
No.

THE PEOPLE'S REPUBLIC OF BANGLADESH

FEASIBILITY STUDY ON MEGHNA, MEGHNA-GUMTI BRIDGES CONSTRUCTION PROJECT

FINAL REPORT APPENDICES

JAPAN INTERNATIONAL COOPERATION AGENCY

SDF

CR (10)

85-047 (2/3)

LIBRARY 1033918[2]

THE PEOPLE'S REPUBLIC OF BANGLADESH

FEASIBILITY STUDY ON MEGHNA, MEGHNA-GUMTI BRIDGES CONSTRUCTION PROJECT

FINAL REPORT

APPENDICES

MARCH, 1985

JAPAN INTERNATIONAL COOPERATION AGENCY

国際協力事業団 ^{受入} 185. 6.13 101 61.5 61.5 SDF

			CONTENTS FOR APPENDICES		
	**************************************		CONTINUE FOR ALTHOUGH	,	
		:			
Tab	le/Fig./	Note No.	<u>Title</u>	Pe	ige_
	ing the second			÷	
APPI	ENDICES	FOR CHAPT	<u>ER 2</u>		
AP•	TABLE	2-1	MONTHLY NORMAL TEMPERATURE AT DHAKA AND COMILLA STATIONS	AP.	2-1
AP•	TABLE	2-2	RAINFALL AT DHAKA AND COMMILL CENTRES	AP.	2-1
AP.	TABLE	2-3	MONTHLY NORMAL RAINFALL AT DHAKA AND COMILLA STATIONS	AP.	2-1
AP.	TABLE	2-4	MONTHLY MAXIMUM WIND SPEED (IN KNOTS) AT DHAKA	AP.	2-2
AP.	TABLE	2-5	MONTHLY MAXIMUM WIND SPEED (IN KNOTS) AT COMILLA	AP.	2-3
AP.	TABLE	2-6	RECORD OF CYCLONIC STORMS WHICH AFFECTED VICINITY OF MEGHNA ESTUARY AND BRIDGE SITES	AP.	2-4
AP.	TABLE	2-7	MAXIMUM WIND SPEED IN KNOTS DIRECTION	AP.	2-5
AP.	FIG.	2-1	PAST MAXIMUM WIND SPEEDS AND DIRECTIONS	AP.	2-6
AP.	FIG.	2-2	RIVER SYSTEM AROUND THE MEGHNA RIVER AND GENERAL FEATURE OF THE MAIN RIVERS IN BANGLADESH	AP.	2-7
AP.	FIG.	2-3	VELOCITY OF RIVER FLOW AT THE PROPOSED MEGHNA BRIDGE SITE, MEASURED IN APRIL, 1984	AP.	2-8
AP.	FIG.	2-4	VELOCITY OF RIVER FLOW AT THE PROPOSED MEGHNA BRIDGE SITE, MEASURED IN JULY, 1984	AP.	2-9
AP.	FIG.	2-5	VELOCITY OF RIVER FLOW AT THE PROPOSED MEGHNA-GUMTI BRIDGE SITE, MEASURED IN APRIL, 1984	AP.	2~10
AP.	FIG.	2-6	VELOCITY OF RIVER FLOW AT THE PROPOSED MEGHNA-GUMTI BRIDGE SITE, MEASURED IN JULY, 1984	AP.	2-11
AP.	FIG.		RESULT OF SOUNDING INVESTIGATIONS DURING RAINY SEASON MEASURED AT BHAIRAB BAZAR BRIDGE IN 1984 JULY	AP.	2-12
AP.	FIG.	2-7(b)	PROFILE OF DRY SEASON IN 1984 APRIL AND RAINY SEASON IN 1984 JULY (AT BHAIRAB BAZAR)	AP.	2-12
			- i -		

Tab	10/Fig./	Note No.	<u>ritle</u>	<u>Pa</u>	<u>ge</u>
140	16/1161/	11000 110			
AP.	FIG.	2-8	RIVER COURSE SHIFTING OF MEGHNA RIVER (FOR THE PAST 7 DECADES)	AP.	2-13
AP.	FIG.	2-9	DISPLACEMENT OF THALWEGS IN MEGHNA RIVER FROM 1967 TO 1983	AP.	2-14
AP.	FIG.	2-10	ERODED PORTIONS IN MEGHNA BANKS FROM 1978 TO 1983	AP.	2-15
AP.	FIG.	2-11	VARIATIONS OF MEGHNA RIVER WIDTH	AP.	2-16
AP.	FIG.	2-12	DISPLACEMENT OF THALWEGS AND BANKS OF MEGHNA-GUMTI RIVER	AP.	2-17
AP.	FIG.	2-13	CATCHMENT AREA OF THE MEGHNA RIVER	AP.	2-18
AP.	FIG.	2-14	TYPICAL TYPES OF RAINFALL AND RUNOFF	AP.	2-19
AP.	TABLE	2-8	RAINFALL-RUNOFF RELATION (AT BHAIRAB BAZAR)	AP.	2-20
AP.	TABLE	2-9	MAXIMUM DAILY DISCHARGE (AT BHAIRAB BAZAR)	AP.	2-20
AP.	FIG.	2-15	WATERLEVEL-DISCHARGE DIAGRAM AT BHAIRAB BAZAR RAILWAY BRIDGE	AP.	2-21
AP.	TABLE	2-10(a)	DISCHARGE DISTRIBUTION IN CASE OF PWD = 6.99 m	AP.	2-22
AP.	TABLE	2-10(b)	DISCHARGE DISTRIBUTION IN CASE OF PWD = 6.60 m	AP.	2-22
AP.	FIG.	2-16	RELATION BETWEEN HYDRAULIC MEAN DEPTH AND MAXIMUM WATER DEPTH	AP.	2-23
AP.	TABLE	2-11	COMPARISON OF THE SCOURING LEVELS CALCULATED BY DIFFERENT FORMULAS	AP.	2-24
АРРІ	ENDICES	FOR CHAPT	ER 3		
			· · · · · · · · · · · · · · · · · · ·		
AP.	FIG.	3-1	LOCATION OF SURVEY POINTS AND AREA SOUNDED FOR MEGHNA BRIDGE SITE	AP.	3-1
AP.	FIG.	3-2	LOCATION OF SURVEY POINTS AND AREA SOUNDED FOR MEGHNA-GUMTI BRIDGE SITE	AP.	3-1
AP.	FIG.	3-3	CROSS SECTIONS OF MEGHNA KIVER IN RAINI	jan e	
			AND DRY SEASONS	AP.	3-2
AP.	FIG.	3-4	CROSS SECTIONS OF MEGHNA-GUMTI RIVER IN RAINY AND DRY SEASONS	AP.	3-3
					•
			- ii -		

ala Ini Ini w	Title	Page
Table/Fig./Note No.	11010	
AP. FIG. 6-1	SEISMIC ZONING MAP OF BANGLADESH	AP. 6-6
AP. FIG. 6-2	LOCATION OF EPICENTERS IN AND NEAR BANGLADESH (1833-1971)	AP. 6-7
AP. TABLE 6-2	ESTIMATION OF GROUND ACCELERATIONS CAUSED BY PAST EARTHQUAKES	AP. 6-8
AP. FIG. 6-3	LOCATION OF NAVIGATION (MEGHNA)	AP. 6-9
AP. FIG. 6-4	LOCATION OF NAVIGATIONS (MEGHNA-GUMTI)	AP. 6-10
APPENDICES FOR CHAP	TER 7	
AP. TABLE 7-1	COMPARISON OF ALTERNATIVE ROUTES OF THE MEGHNA BRIDGE	AP. 7-1
AP. F1G. 7-1	PIER PROTECTION AGAINST SHIP COLLISION	AP. 7-2
AP. NOTE 7-1	SPAN ARRANGEMENTS SELECTED	AP. 7-3
AP. FIG. 7-2	GENERAL VIEW, ALTERNATIVE : Case-al, a2	AP. 7-4
AP. FIG. 7-3	GENERAL VIEW, ALTERNATIVE : Case-bl, b2	AP. 7-5
AP. FIG. 7-4	GENERAL VIEW, ALTERNATIVE : Case-b3	AP. 7-6
AP. TABLE 7-2	COST OF CASE-al PC BOX CAST-IN-SITU	AP. 7-7
AP. TABLE 7-3	COST OF CASE-a2 PC BOX SEGMENTAL	AP. 7-8
AP. TABLE 7-4	COST OF CASE-bl PC BOX (C) AND T-BEAM	AP. 7-9
AP. TABLE 7-5	COST OF CASE-b2 PC BOX (S) AND T-BEAM	AP. 7-10
AP. TABLE 7-6	COST OF CASE-b3 STEEL BOX AND GIRDER	AP. 7-11
AP. TABLE 7-7	GUIDE TO THE SELECTION OF ABUTMENT TYPE	AP. 7-12
AP. NOTE 7-2	PAVEMENT DESIGN	AP. 7-13 through AP. 7-14
AP. TABLE 7-8	ROUTE COMPARISON OF MEGHNA-GUMTI BRIDGE	AP. 7-15
AP. FIG. 7-5	GENERAL VIEW, ALTERNATIVE : CASE-A	AP. 7-16
AP. FIG. 7-6	GENERAL VIEW, ALTERNATIVE : CASE-B	AP. 7-17
AP. FIG. 7-7	GENERAL VIEW, ALTERNATIVE : CASE-C	AP. 7-18
	- iv -	

	Note No.	<u>Title</u>	Page
AP. FIG.	7-8	GENERAL VIEW, ALTERNATIVE : CASE-D	AP. 7-19
AP. TABLE	7-9	COST OF CASE-A PC BOX CAST-IN-SITU	AP. 7-20
AP. TABLE	7-10	COST OF CASE-B PC BOX AND GELBER	AP. 7-21
AP. TABLE	7-11	COST OF CASE-C PC BOX AND T-BEAM	AP. 7-22
AP. TABLE	7-12	COST OF CASE-D PC T-BEAM AND BOX	AP. 7-23
	705 41157		
		ER[®] B erger geleg filmstad i delta et en	٠.
	8-1	PROPOSED EXPANSION LAYOUT OF FERRY ON RIGHT BANK OF MEGHNA RIVER	AP. 8-1
AP. FIG.		PROPOSED EXPANSION LAYOUT OF FEERY ON LEFT BANK OF MEGHNA RIVER	AP. 8-2
AP. FIG.	8-3	PROPOSED EXPANSION LAYOUT OF FERRY ON RIGHT BANK OF MEGHNA-GUMTI RIVER	AP. 8-3
AP. FIG.	84	PROPOSED EXPANSION LAYOUT OF FEERY ON LEFT BANK OF MEGHNA-GUMTI RIVER	AP. 8-4
AP. FIG.	8-5	UTILITY-FERRY, TYPE I FOR DHAKA-CHITTAGONG HIGHWAY	AP. 8-5
AP. FIG.	8-6	STANDARD ARRANGEMENT OF FERRY TERMINAL	AP. 8-6
AP. FIG.	8-7	GENERAL ARRANGEMENT OF PONTOON AND GANGWAY	AP. 8-7
AP. FIG.	8-8	GENERAL ARRANGEMENT OF JETTY	AP. 8-8
AP. TABLE	8-1	CONSTRUCTION COST OF JETTY FOR MEGHNA FERRY	AP. 8-9
AP. TABLE	8-2	CONSTRUCTION COST OF JETTY FOR MEGHNA-GUMTI FERRY	AP. 8-10
APPENDICES	FOR CHAPT	ER 9	
AP. TABLE	9-1	UNIT PRICES OF TYPICAL MATERIALS AND FUEL	AP. 9-1
AP. TABLE	9-2	TARIFF OF COST AND EXCISE TAX, ETC	AP. 9-2
AP. TABLE	9-3	DAILY OPERATION COST OF MACHINES	AP. 9-3
AP. TABLE	9-4	SEA SURFACE TRANSPORTATION COST	AP. 9-4
AP. TABLE		LABOUR COST ESTIMATED	AP• 9-5
	7	- v -	

Table	e/Fig./	Note No.	<u>Title</u>	Page
AP. T	TABLE	9-6	TENTATIVE CONCRETE PROPORTIONS	AP. 9-6
AP. 7	TABLE	9-7	RECORDS OF RAINY DAYS AT DAUDKANDI	AP. 9-7
AP. I	FIG.	9-1	VARIATION OF RIVER WATER LEVEL	AP. 9-8
AP. 7	TABLE	9-8	TAXES TABLE CLARIFIED FOR MEGHNA BRIDGE	AP. 9-9
AP. 1	TABLE	9-9	TAXES TABLE CLARIFIED FOR MEGHNA-GUMTI BRIDGE	AP. 9-10
AP. T	TABLE	9-10	LAND ACQUISITION AND COMPENSATION COST	AP. 9-11
AP. I	FIG.	9-2	BACK WATER AND INUNDATION BY TIDAL FLOOD	AP. 9-12
AP. ?	TABLE	9-11	COST BREAKDOWN OF MEGHNA BRIDGE	AP. 9-13
AP. T	TABLE	9-12	COST BREAKDOWN OF MEGHNA-GUMTI BRIDGE	AP. 9-14
APPEI	NDICES :	FOR CHAPT	ER 10	
AP. T	TABLE	10-1	GROSS DOMESTIC PRODUCTS OF BANGLADESH, AT CONSTANT (1972-1973) PRICES	AP. 10-1
AP. N	NOTE	10-1	DESCRIPTION OF ECONOMIC ACTIVITIES BY SECTOR OF DHAKA, CHITTAGONG, COMILLA AND NOAKHALI	
			DISTRICTS	AP. 10-2 through AP. 10-10
AP. N	NOTE	10-2	OUTLINE OF AGRICULTURAL DEVELOPMENT PROJECTS IN STUDY AREA	AP. 10-10 through
				AP. 10-12
AP. I	TABLE	10-2	INVENTORY OF DHAKA-CHITTAGONG HIGHWAY	AP. 10-12
AP. N	NOTE	10-3	CONTENTS OF IMPROVEMENT PROGRAMMES ON DHAKA-CHITTAGONG HIGHWAY	AP. 10-14
				through AP. 10-15
APPE	NDICES	FOR CHAPT	ER 11	
AP. T	TABLE	11-1	NUMBER OF MECHANISED VEHICLES ON ROAD BY TYPE OF VEHICLES CLASSIFIED BY DISTRICTS AS	
			ON JULY 30, 1981	AP. 11-1
				•

-			#		
	<u>Tabl</u>	e/Fig./	Note No.	<u>Title</u>	Page
1	AP.	FIG.	11-1	ZONING MAP	AP. 11-3
	AP.	TABLE	113	CROSSING TIME SURVEY FORM (ONE SHEET FOR ONE VEHICLE)	AP. 11-4
	AP.	TABLE	11-4	TRUCK TRAFFIC MATRIX	AP. 11-5
	AP.	TABLE	11-5	BUS TRAFFIC MATRIX	AP. 11-5
• .	AP.	TABLE	11-6	MINI-BUS TRAFFIC MATRIX	AP. 11-6
•	AP.	TABLE	11-7	CAR TRAFFIC MATRIX	AP. 11-6
	AP.	TABLE	11-8	OTHER VEHICLES TRAFFIC MATRIX	AP. 11-7
٠.	AP.	TABLE	11-9	TRAFFIC MATRIX FOR ALL VEHICLES	AP. 11-7
	AP.	NOTE	11-1	POPULATION FORECAST BY ZONES	AP. 11-8
	AP.	NOTE	11-2	FORECASTING OF VEHICLES ON ROAD	AP. 11-9 through AP. 11-10
	AP.	NOTE	11-3	ESTIMATION OF FUTURE NORMAL TRAFFIC CROSSING THE RIVERS	AP. 11-11
	AP.	TABLE	11-10	TRUCK TRAFFIC MATRIX FOR 1990	AP. 11-12
	AP.	TABLE	11-11	TRUCK TRAFFIC MATRIX FOR 2000	AP. 11-12
	AP.	TABLE	11-12	TRUCK TRAFFIC MATRIX FOR 2010	AP. 11-13
	AP.	TABLE	11-13	TRUCK TRAFFIC MATRIX FOR 2020	AP. 11-13
	AP.	TABLE	11-14	BUS TRAFFIC MATRIX FOR 1990	AP. 11-14
	AP.	TABLE	11-15	BUS TRAFFIC MATRIX FOR 2000	AP. 11-14
	AP.	TABLE	11-16	BUS TRAFFIC MATRIX FOR 2010	AP. 11-15
	AP.	TABLE	11-17	BUS TRAFFIC MATRIX FOR 2020	AP. 11-15
	AP.	TABLE	11-18	MINI-BUS TRAFFIC MATRIX FOR 1990	AP. 11-16
-	AP.	TABLE	11-19	MINI-BUS TRAFFIC MATRIX FOR 2000	AP. 11-16
	AP.	TABLE	11-20	MINI-BUS TRAFFIC MATRIX FOR 2010	AP. 11-17
1 21 4	AP.	TABLE	11-21	MINI-BUS TRAFFIC MATRIX FOR 2020	AP. 11-17
	AP.	TABLE	11-22	CAR TRAFFIC MATRIX FOR 1990	AP. 11-18
				- vii -	

Table/Fig./Note No.	<u>Title</u>	Page
AP. TABLE 11-23	CAR TRAFFIC MATRIX FOR 2000	AP. 11-18
AP. TABLE 11-24	CAR TRAFFIC MATRIX FOR 2010	AP. 11-19
AP. TABLE 11-25	CAR TRAFFIC MATRIX FOR 2020	AP. 11-19
AP. TABLE 11-26	OTHER VEHICLES TRAFFIC MATRIX FOR 1990	AP. 11-20
AP. TABLE 11-27	OTHER VEHICLES TRAFFIC MATRIX FOR 2000	AP. 11-20
AP. TABLE 11-28	OTHER VEHICLES TRAFFIC MATRIX FOR 2010	AP. 11-21
AP. TABLE 11-29	OTHER VEHICLES TRAFFIC MATRIX FOR 2020	AP. 11-21
AP. TABLE 11-30	ALL VEHICLES TRAFFIC MATRIX FOR 1990	AP. 11-22
AP. TABLE 11-31	ALL VEHICLES TRAFFIC MATRIX FOR 2000	AP. 11-22
AP. TABLE 11-32	ALL VEHICLES TRAFFIC MATRIX FOR 2010	AP. 11-23
AP. TABLE 11-33	ALL VEHICLES TRAFFIC MATRIX FOR 2020	AP. 11-23
AP. NOTE 11-4	ESTIMATION OF INDUCED TRAFFIC FROM BRIDGES PROJECT	AP. 11-24
APPENDICES FOR CHAPT	TER 12	14.3
AP. TABLE 12-1	PRICE OF VEHICLES	AP. 12-1
AP. TABLE 12-2	DETAILS OF VEHICLE OPERATING COST - TRUCK	AP. 12-2 through AP. 12-3
AP. TABLE 12-3	DETAILS OF VEHICLE OPERATING COST - BUS	through
		AP. 12-5
AP. TABLE 12-4	DETAILS OF VEHICLE OPERATING COST - MINI-BUS	AP.12-6
AP. TABLE 12-4	MINI-BUS	
AP. TABLE 12-4 AP. TABLE 12-5	MINI-BUS	AP.12-6 through
	MINI-BUS	AP.12-6 through AP. 12-7 AP. 12-8 through AP. 12-9

Table/118.	Note No.	<u>Title</u>	Page
AP. TABLE	12-8	MAINTENANCE COSTS OF FERRIES AND PONTOONS	AP. 12-1
AP. TABLE	12-9	DEPRECIATION COSTS	AP. 12-1
APPENDICES	FOR CHAPT	ER 13	
AP. TABLE	13-1	CALCULATION OF STANDARD CONVERSION FACTOR	AP. 13-1
AP. TABLE	13-2	COST OF FERRY BOAT	AP. 13-2
AP. TABLE	13-3	COST OF SPARE ENGINE	AP. 13-2
AP. TABLE	13-4	COST OF PONTOON/GANGWAY	AP 13-3
AP. TABLE	13-5	COST OF JETTY AND FERRY APPROACH ROAD	AP. 13-3
AP. TABLE	13-6	FERRY SERVICE PERSONNEL PLANNING	AP. 13-4
AP. TABLE	13-7	FERRY SERVICE PERSONNEL EXPENDITURE	AP. 13-5
AP. TABLE	13-8	ASSUMED FUEL AND LUBRICANT OIL CONSUMPTION VOLUME FOR FERRY BOATS	AP. 13-6
AP. TABLE	13-9	PROJECTED FINANCIAL COSTS OF FUEL AND LUBRICANT OIL FOR FERRY BOATS	AP. 13-6
AP. TABLE	13-10	PROJECTED ECONOMIC COST OF FUEL AND LUBRICANT OIL FOR FERRY BOATS	AP. 13-6
AP. TABLE	13-11	MAINTENANCE COST OF FERRY BOATS AND PONTOON/GANGWAYS	AP. 13-
AP. TABLE	13-12	ECONOMIC VOC SAVINGS BENEFIT FOR MEGHNA BRIDGE	AP. 13-8
			AP. 13-9
AP. TABLE	13-13	ECONOMIC VOC SAVINGS BENEFIT FOR MEGHNA-GUMTI BRIDGE	AP. 13-1
AP. TARIE	13-14	TIME COST SAVINGS BENEFIT FOR MEGHNA BRIDGE	
			through AP. 13-1
AP. TABLE		TIME COST SAVING BENEFIT FOR MEGHNA-GUMTI BRIDGE	AP. 13-1
AP. TABLE	13-16	ECONOMIC COST AND BENEFIT FLOWS FOR MEGHNA - CASE I	AD 10

