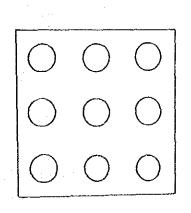
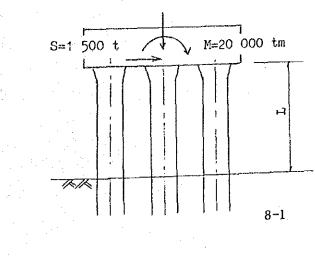
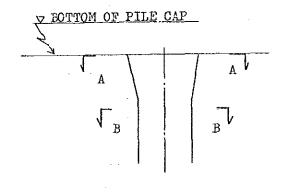
APPENDIX

CHAPTER 8 PRELIMINARY DESIGN


Appendix Table 8.2.9 CHECKING FOR NEW SCORING DEPTH

STRESS RESULTANTS OF PILE

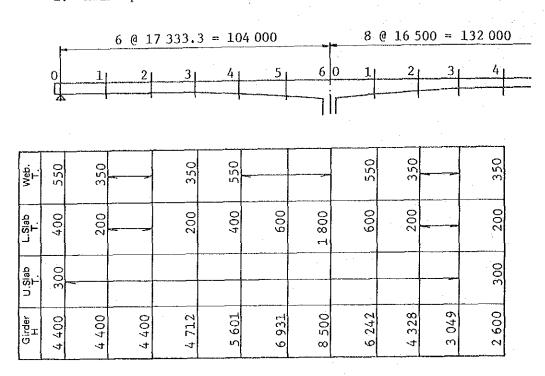

ITEM		CASE 1	CASE 2	CASE 1 - CASE 2
BENDING MOMENT	(tm)	2 320	2 050	270 (13%)
LUTAT DODOD (4)	MAX	1 830	1 760	70 (4%)
AXIAL FORCE (t)	MIN	-450	-380	70 (18%)
SHEARING FORCE	(t)	170	170	0 (0%)


STRESS OF PILE

				and the second
SECTION		CASE 1	CASE 2	CASE 1 - CASE 2
	o's (kg/cm2)	58	51	7 (12%)
A ~~ A	6's (kg/cm2)	2 030	1 780	250 (14%)
B - B	6c (kg/cm2)	78	68	10 (13%)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	6 c (kg/cm2)	2 160	1 860	300 (16%)

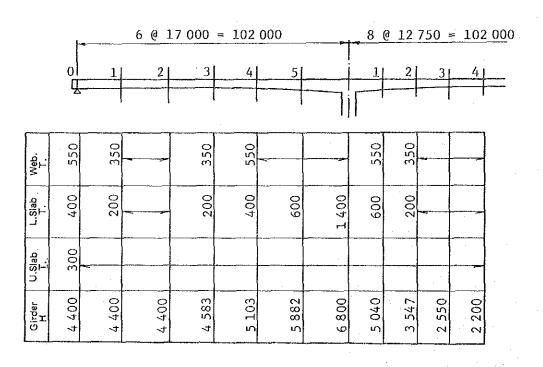


N=6 200 t






PROJECTED LENGTH OF PILE


	CASE 1	CASE 2
L	20.0 m	17.0 m

## Appendix Table 8.3.2.1 MAIN DIMENSION OF PC BOX GIRDER



1. Main Spans over the Navigational Chanels

#### 2. Approach Spans over the Shallows



# Appendix Table 8.3.2.2 STRESS OF PC BOX GIRDER

		NUMBED	OF DO	and the second		
рI	POSITION	U. SLAB	WEB	TENDONS L. SLAB	BENDING ST UPPER	RESS (t/m ² ) LOWER
	M-MAX		82	48	1017.3	19.7
	PIER-1-L	244			42.1	817.0
	R				5.6	844.6
	M-MAX		0	0	0.0	0.0
	PIER-2-L	242			34.2	816.0
	R				10.9	833.6
4	M-MAX		0	0	0.0	0.0
	PIER-3-L	242			2.4	840.0
	R				2.4	840.0
	M-MAX		0	0	0.0	0.0
	PIER-4-L	242			10.9	833.6
	R				34.2	816.0
	M-MAX		0	0	0.0	0.0
	PIER-5-L	244			5.6	844.6
	R				42.1	817.0
	MMAX		82	48	1017.3	19.7

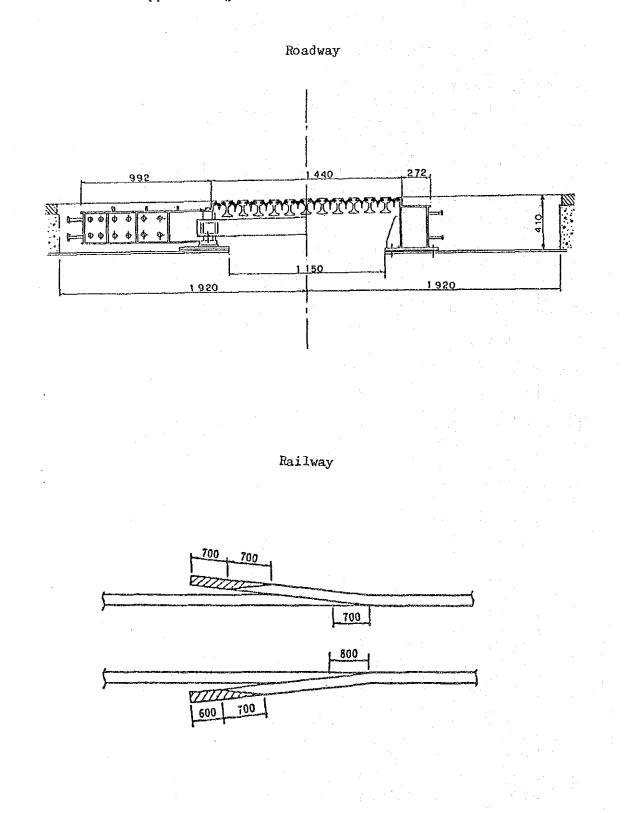
## (1) Main Spans Over Navigation Channels

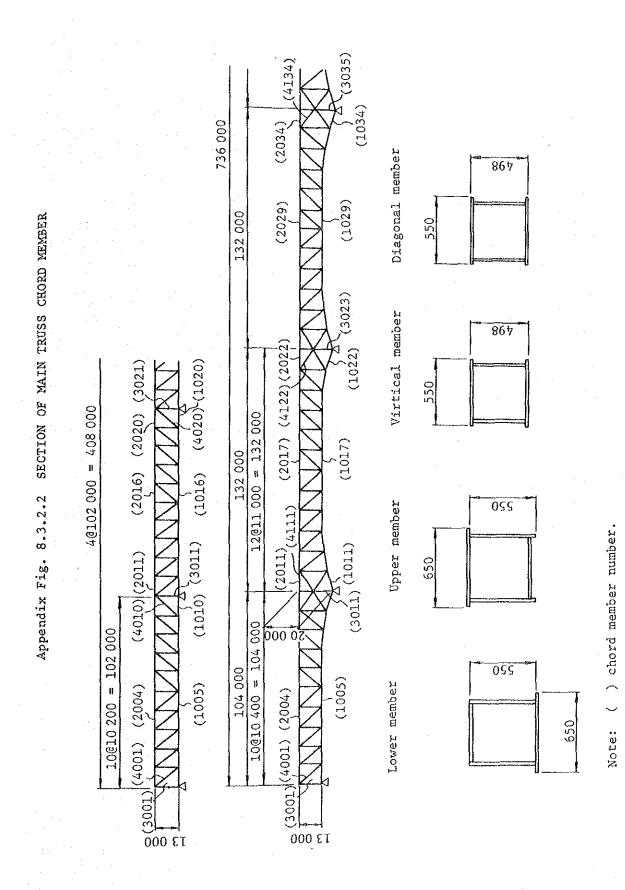
(2) Approach Spans over the Shallows

4	POSITION	NUME U. SLAB		L. SLAB	BENDING ST UPPER	RESS (t/m ² ) LOWER
	M-MAX	<u> </u>	100	48	1169.1	0.4
k	PIER-1-L R	214			3.0 67.0	938.7 885.2
	M-MAX		0	0	0.0	0.0
<u></u>	PIER-2-L R	148			11.9 9.9	641.0 642.7
	M-MAX		0	0	0.0	0.0
k	PIER-3-L R	212			56.1 4.7	885.5 928.6
	MMAX		1.02	48	1152.3	5.6
			<u> </u>			

8-3

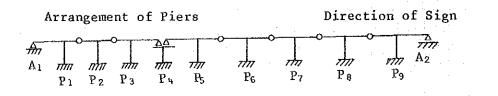
## Appendix Table 8.3.2.4 QUANTITIES OF PC BOX GIRDER MATERIALS


					AMOUNT		
	ITEM	SPECIFICATION	UNIT	MAIN SPAN	APPROACH SPAN	TOTAL	REMARK
	CONCRETE	$\delta ck = 350 \text{ kg/cm}^2$	m ³	4,449.8	8,615.9	13,065.7	
	FORM		m3	15,505.5	30,517.9	46,023.4	
<u></u>	REINFORCING BAR	SD-30	t	445.0	861.6	1,306.6	100 kg/m ³
	Lg	SBPR 95/120 Ø32	t	345.1	630.9	976.0	71 kg/m ³
	Dia	11	t	22.2	43.1	65.3	5 kg/m ³
TENDON	TRANVERSE	, II	t	51.5	12.9	144.4	ctc 600
C TEN	OUT CABLE	Ŧŧ	t	36.6	36.1	72.7	
ር) A	TOTAL		t	455.4	803.0	1258.4	
	BENT	H-beam	t	80.0	100.0	180.0	
E,	CONCRETE	$\delta ck = 240 \text{ kg/cm}^2$	m ³	378.0	468.0	846.0	
K BENT	FORM		m ³	162.0	228.0	390.0	
TEMPORARY	Re. BAR	SD•30	t	15.1	18.7	33.8	40 kg/m ³
LEMP(	PILE	Pile Bent	m	90.0	40.0	130.0	
	PIER TOP	Bracket	No	3	5	8	
0	SIDE SPAN	H-pile	m ³	7,143.2	_	7,143.2	A ₁
SCAFFOLD	CENTER SPAN	Suspension	No	1	2	3	
SCAJ	CENTER SPAN	Suspenssion	No	2	4	6	
s	MOVABLE		t t	20.8	18.4	49.2	A ₁ P ₄ 5.2 t P ₄ A ₂ 4.6 t Main 2 Apro 4 Set, Move, Dism.
	FIX		t	5.0	10.0	15.0	Main 2 Apro 4
BEARING	TOTAL	•	t	25.8	28.4	64.2	
	V.B WAGEN	M. Size	<u>†</u>	99	220	319	Set, Move, Dism.

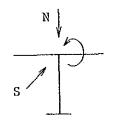

Appendix Table 8.3.2.5 REACTION OF SUPERSTRUCTURE (PC-BOX) IN LONGITUDINAL DIRECTION

Position	ц (в)	1	24.5		41.5		D.1.C	30.6	-	1.00		0.02	9 00		2 00		l	0.0	1
	£1 			-			י ר	ო	, 	ሳ 	, c	4	, 	4	, ,	۹ 	č	07 7	
Earthquake Effect	s (t)	59	626	399	-399	626	-626	112	738	-738	562	-562	562	-562	562	-562	738	-738	53
and Earthq	N (t)	I 170		4 040 2 942	1	4 037	3 951	2 233	4 869	4 907	4 499	4 477	1 503		6677	4 477	4 869	4 907	I 063
Dead Load	M (t.m)	0	2 1	-7 752	7 792	-6 185	10 719	0	-8 702	8 864	-7 579	7 639	-6 879	6 8 7 9	612 7-	7 639	-8 702	8 864	0
Load	S (t)	0	0		D	c	S	0	6	2	4	þ	c	Þ	C	>	c	D	0
and Live Load	N (t)	1 325	4 501	1	3 394		4 494	2 551		0 400		550 C	2020	ר רי רי		() ()		0C4 C	1 226
Dead	M (t-m)	0	-6 108		-2 926	0 0 1	000 0	0		10 404		670 C	20%	t 0		670 C	f	-0 404	0
Ly L	S (t)	0	0		0	6	5	0	<	>	<	D	c	S	c	>	c	þ	0
id Load only	N (t)	1 129	4 000		2 957	700 0	0 774	2 148		4 0 0	1	4 400	, EDO			4 400	1	4 000	1 109
Dead	M (t.m)	0	-2 795		20	1	107 7	0	ć	0	< c	nc	¢	5	00	) )	ć	10	0
Case		Al	ų L	4	دم م	p	г з	P4		հ	£	r 6	þ	1 +	ģ	ထ မ	¢	r9	A2
Load			ue	dg	ųэ	во	ıdı	dy	L		·			u	ed	S	uŢ	еM	

ų Top of footing Direction of Sign S z ⊠


## Appendix Fig. 8.3.2.1 EXPANSION JOINT AT P4






		1					*****
Loa	d Case	De	ad Load on	ly	Dead	and Live	<b></b>
		M (t·m)	N (t)	S (t)	M (t•m)	N (t)	S (t)
Span	P ₁	0	4 000	0	0	4 000	500
	P2	0	2 957	0	0	2 957	370
Approach	P ₃	0	3 994	0	0	3 994	499
APT	P4	0	2 148	0	0	2 148	269
	P ₅	0	4 888	0	0	4 888	611
цп	P ₆	Ö	4 488	0	0	4 488	561
n Span	P ₇	0	4 503	0	0	4 503	563
Main	P ₈	0	4 488	0	0	4 488	561
	P9	0	4 888	0	0	4 888	611

#### Appendix Table 8.3.2.6 REACTION OF SUPERSTRUCTURE (PC-BOX) IN TRANSVERSE DIRECTION

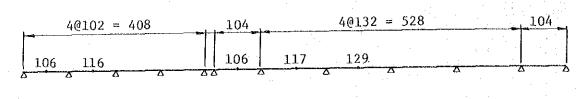


Direction of Sign



Member No.	(t) A. Force	Quality	(mm) Dimension	(m ² ) Area	(kg/cm ² ) Stress	(kg/cm ² A. Stress
1005	1014.0	SM58	$\frac{1-500 \times 17}{2-550 \times 18}$ $\frac{1-650 \times 17}{2-500 \times 17}$	0.0394	2 577	2 600
1011	-1 277.5	SM58	$\frac{1-500\times29}{2-550\times33}$ $\frac{1-650\times29}{2-50\times29}$	0.0697	1 834	1 841
1017	895.0	SM58	$\frac{1-500 \times 15}{2-550 \times 16}$ $\frac{1-650 \times 15}{1-650 \times 15}$	0.0349	2 568	2 600
1022	-1 363.1	SM58	$\frac{1-500\times31}{2-550\times35}$ $\frac{1-650\times31}{2-50\times31}$	0.0742	1 838	1 842
1029	896.7	SM50Y	1~ 500x18 2~ 550x21 1~ 650x17	0.0432	2 078	2 100
1034	-1 359.2	SM58	$   \begin{array}{r}     1-500x31 \\     2-550x35 \\     1-650x31   \end{array} $	0.0742	1 833	1 842
2004	-1 014.0	SM58	$\frac{1-650x24}{2-550x24}$ 1-500x24	0.0540	1 878	1 948
2011	1 155.7	SM58	$   \begin{array}{r}     1 - & 650 \times 21 \\     2 - & 550 \times 18 \\     1 - & 500 \times 22   \end{array} $	0.0445	2 599	2 600
2017	-950.2	SM58	$   \begin{array}{r}     1- 650x23 \\     2- 550x23 \\     1- 500x23   \end{array} $	0.0518	1 836	1 886
2022	1 227.5	SM58	$\frac{1-650x23}{2-550x19}$ $\frac{1-500x23}{2-500x23}$	0.0474	2 592	2 600
2029	-952.0	SM58	1- 650x23 2- 550x23 1- 500x23	0.0518	1 840	1 886
2034	1 223.8	SM58	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0.0474	2 585	2 600
3001	-650.6	SM58	2- 550x23 2- 452x23	0.0461	1 452	1 454
3011	-988.2	SM58	2- 650x26 2- 446x26	0.0570	1 742	1 753
3023	-975.6	SM58	2- 650x26 2- 446x26	0.0570	1 720	1 7 5 3
3035	-974.6	SM58	2- 650x26 2- 446x26	0.0570	1 718	1 753

Appendix Table 8.3.2.7 STRESS OF MAIN TRUSS CHORD MEMBER IN 6 SPANS (1)


			gradient states and	1	and the second	
Member No.	(t) A. Force	Quality	(mm) Dimension	(m ² ) Area	(kg/cm ² ) Stress	(kg/cm ² ) A. Stress
		0.050	2- 550x14	0.0286	2 586	2 600.
4001	717.2	SM58	2- 470x14	0.0200		
		auton	2- 550x18	0.0364	1 235	1 250
4111	-441.5	SM50Y	2- 462x18	0.0004		
	107 0	auron	2- 550x18	0.0364	1 225	1 250
4122	-437.9	SM204	2- 462x18	0.0304		
	100.1	OVERY	2- 550x18	0.0364	1 226	1 250
4134	-438.1	SM50Y	2- 462x18	0.0304		

Appendix Table 8.3.2.8 STRESS OF MAIN TRUSS CHORD MEMBER IN 6 SPANS (2)

Appendix Table 8.3.2.9	STRESS OF MAIN TRUSS CHO	ORD MEMBER IN 4 SPANS
------------------------	--------------------------	-----------------------

Member No.	(t) A. Force	Quality	(mm) Dimension	(m ² ) Area	(kg/cm ² ) Stress	(kg/cm ² ) A. Stress
1005	1 121.1	SM58	$   \begin{array}{r} 1 - 500 \times 19 \\         2 - 550 \times 20 \\         1 - 650 \times 18   \end{array} $	0.0432	2 574	2 600
1010	-1 073.9	SM58	$   \begin{array}{r}     1 & 0.30 \times 18 \\     1 - 500 \times 23 \\     2 - 550 \times 26 \\     1 - 650 \times 22   \end{array} $	0.0544	1 974	1 983
1016	683.5	SM20Y	$   \begin{array}{r}     1 & 0.30 \times 22 \\     1 - & 500 \times 14 \\     2 - & 550 \times 15 \\     1 - & 650 \times 14   \end{array} $	0.0326	2 097	2 100
1020	-941.9	SM58	$   \begin{array}{r}     1 - 500 \times 14 \\     1 - 500 \times 20 \\     2 - 550 \times 23 \\     1 - 650 \times 19   \end{array} $	0.0477	1 977	1 980
2004	-1 112.1	SM58	$   \begin{array}{r}     1 & 0.50 \times 19 \\     \hline     1 - & 650 \times 26 \\     \hline     2 - & 550 \times 26 \\     1 - & 500 \times 26   \end{array} $	0.0585	1 901	1 971
2011	586.1	SM50Y	$   \begin{array}{r}     1 - 650 \times 12 \\     \hline     1 - 650 \times 12 \\     \hline     1 - 500 \times 12 \\     \hline     1 - 500 \times 13 \\   \end{array} $	0.0282	2 082	2 100
2016	-724.5	SM58	$   \begin{array}{r}     1 - 500 \\     1 - 650 \\     2 - 550 \\     1 - 500 \\     x18   \end{array} $	0.0405	1 789	1 960
2020	474.9	SS41	$   \begin{array}{r}     1 - 650 \times 16 \\     \hline     2 - 550 \times 14 \\     \hline     1 - 500 \times 17   \end{array} $	0.0343	1 385	1 400
3001	-674.6	SM58	$2 - 550 \times 24$ $2 - 450 \times 24$	0.0480	1 444	1 455
3011	-1 506.8	SM58	$2 - 650 \times 46$ $2 - 406 \times 46$	0.0972	1 580	1 590
3021	-1 364.9	SM58	$2 - 650 \times 40$ $2 - 418 \times 40$	0.0854	1 599	1 608
4001	745.0	SM50Y	2- 550x18 2- 462x18	0.0364	2 085	2 100
4010	1 027.0	SM58	2- 550x20 2- 458x20	0.0403	2 591	2 600
4020	878.8	SM58	2- 550x18 2- 462x18	0.0364	2 533	2 600
	•••••••••••	<b>.</b>				
	•					

Appendix Table 8.3.2.10 DEFLECTION OF MAIN TRUSS CHORD MEMBER DUE TO LIVE LOAD



4 Span

<u>6 Span</u>

4 Span

Deflection due to roadway live load Deflection due to railway live load

		· · · · ·		(mm)			
	106 (L	= 102 ^m )	116 (L = $102^{m}$ )				
	Railway	Roadway	Railway	Roadway			
δĺ	25 < 170	61 < 170	23 < 170	57 < 170			
δr	83 < 102	17 < 102	77 < 102	16 < 102			
Σδ	108	78	100	73			

1

.

6 Span

(mm)

$\square$	106 (L =	= 104 ^m )	117 (L :	= 132 ^m )	129 (L	= 132 ^m )
	Railway	Roadway	Railway	Roadway	Railway	Roadway
52	27 < 173	68 < 173	37 < 220	92 < 220	39 < 220	97 < 220
δr	86 < 104	18 < 104	124 < 132	26 < 132	123 < 132	26 < 132
Σδ	113	86	161	118	162	123

Allowable deflection

				(mm)
		$L = 102^{m}$	$L = 104^{m}$	$L = 132^{m}$
Roadway	L/600	170	173	220
Railway	L/1000	102	104	132

Appendix Table 8.3.2.11 STRESS OF FLOOR SYSTEM

(m	ion								
(mm) A. (mm)	Deflect	6.1	6.1	1	5.5	12.2	18.3	1	5.0 10.4
	Deflection Deflection	5.3	5.8		5.3	5.9	6.6	1	4.4 6.8
$(kg/cm^2)$	A. Stress	1 400	1 400	1 117	1 271	1 267	1 400	958	1 912
(kg/cm ² )	Stress	1 347	1 259	1 048	1 009	279	I 205	814	I 552
(m ² )	Area	0.0210	0.0203	0.0210	8610.0	0.0186	0.0085	0.0093	0.0572
(mm)	Dimension	2- 340x15 1- 1200x 9	2- 340x14 1- 1200x 9	2- 340x15 1- 1200x 9	2- 300x15 1- 1200x 9	2- 300x13 1- 1200x 9	2- 200×10 1- 500× 9	2- 240x10 1- 500x 9	2- 500x25 1- 2300x14
Onality	(>	SS41	=	-			:	E	SM50Y
(t)	A. Force	110.8	98.5	-86.2	75.8	66.4	16.4	-12.7	633.7
:	Position	End Mid Span	Inner Mid Span	Inner Support	End Mid Span	Inner Mid Span Inner Support		Inner Support	Floor Beam
	Po	λ.	емре	oя	үьи	Liry	भा əp	547 TS	



#### Appendix Table 8.3.2.12 QUANTITIES OF STEEL TRUSS

<b>、</b> ,						
		SM4 1	SM50Y	SM58	Others	Total
	Main Chord	7.99	1 1 2 4	2 038	-	3 961
	Floor Beam		854	_	-	854
۵ ۵	Stinger	1 683		-	R ^{eg}	1 683
Structure	Diag. Member	913			-	913
Stru	Upper Bracing	582			-	582
Main	Lower Bracing	399	-		-	399
Ă	Railway Bracing	25			-	25
	Bracket	66				66
	Sub Total	4 467	1 978	2 038		8 483
	Bearing Shoe	۵	-	-	237	237
ر ب	Exp. Joint	-	-		29	29
ssary	Drainage	30				30
Acce	Guardrail	241			-	241
	Sub Total	271		-	266	537
	Total	4 738	1 978	2 038	266	9 020
				L		

(1) Truss Steel (in t)

(2) Bridge Surface

Item		Unit	Amount
Concre	te	m ³	3 661
Form		m ²	16 884
Asphalt	t=50	m ²	9 750
Pavement	t=30	m ²	3 4 4 1
Rail		t	116
Sleep	er	m ³	249

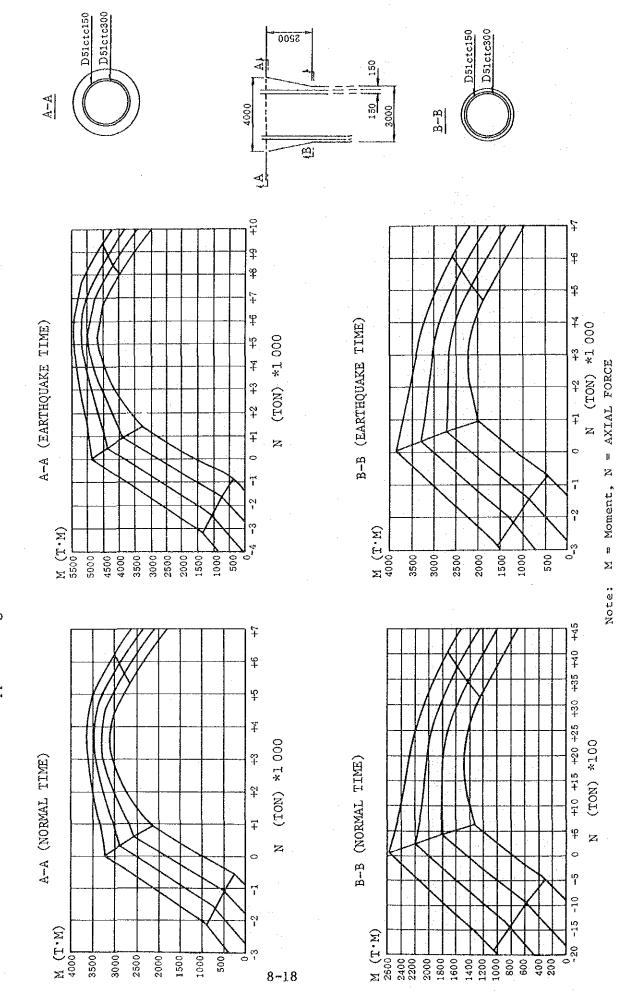
Appendix Table 8.3.2.13 REACTION OF SUPERSTRUCTURE (TRUSS) IN LONGITUDINAL DIRECTIONS

d			· · · ·						à			
Position	h (m)	l	24.7	41.7	31.2	31.2	24.0	24.0	24.0	22.5	22.5	ł
Earth t.	S (t)	1003	115	93	115	52	134	136	I35	136	134	1886
and ffec	N (t)	789	2293	1862	2293	1578	2685	2719	2700	2719	2685	789
Dead Load Quake E	M (t.m)	0	0	0	0	0	0	0	0	0	0	- - 0
oađ	S (t)	0	0	0	0	0	0	0	0	0	0	0
and Live Load	N (t)	1169	3264	2783	3264	2338	3746	3841	3827	3841	3746	1169
Dead	M (t·m)	0	0	0	0	0	0	0	0	0	0	0
y	S (t)	0	0	0	0	0	0	0	0	0	0	0
Dead Load only	N (t)	789	2293	1862	2293	1578	2685	2719	2700	2719	2685	- 789
Dea	M (t·m)	0	0	0	0	0	0	0	0	0	0	0
Load Cåse		Al	Pl	P2	F3	P4	P5	P6	P7	P8	P9	A2
Load			uec	ls yo	DEOIC	Idy				ueds	uīe	 PW 1

Direction of Sign

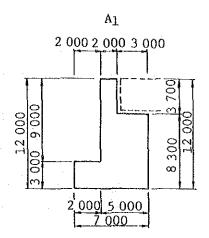
Arrangement of Piers and Abutments

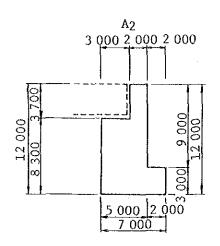
8~15

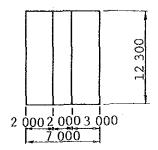

			· ·		4 			·
Load	Case	Dead	and Live	Load	Dead Lo	ad and Ea	rthquake	Position
		M (t·m)	N (t)	S (t)	M (t·m)	N (t)	S (t)	h (m)
pan	P ₁	0	3 264	0	0	2 293	287	9.3
S	P ₂	0	2 783	0	0	1 862	233	11 11 11 11 11 11 11 11 11 11 11 11 11
Approach	P3	0	3 264	0	0	2 293	287	
Ap	Р4	0	2 338	. 0	0	1 578	197	9.3
	Р ₅	0	3 746	0	0	2 685	336	16.5
Ę	P ₆	0	3 841	0	0	2 719	340	11
Span	P7	0	3 827	0	0	2 700	338	tt i i i i i i i i i i i i i i i i i i
Main	Р ₈	0	3 841	0	0	2 719	340	11
	P9	0	3 746	0	0	2 685	336	16.5

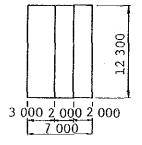
Appendix Table 8.3.2.14 REACTION OF SUPERSTRUCTURE (TRUSS)

Appendix Table 8.3.3.1 PILE LENGTH AND ALLOWABLE PILE REACTION


.

