4.2 改善策

4.2.1 省エネルギー (ENERGY) 計測

現在、計測器の不備が主な原因ではあるものの、炉設備の省エネルギー計測 体制が十分でなく、正確な現状把握が出来ていない。今回の現地調査では調査 団が持参の計測器にて代表炉の実炉測定を行ったが、第一重機廠においても同 様の計測器を装備して、現有の全ての炉設備に対して省エネルギー計測を実施 することが望まれる。

計測結果は表4.2.1-1に示すような報告書としてまとめておくのがよいであろう。この計測は同一炉においては6ヶ月毎に行う。又、省エネルギー改造工事を実施する場合はその前後に必ず計測を行い、改造工事の効果を定量的に把握しておくことが必要である。これによって以後の改造工事の指針をより明確に把むことができる。代表的な省エネルギー計測器として、酸素計、表面温度計、ディジタル(DIGITAL)温度計、マノメータ(MANOMETER)等があげられる(V章参照)。一方、各種熱管理データの整理および熱計算のために、パーソナル・コンピューター(PERSONAL COMPUTER)を導入することも非常に有益と思われる。ちなみに図4.2.3-2は、パーソナル・コンピューターによって行った炉壁伝熱計算のアウト・プット(OUTPUT)を使用している。

表4.2.1-1 操炉状况報告書

設備	常名					测	定年月日	3		年 月	Ħ	燃料使用量			Nm³
涉	1 定項	目	摘		要	(1),	加熱/は	—— 匀热	(2)	加熱/	納	(3)加熱/均熱	(4)	加熱/均熱	(5)加热/均蒸
1	燃料	流量	1	N m³,	/hr		·····						 		
2	空気	流量	i	/m/	/hr		·			- n					
3	炉内	温度		•	3										
4	b= rte	rr: - J .			設定値										
4	炉内	庄 刀	mm H	120	台車上										
5	排ガス	च्या सह	•	 С	回収前										
J	191-7-7	施及		·	回収後										
6	二次空气	式温度		C				_							
7	排ガス	流速	r	n/s	} 					_T ···· •·· · · · · · · · · · · · · · · ·					
8	バーナー	-本数	1 1 -			渺	定位置	Oz	(%)	少免让	ხო	排ガス量(Nm/	hr)	排ガス損失	·熱(kcal/hr)
9	積 載	量	· · · · · · · · · · · · · · · · · · ·		ton	(1)	炉内								
* *	炉壁温 図は焚	隻(kバーナ)の₩ ~—	寺測院	i.	''	煙道								·
炉前		(6		(7)	炉尻	(2)	炉内								
] k(1)	* (11)	k		*- (13)	*(3)		煙道								
 - -	*	ķ	<	*	*(4)	(3)	炉内								
l	(8)	k2)		** (10)			煙道	-			_				
(1)	°C	(2)	°C	(3)	°C	(4)	炉内								
(4)	*C	(5)	°C	(6)	° C		煙道								
(7)	*C	(8)	°C	(9)	°C.	(5)	炉内								
10)	°C	(11)	°C	(12)	°C	1	煙道	* <i>b</i> > -	_ \/						
13)	°C	(14)	*C	(15)	ŗ		ニートハ	· <i>y</i> –	- /						
特証	澤項														

4.2.2 台車式加熱炉の改造

本工場の加熱炉は4.1.5 頃で述べたように現代の標準的な加熱炉とはかなり 異なった燃焼システム (SYSTEM) を取っているため、現代の加熱炉と比層でき る省エネルギー効果を得るためにはかなり思い切った改造が必要になる。しか し、表4.1.1-2よりもわかるように第一重機廠の石炭ガス消費の41%という 大きな割合を占める加熱炉の省エネルギー改造は是非とも積極的に進めるべき であろう。以下、改造方針の検討内容を項目別に列記する。

(1) バーナー (BURNER)

既設パーナーは火口において空気とガスがミックス (MIX)される外部混合型であり、低発熱量ガス (1,450 kcal / Nm) 使用かつ低圧混合(ガス圧: $120 \sim 150 \text{mmH}_20$ 、空気圧: 80mmH_20)よりソフト・フレーム (SOFT FLAME) 燃焼と思われる。現在の燃焼状態に何ら問題なく、改造においてもパーナーは現状のままとするのが得策であろう。

もし、高速パーナーに変更しようとすると下記の問題が持ち上がる。

- ・バーナー・フレーム (BURNER FLAME) のモーメンタム (MOMENTUM) が大き くなり伝熱効果がよくなる反面、現在の炉形状のままでは処理物とバーナ ーの距離が不十分で処理物の局部加熱が懸念され、炉内巾の拡大等の対策 が必要となる。
- ・ガス圧はコントロール (CONTROL)部も含め、 1,000mmH₂0 以上必要となる ため現在の供給圧 (600~750 mmH₂0)では対応出来ない。

バーナーの変更はバーナー取付部の煉瓦・金物の改造が必要となり、非常に 費用がかさむことも忘れてはならない。

(2) 交番蓄熱室と切換燃焼

既設の加熱炉が地下に二つの蓄熱室を設けて排ガスと空気を交互に通すことによって燃焼空気を予熱しているのは、当時安定して高温の空気予熱のできるレキュペレータ (RECUPERATOR)が入手できず、平炉などで実績のある方式を流用したものと思われる。蓄熱室自体の熱容量が大きく、炉の熱効率に悪影響を及ばしているであろうこともさりながら、この交番蓄熱室を基本とした切換燃焼構造を残したままでは、各バーナーへ導かれる燃焼空気量の調整が不可能で空気比の改善もそれを主目的とした自動制御の導入も非常に困難である。

従って、髙効率の金属管式レキュペレータを炉尻に新設することを前提として、下記の改造を行い、標準的な連続した燃焼方式に転換する必要がある。

まず交番蓄熱室のうち、片方を廃止し、他方は蓄熱煉瓦を取り去り単なる排 気専用の通路とする。よって排気専用とした蓄熱室に継っていたバーナー(全 体の半数)は不要となり、その燃焼空気流路は排ガス煙道専用として機能する ようになる。

廃止された蓄熱室に継っていたパーナーには別経路で燃焼空気を導き、連続して燃焼させるようにする。レキュペレータを通過して予熱された燃焼空気のパーナーへの供給は炉の両側にヘッダー(HEADER)配管を新設し、炉壁内の煙道とを結ぶことによって行う。これによってパーナーとヘッダー間の配管中にくせ取り用のパルプ(VALVE)又はオリフィス(ORIFICE)を設けることが出来るようになり、パーナー毎の空気量調整が可能となる。

但し、レキュペレータの設置により、燃焼空気の圧損が増えるため燃焼空気 ブロワー(BLOWER)を吐出圧の高いものに取り換える必要が出てくるであろう。

(3) 空燃比、燃烧量制御

現在は空燃比、燃焼量とも手動でコントロールされており、結果として 1.6 ~1.9 という高い空気比での操業となっている。これを安定して 1.2程度の理想値で操業できるようにするには、上述のようにバーナー毎の空気量調整を可能とした上で、自動制御を導入することが不可欠である。

制御システムが複雑で高価になるのを避けるため、温度補正をしなくてよいように燃焼空気コントロール弁はレキュペレータ通過前の冷風側に設け、1ゾーン・コントロール(ZONE CONTROL)とする。又、石炭ガスの場合、理論空気量が1.3 Nm/ Nmと低く、空気配管と燃料配管の径に大差がなくコントロール弁の特性が似かよってくるため、空燃比制御は高価なカスケード(CASCADE)制御を用いなくとも燃料コントロール弁と燃焼空気コントロール弁を機械的リンケージ(LINKAGE)で結び一台のコントロール・モーター(CONTROL MOTOR)で駆動する方法で十分対応できよう。

加熱炉の場合、ヒート・バターン(HEAT PATTERN)は多様でないので、定値 制御とし、プログラム (PROGRAM)設定器の設置までは考えないものとする。

(4) 炉圧制御

現在炉圧は手動でコントロールされているが、燃焼量、空燃比の自動制御導入にともない、炉圧制御も追加すべきである。現在使用しているゲート(GATE) 式炉圧ダンパー (DAMPER) は熱変形により作動抵抗が増えやすいため、自動制御にはふさわしくない。よって、バタフライ (BUTTERFLY)式のものに取り換える必要がある。

(5) 燃料流量指示/積算計

未設置の炉には残らず取り付ける必要がある。容積型計器類の方が精度は高いが、それらの下記短所を考慮するとオリフィス式にならざるを得ないと思われる。

- ・石炭ガスは発熱量が低く、燃料配管径が大きいため非常に高価になる。
- ・計器自体の圧損が大きい。
- ・ガス中のタール (TAR) 分固着によりトラブル (TROUBLE) を生じやすい。

(6) 炉壁断熱

現在の大きな炉壁蓄熱損失を低減するためには、炉壁に50mm程度のセラミック・ファイバー (CERAMIC FIBER)を内張りする方法がある。

但し、加熱炉にセラミック・ファイバーを用いる技術は比較的新しいもので、 貼り付け面のケレンが不十分であると脱落の原因になりやすいこともあり、一 般に施工業者は寿命を保証してくれない。従って、本改造を行う場合には、何 基か代表的なもので様子を見てから、残りの炉にも施工するというようなステ ップ (STEP) を踏む必要があろう。

対象となる場所は、バーナー周りを除く側壁、天井、後壁で、扉は自重圧着 式のため、内張りするのは少々難しい。

(7) 炉体各部のシール(SEAL)

現在目立つのは炉尻の炉壁と台車の隙間よりの放散損失であるが、これは鋼材とセラミック・ファイバーを組み合わせた簡単なカバー構造で防ぐことが出来よう。

扉及び台車のシールは現在の炉内が負圧になっていると思われる状態では特に不具合として目立っていない。炉圧を適正にした上で吹き出しが目立つようであれば、エア・シリンダー (AIR CYLINDER) による扉圧着装置の追加や台車

シールの二重サンド・シール (SAND SEAL)化が必要になるかも知れない。

以上の検討結果をまとめる表4.2.2-1および2に示される通り、二つの区分よりなる改造提案が導かれる。表には改造に伴って新たに必要となる主要機器も付記している。

表 4.2.2-1 台車式加熱炉 改造区分 1

改 造 項 目	主な新設	機器	備考
1. 自動制御の導入			図4.2.2-1参照
1.1 温度制御	温度指示調節計	: 1	
	校 窜 熱	: 1	
	補償導線	: 1式	
	ガス・コントロール弁	: 1	
	空気コントロール弁	: 1	
	コントロール・モーター	: 1	
	機械的リンケージ	: 1式	
1.2 炉 圧 制 御	炉圧指示調整計	: 1	
	炉圧発信・変換器	: 1	-
	バラフライ式ダンバー	: 1	
	コントロール・モーター	: 1	
2. 蓄熱室と切換燃焼の廃止			図4.2.2-2参照
2.1 レキュペレータ設置	レキュペレータ	: 1	図4.2.2-3参照
	温度警報器	: 1	
	熱 電 対	: 1	レキュペレータ
	補償導線	: 1式	過熱保護回路用
	コントロール弁	: 1	
	コントロール・モーター	: 1	
	燃焼空気ブロワー	: 1	**************************************
2.2 空気流路変更	配 管 材	: 1式	
	バルブ又はオリフィス	: 1式	1
	目張用耐火物	: 1式	
3. 燃料流量指示/積算計	オリフィスプレート	: 1	
の設置	差圧発信器	: 1	
	開平演算器	: 1	
	指示積算計	. 1	
			<u> </u>

表 4.2.2-1 台車式加熱炉 改造区分1 (続)

	改	造	項	目			主	な	新	設	機	Z	n ii	備	考
4.	炉尻	シー	ルの強	化		鋼		材				:	1式		
						也	ラミッ	ク・フ	ファイノ	4		;	定 1		
					į										

表 4.2.2-2 台車式加熱炉 改造区分 2

改 造 項 目	主 な 新 設 機	An CO	備	考
1. セラミック・ファイバー	髙温用セラミック・ファイバー	: 1式		
の内張り	接 着 剤	: 1式		
	コーティング材	: 1式		
	·			

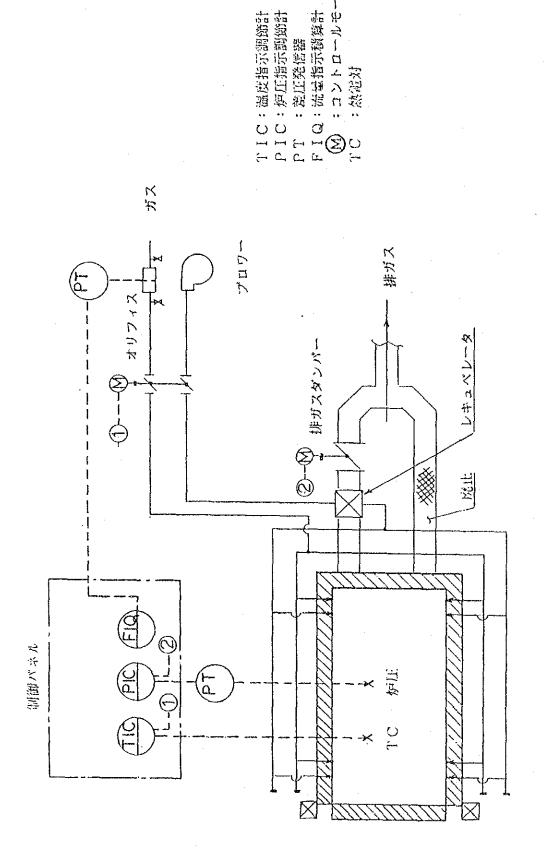


図4.2.2 1 台車式加熱炉自動制御概念図

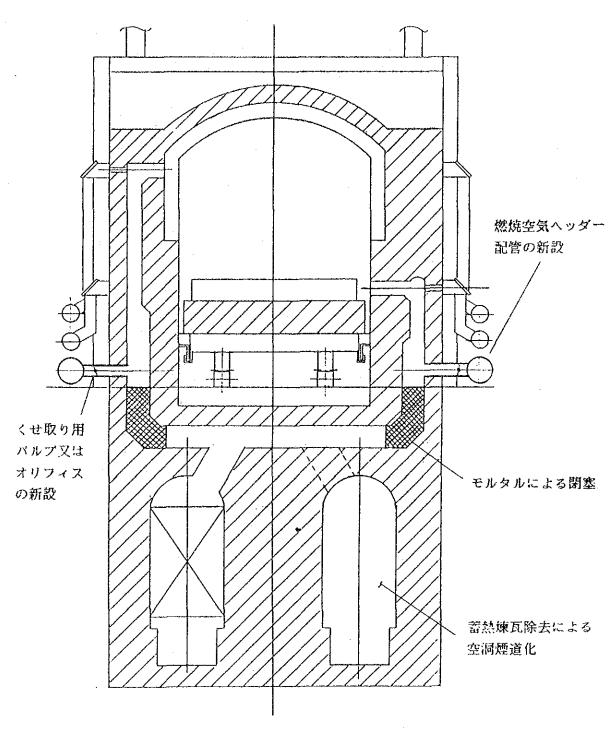


図4.2.2 - 2 交番蓄熱室と切換燃焼の廃止要領

|羽4.2.2 - 3|| 金属管式レギュペレータ参考図

4.2.3 台車式熱処理炉の改造

4.1.6項に示された調査内容を踏まえて下記の通り改造方針の検討を行った。

(1) パーナー

一般的に考えると、現在使用されている低圧ノズルミックス式のバーナー (ガス圧、エア圧とも 200mmH₂0) より高速バーナーの方が伝熱効率の面でも、 炉内温度分布の面でも有利であるが、 取換に当たっては下記のような障害を同時に克服する必要があり、 改造工事が大がかりになりすぎるため、 今回の改造に当たっては高速バーナーの採用は見送りたい。

- ・現状の炉構造ではバーナーと処理物の距離が不十分で、処理物の局部加熱を起こしやすい。又、仮に上部バーナー廃止し、下部バーナーのみとし、台車上の架台を高くして直撃を避けるようにしたとしても、今度はバーナー正面に排ガス口があるため、燃焼ガスがショート・バス (SHORT PASS)を起こす心配が出てくる。
- ・ガス供給圧は 1,000mmH₂0 以上必要で、現在の供給設備では対応できない。 一方、自立弁によって空燃比コントロールする低圧比例式パーナーを使用す ると、自動制御回路を簡略化できる可能性がある。第一重機廠においても試験 的に使った経験があるが、石炭ガス中のタール固着により自立弁がすぐに作動 しなくなり使い物にならなかったとのことである。

以上より現在のバーナーをそのまま流用することを前提として、以下の検討 を進めたい。

(2) 排熱回収

元来、熱処理炉においては排ガス温度が低く、レキュペレータによる排熱回収効果はあまり期待できない。しかも複数ゾーン炉にレキュペレータを設けると、自動制御を導入するに当たって予熱空気側で空燃比コントロールを行わなければならなくなり、温度補正回路を含む高価なカスケード制御を使用する必要が出てくる。このため、バッチ(BATCH)式熱処理炉に対するレキュペレータの設置は、試験的なものを除きあまり例を見ない。第一重機廠においては、工場内製のレキュペレータを設置した炉もあるが、効率悪くもれ等の問題もあり、一部では取りはずして操業されている。これらの事実を考慮に入れて、総合的に判断した場合、省エネルギーのためには自動制御導入を含む空気比の改善

を優先し、レキュペレータは省略した方が得策と思われる。

(3) 空燃比·燃烧量制御

現在は空燃比、燃焼量とも手動でコントロールされているが、燃焼空気量の 調整が大雑把で空気比 1.7~ 2.3という非常に高い状態で操業されている例も ある。どの燃焼領域においても安定してもっと低い空気比(攪拌用過剰空気を 考慮し、1.4~ 1.7程度)にて操業出来るようにするには自動制御を導入する 必要がある。

基本的に現状の燃焼ゾーン分けを流用した複数ゾーン・コントロールとする。 空燃比は加熱炉の項で述べたとおり、機械的リンケージを用いた方法とする。

熱処理炉の場合、複雑なヒート・パターンに追随する必要があるため、プログラム設定器も設けるものとする。

(4) 炉圧制御

現状は手動コントロールであるが、燃焼量、空燃比の自動制御化に伴い炉圧 制御も導入する必要がある。要領は加熱炉に準じるものとする。

(5) 燃料流量指示/積算計

未設置の炉には残らず設ける必要がある。要領は加熱炉と同じとする。

(6) 炉壁断熱

現在は耐火煉瓦表面に50mm程度のセラミック・ファイバーの内張りを追加し、 炉壁蓄熱損失の低減を図っている。さらに大幅に炉壁蓄熱損失を低減しようと すると、耐火煉瓦壁を全面的に熱容量の小さいセラミック・ファイバー構造に 変更する必要があるが、この場合現状の耐火煉瓦のみからなる天井アーチ構造 は全面的に廃止し、鋼板構造に改造しなければならず、工事は少々大がかりに なろう。天井、側壁、後壁、扉が改造対象となる。

(7) 炉体各部のシール

扉、台車、炉尻のシールとも炉内が負圧ぎみの現状では、不具合が目立って いない。炉圧の適性化を実施した上で不具合が目立つようになれば、手直しを 行わなければならないのは加熱炉と同じである。

以上の検討結果をまとめると、表4.2.3-1および2に示される二つの区分よりなる改造提案が導かれる。

表 4.2.3-1 台車式熱処理炉 改造区分 1

改 造 項 目	主な新設	機器	備 考
1、自動制御の導入			図4.2.3-1参照
1.1 温度制御	プログラム設定器	: 1	
	温度指示調節計	: 1/ゾーン	
	補償導線	: 1式	
	ガス・コントロール弁	: 1/ゾーン	
	空気コントロール弁	: 1/ゾーン	
	コントロール・モーター	: 1/ゾーン	
	機械的リンケージ	: 1式/ゾーン	
	調整用オリフィス(ガス・3	空気): 1式	
1.2 炉 圧 制 御	炉圧指示調節計	: 1	
	炉圧発信・変換器	: 1	1
	バタフライ式ダンバー	: 1 .	
	コントロール・モーター	: 1	
2. 燃料流量指示/積算計の	オリフィス・プレート	: 1	
設置	差圧発信器	: 1	
	開平演算器	: 1	
	指示・調節計	: 1	

表 4.2.3 - 2 台車式熱処理炉 改造区分 2

改造項目	主 な 新 設	概 器	備考
1. 全セラミック・ファイバ	セラミック・ファイバー	注1:	図4.2.3-2参照
—1Ľ	取付金具	: 1式	
	天井鋼板構造	: 1式	
	扉用キャスタブル	: 1式	,
		<u></u>	

