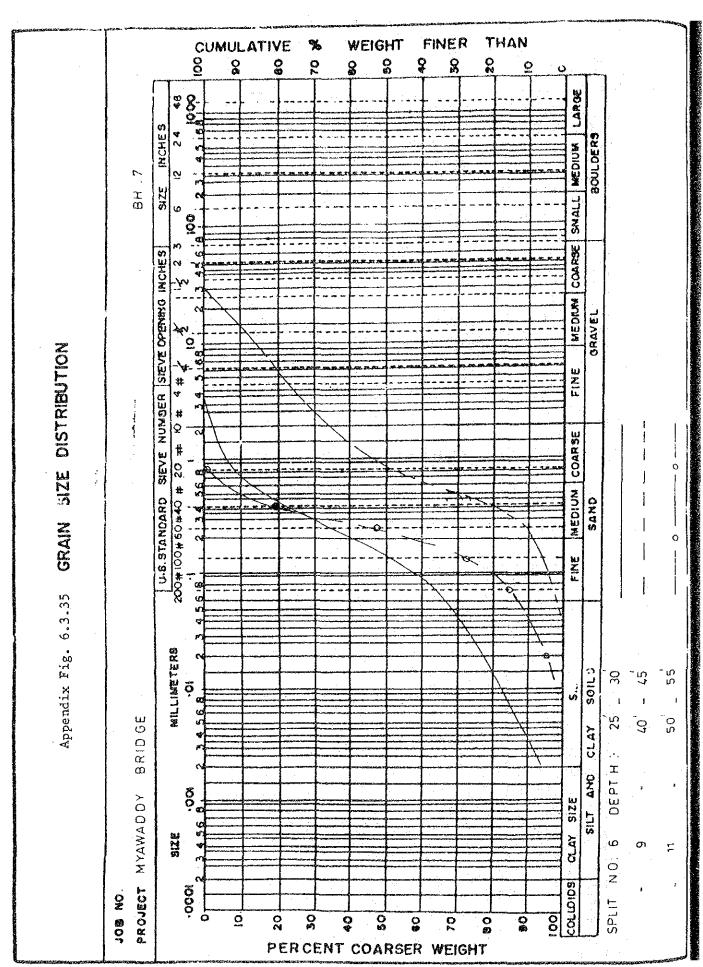
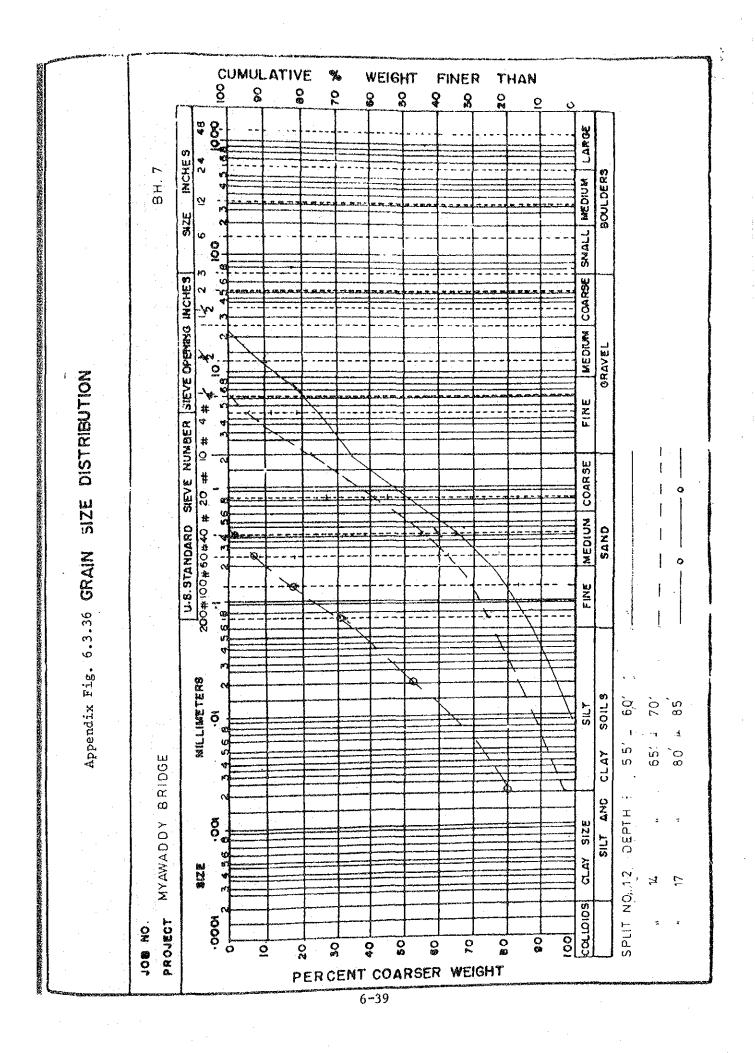
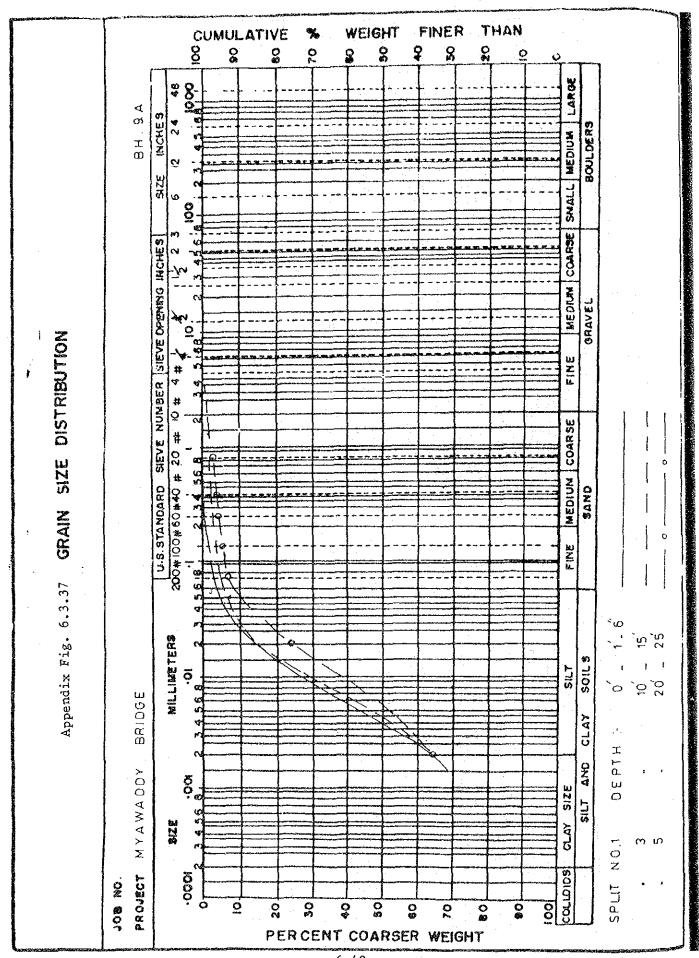
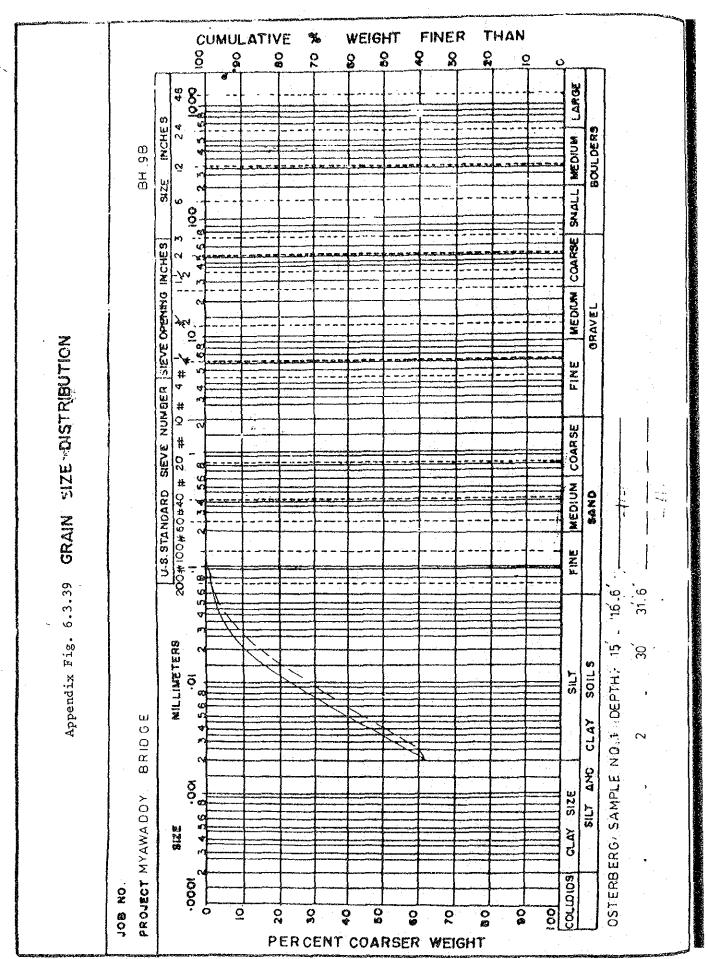
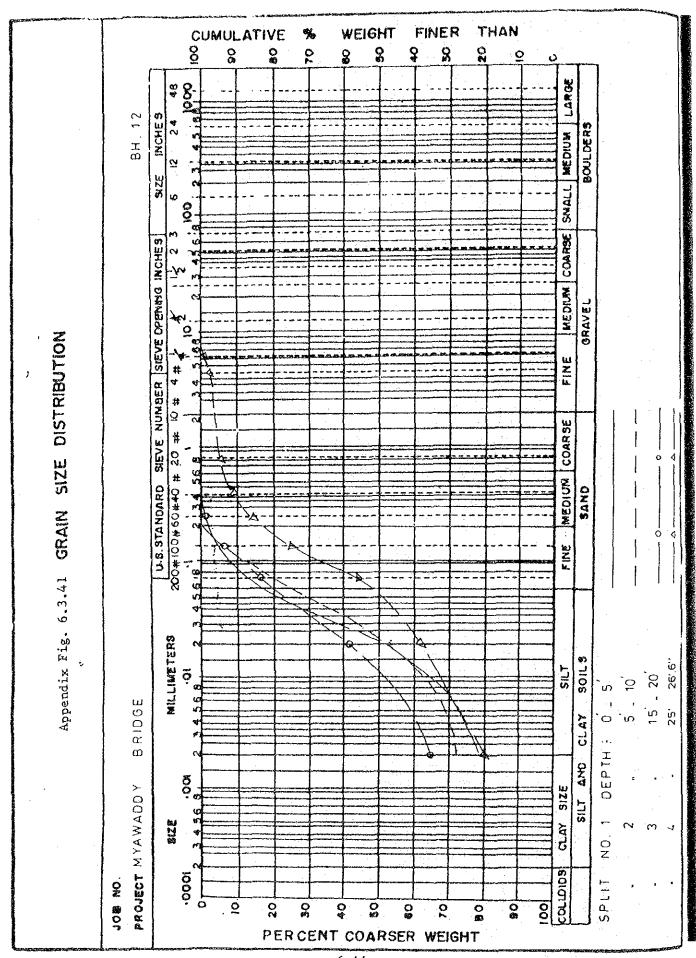

