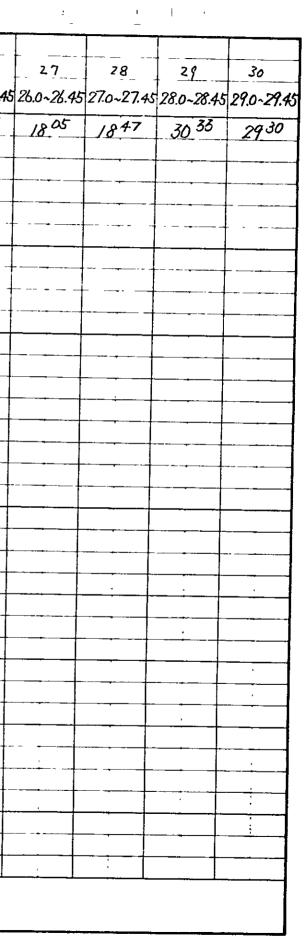
SUMMARY OF SOIL TEST

.

1 <u>土質試験結果一覧表</u> SUMMARY OF SOIL TESTS


.*-	- 14 _ 7	孔術号 Boring Hole No					r	[l	<u> </u>		1			Date
л.	# } i	新号 Sample No.			16	<u>- 1</u>	18	19	20	+ · ··					
梈	<u>க</u> ் •	探 嗖 Elevation, Depth m			15.0~15.45	1	1 -	1	4	21 20.0 <i>~2</i> 045	zz 21.0~21.45	23 220~2245	2 k 23.0~2345	25	26
		自共含水比 Natural Moisture Content	Ľ.,		42 55	3960	47.38	4781	46.82	51,17	2219	2174	26 95	·	<u></u>
		土粒イの比重 Specific Gravity	C,	<u> </u>					<u> </u>	. اف	<u> </u>	41.''	<u> 26</u> /*	24"	19.37
自 然 Natu	K 秋 他	福 渦 出 煌 Wet Density	7,	Б, сш ³						••	÷ -	- 			
	lition	乾 姓 亲 惶 Dry Density	74	8, Cm ³							-	· •	- +		
		間 テ キ 比 Void Ratio	e									- •			
		起 前 增 Degree of Saturation	S,	%	•										
		液作即界 Liquid Limit	w,	0%	43°	4				43 ⁰					
コンン ンレー	ンステ - 特性	暫 作 限 界 Plastic Limit	и,	20	190				• -	190		• - = •	• •	Nit	
Consi	stency	帮作指数 Plasticity Index	1,		24.0					24.°	• -	•		N.P.	
		コー、ステー、一指数 Consistency Index	L				·······	•••	• -	<i>4</i> 1	-	+		N.P.I	
		レキシ 200mmはj Gravel		%	0.						<u> </u>				
		移行・2 00~0 074mm Sand		%	1				• •	0		· ·		0	
		ンルト分(0.074~0 005mm Silt		%	53					6		→ -∔		44	
粒度	特性	粘土分(0 005mm以下' Clay	-	%	44					<u>4</u> 9. 45	•			56	
Grad	ation	約 等 係 数 Uniformity Coefficient	U,		~				+ - +	-	•		+		
		三角座標分類法 Triangular Classification	-		Clay					Clay				4.5	
		日本統一土質分類法 Japanese Unified Soil Classification	1		CL·					- T	- −			Sand	
		AASHO分類法							-	CL	•			SM-SC	
	_	- 帕圧縮速さ Unconfined Compressive Strength	9.	łų: m											
	新 med essio	破壊ヒズミ Failure Strain	.	%						- •	- •				
	執任紙 Unconfined Compressio	变形 俳 컵 Deformation Coefficient	Eso	kg _2	·				•	•	• {	<u>_</u> <u>+</u> -			
		說 敏 比 Sensitivity Ratio	S,					+	- •		• +	•- +			
ty	An	忒 联 条 件 Test Condition													
持 性 Property	新 신 문 문 문 문 문 문	粘 若 力 Cohesion	C	ч <u>.</u>					•	• • +	• +	•			
#Å.	고 도 다 다	セン断抵抗角 Angle of Shearing Resistance	\$	-									·		
\¥ nical	ion	よ 映 条 件 Test Condition													
カ ギ Mechanical	- 始任稿 Truaxial Compressi	粘 若 力 Cohesion	c						·	-	•			+	
ž		セン断抵抗角 Angle of Shearing Resistance	ø	0					·•···•		•	-			
	_	压密降伏応力 Consolidation Yield Stress	P.	kg (m²									- ; -		
	圧 Consolidation	任 箱 指 载 Compression Index	C,								-•- +	• • +			
	Ilosuo	庄 庄 係 数 Coefficient of Consolidation	с.	œa² Sec					- +	+	- +	• +.	····••		
	ਸ਼ਨ	透水体 Coefficient of Permeability	k	Sec Sec								·- •			
		成 験 条 件 Test Condition		att			:								
緒固め Compa)特性 action	收通含水比 Optimum Moisture Content	12 _{4 = 1}	%	:							i			
~~~n		最大乾燥密度 Maximum Dry Density	71	_					<u> </u>						
備 Rema:	<i>.t</i> j rks		<u>,</u>		<u>.i_</u>		<u>i</u>	<u>_</u>		<u>.</u>					

.

调查名一调查通信 Thilawa Repair Dockyard Project

-----

<u>p. 93</u>



- - -

#### 土質試験結果一覧表

SUMMARY OF SOIL TESTS

調査名・調査地占	
Title, Investigation Place	Thilawa Repair Dockyard Project

式採明日 Date ボーリンク孔番号 Boring Hole No ふ 料 街 号 Sample No 1 Ζ 3 5 4 6 8 7 9 10 11 情·話·課 2 Elevation, Depth m 0~0.45 1.0~1.45 2.0~2.45 3.0-3.45 4.0-4.45 5.0~5.45 6.0-6.45 7.0~7.45 8.0-8.45 9.0-9.459 100-10.4 1 ... 8 89 29 75 自然含水比 Natural Moisture Content 26 50 20,60 28 80 35 71 42 87 49.67 49.95 50 73 38.39 上标上办比重 Specific Gravity G. | 74 ⁸/ 74 ⁸/ 自 柣 朲 態 Naturai 温 胡 金 戈 Wet Density --------Condition - + 乾燥窑 惶 Dry Density - <del>-</del> - - --• 間 ゲ キ 比 Void Ratio -. . -----. 飽 和 嗖 Degree of Saturation ٠ -- -S. % ----液件 即 咪 Liquid Limit w1 % 550 395 コンレステ シン一特性 -- -暫 性 限 界 Plastic Limit u. 3 .18.0 24.0 Consistency . _ -塑 作 指 数 Plasticity Index I, 31.0 215 - -+ コンシスティン-指数 Consistency Index _ I. -- + -レキン 200mm以上 Gravel % 0 0 砂分 2 00~0 074mm Sand % - -1 ンルト分(0 074~0 005mm Silt _ % 42 52 - --粒度特性 Gradation 粘土分 0.005mm以下 Clay 1 % 57 47 ~ 均等係数 Uniformity Coefficient U, --_角座標分類法 Triangular Classification clay Clay 日本統 土質分類法 Japanese Unified Soil Classification ----CH. CL_ ---- ---AASHO分類法 帕圧缩強さ Unconfined Compressive Strength q. kg . 軸压箱 aconfined -破壊とズ: Failure Strain ε Eso kg 変形 保数 Deformation Coefficient . -- -. -- -鋭 谊 比 Sensitivity Ratio S, -- -、 Shear 武 號 条 件 Test Condition 持 柱 Property C kg -粘着力 Cohesion -Drect ( • セン断抵抗角 Angle of Shearing Resistance . - - - • - - --\$ t) 1/ 1/ 1/ 1 Mechanical 式 験 条 件 Test Condition 加工 Triaxial Comment C kg 粘 若 匀 Cohesion - - ----セン断抵抗角 Angle of Shearing Resistance ----ć P, kg 任密時代応力 Consolidation Yield Stress -* -圧 縮 指 数 Compression Index C, • - ---- ---• 压 主 係 数 Coefficient of Consolidation C, 四2 -------ਘਤੇ se ------- ----- - -透水 係 数 Coefficient of Permeability * - -- -緒間め特性 Compaction 较通含水比 Optimum Moisture Content : , 段大乾景峦度 Maximum Dry Density 74 B . 4 備 'Remarks ち

P. 94

~	4 8 <u>4</u> -	1 1 -	IJ	
	12	13	14	12
5	11.0~11.45	12.0-12.45	13.0~13.45	14.0~14.45
	37 ⁴²		41.61	
_				
	40.° 19.0			
+	210			
	<u> </u>			
-	0			
+	_3			
+	53 44			
1				
	Clay			
	_CL			
				{
+-	•			
-				
	+			
• -				
	<u> </u>	<u> </u>	<u> </u>	

調在名・調査地占 Title, Investigation Place Thilawa Repair Dockyard Project

	- 7 fl	, तीं हैं Boring Hole No	1							[	[				1		
	 ⊧∔ ∦îr		31	32	33		1	-				-			+	1	+
			f -	31.0~31.45	1	-	1							+			+
1a1 (i												<b>_</b>			<u> </u>		
		自然含水北 Natural Moisture Content w. 'a	2770	22 60	2] 52				-	-	   	╞	• •		↓ → · · · · · · · · ·	↓ ↓ <b>↓</b>	
		t 杉 + つ比 承 Specific Gravity G,		·		· •	<b>-</b>	   .	-	•		· ·	•	 		+	
自 <del>狄</del> Natur	al	准 間 進 性 Wet Density 7 6 cm		+		<b>-</b>	4.		-	-			• •	 		<b>_</b>	
Condi	tion	乾 紫 昰 控 Dry Density 74 8, cm ²	3				+ -		· · ·	<b>.</b> .	   <b>.</b>	 					
		III デキ北 Void Ratio e					ļ .						• •		<b>+</b> - <b>-</b> -		. <b>.</b>
		12 All 2 Degree of Saturation S, "%															
	:	雅 性 砂 界 Liquid Limit 「ビ」 る	+	<i>⊷</i>	·				-			   	- -	 		<b>-</b>	
コンノ	ステ 特性	型 " 我 界 Plastic Limit 15, 5	<b></b>			• • -	+ -			· ·		 	- <b>.</b>	 			
Consis	tency	塑性指 22 Plasticity Index 1,		+	 	1 <del>1</del> -	4 .		-					 		<b></b>	÷
		コーノスティー・指数 Consistency Index 1.	ļ			ļ									-	-	
		レキ分 2 00mmili i Gravei 00	<b>↓</b>		 	-	-			- ·		· · · ·			 		
1		šývýr 2 00∼0 074mm Sand %	<b>↓ .</b>	ļ	↓	-	-			• •- ·	+					• • • • • •	
		- パート 分 '0 074 ~ 0 005mm Silt %。		<b></b>	- 	-			-		• • • • •						<b>_</b>
粒度 Grade	特性	乾土分→0.005mm以下 Clay %	ļ		<b>-</b>		. ·	÷ •				↓ ,			ļ		<b>_</b>
Grau	tton	均等係数Uniformity Coefficient U.	L	· - ·			- -			·		· ·· ···				 	ļ
		- 角座標分類法 Triangular Classification		·		-	-	-			 				· · · ·	╡	
		日本統 土質分類法 Japanese Unified Soil Classification		+ +	-	+ -	-	-									+
ļ		A A S H O か類法															<u> </u>
	E	帕仕箱连さ Unconfined Compressive Strength G. Com	2	<b>_</b>	·	-		1 + -		· · · ·	+				• • • •		
	i. Hi ufined ression	破壊とて: Failure Strain E:%			• · • ·					<b>-</b> -						ļ•	╡
	Unconf Compr		2	<b>_</b>	<u> </u>   → .	· · ·				· ·	· · ·	<b>-</b>					ļ
		說 該 比 Sensitivity Ratio Se	<u> </u>			 			 					•		<u></u>	<b> </b>
Ę	断 Shear	武 \$\$ 年 11 Test Condition		<b>_</b>			ļ .		. <u>.</u> .			-					
持 性 Proper	며 년 Direct S	枯 若 ty Cohesion C kg	2	<b>_</b>		↓ . <b>.</b>	4							<b>-</b>			<u> </u>
#±⊓	<u><u></u><u></u></u>	セン新抵抗例 Angle of Shearing Resistance	, 					+									
JJ .¥ Mechanical	1	武 软 条 件 Test Condition	· · · ·	ļ		÷ •			ļ <u>-</u> .	-			<b></b>				
t Lechi	Mart Ha Triaxial Compress	th th +1 Cohesion C kg		<b>.</b>		· · · · ·	ļ	ļ .		. <del>.</del>					<b></b>	•	
	ੱਛੇਠੈ									- ··· <b>-</b>							
	u	至富磷代花力 Consolidation Yield Stress P, Kg	12	· • - ·	<u>↓</u> . →	• • -	ļ .		-	• • ·	· · ·		• • -	<b>-</b>			<u> </u>
	hdati	厅 稿 指 监 Compression Index Ce		╡•					- ·	-	• •	• • • • • • • • • • • • • • • • • • • •	· • • •				
1	FE 홊 Consolidati	压 法 译 载 Coefficient of Consolidation C, Se	<u>.</u>			<b>_</b>				• -							+
		· 水 杯 花 Coefficient of Permeability k se	c	<u> </u>			<u> </u>	ļ						·			<u> </u>
1.00 111	L ##:14	武 联 条 件 Test Condition		ļ			· · · · ·								· · · · ·	<b></b>	<u></u>
精固。 Comp	5特性 action			<u> </u> :		÷		↓ <b>▲</b>	<b>.</b>	<del>`</del>	<b>_</b>				,	ļ 	<u> </u>
		赴大乾燥窑皮 Maximum Dry Density 74 8 maximum 274	<u>.</u>		<u> </u>				4						•	<u> </u>	<u> </u>
備 Rem	<i>‡;</i> arks	-			<u></u>					- 112 - T.					<u> </u>		

1

- - -

---

P. 95

_____ing in tig in tig in tig in tig in tig Date

调查名·调查地点 Title, Investigation Place Thilawa Repair Dockyard Project ホーリンプ化帯と Boring Hole No よ料 新 ッ Sample No Z 4 5 J 1 6 8 7 4 10 11 0-0.45 1.0-1.45 2.0-2.45 3.0-3.45 4.0-4.45 5.0-5.45 6.0-6.45 7.0-7.45 8.0-8.45 9.0-9.45 10.0-10.45 11.0-11.45 12.0-12.45 13.0-13.45 14.0-14.45 情 品 · 课 沒 Elevation, Depth m 30 32 31.66 40 68 2396 31.88 30.15 33.10 47.75 37.46 45.65 自然音水社 Natural Moisture Content u, 39.42 1 to 1 Pit & Specific Gravity G, | - -自然状態 Natural Condition 湿 潤 岳 惶 Wet Density 74 B • -----乾 囊 出 浅 Dry Density -----. 間 ~ キ 比 Void Ratio e • -. -抱 相 境 Degree of Saturation S. % 液 竹 母 界 Liquid Limit w1 20 530 40.° ~ • • -. コンシステ シン一特性 Consistency £, 塑 任 砚 界 Plastie Limit 24.0 190 . ٠ 塑 作 指 数 Plasticity Index J, 29° 21.0 -コーノスティン 折数 Consistency Index I, レキシ 2.00mail Gravel % 0 0 . % 秒分 2 00~0 074mm Sand 0 0 ンルト分 ·0 074~0 005mm Silt 10% 55 35 粘土分(0.005mm以下 Clay 粒 度 特 性 Gradation 45 62 . -均等 译数 Uniformity Coefficient  $v_{r}$ -----. . . 角座標分類法 Triangular Classification Clay Clay - --日本統 土質分類法 Japanese Unified Soil Classification LL_ CH. -. -AASHO分類止 始圧超速 3 Unconfined Compressive Strength . . **.**.... -被増とス、 Failure Strain ي توطيع e % Eso 変 利, 好 数 Deformation Coefficient -+ 奴 故 比 Sensitivity Ratio S, . 武 映 条 件 Test Condition 屋た / 原 Direct Shear 持 忙 Property . • . C kg 粘着力 Cobesion セン断抵抗角 Angle of Shearing Resistance - ----ø カゲー Mechanical 武 験 条 件 Test Condition . -. MIEH Truxial Compress 粘着力 Cohesion C 148 セン新抵抗角 Angle of Shearing Resistance . **.** -ø 压密研状応力 Consolidation Yield Stress P. Kg .. .. - -. 문 다 压 縮 指 数 Compression Index C. 庄 吉 係 粒 Coefficient of Consolidation C. Se ∷≓ບິ · t see 透水保数 Coefficient of Permeability 武 联 条 件 Test Condition 締固め特性 秋遗含水比 Optimum Moisture Content Compaction 設大乾燥密度 Maximum Dry Density 71 5/31 備 •Remarks 寿 .

-

入%则]]] Date

• -

ى الى الى المالية فقيتها ولا كالمالية المناسبة ، مستخطيتهما المالية المالية المالية المالية المالية المالية الم

P. 96

计 计 计 计 计 15 13 14 12 44.99 45 55 4565 3992 45° 21° 24° Ø 0 4Ь 54 clay CL .

~ 5 A ....

2

UNC MARKED AND A

•• constant _ constant and a second s

#### 土質試験結果一覧表 SUMMARY OF SOIL TESTS

調査者、調査地市 Title, Investigation Place Thilawa Repair Dockyard Project 94 HH Date ナーロー 7北番弓 Boring Hole No **武料新号** Sample No 17 18 19 16 20 21 2 Z Z3 24 25 26 15.0-15.45 16.0-16.45 17.0-17.45 18.0-18.45 19.0-19.45 20.0-20.45 21.0-21.45 22.0-22.45 23.0-23.45 24.0-24.45 25.0-25.45 標 当 · 深 变 Elevation, Depth m 46.84 45.07 47.20 自然含水比 Natural Moisture Content wy 48,27 37.58 4761 22.68 24.87 22.85 2378 22,41 G. | 上标子力比重 Specific Gravity γ g m . _ . . . . . -自然状態 Natural -. ÷ --湿 扇 岳 咚 Wet Density • - - - · 74 B . . -. Condition 乾 秋 出 2 Dry Density +_____, --- • -- -. 間 ~ キ 比 Void Ratio -- - --. --_ 起 相 戈 Degree of Saturation S. 00 At 11 B W Liquid Limit w 450 520 64° -• コノノステ 塑性泉界 Plastic Limit 210 23.0 28° シン 一特性 Consistency --. -24° . 明 作 指 對 Plasticity Index 1.1.1 290 36° • -. • -オンシステーシー 指数 Consistency Index  $L^{\pm}$ . * / 2 00mm.1 Gravel 20 0 ٥. 0 • -. - -% がか 2 00 -0 074mm Sand 4 4 Z . --% ンルト分 0 074 0 005mm Silt 46 3Z 28 -- -粒度特性 Gradation 粘土分 0 005mm以下 Clay 50 64 20 • ---- --+ -- -均等 係 截 Uniformity Coefficient U. -~. --Clay 角座標分類法 Triangular Classification Clay clay. 日本統 土質分類方 Japanese Unified Soil Classification -. -**-** -LH CH. СΗ . **.**-. . . AASHO分類法 輪圧縮強 → Unconfined Compressive Strength -破壊上デ Failure Strain #B ined 1 2 山 Linconfi • . Eso kg -• ~ 玄 形 评 数 Deformation Coefficient - ----. . 鋭 敏 比 Sensitivity Ratio S, 居せ、原 Direct Shear 武 鞍 条 件 Test Condition ‡∱ M Property - -. . C kg -粘 有 力 Cohesion セン断抵抗角 Angle of Shearing Resistance . . • -----ø JJ "F ‡ Mechanical ] 式 软 条 件 Test Condition 論任約 Triaxial Compress C kg + . . 钻着力Cohesion セン断抵抗例 Angle of Shearing Resistance . . ---ø P, kg 在密阵八定力 Consolidation Yield Stress • 住 缩 指 数 Compression Index C, ₩Ē -C, m2 -----庄 茁 係 数 Coefficient of Consolidation ਤਿ . • k sec ----透水 併 数 Coefficient of Permeability **試験灸作** Test Condition 1 締固め特性 载卤含水比 Optimum Moisture Content treet % Comnaction ---最大乾燥窑度 Maximum Dry Density 74 B/ , . 備 考 ·Remarks

P. 97

27	28	29	
]	1	5 28.0-28.45	
24.63	20.92	24.58	2545
- •		<u>↓</u>	
		·	
•		+ - •	
·			
· • • · · · · · · ·			
		<b>-</b>	
	· •		
		· ·	
·			

t _ + + + +

2

itle, In	調合地 vestiga	ition Place Thilawa Kepair Duch	kyar	d Pr	roject 	·	-			<u></u>	,			·····	武戦間」。 Date _	
ポーリ	- 71	番号 Boring Hole No							· · · · ·			-		4	 	-
x \$	ៅ សំ	33 Sample No		_	31	32	33								ļ	ļ
標 高	· • 1	来 煌 Elevation, Depth 「m				1			34.0-34.45	350-35.45	36.0~36.15					
		自然含水比 Natural Moisture Content	ш,	ø	25 ³⁴	2609	29.65	1805	23.97	24.79	23.69		· · ···			
		土粒「の比車 Specific Gravity	<i>G</i> ,		<b>.</b>		L	<b>-</b>	<b>↓</b>			• •	l			
自 头 Natur:	认他	福 超 岳 度 Wet Density		g (cm]			L		• • ·			•		. <b></b>		-
Condu	ai 110n	乾 娥 密 惶 Dry Density	74	8, (2013				••								
		間 ケ キ 比 Void Ratio	e					-		ļ .						-  -
		拉 和 嗖 Degree of Saturation	S,	26	,				1	•		·				
		液件 與 界 Liquid Limit	w _L	3'0	•		ļ		- ·				, ,	L		1
コンノ シンプ	ステ	塑 性 限 單 Plastic Limit	K.	°6				↓							· ·	
Consis	tency	盟 性 指 数 Plasticity Index	Ι,		•		L		<u> </u>		-	-	·	L		ļ
		コノ、ステノ、 -指数 Consistency Index	I.										<u> </u>			
		レキ分 2 00mm以上 Gravel		%	•		l			-		-	L	L	L	
		砂分 2 00~0 074mm Sand		%				+	<u> </u>	-		<b></b>	ļ	L	ļ.,	
		ンルト分:0074~0005mm) Silt		%	•	1			<u> </u>			. <del>.</del>	L			
粒度	特性	粘土分(0.005ma以下 Clay		%								-				
Grada	tion	均 等 併 数 Uniformity Coefficient	U.							_		. <u>.</u> .	L		ļ	
		二角座標分類法 Triangular Classification								_			 		<u> </u>	
		日本統 - 土質分類法 Japanese Unified Soil Classification														1
		AASHO分類走														
		-帕压输强当 Unconfined Compressive Strength	٩.	kε, , α										<u></u>		
	袖圧縮 Unconfined Compression	破壊とて、Failure Strain	ε	0%						}			L	·	L	
	Ma IE nconfi ompr	変形 译 数 Deformation Coefficient	Eso	kg 2				1				. <b>.</b>	l			
	50	說 註 片 Sensitivity Ratio	S,									<u>.                                    </u>				
Ŷ	f iear	試 験 条 件 Test Condition						l				-	l			
†£ pert	- 国 七 / 厨 Durect Shear	粘 煮 力 Cohesion	С	∎`≞					<u> </u>	1.		<b>-</b>				
寺 Pro	Ē	セン断抵抗角 Angle of Shearing Resistance	ø	0											·	
力 学 特 性 Mechanical Property	io.	武 联条件 Test Condition			, ,				<b>.</b>	L .			· · · · · · · · · · · · · · · · · · ·		<b>_</b>	
לן schar	、始任相 Triaxial Compress	粘 着 力 Cohesion	С					L						L	ļ <b>.</b>	
Ň	북 - 특 	セン断抵抗仰 Angle of Shearing Resistance	\$					<u> </u>								
	E	压富降伏応力 Consolidation Yield Stress	Ρ,	ц Ц						ļ .		<b>.</b>		•• • •	L	
	datio datio	压缩描数 Compression Index	C.			•						- •	<b>.</b> . <b>.</b>	ļ		
	压 . 拖 Consolidation	旺 亲 係 数 Coefficient of Consolidation	с.	sec			4			<b>.</b>				·	<b>_</b>	
	ぜひ	透水 係 数 Coefficient of Permeability	*	Sec			÷									
	<u></u>	式 联条 任 Test Condition								<u> </u>	ļ	, 	L	L	<u> </u>	
締固。 Comm	カ特性 action	鼓道含水比 Optimum Moisture Content	10 _{0 -}	. %						,	ļ		ļ			
mp		较大乾燥苦度 Maximum Dry Density	74 104	. ^K											<u> </u>	
備 Remi	*; arks															

----

p. 98

t] 	न में 	] +	
		• • • • • • • • • • • • • • • • • • • •	
	r		
·····			
		······	
		<b></b>	
	•		
			f
· ·			
			•
	······		
•			
:			
i	I <u></u>	L	L

. . . . . . . . . . . . .

