REPUBLIC OF INDONESIA MINISTRY OF PUBLIC WORKS DIRECTORATE GENERAL OF HIGHWAYS

THE FEASIBILITY STUDY OF THE LOCAL ROAD DEVELOPMENT IN THE REPUBLIC OF INDONESIA

KABUPATEN REPORT 6

KABUPATEN BANGKA

MARCH 1986

JAPAN INTERNATIONAL COOPERATION AGENCY

No.

REPUBLIC OF INDONESIA MINISTRY OF PUBLIC WORKS DIRECTORATE GENERAL OF HIGHWAYS

THE FEASIBILITY STUDY OF THE LOCAL ROAD DEVELOPMENT IN THE REPUBLIC OF INDONESIA

KABUPATEN REPORT 6

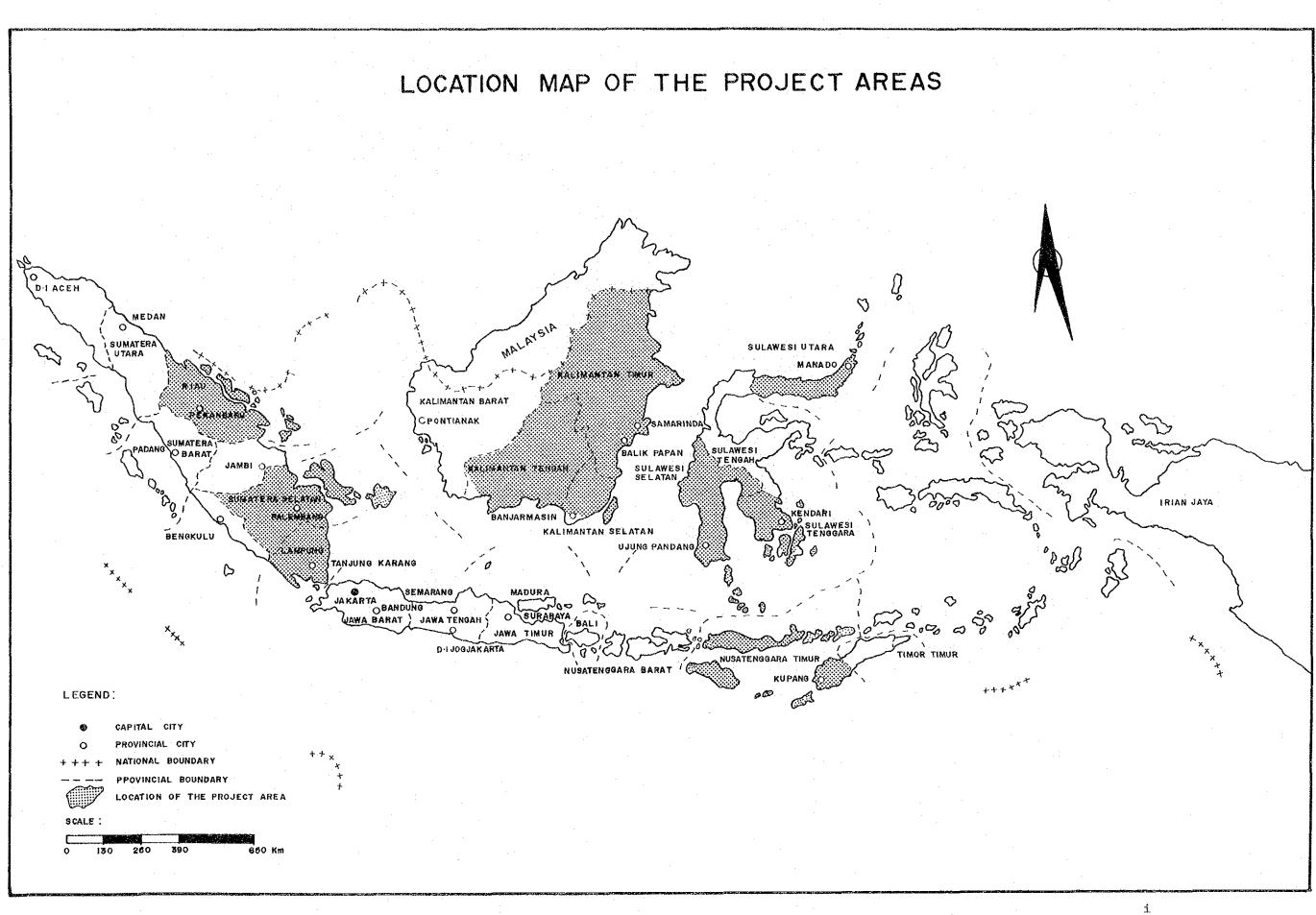
KABUPATEN BANGKA

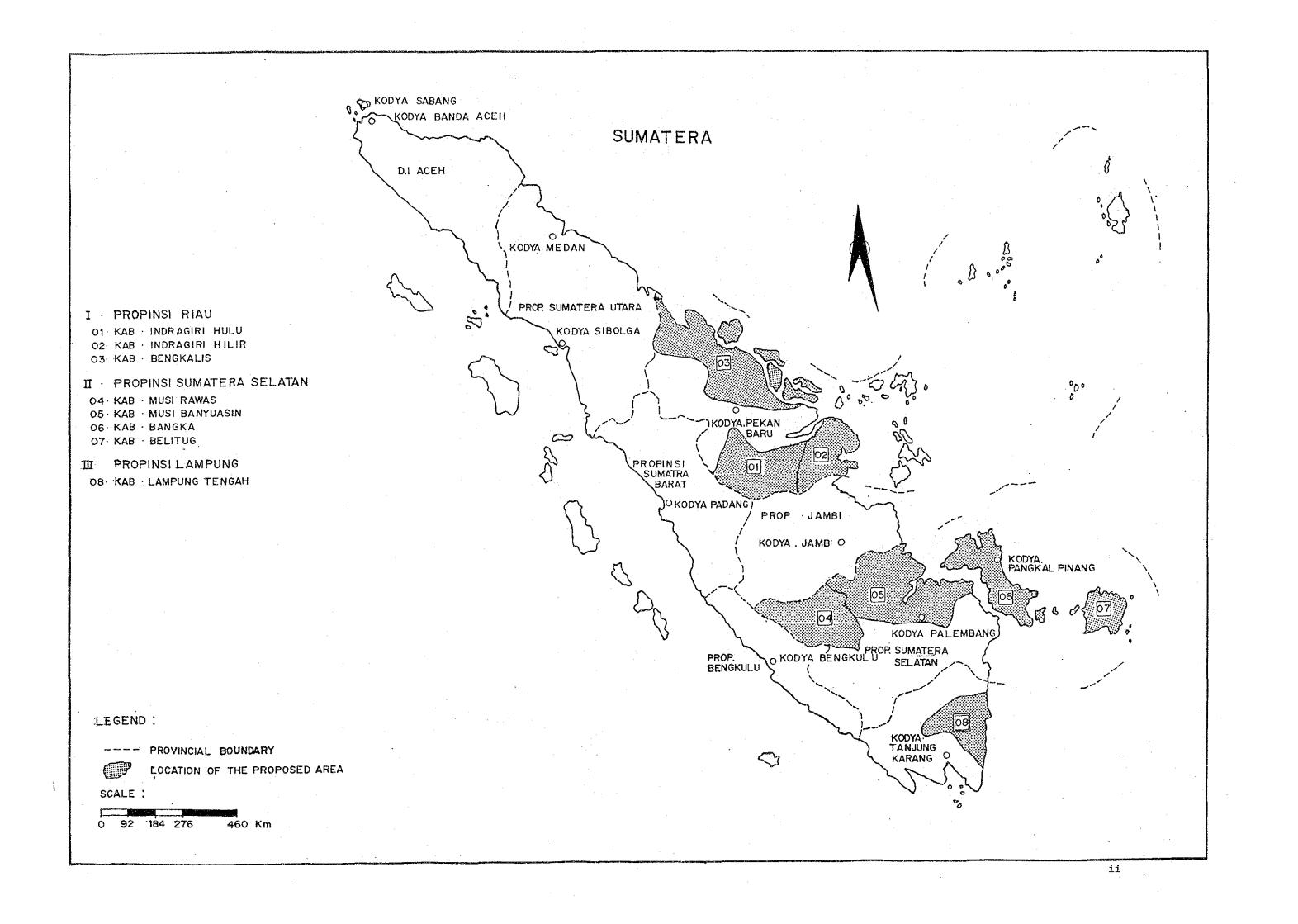
MARCH 1986

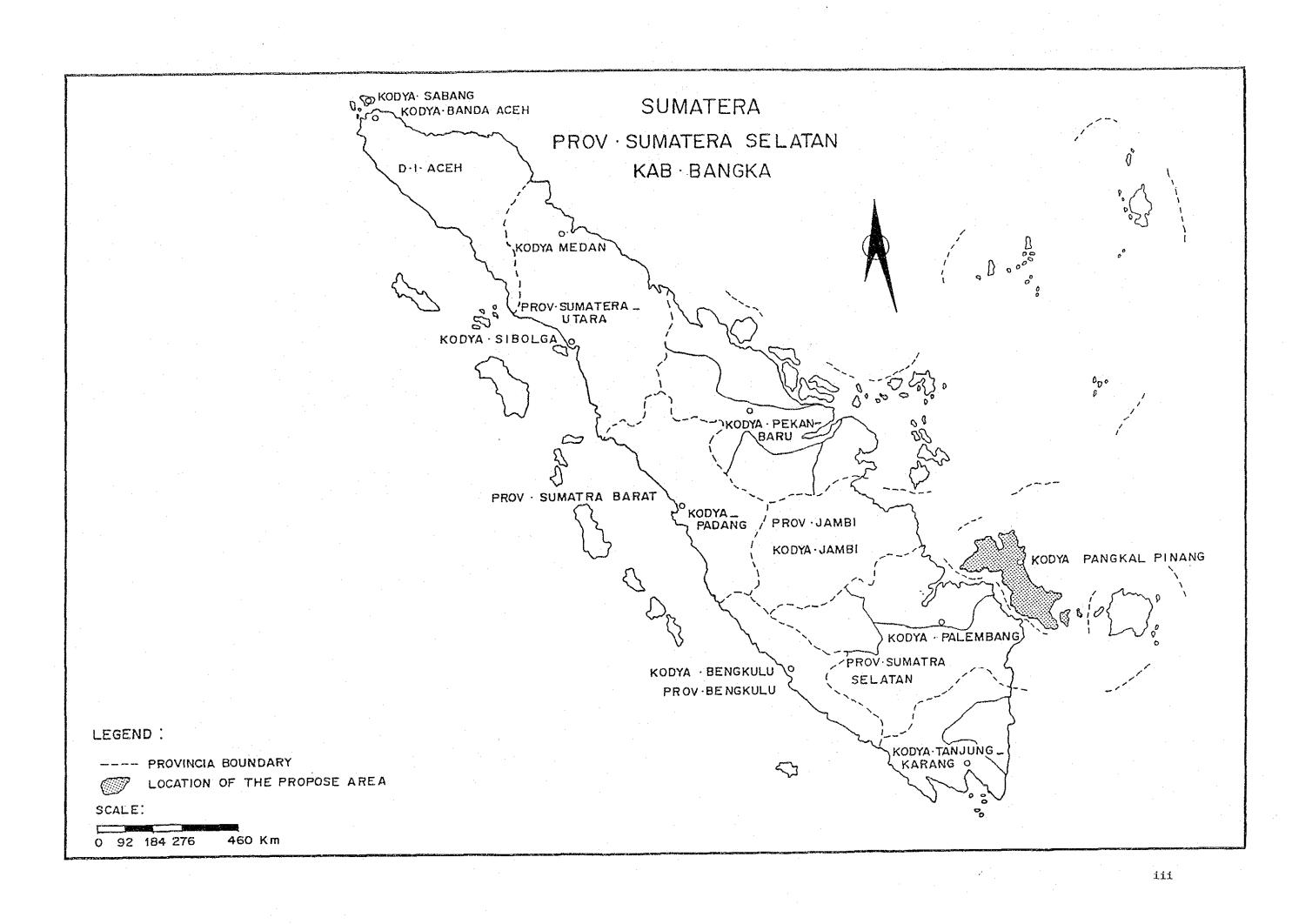
JAPAN INTERNATIONAL COOPERATION AGENCY

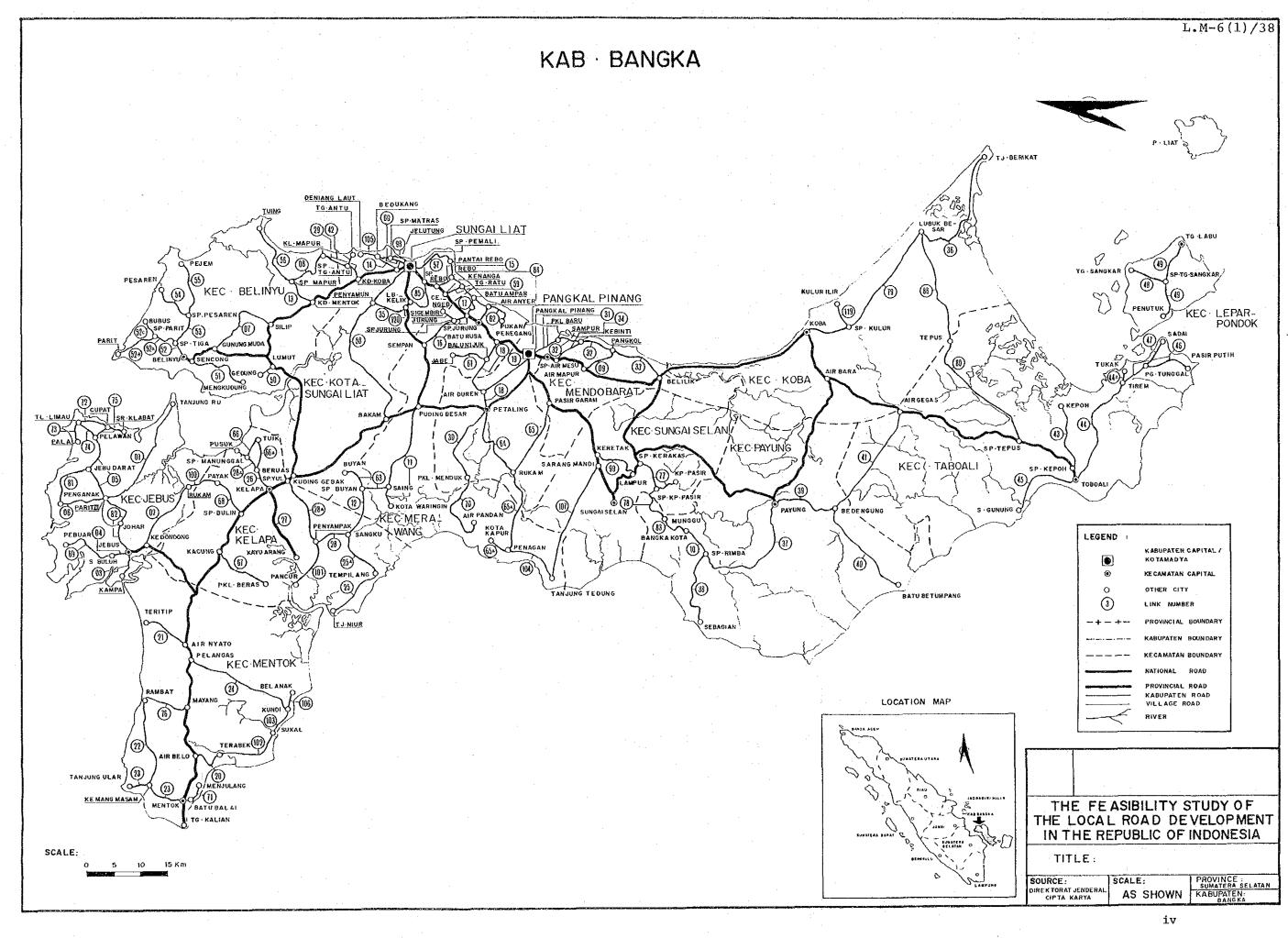
PREFACE

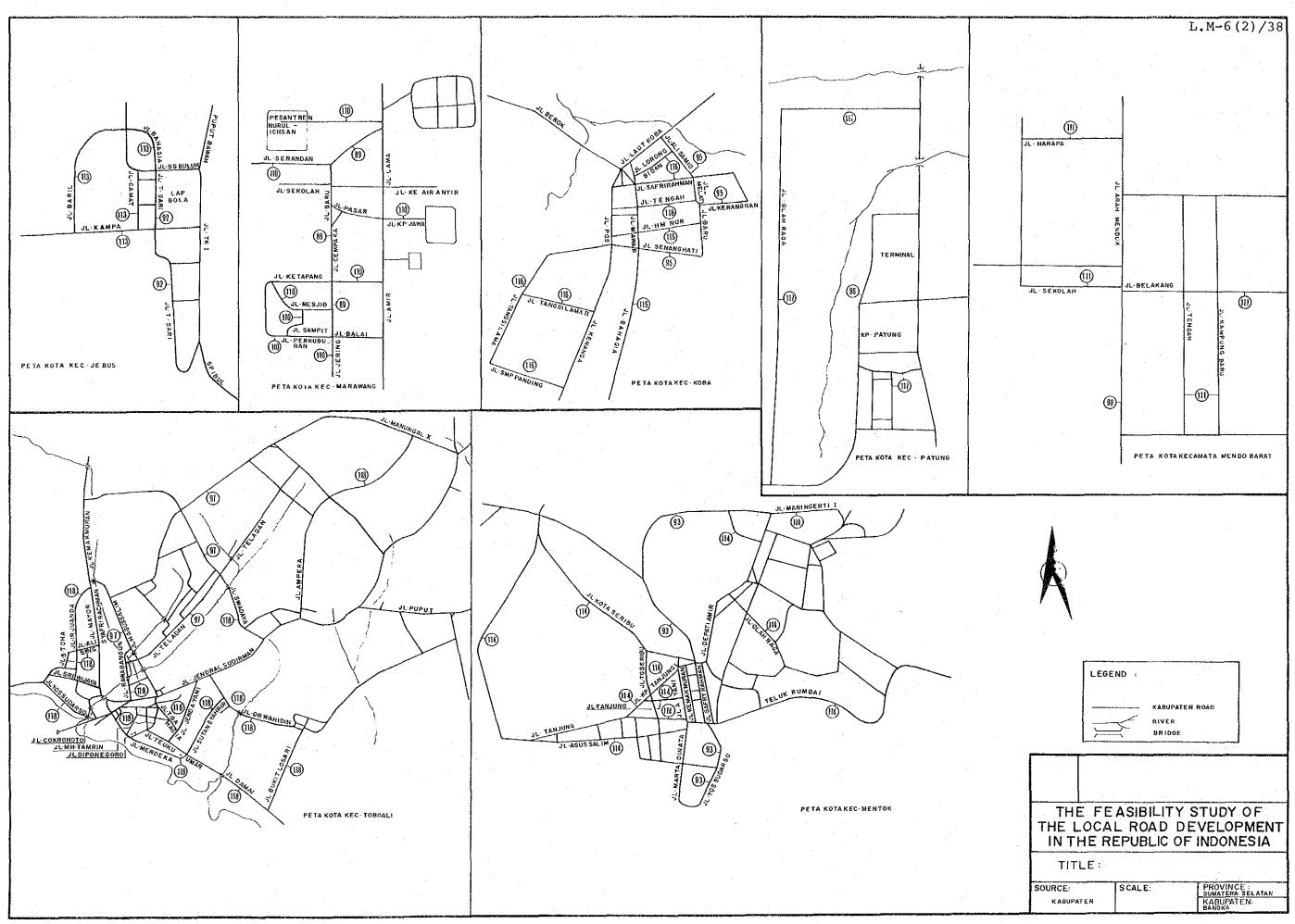
This is the Kabupaten Report of the Feasibility Study of the Local Road Development in the Republic of Indonesia for Kabupaten Bangka in Sumatra Selatan Province. The report has been prepared by the Study Team of the Japan International Cooperation Agency (hereinafter called JICA).

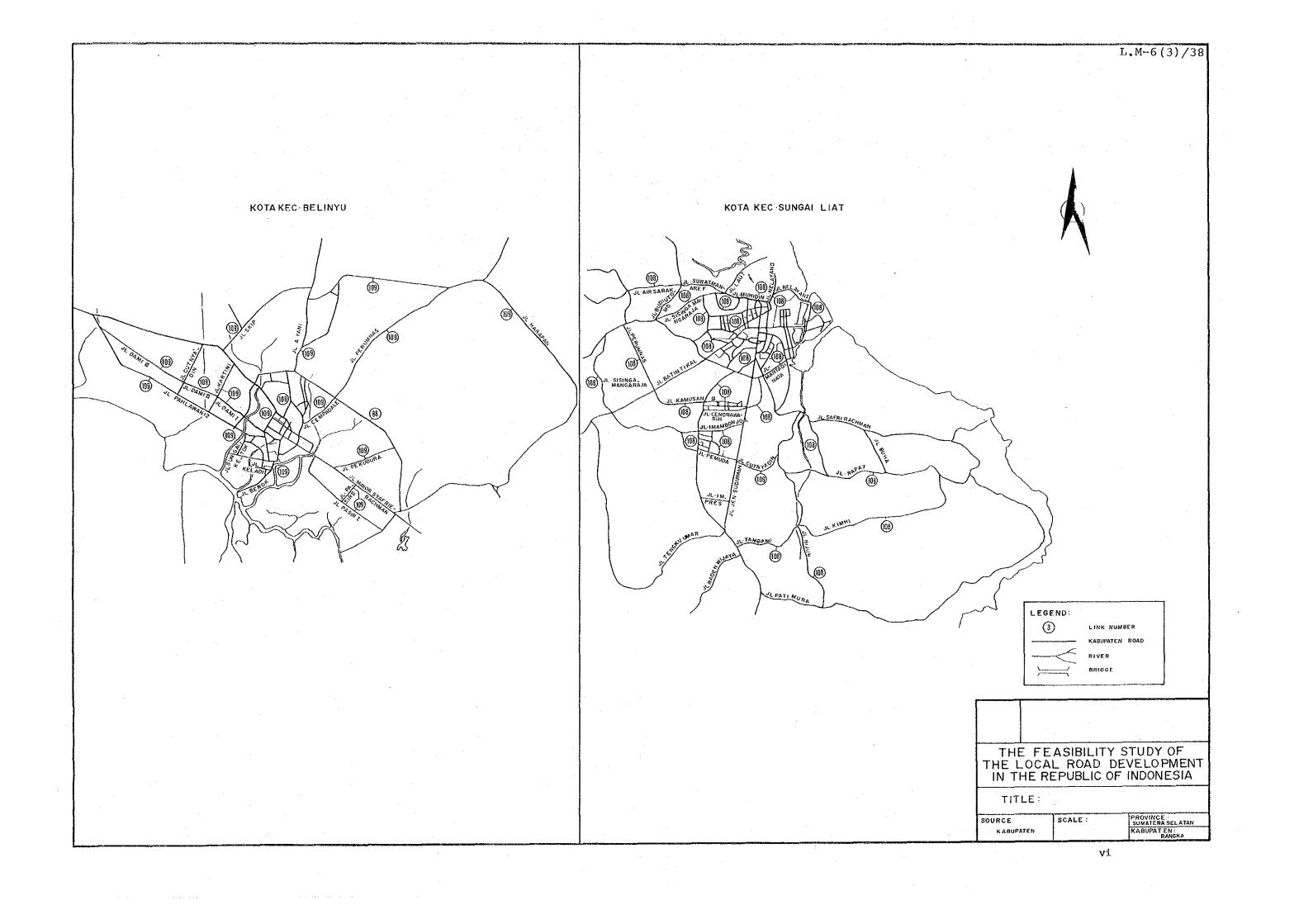

Based upon a request from the Government of Indonesia, the Government of Japan arranged for JICA to conduct the Study and JICA accordingly organized a Study Team. The study was carried out using data which were generally prepared by the Kabupaten, routed through the province, under the instructions of Bina Marga of the Ministry of Public Works and Bangda of the Ministry of Home Affairs.