TY : プログラム設定器
 TIC: 間度指示調節計
 PIC: が圧指示調節計
 PT : 差圧発信器
 FIQ: 流量指示複算計
 FIQ: 流量指示複算計
 TC : 法電対

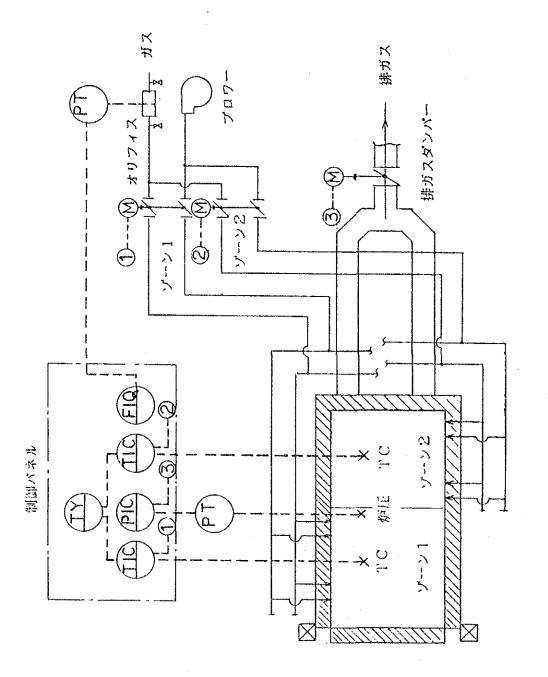
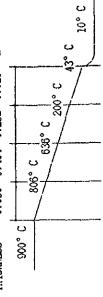



图4.2.3 1 台車式熱処理炉自動制御概念図

POSITION = VERTICAL WALL HEAT LOSS = 325 kcal/m2h HEAT STORAGE = 174,272 kcal/m2

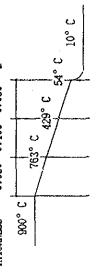
84480 0.020 8-3 0.232 HO.1 0.464 BRAND NAME = CF-8P THICKNESS = 0.050

kcal/mh°C kcal/kg°C g/c#3 AVG TEMP = 853 721 418 122 THERM COND = 0.172 0.888 0.173 0.041 SPEC NIGAT = 0.243 0.239 0.222 0.192 DENSITY = 0.130 2.000 0.710 0.080 現状の試算は第一重機廠で用いているものに、 霊地)

品質・物性的に相当と推定される耐火物を選定

した行ったこる。

会カラミック・ファイバー化の試算はペーパー જં


ライニング (PAPER LINING) 法による場合の

一倒である。

HEAT TRANSFER OF REFRACTORY LINED LAYERS ***

POSITION = VERTICAL WALL
HEAT LOSS = 455 kcal/m2h
HEAT STORAGE = 2,888 kcal/m2

CF-7P RV#80 0.100 0.050 BRAND NAME = CF-8P THICKNESS = 0.050

kcal/mh°C kcal/kg°C g/cm3 596 241 0.136 0.061 0.240 0.204 0.100 0.080 AVG TFMP = 832
THERH COND = 0.166 0
SPEC HEAT = 0.242 0
DENSITY = 0.130 0 CF-8P 炉壁放散熱量 A. Pol) HEAT LOSS

センミック・ファイバー

カラミック・ファイバー

CF-7P 炉壁蓄熱量 HEAT STORAGE

恒火物の陣や THICKNESS

耐火断熱煉瓦

B-33

慰火凝瓦

됐

耐火物の種類

BRAND NAME

ハゼレワ・セーラ RW#80 平均温度 AVG TEMP

熱伝導率 THERM COND

五数 SPEC HEAT

免項 DENSITY

全セラミック・ファイバー化の効果例 **⇔** 図4.2.3 —

4.2.4 改善の期待効果

(1) 省エネルギー計測の実施

4.2.1 頃に述べた省エネルギー計測を実施したことにより、どのくらいの省エネルギー効果が得られるかを定量的に示すことは困難であるが、これまで全く計測を行っていなかった炉に省エネルギー計測を行って、空気比の修正等をした場合、計測器の購入費などは数ケ月以内に回収されてしまうのが通例である。

(2) 台車式加熱炉の改造

代表炉(鍛造工場一工部2盤、125ton台車式加熱炉)において、4.2.2項に示した改造工事を行った場合の効果を推定するために、実炉測定を行った時のヒート・パターンに類似したあるヒート・パターンを設定した上で、下記4つのCASEにおける熱清算を行い、推定される燃料使用量の比較を行った。

結果を表4.2.4-1に、計算条件を図4.2.4-1に示す。

CASE 1	現状	
CASE 2	改造区分 1	自動制御の導入、他
CASE 3	改造区分 2	セラミック・ファイバーの内張り
CASE 4	改造区分 1+2	自動制御の導入+セラミック・ファイバーの内張り

上記結果より得られる改造による燃料低減率は、あくまでも特定のヒート・パターンにおける一例で、これを安易に一般化して考えることは非常に危険である。しかしながら、改造の期待効果をある程度定量的に把握することは省エネルギー工事において不可欠であるため、若干の危険は承知の上で、また種々の条件を置いた上で全台車式加熱炉に対して同様の改造を行った場合の年間燃料使用量の低減効果および改造費の回収に必要な年数を試算した。結果を表4.2.4-2に示す。

以上の試算結果から判断する限り、現地における改造工事費、機器据付費を 考慮に入れても、改造区分1実施によりかなり大きな投資効果が得られるもの と思われる。よって中国側の予算が許す限り、多くの炉に順次改造区分1を実 施することを推奨する。

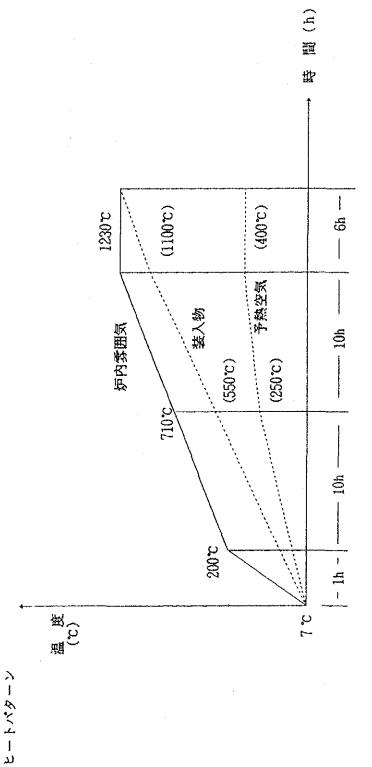
改造区分2は比較的簡単に工事が実施できる反面、投資効果はあまり大きくないと思われる。また、4.2.2(b) 項に示したような技術的な問題も残っているのであまり積極的には推奨しないものとする。

表4.2.4-1 台車式加熱炉の熱滑算

		CASE	r-4	CASE	2	CASE	3	CASE	4
		聚	长	改造区分		改造区分	2	改造区分	1+2
F-4	燃料の燃焼熱	6,349	83.0 %	4,218	88.0 %	6,085	83.8 %	4,032	88.5 %
< ₺	予熱空気顕熱	1,296	17.0 %	576	12.0 %	1,178	16.2 %	523	11.5 %
W.	-	7,645	100 %	4,794	100 %	7,263	100 %	4,555	100 %
	鋼材の吸収熱	717	9.4 %	717	15.0 %	LIL	9.9 %	717	15.8 %
	架合の吸収熱	343	4.5 %	343	7.1 %	343	4.7 %	343	7.5 %
3	排がス損失熱	4,794	62.7 %	2,240	46.7 %	4,611	63.5 %	2, 188	48.0 %
	炉壁蓄熱損失熱	1,250	16.4 %	1,250	26.1 %	1,074	14.8 %	1,074	23.6 %
I	炉 壁 放 散 損 失 熱	33	0.4 %	33	0.7 %	31	0.4 %	31	0.7 %
	雑 揖 失 熱	208	6.6 %	211	4.4 %	487	6.7 %	202	4.4 %
	+44	7,645	100 %	4,794	% 001	7,263	100 %	4,555	100 %

(×104 Kcal/lot)

27,807	36.5 %
41,966	4.2 %
29,090	33.6 %
43,786	% 0
燃料使用量	熬 草 缶 滨 举


(Nm /104)

1. 站教护

ૄ

2番 125ton台車式加熱炉 鍛造工場一工部

装入物 က

空気比

处理物 360ton + 架台 17.2ton=53.2 ton

現状 1.7が改造区分1を実施することにより、 1.2に改善されるものとする。

台車式加熱炉熱清算計算条件

表4.2.4-2 台車式加熱炉改造の期待効果試算(参考)

年	李	车	种
推定面収	2.9	5.5	3.4
推定改造數	$3,500 \times 10^3$ π	1.100×10^3 π	4,600 × 10 ³ 元
推定低减効果	1,230×103元/年	200 ×10³ 元/年	1,380×10 ³ 元/年
推定低减量	30,750×10³ N㎡∕4F	4,920×10 ³ N㎡/年	34,450×10°N㎡/年
推定低减率	25 %	4 %	28 %
	CASE 2	CASE 3	CASE 4

(试算条件)

- 改造対象は表4.1.2-1および表4.1.2-2に示された鍛造工場(一工部、二工部)の全17基の台車式加熱炉とする。
- 改造対象となるすべての台車式加熱炉の現状の年間燃料使用量は、表4.1.1 2の鍛造工場加熱炉の項に示される 136,884 × 10³N mの約90%即ち 123,000 ×10³ N m と仮定する。 ત્યં
- 3. 低減率は熱情算結果を参考として、安全側に見積もる。
- 石炭ガスの価格は、中国側から提示のあった「1,000 N㎡=40元、エスカレーション (ESCALATION) 無し」との条件を 使用する。
- 推定改造費は、改造に際して新たに必要となる機器の概算日本FOB価格を示し、現地における改造工事費、機器据付費は含まない。 1元=90円とする。 ന
- 2番)1基分の改造に要する機器の概算日本FOB価格を示すと、改造区分1に対して約18,000千円、 改造区分2に対して約8,000千円である。 参考として代表炉 (鉄造工場一工部 တ်

(3) 台車式熱処理炉の改造

代表炉 (熱処理工場10番、50 ton 台車式熱処理炉) において4.2.3 項に示した改造工事を行った場合の効果を推定するために、実炉測定を行った時のヒート・パターンに類似したあるヒート・パターンを設定した上で下記4つのCASE における熱清算を行い、推定される燃料使用量の比較を行った。

結果を表4.2.4-3に、計算条件を図4.2.4-2に示す。

CASE 1	現状	
CASE 2	改造区分 1	自動制御の導入
CASE 3	改造区分 2	全セラミック・ファイバー化
CASE 4	改造区分 1+2	自動制御導入+全セラミック・ファイバー化

上記より得られる燃料低減率を参考として、全台車式熱処理炉に対して同様の改造を行った場合の年間燃料使用量の低減効果および改造費の回収に必要な年数を試算した結果を表4.2.4-4に示す。

以上の試算結果より判断する限り、現地における改造工事費、機器据付費を 考慮に入れても、改造区分1の実施、改造区分2の実施とも十分な投資効果が 得られると思われる。省エネルギー面のみでなく、熱処理における品質向上面 からも自動制御の導入は不可欠であり、改造区分1を優先的に実施することを 推奨する。

改造区分2の実施による省エネルギー効果はかなり大きいと思われるが、実施に当たっては既存の煉瓦壁を全て取りくずす必要があり、工事が非常に大がかりになることからも、優先度は改造区分1を凌ぐものではないと判断される。

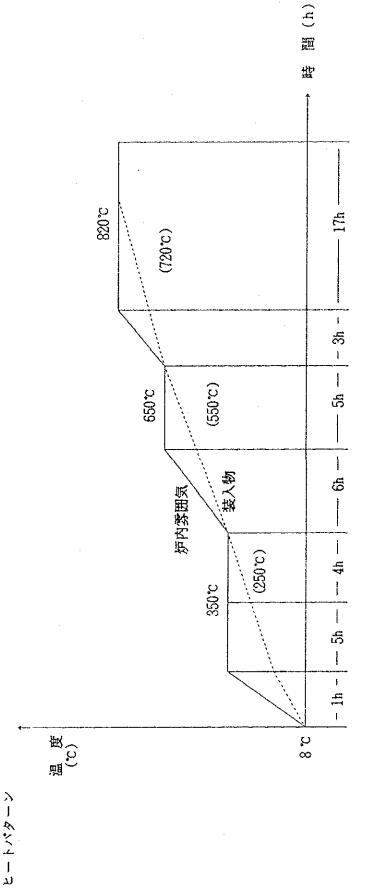
表4.2.4-3 台車式熱処理炉の熱清算

4	1+2	100 %	%	100 %	21.0 %	3.0 %	58.5 %	10.5 %	3.9 %	3.0 %	100 %
CASE	改造区分 1	2,358	0	2,358	495	72	1,380	249	16	11	2,358
3	2	180 %	%	100 %	15.7 %	2.3 %	66.3 %	7.9 %	2.9 %	5.0 %	100 %
CASE	改造区分	3, 155	0	3, 155	495	72	2,090	249	91	158	3,155
2	—	7 001	%	100 %	12.8 %	1.9 %	54.5 %	25.7 %	2.1 %	3.0 %	100 %
CASE	改造区分	3,855	0	3,855	495	72	2,100	365	80	116	3,855
,	茶	700 %	%	% 001	9.7 %	1.4 %	62.7 %	19.5 %	1.6 %	5.0 %	100 %
CASE	湖	5,081	0	5,081	495	72	3, 188	366	80	254	5,081
		蒸料の燃焼熟	子熱空気顕熱	र्गू	鋼材の吸収熱	架台の吸収熱	排ガス損失熱	炉壁窗熱損失熱	炉 壁 放 散 損 失 熱	雑 損 失 熱	ilen
		,,,	√ \$	Ş.		1		I – 17	*	§.	

53.6 % 16, 262 37.9 % 21,758 24.1 % 26, 586 X 35,041 0 I 糾 **逆** 毌 使 荊 菜 漱

袋

裟


(Nm / 10t)

(×104 Kcal/lot)

対勢が

જં

37.2ton+架台 5.4ton = 42.6ton 処理物

装入物

က

空気比

V

現状 2.0が改造区分1を実施することにより、 350で以上において上昇部で 1.4、平坦部で 1.7に

改善されるものとする。

台車式熱処理炉熱清算計算条件 図4.2.4-1

表4.2.4-4 台車式熱処理炉改造の期待効果試算(参考)

tackusa 推定低減率 推定低減率 推定低減率 推定低減率 推定低減物果 推定低減物果 推定的 站 每 推定的 站 每 推定 回 収 年 CASE 2 20 % 21,000×10³ N㎡/年 840×10³ 元/年 3,950×10³ 元 元 4.7 年 CASE 3 30 % 31,500×10³ N㎡/年 1,260×10³ 元/年 1,260×10³ 元/年 2,250×10³ 元 元 1.8 1.8 年				
推定低減率推 定 低 減 量推 定 低 減 効果推 定 改 造 氧推 定 回 3,950 × 10³推 定 回 3,950 × 10³推 定 回 3,500 × 10³推 定 回 4,7320 %21,000×10³ N ㎡/年1,260 × 10³ 元/年2,250 × 10³元4.7445 %47,250×10³ N ㎡/年1,890 × 10³ 元/年6,200 × 10³元3.3	弁	车	车	件
推定低減率推 定 低 減 量推 定 低 減 量推 定 低 減 数 操推 定 改 造 数220 %21,000×10³ N ㎡/年840×10³ 元/年3,950×10³330 %31,500×10³ N ㎡/年1,260×10³ 元/年2,250×10³445 %47,250×10³ N ㎡/年1,890×10³ 元/年6,200×10³	定回	4.7	1.8	3.3
推定低減率推 定 低 減 量推 定 低 減220 %21,000×10³ N m²/年840×10³330 %31,500×10³ N m²/年1,260×10³445 %47,250×10³ N m²/年1,890×10³	定改造	950×10^{3}	250×10^{3}	200×10^{3}
推定低減率 2 20 % 3 30 % 4 45 %	定低减効	$\times 10^3$	260 × 10³	$\times 10^3$
2 8 4	定低減	21,000×10 ³ N㎡/年	31,500×10³ N㎡/年	47,250×103 N m /年
CASE 2 CASE 3	推定低减率	20 %	30 %	45 %
		CASE 2	CASE 3	CASE 4

(試算条件)

- 改造対象は表4.1.2-1、表4.1.2-2および表4.1.2-3に示された鍛造工場 (一工部、二工部) および熱処理工場の全77基 の台車式熱処理炉とする。
- 改造対象となるすべての台車式熱処理炉の現状の年間燃料使用量は、表4.1.1-2の鍛造工場および熱処理工場の頃に示される 90,983×10g N㎡と 25,459 ×10g N㎡の合計の約90%即ち 105,000×10g N㎡と仮定する。 ત્યં
- 3. 低減率は熱清算結果を参考として安全側に見積もる。
- 石炭ガスの価格は、中国側から提示のあった「 1,000N m=40元、エスカレーション(ESCALATION)無し」との条件を使用する。
- 推定改造費は、改造に際して新たに必要となる機器の概算日本FOB価格を示し、現地における改造工事費、機器短付費は含まない。 1元=90円とする。 က်
- 参考として代表炉(熱処理工場10番)1基分の改造に要する機器の概算日本FOB価格を示すと、改造区分1に対して約13,000千円、 改造区分2に対して約7,000千円である。 ည်

4.3 参考資料

4.3.1 石炭ガス

炉設備の熱源として用いられる石炭ガスは、第一重機廠内の石炭ガスステーション (GAS STATION)にて製造される。石炭ガスは天然ガス、石油ガスといった一般的なガス燃料に比べて極端に発熱量が低く、又タール (TAR)分、水分等を含有するため省エネルギーを考える上でも、自動制御を考える上でも非常に使いにくい燃料の一つである。

しかし、中国および第一重機廠における諸般の事情を考慮した場合、現在使用している石炭ガスを他のクリーン (CLEAN)な燃料、例えば天然ガスや灯油に転換するという考えは残念ながら非現実的であると言わざるを得ない。従って、今回の検討はあくまでも石炭ガスを今後も使用していくとの前提のもとに行っている。

中国側より提示を受けた石炭ガスの諸元は以下の表4.3.1-1に示す通りである。

組成 CH4 CmHn C0 H₂ N_2 $C0_2$ 0_2 (%) 28.5 14.0 3.0 2.5 0.40.251.4 比 重 1.08 kg/N m低位発熱量 1,450 kca1/Nm タール分 0.34 mg/Nm^3 水 分 200 mg/Nm² $600 \sim 750 \text{ mm H}_20$ (但し不安定) 供給圧力 35℃(設計)、65℃(実際) 供給温度

表 4.3.1-1 石炭ガス諸元

上表中のデータより熱管理上必要な諸数値を算出し、以下に示しておく。

理。	会 空	戾	罿	1.30 Nm²/ Nm²
理論	乾き排	ガス	至	1.89 Nm/ Nm
理論	湿り排	ガス	量	2.09 Nm/ Nm
排ガン	₹0 2 &	定空:	比	図4.3.1-1
排ガス温度と排ガス損失率			図4.3.1-2	