Table/F	ig./Note No.	<u>Title</u>	Page
AP. TAB	LE 13-17	ECONOMIC COST AND BENEFIT FLOWS FOR MEGHNA - CASE II	Ap. 13-15
AP. TAB	LE 13-18	ECONOMIC COST AND BENEFIT FLOWS FOR MEGHNA-GUMTI	AP. 13-16
AP. TAB	LE 13-19	ECONOMIC COST AND BENEFIT FLOWS FOR COMBINED MEGHNA AND MEGHNA-GUMTI	AP. 13-17

AP. TABLE 2-1: MONTHLY NORMAL TEMPERATURE AT DHAKA AND COMILLA STATIONS

(Unit : Centigrade)

P-E 402 B-2				44 64 80
Average	30.5	21.4	30.5	20.9
Dec.	26.3	26.0 26.0 30.9 23.7 17.6 12.7	26.9	18.3 13.8
Nov.	28.7	17.6	29.2	18.3
Oct.	30.9	23.7	31.2	23.7
Aug. Sept. Oct. Nov. Dec.	31.2	30.9	31.6	24.2
Aug.	31.0	26.0	31.0	25.4
July	30.7	26.0	30.9	25.4
June	31.8	18.8 23.4 25.4 25.9	31.3	19.7 23.2 24.6 25.5 25.4 25.4 24.2 23.7 18.3 13.8
Мау	36.2	25.4	32.9	24.6
Mar. Apr. May June	35.1	23.4	33.6	23.2
Mar.	32.5	18.8	32.5	19.7
Feb.	28.1	13.4	28.3	14.7
Jan.	Max. 25.5 28.1	Min. 11.8 13.4	Max. 26.4 28.3	Mia. 12.1 14.7
	Max.	Min.	Max.	Mia.
Station Jan. Feb.	Dhaka	Min. 11.8	Com111a	

Note : Based on data for 1931 - 1960

Source : Bangladesh Bureau of Statistics

AP. TABLE 2-2 : RAINFALL AT DHAKA AND COMILLA CENTRES

(Unit: Millimetres)

Contre	1974	1975	1976	1977	1978	1979–80	1980-81 1981-82 1982-83 Average	1981-82	1982-83	Average
Uhaka 2213 2044	2213	2044	2645	2112	1537	2458 2409		1034	1514	i
Comilia 2118 2752	2118	2752	1885	2047	1878	2987	2663	2663 1182	2663 1182 1610 2124	2124

Note: From 1978 - 79 on wards data have been shown on July - June basis.

Source : Bangladesh Meteorological Department,

AP. TABLE 2-3 MONTHLY NORMAL RAINFALL AT DHAKA AND COMILLA STATIONS

(Unit : Millimetres) Nov. Oct 169 Sept. 236 Aug. 304 July 437 June 322 May 194 γb r. 103 Mar. 38 reb. 띘

226

337

717

707

158

77

2

Comilla

Jan. 18

Station

Dhaka

Note: Based on data for 1931 - 1960

Source : Bangladesh Meteorological Department.

AP. TABLE 2-4 MONTHLY MAXIMUM WIND SPEED (IN KNOTS)
AT DHAKA

Mon	JAN	FEB	MAR	APR	MAY	JUN	.JUL	AUG	SEP	ocr	vои	DEC	AVE
Year		14	24	53	60	35	11	19	25	15	13	9	23.9
1953	9		20	18	60	1.6	17	14	1.5	24	5	7	18.1
54	9_	13	78	71	60	15	16	13	40	16	10	7	29.0
55 56	10	12	60	52	25	26	35	16	22	12	9	9	23.9
57	27	14	14	35	43	30	16	14	12	14	7	9	19.6
58	10	40	16	30	71	35	18	20	18	12	7	9	24.4
59	9	16	35	22	87	18	22	15	12	19	7	9	22.6
60.	10	16	26	60	40	18	25	18	16	28	9	7	22.8
61	7	13	39	52	60	35	18	16	16	14	10	10	24.1
62	14	17	48	52	43	19	19	14	35	9	10	13	24.4
63	12	17	25	45	40.	36	21	20	22		-		
64	9	45	50	43	65	70	19	19	25	25	13	9	32.7
65	9.	9	39	31	79	25	19	19.	13	9	40	13	25.4
66	9	9	14	28	30	30	13	10	10	30	5	5	16.0
67 .	9	9	35	15	50	36	13	13	1.3	9	9	. 5	18.0
68	. 9	9	52	52	65	30	35	13	13	13	5	5	27.6
69	17	9	30	1.7	9	13	9	13	17	13	5	5	13.1
70.	15	28	60	65	40	20	28	18	24	90	40	10	36.5
71	14	13		-	50	25	25	20	1.3	20	20	<u> </u>	
72	12	22	35	60	45	29	42	26	20	18	15	10	27.8
73	9.	60	20	60	40	13	10	9	9	9	13	25	21.4
74	6	5	35	55	31	9	10	14	19	- 5	5	5	16.6
75	14	27	25	50	44	35	9	9	5	5	<u> </u>	7	
76	17	5	35	48	17	. 42	13	19	19	15	5	5	20.3
77	20.	30	35	5Q	52	37	13	20	13	5	5	9	24.1
78	9	43	40	55	45	10	12	13	19	13	9	9	23.1
79.	5	9	25	65	40	25	19	25	9	13	13	5	21.1
80.	5	45	.52	74	95	38	38	15	9	15	5	5	33.0
81	15	13	19	19	19	20	13	13	13	9	9	44	17.2
82	10	9	13	19	19	13	18	19	9	9	5	9	12.7

Source : Bangladesh Meteorological Department

I KNOT = $1.852 \frac{\text{Km}}{\text{Hg}}$ 100 KNOTS = $51.4 \frac{\text{m}}{\text{sec.}}$

AP. TABLE 2-5 MONTHLY MAXIMUM WIND SPEED (IN KNOTS)

AT COMILLA

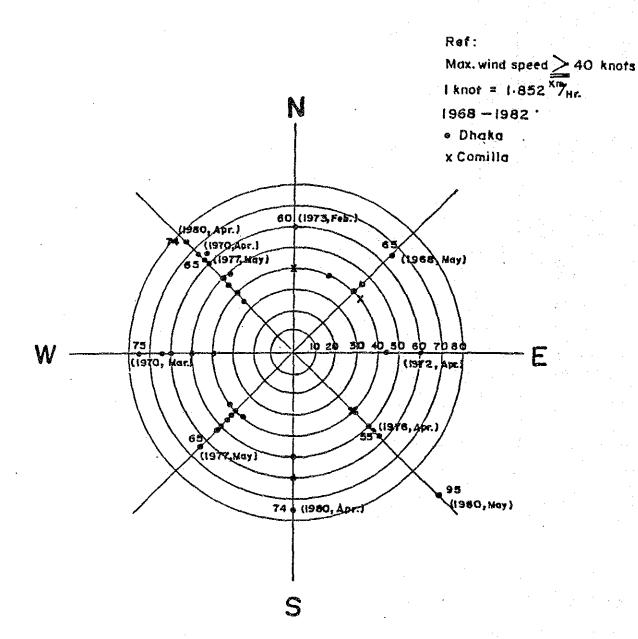
4 1 2 2 2 2 2						-							
Mon Year	JAN	FEB	MAR	APR	MAY	מער	JUL	AUG	SEP	OCT	NOV	DEC	AVE
1951	4	20	16	22	16	18	21	18	80	16	08	04	14.3
52	12	16	18	20	18	18	18	16	10	09	09.	06	14,2
53	05	09.	10	20	12	09	09	05	09.	Q9	02	02	7.5
54	03	05	09.	13	09	14	09	1.3	09.	0.7	05	02	8.2
55	02	03	14	15	10	12	14	12	09	0.7	0.5	02	8.8
56							11	15	08	0.2	oα	02	**
57	05	80	09	24	- 24	10	10	16	10	02	02	02	10.2
58	03	03	07	17	21	17	12	09	05	25	00	03	10,2
59	00_	12	09.	07	1.4	12	14	09	09	0.6	00	06	8,2
60	06	_11_	09	15	15	19	25	19	1.9.	35	09	- 09	15,9
61	09.	19	19	19	19	19	19	19	13	09	09	00	14,4
62	09.	09	13	13	19_	13_	13	13	19	09	05	00	11.3
6.3	09.	09	13	19	19	19.	13	19	13	31	05	00	14.1
64	05	13	09_	13	09	13	13	13	13	13	05	05	10.3
65	00	09	05	19	31.	19.	09	09	05	Q 5	05	09	10.4
66	02	07	07	13	09	09	13	1.3	09	15	03	02	8.5
67		09	09	13	13	09	13	13	13	13	05	05	
68	09	02	13	13	13	19	13	13	09	25	00	09	11.5
69	05	05	09	19	09	09	09		09	09	00_	00	
70	05	09		-	-	13	05	09	09	30	19		-
71		05	05	-	05	1.3		19	09	09	13		<u> </u>
72	1		22	34	25	25	09	20	09	1.5	09	10	_
73	10	13	15	35	20	15	12	11	13	12	19	25	16.7
74	05	07	15	25	35	40	15	20	15	07	15	07	17.2
75	15	15	15	30	25	25		20	12	10	02	05	
76		•	•	25	18	18	20	18	15	12	10	10	_
77	07	09	07	09	12	99	15	16	21'	12	09	02	10.7
78	07	12	03	13	13	05	17	18	28	13	05	07	11.8
79	05	13	10	18	21	12	15	13	09	13	03	02	11.2
- 80	07	15	12	22	25	14	18	16	09	13	05	05	13.4
81	-		15	20	15	15	15	18	10	09	04	35	
82	04	07	15	20	15	09	15_	18	15	12	07	08	12.1

Source : Bangladesh Meteorological Department

1 KNOT = 1.852 km/Hr

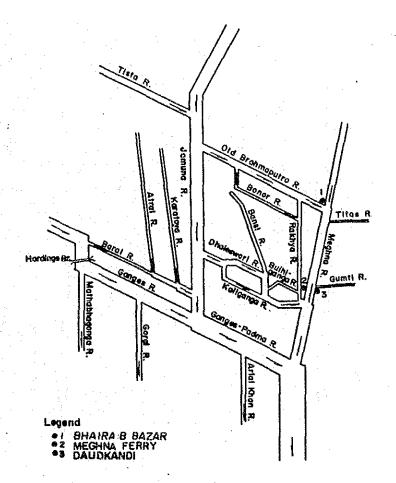
100 KNOTS = 51.4 m/Sec

AP. TABLE 2-6 RECORD OF CYCLONIC STORMS WHICH AFFECTED VICINITY OF MEGHNA ESTURARY AND BRIDGE SITES


Date of Occurrance	Affected Area	Nature of the Phenomena	Approximate Loss/Damages
May 16-19, Oct. 21-24, both 1958	East Meghna esturary near 91 east of Barisal and Noakhali also West Meghna esturary	Cyclonic storm	Damage report not available
Oct. 9-10, 1960	Eastern Meghna estuary	Severe cyclonic storm 125 miles per hour, maxi- mum storm wave 10 ft.	Caused considerable damage to Char Jabbar, Char Amina, Char Bhati, Ramgati, Hatya and Noakhali. 3,000 people reported killed.
May 9, 1961	West Meghna estuary, Comilla and Dhaka	Severe cyclonic storm speed 90- 92 miles and wave 8-10 ft.	Rail track between Noakhali and Harina- rayanpur damaged. Heavy loss of life in Char Allanda.
May 11-12, 1965	Barisal, Faridpur, Khulna, Jessore, Chittagong, Sylhet and Noakhali	Most severe cyclonic storm, maximum speed at Dhaka 100 miles per hour, with storm wave 12 ft.	Total loss of life 19,270. In Barisal 14,193 people were killed.
Nov. 12-13, 1970	Meghna estuary	Most severe cycl- onic storm acco- mpanied by mod- erate severe storm surge. Naval ship at Chitta- gong reported speed 138 miles per hour.	The entire belt from Khulna to Chittagong and offshore islands experienced hurricane winds for about 9 hours accompanied by storm surge of moderate to severe intensity which caused widespread damage to crop and properties. Innumerable human lives estimated to be about 200,000 were lost. A great number of animals were also killed.

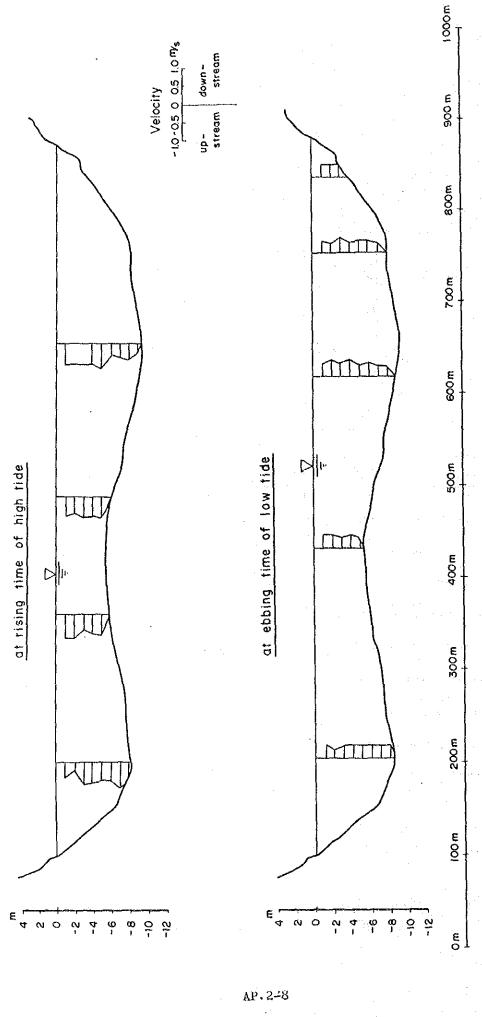
P. TABLE 2-7 MAXIMUM WIND SPEED IN KNOTS DIRECTION

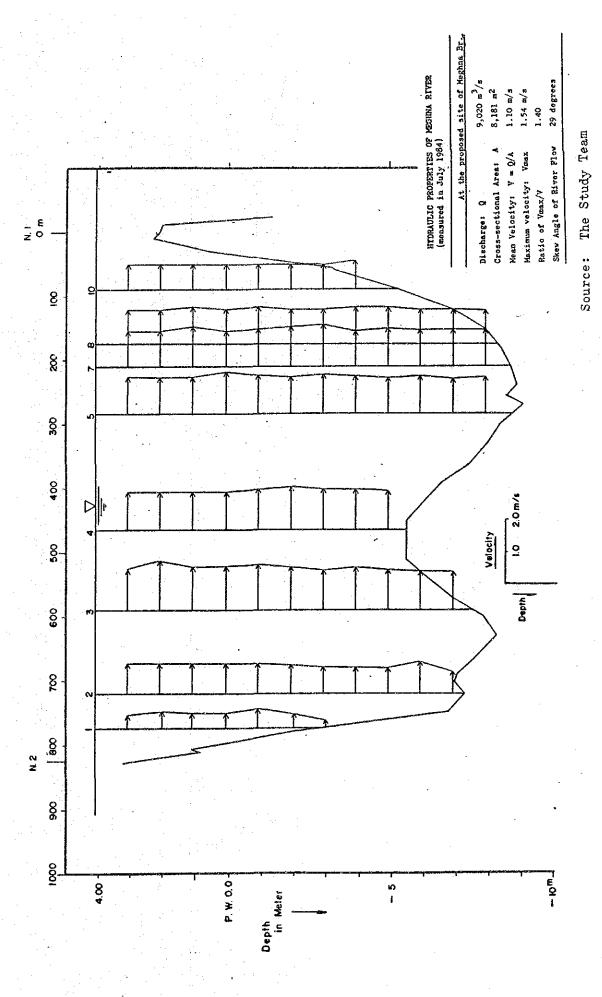
												5	
Year Station	Month	Jan	Feb	Mar	Apr	May	Jun	JuI	Aug	Sept	0ct	Nov	Dec
1977													
Comilla		N/NW14	S15	\$25	835	S/SW25	SE25	S/SE19	S16	\$17	NEIO	80N	NWIO
1978 Comilla		SE07	N12	SE06	809	SE19	S/SE5	217	S18	S/SW12	SE13	S/SE5	NO7
1979 Comilla		NNW12	V13	\$16	V13	SI 9	S18	S22	E20	S04	SE07	SE05	NO3
Dhaka		V05	NW21	SW40	NW65	W5.0	E/SE25	SE/SI9	SE25	SE/S09	SE/S13	N/NE13	NW05
1980 Comilla		N 08	NWI S	NW12	820	N25	SE14	SE18	SE16	E05	SE13	NOS	NWOS
Dhaka		NW05	NE/E45	SE/SW52	S/NW74	SE95	SE/S38	SE/S38	SE15	SE09	E15	N/NW05	NW05
1981 Comilla	•-	р В	ci d	N15	820	E15	SW15	S15	SE18	810	608	NE04	835
Dhaka		NIS	SW13	6 LMN	SE19	0 TMN	SE20	S13	SE13	SE13	60N	60M	57MS
1982 Comilla		NO4	N07	N1.5	\$20	SE15	608	S15	S18	SELS	W12	NW07	808
Dhaka		NW10.	W09	N13	W1.9	NT9	SE13	818	819	808	8M09	E05	60M
													ļ


Note: V - Variable n.a.-data not available

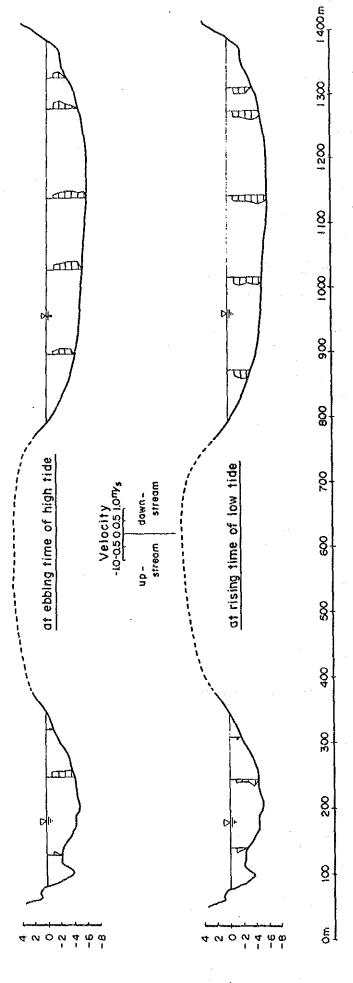
Source : Bangladesh Meterological Department

Source: Bangladesh Meteorological Department

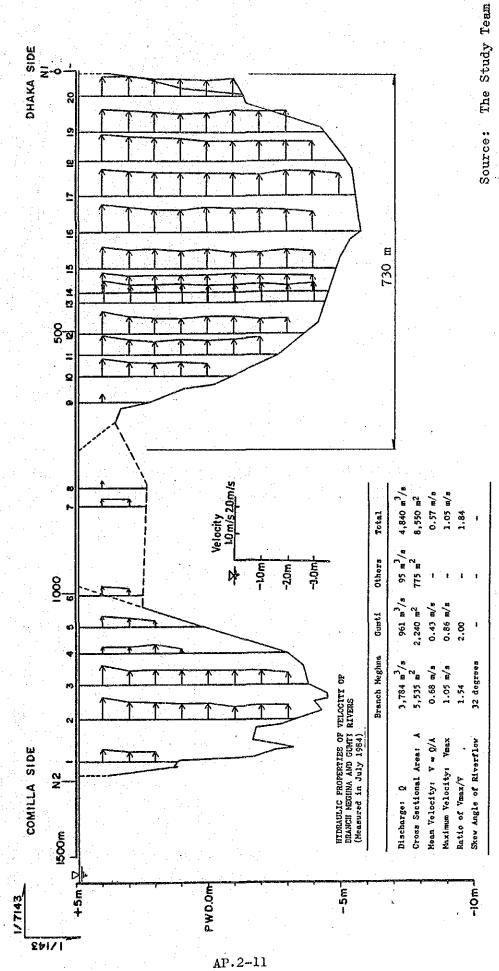

AP.FIG. 2-1 PAST MAXIMUM WIND SPEEDS AND DIRECTIONS


I tem River	MEGHNA. R	BRAHMAPUTRA	GANGES. R.
Total stream length (km)	880	2 800	2 560
Stream length in Bangladesh(km)	560	275	400
Catchment area (km²)	77 000	580 000	900000
Catchment area in Bangladesh(km²)	46 500	31 000	39 000
Maximum experienced discharge (km²)	19 500	70 000	85 000
Minimum experienced discharge (m³/s)	370	3 300	1 200
Annual mean discharge (m³/s)	3500	12 900	11700
Water surface slope	1:8800	1:16 000	1:20000

