000
Vibratory Roller	4 ton	29,000	•	2,1000
Rough Terrain Crane	10 ton	100,400	_	- ·
Hydraulic Excavator; Wheel	0.3 a3	41,100	•	41,100
Wheel Loader	1.2 m3	70,200	2	140,400
Water Tank Truck	4000 ltr.	12,750		12,750
Duap Truck	3.0 ton	14,700	8	117,600
Dump Loader Truck	12 tan	56,300		1171000
Flat Bed Truck with Crane	3.0 ton	25,190	. 2	50,380
Flat Bed Truck	3.0 ton	11,275	1	11,275
Portable Crusher/Screening	30-40 t/h	188,000	• •	-
Concrete Nixer	0.5 ±3	18,000	_	
Water Pump	200 1/min	630	· _	
Concrete Vibrator	3.3 HP	740		-
Asphalt Sprayer	850 ltr.	10,200		
Service Car	3 ton	11,600	1	11,600
4 Wheel Drive Vehicle	70 · HP	17,500	1	17,500
Motorcycle	100 сс	1,100	3	3,300
		د چو ښو چې د هم چې د ښه اماره او د خه ده هم اهم او د د د د د او د د د د د د د د د د د د		**************************************
·		PURCHASE COS	ST TOTAL	623,075
	24444	OWNERSHIP COS	ST (ENDETON)	235,625
				201000
		EQUIPHENT CO:	ST SUPPLEMENTED	387,450
	P 10 P 11 F 1			
				12
	NOTE :		(FOREIGN) for Ex	isting Equipment
•		Dump Truck		54,743
		Portable Crusher	-/Cernosiaa	23,145

TOTAL

77,888

6.1.5 Other Costs

Cost other items includes the costs of workshop equipment and tools, laboratory test equipment and survey equipment which are recommended in Sub-Clause 3.5. These total costs are summarized in Table 6-1-1.

6.1.6 Quantities by Work Type

The annual construction and maintenance quantities for all proposed road links are shown in Table 6-1-9.