-----

-

З

#### 土質試験結果一覧表 SUMMARY OF SOIL TESTS

調在名 Title,	,尚介 Investi	地站 gation Place Thilawa Repair Doc	kyard H	Project		-								jt⊈ori0j) Date	
* -	9. "	孔前号 Boring Hole No						[			1			1	1
<u>ж</u>	¥ŧ	dr 15 Sample No	·	1	2	3	4	5	6	7	8	9	10	11	
標	<u>்</u> ட -	保 煌 Elevation, Depth m			1.0~1.45		3.0~3.45	4.0-4.45	5.0-5.45	6.0~6.45	7.0-7.45	80~8.45	9.0-9.45	ł	
		自然音水社 Natural Moisture Content	10 N 20	34 55	36,03	38.92	39.88	43.31	37.14	41.31	3906	4314	4545	5259	ł
		土拉子の比重 Specific Gravity	G,						57.			<b>TV</b>	<b>79</b> ,	0,2,	ł
自 然 Natu	、状 弛 iral	设 酒 岳 咚 Wet Density	), <mark>8</mark> , сп	n ³					•	† •	-	•			ŀ
Cond	lition	乾 葉 注 境 Dry Density	74 ⁸ 'car	c _n					• •			+		· ·	ŀ
		開 サ キ 比 Void Ratio					· · · · ·						···		ŀ
		乾 祝 控 Degree of Saturation	S. %	j .			•	- •						- +	İ
		液 件 段 界 Liquid Limit	<b>w</b> L 2%	;				.52.°				4/0			F
コンコンコンコンコンコンコンコンション	ンステ -特性	型作品 界 Plastic Limit	<b>16,</b> ⁰ 0					23.°	•	•		19.0	~	• •	ŀ
Consi	istency	塑 指 指 段 Plasticity Index	1,	<u> </u>				29°				22°			ľ
		コンステンン -指数 Consistency Index	I,										• • •		Ī
		レキ分 2 DOmm以上 Gravel	30					D				0	·		ī
		移动 (2 00-0.074mm, Sand	₽%	<u> </u>	<b>_</b>			2	•		~ .	5	~ +		-
		ンルト分(0 074~0 005mm Silt	2%					38				47	•		_
粒度	特性	粘土分(0.005mm以下) Clay	30				<b>-</b>	60	-			48			-
Grad	lation	均等诉我 Uniformity Coefficient	U _e					-	- •			-			-
		- 角座標分類法 Triangular Classification						Clay		• -	···	Clay			
		日本統 土質分類法 Japanese Unified Soil Classification	1 1 1					CH.		· - 1		CL			
		AASHO分類走		· ·	1									+	
	5	- 袖圧榕強さ Unconfined Compressive Strength	ę. kg	2					_						-
	L 拍 fined	破壊 ヒズミ Failure Strain	1 %												-
	<b>は王将</b> Unconfined Compression	玄形 拆 数 Deformation Coefficient	Eso kg	2				_							-
		說 敏 比 Sensitivity Ratio	S,												
rty	函セ~蒸 Direct Shear	武 験 爷 件 Test Condition			i			]							
t opei	107 107 107	枯 若 力 Cohesion	C E	2											
1) 75 15 15 Mechanical Property	ā	セン断抵抗併 Angle of Shearing Resistance	¢°												_
†. Anica	ation .	武 験 条 件 Test Condition		ļ:											
ر techi	帕压柏 riaxial ompress	杜 若 力 Cohesion	C ka	2 .											_
2	- F.S		ø										t		
	5	任主际状态力 Consolidation Yield Stress	P, kg	2											_
	任 法 Consolidation	圧 緒 指 数 Compression Index	C,								- 1				-
	E E E	臣 崔 译 数 Coefficient of Consolidation	1 1260					[				· ·			-
		透水 評 数 Coefficient of Permeability	k sec	;											
100 FE	4 <b>4 1</b> . 14.	水联条件 Test Condition				:									
#市14]。 Comp	の特件 paction	放透含水比 Optimum Moisture Content	10r %						:						
		最大乾燥密度 Maximum Dry Density	74 8/												
備 Rema	考 arks														

P. 99

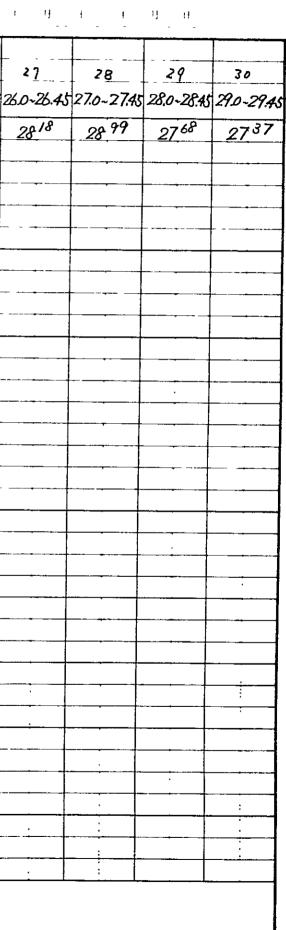
* 1] | 1 1 4 / Z 14 13____ 15 511.0~11.45 12.0-12.45 13.0-13.45 14.0-14.45 6341 5620 6001 6100 - ----44.° 21.° 23° 0 3 54 4.3 Clay CL_ ____ . 4 . ٠ • • ÷ ; • . • : ٠ . : ----•



- -

- -

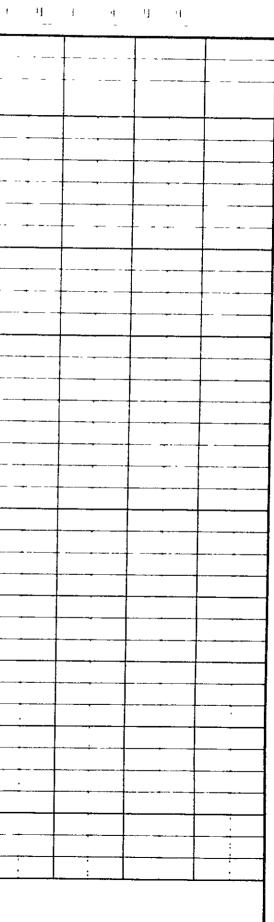
#### 土質試験結果一覧表 SUMMARY OF SOIL TESTS


-

湖在名·湖合地凸 Title, Investigation Place Thilawa Repair Dockyard Project

, ng ng p Date

	11 <b>.</b> .			·			<u> </u>	· · · · · · · · · · · · · · · · · · ·	<del></del>	······				1/417	
	り, 71 		• • • • • • • • • • • • • • • • • • •						-			_			
<i>h</i>	¥I ñ	Sample No			<u>''</u>	<u>8</u>	19	20	21	22	23	24.	25	26	Γ
桥。	3, · ;	荣煌 Elevation, Depth 'm		15.0-15.45	16.0~16,45	170-17.45	18.0~18.45	19.0-19AS	20.0~2045	21.0-21.45	22.0~22.45	230-23.45	24.0-24.45	25.0-25.45	2
		自然含水比 Natural Moisture Content	<i>u</i> , (	· 52 ¹¹	5146	5037	5220	5176	50.03	25.23	25.62	25.25	25-64	28,43	+
		土粒イプ比重 Specific Gravity	G,							-2.		AY	<u>~</u>	- <i>AU</i> ,	t
自 代 Natu	状態 ral	福 福 法 收 Wet Density	71 B,							j	+ + ·				†-
Cond		乾 姝 彦 坞 Dry Density	74 8	.m ³					· • · ·		-	- •		• • •	
		開 ザ キ 比 Void Ratio	e	·						+ • · ·	•				+-
		抱 相 嗖 Degree of Saturation	S, 9	%	4				•	••• -	•	• •		• •	-
		液 竹 卧 界 Liquid Limit	w _L	26	470					46 ⁰		·····		56°	<u> </u>
コンシ ンシー	/ ステ - 特性	塑作限界 Plastic Limit	w, 9	%	220					220				240	
Consi	stency	塑 作 挤 数 Plasticity Index	I,		250				+	24 ⁰				320	-
_		コンシスティン指数 Consistency Index	I,												
		しキ分 200mmは} Gravel	9	%	0					0				0	
		砂分、2 00~0 074mm Sand	9	%	0			- •	•	0				0	
		ンルト分・0 074~0 005mm Silt	9	%	47				-*	50				52	
粒度	特性	粘土分(0 005mm以下) Clay	9	6	53			- +		50	• • •			48	
Gradi	ation	均等保数 Uniformity Coefficient	U,		-					~					
		三角座標分類法 Triangular Classification			Clay			-	-	Clay				Clay	
		日本統一士質分類法 Japanese Unified Soil Classification			CL					<u>L</u>				<u>۲</u>	
		AASHO分類法						- •	-	÷	· +				·
	Ę	- 袖圧縮強さ Unconfined Compressive Strength	q. 4	2											
	i Hà Fined Tessio	破壊とズ: Failure Strain	ε 9	6					-						
	- 仙氏球 Unconfined Compression	変形 係 数 Deformation Coefficient	Eso kg	2						· - • •				+	
		鋭 敏 比 Sensitivity Ratio	S,						. 1	-	• -	·•			
ťy	<ul> <li>&gt; 萬</li> <li>Shear</li> </ul>	試験条件 Test Condition				_									
特 推 Property	、由七 √ Direct S	粘 若 力 Cohesion	C kg												
t∱ I Pr	, G	セン断抵抗角 Angle of Shearing Resistance	¢	° .											
쌲 nica	aion	武 験 条 作 Test Condition												-	
カ ゲ Mechanical	∵etalEtal Traxial Compress	粘煮力 Cohesion	C kg	m ²							· · ·	• • • +			
X	كَّبَ "	セノ断抵抗角 Angle of Shearing Resistance		\$				ii							
	E C	压密际状态力 Consolidation Yield Stress	P, kg	m ²											
	任 喏 Consolidation	任 韬 指 散 Compression Index	C,		,	·					• •				
	Sonso_	旺 吉 係 数 Coefficient of Consolidation	C. 5			;									
		透水译 数 Coefficient of Permeability	4 m			· · · ·					·				
		试 牍 条 件 Test Condition						,		:					
緒周y Comp	つ待性 action	粒通含水比 Optimum Moisture Content	w %	6 :		•			****		;			+	
		秋大乾燥苦痰 Maximum Dry Density	γ ₄ 8,∕	<b>"</b>											
備 Rema	考 rks	-													


P. 100





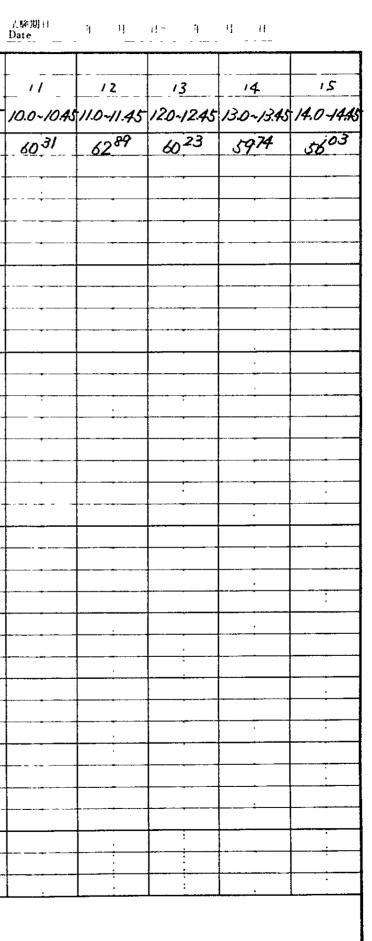
調査名・調査地市 Title, Investigation Place Thilawa Repair Dockyard Project 計解明) Date ボーリング北番号 Boring Hole No. 武 料 訴 号 Sample No 31 3 Z 33 34 35 標高 · 深度 Elevation, Depth m 30.0-30.45 31.0-31.37 32.0-32.38 33.0-33.39 34.0-34.36 2521 1816 1859 20 35 自然含水比 Natural Moisture Content 19.18 w. % • * 土粒子の比重 Specific Gravity G. | 自然状態 Natural 8, 退 甜 注 吃 Wet Density γ₄ Β, Con - -. . Condition 乾燥 法 '2 Dry Density - - --- -間 ザ キ 比 Void Ratio ---- -+ --抱 桁 燲 Degree of Saturation S. % 液 竹 刷 界 Liquid Limit w1 % . ----. . . . . - • コンシステ ンレー特性 Consistency + - - ---朝村限界 Plastic Limit ue 1 % - -. 塑 作 指 数 Plasticity Index --- ----I, -- --• -**.** -コンシステンシー指数 Consistency Index L -. レキシ 2 00mm以上 Gravel % . -砂分 2 00~0 074mm Sand % + -• • ---- ----ンルト分 '0 074~0 005mm/ Silt % - -. • ---粒 度 特 性 Gradation 粘土分(0 005mm以下 Clay 50 ____ - -- -- - -均等係数 Uniformity Coefficient 12. - -**-**-·角座標分類法 Triangular Classification 日本統 -土質分類法 Japanese Unified Soil Classification - -- - - ------- ----· •- -AASHO分類去 - 軸圧縮強さ Unconfined Compressive Strength * **1** - -由任府 Unconfined Come 破壊上ズ: Failure Strain E 9 -+ Eso kg 変形 係 数 Deformation Coefficient + - -+ - ---税 敏 比 Sensitivity Ratio S, 国セッ斯 Drect Shear 式 験 条 件 Test Condition 持 性 Property . . C kr 粘 者 力 Cohesion セン断抵抗角 Angle of Shearing Resistance • • -¢ . カッキ キ Mechanical 武 験 条 件 Test Condition - + . 随任將 Triaxial Compress C 🐙, 粘 若 力 Cohesion . セン新抵抗角 Angle of Shearing Resistance - ---- ---ø ٥ P, kg 任言降伏吃力 Consolidation Yield Stress 祗 nsolidation •--- •--. + -----圧 摍 指 数 Compression Index • C. - • • C. 500 压 茁 係 数 Coefficient of Consolidation ਸ਼ਾਨੂ ____ t Sec - - -透水係 Coefficient of Permeability . 式 软 条 件 Test Condition : . 緒周め特性 Compaction 发点含水比 Optimum Moisture Content % . 最大乾燥高度 Maximum Dry Density 7, 1/2 ÷ : • . 備 *見* Remarks 考 .

P. 101



... .... . 4

.


# ''	1 - 7AL	番号 Boring Hole No.				<b> </b>	<b>.</b>	1 				-			
<u>л</u> ,	41 ក៏	9 Sample No			1	<u>z</u>	3	4	5	6	7	8	9	10	- '/ -
標前	5 · 4	转度 Elevation, Depth m ^v				10-1.45		3.0~3.45	r		6.0~6.45				1
		自然含水比 Natural Moisture Content	ĸ,	00	46.37	44.62	4649	46.60	44.62	44.74	48.10	5072	5253	5984	6031
	[	土粒子の比重 Specific Gravity	G,					ļ		~		- +-			
自 然 Natur	状態	温 润 淮 吃 Wet Density		Б/ СПА ³		•			•	_ + -	-	<b>,</b>		• • ·	
Condi	tion	乾燥 密 度 Dry Density	74	ر میں						• ·	•- •				<b>_</b>
		間 ゲ キ 比 Void Ratio	e						L •					<b>_</b>	ļ
		飽和 嗖 Degree of Saturation	S.	%	•	1									
		液作限界 Liquid Limit	wL	%	•	:		580			62.°	<b>_ _</b>		H°.	
コンシ	ステ	塑 竹 限 界 Plastic Limit	٤,	%				20.3			29.9			34.3	l
/// Consis	stency	塑性指数 Plasticity Index	I,					377			32.		<b>-</b>	297	L
		コンノステノノー指数 Consistency Index	I.		:	<b>*</b>									
		レキが 200mmは) Gravel		90	•			0			0			0	<u> </u>
		砂分 '2 00~0 074mm Sand	1	%				3			0			2	
		ノルト分(0 074~0 005mm) Silt		%				42			35			38	
村市	特性	粘土分 (0 005ma以下: Clay	+	%		1		55			65			60	
Grad	ation	均等係数 Uniformity Coefficient	U,					-	•		-			-	
		「角座標分類法 Triangular Classification	+	1				Clay		•	clay			Clay	
		日本統 -土質分類法 Japanese Unified Soil Classification			•			СН	1 .		٢ <u>ـــــــــــــــــــــــــــــــــ</u>			СН	
		AASHO分類走			, ,							~			
		触圧摘後さ Unconfined Compressive Strength	q.	<u>لور</u> . دع	<u></u>										
	ston ston	破壊とズミ Failure Strain	t	+-	<u> </u>			·••···			•- •-				
	- 韓氏 編 Unconfined CSmpression	变形 係 数 Deformation Coefficient	Eso	¥.					- · ·						
	750	說 被 比 Sensitivity Ratio	S,	+				+			• • • •				
		武 験 条 件 Test Condition	-	†				+		**		<b>.</b>			
持 住 Property	c、既 t Shear	粘着力 Cohesion	c	ц, а				╡·・	·						
Pro 1	Birect	セン断抵抗角 Angle of Shearing Resistance	¢	+	:	- <u> </u>					+- • - ·				
cal دعا	5	成 数 条 件 Test Condition	+		· · · · · ·										
カ 洋 Mechanical		粘 着 力 Cohesion	c	<u>لو</u>		:			+	† · ·	•		• • •		
Me	: 執任的 Triaxut Compres	セン斯抵抗角 Angle of Shearing Resistance	ø					+	••-				· · · · · · · · · · · · · · · · · · ·		
		压密导伏应力 Consolidation Yield Stress		1.0	· · · ·										
	花 insolidation	压 掐 指 数 Compression Index	C.	T				+ +·	+	+ •			f •		<b></b>
	#Pilos	圧 密 係 数 Coefficient of Consolidation	_	Cm² Sec	i			+	······································	<b>--</b>		+- · ··	+	<b>f</b>	
	₩ð	述水係 從 Coefficient of Permeability		-		1		+ +		<b>+ •</b> -	<u>↓</u>		• •		
	<u> </u>	武 験 条 件 Test Condition	+	300											
締問	め特性	款通含水比 Optimum Moisture Content	. Ju	., %					<u> </u>	· ·	<u> </u>		<u> </u>		1
Com	paction	最大乾燥密度 Maximum Dry Density	_									<u> </u>	<b> </b>	· · · · · · · · · · · · · · · · · · ·	
<u> </u>		AL A TO AR BUT MERANDUM DAY DONNEY				1	<u></u>		.1	<u> </u>		<u></u>	1. <u>.</u>	· · ·	• • • • • • • • • • • • • • • • • • • •

. . . . . . . .

an any house and house and the second statement of the second statement of the second statement of the second s

-

P. 102





<u></u>										·					Date
<b>†</b> 1	1 ^1L	赤号 Boring Hole No		_				-							
.t. 1	料 樁	3 Sample No.			31	32	ુરુ	34							1
榜 //	5 · 1	業 煌 Elevation, Depth 'm'			30.0-30.45		32.0~32.27	33.0-33.25	•			- - -			
		自然含水比 Natural Moisture Content	w,	14	2875	22.98	2/24	1835							
		上粒子の比重 Specific Gravity	G,									-			T -
引 外、 latur	从態	湿 潤 庄 俊 Wet Density		B, cm ³	_							*			<b>–</b> –
Condit		乾 蝶 亲 惶 Dry Density	γ	g (cm3					• -		· •	•			1
		間 ケ キ 比 Void Ratio	e						- • -		· · ·			<b>-</b>	+ •••
		起 相 惶 Degree of Saturation	S,	0%					+			-		* • -	† •
		液 作 邸 界 Liquid Limit	w,	2.0	N.L.	•									
シン	ステ	塑件保界 Plastic Limit	wy	+   ′ o	N.P.				<b>•</b>		· -		•		1
) nsi:	·特性 stency	塑 作 指 数 Plasticity Index	Ι,	-	N.P.I	•			-	1 -	• -		+ - ·	-	1 .
		コノノスティノー指数 Consistency Index	I,	1					•		•	•••			1 .
		レキか 2 00mm111 Gravel		100	2			· · · · · ·							1
		砂坊 2 00~0 074mm Sand		%	60		<u>-</u>		-	+ -	• •		+	† •	+•
		レト分 '0.074~0 005mm / Silt	+	%	31				•	† •	-		† <u>→</u> ·		<u>+</u>
먄	特性	粘土分 0 005mm以下 Clay	1	4.0	7		·	• • - +		-	-	-			+
ada	stion	均 等 係 数 Uniformity Coefficient	U,	-+ '	23	·• —		1 1	· •		-				† -
		角座標分類点 Triangular Classification	-+	+	Jame			-	-		-		•		+
		日本統 土質分類法 Japanese Unified Soil Classification	1	+	SM-SC	• • •	•-	+ - •	-	-		• •			<b>†</b> - →
		AASHO分類法	+	+		•••••	· - •		-					-	-
		軸圧縮強さ Unconfined Compressive Strength	q	<b>ц</b> ,											
	岫「千載 Unconfined Compression	破壊上ス: Failure Strain	-	1 4/3	· · · · · · · · · · · · · · · · · · ·				-	+ +					<u>+</u>
	idel F£ fa confu mpre:	変形 係 数 Deformation Coefficient	E ₅	kg, €	i			+ •	-		· ·	•	•	•	
	- 5రి	說 献 扰 Sensitivity Ratio	S,	+	•			<b>↓</b> •	- •			• -	- •		+
	, La	武 联 条 件 Test Condition	-	+	·		<u> </u>							·	+
perty		粘 若 力 Cohesion	c	kg ,	<del>.</del>		<b>-</b>		-					• •	+
Property	向セノ断 Direct Shear	セン新抵抗角 Angle of Shearing Resistance	¢	1	;	•	·					- <b>-</b>			╉┈──┵
Cal	- 5	Angle of Snearing Resistance	-	+					· ······						
Mechanical		帖 者 力 Cohesion	c	kg Gm²		<b>.</b>	······································				•	•			+
Mer	ttisxial Compress	セン断抵抗角 Angle of Shearing Resistance	¢				• • • • • •_				•- ·	· • ·			+
		Angle of Shearing Resistance 庄庄陈伏応力 Consolidation Yield Stress	_	kg cm ²			,				<b>_</b>				
	ation	压 縮 指 数 Compression Index	c.	+				+ +	•- ·		÷			•	+
	压 茁 Consolidation	正部係数 Coefficient of Consolidation	<u> </u>	cm² Sec	· · · •							•			<u></u> +∙
	⊬ల్	近水语 Coefficient of Permeability	-		: ·	•				+ - +	-	•			
	L	式 软条 作 Test Condition	+	sec		:			<u> </u>						
間メ	5特性	式 旅 来 17 fest Condition 最近含水比 Optimum Moisture Content	-	%		· ·	<b>_</b>			╞┈╶╺┝	· • •				+
omp	action			" ⁷⁰	•					<u>├</u>				·····	
		收入乾燥密度 Maximum Dry Density	1	ul (cm)		:				l		1		·	<u> </u>

P. 103

ı ,}	· {	1	Ч	H	
<b>-</b>			-		
		ш.,			+
				·	
				·····	
					• • • • • • • • • • • • • • • • •
				•	
				**	
				•	
				•	
	•	-			
					·····
,	•				
				•	
	•			•	
					•
	•				

4

调查名 调查地市	
Title, Investigation Place	Thilawa Repair Dockyard Pi
	······································

. . . . . .