6-33

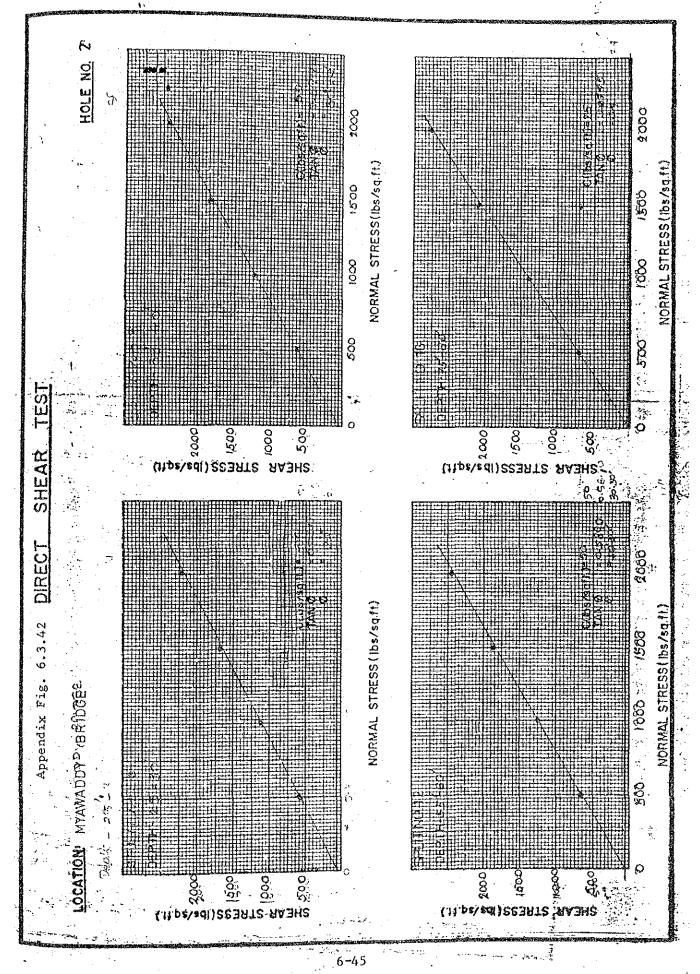


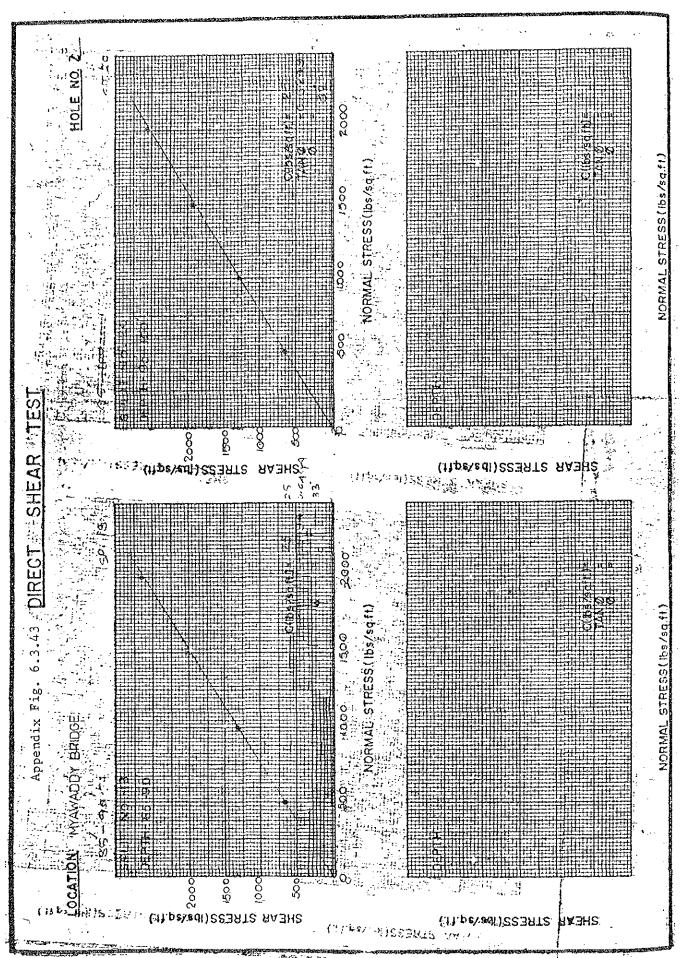


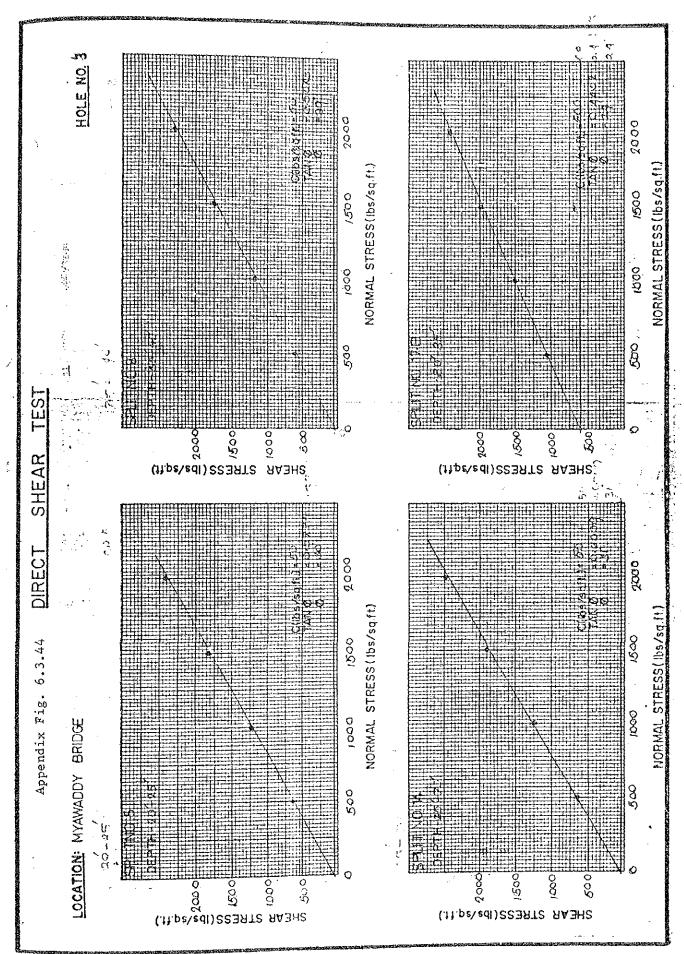

6-35

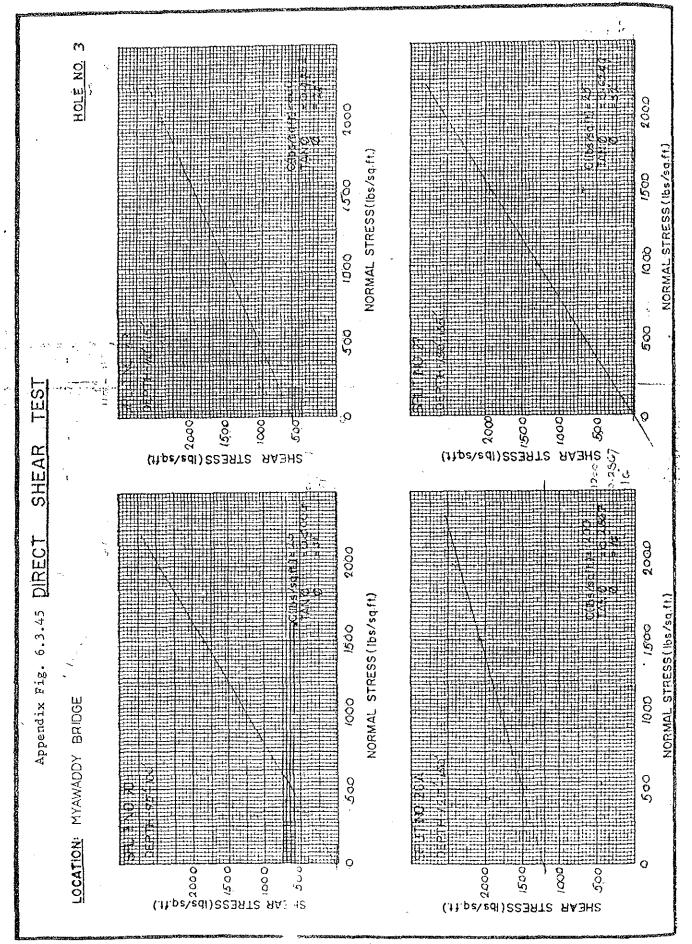


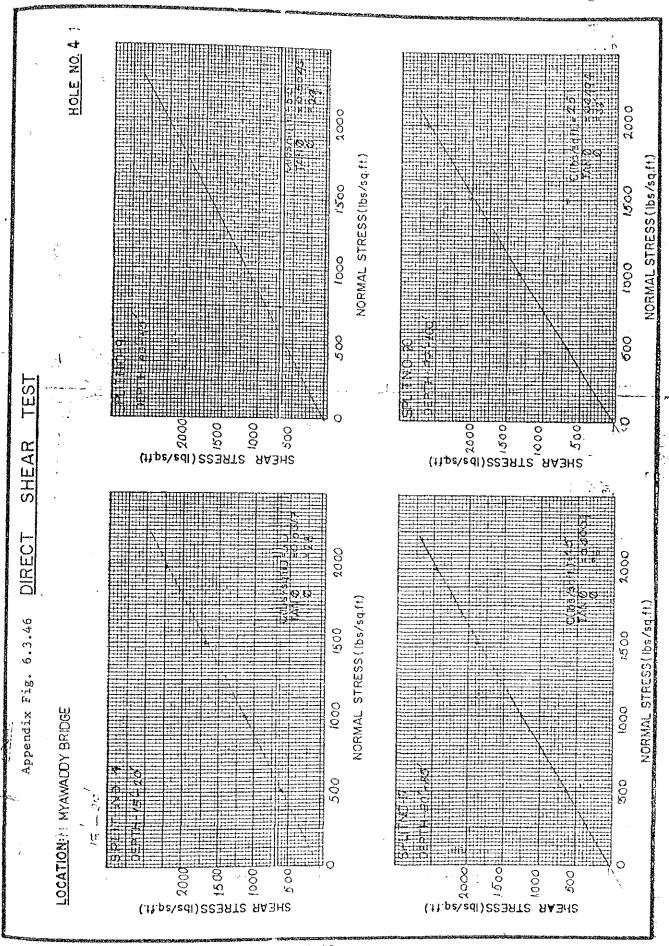


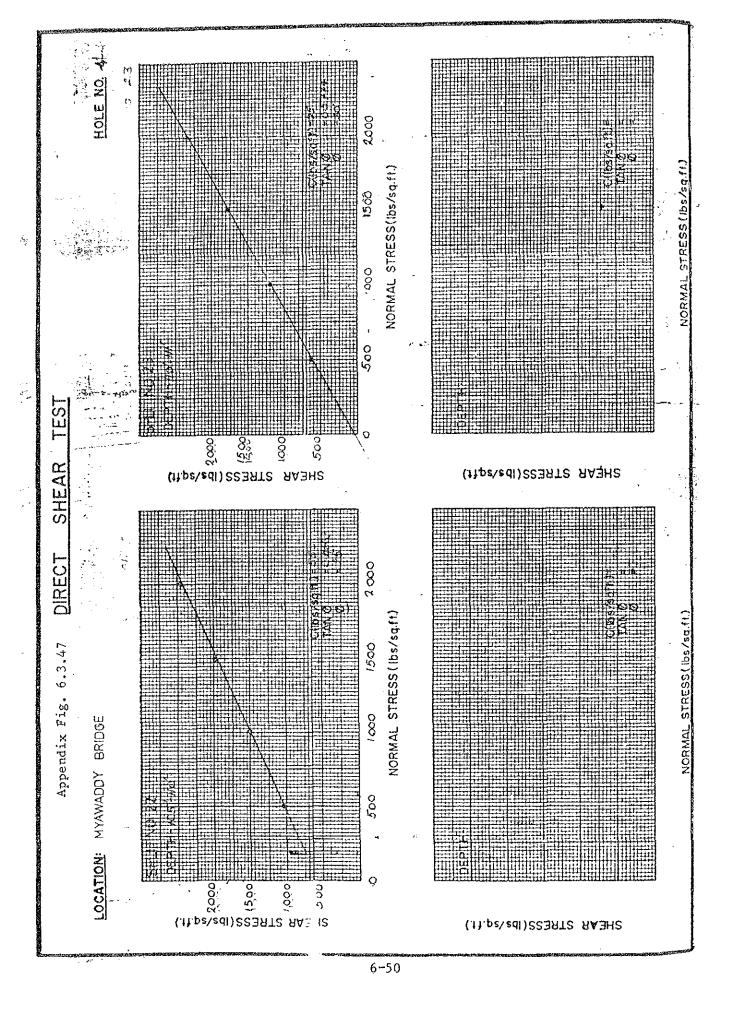


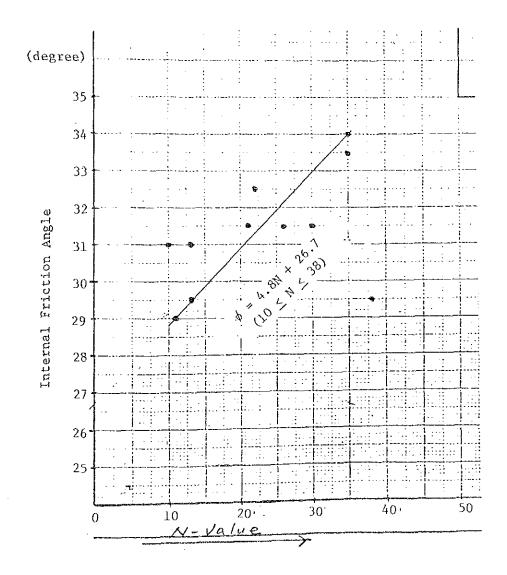

CUMULATIVE % WEIGHT FINER THAN 8 õ 0 5 Ö 8) Ş 8 0 S LARGE 8 H 9 SACHE S SNALL MEDIUM BOULDERS ç 37K Ø Correction SIEVE NUMBER SIEVE OPENING INCHES Seron Ser GRAVEL SIZE DISTRIBUTION E E ∯ \$ COARSE 200#100#60#40 # 20 MEDIUM SPRO GRAIN N N Appendix Fig. 6.3.38 MILLIMETERS 20 SOILS Sil CLAY PROJECT MYAWADDY BRIDGE DEPTH Ö SIZE S, Q 0 M 21 58 SPLIT NO COLIDIDS 0000 JOM NO. 00 Q 0 PERCENT COARSER WEIGHT 6-41




CUMULATIVE 鬼 WEIGHT FINER THAN õ Q က စ Q e 8 BH.1 BOULDERS MANDED SE 37.K SMALL SIEVE NUMBER SEEVE OPENING INCHES COARSE MEDIUM GRAVEL GRAIN SIZE DISTRIBUTION 四乙二 COARSE 発売ロロス Appendix Fig. 6.3.40 10, 12, MILLIMETERS SOILS ີດ໌ດ໌ CLAY PROJECT MYAWADDY BRIDGE OEPIH ŏ, SIZE S. CAY 1213 Core Sample.2 o Z 5010103 SPLIT 0000 ON SOF 0 Q ġ PERCENT COARSER WEIGHT 6-43







Appendix Fig. 6.3.49 COMPRESSION TEST ! (Stress-Strain Curves) UNCONFINED TRIAXIAL IRRAWADDY RIVER BRIDGE Job No. __ Project Sample No. CORE-1 _ Boring No. MYAWADDY Location of Project 50-5 to 55-0" ____ Depth of Sample 9 - 12 - 85Date of testing 0.02 mm/sec Strein Rate Uncontined compressive Strainat | Sensitivit Natural Coefficient of Size of specimen, cm. Wet density water content % Condition deformattion failure Specimen strength kg/cm² g/cm³ ratio kg/cm² 70 E_{50} Diameter Height of sample No. BLUISH 0.7 26.83 2.44 8.14 3.566 7.122 1 GREY SHALE 406 20 10 ដ 0.5 2.0 1.5 Strain, Observation of sample at failure Remarks.