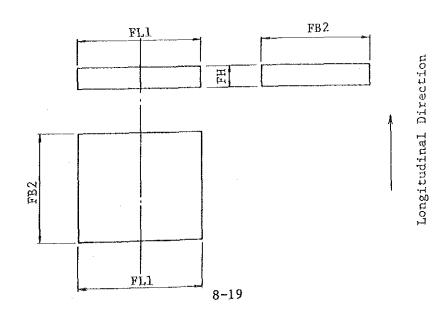

r			Tr													
	eaction	Pulling Pa	, L C	<b>+</b> C7	000	47C	277	104	5 O C J	ncc	CCU	000	200	000	202	700
	ALLOWEDLE FILE REACTION	Virtical Ra	1466	2273	1531	2397	2001	3139	1743	2763	1540	2470	1525	2467	1073	1758
1 1 V	BWOT TH	Horizontal Vírtical Ha	307	461	251	376	212	318	212	318	190	285	157	236	221	332
ring		Horizontal kH		233L	Ŧ		E		=	- - 	E		1000	1007	7000	4000
Soil Spring	(t/m ³	Virtical H Kv		-01XCC.1		-01X11.	17.105	-07X/T-7		-01X77.1	1 00-105	-01X77.1	1 201-105	-01X77.1	1 11-105	DTXTT I
(#)	Burying	Length & (m		0.ct	0	0.01	0 60	0.12	0 00	0°00		n•nr	0.70	74.0		0.21
(Ħ)	Projecting	Length h (m)		۷.۷		13.0	0 5	7.1	C F F	۰ / ۲		70.02	0.70	0.02	0 76	4 <b>.</b> 0
(=)	Pile	Length L (m)	ċ	24•U		0.10	V - 7 7		с , с , <u>,</u>	n•nc		0.00		0.00	U ZC	0. 0
(田) (田)	Scoring	Depth X、(用)		<b>۷۰</b> ۷	( 	0.11	C C T	0.21	0 6 7	0.21	C F	0.21	ې ج	071	C C	0.7T
	Pier	No	F	r3	Ĥ	47 44	- -	<u>لا</u> م	F	9 4	٩	£3	f	80 ਮ	F	64





Appendix Fig. 8.3.3.1 DIMENSION AND RESISTANTS FORCE OF PILE

#### 1) ABUTMENT










2) PIER

	FL1 (m)	FB2 (m)	FH (m)	A (m ² )
Pl	10.0	12.0	3.5	154 000
P2	16.0	11.0	3.5	189 000



÷

					and the second second	
	ECCENTRI	CITY (m)	SLIDE S	SAFETY	REACTION	$(t/m^2)$
Position	N,T	E.T	N.T	E.T	N.T	E.T
A1 (L)	1.165	1.843 2.333	4.8 1.5	2.3 1.2	80 100	107 150
A2 (L)	1.140 1.167	1.821 2.333	4.7	2.2 1.2	77 100	102 150
P1 (L)	1.035	2.908 4.000	∞ 1.5	5.2 1.2	75 100	117 150
P1 (T)		2.967 3.333		6.5 1.2		148 150
P2 (L)	0.566 1.833	3.488 3.667	∞ 1.5	7.1	38 100	98 150
P2 (T)		5.100		7.7 1.2		99 150

Appendix Table 8.3.3.2 STABILITY CHECK (PC-BOX)

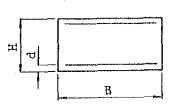
Note

1.

Acting reaction UPPER : LOWER : Allowerable bearing reaction

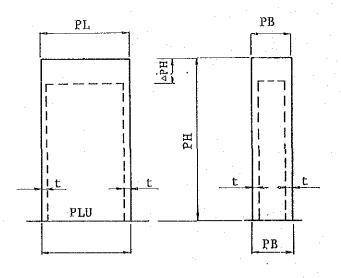
Normal Time 2. N.T :

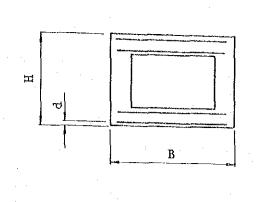
E.T : Earth Quake Time (L) : Longitudinal Direction


(T) : Transverse Direction

	A	1	A	2	. P1		P	2
	Footing	Body	Footing	Body	Longi	Tran	Longi	Tran
B (m)	1.0	1.0	1.0	1.0	10.0		13.7	11.0
H (m)	3.0	5.0	3.0	5.0	3.5		3.5	3.5
d (m)	0.1	0.1	0.1	0.1	0.225		0.15	0.225
M (t•m)	34	137	50	137	5 180		4 704	8 548
N (t)	0	0	0	0	0		0	. 0
S (t)	26 (49)	. 39	48	39	1 534		1 353	2 364
As $(cm^2/m)$	6.69	10.63	6.56	10.63				
Bar-Pitch	D13 ctc 150	D16 ctc 150	D13 ctc 150	D16 ctc 150	2-D25 ctc 150		D32 ctc 150	2-D32 ctc 150
$\delta c (kg/cm^2)$	.9	14	14	14	48		34	60
$\delta s$ (kg/cm ² )	1 4 3 0	2 174	2 103	2 174	2 576		2 071	2 503
$\Psi$ (kg/cm ² )	0.9 (1.7)	0.8	1.7	0.8	5.1		3.2	7,2
δca (kg/cm ² )	80	120	120	120	120		120	120
δsa (kg/cm ² )	1 800	2 700	2 700	2 700	2 700		2 700	2 700
Ψa ₁ (kg/cm)	3.9 (5.85)	5.85	5.85	5.85	5.85	5,85	5.85	5.85

## Appendix Table 8.3.3.3 STRESS OF DIRECT FOUNDATION (PC-BOX)


Note


Earthquake Time



	•				
$\square$	PL (m)	PB (m)	t (m)	PH (m)	∆ PH (m)
P ₁	7.0	5.5	0.8	22.2	0
P2	7.0	5,5	0.8	39.2	0
P3	7.0	5.5	0.8	27.7	0
P4	7.0	4.0	0.8	29.6	4.0
P5	7.0	5.5	0.8	26.0	0
^р 6	7.0	4.5	0.8	24.5	0
P7	7.0	4.5	0.8	24.5	0
P8	7.0	4.5	0.8	24.5	0
P9	7.0	5.5	0.8	24.5	0

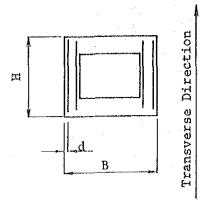
Appendix Table 8.3.3.4 DIMENSION OF PIERS (PC-Box)





Longitudinal Direction

				-										
Ъ9	7.0	5.5	0.1	14 196	5 590	905	D25 ctc 150		91	I 153	8.6	120	2 700	5.85
P8	7.0	5 <b>†</b>	0.1	10 129	5 185	716	D22 ctc 150	1	92	1 077	7.9	120	2 700	5.85
P7	7.0	4.5	I., 0 .	10 825	5 189	912	D22 ctc 150	r-1	66	I 482	8,9	120	2 700	5.85
° .96	7.0	4.5	0.1	10 125	5 185	216	D22 ctc 150	-1	92	1 075	7.9	120	2 700	5.85
· P5	7.0	5.5	I.0	15 568	5 599	920	D25 ctc 150		101	1 665	9.8	120	2 700	5.85
 P4	2.0	0**	0.1	6 226	3 200	310	D22 ctc 150	F-4	69	1 221	4.8	120	2 700	5.85
P3	7.0	5.5	0.1	15 522	4 841	817	D25 ctc 150	П	IOT	2 307	9.6	120	2 700	5.85
P2	7.0	5.5	1.0	13 704	3 799	695	D29 ctc 150	<b>*~4</b>	84	2 018	8.5	120	2 700	5.85
Pl	7.0	5.5	0.1	12 961	4 810	752	D25 ctc 150		84	1 269	7.7	120	2 700	5.85
	B (m)	(m) H	d (m)	M (t.m)	N (t)	S (t)	R-Bar	Layer	δc (kg/cm ² )	ðs (kg/cm ² )	φm (kg/cm ² )	δca (kg/cm ² )	ôsa (kg/cm ² )	φa (kg/cm ² )


Appendix Table 8.3.3.5 STRESS OF PIER (PC-BOX) IN LONGITUDINAL DIRECTION

Note: Earth Quak Time

Appendix Table 8.3.3.6 STRESS OF PIERS (PC-BOX) IN TRANSVERSE DIRECTION

Рg	7.0	5.5	0.1	19 459	5 609	812	D25 ctc 150	1	109	1 883	6.1	120	2 700	5.85
P8	7.0	4.5	0.1	17 795	5 174	734	D25 ctc 150	- <b>-</b>	118	2 148	5•5	120	2 700	5.85
27	7.0	4.5	0.1	17 852	5 189	736	D25 ctc 150	Ţ	118	2 156	5*5	120	2 700	5.85
₽6	7.0	4.5	0.1	17 795	5 174	734	D25 ctc 150	Г	118	2 148	2*2	120	2 700	5.85
P5.	7+0	5.5	0.1	20 702	5 618	831	D25 ctc 150	1	116	2 334	6.7	120	2 700	5.85
P4	7.0	4.0	0.1	11 698	3 115	479	D25 ctc 150	1	87	1 999	3.9	120	2 700	5.85
P3	7.0	5.5	0.1	18 025	4 798	728	D25 ctc 150	1	101	2 126	6.0	120	2 700	5.85
P2	7.0	5.5	0.175	21 239	3 814	739	D29 ctc 150	2	66	2 535	0.7.0	120	-2 700	5.85
Pl	7.0	5.5	Ι.0	13 542	4 770	643	D25 ctc 150	1	74	678	°£* 8 1	120	2 700	5.85
	B (m)	(ш) Н	d (m)	M (t.m)	N (t)	S (t)	R-Bar	Layer	δc (kg/cm ² )	δs (kg/cm ² )	φm (kg/cm ² )	<pre>§ca (kg/cm²)</pre>	ôsa (kg/cm ² )	ψa (kg/cm ² )

Note: Earth Quak Time



Pier	V max (t)	R min (t)	H (t)	Va(t)	Ha (t)
P ₃	1 608	- 154	156	<u>2 276</u> - 254	461
P ₄	1 048	41	105	2 397 - 329	376
P5	1 886	- 264	179	<u>3 139</u> - 467	318
P ₆	1 664	21	192	<u>2 763</u> ~ 530	318
P7	1 753	- 67	197	<u>2 470</u> - 530	285
P8	1 778	- 374	178	<u>2 467</u> - 530	236
P9	1 446	- 207	166	<u>1 758</u> - 382	332

#### (1) Longitudinal Direction

#### (2) Transverse Direction

Pier	V max (t)	V min (t)	H (t)	Va(t)	Ha (t)
P3	1 667	- 223	156	<u>2 276</u> - 254	461
P4	1 291	- 220	137	2 397 - 329	376
P5	2 034	- 408	184	<u>3 139</u> - 467	318
P6	1.676	7	198	<u>2 763</u> - 530	318
P7	1 745	- 60	204	<u>2 470</u> - 530	285
P8	1 734	~ 332	188	<u>2 467</u> - 530	236
P9	1 548	- 307	178	<u>1 758</u> - 382	332

Note:

V = Virtical Reaction

- H = Horizontal Reaction
- a = Allowable Reaction
- max = Maximum Reaction

min = Minimum Reaction

	ITEM	P ₃	Р4	P5	Р6	P7	P8	P9
	DIG (m)	4.0	4.0	4.0	4.0	4.0	4.0	4.0
	M (t∙m)	1 392	1 433	2 184	2 461	2 850	3 183	2 963
	N (t)	-223	-220	-414	7	-60	~332	-307
	S (t)	156	137	184	198	204	188	178
-	AS	D51 ctc 150						
¥-	Layer	1	1	1.5	1	1.5	2	1.5
SECTION A-A	δc (kg/cm ² )	49	50	59	84	83	83	87
ECTI	$\delta s (kg/cm^2)$	1 718	1 756	1 645	2 525	2 174	2 095	2 469
S	φ (kg/cm ² )	1.9	1.7	2.2	2.4	2.5	2.3	2.2
	δca (kg/cm ² )	120	120	120	120	120	120	120
	δsa (kg/cm ² )	2 700	2 700	2 700	2 700	2 700	2 700	2 700
	Ψa (kg/cm ² )	5.85	5.85	5.85	5.85	5.85	5.85	5,85
	Dia (m)	3.0	3.0	3.0	3.0	3.0	3.0	3.0
	M (t)	1 001	1 091	1 724	1 966	2 339	2 713	2 519
	N (t)	-223	-220	-414	7	-60	-332	-307
	S (t)	156	137	184	198	204	188	178
	AS	D51 ctc 150	D51 ctc 150		D51 ctc 150	D51 ctc 150	D51 ctc 150	D51 ctc 150
а - Д	Layer	1.	1	1.5	1	1,5	2	1.5
	$\delta c (kg/cm^2)$	44	48	63	90	89	87	94
SECTION	$\delta s (kg/cm^2)$	1 594	1 710	1 983	2 611	2 299	2 255	2 664
S	Ψ (kg/cm ² )	2.8	2.5	3.4	3.5	3.7	3.4	3.2
	δca (kg/cm ² )	120	120	120	120	120	120	120
	δsa (kg/cm ² )	2 700	2 700	2 700	2 700	2 700	2 700	2 700
	Ψa (kg/cm ² )	5,85	5.85	5.85	5.85	5.85	5,85	5.85

Appendix Table 8.3.3.8 STRESS OF PILE (PC-BOX) IN LONGITUDINAL DIRECTION

Appendix Table 8.3.3.9 STRESS OF PILE (PC-BOX) IN LONGITUDINAL DIRECTION

		ITEM	P ₃	Р4	P5	P ₆	Р ₇	P8	P9
		Dia (m)	4.0	4.0	4.0	4.0	4.0	4.0	4.0
	· .	M (t•m)	1 392	1 114	2 124	2 336	2 690	2 964	2 779
	-	N (t)	~154	41	-264	21	-67	-374	-207
-		S (t)	156	105	179	192	197	178	166
	•	Re-Bar AS	D51 ctc 150						
		Layer	1	1	1.5	1	1.5	2	1.5
ĺ	A-A	$\delta c (kg/cm^2)$	48	38	63	79	78	77	81
		$\delta s (kg/cm^2)$	1 629	1 095	1 807	2 378	2 061	1 992	2 246
	SECTION	$\Psi$ (kg/cm ² )	1.9	1.2	2.2	2.3	2.4	2.2	2.0
	-	δca (kg/cm ² )	120	120	120	120	120	120	120
		δsa (kg/cm ² )	2 700	2 700	2 700	2 700	2 700	2 700	2 700
		Ψa (kg/cm ² )	5.85	5.85	5.85	5.85	5,85	5.85	5,85
		Dia (m)	3.0	3.0	3.0	3.0	3.0	3.0	3.0
		M (t•m)	1 003	850	1 676	1 855	2 198	2 518	2 363
		N (t)	-154	41	-264	21	-67	-374	-207
		S (t)	156	105	179	192	197	178	1656
		Re-Bar AS	D51 ctc 150	D51 ctc 150		ctcD51 150	D51 ctc 150	D51 ctc 150	D51 ctc 150
		Layer	1	1	1.5	1	1.5	2	1.5
	B-B	δc (kg/cm ² )	45	39	62	85	83	81	89
	SECTION	$\delta s (kg/cm^2)$	1 516	1 086	1 819	2 448	2 169	2 131	2 436
	SEC	Ψ (kg/cm ² )	2.8	1.9	3.3	3.4	3.6	3.3	3.0
		δca (kg/cm ² )	120	120	120	120	120	120	120
		δsa (kg/cm ² )	2 700	2 700	2 700	2 700	2 700	2 700	2 700
	;	Ψa (kg/cm ² )	5.85	5.85	5.85	5.85	5.85	5,85	5.85

Pier No	(m) B	(m) H	(m) I	(t/m) E	(t/m) Kv	(m) L	$\mu = \frac{6EI}{Kv \cdot l^3}$	$\frac{n^4}{10}$	n
P ₃	6.0	3.5	21.4	2.7 106	1.35x10 ⁵	7.0	7.5	1.6	2
P4	6.0	3.5	21.4	ŧ1	1.11x10 ⁵	6.0	14.5	1.6	2
P5	6.0	3.5	21.4	ti	1.17x10 ⁵	6.0	13.7	1.6	2
P ₆	6.0	3.5	21.4	11	1.22x10 ⁵	6.0	13.2	1.6	2
P ₇	6.0	3.5	21.4	11	1.22x10 ⁵	6.0	13.2	1.6	2
Р ₈	6.0	5.0	62.5	31	1.22x10 ⁵	6.0	38.4	25.6	4
 Pg	6.0	5.0	62.5	11	1.11x10 ⁵	6.0	42.2	25.6	4

Appendix Table 8.3.3.10	RIGIDITY	OF	PILE	CAPS
-------------------------	----------	----	------	------

Note: µ

Е

Ι

Κv

l

n

: Rigidity coefficient of footing

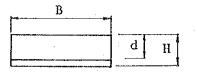
: Modulus of elasticity of footing (t/m²)

Moment of intertia of area of footing per row of piles (m⁴)
 Axial spring constant of a pile (t/m)

- : Center-to-center distance between piles (m)
- : Number of rows of piles

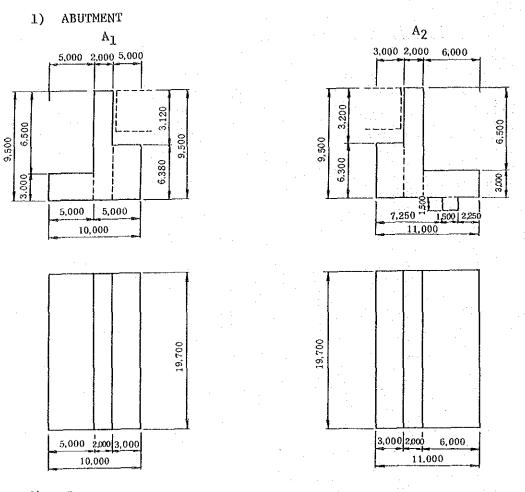
Decision:  $\mu > n^4/10$ 

Appendix Table 8.3.3.11 STRESS OF TIPICAL PILE CAPS


Pier No	P ₃ (T)	P9 (T)		
B (m)	9.4	16.4		
H (m)	3.5	5.0		
d (m)	3.2	4.7		
M (tm)	15 850	21 147		
S (t)	3 538	3 854		
As (cm ² )	2 541	1 970		
Bar Pitch	2-D51 ctc 150	3-D32 ctc 150		
δc (kg/cm ² )	93	62		
δs (kg/cm ² )	2 269	2 619		
ψ (kg/cm ² )	9.2	4.6		

Note

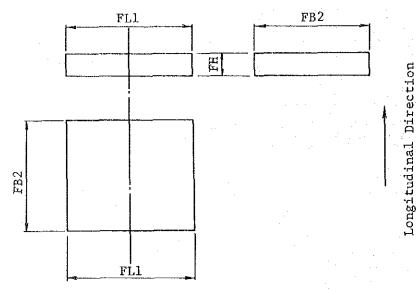
- (T): Transverse Direction
- Checking at E. Quak Time


• Allowable Stress

 $\delta ca = 120 \text{ kg/cm}^2$   $\delta sa = 2700 \text{ kg/cm}^2$  $\varphi a = 5.85 \text{ kg/cm}^2$ 



1	TEM	UNIT	AMOUNT	REMARK
	ABUTMENT	m3	1262	
	PIER	51	4096	مەلەر يەرىپە يەرىپەر بىلەر يەرىپەر يەرىپەر يەرىپەر يەرىپەر
CONCRETE	FOOTING	11	13798	(*************************************
	RCD PILE	11	22589	
	LEVEL CONCRETE	11	52	A ₁ , A ₂ , P ₁ , P ₂
	ABUTMENT	m ²	796	
FORM	PIER	11	10061	مانو _ن پېرې د بار او <u>پېرې پېرې او انامي وې د مارا او پ</u> رې وار او
	FOOTING	11	2839	
CASING PIPE	RCD PILE	m	1437	Loss + 20.0 m
-	ABUTMENT	t	104	Loss x 1.03
Π	PIER	11	337	£1
Re-BAR	FOOTING	11	1663	F1
	RCD PILE	F1	3929	1]
	ABUTMENT	щ3	955	
WORKING SPACE	PIER	11	12073	
	FOOTING	11	3407	
SCAFOLD		11	13	P4
STAGING		f)	2844	P3 - P9
COFFER DAM	FOOTING	m	114	P ₁ , P ₂
	ABUTMENT	m ³	3089	
EXCAVATION	FOOTING		3852	P ₁ , P ₂


## Appendix Table 8.3.3.12 QUANTITY OF SUBSTRUCTURE (PC-BOX)



Appendix Fig. 8.3.3.3 DIMENSION OF DIRECT FOUNDATION (TRUSS)



	BL1 (m)	FB2 (m)	FH (m)
P1	12.0	8.0	3.5
P2	15.0	10.0	3.5



	ECCENTRI	CITY (m)	SLIDE S	AFETY	REACTION	N (t/m ² )
Position	N.T	<u>E.T</u>	<u>N.T</u>	<u>E.T</u>	<u>N.T</u>	$\underline{E.T}$
A1 (L)	0.904	2.831	5.0	1.3	45	83
	1.667	3.333	1.5	1.2	100	150
A2 (L)	0.852	3.533	12.3	2.7	41	88
· ·	2.000	4.000	1.5	1.2	100	150
P1 (L)	0.0	1.674	8	6.0	56	106
9	1.333	2.667	1:5	1.2	100	150
P1 (T)	0.012	3.422	295.2	4.3	57	96
	2.000	4.000	1.5	1.2	100	150
P2 (L)	0.0	3.038	00	4.3	38	109
	2.000	3.333	1.5	1.2	100	150
P2 (T)	0.159	4.819	61.0	3.6	41	120
	2.500	5,000	1.5	1.2	100	150