調査名 Title, Ii	调合地 ivestiga	ation Place Thilawa Repair Dock	yard Pro	oject										A毎期11 Date	1 ^t j	et 1	1 1	
<b>#</b> - 1	レク孔	新号 Boring Hole No.						1					1	1	[	1		T
at	¥∔ ñ-			16	17		, 9	20	21	22	23	- 24	25					
	\$ • 1			t		<u>†</u> -		ł	1	1	22.0-2245	1	1	26 25.0-25:45	27 26.0-26.45	28 27.0-27.45	29 28.0~28:43	30 29.0 - 29.45
<b></b>		自然含水比 Natural Moisture Content	w. 30	6093	6111	6125	5443	5374	5214	53.21	23.55	24.62	2110	25-99	25-46	2760	2757	35-07
		土粒子の比重 Specific Gravity	G,										= =				- ~/	
自 外 Natur		谜 甜 庄 戊 Wet Density	7, 8, (cm)											<b>∮₊</b> ₊				••
Condi		乾 傑 孟 伐 Dry Density	74 ⁸ ,						1.		1 .		1	+				
		間 イ キ 比 Void Ratio	e					+ - • -	+- ·	† →	1		+	+			······································	
		起 相 投 Degree of Saturation	S. %	;					+ •		†		╃╴╴╴╺╴╌╌╴	<u></u> +				
		液 竹 段 架 Liquid Limit	w1 %	600	1		665			58.0			60.0			500		
コンン	ステ	塑性限界 Plastic Limit	10p %	34.3			328	++	•	24.1			319			216		
Consis		塑作指数 Plasticity Index	1,	25.7			337	<b>-</b>	+ • -	33.9	+ +	<b>-</b> ·	281			284		· · · · · · · · · · · · · · · · · · ·
1		コノノステノノー指数 Consistency Index	I.	<u> </u>		• •			+ ·	1 <b>J</b> <u>U</u> .			<u>~</u> 0, .			<u></u>		
		レキ分 (2 00mm以上) Gravel	940	0			D		·	0		··· ·				0		
		砂分、2 00~0.074mm Sand	%	<u>†                                    </u>			2	- •	•	2	+ +		2 2					
		ンルトジ (0 074-0 005mm) Silt	%	· · · · · · · · · · · · · · · · · · ·			38		- ·	44	++					10		
粒度	结性	粘土分 0 005mm以下) Clay	36	58		• -	60	-	+ •	54	+ +	- •	34 64			40		
Grade	tion	均等係数 Uniformity Coefficient	U _e	-	····		-	<b>∤</b> +	+ •	-			_ 64		····	50		
		- 角座標分類法 Triangular Classification	+	Clay				-		-	++ - +			······ - <b>,</b>			/-	
		日本統 土質分類法 Japanese Unified Soil Classification	+ +	, , , , , , , , , , , , , , , , , , , ,	•		Clax CH		÷ .	clay	<u> </u>		clay			clay		
		AASHO分類去		<u>сн</u>				-		टम	++		СН			СН		
		軸圧縮強さ	q. kg					•										
	#6 Ined ession	Unconfined Compressive Strength 破境上ズ: Failure Strain	ι %				•			•	++							
		变形 译 数 Deformation Coefficient	E ₅₀ kg 2					+	• ·	-		•						
	ີ ລົບັ	叙 敏 比 Sensitivity Ratio	S ₁					- •	•	-		- +						
	<u> </u>	武 联 条 件 Test Condition		ļ	· · · · · · · · · · · · · · · · · · ·					<b></b>								
特 性 Property	۳. ۳.	·····	C kg		<b>.</b>			- •		•								
rop 4	日 Drect C	粘 若 力 Cohesion セン断抵抗角	C La cas	t			· · · · · · · · · · · · · · · · · · ·			• -	<b>-</b>	<del>-</del>						
al F		Angle of Shearing Resistance	¢°		•			· · ·			<u> </u>							
unic 1	9	iK 粮 条 件 Test Condition	a kg	:						• •		· · •						
力 学 : Mechanical	·帕尼納 Triaxial Compress	粘 者 り Cohesion セン斯抵抗角		· ·						· •- ·					<b>a</b>			
	но	セン断抵抗角 Angle of Shearing Resistance					•			·····								
	LOI	E 密降伏応力 Consolidation Yield Stress							- •		+ - +				+			
	olidat	压 縮 指 数 Compression Index	C,	· · ·														
	щ	庄 法 译 数 Coefficient of Consolidation	1 1 3 5 5		;						∔							
		透木係 数 Coefficient of Permeability	k sec	<u> </u>				<del></del>	<u> </u>									
緒固〆	\###	武 联条 件 Test Condition			;				•		┝┈╶╼╴╴┽							<u> </u>
Comp	action	社通含水比 Optimum Moisture Content		·····	;	· · · ·												
		般人乾燥密度 Maximum Dry Density	74 ⁸ / 3 Cm ³	<b></b> :	:	:			·									
備 Rema	≯; rks																	

-

P. 104

•

オ - リ	- 716	新号 Boring Hole No					<u> </u>	L					ļ .	-		ļ
	i iir	步 Sample No			1	2	િડ	4	5	6	7	8	9	10	11	l l
標高	្រុះ	12 Elevation, Depth m			0~1.00		2.0-2.45	3.0~3.30		5.0~5.50	6.0~6.45		8.50-9.50			12.0
		日 秋 含 水 比 Natural Moisture Content	w.,	v		32.55	38.38	47.61	55-36	55.43	56.04	49. ³⁴	3911	45 86	49.94	4
	F	土粒子の比重 Specific Gravity	G,		·								• •		· ·	
自然:	状態	谐 趙 進 惶 Wet Density	'n	8, cm ³										· · · -	· · - ·	<b>_</b> ^
Natur: Condit	a] Lion	轮 端 庄 埪 Dry Density	74	<u>چ</u>			T				-+					ļ
	ľ	間 ザ キ 比 Void Ratio	•								_ •					-
	ŀ	設 和 收 Degree of Saturation	S.	%												
		液 竹 融 界 Liquid Limit	w _L	2%				51'		66.0			47.9			5
コンシ	マテ	塑 作 限 界 Plastic Limit	w,	%		+	·	203		30.°			24.2			2
ンシー Consis	特性 itency	帮性指数 Plasticity Index	I,			+ <b>-</b> –	+	30.7		36.0			237			30
		コー、フティー 指数 Consistency Index	I.			+	•									
		レキケ 200mmは上 Gravel		2%	. <u> </u>			0		0		_	0			4
		移分 2 00~0 074mm Sand		%	<b>-</b>		•	0	+ • ·	0			3			4
		ンルナ分 0 074~0 005ma Silt		%				43	-	45			45			4
粒度	性好	粘土分 0 005mm以下 Clay		56			+ ·	57	-	55			52	L		4
Grada	tion	均等係数 Uniformity Coefficient	v.		<u> </u>			-	•	-			-			
		角座標分類去 Triangular Classification	• • • • •	+		+	+	clay	•	Clay			Clay			Cla
		日本統 土質分類法 Japanese Unified Soil Classification	•			+		сн	1 -	СН	-		СН			C I
		AASHO分類法	+				† ·		•	-		Ī				
	<b></b>	軸圧縮強さ Unconfined Compressive Strength	9.	kg cm									0.66			1
	ed	破壊上ズ: Failure Strain	+	0%			- <b>-</b>	+ -		t I			3.7			Į
	Mare#R Unconfined Compressio	变形 係 数 Deformation Coefficient	Eso		1 •···		+ - •	+ •	-			-	26			
	- 50°	說 敏 比 Sensitivity Ratio	S,	+ +		+	·+ →	- +	-	-			-	† <b>.</b>		
		武 験 条 件 Test Condition						+				<u> </u>		1		
持 性 Property	向た、感 Drect She	粘着力 Cohesion	c	د. دع	• • • • •			+	+ •		-	† -			<b>*</b>	
1 d 1	居 H Frect		\$	<u> </u>	······			• • •	++ -			+ -	· · · · · · · ·	+		
Å La	<u> </u>	Angle of Shearing Resistance 武 联 条 件 Test Condition	+		<b>.</b>						<b> </b>		1			
hani	al and a state		c	<b>k</b> ε €∎²	<b>1</b>		<b></b>	+	+• -	÷ ·	÷ •	1 .		+		
力 ☆ Mechanical	位 Triaxial Compress	<b>冲,顺折折</b> 掠角	6	1	· · ·			+	+ •		•	1 .	† T	† • ·	+	1
		Angle of Shearing Resistance 在古時伏応力 Consolidation Yield Stress			<b>_</b>		+			1,2		<u>+</u>	2, B			1
	tion	任 缩 指 载 Compression Index	С,	+			+	+	+ - +	1	-	-	0,65			1
	圧 茂 Consolidation	任書拆散 Coefficient of Consolidation	+	+		•			+	0,6K	• •	· ·	0,1	<b>↓</b>	+	1
	HQ HQ	生 出 好 数 Coefficient of Permeability		CIII Stec				-+÷		<u></u>		-		† +	+ <b>-</b> -	1
	1		Ê	Sec												1
<b>括</b> 固:	の特性	武 软 条 件 Test Condition 社 通 合 水 比 Optimum Moisture Content		102		- <b>-</b>		+	· <b> </b> · · · · · · · · · · · · · · · · · · ·	<b>┽</b> ┈╺╴╺╌╴╶╶╴	+ +	+	<u>↓</u>	<b>† +</b>		1
Com	paction		_	8/ ·			+				+	+		+		+
		最大乾燥密度 Maximum Dry Density	-	8/. . Cal	<u> </u>		1	! :	<u> </u>		<u> </u>	I		<u></u>		_ <b>_</b>

-

5

P. 105

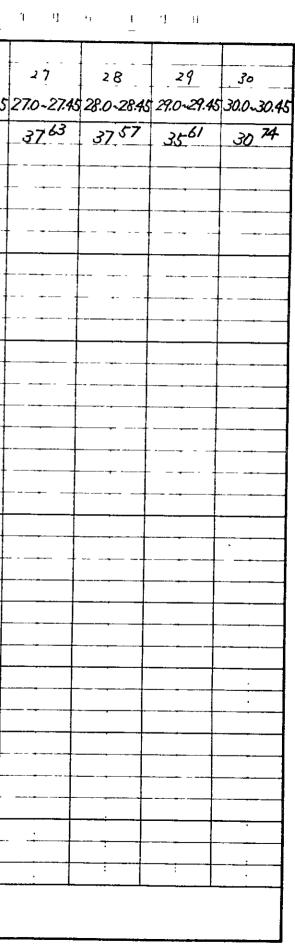
1 ¹ <del>1</del>	н Э	1 !!	
/2	13_	18	15
12.0~12.45	13.0~13.45		15.0-15.50
45-68	50,29	46 79	4/ ²³
		• • • • • • • • • • • • • • • • • • • •	
		· · · ·	
· - •			
590			320
285			236
305			284
0			0
4			<u> </u>
48			44
48			56
Clay			Clay CH
Сң			
			1.04
			1.04 4.2
<b>-</b>			44
<b>_</b>		• • • • • • • • • • • • • • • • • • • •	-
			· · · · ·
·····			
1.7			
0,48			
0.3			
	,		<u>.</u>
*		4	1
		<u> </u>	<u> </u>

.

-- -5

# <u>土質試験結果一覧表</u> SUMMARY OF SOIL TESTS

. .


-

Title, Investigation Place Thilawa R	epair Dockyard Project

ホーリ, フ. .武 料 ł								     					
			16	. 17	81	18	20	21	22	Z3	24-	25	26
標 時・			16.0-16.45	17.0~17.45	18.0~18.65	19.0~19.45	20.0-20.4	5 21.50-22.05	22.05-22.5	23.0-23.45	24.0-24.45	25.0-25.45	26.0-26.4
	自私含水比 Natural Moisture Content	<b>E</b> , <i>t</i> ,	4590	44.35	42.26	41.86	3889	27.20	23.94	20.79	17.92	20 83	25,00
	上非イナの比較 Specific Gravity	G,						1 - 1.	20.	20.	. //.	20	<b>A</b> 0,
自然状態 Natural	谴 插 击 地 Wet Density	7, g, m						† •	+ -	-		····· ··· ··· ·	<u>+</u> <b>+</b> - <b>−</b> --
Condition	乾 株 主 收 Dry Density	74 ⁸ /cm	3				•				· +	<b>-</b>	- •
	間 ゲ キ 比 Void Ratio	•	,					<b>+</b> - • −	-	+ •			+
	起 把 吃 Degree of Saturation	S. %							• -	† • †			
	At 14 Al # Liquid Limit	w1 %			530			55.0					
コンンステ ンン一特性	塑作展界 Plastic Limit	и, ^о д		·····	24. ²			250	•		•	- •	•- ·
Consistency	塑作指数 Plasticity Index	I,			288	- •	-	30,0		+ $+$	-		•
	コーノスティー 指数 Consistency Index	L.			-¥-			00	• =	+ + +		• • •	
	レキカ 200mill Gravel	1%			0		·	0					
	砂分 2.00-0 074ma Sand	%			4	-	•••	1 - 1	-				
	ントーン分 0 074~0.005mm Silt	06			43		-	7. 43	•			···- •·	· +
粒度特性	枯土分 0 005mm以下 Clay	- 10			53	• •	• • •	+3_ 50	•		÷	• -	
Gradation	均等好 Uniformity Coefficient	U,			_		<b>-</b> ,			+ • +	• +		
	一角座標分類式 Triangular Classification	•• ; !			Clay	-	•	clay			• +		
	日本統 1質分類法 Japanese Unified Soil Classification	<u>+-</u> ¦			СН	-	- )	Clay CL	Ŧ		• +		
	AASHO分類走			• •			•	сң	-	• -	- +		•
	帕圧縮速さ Unconfined Compressive Strength	q. kg			0. 88								
the de la construction de la con	破壊上ズ Failure Strain	1 23			6,5		-		• -	+	+		•
袖/王紹 Unconfined Compression	变形 练 数 Deformation Coefficient	Eso tag				•			-	• •		• 4	•
50	鋭 舷 比 Sensitivity Ratio	S,			23	• -			-	- +	+		
دي د ي	武 联 条 件 Test Condition							┝ <b>-</b> →					
持 TE Property 声々、専 Direct Shea	粘 着 力 Cohesion	C Lug , 2							-	-	•	• -+	
E HE	セノ断抵抗角 Angle of Shearing Resistance	¢ °				•							<b>+</b> . <b>_</b>
7) 子 Mechanical 軸任胡 riaxial ompression	武 款 条 件 Test Condition									<u></u>			
7] Mechan 他任報 iaxial ompressi	粘着力 Cohesion	C kg				•		-		-			
Comp.	セン断抵抗角 Angle of Shearing Resistance	¢ °				+	•		- +	• •	• <del> </del> -		
	互	P, kg											
岳 (didation	互 賠 指 数 Compression Index	C,			- 11		· • •		•	• • +	• •	+ <del> </del>	
	任 在 译 载 Coefficient of Consolidation		mid :		0.42	•		•	-	- +	• - +		
±3ੱ	透水係数 Coefficient of Permeability	k ca k sec	min :		0.07			+	-	.	- • +	-	
	式 联 条 件 Test Condition	" Sec	· · · · ·			— <u> </u>							
帝間の特性		w., %								<b> </b>		<b>.</b>	
Compaction		w, % 74		÷									
	A A TO ME UP A PREAMAN DI J DEMAND	"##1 (CB)			i				[				

-

P. 106



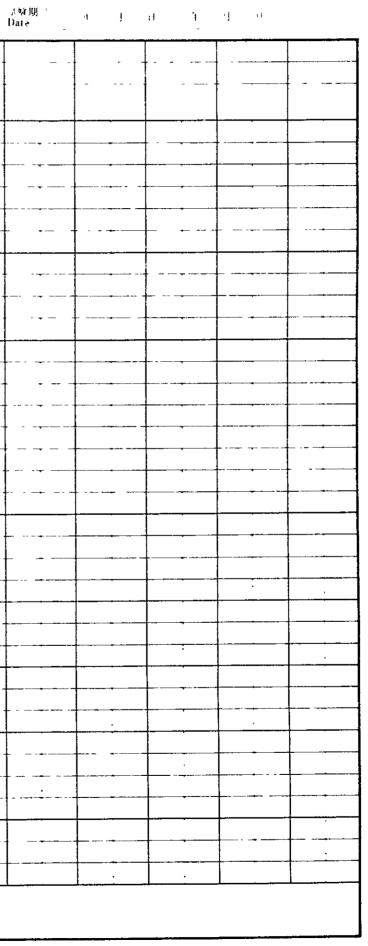
t - ۲										_	· · · · ·				
	7.4L	trig Boring Hole No													
	đi	5 Sample No		31				1	+ - ·						I
標高	• 探	12 Elevation, Depth m	-	31.0~31.11											
		自然含水比 Natural Moisture Content	w., *,				·								+
	- i-	上記子の比重 Specific Gravity	G,	-+		+ •	╡ _ ━	+	+ •	-		• • • • • •	• • • •	• • •	t
1 秋状	- F	温 潤 光 唆 Wet Density	71 B,					+ •				•		• •	Ť
atural onditio	⊢ 1-		γ ₄ ⁸ /α			<u></u>	+ · · · · <b>· · ·</b> · ·	+ - •		•			•	<b>-</b>	Ť
	- F	[11] - + 比 Void Ratio	e	····			<b>+</b>	<u>+</u> <b>−</b>	- · · · ·		- ·		• • • •		1
	F	設 和 12 Degree of Saturation	S. 9	6				† •		-	- · ·			<b>+</b> •	1
		· · · · · · · · · · · · · · · · · · ·	w1 0	6			<u> </u>	<u> </u>							T
リノノス シー特	- F	明 作 限 界 Plastic Limit	<b>v</b> , 0		• • • • • · · · ·	+	+- · ·	•	-	-	-		+ +	† <del>-</del>	T
ッ一特 onsiste	計生 - ency	塑性指数 Plasticity Index	I,		<b>↓</b>	+ · •	• -	•••		-		+		† •	1
	- L	コーシスティン -指数 Consistency Index	I.		<u></u>	+	• •	-	-	-	1 '				T
<u></u>		トキシア 2 00mm以上 Gravel	9	ΰ											T
	ŀ	お分 2 00-0 074mm Sand	<b></b>	8	+	+	-	-	† -	† •	-		•	+ · • • • •	T
	ŀ	シルト分 0 074~0 005mm Silt	q	6	<b>+•</b> -	†	+ -	•	-	• • • •		* - ·		t	T
粒度特	± 44	粘土分→0 005mm以下 Clay		%	<b></b>	+ •	1		+ -	-	-	1 -	-	• · · • ·	
Gradati	մուի		υ, ₁	·	<b>+</b> +	-+	+	+ - ·	-	-	+	• • •			1
	ŀ	角座標分類法 Triangular Classification			+- • ·	+ - •	<b>†•</b>	-	-	-	-	+	+ +		
		日本統一土質分類点 Japanese Unified Soil Classification	•+ 			+	† -	-	•••	-	1 1			t	T
	1	AASHO分類法	+		+•	-	-	-	-					-	T
		-帕压箱强当 Unconfined Compressive Strength	Q	2				1							
	5 1	破壊上ズ: Failure Strain	2 2				<b>+</b>	† ·	-	-	1				
4917	mpre: mpre:		Eso k	ξ ₂ σπ		<b>+*</b>	† -	+ ·		-	+ · -	· · · ·		1	
	- ਤੇ ਹੈ	說 被 比 Sensitivity Ratio	5,	-			+ • -	- ·	-						
		at 棘 莱 件 Test Condition					1		+		1				T
perty	声々、惑 Direct Shear	粘 右 力 Cohesion	C		1			+ ·	1.		1 -	•			
b.d.	Direc	セン断抵抗角 Angle of Shearing Resistance	++		<u> </u>		+					+ <b>+</b>	f		T
	5	式 験 条 件 Test Condition	+++		1										
カ ず 持 化 Mechanical Property	ressi ressi	粘 者 り Cohesion	C k	8 m ²			<b>†</b>								
Me	曲/任權 Triaxial Compress	セン断抵抗角 Angle of Shearing Resistance	+	¢	+							• · •			T
Г		社密降伏応力 Consolidation Yield Stress	P, k	8 1											Τ
1	ation	压 缩 指 数 Compression Index	С,		•		+	·	1.		-			<b>*</b> • • <b>*</b> *-	T
	任	旺 法 訴 数 Coefficient of Consolidation	<i>c.</i>	m ²	1				- ·	-					T
	ਦਾਨੂ	水 体 数 Coefficient of Permeability	k 6				+	++ -	-						
L		式 軟 条 件 Test Condition			1										
締固め	持性	粒通含水比 Optimum Moisture Content	w,r	%			1 .		• · ·	† <b>-</b> -	1				T
Compa	CLION	载大乾燥密度 Maximum Dry Density	74		1				· · · · · · · · · · · · · · · · · · ·	<b>†</b>	1				
	. <u> </u>		1-+-[		1	<u> </u>	<del></del>	- <del> </del> **	· · · · ·	<u>1</u>		••••••			

P 107

ь Ц	1	ł		3	
		-			
-		-			
•••			<b>-</b>		
+					
			•		
			• • • •• ••		
					<b>_</b>
• •			<u> </u>		
· · · · · · · · · · · · · · · · · · ·					
				<u></u>	

<b>ポ</b> +	- 'fl	新号 Boring Hole No.											-	_	+
t 1.	1 តី	33 Sample No		<u>/</u>	2	3	4	5	6	7	8	Ŷ	10	11	
標高	Ĥ	12 Elevation, Depth m		0-0.45	1.0~1.45	2.0~2.45	3.0-3.45	4.0~4.45			7.0~7.45		9.0-9.45	10.0-10.45	11.0
		自然含水比 Natural Moisture Content	<b>"</b> N 'o	36 73	38 75	39 75	4253	48-24	48 53	48 93	49.84	54.00	55-32	5836	<u></u>
	ſ	1. 粮了力比重 Specific Gravity	G.						-		-				ļ
自然		设 酒 庄 惶 Wet Density	7, B, cm						_ <b>.</b> .	-			<u> </u> +	+	
Natur Condi	al son	乾燥 岳 陵 Dry Density	74 ⁸ , con	3					· • ·				<b></b>	╞	
	ľ	間 デ キ 比 Void Ratio	•					L					 		- -
	Ī	抱 招 鸣 Degree of Saturation	S, %	:										ļ	
		液件保界 Laquid Lamit	^{مر} 1.5		·	57.0		· ·	66.5	-		69.0	<b>-</b>		61
コンン シィー	ステ	塑作识 ¥ Plastic Limit	<b>к,</b> ⁰			27.7	 		25!	• • •	· ·	30.3	↓ + - ·		26
Consis	17T£ tency	塑作指数 Plasticity Index	1,			293			41.4		-	387		l	<u>.</u> 30
	ļ	コノ、スティノー指数 Consistency Index	L												
		レキッティ2 00mmLil_ Gravel	%			0			0		-	0		L	0
		8957 2 00-0 074mm Sand	%			2		-	1		  +-	3			0
		ノルトラテ 0 074-0 005mm Silt	2%			45		-	45		<b>↓</b> →	47.		• • • • • • • • • •	43
粒度	特性	粘土分 '0 005mm以下 Clay	1.8			53			54.	-		50	· ·	÷	57
Grade	tion	均等译 20 Uniformity Coefficient	U,			-		-	-	-		-		1 + <del>-</del>	-
		- 角座標分類法 Triangular Classification				Clay	· · -		clay			clay		÷	<u> </u>
		日本統 土質分類法 Japanese Unified Soil Classification	Ì			СН			СН			CH_			10
		AASHO分類走	1								ļ			 	<u> </u>
		- 帕圧路強き Unconfined Compressive Strength	q. 4	,7 m				ļ .		•				<b>_</b>	<b>_</b>
	Hi Ined	破壊 ヒズ: Failure Strain	€ 1 %			· · ·		4 -	-				<b>-</b>		┇
	始圧胡 nconfined ompressio	賓 形 評 数 Deformation Coefficient	Eso kg	2		-			-	-	· .	-	+•	<b>_</b>	<b>_</b>
	50	就 战 比 Sensitivity Ratio	S,					· · ·	<b>_</b>						
<b>ک</b>	、 唐 Shear	武 轶 条 件 Test Condition						l .		ļ .	Ļ	·	↓		<u> </u>
扑 性 Property	우리 문문	粘 者 力 Cohesion	Ckr	/ 2 m			A	• =				L		ļ	<b>_</b>
₽ra Pra	Drect Drect	セン断抵抗角 Angle of Shearing Resistance	ø	0						<u> </u>				ļ	<u> </u>
דן "אָ" Mechanical	u	式 联条 件 Test Condition					<b>.</b>		-	-		ļ	÷		<b>_</b>
力 chan	· 他任的 riaxial ompress	粘 崔 力 Cohesion	C 4	m ²			ļ	·			ļ .	<b> </b> <b>-</b> -•	+ +-		<b>_</b>
Me		セノ断抵抗角 Angle of Shearing Resistance	ø	2								<u> </u>		<u> </u>	<u> </u>
		任密降伏定力 Consolidation Yield Stress	P, 4	m²					↓ .	-	-	ļ .	↓ <u>-</u> -		<b> </b>
	住 Consolidation	任 稿 指 兹 Compression Index	C,					↓ → -	L			ļ <b>.</b>	4 -	+	ļ
	- Soli	压 密 译 数 Coefficient of Consolidation	C. 7	2 ec							ļ .	-	↓		I
	- ಕನ್ನ	·意水 係 数 Coefficient of Permeability	k 5	ec.	1							ļ		<u></u>	<b>_</b>
	L	武 联 条 作 Test Condition					•		· ·	•-	L	ļ .			<b>_</b>
緒周 Com	の特性 paction	载直含水比 Optimum Moisture Content	Went	%							·	<u> </u>		<b>↓</b> ÷	
Com			72 B						:					· · · · · · · · · · · · · · · · · · ·	

P. 108


1 11	11 1	i I	
12	13	14	15
	12.0-12.45		
59.75	5907	56.97	5268
• • • •			
~ -•			
615 261			60'
26' 354			317 284
<u></u>			20.1
0			0
0			0 48
43 57			52
-			-
Clay CH			Clay CH
			<b>_</b>
	, ,		
•			

調査名 Title, Inv	調查地 restiga	tion Place Thilawa Repair Dockya	rd Proje	d	···									水城町」 Date	a +j	11 A -	IJ :ł 	
ポー・)	- 7孔	赤号 Boring Hole No											Ţ					
* h.	 fi	5 Sample No		16	1	81	19	20	Z	22	रउ	24	25	26	27	- 82	29	30
標高	• 8	K '2 Elevation, Depth m'			516.0~16.45	17.0~17.4	18-0-18.45	19.0-19.45	20.0-20.45	21.0-21.45		23.0-23.4	24.0-24.4	25.0-25.45			28.0-28.4	
		自然含水比 Natural Moisture Content	w _N 'o	61 37	54.59	55-23	55.72	62.43	46.06	34.08	2899	28.09	3081	33.05	3126	25-80	23-34-	2081
		1粒17比重 Specific Gravity	G.						 	- ·	· - ·							
自 秋 北 Natura	、他し	虚 調 進 境 Wet Density	7 8 (m)						·	ļ .	+ + -		<b>++</b> -	·	• • • • • • • • • • • • • • • • • • • •	<b>,</b>		
Condit	ion	乾燥 追 埈 Dry Density	74 5, 'cm ¹					<u>↓</u> <b>↓</b> .	<b> </b>		•- •	<u>'</u>	+					
		間 ゲ キ 比 Void Ratio	e	<u>:</u>				ļ		· · -					<u>↓</u> <b>→</b>		 	
		起 和 境 Degree of Saturation	S. %	:									<u> </u>				ļ	
		液作型 罪 Liguid Limit	w _L %		· ·	640	<b>.</b>		65.9		·	72.0			710			
コンシン	ステ	塑件很界 Plastic Limit	10, %			319		-	255	ļ .		389		·	265			
Consist	ency	塑性指数 Plasticity Index	I,	· · ·		32.1		ļ .	30.4			331 -	 	l	445		· · · · · · · · · · · · · · · · · · ·	
		コノノステノノー指数 Consistency Index	Ie															
		レキ分 200mm以) Gravel	%			0		L .	0		↓ _ <b>↓</b> - • - •	0			0			
		砂分 200-0074mm Sand	%			0	••	ļ	3_		<u> </u>	0		ļ <del>.</del>	2	•		
		ンルト分 10 074~0 005mm / Silt	%			55	<u> </u>	ļ .	\$1	-		45		ļ	48			
粒度	诗性	粘土分(0 005mm以下 Clay	%			45	L	4 - •	46		l	55	· · ·	<u> </u>	50		•	
Grada	ion	均等译 Uniformity Coefficient	U.			-	·				·	-	·	·····	-			
		三角座標分類去 Triangular Classification				clay			Clay	ļ	· · · ·	clay			Clay.	ļ	 	
		日本統 土質分類法 Japanese Unified Soil Classification				сн_			CH.		<b>.</b>	Сң		+	СН		<b>-</b> · · · -	
ļ		AASHO分類走																<u>_</u>
	_	帕圧縮強さ Unconfined Compressive Strength	q. 48	22			<u> </u>				 	<b>_</b>		ļ				
	iffi fined ression	破壊とズ: Failure Strain	e %					<u> </u>				ļ		<b>↓</b>			÷	
	E unit	变形 係 数 Deformation Coefficient	Eso kg	2			L	L .	_			↓ +			<b>..</b>	<b>.</b>		- <b></b>
	- 5 ర	錢 岐 比 Sensitivity Ratio	S,														ļ	
	V kh Shear	武 験 条 件 Test Condition									- ·	L		ļ			[ 	
持 作 Property	운영 문서	粘 着 力 Cohesion	C	2	-										<u></u>			<u> </u>
± ₽2	函世) Direct	セン断抵抗角 Angle of Shearing Resistance	ø	o ,											· · · · · · · · · · · · · · · · · · ·	ļ		<u> </u>
¥ ical	uoi	武 翰 亲 作 Test Condition							· ·						<u> </u>	<b>_</b>		
力 学 Mechanical	正語 xial ress	粘 若 力 Cohesion	C kg	2			L		· -			- · ·			<u> </u>	<b>, , , , , , , , , ,</b>		
ž	、触压相 Triaxial Compres	セン断抵抗角 Angle of Shearing Resistance	ø	•					l					ļ				
	c	生主降伏忘力 Consolidation Yield Stress	P, kg	n ²						· · -	ļ .	↓ ·			<b>_</b>			
	đatioi	旺 縮 指 数 Compression Index	C.						L .				<b>↓ →</b>					<u></u>
	任 唐 Consolidati	压 茁 係 数 Coefficient of Consolidation	in C.	2						1.	l		-		L			
	₩Å	透水 侨 粒 Coefficient of Permeability												ļ		ļ	<u> </u>	
<u> </u>		武 联条 件 Test Condition									ļ <u>.</u>	↓			L	ļ		
締固≠ Comp	)特性 action	鼓通含水比 Optimum Moisture Conten	t 10,	6 .							l				L	ļ		
Comp		最大乾燥密度 Maximum Dry Density	74 E/		:										<u>.</u>		<u> </u>	<u> </u>
備 Rema	考 rks		<u> </u>															

P. 109

		tion Place Inflawa Repair Docky	-		· · ·					· · · · · · · · · · · · · · · · · · ·		<u></u>		<del></del>	-
K - 1)	- 71L	番号 Boring Hole No													-
ί ¥	1 បីក	9 Sample No	<b>.</b>	31	32	33	34	35							
1.5	- 8	: 煌 Elevation, Depth m			31.0~31.37	1		34.0-34.37							
		自然含水比 Natural Moisture Content	w. %	20 58	1957	19.43	19.32	1835	_						
		土粒イの比重 Specific Gravity	G,								-	<b>.</b>	<b>_</b>		
妖	以他	温 調 在 煌 Wet Density	7 8	n ³								·			
atura ondit	10 -	乾 操 途 没 Dry Density	71 8											L	
	F	間 ゲ キ 比 Void Ratio	e										- •	↓	
	ľ	飽 彻 境 Degree of Saturation	5, %	6											
		液性限界 Liquid Limit	w _l 9	6 N.L.								· · -		l	
ン ノ ン 一:	ステ	塑作限界 Plastic Limit	uc, 3										·	l	
->: •nsisi	行任 tency	塑 作 指 数 Plasticity Index	1,	N.P.I	<b>↓ ↓</b> _										
		コンシステンシー指数 Consistency Index	I.			1						·		<u> </u>	
		レキカ・2.00mm以上。Gravel	a	6 0					-			 		<b>_ _</b>	
		砂疔 2 00~0 074mm Sand	9	6 57					-						-
		ンルト57 (0 074~0 005mm) Silt	9	6 43					-						_
1度:	持性	粘土分 (0 005mm以下 Clay					]							↓ <b>-</b>	_
rada	tion	均等保数 Uniformity Coefficient	U,	13					-					↓	
		角座標分類法 Triangular Classification	++-	Sand							· ·		•	L	
		日本統 - 土質分類法 Japanese Unified Soil Classification		SM + SC				1.	-	ļ	·		· ·	↓ ↓	-
		AASHO分類法													
		- 軸圧縮強さ Unconfined Compressive Strength	q. 4	3, 2 Cm								<b>.</b>			
	暗 ned ession	破壊とズミ Failure Strain	e f	36										↓ <u>-</u> –	
	帖사 橋 Unconfined Compression	変形 係 数 Deformation Coefficient	Eso k	5 <u>2</u>			Ι.			L .				↓	
	50	鋭 敏 比 Sensitivity Ratio	S,												
~	دی دی	.水 联 条 件 Test Condition						<u> </u>			-			<u></u>	
pert	励せ、断 Drect Shee	粘 着 力 Cohesion	Ck	5, 2 CIII					↓ ↓ ↓ -	· · · · ·		 		<u> </u>	
Property	Bre Dre	セン断抵抗角 Angle of Shearing Resistance	¢	5								<u> </u>		<b>_</b>	
r ncal	io	式 験 条 件 Test Condition						<u> </u>				 		<b></b>	-
Mechanical	II HB ress	粘 着 力 Cohesion	C	5 cm ²		<u> </u>	L	•	↓ + +		↓ ↓	+ +			
Me	. Mail HB Triaxial Compress	セン断抵抗仰 Angle of Shearing Resistance	¢	•					ļ	<b>_</b>				<b>_</b>	
		王密廷伏范力 Consolidation Yield Stress	P,	8, cm²			ļ		ļ .	· -	+ •	- 	+		
	int dation	压缩指数 Compression Index	C,				•	·	↓ .	-		L	<u>↓</u>	<u> </u>	_
	任 在 Consolidation	旺 歪 好 数 Coefficient of Consolidation		m ² sec	•				L •	ļ		ļ <b>.</b>	+		_
	ਸ ਸ	透水 係 数 Coefficient of Permeability		m sec					<u> </u>		<u> </u>		ļ	<u> </u>	_
	<u> </u>	武 联条 件 Test Condition							ļ:	·	ļ	ļ	+		_
緒固s Comm	カ特性 action	校遗含水比 Optimum Moisture Content	W.mr	%				· · · · ·			ļ		<b>_ -</b>	<b></b>	
		最大乾燥窑度 Maximum Dry Density	74	2	:				,						





7

## 土質試験結果一覧表 SUMMARY OF SOIL TESTS

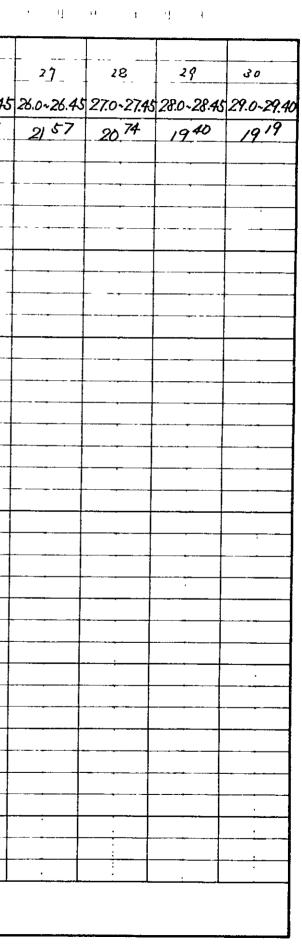
ポー-リ	- "fl	新号 Boring Hole No													L
h.	4 ត	9 Sample No	_	/	Z	3	4	2	6	7	е	9	10	11	
標高	• \$	策 嗖 Elevation, Depth m '		0~1.0	0 1.0~1.45	20-2.45	3.0-3.45	4.0-4.45	5.0-5.45	60-6.45	7.0~ 7.45	8.0-8.45	9.0-9.45	10.0~10.45	1.