Appendix Fig. 6.3.50 UNCONFINED COMPRESSION TEST! (Stress-Strain Curves) IRRAWADDY RIVER BRIDGE JOB NO. Project Location of Project _____MYAWADDY Boring No. Sample No. CORE-3 Depth of Sample _60-0" to 65-0" Strein Rate 0.02 mm/sec Size of specimen, cm. Natural water Coefficient of Strainat Sensitivity Condition Uncontined Specimen Wet density compressive strength kg/cm² content % deformattion failure of sample Height Diameter No. g/cm⁵ ratio E_{50} kg/cm² % DARK GREY 7.112 3.556 2.40 6.31 SHALE 31.65 1.43 10 2.0 1.5 Strain . % Observation of sample at failure Remarks.

Projec	:1 <u>JRR</u> /	The second secon	ER BRIDG						
L.ocati	ion of Project					<u>5</u> Sanı		4	
Date (of testing	9-12-8	5	Depti	h of Sample	65'-0" to 7	<u>ó-ď</u>		
Strein	Rate _(0.02 mm/sei	-	<u> </u>	÷				
cimen	Condition of sample	Size of spec	Diameter	Natural water content	Wet density	Uncontined compressive strength kg/cm ²	Coefficient of deformattion E ₅₀ kg/cm ²	failure	Sensitivity Tatio
ὶο. ♣	PARK GREY	·7.112~	3.556	10.56	2.52	12.04		2.33	-
, 	SHALE	7,112	1						
				<u> </u>					
			<u> </u>	<u> </u>					
				J				· • • • • • • • • • • • • • • • • • • •	<u> </u>
							· · · · · · · · · · · · · · · · · · ·		
	•				: 	*::" '			
				. «۲۰ د فیلید افغیلیدی ا	- 		· · · · · · · · · · · · · · · · · · ·		
							11. 11. 1		
и					1 4				
kg/cm²									
				* *					
88 9.0		· · · · · · · · · · · · · · · · · · ·	1.1				:-	•	
ب									
Stress	· · · · · · · · · · · · · · ·			÷					
				 	<u></u>		on Berling Carl	: :::	 -
30				÷				:: :::::::::::::::::::::::::::::::::::	<u></u> _ .
			12 es 13 e						
30									
30									
20									
30									
20									
20									
30 20 10	0 0	.5 1.	0 %	1.5	2.0	2.5		15	
30 20 10		.5 1.			2.0	189 2.5	Strain, %	15	
30 20 10		.5 1.				189 2.5		15	
30 20 10		.5 1.			2.0	189 2.5		15	
30 20 10		.5 1.			2.0	189 2.5		15	
30 20 10		.5 1.			2.0	189 2.5		15	

Appendix Fig. 6.3.52 UNCONFINED COMPRESSION TEST I (Stress-Strain Curves) TRIAXIAL IRRAWADDY RIVER BRIDGE Job No. Project . Location of Project MYAWADDY Boring No. 5 Sample No. CORE-5 9-12-85 Depth of Sample 70-0'' to 73-6''Strein Rate 0.02 mm/sec Natural Uncontined Size of specimen, cm. Coefficient of Strainat Condition : Wet density Sensitivity Specimen compressive strength deformattion failure content g/cm³ of sample ratio Height Diameter No. % kg/cm2 % E_{50} kg/cm SHALE 8 7.112 3.556 9.5 6 2.47 13.69 2.33 LIMESTONE 130 0.5 1.0 2.5 Strain, % Observation of sample at failure Remarks.

Appendix Fig. 6.3.53 UNCONFINED COMPRESSION TEST! (Stress-Strain Curves) IRRAWADDY RIVER BRIDGE Job No. -Project 5 Sample No. CORE-6 Location of Project MYAWADDY Boring No. 73-6'' to 77-0''9-12-85 _____ Depth of Sample Date of testing 0.02 mm/sec Strein Rate Uncontined compressive strength kg/cm² Coefficient of Strainat Natural Sensitivi Wet density Size of specimen, cm. water content deformattion failure Condition Specimen ratio g/cm3 E₅₀ kg/cm³ % Diameter of sample Height No. BLUISH GREY 1.8 16.97 2.61 7,112 3.556 8.2 б SHALE Balling and the state of the state 10. . . . 0.5 苕 1.0 Strain , Observation of sample at failure Remarks.

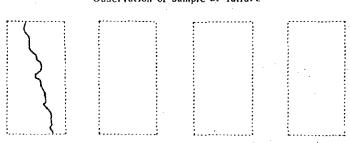
Appendix Fig. 6.3.54 UNCONFINED COMPRESSION TEST (Stress-Strein Curves) 1RRAWADDY RIVER BRIDGE Job No. Project MYAWADDY Location of Project . . Boring No. Sample No. CORE-7 9-12-85 77-0" to 80-0" Date of testing _ Depth of Sample Strein Rate 0.02 mm/sec Natural Condition Size of specimen, cm. Uncontined Strainat Coefficient of water content Wet density Specimen Sensitivity compr*e*ssive deformattion failure g/cm³ strength kg/cm² of sample Height Diameter No. ratio kg/cm² BLUISH GREY 7.112 3.556 2.6 43.8 1.6 SHALE 20 2.0 1.0 Strain . % Observation of sample at failure Remarks.

Appendix Fig. 6.3.55 UNCONFINED COMPRESSION TEST! (Stress-Strain Curves) TRIAXIAL IRRAWADDY RIVER BRIDGE Job No. Project Sample No. CORE-1 MYAWADDY _ Boring No. 115-6" to 118-9" 18-2-86 _____ Depth of Sample Date of testing % / min. 0.02 mm/sec Strein Rate Uncontined compressive Natural Coefficient of Strainat Sensitivit Size of specimen. em. Wet density water content Condition deformattion failure Specimen strength kg/cm² g/em³ 20 ratio iE₅₀ kg/cm³ Height Diameter of sample No. CLAY 8 4.15 5.97 19.59 2,47 3.048 6.096 SHALE \$6 5.0 Ħ 4.0 1.0 2.0 £ 3.0 Strain, Observation of sample at failure Remarks.

Date of testing 18-2-86 Depth of Sample 114-5 to 122-0"	
Second S	
Condition Of sample Height Diameter Condition Strainal Sensitive Condition Strainal Sensitive Sensitive	
Condition Speciment Condition Speciment Condition Cond	
SPEX SHALE 8.126 4.064 17.12 2.35 4.36 7.5	
2 2 3.0 4.0 5.0 Strain, %	atio
6 2 0 0 1.0 2.0 \$ 3.0 4.0 \$ 6.0 7.0 \$ 8.0 \$ 8.0	
6 2 0 0 1.0 2.0 \$ 3.0 4.0 \$ 6.0 7.0 \$ 8.0 \$ 8.0	
66 4 2 0 1.0 2.0 \$ 3.0 4.0 \$ 6.0 7.0 \$ 8.0 5.0 Strain, %	
2 0 0 1.0 2.0 \$ 3.0 4.0 \$ 6.0 7.0 \$ 8.0 \$ 5.0 \$ Strain, %	
6 2 2 3.0 4.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	
6 2 1.0 2.0 * 3.0 4.0 5.0 5.0 Strain, %	٠
6 2 2 3.0 4.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	
6	
6 2 2 0 0 1.0 2.0 \$ 3.0 4.0 \$ 6.0 7.0 \$ 8.0 5.0 Strain, %	
6 2 2 0 0 1.0 2.0 \$ 3.0 4.0 \$ 6.0 7.0 \$ 8.0 5.0 Strain, %	
6 2 2 0 0 1.0 2.0 \$ 3.0 4.0 \$ 5.0 7.0 \$ 8.0 5.0 Strain, %	
6	
6 2 0 1.0 2.0 * 3.0 4.0 5.0 Strain, %	
6 2 0 1.0 2.0 * 3.0 4.0 5.0 Strain, %	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
0 0 1.0 2.0 \$ 3.0 4.0 \$ 6.0 7.0 \$ 8.0 5.0 Strain, %	
0 0 1.0 2.0 \$ 3.0 4.0 \$ 6.0 7.0 \$ 8.0 5.0 Strain, %	
5,0 Strain, %	
5,0 Strain, %	
5,0 Strain, %	
ks. Observation of sample at failure	
	•

Appendix Fig. 6.3.57 UNCONFINED COMPRESSION TEST! (Stress-Strain Curves) IRRAWADDY RIVER BRIDGE Joh No. Project Sample No. CORE-4 MYAWADDY ____ Boring No. Location of Project 125-3" to 128-6" 18-2-86 _____ Depth of Sample Date of testing 0.02 mm/sec Strein Rate Uncontined compressive strength kg/cm² Coefficient of Strainat Natural Sensitivii Size of specimen, cm. Wet density water content 0, 76 failure % deformattion Condition Specimen ratio g/cm³ L50 kg/cm² Diameter of sample Height No. 2.5 GREY 11.51 ^2.34 3.556 17.112 113.32 4 SHALE 蚂 0.5 1.0 3.0 2.0 2,5 Strain . Observation of sample at failure Remarks.

Appendix Fig. 6.3.58 UNCONFINED COMPRESSION TEST ! (Stress-Strain Curves) IRRAWADDY RIVER BRIDGE Job No. Project MYAWADDY Location of Project Sample No. CORE-5 <u> 18-2-86</u> Date of testing 128-6" to 131-9" Depth of Sample 0.02 mm/sec Strein Rate Natural Uncontined compressive strength kg/cm² Size of specimen, cm. pecimen Condition Coefficient of Strainat water content Wet density Sensitivity deformattion of sample failure Height Diameter No. g/cm3 ratio kg/cm² % GREY 4.064 5 8.128 12.72 SHALE 21.90 8.98 2.8 0.5 3.0 1.0 2.0 Strain , Observation of sample at failure Remarks.


UNCONFINED COMPRESSION TEST! (Stress-Strain Curves) IRRAWADDY RIVER BRIDGE Job No. Project. Sample No CORE-2 _____Boring No. Location of Project 148-9" to 152-1" 18-3-86 _ Depth of Sample Date of testing 0.02 mm/sec Strem Rate Natural water content Uncontined Coefficient of Strainat Sensitivi Wet density Size of specimen, cm. compressive strength kg/cm² Condition deformattion failure Specimen ratio kg/cm³ g/cm3 Diameter Height of sample No. GREY 11.0 2,56 9.98 3.81 13.83 7.62 1 SHALE 12 旨 12 Strain . Observation of sample at failure Remarks.

Appendix Fig. 6.3.59

Appendix Fig. 6.3.60 UNCONFINED TRIAXIAL COMPRESSION TEST! (Stress-Strain Curves) IRRAWADDY RIVER BRIDGE Job No. Project MYAWADDY Location of Project Sample No. CORE-4 18-3-86 Date of testing 155-3" to 158-8" _ Depth of Sample 0.02 mm/sec Strein Rates Natural Size of specimen, cm. Condition Uncontined Specimen Strainat | Sensitivity Coefficient of water content Wet density compressive strength kg/cm² deformattion failure of sample Height Diameter No. g/cm³ ratio kg/cm³ % E_{50} GREY 4.064 4 8.128 12,51 2.08 6.96 SHALE 6.85 Strain , Observation of sample at failure

Remarks. Observation of sample at failure

Appendix Fig. 6.3.61 UNCONFINED COMPRESSION TEST ! (Stress-Strain Curves) TRIAXIAL IRRAWADDY RIVER BRIDGE Job No. Project 3 Sample No. CORE-5 MYAWADDY Boring No. Location of Project 158-8 to 161-9" _____ Depth of Sample 18-3-86_ Date of testing 0.02 mm/sec Strein Rate Strainat Sensitivit Coefficient of Uncontined Natural Wet density Size of specimen, cm. compressive Condition deformattion failure water Specimen content strength kg/cm² ratio g/cm³ Eso kg/cm² % Diameter of sample Height No. 3,15 GREY 9.14 4.064 15.51 2.17 5 8.128 SHALE 0.5 15 2.0 3.0 1.0 Strain . Observation of sample at failure Remarks.

Appendix Fig. 6.3.62 UNCONFINED COMPRESSION TEST I (Stress-Strain Curves) IRRAWADDY RIVER BRIDGE Job No. Project MYAWADDY Location of Project Sample No. CORE-6 18-3-86 Date of testing 161-11 to 165-2" __ Depth of Sample 0.02 mm/sec Strein Rate Natural Size of specimen, cm. Uncontined Condition Coefficient of Strainat Wet density pecimen water content compressive strength kg/cm² Sensitivity deformattion failure of sample Height Diameter Ñο. g/cm3 % ratio kg/cm² % GREY 7,112 3.556 15,71 6 SHALE 1.87 3.73 4.65 6.0 哲 1:0 2.0 4.0 Strain , Observation of sample at failure Remarks.

*Based on the material passing the 3-in. (75-mm) sieve.

Appendix Table 6.3.2 Soil Classification Chart.