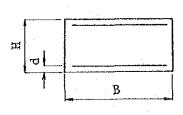
#### Appendix Table 8.3.3.13 STABILITY CHECK (TRUSS)

Note

1. UPPER : Acting reaction

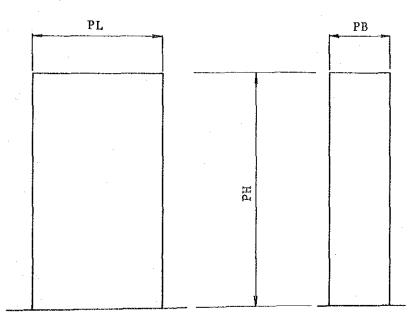
LOWER : Allowerable bearing reaction

N.T : Normal Time
E.T : Earth Quake Time
(L) : Longitudinal Direction


(T) : Transverse Direction

				· · · ·	· · · · · · · · · · · · · · · · · · ·			
	A ₁		A ₂		P	1	P2	
· · · ·	Footing	Body	Footing	Body	Long	Tran	Long	Tran
B (m)	1.0	1.0	1.0	1.0	7.0	7.0	7.0	7.0
H (m)	5.0	5.0	3.0	5.0	3.0	3.0	3.0	3.0
d (m)	0.15	0.15	0.225	0.15	0.175	0.175	0.175	0.175
M (t·m)	300	137	575	137	6 055	13 199	12 604	20 7 5 7
N (t)	0	0	0	0	3 937	3 937	4 041	4 041
S t)	109	39	137	39	341	517	508	634
As $(cm^2/m)$	41.6	70.71	84.00	10.71				
Bar-Pitch	D29 ctc 150	D16 ctc 150	D29 ctc 150	D16 ctc 150	2-D32 ctc 150	2-D32 ctc 150	2-D51 ctc 150	2-D51 ctc 150
δc (kg/cm ² )	41	14	63	14	79	92	105	107
$\delta s (kg/cm^2)$	2 625	2 197	2 650	2 197	1 157	1 797	1 845	2 2 2 2 0
$\Psi$ (kg/cm ² )	4:1	0.8	5.4	0.8	1.5	2.0	2.7	3.1
δca (kg/cm ² )	120	120	120	120	120	120	120	120
δsa (kg/cm ² )	2 700	2 700	2.700	2 700	2 700	2 700	2 700	2 700
$\Psi_{a_1}$ (kg/cm ² )	5.85	5.85	5.85	5.85	5.85	5.85	5.85	5.85

Appendix Table 8.3.3.14 STRESS OF DIRECT FOUNDATION (TRUSS)

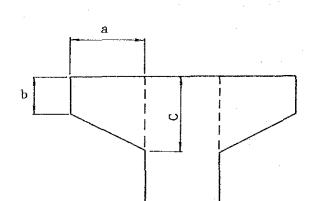

Note

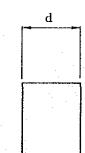
Earthquake Time



	r		
	PL (m)	PB (m)	PH (m)
P1	7.0	3.0	22.89
P2	<b>- 11</b>	18	39.89
P ₃	11	73	28.39
P5	. 81	11	21.29
P ₆	11	11	21.29
P7	н	11	21.29
P8 :	ii It	të	19.81
P9	T)	11	19.81

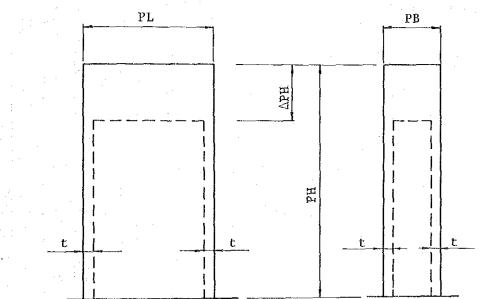
Appendix Table 8.3.3.15 DIMENSION OF PIERES (TRUSS)





8-33

- --

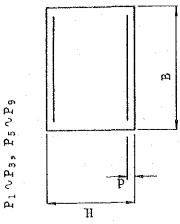
	a (m)	b (m)	c (m)	d (m)
P1	5.75	4.0	6.0	3.0
P ₂	5.75	4.0	6.0	3.0
P ₃	5.75	4.0	6.0	3.0
P4	5.75	4.0	6.0	5.0
P5	5.75	5.0	7.0	3.0
P6	5.75	5.0	7.0	3.0
P7	5.75	5.0	7.0	3.0
P8	5.75	5.0	7.0	3.0
P9	5.75	5.0	7.0	3.0


Appendix Table 8.3.3.16 DIMENSION OF BRACKET (TRUSS)








	PL (m)	PB (m)	t (m)	PH (m)	∆PH (m)
P4	7.0	5.0	0.8	28.67 -	6.0



_____

STRESS OF PIERS (TRUSS) IN TRANSVERSE DIRECTION Appendix Table 8.3.3.18

			Н								1	n .		
P9	7.0	3.0	0.175	6094	4195	380	D32 ctc 150	2	79	1072	1.6	120	2700	5.85
P ₈	7.0	3.0	0.175	6139	4229	382	D32 ctc 150	2	80	1079	1.7	120	2700	5.85
ΡŢ	7.0	3.0	0.175	6707	4257	398	D32 ctc 150	2	87	1325	1.8	120	2700	5.85
9 ₄	7.0	3.0	0.175	6731	4276	399	D32 ctc 150	2	87	1328	1.8	120	2700	2*82
P5	7.0	3.0	0.175	6683	4242	397	D32 ctc 150	2	87	1320	1.8	120	2700	5.85
P4	7.0	5.0	0.400	8765	3502	406	D25 ctc 150	2	65	1053	4.8	120	2700	5.85
P3	7.0	3.0	0.175	8520	4141	413	D32 ctc 150	2	111	2266	2.1	120	2700	5.85
P2	7.0	3.0	0.175	12604	4041	508	D51 ctc 150	64	105	1845	2.7	120	2700	5.85
Pl	7.0	3.0	0.175	6055	3937	341	D32 ctc 150	7	79	1157	1.5	120	2700	5.85
	B (m)	(m) H	(m) p	M (t.m)	N (t)	S (t)	R-BAR	Layer	δc (kg/cm ² )	δs (kg/cm ² )	φm (kg/cm ² )	δca (kg/cm ² )	δsa (kg/cm ² )	ψa (kg/cm ² )



Longitudinal Direction

Appendix Table 8.3.3.19 STRESS OF PIERS (TRUSS) IN TRANSVERSE DIRECTION

						Ľ	-1		·					
P9	7.0	3.0	0.175	16196	4195	580	D32 ctc 150	e	103	2093	2.6	120	2700	5.85
P8	7.0	3.0	0.175	16352	4229	584	D32 ctc 150	3	104	2118	2.6	120	2700	5.85
ΡŢ	7.0	3.0	0.250	17171	4257	598	D32 ctc 150	3	109	2354	2.7	120	2700	5.85
P6	7.0	3.0	0.250	17252	4276	600	D32 ctc 150	З	110	2366	2.7	120	2700	5.85
P5	7.0	3.0	0.250	17090	4242	596	D32 ctc 150	ά	109	2339	2.7	120	2700	5.85
P4	7.0	5,0	0.400	14512	3502	555	D25 ctc 150	2	96	2335	4.9	120	2700	5.85
P3	7.0	3.0	0.250	16577	4141	582	D32 ctc 150	Э	105	2250	2.6	120	2700	5.85
P2	7.0	3.0	0.175	20757	1404	634	D51 ctc 150	2	107	2220	3.1	120	2700	5.85
Pl	7.0	3.0	0.175	13199	3937	517	D32 ctc 150	2	92	1797	2.0	120	2700	5.85
	B (m)	н (m) Н	d (m)	M (t•m)	N (L)	S (t)	R-BAR	Layer	δc (kg/cm ² )	δs (kg/cm ² )	ψm (kg/cm ² )	6ca (kg/cm ² )	$\delta$ sa (kg/cm ² )	ψa (kg/cm ² )

ਾ ਪ Transverse Direction



Note: Earth Quak Time

•					
Pier	V max (t)	R min (t)	H (t)	Va (t)	Ha (t)
P3	1 958	~116	180	<u>2 276</u> -254	461
P4	1 507	-207	161	<u>2 397</u> -329	376
₽ ₅	1 688	-367	158	<u>3 139</u> -467	318
Р ₆	1 693	-364	158	<u>2 763</u> -530	318
¥7	1 770	-446	164	2 470 -530	285
P8	1 577	-331	175	<u>2 467</u> -530	236
P9	1 547	-307	171	<u>1 758</u> - 382	332

Transverse Direction

Note: V = Virtical Reaction H = Horizontal Reaction a = Allowable Reaction max = Maximum Reaction

min = Minimum Reaction

8-38.

Appendix	Table	8.3.3.21	STRESS	OF	PILE	IN	TRANSVERSE	DIRECTION
								6

	ITEM	P3	P4	P5	P ₆	P7	P8	P9
	Dia (m)	4.0	4.0	4.0	4.0	4.0	4.0	4.0
	M (t·m)	1 625	1 688	1 878	1 861	2 189	2 972	28
	N (t)	-116	~207	-368	~364	-446	-332	-307
	S (t)	180	161	158	158	164	175	171
	AS	D51 ctc 150			D51 ctc 150	D51 ctc 150	D51 ctc 150	D51 ctc 150
A-A	Layer	1	1.	1	1	1.5	1.5	1.5
SECTION	δc (kg/cm ² )	56	59	66	65	66	88	85
SEC	$\delta s (kg/cm^2)$	1 820	2 002	2 405	2 382	1 937	2 409	2 301
	$\Psi$ (kg/cm ² )	2.1	1.9	1.9	1.9	2.0	2.2	2.1
	δca (kg/cm ² )	120	120	120	120	120	120	120
	δsa (kg/cm ² )	2 700	2 700	2 700	2.700	2 700	2 700	2 700
	$\Psi_a \ (kg/cm^2)$	5.85	5.85	5.85	5.85	5.85	5.85	5.85
	Dia (m)	3.0	3.0	3.0	3.0	3.0	3.0	3.0
	M (t)	1175	1 286	1 483	1 465	1 779	2 5 3 4	2-423
· .	N (t)	-116	-207	-368	-364	-446	-332	-307
	S (t)	180	161	158	158	164	175	171
	AS	D51 ctc 150			D51 ctc 150	D51 ctc 150	D51 ctc 150	D51 ctc 150
<u></u> е	Layer	1	1	1	1	1.5	1.5	1,5
N B-B	δc (kg/cm ² )	53	56	65	65	65	94	90
SECTION	$\delta s (kg/cm^2)$	1 700	1 954	2 407	2 378	2 061	2 698	2 571
SI	$\Psi$ (kg/cm ² )	3.2	2.9	2.9	2.9	3.0	3.2	3.1
	δca (kg/cm ² )	120	120	120	120	120	120	120
	δsa (kg/cm ² )	2 700	2 700	2 700	2 700	2 700	2 700	2 700
	Ψa (kg/cm ² )	5.85	5.85	5,85	5,85	5,85	5.85	5.85

8-39

Pier No	(m) B	(m) H	(m) I	(t/m) E	(t/m) Kv	(m) L	$\mu = \frac{6EI}{Kv \cdot \ell^3}$	$\frac{n^4}{10}$	n
P3	6.0	3.5	21.4	2.7 104	1.35x10 ⁵	6.0	11.9	1.6	2
 P4	6.0	3.5	21.4	1 11	1.11x10 ⁵	.6.0	14.5	1.6	2
P5	6.0	3.5	21.4	11	1.17x10 ⁵	6.0	13.7	1.6	2
P ₆	6.0	5.0	62.5	11	1.22x10 ⁵	6.0	38.4	25.6	4
 P7	6.0	5.0	62.5	11	1.22x10 ⁵	6.0	38.4	25.6	4
P8	6.0	5.0	62.5	11	1.22x10 ⁵	6.0	38.4	25.6	4
<u>0</u> Pg	6.0	5.0	62.5	11	1.11x10 ⁵	6.0	42.2	25.6	4

Appendix Table 8.3.3.22 RIGIDITY OF PILE CAPS (PC-BOX)

Note

μ

Е

Ι

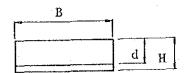
Kν

l

Rigidity coefficient of footing :

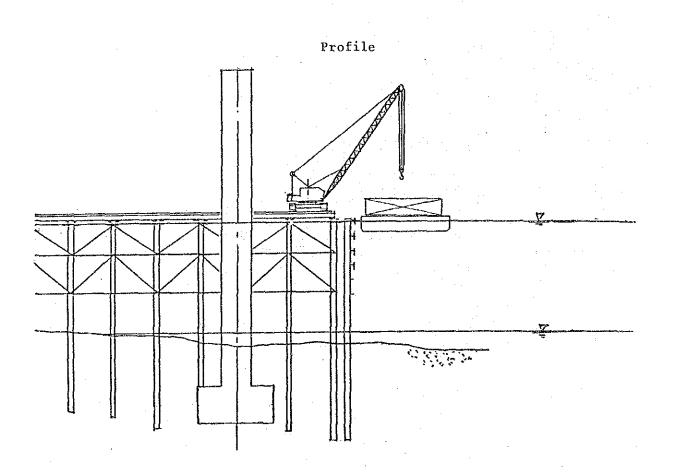
:

- Modulus of elasticity of footing  $(t/m^2)$ Moment of intertia of area of footing per row of : piles (m⁴)
- Axial spring constant of a pile (t/m) :
- Center-to-center distance between piles (m) :
- Number of rows of piles : n


Decision:  $\mu > n^4/10$ 

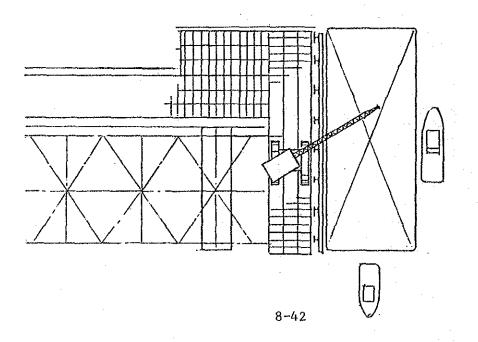
Pier No	P5 (L)	Pg (L)
B (m)	13.4	16.4
H (m)	3.5	5.0
d (m)	3.2	4.7
M (tm)	17 014	31 783
S (t)	5 279	8 629
As (cm ² )	3 621	4 432
Bar Pitch	D51 ctc 150	2-D51 ctc 150
δc (kg/cm ² )	73	59
δs (kg/cm ² )	1 689	1 719
Ψ (kg/cm ² )	12.3	11.2

Appendix Table 8.3.3.23 STRESS OF TIPICAL PILE CAPS

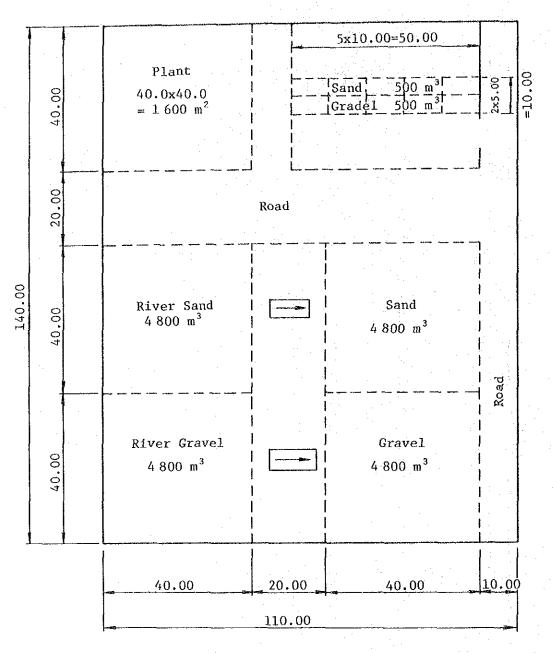

Note

- (L): Longitudinal Direction
- · Checking at E. Quak Time
- · Allowable Stress
  - $\delta ca = 120 \text{ kg/cm}^2$  $\delta sa = 2700 \text{ kg/cm}^2$  $\Psi a = 5.85 \text{ kg/cm}^2$




1	TEM	UNIT	AMOUNT	REMARK
	ABUTMENT	m3	2193	ang ng n
	PIER	11	4675	
CONCRETE	FOOTING	n	10641	
CONCRETE	RCD PILE	H.	19239	
	BRACKET	н	1840	۵۰۰٬۰۰٬۰۰٬۰۰٬۰۰٬۰۰٬۰۰٬۰۰٬۰۰٬۰۰٬۰۰٬۰۰٬۰۰٬
	LEVEL CONCRETE	11	73	A ₁ , A ₂ , P ₁ , P ₂
	ABUTMENT	m2	967	· · · · · · · · · · · · · · · · · · ·
FORM	PIER	11	4999	
	FOOTING	11	2401	
	BRACKET	11	1387	
CASING PIPE	RCD PILE	m	1264	Loss + 20.0 m
	ABUTMENT	t	181	Loss x 1.03
	PIER	11	385	łt
Re-BAR	FOOTING	11	1243	11
,	RCD PILE	11	3306	II
	BRACKET	17	184	11
	ABUTMENT	т ³	1160	
WORKING SPACE	PIER	11	5998	
011104	FOOTING	11	2881	
	BRACKET	51	1664	
SCAFOLD	BRACKET	m ²	353	
SCAFOLD		11	18	Р ₄
STAGING	·	11	1992	P ₃ - P ₉
COFFER DAM	FOOTING	m	106	P ₁ , P ₂
	ABUTMENT	m ³	5154	
EXCAVATION	FOOTING		3300	P ₁ , P ₂

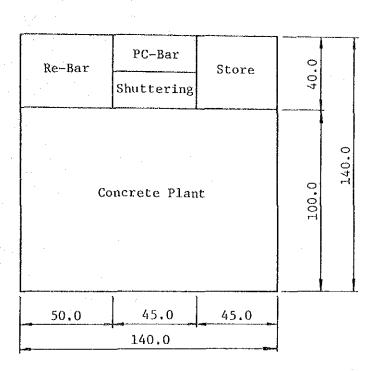

## Appendix Table 8.3.3.24 QUANTITY OF SUBSTRUCTURE (PC-BOX)



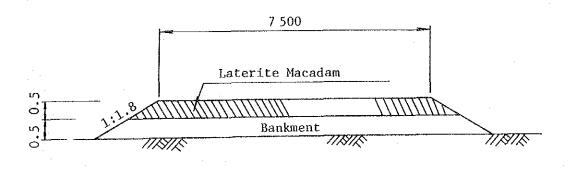

Appendix Fig. 8.4.3.1 JETTY

Plan









Appendix Fig. 8.4.3.3 LAYOUT OF CONCRETE PLANT

 $A = 110.00 \times 140.00 = 15400 \text{ m}^2$ 

## Appendix Fig. 8.4.3.4 TEMPORARY YARD



Appendix Fig. 8.4.3.5 TEMPORARY ROAD



Appendix Table 8.4.4.1	MACHINERY	FOR	PC	BOX	GIRDER	CONSTRUCTION

Item	Specification	Nos.	Remarks
Vorbau Wagen	Middle size	6	Cantilever erection
Wagen Roof		6	н
Generator	30 KVA	6*	ана <b>н</b>
Fork Lift		3	Transportation
Cable Cane		1	N N
Power Reach	28 t	3	11
		·	
High Speed Cutter	4 t	4	Processing PC tendon
Bar Bender		1	Processing R. bar
Lever Block	3 t	30	Form Work
Chain Block	3 t	12	38
Lever Winch	3 t	6	18
Htdraulic Jack	500 t	6	H
34	50 t	6	IF
Electric Welder	300 A	6	11
Submergible Pump		6	11
Ground Hopper	4 m ³	3	Concrete Placement
Belt Conveyer	350x7m	4	18
Concrete Backet	2.0 m ³	4	n
Vibrator	360x1.9KW	10	\$T
11	445x0.75KW	40	18
Finisher		2	n
Concrete Cutter		2	Finishing
Pit Hammer		6	Pitching
High Washer		6	Cleaning
Compressor		4	General
D&W Jack		8	Prestressing
D&W Electric Pump		10	11

· ·

Appendix Table 8.4.4.1	MACHINERY FOR PC BOX GIRDER CONSTRUCTION
	(cont'd)

ltem	Specification	Nos.	Remarks
Center Hole Jack	20 t	4	prestressing
Dynamo Meter		1	Calibration
Grout Mixer		3	Grouting
Grout pump		4	13
Water Tank	10 m ³	5	H,

* available in Burma

Appendix Table 8.4.4.2	MACHINERY	FOR	STEEL	TRUSS	CONSTRUCTION	
------------------------	-----------	-----	-------	-------	--------------	--

			,
Item	Specification	Nos.	Remarks
Traveler Crane	15 t	2	Cantilever erection
Auto Dolly	35 t	8	in the second
Dolly Frame		1	H.
Compressor	5.5 m ³	2	11
Welder	500 A	4	11
Erection Tool		8	Ħ
Generator	100 KVA	2*	Ħ
Crawler Crane	70 t	2	General
11	40 t	1	n
11	20 t	2	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -
		·	
Asphalt Finisher	3.6 m	1*	Pavement
Tire Roller	20 t	1*	11
Tamper	0.8	2*	ŧ
Asphalt Plant	30 t/h	1*	10 - 11 - 11 - 12 - 13 - 13 - 13 - 13 - 13
Concrete Finisher	4 m	1	Slab Work

* available in Burma

Appendix Table 8.4.4.3 MACHINERY FOR SUBSTRUCTURE CONSTRUCTION (1)

Item	Specification	Nos.	Remarks
Hydraulic Track Crane	20 t	3	Temporary work
Hydraulic Shovel	0.3 m ³	1*	11
Dump Truck	11t	2*	11
Bull Dozer	. 16 t	1*	It
Truck	11 t	4*	11
Magnetic Drilling Machine		3	Temporary work
Impact Wrench		5	11
High Speed Cutter		1	13
Wheel Loader	1.4 m ³	1*	Concrete mixing
Concrete Mixer Car	6 m ³	6	н
Portable Compressor	10.5 m ³ /min	3	17
Concrete Plant	60 m/h	2	11
Cement Silo	200 t	2	11
Classifier	30 t/h	1*	11
Stone Crasher	1500x300	1*	11
Bar Cutter		2	processing R. bar
Bar Processor		2	11
Bar Bender		2	н
Concrete Test Equipment		1*	Quality control
Concrete Breaker		8	Concrete placement
Submergeble Pump	150	4	¥ 8
High Frequence Vibrator		5	11
Transit		5	Survey work
Level		5	н
Optical Distant Meter		1	₹T

.