Since the study period was limited, without cooperation of Bina Marga, Bangda and local governments of both province and Kabupaten in collecting the data, the study would not have been completed within the period.


The report consists of the results of the feasibility study and proposed implementation programme of the local road development in the Kabupaten.


The simplified economic feasibility evaluation methodology utilized for the study was established by the Study Team in Phase I Study through a pilot study of seven (7) model Kabupatens, and is described in the Main Report.


The purpose of the study for the Kabupaten is mainly to estimate the total Project Cost for the local road development but only limited data is available for study base. Therefore a detailed survey and design for the improvement of the Kabupaten roads should be carried out before commencing the Project together with a review of this report.



CONTENTS

PREFACE		
Chapter	1	BACKGROUND OF THE KABUPATEN
	1.1	Topographic and Meteorological Conditions
•		1.1.1 Location and Topography 6-1
		1.1.2 Meteorological Conditions
	1.2	Socio-Economic Conditions
		1.2.1 Population 6-4
		1.2.2 Land Use 6-6
	۰.	1.2.3 Agriculture 6-8
		1.2.4 Other Economic Activities
	1.3	Present Status of Kabupaten Roads
		1.3.1 Outline of Road Networks 6-12
		1.3.2 Road Inventory 6-13
		1.3.3 Bridge Inventory 6-19
		1.3.4 Traffic 6-25
Chapter :	2	ESTIMATIONS OF FUTURE TRAFFIC VOLUME AND BENEFIT
	2.1	Future Traffic Volume
		2.1.1 Traffic Growth Rate 6-26
		2.1.2 Present and Future Traffic Volume 6-27
	2.2	Benefit 6-31
		2.2.1 Benefit Estimation Method 6-31
		2.2.2 Benefit 6-33
Chapter	3	ENGINEERING
	3.1	Design Criteria and Specification
		3.1.1 Geometric Design Criteria
		3.1.2 Loading Specification 6-34
	3.2	Pavement Design 6-37
		3.2.1 Design Conditions 6-37
		3.2.2 Favement Structure 6-37
	3.3	Design of Bridges and Other Structures
		3.3.1 Standard Bridge 6-39

		3.3.2 Other Structures 6-4
	3.4	Selection of Equipment Types 6-4
		3.4.1 Points to be Considered for the Selection
		3.4.2 Combinations of Equipment for Major Works and Maintenance
	3.5	Workshop and Laboratory
		3.5.1 Policy of the Kabupaten Workshop
	÷ .	3.5.2 Workshop Equipment and Tools
		3.5.3 Laboratory
Chapter	4	CONSTRUCTION AND MAINTENANCE COST ESTIMATIONS
	4.1	Unit Price 6-5
		4.1.1 Unit Labour Price
		4.1.2 Unit Price of Materials
		4.1.3 Hourly Equipment Cost
	4 0	
	4.2	Unit Construction Cost by Work Type 6-5 4.2.1 All Works Except Bridges 6-5
		4.2.2 Bridges 6-5
		4.2.2 DITUGES
Chapter	5	RESULTS OF ECONOMIC FEASIBILITY EVALUATION
	5.1	Preliminary Screening 6-5
	5.2	
		5.2.1 Primary Analysis
		5.2.2 Secondary Analysis
		5.2.3 Ranking of Feasible Road Links
Chapter	6	IMPLEMENTATION PROGRAMME
	6.1	Implementation Schedule
		6.1.1 Project Cost 6-6
		6.1.2 Proposed Road Links 6-6
		6.1.3 Annual Construction and Maintenance Cost
		6.1.4 Construction and Maintenance Equipment Cost
		6.1.5 Other Costs
		6.1.6 Quantities by Work Type 6-7

	6.2	Organization and Construction System
Appendix	A1	Input Data for Estimation of the Producer's Surplus Benefit
	A-2	Engineering Data 6-A-2
	A-3	Construction and Maintenance Cost for Proposed Road Links
	A4	Construction and Maintenance Quantities for all Proposed Road Links
	A5	Construction and Maintenance Costs for all Proposed Road Links 6-A-57
	A~6	Quantities of Bridges on Proposed Road Links 6-A-60
	A~7	Construction and Maintenance Cost of Bridges on Proposed Road Links

,

Chapter 1 BACKGRAOUND OF THE KABUPATEN

1.1 Topographic and Meteorological Conditions

1.1.1 location and Topography

Kabupaten Bangka is an island facing the Bangka Strait, 15 kilometers offshore at the nearest point and 40 kilometers at the furthest point from the main island of Sumatera. The south coast of the island faces the Jawa Sea.

The island is formed by tablelands rising gradually towards the east from the west lowlands. Development of the island has a long history since the time of Dutch rule and pepper plantations and tin mining have continued since that time. Pangkalpinang City, the capital of the Kabupaten is administered as a Kotamadya. A beautiful shoreline ranges all along the east coast facing the Jawa Sea and presents fine views of the island.

The area of the Kabupaten is about 11,590 square kilometers, including Lepar Island which lies towards the south, and is approximately 11 percent of the total of Sumatera Selatan Province. It administers 13 Kecamatans.

1.1.2 Meteorological Conditions

The average number of rainy days and the average amount of yearly rainfall in Kabupaten Bangka are 120 days and 2,315 mm respectively.

One year in the Kabupaten consists of a rainy season and a dry season. The dry season is from June through October in general. However this is variable as Table 1-1-1 shows.

The number of working days which is necessary for planning the construction schedule in chapter 6, is estimated at 240 days using the following formula based upon the data shown in the table referred to above.

Working Days = 365 - Holidays - Rainy Days + (Rainy Days $x \frac{\text{Holiday}}{365}$ + (0.10 x Rainy Days)

Where :

- Holidays consist of 52 Sundays and 13 national holidays; and - 10% of rainy days are assumed to be workable days.

Table 1-1-1

METEOROLOGICAL CONDITIONS

era Selatan	ស
Sumatera	Bangka
	.,
PROVINCE	KABUPATEN

KABUPATEN :	: bumatera belatan : Bangka	oetaran			STATION	: NO						
	1	980	-	9 8 1		p-4	982	F-4	983	:	1 6	84
HTNOM	RAINY DAYS	RAINFALL (mm)	RAINFALL RAINY DAYS (mm)		TL	RAINY DAYS	RAINFALL (mm)	RAINY DAYS	S RAINFALL (mm)	RAINY	DAYS	RAINFALL (mm)
January	10	105		00	170	10	346	20) 443	•	18	125
February	۲.	110		8	190	œ	164	с.)	56	·	12	570
March	Ø	165		ø	210	16	380	ሮን	3 54		12	487
April	7	180	Ч	11	317	10	256	ť	9.1		12	198
May	12	62	L	14	30	13	274	15	329		ı	t.
June	7	214		6	60	9	50	12	165	·	14	106
July	10	190		7	285	. 4	. 30	13	3 202		14	21T
August	16	283			I		Ι,	(F)	8 61	·	9	146
September	٢ .	105		12	297	1	•	Q	83		9	229
October	7	222		80	25		82	13	210		8	114
November	15	328		10	110	6	53	20	315		16	236
December	14	313		23	678	13	414	22	215		15	232
Total	120	2,277	115		2,372	95	2,049	134	+ 2,224		139	2,654

1.2 Socio-Economic Conditions

1.2.1 Population

The population of Kabupaten Bangka in 1984 was 436,687 which was approximately 8.3% of the 5,259,200 total population of Sumatera Selatan Province as shown in Table 1-2-1.

The population density was 0.38 persons per ha which was lower than the provincial density of 0.49.

The recent annual average growth rate of population of the Kabupaten is 2.7% which is lower than the provincial rate of 3.3% and higher than the national rate of 2.2%. This may be a result of the transmigration programme which has just started in the Kabupaten.

The population of each Kecamatan and its proportion to the Kabupaten population is shown in Table 1-2-2.

Table 1-2-1

POPULATION BY KABUPATEN

DESCRIPTION	POPULATION	AAGR	AREA	POPULATION	SURVEY
		(%)	(ha)	DENSITY	YEAR
	<u></u>	·····		(persons/ha)	
KABUPATEN:					
MUSI RAWAS	397,143	3,1	1,520,000	0.26	1982
MUSI BANYUASIN	860,597	4.5	2,619,125	0.33	1984
BANGKA	436,687	2.7	1,159,184	0.38	1984
BELITUNG	173,379	1.8	462,305	0.38	1984
PROVINCE:					
SUMATRA SELATAN	4,944,300		10,368,800		1982
	5,099,700	3.3	10,368,800	0.49	1983
· · · · · · · · · · · · · · · · · · ·	5,259,200		10,368,800		1984
Jawa IS.(Excluding		- -			
DKI JAKARTA)	91,126,900	1.7	13,159,700	6.92	-
INDONESIA	161,579,500	2.2	191,944,300	0.84	-

Notes :

1. Sources:

Kabupaten: Kabupaten concerned with the study.

: Average Annual Growth Rate.

Province : Jawa sand Indonesia;

Statistical yearbook of Indonesia 1984, published by the Central Statistics Bureau.

2, AAGR

Table 1-2-2

POPULATION BY KECAMATAN

Year : 1984

PROVINCE : SUMATERA SELATAN		
KABUPATEN : BANGKA		:
KECAMATAN	POPULATION	PROPORTION (%)
MENTOK	44,997	10.3
JEBUS	27,780	6.4
KELAPA	28,324	6.5
BELINYU	46,973	10.8
KOTA SUNGAI LIAT	74,896	17.1
MERAWANG	28,871	6.6
MENDO BARAT	22,327	5,1
PANGKAL PINANG	42,579	9.8
SUNGAI SELATAN	24,917	5.7
PAYUNG	19,814	4.5
KOBA	25,284	5.8
TABOALI	41,688	9.5
LEPAR PONDOK	8,237	1.9
TOTAL	436,687	100

1.2.2 Land Use

In Kabupaten Bangka, 565,312 ha of the current available land use area, which is approximately 48.8% of the 1,159,184 ha total area of the Kabupaten, is used for living purposes and for industrial activity of the inhabitants of the Kabupaten. It is the total value of columns (1) through (6) in Table 1-2-3.

The current available land use area consists of 552,811 ha of agricultural harvest area, 5,631 ha of residential area and 6,870 ha of usable open space which are 97.8%, 1.0% and 1.2% of the current available land use area respectively.

The agricultural harvest area consists of 8,006 ha of paddy field, 77,553 ha of plantation and 467,252 ha of other cultivated area which are 1.4%, 14.0% and 84.6% of the agricultural harvest area respectively.

It can be realized from the land use that the main agricultural production in the Kabupaten is plantation.

Table 1-2-3

PROVINCE : SUMATRA SELATAN

KABUPATEN	WET PADDY FIELD	UPLAND PADDY FIELD T	PADDY OTHER CUL- FIELD TIVATED AREA	PLANTATION AREA	RESIDENTIAL AREA	USABLE OPEN SPACE	RIVER & LAKE	FORESTRY AREA	OTHERS	TOTAL AREA	SURVEY YEAR
MUSI RAWAS	32,554 (2.1)	í N	6,639 (0.4)	112,803 (7.4)	21,000 (1.4)	I	10,264 (0.7)	1,203,055 (79.1)	134,685 (8.9)	1,520,000 (100)	1982
NUSI BANYUASIN	131,486 (5.0)	78,455 (3.0)	ı	249,271 (9-5)	60,667 (2.3)	•	77,121 (2.9)	265,181 : (10.1)	1,756,944 (67.1)	2,619,125 (100)	1983
BANGKA	68 (0.01)	7,938 (0.7)	467,252 (40.3)	77,553 (6.7)	5,631 (0.5)	6,870 (0.6)	16,611 (1.4)	347,741 (30.0)	229,520 (19.8)	1,59 ,184 (100)	1984
BELITUNG	485 (0.1)	1,889 (0.4)	I	20,142 (4.4)	5,336 (1.2)	1	•	404,352 (87.5)	30,098 (6.5)	(100) (100)	1984

Notes :

The value in () denotes the proportion
 Source : Kabupaten concerned with the study

LAND USE

1.2.3 Agriculture

The cultivated area and food crop production in Kabupaten Bangka in 1984 was 15,836 ha and 54,266 ton respectively as shown in Table 1-2-4. Of food crops, the area and production of paddy which consists of wet paddy and upland paddy were 10,256 ha and 12,047 ton respectively which are 64.8% and 22.2% of the total food crops. The yield rate of paddy production is only 1.17 ton per ha. Thus, paddy is the most predominant agricultural crop of the Kabupaten.

As the table shows, average annual growth rates of area and production of paddy in 1981 through 1984 were 16.1% and 11.2% respectively which show a low development of paddy production. The production volume of paddy in the Kabupaten shows a volume far less than the approximately 57,000 tons of yearly consumption of the Kabupaten because the area of upland paddy forms approximately 95% of the total cultivated area in the Kabupaten. Thus the productivity is quite low. A fundamental consolidation programme of developing water facilities relating to the agricultural sector will be needed to promote more intensive productivity of the paddy.

The commodity crops, of which palm, clove (cengke) and rubber are major, are produced by the plantations. The area and production of plantation crops in 1983 were 77,636 ha and 28,227 ton respectively with current growth rates being 3.4% and 5.7% respectively. Thus the plantation crop which is an export product is important agriculturally. Some changes are expected considering the international balance of supply and demand.

The population of the agricultural sector which is assumed from the employment in the Kabupaten is 51.3% of the total population as shown in Table 1-2-6. Thus the Kabupaten is an agricultural Kabupaten.

It is desirable that processing industries which can produce commodities suitable for future demand should be established in order to cope with the fluctuation of the international balance of supply and demand.

6--8

 Table 1-2-4
 AREA AND PRODUCTION OF FOOD CROPS

KABUPATEN : BANGKA

e e e e e e e e e e e e e e e e e e e		а. — с (CULTIVATED	AREA		·	
							(ha)
	*****		YI	EAR			AAGR
ITEM	1979	1980	1981	1982	1983	1984	(%)
PADDY	12,331	5,785	7,349	8,006	8,736	10,256	11.2
OTHERS	7,455	6,197	5,203	5,862	5,416	5,580	2.4
TOTAL	19,786	11,982	12,552	13,868	14,152	15,836	8.1

PRODUCTION

							(ton)
			Y	EAR	······································		AAGR
ITEM	1979	1980	1981	1982	1983	1984	(%)
PADDY	7,636	4,536	7,693	9,654	13,269	12,047	16.1
OTHERS	48,602	46,110	36,230	41,775	52,829	42,219	5.2
TOTAL	56,238	50,646	43,923	51,429	66,098	54,266	7:3

YIELD RATE

<u> </u>			YI	CAR		<u>(to</u>	<u>n/ha)</u> AAGR
ITEM	1979	1980	1981	1982	1983	1984	(%)
PADDY	0.62	0.78	1.05	1.21	1.52	1.17	3.7

Notes :

1. AAGR : Average annual growth rate

2. Source : Kabupaten concerned with the study

AREA AND PRODUCTION OF PLANTATION CROPS Year : 1983

KABUPATEN	AREA	PRODUCTION		AAGR (%)
	(ha)	(ton)	AREA	PRODUCTION
MUSI RAWAS	112,803	35,421	1.2	14.4
MUSI BANYUASIN	140,989	40,076	5.1	3.5
BANGKA	77,636	28,227	3.4	5.7
BELITUNG	9,105	3,187	6.8	11.8

Table1-2-6POPULATION OF AGRICULTURAL SECTOR

PROVINCE : SUMATRA SELATAN

			and the second	
KABUPATEN	AGRICULTURAL SECTOR	TOTAL POPULATION	PROPORTION (%)	AAGR SURVEY (%) YEAR
MUSI RAWAS	346,000	397,143	87.1	3.5 1982
MUSI BANYUASIN	466,000	860,597	54.2	4.6 1984
BANGKA	224,100	436,687	51.3	2.1 1984
BELITUNG	-	173,379	**	- 1984

Notes :

1. AAGR : Average annual growth rate

2. Source : Kabupaten concerned with the Study

1.2.4 Other Economic Activities

Notable economic activities in Kabupaten Bangka are the industries related to tin. However, these industries are based on foreign investment capital, therefore, due to lack of data it is impossible to make further analysis of the impact on the whole industrial activities in the Kabupaten.

As can be seen from the following figures the production is rapidly declining due to the recent stagnation of the international market.

	<u>1980</u>	1984	AAGR (%)
Production (ton)	240,047	50,769	- 32, 2

Notes : 1. AAGR : Average annual growth rate

2. Source : Kabupaten data

The fishery sector has a production volume which is more than the Kabupaten consumption. Judging from the present conditions it is expected to export yearly approximately 15,000 tons from the Kabupaten. The following figures show the current growth of fishery.

					1980		1984	AAGR (%)
Catch	(t	on)			19,084		19,453	0.5
Notes	:	1.	AAGR	:	Average annual	growth	rate	
		2.	Source	:	Kabupaten data			

Besides the above mentioned sectors there is a tile industry which uses the clay remaining after mining tin, however it is still a less advanced industry.

It should be noted that this Kabupaten appears to be an exception as the economic structure relies upon the non-agricultural sector. It has become a market-directed structure instead of the monoculture structure of the other Kabupatens.

1.3 Present Status of Kabupaten Roads

1.3.1 Outline of Road Networks

The provincial road networks of Kabupaten Bangka are consolidated by the regional trunk roads covering most of the Kabupaten. One provincial road runs across the Kabupaten from south to northwest and the other provincial roads link with this provincial road to form networks as follows :

1. Main trunk road

: From Toboali to Tg.Kalian via Air Bara, Belilik, Pangkal Pinang (municipality), Sungai Liat (Kabupaten Capital), Puding Besar and Kuding Gebak.

: From Puding Besar to Air Bara via

and Payung

as a

2. Link road

4. Other road

3. Four service roads

- link to the above main road. : 3.1 From Sungai Liat to Kuding
 - 3.2 From Pangkal Pinang to the link road
 - 3.3 From Belilik to SP.Kerakas
 - 3.4 From Payung to Air Bara

Sungai Selatan

Gebak via Silip

: From its junction with the service road between Sungai Liat and Kuding Gebak to Belinju.

To provide transportation services required for the whole regional development the Kabupaten roads north of the provincial road between Sungai Selatan and Belilik, located at centre of the Kabupaten, consolidate their networks linking with the regional provincial roads. In the sourthern regions which are available for agricultural development the road networks have not yet been developed and it is judged that the road networks in the region should have a relatively high priority for development.

1.3.2 Road Inventory

From the road inventory data prepared by the Kabupaten, the number and total length of Kabupaten roads to be studied in Kabupaten Bangka are confirmed as 143 links and 1,462 Km respectively. These figures exclude Kabupaten roads with no data.

According to the data the present status of the Kabupaten roads is as follows:

(1) Density of Kabupaten Roads

The density of the Kabupaten roads is 1.26 m per ha. This is higher than the national density of 0.48 m per ha but lower than 2.11 m per ha which is the density in Jawa Island, excluding DKI Jakarta, as shown in the following table. Thus, the Kabupaten is presently progressing road development.

	Total Length (km)	Area (ha)	Density (m/ha)
Kabupaten : Bangka	1,462	1,159,184	1.26
Province : Sumatera Selatan	2,905	5,760,614	0.50
Jawa Is.(Excluding DKI Jakarta)	27,715	13,159,700	2.11
Indonesia	92,038	191,944,300	0.48

Notes : 1. The value for the province is the total value for the Kabupatens included in with the study.

2. The sources of data are as follows: Kabupaten and Province : Bina Marga Inventory Jawa and Indonesia : Statistical Yearbook of Indonesia 1984, published by the Central Statistics

Bureau

(2) Kabupaten Road Surface Type

The type of surface on the Kabupaten roads in the Kabupaten is shown in Table 1-3-1.

The legend used in the table is as follows: ASP : Asphalt

Table 1-3-1(1) EXISTING ROAD LENGTH BY SURFACE TYPE

.