1983 Annual Book of ASTM Standards, Appendix Table 6.3.3 Continued.

* Based on the m	Highly Organi	SILTS AND CLAYS Liquid limit greater than 50% SILTS AND CLAYS							lore t	•)	COARSE-GRA 50% retail	ned on		ום אסרשא		
aterial passing the	ic Soils	gre	aterit	then 50% 50% or less					sses IDS H	No. 4 s			Ined o	fraction No. 4 CLE, GRAV	sieve AN	UISIONS
3-in (75-mm) sicy	- P	7 HO 25	9	X.	70	6	7	, sc	, MS	SP	MS	99	운	GP.		GROUP SYMBOLS
7-	Peat, muck and other highly organic soils	organic clays of medium 3c to high plasticity	norganic clays of high plasticity, fat clays	<pre>inorganic silts, micaceous or diatomaceous fine sands or silts, elastic silts</pre>	Organic silts and organic silty clays of low plassi- scity	fnorganic clays of low to medium plasticity, gravelly clays, sandy clays, slity clays, lean clays	Inorganic silts, very fine sands, rock flour, silty or clayey fine sands	Clayey sands, sand-clay mixtures	Silty sands, sand-silt mixtures	Poorly graded sands and gravelly sands, little or no fines	Well-graded sands and : gravelly sands, little or no fines	Clayey gravels, gravel-sand- clay mixtures	Silty gravels, gravel-sand- silt mixtures	Poorly graded gravels and gravel-sand mixtures, little or no fines	Well-graded gravels and gravel-sand mixtures, little or no fines	NAMES NAMES
			***				,				2 4			*.**		

∛Visual-Manı	, ,	Pioslicity Inde			8	8 8 5			More	Classification on basis of percentage of fines Less than 5% Pass No. 200 sieve GW, GP, SW, SP More than 12% Pass No. 200 sieve GM, GC, SM, SC 5% to 12% Pass No. 200 sieve Borderline Classification requiring use of dual symbols								CLASS IF 1CAT	
Visual-Manual Identification, See ASTM Designation D 2488	to as as as Liquid Limit 70 as as as as	411165:01	(A) (B) (B)	(P)	Equation of A-line: PX = 0.73 (LL - 20)	Atterberg Limits plotting in hatched (A) Area are borderline classifications requiring use of dual symbols.	classification of fine-grained traction of coarse-	PLASTICITY CEART	Atterberg limits plot above 'A' line requiring use of dual and plasticity index greater than 7 symbols	erg limits	Not meeting both criteria for SW	$\frac{(D_{30})^2}{2^2 D_{10} \times D_{60}}$ Between 1 and 3		Atterberg limits plot above 'A' line requiring use of dual and plasticity index greater than 7 symbols	erg)	Not meeting both criteria for GW	$c_z = \frac{(0.30)^2}{0.10 \times 0.60}$ Setween 1 and 3		CLASSIFICATION CRITERIA

Appendix Table 6.3.4 SUMMARY OF SOIL TEST

project: IRRAWADDY RIVER BRIDGE CONSTRUCTION Standard: ASTM													
Boreho	ole No.		1										
Sample	No.	1-1	12	1-3	Core.	Core. 1-2	core 1-3	Core 1-4	Core	core 1-6			
Sample	depth	0.15 m			1.98 m	3.51 m	4,55m	m & & &	8.60 m	9,60 m			
Condition	on of sample	Disturbed Undesturbed	Daturbed Undaturbed	Disturbed -Undersabed	Disturbed Undsturbed	Disturbed Undstarbed	Disturbed Undisturbed	Disturbed Undisturbed	Disturbed Underwebsel	Disturbed Understanded			
Natural	water content, %	15.50	14.05	15.09	6.65	7. 89	6,04	5.27	4.20	4.54			
Specific	gravity	2.65	3.61		۵, ۲۵			مر. الم					
Wet den	sity, g/cm³						۷.۴/	3,44	2,40	2,10			
Dry der	nsity, g/cm³												
Natural	void ratio			·									
Degree (of saturation , %	, , , , , , , , , , , , , , , , , , ,			· · · · · · · · · · · · · · · · · · ·								
8	Liquid limit , %	W6.0	47.0	36.0									
Atterberg limits	Plastic limit , %	15.0	15.0	15.0									
Atte	Plasticity index	.2/.0	22.0	31.0									
	Gravel , %	p	0	0									
10	Sand ,%	44	2	46									
alys	Silt , %	74	70	74									
6 6	Clay & colloid , %	22	73	73									
3 88 2	Max. diameter, mm	0.10	0.15	0.10	·								
Grain size analysis	Diam. at 60%	0.016	0.016	0.016									
	Diam. at 10%												
Visual sc	oil description	Clayey Siltstone	Clayer	Clayey Sillstone	Shale	Shale	Shale	Shale	Shale	Shale			
Unified	soil classification	E .	(CL)	i t									
3 g	Undisturbed sample, kg/cm ²												
atine Ossi	Remoulded sample, kg/cm ²		•										
Unconfined compression test	Sensitivity ratio												
20 \$	Strain at failure,%												
- 85	Angle of internal friction												
Triaxial compres- sion test	Cohesion, kg/cm²												
	Condition of drainage			·									
Consolidation dation test	Preconsolidation pressure, kg/cm ²												
Con dati test	Compression index												
Remark:	s: Wet densit	j was o	btained		Measur	ement"	of co	re san	reference.				
	6-67												

Appendix Table 6.3.5 SUMMARY OF SOIL TEST Standard: <u>ASTM</u> Project: IRRAWADDY RIVER BRIDGE CONSTRUCTION Borehole No. Core core Sample No. 1-8 1-7 12.60m 11/13 m Sample depth 14.17 Disturbed Disturbed Casturbed Disturbed Disturbed Disturbed Undeturbed Undisturbed Undisturbed Undisturbe Condition of sample Undesturbed Undatu tod--Undeturbed Undesturbed Undsturbed Natural water content, 5.96 4.02 Specific gravity 2.70 Wet density, g/cm3 1.91 2,33 Dry density, g/cm3 Natural void ratio Degree of saturation, % Atterberg limits Liquid limit Plastic limit Plasticity index Gravel Sand , % Grain size analysis Silt , % Clay & colloid , % Max, diameter, mm Diam. at 60% Diam. at 10% Visual soil description Shale Shale Unified soil classification Undisturbed Unconfined compression test sample, kg/cm² Remoulded sample, kg/cm² Sensitivity ratio Strain at failure,% Angle of Triaxial compres -sion test internal friction Cohesion, kg/cm² Condition of orainage Preconsolidation pressure, kg/cm² Compression index Wet density was obtained from measurement of core sample. Remarks: 6-68

Appendix Table 6.3.6 SUMMARY OF SOIL TEST

Projec	t: IRRAWADDY RIVER	BRIDGE CO	ONSTRUCTI	ON	Stand	dard:	AST	rM		
Boreho	ole No.					<u>.</u> Σ.	· · · · · · · · · · · · · · · · · · ·		<u> </u>	
Sample	No.	3-/	7.7	7-3	2-4	3-5	2-6	3-7	2 - 8	2-5
Sample	depth	0.15 0	ハタフェ	3,50 m	4.72 m	6.25 m	7.77m	9.37m	いい。子では、ハン・ハン・ハン・ハン・ハン・ハン・ハン・ハン・ハン・ハン・ハン・ハン・ハン・ハ	12,844
Conditi	on of sample	Disturbed -	Disturbed -Undisturbed-	Disturbed -Undsturbed	Disturbed - Undixhirbed-	Disturbed Underprised	Disturbed Underurbed	Disturbed Undesturbed	Disturbed -Undesturbed	Dallurbad Undahurbad
Natural	water content, %	24.33	73.83	23,00	33,30	33,63				
Specific	gravity	3.61		2.61		3.62		س کی د		-ఎ. కరి
Wet den	isitγ, g/cm³	2,04	3.04	1.96	T		1.90		کر ہے د	2.16
Dry der	nsity, g/cm³			<u> </u>			717.5	,,,,,		
Natural	void ratio									
Degree	of saturation , %									
ĺα.	Liquid limit , %									
Atterberg limits	Plastic limit , %									
Atta	Plasticity index									
	Gravel , %	0	0			g	ಎಕ	9 د		
⊌ A	Sand , %	99	98			96	72	70		
siys	Silt , %	,	ž			,	2	,		
Grain size analysis	Clay & colloid , %	D	o			D	0	0		
siz.	Max. diameter, mm	1.00	0.80			18.0	9.0	12.0		
Srair	Diam. at 60%	0.26	0.35			0.45	o, to	0,60		
	Diam. at 10%	0,12	0.13			0,18	0.15	4.19		
Visual s	oil description	Sand	Sand	Sand	Sand	Sand	Sand	Sand	Sand	Sand
Unified	soil classification	SP	SP			SP	SP	SP		
ठेठ	Undisturbed sample, kg/cm ²									
Unconfined compression test	Remoulded sample, kg/cm ²									
Uncon compr test	Sensitivity ratio									
582	Strain at failure,%									
St.	Angle of internal friction									
xial ipres-	Cohesion, kg/cm²									
Triaxisi compres- sion test	Condition of drainage									
Consolidation dation test	Preconsolidation pressure, kg/cm²									
C G S	Compression index									
1 4 T	Internal Friction						9 د		3/	
Birect Shear Test	Angle (degree) Cohesion (xo/cm)						0			
Remark		ity was	obtaine thed wa	ed from sadopl	measured to	rement the dire	of SP ct shed	r test	ple at	sile,
L				— 6 <i>~</i> 69−						

Appendix Table 6.3.7 SUMMARY OF SOIL TEST

Standard: ASTM Project: IRRAWADDY RIVER BRIDGE CONSTRUCTION Borehole No. 41-6 3-15 **→ ~** √ ⅓ 1 -12 2-10 Sample No. 31.49m 24,50m ~3.0/m 26,06. 18, 44 m 19.96 m 16.91 m 15,89m 13.87 m 2 64 , B Wm 21.78 30.36 m 33.3/10 36.86 18.74 Sample depth 17,2/m 14.17 h 15.68m Detrotes Disturbed Desturbed Disturbed Disturbed Disturbed Disturbed -technologic -Undstated--thadesurbad-Hadwestalk. Condition of sample -Undowed-11.55 16.90 15.67 6.69 20.02 16.59 Natural water content, 14.94 13. 13 2.63 2.62 2.63 2.65 ه کی د Specific gravity 2.66 4,27 217 2.17 الوار ، ور 3.11 2002 2.02 Wet density, g/cm3 41.6 1.83 Dry density, g/cm³ Natural void ratio Degree of saturation, % Atterberg limits Liquid limit . % Plastic limit , % Plasticity index 13 ケノ 4 s g ુ Gravel , % J.B S.V ያο , % 96 9 د Sand 60 Grain size analysis 5 6 4/ Silt . % 1 b 0 0 ٥ Clay & colloid , % 0 0 0 12.50 12,50 9.0 A. 00 Max. diameter, mm 12.00 12.50 4.44 0.26 0,40 Diam. at 60% 0.46 4.0 1.75 0110 0.15 0.15 0.04 0.21 Diam. at 10% 0,22 Sand 82 Sand & Visual soil description Sand Sand Sand Sand Sand Sand Sand Grave Gravel (SP-SK) SP Unified soil classification GW SP SP SP Undisturbed Unconfined compression test sample, kg/cm² Remoulded sample, kg/cm² Sensitivity ratio Strain at failure,% Angle of compres . sion test internal friction Triaxis Cohesion, kg/cm² Condition of drainage Preconsolidation Corsolidation pressure, kg/cm² Compression index Internal Friction Shear **33.** 5 31.5 34 Angle (degree) Cohesion (Kycm²) O

Remarks: 1) Wet density was obtained from measurement of SPT Rample at site.

s) Quick loading methodicas adopted to the direct shear test,

Appendix Table 6.3.8 SUMMARY OF SOIL TEST

Project: IRRAWADDY RIVER BRIDGE CONSTRUCTION Standard: ASTM Borehole No. 2 Sample No. Core core 2-19 2-20 2-32 アーファ 2-1 2 -2 2 - 3 1 - 4 29.11 m 27.58 m 30.63 m 33.00 m 32, 48 m 24.69 m 33.65m 33. 88 m 36,00 m Sample depth 17. Ap m 93. 30 h 30.93 m 34.69m 12. 6 pm 37.24" Daturbed Disturbed Desturbed Condition of sample Desturbed Disturbed Disturbed Disturbed Disturbad Underwood Undstorted **Undermoded** *Watestarbed -Underorted -badaturbed--Undertorbed Natural water content, 11.64 11.47 12.68 5.54 15.41 17,25 A. 37 10.61 10.29 Specific gravity 2,70 7,63 Wet density, g/cm3 **∡./**≥ 4.14 3.14 2,41 Dry density, g/cm3 Natural void ratio Degree of saturation , % Liquid limit , % 22 Plastic limit 24 Plasticity index *ያ* / Gravel , % 18 0 Sand , % 76 Grain size analysis Silt , % 59 5 Clay & colloid , % 40 D Max, diameter, mm \$ 00 0.14 Diam. at 60% 0.54 0.005 0.08 Diam. at 10% Sand & Sand & Visual soil description Sand Shale Shale Shale Shale Shale Shale Gravel Gravel Unified soil classification MH sw Undisturbed Unconfined compression test sample, kg/cm² Remoulded sample, kg/cm² Sensitivity ratio Strain at failure,% Angle of compres internal friction Triaxial Cohesion, kg/cm² Condition of drainage Consoli-dation Preconsolidation pressure, kg/cm² Compression index Shear Test Internal Friction ୬*>*. ४[~] Angle (degree) Cokesion (Kg/cm2) Remarks: 1) Wed density was obtained from measurement of SPT sample (at site) and core sample.
2) Quick loading method was adopted to The direct shear test.