* available in Burma

	(cont a)		
Item	Specification	Nos.	Remarks
Generator	150 KVA	1*	Temporary work
H	75 KVA	1*	1) 1)
11	35 KVA	2*	11

1

2

2*

## Appendix Table 8.4.4.3 MACHINERY FOR SUBSTRUCTURE CONSTRUCTION (1) (cont'd)

* available in Burma

Micro-Buss

Saloon Car

Zeep

Transportation

11

## Appendix Table 8.4.4.4 MACHINERY FOR SUBSTRUCTURE CONSTRUCTION (2)

Item	Specification	Nos.	Remarks
Crawler Crane	150 t	3	R.C.D. work
	40 t	3	U .
Vibro-Hammer	90 KW	2.	tt -
in a star in the s	150 KW	2	11
R.C.D. Drill	5400	3	R.C.D. work
Mud Pit Tank Equipment		3	11
Roller Bit		2	51
Bentnite Mixer		3	11
Clamshell Backet	0.3 m ³	3	19
Bending Roll Machine	with welder	1	Casing processing
Semi-auto-welder		13	n .
Electric Welder		5	11
Goliath Crane	5 t.	1	13
Concrete Backet	1.0 m ³	36	Concrete placement
Treamie Pipe		3	17
Generator	300 KVA	9*	R.C.D. work
n in the second se	125 KVA	1*	. <b>1</b> f
Inside Drill		5	Measurement
Sinker		4	
Barge	1000 t	2*	Transportation
n	500 t	2*	t1
11	300 t	2*	11
Anchor Barge	240 HP	1	n
Tag Boat	800 HP	1	11
Accompany Ship	300 HP	1	. <b>11</b>
Transport Ship	60 HP	2	11
Concrete Carrying Ship	80 HP	3	11
Deck Barge	1000 t	2*	u .
Winch		4	18

* available in Burma

Appendix Table 8.4.4.5 COMPARISON OF COST A AND B ON BARGES

Unit: 1,000 kyats M.Cost Repair-Trans-Term Deprecia- ing Fee porta-Total (Months) Item tion Fee tion ----Barge (1000t) -**...** . Barge (500t) ----.... Anchor Barge (15t)240 HP ----------Tug Boat 800 HP . ...... -Sub Tug Boat 300 HP _ Launch 160 HP adat-Launch for Concrete-  $30 \text{ m}^3 80 \text{ HP}$ -----**** ----Deck Barge for Mud water (100t) ----

Note: Upper : Cost A Lower : Cost B

Appendix Fig. 8.4.5.1 MOBILIZATION OF STAFF FOR SUPERSTRUCTURE (PC-BOX)

D B S C R I F I O N       MNM       MNM<	
x     45     45     45       x     22     45       neer     22     1       nitcal     Engineer     22       nitcal     Engineer     23       n     18     1       n     18       n     14	
x     45     45       x     22     45       neer     22     1       cal Engineer     22     1       mical Engineer     22     1       itrater     45     1       mical Engineer     22     1       itrater     45     1       itrater     53     1       itrater     55     1       itrater     55     1       itrater     1     1	
x     22     45       neer     22     45       neer     22     40       cal Engineer     22     40       nitation     45     40       nitation     45     40       nitation     22     40       nitation     22     40       nitation     22     40       nitation     22     40       nitation     23     40       nitation     23     40       nitation     23     40       nitation     23     40       nitation     45     40       n     16     16       n     18     16       n     18     17       or40     55     18       ost     40     18       n     18     17	
x     22     45     45       neer     22     53     54       neer     22     53     54       cal Engineer     22     40     7       nistrater     45     45     7       nistrater     45     7     7       nistrater     55     7     7       n     18     7     7       n     18     7     7       n     18     7     7       or     40     55     7       or     40     7     7	
x     22     22       neer     22     5       cal     Engineer     22       nical     Engineer     40       nical     Engineer     45       nical     Engineer     37       trater     45     1       nical     Engineer     37       trater     45     1       nical     Engineer     37       filon     Engineer     37       n     18     1	
er     22     22       il Engineer     22     40       cal Digineer     22     45       ater     45     45       stater     53     45       ngineer     53     4       ngineer     53     4       16     18     18       16     18     18       16     18     18       16     5     18       16     5     18       16     5     18       16     5     18       16     5     18       160     55     18       174     5     18	
er     22     1     1       1. Engineer     53     1     1       cal Engineer     22     45     1       ater     45     1     1       starter     45     1     1       starter     45     1     1       stater     45     1     1       stater     45     1     1       stater     37     1     1       stater     5     1     1       stater     1     1     1       stater     5     1     1	
22 63 63 640 640 640 640 640 640 640 640 640 640	
63     40       45     40       45     45       45     45       37     45       37     45       45     45       45     45       45     45       45     45       45     45       45     45       45     45       45     45       53     1       60     1       55     1       63     1       63     1	
b3     1       40     1       45     1       45     1       45     1       45     1       45     1       45     1       45     1       45     1       45     1       45     1       13     1       62     1       18     1       60     1       55     1       74     1	
40     10       45     10       45     10       33     10       22     10       33     10       23     10       13     10       14     10       13     10       14     10       15     10       18     10       18     10       18     10	
22     1       45     1       45     1       45     1       33     1       29     1       53     1       60     1       60     1       55     1       63     1       63     1       63     1       63     1       63     1       63     1       64     1       65     1       66     1       67     1       68     1       63     1	
22 45 45 45 45 45 45 45 45 45 45 45 45 45	
45     45       37     1       37     1       29     1       4     1       62     1       18     1       55     1       55     1       13     1	
45     45       45     45       29     1       29     1       29     1       4     4       18     1       18     1       18     1       18     1       18     1       18     1       18     1       18     1       18     1       18     1       18     1       18     1       18     1       18     1       19     1	
45     45       29     1       29     1       29     1       29     1       29     1       29     1       29     1       29     1       12     1       18     1       18     1       18     1       18     1       18     1       18     1       18     1       18     1       19     1	
er 37	
29     1       29     1       23     1       33     1       62     1       62     1       16     1       18     1       18     1       18     1       18     1       18     1       18     1       18     1       18     1       18     1       13     1       14     1	
29 33 62 62 62 62 62 62 74 74 74 74 74 74 74	
62 62 62 62 62 62 62 74 74 74 74	
33     1       62     1       62     1       6     1       118     1       60     1       55     1       63     1	
62 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
62 1 18 1 18 1 19 1 19 1 19 1 19 1 19 1 1	
4 14 14 14 14 14 14 14 14 14 14 14 14 14	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
(150t) 60 18 18 18 18 18 18 18 18 18 18 18 18 18	
18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
60 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
55         1         1           53         1         1         1           83         1         1         1           74         1         1         1	- 11
ator (40) 55 1 1	
83 83 83 83 83 83 83 83 83 83 83 83 83 8	
z Boat 74 7	
Accompany Ship 14 14	
Concrete Ship   36             ==	

·

.

Appendix Fig. 8.4.5.2 MOBILIZATION OF LOCAL STAFF FOR SUPERSTRUCTURE (PC BOX)

)	
NOHAHAOSAA	
Nanager (EE)	
Vice Manager (AE)	┥╺╴╵╵┝┽┤╧┶┾┼╺┿╾┛┾┾┿╧╅┾┿┿┶┾┾┿┙╧┥╡┾┿┝┾┿┥╊┿╧┝┾╋┿┿┿┿┿┿┿┿┿┿┿┿┿┿┿┿┿
Substructure Engineer (AE)	┼╴┽
(SAE)	
Electrician (AE)	
(SAE)	
Mechanician (AE)	
(SAE)	
(III OS)	
(¥SO)	
Superstructure (AE)	
(SAE)	
Crane Operator (150t)	
(401)	
(201)	
Crue Tag Boat	
Anchor Tag	
Cocompary Shin	
ALLO THOMAS	
Transporting Ship	
Concrete Ship	
Ватер	

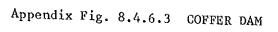
Appendix Fig. 8.4.5.3 MOBILIZATION OF STAFF FOR SUPERSTRUCTURE (TRUSS)

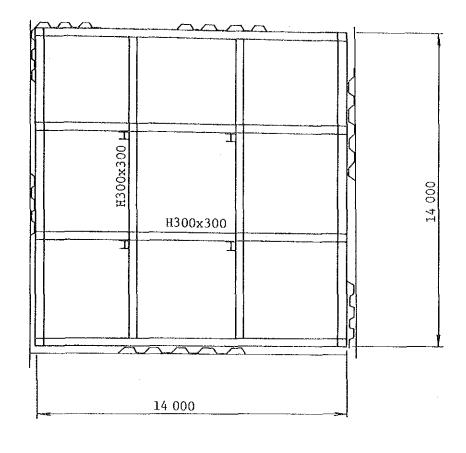
B IS C 2 I F I O M       MM       M			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0 4 4 5 0		
	0 	$ \begin{array}{c} 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\$	07 17 97
	Manager		
			-
	Chief Erection Engineer		
	Chief Slab Work Engineer		
	Chief Painting Work Engineer		
	Chief Mechanical Engineer		
	Chief Administrater		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	A.Chief Engineer		
Rank Erection       23       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1	East Bank Erection		
Dortation       30       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1	West Bank Erection		
Benk Silab Work       22       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14 </td <td>Transportation</td> <td></td> <td></td>	Transportation		
Bank Slab Work       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14 <th14< th="">       14       14<td>East Bank Slab Work</td><td></td><td></td></th14<>	East Bank Slab Work		
Ent       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4       4	West Bank Slab Work		
Tiolan       37       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 </td <td>Favement</td> <td></td> <td></td>	Favement		
Bano Erection       22       22       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1	Electrician		
	Forman		
	East Bane Erection		
	Vest Bank Erection		
	Dart Brais Clab Librady		- -
	ATON OTTO DELLA		
	West Bank Slab Work		
	Faiting Work (east Bank)		
	Paiting Work (west Bank)		
			-

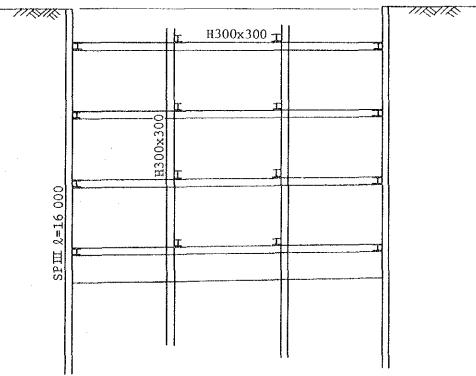
.

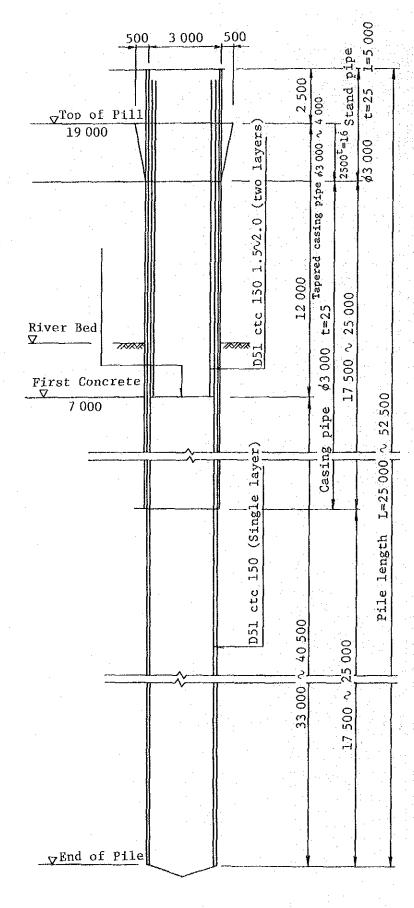
Appendix Fig. 8.4.5.4 MOBILIZATION OF LOCAL STAFF FOR SUPERSTRUCTURE (TRUSS)

NOLALKOSEO	W/W LINU AND IN A LINU AND IN A LINU	0 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
Manarer (EE)		
Vice Manager (AE)		
Chief Engineer (AE)		
Engineer		
Mechanician (AE)		
Transferring Work (SO III)		
Bridge Surface Work. (SAE)		
SJ2D WOTE (SAP)		
Painting Work (ASO)		

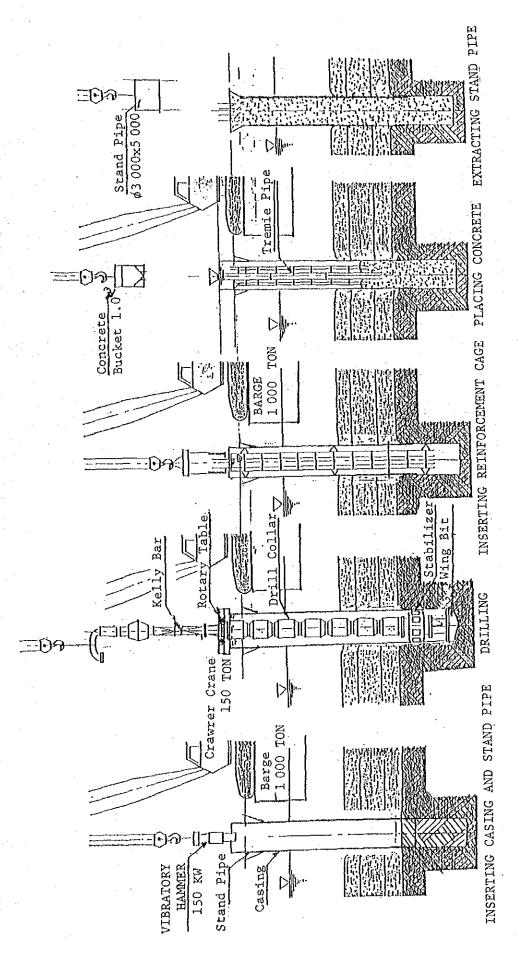

Appendix Fig. 8.4.5.5 MOBILIZATION OF LOCAL STAFF FOR SUBSTRUCTURE


.

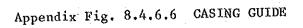

DESCRIFICN	
Nanager (EE)	31
Vice Manager (AE)	
Chief Engineer (AE)	
A. Chief Engineer (SAE)	
Electrician (AE)	
(SAE)	
(III OS)	
(ASO)	
Crane Operator (150t)	
( *O* )	
( 20t)	╬┿╏╼ ┿┿╿╼ ┿┿╽╼ ┽┿╽╼
Crue Tax Boat	
Anchor Tag	
Accompany Ship	
Transporting Shin	
Voncrete Snib	
Barne	
د در این در این مانور به در این مانور این می از ۲۰ مانو این میکور این میکورد و می میکور این میکورد این میکورد م ا	

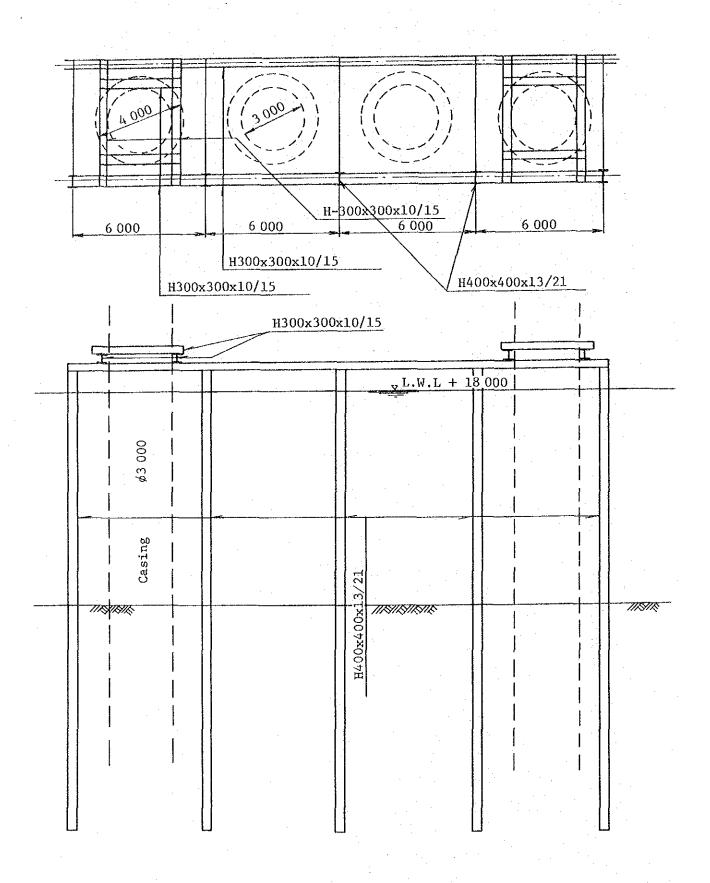

Appendix Fig. 8.4.5.6 MOBILIZATION OF STAFF FOR SUBSTRUCTURE

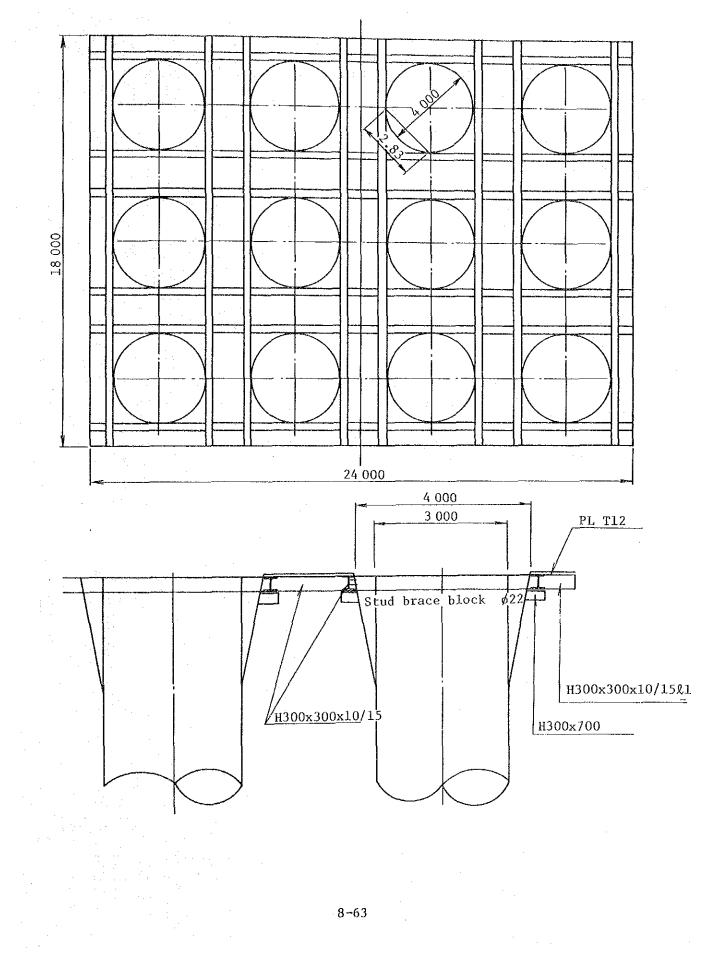
NOLGIROSEG	
rianager	
Vice Manarer	
Chief Engineer	
A. Chuef Engineer	
- incineer	
Chief Mehanical Engineer	
A. Cief Nechanical Engineer	
Chief Administater	
4. Chief Administreer	
Casing forman	
R.C.D Forman	
Crane Operator (150t)	
Crane Operator (40t)	
Par Boat Crite	
Anchor Tag Boat Crue	
Accompany Ship Crue	
Concrete Ship Crue	
Barge Scafolding Man	





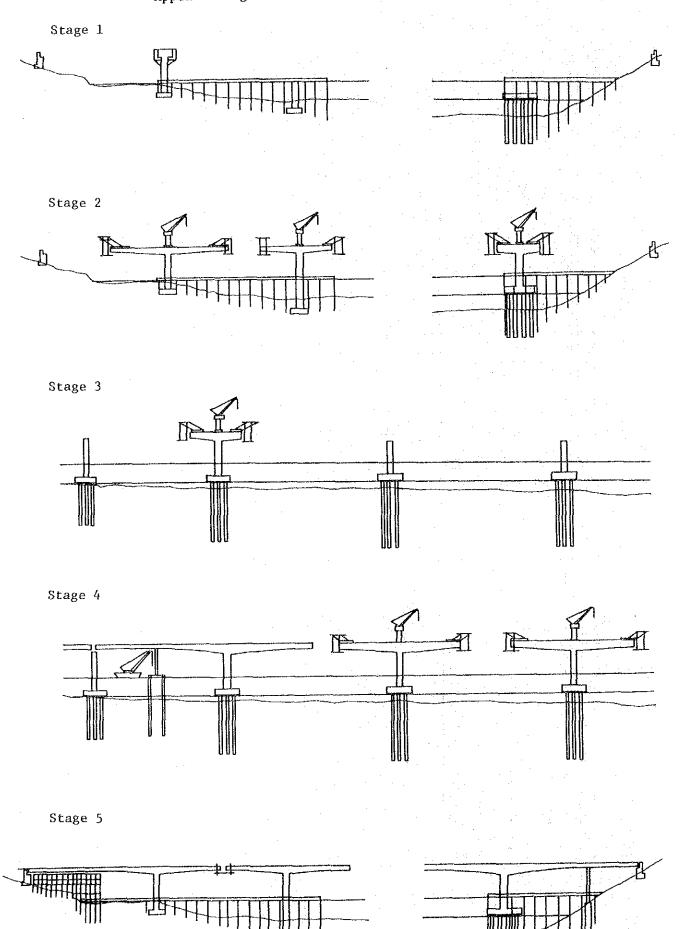



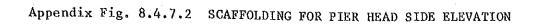



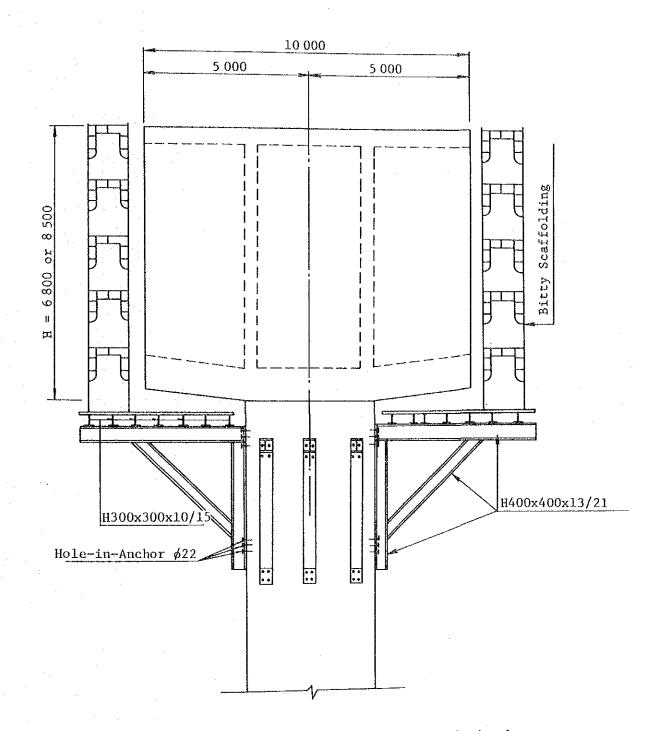


Appendix Fig. 8.4.6.4 R.C.D PILE

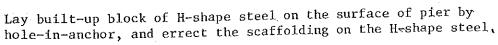


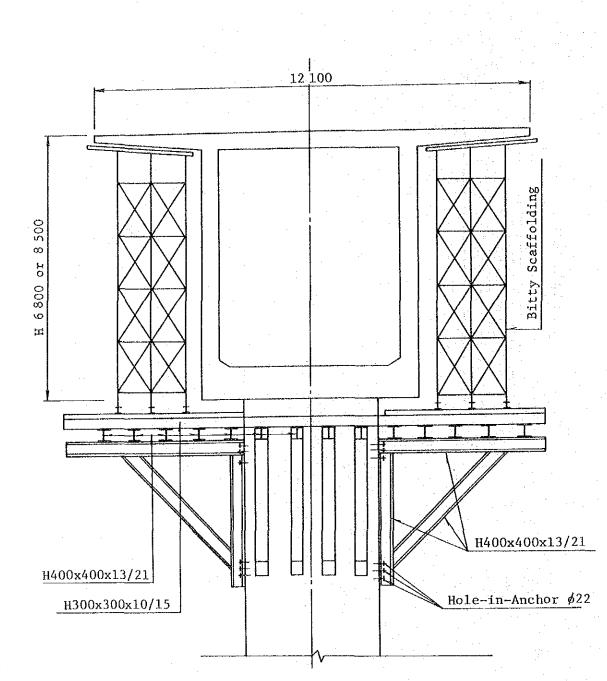
Appendix Fig. 8.4.6.5 PROCEDURE OF BORED CAST IN PLACE PILES