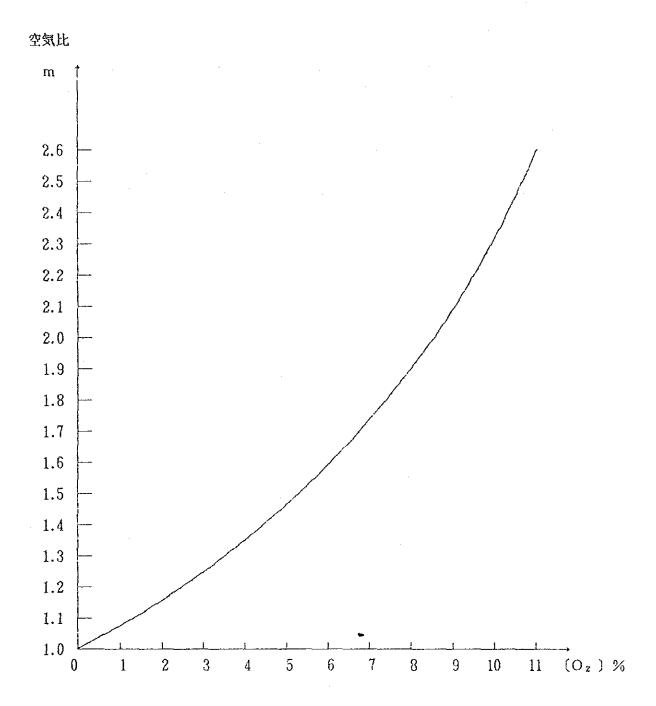


図4.3.1-1 排ガスO₂ -空気比m

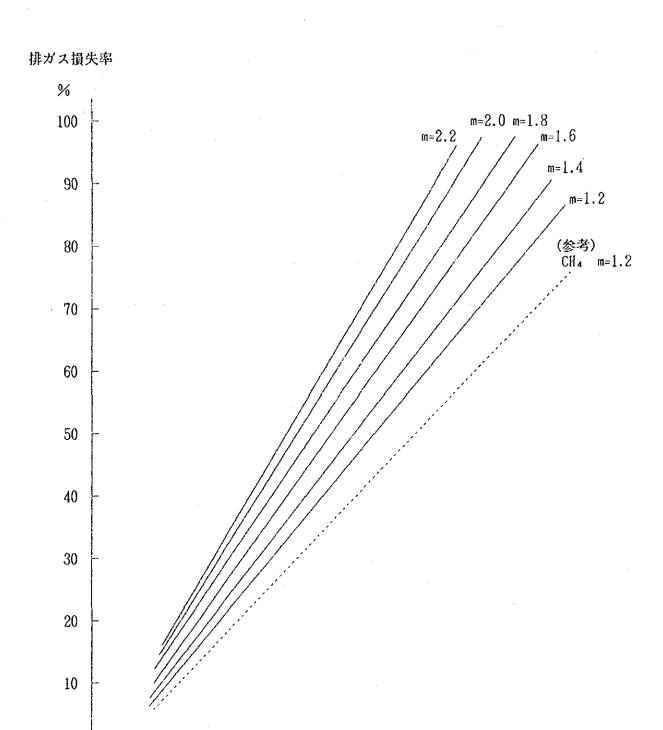


図4.3.1-2 排ガス温度-排ガス損失率

°C

4.3.2 省エネルギー改造工事の効果把握法

(1) まえがき

工業炉に改造工事を実施した場合、工事による効果の把握方法はいろいろあるが、炉体の変化ばかりでなく、操業条件も変わってくる場合など、効果をつかみにくい場合がある。

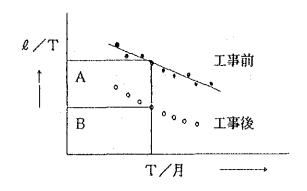
そこで、効果の把握方法を種々検討し、以下その概要を説明する。

(2) 効果把握方法

a. 同一ヒートパターンによる燃料比較

工事前後の同一ヒートパターンについて、燃料使用量その他を比較し効果を計算する方法である。効果は明白に表され、更に工事後においても目標を 設定してチャージごとの管理に適用出来る点で優れている。ヒートパターン の種類の多い炉については、総合的な効果を得るのには計算が損雑である。

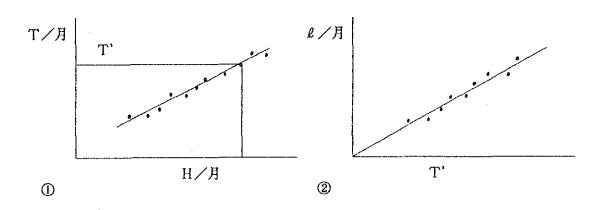
b. 原単位による比較


原単位 (ℓ/Tまたはℓ/H) により効果を把握する方法で、簡単にチェック (CHECK)でき、推移も容易に観察できる。但し、操業条件の変化の大きい場合には、必ずしも状況を正しく表示しない場合もある。

c. 処理量を加味した原単位による比較

原単位 (ℓ/Tまたは kcal /T) と処理量との関係を把握し、処理量の 増減を考慮しながら原単位を比較し、低減量を推定する。

適用範囲はかなり広いと思われる。



低減量=
$$(A-B) \times T$$
低減率= $\frac{A-B}{A} \times 100 \%$

d. 換算重量による燃料使用量の比較

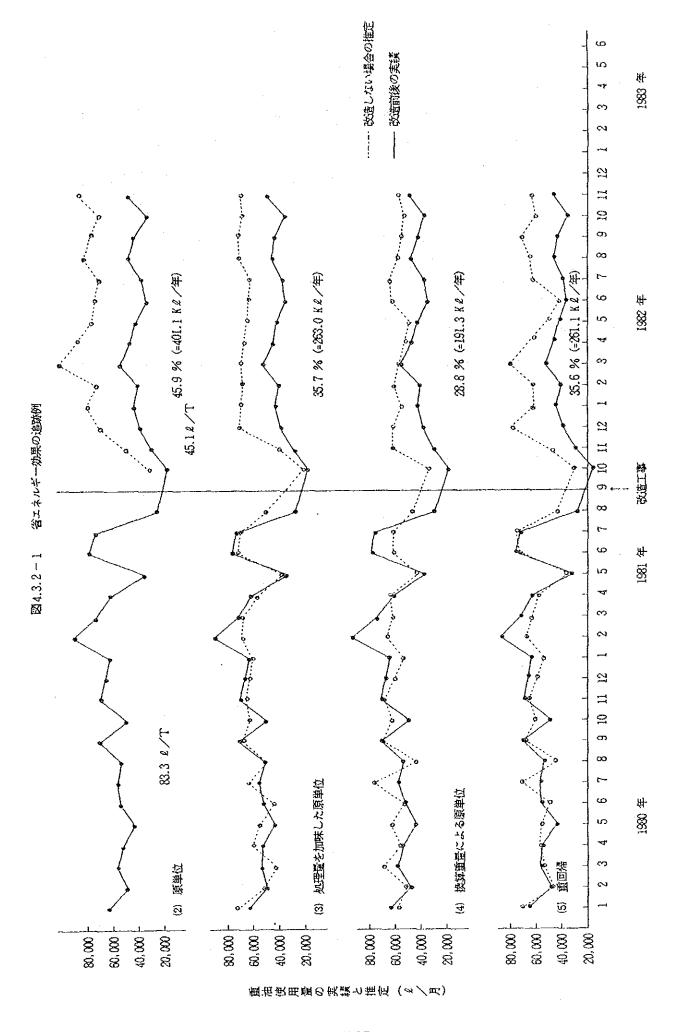
処理物の構成が大幅に変わった場合(ヒートパターンが異なるため積込量 が少なくても処理を実施する機会が多くなる等)で、処理物の重量より処理 時間の影響が大きい場合等に適用出来ると思われる。

- ① 処理時間により、処理重量の近似を行う。
- ② 近似された処理重量(換算重量)により、燃料使用量を推定する。

e. 重回帰式を用いる方法

以前までさかのぼって使用出来るデータとして、月当たりの処理重量(T /月)、処理時間(H / 月)および燃料使用量(ℓ / 月)があれば、これらを用いて簡単な一次回帰で燃料使用量を推定する方法である。かなり広い範囲で適用できるが、式の意味を考える場合に理屈に合わない(係数が負にな

る)場合や、又適用出来ない(誤差が大きい)場合もある。


回帰式 $\ell/$ 月=A×T/月+B×H/月+C

f. 熱勘定による方法

a.項とも関連するが、熱効率を求めて比較する方法である。

必要なデータを得ることや計算がやや大変であるが、工事前後で最低1回ずつは必要と思われる。スポット(SPOT)的な特性を表すことになるので、 総合的に効果を把握するためには、他の検討も必要である。

g. b.~ e. 項の方法による省エネルギー効果の追跡例を図4.3.2-1に示すが、試算方法により推定される省エネルギー効果にある程度の差異の出ていることがわかる。

4.3.3 熱処理炉の温度公差検定

炉設備のうち、熱処理炉については定期的な温度公差検定とそれに基づく等級分けがなされている必要がある。これによって、処理物の熱処理方案に指定された温度公差を満足する炉を選定することが可能となる。しかるに第一重機廠においては定期的な温度公差検定も炉の等級分けも行われておらず、熱処理における温度公差の保証が非常にあいまいである。よって、省エネルギーとは直接の関係はないがこの機会に熱処理炉の検定方法および等級分けの例を以下に紹介する。

(1) 温度分布測定

測定に際しては検定された熱電対と記録計を用いねばならない。

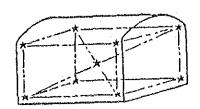
測定は原則として体積で30%以上、重量で30%以上の負荷状態で行い、輻射、 対流、伝導、火炎の状態等が検定に有利となる影響を与えぬよう考慮して行う。

(2) 測定位置

a. 横型炉

測定は原則として図4.3.3-1の9点で行う。

熱電対は測定点と壁面の距離が炉内長さ、幅、高さの10%又は 750mmの何れか小さい方となるように取り付ける。


炉内壁面間距離が 1,500mm以下の場合には、熱電対を一辺の中央に取り付けても良い。

b. 縦型炉

3本の熱電対を各ゾーン(ZONE)の軸方向中心で測定点と壁面距離が炉内径の10%もしくは750mmの小さい方となるように取り付ける。

2本の熱電対は原則として互いに 180°離れていること。

炉内径が 1,500mm以下の場合には、各ゾーンの中央に1本の熱電対を取り付けても良い。

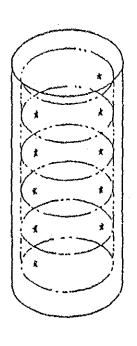
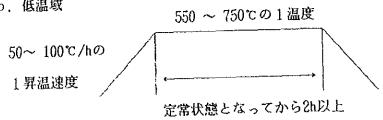



図4.3.3-1 測定位置

(3) 検定操業条件

検定は高温域、低温域双方に対し別個に評価するが、測定は1熱サイクル (CYCLE)、2熱サイクルの何れで行っても良い。操業条件は出来るだけ操業頻 度の高い物を選ばねばならない。

(4) 等級分類

測定結果に基づき、低、髙温両域に対して等級分類を行う。

a. 昇温期間

自動温度制御機の装備されていない炉では、原則として昇温期間の検定は行わない。

昇温期間の等級分類は下記に依る。

ここで、αは加熱中の各時点における最高と最低温度指示の差を指す。

b. 保持期間

ここで、βは保持期間中の各時点における最高と最低温度指示の差を指す。

c. 降温期間

原則として、降温期間の検定は行わない。

降温期間の検定を行った場合には、等級分類はa項による。

(5) 検定周期

定期検定は12ヶ月に一度行うものとする。(温度公差の要求の厳しい処理物に対してはその熱処理実施の直前に炉検定を行う必要がある。)

D級炉については改修、整備を行わない限り原則として翌年以降の検定は行わない。

5. 耐火物

5. 耐 火 物

5.1 調查內容

5.1.1 概要

製鋼工場における電気炉、取鍋、造塊用耐火物について在庫、施工、使用状況の調査および耐火建材廠の製造状況の調査を行った。調査結果の要点は下記の通りである。

(1) 電気炉

a. 炉蓋: 焼入高Al₂O₃ 質煉瓦を使用。耐用回数50~70チャージ (CHARGE) と 短命である。

煉瓦形状、施工法の改善が必要である。

- b. 炉壁:焼成MgO 質煉瓦を使用。耐用回数40~45チャージと短命である。 材質の改善、施工法の改良さらに適用材質の変更、水冷ボックス (BOX) の設置等を考慮すべきであろう。
- c. 炉床: MgO 質スタンプ (STAMP)材 (自製)の耐用不良により、焼成MgO 質 煉瓦を施工しているが、スラグ・ライン (SLAG LINE)部の耐用性向 上のためにもスタンプ材の改良、開発ならびに施工法の改善が必要 であろう。
- d. 出鋼樋: 高Al₂O₃ キャスタブル (CASTABLE) のプレキャスト (PRECAST)品 を使用しているが、25~30チャージと短命である。

材質改善または材質変更による耐用回数向上対策が必要であろう。

(2) 取鍋

- a. 材質:粘土質および焼成高Al203 質煉瓦を使用している。
- b. 耐用回数: 10~30チャージ程度と短命である。(主体は湯当たり壁の損傷 による。)
- c. 形状:万能型で、湯当たりの補強および中間修理が困難である。

横ぜり取鍋標準型の適用を考慮すべきであろう。

また、内挿式ノズル (NOZZLE) 使用のため、ノズル交換毎に冷却、加熱を繰り返しているおり、スポーリング (SPALLING) による剝離 損傷を助長している。

- (3) 造塊用ノズル (NOZZLE) 、ストッパー (STOPPER)、スリーブ (SLEEVE)
 - a. ノズル: 内挿式で毎チャージ後、冷却して差し換えているが、省エネルギー (ENERGY) のためおよび取鍋の耐用回数向上対策としても外挿 式に変更する必要があろう。
 - b. ストッパーヘッド: ヘッド (HEAD) 欠け、剝離による鋳造事故が発生して おり、亀裂、剝離防止対策が必要であろう。
 - c. スリープ:接合部の強度向上が必要であろう。モルタル(MORTAR)材質の 改良を要する。

いずれにしても、40 t、45 t、60 t、90 t、105 t 取鍋等にはスライド・ゲート・バルブ (SLIDE GATE VALVE) 装置の設置が望ましい。

(4) 定盤

13 t 以下の下注鋳造用に粘土質定盤が使用されている。

- a. 注入管:接合部の強度向上が必要である。形状についても検討を要する。 また、モルタル材の改良を要する。
- b. 湯道:材質改善、接合部の強度向上が必要である。

(5) 在庫管理

- a. 外部購入品:構内資材倉庫に用途別、材質形状別に整理して保管され、非 常に良好な状態である。
- b. 製鋼工場内:週間施工量、使用量以上の多量の各炉、各取鍋、各造塊用煉 瓦が裸積(ばら積)で持ち込まれており、良品、不良品、在 庫数量等の把握が困難である。すべての耐火物と外部購入品 と同様な倉庫に保管し、計画的に施工量、使用量の必要量の み製鋼工場へ持ち込む方式が良策と考える。

(6) 横持ち運設

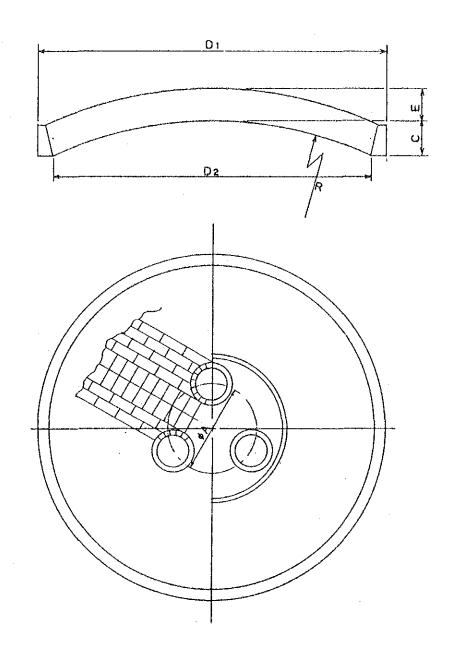
- a. 製鋼工場への持ち込みは現在、個々の裸積(ばら積)で撥入し、これを手渡し横持ち、移動が実施されており、角欠け、その他破損の可能性が大である。
- b. 使用必要量の撥入をパレット (PALLET) 積あるいは通箱等により行うことを考慮すべきである。

(7) 耐火物管理

a. 製鋼工場に耐火物の使用実績、使用状況、問題点の改良改善を検討する部門(専門班あるいは兼務)を設置し、製造者と協力し、耐火物の改良・改善を図るべきと考える。

(8) 耐火建材廠

a. 製品についての外観・寸法・形状ならびに品質検査の実施と強化が必要と 考える。

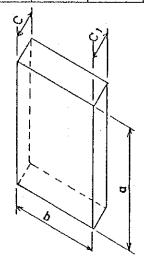

5.1.2 電気炉

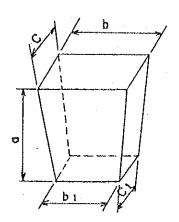
(1) 炉 蓋

炉	名(好	i容)	5 t (10 t) 炉	20 t 炉
施	工要領	図	図5.1.2-1	図5.1.2-1
使	用数	量	図5.1.2-2	図5.1.2-2
材質	大 寒 塵 極	井孔心孔	焼成高Al ₂ O ₃ 質煉瓦 な し] _{水 冷}	焼成高Al ₂ O ₃ 質煉瓦 な し 高Al ₂ O ₃ キャスタブル 水冷管
形状	大 寒 魔中電 極	井孔心孔	図5.1.2-2	図5.1.2-2
	回数(チャー 位 (kg/s-		70 —	50 9.4
間	題点	į	1)水冷部水漏れ 2)高Al ₂ O ₃ 質煉瓦の剝離 スポーリング 3)短命 4)煉瓦形状 5)施工方法	1)高A1203 質煉瓦の剝離 スポーリング 2)短命 3)煉瓦形状 4)施工方法

耐用回数がそれぞれ50チャージ、70チャージと短命である。

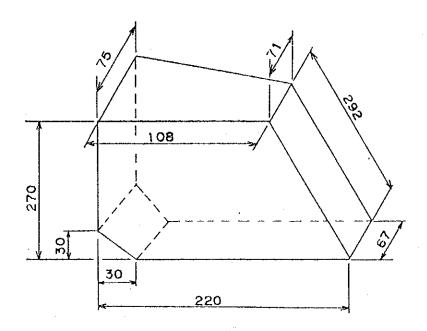
間けつ操業と長時間溶解という操業条件にもよるが、煉瓦形状と適正な膨張 代がなく、また攻め(KEYING)で無理な施工がその最大の原因と考えられる。


電気炉炉蓋主要寸法


(単位mm)

炉 別	D،	D ₂	С	φA	R	E
20丁炉	4,620	4, 190	580	1,200	5,000	300
5 T炉	3,170	2,740	530	900	2,084	300

図5.1.2-1 電気炉炉蓋施工図


炉 別	D-2	D-3	D-5	D-7	D-9	D-17	垂-6	垂-5	重量 t
5 T炉	100	30	160	100	550	140	30	30	~ 8.0
20丁炉	400	50	250	400	250	180	60	60	~12.2

符号	材質	а	ь	С	Cı	重量
D-2	高 Al ₂ 0 ₃	300	150	65	65	7.5 kg
D-3	髙 AlzO	300	100	65	65	5.0
D-5	髙 A120	300	150	65	65	6.9

符号	材質	а	b	b i	С	Cı	重量
D-9	高 Al ₂ 03	300	150	135	65	55	6.5 kg
垂-5	高 Al ₂ O	300	225	210	65	55	10.0
D-7	高 Al ₂ O	300	150	135	65	55	7.1

D-17型 高Al₂O₃ 質 重量8kg

図5.1.2-2 使用数量/基と形状図

(2) 炉 壁

炉 名(炉容)	5 t (10 t) 炉	20 t 炉
施工要領図	省略	省略
使 用 数 量	E3 140.	स्त भव
材 一 般 壁 *ゥト・スポット (HOT SPOT) 質 スラグ・ライン	」。 虎成MgO 質煉瓦	」。 遊成MgO 質煉瓦
形 一 般 壁 *ット・スポット 状 スラグ・ライン	】	☐ KEY 型 345×65×150 ~110 345×65×150
耐用回数 (チャージ) 原単位 (kg/s-t)	40(2~ 3週間) 17.5	45 (2~ 3週間) 10
補 修 法 料 方 法 使 用 量	MgO 質粉末(自製)に 苦汁を添加、スコップ (SCOOP) 投入 毎チャージ後 300kg	同 左 毎チャージ後 600kg ~ 700kg
問題点 (最大損傷部)	1)スラグ・ライン部の溶 損大、短命 2)出綱口上部せり上り脱 落 3)作業口付近剝離脱落 4)炉壁全体の剝離損傷	同 左

耐用回数がそれぞれ40チャージ、45チャージと短命である。

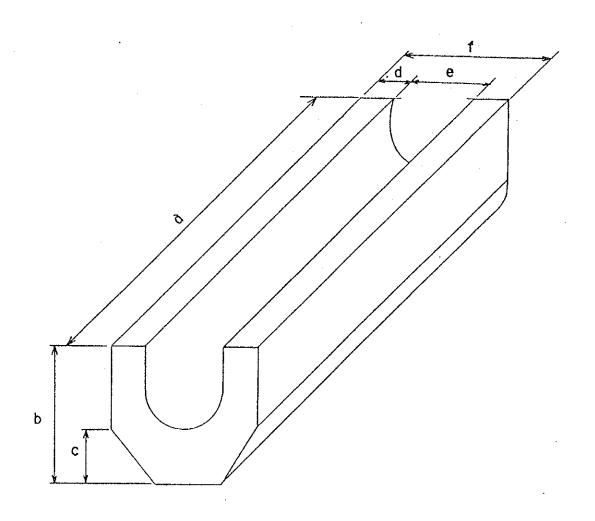
炉蓋同様、間けつ操業と長時間溶解という操業条件にもよるが、スラグ・ライン (SLAG LINE)部は炉床からのスタンプ層、その他の部位は適用材質、施工法に起因すると考えられる。