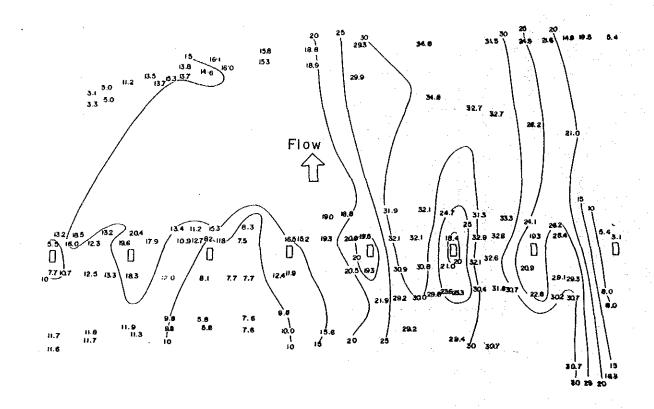
Source: Report "Flood Control in Bangladesh" by DR. MD SAYEEDUL ISLAM KHAN, 1977


AP. FIG. 2-2 RIVER SYSTEM AROUND THE MEGHNA RIVER AND GENERAL FEATURE OF THE MAIN RIVERS IN BANGLADESH

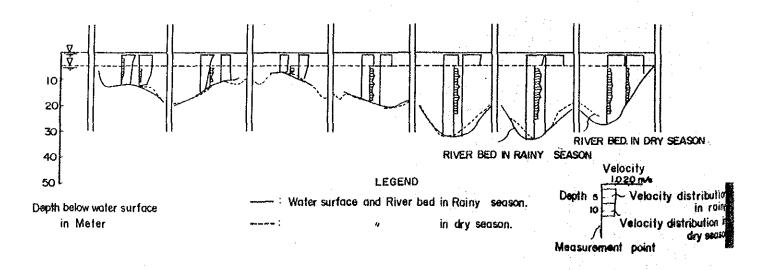
VELOCITY OF RIVER FLOW AT THE PROPOSED MEGHNA BRIDGE SITE, MEASURED IN APRIL, 1984 AP. FIG. 2-3

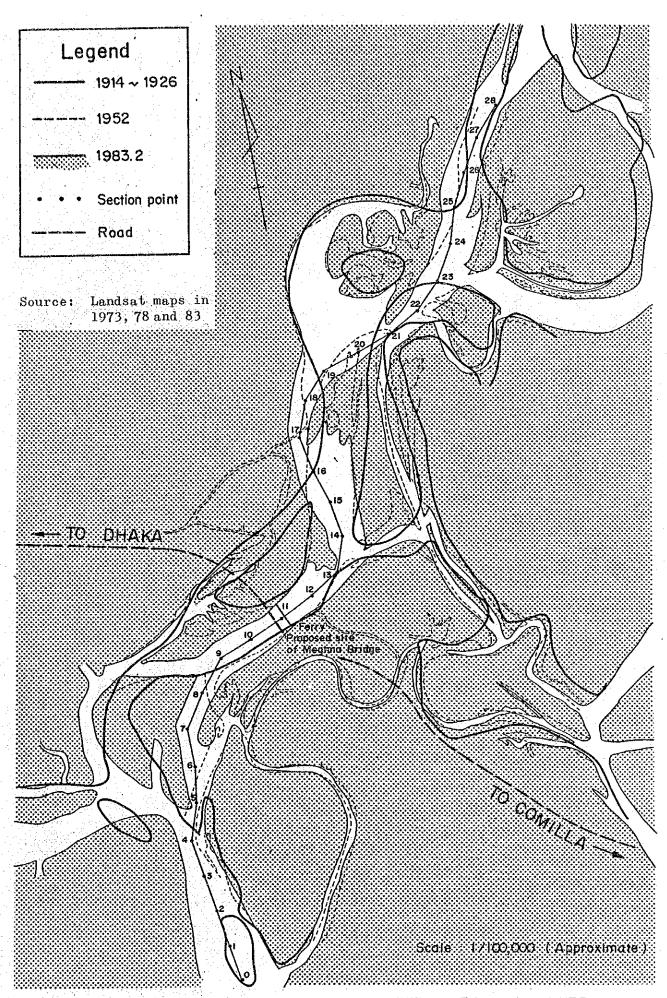


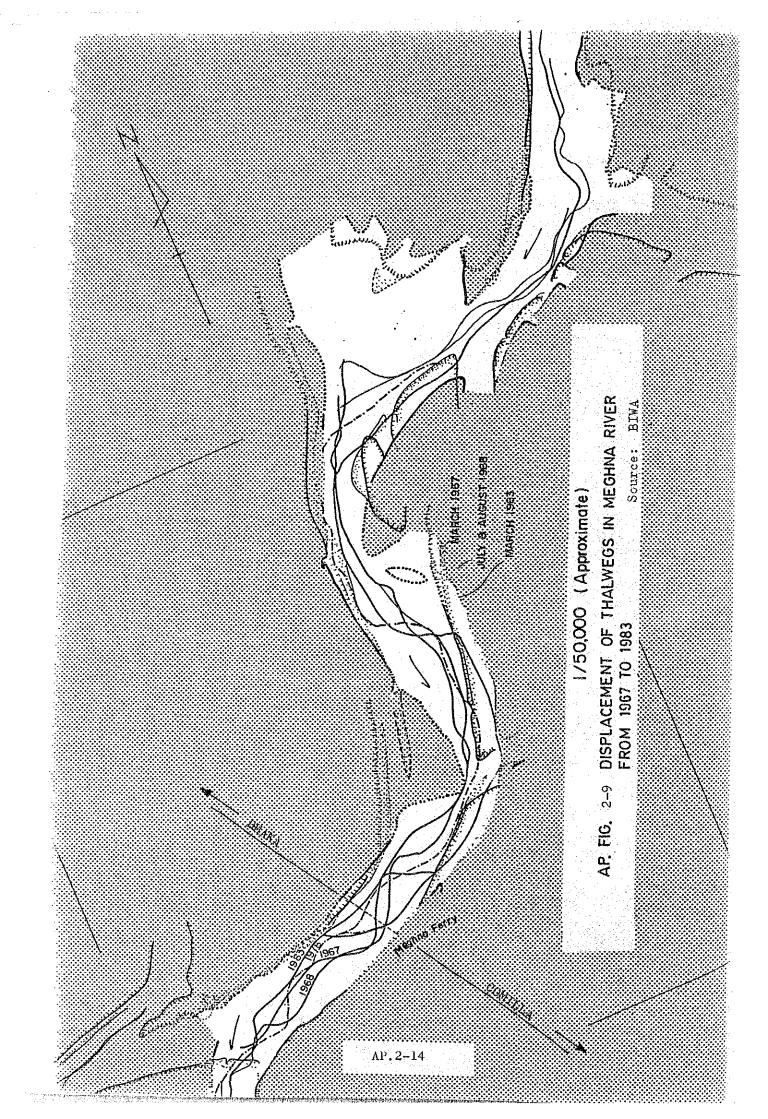
AP. FIG. 2-4 VELOCITY OF RIVER FLOW AT THE PROPOSED MEGHNA BRIDGE SITE, MEASURED IN JULY, 1984

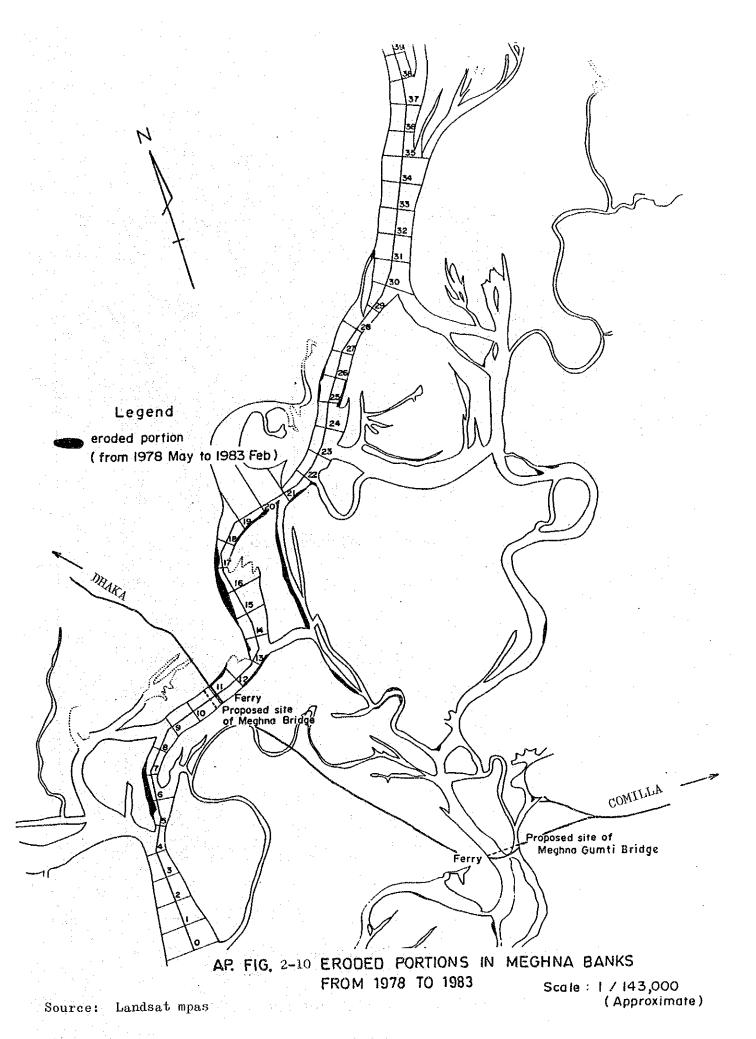


Source: The Study Team

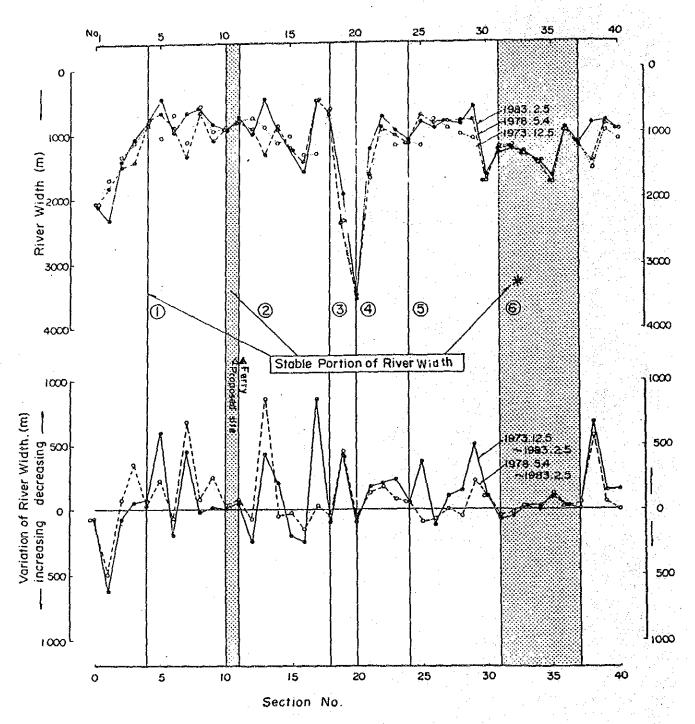

VELOCITY OF RIVER FLOW AT THE PROPOSED MEGHNA-GUMTI BRIDGE SITE, MEASURED IN APRIL, 1984 AP. FIG. 2-5


VELOCITY OF RIVER FLOW AT THE PROPOSED MEGHNA-GUMTI BRIDGE SITE, MEASURED IN JULY, 1984 AP. FIG. 2-6

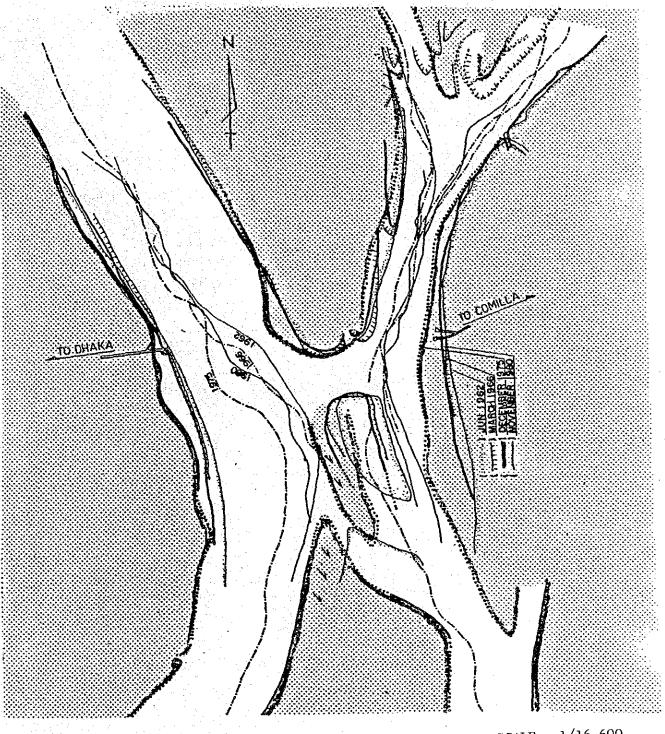

AP.FIG. 2-7 (a) RESULT OF SOUNDING INVESTIGATIONS DURING RAINY SEASON MEASURED AT BHAIRAB BAZAR BRIDGE IN 1984 JULY



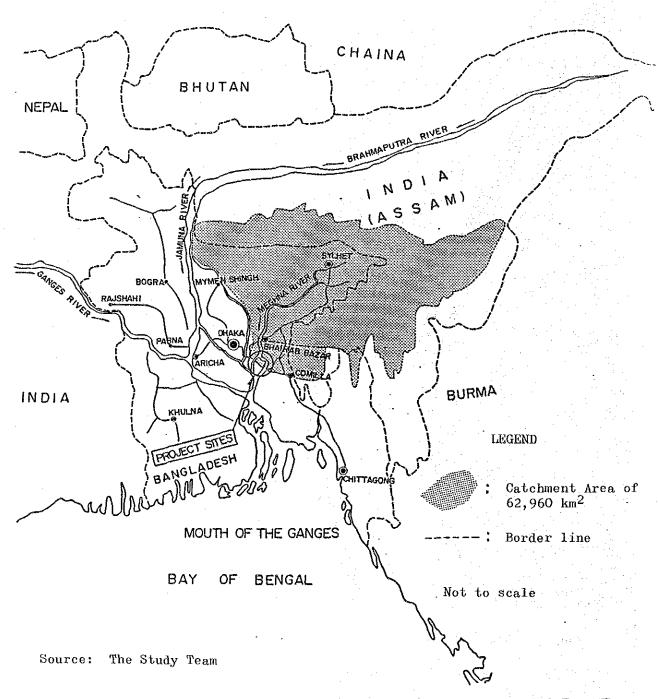
AP.FIG. 2-7 (b) PROFILE OF DRY SEASON IN 1984 APRIL AND RAINY SEASON IN 1984 JULY (At Bhairab Bazar)



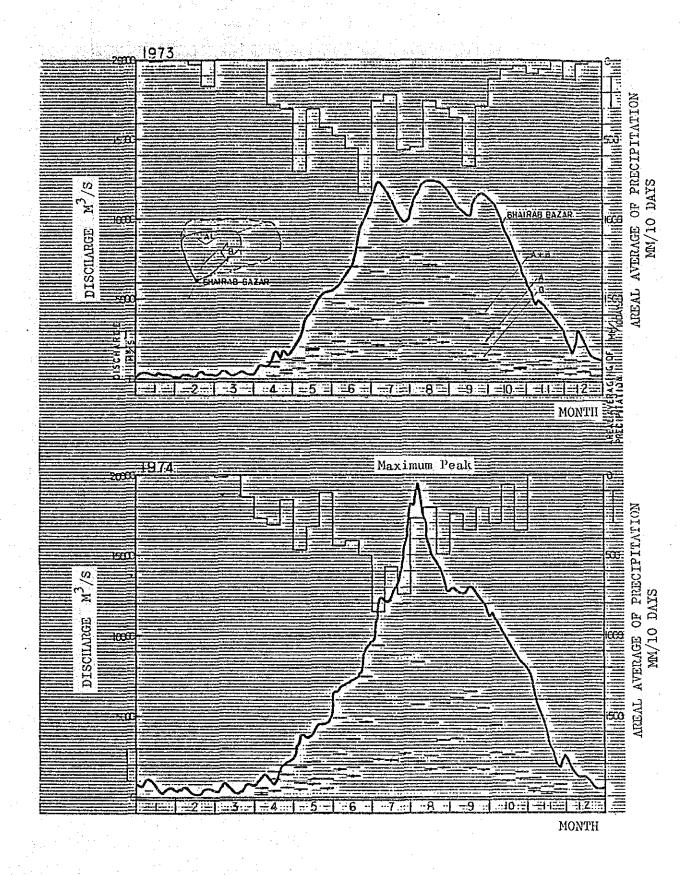
AP. FIG. 2-8 RIVER COURSE SHIFTING OF MEGHNA RIVER (FOR THE PAST 7 DECADES)


AP.2-15

Note: * The portion denoted by * is not preferable because it is far from the proposed bridge site.


Source: Landsat maps in 1973, 78 and 83.

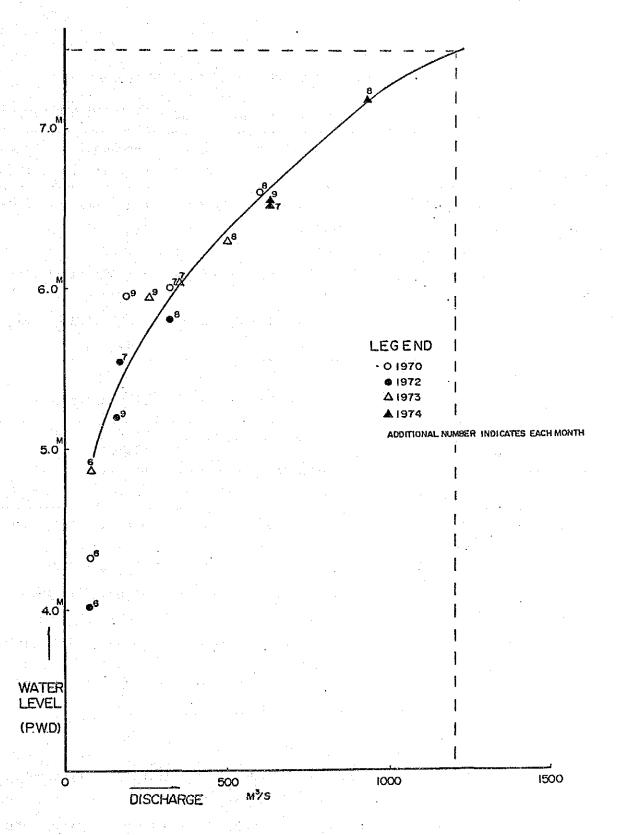
AP. FIG. 2-11 VARIATIONS OF MEGHNA RIVER WIDTH



Scale: 1/16.600

AP. FIG. 2-12 DISPLACEMENT OF THALWEGS AND BANKS OF MEGHNA-GUMTI RIVER

AP FIG. 2-13 CATCHMENT AREA OF THE MEGHNA RIVER


AP. FIG. 2-14 TYPICAL TYPES OF RAINFALL AND RUNOFF

AP. TABLE 2-8 RAINFALL-RUNOFF RELATION (at Bhairab Bazar)

	Rainfall Intensity for Return Period: 100 year	Inflow from Out side of Bangla- desh	Runoff Volume by Unit Hy- drograph	Total Discharge
Unit	mm/hr	m^3/s	m ³ /s	m ³ /s
		336	182	518
1974, 4 (1)	0.697	672	711	1,383
(2)	0.795	1,637	1,588	3,225
(3)	0.403	2,031	2,755	4,786
5 (1)	1.206		3,141	5,101
(2)	0.812	1,960	3,118	5,343
(3)	0.278	2,225	3,262	4,429
6 (1)	1.115	1,167		6,955
(2)	1.052	4,853	2,102	
(3)	1.286	3,582	2,588	6,170
7 (1)	2.153	7,458	4,433	11,891
(2)	1.462	9,464	5,285	14,749
(3)	1.873	8,769	7,962	16,731
8 (1)	0.703	11,951	9,189	21,140
(2)	0.521	8,303	7,715	16,018
(3)	1.253	4,616	7,031	11,645
9 (1)	0.612	5,810	4,979	10,789
$(\hat{2})$	0.880	6,076	4,067	10,143
(3)	0.496	6,503	5,104	11,607
10 (1)	0.700	4,538	5,400	9,938
(2)	0.148	4,399	7,267	11,666
(3)	0.885	2,567	6,383	8,950
11 (1)	0.867	2,703	6,719	9,422
	0	1,137	6,094	7,231
(2) (3)	0.097	644	4,150	4,794
12 (1)	0.097	-	2,763	,
· · · · · · · · · · · · · · · · · · ·	0		667	
(2) (3)	0		798	