Table 6-1-9

CONSTRUCTION QUANTITIES FOR ALL PROPOSED LINKS

PROV : SUMATERA SELATAN KAB : BELITUNG

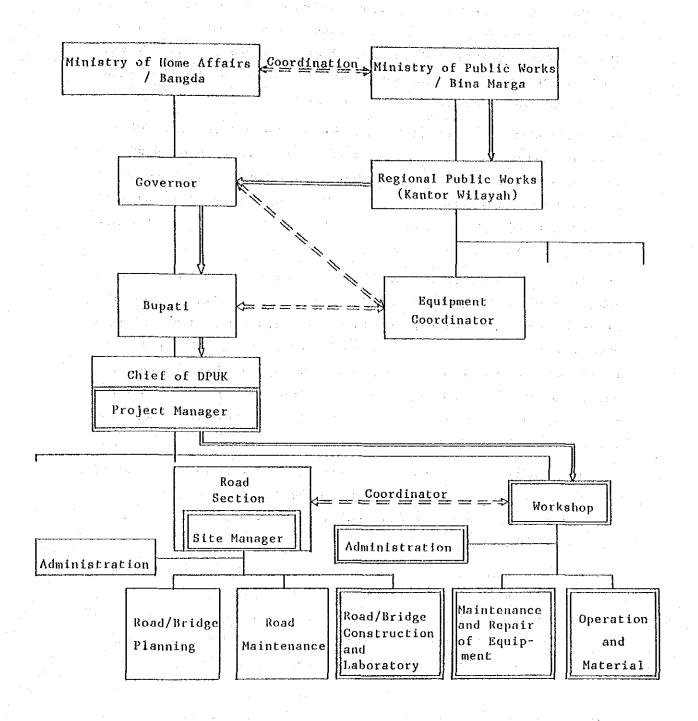
ITEN	UNIT	(1988)	(1989)	(1990)	(1991)	(1992)	(TOTAL
Site Clearance in Light Bush	87	0.00	0.00	0.00	0.00	0.00	0.0
Subgrade Preparation	•?	38240.00	250105.00	71459.76	243197.04	0.00	603301.0
Normal Fill	. a3	3.00	2100.00	2660.00	1140.00	0.00	5903.0
Fill in Swamp	*3	855.00	6292.30	254.03	108.87	0.00	7510.2
Normal Excavation to Spoil	43	197.00	4123.00	3865.40	2836.60	0.00	11022.0
Sub Base Course	m3	3833.20	22029.30	6759.10	19692.30	0.00	. 52313.9
Base Course	a 3	6720.00	2100.00	10536.00	1911.00	0.00	21300.0
Shoul der	●2	99000.00	150000.00	189000.00	174000.00	0.00	612000.0
Asphalt Patching	g2 · ·	0.00	0.00	89.80	273.20	0.00	362.0
Surface Dressing (Single)	#2	0.00	0.00	0.00	0.00	0.00	0.0
Surface Dressing (Double)	•2	0.00	0.00	0.00	0.00	0.00	0.0
arth Drain		11280.00	46460.00	26334.00	32186.00	0.00	116260.(
arth Drain in Swamp (by machine)	#3	2100.00	12900.00	1377.60	590.40	0.00	17268.0
ipe Culvert D80cm		12.00	63.00	41.00	21.00	0.00	137.
lasonry Culvert (80x80cm)	6	0.00	0.00	0.00	0.00	0.00	0.1
Retaining Wall and Ming Wall (Timber)		0.00	0.00	245.00	105.00	0.00	350.
letaining Watl and Wing Watl (Masonry)	n3	0.00	203.20	15.68	6.12	0.00	225.
Gabion Protection	a 3	0.00	0.00	0.00	0.00	0.00	0.
uperstructure (limber;Span 3m;101)	•2	12.00	48.00	0.00	0.00	0.00	60.
uperstructure (Timber;Span 5m;10T)	a 2	0.00	0.00	0.00	0.00	0.00	0.
uperstructure (Timber;Span 8m;10%)	a 2	0.00	0.00	1554.20	735.80	0.00	2290.
uperstructure (Timber;Span 3m;BH50)	# 2	0.00	0.00	0.00	0.00	0.00	0.
uperstructure (Timber;Span 5m;BNSO)	# 2	0.00	0.00	0.00	0.00	0.00	0.
Superstructure (Timber;Span 8m;BN50)	a 2	0.00	0.00	0.00	0.00	0.00	0.
Superstructure (Concrete;Span 3m;BHSO)	#2	0.00	0.00	0.00	0.00	0.00	0.
Superstructure (Concrete;Span 5m;BM50)	#2	0.00	0.00	0.00	0.00	0.00	0.
Superstructure (Concrete;Span 8m;9X50)	97	0.00	0.00	0.00	0.00	0.00	0.
Superstructure (Concrete;Span10m;BH50)	=2	0.00	0.00	0.00	0.00	0.00	0.
uperstructure (Concrete;Span15m;BMSO)	a 2	0.00	0.00	0.00	162.00	0.00	162.
ubstructure (Pierifor Timber;101)	HO	0.00	2.00	47,10	21.90	0.00	71.
Substructure (Abutifor Timber,101)	. NO	2.00	4.00	4.80	3.20	0.00	14.
obstructure (Pier; for Timber; 8H50)	HO	0.00	0.00	0.00	0.00	9.00	0.
lubstructure (Abut; for Timber; 8H50)	HO	0.00	0.00	0.00	0.00	0.00	0.
ubstructure (Pieryfor Concrete;9850)	HO	0.00	0.00	0.00	2.00	0.00	2.
lubstructure (Abut) for Concrete; RM50)	. #0	0.00	0.00	0.00	2.00	0.00	2.
emolition of Bridge (limber-)limber)	m 2	0.00	25.50	36.60	85.40	0.00	147.
Pemolition of Bridge (Timber->Concrete)	# 2	0.00	0.00	0.00	0.00	0.00	. 0.
Demolition of Bridge (Concrete)	# 2	0.00	0.00	0.00	1.44	0.00	1.
anual routine maintenance of road	K∎	112.25	230.00	240.70	246.80	0.00	829.
outine maintenance of earth road	K	37.00	63.00	47.65	41.05	0.00	187.
loutine maintenance of gravel road	K ns	43.75	101.00	130.50	143.00	0.00	421.
toutine maintenance of asphalt road	Ke	31.50	63.00	62.55	61.95	0.00	217,
faintenance of Timber Bridge (Hext	#Z	0.00	0.00	12.00	18.00	0.00	60.
laIntenance of Concrete Bridge (New)	* 2	0.00	0.00	0.00	0.00	0.00	0.
Maintenance of Timber Bridge (Exist)	. a2	497.30	1257.10	1212-50	1270.30	0.00	4187.
Kaintenance of Concrete Dridge (Exist)	e 2	511.30	1044.60	1075.00	1082.20	0.00	3713,