(3) 炉 床

					·
ķ	ii	名(戸容)	5 t (10 t) 炉	20 t 炉
材質	不煉	定	形瓦	焼成MgO 質煉瓦	MgO 質スタンプ 焼成MgO 質煉瓦
施	不	定	形		100 ~ 150 mm
工寸法	煉	٠.	瓦	230 mm	345 mm
使出	不	定	形	_	
用量	煉		瓦		
耐用	目回数	(チャ・	-ジ)	40	45
補 修 法 材 料 方 法 使 用 量			炉壁と同様 MgO 粉末に苦汁を添加 スコップ投入 毎チャージ後 300kg	炉壁と同様 同 左 毎チャージ後 600kg ~ 700kg	
ļt	引 是	f	· 点	1)溶損、剝離大 2)短命	1)スタンプ層の早期浮上 2)溶損、剝離大 3)短命

5 t 炉はスタンプ層耐用不良で、煉瓦施工に切り換えたとのことであるが、 焼成MgO 質煉瓦の溶損・剝離大で短命である。

20 t 炉は焼成MgO 質煉瓦の上部にスタンプを施工しているが、100 ~ 150mm と薄く早期に浮上し、短命である。


スタンプ材の改良、施工法の改善によってスラグ・ライン部までの施工が必要と考える。

(4) 出鋼樋

炉	名(炉容)	5 t (10 t) 炉	20 t 炉
材	質	高Al ₂ O ₃ (50~70%) キャスタブル	同 左
形	状	図5.1.2-3	図5.1.2-3
施	L. 方 法	プレキャスト	プレキャスト
耐用回数	(チャージ)	30	25
Ш	題点	1)スラグ・ライン部の溶 損大 2)溶損と共に付着物によ る鋳片品質への影響が ある 3)短命	同 左

各炉用共に、高 $\Lambda 1_2 0_3$ 、キャスタブルのプレキャスト一体物で、施工は容易であるが、耐溶損性に問題があり短命である。

適用材質の改善または材質変更により耐用向上対策が必要である。

電気炉出鋼樋寸法

(単位mm)

	a	b	С	d	е	f
20工炉	1900	400	200	80	350	500
5 T炉	1250	350	200	70	220	350

Al₂O₃ 50%

図5.1.2-3 出鋼樋形状図

5.1.3 取 鍋

(1) 電気炉受鋼鍋

容量×基数	10 t × 4 基	40 t×4基	45 t × 4 基
用 途	5 t 電気炉	20 t 電気炉	20 t 電気炉 Ar吹込
施工要領図 使用数量表	図5.1.3-1 表5.1.3-1	同左	同左
材 スラグ・ライン 湯 当 た り 一 般 壁 質 数	】 粘 土 質	同左	· 同 左
形 スラグ・ライン 湯 当 た り 一 般 蛍 状	万能型 300×120×80	同 左	同 左
耐用回数 (チャージ) 原単位 (kg/s-t)	9 ~ 12	8 ~ 10	10
問題点	1)全般に剝離、溶損大 2)特に湯当たりおよび各 目地損傷が鍋上りの主 原因で短命 3)万能型のためゾーン・ ライニング(ZONED LINING)や中間修理困 難	同 左	同 左
備 考			自製スライド・ゲート ・バルブ設 遷

注) 鍋上り : 取鍋の耐火物が損傷を受け、取り換えないと使用続行出来

なくなること。

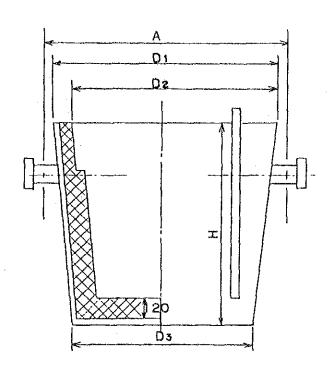
湯当たり: 受鋼時に溶鋼の直撃を受ける部分のこと。

敷: 取鍋の底部のこと。

(2) 平炉受鋼鍋

容量×基数	90 t × 4 基	105 t × 2 基
用 途	一般受鋼	脱硫用
施工要領図 使用数量表	図5.1.3 - 1 表5.1.3 - 1	同 左
材 スラグ・ライン 湯 当 た り 一 般 壁 敷	】 粘 土 質	高Al ₂ O ₃ 質, 粘 土 質
形	万能型 300×120×80	同 左 300 × 120× 80
耐用回数 (チャージ) 原単位 (kg/s-t)	9 ~ 11 -	9 ~ 11
問題点	電気炉受鋼鍋と同様	電気炉受鋼鍋とほぼ同 様であるが、側壁に地 金付着がある
備考		自製スライド・ゲート ・バルブ設置

(3) 真空鋳造中間網

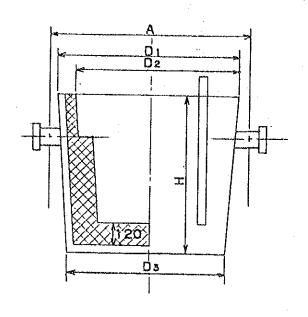

容量×基数	30 t × 2 基	60 t × 2 基
用 途	60 t 真空室中間鍋	250 t 真空室中間鍋
施工要領図 使用数量表	図5,1,3-2 表5,1,3-1	同 左
材 スラグ・ライン 湯 当 た り 一 般 壁 数	上 質	同 左
形 鍋 上 部 スラグ・ライン 湯 当 た り 一 般 壁	万能型	同 左
状 敷	300 × 120× 80	$300 \times 120 \times 80$
耐用回数(チャージ) 原単位 (kg/s-t)	9 ~ 11 -	9 ~ 11 -
問題点	1) 湯当たり部は敷であり 摩耗溶損 2) 地金付着の除去時の剝 雑損傷	同 左

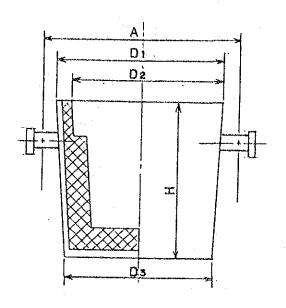
(4) 出鋼脱ガス (GAS)鍋

容量×基数	60 t×2基	
用 途	20 t 電気炉用	
施工要領図 使用数量表	図5.1.3-3表5.1.3-1	
材 スラグ・ライン 湯 当 た り 一 般 壁 敷	高Al ₂ O ₃ 質 粘 土 質	
形	万能型 300×120×80	
耐用回数(チャージ) 原単位 (kg/s-t)	15 —	
問題点	1)スラグ・ライン部地金 付大、除去時剝離 2)敷にも地金付有り スラグ・ライン同様除 去時剝離	

(5) 取鍋煉瓦の問題点まとめ

- a. 万能型形状のためゾーン・ライニングや中間修理が困難。
- b. 全般に剝離・溶損が大きい。
- c. 受鋼鍋では側壁が、中間鍋、脱ガス鍋では敷が湯当たりとなり、摩耗、剝 離損傷により鍋上りの主原因となっている。
- d. 目地開き、目地損傷
- e. 髙Al₂O。質使用鍋に地金付着があり、除去時煉瓦を損傷する。
- f. 内挿式ノズル取換え時、冷却しなければならず、煉瓦の剝離地金付を助長 している。




単位 mm

鍋名	重量	A	鉄皮外径	煉瓦積後 內 径	敷鉄皮外径	鉄皮高さ	永夕	入張
翔 石	里里	Α	Dι	D ₂	D ₃	Н	敷	側壁
10t	6.4t	2,120	1,724	1,420	1,561	1,810	150	100
40t	19.2	3,089	2,762	2.260	2,253	2,850	200	100
45 t	14.5	3,050	2,485	1,885	2,261	2,600	200	100
90 t	32.3	3,620	3,220	2,690	2,825	3,380	200	100
105 t	27.7	3,620	3, 124	2,610	2,796	3,725	200	100

注)永久張材質は髙Al203 キャスタブル

図5.1.3-1 受鋼鍋施工図

中間鍋

出鋼脱ガス鍋

単位 mm

鍋 名	重 量	A	鉄皮外径	煉瓦模後 内 径	敷鉄皮外径	鉄皮高さ	永夕	、張
A4 11	128A, 198L	A	D ₁	D ₂	D_3	Н	敷	側壁
30t 中間鍋	15.2t	3,089	2,589	2, 189	2, 180	2,470	200	100
60 t 中間鍋	18.5	3,089	2,689	2,289	2,500	2,750	200	100
60t 出鋼 脱ガス鍋	23.6	3,620	2,600	2,200	2,260	3,000	200	100

図5.1.3-2 中間鍋、出鍋脱ガス鍋施工図

表 5.1.3-1 取鍋使用数量表

(1) 粘土質煉瓦

		所 要	量/	基
	Œ	n g	*	敷
品名 鍋名	万 能 120	万 能 150	段調整用	K Π – 8 300 × 120×80
10 t	120 個	100 個	30 個	80
30 t	230	170	50	150
40t (45t)	300	230	60	190
90 t	480	450	70	250

(2) 髙AlzO3 煉瓦

60 t 中間鍋 : 40 t 取鍋と同様

105 t 脱硫鍋 : 90 t 取鍋と同様

5.1.4 造塊用煉瓦

(1) ノズル (NOZZLE)

a. 材 質 : 粘土質

b. 形 状 : 内挿式 図5.1.4-1

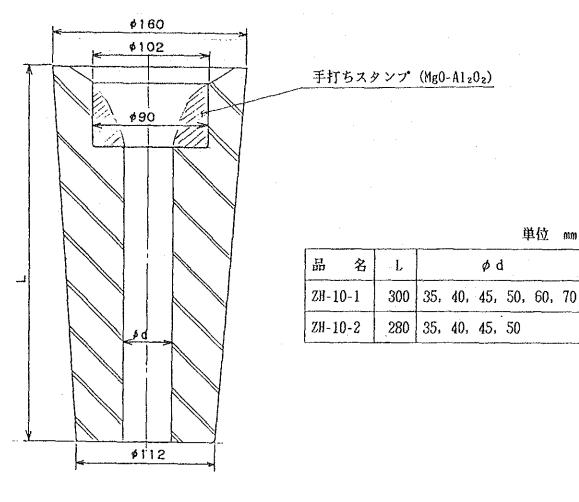


図5.1.4-1

c. 問題点 :

- ・内挿式のため毎チャージ後、取鍋を冷却して取り換える。
- ・ストッパーヘッドとの接触面を施工現場で手打ちスタンプする必要が ある。
- ・下部の溶損が大きい。

稼動鍋を冷却することは非常に大きな熱量を失い、また再稼動にあたっ ては充分な昇熱が必要となる。従って、省エネルギー (ENERGY) と取鍋の 耐用回数向上対策から外挿式に変更する必要がある。

(2) ストッパー・ヘッド (STOPPER HEAD)

a. 材質 : 粘土質 (一部高Al₂O₃ 質)

b. 形状 : 図5.1.4-2

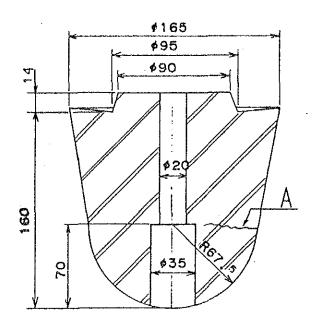


図5.1.4-2

c. 問題点 :

- ・図5.1.4-2のA部付近の亀裂、剝離
- ・製造歩留が約30%、原因はA部に発生する亀裂である。

ノズルとの取合せも検討すべきと考えるが、第一に製造時の亀裂発生防 止対策が急務であろう。

(3) スリープ (SLEEVE)

a. 材質 : 粘土質

b. 形状 : 図5.1.4-3

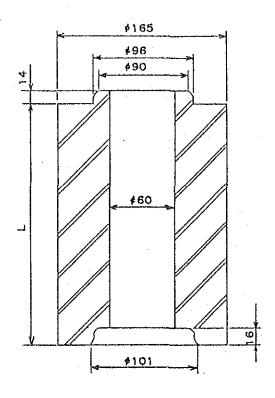


図5.1.4-3

c. 問題点 :

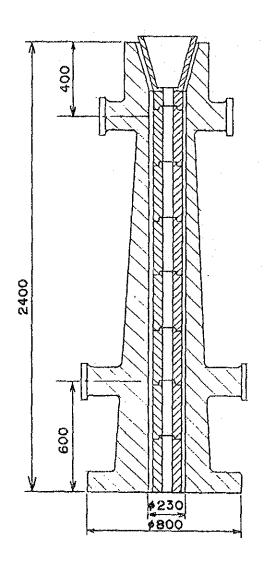
- ・スポーリングによる割れ
- ・接合部の湯差し

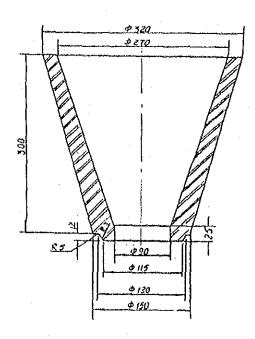
耐スポーリング性の改善、接合部の強度向上、モルタル材質の改良を要す。

ノズル、ストッパー、スリーブの問題解決として、スライド・ゲート・ パルブ (SLIDE GATE VALVE) 装置設置が有効な方法である。

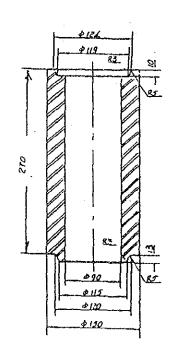
(4) 定盤

a、材質 : 粘土質


b. 形状 : 漏斗、注入管 図5.1.4-4


中心、湯道 図5.1.4-5

c. 問題点 :


・注入管、湯道のスポーリング割れ、接合部での地金差し、耐食性の問題 により、下注鋳造は13 t 以下のインゴット (INGOT)のみに採用されてい る。

- ・注入管の接合部凸部 (高さ13mm)、凹部 (深さ10mm) の組合せて 3mmの 差があるが、特に凸部の強度向上、角欠け対策が必要であろう。
 - ・湯道も注入管同様、凸部(高さ12mm)、凹部(深さ10mm)の組合せで 2 mmの差があるが、特に凸部の強度向上対策が必要であろう。
 - ・定盤全般に耐食性向上、割れ防止対策が必要である。

漏斗

<u>注入管</u>

図5.1.4-4 漏斗、注入管

湯道煉瓦

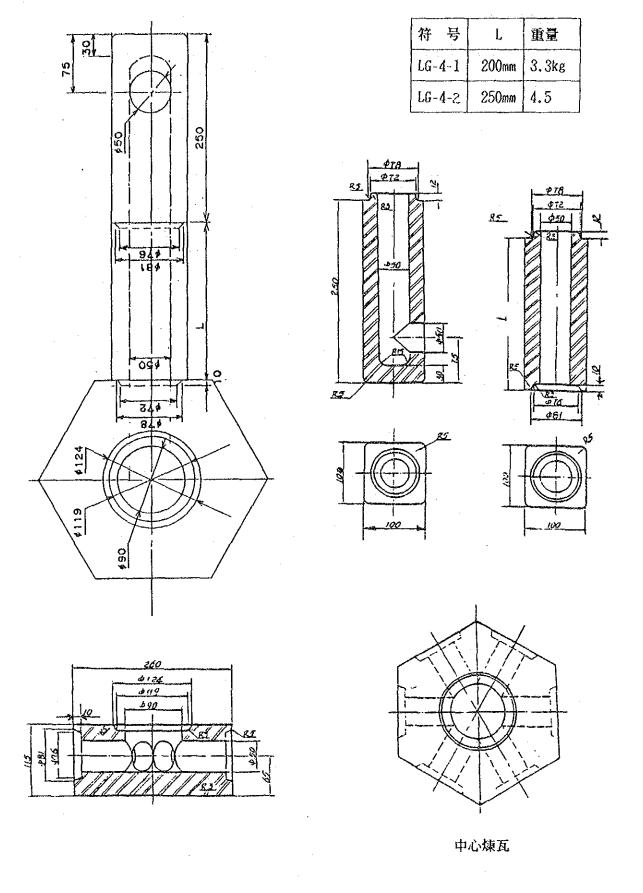


図5.1.4-5 中心・湯道

5.1.5 在庫管理

(1) 外部購入品

構内資材倉庫に用途別、材質別、形状別に整理して保管され、非常に良好な 状況である。

1984年外部購入耐火材料計画と消費実績(例)

用	途	材 質	計画量	消耗量	購 入 先
電気炉	用	焼成高AlzO3	616t	754 t	唐山、古治耐火材料廠
	-	スライド・ゲー ト・バルブ用不 焼成髙Al ₂ O ₃	200set	150set	上海耐火材料廠
平炉	用	焼成NgO	950 t	1084t	大石橋鎂矿
	- :	焼成MgO-A12O3	612set	305set	"

(2) 製鋼工場内

週間施工量、使用量以上の多量の各炉、各取鍋、各造塊用煉瓦が裸積 (ばら 積) で持ち込まれており、良品、不良品、在庫数量等の把握が困難である。

すべての耐火物を外部購入品と同様な倉庫に受入れ、良品のみ保管し、計画 的に施工量使用量の必要量を製鋼工場へ持ち込む方式が良策と考える。

従って、各炉、各用途の計画修理、必要施工使用量の把握が必要であろう。

- 5.1.6 - 横持ち運搬

(1) 製鋼工場への持ち込みは現在、個々の裸積(ばら積)で搬入し、これを手渡 し横持ち、移動が実施されている。

従って、多回数の仮置、移動が繰返される結果となり、角欠け、その他破損 の可能性が大きい。

- (2) 冬期は極寒であり、野外作業は困難を極め、取扱も粗雑になる。
- (3) 前記在庫管理の項で述べた如く、良品のみ整理保管された倉庫より計画にも とづいた使用必要量の搬入をパレット(PALLET)積あるいは通箱等を利用して実 施すべきと考える。

5.1.7 耐火物管理

- (1) 購入仕様、検査規準
 - a. 外観規格 表 5.1.7-1
 - b. 寸法規格 表 5.1.7 2
 - c. 品質規格 表 5.1.7-3

(2) 管理部門

購入仕様、検査基準審類は設定されており、外部購入品については担当部門 が計画、発注在庫管理を行っているが、製鋼工場内の在庫管理、使用実績、使 用状況、問題点の整理、改良・改善の検討等を行う部門(専門班あるいは兼 務)を設置し、製造者と協力し、耐火物の改良・改善を図るべきと考える。

表5.1.7-1 耐火物の購入仕様、検査基準

外観規格 (煉瓦1ケに対する許容数) 粘土質 (例)

全般共通	猫	移動面	非移動面	複動面 非複動面	稼動面 非稼動面					
取鍋・炉体煉瓦、	許容個数	不回		坂さ30m 坂さ40m	不可 長さ40mm	不可	H H			
取網・	大帝内	5 mm以上	8 mm以上	0.26-0.5	0.5~1.0	Sana深 T. T.				
STOPPER	摘要						Xfッバー 井稼 敷面 ノズラ井稼 勢面			
	許容個数	十三		m v 15星 米 c	日 大	不可	鱼鱼	l		
NOZZLE	大きさ	ø 3 mn以上		0.11~0.25	0.25mm以上	3 和以上	5 mm以上 10 mm以上	·		
***	摘要									
EVE注入	許容個数	五		同左		不可	不可	ļ	,	
SLE	大多名	5 mm以上		,		3mm以上	Smm以上			
級	摘要	,		半検勢面 50mまん						
翠	許容個数	不可		長さ25mm まで	不可	子可	不可		1	
知	大きさ	5 邮以上		тю.26~0.5	0.5mm以上		Smm殊以上			
使用先	項目上海	鉄斑点		3	1	稼動面	非稼動面	打音不良	免成不良	Lamination

表5.1.7-2 寸法規格 (例)

・第一重型機器廠規格あり(省略)

· STOPPER HEAD(粘土質)特別採用規格

・301取鍋のみに適用(451、601、901鍋には不適用)

									1
羅	焼 成		跳		鉄	松			
(粘土質)	展41203		弘						Ι
Mg - Cr									
寸 法 酯	許容差咖	Ţ.	妆置		苹	棥	粃	E	T
100 mark	± 4 mm								I
100 mm以上	% 8 1+								
器器									
ர் 0.26 ~ 0.5 ாக	版み 50 mm					•			
0.5 mm 以上	不可								
				andrograme and resident response for					