AP. TABLE 2-9 MAXIMUM DAILY DISCHARGE (at Bhairab Bazar)

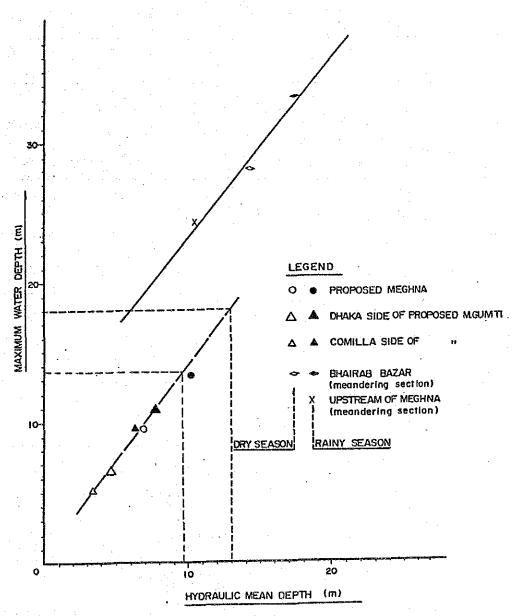
Year	Discharge
1964	$12,300 \text{ m}^3/\text{s}$
65	12,080
66	14,400
67	12,700
68	13,300
69	11,500
70	16,400
71	_
72	11,500
73	12,400
74	19,500
75	12,700
76	16,700

AP. FIG. 2-15 WATERLEVEL-DISCHARGE DIAGRAM AT BHAIRAB BAZAR RAILWAY BRIDGE

Source: The Study Team & Hydrological Year Book of Bangladesh

AP. TABLE 2-10 (a) DISCHARGE DISTRIBUTION IN CASE OF PWD = 6.99 m

The state of the s		Proposed Meghna Bridge	Proposed Meghna-Gumti Bridge
Water Level (PWD)	at P _{t-1} at P _{t-2}	Meghna Ferry: 6.99 m Saitnal : 6.41 m	Daudkandi: 6.99 m Saitnal : 6.41 m
Hydraulic Gra Hydraulic Rou Hydraulic Mea	ghness: n^* n Depth: $R=A/W$ = $1/n \times R^{2/3} \times I^{\frac{1}{2}}$ = $A \times V$	Approximately 15,000 m 1/25,424 0.02 10,656m ² /825m = 12.92m 1.73 m/s 10,656x1.73=18,435m ³ /s 54.1 %	Approximately 13,000 m 1/22,034 0.02 11,230m ² /1,340m = 8.38m 1.39 m/s 11,230x1.39=15,610m ² /s 45.9 %


TABLE 2-10 (b) DISCHARGE DISTRIBUTION IN CASE OF PWD = 6.60 m**

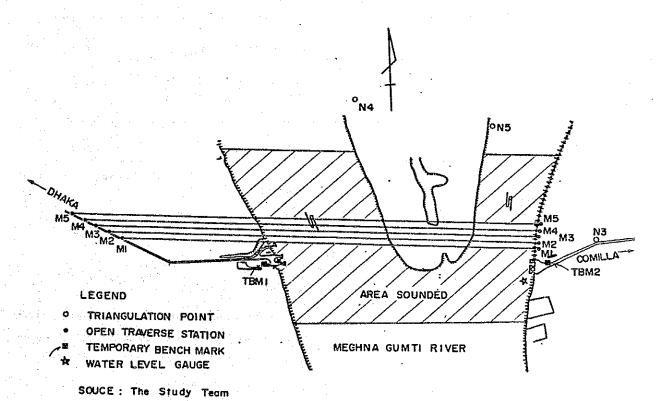
		Proposed Meghna Bridge	Proposed Meghna-Gumti Bridge
Water Level (PWD)	at P _{t-1} at P _{t-2}	Meghna Ferry: 6.60 m Saitnal : 6.41 m	Daudkandi: 6.60 m Saitnal : 6.41 m
Distance between P_{t-1} & P_{t-2} Hydraulic Gradient: I Hydraulic Roughness: n Hydraulic Mean Depth: $R=A/W$ Velocity: $V = 1/n \times R^{2/3} \times I^{\frac{1}{2}}$ Discharge: $Q = A \times V$		Approximately 15,000 m 1/78,947 0.02 10,326m ² /825m = 12.52m 0.959 m/s 10,326x0.959=9,903m ³ /s	Approximately 13,000 m 1/68,421 0.02 10,694m ² /1,340m = 7.98m 0.763 m/s 10,694x0.763=8,160m ³ /s
Discharge Dis	tribution (%)	54.8 %	45.2 %

Source: The Study Team

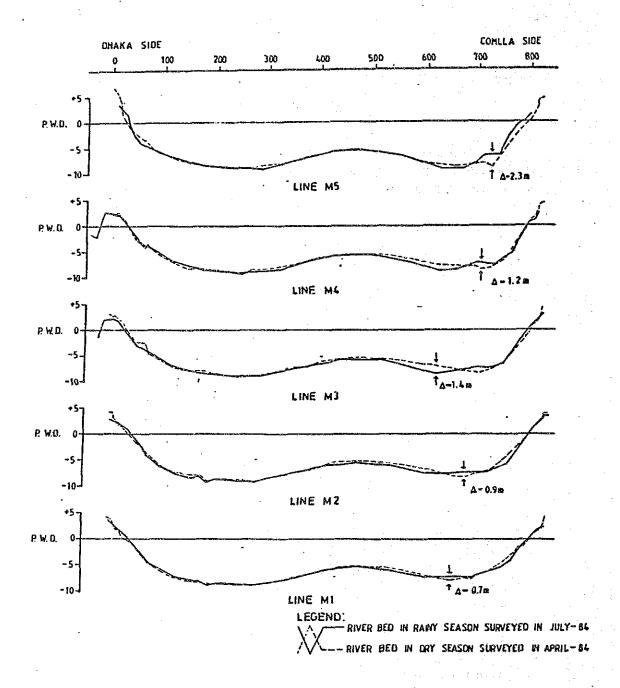
Note: * Coefficient of roughness 0.02 was same, as a result, with that of the JAMUNA RIVER BRIDGE CONSTRUCTION PROJECT FEASIBILITY STUDY REPORT LCT II. RIVER CONTROL. AUGUST 1976 (JICA)

^{**} The value of 6.60 m is the water level at Meghna-Gumti River, with the return period of 100 years, which is analyzed based on the existing water level records at Daudkandi.

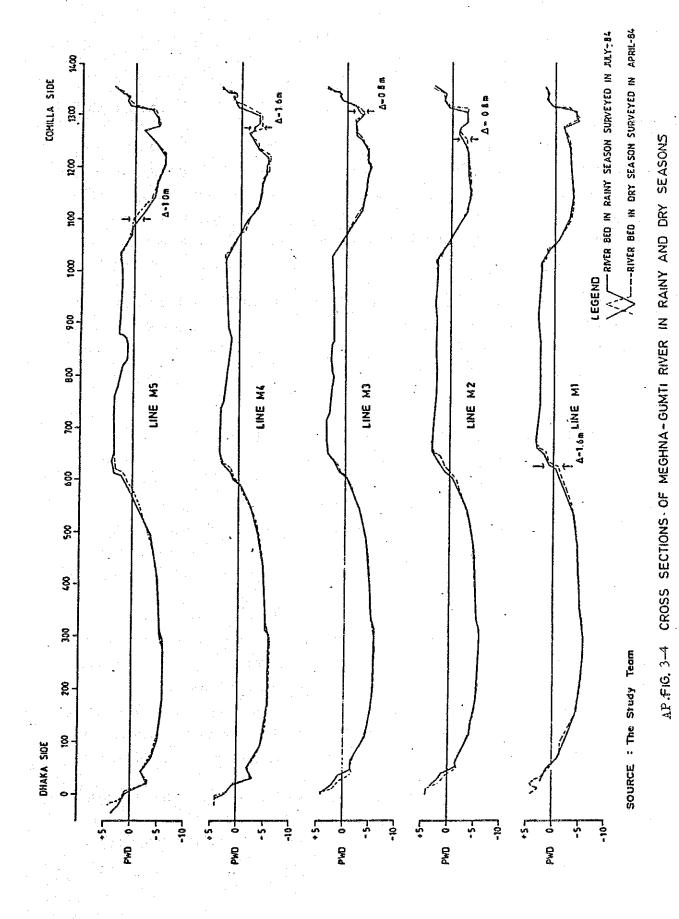
AP.FIG. 2-16 RELATION BETWEEN HYDRAULIC MEAN DEPTH & MAXIMUM WATER DEPTH


AP. TABLE 2-11 COMPARISON OF THE SCOURING LEVELS CALCULATED BY DIFFERENT FORMULAS

Proposers	Type of Equation	Calculate Meghna M Bridge B	eghan-Gumti	Notes
Andru	Z/D=0.8 x ho/D ho:Water Depth D :Width of Piers	4000		ho:18m 0 <ho d<1.5*<="" td=""></ho>
Tarapore	Z/D = 1.35	3.4	3.4	(ho/D)>1.15
Larras Breusers	Z=1.42 K·D ^{0.75} Z=1.4D		4. 0 3. 5	
Moza and Sanchex	$Z/D = ho/D(K_1 \cdot K_2 \cdot U_0^2 - 3100 cm/D)$	2.7	1.9	
Neil Qureshi	$Z/D = K \cdot (ho/D)^{0.3}$ $Z/D = 1.8(ho/D)^{0.75} - ho/D$	10.9 1 2.9	.0.2 4.0	
	$Z/D = N_S = \frac{U_O}{\sqrt{(\sigma/\rho - 1)g} d_m}$			u _o ≃1.73m/s
Carstens	$0.546 \left(\frac{N_{s}^{2} - N_{s1}^{2}}{N_{s}^{2} - N_{s2}^{2}}\right)^{3/4} \qquad N_{s2} = 2.24$ $N_{s1} = \frac{1}{2} N_{s2}$	2.1	2.2	
Shen	$z = 0.0222R_p^{0.619}$ $R_p = \frac{D \cdot U_0}{v}$	-	-	υ _o =1.73cm/S * ν =0.01cm ² /s
Japan National Railways	Z/D = 1.6	4.0	4.0	
Public Works Research Insti- tute, Ministry of Construction	Z/D - ho/D: Design Curve	9.2	8.6	ho/D ≤ 3.50
Laursen	Z/D - ho/D: Design Curve	11.0	10.2	
Poona	$\rm D_S=1.70~D\cdot (q^{2/3}/D)^{0.78}$ $\rm D_S$: the depth of Scour belowwater level $\rm q:unit~dis-charge~per~foot$	4.5	4.1	
Lacy	D'=0.473(Q/f) ^{1/3} Q :maximum discharge in cusec f :silt factor 1.76√m D = 2 x δ' m: mean diameter of sand in mm D :maximum scouring depth below HFL	9.7	12.3	


Note: * Equations are not applicable to the proposed bridges and rivers.

AP. FIG. 3-I LOCATION OF SURVEY POINTS AND AREA SOUNDED FOR MEGHNA BRIDGE SITE



AP. FIG. 3-2 LOCATION OF SURVEY POINTS AND AREA SOUNDED FOR MEGHNA-GUMTI BRIDGE SITE

SOUCE: The Study Team

AP.FIG. 3-3 CROSS SECTIONS OF MEGHNA RIVER IN RAINY AND DRY SEASONS

AP.3-3

AP. NOTE 4-1 GEOLOGY AND SOILS OF BANGLADESH

* GEOLOGY:

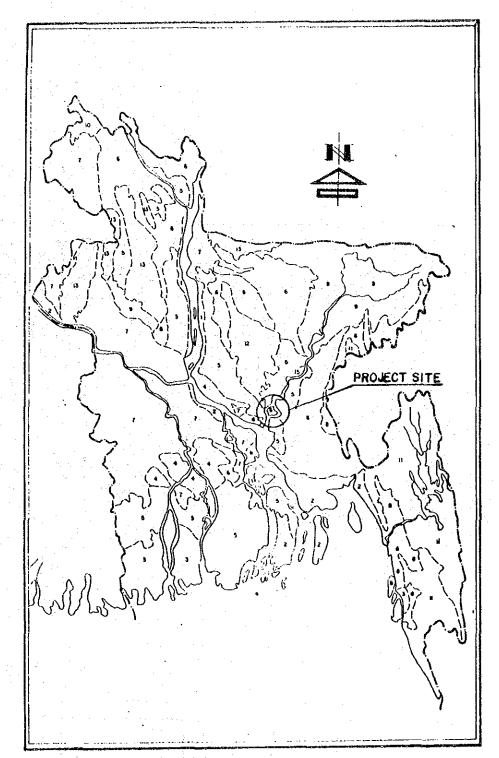
With about half the surface of the country below the 7.5 metre contour line, Bangladesh is generally described as a delta or as a flat alluvial plain. Geologically speaking the land can be divided into three broad categories of physiographic regions. These are the Tertiary Hills, the Pleistocene Uplands and the Recent Plains. This tripartite division also coincides with a division of the country based on altitude or relief. The Recent Plains can be further subdivided into Piedmont Plain, Flood Plain, Deltaic Plain, Tidal Plain and Coastal Plain.

The Tertiary Hills can be found in the Chittagong Hill Tracts region in the southeast, the only region in the country that experienced upheaval contemporaneously with the Himalayan Orogeny. Formed mainly of sandstones and shales, the average height of the hills is around 300 metres, the highest peak being Mowduk Mual (1,003 m) on the Bangladesh-Burma Border.

The Pleistocene Uplands comprise the Madhupur Tract, north of the city of Dhaka and the Barind to the northwest of the country. The altitude of the Madhupur Tract, a continuous block of about 3,800 sq.km varies between 9 m and 18 m. The tract rises as an island above the flood plains all around, its elevation being due, perhaps, to regional uplift. The Barind, although discontinuous, at present extends over a much larger area. It attains a height of about 40 m in places. One notable outlier of Pleistocene formation is the Lalmai Hills near Comilla.

Besides the above, other areas of the country are plain lands. The Piedmont Plain to the northwest rolls down sharply from north to south with an average gradient of 56.6 cm/kilometre. Flood plains made up of continental deposits, deltaic plains built up by both marine and continental deposits, and the tidal plain composed predominantly of marine deposits are all of very low elevation with considerable areas lying below the 3 metre contour line. All together they occupy about 90% of the area of Bangladesh. A narrow strip along the coast of Chittagong represents a coastal plain.

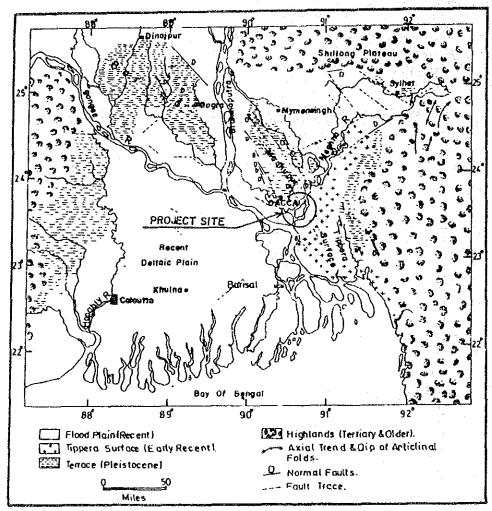
Marshes are fairly numerous in Bangladesh and are strewn over wide areas. There are, however, three areas of major concentration: to the southwest, to the northeast and to the northwest of the country.


* SOILS:

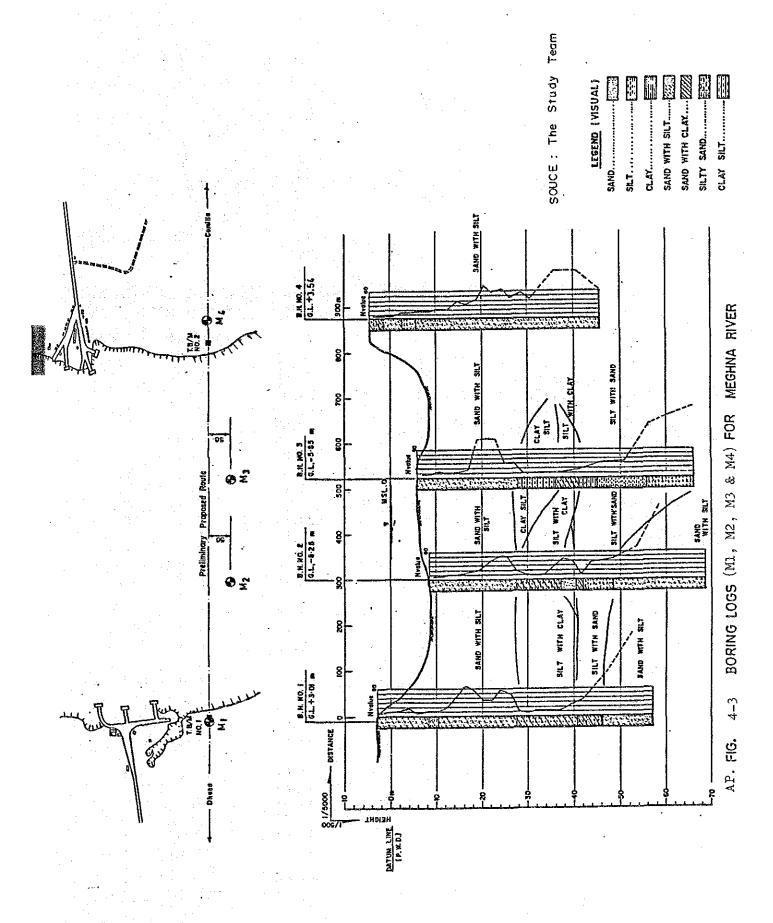
Different types of soils in Bangladesh are attributed to three major rivers, viz., the Ganges, the Brahmaputra (Jamuna) and the Meghna along with their tributaries and distributaries. However, most of the soils are zonal with little or no profile development. They have been derived from alluvial deposits, forming flood plains and piedmont plains and deltas; and in most cases they are some type of loam. On the basis of texture, these can be divided into various categories, such as sands, sandy-loams, clays, clay-loams or silt-loams. It is, however, only in the regions of Pleistocene uplands and saline soils that their boundaries could be drawn satisfactorily.

Soils vary widely with topographic features, as well as with differences between levels of land. The soil associations vary depending upon the river that laid them down. Thus, the microregional differences in lands as well as in their soil textures between adjacent sites, i.e. between levees, flood plains, slopes and marshy areas influence the cropping pattern.

Ap. Fig. 4-1 shows the soil types of Bangladesh and Ap. Fig. 4-2 the outline of the Quarternary geology of the Bengal Basin after J.P. Morgan and W.G. McIntive (1959).


^{*} Source: Bangladesh in Maps, University of Dacca

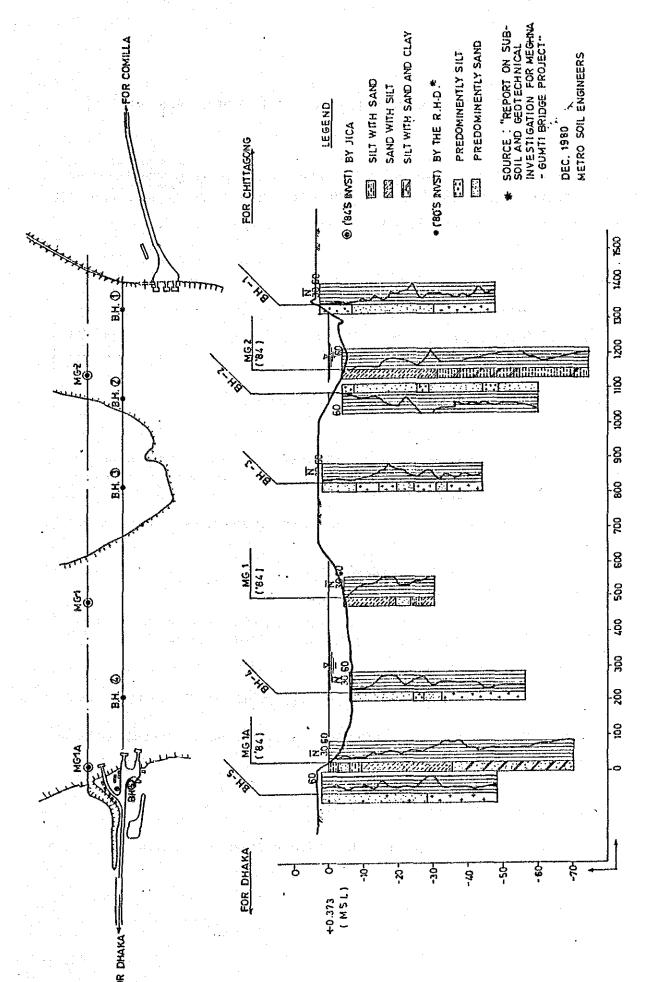
AP. FIG. 4-1 SOIL TYPES SOURCE: BANGLADESH IN MAPS


- A. FLOODPLAIN AND PIEDMONT SOIL:
- 1. NON-CALCAREOUS ALLUVIUM.
- 2, CALCAREOUS ALLUVIUM.
- 3. ACID SULPHATE SOILS.
- 4.PEAT
- 5. GREY FLOOD PLAIN SOIL.
- 7. CALCAREOUS DARK GREY AND BROWN FLOOD PLAIN SOIL.
- 8. GREY PIEDMONT SOIL.
- 9. GREY FLOOD PLAIN SOIL AND ACID BASIN CLAYS
- 6.NON-CALCAREOUS DARK GREY AND 10. BLACTERAL SOIL. BROWN FLOOD PLAIN SOILS.
- B. HILL SOIL: 11.BROWN HILL SOIL.
- C. TERRACE AND OLD PIEDMONT SOIL:
 12,RED BROWN TERRACE SOILS.
 13. GREY TERRACE SOILS.