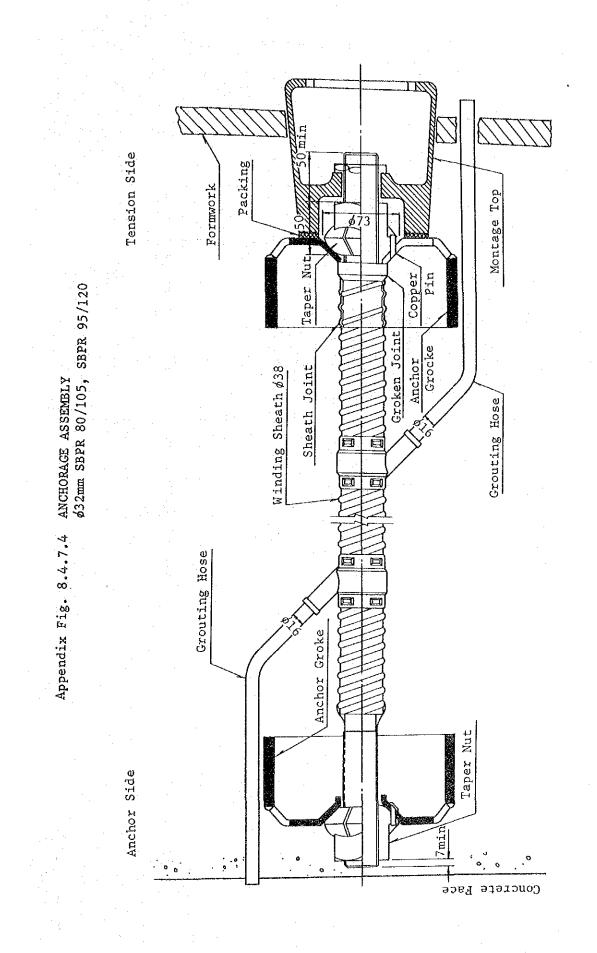



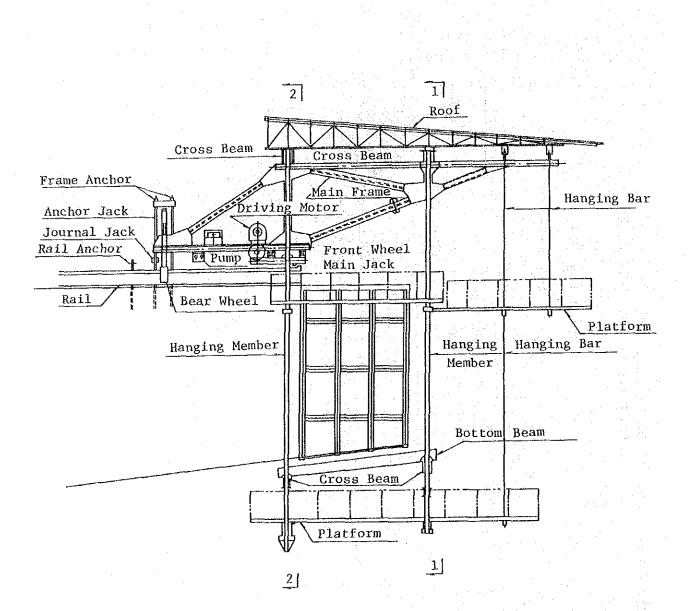





Appendix Fig. 8.4.6.7 SCAFFOLD OF PILE CAP

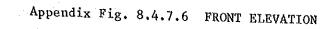

Appendix Fig. 8.4.7.1 ERECTION OF PC-BOX GIRDER

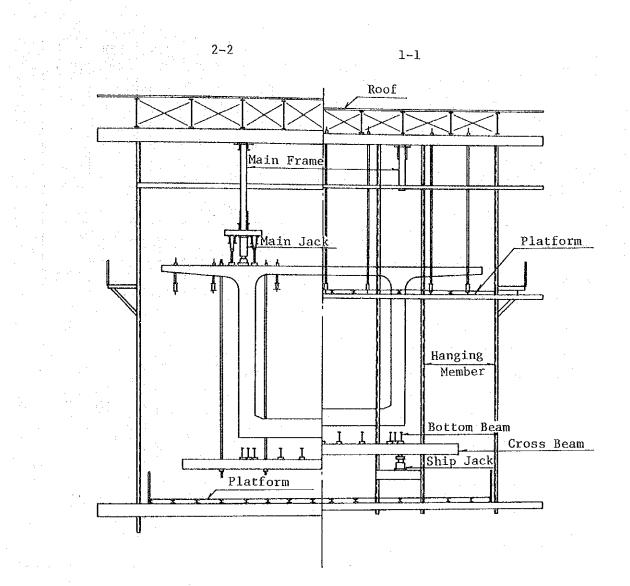






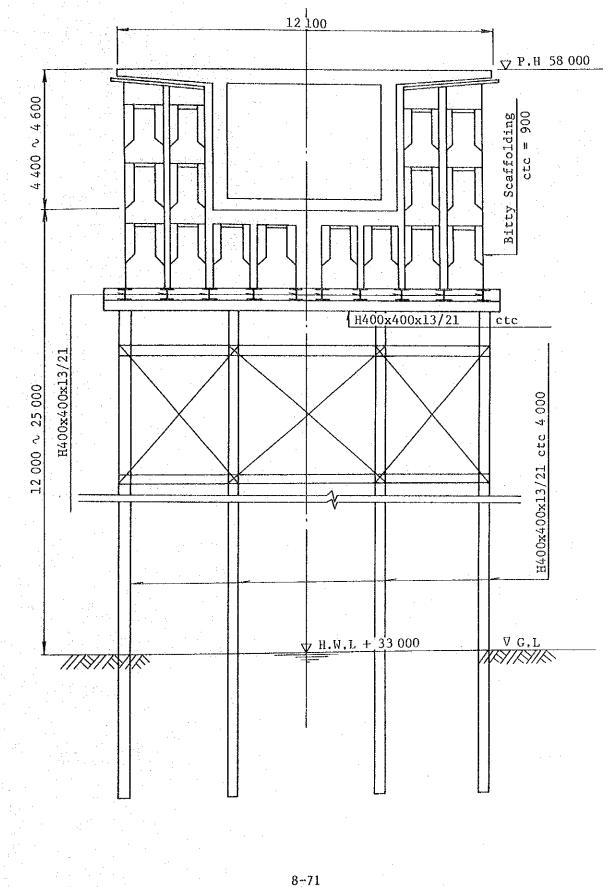


Appendix Fig. 8.4.7.3 FRONT ELEVATION



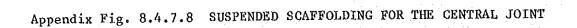


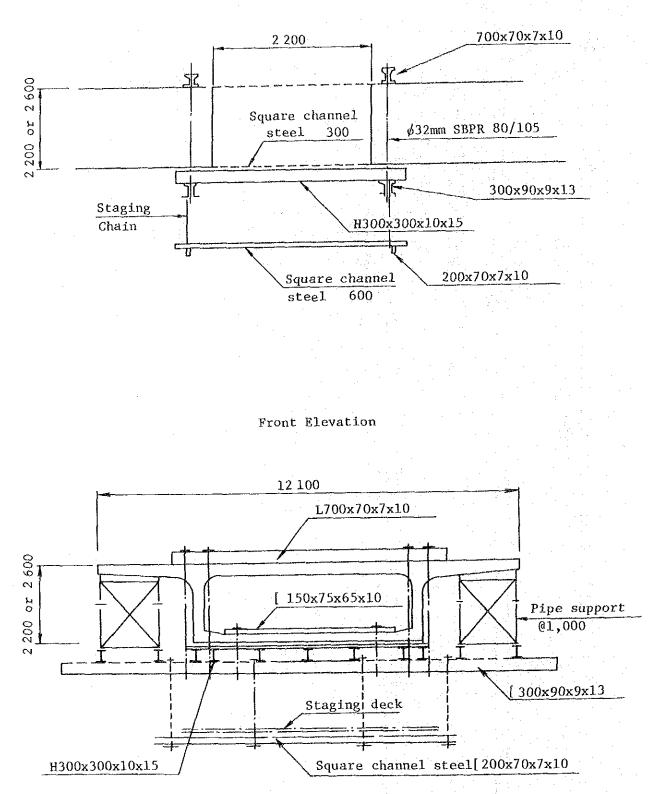
Appendix Fig. 8.4.7.5 VORBAU WAGEN SIDE ELEVATION





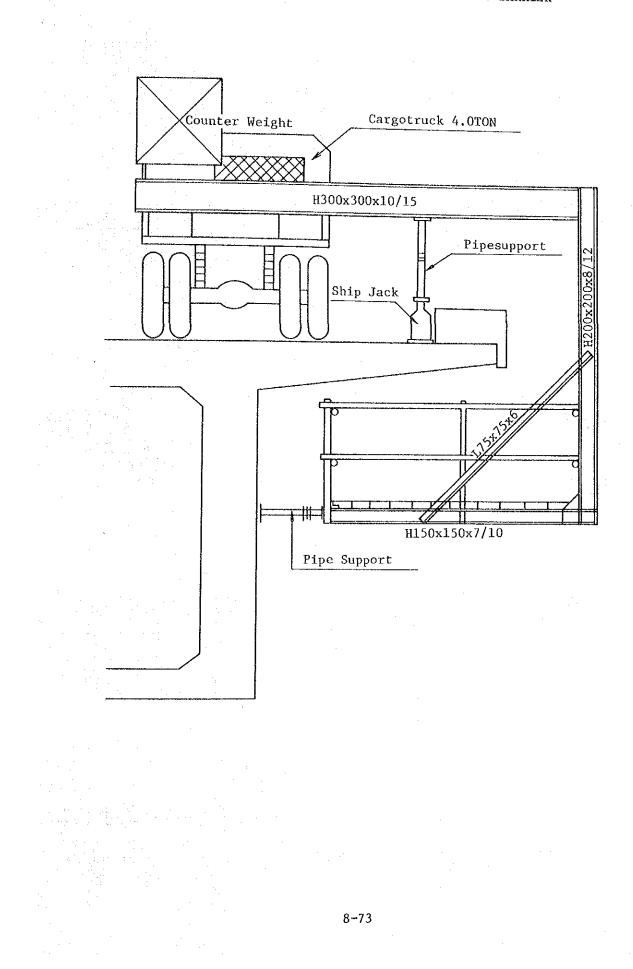

Appendix Table 8.4.7.1 TYPICAL CYCLE PROCEDURE OF FREI VORBAU

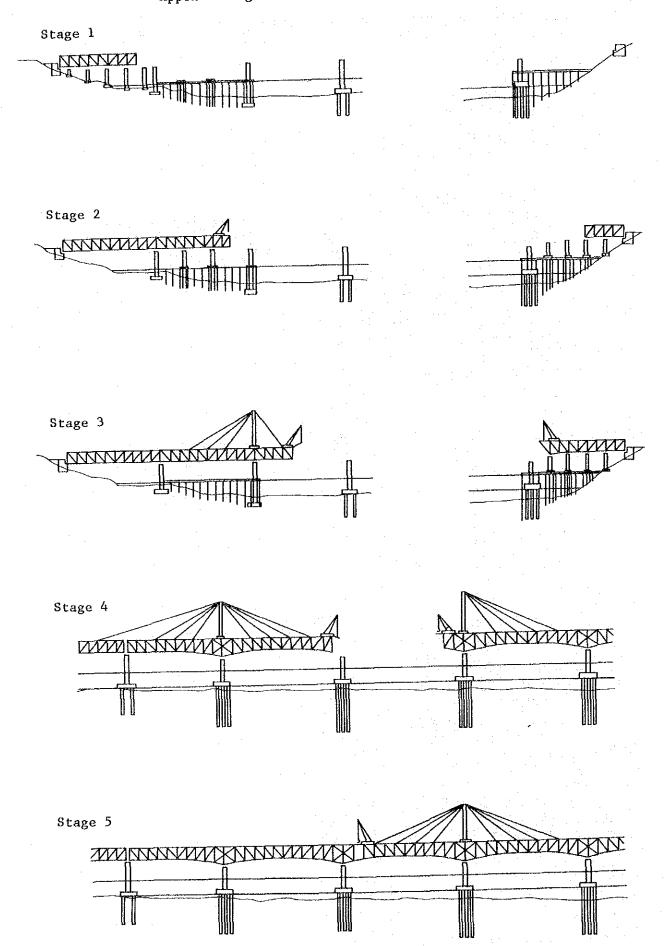

			1		1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 19	a part de la companya			
DAY	1ST DAY	2ND DAY	3RD DAY	4TH DAY	5TH DAY	6TH DAY	7TH DAY	8TH DAY	9TH DAY
FORWARDING WAGEN									
FORM WORK									
FABCATEING REIN FORCEMENTS PC BAR		<b>j</b>							
CONCRETE PLACEING									
CONCRETE CUREING				n an 1 1 An Anna Anna					
PRESTRESSING									

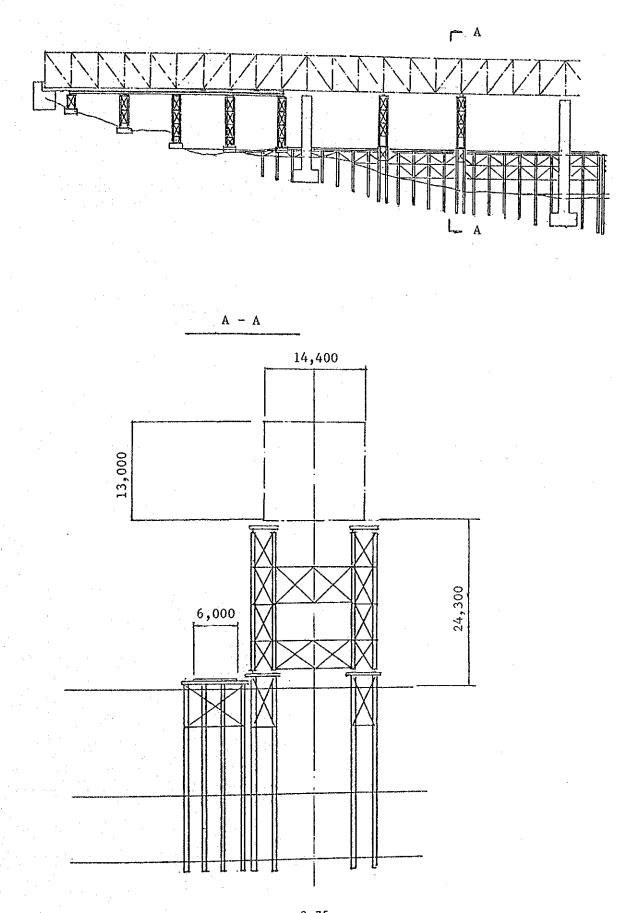

* One Cycle = 9 DAY  $\div$  0.75 = <u>12 Day/Cycle</u>

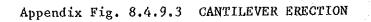
 $0.75 = \frac{22.5}{30}$  DAY ---- Rate of operation in consideration of weather and day off.

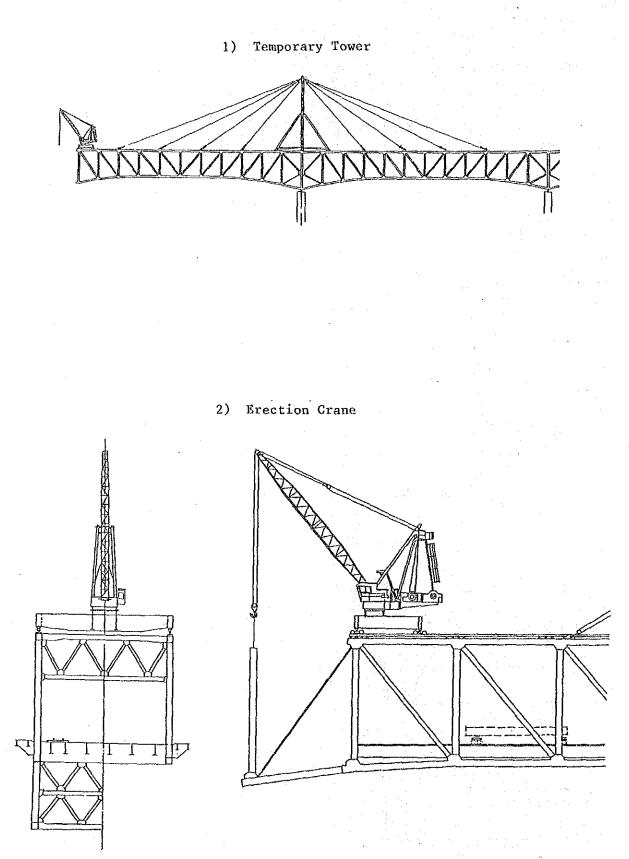



Appendix Fig. 8.4.7.7 SCAFFOLDING FOR SIDE SPAN FRONT ELEVATION

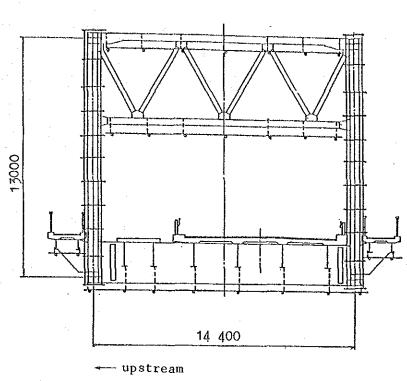




Side Elevation

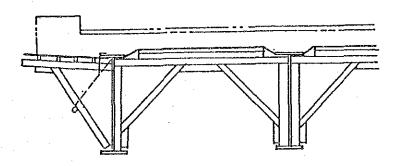









-upstream



Appendix Fig. 8.4.9.4 WORKING PLATFORM FOR ASSEMBLING GRUSS MEMBERS, SLAB WORK AND PAINTING

Appendix Fig. 8.4.9.5 FORM AND SCAFFOLD FOR SLAB WORK



# APPENDIX

# CHAPTER 9 COST ESTIMATE

Appendix Table	9.2.1	DEPARTMENT	OF	METEOROLOGY	AND	HYDROLOGY
----------------	-------	------------	----	-------------	-----	-----------

		1	1	[	<u> </u>	T	r		······			
YEAR	JAN.	FEB.	MAR.	APR.	MAY.	JUN.	JUL.	, AUG ,	SEPI.	OCT	NOV	DEC.
· . ·			-	<u>10 Yea</u>	irs mont	 thly mea	n rainf	<u>all (In</u>	ches)			
	0.04	0.10	0.00	0.26	5.28	9.26	10.02	8.86	8.29	6.63	0.57	0.27
				40 .7-	<b>.</b>							
			VITT	1	1	1	)	1	t t	th (Days		
	0.2	0.1	NIL	0.9	. ?	14.8	17	17	13.2	9	1.2	0.7
				Heavie	s 24 }	l 10ur rec	orded r	l ainfall	in 16	Years (I	nches)	
	0.87	0.97	0.28	0.55	5.16	4.96	4.43	3.86	3.72	2.05	2.72	0.83
		· · .								~		
						on / Per l			1	•		
Direction	N/NE	N/NE	S/S₩ 13/34	S₩/₩ 56/16	S/SW 29/44	S/S₩ 46/27	s/svi 54/30	S/S₩ 47/32	s/sw 38/25	N/N₩ 14/15	N/N₩ 32/16	N/N 54/9
Per-tge%	39/16	23/17	- 1 <u>27</u> 2 <del>4</del>	0, 10	29/44	+0/2/		477 36	20127		547.00	
			`ı	Mean W	Vind Spe	ı eed (Mil	es per	hour) (	1968 -	<u>1977)</u>		
	2.3	2.4	2.8	3.5	3.6	3.0	2.9	2.6	2.1	1,9	2.7	2.9
				(1961	to 1976	5) 15 Ye	ars mea	n of Ma	ximum T	emperati	re ('F	)
	87.2	94.2	100.7.	102.9		89.1		87.5	88.8	89.6	87:7	8516
						t Maximu	Monne	natura	(• ፑ )			
· · ·	98	102.9	107.6	111.2	109.4		95	95	96.3	97.9	98-2	95
	70							l				
× )	· .	}				<u>inimum 1</u>				01 7	70,0	59.3
	60.7	62.4	69.7	75.2	77.6	75-9	75.7	75,5	75.4	74•3	1030	,,,,,
					Lowest	Minimun Minimun	n-Tempel	l cature_(	( <u>"F)</u>			
	52.7	49.3	57.6	66.2	69-B	-71	72-5	71.6	70.5	, 66	58:6	54.0
			:		{·	 	ረ አተ በዓ	30 hrs	B.S.T.	(Perce	l ntage)	
			58%	<u>Rela</u> 59%	70%	84%	87%	87%	86%	85%	80%	76%
	71%	62%	ەرىر									
				Rela			6 at 18	. <u>30 hrs</u> 1 86%	<u>. B.S.T</u>   85%	. (Perce 81%	ntage) 74%	63%
	51%	36%	35%	. 42%	64%	83%	79%	. 00%		5.00		
								<u> </u>	:	<u> </u>	<u> </u>	

201 0EC. NOV. 5 <oct. 879 SEPT. 5 AUG. 626I ςς. Ż UN. 8761 ----MAY. ESTIMATED FROM APR . MAR FEB. JAN. 3100 2000 2700 8 240 ĝ 800 2800 88 00EX 88 200 8 ğ 8 ABOVE ZERO OF THE GAUGE ( mɔ ) H ELEVATION

Appendix Fig. 9.2.1 HYDRO GRAPHS OF KYAWZWA FOR THE YEAR 1978 & 1979

#### Appendix Table 9.2.2 CUSTOMS DUTY

Construction Machinery	15%
Sorts of Metals and Manufactures	755
Iron bars	155
Railway materials	10%
Ships and other vessils	202
Paints and paintirs material	75%
Omnibuss, vans and trucks	30%
Saloon and station-wagons	
upto Kyats 6,000 CIF	75%
Kyats 6,001 to 8,000 CIF	125%
Kyats 8,001 to 10,000 CIF	200%
Above Kyats 10,000 CIF	300%
Spare Parts	50%

Notes

1) Percentages are on ad-valorem

2) Sales tax 15% on the value of a/v and c/d

#### Appendix Table 9.2.3 INCOME TAX PER YEAR (KYATS)

			· · ·	
INCOME			TAX	· * .
8001		10000	n 240	Kyats
10001	-	12000	- 360	. <b>X</b>
12001		14000	× 540	. <b>4</b>
14001		16000	= 756	<b>19</b>
16001		18000	= 1044	<b>19</b>
18001	-	20000	- 1356	. <b>H</b> (1977)
20001	-	22000	· 1680	- <b>H</b>
22001		24001	= 2100	·
24001		26000	= 2580	- <del>1</del>
26001		28000	<b>»</b> 3060	т. Ч
28001	- 453	30000	<b>= 3624</b>	<b>X</b> .
30001		32000	≠ 4008	- <b>1</b>
32001		34000	= 5136	a 💘 👘 👘
34001	-	36000	<b>≈</b> 5940	1 <b>1</b> 1
36001		38000	= 6744	u .
38001	-	40000	<b>- 7596</b>	19. <b>⊈</b> (1. 17
40001	~	42000	= .8604	ng L <b>≇</b> – L
42001	~	44000	- 9696	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
44001		46000	=10896	- <b>1</b>
46001		48000	-12096	. ·.#
48001	-	50000	= 13296	포
50001		55000	<b>= 15396</b>	
55001	· •	60000	=17727	Ņ.
60001	•	65000	=20206	j <b>≇</b> 24
65001	**	70000	-22835	
70001		75000	=25614	11 . <b>N</b>
75001	·	80000	≈28543	ġ.
80001	-	85000	=31622	12 12
85001		90000	= 34851	ų
90001	-	95000	-38230	Ā
95001	-	100000	-41759	1. <b>F</b>
100001	-	110000	=45444	
110001		120000	-50289	1 ¹¹
120001	-	130000	≈55225	- <b>7</b>
130001		140000	<b>=6025</b> 0	Ŧ
140001	**	150000	=65366	¥.
150001		160000	<b>#</b> 70571	9
160001	<b>–</b> '	170000	-75867	ġ
170001	-	180000	=81252	퀃
180001	=	190000	=86728	<b>#</b>
190001	<b>A</b> .	200000	=92293	r.
200001	8	210000	-97518	2
210001	-	220000 =	102791	<b>7</b>
220001	-	230000 +	108112	<b>,</b>
230091	<b>4</b> 2	240000	113481	•
240001	-	250000	118898	4
250001	-	260000		
260001	<b>a</b>	270000 -		
270001		280000 .		•
280001	a#	290000		<i>b</i>
290001	-	300000	146703	

9--4

#### Appendix Table 9.2.4 OCEAN FRIGHT

Item	Estimated Cost						
	Insurance						
Iron and Steel	Bandle	F/t	125 Ka				
rion and breet	Loading unloading	F/t	125 Ke				
same tim - Faith & bash + 50 - 100 - fan Josefan (a a anna a anna anna	Ocean fright	F/t	450 Ks				
	Insurance	-					
	Case	m ³	417 Ks				
Machinery	Crate	m ³	375 Ke				
	Skid	F/t	146 Ks				
	Ocean fright	F/t	450 Ks				

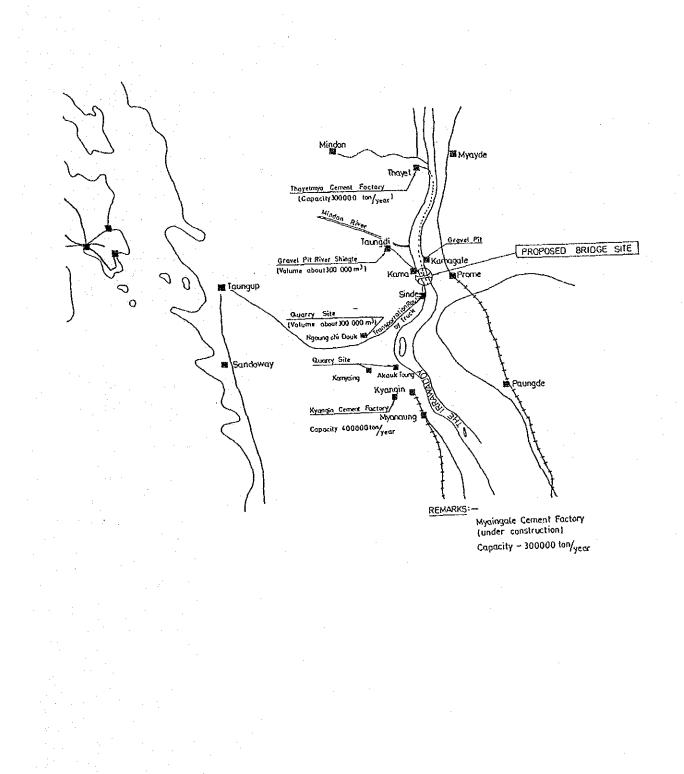
Note: Measure tons in volume.