表5.1.7-3 品 質 規 格

材		品質番号			·····													十 计 許 妳 苯
材質	使用区分	品種番号	品名	耐火度 (SK)	吸水率 (%)	見 掛 気 (%)率几	かさ 比重	見掛比重	圧縮強度 (kg/cm)	荷重(T2 ℃) 軟化点	残 存 熱膨張	熱膨張率	SiO ₂ (%)	A1 ₂ 0 ₃ (%)	Te ₂ 0 ₃ (%)	Cr ₂ O ₂ (%)	Mg0 (%)	寸 法 許 容 差 (mm) (特別指定のもの)
	標準型	粘土質		>1730		19~26			>300					42~44				
		符号なし							·	Ē				 - 				
				:														
粘	NA DIENE							,										
	溶鋼取鍋		К П8,7,9,10	>1730		16~20			>600					42~44				
		符号なし	C 21-120 150 180															
土																		
	STOPPER	"	СП-11,12,13	>1750		17~19								50~60				
質	NOZZLE	"	СП-28,22	>1730		18~22							-	42~44	·			
	SLEEVE	//	СП-6,8	>1730		17~22								42~44				
	NOZZLE質	"	КП-6,6А	>1730		20~24		!						42~44				
	定盤											-						
	湯道		C-34, C27, C41	>1730		18~23								42~44				
	注入管		c7															
	漏斗		C3															
															;			N
																:		
	:								į									

5.1.8 耐火建材廠

- (1) 製造設備としては、前章に述べた如く粘土質煉瓦用として一式設置されている。
- (2) 焼成後の製品の選別(外観、寸法、形状検査)作業を実施すべきである。
- (3) 良品の抜き取り、寸法検査結果を記録し、管理統計として利用すべきである。
- (4) 品質検査、試験のロット (LOT)毎の実施と記録を行い、品質保証、工程管理、 使用実績との対比等に利用すべきである。
- (5) 1984年主要製品品質検査結果 (年間平均値) を表5.1.8-1に示す。

表5.1.8-1 1984年主要製品品簽檢查結果 (年間平均值)

寸法公差	厚み 十 1.5mm	1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		まる土と	
再熱収縮率(1,400°C 2時間)	0.1 %	0.15%	0.20%	0.12%	0.20%
見掛気孔率 (%)	19.5	50°	22	21	22
常温耐圧強度 kg/cd	604	671	450	009	
Fe ₂ 0 ₃	2.19	1.97	2.30	2.20	2.10
SiOz	51.40	53.80	54.48	52.32	53.40
A1203	45.81	42.93	41.90	43.80	42.90
品名	取鍋用煉瓦	ノメア蘇瓦	ノズア受権瓦	スリーブ煉瓦	湯道煉瓦

5.2 改善策

5.2.1 概要

耐火物の耐用性向上、原単位の低減、鋳片品質向上への改善対策としては、 耐火物側から見ると適切な材質、形状を適正に施工し、最適な方法で使用する ことである。一方、使用側からは、使用条件に合わせたあるいは合った適確な 材質、形状を迅速に製造、納入することと、施工が容易で、操業条件が変動し ても安定して使用できることを目ざす。

しかしながら、現時点では全ての使用条件に適合できる耐火物はなく、それ ぞれの用途、使用条件に応じた多くの材質、形状が作られ、施工上、使用上の 工夫改善も進められ、安定使用と問題の解決にあたってきている。

従って、耐火物の問題解決にあたっては、耐火物製造者と使用者が協力し、 材質、形状の改良、改善と施工、使用技術の確立とを相まって推進することが 重要である。

ただ単に、耐火物の品質が良くなれば問題が解決することではなく、耐火物 (材質、形状)、施工、築炉技術、使用技術の三位一体によって向上と発展が 可能となる。

改善策は日本工業規格 (JIS)、耐火物技術協会団体規格 (JRS)等で汎用されているもの、および鋳鍛鋼工場で常用されている材質、形状、施工法等から代表例をとりあげ提案する。上記を踏まえたより良き改善対策の推進を期待する。改善策の要点をまとめると、表5.2.1-1に示す通りである。

又、一般取鍋、特殊精錬鍋 (LADLE FURNACE)、電気炉炉蓋、造塊用(STOPPER IIEAD, NOZZLE, 定盤)等の各用途別高 Al₂O₃質煉瓦について品質向上のため、 製造技術の技術提携を推奨する。

表5.2.1-1 改善策の要点

对参 应回	適用場所			被	盆水
I (3	形铁	施工	代表的材質例	
魚加	至。	蓋 团体模华形状JRS106	1) 越現代 ② 攻要領	不被成ng-Cr 煉瓦(SINTEX-4、SINTEX-5) 萬A1203 煉瓦(ADT-60)	不定形语和203 RAMING (PA-805)
	场	蛭 電気炉標準型 Key型	1) 歐强代 2) 目地 3) STAMP 層	焼成MgO 煉瓦(SSB-10) 不焼成Mg-Cr 煉瓦(SINTEX-7) MgO-C 煉瓦(MGT-N20AH)	
	炉 床	צנו	1) 施工厚、方法	MgO STAMP 47 (MCSTM-10)	
	田鐵桶	参工場の使用形状例	1)組込み型	A1 ₂ O ₃ -C 簽 (R8X26A)	
短音や紙	道 常 編 特殊精維矩	団体標準形状JRS102 同 上	1) 目地 2) 施工組合せ表、個数 同 上	ろう石質煉瓦 (LA) ZIRCON質 (ZL-7S) 高校Mc-dolo 資 (DIRDOL-HS90P) 高校Mc-dolo 資 (DIRCO-7C, 6C) 高校Mc-Cr 質 (DIRCO-7C, 6C) 高和1203 PRECAST (ROA4-B)	共通高A1203 様互 (ALT-85R) MgO-C 煉瓦 (MGT-N20AH) 不定形高 A1203 PLASTIC (PA-70)
塊 用	1 7 Z Z O N	E 外揮式 JRS 105	1)取付け要領	高A1203 蛟(ALT-85) ZIRCON 鲛 (ZN-2) 高过载蛟 (KN)	高A1203 餐(ALT-85) SLEEVE と共選
	STOPPE	R JRS 104	1)NOZZLEとの組合せ、ねじ	格士餐 (HFS-3)、ZIRCON餐 (ZH-1)	
	SLEEVE	E JRS 103		粘土質 (LP) 、 ZIRCON質 (ZS-2)	
	別	3 接合部形状		ろう石祐士賢(RIB)、高珪酸錠+SiC(RS-2) 高A1203 質(MCT-60, 65)	
	SLIDE GATE VALVE	3 1) 原理と構造	2)組込み方法 3)標準使用	S.V 用材質一式代表的	
4.在庫管理 5.樹特ち運数 6.耐火物管理 (割増1世)		1)納入品の検査 2)貯蔵 3)先 1)教育 2)運搬方法 1)耐火物検討・推進部門の設置	~	、た、先出し 4型類工場 3)使用計画、適用材質の立案と確立 3)使用状況の把握 4)情報交換	
7.能火弹大滚		1) 品数管理の強化 2	2) 造塊用煉瓦製造方法の改良		

5.2.2 電気炉

(1) 炉蓋

a. 形状、施工要領 JRS 106

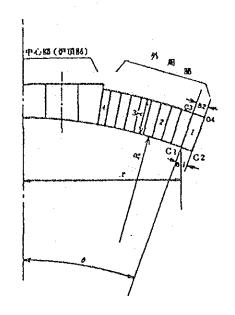


図5.2.2-1 全体図

図5.2.2-2 個 別 図

外周部煉瓦の名称は図5.2.2-1、-2

の通りである。

A: 煉瓦長さ B1,B2: 煉瓦巾 C1~C4: 煉瓦厚さ r: 煉瓦下部中心半径 θ: 煉瓦中心角

R: ドーム半径

符号説明

M AR 20 A 1 1 2 3 4

① AR ··· ARCROOF

② 20 … ドーム半径2000

③ A ··· A寸法230 B ··· A寸法270 C ··· A寸法300 D ··· A寸法350

④ 1 は迫受側より中心部に至る順序別

表5.2.2-1 形状寸法および体積 (A寸法 300mmの部)

							C2	, C3 4	()数值	はな考し	4
肝号	R	λ	81	B 2	C I	C 2	C3	C4	,		体权dm'
ARJOCI	3000	300	110	121.0	65	(69.1)	(715) -	75	29"57"	1500	244
* 30CZ	,	,	,	•	•	(72,7)	(/)	80	17"04"	880	2.51
# 30C3	,		,	4	,	(76.4)	(1)	84	11 49	610	2.57
/ 30C4	,	,	,	•	•	(80.0)	(\cdot)	88	9.00	470	2.54
AR 35 CT	3500	300	110	119.5	65	(59.1)	(70.6)	75	36,52	1560	241
/ 35C2			,	1		(72.8)	(')	79	14*40'	890	2.47
# 35C3		,	,	,		(76.5)	(•)	83	10.02	610	2.54
4 35 C4	,					(80.1)	$\langle \cdot \cdot \rangle$	87_	7"40"	470	2.61
AR 40CI	4000	300	110	113.0	65	(68.8)	(69.9)	74	24 49'	1680	237
10C2	•		,	,	,	(72.6)	(1)	78	13,12,	920	2.44
4 10C3			,	,	•	(76.3)	(•)	82	8 59	620	2.5 l
# 40C1	1	,		,	,	(80.0)	(I)	36	6*47"	470	2.57
ARASCI	4500	300	110	117.5	65	(63.4)	(69.3)	73	24 40	1880	2.35
# 43C2		•	,	•		(72.2)	(')	77	12,52.	970	242
# 45C3			,	,	,	(75.9)	(,)	81	8"15"	650	2.48
7 45 C 4	1		•	•		(79.7)	(\cdot) .	85	4,10.	480	. 255
ARSOCI	1 5000	300	140	148.5	80	(84.0)	(84.8)	89	25,13,	2450	3.66
4 50C2		,	•	•	,	(87.7)	(/)	93	16"05"	1390	3.74
/ 50C3	,	,		,	•	(212)	(·/)	97	10"58"	950	3.82
≠ 50 C 1	- 7		•			(95.3)	(1)	101	3,13,	720	3.91
ARGOCI	6000	300	140	147.0	80	(83.8)	(84.0)	88	52,20,	2630	3.61
. 60C2	•	•	•	,	,	(87.6)	(\cdot,\cdot)	92	13'43'	1420	3.70
€ 60C3	,	•	•	,	,	(91.4)	(+)	96	9"15"	970	3.78
# 60C4	,		•	•	•	(95.2)	(I)	100	6*58"	730	3.87

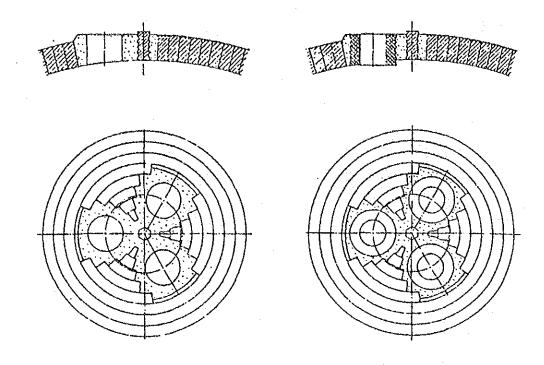


図5.2.2-3 中心部不定形耐火物使用例 図5.2.2-4 中心部不定形耐火物使用例

図5.2.2-4 中心部不定形耐火物使用例 (電極孔部スリーブ煉瓦使用例)

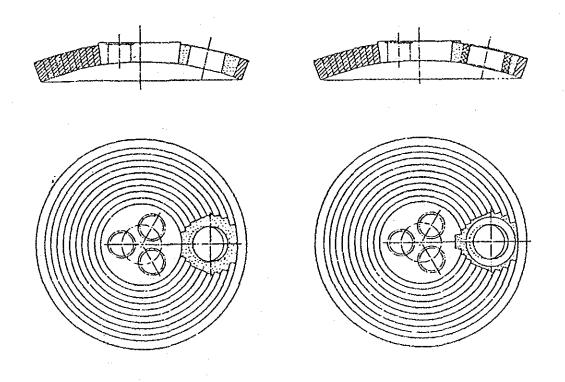


図5.2.2-5 集塵孔部不定形耐火物使用例 図5.2.2-6 集塵孔部不定形耐火物使用例

図5.2.2-6 集團孔部不定形耐火物使用の (スリーブ煉瓦使用)

b. 膨張代

使用煉瓦の膨張特性に合わせた膨張代を円周方向、炉径方向に設定施工 すること。

c. 攻め(KEYING)要領

円周方向1ケ所でなく、数ケ所に分散して実施すべきである。

d.適用材質

不燃 M_B -Cr 質煉瓦、 Al_2O_3 質煉瓦およびラミング (RAMMING)材が一般的であり、使用例の品質特性を表5.2.2-4および表5.2.2-5に示す。

(2) 炉壁

a. 形状

表 5, 2, 2 - 2 一般 側壁用

Tree .	414	11.29		寸		法	(mm)
形	状	品名	Α	В	С	D	R
		K 1	230	114	105	65	2683
B	ı D ı	K 2	230	114	85	65	674
		К3	230	114	65	65	305
		K 4	350	114	105	65	4083
A.		K 5	350	114	85	65	1026
		К 6	350	114	65	65	464
-		К7	280	114	105	65	3267
ag .		K 8	280	114	85	65	821
		К 9	280	114	65	65	371

र्ज े 法 (mm) 状 品名 肜 A В C D E F G EWP1-1 **EWP1-2** EWP1-3 [xi EWP1-4 EWP1-5 **EWP1-6** G EWP1-7 В EWP1-8 EWP1-9 EWP1-10

表 5. 2. 2 - 3 作業口、出鋼口付近 壁厚 350mm用

b. 適用材質と施工要領

スラグライン (SLAG LINE)上部の一般側壁は、通常不焼成Mg-Cr 煉瓦の 鉄板巻 (STEEL CLAD) が使用され、煉瓦間は空目地施工である。鉄皮と煉 瓦間に約10mmのセラミック・ファイバ (CERAMIC FIBER)を挿入する。

スラグライン、ホットスポット (HOT SPOT) には、MgO-C 煉瓦並びに焼成MgO 煉瓦が常用され、スラグライン部以下はMgO スタンプ (STAMP)材で 被覆している。又、焼成MgO 煉瓦にはMgO モルタル (MORTAR) を原則として使用する。

図5.2.2-7に施工概要図を示す。

適用材質の品質特性を表5.2.2-4および表5.2.2-5に示す。

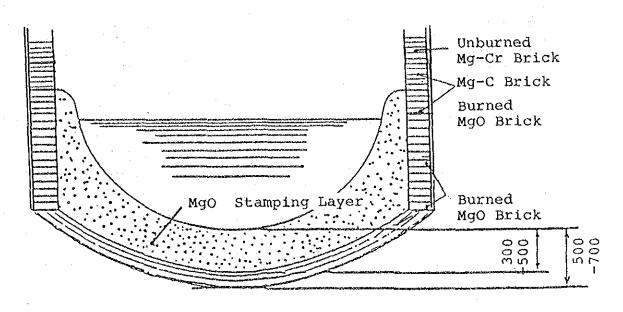


図5.2.2-7 電気炉炉壁、炉床施工図

(3) 炉床

粒度調整した原料とバインダー (BINDER) を配合したMgO スタンプ材を使用し、水分添加し、混練し、数回に分けて施工厚 300mm~ 500mmに打ち上げる。炉床に引き続きスラグライン部までスタンプすることが肝要である。 適用材質の品質例を、表5.2.2-5に示す。

(4) 出鋼樋

形状は炉容に合わせた形で一体成型、煉瓦組込み、流し込み成型方式等があるが、煉瓦組込み型の使用例を図5.2.2-8に示す。材質は $A1_20_3$ -C-SiC系で品質特性値を表5.2.2-4に示す。

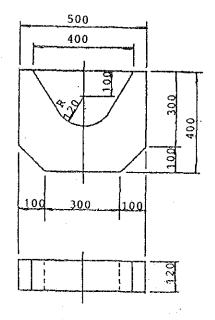
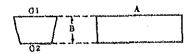


図5.2.2-8 出鋼樋形状図

表5.2.2-4 電気炉用煉瓦品質一覧表

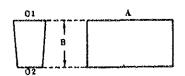
出 鋼 锤	R8×26A	A1203-C菱		16.8	2.51	108			I					64.0		SiC 7.0	C 14.8				
	MGT-N20AH	MgO·C 蚤		5.0	2.83	350			1	0.98	73.0			0.8		c 22.0	0.1	SLAG LINE	HOT SPOT		
西	SINTEX-7	不挽成Ng-Cr 覧	40 以上	10.5	2.95	650	1560		1550°C-2hrs	1.1	70.9		9.6					一数键			
英	SSB-10	競成Mg0 質	40 以上	18.0	2.85	700	1620		-0.1	1.3	94.8		•					SLAG LINE 下部	٠		
	ADT-60	高A1203 簽	37	15~19	2.45 ~2.55	200~300	1650		0	0.5				62.0	35.0		1.0				
脚	SINTEX-4	不焼成Cr-Ng 窗	40 以上	10.0	3.10	650	1610		1550°C-2hrs	0.8	44.0		21.7								
P	SINTEX-5	不焼成Ng-Cr 質	40 D.E.	10.5	3.05	909	1600		1550°C-2hrs	6.0	55.2		16.8								
₩	品質名	豚	度 (SK)	光 (%)	抽	強 度(kg/cd)	荷重軟化点(*c) (Load:2 kg/cd)	1400°c× 2hr	1500°C × 2hr	(%) at1000°c	MgO	CaO	Cr203	A1203	SiOz	$Zr0_z$	Fe ₂ 0 ₃	**	Ą	i	<u> </u>
田		西回	東	見遊気	施	田籍	荷 重 軟 (Load:	残存線膨張	収縮率 (%)				公安安公					製	3		


表 5.2.2-5 不定形耐火物品質一覧表

用	違	電気炉炉蓋	電気炉炉床	取鍋敷 (外周部)
	品質名	PA-805	MGSTM-10	PA-70
項目	材質	高Al ₂ O ₃ 質 RAMMING	MgO 質 STAMP	高Al2O3 質 PLASTIC
耐火	度 (SK)	37	40 以上	37
最高使用	温度(℃)	1750		1750
施工所	要量(kg/m²)	2700	2900	2600
	110°C-24hrs	- 0.30		- 0.55
加熱後線	1000°C - 3hrs	- 0.20		- 0.70
変化率	1350°C - 3hrs	+ 0.65		- 0.75
(%)	1500℃ - 3hrs	+ 2.20		- 0.65
	110°C-24hrs	300		90
加熱後	1000°C - 3hrs	450	450	
圧縮強さ	1350℃- 3hrs	700		440
(kg/cm²)	1500°C - 3hrs	700	450	
	110°C-24hrs	50		30
加熱後	1000℃ - 3hrs	60		40
曲げ強さ	1350°C - 3hrs	90	-	100
(kg/cnl)	1500℃- 3hrs	80		130
熱伝導率	at 500°C	1.18		1.15
(kcal/mh℃)	at 1000°C	1.31		1.30
化学成分	Al ₂ O ₃	76	MgO 94	73
(%)	SiO ₂	16	2.5	24
施 工	法	打ち込み	打ち込み	打ち込み
包	装	25kg/袋	25kg/袋	30kg/箱
備	考		·	

5.2.3 取 鍋

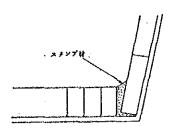
(1) 形状 JRS 102


(A) 平おちレンガ

符	号	A	В	C 1	C.2	体级 dm ¹	外 径
LW	61 62	230	65 *	114	105 95	1.64 1.56	1,676 796
, ,		? ;	' 90 *	* *	114 105 95	2, 36 2, 27 2, 16	2,320 1,099

駐 1. 単位はmm 2. 目地は2mmとする。以下同じ。

(B) 模せりレンガ


衧	身	Α	В	C 1	C 2	体橙 dm³	外 径
LW	110	230	114	80	80	2, 10	
,	111	,	,	,	70	1.97	1,870
>	112	2	*	,	60	1,84	935
7	130	*	• 130	,	80	2.39	-
2	131	,	,	3	70	2.24	2, 132
*	132	*	7	2	60	2.09	1,066
*	150	,	150	>	80	2.76	
*	151	,	9	,	70	2.59	2,460
*	152	,	*	,	60	2, 42	1,230
9	180	9	180	*	80	3, 31	-
2	181	*	,	, ,	70	3.10	2, 952
2	182	*	*	,	60	2, 90	1, 476
*	200	*	200	*	80	3, 68	-
. *	201	*	"	,	70	3.45	3, 280
,	202	,	,	*	60	3, 22	1,640
4	230	2	230	3	80	4, 23	-
2	231	9	9	"	70	3.97	3,772
4	232	,	,	,	60	3.70	1,886
*	250	,	250	,	80	4, 60	-
,	251	*	,	"	70	4.31	4, 100
*	252	* ·	*	,	60	4.02	2,050