AP.4-3

SOURCE: AFTER MOGAN AN Mc INTIVE 1959

AP. FIG. 4-2
THE OUTLINE OF THE QUARTERNARY
GEOLOGY OF THE BENGAL BASIN


AP. TABLE 4-1 CORRECTED SPT VALUES BY RIVER SITE

MEGHNA RIVER

MEGHNA-GUMTI RIVER

Depth in me	atres	Value	of Corre	cted CDT	1. at	Depth in metres	Value of	Correct	ed SPT
below G.L.			rent Bore			below in G.L.	Differen	t Bore l	loles
					**************************************				113.1
		<u>M 1</u>	<u>M 2</u>	<u>M 3</u>	M 4	•	M - G1/A	m - G .	1 M - G 2
0.05		7		· .	_	0.05	2	2	2
0,85		7	5 - 6	5 7	5	0.85	3 8	3 17	3
2.85		10	6		5	2.85		17 22	13
4.85 6.85		11 15	10 10	12 10	4 12	4,85 6,85	14 3	22 24	8
8,85		6	10 14	10		6.85 8.85	.3 -9	24 26	8 7
				11 15	13	8.85	8	35	- 9
10.85		10	17	15	15	10.85		35 38	
12.85		10	26	48	15	12.85	19 15		22
14.85		16	34	50	18	14.85	15	21	24
16.85		26	33	49	17	16.85	20	22	22
18.85	:	41	16	22	26	18.85	19	25	18
20.85		35	10	23	23	20.85	17	27	11
22.85		25	. 8	9	27	22.85	23	33	20
24.85		24	9	10	42	24.85	23	36	46
26.85		36	20	8	35	26.85	20		19
28.85		32	30	7	39	28,85	26	84	18
30.85		12	27	11	29	30.85	30	-	17
32.85		8	8	12	35	32,85	39	•	19
34,85		12	25	15	28	34.85	34	com-	20
39,85		12	29	23	58	36,85	38		24
44.85		25	44	23	82	38,85	27	-	26
49.85		54	88	66	39	40,85	27		29
54.85		72	100	7,5	, 	42.85	22	_	30
59,85		68	120	78	-	44.85	26		33
						46.85	27	. <u>.</u>	33
						48.85	25	. <u>.</u>	32
						50.85	26	, =	34
						52,85	26	·	27
						54.85	28	· <u>-</u>	25
						56.85	28		21
•						58,85	33	· ;	19
						60.85	40	-	23
						62.85	35	_	27
						64.85	41	- سيو	29
						66.85	42	_	30
Source: S	oil In	vestig	gation Rep	port on		69.85	45		33
		~-	na-Gumti I	-		~ # U #4#	10		
			Project,						77 ×
		C+							

by the Study Team

4-4 BORING LOGS (MG1 MG1A AND MG2) FOR MECHNA-GUMTI BRIDGE PROJECT. AP. FIG.

AP. NOTE 4-2 CALCULATION OF PILE BEARING CAPACITIES

Bearing capacities of the pile foundations of the proposed bridges were estimated based on the "SPECIFICATION FOR HIGHWAY BRIDGES" (PART IV: Specification for Substructures) issued by the Japan Road Association.

1. Formula Used

The following formula was used.

$$Ra = \frac{1}{n}Ru = \frac{1}{n}(qd \cdot A + U\Sigma \ell i \cdot fi)$$

where Ra = allowable bearing capacity of a pile (tons)

Ru = total ultimate bearing capacity (tons)

qd = ultimate bearing strength (tons/m²), generally 300 tons/m² in case of a cast-in-situ pile in sandy soils which have SPT values of more than 30.

A = considering a 1.5 m diametre pile, an area of pile cross section (1.767 m²)

U = perimetre of a pile (4.712 m)

 $\Re i = \text{layer depth around pile (m)}$

fi = maximum skin friction around a pile in sandy soil: 0.5 x N tons/m², but not exceeding 20 tons/m² for a cast-in-situ pile

N = corrected SPT value of the stratum

n = safety factor: 3 for normal condition and 2 for seismic condition

In the preliminary calculation the weight of the concrete pile was not included because it is a minor factor.

2. Bearing Capacity of Foundation Piles of Meghna Briege

The following data were applied to the calculation of the bearing capacity of the foundation piles:

a) Data from Borings M-2 and M-3

b) Piling

Diametre of piles : 1.5 metres;

Length of piles : 43.5 metres; and

Elevation of pile tip : -55.0 metres (PWD)

c) Scouring Level of Foundation: -22.0 metres (PWD)

(1) Calculation on Boring M-2 Data

PWD (m)	Boring Depth	li (m)	Soil Condition	N _{max} -N _{min}	Ñ	f _i (tons/m ²)	U·li·f _i (tons)
-22	14						
-27	19	5	Sand	50 - 36	43	20	471
-36	28	9	Clayey silt	25 - 9	17	15	636
-40	32	4	Sand	45 - 40	42	20	377
-48	40	8	Sand	39 - 9	24	12	452
-50	42	2	Sand	42 -	42	20	188
-55	47	5	Sand	60 -	60	20	471

 $y\Sigma l_i \cdot f_i = 2,595 \text{ tons}$

$$Ru = qd \cdot A + U\Sigma \ell i \cdot fi = 530 + 2,595 = 3,125 \text{ tons}$$

Ra of (1)
$$\begin{cases} \text{Normal: } \frac{1}{3} \text{Ru} = 1,040 \text{ tons} \\ \text{Seismic: } \frac{1}{2} \text{Ru} = 1,562 \text{ tons} \end{cases}$$

(2) Calculation on Boring M-3 Data

PWD (m)	Boring Depth	li (m)	Soil Condition	N _{max} -N _{min}	Ñ	f; (tons/m ²)	U·li·fi (tons)
-22	16						
-29	23	7	Sand	31 - 22	26	13	428
-37	31	8	Clayey silt	11 - 7	7	9	339
-50	44	13	Silt	27 - 11	19	9	551
-51	45	1	Silt	30 -	30	15	70
-55	49	4	Sand	60 -	60	20	377

$$v\Sigma l_{i} \cdot f_{i} = 1,765$$
 tons

$$Ru = qd \cdot A + U\Sigma \Re i \cdot fi = 530 + 1,765 = 2,295 \text{ tons}$$

$$Ra of (2) \begin{cases} Normal: \frac{1}{3}Ru = 765 \text{ tons} \\ Seismic: \frac{1}{2}Ru = 1,147 \text{ tons} \end{cases}$$

3. Bearing Capacity of Foundation Piles of Meghna-Gumti Bridge

The following data were applied:

a) Data from Borings MG-1/A and MG-2

b) Piling:

Diametre of piles : 1.5 metres;

Length of piles : 51 to 67 metres: and

Elevation of pile tip : -70 metres (PWD)

c) Scouring Level of Foundation: -19.0 metres (PWD)

(1) Calculation on Boring MG-1/A Data

PWD (m)	Boring Depth	li (m)	Soil Condition	N _{max} -N _{min}	Ñ	fi (tons/m ²)	U·li·f _i (tons)
~19	19.3						
-32.7	33	13.7	Sand	38 - 16	27	13	839
-60.0	60.3	27.3	Silty sand	30 - 21	25	12	1,543

Ru = qd·A + U
$$\Sigma$$
li·fi = 530 + 2,382 = 2,912 tons
Ra of (1)
$$\begin{cases}
Normal: \frac{1}{3} Ru = 970 \text{ tons} \\
Seismic: \frac{1}{2} Ru = 1,456 \text{ tons}
\end{cases}$$

(2) Calculation on Boring MG-2 Data

PWD (m)	Boring Depth	li (m)	Soil Condition	N _{max} -N _{min}	Ñ	fi (tons/m ²)	U·li·fi (tons)
-19	22			·			
-23	26	4	Sand	42 - 17	30	15	283
-48	51	25	Silty	31 - 17	24	12	1,413
-70	63	12	Silt	31 - 17	24	12	678

$$U\Sigma l_{i} \cdot f_{i} = 2,374 \text{ tons}$$

Ru = qd·A + U
$$\Sigma$$
li·fi = 530 + 2,374 = 2,904 tons
Ra of (1) | Normal: $\frac{1}{3}$ Ru = 968 tons
Seismic: $\frac{1}{2}$ Ru = 1,452 tons

Based on the above calculations, the allowable bearing capacities were considered as follows:

	Meghna Bridge	Meghna-Gumti Bridge
Normal:	700 tons	900 tons
Seismic:	1,100	1,400

4. Number of Piles Required

The total forces transmitted to the foundation by the superstructure and pier are as follows:

Forces at the Bottom of the Centre Footing

		Normal	Eart	Earthquake Loadings			
		Conditions: Vertical Forces (t)	Vertical (t)	Horizontal (t)	Moment (t-m)		
Live Load		240	_				
Dead Load of Superst.		2,165	2,165	108	3,995		
Dead Load	of Pier	1,740	1,740	87	945		
Buoyancy		-415	-415		••		
	Max.	4,145	3,905	195	4,940		
Total Min.	Min.	3,730	3,490	195	4,940		

Nine (9) piles per foundation are estimated to be necessary taking into consideration the following two points:

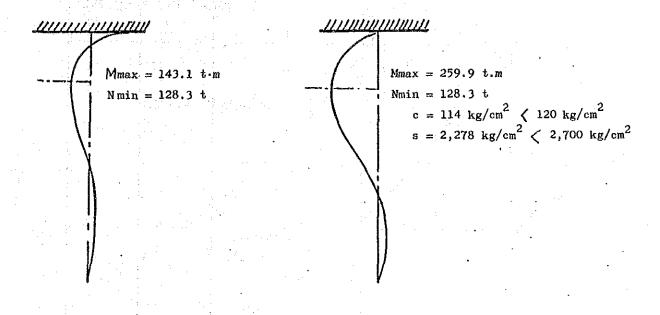
a) Pile reaction induced at the junction of piles with the footing:

File Reaction

M. H. 230 Pile-6

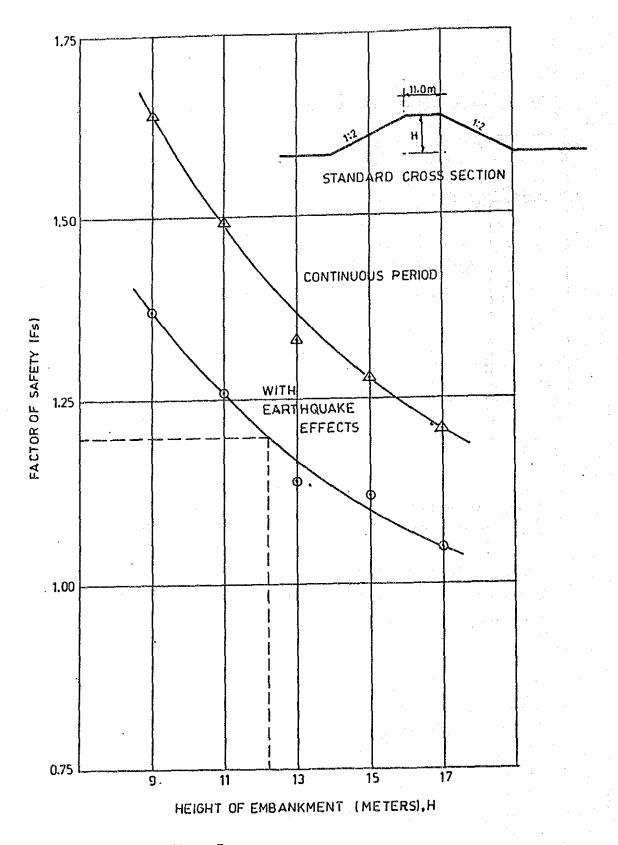
M. H. 250 Pile-

External 1 orces						
V	=	3,490 t				
Н	==	195 t				

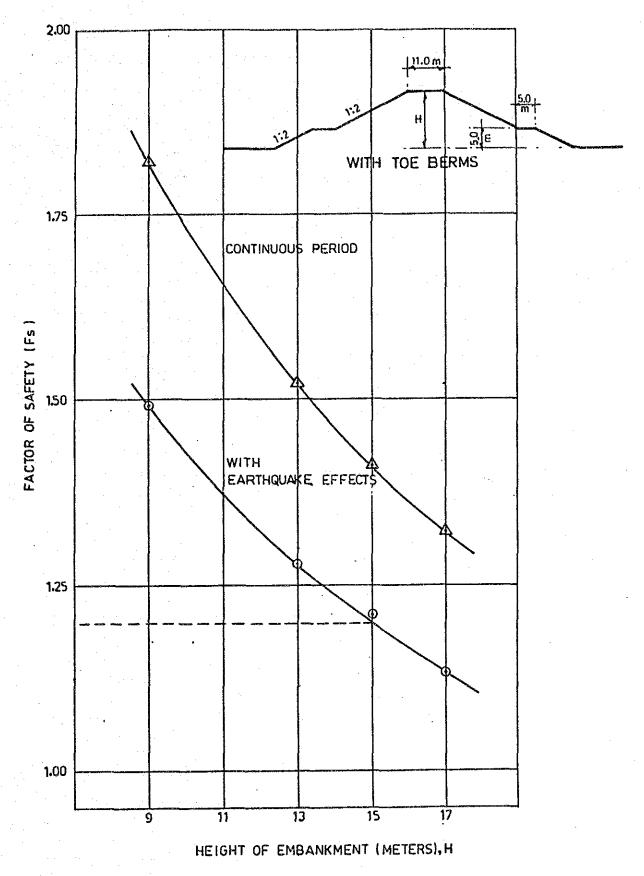

M = 4,941 t.m

		Reaction	
	Vertical (t)	Horizontal (t)	Moment (t·m)
Pile-a	647.3	21.7	143.1
Pile-b	387.8	21.7	143.1
Pile-c		21.7	143.1

647.3 tons < allowable capacity = 700 tons.


b) Internal forces of a pile induced under the external forces:

Internal Forces and Stresses



- (1) Bending Moment Diagram in case of Rigid Connection
- (2) Bending Moment Diagram in case of Hinge Connection

Both conditions (a) and (b) were calculated on the basis of the structural theory for a beam-column member on an elastic foundation. The maximum concrete stress will not exceed the allowable stress of 120 kg/cm².

AP.FIG. 4-5 EMBANKMENT HEIGHT AND FACTOR OF SAFETY (STANDARD CROSS SECTION)

Source: The Study Team

AP FIG. 4-6 EMBANKMENT HEIGHT AND FACTOR OF SAFETY (WITH TOE BERMS)

.

		« ·			44 21 21 21 22
Iten No.	WOLK I LOW	Volume		Quantities required	Remarks
402 101		110,000 m ³ 229,200 m	(L/C=1.35) Sandy Soil	457,920m ³	
102	Sub-base Course	4,100 m ³	Sand Pea gravel	2,870m ³ 2,870m ³	
103	Base Course	2,300 m ³	Pea gravel Shingle Pit sand	920m3 1,610m3 690m	
	Asphalt Concrete	(4,520 ton)	Pea gravel	1,260m ³	
104 105 600	Asphalt Surface Bridge Surface Traffic Maintenance	2,560 ton 810 ton 1,150 ton	Sand Pit sand Cement Asphalt	1,240m ³ ,560m ³ 140 ton 340 ton	
		3			·
108	Concrete Class A Box Culvert	707 m ³	Cement	3,250 ton	
110	Slope Protection	385 m ³	Sand	2,230 m ³	
111 112	Back Abutment Slab Drainage, etc.	52 m ³ 200 m ³	Pit sand Shingle	$2,230 \text{ m}^3$ $3,790 \text{ m}^3$	
204 205 212 301 504	& 302 Footing Concrete &303 Pier Concrete Footpath and Kerb Precast Concrete Pile Pier Protection	3,010 m ₃ 4,500 m ₃ 233 m ₃ 522 m ₃ 40 m	Crushed stor	ne 3,790 m ³ 9.7 ton	1
201 203	Concrete, Class X Reverse Circulation Pile Seal Concrete	(3,390 m ³) 2,040 m ₃ 1,350 m	Cement Sand Pit sand Shingle Crushed stone Plasticiser	1,320 tgn 800 m ³ 800 m ³ 1,190 m ³ e 1,190 m 3.4 ton	
	Concrete Class P	(7,290 m ³)	Cement	2,990 ton	l
207 304	PC Box Concrete PC Girder Concrete	7,070 m ³ 220 m ³	Sand Pit sand Shingle Crushed ston Plasticiser	1,530 m ³ 1,530 m ³ 2,770 m ³ 2,770 m ³ 7.3 ton	ı
	Remarks: Total of cement & aggregate for Approach Road and Bridge		Cement Sand Pea gravel Shingle Pit sand Crushed ston	7,700 to 8,670 m ³ 5,050 m ³ 9,360 m ³ 5,810 m ³ 7,750 m ³	on

AP. TABLE 5-1 CONSTRUCTION MATERIALS OF MEGHNA BRIDGE (2)

Item No.	Work Item	Volumes	Materials required		Remarks
	TORSTEEL	(2040 ton)			
108	Box Culvert	78 ton	2 1		
111	Back Abutment Slab	6 ton			
201	Reverse Circulation Pile	1100 ton	TORSTEEL	2,040 ton	
206	TORSTEEL Bar	692 ton	Bar		
210	Railing	65 ton		i .	
212 301	Footpath & Kerb Precast Concrete Pile				
	n 6 1 1	(0/0 ·)		پر 160 میں بلنے بانے کنا سے میں شد بنیا بلنے کے کہنا	
	Deformed Bar		* Deformed	840 ton	
208 305	Deformed Bar of PC Box Deformed Bar of PC Bea	· · · · · · · · · · · · · · · · · · ·	Bar	040 2011	
	High Tensile Ba		ر قامل جين خام جي سند الحد جين خام جين جين من المان جين من المان جين من المان جين المان جين المان جين		. The part street of the local street state
209	PC Cable Stressing	420 ton	* High Tensile Bar	420 ton	
	High Tensile Wi	re	* High Tensile	p	
306	PC Cable Stressing	9 ton	Wire	9 ton	
300 mm 200 200 km 400 j	Fabricated Steel Goods	(106 ton)			
211	Expansion Joint	36 ton	* Fabricated	106 ton	
213	Centre Hinge	20 ton	Steel or		
214	Bearing Shoe	2 ton	Cast Iron		
307 .09	Bearing Shoe Guard Rail	6 ton 42 ton			
	Shape Steels	(6,910ton)		· — — — — — — — — — — — — — — — — — — —	
:01	Reverse Circulation Pile	914 ton			
02	Excavation in River	2,130 ton			
01	Temporary Staging	2,230 ton	* Shaped Stee1	s 6,910 ton	
03	Temporary Quay	920 ton			en e
02	Sheet Piling	490 ton		46	
04	Pier Protection	35 ton			
00	Traffic Maintenance	191 ton			

^{*} Note : Imported Material

CONSTRUCTION MATERIALS OF AP. TABLE 5-2 MEGHNA-GUMTI BRIDGE (1)