3) * waxed core sample 6-71 -

Appendix Table 6.3.9 SUMMARY OF SOIL TEST

Projec	t: IRRAWADDY RIVER	BRIDGE CO	ONSTRUCTI	ON	Stand	ard:	AS	TM_		
Boreho	le No.					3			- 	
Sample	No.	3-1	3-2.	3-3	3-4	3-5	3-6 7.77 m	3-7A 8-28 m	3-78 9,28 m	3-8
Sample	depth	0.15 m	1.67 m	3, 50 m	4.72 m	6,25 m 6,55 m	B.o 7m Disturbed	9,5-9 m	9.59 m	11.12a Disturbed
Conditio	on of sample	Districted-	Disturbed -Undesturbed	Disturbed -Undeturbed	Disturbed Underwood-	-Underwood	-Undowhed-	-Linesturbed	-Undehabet	- Herteroor
Natural	water content, %	20.18	11.98	99. کاد	21.68	17,20	18.78			21.78
Specific	gravity	2.64		3.61		٥, ٤٤		اکی دست	٠,٢٦	
Wet den	sity, g/cm³								,	ļ
Dry den	sity, g/cm³									
Natural	void ratio									
Degree o	of saturation , %			ļ		· · · · · · · · · · · · · · · · · · ·	<u>'</u>			
<u> </u>	Liquid limit , %								*	
Atterberg limits	Plastic limit , %								**	
Att	Plasticity index								-×·	
	Gravel , %	0		D		- /		45	0	
. 10	Sand %	70		78		97		<i>৫</i> ৬	7	
alys	Silt , %	25		70		<u> </u>		. ≥	68	
Grain size analysis	Clay & colloid , %	5		2		۵		0	35	
Siz	Max. diameter, mm	09		1.1		٦,،د		6.0	D.17	
Grain	Diam. at 60%	0,56		0.18		0.46		2.5	0.016	
	Diam. at 10%	0,004		0.016		0.15		0,23		
Visual s	oil description	Sand & Gravel	Sand & Gravel	Silty Sand	Silty Sand	Sand	Sand	Sand	Clayey Silt	Sand
Unified	soil classification	(SM)		(SM)		SP		SP		
<u>ي</u> و	Undisturbed sample, kg/cm²					- <u>-</u>				
าร์เกะ เซรรา	Remoulded sample, kg/cm ²									
Unconfined compression test	Sensitivity ratio									
= ४४ ⊂	Strain at failure,%									
xial pres - test	Angle of internal friction									
Triaxial compres sion tes:	Cohesion, kg/cm²									
	Condition of drainage									
Consolidation	Preconsolidation pressure, kg/cm²									
Cons datic	Compression index									
	Internal Friction Augle (degree)					3/				39.5
Direct Shear Test	Cohesion (K3/cm2))			<u> </u>	0			5.1 50	0

Remarks: 1) * Atterberg Limits tests could not be performed due to insufficient soil sample.

2) Quick loading method was adopted to the direct shear test.

6-72

Appendix Table 6.3.10 SUMMARY OF SOIL TEST Project: IRRAWADDY RIVER BRIDGE CONSTRUCTION Standard: ___ASTM Borehole No. Sample No. 3-9 3-10 3-11 3-12 E1- E 3-14 3-17A 12,345 m 18.87m 15.39 m 17.070 18.44 m 19.96m Sample depth 31.49 m 31.79m აპ. ⊳/ ო აპ. პ/ო 24.43. 14.17 12.64 m 28.85m 20.26 17.87 18.74" Dediumed Condition of sample Disturbed Directord Undatebad--Undownhad -Hadeward -bodovedoddistanted. the services. -Undererba Natural water content, 31.61 20.31 32,92 17.99 19.50 22.62 15:15 16.78 15.16 Specific gravity 3.62 2.57 2.62 2.62 2.62 2.57 Wet density, g/cm3 Dry density, g/cm³ Natural void ratio Degree of saturation, % Liquid limit , % Atterberg limits Ý. ٠ķ٠ , % Plastic limit × ٠Ý٠ Plasticity index × × Gravel , % 0 D 0 , % Sand 95 17 91 94 91 16 analysis Silt , % 62 12 Clay & colloid . % 2/ 0 22 0 Max. diameter, mm 0.45 0,25 0.55 7,00 0.6 1.00 Diam. at 60% 0,25 0,22 0,021 0.37 0.25 0.02 Diam, at 10% 0,060 0.08 0.064 0,063 Clayey Sand with Clagey silty Clayey Visual soil description Sand Sand Sand Sand Silt Gravel Unified soil classification (SP-SM) SP (SP-SM)SP Undisturbed Unconfined compression test sample, kg/cm² Remoulded sample, kg/cm² Sensitivity ratio Strain at failure,% Angle of compres internal friction Trisxial Cohesion, kg/cm² Condition of drainage Preconsolidation pressure, kg/cm² Compression index

Cohesion (K&/cm) Remarks: 1) * Atterberg Limits tests could not be performed due to insufficient soil sample. 2) Quick loading test method in adopted to the direct shear test.

31.5

Internal Friction

Angle (degree)

Appendix Table 6.3.11 SUMMARY OF SOIL TEST

Project: IRRAWADDY RIVER BRIDGE CONSTRUCTION Standard: ASTM

rrojec	: IRRAWAUDI NIVER									
Boreho	le No.				<u> </u>	3	T			<u> </u>
Sample	No.	3-178	3-18	3-19	3-20	3-1/A	3-218	3-77	3-23	3-24
Sample	depth	Described	26.06 m	27,58m 27,88m	39.11 m 39.41 m Desturbed	がた、KV m いた、タン m Disturbed	Digtorbed	シン、4 Cm Disturbed	Dulurbed	Distribution of the Control of the C
Condition	on of sample	Authorpag.	Undanibod	tindosubed	-Undstarted	-Underwood-	-chress-bed	-6446244444	-Hecksterhood-	- Idrabates
Natural	water content, %	16.73	20.04	19.37	17.36	15.47	17.02	18.20	18.45	19.0
Specific	gravity		3.60		-					
Wet den	sity, g/cm³				2.77	2.04		7.17	2.00	3.0
Dry den	nsity, g/cm³									
Natural	void ratio									<u> </u>
Degree o	of saturation , %									
rg	Liquid limit , %									
Atterberg limits	Plastic limit , %		, , , , , , , , , , , , , , , , , , , ,					<u> </u>		ļ
Atte	Plasticity index									
	Gravel , %		0							
. 69	Sand , %		93						<u></u>	-
Grain size anslysis	Silt , %		2							
E 60	Clay & colloid , %		D							<u> </u>
Sizi	Max. diameter, mm		0.7						ļ	<u> </u>
ie i	Diam, at 60%		0.28							
	Diam, at 10%		0.08							
Visual s	oil description	Clayey Sand	Sand	Sand	Sand	Sand	Sand	Sand	Sand	Sa
Unified	soil classification		(SP-SM)							ļ
9 5	Undisturbed sample, kg/cm²									
Unconfined compression test	Remoulded sample, kg/cm ²									
Uncon compr	Sensitivity ratio									
వే రిఫీ	Strain at failure,%									
, th	Angle of internal friction									
Triaxial compres - sion test	Cohesion, kg/cm²									
Tria con sion	Condition of drainage									
<u>;</u>	Preconsolidation pressure, kg/cm²									
Consolidation	Compression index					1				
	Internal Friction Angle (Hegree)	24			31.5				24.5	
the strain	Cohesion (Kg/cm2)	0,293			0				0,293	
Domark		uras obte	rined for	om waas	uremer	J 0+ SF	T samo	le at s	ite.	

Remarks: 1) Wat density was obtained from measurement of SPT sample at site.

2) Quick loading method was adopted to the direct shear test.

Appendix Table 6.3.12 SUMMARY OF SOIL TEST project: IRRAWADDY RIVER BRIDGE CONSTRUCTION Standard: ASTM Rorehole No. 3 Sample No. core 3-25 3-26A 3-268 3-27 3-28 3-28 3-30A 3-308 3-1 m 26.96 19.77 m 40107m 36.70 m 28.25 m 41.60 m 42.820 44.50 T 44,50 M Sample depth 44,20 37.03 m 48.12m Lu. tom Disturbed Disturbed Condition of sample Disturbed Disturbed Disturbed Disturbed Disturbed -Underweed -Undahabad-**Amdetorbed** Undsteibad Undetweet **Underplace** Natural water content, % 17.71 81.43 20.44 10.51 15.66 19.71 10.58 8.01 8.00 Specific gravity 2,63 2.64 2.63 Wet density, g/cm3 2.09 2.06 2.06 2.10 2.17 1.99 Dry density, g/cm3 Natural void ratio Degree of saturation, % Liquid limit , % Atterber; limits Plastic limit , % Plasticity index Gravel , % D 0 5 5 Sand , % 99 75 Grain size analysis 23 54 Silt . % حی دیـ °, °, 20 Clay & colloid , % b ۲ D 0 Max. diameter, mm 0.7 5.8 0.45 4.00 Diam, at 60% 0,4 0.28 0.024 0,20 Diam. at 10% 0.08 0.004 0.12 Sand with Sand with Sand do Sand & Visual soil description Clay Shale Silt and G Silt and G Sand Sand Grave Gravel Sand Unified soil classification (SM) (SM) SP (SM) Undisturbed Unconfined compression test sample, kg/cm² Remoulded sample, kg/cm² Sensitivity ratio Strain at failure,% Angle of Triaxial compres -sion test internal friction Cohesion, kg/cm² Condition of drainage Corsolidation test Preconsolidation pressure, kg/cm² Compression index Shear Test Internal Friction 32,5 16.5 Angle (degree) 0.566 Cohesion (K8/cm2)

Remarks: 1). Wet density was obtained from neasurement of SPT sample at site.

or in investore comments

²⁾ Quick loading method was adopted to the direct shear test.

Appendix Table 6.3.13 SUMMARY OF SOIL TEST

Project	t: IRRAWADDY RIVER	BRIDGE CC	NSTRUCTION	ON	Stand	lard:	<u> </u>	M	Angelija se da karaja a ja j	
Borehol	le No.				3					
Sample	No.	core 3-2	Core 3-3	cone 3-4	2-5	core 3-6				
Sample d	lepth	45.35 m 46.36 m	46.36 m 47.37 m	47.37 m 48.34 m	48.34 m 49.35 m	49,35 m 50,50 m	m m	m m	m t m	
	n of sample	Disturbed Unitarity	Disturbed -Undisturbed	Disturbed Undaturbed	Desturbed -Undisturbed-	Disturbed Underwhed	Disturbed Undisturbed	Disturbed Undisturbed	Undsturbed Undsturbed	Disturbed Underluited
	water content, %	* /3.83	* 31.48	× /2.57	~~へく	*,5.7/				
Specific						2.70				
	sity, g/cm³	3.56	٥٤.٤	2.08	7،،د	1.87			,	
Dry dens	sity, g/cm³									
Natural v	void ratio									
Degree o	of saturation , %									
<u> </u>	Liquid limit , %									
Atterberg limits	Plastic limit , %									
Att	Plasticity index									
	Gravel , %					.]				
	Sand , %									
Grain size analysis	Silt ,%									
8 81	Clay & colloid , %									ļ
n 8(Z	Max. diameter, mm									-
Grai	Diam. at 60%									
- r	Diam. at 10%									
Visual sc	oil description	Shale	Shale	Shale	Shale	Shale				
Unified :	soil classification									
8 .8	Undisturbed sample, kg/cm ²	9.98		6,96	9.14	3.73				
าร์เกเ	Remoulded sample, kg/cm ²									
Unconfined compression test	Sensitivity ratio									
⇒ ४ ¥	Strain at failure,%	11.0		6.9	y, 3	1.7				
cial pres - test	Angle of internal friction									
Triaxial compres- sion test	Cohesion, kg/cm ²									
Tri	Condition of drainage									
Consoli- dation test	Preconsolidation pressure, kg/cm²									
င်နှင့် နှင့်	Compression index							ļi		
		<u> </u>						<u> </u>		
Remark	s: 1) Heasuremen	ut of we	et densi	Ty & #	he uncon	nfinad	compres	ision'te	st were	carried
	2) & Waxed	core	sample	<u>s</u> 6-76	5					

Appendix Table 6.3.14 SUMMARY OF SOIL TEST

projec	t: IRRAWADDY RIVER	BRIDGE CO	ONSTRUCTI	ON	Stanc	lard:	ASTI	1		
Boreho	ole No.				4				· · · · · · · · · · · · · · · · · · ·	
Sample	No.	4-1	4-2	4-3	4-4	4-5	4-6	4-7	4-8	4-9
Sample	depth	0.15 m	1.67 m	3.20 m	4.72 m	6,25 m	7.77 m	9.29 m	10. P2 m	12.64
Condition	on of sample	Disturbed Unristurbed	Daturbed Undisturbed	Disturbed Undaturbed-	Duturbed Undstarted	Disturbed Underurbed	Disturbed Underturbed	Draturbed -Undaturbed	Disturbed Undesturbed	Disturbed Underturbed
Natural	water content, %	(ع.دد		14.53	28, As				15.94	72.97
Specific	gravity	5,63			2.61	ر ۵, د			2,66	3,6/
Wet den	sity, g/cm³					1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			,	
Dry den	sity, g/cm³									
Natural	void ratio									
Degree o	of saturation , %									
D.	Liquid limit , %						<u></u>			
erbe its	Plastic limit , %						- 			
Atterberg limits	Plasticity index			•				· · · · · · · ·		
	Gravel , %	در	•		D	44			٦7	0
, 5 3	Sand , %	66			27	१३			72	27
Grain size analysis	Silt , %	30			33	٠,	·		,	۲.
8 87	Clay & colloid , %	ą.			/	0			۵	,
zis n	Max. diameter, mm	₹.00		·	0,42	4.5			7.0	0.60
Grai	Diam. at 60%	0.16			0.10	0.5			1.10	0.125
	Diam. at 10%	0.001A			0.075	0.15			0.27	0.028
Visual so	oil description	silty sand	Silly Sand	Silty Sand	Silty Sand	SAND	Sand	Gravelly Sand	Gravelly Sand	silty sand
Unified	soil classification	(SM)			(SM)	SP			SP	(SM)
5 g	Undisturbed sample, kg/cm ²							4.00		
Unconfined compression test	Remoulded sample, kg/cm ²									······
ncor empr	Sensitivity ratio									
_ ⊃%‡	Strain at failure,%									
St	Angle of internal friction									
Triaxial compres- sion test	Cohesion, kg/cm²									~
	Condition of drainage									
Consoli- dation test	Preconsolidation pressure, kg/cm²									
dari fest fest	Compression index									
154	Internal Friction Angle (degree)				م د					29.5
Shear	V8/ 3\				٥					0
Remark:	I <u>Cohesion ("Yum") </u> S: 1) Quick load	ing meth	ad was	adopted	l To the	. direct	shear t	est,		:

	Appe	endix Tat) TE 0.3.	TO SOIN	11171111	, , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
Projec	t: IRRAWADDY RIVER	BRIDGE CO	ONSTRUCTI	ON	Stand	lard:	AST	M		
Boreho	le No.				4					
Sample		4-10	4-11	4-12	4-13	4-14	4-15	4-16	4-17	4-18
Sample		18.87 =	15.39 m 15.69 h	16.81 m 17.21 m	18:45m	19.96 m	21.48m	23.8/m	2K, 6Am	26.110
Conditio	on of sample	Octubed Madewided	Daturbed - Underwhed	Osturbed -Undaturbed	Daturbed Undescribed	Disturbed Underwood	Disturted Undisturbed	Drawbed Unesturbed	-Flucesmpsq-	Disturbed Underston
Natural	water content, %	11.81	31.94	20.98	17.58	17.59	15.70	36.53	17.07	.20.8/
Specific	gravity	2.60	2.56	2.63			2.61	2.47	2.63	2.68
Wet den	sity, g/cm³								,	
Dry den	sity, g/cm³									
Natural	void ratio									
Degree o	of saturation , %						1			<u> </u>
ō.	Liquid límit , %	×	×					*		
arben iits	Plastic limit , %	À.	÷					*		
Atterberg limits	Plasticity index	*	*					*		
	Gravel , %	10	/	/			O	p	0	
89	Sand , %	% ₹	4	94			75	9	87	
Grain size analysis	Silt , %	25	61	0 /			3/	61	/2	
ยล	Clay & colloid , %	مد	νo	o			4	30		
38.2	Max. diameter, mm	3.00	y, 00	3.60			0.50	0.165	4.40	
Graic	Diam. at 60%	0.085	0,0/	0.19			0.18	0,0165	0.19	
	Diam, at 10%			0.06			0,0067		0.036	
Visual s	ail description	Clayey SILT	Clayay Silt	Sand	Sand	Clayey Sand	Sand	Silty	Sand	Sano
Unified	soil classification			(SP-SM)			(SM)		(SM)	
5 P	Undisturbed sample, kg/cm ²					:				
ıfine essi	Remoulded sample, kg/cm ²									
Unconfined compression test	Sensitivity ratio									
⊃ రహి	Strain at failure,%									
ist res- test	Angle of internal friction						·			
Triaxial compres- sion test	Cohesion, kg/cm²									
	Condition of drainage									
Consolidation	Preconsolidation pressure, kg/cm ²									
Consodation	Compression index									
tagt.	Internal Friction Angle (degree)								31.5	

Remarks: 1) * Attarberg Limits Tests could not performed due to insufficient soil sample.

2) Quick loading method was adopted to the direct shear test.

Appendix Table 6.3.16 SUMMARY OF SOIL TEST

Boreh	ole No.				4	•				
Sample	No.	4-19	4-20	4-21	4-11	4-23	4-14	Core	core	Core
Sample	depth	26.82 m		30.63 m	22,15 m	33. 23 " 37. Q.9 "	14.90 m	44.73 €	42	27.18 m
Conditi	ion of sample	Chaturbad	Daturbed Undaturbed	Disturbed Undatabas	Disturbed Undaturbed	Disturbed	Disturbed	Selusted Desturbed	₽7, / P m Disturbed	Disturbed
Natura	water content, %	7. 37	18.76			21.76	16.98	19.5-9	17.12	12.27
Specifi	c gravity	3.68			~	2,63		2.68		
Wet de	nsity, g/cm³		+			· · · · · · · · · · · · · · · · · · ·		2.47	2.86	
Dry de	nsity, g/cm³		 				····			
Natural	void ratio							· · · · · · · · · · · · · · · · · · ·		
Degree	of saturation , %									
ĺD)	Liquid limit , %						· · · · · · · · · · · · · · · · · · ·			
its its	Plastic limit , %									
Atterberg limits	Plasticity index							```		!
	Gravel , %		0			·p				
10	Sand ,%		99			96				
Grain size analysis	Silt , %		/	·		4				
e a	Clay & colloid , %		p .			0				
8 2	Max. diameter, mm		1,4			p.\$7				
ğrağ.	Diam. at 60%		0,63			0.40		-		
•	Diam. at 10%		0,30			0.16				
Visual s	oil description	Sand & Grave	Sand	Sand	Sand	Sand	Shale	Shale	Shale	Shale
Unified	soil classification		s P			SP				
ğg	Undisturbed sample, kg/cm²							<i>\$</i> .27	4.26	
fine 888i	Remoulded sample, kg/cm²									
Unconfined compression test	Sensitivity ratio									
ភ្លង់	Strain at failure,%							4.2	7.5	
. S	Angle of internal friction									
Triaxial compres- sion test	Cohesion, kg/cm²									
Con Sion	Condition of drainage									
2 2	Preconsolidation pressure, kg/cm²									
Consoli- dation test	Compression index									
Shear Test	Internal Friction Angle (degree)		મુહ		35	30. K				
She Tas	Cohesion (Kg/cm²) S: 1) Heasurement		0		0,269	ò				

Appendix Table 6.3.17 SUMMARY OF SOIL TEST

Projec	t: IRRAWADDY RIVER	BRIDGE CC	ONSTRUCTI	ON	Stand	ard:	AST	<u>M</u>		-
Boreho	le No.				<u> </u>	1-	The state of the s		and the state of t	
Sample	No.	core 4-4	29,20 m	m	m	m	m	<u>~</u>	m I	
Sample	depth	38.19 m	40.16 "	Disturbed	t m Dusturbed	t m Disturbed	Disturbed	Disturbed	m Disturbed	Disturbed
Conditio	on of sample	-Swanness	Disturbed Uniterrurbed	Undaturbed	Undsturbed	Undesturbed	Undsturbed	Undsturbed	Undisturbed	Underluited
Natural	water content, %	13.82	12.72							
Specific	gravity		۵,70							
Wet den	sity, g/cm³	3,34	1.90	.i			·		·	
Dry den	sity, g/cm³	<u> </u>								
Natural	void ratio		1							
Degree (of saturation , %						:			
5p	Liquid limit , %									
erbe nits	Plastic limit , %									
Atterberg limits	Plasticity index									
	Gravel , %									
. M	Sand , %									
alysi	Silt , %									
Grain size analysis	Clay & colloid , %		-							
3712	Max. diameter, mm									
rain	Diam, at 60%		1							<u> </u>
U	Diam. at 10%									
Visual s	oil description	shale	shale							
Unified	soil classification									
- 5	Undisturbed sample, kg/cm²	11.50	49,4							
fine 988k	Remoulded sample, kg/cm ²									T
Unconfined compression test	Sensitivity ratio									
Uncc comp	Strain at failure,%	-ک,د	ح. د							
رب رب ب ب	Angle of internal friction									
Triaxial compres - sion test	Cohesion, kg/cm²									
Tria corr sion	Condition of drainage									
<u>.</u>	Preconsolidation pressure, kg/cm²									
Consolidation	Compression index									
								A1.		
							7111			
D			. 4_					 	-	1

Remarks: 1) Measurement of wet density & unconfined compression test were carried out on core sample. 6-80

Appendix Table 6.3.18 SUMMARY OF SOIL TEST

projec	ct: IRRAWADDY RIVER	BRIDGE C	ONSTRUCT	ION	Stand	dard:	AST	М		
Boreho	ole No.					~	·,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	······································		
Sample	No.	5-1	4-2	5-3	v 42	2-5	5-6	v-7	J-8	5-9
Sample	depth	0.15 m	1.67 m		4.7-2 m	6.25 m	7.82 m	9,14 m	10.67 m	12.18 m
Conditi	on of sample	Desturbed	Daturbed -Oncesturbed-	Disturbed - United-	Disturbed Undisturbed	Disturbed Undisturbed	Disturbed	Draturbed Underurbed	Disturbed Undsturbed	Districted Hostelucted
Natural	water content, %	14.75	16.06	16.70	24.06	15.94	15.00	17.47	17,27	15.21
Specific	gravity	2.57	2.59	2.59		2.57	A2.5			
Wet der	nsity, g/cm³								,	
Dry der	nsity, g/cm³									
Natural	void ratio									
Degree	of saturation , %						;			
D	Liquid limit , %	√ ->	54	44		54	58			
Atterberg limits	Plastic limit , %	2 3	24	٧٤		٠٠ ٧٠	کاد			
¥=	Plasticity index	2 9	۵ دو	81		ه در	٦٠			
	Gravel , %	0	0	0		0	0			
\$	Sand , %	- 2	۵	/		٤	4c			
Grain size anslysis	Silt , %	61	رم	59		59	53			
85 18	Clay & colloid , %	37	- م د	40		38	43			
n siż	Max. diameter, mm	0.1	0./	0. /		0.125	0,12			
Grai	Diam. at 60%	0.08	0.0055	0.005		0.007	0.006	` .		
	Diam. at 10%	0,00023								
Visual so	oil description	Silt & Clay	Silt as Clay	silty clay	Silty	Silly clay	Silt &	Silt &	Silt &	
Unified	soil classification	мн	MH'	МН		MH,	MH			
i or	Undisturbed sample, kg/cm ²	,								
กร์เก	Remoulded sample, kg/cm²									
Unconfined compression test	Sensitivity ratio						·			
204	Strain at failure,%									
st 88. 88.	Angle of internal friction								~	·····
Triaxial compression test	Cohesion, kg/cm²									
	Condition of drainage									
Correoli- dation test	Preconsolidation pressure, kg/cm ²									
Co. dati	Compression index									
										
Do-						·		1		
Remark:	S:			6-81						

Appendix Table 6.3.19 SUMMARY OF SOIL TEST

Duningt	VAUVINGOI	DIVER	BRIDGE	CONSTRUCTION	Standard:	ASTM
Projection	IKKAWADUT	HIVEH	DINOUL	CONSTITUTION		

	-3 - No	<u> </u>		<u> </u>					<u>, , , , , , , , , , , , , , , , , , , </u>	
Boreno	ole No.			Core	Core	core	Core	core	Core	Core
Sample	No.	5-10	ケーハ	5-1 15:07m	16.76 m	18.25 m	19.41 m	7. 3× W	33. KOM	J-7
Sample	depth	13.72 m	15.37 "	16.76 m	18250	/9, 4/m	Desturbed	್ರಾಜ್ಯ (4 e m Disturbed	23,47m	AC.3A
Conditi	on of sample	Disturbed -	Daturbed budsterbod	Described Undersibed	Disturbed Undsturbed	-Underwied-	Avenue	- Modelinged	theteroped	programme and the second
	water content, %	10.06	13.44	21.15	4.91	6.81	10.56	9.50	A. 20	6.80
Specific	c gravity	2.59	2.59	2.66		2.70		عا. د		2,70
Wet der	nsity, g/cm³			ي, بديد		3,40	3,52	2.47.	2.61	2.60
Dry de	nsity, g/cm³				<u></u>					
Natural	void ratio									
Degree	of saturation , %									
Ē.	Liquid limit , %	35	26							
Atterberg limits	Plastic limit , %	14	15		ļ					
Aff	Plasticity index	3/	۵/				(
	Gravel , %	0	0							
변 - 기	Sand , %	4	7							
ralys	Silt , %	69	72							
8 3	Clay & colloid , %	23	23							ļ
Grain size anelysis	Max. diameter, mm	0.15	0.70							
Grai	Diam. at 60%	0.016	0.016							
	Diam. at 10%				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		-			ļ
Visual s	soil description	SILT	Siltstone	shale	shale	Shale	Shale	Shale	Shale	Shale
Unified	soil classification	c L	C L							
ည န	Undisturbed sample, kg/cm²			4,6د		80.5	13.0	13.7	17.0	43.6
Unconfined compression test	Remoulded sample, kg/cm ²									
Incol ompi	Sensitivity ratio									ļ
⊐ರ≄	000000000000000000000000000000000000000			0.7		1.54	3, 8	۵. ۵	7, &	1.6
	Angle of internal friction						ļ		ļ	ļ <u>.</u>
Triaxial compres - sion test	Cohesion, kg/cm²		ļ			ļ				
	Citition C									
Consoli- dation test	Preconsolidation pressure, kg/cm²									
t ast	Compression index								<u> </u>	
			ļ							
							<u> </u>			<u></u>

Remarks: 1) Heasurement of wet density & unconfined compression test were carried out on core sample, 6-82