使用上の解説

側壁最下段のレンガは右関に示す底部あと張り 施工とする。

敷レンガの使用方法

敷レンガは並形および形状寸法表ストレートレ ># (LW 90, 110, 130, 150, 180, 200, 230, 250) の組合せにより所要の厚さが得られる。 側壁レンガの組合せは次表に示す。

(1) LW 62, LW 61, 並形の組合せ表									
外往 (mm)	LW 62	LW 61	並形	l at					
800	- 22			22					
850	20	3		23					
900	19	6		25					
950	17	9		26					
1,000	16	11		27					
1,050	14	15		29					
1, 100	14	16		30					
1,150	13	18		31					
1,200	12	21		33					
1, 250	11	23		34					
1,300	9	26		35					
1,350	8	29		37					
1,400	7	31		38					
1,450	6	34		40					
1,500	4	36		40					
1,550	3	39		42					
1,600	3	41		44					
1,650		45		45					
1,700		46		46					
1,750		48		48					
1,800		49		49					
1,850		46	4	50					
1,900		46	6	52					
1,950		46	7	53					
2,000		46	9	55					
2, 100		46	11	57					
2, 200		46	14	60					
2, 300		46	17	63					
2, 400		46	20	66					
2,500		46	22	68					
2,600		46	25	71					
2,700		46	28	74					
2,800		46	30	76					
2,900		46	33	79					
3,000	·	46	36	82					
3, 200		46	41	87					
3, 400		46	46	92					
3,600		46	52	98					
3,800		46	67	103					
4,000		46	63	109					

(2) LW 92, LW 91, LW 90の組合せ表

外後 (mm)	LW 92	LW 91	LW 90	 #
1,100	30	- A.		30
1,150	29	3		32
1,200	27	6		33
1,250	26	8	:	34
1,300	25	11	l	36
1,350	24	13		37
1,400	23	16		39
1,450	22	18		40
1,500	20	21		41
1,550	19	23		42
1,600	18	26		44
1,650	16	29		45
1,700	15	31		46
1,750	14	34		48
1,800	13	- 36		49
1,850	12	38	J	50
1,900	11	41	l	52
1,950	9	44		53
2,000	8	46		54
2, 100	6	51	1	· 57
2, 200	1	60		60
2,300	i	62		62
2,400	J	65		65
2, 500		63	5	68
2,600		63	8	71
2, 700	- 1	63	10	73
2,800		63	13	76
2,900	}	63	16	79
3,000		63	18	81
3,200	J	63	24	87
3,400		63	29	92
3,600		63	35	98
3,800	ĺ	63	40	103
4,000		63	45	108

(8) LW112, LW111, LW110 の 組合せ表

(4) LW 132, LW 131, LW 130 の 組合せ表

(6) LW 152, LW 151, LW 150 の 組合せ表

外径 (mm)	LW 112	LW 111	LW 110	ät
950	36			36
1,000	32	б		38
1,050	31	¹ 9.		40
1, 100	29	13	·	42
1, 150	27	16		43
1,200	25	21		46
1, 250	23	25		48
1, 300	22	28		50
1,350	19	33		52
1,400	17	36		53
1, 450	15	40		55
1,500	14	43		.57
1,550	12	47		59
1,600	.10	51		61
1,650	9	54		63
1,700	7	58		65
1,750	5	62		67
1,800		69		69
1,850		71		71
1,900		73		73
1,950		75		75
2,000		72	5	77
2, 100		72	8	80
2, 200		72	12	84
2, 300		72	16	88
2,400		72	20	92
2,500		72	24	96
2,600		72	27	99
2, 700		72	31	103
2,800		72	35	107
2,900	1	72	39	111
3,000		72	43	115
3, 200		72	50	122
3, 400		72	58	130
3,600		72	66	138
3,800		72	73	145
4,000		72	81	153
			<u>.</u>	

机	合せ状			
外径 (mm)	LW 132	LW 131	LW 130	ät
1,050	40			40
1,100	39	3		42
1,150	37	7		44
1,200	36	10		46
1,250	33	15		48
1,300	32	18		50
1,350	30	22		52
1,400	28	25		53
1,450	26	29		55
1,500	24	33		57
1,550	22	37		59
1,600	20	41		61
1,650	18	45		63
1,700	17	48		65
1,750	15	52		67
1,300	13	56		69
1,850	11	60		71
1,900	9	64		73
1.950	7	68		75
2,000	6	71		77
2, 100		81		81
2,200	.	84		84
2.300		82	6	88
2,400		82	10	92
2,500		82	14	96
2,600		82	18	100
2,700		82	22	104
2,800		82	25	107
2,900		82	29	111
3,000	1	82	33	115
3, 200	}	82	41	123
3, 400		82	48	130
3,600	.	82	56	138
3,800	j	82	64	146
4,000		82	72	154

311	La C. IV			
外径 (mm)_	LW 152	LW 151	LW 150	11
1, 200	46			46
1,250	18			48
1,300	44	6		50
1,350	42	10		52
1,400	40	12		52
1,450	38	18		56
1,500	36	21		57
1,550	34	25		59
1,600	32	29		61
1,650	30	- 33	:	63
1,700	29	36		65
1,750	27	40		67
1,800	25	44		69
1,850	23	48		71
1,900	21	52		73
1, 950	20	55	•	75
2,000	17	59	-	76
2, 100	14	66	j	80
2, 200	10	74	.	84
2, 300	6	82		88
2, 400		92	İ	92
2,500		66	ŀ	96
2, 600	-	100	- 1	100
2, 700		94	9	103
2,800		94	13	107
2,900	-	94	17	111
3,000		. 94	21	115
3, 200	ŀ	94	28	122
3, 400	[91	36	130
3,600	1	94	44	138
3,800	Ì	94	52	146
4,000		94	59	153

(6) LW 182, LW 181, LW 180 の 組合せ表

(7) LW 202, LW 201, LW 200 の 組合せ投

(8) LW 232, LW 231, LW 230 の 和合せ投

机	台化议			
外(E (mm)	LW 182	LW 181	LW 180	11
1, 450	56]	56
1,500	58			58
1,550	53	6		59
1.600	52	10		62
1,650	50	14		64
. 1,700	48 .	18		66
1,750	46	21		67
1,800	44	25		69
1,850	42	29		71
1,900	40	33		73
1,950	38	37		75
2,000	36	41		77
2, 100	33	48		81
2, 200	29	56		85
2, 300	24	64	j	88
2, 400	21	71		92
2, 500	17	79		96
2,600	13	87		100
2, 700	10	94		104
2,800	. 7	101		108
2,900		111		111
3,000		115		115
3, 200		113	9	122
3, 400		113	17	130
3,600		113	25	138
3,800		113	33	146
4,000		113	40	153
4, 200	. [113	48	161
4, 400		113	55	168

外径 (mm)	LW 202	LW 201	LW 200	ar
1,650	63			63
1,700	60	5		65
1,750	58	9		67
1,800	56	13		69
1,850	54	17		71
1,900	53	20	-	73
1,950	51	24		75
2,000	49	28	i d	77
2, 100	45	36		81
2, 200	. 41	43		84
2,300	38	50		88
2, 400	34	58		92
2,500	30	66	į	96
2,600	26	73		99
2,700	22	81	j	103
2,800	19	88		107
2,900	15	96	- 1	111
3,000	11	104	l	115
3, 200	i	123		123
3, 400		130	- 1	130
3,600		126	11	137
3,800		126	19	145
4,000	l	126	27	153
4,200		126	34	160
4,400		126	42	168

	,-			
外径 (mm)	LW 232	LW 231	LW 230	11
1,900	73			73
1,950	70	5		75
2,000	.68	9		77
2,100	64	17		81
2, 200	60	24		84
2,300	-56	32	ļ	88
2,400	52	40		92
2,500	49	47		96
2,600	45	55		100
2,700	41	62	-	103
2,800	37	70	1	107
2,900	34	77	- 1	111
3,000	30	85		115
3, 200	22	100	j	122
3,400	14	116	- 1	130
3,600		138	ſ	138
3,800		146	1	146
4,000	ı	153		153
4, 200	1	145	16	161
4,400		145	24	169
<u></u>				

(9) LW 252, LW 251, LW 250 の 和合せ表

外径 (mm)	LW 252	LW 251	LW 250	31
2,050	79			79
2, 100	76	4		80
2, 200	73	11		84
2,300	69	19		88
2, 400	65	27		92
2, 500	61	35		96
2,600	57	42		99
2,700	54	49		103
2,800	50	57		107

外径 (mm)	LW 252	LW 251	LW 250	<u>3</u> 1
2, 900	46	65		111
3,000	42	73		115
3, 200	34	88		122
3, 400	27	103		130
3,600	19	119		138
3,800	11	134		145
4,000		153		153
4, 200		161		161
4,400		157	11	168

(2) 適用材質

表5.2.3-1に代表的材質の品質例を示す。

LF操業、VOD 操業は基本的に使用条件が異なり、特に材質は充分な検討が 必要である。通常はLF用、VOD 用に区分してライニング (LINING) すべきと 考える。

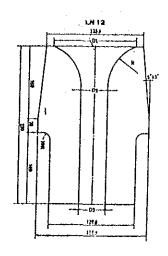
表5.2.3-1 取鍋用煉瓦品簽一覧表

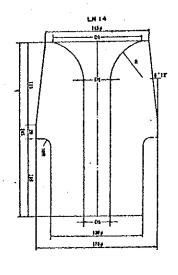
既	剁	一般取鍋用	2鍋用			特殊精	女 鍋 用		
	品質名	LA	SL-1Z	ALT-85R	MGT-N20AH	DIRDOL-HS90P	DIRCO-7C	DIRCO-6C	ROA4-B
通	龙旗	ろう石質	ZIRCON蜜	禹A1203 簽	MgO·C 魔	HIGH BURNED Mg-dolo	HIGH BURNED Mg-Cr)英	HIGH BURNED Mg-Cr翼	PRECAST BLOCK
即火	度 (SK)	53	32	38		王四 0 秒	40 以上	40 D.E	
見掛気	孔率 (%)	15.5	16.5	22.5	5.0	1.0	15.5	14.0	19.5
第 比	重	2.20	3.15	2.75	2.83	3.20	3.10	3.20	2.86
压 縮 五	強 度(kg/cd)	350	920	006	350	800	620	750	225
荷重教 (Load:	荷重軟化点[2(°C) (Load:2 kg/cd)	1500	1500	1510		1650以上	I, 1650以上		
聚存線膨强	1400°C× 2hr								
权循絡(%)	1500°C× 2hr	+ 4.0	- 0.1	+ 1.1			1550°c-2hrs+0.2	155°C-2hrs+0.2	
熱間線膨張率	(%) at1000°C	0.5	0.4	9.0	0.98	1.26	D	0.96	
	MgO				73.0	88.8	69.1	62.6	
	Ca0					4.5		0.8	
北北北	Cr203						17.2	18.8	
お る か よ に る た り に り に り に り に り に り に り に り に り に り	A1203	17.8		83.8	0.8			10.1	84.4
(%)	SiOz	79.1	39.2		1.5			1.5	11.2
	Zr0z		50.0		C 22.0				
	Fe ₂ 0 ₃	9.0	0.5	1.2	0.1			5.6	
挺	*			;	LF S.L	LF VOD	QOA	NOD	湯当たり
8 5	ţ				一般 S.L				
					7.8 8.∆				
	<u> </u>	,							
and the stage of t									
			-	****		-			

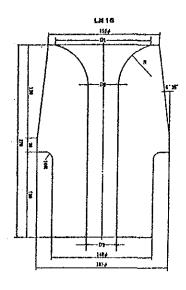
5.2.4 造塊用煉瓦

(1) ノズル (NOZZLE) 外揮式

a. 形状および寸法 JRS 105

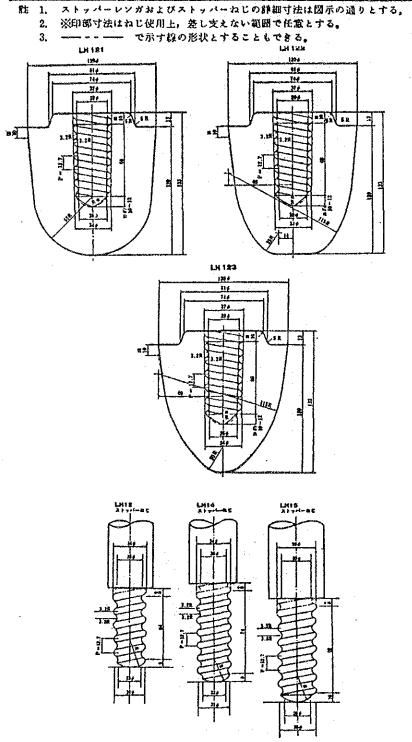

(単位mm)

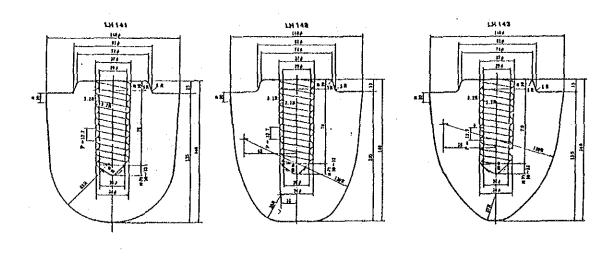

符号	頂部怪	底部径	最大怪
LN 12	135 ф	120 ø	155 φ
LN 14	145 Φ	130 φ	170 Þ
LN 16	155 Φ	140 φ	185 Þ

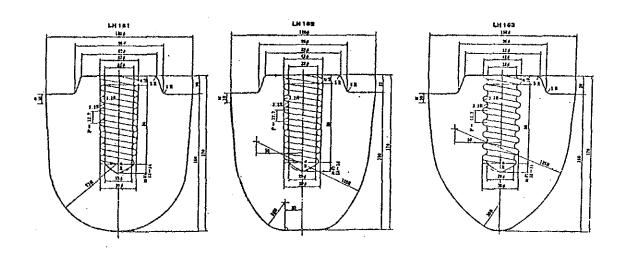

高さ	体数dm ¹	組合せるストッパーレンガ
220	3. 23	L H 121, 122, 123
245	4.16	LH 141, 142, 143
270	5, 42	LH 161, 162, 163

胜 1. 辞細寸法は図示の通りとする。ただしD1, D2およびD3の寸法は使用条件に応じて それぞれ決定されるものとする。

2. したがってここに示す体積は外容積を示す。

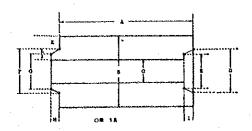

b. 適用材質


表5.2.4-1に代表的材質の品質例を示す。


(2) ストッパーヘッド (STOPPER HEAD)

a. 形状および寸法 JRS 104

						(単位 mm)
符号	顶部形状	取付け部径	有効高さ	体微dm'	使用する ストッパーねじ	組合せる ノスルレンガ
LH 121	形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形形	120 ф 120 ф 120 ф 140 ф 140 ф 140 ф 160 ф 160 ф	120 120 120 135 135 135 150 150	1.02 0.98 0.82 1.57 1.51 1.29 2.33 2.20 1.93	LH1242 C LH1442 C LH1642 C	LN12 LN14 LN16



b. 適用材質

表 5.2.4 - 1 に代表的材質の品質例を示す。

(3) スリーブ (SLEEVE)

a. 形状および寸法 JRS 103

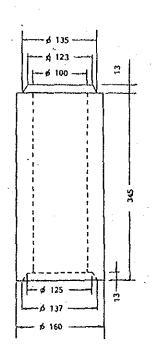
(ՈՄՀատ)

符号	A	В	C	D	Е	• F	G	Н	I	J	К	L	(\$ dm³
L S 121	230	120	50	85	78	81	. 74	13	15	12	19.5	3, 5	2, 15
* 141	7	140	,	*	*		,	,	,	*	29, 5	*	3.09
2 161	*	160	,	,	,	3	*	,	*	,	39, 5	. >	4.17
→ 162	,	*	55	90	-83	86	- 79	,	*	*	37	*	4,05
→ 163	4	,	60	95	88	91	84	,	*	*	34.5	*	3.97
» 181	4	180	. ,	*	1	*	,	,	*	,	44.5	*	5. 19
* 182	*	,	65	100	93	96	89	,	,	*	42	*	5.08
> 201	9	200	*	9	,	,	,	,	,	*	52	*	6.46
> 202	*	,	70	105	98	101	94	,	*	,	49.5	,	6.34

b.適用材質

表5.2.4-1に代表的材質の品質例を示す。

表5.2.4-1 造塊煉瓦品質一覧表


(i)	Z-SZ	ZIRCON簽	33	13	2.70	250	1400		-1.0	0.3				-	440	440	1.0				
1-7 (SLEEVE)	ALT-85	高A1203 質	.88	22.5	2.75	700	1530		0	0.5				84.8			1.8				
スリ	CP.	格上資	33	22.5	1.95	230	1340	1350°C-2hr		0.5				30.0	63.0		2.0				
(STOPPER)	ZH-1	ZIRCON質	33	19.0	3.00	400	1450		-0.2	0.3					45.0	48.0	0.5				
メトッパ・ヘッド (STOPPER)	HFS-3	常十額	34	19.0	2.20	350	1450		-0.5	0.5				44.0	52.0		1.5			Ţ	-
(3)	KN	高柱酸質	12	20.0	2.00	300	1200		+5.0	0.4				22.0	73.0		1.2				
XIL (NOZZLE)	Z-N-2	ZIBCON窗	33	20.0	2.85	200	1510		-0.4	0.2	_				45.0	47.0	0.6				
メク	ALT-85	高A1203 簽	38	22.5	2.75	700	1530		0	0.5				84.8			1.8				
飨	中田職名	第 軍人	度 (SK)	孔 率 (%)	重	t 度(kg/cd)	荷重軟化点(°C) (Load: 2 kg/cm)	1400°C× 2hr	1500°c× 2hr	(%) at1000°C	MgO	CaO	Cr203	A1203	Si02	Zr0z	FezOs	W		 1	
既		通回	配水	見掛気	審正	田 結 強	荷重軟 (Load:	残存線膨張	収縮率 (%)				计量线之	十 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	6			野	2		

(4) 定盤

a、注入管

接合部凸部高さ10~15mm、接合部凹部深さ10~15mmであり、凸部高さを凹部深さと同等ないしは1mm高くする。

形状例

b. 鴻道

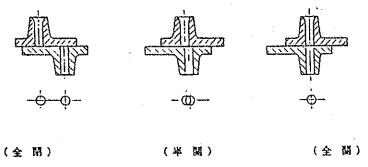
接合部凸部高さ10.5~15mm、接合部凹部深さ10~15mmで、凹凸部の差を 0 ないし凸部を0.5 ~1.0 mm高くしている。

形状例

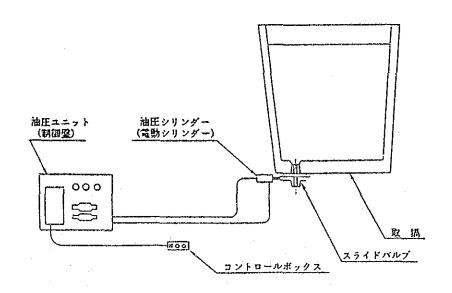
c. 適用材質

表 5.2.4 - 2 に代表的材質の品質例を示す。

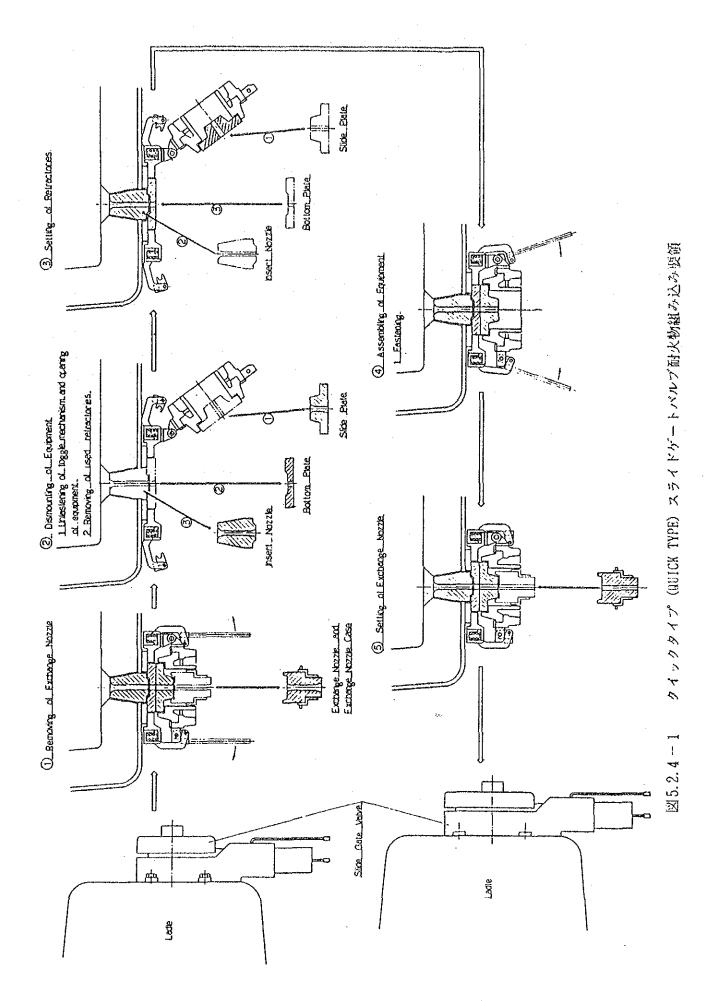
表5.2.4-2 造塊用煉瓦品屬一覧表


	MRT-65	高A1203 質	38	21.0	2.35	009	1620		0	0.5				65.8			1.5	中大型網塊用			
中	MRT-60	高11203 質	37	22.5	2.20	580			- 0.1	0.5				58.0	38.4		1.5	中大型鋼塊用			,
₩	RS-2	高珪酸魔+SiC	56	23.5	2.00	240	1250	1350 °C-2hrs		9.0				27.0	65.0	Sic 5.0	1.9				
	RIB	ろう石粘土質	27	26.0	1.90	250		1350 °C-2hrs		0.6				23.5	72.5		2.5				
乗	出窗名	拉(度 (SK)	孔 译 (%)	重	強 度(kg/cd)	荷重軟化点(*C) (Load:2 kg/cd)	1400°c× 2hr	1500°c× 2hr	(%) at1000°C	OBM	CaO	Cr ₂ 0 ₃	A1203	SiOz	$2r0_{2}$	Fe203	Ą	ţ.		
田田		通回	原 火	見掛気	动	压箱	荷重軟 (Load:	残存綠膨張	収縮率 (%)	熱間線膨張率			计中的	+				业	5	 	