Item No.	Work Item	Volume	Materials Question required re		Remarks
	Site Reclamation Road Filling	270,000m ³ 85,700m ³	(L/C = 1.35 Sandy soil) 480, 200m ³	
102	Sub-base Course	2,850m ³	Sand Pea gravel	2,000m ³ 2,000m ³	14 BP 20 W 02 PM 171 M
103	Base Course	1,560m ³	Pea gravel Shingle Pit sand	630m ³ 1,100m ³	
104 (G) 105 600 (G)	Asphalt Concrete Asphalt Surface Bridge Surface Traffic Maintenance	(4,880 ton) 2,210 ton 1,290 ton 1,380 ton	Pea gravel Sand Pit sand		
111 112 (G) 202 (G)302	Concrete Class A Box Culvert Slope Protection Back Abutment slab Drainage, etc. Footing Concrete Pier & Abutment	(9,320 m ³) 280 m ₃ 390 m ₃ 52 m ₃ 120 m ₃ 5,520 m ₃ 2,460 m	Cement Sand Pit sand Shingle Crushed Stone	3,140ton 2,160m ₃ 2,160m ₃ 3,660m ₃ 3,660m ³	
301 504	Concrete Precast Concrete Pile Pier Protection	410 m ₃ 80 m	Plasticiser	9.3 ton	
201 (G)	Concrete Class X Reverse Circulation	(20,450 m ³) 18,270 m ³	Cement	7,950 ton	prin Mini mana arab mada mini Mini ma
203 (G)	Pile Seal Concrete	2,180 m ³	Sand Pit sand	4,790 m 3 4,790 m $_3^3$	
			Shingle Crushed stone Plasticiser	7,180 m ₃	
207 (G)	Concrete Class P PC Box Concrete	12,930m ³	Cement Sand Pit sand Shingle Crushed ston	5,300 ton 2,710 m ₃ 2,710 m ₃ 4,900 m ₃ 4,900 m 12.9 ton	
	al Cement & Aggregate c Approach Road and Bri	dge	Cement Sand Pea gravel Shingle	16,540ton 13,000 m ³ 3,990 m ³ 16,840 m ³	ga an ay an an

AP. TABLE 5-2 CONSTRUCTION MATERIALS OF MEGHNA-GUMTI BRIDGE (2)

Item No.	Work Item	(Volume)	Materials Quantities Remarks required required
	TORSTEEL Box Culvert Back Abutment Slab) Reverse Circulation pile) TORSTEEL Bar Railing Footpath & Kerb Precast Concrete Pile	(3,680 ton) 30 ton 6 ton 2,750 ton 700 ton 108 ton 20 ton 65 ton	TORSTEEL 3,680 ton Bar
208 (G	Deformed Bar) Deformed Bar of PC Box	1,480 ton	* Deformed Bar 1,480 ton
209 (G)	High Tensile Bar PC Cable Stressing	760 ton	* High Tensile 760 ton Bar
***************************************	Fabricated Steel Goods	(100 ton)	
211 213 214 109	Expansion Joint Centre Hinge Bearing Shoe Guard Rail	50 ton 36 ton 2 ton 12 ton	* Fabricated 100 ton Steel and Cast Iron
202 (G) 401 (G) 403 504	Shape Steels Reverse Circulation Pile Excavation in River Temporary Staging Temporary Quay Pier Protection Traffic Maintenance	(10,810 ton) 1,950 ton 4,260 ton 3,130 ton 1,230 ton 70 ton 170 ton	* Shaped Steels 10,810 ton

^{*} Note : Imported Material

(G): Items for Meghna-Gumti Bridge only

AP. NOTE 6-1 PCE: PASSENGER CAR EQUIVALENT

Bangladesh has been using the same coefficients of PCE (Passenger Car Equivalent) conversion as suggested by ESCAP (Economic and Social Council of Asia and the Pacific) to express the figures of traffic counts as shown below:

Type of Vehicles	PCE Factor
1. Trucks	3.0
2. Buses and coaches	3.0
3. Other medium and heavy commercial vehicles	3.0
4. Cars, jeeps, pick-ups, station wagons, microbuses, etc.	1.0
5. Light commercial vehicles	1.0
6. Auto-rickshaws	1.0
7. Motorcycles	0.5
8. Animal drawn or push carts	3.0
9. Rickshaws	0.5
10. Bicycles	0.25

Source: Roads & Highways Department

AP. TABLE 6-1 COMPARISON OF LOADING SPECIFICATIONS FOR HIGHWAY BRIDGES

DESCRIPTION	AASHIO (American Association of State Higheay and Transportation Officials)	IRC (Indian Road Congress)	J.R.A (Japan Road Association)	Adopted to Meghna & Meghna- Gumti Bridge Project	Remarks
Live Load	HS 20 - 44 (MS 18)	90% of CLASS "A" (For 2-Lane Bridge)	TL - 20	HS 20 - 44 (NS 18)	
Impact Fraction	$\lambda = \frac{15.24}{1. \pm 30} \le 30\%$	$1 = \frac{4.5}{6 + 1} \le 50\%$	$i = \frac{20}{50 + L}$ (For L-Load.)	$\dot{x} = \frac{15.24}{L + 30} \le 30^{\circ}$	L: Span Length in Meters
Sidewalk Loading	415 kg/m²	400 kg/m ²	350 kg/m ² (For L ≤ 80) 430-L (For 80 < L ≤ 130) 300 (For L > 130)	415 kg/m²	L: Span Length in Meters
Kerb Loading	744 kg/m	750 kg/m	***	744 kg/m	Lateral Force
Railing Loading	74.4 kg/m	150 kg/m	250 kg/m	74.4 kg/m	Lateral Force
Longitudinal Forces	5% of Live Load	20% of the first train load plus 10% of the succeed- ing train load		5% of Live Load	
Wind Load	V = 100 m.p/h (160.9 km/h) W = 244 kg/m ² (For Girder and Beam) W = 195 kg/m ² (For Sub- structure)	$V_h = 20, = 2 \times 136 \text{ km} \cdot \text{h}$ = 272 km/h	V = 55 m/s (198 km/h) W = 300 kg/m ² (For PC Girder and Beam) W = 300 kg/m ² (For Sub- structure)	V = 140 m.p.h (225.3 km/h) W = 479 kg/m ² (For Girder and Bean) W = 385 kg·m ² (For Sub- structure)	
Earthquake Load	- Equivalent Static Force Method - Response Spectrum Method	E = 0.05 W W: Dead Load (1)	- Modified Static Porce Mothod - Response Spectrum Method	E = 0.05 W W: Dead Load (t)	<i>1</i>
Thermal Forces	Rise 16.7°C Fall 22.2°C	+ 17°C	± 15°C	26°C ± 17°C	
Stream Current Forces	P = 515 k-V ² V: Velocity of Water $K = 1 \cdot \frac{3}{8}$ (For Square End) $K = \frac{1}{2}$ (For Angle End, $\leq 30^{\circ}$) $K = \frac{2}{3}$ (For Circular Pier)	P = 52 k·V ² V: Velocity of Water K = 1.5 (For Square End) K = 0.66 (For Circular Fier) K = 0.5 (For Triangular cut, Angle < 500)	<pre>P = k·v² v: Maximum Water Velocity k = 0.07 (For Square End) k = 0.04 (For Circular Pier) k = 0.02 (For Streamline Pier)</pre>	As specified in the IRC standard	
Centrifugal Forces	$C = \frac{0.79}{R} \cdot S^2$ S: Design Speed (km/h) R: Radius of Curve (m)	$C = \frac{WV^2}{127 \ R}$ V: Design Speed (km/h) R: Radius of Curve (m) V: Vehicle Weight (t)	C = 0.08 x W W: Vehicle Weight (t)	$C = \frac{0.79}{R} \cdot S^2$ S: Design Speed (km'h) R: Radius of Curve—(m)	
Earth Pressure	Rankine's Formula	Coulomb's Formula	Coulomb's Formula	Coulomb's Formula	

AP. NOTE 6-2 SEISMIC LOAD

1. Introduction

Seismic effects, which should be taken into account in designing and constructing bridges, mainly depend on the seismic activity of the region, characteristics of earthquake ground motion and the dynamic characteristics of the structure.

The seismic activity is mainly governed by the geotectonic structure of the region and is estimated from the frequency of earthquake occurrences in the past, magnitudes and the epicentral distances of past earthquakes.

The characteristics of earthquake ground motion are mainly governed by the source mechanism of earthquakes, characteristics of propagation path of seismic waves from the origin to the site under consideration and the site conditions including topographic features and subsoil conditions of the site.

The dynamic characteristics of structures are determined by structures themselves taking into account soil-structure interaction and can be adjusted to the seismic activity and characteristics of earthquake ground motion of the site.

2. Seismic Environment of Bangladesh

Though Bangladesh suffered wide spread damage by the Great Earthquake of 1891 and locally limited damages in the vicinity of epicentres by the Bengal Earthquake of 1885 and Srimangal Earthquake of 1918, there seem to be no seismically activity faults within her territory. However, the causative faults and areas of high seismic activity exist in the north and east of Bangladesh in India and Burma and and earthquakes in these areas affect adjacent regions in Bangladesh.

A comprehensive study was carried out by the Committee of Experts on Earthquake Hazard Minimisation and the Committee published a final report on "Seismic Zoning Map of Bangladesh and Outline of Code for Earthquake Resistant Design of Structures" in November, 1979. By this zoning map, the Meghna and Meghna-Gumti Bridge sites are located in Zone II, where the horizontal seismic coefficient of 0.05 should be considered.

In the appendix II of the report, a catalogue of 215 earthquakes occurred in and arround Bangladesh between August 1833 and July 1971 is listed together with data

and origin time, location of epicentre and magnitude of these earthquakes.

The report also shows the seismic zoning map of Bangladesh, which divides the territory of Bangladesh into three zones, that is, Zones I, II and III. Zone I covers northeastern Bangladesh and is designated as the most active seismic zone. Zone II runs from northwest to southeast covering the central part of Bangladesh. Zone III covers the southwestern Bangladesh and is designated as the least active seismic zone. The seismic zoning map is shown in Ap. Fig. 6–1. The report describes that earthquake shocks of maximum intensity of IV and VIII in Modified Mercalli Scale are possible in Zones I and II, respectively, and the maximum intensity is not likely to exceed VII in Zone III. Thus the report suggests the basic horizontal seismic coefficients of 0.08, 0.05 and 0.04 for Zones I, II and III, respectively. The sites of Meghna and Meghna-Gumti Bridges are located in Zone II.

3. Estimation of Ground Acceleration Caused by Past Earthquakes.

From the earthquake catalogue in the report mentioned above, the Study Team selected earthquakes whose epicentres are located in the area surrounded by latitude N 21 $^{\circ}$ – 26 $^{\circ}$.6 and longitude E 88 $^{\circ}$ – 92 $^{\circ}$.6 and plotted their epicenters on a map as shown in Ap. Fig. 6–2.

The date, location of epicentre and magnitude of these selected earthquakes are also shown in Ap. Table 6-2, together with the eqicentre distance from Meghna and Meghna-Gumti bridge sites. The epicentral distances are measured on the amp. In the Table, the Great Earthquake of 1987 is also shown for reference, though the location of epicentre is not shown in the earthquake catalogue.

There are several formulae which estimate the ground acceleration from the magnitude and epicentral distance of an earthquake. Some show good coincidence in cases of selected for estimating ground acceleration caused by past earthquakes as follows:

From Ap. Table 6-2, it can be seen that the epicentral distances exceed 100 km, therefore, a formula which shows good coincidence in case of long epicentral distance is selected for estimating ground acceleration caused by pase earthquakes as follows:

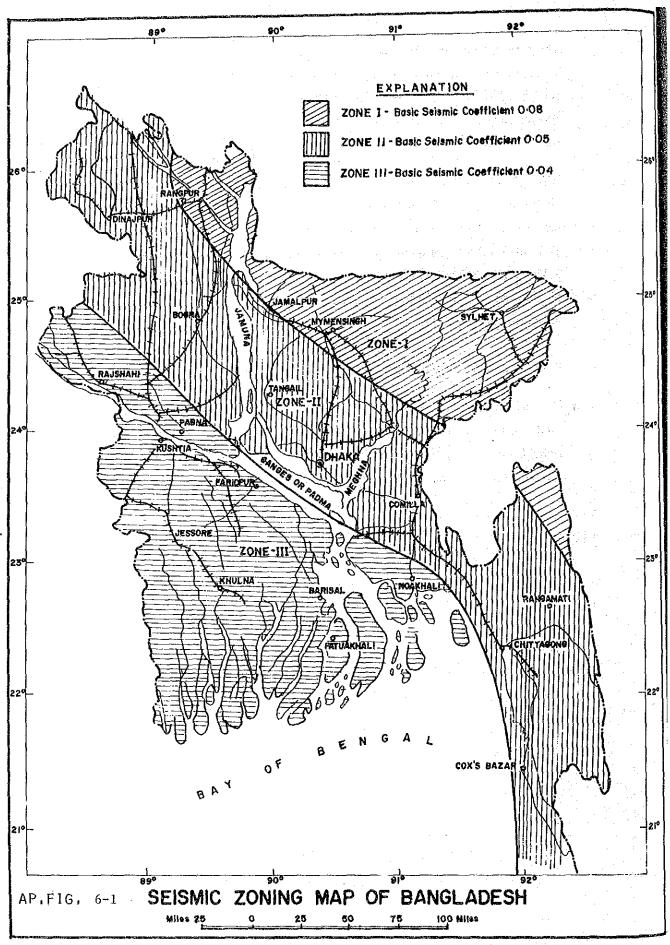
$$A = 40.3 \times 10^{-0.2621} \,\text{M} \times (d + 30)^{-1.208}$$

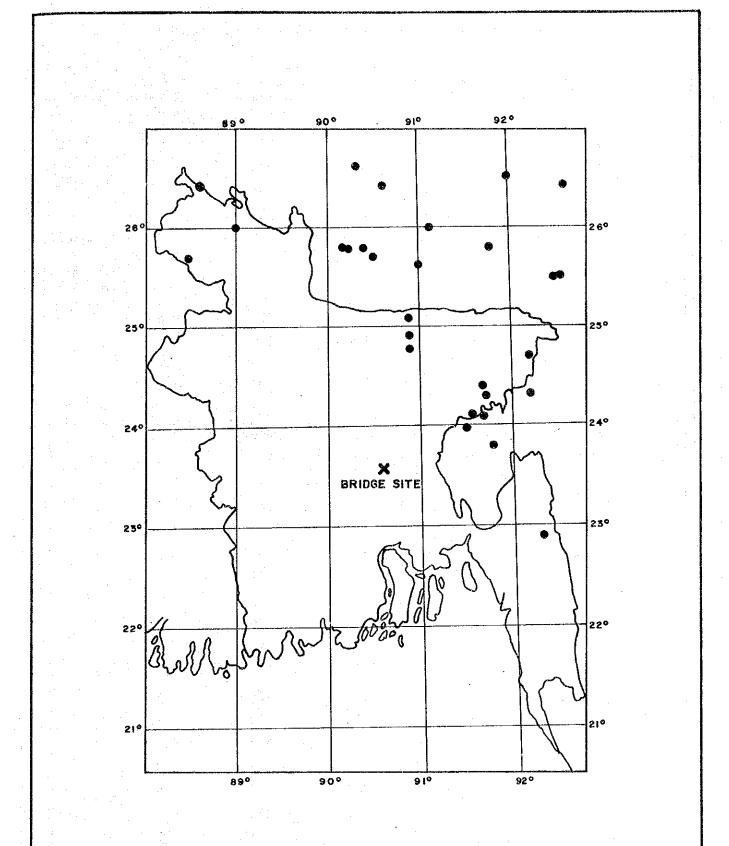
where A = estimated maximum ground acceleration in % of g

M = magnitude of earthquake

d = epicentral distance in km

The estimated ground accelerations are shown in Ap. Table 6-2. As seen from the Table, estimated maximum ground accelerations do not exceed 5% of g except two cases caused by earthquakes of Jan. 10, 1969 and July 8, 1918. Because these two earthquakes took place many years ago, there should be uncertainties on the value of magnitude and location of epicentre.

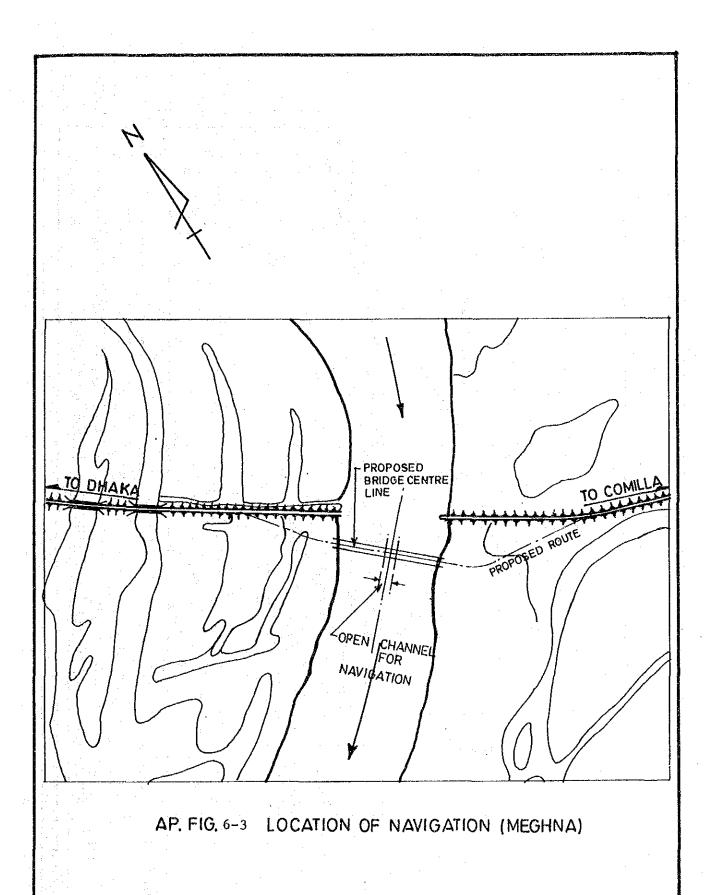

Also, structures need not be designed against maximum ground acceleration. For example, in the case of San Fernando Earthquake of 1971, a strong motion accelerograph installed at Pacoima Dam site recorded about 1.4 g acceleration as a maximum. However, no one will consider that dams located in the region should be designed against 1.4 g horizontal acceleration. By the same reasoning, the Study Team considers that Meghna and Meghna-Gumti Bridges need not be designed against 0.084 g or 0.059 g horizontal acceleration.

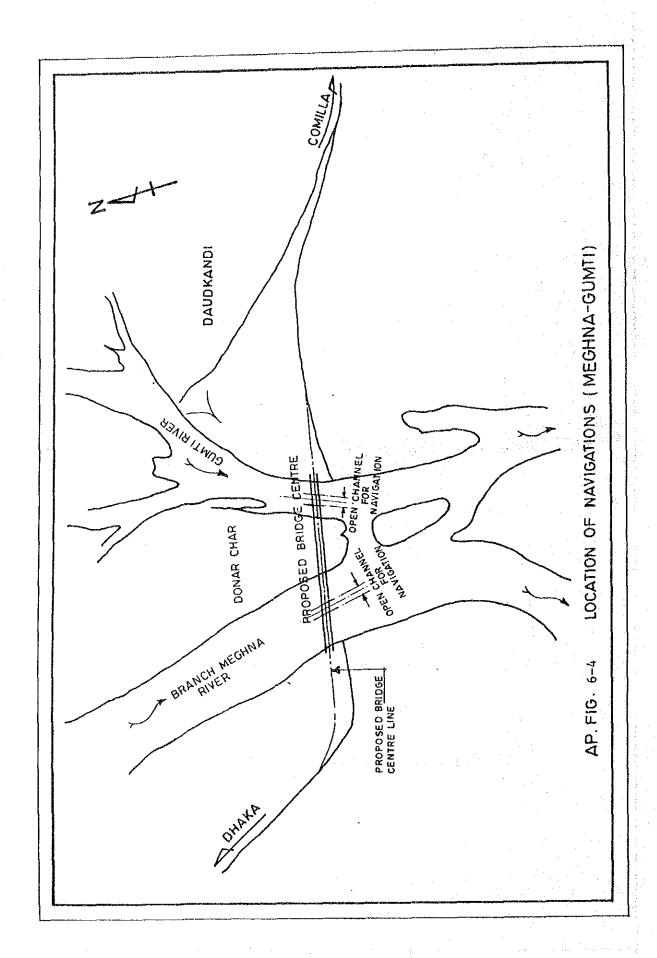

4. Basic Horizontal Seismic Coefficient at the Bridge Sites

4 g-

Considering the facts that the estimated ground accelerations caused by past earth-quakes shown in Ap. Table 6-2 are relatively low and the bridge sites are located in Zone II, the Study Team adopts the value of 0.05 as the basic horizontal seismic coefficient for designing the Meghna and Meghna-Gumti Bridges.