		自然含水比 Natural Moisture Content	w.,		68.09	60.05	6071	64.03	57.96	55.57	53.80	54.46	55-60	61.70	
		土粒「の比重 Specific Gravity	G,				<u> </u>	~ ~	· · · ·						L
自 伙 Natur	状態	准 战 윤 또 Wet Density	'n	ह, (तन्न)				•					•		L
Condi	tion	乾 悌 彦 段 Dry Density	74	g Cm ³			<u>,</u>	•							Ĺ
		間 ヶ キ 比 Void Ratio	e						•	•	L+ ·			•	L
		抱 抱 控 Degree of Saturation	S,	% .											L
		液 竹 邸 界 Liquid Limit	w _l	%				•		•	 				
コンノ シノー	ステ 特性	塑性限界 Plastic Limit	ω,	%			<b>.</b>	- •	· · · ·	• -					
Consis	tency	塑 性 指 数 Plasticity Index	1,			+ F		-		-	↓ ↓ → -		+-		L.
		コンシステンシー指数 Consistency Index	I,	<u> </u>		ļ									
		レキか 200mmに上 Gravel		%			L .	-	· · ·	•	↓ _•		·········	<b>_</b>	
		砂坊 2 00~0.074am Sand		%		<b>+ -</b> -	•·								-
		- ルト分 10 074~0 005mm Silt		%			<b> </b>			•	· ·		** •··	↓ <del>.</del>	-
粒度	特性	粘土分(0 005mm以下) Clay		%		· · ·		•	-					╡ ┯	
Grada	tion	均等译数 Uniformity Coefficient	U,	   		·	• -		· · ·	-			· ···	ļ	-
	角座標分類法 Triangular Classification	 	+ - <b> </b>		-+	+	· ·			<b></b> .				-	
		日本統 -土質分類法 Japanese Unified Soil Classification	↓					ļ .		-				<b>.</b>	-
		AASHO分類法													-
	ç	軸圧縮速さ Unconfined Compressive Strength	۹.	kg , cm			• •							↓ ┿──── ┿─────	-
	袖IE相 Unconfined Compression	破壊とて: Failure Strain	1	0.5		·	÷. •			-		•			-
		变形 係 数 Deformation Coefficient	÷	kg , cm		·		-		-			••		F
		载 置 比 Sensitivity Halio	S,	<u> </u>											┝
ťy	団 た / 際 Direct Shear	武 験 条 件 Test Condition						<b>-</b>		• •	<b>.</b>			<u> </u>	L
持 代 Property	\U 같다 문문	粘 着 力 Cohesion	C	kg , α				÷							
^本 민	¹ <u>L</u>	セン断抵抗角 Angle of Shearing Resistance	ø					ļ	· · · · · · · · · · · · · · · · · · ·					<u> </u>	$\vdash$
カ ゲーキ Mechanical	sion	式 験 条 件 Test Condition					<u>+</u>	<b></b> - <b>-</b>		·	+- •				_
رل lecha	' (d) I. fig Triaxial Compress	粘着力 Cohesion	C			·	╡	•		<b>↓</b> → =	· ·				
Z	μŞ	セン断抵抗角 Angle of Shearing Resistance	¢									· · · · · ·		<u> </u>	_
任 在 Consoliciation	任富降伏応力 Consolidation Yield Stress	1	kg cm²		·			+ •	· ·	•			++	-	
	旺 梳 指 数 Compression Index	+ C.				ļ	<b></b>	- ·					+	-	
	庄 密 係 数 Coefficient of Consolidation	с.	cm² sec									••		-	
		水 侨 数 Coefficient of Permeability	¥	ca sec			<u> </u>		ļ						┝
		式 験 条 件 Test Condition	ļ		·	<u> </u>	<u> </u>	<b></b>	<u></u>	·	<b>-</b>		•	<b>_</b>	$\vdash$
稀闷。 Comp	5特性 action	粒通含水比 Optimum Moisture Content	+	+			i				<u> </u> <b>-</b>			<b>_</b>	┝
		敌大乾燥密度 Maximum Dry Density	74	8/ , 		· ·								l	L





12	13	14	15
11.0-11.45		13.0-13.46	14.0~14.45
6190	12.0-12.45 55-26	5-1,28	4583
	····	· <u>v.,</u>	70
	<b></b>		
		······	<b>_</b>
	·		
			· · · · · · · · · · · · · · · · · · ·
		•	
	·····		
	· · · · · · · · · · · · · · · · · · ·		
<b>-</b>		• · · ·	
		,	
,	,		
	·		
		<b>#</b>	
	·····		
	·		
· · · · · · · · · · · · · · · · · · ·			
	•		

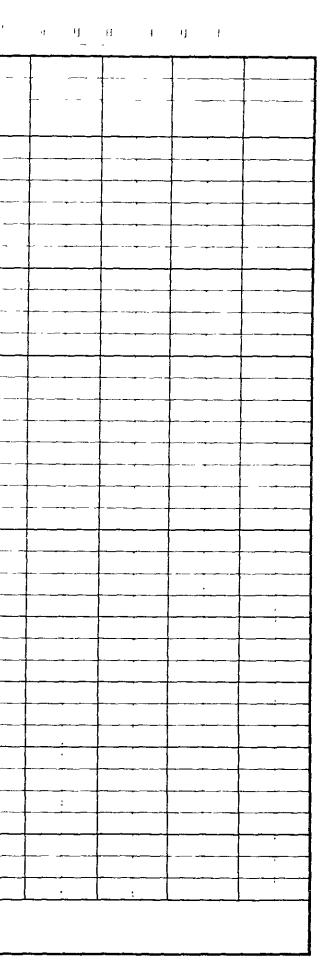
<u>土質試験結果一覧表</u> SUMMARY OF SOIL TESTS


*-	1. 74	L新号 Boring Hole No.								<u> </u>					1
љ.	¥1 A	5 Sample No			16	רי <u>רי</u>	18	19	20	21	22	23	24	25	26
標。		森境 Elevation, Depth m			15.0-15.50	16.0~16.50	17.0~17.48	-	19.0-19.45	20.0-20.45	1	ł	ł	!	I
		自私含水比 Natural Moisture Content	r.		4645	48 ³⁸	49/7	4846	4237	28.31	27.23	23.70	20.31	20 87	2355
		土粒子の比重 Specific Gravity	G.					· · · · · · · · · · · · · · · · · · ·		<u> </u>	<i>61</i> .	- <u>-</u>	20		20,00
自 秋 Natu	状態	祖 過 法 境 Wet Density		۶ <u>/</u>								-	- •		<u></u> ╡╴╶┍──
Cond	tion	乾 荣 岳 玲 Dry Density	74	8, 611			• • • •	• • • • • • • •		∔• ·	•	• -	··- •		+
		間 デ キ 比 Void Ratio	e		;						-				╃┈╴╌╴┳╾╍╌╴╴
		起 初 段 Degree of Saturation	S,	%	4	4	· · · ·			+ - ·	•		+ -		· · ·
		At 14 BI W Liquid Limit	w	%				<u> </u>		· · · · · · · · · · · · · · · · · · ·	····				ļ
コンン シンテ	ステ	塑 件 融 界 Plastic Limit	w,	%		• • •			•• - •	++	-	· •			
Consi	stency	塑性指数 Plasticity Index	I,						- •	<b>-</b> - •-	-				· · ·
		コーンステンノー指数 Consistency Index	l,							† •	• = -			·	
		レキ分(2 00mm以上) Gravel		%				•••			···· · · · · · · · · · · · · · · · · ·				
		89-57 (2 00-0 074mm) Sand		%							• •	• • •			
		ンルトガ (0 074-0 005mm) Silt		%		,				-	•				
粒度	特性	粘土分 (0 005mmlJ下) Clay		5%				• -	- •		-				
Gradation		均等係数 Uniformity Coefficient	U,						- + ·	+ • · · ·	• •	• •			<b></b>
		- 角座標分類法 Triangular Classification						~	-						
		日本統一土質分類法 Japanese Unified Soil Classification							- •		· • - +	+			
		AASHO分類法						· • ·	-	-	•	· · ·		· _ <del></del>	
	e	-軸圧縮強さ Unconfined Compressive Strength	q.	<u>لع</u>								·			
	铀/L.H nconfined ompression	破壊 ヒズミ Failure Strain	ε	%											
	Lincon Compr	変形 係 数 Deformation Coefficient	E50	kg , m				·- •	▲	-	•		· ·		
	50	說 敏 比 Sensitivity Ratio	S,					÷	•	-	-	• -+	·		
ţ	tf hear	武 联 条 件 Test Condition						·							
ber ber	た、斯 ct She	粘 着 力 Cohesion	с	<u>لو</u>						- •	-	•-			
力 学 特 性 Mechanical Property	·ഥ 눈 Direct	セン斯抵抗角 Angle of Shearing Resistance	¢	٥						+	•				<b>_</b>
.∱ nical	non	忒 験 条 件 Test Condition				:									· · · · · · · · ·
<del>ل</del> ع جراما	林庄4翰 Triaxial Compress	粘者力 Cohesion	С	kg cm²		,	-				•	+			
W	a Lo C-J	セノ断抵抗角 Angle of Shearing Resistance	ø	۰						•	•	• †			
	£	压高降伏吃力 Consolidation Yield Stress	Ρ,	kg cm²											
任 准 Consolidation	旺 縮 指 数 Compression Index	C.							· · +	•= •	· •· +		• • · · · • •		
	ansolic	庄 告 译 戴 Coefficient of Consolidation	с,					<b>-</b>				···• +			
	ਦਹ	透木係数 Coefficient of Permeability		sec sec			;							+	
		武 联 条 作 Test Condition				·····		~							
緒固ਡ Comp	,特性 action	散透含水比 Optimum Moisture Content	£	%	<b>!</b>										
			74	<u>ارم</u>											<u>+</u>
傭 Rema	<i>≭;</i> rks		1		<b>-</b>	I	——, • — — I.	i	<u> </u>	<u></u> _	1	<u> </u>	<u> </u>	<u>-</u>	

調查名·調查地市 Tula Investmenta Diago Thilawa Repair Dockvard Project

•

· .


P. //Z

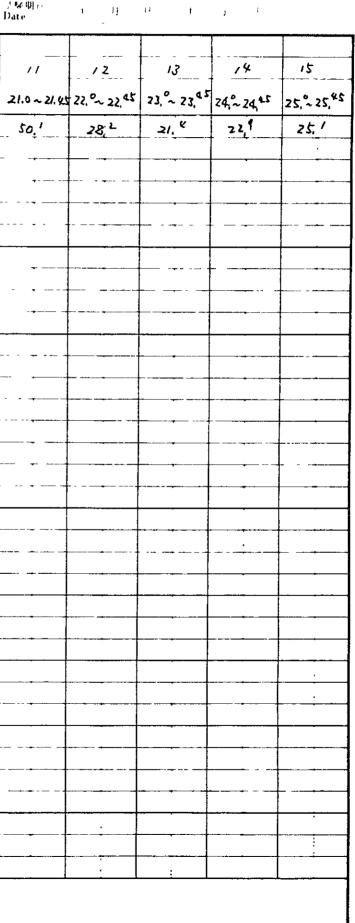




調在名、周在地市 Title, Investigation Place Thilawa Repair Dockyard Project : Wi Wi ・ Date -----ポーリンク孔希号 Boring Hole No よ 料 析 号 Sample No. 32 31 33 35 標高•碟度 Elevation, Depth m : 30.0-30.38 31.0-31.33 32.0-32.32 33.0-33.31 1894 1792 17 73 17.63 自然含水比 Natural Moisture Content 10, 20 ---. . G, | 土粒子の比重 Specific Gravity 自然状態 Natural 7 K 湿 頑 法 度 Wet Density 7. 8, Condition 乾燥 活 度 Dry Density 間 ザ キ 比 Void Ratio e [ ----·- ------ - -+ --S. % 起 和 地 Degree of Saturation 液件课界 Liquid Limit w1 % • - + ----- + コンレステ ンシー特性 Consistency 塑性限界 Plastic Limit w, % - + -÷ -- - --塑性指数 Plasticity Index _ . -+ コンシステンシー指数 Consistency Index 1. レキ分 200mm以上 Gravel % + * ----秒分 2.00~0 074mm Sand % - --. . ンルト分 (0.074~0 005mm) Silt % . ----- + 粘土分 '0 005mm以下 Clay 粒度特性 Gradation 均等係数 Uniformity Coefficient U, . "角座標分類法 Triangular Classification 日本統 - 土質分類法 Japanese Unified Soil Classification ÷ ---- ---. - --AASHO分知法 - 帕圧縮強さ Unconfined Compressive Strength q. kg . **.**.... 1% Eso kg . ----_ . S. 鋭 敏 比 Sensitivity Ratio 函セン断 Durect Shear 式 験 条 件 Test Condition 持 性 Property --- - -. **....** . ... C 粘 者 力 Cohesion 4 セン断抵抗角 Angle of Shearing Resistance ~ + . ... .... <u>.</u>. .. -カーデー: Mechanical 武 験 条 件 Test Condition C kg · 细言的 枯 着 力 Cohesion . 世報記 第25 社 - 新抵抗例 FO Angle of Shearing Resistance - - -¢ ° . P, kg 压密降伏応力 Consolidation Yield Stress . 훈 lidation . . 压 箱 指 数 Compression Index C, se 庄 密 係 数 Coefficient of Consolidation HO E * 2 透水係数 Coefficient of Permeability . 式 験 条 件 Test Condition 締固め特性 Compaction 収通含水比 Optimum Moisture Content w. .... % . : . 4 7, 8, 载大乾燥密度 Maximum Dry Density : . • . 備 考 Remarks

P. 113




- -

#### 土質試験結果一覧表

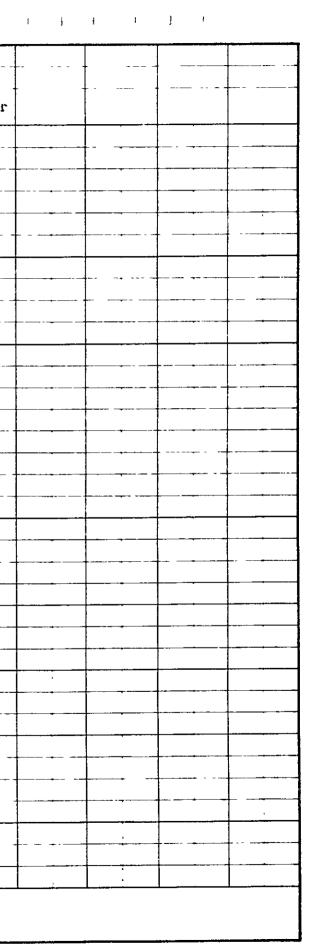
SUMMARY OF SOIL TESTS

調查名 調查地 Thilawa Repair Dockyard Project 1 **1**4 [1] Date - _ -ポーリンプ孔番号 Boring Hole No 武料番号 Sample No. 5 z 3 6 7 8 9 1 4 10 11 標高·深度 Elevation, Depth im 2.0~2.6 4.0~4.7 6.0~6.9 8.0~8.8 10.0210,7 12.0~12.8 14.0~14.8 16.0~16.7 18.0~18.7 20~20.6 42.2 44.5 自然含水比 Natural Moisture Content 43,7 37.3 w. 46,9 45,° 46,8 **4**6.⁹ 50,1 47,1 45.° 1 粒子の比重 Specific Gravity G, ---+ ----7 B 自然状態 虚 潤 庄 煌 Wet Density Natural ---. 74 B, Condition 乾 健 岳 惶 Dry Densitv ÷ ----間 ゲ キ 比 Void Ratio e -+ -飽 和 喧 Degree of Saturation S. % 液 竹 卵 界 Liquid Limit w1 % . . . - + コンシステ ンシー特性 Consistency 塑性限界 Plastic Limit ¥., % 塑作指数 Plasticity Index • 1. . . - -コレンステーシー指数 Consistency Index L , レキ分 2 00mm以上 Gravel % + --**-** ---- -----% 秒分 2 00~0.074mm Sand % ンルト分→0 074~0 005mm) Silt - - -**-**----. . % 粘土分:0005mm以下 Clay 粒度特性 Gradation - -----. ----- ---均等保数 Uniformity Coefficient U, --- 角座標分類法 Triangular Classification --日本統 - 土質分類法 Japanese Unified Soil Classification • ---AASHO分類法 帕住箱強さ Unconfined Compressive Strength q. kg 0.98 0.48 1,21 0,53 0.68 0.81 0,85 *0,* 86 1.10 1,00 破壊とズミ Failure Strain H5 ined E % 3.7 3.5 3.8 4.5 4,2 4. 0 72 5,5 3.5 4.2 Eso kg 変形 係 数 Deformation Coefficient 42 18 18 39 30 35 40 37. 32 52 **\$**C 勤 比 Sensitivity Ratio S, + ----**→** ~ -----~ _ ~ ~ 、 医hear 式 験 条 件 Test Condition 持 忙 Property -• ------C ka 粘 若 力 Cohesion Direct -- ------セン新抵抗角 Angle of Shearing Resistance ----0 カーチー Mechanical .ポ 験 条 件 Test Condition * -- - 4 -城旧和 Triaxial Compress C kg 粘 若 力 Cohesion - -•- · - ----····· セン断抵抗角 Angle of Shearing Resistance ø° P, kg 任密阵状応力 Consolidation Yield Stress 1.5 2.9 2.2 1, Z 1, 8 2.0 圧 缩 指 数 Compression Index C. 26.0 0,64 0,46 0.70 0.72 0.70 臣 茁 係 数 Coefficient of Consolidation C. 四2 . . 0,2 0.2 0,2 0.2 0,1 0.1 ੋਸ਼ਹੁ k sec 透水係 数 Coefficient of Permeability . 武 牍 条 作 Test Condition . 緒間め特性 % 较通含水比 Optimum Moisture Content w. . • Compaction . . 教大乾燥密度 Maximum Dry Density 7 : . 備 Remarks ÷

P. 114



-


#### 調查名一調查地市 Title, Investigation Place Thillawa Repair Dockyard Project

	- 7孔 4 桥			16		18		20	2/	22	73	25%	25	26
* 1.	1+ m 	7 Sample No	•	+	יי <u>ו</u>					-	1		Í	
槽 高	• 1	ま 煌 Elevation, Depth m ·		25°~25,**	26. ~ 26. 45	27.~ 27.45	² *,85~28, ⁴²	29. ~ 29.45	30 ~ 30,5	31. 31.45		33.~-32,**	34, ~ 34, 45	ļ
		自然含水比 Natural Moisture Content	<b>"</b> , "。	25,1	<u>ه رد</u>	28,*	31. 8	28 <u>,</u> ³	_22,6	-22,1	21,5	18,8	17,2	.'1.'