OV I	SUHA	1ERA SEL	ATAN	KAB	t DANS	JKA -								. •			
						(Ka)	-				-						(Kn)
102 (71 1	t.t I	asp 1	TNH T	KRK	I TOTAL	1	1 102	(7)	1	1.1	1 45	P t	ואז	I KRI		TOTAL
LINK	11	27	. 1	. F		1 27		1 LINK		ŧ.	11	ł	l		1	1	11
LINK	21	15	1			15	_	T LINK			5				1	1	. 5
LINK	31	51	1			15		I LINK			7				1 -	1	7
LINK	41	41				4		I LINK			9		1		1.	1	
	51	1	16 1					I LINK			13		1		1 ·	1	1
L I NK L I NK	6 I 7 I	10 1 16 1				I II I 16		I LINK			14		: د 1		1	- 1	
LINK	81	4	· 1	1		10		I LINK I LINK			34		5 I 5 I		1	- F - F	1
LINK	91	71	1	, ,		17		I LINK	1		5	-	. 1	 	T .	1	S.
LINK	10 1	61.	i i	i		1 6	-	I LINK					8 1		1	i	
	11 1	25 1		j		1 25		I LINK	61	18.0	. 7				i	1	
	12 1	91	11	Í		1 10		LLINK			6	1	ł		1	. 1	
INK	13 1	61	21			1 8		I LINK			5	2 S S	1		Ì	Ì	
INK	14 1	4 1	2 1			16		I LINK			14	1		I	1	ł	ł
INK	15 I	1	8 1			1 8	ŀ.	I LÏHK	65	I.	:15	1	I	ł	I I		1
	16 1	12 1	1			1 12		I LINK			- 5	Į	ł		ł	1	
INK	17-1	4 1	1	1		1 1	t.	I LINK	67	I	12	1	l	I	I	1	1
INK	18 1	81	31	1		E 11	l	I LINK	60	Ł	. 9	1	l	l –	1	1	
INK	19 1	81	ļ	1		19	ł	I LINK	- 69	Ł	9	1	}	l j	1	1	
INK	20 1	91	1	!		1 9	I.	I LINK	70	1	17	!	1	I.	1	1	1
INK .	21 I	16	11	t		17	ł	I EINK	71	I		1.	1	3	1	t	
INK	22 1	18 1	1	1		1 18		I LINK	72		5	1	1	1	I	1	
TNK	23 I	10 1	31	1		13		I LIIK			±	ł.	ł	Ì	1 :	1	
	24	19 1	5 I			1 24		I LINK			6			ł	1		
. HNK	25	13 1	21			I 15		I LINK			5			!	1	1	
. ENK	26 1	61	1			I 6.		I LINK			11		1	Ę	!	I	1
. INK	27		19 1			19	-	1 LINK			9	-		5	1	!	
INK	28 1	71		-1		1 7		1 LINK			4		i	1	1	1	
, INK	29	15	l			1 15					33			1	1	1	
	30 1	18 1	1					I LINK			27		:	1 £	1	1 1	
	31 1	1 0 1	41	1		4 1 0		I LINK			- 14			г. Т	1	i	
	32 I 33 I	9 15				1 9 1 15		I LINK			· a 9			r	1	ł	
	34 1	19 F	j			1 15		I LINK			- 13			!	ł	1	
	35 1	6	21			s.o. 1.9		I LINK			10			- }	i	1	
	36 1	32 1	1			1 32		1 LINK			23			I	1	1	
	37 1	23 1	51					LLINK					H	l · · · ·	I	ŀ	
	38 I	12 1	71			1 19		I LINK			•	1	3	I	F	1	
INK	39 1	11 1	5			1 16		I LINK				1			I.	ł	
INK	40	22 1	11			1 23		I LINK				ŧ.	Ł		•	1	
18K	41 1	21 1	3			1 24	ł	I LINK				ł	2		1		
. 1 NK	42 1	3	·			1 3		LUNK				1		I .			
INK	43	13 1	1			1 13		I LINK				1	3		1		
. INK	44 1	23 1	¥ 1			1 24		LUK				1	2			1	
	45	10 1				1 16		I LINK				1	!	1.1		. 1	
THK	46	- 14	1			1 11						1	1	-	1	 4	
LINK	47 1 ≉a i	6 1				6		I LINK I LINK			5		۰.	1 2	1	יי 1	
L I NK L I NK	49 49	10 I 9 I	1			1 10 1 9		I LINK			6		3	-	i i		
L 8 H K	11 I	11		r 1		I Y	;	I LINK				4 	v	۲ ۰	•	:	

Table 1-3-1 (2) EXISTING ROAD LENGTH BY SURFACE TYPE

1					-								{Km}															{Ka}
	102	1 71	1	}	t	1	ASP	1	TKI	ŧ	Klik	1	TOTAL	1	I	102	t.	71	1	ι.ι		ASP	!	1NII	1	KRK	11	DIAL
l	Thk	10	ł		12	1		1		1			12	1		LIN				****		· · · · ·			··	******	 1	b
1	, INK	107	! {		8	I.		ł		ŧ		I	[3			LH						•	1		i		i	2
1	LINK	10			1			ŧ		1		Ţ	1			LI							j.		i		i	5
l	L H NK	104				ł		ł	10			Ì	10			L L II				ΞŪ	-		i		ì		ŀ	- u
ł	LINK	105	1			Ł		1	g	ſ		f	Ø			LI					jĮ		i		i.		Ì	Ę
ł	. I HK	.10/	1		2	1	1	J		ŧ		1	3	1		111				1			j.		i		1	1
l	INK	107	1	÷.,		ŀ		ļ	20	Ł		I	20	ł		LI							Ì.		Ì		ł	2
	LINK					Ł	51	ł	28	ſ	5	ł	64	í		LI				ł	51		1		I		ł	(
	, INK				1	L	- 11	ł	9	L		ŧ	21	1		i Lill				14	I I		1		ł		Į.	- J-
	LINK					1			. 1			1	l	ł	. 1	LI	IK -	131	1		1		I	Ì,	ł		ł	
	LINK					ł				ł		I		1		LI					1		L	1	t		1	
	LINK					t		-	· 3	ł		J	3	t.	l	E L II	ij.	133	1		1		1	1	ţ		1	
	LINK					ł	. 1			1		۱	1	L	1	I LII	łK	134	I.		ł		1	1	1		I.	
	LINK					ł	U			ŧ		Í	17			I LII					1		1	- 1	Í		1	
	LINK					I	2		3			t	5	ļ							: J			1	I		ł	
	L HAK				•	1		I	6	ļ		ļ	15			L					İ		ľ	i	I		1	
	, (HK					ł.			1	-		I	€			111					ſ	-	1		1		1	
	. HIK					1	5	1	8			ł	13			I LI					1		1	1	1		ļ	
	THK				1	•		١		1		1	1			I LII					1		4		1		1	
	(NK				4:			-		ţ		1	1	-		111					!	1	!		ł		1	
1	LINK	12	1		4		5	1	1	1		1	- 9	1		L					1		1	-	1		1	
						-				•		1	• • • • • • • • •		•	111	₩. 	173	! 		۱ 		! 	ا 	1		1	
															;	i	101	۸L	ł	106	6.1	256	ł	130	1	10	, I	146

KRK : Gravel/Stone/Telford/Water Bound Macadam

TNH : Earth

LL : Others

Comparison of the proportion of surface type in the Kabupaten with other regions is as follows:

	ASP	KRK	TNH/LL
Kabupaten : Bangka	17.5	0.7	91.8
Province : Sumatera Selatan	13.7	10.7	75.6
Jawa Is.(Excluding DKI Jakarta)	56.2	25.0	18.8
Indonesia	26.0	26.6	47.4

Thus, in the Kabupaten the proportion of Kabupaten roads with asphalt surface is lower than either that of Indonesia or of Jawa Island. The proportion of low grade roads such as earth roads and others is distinctly high. This means that the road classification in the Kabupaten is low.

(3) Surface Condition of Kabupaten Roads

The surface condition of the Kabupaten roads classified as good, fair, poor and bad which are shown as BA, SD, RU and RB respectively, are summarized in Table 1-3-2.

Comparison of the proportions of the various surface conditions of the Kabupaten roads in the Kabupaten with other regions is as follows:

	Good	Fair	Poor	Bad
Kabupaten : Bangka	42.5	35.1	16.1	6.1
Province : Sumatera Selatan	43.3	31.7	17.3	7.7
Jawa Is.(Excluding DKI Jakarta)	45.6	29.8	19.6	5.0
Indonesia	43.5	21.8	21.1	13.6

•

PROVINCE : SUMATERA SELATAN . . .

KABUPATEN	:	BANGKA

IAT 4 11 4	TEN	•	*******		******	****		*******	*******						~*******	(1)
107 4 71 F 107 1 71 F	BA 1	ן.ן נו	••••••	 		A5		1		11	*******			KR		
	فلففرفه	 2	••••••••		6A (RU !	I AD I	14 1	59	I AU	I AD	BA :	80	RU I	• A D
LIKK 11 LIKK 21	11.1 10.1	28 1 20 1			1		1		1			 		i 1 I 1		
1188 31 1188 11	- 34 5	19 	10	1	j		1		i			•)			
LINX 51	,≢ I 	20 I			29 I	311	26	 4			1	ļ		 1	. 1	
LINK LI	17.1	19 1	21		60		24				1	1	1	i i		
L18X 71 L18X 81	68 63	36 I 38 I	. 1		1		1		1		1	1			1 1	
LIRK 🕴	18 1	- 41-1	21	10 1	. 1				1		1	t t			1	
1188 10 1 1188 11 1	- 12 - 17	18 1 27 1	31				- 1		· • •	1		1	1	f 5	1	
LINK 12 E	10	41.1		. 1	40 I	45 1	15		i	1		t † '		i	1	
1788 13 1	51 85	- 41 1 - 15 1			45 1 75 1		. 1		- 1	1		1				
LINX 15 F	1	1	- 11 - (i			6 1		1	•		r : F		6. C 1 1	i	
LINX 181 LINX 171	15 I 60 I	- {0 25	13 15		. 1		1		1		1	1				
LINK IN I	23 1	21 1			53	•	20 1		1			t 1 -		1 I 		· .
1 INX 19 1 LINX 20 1	47 1	511		•	. !	. !	!	1	1		l	1	1	E . I	1	
LINK 21 L	18 F	- 12 1 - 53 1	- 58 25		80 (20			1			1	1	s i 1 1		,
1 TBK 22 F	- 13 E	11	60 I	ł	. 1	1	ļ		İ		i	i	i	1	i	
1188 23 1 1188 21 1	11 E - 41. E	57 1 18 1			1 07 1 08		. 2				1] · ·	ł	r 1 1 1	_] T	
ETRK 25 F	55 F	10 1	5	1	78 1						Ì	İ	1	i i	ļ	
LIRX 26 LIRX 27	70	30 	1		95		.		1		1 . 1	1	} . •	f		
11敗 201	41-1	39 1	i	i			ł				1	1	; ;	1	i	
LINX 24 1 LINK 30 1	- 1 1 - 61 1	59 I 36 I			1		1				1	1	1	1 1		
11KK 31 1	1				10 1	28	3				1	1	r 1	i i		
LINK 32 1 LINK 33 1	43 I 5 I	23 1	26				1				1	1	ł	1 1		
EBAK DA E	311	21 22	29		1						1	1	1 1	i i	i i	
I JHK JS J		39	40 I		90 I		1		-			i i	1.	† 1		
E18K 35 E 118K 37 E	11 F	- 30 I 52 I	50 41		1 101	•	. !				1	1	1	i i	, , I	
LEHK JE I	.11 1	50 ł	31 I	. I	1 1	91			1		1	i	į į	1.1		
11HK 39 1 11KK 10 F	59 I -37 C	411 - (57	í,		61 1 (0 1				1		l í	l f	1	1	i i F J	
LINX 41 1	45 E	11 1	8 1	21	47.1	53 1	i	İ	ļ		Ì	i	i i	1		
LIHK - 12 1 LIHK - 13 1	70 I 30 I	30 1 61 1	1 		1		1	 	ļ		1	1	1	, I F	; }	
11改 11 1	31-1	31	23	3	55 I		33	ii	i		i ·	1	İ	ļ		
LINK 151 LINK 161	67 1 76 1	- 32 1 - 41 1	. 22 1	•	1			i 1	l		۱ ۹ ۱	1 91	1	; 1	 	
1.18X 47.1	60 1	10 1		ł	i				i i		i	1	1	1	1	
LINK 101	221	391	101 		1	1					1	1	1	• 1	ı I 	
LINK 11 Link 30	61 43	31 55			i				1 [1	} \$	1		
11HK 51 8	65 1	31 1	1		!		1				-	1	1	İ ji	1 1	
118K 57 F	59 66	50 I 31 I	21		1	1	1				•	1 1		1 1		
E18K - 54-4	10 I	10 ł	1	ł	1	j	i		1		1	1	\$	1 1	i i	
LINX 55 1 Linx 54 1	58 53	32 45	21		1	 					r F	1		1		
LIRK 37 F	- 1	i	. 1	1	87 1	10 1	2				ļ	ļ		1		•
LIHK 50 I Lihk 59 I	28	ft 32	16 I 48 I		62 I I						1	 	1	t : t :		
LIRX 69 F	1	ł		1	11	11	ļ	1			i '	2	1	1	•	
1 INK 61 1 1 INK 67 1	: 28 21	39 i 20 i	33 H 30 H		1		1				: 1	1	} 	1	1 1	
1.1RK 63 1	70 1	30 1	l l	I		1	l		i		l	1	1	i		
138K 65 1	63 1 50 1	37 - {1	1		1						ł	1	1 I	1	1 1 t 1	
EBBK 66-1	58 1	- 44 8	i	i	i		l		1		i				•	
\$18K 671 \$198 485	73 70	28 21	 			#	i				t 1	l F	j 	1		
E18X - 68 - 1 E18X - 68 - 1	- 23 1	32 1	28								1		t 1		1 1 4	
URK 101	63 4	37 [:		·		1		 		1 1 191	1	} 1	1		
LINK 71 I Link 72 i	1	1 26 1	12 1			-			101	57	1 21 1	, / i /	i	1 1 - 1		
1188 23-1	51	35 1	78 1	33 1	1		1				1	•	1	1		
1 EHK 71 E 1 THK 75 T	- 18 1 - 18 1	26 1	. 11 J . 71 J		1	-	1				•					

•

PROVINCE : SUMATERA SELATAN

KABUPA										114	.			•••••••••		111	
02 (7)		۱.۱ ۲۰۰۰	RU 1	1 80 1	1 NA 1	ASI 66 1	RU 1	ا ۹۵ ۱	8A 1	59 1	RU 1	י קקק {	88 1	KAI Sð 1	(RU 1		!.
07 }	10A 1	1 62					1 UA ********						•••	30 1		ng	1
18X 74 1 18X 77 1	20 51	51 I 17 I	19 i I				1		. 1	, i	i	j. I			. 1		i
1HX 70 I	1	- 5	18	18 1			1			. (- 1					1
HK 60 1	55 1	33 12	· 11 1 43 1	• •		1					: 1 						1
INX 91 1	- i	45 1	31 1			i	1	i - i	1	i i	1	· · 1			. [ł
HK 82 I	1	59 1	29 1	13 1			1		: 1	1		. 1					1
18X 83 1 18X 84 1	87 I 13 I	9 ł 12 ł	41	· 1		1			. 1								1
EXX 105 1	. 90 1	101	i		i i	i i	ł	i i	, i	t	Í	· i	i . I	i i	i i	Ľ.	Ì
秋 85	11	. HH	42 1	38			[• •		1	.					· ·		1
1歳 87 1 1歳 89 1	1	1	1	1	85 1 57 1	10 1 28 1	5 1 15		1		i, i 1 1	1					1
IKK 87 I	i	i	i	1		i			88 1	13 1			, i	i i	i	i i	i
INX 90 E	ļ	1		1	10 1	60 1	10		1	1		. 1					1
188 91 1 188 92 1	1	1	1	1	50 5	50 1		1. 1 1. 1		1	6 1 1		90	· · • •			1
微时!	1	i	i	. i	25 1	43 1	17		5 1	30 1	50 1	15			·		i
1 16 XH	· I	1	1	1		45	18 1		ļ			1			·		1
18K 15 (1 1		1		26 1	43 t 5 l	- 35 -		. 1	12 1	35 1	 1				1	-
188 96 F	· .				t vo			, , , ,		4.6.3			LÍ I	11	10 1		
11X 12 1	12 1	13 î	- 15 1	1		1			- 55 	46 (5				- ¹⁷ i		i
41% 59 4	111	28 1		i	111	15	- s i	i i	i	i	i	i	1		1		ł
HIX 100	23 1	21	12			l	ł		1	1		ļ				÷.,	1
18X 191 E 18X 192 E	- 15 F - 1 J	5 31	57 I			، ۱			24 I		24						į
IRX 101 1	- 11		34 1		i		. 1		. 1			i		1	. Ī	ł	Í
INX INT 1	1 I	1	ł	1		ļ			ļ	I	51		· ·	. .!			1
18X 105 1 18X 105 1	. !	1 - 84	1 29 [10 1			51	- 11	E . 73 1		•				
IRX [0] {	i	. 17		1	10 i	101	1		. 1			17				i	
1HK 08	1	1	Í		is i	11	12		- 0,1	8	111	н		1 80 I	17	ļ	
IKK 161 I	40 1	10 1	50 1	1	45 1	- 12	20	22	41	26		22 1	l .			1 . 1	
18X 110 1 18X 110 1	1	- F	1			1			1	44 1	10 			1		: 	1
118 112 1	i	i	1		i	i		i i	· i		i, H	11		1	I	l j	
18X 111 F	ŗ	ł	!	-		50 1										1	
11X 114 1 11X 115 1	· 1			1	: 57 i 1 10 1	13 h 24 h	30 : 70 :		1	13		83	. 	1 ·		1	
111 II. I	i	i	i		511	- 11	21		. ∎i				1	i	i	1.	
INX 117 1	1	!	ļ	1		· ·	-		30 [-	1	1	1 :	
HIX 119 F HIX 119 F		81	- 41	23		.111	8		1	- 24	50 1	16		1.	1	1.	
167 120 1	10 1	18 1	13 1		-	1		ែរ			i i			i	4	1	
HK 121 1	59 I	13 1	I			30 1			. 1				ŀ.	1	ļ	!	
10x 122 18x 121	20 1 1	30 I 13 I	28 1		40 			!!					1	1	1 1	1 1	
NX 111	- 14 1	11	10,1					3			, , , ,		, .	i. –	i –	ŧ.	
IRK 175 1	67 1	31-1	E I		l i			1 1		l				Į –	1	!	
IBK 126 1 IBK 127 1	. 61 3	11	21										1	i s.	1	1	
INK LZA E	60 I	33 10	6 t t		i l) (i i			, i 1		t	i	1	i	
IR H I	65 1	33 1	j		i i	i		İ		:	1 1	1.1.1	i	1	Ľ.	! .	
INX 130 1	48 1	:32	I		!!	1							1	1	1		1
INX 131 X 31	- {	1	1			. 1		1					r i	1	i	1 .	
取用目	1	i	i	I I	i i	1	i	1	80				1	t -	Ì.	I.	
	ļ	1	1			!			\$5				1	1	1	1	
11X 135 11X 136	1	1						† 					ı t			i	
1111 133 1	ં દે	1	i	I	ŧ.i	i		1 1					1	1	÷ .	1	
<u> </u>	1	1	1								E E		1	1- 1	F .	1	
18K 137 1 18K 137 1	i	1	1		 	15		1			1 1 1		1	1	Ì	1	
488 , 141 1	1	1	ļ		1 15 1					1	t i	t i	t	t -	ŧ	L	
188 42	1	· · •	•					1			1. 10			1		1.	
1HX (43)		••••••			-			 		5	•••••						
AYLANGE	 	37 1		-	I 51 I			1 1		1 37	1 20		• •••			• •	1
1 (0000)		106	l Ke		} 		L X #		l 		ið kæ.		t'		10 Xa		
			181		1 151 1					1 42				1 . 4		1	¢

The surface condition level of the Kabupaten roads in the Kabupaten is similar to that of Indonesia and of Jawa Island. The proportion in good or fair condition is relatively high. Therefore, it seems that road maintenance is carried out diligently in the Kabupaten.

(4) Terrain Conditions of Kabupaten Roads

The difficulty of road improvement is mainly dependent upon the terrain conditions.

The terrain conditions of the Kabupaten roads, classified as flat, hilly, mountainous and swampy which are shown as DT, BK, GN and RW, are summarized in Table 1-3-3.

The proportions of terrain conditions in the Kabupaten are 72.0% flat, 20.0% hilly, and 8.0% swampy. There is no mountainous area in the Kabupaten are road construction is anticipated to be not so difficult because of the small proportion of swamp.

1.3.3 Bridge Inventory

A bridge inventory showing the existing condition of bridges on the Kabupaten roads in Kabupaten Bangka was prepared by the Kabupaten.

The bridges types are classfied as timber, concrete, steel and others which are shown in the inventory as KY, BT, BJ and LL respectively.

The inventory shown in Table 1-3-5 indicates a total of 571 bridges with a total length of 4,594 m of which 346 or 60.6% are timber, 146 or 25.6% are concrete and 67 or 11.7% are others. Steel bridges account for 12 or 0.4% of the total. On the other hand, 23 bridges with a total length of 206 m are required to be newly constructed.

Table 1-3-3 (1) EXISTING ROAD LENGTH BY TERRAIN CONDITION

nonu .	. 191		1204 0	ri	λτου		VAD	t BAI	ICV A													
PROV 1	51	11111	16441 3	EL	HIND			•		I	÷.,			• . •								· .
***********								(Ka)	40													(K#)
1 102	(3)	1	BK	1	DI	1	RN	I TOTAL	1			1	102 1			BK				-	RW I	TOTAL
I LINK	1		12		15			27					LINK	51	t	- 11	I		ŧ			11
I LINK	2				15			1 15					LINK								·	5
I LINK	3			1					ļ				LINK					5				7.
LINK	4		·	1	4	1 -		1, 4	1	-			LINK			2					: 1	
1 L INK	5		9		7	1		1 16	ľ				LINK				i }				. 1	
	6 . 7		. 6		11 10			 6					L I NK L I NK				1					4 5
I LINK I LINK	. /		e J		10				1								i					
I LINK	ę		6		1			1 7					LINK		1			5				
LINX	10		Ŭ		8			• 1 : 5					LINX				1		1			8
I LINK	Ĩ		. 3		22				1				LINK				Ĩ		21			1
I LINK	12		2		19			i io	Ì				LINK									6 1
I LINK			5		3			8					LINK				I		;			5
I LINK	14				6			i L	1.			1	LINK	64	ł		I.	14				1 14
I LINK	15	L			8			l B	· t			ł	LINK	65	1		I.	15	i 1			15
I LINK	16	1	- I	Ľ	11	L		1 12	1			1	LINK	66	I.	2	ł	Į	5 1			5
† LINK	17	1			4	ŀ		2 4 1	1			Ì	LINK	- 67	I:	6	ł					1 . 12
I LINK	18			Ł	11			1 11	1			1	LINK	68	1				5 1			t 9
I LINK	19	i		-	ß			I D	1			ł	LINK	- 69	1		ł					
I. LINK	20		1				8	1 9	ł			1	LINK	70								17
I LINK	21			ł	6		11						LINK				-		51			3
LINK	22		6		12								LINK			1						1 5
I LINK	23		3		5		5.						LINK				1		2			1 1
I LINK	24				20		4						LINK					· (6
I LINK	25		1		13		1						LINK		ił		-t. -J					1 5
I LINK	26		1		5	1		6					EIK.				-1				. 6 5	
I LINK	27 28		19		3	1		I 19 I 7		•	•		L I NK L I NK			e a la c	1		21		2	
I LINK I LINK	28 29		4		13		1						LINK		! ! };≢				, i 		· L	
I LINK	30		3		18		I						LINK								17	
I LINK	31				4				i				LINK		ł		ŧ		3		•	1 14
LINK			5		4			1 9					LINK					1				1 9
I LINK	33		8		1							ļ	L HHK	83	51		ŧ		61	ļ	3	1 9
I LINK	34	ł	2		. 4				1			Ì	EINK	8			ŧ	. 1	2	I	I.	1 13
I LINK	35			Ì	6		2		1				LINK		51	2	1		5		1	
I LINK	36	1		ł	32				I				LIHK		1		1		2		ľ	
t LINK	37			l	28				1				LINK				E F		2			I II
I LINK	39			ł	14				1:				LINK			-	1		3 1			
	39		6		9		1						LINK), ∦∘ ∖ .∎		- 1 - 1		2			1 2
	40		3		19		L						LINK				- ₹ - ₹		1 2			
1 LIIK 1 LIIK	41 42		10		14								L I HK L I NK			• •			e 1 			
I LINK	12 43		4	1) 1		. 1						LINK									1 1
1 LINK	43 44		r b		18								LINK				ļ		2			1 2
I LIIK	45		4		6		6						LINK						2			1 2
I ÉDIK	46		1			1.							LINK				Ì		1			i i
I LINK	47		••		6								LINK			-	ŧ		5			1 6
I LINK	49		I			1		1 10					LINK				E		3			1 5
1 UNK	49	١	9						1				LIIK				١		9	}		1 9
I E HIK	50		1			Ł		1 2					LINK				1			-		1 7