(5) スライドゲートバルブ (SLIDE GATE VALVE) 装置 (S.V)
ノズル、ストッパー、スリーブの問題解決策として、スライドゲートバルブ
装置の導入が有効な方法である。


a. S.V の原理と構造

スライドゲートバルブは、穴を開けた耐火物製の2枚のプレート(PLATE) 煉瓦を重ね合わせた構造であり、このプレート煉瓦を油圧装置などを用いて 摺動させることにより、取鍋内の溶鋼流量をコントロール(CONTROL) するも のである。


1. 流量制御は下図のようにノズル穴の開度によって行う。

2. スライドゲートバルブはコントロールボックス(CONTROL BOX) によって 遠隔操作される油圧ユニット(UNIT) (制御盤) と油圧シリンダー(CYLINDER) (電動シリンダー) により摺動し、取鍋から流出する溶鋼流量をコントロ ールする。

b. 耐火物の組込み方法図5.2.4-1に示す。

Ш-241

c. 取鍋S.V の標準仕様例

1) Slide Gate Valve

	1				
Item			SQT	-	
	50	50亿	. 70	70L	80
Standard Nozzle Diameter (mm)	5 ()	7	0	8 0
Sliding Stroke (mm)	1 2 0	150	170	2.00	240
Loading Mechanism		Tog	gle Mechanism		
Weight (kg)	400	450	500	550	700
2) Hydraulic Cylinder	- A month of the second		Anna ann Maria de la companya de la colonia	L-Para	
Item Type			SQT		· ·
110111	5.0	5 O L	7.0	70L	8.0
Cylinder Diameter (mm)	9 5	•	1 (0 5	130
Rod Diameter (mm)	6.5	5		7 5	9 0
Stroke (mm)	120	150	170	200	2 4 0
Rated pressure (kg/cd)			210		
Weight (kg)	4 0	4.5	6.0	6.5	8.5
Working Oil	Ester-Phos	sphate Incom	bustible Oil		
3) Hydraulic Unit					
Item Tyoe	5	0.70		8 0	
Pump Capacity (1/min at 60 Hz)		8, 7		1 2.3	
Maximum Working Pressure (kg/cd)		· · · · · · · · · · · · · · · · · · ·	210	·	
Oil Tank Capacity (1)		5.0		100	
Motor Power (kw x p)	3	.7 × 4	· 	5.5 × 6	·
Accessory			Accumulator		
Working Oil	Ester-Pho:	sphate Incom	bustible Oil		

d. S.V 用耐火物

表5.2.4-3にS.V 用煉瓦の代表的品質例を示す。

表5.2.4ー3 スライドゲートバルブ煉瓦品類一覧表

旺		四四	軍	見掛気子	商	田籍	而重軟 { Load:	矮存線彫器	以缩率(%)	熱間線膨强率(1 世 美 全	11 13 13 13 13 13 13 13 13 13 13 13 13 1				•			
級	品質名	拉(度 (SK)	孔率 (%)	夏	き 度(kg/cm)	荷重軟 化点 Te(°C) (Load: 2 kg/cd)	1400° C × $2hr$	1500°C× 2hr	(%) at1000°C	MgO	Ca0	Cr203	A1203	SiOz	Zr0z	Fe ₂ O ₃	ħ	ħ.		
/	ZL-7C	ZIRCON質	33	19.5	3.20	750	1430		0	0.4					36.0	47.0	0.5				
ズル	DRL-90F	高A1203 質	40 以上	16.0	2.98	1100	工, 1700 以上		1650°C-2hrs	9.0	-			88.5			0.5				
吳	DRL-90SC	高A1203 簽	40	18.0	2.95	800	1650 以上	44-44	1	9.0			3.2	87.0	8.0						
インサート・ノズル	SVR-90A	高和203 簽	40 以上	19.0	3.10	1200	1650 以上			0.7	-			92.5							
プレート練瓦	SVR-90AITB	高和203 簽	40 以上	2.5	3.20	1550	1650以上			9.0				87.2		C 5.4		タールベーキング品	(TAR BAKING)		
ブレート煉瓦	SVR-90ACTB	高11203 簽	40 以上	3.0	3.15	1400	1650以上			0.6				83.1	c 5.2		サーバイーキング品				
シェートノズル	SVR-5521	ZIRCON愛	36	18.0	3.15	200	1550			0.3					35.0	55.0	7.0				

5.2.5 在庫管理

- (1) 納入品の検査
 - ・寸法、形状の検査
 - ・個数の確認
 - ・破損(割れ、亀裂、角欠その他外観)の有無 検査の結果、不良品があれば直ちに製造工場へ連絡(内容・個数)し、補 充を行う。

(2) 貯蔵

納入検査で合格した良品は、湿気の少ない屋内に保管。水ぬれ、凍結に充 分注意する。

(3) 先入れ、先出し 納入順に整理し、使用必要量に応じ、先入れ、先出しを行う。

(4) 製鋼工場

使用現場には、日間、週間、月間の使用量を計画的に立案、検討し、その 必要使用量のみを倉庫から払出す。

5.2.6 横持ち運搬

- (1) 耐火物に対する重要性の認識教育と、取扱い方の教育を行うこと。
- (2) 運搬方法

裸積(バラ積)は多くの人手にたよらざるを得ないので、できるだけパレット (PALLET)、通箱、ローラコンベア (ROLLER CONVEYOR)を利用する。

5.2.7 耐火物管理(製鋼工場)

- (1) 製鋼工場に耐火物の使用実績、使用状況、問題点の把握と整理、さらに改良 改善の検討、推進をはかる部門(専門班あるいは兼務)を設置する。
- (2) 各炉、各取鍋、各造塊用煉瓦の1基当たりの耐火物必要量、日間、週間、月間の修理計画、施工計画等の検討と推進、適用材質の選定確立をはかる。
- (3) 使用状況の把握(記録)
 - ・施工時:使用耐火物の形状、材質、施工場所、使用個数
 - · 使用時:乾燥、昇熱、開始日時、保持時間、終了時刻、使用開始期日、 使用回数、耐火物損傷状況、使用条件等
 - · 停炉時; 停炉理由、残存寸法、問題点

- (4) 耐火物製造者と製鋼工場耐火物班との定期、不定期の情報交換により、改良 ・改善を推進する。
- (5) 受入れ規格、標準類の整備

使用実績から使用条件に適合した規格の整備をはかる。耐火物製造者との 協議により確立する。

厳しすぎ、適用不可能な規格ではなく、施工、使用に際し必要充分な受入 れ規格を設け、前項の納入品検査に適用する。

5.2.8 耐火建材廠

(1) 品質管理の強化

最終製品の選別、検査を実施する。

a. 選別作業

主として外観(割れ、亀裂、欠け)、寸法、形状の検査の実施により、不良品を除去し、良品ロット(LOT)とする。

b. 検査

抜取検査を良品のロットについて実施する。

・外観寸法については、納入先との取り決めによるが、抜取数 $n=5\sim40$ 個/ロット程度とする。

詳細な各部寸法測定と記録を行う。表5.2.8-1参照。

- ・品質試験
 - 一般物性(耐火度、吸水率、気孔率、かさ比重、圧縮強さ)は、抜取数 n=1~5個/各材質、用途、ロットとする。

特殊物性(残存線膨張収縮率、荷重軟化点、熱間線膨張率、化学分析) は抜取数 n = 1 ~ 2 個/各材質、用途、月とする。

試験成績の記録様式例を、表5.2.8-2に示す。

(2) 造塊用煉瓦製造方法の改良

造塊用煉瓦の主としてストッパーヘッドの亀裂防止、スリーブ、定盤等の 接合部強度向上対策として、下記の点に留意すべきである。

- a. 配合:特に粘土量と粘性
- b. 混練:時間、方法、水分管理
- c. 練土管理:時間、温度

- d. 成型:締り差を少なくする金枠(形状)と成型方法、補助治具の使用
- e. 乾燥管理:温度、時間、残留水分
- f. 焼成温度:標準焼成温度曲線と実焼成温度
- g. 製造中の上記諸点の中間工程管理の実施

P	***********
No	Territoria de la composiçõe de la compos

表5.2.8-1	製	밂	抜	取	検	查	結	果	表	
	THE SECOND CO.	9)4T/20120C1	40% Hay Yo	ACM SINCE	واعتراد		-	Name and Parties	****	æ
	1727	£Π		狂			8	•	H	

品名	***************************************	~~~	品質			L	ot Na.	~~~~~~~				
註〔	<u> </u>	納入先					炉	名			teringap <u>an</u> POPEN SACIAL	Petron a de la completa
正寸												
公差							·				-	
1												
2									}			
3												
4												
5		<u> </u>										
6												
7												
8								<u></u>		<u> </u>		
9	<u> </u>					· · · · · · · · · · · · · · · · · · ·				<u></u>		
10												
11	ļ											
12									<u> </u>	ļ		
13									<u> </u>			<u> </u>
14									ļ			<u> </u>
15									<u> </u>			<u> </u>
16	ļ								ļ <u>-</u>	ļ		
17	 							\ ·		 		
18										ļ		
19								 	 			ļ
20	 											<u> </u>
21 22	 									<u> </u>		
23								·	 	ļ		ļ
24											<u> </u>	ļ .
25	<u> </u>							 	 			<u> </u>
R	 								 		ļ	
X	 							 	 -			
_ <u>^</u> S								 	 			
	1 - 1 45-			. در	es	*************************************		***************************************		 		
備	Lot 数 抜取試料数		TO.	<u>外</u> 裂	現不上	反反			和	l	定	
	合格数	·	角	欠			不良	· 				
	外級					·						
考	外 段 外 段 寸 不 良 佐 不 尺 皮	-	7	- :	-	押り	不良					
	未覧		狭	班		1			j			

	٠.	第二								1			4501.10 @
α.		公司数据 现在(%)											
		(加度で) (加度で) (2kg/cd)							÷.				SIC(KS)
		现(科斯特 10.4以第4年 (96)								Cr ₂ O ₃ (%)			(試験方法は 月18に依る)
			·							Ca O (%)			
2 / / / / / / / / / /	피								·	M & O (%)			
耐火れんが試験成績	71	犯卧比重								Ti 0, (%)			
がが調	35	かさ比重					! !			Fe2O ₁ T (%)			
トれん	-	然 先 # (%)								Al 203 Fe (%)			
阿少	照和	级 木 卡 (%)											
		最大度(SK)				-				S S S (%)		-	
		TI.								1g Loss (%)			
		17 180								na M			
		. %2								纶			
	14. 数	5			 ·				類	멾			郊
	\$2 FI			,					35 折				温

6.環境管理

6. 環境管理

6.1 調査内容

同工場の斉斉哈尔地区には約100万人の人々が生活を営んでおり、環境汚染による公害の発生を防止し、快適な生活環境を維持するため大気、水質、騒音等について各種の規制を定めている。同工場に於いても規制に対して対策を講じ、規制値を上回らないよう努力して現状では対応出来ているが、将来大気汚染については製鋼工場の集塵装置の設置が必要と思われる。水質処理についてはpH値、浮遊物、COD等が規制されているが、油濁水の処理施設の充実が必要と思われる。騒音についてはハンマー(HAMMER)設造等騒音源となる機械類が多いが、その騒音発生源対策が不足している。

6.1.1 粉塵関連

(1) 工場建物内の排塵

製鋼工場の現有平炉2基、電気炉5 ton および20ton 各1基には、いずれも 集塵装置が取り付けられていない。

新たに建造される70 ton 級の電気炉の排気量は、冷却後約50万㎡/h と予想されている。集塵問題について、国家規定には新たな設備を設けた時、その集塵設備は必ず設計、施工、稼動を同時に行うこととの条項がある。

酸化鉄等の金属粉塵について、セメント (CEMENT) の添加材 (本工場地区には、セメント工場が有る) にしうるかどうかについて、工場側より質問があった。工場内の建物には、排塵設備や観測計器がなく、粉塵濃度、排塵温度が未測定である。

(2) 労働環境

鋳型製造場所付近に、高真空吸塵装置を据え付け、砂や鋳型内の粉塵を周囲の粉塵濃度が、 0.4~ 3.0mg/㎡になるよう吸い込むことをめざしている。

砂落とし機の粉塵は、水膜集塵機および布袋集塵機により処理される。

当作業場の鋳型砂の処理、砂落とし後の手入れについては、全て集塵装置を取り付け、同時に経常的な散水による湿潤作業を採用し、粉塵の舞い上がりを防止している。1984年の統計による測定結果では、鋳型砂、各部門、砂落とし場付近の粉塵濃度は約2mg/㎡である。

6.1.2 水質関連

(1) 油漏れ

重油等燃料油のオイルタンク (OIL TANK) 、輸送パイプ (PIPE) 、炉前等の場所での漏れ防止の管理について、重油タンクの油漏れ、地下への滲みに対する解決方法がなく、解決案提示の希望が工場側よりあった。

重油タンク中に排出される油を含んだ廃水については、油水分離タンクを通 した後、油と水を分離し、廃水は直接下水パイプに流し、重油を回収している。 オイル輸送パイプの油漏れを防ぐため、パイプ系全体の蒸気冷却水の出口部 分に、油水分離装置を据え付け、漏れた油の下水パイプへの進入を防止するた めの経常的な検査を行っている。

工作物は、その焼き入れ後の表面に、油および工作機械の切削屑が付着しており、表面に付着した油については、その収集方法がないとのことで、廃油の収集方法の提供依頼があった。

水圧プレス (PRESS)地域内の油を含んだ汚水は、重力法による分離後も油類を含んでいるため、この処理方法の提供依頼があった。

(2) S. S (SUSPENDED SOLID 浮遊物質)

真空装置より発生する汚水については、直接下水パイプに排出している。それ以上の処理が必要かどうかについての質問があった。

水力砂落としの廃水は、沈澱タンクでの沈澱処理後排出している。

(3) その他

生活汚水については、処理せず、直接下水パイプに流している。

工場の下水パイプについては、最初の設計では生活汚水と工業汚水(雨水を含む)を分離して流すことになっていたが、現在、生活汚水排出用主パイプが ふさがれているため、排水出来ず、このため工場内の生活汚水が工業汚水パイプに進入し、排出されているとのことである。

6.1.3 翳 音

地域環境騒音:工場内の騒音観測点は66ヶ所で、その実測結果において、等価サウンドレベル (SOUND LEVEL) は、最低が 51dB (A)、最高が 74 dB(A)、平均等価サウンドレベルは Leq = 61dB (A) である。上記の結果は、全て昼間の測定で、夜間は未測定である。

工場区域の環境騒音:工場区域部分の観測点は78ケ所で、その実測結果においては、騒音の最低値は 40dB (A) 、最高値は 62 ~ 64dB (A) (総数の 6%を占める)、騒音平均値は 50dB (A) である。上記の結果は、全て昼間の観測値であり、夜間は未観測である。

現場内の設備騒音については、未だシステム (SYSTEM) 化された観測が行われておらず、各個別の設備 (例:製鋼現場の真空装置) は 100dB (A)前後に達する。

労働環境騒音のきわめて大きいものについては、防音室(例えば空気圧縮機場、水力ポンプ(PUMP)場)を設けている。個々の設備の騒音の大きいものについては、個人の人体の防護(例えば、耳栓、耳カバー(COVER))、遮音ついたてによる設備のカバー、ブロアー(BLOWER)の消音等の措置を講じている。

6.1.4 廃棄物関連

平炉および電気炉製鋼による固体廃棄物は、すべて廃棄物置場に置いている。 石炭ガス (GAS)発生炉より生じるコールタール (COAL TAR) は、平炉製鋼時の 燃料として用いている。

現在、処理の困難な廃棄物は下記のものである。

- ・石炭ガス発生炉より飛散する炭鸌
- ・PCBを含有するコンデンサ (CONDENSOR)

6.2 改善策

工場側より質問または改善提案の要求のあった項目に対する、調査団員の所属する工場における対処例を以下に示す。

6.2.1 製鋼集塵ダスト (DUST) の再利用について

ダストはセメント工場に委託処分している。セメント工場ではセメント配合 鉄源として組成管理の上使用している。

6.2.2 重油タンク、油漏れ、地下浸透

油漏れがおこっているタンクについての対応策の経験はない。

しかし大型タンクについては、下図の如くタンクをコンクリート(CONCRETE) 上の含油砂に置く構造としている。内部は受入油が腐食を防止し、底部も含油 砂で腐食を防止している。法では2回/年の点検義務を負わせており、それに 準じての目視点検および自主検査も含め、漏洩が発生する前に対処している。

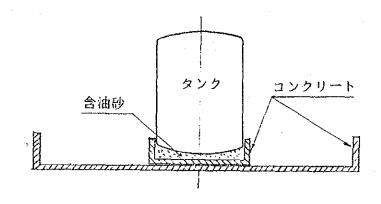


図6.2.2-1 重油タンク

6.2.3 油焼入品の付着油等の対応

とりたてて、これといった対応は行っていない。焼入品の油切りが終わるまで、油が勾配面で収集出来る構造の台の上に乗せている。

油の付着した切粉から油を除却する方法としては、切粉を遠心分離機にかけて油回収する方法も一部行っている。

6.2.4 水圧プレス漏水の対策

水圧プレスには全くの水だけと、ソルブル (SOLUBLE) 油を 3 %程度入れた ものがある。どちらも圧力上昇の工程およびアーム (ARM)の上下工程等で摺動 部の潤滑油をとりこんだ油水がプレス下部のピット (PIT)に漏れてたまってく る油水は、ソルブル油を含まない場合、浮上分離している。

ソルブル油を含む場合、塩化カルシウム (CALCIUM)を入れ、エマルジョン (EMULSION)を破壊後浮上分離させている。さらに清浄にするため、活性炭吸着 層を通過させている。

・重力法による分離後の対策について

重力法にも種々あって、浮上分離の効率を上げるためにAPI、PPIといったものがある(下図参照)。

さらに、清浄にするためには活性炭吸着分離させるのがよい。

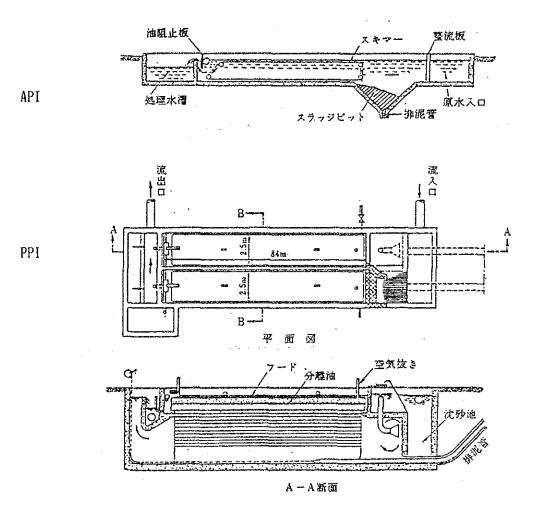


図6.2.4-1 重力法による油水分離

傾斜板の間隔10cm、傾斜角度45 とする。油滴は傾斜板の間で分離されて板の 裏面を上昇し、油捕集用フード(H00D)内に捕集され、フードの一端に設けら れた溢流管から回収される。この装置は $0.006cm(60\mu m)$ の大きさまでの油滴を 分離できるとしている。