I Type Desive		24.0 25.7 13.2 13.2 13.2	6. (a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	M	
Seil Seil Seil Seil Seil Seil	Grain Size Distribution Passing Second B.B Gravelly SAND seme Silt 15.44 Sandy and Cleyey SILT 76.44 SAND trace dravel 3.32 Sandy index 3.32 Sandy index Sandy i	Grain Size Distribution Feesing Specific Feesing Carrier Feesing Size Distribution Feesing Fee	Grain Size Distribution 'Reason B.S'Specific Liel' Fels 'Marib D' Gravelly Sand seme Silt 15.44 2.65 - 12.44 125.4 Sandy and Cleyey Sild 76.46 2.47 42.7 24.4 125.4 Guid idmit asticity index saticity index	Grain Size Distribution Feasing Feasing Fig. (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)	Grain Size Distribution Tensing Capacitic Fig. 1 12.0 12

- 4

	Percent Ne. 60 % Ne. 100 % Ne. 200 Sieve	- T - 1	ဖွ	10 10
	1 08 208	45.4	76.46	16
	8 2			
	8			
	e X	20 89	95.76 94.65	19,95
BRIDGE)				
	9	27.46	5.76	83,35
CHITAWADDI	N .	ry.		09
	Nes 20 Nes 40	29.	8 96	95.21
MOI	48			6
SIZE DISTRIBUTION	Passing.	88	96.50	95
DIST	Pass	, 5, 5, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,	9	100.00 \$ 99.95
IZE	1 2	୍ଷ୍	87.0	8
8	No. 10	75,20	6	ဦ
GRAIN				
5.3.21	Type	S. S	ve Seil	
	H	1 ' 12'		
Appendix Table	S CA	La Ce	Cobe	36
N K				
vppen	9		a	usi
	1002			

10-0/E

YEAR; 1979 28.60 24.10 19.25 17.63 16.99 16.91 20.75 7572.44

MHD

Source:

7572.44

Prome

в С

Water Level

199.48 199.48 199.23 DEC 24.33 24.82 23.94 223.94 223.94 223.92 22.92 221.90 221.22 221.90 20.93 20.94 20.94 20.94 20.94 20.93 19.96 19.96 19.96 19.96 19.50 19.61) 633.25 > 0 2 (YEAR; 1980 25.17 26.07 26.07 26.07 26.07 26.95 27.14 27.34 27.37 27.36 28.95 28.95 28.95 28.95 28.95 28.12 28.12 28.12 28.12 28.12 28.13 27.68 27.68 26.73 27.68 OCT 227.62 227.62 227.25 227.25 226.91 226.39 226.39 227.25 228.39 24.44)(57.92 8 25.26 7846.09 SEP 26.67
26.46
26.27
26.29
25.96
25.90
26.29
(26.29)(
26.18
26.18
26.18
26.18
26.37
26.36
26.36
27.08
27.39
(27.34
27.39)(
27.39)(
27.39)(
27.39)(
27.39)(
27.39)(
27.39)(
27.39)(
27.39)(
27.39)(
27.39)(
27.39)(
27.39)(
27.39)(
27.39)(
27.39)(
27.39)(
27.39)(
27.39)(
27.39)(
27.39)(
27.39)(
27.39)(
27.39)(
27.39)(
27.39)(
27.39)(
27.39)(
27.39)(
27.39)(
27.39)(
27.39)(
27.39)(
27.39)(
27.39)(
27.39)(
27.39)(
27.39)(
27.39)(
27.39)(
27.39)(
27.39)(841.43 AUG 24.80 24.56 24.36 24.22 24.22 24.12 24.13 24.13 24.13 24.10 23.98 23.98 24.42 24.42 24.42 24.42 24.42 24.42 24.42 24.42 24.42 24.42 24.42 24.42 24.42 24.42 24.10 25.39 26.11 26.11 26.11 26.12 26.13 27.12 27.12 26.93 27.12 26.93 27.12 17.42 JUL Station 18.54
18.73
18.73
18.73
18.73
18.76
19.76
19.82
20.01
20.01
19.65
19.82
22.22
22.22
22.22
22.22
22.22
22.22
22.22
22.22
22.22
22.22
22.22
22.22
22.22
22.22
22.22
22.22
22.22
22.22
22.22
22.22
22.22
22.22
22.22
22.22
22.22
22.22
22.22
22.22
22.22
22.22
22.22
22.22
22.22
22.22
22.22
22.22
22.22
22.22
22.22
22.22
22.22
22.22
22.22
22.22
22.22
22.22
22.22
22.22
22.22
22.22
22.22
22.22
22.22
22.22
22.22
22.22
22.22
22.22
22.22 659.39 SUN 118.53 119.22 119.22 119.22 119.22 119.22 119.23 119.23 119.23 119.23 119.23 119.23 119.23 119.23 119.23 119.35 19.28)(18.36 601.45 MAY 17.52 17.52 17.52 18.52 18.52 18.52 18.52 18.52 18.53 18.53 18.53 18.19 18.19 18.10 7.60)(18.75)(549.93 APR 17.49 17.53 17.53 17.53 17.46 17.46 17.46 17.60 17.60 18.30 18.30 18.30 18.30 17.99 17.99 17.90 17.70 18.30 17.70 18.30 17.70 18.30 17.70 18.30 17.70 18.30 17.70 18.30 17.70 17.70 18.30 17.70 17.70 18.30 17.70 17.70 18.30 17.70 553.09 MAR 18.55 18.55 18.54 18.50 17.70 18.50 17.64 18.45 17.64 18.45 17.64 17.65 17.70 17.63 18.33 17.67 18.35 17.63 18.35 17.63 18.16 17.70 17.70 18.16 17.70 17.90 17.70 17.90 17.45 17.90 17.45 17.45 17.85 17.45 17.85 17.45 17.85 17.45 17.85 17.45 17.85 17.45 17.85 17.45 17.85 17.45 17.85 17.45 17.85 17.45 17.85 17.45 17.85 17.45 17.85 17.45 17.85 17.45 17.75 17.85 17.45 17.85 17.45 17.85 17.45 17.85 17.45 17.75 17.85 17.45 17.75 17.85 17.45 17.75 17.85 17.45 17.75 17.85 17.45 17.75 17.85 17.45 17.45 17.85 17.45 17.75 17.85 17.45 17.75 17.85 17.45 17.75 17.85 17.45 17.75 17.85 17.45 17.75 17 510.77 FEB 18.20 JAN DAY

7846.09 21.44

₹ ♥

27

17.52

19.58

24.58

28.46

YEAR; 1980 ZEE

Source:

																																								3.1	20.83	
	DEC		တ်	တ	о О	φ.	φ.	ch.	18.74	ထ	m	'n	m	'n.	å	<u>.</u>	~	~	:	:		Ŀ	٠	•	•	•	٧.	٠.	7		7	~.	**	٠.	٠,	٥,	o,	ਾ	٠.	ς.	6.3	
1981)	NOV	•	Q,	œ,	9	φ.	ф.	თ	19.70	თ	CD.	nn.	m	<u>.</u>	~; ~		~	~				4.		-	-		(.)	<u>.</u>	4.	တ	φ,	•	σ,	·	o,	۲-	ιŭ		8.8		13	
(YEAR;1981	OCT		·.	<u>.</u> ص	01	·.	N	~	22.33			ì	~;		~	~``		3			u.	φ.	4	ري :	ຕ	ເດ	2	0	<u>.</u>	٠. د	~·	•	φ.	φ.	ŗ.		-	•		4.	8	
* .	SEP		3		9		9	60	26.85	9				03	60	w.	5.7	5.7	θ.		9.5	6.5	3.6	9.	 9	9	ري د	₹.	.5	·.	ώ. 		.6	 		٠. د	ω.		4.8	ο.	26.30	7603.17
	AUG		6.2	6.1	6.0	6.0	6.2	6.1	26.46	6.6	6.9		7.2	6.8	7.5	7.2	7.2	7.0	6.8	7.1	6.7	9.9	6	6.1	5	9	വ	₹.	5.2	5.2	5.2	5.3	5.4	5.5	5.5	5.8	5.6	5.7	5.6	3.0	6.2	20.83
* * * *	JUL		3.0	3,6	4.7	4.6	٠. و	4.0	25.31	5.5	5.9	6.1	6.4	3	6.6	ი ი	7.1	~ 2	7.	7 1	7.3	7	7	. 9	6 4	6.9	6.2	6.2	6.4	6.6		6.4	8.8	6.9	6.9	8.0	6.6	6.4	6.7	3.1	6.2	17.10
Station	JUN		9.1	9.2	4.6	о С	9.0	9.7	21.39	9.	2.4	2,6	2.9	2.2	2.8	2.8	2.8	2.7	S S	2.7	2.4	2.2	2	0	2.2	2	2.7	2	1.9	1.8	1.8	2.0	1.8	1.8	1.9	2.0	2.3		2.0	5,4	21.85	17.33
at Prome	MAY	٠	8.6	8.4	8,4	œ. د	8.2	8.4	18.23	8.1	7.9	7.9	7.8	8.0	.00	7.7	7.7	.8	7.8	7.8	6	%	ω.	20	6	2	6.	ω.	ლ ლ	8	8	8.	8.2	œ	8.6	8	8		3	3,48	8.1	2 17.92
r Level	APR	٠	. 7				. 3		17.63	9	.8	9.		7.6	.5	∞.	0	α 4.	α. ω		α. α.	დ. თ	ω 	ω	ය. ග	er es	α ui	α 	α 7.	α,	·.΄	7.	8	8	· 8	8.6	`.		8.4	5.6	7.8	90 19.13
*** Wate	MAR			.22	.20	. 16	.15	.19)(.15	. IS	.12	. 10	. 13	.13)(39	. 85	.07	80.5	.96	.87)(.81	.71	89.	7.81	3.01	1.80)(3.10	3.10	3.07	3.03	3.01 10.01	3.06)(3.00	7.99	8.00	7.99				8.02	7.68	.54 22.9
*	FEB		.53	52	.50	.50	.48	.51)(47	.43	.45	.44	44	.45)(.46	5	. 56	.60	.61	. 55) (. 53.7	. 52	8	. 44	8 4 .) (05.	7.50	7.54	7.56	7.58	7.54	7.54)(7.47	7.42	7.33				7.41)(26.	7.50	1 27
	JAN		œ.	16	33	.10	.07	.13)(.04	.01	86.	.95	.92)(86.	68.	.86	.83	.80	.77	.83)(.71	.71	69.	.77	. 82	.74)(.80	.73	7.74		89.	7.74)(7.65	7.62	7.61	٠.	~	·-	-	2,68	.∵	EAR; 198
	DAY	•						_	9					~	,-1	8	က		Ŋ	~	ဖ	~		თ	0	_	_	۲۵	23	cji	വ	~	တ	ţ~-	88	တ	0	1	_	AĽ		YE

			*	*** XBt	er Level	at Prom	e Station	* * * *			(YEAR; 1	982)	
DAŸ	J.	AN	FEB	MAR	APR	MAY	NUL	JUL	AUG	SEP	OCT	NON	DEC
8	17.	8 1 8 1	17.11	17.04	16.98	18.00	17.65	25.53	26.10	26.17	26.32 26.07	20.60	18.89 18.83
က	17.		0	4	6.9	٠. دي	7.5	9	-	٥.	ω	4	۲.
त्तु'	17.		7.0	c,	6.9	φ.	9.2	0		o, o	φ	 س ر	ر ا
ശ	17,		7∵0	n	တ	د م	7.7	2	ູ	00 (φ (ا س
t	12.		0 C	∾ -	თ. ი	<u></u> თ. ი				٥ •	j.	4, C	~ «
Q [- t) C	∹ C	n a	0 X	- 00 - 0 - 0-		- O	0 6-		, 0) (C
- 00	·		900			. o) ~~i		φ	 	·ω
တ			6.9	0		. S			~	9	r.	ω,	ı,
10	17.		6.9	o,	7.1	8. 4.	ස ද	7.	~		2	۲,	10
	(17.		6.9	0	7.0	8.0	8.0		~		9	ۍ ص	9
	17.		6.9	α	7.4	α .υ	හ ග	0.	σ.	ເດ	<u>ო</u>		4.
12	1.		6.8	φ	7	8.4	8.7	ற 10	_	0		ω ·	4,
	17		8.	ω	8.3	8.3	ω ω	ထွေး	V .		00 1	φ,	4
	7.		დ ი	∞.	က	က	T. 6	9	m (י מא	φ	· (1)	en (
	t t	♂ 1	თ ი თ ი	<u>ი</u> , (ਜ਼ਰ ਕ	ი. თ. ი	თ. თ.	ຸດ	× 00	4 0		4.6	
	17.	Ωζ	ი ი	ņσ	ა ი თ	×α αν	, , ,	~ •	3° CC	D (C)	,, ,		
) t-			0	3 0	, 0	200		. 4					
	17.		7.0	σ,	8	 	2.0	9.		8.	~	4.4	
	17.		7.0	ů,	8.3	8.2	3.7	٦.		ω.	3	8	<u></u>
	17.		7.0	٠	8.3	8.3	4.1	w.			.,	~	
	(17.	4	7.0	σ.	8.4	8.2	2.7	5.6		3	~	0	~
21	t~	S	7.0	0	ω	8	e .	S)	ω.		٠	~ ·	Ti.
200	t- t	s c	o, c	σ. α	0.0	ω o	KO E	o k	10 10	, u			ma
2.2	- t-	0	0	9	. 6	. " 	2		10	, 0,			
8	17.	2	6.9	ω	.8	ω.	5.2	S	8	,,	:		m
	(- -	3	۷.	თ	7.9	8	4.7	iC.	10	7.			٠. ش
56	t-	$^{\circ}$	6 9	ထ	7.7	ω 	i,	5	IO.		Š		ຕ
	[Ø,	6.9	ω.		8	in.	i.	ιΩ		Ψ.	Ġ	or or
	t~	-4	6.9	۲.	<u>.</u>	8	2	S	Š		3	on.	~ co
	<u></u> 3	*		٠ س	7 . 7	8	3.	S	io.		3	്. ത	on.
30	ţ-	, - t		φ.	7.8	۳.	2	ι ια	ω.		ς.	00	·- i
	t~	•~-4		თ.		رب رب		(- (2)			ä		r~
	ᅮ	-4	16.98)(16.8		8	25.26)(i.	·.	26.75)(ò	6	~ co
TAL	÷	83	9	Q,		3.	7.3	٠. و	:	4.4	3	7.5	ີ
[1]	!~	**	7.0	თ.	7.7	8	1.2	ů.	9.6	5.4	 	9.7	00
	× 944	σ	α ·	21	18.5	7 17 57	σ α	76 77	20.71	7558.31		-	
	Ę	0	1	7	1	·	•			5			