6-20

Table 1-3-3(2) EXISTING ROAD LENGTH BY TERRAIN CONDITION

					ATERA S						• •	1011
	- -•						· # 40 w a a a .		RN		(Ka)	
	102	(31	1	DK	1	DT	1	RN	1	TOTAL	ļ
					7		- 5	t		l	12	ł
	LIN		102	1	· · .		5	ł	8	I	- 13	t
	LIN	(103	1	3		1	1	3		- 1	I
					I				2		- 10	ł,
	LIN			ł		1	8			1	8	
	LIN					ļ	3				3	
	LIN			1	. 1	1			6		20	
					4		-76		ł		84	
			109	1	1		20			ļ	21	1
i	LIN		110 111	1		1	l	1		ļ	1	ł
	LIN		111				3	1				1
			113	1		I					3	
ł				1	12	•	. l 5				· 1	
	LIN		115	1			ว 5				- 17	1
			116	ł		•	15	ł			5 15	1
	LIN		117	1	1		10	Ì		1	10 4	т. Т
	LIN		118	i	- 3		10	1		-	13	1
			119	1				1			13	
	LINK			i		i	4	i			. 4	
	LIN			i	5		4			1	. 9	1
	LIN		122	Ē	Ī		5				6	1
	LIN		123	i	•	i	ž				2	
	LIN			i		i	5				5	
	LIN			İ		í	11	÷		i	. II	i
	LINK			1	1	Ì		İ	4		5	i
	LIN		127	ł	3		5	ł	-	ţ	8	ļ
	LIN		128	1			23			ł	23	
ł	LIN		129	t	2	I	- 4	I			6	1
	LIN	Ċ	130	ļ	10	ł	4	I		ł	14	E
	LIN	<	131	1		ł	1	ł		ļ	1	ł
	LIN	(132	1		ł	1	ł		ł	1	T
	LIN	(133	ł		I	. 1	I		ţ	ł	I
	LIN	(134	I		İ	- 1	I		ł	ł	I
ł	LIN	(135	1		ļ	l	I		ł	1	I
	LIN		136	ł		۱	1	ł		ł	1	I
	LIN			1		1	i	ļ		ł	1	
	1.110		138	1		I	1	1		l	1	ļ
	LIN			ł		1	1	ł	:	ł	1	1
	LIN		÷	ļ		!	1	1		1	1	1
				1	1			ł		1	· 1	1
				1		ł	1	1		1		1
	LIN						1	 		1	1	• •
	۱۱)];	AL		290	1	1052	1	120		1462	
	97	1	10	ł	20	ł	77	i.	R	1	(2)	t

6-21

Table 1-3-4 NUMBER AND LENGTH OF BRIDGES

PRUV I LANDUNG KAB I LANDUNU TENGAN

 •	1.	f	LIST THO		1	KUT	EIISI	1		HUTAL	1	t.	1	ĒĬ	Istika	1	HUI	ELISI	 ł		IGIAL
 K0	 1	HO.		811	•••		LENGII	*****	 HD.						LENGIII			LENBIN	; 	Nn.	LEHGII
 			*******	***				•		34.00	•••							********			
7	ł J	1	. (.00				- I - J	1	31.00				- j -	30.00	1		15.00	E J	L.	15.0
j	-	ł		.00		1	35.00		2	37.00				j	17.00			· · · ·	1	1	30.0
ł	-	Ż		.00		•	23104	1	ż	12.00				i	8.00		i	\$.00	· .	3 1	17.0
י 5	r 1	2		.00		ı	30.00	. • • •	ż	67.00				. i	10.00		•	a.vu	1	: f	14.0
1	1 1	j		.00		•			3	24.00			i	•				·	4.		10.0
is	1	í		.50				÷	1	6.50			ì	· 1	8.00		• •	· · · *	-		
		1		.00			÷	1	1	10.00				•		i	1	25.00	1 1	1	8.0
	 								-	5.00				t	5.00	10	4	23.00	1	· [25.0 5.0
16	F s	1		.00				- 1 - 1	2	37.00			ì	ż	20.00				г 1	1	20.0
2	. 1	-		.00				1.	÷	66.80			i	1	1.00				ì		
10		ł		.00					0					1	7.00				Ł	2 1	7.0
19	1	4		. 50		· ·		1	4	37.50			1	i	7.00				ł	. 1. . 1.	1.0
20		2		.00				1	2	23.00			1		9.00			an the training	÷		1.0
21		2		.00		1	60.00		3	84.00			1. F	1	12.00			5.00	1	· •	. 9.0
22	1	2		.00				1	2	20.00				- T	51.00		•	3.00	r r	c J	17.0
23	1	. ?		1.00				-	2	18.00				3	26.00			· · · ·	ł	3 1	51.0
25	1	Í		.00		•		1	f	17.00				- V . T ·	24.00				1	3	26.0
26	ŧ	1		.00				1	1	10.00				3 : 1	31.00				1	3	24.0 31.0
21		3		.00				1	3	56.00				1					1		
27	1	1		3.00				1		8.00				r r	7.00				-	1	1.(
30	1	1		2.00				1	ļ	12.00				1	50.00			1.00	1.	· 3	50.0
31				1.00				1	1	19.00					71.00				1		71.0
32	1	1		1.00				1		9.00					7.00			· · ·	Ł		1.0
33	1	1), (()				E.	1	10,00					12.00				1	- 4	12.0
34	-	l		5.00				1	1				4	e f	22.00	1	+	1 44	1	2	22.0
36		J).00				ł	3	30.00			Ţ.		11		•	6.00	1	1	6.0
38	1	4		1.00					1	38.00		1 116		Ţ	16.00				1	2.	16.0
10	÷	2		.00					2	26.00				· E	9.00				1	. 2	8.0
11	1	2		.50					3	21.50				- 2	21.00				i	Z	24.0
<u>43</u>	1	t		1.00		1	10.0	1	2	11.00	11		ì		1.00	* *		7.00	1	,	7.
16		?		1.00				1	4	11.00 11.00			÷	1	7.00		•	1,00	1	1	1
{?	1	1		.00				1	1	14.00			ĥ		1100		2	11.00	i	. 2	14
40	5 1	1		1.00				4	1				1		7.00	1		11.00	i.	1	1
49 51	1 	1		5.00 1.00					1	6.00 7.00		A		1	8,00				i	1	6.
51 54	1			3.00				1	1	8.00					16.00		11		i	2	
55 55	ł	1		3.00 7.00				;	1	29.00				1	26.00				i	3	26
35 58	-	J I		1.00				ł	1	7.00				7	22,00	· · · ·			i	2	22.
57 57		•				I	12.0	, ,	1	17.00				3	21.00				i	Ĵ	24.4
58				3.00		,	12.0	, , 1	ł	38.00				Ť	42.00				i	3	12.
30 51		2		5.00 5.00				1	2	25.00				4	8.00				i	i	8.
51 60		2		 				5 }	ź	11.00				j	12.00				i	j	12.1
6U 61		2		1.00		•		i	2					i	6,00		I	6.00	i	2	12.
41	•	ć	1.		•			•	. 1	11.00	4	1 175		i	20.00		•		i	- 1	20.
											1		-	•		•					

Table 1-3-5

PRUV I LAHPUNG KAB I LAHPUNG TENGAN

107 /	 101		 r 1	• 14 m ~ 10							·	~						0 M Q 31				مأدجع	10 A J	(No	1.8 1.44 A
103 (•••••	۱ ۱ دند		KT		LL			TOTAL	.	1	103 (1	(8)	1	81	1	KY	1	u	1	øj		TOTA	IL.
	1		4 (I		1				LINK				l		1		1		1		
	2			l .	1)	1		1	1	1		LINK.				1			1	t		ł		ł
LINK	.3	J.	1		:	ł	ł		ł		1		LIIX				1	2	J	E,	Ł.		Ŧ		3
LINK	1	1	1	ł	2	1	1			. 1	2-1		LINK				I .		I	l	Ŀ		i		I
L INK	5	1	1	l	I	1	21		4		εİ		LINK				ſ	I	1	1	1		1		ł
LINK,	7	1	.)	3		1		1-1		LINK	122					l		I.		1.		
LINK	13	l:	1	l	l	ł	1		ł	ţ	1 I			69			1	ļ		ł	ł		1		I
LINK	15	1	1	1		1	1		ł	1			EINK			:	ł	ļ	1		1		f		
LINK	16	1		t i)	11						LINK			1	1.	. 1	I		ł		I		I
LINK	17	1	- 1	ļ.	ļ	l	21		1		21			74			ł	•		2	1		1		2
LINK	18	1	6 (1	ļ	ł	1		1		51			76		1	•	1	ļ		ł		1		1
LINK	19	1	3			l	11		Ì		11		LINK				1	. 1		I	I.		I		I
LINK	20	I	1		:	1	11		1		21		LINK			1	i	• • •			1		1		ſ
LINK	21	1	ļ	1		ł	21		1		21			79			1	1	l		1	1	1		ļ
LIIK	22	1	2	1		1	Í		i		21		LINK				ļ	1	1	1			1		ł
LINK	23	I	2	I		I	1		l		21		LHIK				ł		ł	J			1		1
LINK	25		Į	1		ŧ.	1		j	· · ·			LINK				ŧ		I	3	1		1	• •	
LIIK	26		-	1		•	1		i				LINK			•	ł	3	1		1		1		3
LINK	27		İ	1		1	31		1		5 I		LINK I			4	1		1		ł		1		4
LIIK	29		ł			1	1		i				LINK I				I		l	1			1		l
LINK	30		i			Í	í		i				LINK I				I		1	5	1		I		5
LINK	31		1	ſ		{	f		1		 	J	LINK I	07	}		1	·	J	2) :		ł		2
LINK	32		•	l I	1	•	1		1				LINK I			ł	1		l		I		ļ		1
	33		1		•	}	1						LIHK 1			ſ	1		1		t –		ſ		ſ
LINK	34		1			, †	י 	•	2	1			LINK I				I .		ł	2	I		I		2
LINK	36		3	1		, }	1		1		31		LINK I				I		ł		i		I		
I. I.NK	38		i i	•		, 1	i				5 I 6 I	1	LINK I	16	ł		ł		1	2	Ł		1		2
LINK	40		2	1		, 1	i		1		2 1	I	LINK I	19	ł		1		1	1	t		1		l
LINK	11.		3			s 1	•		i		31	۱	LINK I	20	1		1		I	2	l		Ì		2
LINK			5 1	1		, (1		1	''	5 F		LINK			1	ţ		I		1		J		1
5 J.	46		•	•		I	21		1		21	ļ	LINK	25	ł		1		1		1		ł		
LINK	47			1		1	ر م ا		. 1			1	L (NK)	130	1	1	1		1		ſ		ł		۱
LINK			2	, ł		1	,		ì		21	ļ	LIHK	33	ł		1		١		1		1		
LINK.			1	-		1	1		1		2 I 1 I	ł	LINK	134	ŧ,		1		1	1	1		۱		ł
LINK	51		,	1		1 1	11		1		; ; ; ;	ł	LINK	144	ł		ł		t	ł	Ł		l		1
E LIK				, ,		, J	11		1	l	.) 	ł	LINK	149	I .	2	Ľ		1		ł		1		2
LINK	55		2	r 1	1	I	1		1		31		LINK			3	1		I –		ł		1		3
LINK	33 56		1		1				1		5 I I I		LINK				ł		1	2	Į		1	•	2
LINK	57			• . 1		, t			1			ļ	LINK	6	Ł		1		ł		ŧ.		1		7
LINK	59 59		2	, 	ł	:	1 1				4 1	ĺ	LINK	165	E		£ 1		I	3	١		۱		Į
LINK			2		4		י ן		• •		3 I 2 I	۱	LINK	167	ł	1	1		1		L		ł		ļ
LINK			c	۰ ا			21		1		21	I	LINK	861	1		I		l _.	1	ł		l		1
LINK			2	I		1 			1		21		LINK			1	ł		I -		ł		ł		1
			۴. ۲.	, -~~			••••		1		- I		LINK			1	1		1						1
												J	101			71)	11	1	61	1		2 }	1	1
													I RAT		~	48			(****			- •

6-23

.

Bridges Type	<u>(3</u>	<u>(5</u>	<u>(8</u>	s (10	pan L <u>(12</u>	ength <u>(14</u>	(m) (<u>16</u>	<u>(18</u>	<u>(20</u>	<u>(99</u>	Total
Timber	107	148	83	4	3	-	 .	-	-	1	346
Concrete	76	38	21	4	4	1	<u>م</u>	-	1		145
Steel	1	2	4	2		1			1	عد	- 11
Others	34	. 20	10	1	~	1		1	-	- '	67
Total	218	208	118	11	7	3	-	1	2	1	569

The number of existing bridges by span length is as follows:

Thus, most of the existing bridges on the Kabupaten roads are timber and concrete and the majority of spanlengths is within the range of 3 m to 5 m.

1.3.4 Traffic

Inventories of the average daily traffic (ADT) on the Kabupaten roads in Kabupaten Lampung Tengah were prepared by the Kabupaten and are shown in Chapter 2.

From the inventories, total value of average daily trips by vehicle type and their proportions in the Kabupaten in 1985 are summarized as follows:

		and the second second second second second second second second second second second second second second second			
	SEDAN	BUS	TRUCK	MOTOR-	TOTAL
			<u> </u>	CYCLE	<u></u>
Total Trips	1,967	45	989	14,585	10,301
Proportion (%)	11.19	0.26	5.62	82.93	100.00

Source : Bina Marga Inventory

The proportions of registered vehicles by vehicle type are as follows:

	SEDAN	BUS	TRUCK	MOTOR-	TOTAL
•	<u></u>	• •		CYCLE	
Proportion (%)	0.00	0.91	12.89	86.20	100.00

Source : Kabupaten.

Thus, the proportion of motorcyles in the Kabupaten is by far the highest.

From the above tables the following can be observed:

- Number of total trips might be underestimated

- Proportions are probably reasonable.

Essentially, for estimation of future traffic volumes past and present traffic data together with the trend in the number of registered vehicles are important basic data. However the data obtained for the study was traffic count data for each road link in 1985 and of low reliability.

Therefore the future traffic volumes are estimated by the calculation process recommended in chapter 3 of the Main Report.

Chapter 2 ESTIMATIONS OF FUTURE TRAFFIC VOLUME AND BENEFIT

2.1 Future Traffic Volume

2.1.1 Traffic Growth Rate

The traffic growth rate used for estimation of the future traffic volume on the Kabupaten roads was estimated by the following calculation process.

Growth of Production Basis "A":

Annual Population Growth Growth of the Total of the Kabupaten X Cultivated Area

Growth of Productivity "B"

Growth of the Total X Growth of the Paddy Paddy Field Area Production per ha

Traffic Growth Rate: Initial estimated figure:

 $\overline{\mathbf{GR}'} = \sqrt{\mathbf{A} \mathbf{X} \mathbf{B}}$

Traffic Growth Rate GR _Final adjusted figure:

 $\sqrt{GR' X}$ Trend of GDP/Capita of the Province Concerned

Results of the estimation are shown in Table 2-1-1.

Table 2-1-1

TRAFFIC GROWTH RATE ESTIMATION

A٢	Growth Rate of Population		£ .	2.70 (%)
B)	Growth Rate of Cultivated Are	34	5	3.60 (%)
C)	Growth Rate of Rice field		- t	2.30 (%)
D)	Growth Rate of Rice yield rat	te	f 1	2,20 (7)
E)	Growth Rate of GDP / capita		t	6.70 (%)
- 1			امر بين هم احد يوم. 	
a)	Geometrical Mean (A x B)		:	3.15 (%)
b)	Geometrical Mean (C x D)		•	2.25 (%)
(;)	Geometrical Mean (a x b)		2	2.70 (%)
d)	Geometrical Mean (c x E)		5	4.68 (%)

.2.1.2 Present and Future Traffic Volume

The future traffic volumes on the Kabupaten roads in 1998 for the Project life time of ten years were estimated by the following formula :

$$Tn = Te (1 + r)^n$$

Where :

Tn : Future traffic volume n years later
Te : Traffic volume in 1985
r : Traffic growth rate

The results are shown in Table 2-1-2 together with the traffic volume in 1985.

Table 2-1-2 (1) EXISTING AND FUTURE TRAFFIC VOLUME

PROV 1 SUHATERA SELATAN

KAB ; BANGKA

< SPD : 1/2 >

1		INVE	NTORY (1	985)		١	RATE	1	A	FTER 13	YEARS	(1998)		I CLASS	ſ
LINK ND I					TOTAL	1		1	NØL	BUS	TRUK	SPD	TOTAL		1
11	17	23	29	82	112	1	4.71	1	34	42	53	149	203	111B-1	i
2	20	18	- 32	74	115	I	4.7%	1	51	33	59	134	208	1 1110-	
3 1	4	6	5	30	34	1	4.77	ŧ.		- 11	9	69	62	1 1119-1	2
4 1	6	3	6	40	35		4.7%		11	5	11.	72		1 1118-2	
5 1	8	4	12	52	50		4.77		14	7	22	94	71	1 111B-1	21
6 1	4	6	4 -	45			4.7%		1.		- 1 1	82	67	1 1118-1	21
- 7	4	0	6	40	. 30	1	4.7%	ł	7	0	11	72		1 [] IB-:	
8 1	26	17	34	76	115	1		I.	47	31	62	138		1 111B-	
9 I	31 .	28	17	84	119	I	4.7%	1	56	51	31	152	214	9-	11
10 1	19	24	28	80	111	I	4.71	I.	34	43	51	145	201	1 111B-	11
11 1	28	16	32	78	113	ł	4.7%	1	47	29	58	141	205	1 IIIB-	11
12	29	26	34	88	133	ł	4.7%	ŧ.	53	47	62	159	211	1 111B-	
13	21	19	38	94	125	ļ	4.7%	I.	39	34	69	170	227	1 1118-	l I
14 1	64	78	61	148	277	ł	4.7%	1	116	141	- 111	269	502	I IIIA	1
15 1	76	68	63	149	282	ŧ	4.77	I.	138	123	114	270	511	I IIIA	ł
16 1	71	79	64	162	295	ł	4.7).	I	129	143	116	294	535	I IIIA	ł
17 1	4	6	6	50	41.	1	4.7%	1	. 7	11	11	91	74	E 1118-	21
18 1	27	19	33	76	117	1	4.72	1	49	34	80	138	212	1 1118-	11
19	15	0	10	30	40	ľ	4.7%	ł	27	0	18	54	.72	1110-	2 1
20 I	4	4	8	39	36	ł	4.71	1.	1	7	14	71	65	1 1118-	21
21 1	2	0	4	8	10	-t	4.71	1	4	· 0	7	14	19	1 HIC	1
22 1	4	3	2	12	15	ł	4.71	1	1	5	4	22	27	I IIIC .	ł
23	6	0	12	28	32	I	4.7%	1	11	0	22	51	58	1 H1B-	2 I
24 1	25	16	36	74	114	1	4.7%	1	45	29	65	134	207	1 1119-	11
25 I	32	2]	21	86	123	- J	4.72	3	59	.49	39	156	223	1 1118-	1 1
26 1	4	2	8	60	44	I	4.7%	1	1	<u>4</u> -	-14	109	80	1 1110-	21
27 1	18	- 16	. 10	50	69	1	4.7%	F	33	29	18	91	125	1 1119-	21
28 1	31	26	38	94	142	1	4.7%	E	56	- 47	69	170	257	1 1118-	t I
29 1	10	6	6	60	51	1	4.7%	-f -	(8	11	14	107	78	1 1118-	21
30 I	34	28	41	- 78	142	- E	4.7%	ł	62	51	74	141	257	1 1118-	11
31 1	29	36	38	84	145	1	4.7%	I	53	65	69	152	263	1 1118~	1 1
32	27	39	41	12	143	ł	4.72	1	49	71	- 74	130	257	1 1118-	11
33 1	10	0	4	60	44	ł	4.7%	1	- 18	0	7	109	80	1 1119-	21
34	21	3	2	42	.47		1.71	ł	38	5	. 4 -	76	85	1 1118-	21
35 I	6	4	8	50	43			ł	11	7 -		- 91		1 111B-	
36 1	18	24	30	84	114			1	33	43	54	152		1 1119-	
37 1	21	26	27	88	118			÷Ę.	39	47	49	159	214	I IIIB-	11
38 1	38	24	31	74	130	1	4.7%	1	69	43	56	134		1 1118-	
39 1	31	19	38	79	127	I		.1	56	34	69	141	230	8-	
40 1	19	26	31	86	117	1	4.71	1	34	47	56	156	216	8-	
41 1	26	21	29	94	123	1	4.7%	1	47	38	53	170	223	1 1118-	
42 1	6	2	6	45			4.77	1	11	4	11	82	67	1 1118-	
43	4.	6	6	50	- 41		4.77	E.	1	11	11	91	74		
44 1	20	21	37	88	122	1		÷Ľ.	36	38	67	159	221	1 1119-	
45 1	19	22	39	92	125	1	4.7%	1	34	40	69	167	227	111B-	
46	32	29	17	98			4.7%	1	58	53	31	178			
47 1	28	34	19	86	124	1	4.7%	ţ	51	62	34	156		1 (118-	
48 L	2	0	2	8	- 8	1		I.	4	0 -	4	14			
49 1	3	6	0	20	18			ļ	. 5	0	0	54			}
50 1	18	17	10	56	73	1	4,7%	I	33	31	18	101	132	1 1118-	2.6