# Appendix Table 9.2.5 INLAND TRANSPORTATION CHARGES PER MILE (KYATS/TON)

		100 A. 100 A.
RTC	BRC	IWTC
Road	Rail	River
0.59	0.18	0.08
0.53	0.15	
0.80	0.39	0.17
		1.2
	Road 0.59 0.53	Road         Rail           0.59         0.18           0.53         0.15

Note: Loading and unloading charges are:

Cement	Kyats 90 per ton
Timber	Kyats 150 per ton
Sand	Kyats 34 per ton
Heavy Equipment	Kyats 300 per ton


Item	Unit	Yokohama FOB	Transpo Charg Insur	es &	Tax & Duty	Total
		FC	FC	LC		
Reinforcing Bar (-D32)	ton	2,580	770	330	395	4,075
Reinforcing Bar (D51)	H	4,500	770	330	689	6,298
PC Tendon	h.	3,070	630	330	470	4,500
Buildup Steel Member	11	22,917	1,568	1,125	3,506	29,116
Paint	11	31,250	2,063	1,302	23,909	58,524
Casing for R.C.D	Ŧſ	4,080	630	4,960	624	10,294
H-Section Steel	11	2,708	1,403	718	414	5,243

Appendix Table 9.2.6 COST OF MAJOR IMPORTED MATERIALS (KYATS)

Appendix Table 9.2.7 COSTS OF MAJOR LOCAL MATERIALS (KYATS)

		1	
Items	Unit	Cast	Producing Place
Cement	ton	870	Kyangin Factory
Stone Boulder	Cu.M	122	Zalon Quarry
Coase Sand	11	75	Zalon Creek
Fine Sand	FI,	40	Kama Quarry
River Shingle	11	120	Taung D: Quarry
Hard Wood	ton	2,604	Magwe Division
Jungle Wood	ł1	2,232	<b>11</b>
بالجاريهي والاليان ويوين كالتكلية بارجوا والمتعاد المراجع			والشميسين المقصيص المتصبين المستعمونين فأندانك تتعاجم والمحصمين والمرجب ويرارك والمتعاصين

Note: Above costs include CC overhead Charges, transportation charges, loading and unloading charges and storage charges,



Appendix Fig. 9.2.2 GUIDE MAP OF MATERIAL SURVEY

Staff Engineer Class	I	330 ks/hr
11	II	290 "
	III	250 "
Senior Supervisor		270 "
Supervisor		230 "

Appendix Table 9.2.8. FOREIGN LABOUR COSTS (ks/hour)

Appendix Table 9.2.9 LOCAL LABOUR COSTS

	(ks/hour)
Excutive Engineer	10.3
Assistant Enginner	7.9
Sub Assistant Engineer	5.6
General Formen	8.3
Seaffold Man	5.3
Carpenter	7.4
Operator	n <u>e de</u> fente m <u>en p</u> enten (e menor finnen) ^{−−−} panel fo
Mechanic	7.4
Electrician	
Concrete Placing Man	
Ordinary Worker	- 2.1
Fabricater	5.3

# Appendix Table 9.2.10 COSTS OF MAJOR MACHINERY AND EQUIPMENT

	Yokohama	Transpo	rtation	Tax	000 Kyats
Item	FOB Cost		Insurance	& Duty	Total
	F.C	F.C	L.C	L.C	
Crowler Crane (70 ^t )	3,204	396	224	490	4,314
T.V.C Flame	633	63	39	97	832
Vor Bau Wagen (2-Frames)	1,119	779	324	171	2,393
Root and floor of Vor Bau Wagen	223	12	5	34	274
Truck (11 ^t )	313	60	24	48	445
Concrete Truck Mixer (3 CBM)	388	60	24	59	531
Concrete Plant (60 CBM/H)	1,083	231	84	166	1,564
Cement Silo	570	159	63	87	879
Generator (300 KVA)	409	16	6	63	494
Concrete Test Equipment	513	19	6	78	616
Crowler Crane (150 ^t )	6,750	412	167	1,033	8,362
Vibro Hammer (150 KW)	1,525	18	7	233	1,783
R,C Drill (S400H Class)	2,516	80	47	385	3,028
Roller Bit	1,379	8	3	211	1,601
Bending Roll & Welding Equipment	3,621	102	50	554	4,327
Semi-Auto-Welder	23	1		4	28
Barge (1,000 ^t )	2,804	765	306	429	4,304

Appendix Table 9.3.1 UNIT COST OF SUPERSTRUCTURE (1)

		·			U	Init: Kyat
Work Item	Unit	۴•C	Ŀ•C	F•C+L•C	Τ&D	Total
Concrete	m ³	76	614	690	12	702
Form	m ²	71	77	148	8	156
R. Bar	Ton	3,152	680	3,832	414	4,246
PC Tendon	\$1	30,621	1,129	31,750	5,744	37,494
Bearing Shoe	13	49,169	782	49,951	7,802	57 <b>,</b> 753
Cerbstone	M	38	217	255	5	260
Hand Rail	Ton	25,414	762	26,176	3,771	29,947
Exp. Joint	11	28,677	762	29,439	4,325	33,764
Drainage	It	33,814	762	34,576	5,199	39,775
Pavement (Road)	M3	21	445	466	3	469
Pavement (Sidewalk)	M ²	42	36	78	6	84
Scafforld	LS	7,095,709	1,829,876	8,925,585	1,148,613	10,074,198
FV work	11	248,250	298,236	546,486	25,000	571,486
Miscellaneous	11	57,500	5,000	57,500	8,625	71,125
				······		

Road Bridge --PC Box Girder

Rail-cum-Road Bridge -- Steel Truss

Work Item	Unit	F∘C	L · C	F•C+L•C	T & D	Total
Concrete	M3	23	545	568	4	572
Form	M2	34	152	186	4	190
R. Bar	Ton	3,531	491	4,022	454	4,476
Truss Steel (SM58)	n	20,919	447	21,366	1,022	22,388
Truss Steel (SM50Y)	II	18,562	447	19,009	776	19,785
Truss Steel (SS41)	11	17,850	447	18,297	683	18,980
Hand Rail	11	25,414	762	26,176	3,771	29,947
Bearing Shoe	<b>11</b>	49,169	782	49,951	7,802	57,753
Exp. Joint	11	28,677	762	29,436	4,325	33,764
Dranage	31	33,814	762	34,576	5,199	39,775
Painting (Factory)	M ²	70	0	70	0	70
Painting (Site)	м2	20	4	24	3	27
Track Rail	M3	313	60	373	47	420
Sleeper	M ²	0	2,542	2,542	0	2,542
Pavement (Road)	21	30	27	57	5	62
Pavement (Sidewalk)	Ton	20	17	37	2	39
Temp. Bent	11	8,922	672	9,594	1,352	10,946
Temp. Tower	11	11,270	702	11,972	1,740	13,712
TC Work	t <b>i</b>	697	424	1,121	77	1,198
Cerbstone	M	28	20	48	4	52

			·	· · · · · · · · · · · · · · · · · · ·	U	nit: Kyats
Work Item	Unit	F•C	L•C	F•C+L•C	Τ& D	Total
Concrete (Ock=300 kg/cm ² )	M3	74	620	694	12	706
Concrete (σck=240 kg/cm ² )	11	23	511	534	4	538
Form	M ²	118	85	203	13	216
R. Bar (SD30)	Ton	3,125	680	3,832	414	4,246
R. Bar (D51)	18	5,663	680	6,343	742	7,085
Casing Pipe	M	9,596	858	10,454	1,438	11,892
Casing Guide	Ton	3,757	330	4,087	541	4,628
Drilling Work	М	813	210	1,023	103	1,126
Scafforld	м3	69	18	87	8	95
Inside Form	м2	1,000	248	1,248	143	1,391
Scafforld for Pier Bracket	M3	333	90	423	41	464
Level Concrete	M3	23	493	516	4	520
Cofferdam	М	6,458	1,290	7,748	782	8,548

Appendix Table 9.3.3 UNIT COST OF SUBSTRUCTURE

.

Road Bridge -- PC Box Girder

			· · ·	F.C		Ц,	0			Unit:	1000 Ky
	Work Item	Unit	Quantity	Unit		Unit L.	<u>v</u>	Sub	Tax a Unit	nd duty	Total
		<u> </u>		cost	Cost	cost	Cost	Total	cost	Cost	Total
1	RCD Work										
	Casing Pipe	M	1,305	9.596	12,523	0.858	1,120	13,642	1.438	1,877	15,519
:	Concrete	мэ	20,660	0.074	1,529	0.620	12,809	14,338	0.012	248	14,586
	R. Bar	Ton	3,739	5.663	21,174	0.680	2.543	23,717	0.742	2,774	26,490
	Casing Guide	Ton	61	3.757	229	0.330	20	249	0.541	33	282
	Drilling Work	M	2,923	0.813	2,376	0.210	613	2,989	0.103	301	3,290
	Subtotal				37,831		17,105	54,936		5,233	60,169
2,	Footing Work	· · · ·									····
•.	Concrete	Н3	12,987	0.023	299	0.511	6,636	6,935	0.004	52	6,987
	Рогш	M2	2,765	0.118	326	0.085	235	561	0.013	36	597
	Scaffold	H3	3,318	0.069	229	0.018	60	289	0.008	27	316
	Level Concrete	M3	49	0.023	1	0.493	24	25	0.004	0	25
	Bottom Form	M ²	2,700	1.000	2,700	0.248	670	3,370	0.143	386	3,756
	R. Bar	Ton	1,566	3.152	4,936	0.680	1,065	6,001	0.414	648	6,649
	Coffer Dam	м	110	6.458	710	1.290	142	852	0.782	86	938
	Excavation	^{д3}	6,641	0	0	0.002	13	13	0	0	13
	Subtotal		· · · · · · · · · · · · · · · · · · ·		9,201		8,845	18,046		1,235	19,281
3	Pier Work		-		: •						
	Concrete	н3	5,425	0.023	125	0.511	2,772	2,897	0.004	22	2,919
	Form(outside)	м2	10,816	0,118	1,276	0.085	919	2,195	0.013	141	2,336
	Form(inside)	M2	13	1.000	13	0.248	3	16	0.143	2	18
	R. Bar	Ton	447	3.152	1,409	0.680	304	1,713	0.414	185	1,898
	Scaffold	м3	12,979	0.069	896	0.018	234	1,130	0.008	104	1,234
	Miscellaneous	Ls	. 1	-	0		867	867	-	0	867
	Subtotal				3,719		5,099	8,818		454	9,272
4	Total				50,751		31,049	81,800		6,922	88,722

#### Appendix Table 9.4.2 COST OF SUBSTRUCTURE (2)

Rail-cum-Road Bridge -- Steel Truss

Unit: 1000 Kyats

				F.C			C		Tax	and duty	1 IOOO Ayats
	Work Item	Vnit	Quantity		Cost	Unit cost	Cost	Sub Total	Unit cost	Cost	Total
1	RCD WORK				17. A.						t de Rigere
•	Casing Pipe	м	1,179	9.596	11,314	0.858	1,012	12,326	1,438	1,695	14,021
	Concrete	мЗ	18,145	0.074	1,343	0.620	11,250	12,593	0,012	218	12,811
	R. Bar	Ton	3,323	5.663	18,818	0,680	2,260	21,078	0.742	2,466	23,544
	Casing Guide	Ton	61	3.757	229	0.330	20	249	0.541	33	282
	Drilling Work	м	2,567	0.813	2,087	0.210	539	2,626	0.103	264	2,890
	Subtotal				33,791		15,081	48,872		4,076	53,548
2	Footing Work			· · · · · · · · · · · · · · · · · · ·						:	
	Concrete	См	10,557	0.023	243	0.511	5,395	5,638	0.004	42	5,680
	Form	ң2	2,387	0,118	282	0.085	203	485	0.013	31	516
••••	Scaffold	м3	2,864	0.069	198	0.018	52	250	0.008	23	273
	Bottom Form	M2	2,400	1.000	2,400	0.248	595	2,995	0.143	343	3,338
	Level Concrete	м3	7,3	0.023	2	0.493	36	38	0.004	0	.38
	R. Bar	Ton	1,269	3.152	4,000	0.680	863	4,863	0.414	525	5,388
	Coffer Dam	<u>м</u>	106	6.458	585	1.290	137	822	0.782	83	905
	Excavation	м3	9,810	0	0	0.002	19	19	0	0	19
	Subtotal		<u>i,</u>		7,810		7,300	15,110		1,047	16,157
3	Pier Work			····							
	Concrete	м3	9,349	0.023	215	0.511	4,777	4,992	0.004	37	5,029
	Form (Outside)	M2	8,072	0,118	952	0.085	686	1,638	0.013	105	1,743
	Form (Inside)	<u>ж</u> 2	13	1.000	-18	0.248	4	22	0.143	3	25
	R. Bar	Ton	807	3.152	2,544	0.680	549	3,093	0.414	334	3,427
	Scaffold	м ³	9,685	0.069	668	0.018	174	842	0.008	78	920
	B. Scaffold	м ²	353	0.333	118	0.090	32	150	0.041	14	164
	Miscellaneous	Ls	1		0		775	775	<u> </u>	. 0	775
	Subtotal			· .	4,515		6,997	11,512		571	12,083
4	Total				46,116		29 378	75,494		6,294	81,788

# Appendix Table 9.4.3 COST OF SUPERSTRUCTURE (1)

Road Bridge -- PC Box Girder

			F,C	· · · · · · · · · · · · · · · · · · ·	L.	C		Tax 2	Unit: 1 nd duty	
Work Item	Unit	Quantity	Unit cost	Cost	Unit cost	Cost	Sub Total	Unit Cost	Cost	Total
1 PC Girder	· .							. 2032		
(350 kg/cm ² ) Concrete	мЗ	13,066	0.076	993	0.614	8,022	9,015	0.012	157	9,172
Form	M2	46,023	0.071	3,268	0.077	3,544	6,812	0.008	368	7,180
R. Bar.	Ton	1,307	3,152	4,120	0.680	889	5,009	0.414	541	5,550
PC Tendon	Ton .	1,258	30,621	38,521	1.129	1,420	39,941	5.744	7 225	47,160
Niscellaneous	LS	. 1	<del></del> .	0	-	578	578	. 0	0	578
Sub total				46,902		14,453	61,355		8,291	69,646
Accessories			: · · :			· · ·				
Exp. Joint	Ton	36	28.667	1,032	0.762	27	1,059	4.325	156	1,215
Drainage	Ton	30	33.814	1,014	0.762	23	1,037	5.199	156	1,19
Bearing Shoe	LS	64	49.169	3,147	0.782	50	3,197	7.802	499	3,69
Cerbstone	м	2,300	0.038	87	0.217	499	586	0.005	12	598
Hand Rail	Ton	138	25.414	3,507	0.762	105	3,612	3.771	520	4,13
Pavement (Road)	M2	9,750	0.042	410	0.036	351	761	0,006	57	820
Pavement(Sidewalk)	м3	641	0.021	13	0.445	285	298	0.003	2	300
Subtotal				9,210		1,340	10,550		1,402	11,954
Temporary Work										
Scaffold	LS	1	-	7,095		1,829	8,924		1,148	10,072
F. V work	LS		-	248	. ~	298	546		25	571
Miscellaneous	LS	1	÷ _	57	-	5	62	<del>-</del> .	8	70
Subtotal				7,400	· · · · · · ·	2,132	9,532		1,181	10,71
. Total				63,512		17,925	81,437		10,874	92,313

Appendix Table 9.4.4 COST OF SUPERSTRUCTU	CTURE (2)
-------------------------------------------	-----------

Rail-cum-Road Br	idge -~ Stee	al Trusa									
·····	<u> </u>	······································	F.					Tax a	Unit: Tax and duty		
Work Item	Vnit	Quantity	Unit cost	Cost	Unit cost	Cost	Sub Total	Unit cost	Cost	Total	
1. Trusa Work					- <u></u>						
SM 58	Ton	1,189	20.919	24,873	0.447	531	25,404	1.022	1,215	26,619	
SM50Y	Ton	1,336	18.562	24,799	0.447	597	25,396	0.776	1,036	26,432	
\$\$41	Ton	5,599	17.850	99,942	0.447	2,503	102,445	0.683	3,824	106,269	
Subtotal			······	149,614		3,631	153,242		6,075	159,320	
2. Slab Work								· ·		· · · · · · · · · · · · · · · · · · ·	
Form	H2	15,337	0.034	521	0.152	2,331	2,852	0.004	61	2,914	
R, Bar	Ton	684	3,531	2,415	0.491	336	2,751	0.454	311	3,062	
Concrete	м3	3,420	0.023	79	0.545	1,864	1,943	0.004	13	1,956	
Cerbstone	N	2,300	0,028	64	0.020	46	110	0.004	. 9	119	
Pavement(Roa	d) M ²	9,750	0.030	293	0.027	263	556	0.005	48	604	
Pavement(%id	ewalk) M ²	3,450	0.020	69	0.017	59	1 28	0.002	6	134	
Track Rail	н	4,588	0.313	1,436	0,060	275	1,711	0,047	215	1,926	
Sleeper	۲ _N	354	0	0	2.542	900	900	0	0	900	
Subtotal	· · ·			4,877		6,074	10,951		663	11,614	
3 Painting Wor	 k			·····		· · ·		· .	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
at Factory	м ²	133,575	0.070	9,350	0	0	9,350	0	0	9,350	
at Site	м ²	137,520	0.020	2,750	0.004	550	3,300	0.003	412	3,712	
Subtotal				12,100		550	12,650	9	412	13,062	
4 Accessories							·	· · · · · · · · · · · · · · · · · · ·			
Bearing Shoe	Ton	237	49.169	11,653	0.782	185	11,838	7.802	1,849	13,062	
Exp. Joint	Ton	24	28.677	688	0,762	18	706	4.325	104	018	
Drainage	Ton	30	33.814	1,014	0.762	23	1,037	5.199	155	1,193	
Hand Rail	Ton	241	25.414	6,125	0.762	184	6,309	3.771	909	7,218	
Subtotal				19,480		410	19,890		3,018	22,908	
5 Temp Work	·····					<u>-</u>					
Bent	Ton	200	8.922	1,784	0.672	134	1,918	1.352	270	2,188	
Erec. Tower	Тоа	600	11.270	6,762	0.702	421	7,183	1.740	1,044	8,227	
T.C. Work	Ton	8,124	0.567	4,608	0.424	3,445	8,053	0.077	626	8,679	
Scaffold	Ton	17,250	0	0	0.045	776	776	0	0	776	
Subtotal	м2	······		13,154		4,776	17,930	~	1,940	19,870	
6 Total				199,225		15,441	214,666		12,108	226,774	

Rail-cum-Road Bridge -~ Steel Truss

Appendix Table 9.4.5 MACHINE CHARGE (1)

Superstructure	· · · ·				
				Unit:	1000 kyats
ITEM	F.C	L.C	FC+LC	T & D	Total
1. PC Box Girder					
F.V. Wagen	9,041	635	9,676	1,257	10,933
for Prestress- ing	1,695	71	1,766	225	1,991
for Form Work & Concreting	2,525	51	2,576	344	2,920
for Transportation	9,633	565	10,198	1,314	11,512
				· · · · · · · · · · · · · · · · · · ·	
Subtotal	22,894	1,322	24,216	3,140	27,356
				······································	······································
for Pavement	1,063	984	2,047	201	2,248
Total	23,957	2,306	26,263	3,341	29,604
2. Steel Truss					······································
for Erection	22,527	754	23,281	3,044	26,325
for Pavement	1,063	984	2,047	201	2,248
Total	23,590	1,738	25,328	3,245	28,573
the second s					

### Appendix Table 9.4.6 MACHINE CHARGE (2)

#### Substructure

					Unit: 1	<u>000 kyats</u>
	ITEM	F.C.	L.C	FC+LC	Τ&D	Total
1.	General Work					
	for	4,938	1,974	6,912	678	7,590
	Temporary Work	4,694	1,840	6,534	678	7,212
	Concrete Plant	6,023	1,517	7,540	770	8,310
		5,873	1,460	7,333	770	8,103
	for	217	2	219	29	248
	Processing R. Bar	217	2	219	29	248
	for F. Work	1,017	7	1,024	138	1,162
	& Concreting	1,001	1	1,008	138	1,146
	Vehicles	1,615	156	1,771	1,103	2,874
	C	1,564	143	<u>1,707</u> 208	<u>1,103</u> 47	2,810
	for	207 207		208	47	255
	Survey	78	332	410	23	433
	Generators	58	279	337	23	360
	Superstructure	7,047	1,994	9,041	1,394	10,435
	Substructure	7,048	1,995	9,043	1,394	10,437
	Total	14,095	3,989	18,084	2,788	20,872
	Superstructure	1,361	373	1,734	279	2,013
	Substructure	12,253	3,359	15,612	2,509	18,121
	Total	13,614	3,732	17,346	2,788	20,134
2.	RCD Work	56,912 56,449	2,834 2,683	59,746 59,132	7,927 7,927	67,673 67,059
3.	Barge Work			· .		
	Superstructure	4,664	1,276	5,940	530	6,470
	Substructure	26,428	7,232	38,324	3,003	41,327
	Total	31,092	8,508	44,264	3,533	47,797
	Superstructure	31	8	39	4	43
	Substructure	31,016	7,457	38,474	3,529	42,002
	Total	31,047	7,465	38,512	3,533	42,045

Note: Upper: P.C Bridge Lower: Steel Bridge Road Bridge -- PC Box Girder

			·		Unit: 1	000 kyat
	ITEM	F.C	L.C	FC+LC	T & D	Total
1.	Superstructure					
	Labor Fee	24,667	583	25,250	1,725	26,975
	Travel Expense	1,625	167	1,792	0	1,792
	Communication Charge	167	0	167	0	167
	Social Welfare	87	438	525	79	604
	Testing Charge in Foreign Country	1,125	0	1,125	0	1,12
	Rangoon Office Expense	0	354	354	54	408
	Stationery and Safety Goods	500	38	538	83	62
	Miscellaneous	188	333	521	79	60
	Total	28,359	1,913	30,272	2,020	32,29:
2.	Substructure					
	Labor Fee	30,163	692	30,855	2,113	32,96
	Travel Expense	1,979	208	2,187	0	2,18
	Communication Charge	167	0	167	0	16
	Social Welfare	117	542	659	100	75
	Testing Charge in Foreign Country	1,333	0	1,333	0	1,33
	Rangoon office Expense	0	354	354	54	40
	Stationery and Safety Goods	458	42	500	75	57
	Miscellaneous	188	417	605	92	69
	Total	34,405	2,255	36,660	2,434	39,09

#### Appendix Table 9.4.8 SITE EXPENSE (2)

### Rail-cum-Road Bridge -- Steel Truss

	·				Unit: 1	000 kyats
	ITEM	F.C.	L.C	FC+LC	T & D	Total
1.	Superstructure				· · · · · ·	
	Labor Fee	23,792	542	24,334	1,667	26,001
	Travel Expense	1,567	158	1,725	0	1,725
	Communication Charge	167	. 0	167	0	167
	Social Welfare	83	458	541	83	624
<u></u>	Testing Charge in Foreign Country	1,125	0	1,125	0	1,125
	Rangoon Office Expense	0	354	354	54	408
	Stationery and Safety Goods	500	38	538	83	621
	Miscellaneous	188	250	438	67	505
	Total	27,422	1,800	29,222	1,954	31,176
2.	Substructure				<u> </u>	
	Labor Fee	31,667	454	32,121	2,217	34,338
	Travel Expense	1,188	171	1,359	0	1,359
	Communication Charge	167	0	167	0	167
	Social Welfare	108	500	608	92	700
	Testing Charge in Foreign Country	1,333	0	1,333	0	1,333
	Rangoon office Expense	0	354	354	54	408
	Stationery and Safety Goods	458	42	500	75	575
	Míscellaneous	188	417	605	92	697
	Total	35,109	1,938	37,047	2,530	39,577

Appendix Table 9.5.1 MAINTENANCE COST OF AVA BRIDGE

Unit: Kyats 1,000

			Replacing Sleepers &	Cleaning	Permanent	
Sr.	Үеаг	Painting	Other Works	Work	Labours	Total
•	1974-75	13.70	1	2,60	6.70	23.00
2.	1975-76	123.70	14.40	2.60	6.70	147.40
Э.	1976-77	135.90	5.20	2.60	6.70	150.40
4.	1977-78	158.90	ł	2.60	6.70	168.20
5.	1978-79	44.90	17.60	4.30	6.70	/3.50
6.	1979-80	22.40	ł	4.30	6.70	33.40
7.	1980-81	84.60	ł	4.30	6.70	95.60
°,	1981-82	10.20	5.10	4.30	6.70	26.30
ъ.	1982-83	ŧ	ł	4.30	6.70	11.00
10.	1983-84	61.20	ł	4.30	6.70	72.20

Appendix Table 9.5.2 MAINTENANCE COST OF SITTANG BRIDGE

Unit: Kyats 1,000

	•	Replacing Sleepers &	Cleaning	Permanent	Ĕ
Year	Painting	Uther works	WOYK	Ladours	TOTAL
1975-76	1	17.00	1.32	17.83	36.15
1976-77	ŧ	19.00	1.32	17.83	38.15
1977-78	112.0	17.00	1.32	17.84	148.16
1978-79	126.00	19.00	1.32	17.84	164.16
1979-80	238.00	18.00	1.32	I7.85	275.17
1980-81	1	20.00	1.32	17.85	39.17
1981-82	<b>f</b>	18.00	2.16	32.94	53.10
1982-83	ŧ	16.00	2.16	32.94	51.10
1983-84	ł	16.00	2.16	32.95	51.10
1984-85		100.00	2 - 16	32.95	135.11

9~22

#### APPENDIX

#### CHAPTER 10 ECONOMIC EVALUATION

No	Location		Faci	lity				<u></u>		Service		······				
		Opera- tion	Erg.H.P	Lcading Capaci- ty in in Veh	on Ves.	No. c Vessel	of Trips s per Ves	Daily Trips	Capaci- ty per Vessels	Capaci-		Traf/Car Ratio	Capaci eity	Passen- ger	Pass Cap	
<u></u>						a	b	°5)	d	e=cxd	f	g=f/e	   h	i	j	
303	Prome-Sinde	HIC	250x2	8	11	1	12	12	8	96	53	0.49	1,200	695	0.5	
304	Prome-Sinde Prome-Sinde (Shwedaung)	ІШТС Соор	215x2 120	7	11 8	1 1	14 8	-14 8	7	98 14	60 11	0 <b>.</b> 58	1,400 560	250 140	0.1 0.2	
306	Myede-Thayet	HIC	120x2	5	6	1	4.	4	5	20	2	0.17	350	69	0.2	
307	Patanago-Nalon	HIC	245x2	5	6	1	10 -	10	5	50	11	0.22	1,000	284	0.28	
308	Magwe-Minbu	Соор	126	3	8	2	7	14	3	42	29	0.69	1,680	1,596	0.95	
312	Nyaung U- Kyun Chaung	Соор	140x2	-7	11	1	4	4	7	28	41	1.46	280	166	0.59	
314	Monywa - Nyaung Bin Gyi	Coop	120	3	8	3	8.7	26	3	78	68	0.87	3,120	3,248	1.04	
	Total			41	69	11	67.7	92	41	436 ₃ ) -87 ³⁾ 349	275 275	0.63 0.79	9,590	6,448	0.70	
No.	Location		Finan	cial Co	st	T-		100 M. Co. 8 Mar. 1 - 10	Fare	es and '	 Fimes		1	L [		
		Cost	4) A	nnual	Wages	o fy		Fa	res	(Kyat		Time (	Min)	Min)		
<b></b>		к 'о	M	aint/Y ( '000	K '(	000	Large Vehicles	Sma Vehic		asseng	er Cro	ssing	Waitin 6	ıg		
303		7,0	00	45	54	.0	150	100	.75	Free		15	60			
304		6,0 2,0	00 00	40 20	54. 42.		150 150	17 10 14 10	11 11	$1.00 \\ 1.00$		45 45	40 "			
306		4,0	00	40	33.	.6	200	100	.75	1.00		60	60			
307		5,0	00	40	33.	.6	150	100.	.50	Free		15	140			
308		2,00	00	20	42.	.0	200	100	50	1.00		50	130			

## Appendix Table 10.2.1.1 Z-CRAFT OPERATION

Source : Surveys in December 1985 - January 1986.