7558.31 20.71

Source: MHD

**** Water Level at Prome Station ****

(YEAR; 1983)

																																							804.69	4		
	DEC	Ö	20.03	٠ د		ъ.	<u>.</u>	<u>.</u>	ф •	ď	<u>.</u>	<u>.</u>		•			:	``	ï	•	-	9	Ÿ	•	\sim	01	0.	ω	ω	w	a,				٠. ١	٠.	<u>_</u>	8,74)	04 7	9.2		
))	NON	3.13	တ	2,49	2.23	1.94	2.52)(1.68	1.48	1.32	ლ ლ	5.54	1.47)(. 57	8	91	53	. 22	.21)(. 55	.64	62	51	.26	51) {	85	.40	96	5.7	. 24) (00.	76.	. 76	.60	.46	33		0.6	561.68 5	2.0		
	OCT	_	27.31	~ (د د	· ·	Č.	6	 M	``.	~;	ς¢.	7	9	.,	7			E .	4.		5	9	<u>د</u>	o.	S	٠,	ব	9	0	i.	α.		*		ω.	4.	~		.23		
	S G G	5	25.88	9	6	٠٠ ص	9		7.4	7.5	در. د		(-)	ა. მ	2.	6.4	.2	5.1		3.1	3.	5.4	9.0	3	ι.	.3	9,0	0,	.2	 	0.	د.	7.4	7 . 4	7.4	.5		4.	804.49	8.	7804.69	
	AUG	9	26.13		4.0	6.7	დ	7.0	5.5	.5	8. O	ක ස	7.7		8 .5	8.	8.2	ن	8.3	7.3	7.1	6.6	6.2	0.9	8.8	ა. ზ	5.4	27	4.9	4.3	ις. 123	٠. ت	4.5	4.5	4.8	м О	დ. დ	4.8	0.1	6.4	21.38	•
	301	2.3	22.43	22 e 13 e	2.6	2.5	2.5	2.8	2.9	3.2	3.5	(.) (.)	ი ი	4.3	.5	4.7	9.	5.0	4.7	5.0	4.9	⊗	4.0	4.3	4.6	4.1	3.9	3.7	ω [~	S . •	တ	3.7	4.5	ب. ري	5.1	ນ ເນ	1	4.7	က တ	4.0	17.09	•
	NO S	9.1	19.10	0	0.6	თ თ	0.6	დ დ	ر. د	. 7	ω 	න න	α α	ත ත	დ დ		o	1.5	0.3	1.7	1.6	7.4	1.1	0.8	1.3	0.7	1.0	ر د		2.	1.4	2.3	2.4	2.5	2.4			2.4	617.13	0.5	17.27	• -
	MAY	ω.	19.14	0.0	٠ •	<u>ം</u>	٠.	თ თ	0.6	9.4	ი.	2.5	e e	4.	۲,۰	ω. ω.	٥.٦	9.0	9.0	4.0	0.1	თ თ	7.6	4.6	9.	9.4	ი ი	6.9	9.2	8.5	ი თ		Ξ.	Τ,		.,		5		9.	18.5	2
	APR	9.6	19.47	9	ος (Ος (8	დ დ	တ က	8.5	8	ထ	٠.	iO.	er :		18.25		18.84		<u>~</u>	~	~	Ψ.	3	3		0	7.	3	~	ċ	20.54	;		~. ⊘	ੋਂ: ਹ		20.0	581.04	დ	54 20	•
	MAR	•	,- 4 ·	<u>ب</u>		<u>ښ</u>	2	· "	44	₹7	4	r.	4.	φ.	ω,	œ.		9			÷	~					, ,	``	m	m		ထ	03	_ 	oo.	თ	т. Оп	· ·	٠. ش		58 24	3
	표 표 표	7.4	17.43	रा । । ।	ا ا	ਦਾਂ • [⊶	4.5	<i>ي</i> .	7.3	٠.	7.3	7.4	٠.	C)	3.	۳.			~		::	~		~	٠.	į~	<u>.</u>	· [~	٠,	· 		-							485.70	7.3	83	3
i	NAC	~		∞ α	on •	ر دی	თ (-		7.9	8	ω (~	ω,	w.	Ψ.	•	٠.	٠.	٠.	٠.	•	٠.	•	•		. •				٠.	~			٠,		-		٠.	٠.	ä	·.	VEAR. 19	1 110
	DAY	-	67 (က	4. (ro.	<u> </u>	ø	L .	ω	თ	10	_	11	12		7.4		~~	16	1.7	18	19	20		21	22	23	24	25		26	27	28	58	30	77 69		TOTAL	AVE.		

Append	lix	Table	6.4	. 2	YEAR	LY	EXTREME	WATE	R LE	VELS	PROME	STA	TION,	1868-	. •	MHD
МО					(R)		1/T		ИО				(R)	1/T	
2 3 4 5 6 7 8	194 197 187 188 196 195 194 197 193	4 7 0 6 2 7 6 9		9 9 9 9 9	3.1 9.2 8.7 8.6 7.2 7.2 7.2 7.0 6.9		.010 .021 .031 .041 .052 .062 .072 .082 .093		51 52 53 54 55 56 57 58 59 60	1951 1961 1978 1962 1982 1937 1933 1892 1888]		93.0 92.0 92.0 92.0 92.0 92.0 92.0	8 7 6 5 5 3 2	.526 .536 .546 .557 .567 .577 .588 .598 .608	
12 13 14 15 16 17 18	1890 1973 1873 1953 1886 1953 1970 1953	3 5 5 6 8 8 3 9		9 9 9 9 9 9	6.9 6.8 6.6 6.0 5.8 5.6 5.5 5.4	÷	.113 .124 .134 .144 .155 .165 .175 .186 .196		61 62 63 64 65 66 67 68 69 70	1903 1932 1976 1934 1972 1900 1884 1922 1925			92.0 91.8 91.8 91.6 91.6 91.6 91.5	9 3 3 3 5 5 5 5 5	.629 .639 .649 .660 .670 .680 .691 .701 .711	
22 23 24 25 26 27 28 29	1954 1883 1928 1936 1936 1893 1911 1938	3 3 5 5 6 8 8		9 9 9 9 9 9 9	5.0 4.6 4.6 4.5 4.5 4.5 4.3 4.3		. 216 . 227 . 237 . 247 . 258 . 268 . 278 . 289 . 299 . 309		71 72 73 74 75 76 77 78 79 80	1914 1964 1917 1912 1960 1946 1904 1902 1897 1885			91.1 91.0 91.0 90.8 90.8 90.4 90.4))) 3 3 i	.732 .742 .763 .763 .773 .784 .794 .804 .814	
32 33 34 35 36 37 38 39	1953 1923 1913 1893 1931 1973 1963 1983	7 5 1 9 3 3 5		9 9 9 9 9 9 9	4.2 4.1 4.1 4.1 4.0 3.8 3.7 3.7 3.6 3.5		.320 .330 .340 .351 .361 .371 .381 .392 .402		81 82 83 84 85 86 87 88 89	1895 1882 1913 1930 1981 1896 1916 1919 1967 1929			90.3 90.1 90.0 89.7 89.3 89.1 89.0 88.9		.835 .845 .856 .866 .876 .887 .997 .907	
42 43 44 45 46 47 48 49	1938 1923 1916 1909 1896 1986 1918 1924	3 0 9 4 0 3 3		9 9 9 9 9 9	3.5 3.5 3.5 3.4 3.4 3.3 3.2 3.1		. 423 . 433 . 443 . 454 . 464 . 474 . 485 . 495 . 505		91 92 93 94 95 96	1901 1887 1891 1907 1920 1908			88.8 88.7 88.1 88.0 87.5 85.8		.938 .948 .959 .969 .979	
	LO	G(X)	= .() 1 4 U	+ 1	.96	8			LOG(X+B)=	1.5	572+	.047*	U	
			= .9	90		÷				В	= -55	.56				
т		U	A ‡ (J L	og(X)		X		T	U	1//	\≠U	L(X+)	B) X+1	3	x
200 100 80 70 50 40 30 20 10 5	2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1	.580 .330 .240 .200 .050 .960 .830 .640 .280 .840	.0:	12 11 10 28 27 25 13 8	2.004 2.001 1.999 1.999 1.997 1.996 1.994 1.991 1.986 1.980		101, 100, 100, 100, 99, 99, 99, 98, 97, 96, 93,	6-9	200 100 80 70 50 40 30 20 10 5	1.6 1.5 1.5 1.4 1.3 1.3 1.1	50 80 50 50 90 00 60 10	086 078 075 073 069 066 061 055 043 028	1.65 1.65 1.64 1.64 1.63 1.62 1.61 1.60 1.57	0 44 7 44 5 44 11 43 8 43 7 42 5 41 1 39	7 1 4 1 2 1 7 4 0 4 2 9	01. 00. 00. 00. 99. 99. 99. 98. 97. 95.
																•

Appendix Table 6.4.3 STAGE-AREA RELATION

```
A-R March/86)
     (H)
               (A)
                          (R)
                                    (B)
  6.000
              .000
                          .000
                                    .000
            96.667
  7.000
                         835
                                 126.333
  8.000
           277.917
                        1.447
                                 236,167
267,500
  9.000
           529.750
                        2.169
                                              H:
                                                  Stage
 10,000
           807.250
                        3.063
                                 287.500
 11.000
          1111,400
                        3.925
                                              A:
                                                  Area
                                 320.800
          1445.850
 12.000
                        4.756
                                 348.100
 13.000
                                              R:
          1817.600
                                                  Nydraulic Radius
                        5.536
                                 395,400
 14.000
          2248.900
                        6.218
                                 467.200
                                              B: River Width
 15,000
          2752.000
                        6.804
                                 539.000
 16.000
          3321.063
                        7.405
                                 599.125
 17.000
          3944.250
                        8.021
                                 647.250
 18.000
          4623.313
                        8.637
                                 710.875
 19.000
          5437.000
                        9.087
                                 916.500
 20.000
          6358.500
                        9.547
                                 926.500
 21.000
          7288.383
                       10.158
                                 933.267
 22.000
         8229.783
                       10.852
                                 949.533
 23.000 9181.367
                       11.602
                                 953.633
 24.000 10137.050
25.000 11096.830
                                 957.733
                       12.399
                       13.228
                                 961.833
 26.000 12060.490
                       14.081
                                 965.475
 27.000 13027.780
28.000 13998.720
                                 969.117
                       14.952
                       15.837
                                 972.758
                       16.733
29,000 14973,300
                                 976.400
                       17.634
 30.000 15953.830
                                 984.667
 31.000 16951.630
                       18.523
                                1010.933
 32,000 17963.950
                       19.407
                                1013.700
                       20.297
 33.000 18982.780
                                1023.967
 34.000 20018.260
35.000 21076.750
                       21.176
                                1046.983
                       22.038
                                1070.000
            A-R September/86)
    (
                                     (B)
                          (R)
    (H)
               (A)
                          .000
                                     .000
              .000
  5,000
           119.750
                         .879
                                 146.500
  6.000
                                 190,000
           288.000
                        1.724
  7.000
                        2.397
                                 286.500
           526.250
  8.000
                        3,135
                                 310.500
  9.000
           824.750
                                 335.000
          1147.500
                        3.947
 10.000
                                 382.500
                        4,731
 11.000
          1506.250
                                 442.000
                        5.448
          1918.500
 12.000
                        6.100
                                 513.500
 13.000
          2396.250
                                 562.000
 14.000
                        6.741
          2934.000
                                 617.500
          3523.750
                        7,388
 15.000
                                 657.125
                        8.058
 16,000
          4161.063
                                 690.750
                        8.755
 17.000
          4835.000
                        9.485
                                 711.875
          5536.313
 18,000
                       10.187
                                 788.000
 19.000
          6286.250
                                 914.000
         7137.250
                       10.780
 20.000
                                 930.767
                       11.370
 21.000
          8059.633
                       12,038
                                 945.533
          8997.783
 22,000
                                 949.800
                       12.767
         9945.450
 23.000
                       13.543
                                 954.067
 24.000 10897.380
                                 958.333
                       14.352
 25.000 11853.580
                       15.187
                                 963.600
 26.000 12814.550
```

16.040

16.905

17.781

18.665

19.541

20.414

21.292

22.161

23.012

27.000 13780.780

28.000 14752.280

29.000 15729.050

30,000 16711.080

31,000 17708 880

32.000 18721.200

33.000 19740.030

34,000 20775,510

35.000 21834.000

968.867

974.133

979.400

984.667

1010.933

1013.700

1023.967

1046.983

1070.000