6-28

Table 2-1-2 (2) EXISTING AND FUTURE TRAFFIC VOLUME

					÷													
	٩	ROY	1 50	JHATERA	SELATAN	İ .	KAB 1	8	ANGKA			•						
												• 		< SPD (1/2 >			
		1		INVEN	ITORY (1	985)		ł	RATE	1	A	FIER 13	YEARS	(1978)		l	CLASS	1
	LINK NO	ļ,	HBL	805	TRUK	SPD	TOTAL	1		J	HBL.	BUS	TRUK	SPD	TOTAL	1]
		I.	P	3	.4	12			4.71		16	5.	7	22	40	1	1110	
1		Ł	19	23	. 33	82			4.7%		34	42	60	119	210	ł	[[[8-1	1
			21	30	38	88			4.7%		38	54	69	159	211	ļ	1118-1	ļ
		1	24	28	36	72			4.7%		43	- 51	65	167		1	1118-1	ŧ.
		<u>,</u>	6	2	2	40			4.7%		. 11	4	. 4	72	54	ł	1118-2	
		1	22	34	24	78			4.71		40	62	43	141			[]]8-1	
	57		41	19	39	110			4.7%		74	34	715	199	279	ł	1118-1	ļ
÷	58	1	26	19	34	- 69			4.7%		47	33	62	123	203	1	HIB-I	ŧ
	57	1	21	27	19	94			4.7%		38	49 .	34	170	207	ł	1118-1	Į
		1	68	: 81	- 68	164	299		4.7%		123	147	123	297	512	í	IIIA .	1
	61	1	2	. 3	4	18	10		4.7%		4	5	7	33	33	ļ	IIIC	1
		1	26	31	18	34		ł	4.7%				29 .	62			1110-2	
	63	!	4	. 4	6	50			4.77		7	1	11	91			1118-2	
	61	I.	25	19	31	78			4.7%		45	34	56	141			1119-1	
	_65	1	23	21	26	84		1	4.7%		42	38	47	152			1118-1	
	•-	1	4	- 4	6	30	29	1			1	1	11	54			1118-2	!
	67	1	2	- 2	6	20			4.7%		4 .	4	11	36			THC	-
•	68	1	26	21	34	68	115		4,7%		47	18	62	123			111B-1	ł
	67	1	2	0	4	13	13		4.7%		: 4	0	7	24			ITIC	1
;		l f	2	2	4	50	33			1	4	· 4.		91			1118-2	
	••		2	0	4	4	8		4.71	1	4	0		: 7	14		IIIC	!
	-	!	19	. 2	6	32			4.7%			4	11	58	78		1118-2	
	73	1	19	24	27	90	115		4.7%	1	34	43	49	163			1118-1	
	- 74 - 75	1	20	29	31	98			4.7%	1	36	51	-56	178			1118-1	1
		1	2.	2	2 4	14	17 16		4.7%	1	4	11	4	25	31			1
	78 77	1	19	26	7 15	11 56		1	4.7%	Î	7 33	4	7	20	29			1.
		ł	20	31	15	32		i	4.7%	;	35	47 56	27 29	101 58	158		H19-2	
		i	32	19	26	32 94	126	i	4.7%	i	50 50	30 34	51	170	150 228		1118-2 1118-1	
		i ·	2	Ö	2	16	12	į	4.72	i	4	0	4	29	22			1
	91	i	4	2	Ĩ	14	17	i	4.7%	i	i	Ă	1	25	31			i
		i	6	0	12	28			4.71	i	11	0	22	51	58		1118-2	1
	83	1	2	i	2	4		1	4.77	Ì	4	2	4	. 7	13			i
	84	1	2	4	2	6	Ĥ	j	4.7%	j	4	. 7	4.	II			ilic	i
		1	53	78	61	136	280	1	4.71	Ì	96	141	147	246			IIIA	i
	85	ŧ.	2	0	2	12		T	4.7%		÷.	0	4	22	19		HIC	İ.
		1	89	81	102	240	392		4.7%		161	147	185	435	710		HIA	ł
	88	1	63	78	68	162	290	1	4.71		114	141	123	294	526		HIA	ł
	89	ł	58:	71	76	148	279	.1	4.7%		105	129	138	268			1114	L
	90	I.	52	70	78	152	276	ł	4.7%	ł,	94	127	141	275			TIIA	1
	91	1	53	69	79	158	280				96	125	143	286				1
	92	ļ	68	54	74	162	277	I.	4.7X	÷ E	123	78	134	294	502	I	HIA	ł
	93	1	74	67	51	169	276	ţ	4.7%	I	134	121	92	304	500		1114	1
	- 94	I, –	54	70	73	172	283	Ì	4.7%	F	98	127	132	312	513		HIA	1
	75	1	61	82	68	212	317	1.	4.7%	ł	111	149	123	384	574		IIIA	ł
	96	1	53	68	81	161	583	ł	4.7%	۱	96	123	147	292	513	1	[][A	1
	97	$\mathbf{I} \in$	64	94	71	223	331	I	4.7%	ł	116	152	129	404	600		1114	ł
	98	ł	81	16	92	210	354			1	147	(38	167	381			1114	ļ
	99	1	23	31	27	86	124	!	4.7%	ł	42	56	49	156	225		1118-1	
	100	ł	24	29	24	83	119	ļ	4.7%	I	43	53	43	150	216	1	1118-1	ţ

6-29

EXISTING AND FUTURE TRAFFIC VOLUME

PROV : SUNATERA SELATAN

Table 2-1-2 (3)

KAB 1 BANGKA

· .	ł		INVE	NTORY (1985)		ł	RATE	ł		AFTER 13	YEARS	(1998)		1	CLASS	I
LINK NO	1	HBL	BUS	TRUK	SPD	TOTAL	I		1	KBL	BUS	TRUK	SPD	TOTAL	1		
İÖI	ł	11	2	4	42	38	1	4.7%	1	20	4	7	76	69	1	1110-2	
02	ł.	28	31	29	. 96	136	ł	4.72	1	- 51	56	53	174	246	ł	TH18-1	
103	1	26	37	20	94	130	I	4.77	I.	47	67	36 -	170	236	ł	1119-1	
104	Ł	0	0	0	. 11	6	ł	4.77	1.	0	Q	0	20	- 11	Ľ	1110	t
105	Ł	. 0	- Q	. 0	- 24	12	1	4.7%	1.	. 0	0	- 0	43	22	ł	1110	
108	Ł	0	Ø	2	30	17	T	4.72	ł	0	0	- †	54	31	ł	3111	1
107	1	0	0	0	16	8	ł	4.72	1	0	0	0	29			1110	i
108	l	68	74	81	232	339	1		1	123	34	147	420	614	I	TITA .	1
107	L	40	20	60	261	251	ł		1	72	36	109	473	455	ł	1118-1	1
110	1	43	32	39	243	236	J.	4.7%		78	58	71	440	428	I	1118-1	. †
111	L	25	35	28	50	113	1	4.72	1	45	63	- 51	- 91			111B-1	
112	1.	38	41	27	- 144	178	ł	4.71	1	69	; 74 '	47	261	323	ł	1118-1	
113	L	70	31	74	268	309	1	4.7%	ł	127		134	486	560	ł	111A	
LEA	L	40	50	60	200	250	i	4.72	1	. 12	91	107	362	453	ł	1119-1	
115	ŧ.	28	31	.46	98	. 154	ł	4.72	1	51	56	83	178	279	1	TTIB-1	
116	I	40	45	50	160	215	ł	4.7%	1	72	82	91	290	390	Ì	1118-1	
117	۱.	52	19	28	102	150	1	4.7%	ł	94	34	51	185	272	1	1118-1	
118	Ł	49	32	47	140	178	1	4.72	E	89	58	85	254	359		1110-1	
119	1	2	0	2	19	14	ł	4.7%	1	4	- 0 -	4	34			1110	
120	Ł	2	Ð	4	21	17	1	4.7%	Ŧ	. 4	Ð	7	38	31	1	HIC	
121	ł	32	27	21	86	123	I.	4.72	1	- 59	- 49	38	156	223		1119-1	
122	I.	4	2	8	60	44	Į	4.72	ł	.1		- 14	109			1118-2	
123	L	20	21	37	86	122	ł	4.7%	1	36		67	159			1118-1	
124	1	19	23	33	82	116	ļ		I.	31		60	149			1118-1	
125	Ł	19	23	33	82	116	1	4.7%	1	34	42	60 :	149			IIIB-1	
126		19	23	33	82	116	I		1	34	42 -	60	149			1119-1	
127	I	4.	4	6	50	39	ł	4.72	1	1	. 7	Н	91			1118-2	
129	I.	23	21	26	84	112	ł		ł	42		- 47	152	203	1	1118-1	
129	I	4	4	- 6	30	29	I	4.7%	Ł	7		H	54	53		1118-2	
t30	I	- 31	26	38	94	112	, I	4.7%	- I	56	47	67 .	179	. 257		1118-1	
131	1	43	32	39	243	236	1	4.72	I	78	58	71	440	1 A A A A A A A A A A A A A A A A A A A		1118-1	
132	1	43	32	39	243	236	1	4.7%	1	78	58	71	440	428		1118-1	۰.
133	1	43	32	39	243	236	1	4.7%	1	78		71	440	420	1.1	1118-1	
134	1	43	32	39	243	236	1		1	78	58	71	440	428		1119-1	
135	Î	43	32		243	236			ł	- 78	58	71	440	428		1118-1	
	1	43	32 .		243			4.7%		78		71	440			1118-1	
137	I.	43	32	39	243			4.7%		78		71	440	42B		IIID-1	
138	1	38	- 41	27	- 144			4.71		69		49	261	323		1118-1	
139	1.	38	41	27	144	178		4.7%				49	261	323		1118-1	
140	1	70	31	74	268			4.7%				34	486	560		IIIA	
	1	70	31	74	269			4.7%	1	127		134	486	560		IIIA	
	1	70	31	74				4.7%		127		131	486			IIIA	
143	ł	70	31	74	268	309	·F	4.7%	ł	127	56	134	486	360	1	HIA	

6-30

2.2 Benefit

2.2.1 Benefit Estimation Method

Generally, estimation of the benefit on each Kabupaten road due to the Project was made by analyzing the direct benefit i.e. the VOC reduction benefit, which was estimated by comparing "with project" and "without project" based upon the future traffic volume on the road. However for the following road links it was decided to estimate the indirect benefit through the producer's surplus benefit.

- a) Road links with present traffic volume (ADT) less than 60 equivalent 4-wheel vehicles.
- b) Road links with no 4-wheel vehicle operation at present.

The indirect benefit was changed into the future traffic volume and the VOC reduction benefit was estimated.

The VOC adopted for the estimation is shown in Table 2-2-1.

Tabl	e	2-2	

VEHICLE OPERATION COST ON KABUPATEN ROADS

SURFACE	CONDITION	SEDAN	BUS	TRUCK	(KM) MOTORCYCLE
ASPHALT	GOOD	104.7	86.2	85.4	15.9
	Fair	125.5	101.0	9,8.0	18.2
	Poor	164.1	135.2	138.5	22.8
	Bad	222.1	202.0	205.0	29.1
GRAVEL	Good	125.7	101.4	102.5	18.5
	Fair	145.0	124.6	127.1	21.1
	Poor	198.6	172.6	178.4	27.1
	Bad	242.7	228.9	231.2	31.8
EARTH	Fair	201.8	180.0	185.1	28.0
·	Poor	240.7	218,2	225.8	31.8
	Bad	264.9	278.0	281.7	35.5

Source : Bina Marga

FUTURE TRAFFIC VOLUME ESTIMATED BY THE PRODUCER'S SURPLUS

		. ·					(1998)
LINK NO	CLASS	SURFACE	NOBIL	BUS	TRUCK	SEPEDA	TOTAL
. 3	1110	KRK	1			5	6
4	HIC	KRK	0	0	0	\mathbf{F}	1 -
5	HIC	KRK	1	1	1	4	5
6	1110	KRK	1	1	1 - 1	3	5
7	HIC	KRK	2	2	2	. 7	10
17	1110	KRK	0	0	0	_ I	. t
19	1110	KRK	1	1	i	5	6
20	HIC	KRK	1	1	1	3	5
21	IIIC -	KRK	2	1	2	6	8
. 22	1110	KRK	2	2	2	6	9
23	THIC	KRK	1	1	1	. 5	6
26	1110	KRK	2	· 1	-2	5	8
29	HIC	KAK	2	2	- 3	· 9	12
33	HIC	KRK	2	2	2	8	10
34	1110	KRK	i	. 1	i	3	5
35	1110	KRK	1	Ŧ	2 -	5	7
42	1110	KRK	. 1	1	1	2	4
43	[][8-2	KRK	16	15	19	58	78
48	3111	KRK	1	1	1	- 3	5
49	3111	KRK	2	2	2	6	9
51	HIC	KRK	1.1	ł	1	5	6
55	THC	KRK	2	1	2	6	8
61	HIC	KRK	0	0	1	2	2
63	1110	KRK	0	0	0	1	1
66	1110	KRK	1	1	i	5.	6
67	1110	KRK	3	3	3	10	14
69	111C	KRK	1	1	- 1	2	4
70	111C	KRK	· • •	- 1°	1	- 4	5
71	1110	KRK	0	0	0	I	1
72	1110	KRK	0	0	0	1.	· [
75	1110	KRK	0	0	0	- 1	1
76	HIC	KRK	i	Ī	. 1	1 A	5
80	1118-2	KBK	33	30	36	118	158
81	HIC		I	· 1	1	1 - E	5
82	1110	KRK	i	1	-1	2	4
83	1118-2	KRK	· · · ·	13	15	50	67
84	1110	KRK	2	1	2	6	8
06	[[B-2	KRK	18	17	20	65	88
101	IIIC	KRK	3	3	3	11	15
104	THC			1.1	1	2	4
105	HIC	KRK	1	i	t	5	6
			-	-			-

PROV ŝ

SUMATERA SELATAN KAB

BANGKA à

.... 6-32

0

2

S

0

2

1

1

KRK

KRK

KRK

KRK

KRK

KRK

KRK

HIC

HIC

HIC

1110

IIIC

HIC

1110

106

107

119

120

122

127

129

~ ~ ~ ~

Ò

3

6

Q

2

i

2

1

9

19

1

5

2

5

0

2

5

0

t

0

1

1

12

26

l

8

3

7

2.2.2 Benefit

The benefit estimation was carried out for each Kabupaten road. Table 2-2-3 shows a sample of the result of benefit estimation. In the table "surplus" and "VOC" show the estimation method utilized and III A, III B-1, III B-2 and III C show the road classification.

Table 2-2-3

RESULTS OF BENEFIT ESTIMATION

KABUPATEN : BANGKA

(1000Rupiah)

}	LINK 10	I	LINK 9	1	LINK B	LINK 7	LINK 6 I	LINK 5 I	LINK 4 I	LINK 3 I	LINK 2 I	11	LINK I	I		1
1	6 Km	I	7 Ka	1	4 Ka	16 Ke 1	11 Km	16 Km I	4 Ke i	5 Ka I	15 Ke ł	Kn I	27 Kr	1		
	1118-1	1	IIIB-1	}	1118-1	IIIC I	1110 1	1110 1	1110 1	1116 1	IIIB-1 I	-1.1	1118-1	1		
	VOC	1	VDC	1	VOC	Surplus I	Surplus ł	Surplus I	Surplus I	Surplus 1	VOC I	C 1	YOC	1	YEAR	
)	0	1	. 0	1	0	0	0 1	0 1	0 1	0 1	0	0 1	. (1988	
)	7740	T	16057	1	4027	320	544 1	720 1	12 1	57	30825 I		60327		1989	
ŀ	8027	ł	16778	ł	4247	320 I	544	720	i2 I	98 1	32142 1	49 1	62549) (1990	
	8458	ł	17648	1	4421	320 I	544 1	720 I	12 1	141 1	33759 1	00 I	65400	1	1991	
5	8826	I	19518	i	4641	320 I	544 4	720 1	i2	141 1	35412 1	42 1	68842	1	1992	
1	9187	1	19399	ł	4955	320 I	544 1	720 1	12 1	141 1	36765 1	92 1	71692		1993	
	9647	I	20289	T	5075	320 1	544 1	720	12 1	145 1	38418 1	35	75835	- 1	1994	
	10089	ł	21178	I.	5334	320 1	544 1	720 1	12 1	146 1	40368	61	78761	i 1	1995	
)	10540	I	22058	I.	5560	320 1	544 I	720 1	12 1	146 1	42299 1	78	82278	51	1996	
ł	11084	Т	23116	Т	5824	320 1	544 1	720 1	12 1	15i I	43989	22 I	86422		1997	
2	11542	1	24333	I	6123	320	544 I	720, i	12 1	157 I	46553 1	42 I	90642) i	1998	
)	95140	1	199384	1	50107	3200 1	5440 (7200	120 1	1324 1	380530 I	48 1	74274	1 1	SUM	
7	23857	1	80193	1	7975	~55645	-36265 1	-53187 I	-14329 1	-17231 1	144226 1	53 I	29375	·	COST	•
6	3976	l	11456	Ŧ	1994	-3478 I	-3297 1	-3324	-3582 1	-3446	9615 I	1 0B	10880	. 1	/K.#	

Chapter 3 ENGINEERING

3.1 Design Criteria and Specification

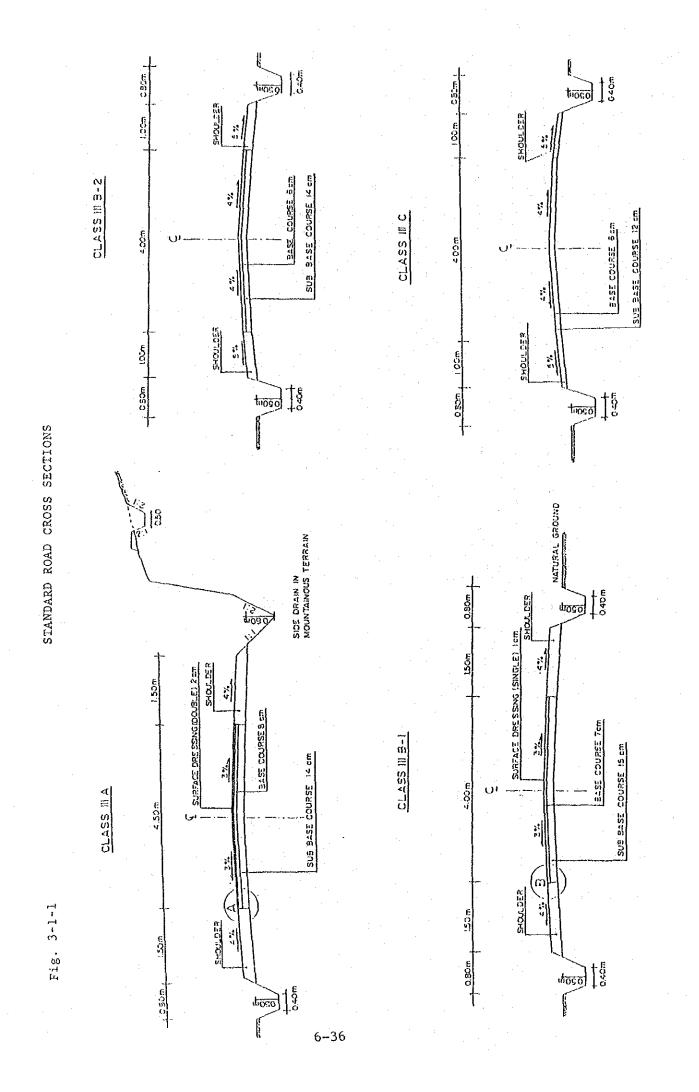
3.1.1 Geometric Design Criteria

Currently a technical standard for improvement of Kabupaten roads i.e. PETUNJUK TEKNIS INPRES PENUNJANGAN JALAN KABUPATEN, TAHUN 1984-1985 is established by Bina Marga.

The geometric design criteria in the above standard are recommended to be adopted in general for the Project. Following discussions with Bina Marga, exceptions to this are allowed for Pavement width and pavement type to minimize the construction cost of the Kabupaten road improvement, if necessary. The geometric design criteria adopted for the Project are shown in Table 3-1-1. The typical cross sections of Kabupaten roads are shown in Fig. 3-1-1.

3.1.2 Loading Specification

The LOADING SPECIFICATIONS FOR HIGHWAY BRIDGES BY DIRECTORATE GENERAL BINA MARGA is used in principle as the basic specification of loading and the TECHNICAL STANDARD FOR KABUPATEN ROADS compiled by Bina Marga shows that the design live load for bridges on Kabupaten roads is 70% of the Bina Marga live road. However, after discussions with Bina Marga the following loads were decided as the design live loads for the standard bridges of Kabupaten roads:


- a. 50% of Bina Marga live load (hereinafter BM 50) is applied for concrete and timber bridges on roads of III A classification.
- b. 10-ton truck load is applied for timber bridges on roads of III B-1, III B-2 and III C classification.

6-34

Table 3-1-1

į

DESIGN CRITERIA FOR KABUPATEN ROADS

3.2 Pavement Design

3.2.1 Design Conditions

From the engineering data prepared by the Kabupaten it is noted that the pavement structure of the Kabupaten roads seems to have been determined without adequate designs, therefore the Kabupaten roads generally have insufficient capacity. The standards generally used for highway pavement design such as Road Note 29, Road Note 31 and AASHTO are not suitable for Kabupaten roads with small traffic volumes and loads.

Therefore formulae suitable for the pavement design of Kabupaten roads are recommended as described in Chapter 5 of the Main Report.

The following are important factors for the design of pavement thickness.

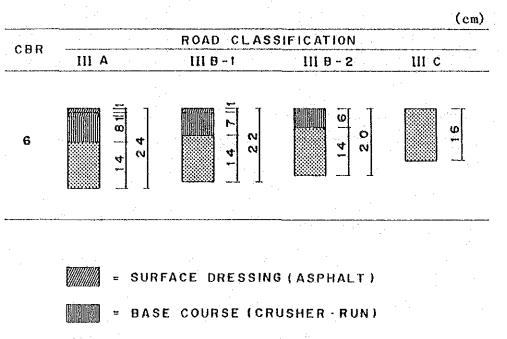
1) Design Traffic Volume

As the pavement thickness is designed for each road classification the design traffic volume of which the target year is 1998, is adopted for each classification as follows:

Road Classification	Design Traffic Volume (vpd)
III A	1,000
III B-1	500
III B-2	200
III C	50

2) Strength of Roadbed

The CBR value of the existing roadbed is a very important factor for the pavement design but no results are available from CBR tests on the Kabupaten roads.


CBR of the laterite is generally in the range of CBR 4 to 10. However site CBR tests should be conducted before construction to finally decide the pavement thickness.

3.2.2 Pavement Structure

Fig. 3-2-1 shows the standard pavement structure adopted for the Kabupaten roads.

```
Fig. 3-2-1
```

PAVEMENT STRUCTURE

SUBBASE COURSE (SANDY GRAVEL)

3.3 Design of Bridges and Other Structures

3.3.1 Standard Bridge

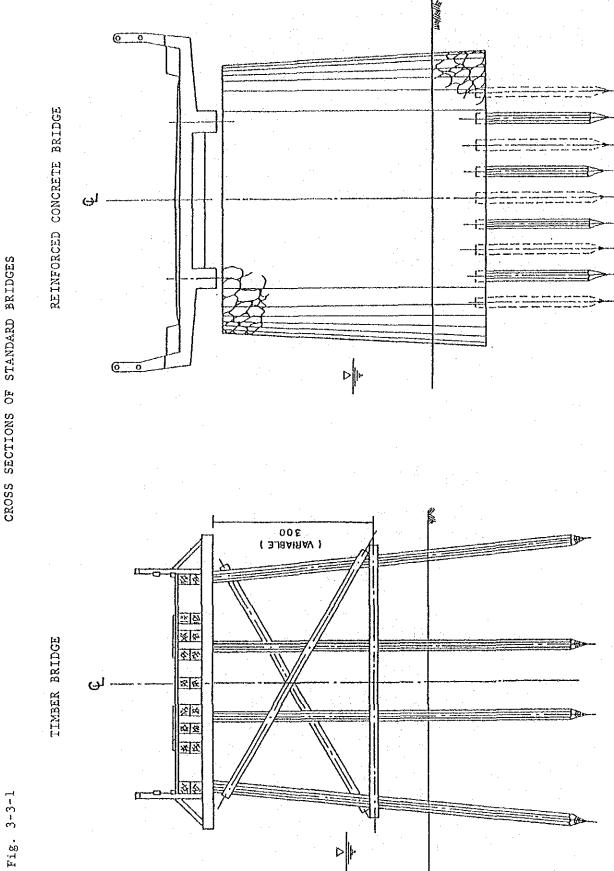
There are so many bridges to be improved or to be constructed on the Kabupaten roads in the Project Area that it is very difficult to prepare an individual design for each bridge. Therefore, standardization is recommended as being necessary for the bridge design with conclusions as described below.