	ĺ	土粒子力比重 Specific Gravity	G,							· ·				+
自 秋 : Natura	认他	溢 詞 法 收 Wet Density	7 8	<b>1</b> 3					-			<b>-</b>		
Condit	ion	乾燥品 收 Dry Density	Ya 8,	m ³		<b>_</b>				-				L
		間 デ キ 比 Void Ratio	e						<b>-</b> -	4 - • -			<b>-</b>	
_		飽 和 收 Degree of Saturation	S. %	6		L				 				ļ
		液作即界 Liquid Limit	w _L o	o	,			•	-	· · ·		 	<u>↓</u> •	
コン / / ン 一:	ステ	塑性限界 Plastic Limit	w _p 3	6		• •	· · ·	-	<b>.</b>	↓ ↓				
Consis		塑 作 指 数 Plasticity Index	1,			↓ <u></u>		• ·	-			-		
		コノノスティノー指数 Consistency Index	I				 							
		レキ分 200mm以上 Gravel	9	6	<u> </u>		<b>_ .</b>		- +					<b></b>
		移分 (2 00~0 074mm Sand	9	8	·•• ·••	↓			-	•-	 		ļ	
		ノルト分(0 074~0 005mm Silt	0	6		· · · · ·		· ·	-	· ·				
粒度	特性	粘土分 0005mm以下 Clay	1 19	16						-	 			
Gradation		約等條當 Uniformity Coefficient	U.		ļ				-		+	 		·
		。角座標分類法 Triangular Classification	 		<u></u>		+ -	-	 		} + 	↓ <b>-</b>	+	+
		日本統一土質分類法 Japanese Unified Soil Classification			<b></b>			-	-			·		
		AASHO分類法												
		- 釉圧縮法 № Unconfined Compressive Strength	q= kg			L	L	-		•		<b> </b> •		
	th ined ession	破壊上ズミ Failure Strain							-			↓ •		<u>↓</u>
	輪圧部 Unconfined Gompression	変形 係 数 Deformation Coefficient	Eso k	2 Cm		· ·			-	l -				ļ
	50	說 說 比 Sensitivity Ratio	S,							ļ				
ty	/ 唐 Shear	武 联 条 件 Test Condition				ļ	<u> </u>	+	1.	· · ·				<b> </b>
Fropert	r S F	粘 若 力 Cohesion	C 4				ļ		+- +-	•			<b>↓</b>	· · · · · · · · · · · · · · · · · · ·
$\mathbf{P}_{\mathbf{x}}$	Drect A	セン断抵抗角 Angle of Shearing Resistance	¢	o .		<u> </u>		ļ	ļ	ļ		<b> </b>	<u> </u>	<b></b>
カッド	10I	武 软条 件 Test Condition					↓		-				<b>+ -</b>	<u></u>
<del>با</del> رئە	始任 社留 ruxual ompress	粘 者 力 Cohesion	C	8 m²		<b>_</b>	L	ļ •	↓ .			<b>↓</b>	+	
Ŵ	12 12 12 1-0 1-0	セン断抵抗角 Angle of Shearing Resistance	1	•			<u> </u>	<u> </u>	ļ		<u> </u>	ļ	<u> </u>	
	_	压密降伏电力 Consolidation Yield Stress	P, <b>k</b>	g cm²				<b>-</b>	ļ <b>.</b>	-	· ·			
	đatioi	任 摘 指 数 Compression Index	C,			ļ		·	+	-		↓ <u>→</u> .		<u>↓</u> . <u>-</u>
	E & Consolidation	压 畫 條 数 Coefficient of Consolidation	n C,	m ² sec			ļ <b>.</b>				-		╞╴┈╴-	
∺ర్	<u></u> ₩3	透水 併 数 Coefficient of Permeability	*	n sec				ļ		 				ļ
<u></u>	, <b>1</b>	式 験 条 件 Test Condition			•		· · · · · · · · · · · · · · · · · · ·		ļ · ·	<b>+•</b>				↓ <b>-</b> =
	の特性 paction	社选含水比 Optimum Moisture Conten	t 10 _{9π} ,	%							<u></u>	↓	ļ	
2010}		私大乾燥高度 Maximum Dry Density	7, 8								<u> </u>	<u> </u>	l	l
備 . Rem	 表arks													

-

,≓ %ol0i ⊨ Date

P. 115



Calculation Sheets of Traversing

•

W	ATERWAYS	DEP	ARTMENT	
DEF	ARTMENT	OF	SURVEY	0
A	NGLEMEASUREM	ENT.	SURVEYO	R. MYINT SOE
DATE. 22nd Septembr	r 1983	RECO	DRDER.	
ORSERVING STATION.	A1	INSI	FRUMENT	NO
LOCALITY OF STATICN.	Thilawa	WEA!	THER	Fing.
		TIMI	Ε.	

.

Distance A. -. A. . 176.949 meturs

STATION	ROU-	FACE AND	OBSERVED HORIZONTAL	CORRECT-	TRUE	REMARK
	ND	SWING	READING	ION	ANGLE	
Av	1	R/R ۱	5 00 01 - 00 L 360 01 - 02	-1		
	2	L/R		-3		
	3 4	L/L R/L ³	1312 02-00 1312 02-00	-2		
	-	к/ш 4	\$ 01 ve 00 \$ 01 ve 00 \$ 360 or 04	- 2		
A.z.	1	R/R	۹۵. ۵۰- ۵۵	     - 1	89-59-59	    
£ * * d * * a a a a a	2	L/R	270-00 03	- 3	90-00-00	
	3	L/L	270-00.05	- 2	90-00-01	1
	4	R/L	10-00-02	- 2	90-00 00	1
· <u>·····</u>			↓ ↓ ↓	Mean	90-00-00	5
	1	R/R				
<u> </u>	2	L/R	F 4			
	3	L/L	, , 			
	4	R/L				
	1	R/R				
	2	L/R				
	3	L/L				
	4	R/L				
	1	R/R	•			   
	5	L/R				
	3	L/L				
	4	R/L				

Vertical angle = PJ. 54. 32

٠.

117

	WATERWAYS	DEI	PARTMENT		
	DEPARTMENT	OF	SURVEY	•	
	ANGLEMEASURE	MENT .	SURVEYO	)R	
DATE. 23rd	September 1983	REC	CORDER.		
	TION. A2	IN	STRUMENT	NO	
LOCALITY OF S	TATION.	WE.	ATHER		
		ΤI	ME		

Distance A, - Az. 467.186 meters

Vertical angle : 10-04-55

	ROU-	FACE	OBSERVED HORIZONTAL	CORRECT-	TRUE	REMARK
STATION	ND	AND Swing	READING	ION	ANGLE	
A	1	R/R 1 }	00-00 00	+1		
	2	L/R L/L ²	180 01 0C 179-59-56	+ 2		,
	3 4		180 - 50 04	- 2		
		4	500 - 100 - 06	- 3		
A,	1	R/R	179.59-55	+ )	179-54-54	
	2	L/R	359-59.56	4-2	179-59-55	
	3	L/L	339-59-54	- 2	179-59-51	
	4	R/L	179-22-57	- 3	179-57-59	
			) 	Mean	179-59-55	5
	1	R/R				
ل ا	2	L/R	1			
	3	L/L	•			
	4	R/L				
<b>;</b>	. 1	R/R				
	2	L/R	1			ł F
	3	L/L				
	4	R/L				
	1	R/R				
	2	L/R				
	3	L/L				
	4	R/L				

•

•

‴¹11883£

• •

		WATER DEPARTM ANGLE	ENT	OF	ARTMENT SURVEY SURVEYO	R. U. MYINISCE	
DATE. 2	5 <u>#</u> 8	eptember	1983	RECO	ORDER	UYE MYINT.	
ORSERVING	STATI	ON. <u>A3</u>	<u></u>	INS	TRUMENT	NO	
LOCALITY C	F STA	TICN. This	aura	WEA TIM		cloudy	

#### Distance A3 lo X4 1078.567 m

vertical	angle	<b>१</b> न - ५१'	- 5 8
		-	P

, STATION	ROU-	FACE	OBSERVED HORIZONTAL	CORRECT-	TRUE	REMARK
STATION	ND	SWING	READING	ION	ANGLE	
Az	1	n/n 1-	300-00-00	+15		
4	2		siso or or	] _ )		
	3	L/L	150 - 01 - 02 \$180 - 01 - 30			
•	4		1180-00-08	- 4		
		4	5 00 - 00 - 00 (359 - 59 - 58	+ 1		1
A4.	1	R/R	94 - 58 - 05	+1.5	94.58-02	
- 	2	L/R	274 - 58 - 06		94-58-05-	
•	3	L/L	274-58-10	-4	94-58-06	
	4	R/L	94-18-06	+ 1	94-58-07	
	ļ		 +	Mean	94.58.05	
	1	R/R	• • •			
	2	L/R	1			
	3	L/L	•			
•	4	R/L				1
÷•••••••	1	R/R				
	2	i i L/R				
	3	L/L				
	4	R/L				1
• • • • • • • • • •	1	R/R				
	2	L/R				
	3	L/L				:
	4	R/L				

•

TH11883£

SURVEY FORM-1 119

WATERWAYS	DEF	PARIMENT
DEPARTMENT	OF	SURVEY .
ANGLEMEASU.	REMENT	SURVEYCR. 13 MYINT Sob.
DATE. 7th October. 1983	REC	ORDER.
ORSERVING STATION. Ag	INS	STRUMENT NO
LOCALITY OF STATION. Thilana	WEA	THER . Fine
	T D.	E. 08.45

Bearing. 348-22-06"

STATION	ROU	FACE AND	OBSERVED HORIZONTAL	CORRECT-	TRUE	REMARK
	ND	SWING	READING	ION	ANGLE	
^A 3	1	R/R	5 00-CL 00 L3441-59-68	41		
	5	L/R	5190-ce ve 1190-ce -uz	-1		
	3	L/L	\$ 180-00-00.	+ 1		
	4	R/L	500-00-00.			
			6360-00-02.	-1		
Mile post :	1	R/R	154 - 40 - 08	+	154-10 19	
	2	L/R	334 - 40 -05	- 1	159-40-04	
	3	L/L	334 - 40 - 07.5	+1	154-40-08 5	
	4	R/L	154 - 40 - 09	~ 1	159-40-08	
	 	 	│ ★ <u></u>	Mean	154-40 07.	15
A <b>5</b> .	1	R/R	198-00-34-	+ 1	198-01-35	•
~	2	L/R	018 - 00 - 37	- i	198-00-36	
	3	L/L	018 - 00 - 36	+ 1	198-06-37 198-00-39	
-	4	R/L	19800- 40.	- 1 Mean.	196-00.367	5
	1	R/R		•••••••••••		•••••
	2	L/R				
	3	L/L				
_	4	R/L				
	1	R/R				
	2	L/R				
	3	L/L				
	4	R/L				

. -

•

-

:

11.25 - 1

•

۴

SURVEY FORM-1 126

•

.

DEPARTMENT	OF	SURVEY .
ANGLEMEASUF	REMENT .	SURVEYCR. 1) That I win
DATE. 74 Oclober. 1983		CORDER.
ORSERVING STATION. As	INT	STRUMENT NO.
LOCALITY OF STATION. Thilawa	∛E/	THER . Fine
	T T	ME. 09.00

WATERWAYS

# Dictance A, A, - 1125.43 metin. Verture angle - 89-55'-18'

DEPARTMENT

STATION	ROU-	FACE AND	OBSERVED HORIZONTAL	CORRECT-	TRUE	REMARK
OIXIION	ND	SWING	READING	ION	ANGLE	I LWARE (
A4	1	r/R ا	000 00-00 360.00.02	-1		
	2	<b>1</b> / <b>1</b> /	180- 00 - 00 179- 59 - 58	+1		
	34		180-00 -00 180-00 -04 000 00	-2		
		4[	351-11-58			
				+ }		1
Ab	1	H/R	85 - 67 - 53	l	85-17-52	
	2	L/R	265 - 07 - 49	+ 1	85-67-50	
	3	L/L	265 - 07 - 52	-2	82-17-20	1
	4	R/L	85-07-49	+ }	85-67.50	1
			↓ , +~	Mean	85-67-505	
	1	R/R	Distance AGAS = 33r	419.H		
	2	L/R	Vertical angle = 90.0	5 iz		1
	3	L/L				
	4	R/L				
i	1	R/R				
	2	i I L/R				
	3	L/L				
	4	R/L				1
	1	R/R				
• • • • • • • • • • • •	2	L/R				1
	3	L/L				I
	1					1
	4	R/L				

۰.

™M11883£

	WATERWAYS	DEP	ARTMENT	
	DEPARTMENT	OF	SURVEY	•
	ANGLEMEASUF	REMENT .	SURVEYOR	1) That Lion
DATE. 6th Occul	ocr 1983.	' RECO	ORDER.	
ORSERVING STATION	. A6		TRUMENT N	D
LOCALITY OF STATI	ON. Thelawa	WEA:	THER	Fine
		T IMI	E	

Distance A7. A6. 232.973 meters

Vertical angle. 89-28-36

STATION	ROU ND	FACE AND SWING	OBSERVED HORIZONTAL READING	CORRECT-	ANGLE	REMARK
Aş	1 2 3 4	R/R L/R L/L R/L	000 00-00 180-00-00 180-00-00 000-00			-
λ ₇	1 2 3 4	R/R L/R L/L R/L	180-00-00 360-00 00 360-00 00 180-00 00		180-06 02	, , , ,
	1 2 3 4	R/R L/R L/L R/L				
······	1 2 3 4	R/R L/R L/L R/L				
•••••••	1 2 3 4	R/R L/R L/L R/L				

™111883£

		WATERWAYS	DEP	ARTMENT	
		DEPARTMENT	OF	SURVEY .	
		ANGLEMEASUREME	NT.	SURVEYOR	11 MYINT SUE
DATE. 6	th Oct.	- 1983.	REC	ORDER.	
ORSERVING	STATION.	A7,	INS	TRUMENT NO.	
LOCALITY O	F STATIC	N	WEA	THER	1 1014
			TIM	E	

Distance AgA7 = 799.564 m

Vertual angle 90.06 48

STATION	ROU ND 1 2 3 4	FACE AND SWING R/R L/R L/L R/L	OBSERVED HORIZONTAL READING 0 00,00.00 354-59-57 150-00.00 150-00-00 150-00-04 150-00-04 150-00-04 150-00-04 150-00-00 150-00-00 150-00-00 150-00-00 150-00-00 150-00-00 150-00-00 150-00-00 150-00-00 150-00-00 150-00-00 150-00-00 150-00-00 150-00-00 150-00 150-00-00 150-00-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00 150-00	CORRECT- ION + 1" - 2" + 1" + 2"	TRUE ANGLE	REMARK
Az	1 2 3 4	L/R	092-47-07 272-47 12 272-47 12 277-47.09 092-47-04	097 47.08 272.47.10" 272 47.08" 092.47.08"		
	1 2 3 4	R/R L/R L/L R/L	Mean	092-43-06		
	1 2 3 4	R/R L/R L/L R/L				
	1 2 3 4	R/R L/R L/L R/L				

™111883£

•

		WATERW	AYS DEPARTMENT			
		DEPARTME	NT OF SURVEY	•		
		ANGLEM	EASUREMENT . SURVEYOR	MYIN	7 <u>Sot</u> _	-
DATE. 20-	9-83	<u>ه</u>	RECORDER.			_
ORSERVING ST			INSTRUMENT N			-
LOCALITY OF	STATI	ON. Thile	WEATHER	clough	<u>~~</u>	-
			TIME			-
	Vertic	al angle	89-50-44			
•	slope	Distar	-ce. A5 - A4 = 531	.564 m		
	Prog :	A8 - Ay	200 . 00 169 - 30-94 . 169 - 30 40			
	ROU-	FACE	OBSERVED HORIZONTAL	CORRECT-	TRUE	
STATION	Ì	AND		i	į ł	REMAR
	ND	SWING	READING	ION	ANGLE	
	1	R/R	00-00-00.	······································		
	2	L/R	359 - 59 - 58	+		
	3		186 - 00 - 04.	-2		
	4	R/L	180-00-0-0	+•5	ļ	
}			179 - 59 - 59			
		1	360-00-01	- 1		
						- <u>-</u>
^A g	1	R/R	178-04-28	+1	178-04-2-1	-
-	2	L/R	358 - 04 - 37	- 2	178 - 04 - 35	
	3	1	358-04.28	+ .5		
	-		1		178-04-28	
ł	4	R/L	178 - 04 - 34		178-04-33	
		ļ	·	Mzan	178-04-31	- 375
		1				
	1	R/R	l.			
	2	L/R	1			
	3	L/L				
		ע ענ				
	4	R/L				
			·			
	1	R/R				
<b>,</b>		i				
	2	L/R				
	3	L/L				
	ł					
	4	R/L			<u> </u>	
	ł	1	1			
	1	R/R				
* * * * * * * * * * *	1	R/R				
	2	L/R				
···· <i>*</i> · · · · <i>· · ·</i> ·	2	L/R				

٠

™1188**3£** 

•

124

	DEPARTMENT	OF S	URVEY .	
	ANGLEMEASUREME	NT 3	URVEYCR.	MYINT SOL
DATE. 20-9-83	·	RECOR	DER.	······································
ORSERVING STATION.	<u>Ag.</u>	INSTR	NUMENT NO.	·
LOCALITY OF STATIC	CN	<b>₩EAT</b> I	IER	
		TIME.		
4	ertical angle	69-43	- 11	•
S	lope distance ?	96 - 19	8 m	

DEPARTMENT

WATERWAYS

STATION	ROU-	FACE AND	OBSERVED HORIZONTAL		TRUE	REMARK
	ND	SWING	READING	ION	ANGLE	
A.8:	1	R/R	00-00-00 - 04	- 2		
	2	L/R	180-00-00	- 2		
	3	L/L	- 00 - 03	- 1.5		
	4	R/L	00-00-00			
			3-7 - 5-2 - 5-2	+- 1		
Å <b>i</b> g	1	R/R	174-41-50	- 2	174-41-4	<u>.</u>
	2	L/R	35-4-41-46	- 1.5	174-41-4	
	3	L/L		- (13	1 (4	т
	4	R/L	174-41-48	+ 1	174 - 41-	49
			1 • •	Mean.	174-41-	47.
	1	R/R	, , t			
	2	I L/R	1 1			
	3	L/L	• •			
	4	R/L				
i	1	R/R				
	2	i   L/R				
	3	L/L				
	4	R/L				
	1	R/R				
	2	L/R				
	3	L/L				
	4	R/L				

•

.

™411883£

1}

•

۰ <u>-</u>

77

	WATERWAYS	DE	PARIMENT	
	DEPARTMENT	OF	SURVEY .	
	ANGLEMEASURE	MENT	SURVEYCR	UNUTSOL
DATE. 20.9-8	3	RE	CORDER.	U KUQW NYEN
ORSERVING STATION	, At	IN	STRUMENT NO.	TE A.
LOCALITY OF STATIC	CN	WE	ATHER	
		ΤI	ME.	15-30

Vertical angle. 89-37-19 Derlance 212.969 m.

STATION	ROU-	FACE AND	OBSERVED HORIZONTAL	CORRECT-		REMARK
	ND	SWING	READING	ION	ANGLE	
	1	R/R	00.00 00 (158)			
·	2	L/R	180-00 00 (56) 180-00-00 (102)	+ 2 - 1		
	3	L/L	180.00-00 (56)	+ 1		1
	4	R/L	00.			
AH	1	R/R	169 0 9.30	+	169-09-31	
	2	L/R	349 09-30.	+ 2	169-09-32	
	3	L/L	343 09-23	- 1	169-09-28	
	4	R/L	169 09-31.	+1	169-09-32	
	<u> </u>	↓ ↓	! <del>!</del>	Mean	169-09-30.	25
	1	R/R	, , , ,			
_	2	L/R	t I	1		
	3	L/L	•			)     
	4	R/L				1
• • • • • • • • • • • • •	1	R/R				1
	2	i 1 L/R				
	3	L/L				
	4	R/L				
	1	R/R				
	2	L/R				1
•	3	L/L			ļ	
	   4 	R/L				

.

"ग111883£

----

- 126

	WATERWAYS	DEPART	MENT	
	DEPARTMENT		RVEY .	
	ANGLEMEASURE	Ment Sui	RVEYCR.	MyNI Soc
DATE. 20	9.83:	RECORD	ER	Kynw Nyon.
ORSERVING STATION	. <u>A</u> #	INCTRU	MENT NO.	「12 ⑦
LOCALITY OF STATI		Pt WEATHE	R	
2	/	TIME.		14:30 mm:

### Distance A1 A = 569.291 metres Vertical go-05.20"

	ROU-	FACE	OBSERVED HORIZONTAL	CORRECT-	TRUE	REMARK
STATION	ND	SWING	READING	ION	ANGLE	
A10	1	R/R	00-00 00(452)			
Ajo	2 3	L/R	180-00-00 (-09) 180-00 00 (-10)	- 2 -5-		
z earo se con ge		L/L				
	4	R/L	00-00-00 (-06)	- 3		
A ₁	1	R/R	177- 60,4-28/2	+ 4	177-10-25	
	2	L/R	357-10 -28	- 2	177-10-26	
	3	L/L	357 - 10 - 26	- 5	12-01-21	
	4	R/L	177-10-25	- 3	177-10-22	
	<u> </u>		l <u></u>	Mean	177-10.23	5
	. 1	R/R				
	2	L/R	1 1			
-	3	L/L	1			
	4	R/L	· · · · · · · · · · · · · · · · · · ·			
	. 1	R/R				
	2	L/R				
	3	L/L	Í			
	4	R/L				
	1	R/R				
	2	L/R				ļ
	3	L/L				
	4	R/L				

.

"'11883£

ı

יווויף וויי

•

۰

	WATERWAYS	DER	PARTMENT		
1	DEPARTMENT	OF	SURVEY	. THILAWA	
	ANGLEMEASUREN	IENT	SURVEYO	R. 11 91165	LWIN
DATE. 10-10-8	<u>s.</u>	REC	CORDER.	4	
ORSERVING STATION.	on seath	INS	TRUMENT I	NO	
LOCALITY OF STATIC	I	WE1	THER .	FINE	
	-	ΠT	NE.		

Vert - 090 - 10'- 10" , Dut - 448.321 M

		1 194	sr- 448.321 M			
	ROU-	FACE	OBSERVED HORIZONTAL	CORRECT-	TRUE	
STATION	ND	AND SWING	READING	ION	ANGLE	REMARK
JEMY LINE	1	R/R	000.00.00			
	2	L/R	120 - 10 - 00	- 4 *	Į –	
	3	L/L	179-59-50	+ 2 *		ţ
-	4	R/L	180.00 02.	- 1 "		{
			329-28- 28	+1"		
A,	1	R/R			 	,
* * * * * * * * * * * *	2	<b>i</b>	107 - 41 - 23°	10241.12	1	
	3	1	282-41-10"	102 71-12"	(	
			*	102-41-13"		
	4	R/L	1 102 - 41 - 10 ⁴	102.41.11*	}	}
		 	mean	102 41' 12"		
· · · · · · · · · · · · · · · ·	1	R/R	х а 2			
	2	L/R	1			
	3	L/L				ļ
	]	}				
· · · · · · · · · · · · · · · · · · ·	4	R/L	 			
	1	   R/R				
	2	l L/R				
	3	L/L				
	4	R/L				
· · · · · · · · · · · · · · · ·	1	R/R				
	2	L/R				
	3	L/L			I	
	4	R/L				

™411883£

,

WATERWAYS	DEPARTMENT
DEPARTMENT	OF SURVEY . THICAWA
ANGLEMEASUREM	ENT. SURVEYOR. U THET CWW
DATE. 10 - 10 - 83.	RECORDER. " JEWINI
ORSERVING STATION. A_	INSTRUMENT NO
LOCALITY OF STATION. Thilang	WEATHER . FINC
Near. Chokey R	5. TIME

C	ROU-	FACE AND	OBSERVED HORIZONTAL	CORRECT-	TRUE	REMARK
STATION	ND	SWING	READING	ION	ANGLE	
	1	R/R	359.59-57	+1*		1
	2	L/R	າວ ເວັດ ເຊີ	- 1"		1
	3	L/L	180-00-02			
	4	R/L	179. 9-9-57	+1"		
			00,00,00 00,00,00	-		
	   1	R/R	121-21-44	121-21-45	}	1
	2	L/R	301-21-47	301-21-46		
	3	L/L	301-21-43	301-21-44	1	
	4	R/L	121 - 21 - 45	121-21-45		
			Mea	121-21-45		
B	1	R/R	1,52-07-06	157.07.07		
	2	L/R	1332-07-08	152 07.07	ļ	
<u> </u>	3	L/L	332-07-06	332 07 07		
			112-07-07	{~ F~~ 11		
	4	R/L	Ples	152.07.07		
: 45 Al (2)	1	R/R	205 36 04	207-35-0	5	
	2	L/R	025 35 06	203.36.05	•	
	7	·	025 36 04	905-36 05		
	3	L/L	205 36 05	303.36.05		
<u> </u>	4	R/L	Al-	305-36.05	- 	
	1	R/R	229.41. 24	22- 41.30		
	2	L/R	049-41-31	049-41-30		
	3	L/L	049 - 41 - 21	549-41-50	1	
	4	R/L	NP - 41- 30 Mac	729-41-30		

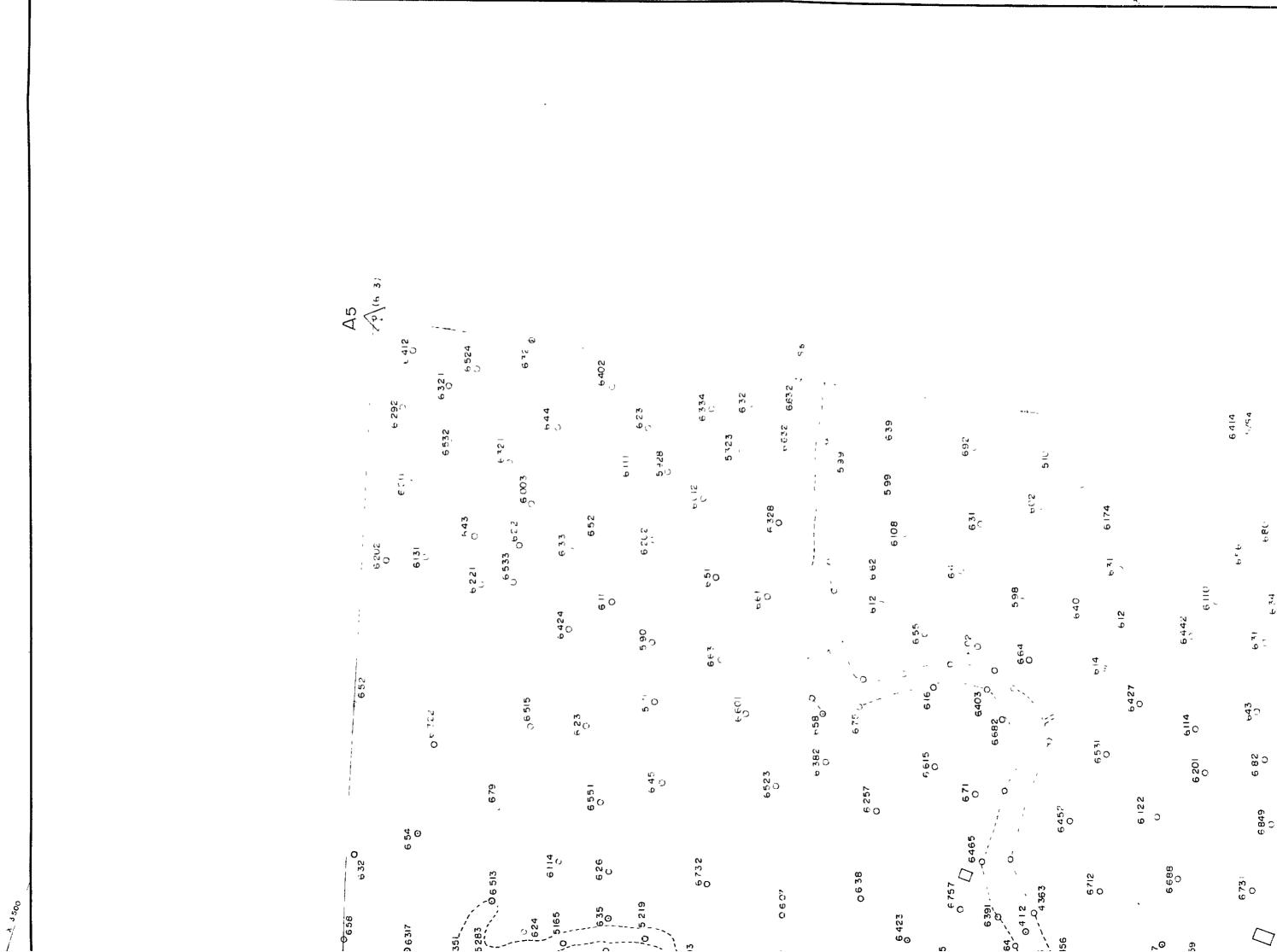
·

₩11883£

•

•

	ری SURVEY FORM-1	129
WATERWAYS	DEPARTMENT	,
DEPARTMENT C	OF SURVEY . THILAWA	
ANGLEMEASUREMEN	IT SURVEYOR. I MIET LWIN	
DATE.	RECORDER. TLUIN	
ORSERVING STATION. A	INSTRUMENT NO	
LOCALITY OF STATION.	WEATHER	
	TIME.	