4,000

2;000

Notes : 1) Usually one or two small vehicles are included.

40

20

2) Based on the records of the traffic survey. However, ferry captains said trip number changes often by various reasons.

200

150

125.40

100.50

1.00

1.00

60

20

240

50

3) It was assumed 20% was usually occupied by Defence & police vehicles.

54.0

42.0

- 4) It was difficult to find the market prices of these Z-craft because they were built by order and there was no standard type and most of them were built more than several years ago. No evidences of accounting documents were obtained. After discussions with boat captains, these figures were determined by the study team.
- 5) A half loaded truck.

312

314

6) Waiting time was the average obtained from the interview with jetty staff and vehicle drivers.

#### Appendix Table 10.2.1.2 ECONOMIC COST OF Z-CRAFT OPERATION

Ño.	Location	Opera- tion	Financial Cost	Economic Cost 1)	Life Yrs	Annual Cost Economic	Annual Maint. Cost.	Annual Eco.Main Cost 1)		Eco.Wages per Yr 4)
		ы	<u>ხ</u>	с	d	e ²⁾	ſ	ſ'	g	g'
303	Prome-Sinde	н.г <b>.</b> ç.	7,000,000	4,690,000	40	479,595	45,000	30,150	54,000	48,060
304	Prone-Sinde Prone-Sinde (Shwedaung)	I.W.T.C Coop	6,000,000 2,000,000	4,020,000 1,340,000		411,081 147,625	40,000 20,000	26,800 13,400	54,000 42,000	
306	Nyede-Thayet	H.I.C.	4,000,000	2,680,000	40	274,054	40,000	26,800	33,600	31,220
307	Patarago-Malon	H.I.C.	5,000,000	3,350,000	40	3/12,568	40,000	26,800	33,600	31,220
308	Nagwe-Niinbu	Ccop	5'000'000	1,340,000	25	147,625	20,000	13,400	42,000	38,440
312	Nyaung U- Kyun Chaung	Ссор	4,000,000	2,680,000	40	274,054	20,000	26,800	54,000	48,060
314	Monywa~ Nyaung Bin Cyi	Coop	5,000,000	1,340,000	25	147,625	20,000	13,400	42,000	38,440
	Total		11 vessels 25,460,000			Tot. 2,224,227		Tot. 217,750		Tot. 437,300

No.	Location	Operation	Total Economic	No. of Vessels			Cost of Jetties	per	Fuel consu.	Trips per	Fuel & Oil 6)	Cost/	
			Cost e,f',g'		per Yn	day j+365	per day 5)	day k+1	g/trip	day	cost	day m≁p	per tri
			ħ	i	j	k	1	m	n	0	р	g	r
303		н.і.с.	557,805	1	557,805	1,528	458	1,986	3.0	12	286	2,272 2,272	189
304		1.W.T.C Coop	485,941 199,465	1 1	485,941 199,465	1,331 546	399 164	1,730 -710-	4.0 2.0	14 8	446 127	2,176 837	155 105
306		н.і.с.	332,074	1	332,074	910	273	1,183	6.0	4	191	1,374	.344
307		н.1.с.	400,588	1	400,588	1,098	329	1,427	3.0	10	239	1,666	167
308		Ссор	199,465	2	398,930	1,093	328	1,421	3.0	14	334	1,755	125
312		Соор	348,914	1	348,914	956	287	1,243	6.0	4	191	1,434	359
314		Coop	199465	3	598,395	1,639	492	2,131	2.0	26	. 414	2,545	98
	Total			11	3,322,112	9,101	2,730	11,831 Kyat/d	29.0 V	92	2,228	14,059 K/day	153

Notes : 1) The economic cost was determined at 67% of the financial cost, where 67% was obtained from the cost analysis of road vehicles assembled in Burma (referring to Appendix Table 10.2.2.4). The maintenance cost included the engine overhaul which was said every 3 or 4 years.

- 2) Annual cost was calculated by using the "capital recovery formula" i  $(1+i)^n/(1+i)^{n-1}$ , where i = 10% and n is the life years and no salvage value was taken into account.
- 3) Annual staffing cost was determined as (a) K 800 x 12, 600 x 12, 400 x 12, 300 x 5 x 12 total = K 54,000. (b) K 800 x 12, 600 x 12, 400 x 3 x 12, 300 x 3 x 12, total K 42,000 and (c) K 800 x 12, 600 x 12, 400 x 2 x 12, 300 x 2 x 12, total K 37,200.
- 4) Of those staff on board, the lowest grade of K 300 was assessed to be 0.67% for the economic cost: K 300 x 0.67 = K 200/month. No change in other grades.
- 5) Repair and operation costs of jettles were assumed here at 10% of the daily cost, item "k". In addition, overhead cost of 20% was added.
- 6) Economic cost of diesel oil was assessed to be equal to the economic cost in a neighbouring country. K 758 was used here. See Appendix Table 10.2,2,5. Engine oil was added by 5%.

# Appendix Table 10.2.1.3 PASSENGER BOAT OPERATION

r	-	p=														
No.	Location		Faci	lity				Ser	vice			Fin	ancial C	lost.	Fare	
		Opera- tion	Engine H.P	Loeding Cap.	Staff on oat	No. of Boats 2)	Trips per Boa	Daily Trips 2)	Capaci- ty/day	Passen- ger/day	Pass/Car Ratio		Annual Maint.C 3)	Wages per Year 3)	Fare	Time
301 (with	Prome-Sinde 302)	Coop.PB	110	150	8	6	3.0	18	2,700	2,685	0.99	400	20,000	31,800		45
303	Prone-Sinde	z, ніс	)	100	-	1	12.0	12	1,200	695	0.58	-	_	_	~	_
304	a #	Z.IWIC	_	100	-	. 1	14.0	14	1,400		0.18	-	-	-	-	_
tu	11 11 j	Z.Coop	-	70	-	1	8.0	8	560	140	0.25	-	-	-	-	-
305	Myede-Thayet	Coop.PB	120	150	8	2	6.0	12	1,800	1,791	0.99	400	20,000	31,800	1.00	50
u	e u	Priv.PB	30	30	2	20	2.0	55	1,650	646	0.39	40	5,000	10,200	1,00	50
v	11 11	Z.Cera~	-	70	-		-	5	350	69	0.20	-	-	- 1	- 1	-
307	Patanago-	Pri.SSB	. 6	15	2	6	2.3	. 14	210	162	0.77	25	2,000	7,200	1.00	15
u.	"Malun	z. hic		100	-	1	10.0	10	1,000	284	0.28	-	-	-	-	-
308	Magwe-Minbu	Pri.PB	30	30	2	26	2.0	52	1,560	1,305	0.84	40	5,000	10,200	2.00	60
308	u tr	Z.Coop	-	120	_	2	7.0	14	1,680	1,596	0.95	-	-	-	1.00	-
	Chauk-Setkpyu	Priv.PB	120	120	6	4	4.5	18	2,160	866	0.40	400	20,000	25,800	0.50	30
(with	315),, "	Pri,SSB	6	15	2	32	2.3	72	1,080	1,078	1.00	25	2,000	7,200	1.00	40
310	Yenanchaung-	Coop.PB	90	80	6	· 1	4.0	4	320	250	0.78	200	10,000	25,800	2.00	90
	Thangain	Priv.PB	6	30	2	4	2.0	8	240	200	0.83	40	5,000	10,200	3.00	120
312	Nyaung U-	Priv.PB	30	100	2	3	2.0	6	600	484	0.81	40	5,000	10,200	5.00	150
	Kyun Chaung	SSB	6	15	2	6	2.0	12	180	101	0.56	25	-2,000	.7,200	2.00	50
		Z. Coop	· -	70	-	-	-	4	280	166	0.59	-	-	- 1	-	~
314	Monywa-	Ccop.PB	120	200	6	2	8.0	16	3,200	1,926	0.60	400	15,000	25,800	0.50	20
	Nyaung Bin Gyi	Priv.SB	0	8	1	30	10.5	316	2,528	2,260	0.89	2	500	3,000	1.00	20
		Z.Ccop		-	-	-	-	26	3,120	3,248	1.04	-	-	-	-	-
	Total ⁴⁾ (inc.	uding Z	crafts)					698	27,818	20,202	0.73			[	1	{
		senger b						(606	18,228	13,754	(0.75					

Source : Surveys in December 1985 - January 1986.

Notes : 1) Operations of Z-crafts are shown in Appendix Table 10.2.1.2.

2) An average figure throughout a year. It was cetermined by discussing with boat captains and jetty staff.

3) Costs were different among the crossings and even among the boats at the same jetty. Accordingly, they were grouped into 5 classes.

4) Total includes passengers on Z-crafts. ( ) are numbers only with passenger boats.

# Appendix Table 10.2.1.4 ECONOMIC COST OF PASSENGER BOAT OPERATION

No.	Location	Operation	Finan.Cost	Econo.Cost 1)	l.ife,Years	Annual Eco.Cost	Annual Maint,Cost	Annual Eco.Maint. Cost 1)	Wages per yéar 3)	Eco.Wages per year 4)	Total Eco. Cost f+g'+h'
	a ·	υ	с	d	e	f	8	8'	h	h'	i
301	Prone- Sinde	Coop PB	400,000	268,000	15	35,235	20,000	13,400	31,800	27,300	75,935
305	Nyede-Thayet	Coop PB Priv. PB	400,000	268,000 26,800		35,235 4,362	20,000 5,000	13,400 3,350			
307	Patanago-Malon	Priv.SSB	25,000	16,750		3,149		1,340	7,200	7,200	11,689
308	Magwe-Minbu	Priv, PB	40,000	26,800	10	4,362	5,000	3,350	10,200	9,210	16,922
309	Chauk-Seikpyu	Priv, PB SSB	400,000 25,000	.:68,000 16,750		35,235 3,149					
310	Yenanchaung- Thangain	Priv, PB Priv, PB	200,000 40,000	134,000 26,800	15 10	17,618 4,362	15,000 5,000				
312	Nyaung U- Kyun Chaung	Priv, PB SSB	200,000 25,000		15 8	17,618 . 3,149					
314	Monywa- Nyaung Bin Gyi	Coop PB Priv. SB	200,000 8,000	134,000 8,000	15 5	17,618 2,110				4,800	
	Total			6,337,000				Tot. 462,560		Tot. 1,393,820	1

No. j	Location	Operation	No. of Vessels	Total Eco. Cost/year	Cost of Jéttics/day		Fuel Consu gal/trip		Cost/day	Total Cost Alay m+p	Eco.Cost Cost/trip
			j	k	15)	m	n	0	р б)	q	r
301		Ccop FB	6	455,610	374	1,622	2.5	18	358	1,980	110
305		Coop FB Priv, PB	2 20	151,870 338,440	125 278	540 1,205	3.0 1.0	12 55	287 438	827 1,643	69 30.
307		Priv.SSB	6	70,134	58	250	0.3	14	33	288	21
308		Priv. PB	26	439,972	362	1,567	1.5	52	621	2,188	42
309		Priv. PB SSB	4 32	303,740 374,048	250 307	1,082 1,332.	2.0 1.0	18 72	287 573	1,369 1,905	76 26
310		Priv. PB Priv. PB	1 4	50,498 67,688	42 56	180 241	5.0 1.5	4 8	159 95	339 336	85 42
312		Priv. PB SSB	3	151,494 70,134	125 58	540 250	3.0 1.0	6 12	143 96	683 346	114 29
314		Coop FB Priv. FB	2 30	109,936 222,300	90 183	392 792	1.5 -	16 316	191 2,515	583 3,307	36 10
	Total		142	2,805,864	2,306	9993		603	5,796	15,789	26

Notes : 1) The economic cost was determined at 67% of the financial cost, where 67% was obtained from the cost analysis of road vehicles assembled in Burna (referring to Appendix Table 10.2.2.4). The maintenance cost included the engine overhaul which was said every 3 or 4 years.

- 2) Annual cost was calculated by using the "capital recovery formula "  $i (1+i)^n / (1+i)^n 1$ , where i = 10% and n is the life years and no salvage value was taken into account.
- 3) Annual staffing cost was calculated as (a) 600 X 12, 400 x 2 x 12, 250 x 5 x 12, Total K 31,800 , (b) 600 x 12, 400 x 2 x 12, 250 x 3 x 12, Total K 25,800 , (c) 600 x 12, 250 x 12, Total K 10,200 , (d) 600 x 12 = K 7,200 , (e) 400 x 12 = 4,800.
- 4) Of those staff on board, the lowest grade of K 250 was assessed to be 0.67 for the economic cost. K 250 x 0.67 = K 200/month. No change in other grades.
- 5) Assuming 10% of the daily economic cost. In addition, 20% is added for overhead cost.
- 6) Economic cost of diesel oil was assessed to be equal to the economic cost in a neighbouring country. K 7.58 was used here. See Appendix Table 10.2.2.5 . Engine oil was added by 5%.

	Jeep x 2,	1) 000	Pick~up 14. sea	bus ts 2)			Truc T.E 6.5	
1. Annual miles	20,000	ml						
2. Life years	15	ys	15	ys	30	ys	30	ys
3. Life miles	300,000		600,000		900,000		900,000	
4. Tyre-unit	4		4		6		6	
-type	6.50-12		6.50-14.	. 8	7.50-16	-12	8.20-20	-12
5. Tyre life	20,000	ml	20,000	ml	25,000	ml	25,000	ml
6. Staff -Driver	. –		1		1		1	
-Assistance			1		1		1	
-Mechanic	-						1	
7. Fuel	Gasoline		Gasolir	ıe	Diese	1	Die	sel
8. Fuel consumed on rural	20 ml/	g	15 m]	l/g	10	ml/g	10	ml/g
& paved roads							]	

# Appendix Table 10.2.2.1 REPRESENTATIVE VEHICLE AND ITS USE 3)

Notes : 1) Assumed to be assembled in Burma.

2) Assumed to be imported.

3) These were determined by the data of RTC and CC. Interviews on private operators of trucks and buses were conducted in Prome and Rangoon, although at a minor magnitude. The table is determined by taking into account all these data. Appendix Table 10.2.2.2 FINANCIAL AND ECONOMIC COSTS OF VEHICLES

	Jeep x2,000	Pick-up bus 14 seats	Bus BM 26 seats	Truck TE 6.5 tons	
A. Vehicle:					
Government price	K 130,000	K 140,000	K 320,000	K 230,000	(Referring to those
Duties and taxes	K 45,200	K 44,800	K 140,400	K 76,100	assembled in Burma.
	K 84,800	-			But imported pick-up
Net price		K 95,200	K 179,600	K 153,900	is taken up the pick- up bus).
Economic Cost	K 84,800	к 42,400	K 179,600	K 153,900	
B. Tyres and tubes	6.50-12	6.50-14.8	7.50-16.12	8,20-20,12	A set, imported
Government price	к 2,400	K 2,600	к 8,400	K 9,600	(Net x 1.40)x1.15
Duties and taxes	K 910	к 980	К 3,180	К 3,640	
Net price	К 1,490	K 1,620	К 5,220	K 5,960	
Economic cost	к 1,490	к 1,620	K 5,220	к 5,960	
C. Fuel per gallon					Engine oil, imported (Kg)
Government price	K 3.50	К 3.50	К 2. <u>5</u> 0	K 2.50	40.00
Taxes	K 2.37	K 2.37	K 1.30	K 1.30	10.50
Net price	K 1.13	К 1.13	K 1.20	K 1.20	29.50
Economic cost	K 8.31	к 8.31	К 7.58	К 7.58	29.50
D. Wages per year (econom	ic cost)				
Driver		к 9,600	K 12,000	K 9,600	
Assistant	. –	к 3,000	к 3,000	K 3,000	Unskilled
Mechanic	. –	-		к 9,600	
E. Maintenance & Repair	K 8,000/yr	K 12,500/yr	K 35,000/yr	K 35,000/yr	(100%)
Import (40%)	3,200	5,000	14,000	14,000	(. 40%)
Duties & Taxes (30%)	2,400	3,750	10,500	10,500	( 30%)
Local material (30%)	2,400	3,750	10,500	10,500	( 30%)
Economic cost	5,600	8,750	24,500	24,500	
	,,	-112-			
F. Insurance, registratio	n, etc,.				
Third party Comprehensive	K 750	K 820	К 1,230 [.]	K 1,230	
Registration	К 110	K 170	к 200	к 230	
Economic cost	K 750	к 820	K 1,230	K 1,230	
				· .	
G. Interest (i = 10%) per on government price x					
	K 6,500	K 7,000	к 16,000	K 11,500	
on economic cost x 1/	2 x 0,1 K 4,200	к 2,100	K 9,000	K 7,700	an a

Source : R T C, C C, Customs Dept., Insurance Corp., other agencies and private owners/operators. Some of the original figures are modified by the Study Team.

Notes : A. Including the tyre cost. Government prices are determined by reviewing purchased cost by C C, R T C, etc.. They are assembled in H I C factories in Burma. The economic cost of pick-up is determined by referring to a recent study in Tahiland. (A Review of Feasibility Study and Detailed Design of The Rama VI Bridge Construction Project, December 1985 by C E C, P C I and A E C.)

- B. It is said the government supplies two tyres per year in average. Vehicle owners buy other necessary tyres at the market where the prices are 2 to 4 times higher than the government prices. In this table, only the government prices are quoted through which economic cost is calculated because market mechanism in Burma is hard to confirm.
- C. Duty and tax factors are given by C C in February 1986. Economic cost is assessed by referring to a recent study in Thailand. (See Notes A above). It is assumed the economic cost is 10% less than Thailand because of less cost in domestic transportation from the refinery to the D I A. B 6.22 x 4.54 1/g x 1/3.06 B = K 9.23/g x 0.9 = 8.31

 $B 5.68 \times 4.54 \ 1/g \times 1/3.06 \ B = K \ 8.43/g \ x0.9 = 7.58 \ 10-6$ 

# Appendix Table 10.2.2.3 CUSTOMS AND TAXES FOR TRANSPORTATION MATERIAL

	Customs duty 1)	Sales 2)	
Sedan car	300%	15%	Completed
Pick-up	30%	30%	11
Truck	30%	15%	u
CKD	30%	15%	To be assembled
Spare parts	50%	15%	
Туге	40%	15%	
Vessel, parts, engine	20%	15%	
Railway materials	10%	15%	
Iron bars	20%	15%	
Mechinery	15%	15%	

Notes : 1) percentages on ad valorem (not c.i.f.).

2) on the value of a/v and customs duty inclusive.

Source: Customs Department, Rnagoon.

## Appendix Table 10.2.2.4 VEHICLE OPERATING COST

•

	Small vehi	cle (Jeep)	Pick-up bus	(14 seats)
	Financial	Economic	Financial	Economic
A. Running Cost.	1			
Depreciation	130,000 + 300,000	84,800 ÷ 300,000	140,000 ÷ 600,000	42,400 + 600,000
	= K 0.43/ml	= K 0.28/ml	= K 0.23/ml	= K 0.07/m
f f				
Tyre wear	2,400 + 20,000	1,490 ± 20,000	2,600 + .20,000	1,620 + 20,000
· · · ·	= K 0.12/ml		= K 0,13/ml	= K 0.08/m
Fuel regular	3.50 ÷ 20=K 0.18/ml	8.31 + 20=K 0.42/ml	3.50 + 15=K 0.23/ml	8.31 + 15=K 0.55/m
oil	5% of Regular = K 0.01/ml	5% of Regular=K 0.02/ml	(5%) = K 0.01/mL	(5%) = K 0.03/ml
×				
Maint & repair	8,000 ± 20,000	5,600 ÷ 20,000	12,500 ±.40,000 = K 0.31/ml	8,750 + 40,000
	= K 0.40/ml	= K 0.28/ml	= K 0.31/ml	= K 0.22/m
Total running cost	K 1.14/ml	K 1.07/ml	K 0.91/ml	K 0.95/m
B. Time Cost (Fixed	cost) 8 hrs/day x 25	x 12 = 2,400  hrs		
			12,600 ÷ 2,400	11 610 - 2 400
Wage	-		= K 5.25/hr	= K 4.84/h
	960 · 0 h00			
Insurance,Regd.	860 ÷ 2,400 = K 0.36/hr	= K 0.31/hr		= K 0.34/h
	- K 0.50/II			
Interest	6,500 + 2,400	1 200 2 2 100	7,000 + 2,400	820 + 2 400
Interest	5,500 ÷ 2,400 ⇒ K 2,71	$\mp K 1.75/hr$	= K 2.92/hr	= K 0.88/h
Overhead			(50% of the above)	(50% of the above)
			K 4.29/hr	
Total time cost	K 3.07/hr (K 0.12/ml	K 2.06/hr	K 12,87/br	K 9.09/h
(v = 25  mph)	(K 0.12/ml)	(K 0.08/ml)	K 12.87/hr v = 20mph(K 0.64/ml)	(K 0.45/m
** => mbus				
	1			
C. <u>Total Vehicle Oper</u>	ation Cost			
operating cost at	v = 25 mph K 1.26/ml	К 1.15/ш1	v = 20  mph  K 1.55/ml	K 1.40/n
operating cost at	- cy mpri w 1160/mi	N III)/mI		
			v = 25 mph K 1.42/ml	К 1.31/п

		seats)	Truck (6	.5 tons)
	Financial	Economic	Fonancial	Economic
A. Running Cost.				······
Depreciation		179,600 + 900,000	230,000 ÷ 900,000	153,900 ÷ 900,000
	= K 0.36/ml	= K 0.20/ml	= K 0.26/ml	= K 0.14/m]
Tyre	8,400 ± 25,000	5,220 + 25,000	9,600 + 25,000	5,960 + 25,000
	= K 0.34/m1	= K 0.21/ml	= K 0.38/ml	= K 0.24/m
Fuel diesel	2.50 + 10=K 0.25/ml	7.58 ÷ 10=K 0.76/ml	2.50 + 10=K 0.25/ml	7.58 + 10=K 0.76/r
	(5%) =K 0.01/ml	(5%) =K 0.04/ml	(5%) =K 0.01/ml	(5%) =K 0.04/s
Maint & repair	35,000 ± 30,000	24,500 + 30,000	.35,000 ÷ 30,000	24,500 + 30,000
	= K 1.16/ml	= K 0.82/m1	= K 1.17/ml	= K 0.82/m
Running cost	K 2.12/ml	K 2.03/ml	K 2.07/ml	K 2.00/m
B. Time Cost (Fixed c	 <u>ost)</u> 8 hrs/day x 25 : 1	$x_{12} = 2,400 \text{ hrs}$		
Wage	15,000 + 2,400	14,010 + 2,400	24,000 + 2,400	23,010 ÷ 2,400
	= K 6.25/hr	= K 5.84/hr	= K 10.00/hr	≠ K 9.59/h
Insurance, Regd.	1,430 + 2,400	1,230 + 2,400	1,460 + 2,400	1,230 + 2,400
	= K 0.60/hr	= K 0.51/hr	= K 4.79/hr	= K 0.51/h
Interest	16,000 + 2,400	9,000 + 2,400	11,500 ÷ 2,400	7,700 ÷ 2,400
	= K 6.67/hr	= K 3.75/hr	= K 7.70/hr	= K 3 21/h
Overhead	(50% of the above)	(50% of the above)	(50% of the above)	(50% of the above
	= K 6.76/hr	= K 5.05/hr	= K 7.70/hr	= K 6.66/h
lime cost	K 20.28/hr	K 15.15/hr	K 23.10/hr	К 19.97/ш
(v = 15 mph)	(K 1.35/ml)	(K 1.01/m1)	(K 1.54/ml)	(K 1.33/m
C. Total Vehicle Oper	ating Cost.			
v = 15 mph	K 3.47/ml	K 3.04/ml	K 3.61/ml	К 3.33/т.
v ≈ 25 mph	K 2.39/ml	к 2.64/ті	K 2.99/ml	K 2.80/m
· · · · · · · · · · · · · · · · · · ·	1	· · · · · · · · · · · · · · · · · · ·	• <u>•</u> ••••••••••••••••••••••••••••••••••	

### Appendix Table 10.2.2.5 ECONOMIC COST OF ROAD VEHICLES AND FUEL: BURMA AND THAILAND 1)

Turne	Burma,	1985/86.	Burma,	1982. (1)	Туре	Thailand	, 1985.	(2)
Туре	Government price	Economic cost	Government price	Economic cost	туре	Market price	Economic cost	Economic ² cost in Kyat
I. <u>Vehicles(with</u>	tyres).	v						
Jeep-Mazda	к 130,000	к 84,800		-	Sedan	B 241,000	B 138,000	K 45,100
Pick-up, 4 seats	к 140,000	3) K 42,400	-	-	Pick-up	B 168,000	B 133,000	к 43,500
Bus, 24 seats	K 320,000	к 179,600	Reconditio truck in t		Bus, 44 seats		B 610,000	к 199,300
Truck, 6.5t	к 230,000	K 153,900	к 270,750	K 165,000	Truck, 7.0t	в 557,000	B 463,000	K 151,300
II. <u>Tyres</u> .								
6.50-12, 4 units	K 2,400	K 1,490	-	. ~	6.50, 4 units	в 3,300	B 3,000	к 980
6.50-14.8 4 units	K 2,600	К 1,620	-	~	6.50, 4 units	в 4,400	в 4,000	К 1,310
7.50-16.12 6 units	к 8,400	K 4,760		-	7.00, 6 units	B 10,000	в 9,000	K 2,940
8.20-20.12	к 9,600	к 5,440	K 9,060	к 5,694	8.00,	B 16,700	8 15,000	К 4,900
II. <u>Fuel(per gall</u>	<u>.on)</u> ⁴ )							
Gasoline -regular	K 3.50	к 8.31	к 3.50	к 8.08	Gasoline -regular	B 10.80/1	в 6.22/1	K 9.23
Diesel	K 2.50	K 7.72	к 2.25	К 8.08	Diesel	B 6.70/1	B 5.68/1	к 8.43
Engine Oil	к 40	K 29.50	-	-	Engine0il	B 24.50/1	B 22.98/1	к 32.40

Source : (1) GITEC consult GMBH, "Rangoon-Prome Road Project Preparation Study" (JULy, 1982).