- (1) Bridge Type
 - 1) Superstructure

The following two types have been finally selected with the agreement of Bina Marga after studying the actual rural conditions of bridge construction. Fig. 3-3-1 shows the cross sections of standard types.

- a. Timber beam bridge (hereinafter timber bridge) for roads class III B-1, III B-2 and III C.
- b. Reinforced concrete T-girder bridge (hereinafter RC-bridge) for roads class III A.

2) <u>Substructure</u>


Taking account of the actual combinations of super and substructure types noted from the field survey, the following two types are recommended as standard because of ease of construction and economy.

- a) Timber pile bents for timber bridge
- b) Rubble in Mortar masonry for RC bridge

3) Foundation

There is no information of subsoil conditions in the inventory data. However, timber piles of 20 cm diameter are generally recommended as piles of this type are in common use.

The pile length is suggested to be a minimum of 3 meters under the bottom of the foundation. The length and number of piles should be decided in order to be adequate for the condition of the foundation materials.

CROSS SECTIONS OF STANDARD BRIDGES

(2) Bridge Width

The effective bridge widths for the standard bridges have been decided as follows through discussions with Bina Marga considering the actual width of Kabupaten roads:

- a) Timber bridge: 4.0 m in general
- b) RC bridge : 4.5 m in general

(3) Span Length

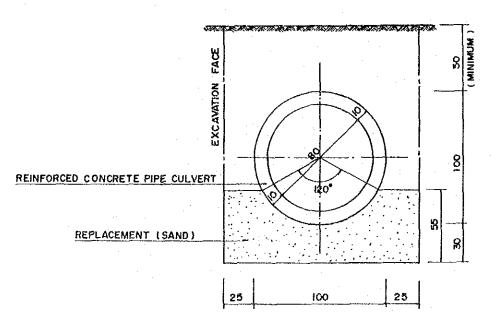
The range of span lengths are determined as:

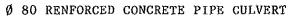
- a) Timber bridge: 3.0, 5.0 and 8.0 m
- b) RC bridge : 3.0, 5.0, 10.0 and 15.0 m

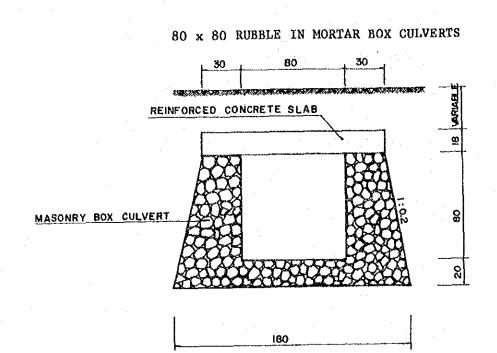
3.3.2 Other Structure

Culverts and retaining walls shown in Fig. 3-3-2 and Fig. 3-3-3 are recommended as standard structures.

(1) Culvert

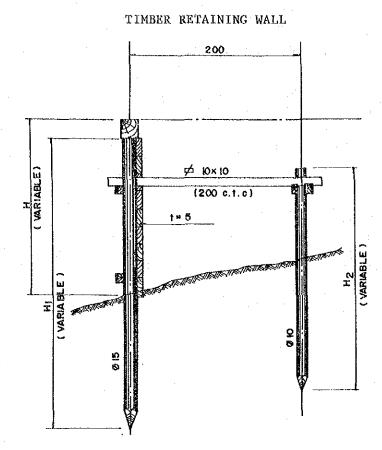

The following two culvert types have been adopted for the transverse drainage.


- a) Reinforced concrete pipe culvert ϕ 80 cm
- b) Rubble in mortar box culvert with RC slab 80 cm X 80 cm
- (2) Retaining Wall


The following two types of retaining walls have been adopted because of ease of construction, economy and familiarity in Indonesia.

a) Rubble in mortar retaining wall

b) Timber retaining wall



STANDARD CULVERTS

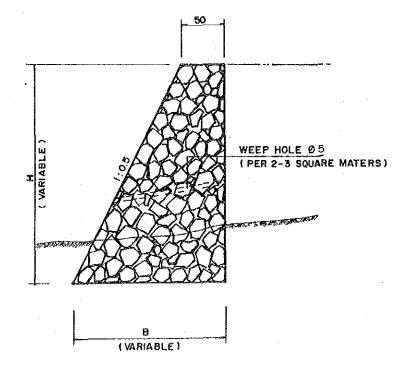

Fig. 3-3-2

Fig. 3-3-3

STANDARD RETAINING WALLS

RUBBLE IN MORTAR WALL

6-43

3.4 Selection of Equipment Types

From the results of comparison of two types of Kabupaten road construction methods, i.e. equipment intensive method and labour intensive method construction methods for major works were basically decided as shown in Table 3-4-1.

Table 3-4-1

CONSTRUCTION METHODS FOR MAJOR WORKS

	(a) A set of the se
METHOD	WORK TYPE
Equipment Intensive	Earthwork, Base Course and Subbase Course
Labour Intensive	Surface Dressing, Drainage,
	Bridge and Other Structures.

3.4.1 Points to be Considered for the Selection

Full consideration was given to the following points in studying the selection of equipment type.

- a. Most of the construction in the Project is pavement works for road improvement.
- b. The pavement width adopted is equal to or less than 4.5 m and therefore large sized equipment is omitted from the selection process.
- c. Equipment should be capable of with standing the heavy rainfall and poor soil quality. Equipment for construction in swampy areas is considered if necessary.
- d. Uniformity of equipment types with existing equipment is considered facilitate repair to of the equipment in the provincial work shop.
- e. Since the scale of the construction is small and transportation of equipment will frequently be necessary, wheel type equipment has been selected as much as possible as this can move by itself or by being towed.
- f. The road like to be improved are scattered all over the Kabupatens and therefore a low bed truck or equivalent is necessary for transportation of crawler type equipment. It is desirable to protect the existing pavement from damage caused by the movement of crawler type equipment on the existing roads.
- g. The capacity of the equipment has been decided taking into consideration the construction volume and the combination of equipment in the main work.

3.4.2 Combinations of Equipment for Major Works and Maintenance

The combinations of equipment for major works and maintenance are listed in Table 3-4-2 and 3-4-3 respectively.

Table 3-4-2

EQUIPMENT OF ONE WORK GANG FOR MAJOR TYPES OF WORK

TY	PE OF WORK	EQUIPMENT RI	EQUIRED
1.	Site Clearing in Light Bush	1- Bulldozer 90 HP 2- Dump Truck 3.0 Ton	1- Wheel Loader 1.2 m ³
2.	Excavation & Embankment		
	i) Normal Fill	<pre>1- Bulldozer 90 HP 1- Vibratory Roller 4.0 Ton (D&T)</pre>	1- Water Tank Truck 4,000 Ltr
	ii) Fill by Borrow Material	1- Bulldozer 90 HP 3- Dump Truck 3.0 Ton	1- Wheel Loader 1.2 m ³
	iii) Fill in Swamp	 1- Swamp Bulldozer 90 HP 1- Water Tank Truck 4,000 Ltr 	1- Vibratory Roller 4.0 Ton (D&T)
	iv) Excavation to Spoil	1- Bulldozer 90 HP 1- Wheel Loader 1.2 m ³	4- Dump Truck 3.0 Ton
3.	Subgrade Preparation	 1- Motor Grader 75 HP 1- Vibratory Roller 4.0 Ton (D&T) 	1- Water Tank Truck 4,000 Ltr
¥.	Subbase Course	 1- Motor Grader 75 HP 1- Vibratory Roller 4.0 Ton (D&T) 	l- Water Tank Truck 4,000 Ltr
5.	Base Course	 1- Motor Grader 75 HP 1- Vibratory Roller 4.0 Ton 	1- Water Tank Truck 4,000 Ltr
		1- Portable Crusher/Screen 30-40 Ton/H	S
5.	Cement Stabilizing	1- Motor Grader 70 HP	1- Vibratory Roller
		 l- Bulldozer 90 HP l- Wheel Loader 1.2 m³ l- Flat Bed Truck 3.0 Ton 	4.0 Ton (D&T) 1- Road Stabilizer 1- Water Tank Truck 4,000 Ltr
'.	Surface Course	 1- Asphalt Sprayer 850 Ltr 1- Tyre Roller 8-15 Ton 1- Portable Crusher/Screens 30-40 Ton/H 	l- Flat Bed Truck 3.0 Ton
3.	Concrete	 1- Concrete Mixer 0.5 m³ 1- Water Pump 200 Ltr/Min 1- Concrete Vibrator 3.3 HP 	 Flat Bed Truck 3.0 Ton Hand-Guided Vibratory Roller 1000 Kg

EQUIPMENT OF ONE WORK GANG FOR MAINTENANCE Table 3-4-3

TYPE OF WORK	EQUIPMENT REQUIRED
Road	l- Motor Grader
	1- Tyre Roller 8-15 Ton
	1- Mand-Guided Vibratory Roller 1000 Kg
	1- Flat Bed Truck 3.0 Ton
	1- Dump Truck 3.0 Ton
Bridge and Other Structure	1- Flat Bed Truck With Crane 3.0 Ton

3.5 Workshop and Laboratory

3.5.1 Policy of the Kabupaten Workshop

A workshop will be provided for each Kabupaten. The function of the workshop is to cope with requests from the construction site. The main service will be routine maintenance while the secondary service will be light repairs which can be carried out by changing parts. Dismantling and assembling of units which need setting or adjustment using special equipment or facilities will not be carried out in the Kabupaten workshop. Such repairs are planned to be carried out by the provincial workshop or the regional Workshop of Bina Marga.

Accordingly the main tasks of the Kabupaten workshop are as follows:

- 1) Administration for and storage of equipment
- 2) Routine maintenance and light repair of equipment
- 3) Storage and supply of spare parts
- 4) Operation of equipment including crushing plant.

3.5.2 Workshop Equipment and Tools

Equipment and tools for the workshop are recommended as shown in Table 3-5-1.

Table 3-5-1 WORKSHOP EQUIPMENT AND TOOLS

DESCRIPTION	QUANTITY
Upright Drilling Machine	1 Set
Electric Hand Drill	1
Electric Portable Grinder	1
Disc Grinder	1
Bench Electric Grinder	1
Engineer's Vice	1
DC Electric Welder with Engine	1 Set
Portable Hydraulic Jack, Screw Head	1
Nydraulic Jack	1
Grease Gun	2
Suction Pump for Oil Recovery	2
High Pressure Grease Pump	1

DESCRIPTION	QUANTITY
Drum Opening Spanner	1
Silicon Normal Charger	· · · 1 · · .
Tyre Changer Air Operated	1
Tyre Service Tool Set	1
Tyre Pressure Gauge	1
Automatic Tyre Inflator	1
Plug Cleaner and Tester	1
Mechanics Tool Set, Heavy Equipment	1
Mechanics Tool Set, Large Vehicle	1
Portable Air Compressor	1
Electric Cord Reel, 15 A, 50 m	1
Oil Measure, Polyethylene	· 1 ·
Funnel 200 mm, Steel	3
Hand Truck (Cart), 4-Wheel	. 1
Nylon Sling, 10 ton	2
Chain Block, 1 ton	2
Wire Rope (for sling), 1.8 ton	2
Wire Rope (for sling) 3.2 ton	2
Generator	.1

3.5.3 Laboratory

For quality control of construction in the Project it is recommended that a laboratory is provided for each Kabupaten. For each laboratory, provision of laboratory test equipment for the following tests is recommended:

- Physical characteristic, compaction and strength tests for the road bed and pavement materials.
- Slump and strength tests for the bridge concrete.

In the laboratory a fixed water tank should be provided for CBR tests and curing of concrete specimens.

The proposed laboratory equipment is listed in Table 3-5-2.

Table 3-5-2LABORATORY TEST EQUIL	UIPMENT
DESCRIPTION	QUANTITY
Soil Moisture Test Set (JIS Al203)	1
Liquid Limit Set (JIS A1205)	1
Plastic Limit Set (JIS A1206)	1
Compaction Set (JIS A1210)	1
CBR Laboratory Set, Mechanical (JIS A1211)	1
Sand Density Apparatus (JIS A1214)	1
Aggregate Test Sieve Set	1
Portable Cone Penetrometer	1
Compression & Bending Test Machine	1
Cylinder Mould (JIS A1132, 1108)	9
Slump Test Apparatus (JIS A1101)	2

To conduct the surveys necessary for road and structure construction such as centering, profile leveling, cross section leveling etc., the surveying equipment listed in Table 3-5-3 recommended.

Table 3-5-3	SURVEYING EQUIPMENT				
DESCRIPTION		QUANTITY			
Transit		l			
Level		. 1			
Staff		3			

Chapter 4 CONSTRUCTION AND MAINTENANCE COST ESTIMATIONS

4.1 Unit Price

With regard to the unit prices of materials and labor, the data were collected from each Kabupaten through Bina Marga. The collected data were compared with those of Jakarta using BAHAN BANGUNAN DKI-JAKARTA MAY & JUNE 1985 compiled by PUSAT INFORMASI TEHNIK PEMBANGUNAN, and then finalized.

4.1.1 Unit Labour Price

The unit labour prices of Kabupaten Bangka and other Kabupatens in Sumatera Selatan Province are shown in Table 4-1-1.

Table 4-1-1

UNIT LABOUR PRICE

SKL LAB 2,200	CAP 3,850	MAS 3,850	LAB	DRIV	OPE
2,200	3.850	3 850	1 (50	1.	
	0,000	J,030	1,650	3,500	5,000
2,500	3,000	3,000	2,000	2,500	3,000
2,750	3,500	.3,500	2,250	3,000	3,500
2,750	5,000	3,750	2,250	4,000	3,000
2,250	3,838	3,525	2,025	3,250	3,625
	2,750 2,750	2,750 3,500 2,750 5,000	2,750 3,500 3,500 2,750 5,000 3,750	2,750 3,500 3,500 2,250 2,750 5,000 3,750 2,250	2,750 3,500 3,500 2,250 3,000 2,750 5,000 3,750 2,250 4,000

Notes :

MAN	:	Mandur
SKL LAB	:	Skilled Labour
CAP	:	Carpenter
MAS	:	Mason
LAB	:	Labourer
DRIV	:	Driver
OPE	:	Operater

4.1.2 Unit Price of Materials

Table 4-1-2 shows the unit price of materials for Kabupaten Bangka together with for other Kabupatens in Sumatera Selatan Province.

Table	4-1-2	UNIT
Table	4~1~2	UNT

T PRICE OF MATERIALS

		1 A. A.		•		(Rp)
MATERIAL	UNIT	MUSI	MUSI	BANGKA	BELITUNG	AVERAGE
		RAWAS	BANYUASIN			
Bitumen	L	380	365	300	280	330
Asphalt oil	\mathbf{L}	800	300	850	850	700
Gasoline	. Г .	250	250	250	250	250
Sand	_М 3	7,000	6,000	5,500	4,000	5,625
Cement	bag	4,000	4,000	4,800	4,000	4,200
River Stone	м ³	8,000	25,000	7,500	6,000	11,625
Steel moulds	Set	7,000	7,000	7,000	7,000	7,000
Timber	м ³	90,000	120,000	155,000	150,000	128,750
Paint	\mathbf{L}^{+}	3,500	2,500	3,500	3,000	3,125
Reinforcing Steel	Kg	800	1,000	800	900	875
Tying Wire	Kg	1,200	1,500	1,100	1,100	1,225
Equivalent Royalty	мЗ	250	250	250	250	250

4.1.3 Hourly Equipment Cost

The hourly equipment cost for Kabupaten is shown in Table 4-1-3.

Table 4-1-3

HOURLY EQUIPMENT COST

PROVINCE : SUMATERA SELATAN KABUPATEN : BANGKA

	و به به من بسر بر بر بر به به به به به به به به به به به به به				(UNIT	: Rp)	< 6'	85 >	
CODE No	EQUIPHENT NAME	CLASS		LOCAL COST OPERATION			FOREIGN COS OPERATION		TDTAL Cost
	Bulldozer	120 HP	156	12,826	12,982	7,769	1,014	8,783	21,765
	Bulldozer/Ripper	120 HP	170					10,060	24,057
	Swamp Bulldozer	120 HP	178	14,066					24,753
	Bulldozer	90 HP	99						14,312
	Bulldozer/Ripper	90 HP	106	9,242				6,273	15,621
	Buildozer	65 HP	70	6 291		•		3,956	10,317
	Bulldozer/Ripper	65 HP	17			•		4,520	11,332
	Swamp Bulldozer	90 HP	106						15,592
	Swamp Bulldozer	65 HP	81	6,650				4,793	11,524
	Notor Grader	110 HP	139	11,068				8,189	19,396
	Notor Grader	75 HP	96	7,584	7,680				13,336
	Notor Grader	65 HP	86	6,673	6,759	-	789	•	11,848
	Road Stabilizer	W=1850 em	172	3,348	3,520			9,014	12,534
	Vibratory Roller	4 ton	58	3,317	3,375			3,278	6,653
	Hand-guide Vib. Roller	1000 Kg	47	592	639	849	28	877	1,516
	Tire Roller	8-15 ton	63	7,376	7,439	3,108	101	3,207	10,646
	Vibratory Roller (D&T)	4 tan	58	3,317	3,375	2,900) . 378	3,278	6,653
	Hand-guide Vib. Roller	600 Kg	33	404	437	- 600	20	620	1,057
	Rough Terrain Crane	10 ton	201	12,905	13,107	10,039	737	10,776	23,883
	Hydraulic Excavator; Wheel	0.3 m3	83	7,789	7,872	4,109	536	4,645	12,517
	Wheel Loader	1,2 m3	141	8,392	8,533	7,019	916	7,935	16,468
	Wheel Loader	0.3 m3	46	2,931	2,977			2,565	5,542
	Water Tank Truck	4000 ltr.	48	2,830	2,878	869	117	986	3,864
	Fuel Tank Truck	4000 ltr.	49	2,836	2,885	882	119	1,001	3,886
	Duap Truck	3.0 ton	- 81	3,532	3,613	1,469	198	1,667	5,280
	Flat Bed Truck with Crane	3.0 ton	35	3,079	3,114	1,718	126	1,842	4,956
	Dump Loader Truck	12 ton	77	18,974	19,051	3,838	l 125	3,963	23,014
	Dunp Truck	5.0 tan	121	5,038	5,959	2,189	295	2,484	8,443
	Flat Bed Truck	3.0 ton	12	2,658	2,670	563	5 - 41	604	3,274
	Portable Crusher/Screening	30-40 t/h	376	· · · · · · · · · · · · · · · · · · ·	22,022	18,800	2,454.	21,254	43,276
	Concrete Mixer	0,5 #3	297	2,350	2,647	5,400	410	5,810	8,457
	Water Pump	200 1/min	11				6	194	467
	Concrete Vibrator	3.3 KP	5					75	308
	Asphalt Sprayer	850 ltr.	57	754	811	1,019	137	1,156	1,967

4.2 Unit Construction Cost by Work Type

4.2.1 All Works Except Bridges

The unit construction costs by work type, excluding bridge construction costs, have been estimated using the combination of equipment described in Clause 3.4 and the unit prices already listed. The results are summarized in Table 4-2-1.

Table 4-2-1

UNIT COST BY WORK TYPE EXCEPT BRIDGE WORK

PROV : SUMATERA SELATAN KAB : BANGKA

				(Rp)
ITEN	UNIT	LOCAL	FOREIGN	TOTAL
***************************************	387368¥¥644	. _{Chi} alt fü ^r hit für tip tip fei ist an alt opp	4 2 4 4 4 4 5 5 5 4 6 4 4 4 4	
Site Clearance in Light Bush	a2	162	91	253
Subgrade Preparation	e2	21	11	- 32
Normal Fill	B3	1,667	861	2,529
Fill in Swamp	a3	2,449	1,050	3,499
Normal Excavation to Spoil	n 3	974	521	1,495
Sub Base Course	a 3	3,093	1,344	4,437
Base Course	83	4,276	2,295	6,571
Shaulder	e2	293	145	438
Asphalt Patching	#2	3,889	1,375	5,263
Surface Dressing (Single)	#2	659	595	1,254
Surface Dressing (Double)	R2	813	935	1,748
Earth Drain	· £	- 784	119	1,105
Earth Drain in Swamp (by machine)	a 3	1,205	.473	1,678
Pipe Culvert D80cm	â	45,443	44,495	89,938
Hasonry Culvert (80x80cm)	8	64,708	38,085	102,793
Retaining Wall and Wing Wall (Timber)	.2	15,441	245	15,686
Retaining Wall and Wing Wall (Nasonry)	a 3	46,893	11,775	58,668
Gabion Protection	#3	13,174	120	13,294
Nanual routine maintenance of road	Ka	162,540	7,248	169,788
Routine maintenance of earth road	Ke	94,822	37,868	132,690
Routine maintenance of gravel road	Ka	198,778	87,939	276,717
Routine maintenance of asphalt road	Ka	388,800	137,500	526,300

6-54

4.2.2 Bridges

The unit construction costs by bridge type including the cost of demolition of existing bridges are shown in Table 4-2-2.

Table 4-2-2

BRIDGE COST

PROV SUMATERA SELATAN ŧ.

BANGKA KAB :

		•		(Rp)	
 ITEN	UNIT	LOCAL	FOREIGN	TOTAL	
 			- -	1 (2 24 (2 14 14 1 4 14 14 14 14 14 14 14 14 14 14 14 14 14	44 (4) (9) (4)
Superstructure (Timber;Span 3m;101)	a2	55,634	4,625	60,259	
Superstructure (Timber;Span 5m;101)	#2	61,623	5,106	66,729	
Superstructure (Timber;Span 8m;101)	a2	81,622	6,704	88,326	
Superstructure (limber;Span 3n;OHSO)	#Z	68,984	5,718	74,702	
Superstructure (Timber;Span 5m;BN50)	æ2	75,311	6,193	81,504	
Superstructure (Timber;Span 8m;8H50)	\$ 2	95,515	7,839	103,354	
Superstructure (Concrete;Span 3m;BM50)	nZ	59,900	90,643	150,543	
Superstructure (Concrete;Span 5m;BNSO)	- a2	61,331	101,196	162,527	
Superstructure (Concrete;Span 80;BH50)	#2	63 036	110,168	173,204	
Superstructure (Concrete;Span10m;BH50)	n2	68,850	125,030	193,880	
Superstructure (Concrete;Span15e;BH50)	a2	73 924	147,158	221,082	
Substructure (Piersfor Timbers101)	HO	484,615	43,111	527,726	
Substructure (Abut;for Timber;101)	NO	1,300,552	189,409	1,487,961	
Substructure (Pier;for Timber;BM50)	NO	712,725	63,825	776,550	
Substructure (Abut;for Timber;8850)	NO	1,472,611	212,426	1,685,037	
Substructure (Pier;for Concrete;BH50)	- NO	1,802,035	472,599	2,355,434	
Substructure (Abut;for Concrete;8850)	ND	3,892,798	991,443	4,884,241	
Demolition of Bridge (Timber-)Timber)	#2	15,295	1,728	17,023	
Demolition of Bridge (Timber-)Concrete)	@2	15,295	I ₁ 720	17,023	
Deaulition of Bridge (Concrete)	#2	92,556	70,585	163,141	
Naintenance of Timber Bridge (New)	a 2	7,888	1,343	11,231	
Naintenance of Concrete Bridge (New)	#2	2,081		4,886	
Haintenance of Timber Bridge (Exist)	#Z	8,658	2,513	11,171	
Naintenance of Concrete Bridge (Exist)	a2	4,130	2,403	6,533	

Chapter 5 RESULTS OF ECONOMIC FEASIBILITY EVALUATION

5.1 Preliminary Screening

The road links to be improved should be effective for development of the Project Area. The road links where improvements were assumed to be inefficient for development of the Project Area were generally screened out using the following cut-off criteria.