.

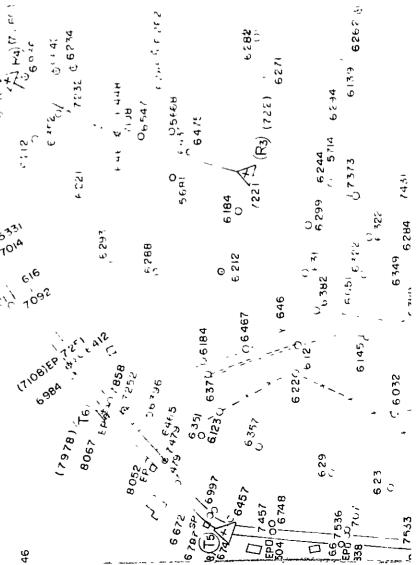
STATION	ROU-	FACE AND	OBSERVED HORIZONTAL	CORRECT-		REMARK
	ND	SWING	READING	ION	ANGLE	
. T. Gayya.	1	R/R	258 - 31 - n	258-51.23		
	2	L/R	078-31-24	078-31-23		
n -	3		092-31. 22	071-31-2-3		i
	4	R/L	258 - 31 - 23	298 31-23		
			Mca	258-31-23		
• • • • • • • • • • • • • •	1	R/R				
	2	L/R				
	3	L/L		i		ļ ,
	4	R/L		i		
·			 		• •	
· · <i>•</i> · · · · · · · · · · · ·	1	R/R				
	2	L/R	1		-	
$\sim$	3	L/L				
	4	R/L				
i	1	R/R				
	2	i   L/R				
	3	L/L				l l
	4	R/L				
••••	1	R/R				
	2	L/R				1
	3	L/L				
:	4	R/L			i	

2

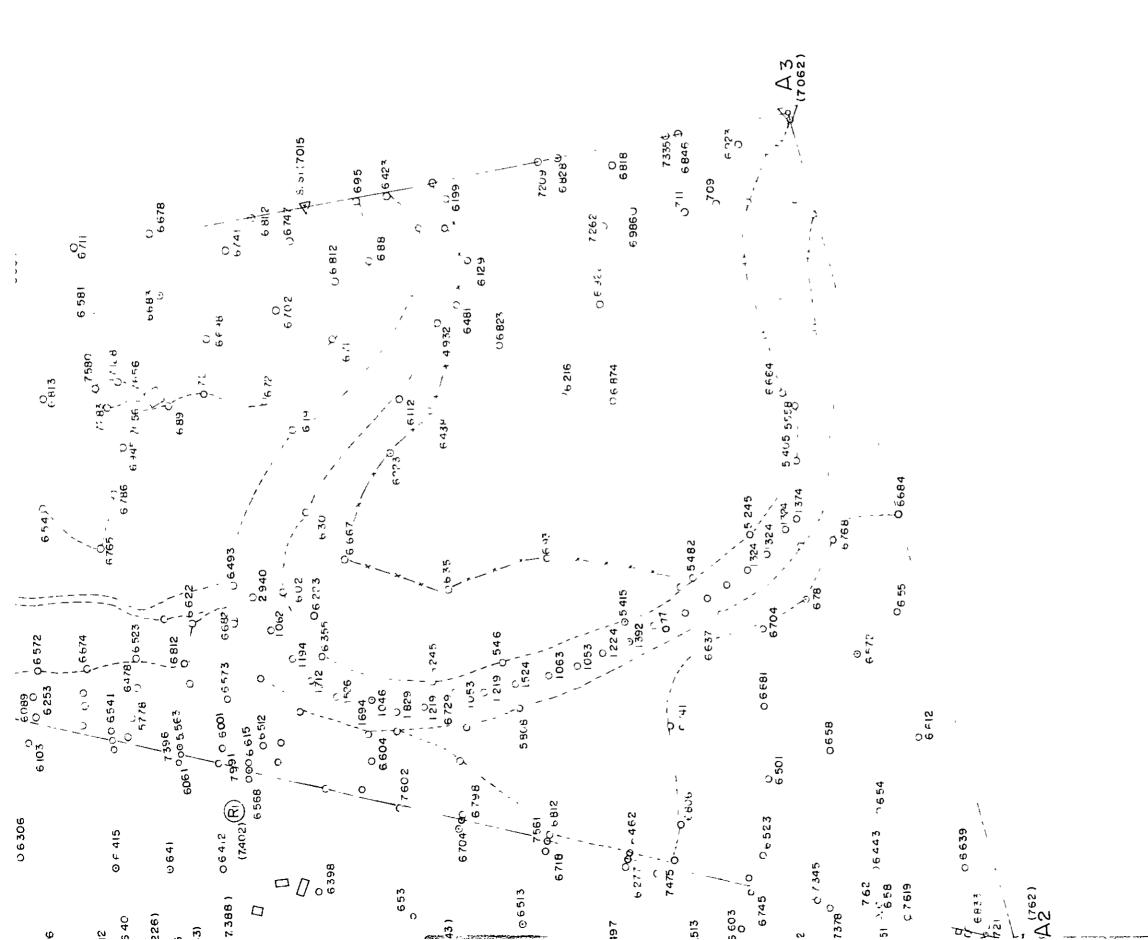
۰.

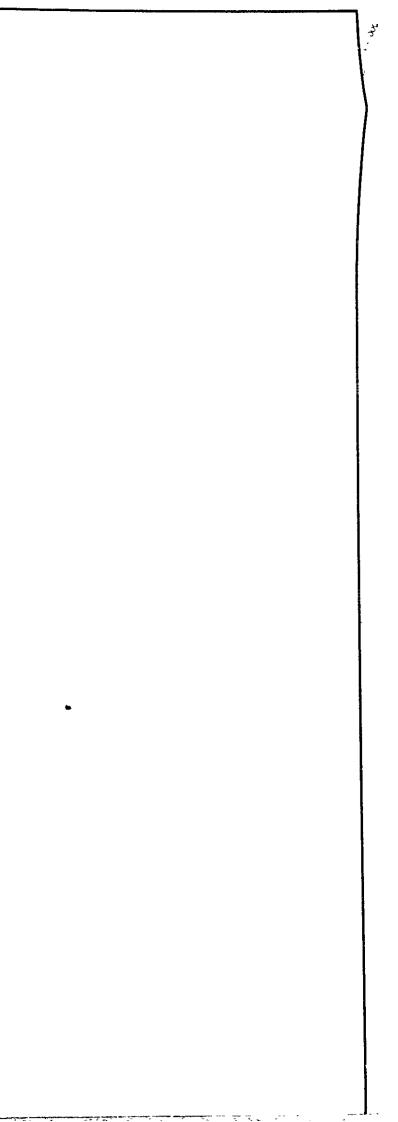
™411883£

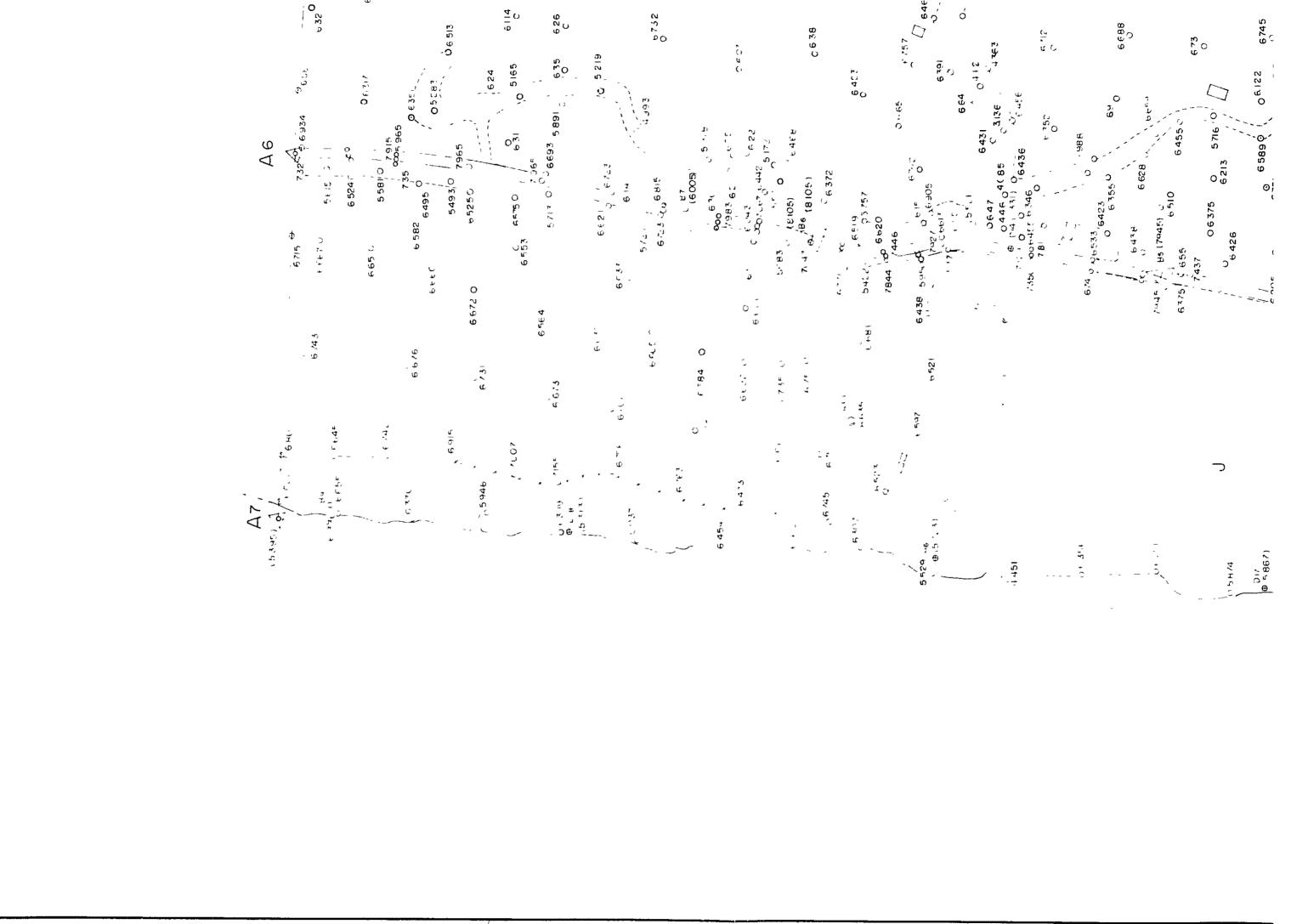



۰, P.C.

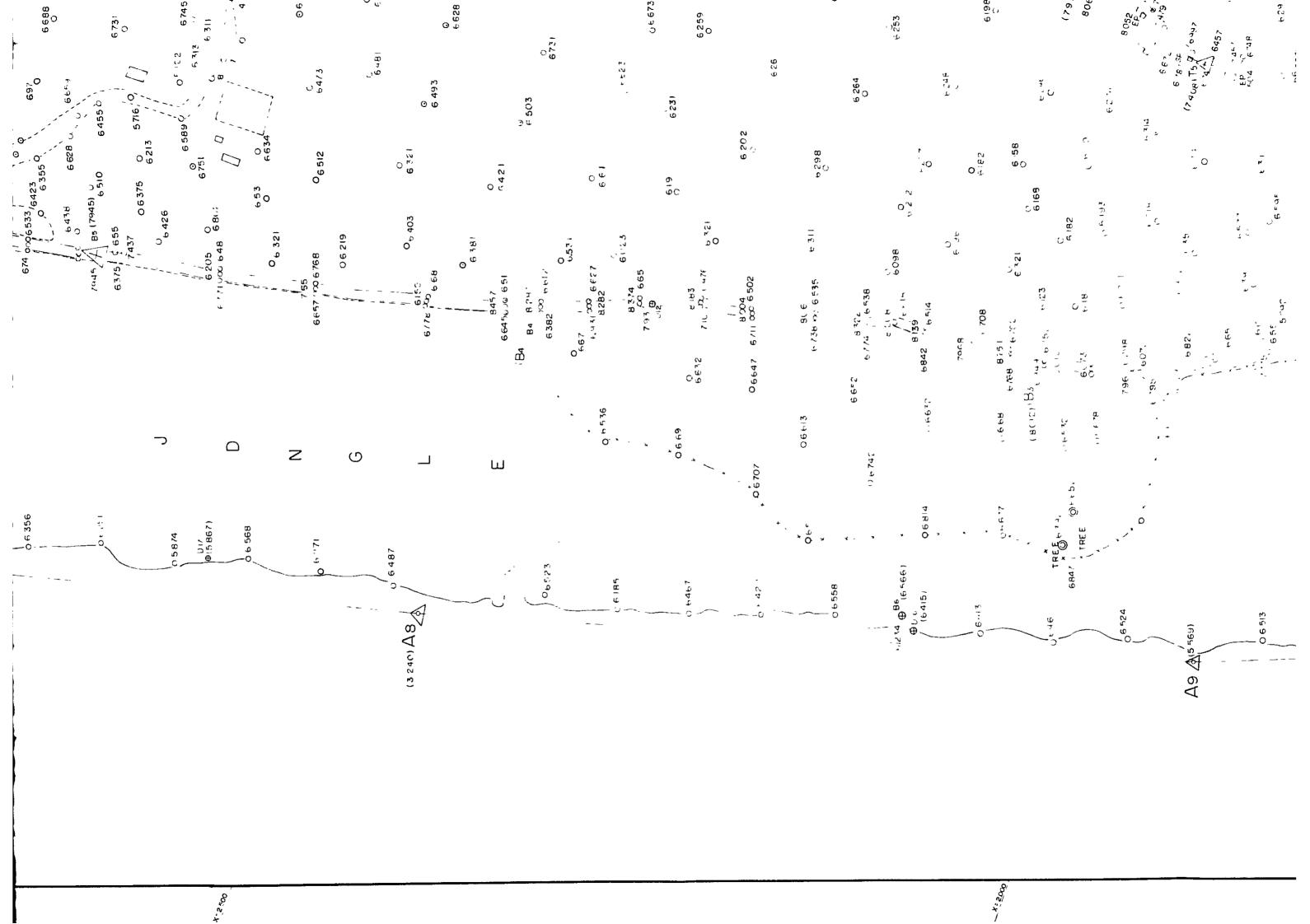
6 34

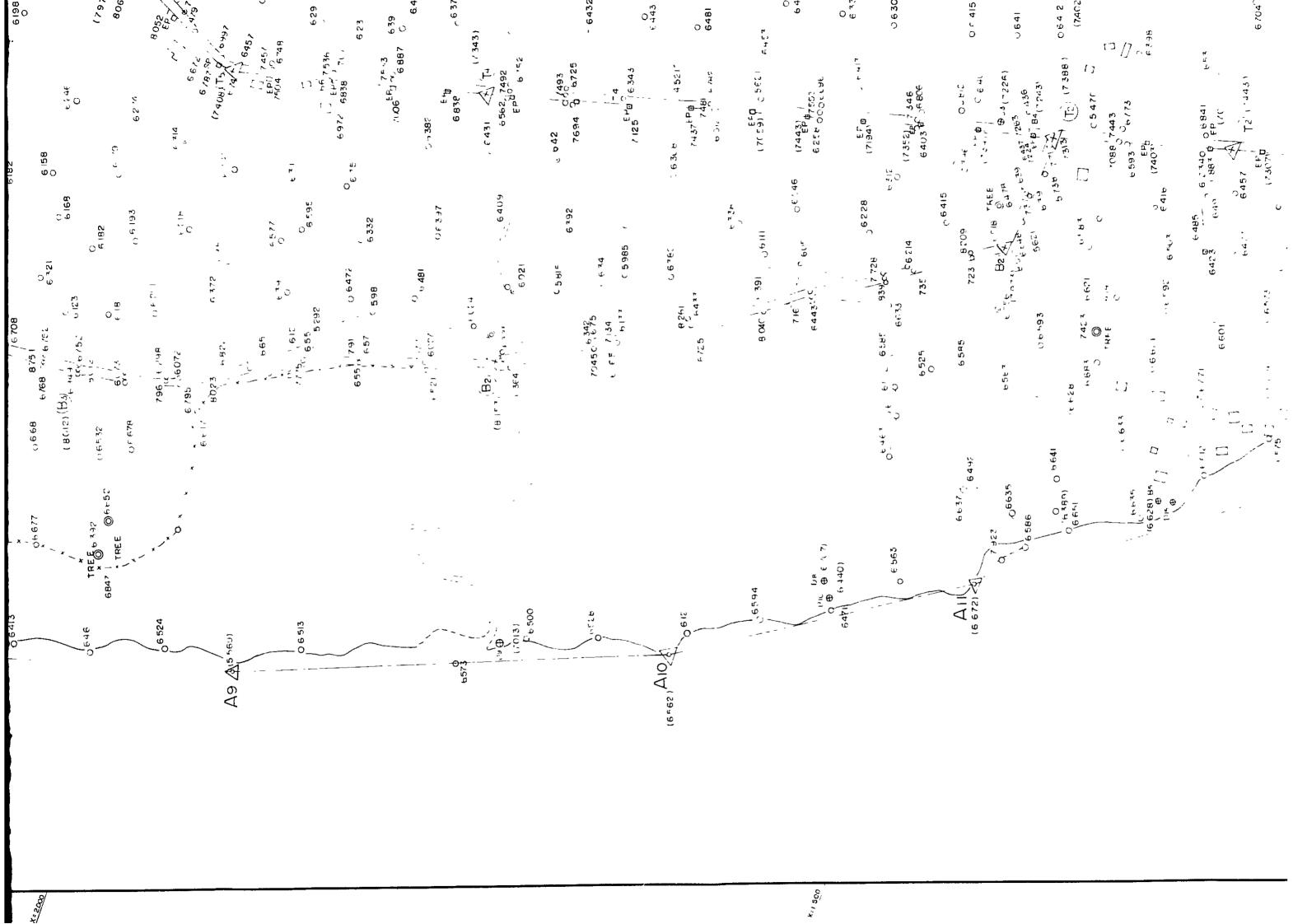

0 8 C


с с - у -







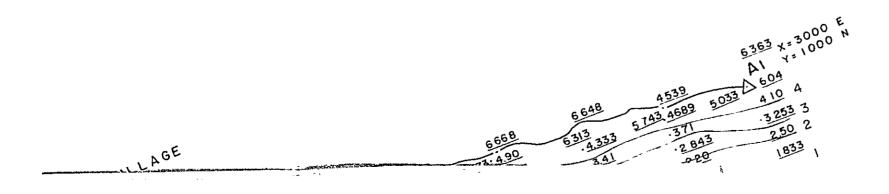


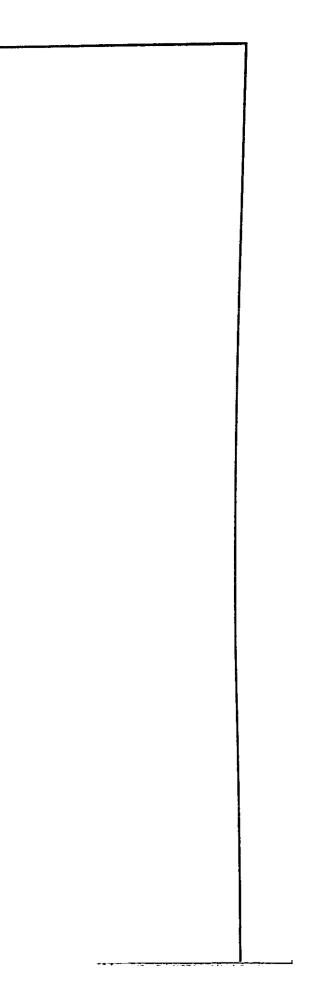

. 05








## Topographic Map


### S = 1/2,000

. 1



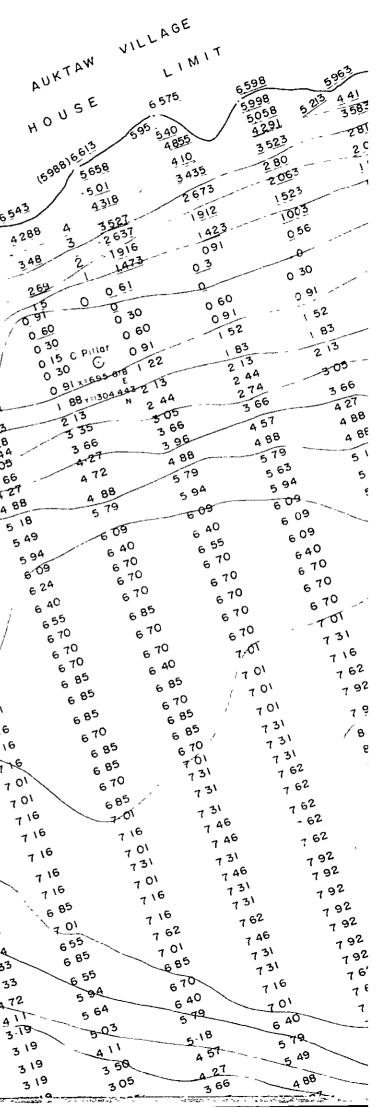
AND DESCRIPTION OF THE READER



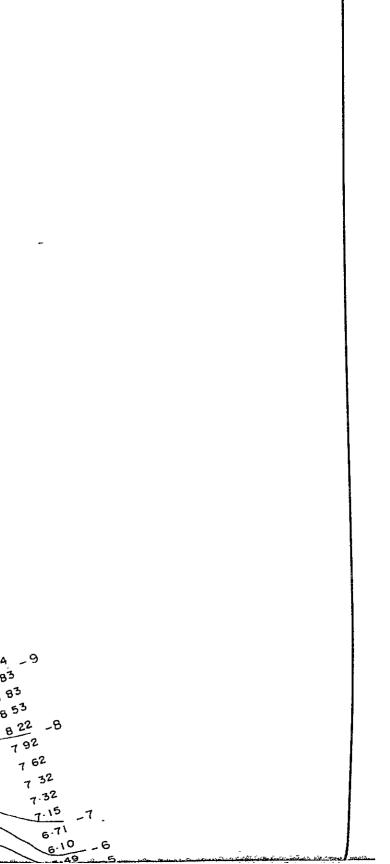


$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5 2 17 203	N										
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	N7 6627 66	36 6329	11-015 0500		6454	6 418	6 309			c 366	6251	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	A	$\sim$			6 096	5 82A	5922	$\sim$	J X	5 728		5 374
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		5112	5651 4 5746. 5344	5551 207	,	<b>- -</b>				520	· · · ·	4 67
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4 226 4 138	4 0 0 3 3	5109		4 332 4 994	4 744		4 193	9	3 918	3 868	3 30!