6.2 Organization and Construction System

6.2.1 Organization

The Bupati as head of the Kabupaten has been authorized by Law No. 13, 1980 as an official responsible for the Local Road Development Project implementation. This means that the DPUK is considered as a responsible agency for the actual execution of the Project.

According to instruction letter dated June 24, 1982 Ref. No. 620/975-/BANGDA, the Project Manager appointed by the Bupati will be responsible for the operation and maintenance of the equipment. Accordingly the Equipment Coordinator appointed from the staff of the Regional Public Works (Kantor Wilayah) by Bina Marga as a coordinator between the Governor and the Bupati will be responsible for delivery, effectual utilization and maintenance of the equipment.


The standard organization of DPUK consists of a minimum of four sections, i.e. Road Section, Housing and City Planning Section, Irrigation Section and Administration Section. For execution of the Project it is strongly recommended that the structural organization of DPUK is established. It will be necessary not only to organize new sections but also to reorganize the current structure through a review of the roles and responsibilities of each inter-related section.

It is recommended that the workshop is newly organized to consist of three sub-sections, i.e. maintenance and repair of equipment, operation and materials, and administration to execute the main tasks described in Clause 3.5.

The sub-section of laboratory would be under the relevant Road Section. The proposed organization is shown in Fig. 6-2-1.

6.2.2 Construction System

For the construction of Kabupaten roads with a ten year effective design life, it has been recommended in Clause 3.4 that the equipment intensive method should be adopted for earth work and pavement work with the exception of surface dressing.

- : Equipment delivery flow
 - ; New position/subsection

Current road construction in the Kabupatens is obliged to rely upon the traditional labour intensive method. It is therefore assumed that both the DPUK and the local contractors in the Kabupatens do not have sufficient experience and technique for the equipment intensive method of road construction.

For realization of the Local Road Development Project the GOI has ensured availability of the required human resources of DPUK and intends to conduct training programmes for those human resources as described in Clause 8.3 of the Main Report. This means that the GOI intends the Kabupatens to have the ability to execute the Project by force account (Swakelola).

It should be recognized from the experiences in the first local road project, which was assisted by OECF, ADB and IBRD, that because of their poor construction management and traditional labour intensive methods most of the road construction by local contractors could not be completed within the contract periods. Therefore execution of the road improvement by force account is desirable as recommended from their experience by the consultants for the first local road project.

It is strongly recommended that except for labourers the staff of the force account team should not be hired by the day as it would then not be able to consolidate the foundations for development of self reliability.

However, it will be very difficult to execute all the Projects by force account because of the need for many Kabupaten staff. The GOI has emphasized the need to promote the employment of local weak contractors in order to up-grade their capability in the road project schemes within the Fourth Five-Year Plan (REPELITA)

Taking into consideration the conditions mentioned above it is strongly recommended that the DPUK is obliged to lend some equipment with skilled operators to the local contractors in the Kabupatens for the execution of a part of the road improvement works.

The types of work executed only by force account are recommended as follows:

- Routine maintenance work for the Kabupaten roads
- Laboratory tests
- Production of crushed stone
- Technical service for the equipment