- (1) Very short roads, less than 2 Km long, which have no connection with the trunk road network.
- (2) Roads not connected to the network at any point
- (3) Unpreferred roads, due to poor suitability for transportation compared to other existing alternative roads serving the same purpose.
- (4) Road in good condition according to the Bina Marga road inventory which lists improvement projects carried out in the last two or three years
- (5) Roads with asphalt surface in good condition
- (6) Urban roads, except those forming part of a longer route
- (7) Roads serving single large organizations rather than the general public
- (8) Roads with no inventory data
- (9) Kabupaten roads also assigned as provincial roads

The road links to be screened out in Kabupaten Bangka are shown in Table 5-1-1.

Table 5-1-1

ROAD LINKS TO BE SCREENED OUT

KABUPATEN : BANGKA

CRITERIA NO	ROAD LINK NO
(6)	87,88,89,90,91,92,93,94,95,96,97,108,109,110,
	111,112,113,114,115,116,117,118,131,132,133,
	134,135,136,137,138,139,140,141,142,143
(9)	27

6~56

5.2 Evaluation

5.2.1 Primary Analysis

The Kabupaten roads were classified by using the future traffic volume on the road links in 1998. The primary analysis of the IRR was carried out using the construction and maintenance costs. Road links where IRRs were more than 10% were defined as feasible links. Results of primary analysis are shown in Table 5-2-1.

5.2.2 Secondary Analysis

From the infeasible road links evaluated by the primary analysis, road links where the IRRs were between 1% and 10%, i.e. road links which could become feasible if down graded by one rank, in classification were down graded and the costs re-estimated. Using these costs, a secondary analysis of IRR was carried out. Road links where these IRRs were then more than 10% were also defined as feasible links. This reflected that even though the road classification was rather low the road link should be improved.

Results of secondary analysis are shown in Table 5-2-2.

5.2.3 Ranking of Feasible Road Links

From the results of the primary and secondary analysis, road links where the IRRs were more than 10% were selected and their NPVs and B/Cs were estimated. The ranking of feasible road links from the economic evaluation are decided in the order of the NPVs, i.e. the larger the NPV the higher the road link priority as shown in Table 5-2-3. Table 5-2-1(1)

PROVINCE	1	SUHA LERA	BELATAN

KABUPATEN I BANGKA

· .		÷		
LINK NO	LENGTH	CLASS	IRR (%)	REMARK
76	4 Km	1110-2	47.947	Voc
102	13 Km	1118-1	23.413	VOC
45	16 E.m	TTTD-1	22.670	Vac
7.3	4 Km	1118-1	20.715	Vac
79	5 Km	THA	20.566	VOC
16	12 Km	1110	19.321	VDC
34 .	32 Km	1110-1	19.059	VOC
59	5 :Km	1118-1	18.373	VOC
11	25 Km	1118-1	16.551	VOC
9	7 k.m	1118-1	14.377	Voc
32	9 Km	IIIB-1	14.159	VOC
18	11 Km	1119-1	13.127	VOC
46	14 Km	1118-1	11.272	Vac
37	28 Km	1118-1	10.387	Voc
123	2. Km	IIID-1	9.771	VDC
103	7 Km	1116-1	9.757	VDC
	27 Km	1118-1	8.707	VOC
62	6 Km	1110-2	6.014	VOC
100	15 Ka 7 Km	1119-1	5.469 5.227	
11	7 Km 24 Km			VOC
74	6 Km	1118-1 1118-1	4.859 3.931	Voc
38	17 Ka	1118-1	3.489	Vac
85	E Km	IIIA	3.427	VOC
59	37 Km	1118-1	3.330	VDC
66	23 Km	1118-2	2.336	Surplus
28	7 K.a	IIIB-I	0.078	Vac
27	15 Km		0.078	Surplus
30	15 Km	1110-1	0.078	VOC
31	4 Km	1110-1	0.079	VOC
7	16 Km	1110	0,078	Surplus
33	15 Km	1110	0.078	Burnlus
31	4 Ko	1110	0.078	Surplus
35	19 Km	IIIC	0.078	Sarplus
13	4 <m< td=""><td>1118-1</td><td>0.078</td><td>VOC</td></m<>	1118-1	0.078	VOC
3	5 F.m	1110	0.078	Surplus
10	6 Km	1118-1	0.078	VDC
39	16 Km	IIIB-1.	0.078	VOC
40	23 Km	1118-1	0.078	VDC
41	24 1/m	1110-1	0.078	VDC
12	3 Km	111C	0.078	Burplus
43	13 Km	1110-2	0.078	Surplus
.4	4 1.0	HIC	0.078	Burplus
12	10 1.0	1110-1	0,078	VDC
13	El 14m	1118-1	0.078	VOC
47	6 Km 10 Km	1118-1	0.078	VOC
48	10 Ka 10 Ka	1110	0.078	Surplus
49	9 Km. 2 Km		0.078	Burplus Une
50	2 Km	1118-2	0.078	VOC
51	11 Km H 12		0.078	Surplus
52	5 t.m	1110-1	0.079	VOC
53	7 Em	1110-1	0.078	VDC
54 ·	9 Kar	1118-1	0.078	VOD
55	13 1.0		0,078	Surplus
56 57	14 En 15 En	1110-1	0.078	Vac
507 14	48 Km 6 Km	1110-1 111A	0.078	VOC
15	8 Km.	A111	0.078 0.078	VOC
	e rai. O Ka	1116	0.078	VEC
61	7 Kas	IIIC		VOC
5	16 Km		0.078	Surplus
63	5 Km	1110	0.078	Burplus
64	14 Ea	1118-1	0.078	Burp1us V0C
45	15 Km	1110-1	0.078	VOC
66	5 Em -	INC .	0.078	
67	12 Km	1110	0.078	- Surptus
68	9 Ka	1118-1	0.078	VOC

6--58

				* Brinthat
ETNK NO	LENGIII	CLASS	1RR (2)	REMARK
69	9 Ea	1110	0.078	Burplus
70	17 Ka	1110	0.078	Surplus
71	3 Km	1110	0.078	Burplus
72	5 Km	1110	0.078	Surplus
17	4_1€m	1110		Surplus
6	11. Ka	1110	0.078	Surplus
715	5 Ko	1110	0.078	Burplus
76	12 Km	1110	0.078	Surplus
77	9 Km	1119-2	0.078	VOC
17	19 Km	1110	0.078	Surplus
717	33 Ku	1118-1	0.078	VOC
80	27 Km	1118-2	0.078	Surplus
10.6	14 Km	THE	0.078	Burplus
02	19 J.Con	1110	0.079	Surplus
82	17 Ku	1119-2	0.078	Surplus
84	13 Km	IHC .	0.078	Surplus
20	9 Km	1110	0.078	Burplus
21	17 Km	IIIC I	0.078	Surplus
-22	18 Km	nic	0.078	Surplus
99	9 Km	1118-1	0.078	VOC
23	13 Ku	1110	0.079	Burplus
101	12 Km	LIIC	0.078	Surplus
24	24 E.a	1118-1	0.078	VOC
25	15 1.6	111Ð-1	0.078	VUC
104	10 Eu	1110	0.078	an bine
105	8 Ka	1110	0.078	Surplus
106	3 Km	1110	0.078	ចាម p1 មន
107	20 Km	1110	0.078	តំណា p i អន
117	7 Ka	1110	0.07日	Surplus
120	4 Km	1110	Q. Q7B	<u>Surplus</u>
121 -	9 Ku	1110-1	0.078	VDC
122	6 Km	1110	0.078	Surplus
	6 Ku	1110	0.078	Burplus
124	5 Ka	1110-1	0.078	VOC
125	11 Km	1118-1	0.078	VOC
126	5 Ka	1118-1	0.078	VOC
127	e Km	1110	0.078	Surplus
128	23 Km	1110-1	0.078	VOC
129	る Km 14 Km	1110 1110-1	0.079	Surplus
1.202	1 'r 1.30	1110-1	0.078	VOC

PROVINCE I BUNALERA BELATAN

KABUPATEN : BANOKA

Table 5-2-2 RESULTS OF SECONDARY ANALYSIS

PRUVINCE I BUHATERA BELATAN KABUPATEN I BANGKA

.

LINK NO	I EMGTH	CLABS	1RR (2)	REHVBK
1	27 Ka	1119-2	17.594	Vac
103	7 Km	1119~2	17.178	VDC
123	2 Km	1118-2	16.775	VBC
38	19 Ka	1110-2	16,454	VDC
59	39 Ka	1110-2	11.069	Vac
85	81 K (B	1110-1	9.950	VOC
44	24 Km	1110-2	7.508	20V
2	115 Km	1118-2	9.957	VID
100	7 Km	1118-2	8-276	VOC
62	6 Km	1110	0.258	VUC
74	6 Ku	1110-2	5.950	VDC
86	23 1/81	THE	3.544	Surplus

Table 5-2-3	\mathbf{Ta}	.b]	le	- 5 -	-2-	-3
-------------	---------------	-----	----	-------	-----	----

RANKING OF FEASIBILITY ROAD LINKS

LINK	LENGTH	CLASS	NPV	b/C		REMARK
NO			(1000Rp)	na mé art das bis list hat had b	(%)	
36	32 Kin	1118-1	155346		17.057	VOC
45	16 Km	1119-1	131409	1.502	22.498	VOC
102			119463			VOC
11	25 Km	1118-1	104394	1.244	16.551	VOC
16			97482			VOC.
i	27 Km		53997			VOC
78	4 Km	1118-2	53373	2.597	47.947	VDC
7Ð	5 Km	IIIA	46235	1.362	20.566	VDC
73	4. Km	1118-1	24339	1.364	20,715	VOC
38	17 Km		23003		16.454	
59	5 Ka	1110-1	22993	1.314	18.373	VOC
32	9 Km	1118-1	22457	1.145	14.158	VOC
9	7 Km	1119-1	16605	1.160	14.377	VDC
18	ii Ka	1110-1	16455	1.109	13.127	VOC
58	39 Ka	1118-2	15060	1.051	11,867	VOC
103	7 Km	1118-2	12607	1.173	17,178	VDC
46	14 Km	IIIB-I	7716	1.044	11.292	VOC
37	28 Km	IIIB-i	5229	1.013	10.387	VOC
123	2 Ka	1119~2	4173	1.243	16.775	VOC

6.1 Implementation Schedule

6.1.1 Project Cost

The total Project Cost for the Kabupaten is composed of the cost of construction and maintenance, supplementation as described later, and workshop, laboratory and survey equipment. The total Project Cost for the Kabupaten is summarized in Table 6-1-1.

Table 6-1-1TOTAL PROJECT COST (1)

KABUPATEN: Bangka

 $(Rpx10^{6})$

(Rnv106)

COST	FOREIGN CURRENCY	LOCAL CURRENCY	TOTAL
CONSTRUCTION	1,155	2,053	3,208
MAINTENANCE	324	1,187	1,511
SUPPLEMENTATION	399		399
WORKSHOP EQUIPMENT & TOOLS	28	· •••	28
LABORATORY EQUIPMENT	12	-	12
SURVEY EQUIPMENT	5	-	5
TOTAL	1,923	3,240	5,163
\$*************************************			

The total Project Cost can be divided into costs as shown in Table 6-1-2.

Table 6-1-2

TOTAL PROJECT COST (2)

			(wpx10-)
COST	FOREIGN CURRENCY	LOCAL CURRENCY	TOTAL
CIVIL WORK	635	3,214	3,849
CONSTRUCTION & MAINTENANCE EQUIPMENT	1,140	-	1,140
SPARE PARTS	103	26	129
WORKSHOP/LABORATORY/SURVEY EQUIPMENT	45	- 	45
TOTAL	1,923	3,240	5,163

The cost for civil work is composed of the cost of labour and materials, operation cost excluding spare parts, indirect cost and transportation cost of equipment, and ownership cost for existing equipment.

6.1.2 Proposed Road Links

(1) Road Link to be Improved

The road links to be improved were generally selected taking into consideration the following criteria:

(1) Feasible road links

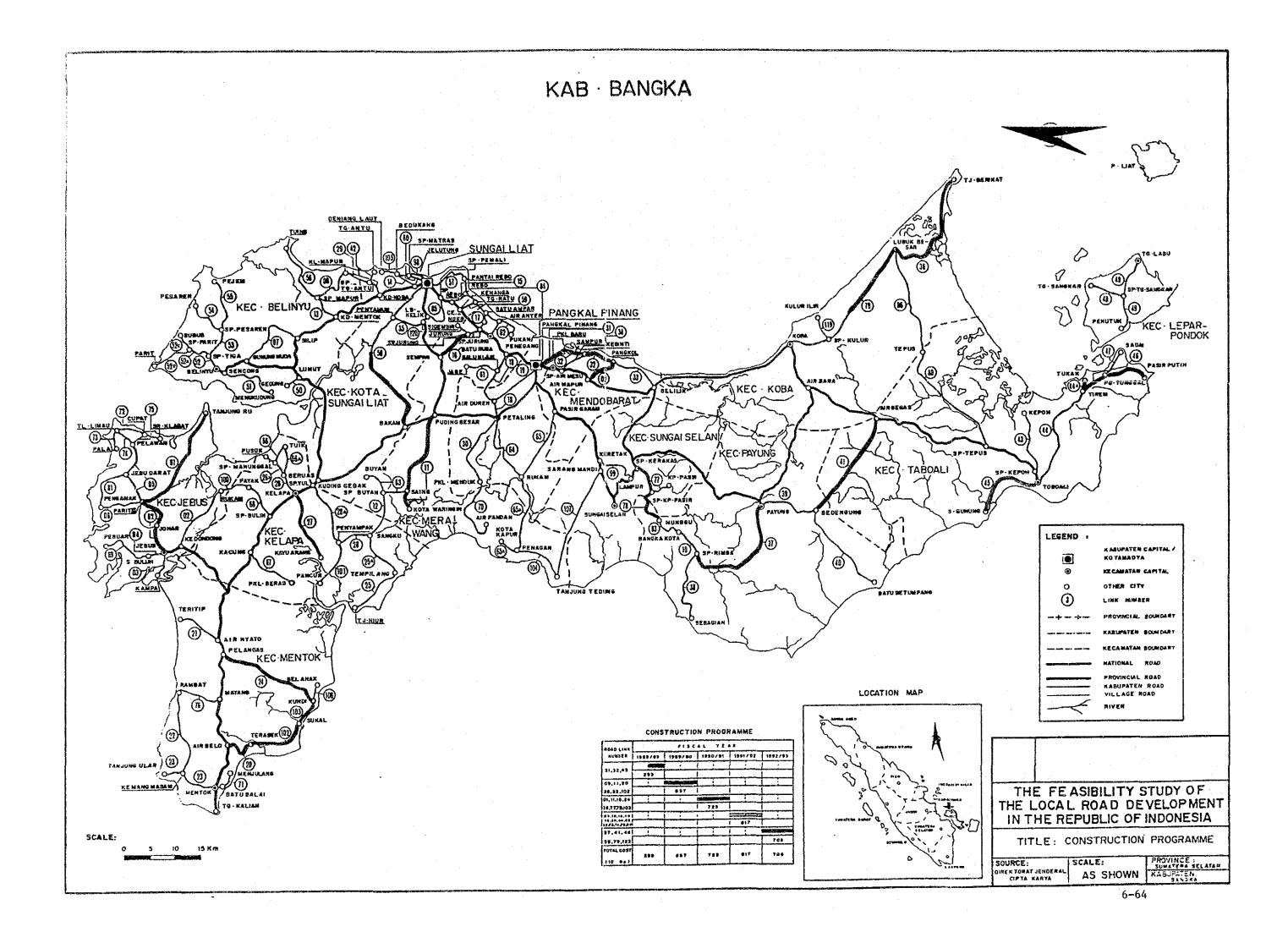
- Feasible road links from the primary evaluation
- Feasible road links from the secondary evaluation
- (2) Road links selected from the engineering points of view
- (3) Road links selected because of basic human needs.

The final proposal for road links to be improved in the Kabupaten development plan are the 31 links with the total length of 458 km which is 31% of the 1,462 km total length of Kabupaten roads studied. The proposed road links are shown in Table 6-1-3.

Table 6-1-3 ROAD LINKS TO BE IMPROVED

KABUPATEN : BANGKA

and the second second second second second second second second second second second second second second secon	
REASON FOR SELECTION	ROAD LINK NO
Feasible	
- Primary	9,11,16,18,32,36,37,45,46,59,73, 78,98,102
- Secondary	1,38,58,103,123,
Engineering Point of View	5,10,20,24,31,39,41,44,74,77,79,82
Basic Human Needs	-


As the table shows all feasible road links are proposed to be improved.

The key road links which are located at the strategic point to complete the local road network consisting of feasible road links, are selected from the engineering points of view. The order of proceeding with the improvement of the proposed road links are decided as shown in Table 6-1-4.

Table 6-1-4ROAD LINKS TO BE IMPROVED BY YEAR

	PROV	22	SUM	ATEF	R	SEL	ATA	4		KAB	. P	1	BANGI	<a< th=""><th></th><th></th><th>·</th><th></th></a<>			·	
-						*****				• == ter ski == 10								
	YEAR		LIN	K NO				() : r	ate				•				
_	1988	;	31,	32,	45					·		94400						-
_	1989	1	9,	-11 (502)	, 20,	36 (40%),	82,	102				, , , , , , , , , ,				· -
	1990	ŧ	1,	11 (5	50%)	, 16	(70%),	24,	36	(40%)	, 7	7, 7	8, 103					
	1991	ł	5,	10,	16	(30%),	18,	38,	39,	44,	58	(60%)	, 59,	73,	74,	79	(50%)	5
-	1992		37,	41,	46,	58 (4	40%),	79 ((50%)	123								

98

(2) Road Links to Be Maintained

It is desirable that all Kabupaten roads are maintained. However, because of the limited budget it is inevitable that some road links in the Kabupatens will be left without maintenance for the time being. The budget should be used for those which are effective in producing more useful development of the Kabupaten through the road development project. The road links to be maintained are finally proposed as shown in Table 6-1-5.

Table 6-1-5

ROAD LINKS TO BE MAINTAINED

FROV : SUMATERA BELATAN

KAB 🕴 BANGKA

1 1000Rp 1

															-	
L I NK Ho	LENGTH (Kø)	8A (1)	50 (1)	RU (2)	RB (2)	ASPIIAL (Kr)	GRAVEL (Ka)	EARTH (Ka)	NT No	AREA (a2)	RC Ho	AREA (#2)	BRIDGE Cost	LOCAL Cost	FORE LGN COST	TOTAL Cost
5	16	28.9	31.3	26.3	3.9	 16	0	0	22	875.00	0	0.00	9,775	16,397	4,515	20,912
- 13	6	56.9	43.1	0.0	0.0	2	6	0	5	195.30	0	0.00	2,182	4,901	1,351	6,252
- 14	. 6	81.7	18.3	0.0	0.0	2	4	0	0	0.00	0	0.00	0	2,508	670	3,178
15	9	81.3	13.1	5.6	0.0	8	0	0	0	0.00	2	36.00	235	4,559	1,244	5,803
10	ан Н ал	30.9	28.2	31.0	9.1	. 3	8	0	0	0.00	0	0.00	0	4,465	1,196	5,66
23	13	35.4	46.2	19.5	0.0	3	10	. 0	4	139.50	0	0.00	1,558	6,375	1,737	8,11
24	24	49.2	12 1	8.9	0.0	5	19	0	0	0.00	6	63.00	412	9,692	2,684	12,37
25	15	57.7	38.0	4.3	0.0	2	13	. 0	0	0.00	0	0.00	0	5,670	1,527	7,19
31	4	70.0	27.5	2.5	0.0	4	0	0	0	0.00	0	0.00	0	2,205	579	2,78
35	8	22.5	31.3	15.0	1.3	2	6	Ô	Ó	0.00	0	0.00	Ó	3,211	861	4,07
37	20	18.9	44.5	36.3	0.4	5	- 23	Ò	0	0.00	8	80.00	523	11,167	3,105	14,27
39	19	40.3	40.3	19.5	0.0	7		Ô	.0	0.00	- 8	112.50	735	8,540	2,426	10,96
39	16	59.1	40.6	0.3	0.0	5		0	G	0.00	5	139.35	910	7,197	2,106	9,30
41	24	45.2	46.7	6.7	1.5			0	0	0.00	7	182.40	1,192	9,785	2 871	12,65
57	15	88.7	9.7	1.7	0.0	15	0	0	2	186.00	. 4	49.00	2,391	10,079	2,751	12,93
58	39	34.6	45.4	13.6	6.4	5	34	0	11	303.00	н	256.00	5,057	18,382	5 337	23,71
60	6	99.0	1.0	0.0	0.0	9	0	0	0	0.00	2	27.50	180	4,524	1,224	5,74
87	. 14 .	95.4	9.6	5.0	0.0	14	0	0	0	0.00	3	69,93	457	8,008	2,195	10,20
89	3	56.7	28.3	15.0	0.0	3	0	0	0	0.00	2	38.00	248	1,911	526	2,33
90	i	10.0	80.0	10.0	0.0	1	0	0	0	0.00	0	0.00	0	551	145	69
91	2	50.0	50.0	0.0	0.0		0	0	1	12.60	0	0.00	141	1,212	321	1,53
93	4	20.0	40.0	25.0	15.0	3	0	E.	0	0.00	0	0.00	0	1,911	479	2,39
94	2	7.5	45.0	17.5	0.0	2	0	0	0	0.00	0	0.00	0	1,103	289	1,39
95	2	0.0	65.0	35.0	0.0	1	0	· 1.	. 1	12.60	- 0	0.00	. 141	918	222	- ÚH
99	9	73.3	23.9	2.8	0.0	3	6	0	0	0.00	1	10.00	. 85	3,803	1,029	4,83
108	84	45.1	19.3	21.4	H.3	51	5	28	5	236.70	- 4	203.09	3,971	39,969	10,204	50,17
114	17	56.9	13.4	29.7	0.0	17	0	0	0	0.00	0	0.00	0	9,373	2,461	11,83
116	15	26.7	36.3	37.0	0.0	9	. 0	6	0	0.00	ł	62.50	408	6,764	1,724	8,48
121	· · · · · 9	61.1	35.6	3.3	0.0	5	4	0	· 0	0.00	0	0.00	· 0	4,162	1,104	5,26
130	1	.0.0	99.0	1.0	0.0	i	0	0	0	0.00	0	0.00	0.	551	145	69
140	· 1	85.0	15.0	0.0	0.0	1	0	0	0	0.00	0	0.00	0	551	145	65
141	1	25.0	50.0	25.0	0.0	l	0	0	. 0	0.00	0	0.00	0	551	145	69
GUH	427					209	182	36	51	1960.70	64	1328.26	30,591	210,893	57,321	269,2

6.1.3 Annual Construction and Maintenance Cost

The annual allocation of the total construction and maintenance cost in the five years programme for Kabupaten Bangka is finally recommended as shown in Tables 6-1-6 (1), (2) and (3) for the construction, maintenance and total respectively.