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	3 902			4167	3 9 8 3	3852	3 <u>2</u> 5	2597	3 377 '	3326		2 817
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	3066 3442	313		3.35	3_05	3 2 2 5	3 25	3.054 -	2 4 4	2 74		2 13
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 41 2 555.		2.43 2.17		274	- 2 74	2 44	<u> 44</u>			2 44	T-85
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			6	~	1 82	2 44	183	1 03	1 52		-	1 52
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		1.97	-	1.82	121		1 <u>52</u>	1 32			1.83	091 🛸
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		075			TE 0					1 52		0 60
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			0.910.91		0 60	—		03	0	1 22	0 60	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.70		0.30	030	060	0	0		- 030	0-91	Q	0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		045	0 30 0 30	۰	- 015	0 30		ō				Q
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 52 091	1.06	030 060	030					-	0.30		<u> </u>
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.82 1.52	1.07		0.60				0 30	~	0 60		0 60
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		and the second	~									<del>+ 22</del>
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	213	2 89						- 0 91		060,		1 37
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	213	3.05		1.82		1 83						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						2 44						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2/4/	•			214		- 1,83 . 27.17					1 52
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					274					1 22		1 52
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		3 50	3 65 5 35	~	3.05	305		2 4 3		183		1 98
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		3.70	3-96 3-35			3 66		2 74 🤜				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 457_		4 26 3.65					375				1 98
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			4.87 3.96									2 /4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4.87					3 96		3 66		3 05	274	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3-40		5.40			4 27		4 27			305 🦯	``
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		6 55	570				4 2 '	4 57	•			488
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7.50				-	5 49						5 49
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	792		_ 6 579 _	6.09	-			488			4 27	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			<u>117</u>	6 40				4 88		488		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		746			6 40				4 88	4 88		4 57
8.53 $8.22$ $8.07$ $7.62$ $7.16$ $6.70$ $6.65$ $6.70$ $6.09$ $5.49$ $5.18$ $4.88$ $4.88$ $5.49$ $8.53$ $8.22$ $8.07$ $7.92$ $7.16$ $7.01$ $6.55$ $6.70$ $6.09$ $6.09$ $5.49$ $5.18$ $4.88$ $4.88$ $4.88$ $8.53$ $8.22$ $8.07$ $8.22$ $7.62$ $7.01$ $6.55$ $7.01$ $6.09$ $6.09$ $5.79$ $5.18$ $4.88$ $4.88$ $4.88$ $8.53$ $8.22$ $8.07$ $8.22$ $7.62$ $7.01$ $6.70$ $7.01$ $6.40$ $5.79$ $5.49$ $4.86$ $4.57$ $8.68$ $8.22$ $8.07$ $8.22$ $7.92$ $7.31$ $6.85$ $7.01$ $6.70$ $6.70$ $6.09$ $5.49$ $4.86$ $4.88$ $8.68$ $8.67$ $8.22$ $7.92$ $7.31$ $7.01$ $6.70$ $6.70$ $6.40$ $5.49$ $4.86$ $4.88$ $8.68$ $8.53$ $8.07$ $8.22$ $7.62$ $7.31$ $7.01$ $6.70$ $6.70$ $6.40$ $5.49$ $5.18$ $5.49$ $8.68$ $8.53$ $8.37$ $8.22$ $7.62$ $7.31$ $7.31$ $7.01$ $6.70$ $6.40$ $5.79$ $5.79$ $5.49$ $8.68$ $8.37$ $8.22$ $7.62$ $7.62$ $7.62$ $7.01$ $6.70$ $6.40$ $5.79$ $5.79$ $5.49$ $8.68$ $8.37$ $8.22$ $7.62$ $7.62$ $7.62$ $7.62$ $7.01$ $7.01$ <t< td=""><td></td><td>7 77</td><td></td><td></td><td>6 55</td><td>· ·</td><td></td><td></td><td>518</td><td></td><td></td><td>4 88 🗉</td></t<>		7 77			6 55	· ·			518			4 88 🗉
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		807 -	7-62 7.16				549					5 49
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	853 822		792 716			6 70						5 45
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						7 01	609	6 09 🔨		518 🔨		4 27
8 53       622       8 07       8 22       7 92       7 31       6 85       7 01       6 70       6 09       5 49       4 88       4 88       4 88         8 68       8 22       8 07       8 22       7 77       7 31       7 01       6 70       6 70       6 09       5 49       4 88       4 88       4 88         8 68       8 53       8 07       8 22       -8       7 77       7 31       7 31       7 31       6 85       6 70       6 40       5 49       5 18       5 18         8 68       8 53       8 07       8 22       7 62       7 31       7 31       7 31       7 01       6 70       6 70       6 40       5 49       5 18       5 18         8 68       8 53       8 37       8 22       7 62       7 31       7 31       7 01       6 70       6 70       6 40       5 79       5 49         8 68       8 37       8 22       7 62       7 62       7 31       7 31       7 31       7 31       7 31       7 31       7 31       7 31       7 31       7 31       7 31       7 31       7 31       7 31       7 31       7 31       7 31       7 31       7 31       7 31       7 3	853	807				701	6 40	640	<b>`</b>	549 🔨		
$8 \ 68$ $8 \ 22$ $8 \ 07$ $8 \ 22$ $777$ $731$ $701$ $701$ $670$ $670$ $640$ $549$ $486$ $468$ $8 \ 68$ $8 \ 53$ $807$ $822$ $-8$ $777$ $731$ $731$ $685$ $670$ $670$ $640$ $549$ $518$ $518$ $8 \ 68$ $853$ $807$ $822$ $762$ $731$ $731$ $701$ $670$ $670$ $640$ $549$ $518$ $549$ $8 \ 68$ $853$ $837$ $822$ $762$ $731$ $731$ $701$ $670$ $670$ $640$ $549$ $518$ $549$ $8 \ 68$ $837$ $822$ $7.62$ $762$ $701$ $701$ $670$ $670$ $640$ $579$ $549$ $8 \ 68$ $837$ $8.22$ $7.62$ $762$ $762$ $701$ $701$ $685$ $640$ $579$ $579$ $549$ $9 \ 14$ $8 \ 83$ $8 \ 37$ $8.22$ $7.62$ $762$ $731$ $731$ $685$ $6.40$ $579$ $579$ $579$ $9 \ 444$ $8 \ 83$ $8 \ 37$ $8.53$ $762$ $762$ $731$ $731$ $685$ $6.70$ $609$ $609$ $609$ $9 \ 444$ $8 \ 83$ $8 \ 83$ $8 \ 83$ $792$ $762$ $762$ $731$ $762$ $701$ $701$ $609$ $609$ $609$ $9 \ 444$ $8 \ 83$ $8 \ 83$ $8 \ 83$ $792$ $762$ $792$ $762$ $731$ $762$ $701$ $701$	0.00	8.07	- ^ ^	731	-6.95	701	6 70			5 49	4 88	
8 68       8 53       8 07       8 22       -8       777       731       731       731       6 85       6 70       6 40       5 49       5 18       5 18         8 68       8 53       8 07       8 22       7 62       7 31       7 31       7 31       7 01       6 70       6 40       5 49       5 18       5 49         8 68       8 53       8 37       8 22       7 62       7 31       7 62       7 01       6 70       6 40       5 49       5 18       5 49         8 68       8 37       8 22       7 62       7 31       7 62       7 01       7 01       6 85       6 40       5 79       5 49         9 14       8 68       8 37       8 22       7 62       7 62       7 62       7 31       7 31       6 85       6 40       5 79       5 79       5 49         9 14       8 83       8 37       8 22       7 62       7 62       7 62       7 31       7 31       6 85       6 40       5 79       5 79       5 79       5 79       5 79       5 79       5 79       5 79       5 79       5 79       5 79       5 79       5 79       5 79       5 79       5 79       5 79       5 79 </td <td>8 68 8 22</td> <td>8.07</td> <td>777</td> <td>731</td> <td></td> <td>701</td> <td>6 70</td> <td></td> <td><b>`</b></td> <td></td> <td>4 88</td> <td></td>	8 68 8 22	8.07	777	731		701	6 70		<b>`</b>		4 88	
8-68 8-68       8.53       637       8.22       7.62       7.31       7.31       7.01       6.70       6.40       5.49       5.18       5.49         8-68       8.53       8-68       8.37       8.22       7.62       7.31       7.62       7.01       6.70       6.40       5.79       5.49         8-63       8-68       8.37       8-22       7.62       7.62       7.62       7.01       7.01       6.85       6.40       5.79       5.49         8-63       8-68       8.37       8-22       7.62       7.62       7.62       7.31       7.01       6.85       6.40       5.79       5.49         9-14       8-83       8-37       8-22       7.62       7.62       7.62       7.31       7.31       6.85       6.40       5.79       5.79       5.79         9-14       8-83       8-37       8-22       7.62       7.62       7.62       7.31       7.31       6.85       6.70       6.09       6.09       6.09       6.09       6.09       6.09       6.09       6.09       6.09       6.09       6.09       6.09       6.09       6.09       6.09       6.09       6.09       6.09       6.09			^{0'22} \-8 777	731		6.85	010	670	<b>,</b>		518	5 18
8:63       8:37       8:22       7:62       7:31       7:62       7:01       6:70       6:40       5:79       5:49         8:63       8:63       8:68       8:37       8:22       7:62       7:62       7:62       7:01       7:01       6:85       6:40       5:79       5:49         9:14       8:83       8:37       8:22       7:62       7:62       7:62       7:31       7:01       6:85       6:40       5:79       5:79       5:79         9:14       8:83       8:37       8:22       7:62       7:62       7:62       7:31       7:31       6:85       6:40       5:79       5:79       5:79         9:14       8:83       8:37       8:22       7:62       7:62       7:62       7:31       7:31       6:85       6:40       5:79       6:09       6:09       6:09       6:09       6:09       6:09       6:09       6:09       6:09       6:09       6:09       6:09       6:09       6:09       6:09       6:09       6:09       6:09       6:09       6:09       6:09       6:09       6:09       6:09       6:09       6:09       6:09       6:09       6:09       6:09       6:09       6:09 <td< td=""><td></td><td></td><td>\ 762</td><td></td><td></td><td></td><td>670</td><td>6 70</td><td></td><td></td><td>5 (8</td><td>5 4 9</td></td<>			\ 762				670	6 70			5 (8	5 4 9
8:63       8:63       8:7       8:22       7:62       7:62       7:62       7:62       7:62       7:62       7:62       7:62       7:62       7:62       7:62       7:62       7:62       7:62       7:62       7:62       7:62       7:62       7:62       7:62       7:62       7:62       7:62       7:62       7:62       7:62       7:62       7:62       7:62       7:62       7:62       7:62       7:62       7:62       7:62       7:62       7:62       7:62       7:62       7:62       7:62       7:62       7:62       7:62       7:62       7:62       7:62       7:31       6:85       6:40       5:79       6:09       6:09       6:09       6:09       6:09       6:09       6:09       6:09       6:09       6:09       6:09       6:09       6:09       6:09       6:09       6:09       6:09       6:09       6:09       6:09       6:09       6:09       6:09       6:09       6:09       6:09       6:09       6:09       6:09       6:09       6:09       6:09       6:09       6:09       6:09       6:09       6:09       6:09       6:09       6:09       6:09       6:09       6:09       6:09       6:09       6:09	0.08	8.37					6 70	6.70				
9:14       868       837       8:22       762       762       762       761       701       6.85       6:40       579       6:09       579         9:14       8:83       8:37       8:22       7.62       762       762       731       731       6.85       6:40       579       6:09       579         9:44       8:83       8:37       8:53       7:62       7.62       762       731       7.31       6.85       6:70       6.09       6.09       6.09         9:44       8:83       8:37       8:53       7:62       7.62       7.62       7.31       7.31       6.85       6:70       6.09       6.09       6.09       6.09       6.09       6.09       6.09       6.09       6.09       6.09       6.09       6.09       6.09       6.09       6.09       6.09       6.09       6.09       6.09       6.09       6.09       6.09       6.09       6.09       6.09       6.09       6.09       6.09       6.09       6.09       6.09       6.09       6.09       6.09       6.09       6.09       6.09       6.09       6.09       6.09       6.09       6.09       6.09       6.09       6.09       6.09	8.93	8.37	8-22 7.62				7-01-					5 4 9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		837	8-22	1.02		7 31	``			5 79		579
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				7 62		731	\ \	685		5 79	_	
9.44 $8.83$ 8.68 8.83 7.62 7.62 7.62 7.62 7.62 7.62 7.62 7.62			1.02	7.62				6 85		6 09		
			100			7 31	7.69			6 09	6 09	609
	9.44 8.83		865		792		and the second sec	مروان میں			Mar A Statester	
				1999-192- 24-45 - 28 PT	-	·····	n		ng na minang ngapaga pilaka pilaka katan 18	αματαμούς που τη πολογοριας, χρητιζήματα τους πολογοριας Το ποιοιοιοιοιοιοιοιοιοιοιοιοιοιοιοιοιοιο	and a start of the second start	

X = 131 920 E Y = 3 2 17 203 N


-

#### ORIGIN OF CO ORDINATE


#### AI = E 1000, N 1000

6 6251			• •	X = Y =	319 430 E 243994 N										× 461.77	c -
8 5961	5 374	<u>656</u>	6 27	6487	233994 N										X = 461 370 Y = 192768	J E 3 N
2 .510	4 674	5718		5 <u>537</u> A1	5 93	6523	6 185	6.46	6 42	6 558	6 274	6413	6.46	6 524	6.774	6 513
18 . 3 868		382	-* .3826		3 240 442 3425		4 6 7 5	4827	518	5738	5 404	5558	. 5.52	5700		5 283 4013
3.29	2 817	3 05	3.276	· 🛆		3 397	3481 3905	<u>4082</u> 3575		- <b>r</b>	- 350	- 4 031 3 405 -	- 4031	4019 3 379 -		
2 44 1 83	2 1 <u>3</u>	213				-3007	2959 2 44		3584 3	2 507	3003	2629	3 <u>263</u> 2659	2699		-
	1 52	T 83	0.91	285	1 <u>67</u>	2 506		2 13	305 243	2 2 13	1958 - 1- <del>9</del> 1	1982	1 52	1869	23	378
1 83	0.91	1 2/2	0	0 60	1 06	1 21	183	1_52	1-98	1 22	10_91	1 22	- <u>Tě O</u> -	1 22	046 - 21	058
0 60	<u>0 60</u>	0 91	u o	0 30	0 75	- 1_21	1 22	- 6-81	1 67	1 -0 60	0 30	0_91	0.60		0 15	<u>0 45</u>
- 0 00	ŏ	0 <u>60</u>	<u> </u>		0 45	091	015	0 30	1 37	0 30	030	0_60	0 30		- 075	QIS
ŏ	0	030 0 <u>30</u>	Ū 30	0 30	0 15	<u>0</u>	Q	⁻ 0 30	0 45	0	0.91	<u> </u>	0 60	<u>030</u> 030	1/46	045
0 30	<del>0</del> 30		0 60 0 91	091 	0 45	0 3	0 30		0 <u>15</u>			0 60 0 <u>91</u>	0 91	0 60	197	1 37
0 60 0 9 1	0 60	091	T 22		1-06	ОБ		0 60	0 45	0 60	0 91	1 22	1 52	0 60	177	1 67
1 22	+ 22	+- <u>22</u>	152	1 52	1 36	0 91	060	0.91	1 37	0.91	122	1 22	1 83	0-60	2.07	298
1 22	1 37	52   52	1 83	183 183	1-36	1 21	T 22	0_91	137	1 37	1 52	1 52	- 213	-213	2 38	2 59
37	1 37	1 83	213	213	1 67	2     52	1 22	1 2 2	1 67	1 22	213	183	2 7 4		2 99	319
1 37	1 52	213	2 13	213	1 97	1 52	1 52	1 52	167	1 52	2 4 4	2 44		2 44	2 99	3 50
1 52	1 52	213	2 13 2 13		2 28	1 82	1 83	213	1 67	1 83	2 74	274	2 89	2 74	3 19	381
1 52   83	198 /	/ 244	2 13	2 4 4	2 2 8	213	213	2 13	1 98	- 2_ 2-13	305	3 05	3 35	3 35	3 50	411
2 44	1 98	2-44	2 4 4	2 74	2 58	2 43	244	2 4 4	2 28	2 1 3	3 20	3 35	366	3 96	4 11	4 4
2 74	2 74	2 74	2 74	2 74	2 89	3 04	2 74	2 74	2 89	2 44	3 05	3 50	3 66		4 41	4 4
274	3 66	3 05	3 35 3 35	2 74 2 74	3 19	3 04	2 74	3 05	2 59	305	3 05	366	3 96	4 27		44
3 05	427	3 35	3 35	3 05	3 I 9 3 I 9	3 04	2 59	2 74	2 59	3 05	3 35	3 66	4 27	4 27	441	41
3 66	488	3 35	3 35	3 35		3 35	2 59	2 74	2 59	2 89	3 35	335	3 96	- 3-96	4 41	41
427	5 49	3 35 3-35	3 66	3 35	3 19	3 04	2 89	2 74	2 89	2 74	3 05	3 35	3 96	3 96	4 41	4
4 27	5 18	3 35	3 66	3 66	319	2 74	2 74	2 74	2 89	2 59	3 05	3 35	3 81	396	4 41	4
4 57	4 57	366	4 27	3 66	319 319	274	289	2 74	2 5 9	274	े 3 05	3 35	3 81	381	411	4
4 57	4 88	396	4 27	3 66	3 19		2 74		2 59	2 74	274	319	7.01	381	3 80	4
4 57	1	3 96	4 27	381	2 89	3 04 3 04	2 74	2 74	2 5 9	2 74	274	3 19	381	3 66	380	
4-88 4 88	549	3 96 /	4 42	381	2 89	3 04	274	274	2 59	3.05	2 7 4	2 74	3 35	3 66	3 80	-
488	4-27	3 96	4 42	3 8 1	2 89		2 74	274		-3/305	2 7 4	2 74	274	3 35	3 50	•
4 88	4 57	396	4 42 4 42	3 96	3 19	3 35	3 05	305	2 59	1	274	2 74	274	2 89	3 19	
4 88	4 88	4 27	4 42	3 96	3 50	3 35	305	3 05	2 59	3 05	3 05	-	2 89	3-35	3 19	
5 18	5 18	4 57	4 27	4 57	3.50	3 65	3 05	305	259 /	3 05	3 35	3 05	3 05	3 0 5	3 19 3 19	
5 18	5 49	4 72	4 57	4 57 🔪	3 80	365		3 35	2 89	3 05	3 66	3 05	319	3 0 5	3 50	
5 49	5 4 5	4 88	4 88	4 57	3 80	396	3 35	3 35	3 50	3 35	3 50	3 35	3 35	2 74	3 50	
5 79	5 4 9	5 18 5 49	5 18	4 88		3 96	366	3 3 5	366	3 66	3 50	3 35	3 66	2 89	3 50	
6 09	5.79	5 79	5 49 · 5 79		4 41	4 27	3 96	366	396	381	3 66	3 66	3 81	3 35		
6 09	6 09	5 79	5 79	4 88	4 87	4 57	4 27	3 96	3 96	3 66	ანნ 3-66	3 81	3 96	3.35	380	
6 09	6-09	5 79	5.79	5-18	4 87	4 88	4 57	3 96	4.27		3.96	3 96	411	3_50	3 80	
		6.09		5.49			4 88		-		The second second	والمتحدث بمحافظت المحافظ	A CALLER AND	and the second second	The state of the second se	Notice Have Tax - a.

										0	2:00 × 6 Y BOCK MOTK = B10 176 E = A70 132 N = 1 A70 132 N
									x = 678 17 Y = 1463 5	7 E 7923 10 N 572 5 T 2 7923	7 1 5 6 89 8 5643 42 550 5643 42 4298 3
	x = 461 370	) E	6 <u>6</u>	911 _	563	<u>6523</u> 6523 03 5523 AI	6120 5754 0/5280 4	232 .295	6568 65 4748 5488 3496 2855 2393	58 1667 3575 3513 2299 2816 227 197 17	3052 2933 18 183 21 155 21 091 503 c Pillar 061
9 <u>6149</u>	Y = 1927 683 $774$ $A9$ $255569$ $2893$ $31$ $2251$ $235$ $198$ $20$ $046$	3 N 6 513 5 5 283 4013 3 564 12 2 705 78 2 083	264 4169 3419 2558 2083 1831	588 560 408 3491 2695 212 52 183 91 1	22 300 22 300 200 200 200 200 20	3 <u>863</u> <u>2435</u> <u>2012</u> <u>1572</u> <u>36</u> <u>091</u> 04	$562 \cdot 300 = 225 - 2$ $1 \cdot 67 = 1$ $1 \cdot 37 = 1$ $0 \cdot 91 = 0$ $5 = 0 \cdot 30 = 0$ $5 = 0 \cdot 66 = 0$	$ \begin{bmatrix} 52 \\ 1 46 \\ 0 60 \\ 0 45 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\ 0 60 \\$		$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 9 \\ 1 \\ 67 \\ 2 \\ 89 \\ 2 \\ 3 \\ 50 \\ 0 \\ 5 \\ 4 \\ 172 \\ 72 \\ 72 \\ 72 \\ 72 \\ 72 \\ 72 \\ 72 \\ $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	015 075 146 97 177 207 238 299	0 45 0 15 0 45 1 37 1 67 2 98 2 59 3 19 3 50	3 19 3 81 4 42 4 72 4 88 4 88	<u>91</u> 37	2 91 1 83 2 44 2 74 3 05 3 66 3 66	$\begin{array}{c} 1 & 46 \\ 1 & 52 \\ 2 & 13 \\ 2 & 44 \\ 3 & 35 \\ 7 & 36 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-3 274 366 -4 427 8 -5 5TB -5 49 TB 579	3 19 3 80 4 42 5 03 5 79 5 79 5 49	4 83 56 5 49 55 5 79 5 5 79 6 6 24 6 55	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	2 99 3 19 3 50 4 11 4 41 4 41 4 41	3 81 4 11 4 42 4 42 4 42 4 42 4 72	5 103 4 72 4 72 4 42 4 42 4 27 4 11	4 57 4 88 4 88 5 18 5 18 5 18	4 27 4 88 5 18 5 49 5 49 5 79 5 79	4 88 5 18 5 49 5 94 5 79 5 79 5 79 5 79	5 63 5 5 94	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 94 655 670 670 5 670 5 670	655 624 640 655 670 670 685 0 685	6 85 7 10 7 16 7 0 7 16 7 16 7 16 7 16 7 16 7 16 7 16 7 16 7 16 7 0 7 16 7 0 7 16 7 0