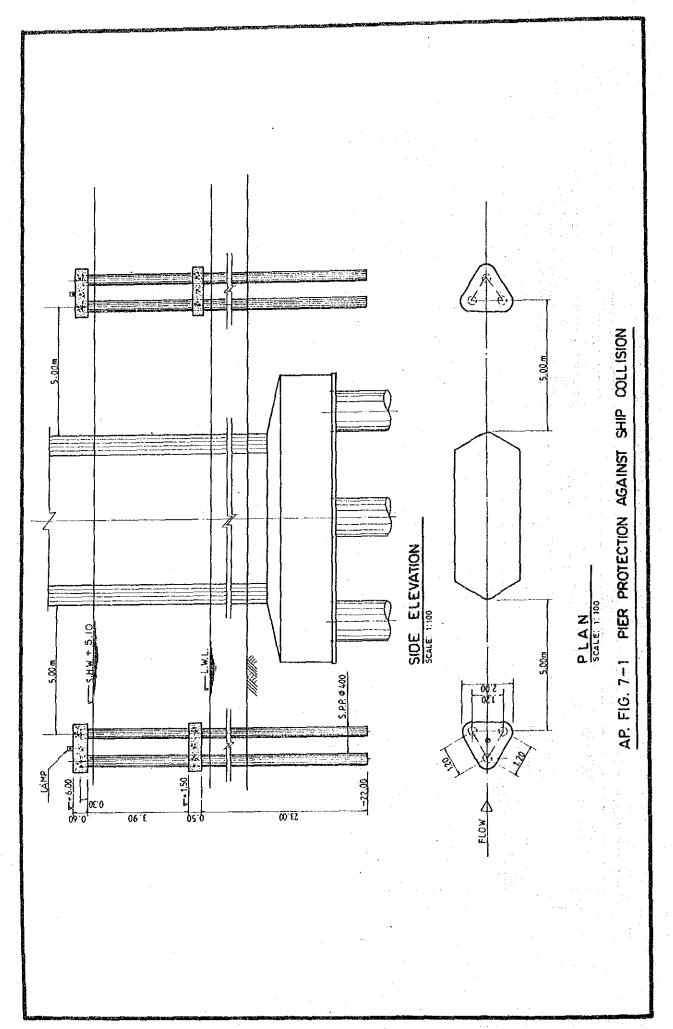
. . . .

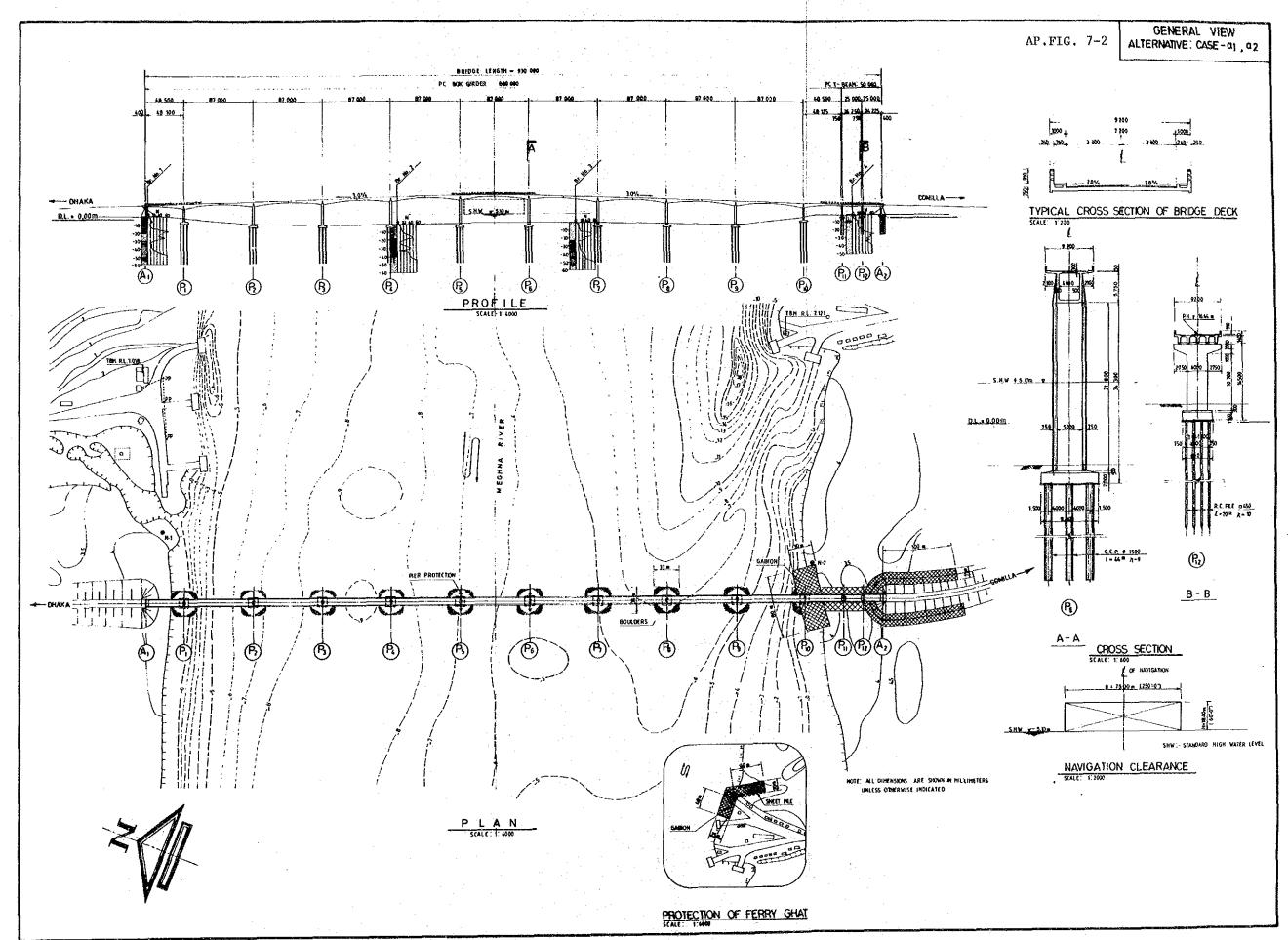


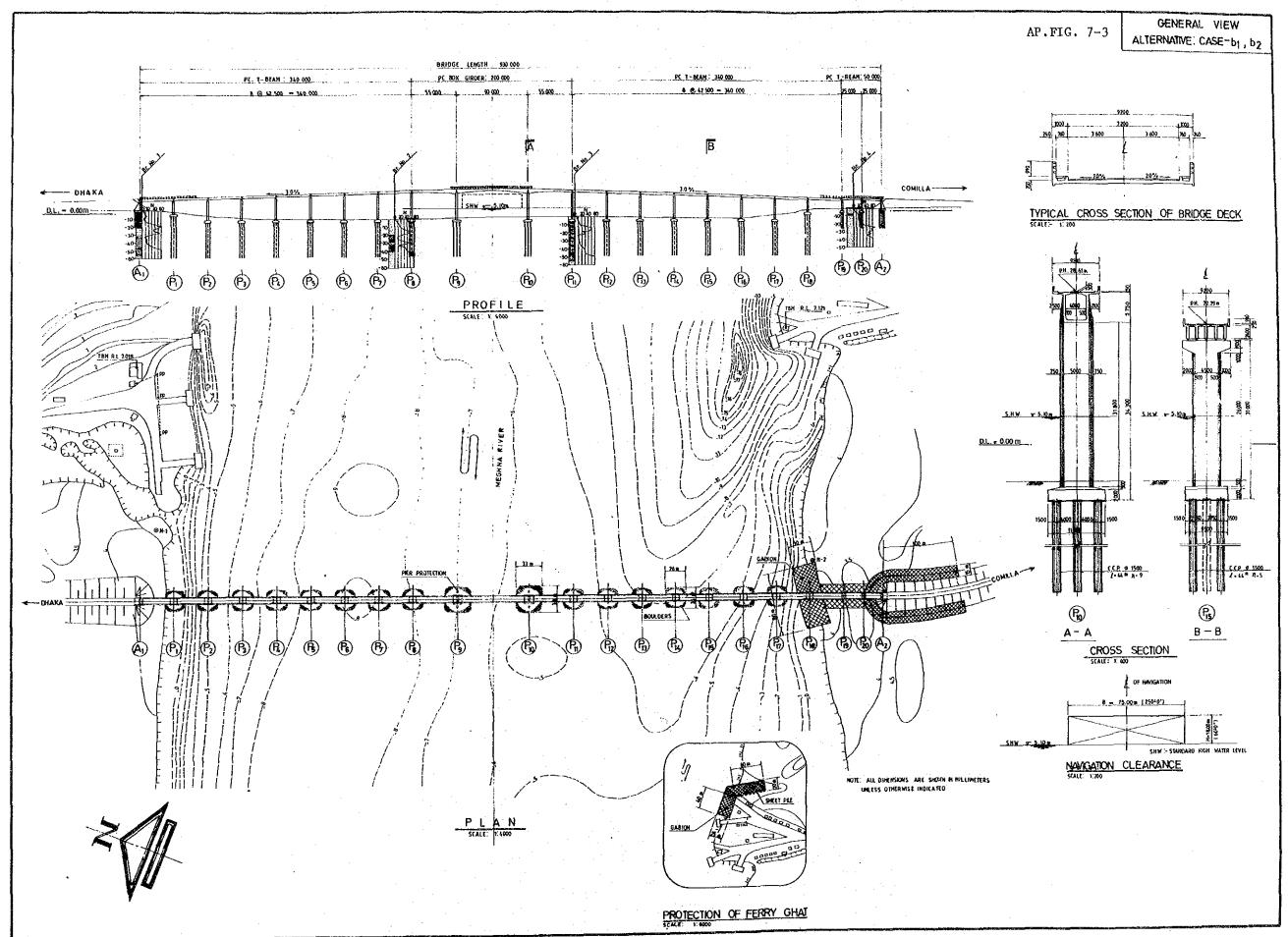


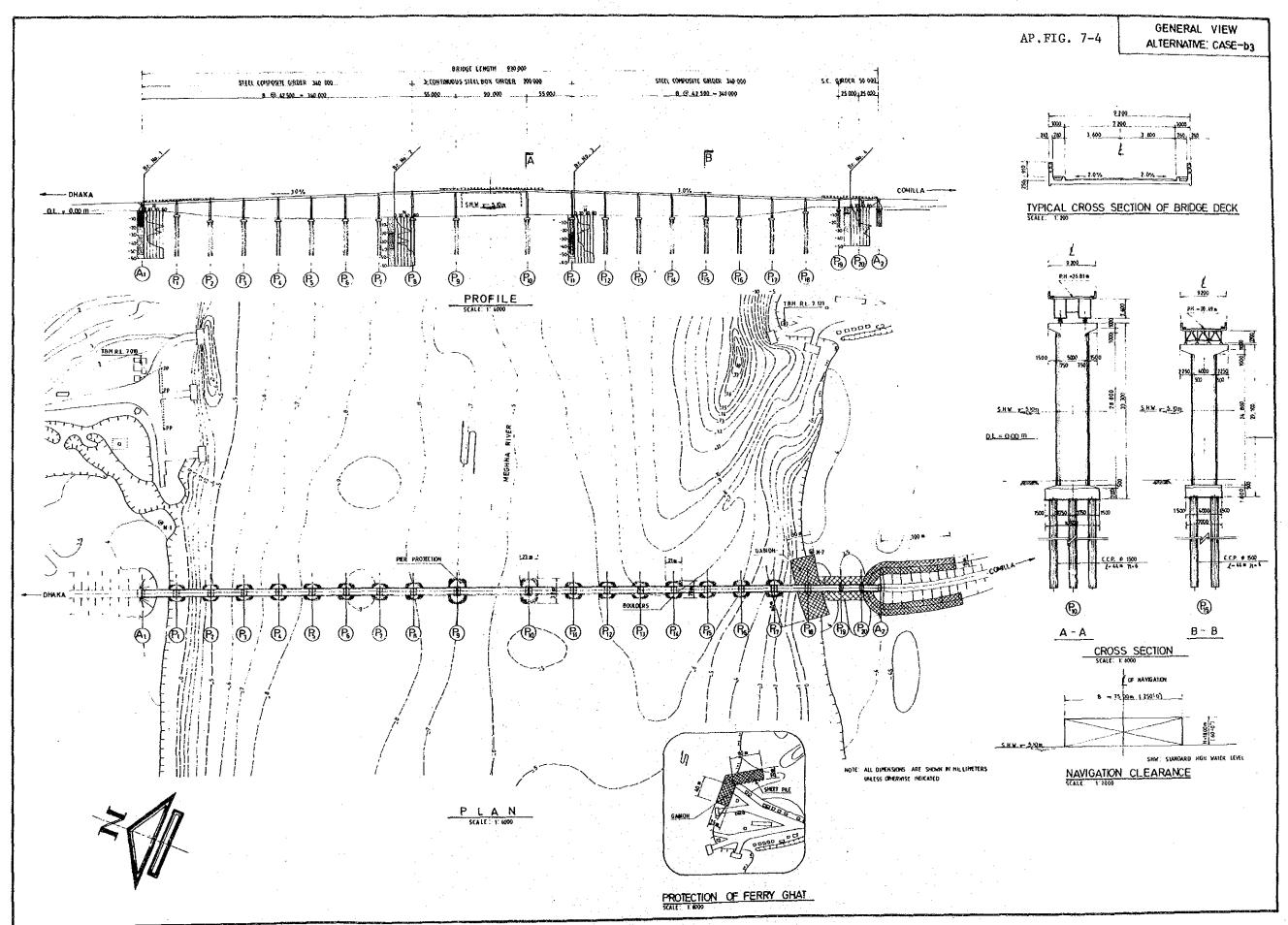
AP, FIG. 6-2 LOCATION OF EPICENTERS IN AND NEAR BANGLADESH (1833-1971)

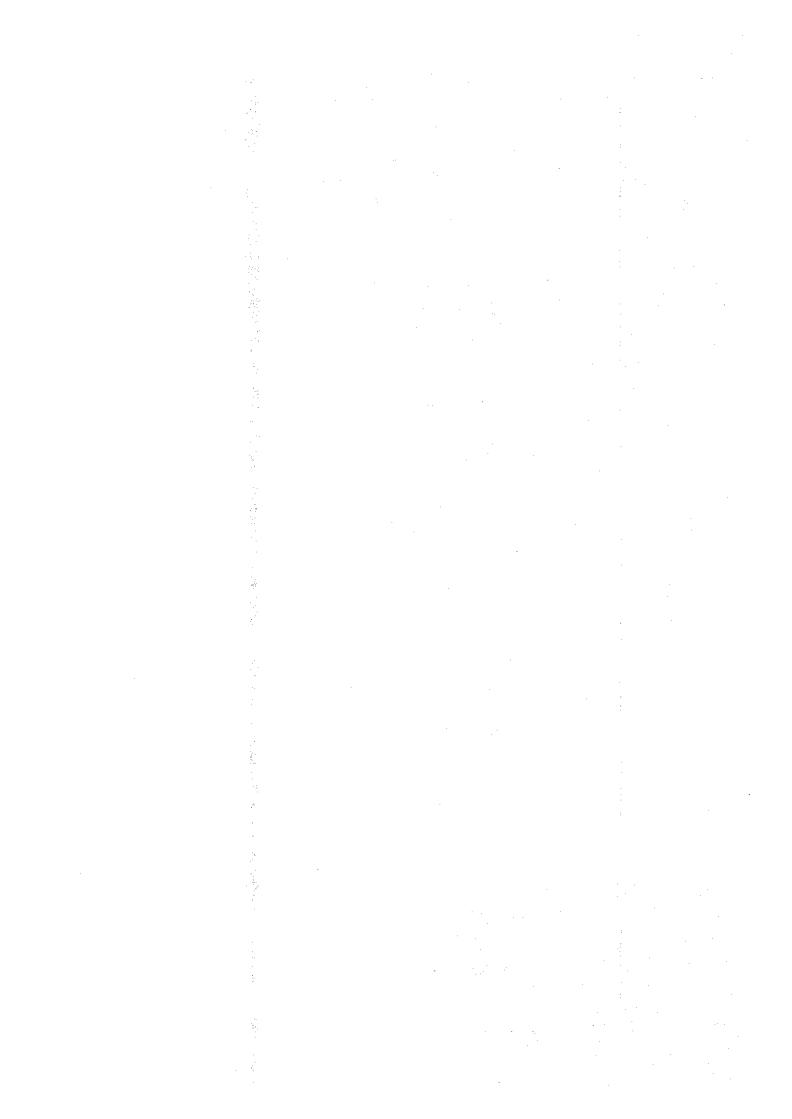
Ap. Table 6-2 Estimation of Ground Accelerations Caused by Past Earthquakes


· · · · · · · · · · · · · · · · · · ·	Date o	f Occur	rence	Epice	ntre	Magnitude	Epicentral Distance	Estimated Accelaration	Remarks
No.	Year	Month	Day	N(o)	E(0)	М	d (km)	(% g)	
1	1869	1	10	24.3	92.2	7.5	178	5.9	
2	1897	6	12			8.5	500	3.9	d:Approx.
3	1918	7	8	24.3	91.7	7.6	134	8.4	Estimation
4	1923	9	9	25 ¼	91	7.1	189	4.4	
5	1930	7	2	25.8	90.2	7.1	250	3.2	Six major
J	2,30	·							after shocks of M 5-6 took
									place
6	1932	3	6	25.5	92.5	5	284	0.8	
7	11	3	24	25.8	90.2	5-6	189	2.2	:
8	ti .	3 .	27	25.5	92.5	11	284	1.5	
9	F1	. 11	9	26.5	92.0	15	352	1.0	:
10	1933	3	6	25.7	90.5	5.8	236	1.6	
11	1936	6	18	26.6	90.3	5.6	336	1.2	
12	1944	12	24	24.7	92.2	6	201	2.1	
13	1945	5	19	25.1	90.9	6	171	2.5	
14	1946	3	16	26.4	92.6	6	368	1.1	
15	1949	12	10	26.0	89.0	6	316	1.3	
16	1950	12	24	24.4	91.7	6.3	142	3.6	
17	1951	4	7	25.8	90.4	6.8	247	2.7	
18	1956	. 6	12	24.8	90.9	6	139	3.1	
19	1958	2	9	24.9	90.9	5.0	150	1.6	
20	1960	8	21	26.4	88.6		376	0.8	•
21	1967	9	6	24.1	91.7	5.0	123	1.9	•
22	† I	11	14	24.0	91.5		101	2.4	
23	1968	6	12	26.0	91.1		273	1.1	
24	11	8	18	26.4	90.6		312	0.8	
25	II.	12	27	24.1	91.6		114	2.2	
26	1969	1	25	22.9	92.3		186	1.6	
27	11		1	25.8	91.8		273	0.8	
28	1970	7	25	25.7	88.5		321	0.7	
29	1971	2	2	23.8	91,8		121	1.9	


COMPARISON OF ALTERNATIVE ROUTES OF THE MEGHNA BRIDGE AP. TABLE 7-1


						-	, I
	INFLUENCE OF UP STREAM SANDRAR IN NEAR FUTURE	Affected	X Much affected	Less affected	© Free	© Free	
	SCOPE OF COUNTERMEASURE AGAINST LEFT BANK EROSION	Large scope required	X Large scope required	Small scope required	Required for adjacent eroded bank	O Not required	
	COMPENSATION FOR SHOPS TO BE REPLACED	Required	O Not required	Not required	Not required	O Not required	
	REPLACEMENT OF EXISTING FERRY	Required	Not required	O Not required	O Not required	O Not required	X: Bad
,	LAND REQUIRED FOR THE PROJECT	Required only for temporary take	33,000 SQ. M. be required	33,000 SQ. M. be required	36,000 SQ.M. be required	The largest; 42,000 Sq. M. be required	A: Poor
	COST OF APPROACH ROAD	O The rinimum cost	Large cost due to a canal bridge required on right approach	O Not so large	Not so large	Large cost due to the longest approach	Poog :O
	HORIZONTAL ALIGNEENT OF THE BRIDGES AND APPROACHES	Strafght ifine	Large curve in bridge stru- cture	Flat curve in bridge stru-	Straight line is possible in the bridge	Straight line is possible in the bridge	@: Excellent
	SUBJECTS STUDIED ALTERNATIVE ROUTES	X ROUTE A	X X ROUTE B	ROUTE C-1	O ROUTE C-2	O ROUTE C-3	Legend :




AP. NOTE 7-1 SPAN ARRANGEMENTS SELECTED

ernat	ives	·	o. of lers	
	Towards Dhaka	Towards Comilla		
A ·	40m + 55m + 7	@ 90m + 55m + 2 @ 40m	11	
В	40m + 2 @ 45m	+ 55m + 5 @ 90m + 55m + 2 @ 45m + 2 @ 40m	13	
C	40m + 4 @ 45m	+ 55m + 3 @ 90m + 55m + 4 @ 45m + 2 @ 40m	15	
D	40m + 6 @ 45m	+ 55m + 90m + 55m + 6 @ 45m + 2 @ 40m	17	
E	30m + 2 @ 40m	+ 6 @ 120m + 30m	9	
Alternative A: Alternative B, C, D:		Spans in the river have minimum length of 90 m and sidnear the banks have economical lengths.	le spans	
		To compare the total cost of superstructure and substructure three kinds of side span arrangement which are all modified from Alternative A were selected.		
Alt	ernative E:	To compare the cost between span lengths of 90 m and the latter of which is the maximum span length of road in Bangladesh this arrangement was selected.		