The proposed construction cost is Rp 3,208 x 10^6 and maintenance cost is Rp 1,511 x 10^6 which is approximately 32% of the total expenditure.

Table 6-1-6 (1)

CONSTRUCTION AND MAINTENANCE COST (CONSTRUCTION)

PROV : SUMATERA SELATAN

KAB : BANGKA

(-UNIT : 1000Rp)

							1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		1000mp 1
IT	EN		< 1988 >	(1989)	< 1790 >	< 1991 >	< 1992 >	< TOTAL >	
LOCAL CURI	RENCY	:	100,135	405,886	452,386	516,501	438,585	1,993,493	(62.12)
0 wink	ership	Cost	1,441	3,111	1,243	5,319	4,162	18,276	(0.9%)
Oper	ation	Cost	78,609	168,544		281,168	225,859	979,738	(49.1%)
Nate	rial	Cost	47,358	107,304		68,032			
Labo	Wr	Cost	•	73,985		94,612			(17.7%)
Con	lingeno	.	23,496	52,942	59,007	67,370	57,207	260,022	(13.02)
FORELGN CI	JRRENCI	1	119,517	251,857	273,337	302,102	267,493	1,214,306	(37.92)
						111 5/3	100 110	EE0 074	121 073
	er shi p			95,339		161,263		558,026	(46.0%) (6.3%)
	ation		5,944			22,389	•	76,221	
	erial		53,597 0	111,005	91,469 0	79,045	86,555	421,671	(34.72) (0.02)
Labr		Cast		0			0 74 000	-	(13.02)
LONI	ingeno	Ϋ́.	15,589	32,851	35,653	39,405	34,890	128,300	(13.04)
TOTAL COST	i :		299,652	657,743	725,722	818,602	706,078	3,207,797	
				-	173 8/0	166,582	132.574	576,302	(18.0%)
0una	ershin	Cast	45.828						
	ership ation		45,828 84,753	78,450 181,206					
Oper	ation	Cost	84,753	181,206	242,948	303,557	243,495	1,055,959	(32.9%)
Oper Nati		Cost Cost		181,206 218,309	242,948 169,989		243,495 167,356	1,055,959	

< Contingency : 15% >

6-66

Table 6-1-6 (2)CONSTRUCTION AND MAINTENANCE COST

(MAINTENANCE)

SUMATERA SELATAN KAB : PROV : PANGKA

								(UNIT:	1000Rp)
	ITEN		< 198B >	< 1989 >	< 1990 >	< 1991 >	< 1992 >	< TOTAL >	
LOCAL	CURRENCY	1	104,884	225,663	241,651	285,780	320,559	1,186,737	(78.5%)
	Ownership	Cost	717	1,550	1,664	1,955	2,220	8,114	(0.7%)
	Operation	Cost	43,511						(41.4%)
	Naterial		5,009	10,771	12,208	16 192	20,351	64,541	(5.4%)
	Labour				128,262			623,288	(52.5%)
FOREIG	N CURRENCY	•	28,511	61,548	65,871	78,072	90,189	324,191	(21.5%)
	Ownership	Cost	21,250	45,607	48,725	57,839	67,542	240,963	{74.3%}
	Operation			5,081		6,377			1 8.2%)
	Haterial	Cast	4,888	10,860	11,736	13,856	15,268	56,608	(17.52)
	Labour	Cost	0	0	0	0	0	0	(0.0%)
	ب ک ک ک ی ک کې کا ک ې يې . بر ک ک ک ی ک کې ک								
TOTAL	COST :		133,395	287,211	307,522	364,052	418,748	1,510,928	
	Ownership	Cast	21,967	47,165	50,389	59,794	69,762	249,077	(16.5%)
	Operation	Cost	45,884	78,359	104,927	124,070	144,175		(34.2%)
	Naterial	Cost	9,897		23,944			121,149	(8.02)
	Labour	Cast	55.647	120.057	128,262	150.140	169,182	623,288	(41.3%)

Table 6-1-6 (3)CONSTRUCTION AND MAINTENANCE COST

(TOTAL)

PROV : SUMATERA SELATAN KAB : BANGKA

(UNIT : 1000Rp)

ITEN		< 1988 >	< 1787 >	(1990)	< 1991 >	< 1992 >	< TOTAL >	
LOCAL CURRENCY		285,019	631,549	694,037	802,481	767,144	3,180,230	(67.4%)
Owner ship	Part	2,150	4,669	5,907	7,274	6,382	26,390	(0.8%)
Operation		122,320	261,821	324,875	398,861	362,655	1,470,532	(46.2%)
Haterial		52,367	118,075		84,224	101,162	446,556	(14.07)
Labour	Cost	84,678		213,520	244,752		976,730	(30.77)
Contingenc		23,496	52,942	59,007	67,370	57,207		(8.2%)
FOREIGN CURRENCY	· · · ·	149,028	313 ₁ 405	339,20B	380,174	357 ,692	1,538,497	(32.62)
Ownership	Cost	65,637	140.946	177,350	217,102	195,954	799,989	(51.9%)
Operation		8,317	17,743	23,000	28,766	25,015	102,841	(6.7%)
Naterial	Cost	58,495	121,865	103,205	92,901	101,823	478,279	(31.12)
Labour	Cost	0	0	0	0	0	0	(0.0%)
Contingenc		15,509	32,851	35,653	39,405	34,890	150,380	(10.32)
				· · · · · · · · · · · · · · · · · · ·				
TOTAL COST :	÷	433,047	944,954	1,033,244	1,182,654	1,124,826	4,718,725	
Öknership	Cost	67,795	145,615	183,257	226,376	202,336	825,379	(17.5%)
Operation	Cost	130,637	279,564	347,975	427,627		1,573,373	(33.37.)
Material	Cost	110,052	239,940	193,933	177,125		924,835	(19.67)
Labour	Cost	84,678	194,042	213,520	244,752	239,738	976,730	(20.77)
Contingeno	y	39,085	85,793	94,659	106,774	92,097	418,408	(8.9%)

< Contingency : 15% >

6-68

6.1.4 Construction and Maintenance Equipment Cost

(1) Required Number of Equipment

The required numbers of construction equipment for Kabupaten Bangka are estimated from the annual proposed construction quantities as shown in Table 6-1-7.

The proposed numbers of equipment to be purchased are finally decided considering the following number of existing equipment in the Kabupaten which are available for the Project.

- 2-Hand-guided vib. Roller

- 2-Dump Truck

The proposed numbers of maintenance equipment have been decided as shown below from the proposed annual maintenance volume taking into account the capacity of the proposed maintenance gangs.

a. Equipment for Road Maintenance

~ 1-Motor Grader 75 HP

- 1-Tire Roller 8-15 Ton

- 1-Dump Truck 3 Ton

- 1-Hand Guided Vibratory Roller 1000 Kg

- 1-Flat Bed Truck 3 Ton

b. Equipment for Bridge Maintenance

- 1-Flat Bed Truck with Grane 3 Ton

(2) Equipment Cost

The proposed construction and maintenance equipment and their purchase costs are shown in Table 6-1-8. In the Project the supplementation cost or equipment cost supplemented is the difference between the purchase cost for newly supplied equipment and the depreciated value.

This comes about because full depreciation of the supplied equipment would not be completed within the Project Period of 5 years. Table 6-1-7

PROV

: SUMATERA SELATAN KAB : BANGKA

WORKABLE EXISTING < 1980 > < 1989 > < 1990 > < 1991 > < 1992 > EQUIPHENT NAME 0.92 0 0,30 0.5t 0.82 1.23 Bulldozer/Ripper 240 0.00 0,00 0.04 Swamp Bulldozer 240 Û 0.00 0.00 2.73 2.08 250 2.02 0.70 1.34 Motor Grader 0 --------------------------0.03 Hand-guide Vib. Roller 250 2 0.02 0.11 0.09 0.31 ____ -----***** ----0.98 0.95 0.80 240 1.24 Tire Roller Û 0.61 ---------------1.80 1.40 Vibratory Roller (D&T) 250 0 0.49 0.92 1.35 ~~`~~ -----0.00 0.00 0.55 Hydraulic Excavator; Wheel 240 0 0.00 0.00 . ----------_____ ____ -----0 0.90 2.74 3.49 2.67 Wheel Loader 250 1.96 --------وماليات -----0.82 0.27 0.98 0,76 Nater Tank Truck 250 0 0.61 ** ** -* ** -------------------Dump Truck 250 0 6.52 14.23 20.25 25.61 19.38 _+=-=+++,..... 0.06 0.04 0.01 0.00 0.10 Flat Bed Truck with Crane 250 0 ____ ---------____ ----------250 0 0.70 1.46 1:12: 0.93 1.13 Flat Bed Truck -------------..... 250 Õ 0.24 0.58 0.74 0.86 0,66 Portable Crusher/Screening

---------------------240 0.00 0.01 0.02 0.01 Concrete Hixer 0 Hater Pump 240 â 0.00 0.01 0.01 0.01 --------------**Concrete Vibrator** 240 0 0.00 0.01 0.01 0.01

0 -

240

NOTE

Asphalt Sprayer

nortitur

WORKABLE : workable days in a year

EXISTING :

number of existing equipment

0.61

1.24

0.95

0.80

0.01

0.01

0.01

0.78

Table 6-1-8

EQUIPMENT PURCHASE COST

PROV : SUMATERA SELATAN

KAB : BANGKA

				(1000 Rp)
EQUIPMENT NAME	CLASS	CIF (JAKARTA)	PURCHASE NO.	PURCHASE COST
D. 11.1		··**		
Bulldozer	90 HP	49,150	=	₩
Bulldozer/Ripper	90 HP	53,000	1	53,000
Swamp Bulldozer	90 HP	52,850	-	· •••
Swamp Bulldozer	65 HP	40,500	-	- '
Motor Grader	75 HP	47,800	- 3	143,400
Road Stabilizer	N≈1850 ga	85,950	-	· •
Hand-guide Vib. Roller	1000 Kg	B,500	-	
Tire Roller	8-15 ton	31,070	2	62,140
Vibratory Roller (D&T)	4 ton	29,000	1	29,000
Vibratory Roller	4 ton	29,000	-	-
Rough Terrain Crane	10 ton	100,400	. –	
Hydraulic Excavator; Wheel	0.3 m3	41,100	· •	-
Wheel Loader	i.2 #3	70,200	- 3	210,600
Water Tank Truck	4000 ltr.	12,750	1	12,750
Duep Truck	3.0 tan	14,700	20	274,000
Dump Loader Truck	12 ton	56,300	1	56,300
Flat Bed Truck with Crane	3.0 ton			
Flat Bed Truck with Grane		25,190	1	25,190
	3.0 ton	11,275	2	22,550
Portable Crusher/Screening	30-40 t/h	188,000	i	188,000
Concrete Nixer	0.5 m3	18,000	-	-
Hater Pump	200 1/min	630		-
Concrete Vibrator	3.3 HP	740	-	· _
Asphalt Sprayer	850 ltr.	10,200	1	10,200
Service Car	3 ton	11,600	1	11,600
4 Wheel Drive Vehicle	70 HP	17,500	t	17,500
Notorcycle	100 cc	1,100	3	3,300
		PURCHASE COS	T TOTAL	1,139,530
	=+=			
		OWNERSHIP COS	T (FOREIGN)	740,045
		EQUIPHENT COS	T SUPPLEMENTED	399,405
	~**			
	NOTE #	OWNERSHIP COST (FOREIGN) for	Existing Equipment
		Hand-guide Vib.	Rallor	15,558
		Vibratory Roller		19,383
		Dump Truck	ιναι, . :	24,003
		TOTAL		58,944

6.1.5 Other Costs

Cost other items includes the costs of workshop equipment and tools, laboratory test equipment and survey equipment which are recommended in Sub-Clause 3.5. These total costs are summarized in Table 6-1-1.

6.1.6 Quantities by Work Type

The annual construction and maintenance quantities for all proposed road links are shown in Table 6-1-9.

.

CONSTRUCTION QUANTITIES FOR ALL

PROPOSED LINKS

FROV : SUMATERA SELATAN

.... KAD : DANGKA

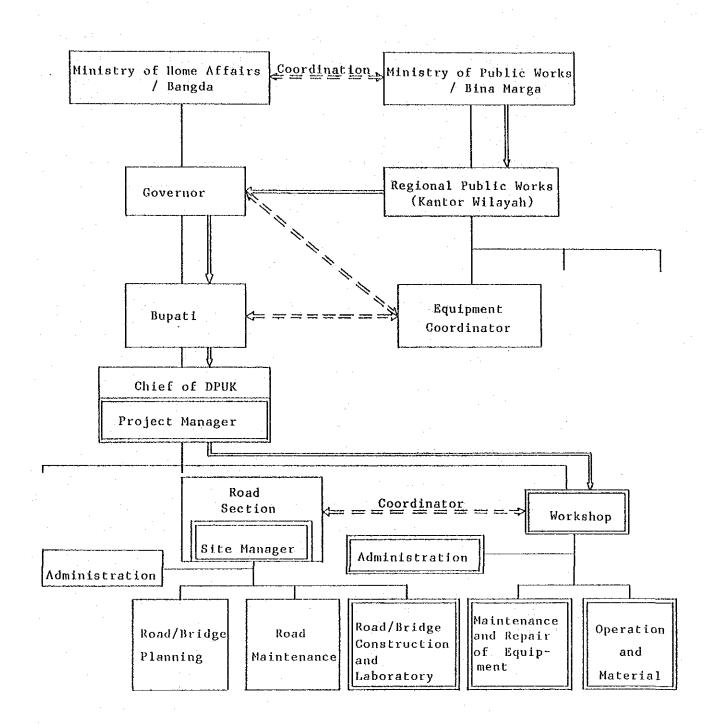
ILEK	ו ואט	< 1988 >	(1989)	(1990)	(1991)	< 1992 >	(TOTAL)
Site Clearance in Light Bush	n2	0.00	16000.00	8400.00	3600.00	0.00	28000.00
Subgrade Preparation	#Z	48000.00	35000.00	0.00	0.00	14175.00	97175.00
Nutwal CELL	- '#3	0.00	0.00	0.00	0.00	0.00	0.00
Fill in Swamp	ъS	0.00	0.00	0.00	0.00	1557.90	1557.90
Normal Excavation to Spoil	•3	1176.00	702.00	410.00	797.00	169.00	3248.00
Sub Base Course	B 3	6633.00	14450.70	20136.30	24080.40	19248.70	83549,10
Base Course	•3 • -	7315.00	18993.50	26721.50	31948.00	23512.00	
Shaulder	•2	96500.00	152150.00	267550.00	414300.00	316500.00	1247000.00
Aspliatt Patching	a2	103.00	0.00	105.00	2737.60	178.40	3144.00
Surface Dressing (Single)	#Z	104500.00	213050.00	107450.00	80000.00	168000.00	673000.00
Surface Dressing (Double)	a2	0.00	0.00	42000.00	43000.00	0.00	85000.00
Earth Drain		5100.00	18800.00	24600.00	14000.00	2500.00	65000,00
Earth Drain in Swamp (by machine)	#3	0.00	0.00	0.00	0.00	10500.00	10500.00
Pipe Culvert DBOca	. 6	0.00	8.00	50.00	53.00	10.00	171.00
Nasonry Culvert (BoxBoro)	-	0.00	D. DD	0.00	Q.00	0.00	0.00
Retaining Hall and Wing Kall (limber)	•2	0.00	0.00	0.00	0.00	0.00	0.00
Retaining Wall and Wing Halt (Masonry)	#3	0.00	0.00	12.80	6.40	0.00	19.20
Gabion Protection	#3	0.00	0.00	0.00	0.00	0.00	0.00
Superstructure (IIInberiSpan 3m; [0])	=7	0.00	0.00	0.00	0.00	0.00	0.00
Superstructure (limber:Span Sn;101)	=/ s2	0.00	32.00	16.00	0.00	0.00	49,0i
Superstructure (limber;Span Ba;101)	≠2	0.00	80.00	0.00	0.00	0.00	80.0
Superstructure filmber:Span 3m;00501	92	0.00	0.00	0.00	0.00	0.00	0.0
Superstructure (Himber;Span Sm;8HSO)	eZ	0.00	0.00	0.00	0.00	0.00	0.0
Superstructure (limber;5pan 6x;8H50)	•2	0.00	0.00	0.00	0.00		
Superstructure (Concrete;Span Ja;BNSO)	=: ∋2	0.00	0.00	0.00	0.00	0.00 0.00	0.0 0.0
Superstructure (Concrete;Span Se;BilSO)	≥ <i>2</i> ≥2	0.00		0.00			
Superstructure (Concrete;Span Sa;8450)	#2	0.00	0.00	0.00	0.00	0.00	0.0
Superstructure (Concrete;Span(Os;BNSO)	#2 #2	0.00	0.00	0.00		0.00	0.0
			0.00		0.00	0.00	0.0
Superstructure (Concrete; Span(So; BNSO)	¥2	0.00	0.00	0.00	0.00	0.00	0,0
Substructure (Pierstor Timbers101)	NO Ho	0.00	2.00	0.00	0.00	0.00	2.0
Substructure (Abut;for lisber;[0]]	NO	0.00	6.00	2.00	0.00	0.00	8.0
Substructure (Pier;for Timber;DMSO)	10 10	0.00	0,00	0.00	0.00	0.00	0.0
Substructure (Abut;for Timber;DMSO)	RU XO	0.00	0.00	0.00	0.00	0.00	0,0
Substructure (Piersfor Concrete; BNSO)			0.00	0.00	0.00	0.00	0.0
Substructure (Abut; for Concrete; 6450)	KO 	0.00	0.00	0.00	0.00	0.00	0.0
Desolition of Bridge (lisber-)lisber)	#2	0.00	108.00	18.00	0.00	0.00	126.0
Desailtion of Bridge (limber-)Concrete) Devolition of Bridge (Concrete)	- #2 #2	0.00	0.00 0.00	0.00	0.00 0.00	0.00 0.00	0.0 0.0
	٧.						
Hanual routing maintenance of road	Ke V-	212.50	452.00	477.00	550.30	621.20	2313.0
Routine maintenance of earth road	Ko Ko	18.00	36.00	36.00	38.00	36.00	167.0
Routine asintenance of gravel road	Ke K	91.00	186.00	193.50	229.30	282.20	987.0
Routine eaintenance of asphalt road	Km	103.50	230.00	247.50	285.00	303.00	1169.0
Haintenance of linber Bridge (Hen)	#2	0.00	0.00	0.00	96.00	37.00	128.0
Naintenance of Concrete Bridge (Hew)	=2	0.00	0.00	0.00	0.00	0.00	0.01
Naintenance of Timber Bridge (Exist)	#2	980.35	2060.70	2485.20	3537.55	5118.35	14182.1
Naintenance of Concrete Bridge (Exist)	82	664.13	1556.20	1560.70	1806.40	2048.80	7636.31

6.2 Organization and Construction System

6.2.1 Organization

The Bupati as head of the Kabupaten has been authorized by Law No. 13, 1980 as an official responsible for the Local Road Development Project implementation. This means that the DPUK is considered as a responsible agency for the actual execution of the Project.

According to instruction letter dated June 24, 1982 Ref. No. 620/975-/BANGDA, the Project Manager appointed by the Bupati will be responsible for the operation and maintenance of the equipment. Accordingly the Equipment Coordinator appointed from the staff of the Regional Public Works (Kantor Wilayah) by Bina Marga as a coordinator between the Governor and the Bupati will be responsible for delivery, effectual utilization and maintenance of the equipment.


The standard organization of DPUK consists of a minimum of four sections, i.e. Road Section, Housing and City Planning Section, Irrigation Section and Administration Section. For execution of the Project it is strongly recommended that the structural organization of DPUK is established. It will be necessary not only to organize new sections but also to reorganize the current structure through a review of the roles and responsibilities of each inter-related section.

It is recommended that the workshop is newly organized to consist of three sub-sections, i.e. maintenance and repair of equipment, operation and materials, and administration to execute the main tasks described in Clause 3.5.

The sub-section of laboratory would be under the relevant Road Section. The proposed organization is shown in Fig. 6-2-1.

6.2.2 Construction System

For the construction of Kabupaten roads with a ten year effective design life, it has been recommended in Clause 3.4 that the equipment intensive method should be adopted for earth work and pavement work with the exception of surface dressing.

-∭

: Equipment delivery flow

_____I

: New position/subsection

Current road construction in the Kabupatens is obliged to rely upon the traditional labour intensive method. It is therefore assumed that both the DPUK and the local contractors in the Kabupatens do not have sufficient experience and technique for the equipment intensive method of road construction.

For realization of the Local Road Development Project the GOI has ensured availability of the required human resources of DPUK and intends to conduct training programmes for those human resources as described in Clause 8.3 of the Main Report. This means that the GOI intends the Kabupatens to have the ability to execute the Project by force account (Swakelola).

It should be recognized from the experiences in the first local road project, which was assisted by OECF, ADB and IBRD, that because of their poor construction management and traditional labour intensive methods most of the road construction by local contractors could not be completed within the contract periods. Therefore execution of the road improvement by force account is desirable as recommended from their experience by the consultants for the first local road project.

It is strongly recommended that except for labourers the staff of the force account team should not be hired by the day as it would then not be able to consolidate the foundations for development of self reliability.

However, it will be very difficult to execute all the Projects by force account because of the need for many Kabupaten staff. The GOI has emphasized the need to promote the employment of local weak contractors in order to up-grade their capability in the road project schemes within the Fourth Five-Year Plan (REPELITA)

Taking into consideration the conditions mentioned above it is strongly recommended that the DPUK is obliged to lend some equipment with skilled operators to the local contractors in the Kabupatens for the execution of a part of the road improvement works. The types of work executed only by force account are recommended as follows:

- Routine maintenance work for the Kabupaten roads
- Laboratory tests
- Production of crushed stone
- Technical service for the equipment