	4 41 4 41 3 80 3 80 3 80 3 80 3 50	4 88 4 72 4 42 4 27 	3 81 3 81 3 50 3 50 3 35 3 35 3 19 3 19 3 19	5 18 5 03 5 03 4 88 4 57 4 42 4 27 5 26	5 64 5 49 5 18 5 03 4 88 4 57 4 27	5 79 5 64 5 49 5 33 5 18 4 72 4 57	5 63 5 79 5 33 5 02 4 4T 4 72	609 609 594 -6 579 -6 549 -549 -518 -5 488	609 594 533	$\begin{array}{cccc} & & & & & & & & & & & & & & & & & & & $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
)	3 19 3 19 3 19 3 19 3 50 3 50 3 50 3 50 3 80	3 35 3 35 3 35 3 19 3 35 3 19 3 19 3 19	3 35 3 19 3 35 3 50 3 50 3 66 3.81	3 96 3 66 3 66 3 35 3 35 3 35 3 05 3 05	<del>396</del> 381 . 366 381 366 335 319	4 27 4 11 3 96 3 66 3 50 3 35 3 50	4.41 4 1 1 3 81 3 81 3 81 3 81 3 81 3 65	366 350 335 335 35 350		5.64 5.03 4.42 3.81 3.50 3.35 3.35 3.19	579 594  502 533  472 533  472 472  441 41  380 3.1  350 3
	3 80	3 19 3:35	3-81	3 35 3 19	3 35 <u>3,50</u>	3 35 3 24	3.65		350 350	3 35 - 75	319



4539 5.033 = <u>410</u> 4 5 143 4689 <u>4 10</u> <u>3 253</u> 3 <u>2 50</u> 2 6648 6668 5173.490 .371 NOTH 0313 A 333 2 843 VILLAGE 1833 341 220 6463 LIMIT 4003 2 588 75 AUKTAW 3310 R 1901 458 5293 0 0.91 6598 5⁹⁶ 5863 1363 308 0 61 6575 HOUSE 5998 5058 4291 5 213 4 41 03 190 0.920 3583 0 31 2293 1278 09) 0 633 595 540 4855 0 31 2815 -2 152 1,510 091 3523 0.91 1598816.613 .032 2 063 213 0993 0,60,3 410 280 122 0710 5658 152 .0 305 3435 .0 -3 2063 1003 0613 0 61 2 4 4 .501 .4318 -305 2673 0703 1523 30 0 ⁶ 274 22 52 83 6543 1.83 1912 35 1003 305 122 3527 2637 0 274 1423 0.56 030 1 83 3 66 5643 .4288 3.66 -3-05 215 A 27 83 83 091 3 66 09/ .1916 366 .348 4 5⁷ 122 03 274 0 ³⁰ 2132244 3.96 396 305 A 27 0.61 427 260 427 A 57 0 91 3 35 -5 152 0 ⁶⁰ 1 83 274 A 27 3 96 5 18 457 5 30 × 0 52 333 091 4 BB 2 29 5 79 0 ⁶⁰ 3 05 A 57 0.60 ۱ ⁸³ 5 ^{\8} 152 -6 83 2 90 3 35 518 5 79 640 0 30 213 0_{,9}, A_88-83 155 0 15 C PILLOT 366 579 0 91 × 695 818 1 22 6 10 213 7-05-3 35 305 610 0 30 27 2 44 671 640 3 96 4 ⁵⁷ 7 62 .06) 671 88 Y= 1304 444 2 13 8 ر 366 274 6 ⁷¹ 3 96 7-01 4 8B -<del>1</del>-0¹-1E.9 2 ⁴⁴ ,8²³ A 27 7 32 TOT 3 66 421 124-0-64 5 18 213 505 ę.9³ 7 32 4 8⁸ 7 62 7 62 457 5 79 7 32 3.66 4 ⁸⁹ 7 62 5 35 A 88 187 4 8B 6 ⁴⁰ 396 7 32 в ^{ВА} 228 3 66 5 18 7 62 671 7,93 5 18 4 88 579 8 ⁵³ 7 32 0.27-5 49 7.61 823 5 63 192 5 ⁴⁹ A 72 7 62 в ^{в4} 5 79 13 607 3.66 E 3.66 -9 B 23 5 ⁹⁴ 5 79 7 32 8²³ 5 ⁹⁴ 9 14 5 ⁷⁹ 7 92 19023T 4 2T 4 ⁸⁸ 6.40 7 62 609 8 ⁵³ 8 ⁵³ N 4.88 5 79 7 92 6-09 5 79 7 62 6⁷⁰ 9 ^{\A} 6 ⁰⁹ 8 84 5 18 601 в ^{ВА} 823 6 ⁴⁰ 7,92 9 ⁴⁵ 6 ⁸⁶ 6 6 ⁰⁹ 609 9 14 5 ⁴⁹ 8 ⁸⁴ 6 ⁴⁰ 8 23 8 23 8^{.23} 6 ⁵⁵ '0 _{0e} 6 ⁴⁰ 101 6⁴⁰ 9 ⁴⁵ 5 ⁹⁴ 9 14 6 ⁷⁰ 6 ⁷⁰ 8 ⁵³ '0 _{0e} 670 6 ⁷⁰ 7 32 ø 09 7 92 9 ^{\4} 9 ⁴⁵ 6 ⁷⁰ '0 ₀₆ 670 8 ⁸⁴ 701 7 62 6 ⁷⁰ 8 ²³ 9 ⁴⁵ 1624 9⁷⁵ 6 ⁷⁰ '0 _{0e} 914 7 31 670 8²³ 7 62 670 6 ⁴⁰ 975 '0 ₀₆ 853 6 ⁷⁰ 7 62 9 ^{\A} 975 7 92 ,0 6 ⁸⁵ 6⁵⁵ 9 ⁷⁵ 101 10 06 10 2 10 06 B 84 9 ^{\A} 9 90 670 7 92 55 7.92 670 670 7 31 975 9 14 ; ⁸⁵ 9 ^{\ 4} B 23 9 ⁹⁰ 6 ⁷⁰ 6 70 7 92 7,05 716 6 ⁸⁵ 9 ^{\A} 8²³ 6 70 9 ^{\4} 9⁻¹⁵ 6 ⁴⁰ 7 92-^{0.06} 7 62 17 01 6 ⁸⁵ 9 ^{\4} 8 ²³ 716 9 ^{\A} 975 9 ⁷⁵ 6 ⁸⁵ ^{00 06} 7 92 8 23 7 01 8 ²³ 716 6 ⁸⁵ 9 75 ۱Α 9 ^{\A} 670 3 ⁷⁵ 10 36 8 ²³ 9 7 92 8⁵³ 7 01 9 \^A 9 75 6 ⁸⁵ 101 6 ⁸⁵ 9 ^{\A} 9⁷⁵ '0 ₀₆ 8 53 8 ⁵³ 9^{- \4} 1823 6 ⁸⁵ 6⁷⁰ 731 9 ^{\A} 975 9 75 '0 ₀₆ 716 8 ⁵³ 9 ⁴⁵ 8 ⁶⁸ 7 31 8 ⁰⁷ 975 6 ⁸⁵ 6 70/ 7 01 9 ⁴⁵ 9 ^{\ 4} 716 '0 ₀₆ 975 8 ⁶⁸ 7 31 8 6⁸ 792 9 ⁴⁵ 6 ⁸⁵ 9 ⁴⁵ 7+6 8 ⁵⁴ 7 62 9⁷⁵ 9 ⁴⁵ 9 ⁷⁵ 8 ⁶⁸ 731 8 ⁰⁷ 9 ⁴⁵ 6⁷⁰ 9 ^{\A} 8 ⁶⁸ 7.62 9 ⁷⁵ 701 9 ⁴⁵ 731 975 8 ⁶⁸ 8²³ 9 ^{\A} 9 ⁴⁵ 685 7 62 9 ⁴⁵ 701 в⁵ 9 ⁴⁵ 9 ⁹⁰ в ⁸⁴ 7 31 8²³ 9 ^{\A} 7 16 8 ⁸⁴ 9 ⁴⁵ 7 62  $\frac{1}{2}$ 9 ⁷⁵ 9 ⁴⁵ 9 ⁴⁵ 7 46 8 ⁸⁴ 9 14 8²³ 7 16 в ^{ва} 9 ^{\A} 7-16 9 75 7-46 7 62 9 ^{\ 4} 9 ^{\A} 8 ⁸⁴ 9 14 9 ⁴⁵ в ²³. 8 ⁸⁴ 7 ^{0\} 6/ 7 16 9 ⁵⁵ 7 92 .9 14 9 ^{\A} 9 ^{\A} 731 9 ^{\A} в ^{в4} 8 ⁵³ 8⁵³ ۱6 731 8 84 792 9 ⁴⁵ 8 84 7 46 7 16 9 ^{\A} 8 ⁵³ £_\A 8 ⁵³ 6 85 7 01 8²³ 8^{.23} 8^{.84} 7 9² 9 ^{\A} 731 8⁻⁸⁴ 8 ⁵³ 8⁸³ 6 85 716 716 8²³ 8 ⁵³ 8 ⁵³ 6 ⁸⁵ 731 7 92 9 ^{\4} 7 32 9 ^{\A} 8 ⁸³ 7 16 в ^{в4} 8 ⁸⁴ 8 2³ 6 ⁸⁵ 6 ⁵³ 7 62 7 92 9 14 8²³ 8 ⁵³ 8⁸⁴ 7 01 7.62 8 ⁵³ 8 ⁸⁴ 655 7 46 8 ⁵³ B 134 8 2³ 7 92 823 655 8 ⁵³ '7 O' 8 ²³ в ^{ва} 8 ⁸⁴ 6 85 168 792 23 731 792 594 685 8 23 192 в ⁵³ 5.33 731 8 ⁵³ 7 62 7 92 823 792 55 670 5 ³³ 762 B 23 7 92 7 92 5 98 7.16 792 7 62 8 23 6 4⁰ 7 62 7 92 195 7 62 7 01 A 72 A 11 7 92 7 92 7 62 101 731 5 ⁶⁴ 5 49 7 62 7 62 731 , 7 6² 7 62 7 6 40 7 32 7 01 -<u>5-0</u>3 319 7 32 6 40 7 32 7 32 731 5 18 7 31 6 ⁸⁵ 7 32 3 19 A 11 5.79 <del>701</del> 671 7 32 701 7:01 A 51 670 6^{.70} 5.AB 49 3 19 3.50 671 ~0⁹ 6 ⁴⁰ 01 -02 610 27 A.88 6 40 09. ۾ 19 10



 ······································					731	731	6 85	<u> </u>		
8.6	8 8.53	807	8 2 2	7.62	7.31	731	701-	670	6 70	
8·6	9	, b' <i>3 i</i>	8-22	7-62	731	7 62	7 01	6 70	670	
8-6 8-6	3 868	0.01	8.22	762	7 62	7 62	7 31	701	6 85	
ו פּ ו פ	<del>(</del>	0.37	8.22	762	7 62	762	7 31	7 01 7 31	685	
94	4	0.01	8.22	7.62	7 62	7 62	731		<u> </u>	
94	4 \ 8.83		8 5 3	7·62 7\92	762	762	7 31	7 31 7 62	7-01	
9 4		8-68 8 98	8.83	8 53	7 62	7 92	7 62	7 62	7 31	
9-4	6		8-83 8-83	8-53	7 92	7 92	7 62	7 62	7 62	
97		'	8.83	8 53	792	7 92	7_62	7 62	745	
9.7		8 98	914	-9 8.83	792	8 22	8 23	7 62	746	
97		0.20	9.44	8.83	7.92	8 53	823	7 62	7 62	
100	5 975	9.59	9 4 4	8-83	8 22	8 53	8 2 3	7 92 7 92	7 62	
. 103	6 10 05	9.59	9.44	914	853	8 53	8 23	7 92	7 62	
103		959	9.44	9 44	853	8 53	823	7 92	7 62	
10-3	⁵ IMO5	\ \	975	944	853	8 83	8 53	823	7 62	
106	5 1036		1005		8.83	914 914	853	8 5 3	792	
10-9	10.36		· · · · · · · · · · · · · · · · · · ·	944	8.83	914	8 53	8 53	7 92	
10-9	10 66		10 05 1 0 05	9.44	9 14		8 84	8 84	7 92	1
10 9	7 1066	10.51	10.05	10-05	914	9 14 9 75	914	914	8 23	
109	7	1051		60 01	944		9 1 4	9 14 📐	8 5 3	
11.2	10 66	10-51	10 05	10.05	975	9 75	914	9 14	8 53	
112	, 10-97	1051	10 05	10 05	9 75	944	914	9 14	8 5 3	
11.5	11.07	10 81	10 05	10 05	975	9 14	914	9 14	<b>∖</b> 868	
11 5	11 37	11 12	-11 10.05	1036	975	914	9   4	9 14	8 84	
115	しいクフ		1036	10 36	975	914	914	9 14	9 14	
11 5		11-12	े, 10 66	10-36	2,75	9 14	914	9   4 9 45	9 14	1
(1)-5(		11 12	)Q 97	10 36	10 05	9 45	9 75	9 45	9 14	7
1+51		11 42	1127	10 36 10 66	10 05 10 05	9.75	9 75	9 45	9 14 9 14	Ň
115		1112	1127	10.66	10 36	975	9 75	960	5 14	
115	3 1127	11-42	11-27	10.66	10 36	10 05	- 975	9 60	9 1 4	
1) 58		1127	1127	10 66	10 36	10 05 10 36	10 05	9 60 9 75	9 45	
11 56		11 12	, 10.97	10 66	10.66	10 36	10 36		9 45	
11 58		1142	1097		1066 10-66	10 36	10 36	975 975	975 975	
11-58		11-42	10.66	10 97	10 66	10 36	10 36	10 06		
11-58	11 58	11.42	1066	10 97		10 36	10 36	10.06	975	
11-58		11 42	1066	10.97	10-66	10 36	10 36	10 20	975	
11-27	11:27	11-42	10-97	10.97	1036 1036	10 36	10 36	10 05	975 975	
11.12	11.27	11-12	1097	10.97		10 36	10 36	10.05	975	
11-12	1127	! I· 42	10.97	10-66	1036	10 36	10 36	10 05	975	
11-12	10.97	11-42	10-97	10.66	10-36 10-36	10 36	10 36 10 36	975	9 75	
10 97	1127		10-97	10 66	10-36	10 36	10 36	975 1006	975	_
1097		11.73	10.97	10-66	10 36	10 36	10 36	10 06	9 75	
10 97		1173	10 97	10.66	10 36	10 36	10 36	10 06	975	
11.27	11.70	11.73	10 97	10-66	10-36		10 36	10 06	9 75	
1-58	1158	1142		10.66	10 36	10 36 10 36	10 36	10 36	9 75	
11-58	11 43	11 42		1066	1036	10 36	10 36	10 36	975	
				1066	1036	10 36		10 36	9 75	
						10 36		10 36	9 75	
						10 36		10 36 10 36	975	•
								10 36	9 75	
									9 75	
									9 75	
									9 75	
									975	
	-									

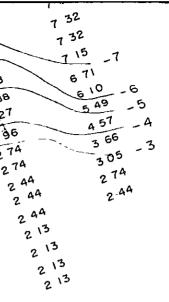
M

I___

----

6 40		·	
6 40	5 49	5 18	549
6 40	5 79	5 49	E 40
6 40	∖ <b>579</b>	5 79	5 49
6-40	5 79	6 09	5 79
6 70	6 09	6 09	6 0 9
7 01	6 09	6 0 9	6 0 9
7 01	6 70	6 0 9	670
7 31	<u></u> 6 70	6 09	670
7 16	7 01	6 40	670
7 31	7 01	640	6 70
7 62	7 31	6 70 5 6 70	~
762	7 31	6 70 🖌	7 01
7 92	7 31	6.70	731
7 77	7 31	701	731
777	7 31	701	731
792 792	7 77	7 01	7 31
/ 8 22	7 77	7 31	7 31
8 22	7 31	731	7 31
8 2 2	7 62	746	731
8 2 2	7 62	7 62	
8 53	7 62	7 62	7 31
8 53	7 92	7 92	7 62
8 84	7 92	7 92	7 62
8 84	8 07	7 92	7 92
8 84	8 23	7 92	7 92
884 884	8 07	7 92	7 92
8 84	8 07	7 92	~ 8 2 <b>3</b>
8 84		7 92	8 53
898	8 07		
898	8 2 3	7 92 -	853
914 914	8 53	8 07	8 5 3
9 14	8 84	8 23	8 53
914	9 14	8 23	853
9 45	9 +4	8 53	8 5 3
960	914	853	8 53
9 60	914	8 68	8 53
9 60	9 14	8 53	884
9 60	9 14	8 84	8 84
975	914	8 84	914 ~
9 75	9 1 4	` 8 84	929
9 75	914	914-	9 45
9 75	914	9 45	945
975	9 2 9	9 45	9 45
975	9 2 9	9 45	945
975	929	9 1 4	9 75
9 75	9 14	9 14	9 75
9 75	914	9 14	_
975	914	9 14	
975	9 14		
975			
•			

<u>,</u>			4-72		4 57	<b></b>		3.00	<b></b>	0.007		~		·		
9	5 18	5 4 9	4 88	4 57 4 88		3 80	365	3 35	3 35	2 89	3 05	3 66	3 05	3 1 9	3 05	3 19 3 50
Э	5 49	5 49	3 18	5 18	4 57	3 80	3 96	366	3 35	3 50	3 35	3 50	3 35	3 35	2 74	3 50
;	5 79		549	5 4 9	4 88	4 41	3 96	3 96	335	366	3 66	3 50	3 35	3 66	2 89	3 50
3	6 09	579	5 79	5 79	4 88	4 87	4 27	4 27	3 66	3 96	381	3 66	3 66	3 81	3 35	
•	6 09	6 09	5 79 5 79	5 79	5 18	4 87	4 57	4 27	3 96	3 96	3 66	3 66	3 81	3 96	3 35	380
Э	6 0 9	6 0 9		5 79	5 4 9	4 87	4 88		3 96		4	396	3 96	ATT	3 50	3 80
)	6 0 9	670	6 09	6 09		5 02	4 87	488	4   1	4 57	427-		3 96	411	3 66	3 80
)	e 0 9	670	6 40 6 40	6 09	6 09	5 3 3	5 18	4 88	411	4 88	4 27	3 96	427	4 1 1		411
ī	640	670	640 685	6 40 6 40	6 2 4	5 3 3	5 18 5 79	4 88	4 27		4 5 7	411	4 27	4 42	3 96	4 4 1
1 I	6 40 6 70	6 70	6 70	6 40	624	5 63		5 18	4 57	488	5 488	4 2 7	4 57	4 57	411	4 41
t	6 70	7 01	6 85	645	6 24	5 94	5 79	5 49	518	518 -	5	4 57	488		4 2 7	4 41
1	6 70	731	~ 6 85	6 70	6 40	614	5.79	5 79	5 49	5 18	4 88	4-88	4 88	488	4 2 7	4 41
I.	6 70	731	7 01	6 70	670 685		579	609	518	5 4 9	4 88	518	4 88	518	457	4 72
1	701		7 01	7 01		614	6 09	6 09 🔪	5 18	5 4 9			4 88	5 33		
I.	7 01	731	7 01	7 01	6 70	614	6 09	6 09	5 49	5 49	503	518	4 88	518	4 5 7	5.02
7	701	7 31	7 01	7 01	6 70	6 55 6 55	6 0 9		5 4 9	5 49	518	5 48	5 03	518	4 57	5 33
7	731 731	73)	7 31	7 01	7 07		6 09	6 09	5 79		5 49	579		5 49	4 72	5 33
I		7 31	7 31	7 01	7 31	6 85		6 09	5 79	5 49	564	579	518	5 64	5 03	5 33
5	746	731	7 46	701	7 92	6 85	6 40	624	5 79	5 79	5 64	5 79	5 4 9	579	4 88	5 33
2	7 62 7 62	7 31	7 46	7 01 7 01	7 77	6 85	6 70	6 24	6 0 9	6 09 -6	5 5 6 4	579	5 4 9	579	5 † <del>8</del>	5 63
	7 92	7 62	7 31	7 31	7 62	716-	670	624	6 0 9	6 09 🔍	5 79	670	5 79	579	5 33	5 63
:	7 92	7 62	7 62	7 62	7 92	7 46	670	6 40	6 40	6 0 9	579 🦯	6 70	5 79	5 79	5 33	5 63
-		7 92	7 62	7 92	7 92	7 46	701-		6 70	6 40	6.09	6 40	6 09	5 7 9	5 33	5 63
<	7 92		7 62	8 23		7 46	7 31	6 70	7 01	6 40	6 09	6 40	6 O9 `	6 40	5 64	5 63
5	7 92	7 92	7 62	7 92	7 92	7 46 7 46	7 31	670	670	6 40	6 09	6 40	6 09		5 79	5 63
,	7 92	7 92	7 62	7 92	8 23	7 46	731	107	670	6 40		6 40	6 09	594		5 94
P	7 92	823-	7 92	8 23	8 23	7 46	7 31	7 01	670	6 70	6 09	5 79	6 40	6 0 9	5 79	5 94
,	, 792 🧳	653	823	8 2 3	8 23		731	7 01	7 01	6 70	6 09	579	6 40	6 09	5 79	5 79
:	7 92	8 5 3	8 23 8 23	823	8 23	7 46	731	7 01	701	7 47	6 0 9	5 79	5 O9	5 94	6 09	
,	8 07	8 5 3	8 2 3	8 23		× 746	731	670	7 16	_	7 640	6 40	6 40	5 94	6 40	6 55
	8 23		8 5 3	8 23	8 53	746	746	731		746	6 40		670	640	6 40	6 5 5
	8 23	8 53		8 23	023	7 77	7 62	7 31	716	746	6 70	640	6 70	6 70	6 55	6 55
1	8 53	8 5 3	8 53	8 5 3	8 2 3	807	7 62	7 62	7 16	731	7 01	6 55	670	6 70	6 55	6 55
ì	8 53	853	8 84	8 84	853		777 7 <b>77</b>	7 62	7 16	731	701	6 70	7 01	6 70	5 94	6 55
Ì	8 68	853	8 84	8 84	8 8 4	8 07		7 92	731	731	7 01	7 DI	7 01	670	6 5 5	6 55
Į	8 53	853 884	8 84		8 84	8 07	7 92 . 7 92	7	7 62	746	731	7 01	7 01	7 01-	655	
/	8 84	884	8 84	8 8 4	8 84	837 868		7 92	7 62	7 62	731	7 01	7 01	7 31	6 85	6 55 6 55
	8 84	- 1914	8 84	8 84	8 84		8 5 3		762	7 62		7 01	7 31	7 01	716~	
	884	929	914	8 8 4	884	8 68	8 83	7 92	792	7 92	731	731		7 01	7 46	6 85 
	َ وا ف	9 45		9   4	914	8 68	8 83	7 92	8 23	7 92	7 92	7 31	7 46	716	7 46	7 01
	9 45	9 45	914	9 4 5	914	8 68	883	8 53	8 23	8 23 - {	792		7 46	716	746	7 01
	9 45	9-45	914		9 45	8 68 8 98	883	8 53	8 2 3	823	7 92	7 31	7 31	7 01	7 46	7 31
	9 45	9 45	945	9 45	975	. 8 98	883 883	823	8 23	8 23	7 92	7 31	7 31	746	777	716
	9 14	9 75	9 45	9 45	9 75	<b>\</b> 8 98	8 83	7 92	8 23	8 23	823	7 31	7 31	7 31	716	
	9 14	9 75	9 45	9 45	10 06	9 29	8 83	8 53	853	838	8 23	7 31	7 62	7 31	7 77	7 46
	9-14	515	9 45	9 45		9 2 9	8 83	8 53	8 5 3	638	7 92	` <b>7 62</b>	7 77			746
	9 14		9 45	9 45	10 06		914	8 53	8 84	8 53	7 92	` 777	7 92	7 31		7 77
			9 45	9 75	8 53	9 29	9 14	8 84	9 15	8 5 3		ेर 92	7 77			7 77
			9 45	9 75			914	<u>- 9 14</u>		0.35	8 53					
			945				9 14	9 14	9 45							
									5 - 5							


					10-10-1							
3 50	335 35	5 3 9	3 66	3 66		3.0	n 350	A 72	411 6	64 649	70	731
350		3 50	3 35	3 50		3 35 3.5	∕	- <u>A</u> A1	- 119	-4		101 7?
3 50	7 10 50	3.03	2	3 35	3 81		19 335	3.80	319	A ¹¹ A ⁵	1578	685 7
380	- 10	3 3	5 3 19	3 50	3 65		,30 3,9	3 50	3 19	3 50 4 3	1	671
3 80		81 7.19	a 3.50	3 35	3.65	3 66	3 50 3 35 3 50 7 3		3 19	3 50 3	66 4 68	5 A9
380	- ex	14 33	5 350	3 24	365	3.5	135 °	-	319	- 02	05 34	- A 57
AIN	366 4	21	3 50	3 50	3 81	313	- 50 3		3 19	305	19 360	1 66
4 41	3.81 4	,,,,		3 66	3 81	3,9	750 3	50 319	319	x 05	3 19 3 05 3 05 3 0	5 305
4 41	381	381	66 3 50	396	3 81	3 35	- 35	350 319	) <u>35</u> 0	- 05	303 30	5 3 ⁰⁵
4 4 1	`\ 3.81	411 7	66 366	381	381	3,50	- 19	319 33	5 <u>3</u> 50	3 35		3 05
	4 11	121	81 381	3 81	381	3 35 3 35	3 19	319 3	35 350	3 35		× × 0 ⁵
4 4 1		4 42	3 96 3 81	3 81	3 81		x 35		19 350	3 05	3 0 ⁵	3 74
4 72	4 72		3 8		3 81	3 19 3 50	3 50		5 ° c0	305	3 0 ⁵	- 05
5,02	4 72	5 03 \	* • • •		3 96	3 ⁶⁶	3 60	2	J	0 ³ ⁹	3 ³⁵	3 ¹ 3 ⁰⁵
5 33	4 57	222 (				3 66	3 50	3 35	3 ³⁵ 3 ⁵ 3 ³⁵ 3 ⁵		3 19	315 205
5 33	472	575 \			3 96	₃ 50	3 50	335 335	3 ³⁵ 3	50 <u>305</u>		1 ³ ³ - 0
5 33	503	549	4 6 1		396	- <u></u> -50	3 BO	3 ³⁵	335 3	50 319	1 0 ⁵	305 3(
5 33	5 03	5 64	4 27	A 11		3 66	3 66	365	. 15	350 19	r.0 ⁵	305 3
563	5 03	5 64		11	411	36	° 350	365	 ₁35	350 33	5	30- 1
5 63	5 03	5 49			411	-4 38	350	3 6 ⁵	335	350 33	5 3 ³⁰	305 305
5 63	5 33	5 49	4-86	÷	411	\ 3	66 366	3 65	3 35	350 3	35 3 ⁰⁵	30
563	5 33		6 (J.) N	4 42 4 89 4 27	411	3	96 380	1 BO	3 35	350 3	,35 ₃ 05	30
5 63	5 64	5 64	- ^- `		411	Ì.	396 380	AO	3 35		350 319	3 05
5 63	5 64	5 49	- 19	5 12 4 88			396 36	- 60	3 50	350	3 50 3 19	- 02
5 94		5 64	- 77	5 33 5 IB	411		A11 38	30 3 50	365	350	350 3	· · · · · ·
5 94	5 79	PO 3	5 4 9	5 33 5-33	441		4 ¹¹ 4	N 365	3 BO	3 50	z 50 z	۱۹ 3 ۲
5 79	5 64	6 09	5 79	549 549 533 594	441		A 11 0	4 42 3-80	) 396	350	350 -	35 3 ³⁰
	5 94	5 94	5 79		4 57		411	4 42 36	5 396	3-50 3-50	3 50	319 35
6 55	5 64	6 40	5 64	5 54	A 72	•	4 ''	4 ⁴² 3	66 3 ⁹⁶	380	3 5 ⁰	335 335
655	6 0 9	6 09	5 64	315	50) 50	-5	4 2 ⁷	4 42 3	ch <u>190</u>	~	3 50	360 350
6 55	5 94		5 64	5 33 5 54			A 72	4 ⁴²	3 96 411	- BO	350	396 366 396 76F
	5 79	5 94	5 94	564 554	5 (		4 88	4 4 C	A11 A1	1	366	- C
6 55	5 94	5 79	5 79	594 518		33	5 03	A A2	Δ ² Δ	11 50	396	
6 55	6 0 9	5 94	609	5 94 5 49	5	18	5 18 5 18 5 3 ³	4 27 4 42	4 ⁴² 4	42 380		396 3
6 55	6 24	6 24		5 49		5 O2	510		-7 ^	27 417 4 27 4 41 4 27 4 41	396	3 96
6 5 5	6 09	6 24	5 79			5 02	5	4 11 4 42 4 72 5 02 5 33	, 72	4 27 4 41	A ^{1 1}	396 396
6 55	6 0 <del>9</del>	6 55	579	5 0V		5 63	5 49	4 42	472 472 512 512	4 42 4 41 4 42 4 4	ι Α ^{\'}	3 9 -
6 85	6 55	6 55	5 79	•		5 94	5 49 5 49 5 49 5 49	A-72	A 72	4 <del>5</del> 7	A 27	
701	670	716	6 O <del>9</del>	624 579			5 6 A 9	5 02	512	4 -		
7 01	6 85	6 55	6 70	6 40 6 24		609 -6	5 49 5 49	5 33	512			
7 01	6 85	6 24	6 40	6 24 6 09 6 55		c 24	5 A ^C	9				
7 31	6 85 6 85 6 85	6 85	6 09	670	)	6 09 6 09 6 24 6 24	54 54	9				
716		7 46	<u>6 40</u> 6 70	6 55 6 40	)	624	5	49				
7 46		7-16	6 70	-			5					
7 46		-	7 31									
7 77			7 31									
7 77												

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 18 579 1 457 5.49 50 77 5.49	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	70-732	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7 62 7 01 6 40 5 79 5 48
319 $319319$ $319319$ $319319$ $319319$ $319319$ $350$	305 $366$ $488$ $305$ $305$ $305$ $305$ $319$ $305$ $305$ $319$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$ $305$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6 79 5 5 5 18 5 05 3 66	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	610 610 <u>610</u> <u>610</u> <u>549</u> <u>54</u> <u>457</u> <u>4</u>	9         4         88           98         4.27           88         3.95           27         3.95           3.65         2.74           3.74
335 $350335$ $350319$ $350319$ $350319$ $3505$ $335$ $3505$ $335$ $350$	$3^{35}$ $3^{50}$ $3^{50}$ $3^{5}$ $3^{5}$ $3^{5}$ $3^{5}$ $3^{5}$ $3^{5}$ $3^{5}$ $3^{5}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	305 256 274 24 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 244 2 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	274 $274$ $244$ $244$ $244$ $24$ $244$ $24$ $24$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	274 $274274$ $274274$ $274305$ $274$	2 13 2 44 2 44	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 44 2 44
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	350 $355$ $350$ $355$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$	$30^{5}$ $30^{5}$ $30^{5}$ $2^{89}$ $9$ $30^{5}$ $2^{80}$ $19$ $30^{5}$ $2^{60}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$ $30^{5}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2 74 2 74 2 74	
365 $380380$ $396365$ $396366$ $396366$ $396366$ $396$	350 $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$ $350$	319 $319335$ $335319$ $335335$ $335335$ $33530$ $450$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 05 2 7 ⁴		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	396 366 396 366 396 350 396 366 396 366				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	396				

# Sounding Map s=1/2,000

ĩ

~



,