(2) CEC, PCI, AEC,"A Review of Fcasibility Study and Detailed Design of the Rama IV Bridge Construction Project" (November, 1985).

Notes : (1)

: (1) Exact comparison is not possible because representative vehicles and times are different between the two countries.

(2) Kyat 1 = Bahts 3.06.

- (3) The economic cost (the border price) of an imported pick-up is assumed at half of that of a Burmese assembled Jeep by considering the relative price differences among the small vehicles of pick-ups, sedan, Jeep, etc. Jeeps are considered to represent the small vehicles in Burma being assembled. Sedan cars are also assembled but quite small in number when compared with Jeeps.
- (4) The government price of fuel has not been changed in the past several years, while actual production cost is not shown. The economic cost is determined by referring to the economic cost in Theiland.

Appendix Table 10.2.3.1 ECONOMIC COST OF TRAIN OPERATION

	- ·							
						K,000	-	K ¹ 000
å	Depreciation							
Ľ	Locomotive, 1200 HP	~1	11,260	8,000	30	848.63	<b></b> t	848.63
ŏ	Coach, 60 seats	1	1,120	800	30	84.86	. 00	678.88
30 30	Wagon, 30 ton-capacity	~- <b>1</b>	340	240	40	24-54	6	49.08
ň	Total Econ. cost	ę	12,720	9,040	<b>I</b>	958.03	11	1,576.59
M	Maintenance/year						·	
มั	Locomotive	7	115.44	87.99	ł	87.99	r-4	87.99
Ŭ	Coach	ы	10.90	9°04	I	9-04	80	72.32
М	Wagon	н	3.30	2.66	t	2.66	7	5.32
	Total	ო	129.64	69.69		69*66	11	165.63
ო	Crew cost in Kyat							
A,	Driver/shunter	2	400x24	400x24		9,600	7	9,600
G	Guards	6	400x24	400x24		9,60	2	9,600
	Total	4	19,200	19,200		19,200	4	19,200
ц 4	Fuel							
ы	m'ng/m				1.2 g/tr	g/train-mile, @7.58	ĸ	9.10 Kyat per train-m
2 0	Overhead				20% to b	be added.		

Capital recovery factor is 0.10608, i=10%, y=30 and 0.10226, i=10%, y=40. Note:

# Appendix Table 10.2.3.2 ECONOMIC COST PER TRAIN-MILE

Item	Service	Cost
Depreciation	730 trips/yr per train (95 ml/Prome-Kyangin)	1576.59 ÷ 730 ÷ 95 = 0.02273 = 22.73 K/ml-train
Maintenance	165.63	165.63 ÷ 730 ÷ 95 = 2.39 K/ml-train
Crew	19200 Kyat/crews	19200 ÷ 730 ÷ 95 = 0.277 K/ml-train
Fuel	HSD Engine-oil	9.10 K/ml-train 0.91 K/ml-train
Overhead	20% to be added	$35.41 \times 0.20 = 7.08$
<u>Total</u>		<u>42.48 K/ml-train</u>
Total cost per Total cost per		3 ÷ 640 = 0.044 K/seat-ml 3 ÷ 60 = 0.236 K/capacity-ton-m

Appendix Table 10.3.3.1 SERVICE RATIOS WITHOUT PROJECT BRIDGE

	Los	Loading Capacity	y .		Users	1)		Service Ratio	0
Year	Pass.	Tons	Veh.	Passengers	Tons	Vehicles	d/a	e/b	f/c
	a	q	U	đ	e	ц	ы	्र <b>प</b> :	ì
1985/86	18,228	1,053	349	13,754	062	275	0.75	0.75	0.79
86				14,442	830	289	<b>`</b> .'	0.79	0.83
87				15,163	871	303	ŝ	0.83	0.87
88				15.921	915	318	0.87	0.87	0.92
89				16,718	960	. 334	0.92	0.92	0.96
06				17,554	1.008	351	96.0	96.0	1.01
16				18.432	<u> </u>	369	1.01	1.01	1.06
65				19,353	n '	387	1.06	1.06	1.11
1 £6				20.321	n (	406	1.11	11.4	•
94				21,337	• •	427	1.17		1.22
95	₽	4	-Þ	22,404	•	448	1.23	1.23	2
96	29,160	1,675	583	23,524	•	470	8	ထ	0.81
67		-		24,700		464	0.85	ŝ	0.85
98				25,935	•	519		ŝ	0.89
66	-			27,232	•	544	0.93	σ,	0.93
2000				28,594	_	572		0.98	0.98
10				29,881	•	598	1.03	1.03	1.03
02				31,226	-	625		1.08	•
03				32,631		653		1.12	-
04	t	>	{	34,099	•	682		1.17	~ 1
05	>	•	>	35,634	•	713	4	1.22	1.22
06	40,092	2,297	817	37,237	•	745	•	οjo	οjo
01		<b>.</b>		38,913	•	8//	7.0		
8 C				40,004	0,4,0	010 010	10.1	7.02	70
- - 				907 77	•				001
				46.404	2,665	928	1.16	1.16	1.13
12	<b>→</b>	-	₽	48.492	<b>.</b> .	026	1 21	1.21	1.18
101	51-024	010 6	1.051	50,675	• •	1.013	1.01	1.00	0.96
14	•			52,955		1,059	1.04	1.04	1.01
15				55,338		1,106	1.08	1.09	1.05
16				57,828	3,321	1,156	1.13	1.14	1.10
17	₽	-0	-⊅	60,430	-	1,208		1.19	1.15
18	61,956	3,541	1,288	63,149		1,262	1.02	1.02	0.98
19				62,991	•	1,319	1.07	I.07	1.02
20				68,961	•	1,378		1.12	1.07
21				72,064	•	1,440	1.10	1.17	1.12
22	>	>	-⊅	75,307	•	1,505	1.22	1.22	1 17

Appendix Table 10.3.3.2 SERVICE RATIOS WITH PROJECT BRIDGE

																											•		•				÷
Service Ratio	Z-craft			5	~	0.81	0.86	0.90	0.95	66-0	1.04	1.08	1.13	0.71	0.74	0.77	0.81	0.84	0.88	0.92	96.0	1.00	1.05	0.78	0.82	0.85	0.89	0.94	0.98	1.02	1.07	1.11	
	Cargo B		~	$\infty$	00	00	<u>_</u>	$\overline{o}$	1.03	0	~~~		2	ω	Ψ.	ω,	ι Oγ	5	9	Ч,	<b>_</b>	·		÷.	<u> </u>	~	<u> </u>	<u> </u>	• •	. ÷		٠.	
Se	Pass B		0	0	0			<b>~</b>	0.81	ω	$\omega$	0	Ο,	9	Ų,	_		~	Ŷ,	~	4	4	<b>_</b>		11	~:	<u> </u>	$\sim$	. i	÷.	~	<b>~</b>	
	Vehicles		246	258	271	284	299	314	330	346	362	377	395	413	43I	450	471	492	514	537	561	587	613	641	670	700	731	764	799	834	872	611	
Users	Cargo			6		936.1	2	3	1,083.6	5	,189.	,242.	,298.	,356.	,417	1,481.7	,548.	,618	,690.	,767.	,846.	,929.	,016.		,202.	٠ <u>۴</u>	,404.	,512		744.		ۍ	
	Passengers		v L	്പ്	, <u>,</u>	<u>_</u>	· 7	-	23,687	<u></u>	5	~	5	ૣૻૼ	<u> </u>	) A	~	5	ૢૻ૽	ž	6	1	Ţ	്റ്	ີ	Ĉ	~	4	· · ·	്ക	ົ້	ົ	
y Y	Z-craft	J	349										>	583										817		-						₽.	
Loading Capacity	Cargo	p	1,053										٥	1,675								 	-Þ	2,297		~				>	2,919	D	•
Loa	Pass B	ed	18,228	ι			-	29,160										<b>-</b> ₽	40,092						₽	51,024				>	61,956	Þ	••••••••••••••••••••••••••••••••••••••
<u> </u>	Year		1993/94	94	95	96	97	98	66	2000	10	02	03	04	05	90	07	08	60	10	11	12	13	14	15	16	17	18	19	20	21	22	
															-14					<b>.</b>			i	. '									

## To Appendix Tables 10.3.3.1 - 10.3.3.2

Notes : 1) Without Project, users in 1993.

1 Passengers on passengers boats

13,754 (in 1985) x 1.05⁸ (traffic growth) =
20,321 (in 1993)
The above figure excludes those carried by Z-crafts.

2 Cargoes in tons on boats

790 (in 1985) x 1.05⁸ (traffic growth) =

1,167 (in 1993)

3 Vehicles on Z-crafts

275 (in 1985) x 1.05⁸ (traffic growth) =

406 (in 1993).

2) With Project in 1993.

- 1 Passengers on passenger boats

According to the study, the share of PB and Z-crafts is 0.7 and 0.3 respectively. The followings are estimated.

Total  $28,944 \ge 0.7 = 20,231$ Diverted  $3,819 \ge 0.7 = 2,555$ 20,231 - 2,555 = Remaining 17,676 persons.

- 2 Cargo in tons on boat Total 1,167 - Diverted 358.5 = Remaining 808.6 tons

- 3 Vehicles on Z-crafts Total 406 - Diverted 140 = Remaining 140 vehicles.

Year	Without	Project	· · · · · ·	With Project		Savings in Balance (W/O)-(W)
	Ferries	Op.Cost	Pass.Boats	Cargo boats Z-crafts	Op.Cost	
1993/4						0
94						0
95						0
96	23,427	4,994				28,421
97		4,994				4,994
98		4,994	4,246		2,674	-1,926
99		4,994			2,674	2,320
2000		4,994			2,674	2,320
01		4,994			2,674	2,320
02		4,994			2,674	2,320
03		4,994			2,674	2,320
04		4,994		19,181	4,994	-19,181
05		4,994			4,994	
06	23,427	9,988		·	4,994	28,421
07		9,988			4,994	4,994
08		9,988			4,994	4,994
09		9,988	4,246		7,668	-1,926
10		9,988			7,668	2,320
11		9,988			7,668	2,320
12		9,988			7,668	2,320
13	23,427	14,982			7,668	30,74
14		14,982		19,181	9,988	-14,187
15		14,982			9,988	4,994
16		14,982	4,246		12,622	-1,886
17		14,982			12,622	2,360
18	23,427	19,976			12,622	30,781
19		19,976			12,622	7,354
20		19,976			12,622	7,354
21		19,976	4,246	2,123	16,632	-907
22		19,976	-		16,632	3,344

# Appendix Table 10.3.3.3 SAVINGS IN FERRY COST

Notes : 1) Economic cost of additional ferry boats

- 1 Passenger boats 6,337,000 x 2/3 = 4,246,000 K.
- 2 Cargo boat cost is assumed at half of passenger boats. The estimate is as follows:

Average loading capacity of a passenger boat is equal to 3.5 tons in terms of cargo. Since the number of trips of river crossing per day is 603 in average, its loading capacity is 603 trips x 3.5 = 2,100 tons. Assuming the capacity and the cost of cargo carrying boats at half of the above 2,100 tons, the cargo carrying capacity is 1,050 tons/day, and the cost is  $4,246,000 \ge 0.5 = 2,123,000$  K.

· 3 Z-crafts

The total cost of Z-crafts currently in operation is estimated at 25,460,000 K.  $25,460 \ge 0.67 = 17,058,000$  K.

2) Economic cost of additional ferry operation per year

#### - 1 Passenger boats

Maintenance and wages, 1,856,000 x 0.67 = 1,256,424 K Fuel, 365 x 5,796 x 0.67 = 1,417,412 K,

Total 2,673,836 K.

- 2 Cargo boats Half of passenger boats, Total <u>1</u>

Total 1,336,918 K.

983,741 K.

- 3 Z-crafts

Maintenance, 217,750 x 0.67 = 145,893 K Wages 437,000 x 0.67 = 292,991 K Fuel 365 x 2,228 x 0.67 = 544,857 K, Total

	Item	Consumption in '000 gal	Gov.Price K/gal 1)	Financial Cost ('000)	Econ.Price K/gal 2)	Econ.Cost ('000)
*			······			
Ι.	P.C. Bridge	6 9	3.50	21.7	8.31	51.5
	Gasoline	6.2				
	Diesel	818.4	2.60	2,127.8	7.72	6,318.1
	Engine Oil	10.0	24.00	240.0	29.00	290.0
	Other Oils	5,9	L.S.	224.1	L.S.	672.3
	Total	839,4	<u> </u>	2,613.6		7,331.8
					(Adjustment + 4.7 million K)	
I.	Steel Truss	Bridge				
	Gasoline	4.4	3.50	15.4	8.31	15.4
	Diesel	597.1	2.60	1,552.4	7.72	4,609.6
		7.3	24.00	175.2	29.00	211.7
	Engine Oil					521.4
	Other Oils	4.4	L.S.	173.8	L.S.	JZ1.4
	Total	613.2	······································	1,916.8		5,358.1
				-	(Adjustment +	
					3.4 million K)	) . · · · ·

Appendix Table 10.5.2 ECONOMIC COST OF FUEL IN CONSTRUCTION WORK

(March 1986).

Notes: 1) By C.C.

2) Refer to Appendix Table 10.2.2.5.

Appendix Table 10.5.3 ECONOMIC COST OF PERSONNEL

(In Kyat '000, 1985/86 prices)

1 - 1 - 1 -
at)
: : :
at)

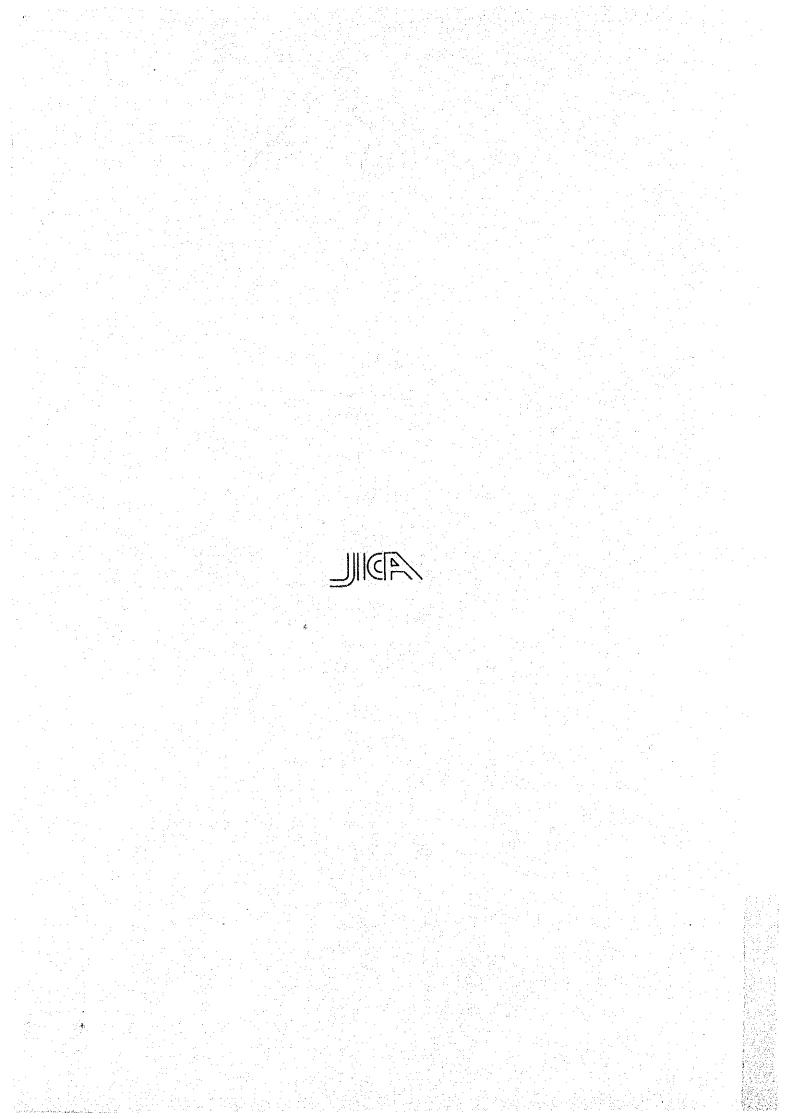
G.Total 120,085 116,896 126,449 (Kyat '000) ø 2) RAIL-CUM-ROAD BRIDGE: BENEFITS 2,353 4,707 4,707 7,0661 11,768 11,768 16,475 19,676 11,768 19,676 11,768 19,676 11,768 10,676 10,676 10,707 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,562 10,56 Dev.B. 3 (1)-(3) Total (4) 28,421 4,994 1,926 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,320 2,220 2,220 2,220 2,220 2,220 2,220 2,220 2,220 2,220 2,220 2,220 2,220 2,220 2,220 2,220 2,220 2,220 2,220 2,220 2,220 2,220 2,220 2,220 2,220 2,220 2,220 2,220 2,220 2,220 2,220 2,220 2,220 2,220 2,220 2,220 2,220 2,220 2,220 2,220 2,220 2,220 2,220 2,220 2,220 2,220 2,220 2,220 2,220 2,220 2,220 2,220 2,220 2,220 2,220 2,220 2,220 2,220 2,220 2,220 2,220 2,220 2,220 2,200 2,200 2,200 2,200 2,200 2,200 2,200 2,200 Ferries (E) Appendix Table 10.5.4 3,737 3,737 3,924 4,120 5,008 5,742 5,126 8,514 111,112 8,517 111,112 8,517 111,112 8,517 111,112 112,135 112,135 113,251 113,251 113,251 113,251 Induced 5 Diverted 16,101 16,101 17,751 17,751 18,639 19,571 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,577 19,5777 19,5777 19,5777 19,5777 19,5777 19,5777 19,5777 19,5777 19,5777 9 1993 94 95 95 97 98 98 98 99 01 01 (6) G.Total 12, 665 12, 665 12, 909 12, 909 132, 586 132, 586 132, 586 132, 586 132, 586 132, 586 132, 586 133, 940 153, 940 153, 940 153, 940 153, 940 153, 950 153, 961 122, 665 122, 665 122, 665 122, 665 122, 665 122, 665 122, 665 122, 665 122, 665 122, 665 122, 665 122, 665 122, 665 122, 665 122, 665 122, 665 122, 665 122, 665 122, 665 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 123, 707 (Kyat '000) BENEF ITS Dev.B 3 ROAD BRIDGE: (4) (1)-(3) Total 117,862 118,755 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 26,705 ຊ  $^{3}, 421$  $^{3}, 994$  $^{1}, 926$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  $^{2}, 320$  2 Ferries ල Appendix Table 10.5.4 3,369 3,537 3,514 3,516 3,900 3,900 5,914 5,905 6,174 1,75 6,174 6,174 6,177 1,958 8,701 9,175 9,175 9,175 9,175 9,175 111,938 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,948 111,9488 111,9488 111,9488 111,9488 111,9488 111,9488 1 Induced 5 14,493 15,218 15,218 17,616,777 17,616,777 17,616,777 17,616,223,272 226,557 226,557 226,557 226,557 226,557 226,557 330,306 41,064 41,0242 43,038 45,038 45,038 45,038 45,038 45,038 45,038 45,038 45,038 45,038 45,038 45,038 45,038 45,038 45,038 45,038 45,038 45,038 45,038 45,038 45,038 45,038 45,038 45,038 45,038 45,038 45,038 45,038 45,038 45,038 45,038 45,038 45,038 45,038 45,038 45,038 45,038 45,038 45,038 45,038 45,038 45,038 45,038 45,038 45,038 45,038 45,038 45,038 45,038 45,038 45,038 45,038 45,038 45,038 45,038 45,038 45,038 45,038 45,038 45,038 45,038 45,038 45,038 45,038 45,038 45,038 45,038 45,038 45,038 45,038 45,038 45,038 45,038 45,038 45,038 45,038 45,038 45,038 45,038 45,038 45,038 45,038 45,038 45,038 45,038 45,038 45,038 45,038 45,038 45,038 45,038 45,038 45,038 45,038 45,038 45,038 45,038 45,038 45,058 46,038 45,058 46,038 46,038 46,038 46,038 46,038 46,038 46,038 46,038 46,038 46,038 46,038 46,038 46,038 46,038 46,038 46,038 46,038 46,038 46,038 46,038 46,038 46,038 46,038 46,038 46,038 46,038 46,038 46,038 46,038 46,038 46,038 46,038 46,038 46,038 46,038 46,038 46,038 46,038 46,038 46,038 46,038 46,038 46,038 46,038 46,038 46,038 46,038 46,038 46,038 46,038 46,038 46,038 46,038 46,038 46,038 46,038 46,038 46,038 46,038 46,038 46,038 46,038 46,038 46,038 46,038 46,038 46,038 46,038 46,038 46,038 46,038 46,038 46,038 46,038 46,038 46,038 46,038 46,038 46,038 46,038 46,038 46,038 46,038 46,038 46,038 46,038 46,038 46,038 46,038 46,038 46,038 46,038 46,038 46,038 46,038 46,038 46,038 46,038 46,03846,038 46,038 46,038 46,038 46,038 46,038 46,03846,038 46,038 46,038 46,038 46,038 46,038 46,038 46,038 46,038 46,038 46,038 46,038 46,038 46,03846,038 46,038 46,038 46,038 46,038 46,03846,038 46,038 46,038445 46,038445 46,03844546,038445 46,03844546,038445 46,03844546,038445 46,03844546,038445 46,03844546,038445 46,03844546,03844547,038445 46,03844547,03844547,03844547,03844547,03844547,03844547,03844547,03844547,048454547,048454547,048454547,048454547,04845454545454545454545454 Diverted Э 

## Appendix Table 10.5.5 ECONOMIC COST AND BENEFIT STREAMS

#### ROAD BRIDGE P.C. box girder

					:
Year	Cost	Ben.	Year	Cost	Ben.
1987	8600	Õ	1987	8600	0
	143000	· 0	1988	147900	0
1988 1989	82600	0	1989	160700	0
1989	125400	0	1990	174100	0
1990	85800	Ő	1991	103200	0
1992	115400	0	1992	114000	0
1993	0	19909	1993	<b>0</b> ,	22191
1994	Ő	22849	1994	0	25537
1995	Ŭ	25834	1995	0	28932
1996	Ŭ Ŭ	57286	1996	· · · · 0	60801
1997	ŏ	36940	1997	0	40875
1998	Ő	33153	1998	0	37414
1999	ŏ	40586	1999	0	45380
2000	õ	43830	2000	0	49063
2000	Ŏ	45698	2001	0	51167
2002	Ũ	47750	2002	0	53365
2003	800	49690	2003	7200	55661
2004	Ő	30320	2004	0	36561
2005	Õ	51728	2005	0	58249
2006	Ō	54057	2006	0	89292
2007	0	61482	2007	0	68605
2008	0	64025	2008	0	71467
2009	0	59761	2009	0	67538
2010	0	66781	2010	0	74911
2011	0	69684	2011	0	78177
2012	0	72716	2012	0	81591
2013	800	104303	2013	7200	113579
2014	0	62686	2014	0	72379
2015	0	85327	2015	0	95455
2016	0	82061	2016	0	96418
2017	0	90086	2017	0	101145
2018	0	122032	2018	0	134012
2019	0	103153	2019	0	115231
2020	0	107463	2020	0	120085
2021	0	103707	2021	0	116896
2022	-280400	112665	2022	-354200	126449
TOTAL	282000	1927560	TOTAL	368700	2188430

I.R.R. ..... 6.8 % B/C ratio(1=10%) 0.61 P.W.(i=10%) K-164 Mil.


6.4 % I.R.R. . . . . . B/C ratio(i=10%) 0.57

RAIL-CUM-ROAD BRIDGE

Steel single deck truss

10~20

P.W. (1=10%) K-232 Mil.