6,2,5 真空装置発生污水

真空装置がスチームエジェクタ (STEAM EJECTOR)によるものであれば、相当な汚染があるものと推定する。電気炉集塵ダストの性状に近いもの (Fe、Mn、Ca、Mg、Pb、Zn等) が水に溶けこむものと推定する。

数段のエジェクト機構があるものと思われるが、最初のエジェクタでのコンデンス (CONDENSE) 用水が最も汚れるので、これだけを他と分離して、凝集分離を行うのがよい。凝集剤として硫酸パンド ($A1_2(SO_4)_3$)を用い、ろ過またはシックナ (THICKENER)による凝集沈澱がある。

6.2.6 廃棄物

電気炉製鋼での大量発生廃棄物としては、鋼滓、電気炉集塵ダストである。 これらは降雨にさらすと高p H水が溶出するので、工場排水溝に近く置いていると、降雨時に問題となることがある。

また、電気炉集塵ダストはCr⁺⁶、Pb等も溶出するので要注意である。

6.2.7 PCB封入コンデンサ

PCBが飛散することは問題である。使用中は注意することなので問題はないが、老朽廃却に際しては保管庫を設け、厳重に管理しておくのがよい。

6.3 参考資料

表6.3-1 "排気ガス"有害物質排出基準

有害物質の	1	重 理	値	実 測 値
名 称	排気筒高さ (m)	排 出 量 (kg/h)	排 出 濃 度 (mg/m)	排出 濃度 (mg/㎡)
二酸化硫黄	60	140	. /	未测定
弗 化 物	50	4.1	/	"
塩 素	50	12	/	"
窒素酸化物	60	86	. /	"
塩化水素	50	5.9	/	"
一酸化炭素	60	620	1	"
鉛	100		34	11
煙 盟および 生産性 粉 腹			150 ~ 200	"

表 6.3-2 松花江水系の工業 "廃水"汚染物排出基準

有害物質の名称	松花江水系の 規定管理値	実 測 値 (工場年平均値)	測定頻度
p H 値	6 ~ 9	6.7	1回/月
浮 遊 物	100.0mg/l	69.8mg∕ℓ	"
化学的酸素要求量(C O D) (重クロム酸カリ法)	,,	13.7 "	"
揮発性フェノール	0.5 "	0.08 "	"
石 油 類	10.0 "	5.2 "	
シアン化物 (CN-)	0.5 "		
カドミウム (Cd) および そ の 無 機 化 合 物	<0.05 "		
- 弗素およびその無機化合物	5.0 "	未検出	
銅およびその無機化合物	1.0 "	"	
亜鉛およびその無機化合物	5.0 "		
六価クロム化合物(Cr ⁶⁺)	<0.13 "		
ベンゼン	2.5 "		1
生化学酸素要求量(5日20℃)	60 "		
ニトロベンゼン	3.0 "		
砒素およびその無機化合物	0.5 "		
鉛およびその無機化合物	0.05 "		
硫 化 物	1.0 "		
		·	

表6.3-3 鋳鋼および耐火物工場での集塵機設置状況

No.	集塵装置の名称	型番規格	台数	処理能力	処理 選体	廃 塵 発 生 源
1	布袋集塵機	PULSE 式 BMC 1-2-10	10	127,800 ㎡/h	粉躈	7台の砂ローラ(ROLLER) 輸送ベルト(BELT)、多角 ふるい
2	"	BMC 2-3-10	6	105,620	. 11	100 tローラ等
3	u	BMC 3-4-10	6	169,300	11	砂落とし噴射等
4	"	BMC 1-3-10	1	4,630	煙塵	ローラ蒸し乾燥釜
5	H	BMC 1-4-10	1	10,000	粉塵	鋳物砂輸送ベルト
6	小型平袋集塵機	XBC-8WX	4	3, 200	"	,
7	機械式回転反 吹き平袋集塵機	JFC-120-1	1	15,000	ii.	廃砂輸送ベルト
8	"	· · ·	1	25,800	"	廃砂破砕
9	<i>"</i>	LDB-250	2	59,900	煙塵	鋳物塵切り落とし場
10	"	LDB-30	2	6,000	"	鋳物の補修溶接
11	水浴集塵機	自社製作	2	50,000	粉塵	鋳物砂落とし室
12	施風水浴集塵機	CLS/A-3YN	2	840	"	鋳型中空の塵除け
13	水浴集塵機	CLS/A-3YN	2	4,000	n	清掃砂の吹き付け等
14	"	CLS/A-10XS	10	120,000	11	60 t 砂ローラ
15	布袋集塵機	自社製作パルス式	2	29, 440	<i>!!</i>	耐火材料、研磨機システ ム (SYSTEM)
16	"	LDMD/S-72	2	25,560	"	耐火材料、湿ローラシス テム
17	"	DMC-96	2	20.730	"	″ 、振動ふるい等
18	水浴集選機	自 社 製 作 2m×2m	1	"	"	BRICK PRESS

表 6.3 - 4 現場空気中の生産性粉塵の最高許容濃度規定

物質の名称	mg/m³	物質の名称	mg∕m³
80%以上の浮遊二酸化けい素を含む粉塵	1	 10%以上の浮遊二酸化けい素を含む 炭塵	10
10%以上の浮遊二酸化けい素を含む粉塵	2	アルミニウム(ALUMINIUM)、酸化アル ミ、アルミ合金粉塵	4
アスベスト (ASBESTOS) 粉塵および10% 以上の石綿を含む粉塵	2	ガラス (GLASS)綿および鉱物くず 綿 の 粉 塵	5
10%以下の浮遊二酸化けい素を含む タ ル ク 粉 塵	4	煙草および茶葉の粉塵	3
10%以下の浮遊二酸化けい素を含む セメント (CEMENT) 粉塵	6	浮遊二酸化けい素の含有量が10%以下 の無毒物質の粉塵 (鉱物性および動植物性粉塵を含む)	10

表 6.3-5 工業騒音標準規定

各作業日の騒音に接する時間(時間)	許 容 騒 音 〔d B (A)〕			
	新建造企業	現有企業		
8	85	90		
4	88	93		
2	91	96		
1	94	99		

最高は 115d B (A) を超えてはならない。

7. 安全衛生管理

7. 安全衛生管理

社内安全管理規準の整備状況、作業者の安全保護具の着用状況および健康診断実施の 状況等より判断する限り、第一重機廠に於ける安全衛生管理の認識は高く、社内でも広 く安全衛生教育の啓蒙がなされているものと思われる。

7.1 安全管理規準

表7.1-1に示すような、各作業別あるいは設備別の作業安全規則が制定されており、現在更に規則の補完が進められている。

また職場に於ける有毒物質の最高許容限度値は、表7.1-2のように定められている。

7.2 安全保護具

悪環境下で働いている作業者に対しては、工場側が定期的に、安全保護具の支給 を行っている。

例えば、粉塵、毒物の環境下の作業者に対しては、防塵および防毒マスク(MASK)を、騒音環境作業者には耳栓を、また製鋼の作業者には防護用色眼鏡を与えている。 また、高温の作業場には移動式扇風機を設け、環境改善を図っている。

7.3 健康診断

視力、血圧、X線検査のいわゆる一般健康診断については、不定期ながら全工場 労働者を対象として行っている。

一方、特殊環境下での作業者を対象とした検査の項目並びにその実施頻度は次の 通りである。

健診内容	対 象 者	実 施 頻 度			
塵肺および珪肺健診 嫌疑珪肺者、珪石取扱者		回/6月~1年			
	鋳物工、ランマー (RAMMER) エ 回/3年				
	旋盤工、補助工	回/5年			
聴 カ 健 診	騒音環境下の作業者	回/3~5年			
振動工具取扱健診	ランマー工、リベット(REVET) エ	回/3~5年			
紫·赤外線健診	電気溶接工、冶金工、同位素取扱者	回/3~5年			

表 7.3-1 特殊健康診断

さらに、循環器 (心電図) 、肺機能、胃等の成人病の健診を必要に応じて実施している。

表7.1-1 安全管理規則(1/6)

- 1. 木工大工安全規則
- 2. 塗装工安全規則
- 3. 運搬員安全規則
- 4. クレーン (CRANE)工安全規則
- 5. 天井クレーン工安全規則
- 6. 潤滑工安全規則
- 7. グラインダー (GRINDER)安全規則
- 8. 极金工安全規則
- 9. 機械組立工安全規則
- 10. 配管工安全規則
- 11. 電気工事工安全規則
- 12. ガス (GAS) 溶接工安全規則
- 13. 電気溶接工安全規則
- 14、電気メッキ (GALVANIZING)工安全規則
- 15. 電解加工安全規則
- 16. 予備材(冷間)工安全規則
- 17. 半田ごて工安全規則
- 18. 刃物研磨工安全規則
- 19. 旋盤工安全規則
- 20. ボール盤 (DRILLING MACHINE) 工安全規則
- 21. ブローチ盤 (BROACHING MACHINE)工安全規則
- 22. 立削り盤 (SLOTTING MACHINE) 工安全規則
- 23. 研磨工安全規則
- 24. 中ぐり盤工安全規則
- 25. 歯車研削盤工安全規則
- 26. フライス盤 (MILLING MACHINE)工安全規則
- 27. 形削り盤工安全規則
- 28. 線引き工安全規則
- 29. ボイラー (BOILER) 補修工安全規則

表7.1-1 安全管理規則 (2/6)

- 30. CO2 ガス保護溶接工安全規則
- 31、 圧延網工安全規則
- 32. 予備材(熱間)工安全規則
- 33. スポット溶接(SPOT WELDING)工安全規則
- 34. リベット (REVET)工安全規則
- 35、化学実験工安全規則
- 36. 電熱焼き戻し油タンク (TANK) 工安全規則
- 37. 誘導加熱熱処理工安全規則
- 38. 吹き付け焼入工安全規則
- 39. くせ取り工安全規則
- 40. 真空鋳造工安全規則
- 41. 鉄筋工安全規則
- 42. 築炉工安全規則
- 43. 平炉滓取り工安全規則
- 44. 鋳造工安全規則
- 45. 製鋼配電工安全規則
- 46. 塩浴炉熱処理工安全規則
- 47. ガス炉熱処理工安全規則
- 48. 木型工安全規則
- 49. さらい工安全規則
- 50. 型枠工安全規則
- 51. かす取り工安全規則
- 52. 油タンク循環工安全規則
- 53. 鋼塊工安全規則
- 54. 機械性能試験工安全規則
- 55. 平炉冶金工安全規則
- 56. 電気炉冶金工安全規則
- 57. 超音波探傷工安全規則
- 58. 砂配合工安全規則

表7.1-1 安全管理規則(3/6)

- 59、ガラス器類 (GLASS WARE) 工安全規則
- 60. 自動サブマージアーク (SUBMERGED-ARC)溶接工安全規則
- 61. 光線探傷工安全規則
- 62. 高エネルギー (ENERGY) 加速器工安全規則
- 63. のこぎりカッター (CUTTER) 研磨工安全規則
- 64. 電解研削盤工安全規則
- 65. 左官工安全規則
- 66. 小鋼塊铸造工安全規則
- 67. 小網塊仕上げ工安全規則
- 68. 丸のこ工安全規則
- 69. 帯のこ工安全規則
- 70. 木工旋盤工安全規則
- 71. 木工平形削り盤工安全規則
- 72. 木工圧縮形削り盤工安全規則
- 73. 木工万能フライス盤工安全規則
- 74. 水力砂洗い工安全規則
- 75. サンドブラスト (SAND-BLAST) 工安全規則
- 76. 送油ポンプ (PUMP) 工安全規則
- 77. マグネサイト (MAGNESITE)工安全規則
- 78. 化学銅工安全規則
- 79. 遠心鋳造工安全規則
- 80. ベルトコンベヤ (BELT CONVEYOR)工安全規則
- 81. 爆破工安全規則
- 82. 砂落とし工安全規則
- 83. ガスボイラー加熱工安全規則
- 84. 火炎燒入工安全規則
- 85. キュポラ (CUPOLA) 工安全規則
- 86、水圧プレス (PRESS) 鍛造工安全規則
- 87. ハンマー (HAMMER) 工安全規則

表7.1-1 安全管理規則(4/6)

- 88、銀造工安全規則
- 89. ガス炉乾燥工安全規則
- 90. 造型工安全規則
- 91. 型砂試験工安全規則
- 92. 箱取り工安全規則
- 93. のこ引き工安全規則
- 94. 木材乾燥工安全規則
- 95. くせ取りプレス工安全規則
- 96. 曲げ機械工安全規則
- 97、錆取り機械工安全規則
- 98. 切断機械工安全規則
- 99. 冷間線引き機械工安全規則
- 100. モルタル (MORTAR) 攪拌工安全規則
- 101、機械攪拌工安全規則
- 102、コンクリート (CONCRETE) 養生工安全規則
- 103、あぶり乾燥機械工安全規則
- 104. 車輪押し工安全規則
- 105. 火炎見積り工安全規則
- 106、ねじコンベヤ工安全規則
- 107. チェーンバケット (CHAIN BUCKET) 冷却工安全規則
- 108. COz充填工安全規則
- 109. CO2 ポンプ工安全規則
- 110. 窯出し入れ工安全規則
- 111. 耐火煉瓦原料粉砕工安全規則
- 112. 耐火煉瓦成型工安全規則
- 113. 耐火煉瓦生地乾燥工安全規則
- 114. 反射炉円形窯焼結工安全規則
- 115. 耐火煉瓦完成品検査工安全規則
- 116. ドロマイト (DOLOMITE) 破砕工安全規則

表7.1-2 安全管理規則(5/6)

- 117. 乳化液工安全規則
- 118. 縦窯焼結工安全規則
- 119、機関車、クレーン、炭水工安全規則
- 120. タイヤ (TIRE) 補修工安全規則
- 121. ブルドーザー (WHEEL LOADER) 運転士安全規則
- 122. 車輌検査修理工安全規則
- 123. 保線工安全規則
- 124. ショベル (SHOVEL) 運転士安全規則
- 125. 機関車、クレーン車、炉洗浄工安全規則
- 126. 自動車運転手安全規則
- 127. 電動車運転手安全規則
- 128. 連結員安全規則
- 129. 鉄道運搬員安全規則
- 130. 操車員安全規則
- 131. ボイラー工安全規則
- 132. クレーン操縦士安全規則
- 133. 機関車運転士安全規則
- 134. 機関車ボイラー係安全規則
- 135. 機関車副運転士安全規則
- 136. トラッククレーン (TRUCK CRANE)操縦士安全規則
- 137. フォークリフト (FORK LIFT) 運転士安全規則
- 138. クローラクレーン (CRAWLER CRANE)運転士安全規則
- 139. トロッコ (TRUCK) 運転士安全規則
- 140. 微粉炭工安全規則
- 141. 熱水ボイラー工安全規則
- 142. コールタール (COAL TAR) 工安全規則
- 143. 石炭ガス化学実験工安全規則
- 144. 灰取り工安全規則
- 145. 送風機工安全規則

表7.1-1 安全管理規則(6/6)

- 146、ガスポイラー係安全規則
- 147. ガス加圧工安全規則
- 148. 鎖伝動蒸気ボイラー工安全規則
- 149. 電気機械修理工安全規則
- 150. 電気試験工安全規則
- 151. ガスボイラー工安全規則
- 152. 石油ボイラー工安全規則
- 153. 電気工事計器工安全規則
- 154. 充電工安全規則
- 155. アセチレン (ACETYLENE)工安全規則
- 156. 酸素充填工安全規則
- 157. 酸素製造工安全規則
- 158. 蒸気ボイラー工安全規則
- 159. 弱電外線工安全規則
- 160. 弱電工安全規則
- 161. ポンプ工安全規則
- 162. 熱加工計器工安全規則
- 163. 圧縮機工安全規則

表7.1-2 空気中の有毒物質の最高許容濃度値(1/3)

物質の名称	K	物質の名目	弥
一酸化炭素	(mg/m²) 30	ピリジン	(mg/m³) 4
メチルアミン	5	金属水銀	0.01
エチルエーテル	500	塩化第二水銀	0.1
エチルニトリル	3	ブチルアルデヒド	10
ジメチルアミン、ジメチル酸ア ミド (皮膚)	10	トリエチル塩化スズ (皮膚)	0.01
キシロール	100	三酸化ヒ素及び五酸化ヒ素	0.3
ジメチルジクロロケイ酸	2	三酸化クロム、クロム酸塩、 重クロム酸塩 (CrO3に換算)	0.05
ジクロロイオウ	15	トリクロロケイ化水素、ホルムアルデヒド	3
ジクロロセレン	0.1	カプロラクタム	10
ジクロロプロピルアルコール	5	酸化リン	10
二硫化炭素(皮膚)	10	ペンタクロロフェノール及びそ	_
ジイソシアン酸メチルベンゼン エステル	0.2	のナトリウム塩	0.3
エチレン、ブタジエン	100	В. Н. С	0.1
メチルベンゼン、シクロヘキサ	100	プロピル体B. H. C	0.05
ע	100	アセトン	400
ホスゲンガス	0.5	アクリルニトリル (皮膚) アクリルアルコール (皮膚)	2
シストックス(E059)(皮膚)	0.02	アクリルアルデヒド、敵敵畏	0.3
パラチオン(E605)(皮膚)	0.05	(皮膚)	0.5
サイメット(3911)(皮膚)	0.01	有機水銀化合物 (皮膚)	0.005
マラソン(マラチオン)(4049) (皮膚)	2	テレビン油	300
メタシストックス (メチルE059) (皮膚)	0.2	エポキシクロロプロパン (皮膚)	1
メチルパラチオン (メチルE	0.1	エポキシエタン	5
グラルハファオン (グデルE 605) (皮膚)	V. I	シクロヘキサノン、シクロヘキ サノール	50
ロゴール (ジメトエート) (皮膚) 敵百虫 (皮膚)	1	ベンゼン、スチレン	40

表7.1-2 空気中の有毒物質の最高許容濃度値(2/3)

物質の名を		物質の名を	
ニトロベンゼン及びニトロトル	(mg/m²) 5	ジクロロエタン	(mg/m³) 25
エン等(皮膚)	1	トリクレン	30
ジニトロベンゼン、トリニトロ トルエン等(T.N.T) (皮膚)	1	四塩化炭素(皮膚)	25
ニトロクロロベンゼン、ジニト	1	クロロエチル	30
ロクロロベンゼン等(皮膚)	1	クロロブタジエン (皮膚)	2
アニリン、トルイジン、ジメチ ルアニリン (皮膚)	5	ブロモメタン (皮膚)	1
五酸化バナジウム煙	0.1	ヨードメタン (皮膚)	1
	0.5	溶剤ガソリン	350
五酸化バナジウム粉塵		D. D. T	0.3
バナジウム鉄合金、フッ化水素 及びフッ化物(Fに換算)	1	ニッケルカーボネイト	0.001
荷性ソーダ(NaOHに換算)	0.5	モリブデン (可溶性化合物)	4
アンモニア	30	モリブデン (不溶性化合物)	6
オゾン、ヒ化水素	0.3	フェノール(皮膚)ジルコニウ ム及びその化合物	5
酸化窒素(NOz に換算) 酸化亜鉛	5	ナフテン、四水素化ナフタリン	100
酸化カドミウム	0.1	シアン化水素及びシアン化水素 酸塩(HCNに換算)(皮膚)	0.3
鉛煙、黄燐	0.03	フェニルベンゼン、フェニルベ	7
鉛 鏖	0.05	ンゼンエーテル	,
テトラエチル鉛(皮膚)	0.005	硫化水素	10
硫化鉛	0.5	硫酸及び三酸化イオウ	2
ベリウム及びその化合物	0.001	マンガン及びその化合物(MnO ₂ に換算)	0.2
塩素、塩化コバルト	1	マルチン	6
塩化水素及び塩酸	15	テン	J
塩化ベンゼン	50	酢酸メチル	100
クロロナフタリン及びクロロビ	1	酢酸エチル	300
フェニール (皮膚)		酢酸プロピル	300

表7.1-2 空気中の有毒物質の最高許容濃度値(3/3)

物質の名	称	物	質	の	名	称
酢酸ブチル	(mg/m²) 300					
酢酸アミル	100					
メチルアルコール	50					
プロピルアルコール	200					
ブチルアルコール	200					
アミルアルコール	100					
糠アルデヒド	10					
リン化水素	0.3					i.
						ļ
		·				
						j
				•		
						i . F
					•	
			······································			