AP. TABLE 7-2 COST OF CASE-al PC BOX CAST-IN-SITU

		A			(1K)
	ITEM	UNIT	QUANTITY	UNIT PRICE	AMOUNT
Α.	Superstructure				
	PC box (C) concrete (P)	CM	7,070	4,860	34,360,200
	PC beam concrete (P)	CM	220	7,930	1,744,600
	Deformed bar	T	837	21,600	18,079,200
	PC cable stressing	T	429	70,440	30,218,760
	Railing	LM	1,860	1,290	2,399,400
	Footpath & kerb	LM	1,860	850	1,581,000
	Expansion joint	EACH	13	110,000	1,430,000
	Centre hinge	EACH	18	81,650	1,469,700
	Bearing shoe	EACH	24	40,750	978,000
	Indirect cost	LS	1		46,130,140
	Subtotal			· , 	138,391,000
в.	Substructure				
	RCD pile ø1.5 m	LM	4,070	14,110	57,427,700
**	Precast concrete pile	LM	2,560	1,980	5,068,800
:	Excavation in river	CM	10,170	7,100	72,207,000
	Seal concrete (X)	CM	1,350	1,810	2,443,500
	Footing concrete (A)	CM	3,010	2,330	7,013,300
11,	Pier concrete (A)	· CM	4,500	2,890	13,005,000
	TORSTEEL bar	T	692	22,190	15,355,480
	Indirect cost	LS	1		86,260,220
	Subtotal				258,781,000
	Total A. + B.				397,172,000

Source: The Study Team

Not

- (C): Cast-in-situ
- (S): Segmental
- (A): Class A concrete for box culvert, footing and piers
- (P): Class P concrete for prestressed T-beam girder and box section bridge
- (X): Class X concrete deposited in water and tremie concrete for cast-in-situ piles

AP.TABLE 7-3 COST OF CASE-a2 PC BOX SEGMENTAL

<u>****</u>	ITEM	UNIT	YTITMAUQ	UNIT PRICE	AMOUNT
Α.	Superstructure				
	PC box (S) concrete (P)	CM	7,070	10,630	75,154,100
	PC beam concrete (P)	CM	220	7,930	1,744,600
	Deformed bar	${f T}$	837	15,550	13,015,350
	PC cable stressing	${f T}$	429	70,420	30,210,180
	Railing	LM	1,860	1,290	2,399,400
	Footpath & kerb	LM	1,860	850	1,581,000
	Expansion joint	EACH	13	110,000	1,430,000
	Centre hinge	EACH	18	81,650	1,469,700
	Bearing shoe	EACH	24	40,750	978,000
	Indirect cost	LS	1,		63,991,670
	Subtotal				191,974,000
В.	Substructure			^	e de la companya de l
	RCD pile \$1.5 m	LM	4,070	14,110	57,427,700
	Precast concrete pile	LM	2,560	1,980	5,068,800
	Excavation in river	CM	10,170	7,100	72,207,000
	Seal concrete (X)	CM	1,350	1,810	2,443,500
	Footing concrete (A)	CM	3,010	2,330	7,013,300
	Pier concrete (A)	CM	4,500	2,890	13,005,000
	TORSTEEL bar	T	692	22,190	15,355,480
	Indirect cost	LS	1		86,260,220
	Subtotal			e e e	258,781,000
	Total A. + B.				450,755,000

Source: The Study Team

AP. TABLE 7-4 COST OF CASE-bl PC BOX (C) AND T-BEAM

	ITEM	UNIT	QUANTITY	UNIT PRICE	AMOUNT
A.	Superstructure				
	PC box (C) concrete (P)	CM	1,600	6,050	9,680,000
	PC beam concrete (P)	CM	4,180	7,930	33,147,400
	Deforced bar (Box)	T	185	21,600	3,996,000
	Deformed bar (Beam)	${f T}$	497	15,550	7,728,350
	PC cable stressing (Box)	${f T}$	98	70,440	6,903,120
	PC cable stressing (Beam)	${f T}$	139	56,100	7,797,900
	Railing	LM	1,860	1,290	2,399,400
	Footpath & kerb	LM	1,860	850	1,581,000
•	Expansion joint	EACH	21	110,000	2,310,000
	Centre hinge	EACH	2	81,650	163,300
	Bearing shoe (Box)	EACH	. 4	40,750	163,000
:.	Bearing shoe (Beam)	EACH	180	30,300	5,454,000
	Indirect cost	LS	1		40,661,530
	Subtota1			. · · · · · · · · · · · · · · · · · · ·	121,985,000
В.	Substructure				
	RCD pile \$1.5 m	LM	4,400	14,830	65,252,000
	Precast concrete pile	LM	2,610	1,980	5,167,800
	Excavation in river	CM	12,590	7,100	89,389,000
	Seal concrete (X)	CM	1,680	1,810	3,040,800
	Footing concrete (A)	CM	3,470	2,330	8,085,100
. :	Pier concrete (A)	CM	6,020	2,890	17,397,800
	TORSTEEL bar	T	940	22,190	20,858,600
	Indirect cost	LS	<u>,</u> 1	•	104,595,900
	Subtota1		`		313,787,000
	Total A. + B.			·	434,772,000

Source: The Study Team

AP. TABLE 7-5 COST OF CASE-b2 PC BOX (S) AND T-BEAM

(TK):

ecgeo.ec.eq	ITEM	UNIT	QUANTITY	UNIT PRICE	AMOUNT
Α.	Superstructure				
	PC box (S) concrete (P)	СМ	1,600	10,630	17,008,000
	PC beam concrete (P)	CM	4,180	7,930	33,147,400
	Deformed bar (Box)	T	185	15,550	2,876,750
	Deformed bar (Beam)	T	497	15,550	7,728,350
	PC cable stressing (Box)	${f T}$	98	70,420	6,901,160
	PC cable stressing (Beam)	${f T}$	139	56,100	7,797,900
	Railing	LM	1,860	1,290	2,399,400
	Footpath & kerb	LM	1,860	850	1,581,000
	Expansion joint	EACH	21	110,000	2,310,000
	Centre hinge	EACH	2	81,650	163,300
	Bearing shoe (Box)	EACH	4	40,750	163,000
	Bearing shoe (Beam)	EACH	180	30,300	5,454,000
	Indirect cost	LS	1		43,765,740
	Subtotal				131,296,000
В.	Substructure				
	RCD pile \$1.5 m	LM	4,400	14,830	65,252,000
	Precast concrete pile	LM	2,610	1,980	5,167,800
	Excavation in river	CM	12,590	7,100	89,389,000
	Seal concrete (X)	CM	1,680	1,810	3,040,800
	Footing concrete (A)	CM	3,470	2,330	8,085,100
	Pier concrete (A)	CM	6,020	2,890	17,397,800
	TORSTEEL bar	T	940	22,190	20,858,600
	Indirect cost	LS	1		104,595,900
	Subtotal			•	313,787,000
	Total A. + B.			e de la de	445,083,000

Source: The Study Team

AP. TABLE 7-6 COST OF CASE-b3 STEEL BOX AND GIRDER

	ITEM	UNIT	QUANTITY	UNIT PRICE	AMOUNT
Α.	Superstructure				· · · · · · · · · · · · · · · · · · ·
-	Steel box fabrication	Т	780	34,680	27,050,400
	Steel box transport	T	780	8,290	6,466,200
	Steel box erection	T	780	11,480	8,954,400
	Steel girder fabrication	${f T}$	1,445	28,260	40,835,700
	Steel girder transport	T	1,445	7,680	11,097,600
	Steel girder erection	T	1,445	5,040	7,282,800
	Slab concrete (B)	CM	2,180	3,070	6,692,600
	Deformed bar	T	485	27,980	13,570,300
	Railing	LM	1,860	1,290	2,399,400
•	Footpath & kerb	LM	1,860	850	1,581,000
	Expansion joint	EACH	20	110,000	2,200,000
	Bearing shoe	EACH	146	40,750	5,949,500
	Indirect cost	LS	1 .		60,335,100
	Subtotal	•			194,415,000
В.	Substructure		•		
	RCD pile \$1.5 m	LM	3,560	14,830	52,794,800
	Precast concrete pile	LM	2,240	1,980	4,435,200
	Excavation in river	CM	9,170	7,100	65,107,000
:	Seal concrete (X)	CM	1,230	1,810	2,226,300
$A_{i} = \mathcal{J}^{i}$	Footing concrete (A)	CM	2,270	2,330	5,289,100
	Pier concrete (A)	CM	5,150	2,890	14,883,500
1.	TORSTEEL bar	T	745	22,190	16,531,550
	Indirect cost	LS	1		80,633,550
	Subtotal	ž.			241,901,000
	Total A. + B.		÷		436,316,000

Source: The Study Team

Note (B): Class B concrete for slab of steel bridges of alternative plans

AP. TABLE 7-7 GUIDE TO THE SELECTION OF ABUTMENT TYPE

Туре	1	0 2	0	Remarks	
Gravity	4				
Semi-Gravity	6				
Invert-T	6	12			
Buttress					
Rigid Frame		15			
Вох		12	esi kum 440 CIP		

AP. NOTE 7-2 PAVEMENT DESIGN

1. Traffic Survey and Prediction

The traffic pedicted by the Study Team was used in the calculation. Average annual daily heavy vehicle traffic volumes in the design years 1990, 2000, 2010 and 2020 are as follows:

Year	1990	2000	2010	2020
Truck	1,410	2,360	3,470	5,150
Bus	780	1,180	1,700	2,390

The above volumes are for two lanes and half of the traffic is assumed to use either of the two.

2. Axle Load Equivalent and Yearly Equivalent Standard Axles

The axle load equivalents were surveyed in 1979 and 1981 as reported in the design report of Comilla and Chandina Bypasses (by Vallentine, Laurie and Davies). They are as follows:

Type of Heavy Vehicles	Monsoon Section	Dry Season
Truck	0.62	2.2
Bus	0.28	0.52

The estimated yearly equivalent standard axles (E.S.A.) is calculated as follows:

E.S.A at 1990

Truck: $150 \times 705 \times 2.2 + 215 \times 705 \times 0.62 = 327 \times 10^3$

Bus : $150 \times 390 \times 0.52 + 215 \times 390 \times 0.28 = 54 \times 10^3$

Subtotal : 381×10^3

E.S.A at 2000

Truck: $150 \times 1,180 \times 2.2 + 215 \times 1,180 \times 0.62 = 547 \times 10^3$

Bus : $150 \times 590 \times 0.52 + 215 \times 590 \times 0.28 = 82 \times 10^3$

Subtotal : 625×10^3

E.S.A at 2010

Truck : $150 \times 1,735 \times 2.2 + 215 \times 1,735 \times 0.62 = 804 \times 10^3$

Bus : $150 \times 850 \times 0.52 + 215 \times 850 \times 0.28 = 117 \times 10^3$

Subtotal: 921 x 10³

E.S.A at 2020

Truck : $150 \times 2,575 \times 2.2 + 215 \times 2,575 \times 0.62 = 1,193 \times 10^3$

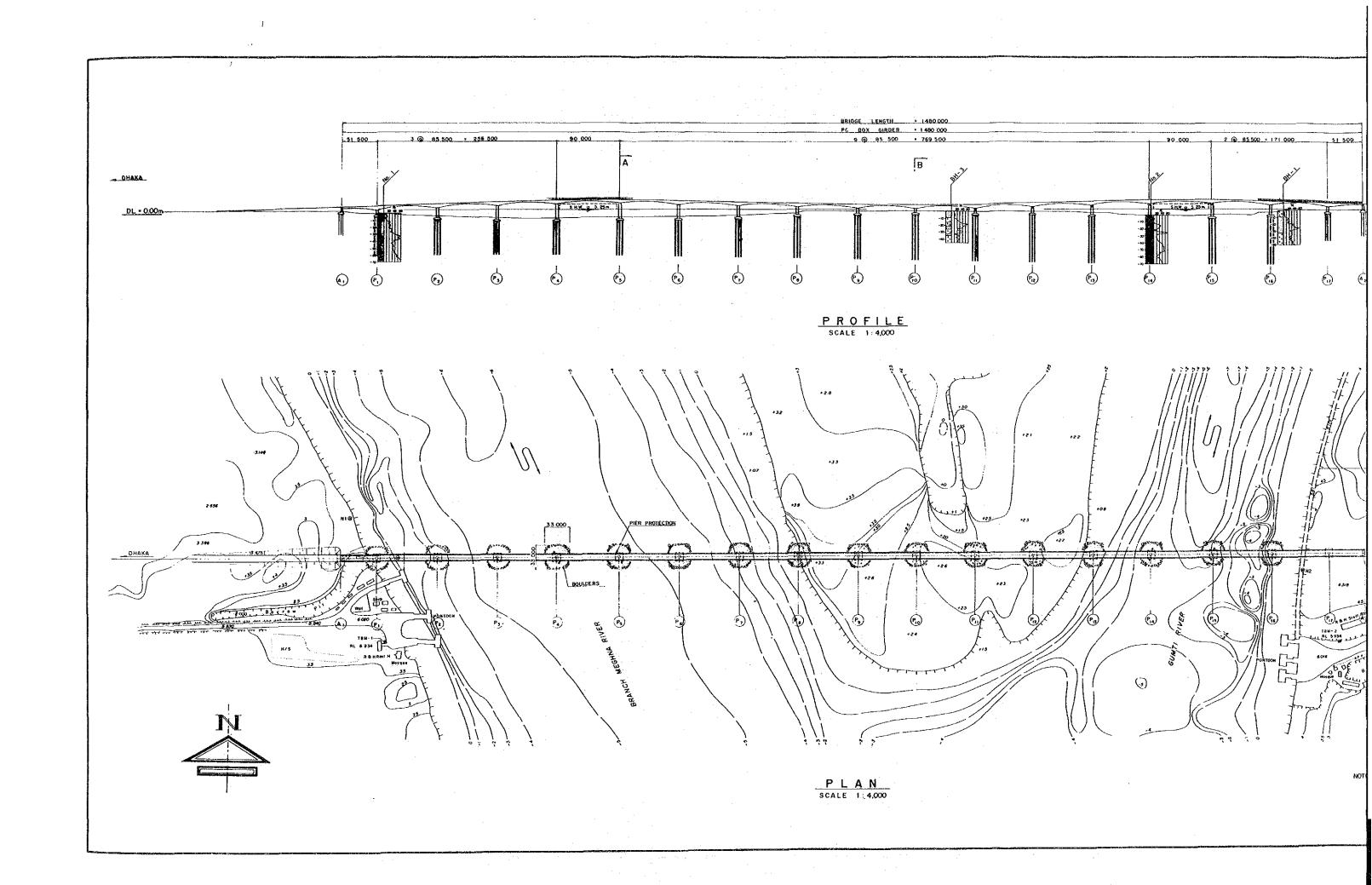
Bus : $150 \times 1{,}195 \times 0.52 + 215 \times 1{,}195 \times 0.28 = 165 \times 10^3$

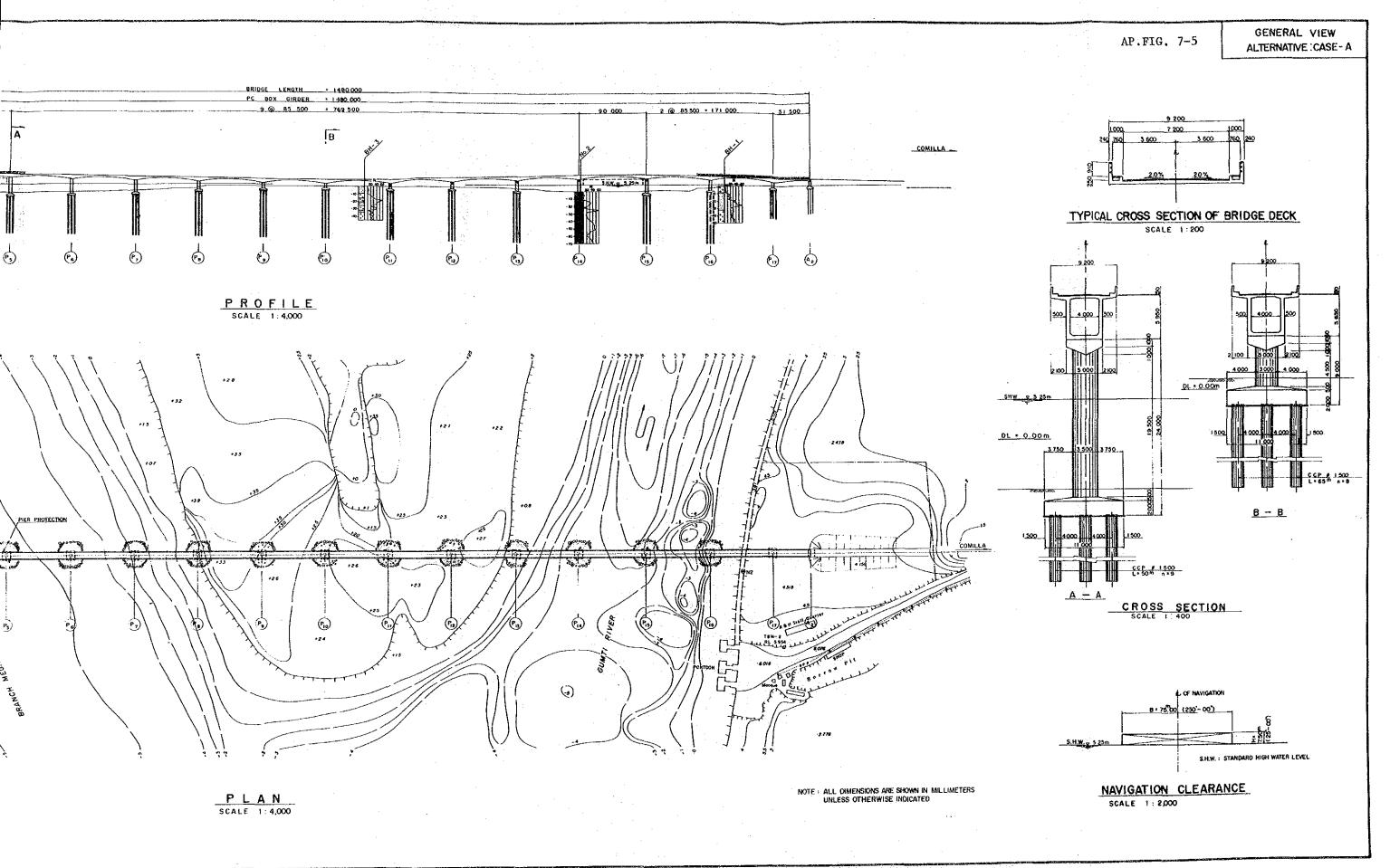
Subtotal : $1,358 \times 10^3$

Comulative Equivalent Standard Axles

Year E.S.A.

 $1990 - 2000 (381 + 629)/2 \times 10^3 \times 10 = 5,050 \times 10^3 = 5.0 \times 10^6$


 $2000 - 2010 (629 + 921)/2 \times 10^3 \times 10 = 7,750 \times 10^3 = 7.8 \times 10^6$


 $2010 - 2020 \quad (921 + 1,358)/2 \times 10^3 \times 10 = 11,395 \times 10^3 = 11.4 \times 10^6$

AP. TABLE. 7-8 ROUTE COMPARISON OF MEGHNA GUMTI BRIDGE

	BRIDGE UNDER CONSTRUCTION SING WITH SHIFT OF ROADS, RY LINE FERRY GHATS & SHOPE	0	Not required	Required only for o jetty in Dhaka side	Required for Roads a Ferry Jettles: 2 for Dhaka & 2 for Combid	Required for Roods a Ferry Jetties: 3 for Dhaka a 2 for Comilla	O Not required	
•	BRIDGE UNDER CROSSING WITH FERRY LINE	0	Not Cross	△ Cross	Cross	Crosss	O Not Cross	
	LAND ACQUISITION (sq.meters)		33,000	12,000	000° co	X 23,000	32,000	
	LENGTH OF NEW APPROACH ROADS (meters)	×	0	750	750 Profile of existing roads be changed to connect bridge profile	0 255	× 050	
	WIDTH OF RIVERS UNDER BRIDGE (meters)	4	1320	1290	1280	(S30	O 1270	
	CROSSING ANGLE WITH RIVERS FLOW		°0 8	63*	78.	6 0	(85° on Shortest tangent fine)	
	ROUTE ALIGNMENT	0	Bridge in a Straight line	Bridge in a Straight, line	Approach on Daudkondi Side in a curved line	Approach on both sides in a curved line	X Bridge in a targe curved tine	. C 2 ta C 9 *
	ROUTE	4	٩	m ()	٥	α ×	м	

LEGEND:

