IV-5-2 TABLE OF SOIL TEST

Table of Soil Test (Sheet 1 of 2)

		1			1	Borrow area No.	1		· · · · · · · · · · · · · · · · · · ·								*************************************	(1901 19.46 No. 10.000 No. 10.00	**************************************		Borro	ow area
Name o	of test pit	TP-101	'FP-101	TP-102	'FP-102	TP-102	TP-103	TP-103	TP-1	104	TP-	104	Avera	age T	P-201	TP	-201	TF	-201	TP-202	TP-202	TP-
Date of		Oct,26/70	Sept.30/70	Nov.7/70	_	Sept,30/70	Oct.28/70	Sept.30/70	Oct.26	5/70	Sept.:	30/70		No	v.9/70	Feb.	/71	Sept	.30/70	Sept.30/70	-	Oct.2
Depth o	of sampling (m)		3,00			3.00	-	3,00	_	-	3.0	00			3.00	3.	00	3	.00	3.00	3.00	3,0
Classif	fication U.S.C.E	no plastic	МН	MH	МН	MH	SMu	SM	MH		Mł	Н			MII	M	L	N	1L.	ML	MH	MI
	4.76mm> (%)	100	_	100	100	_	99.93	_	100		-		99.9	9 9	7.82	100			-		100	99.5
TO IS	2.0 mm > (%)	99.22	99.99	100	100	99.37 -	98.06	99.66	99.98	8	99.8	32	99,5	57 9	7,65	99.	11	99	.09	99,44	99.86	99.0
Gradation analysis	0,42mm > (%)	94.49	99.00	99.81	98.36	97.96	88.19	92.07	99,72	2	98.1	17	96.4	12 9	6.24	96.	53	96	.70	96.98	98.49	97.
Gra	0.149mm > (%)	89.02		97.65	97.90		76.51	-	97.94	4	-	_	91.8	30 9	2.46	91.	38				96.45	91.
	0.074mm > (%)	83.03	92,16	94.85	94,41	89, 17	57.26	79.00	94.26	6	91.5	52	86.1	18 8	5.71	86.	42	84	.25	88,53	94.56	87.
	LL (%)	_	61.0	61.0	67.00	60.0		-	67.0		61.0)	62.8	3 5	8,3	46.	30	40	.0	47.5	78.75	50.1
s s	PL (%)		45.4	47.5	60.83	41.0	_	_	52.6		45.9	9	48.8	37 3	9,9	39.	28	30	.0	37.4	64.50	37.
berg iits	I _p (%)		15.6	13.5	6.17	19.0	_	-	14.4		15.1	1	13,9	06 1	8.4	7.	02	10	.0	10.1	14.25	12.0
Atterberg's limits	IL		2.42	0.72	-2.08	0,74	-	-	0.97	7	1.4	12	0.7	70	0.16	1.	14	1	.08	0.35	-0.65	0.1
∀	Ic	_	-1.42	0.28	3,08	0.26			0.03	3	-0.4	12	0.3	10	0.84	-0,	14	-0	.08	0.65	1.65	0.
	G	2.69	2,69	2.60	2.71	2.72	2.36	. –	2.58	8	2.5	58	2.6	52	2.42	2.	53	2	.47	2.45	2.37	2.
ω nat	tural (%)	49.13	83.1	57.2	48.0	55.0	102.0	76.2	66,51	1	67.3	3	67.1	6 4	2.9	47.	3	40	.8	40.9	55.3	48.
e nat	tural			.,,,,	×-					·												1
Sr. na	tural (%)		-																			<u> </u>
d	Standard *1)	P H	P H	РИ	P H	РН	РН	P H	Р	Н	P	Н	P	H P	Н	P	Н	P	H	РН	P H	Р
ction	ω optimum (%)		- 42.0	- 45.0	43.5 41.5	- 38.0			- 4	46.3	_	41.9	43.5	42.4	38,1	33.0	32,0		26.9	- 30.3	39.0 44.0	_
Compac	γ d. max (g/cm ³)		- 1.20	- 1.19	1,18 1,20	- 1.25		- -	-	1.14	-	1,22	1.18	1.20 -	1.30	1.30	1.31		1.42	- 1.33	1.22 1.25	
ပိ	€ optimum	- -	- 1.24	- I.18	1,30 1,26	- 1,18				1.26		1,11	1.22	1,18 -	0.86	0.95	0.93	-	0.74	- 0.84	0.94 0.90	- 1
	Sr. optimum (%)		- 91,1	- 99,1	90,7 89.3	- 87.6			- 9	94.8	-	97.4	93.4	94.1 -	95	87.9	87.1		89.8	- 88,4	98.3 95	
	inicial	1.51		1.55	1.39	-	2,91		1.40				1.75	, 1	.00	0.9	0		·	-	1.05	1.0
ion	final	1,30		1.36	1,25		2,18		1,24		_		1,47	0	.88	0.8	0			-	0.98	0.8
solidation test	Av	0.037		0.025	0.028		0.150		0.025	5	-		0.05	53 0	.012	0.0	1				0.023	0.0
	C_{v}	0.0096	-	0.0341	0,0119		0.0103		0.005		-		0.01	43 0	.0132	0.0	08				0,0129	0.0
Con	Mu	0.015	-	0.0098	0.012		0.038		0.010	1			0.01		.006	0.0					0.01122	0.0
	к	1.42x10 ⁻⁴		3.3×10^{-4}	1.4x t0 ⁻⁷		4x 10 ⁻⁴	-	4.7x10)-5			1.8x1	0-4 7.9	x 10 ⁻⁵	4.2x	10-8		·		1.4×10 ⁻⁷	6.6x
Strengt	ined compression th ⁸ u (kg/cm ²)	-	2,06	1.40	1.52	3.25	-		2.26		2.22	?	2.12	2	.40	2.0	2	2.9	92	4.5	1,87	
al ss-	C (kg/cm ²)			0.10	0.25				0.75		-		0,37	0	.5	1.0					1,5	
naxi npre	C (kg/cm ²)		-	40	55			_	22				39	51		49				-	33	_
Tr	tan ø	-	-	0.839	1.43			-	0.404	4	_		0.81	.0 1	.23	1.1	5			-~	0.649	_
1 88 53	C (kg/cm ²)	0.1	_	0.00	0,20		0.18	-	0.12				0.12	0	,08	0.2	2			-	0.19	-
Direct shear test	ø (°)	40		40	36	_	30	_	32		_		36	34		43		<u> </u>			39	
She. She.	tan ø	0.839		0.839	0.726	-	0,577	-	0.625	5			0,72	6 0	.674	0.9	32			~-	0.810	
			TOR Standard				· · · · · · · · · · · · · · · · · · ·													rene a de des de 1870 de la composición de 1870 de 187		THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER.

Note: 1) P --- PROCTOR Standard, H --- HARVARD Standard
2) This soil test was conducted by Universidad Del Cauca responding to the request of CEDELCA.

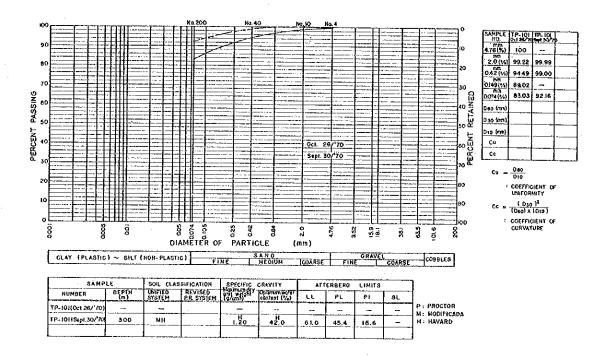
Table of Soil Test (Sheet 1 of 2)

area No.	1																		Born	ow are	ea No. 2									**************************************		TP10)1 P204
·-102	TP	-103	T	P-103	T	P-104	TI	P-104	Aver	age	TP-201		TP-201		TP-201	TH	-202	ТР	-202	Т	P-202	TP-	203	ТР	-203	Т	P-204	Т	P-204	Aver	age	Aveı	rage
t.30/70	Oct.	28/70	Sep	t.30/70	Oct	.26/70	Sep	t.30/70			Nov.9/70	I	eb. /71	S	ept.30/70	Sept	t.30/70		_	Oct	t.27/70	Nov.4	/70	Sept	.30/70	Sep	ot.30/70	Oct	.31/70		-	***	-
.00		-	3	3.00			3	,00	<u> </u>		3.00		3.00		3.00	. 3	.00	3.	00		3,00	3.0	0	3.	.00		3.00	:	3.00		-	Ī -	
411	S	Mu	S	SM	N	мH	Ν	ИΗ			MH		ML		ML	N	ИĽ	M	H	1	МН	SM	u	. S	M	1 8	SM		SMu	1 -	-	-	_
	99	.93		_	100)		-	99.	99	97.82		100				-	100		99	9,92	99,8	8					100)	99.	60	99,	.78
37 ·	98	.06	99). 66	99	9.98	99	.82	99.	57	97.65		99,11		99.09	99	.44	99.	86	99	9.62	97.2	0	99	.96	98	8.66	95	9.98	99.	06	99.	.30
.96	88.	.19	92	2.07	99	9.72	98	1.17	96.	12	96.24		96.53		96.70	96	.98	98.	49	91	7.25	76.2	0	98	.67	90	0.98	75	9.37	92,	74	94.	.48
-	76.	.51		-	97	7.94		-	91,	30	92.46		91,38		-			96.	45	9	1,97	50.2	3		_			59	9.25	80,	29	85.	52
17	57.	.26	79	00.00	94	1.26	91	52	86.	18	85.71		86.42		84.25	88	.53	94.	56	8	7.79	34.6	5	90	.47	67	7.84	51	1.54	77.	18	81.	,44
0		-			67	7.0	61	.0	62.	33	58.3		46.30		40.0	47	.5	78.	75	50	0.0		-						•••	53.	48	58.	.15
0					52	2.6	45	.9	48.	37	39.9		39.28		30.0	37	.4	64.	50	37	7.4	-	_				_		_	41.	41	45.	.14
.0		_		-	14	1.4	15	. 1	13.	96	18.4		7.02		10.0	10	. 1	14,:	25	12	2.6		-						_	12.	07	13.	,01
.74		_	<u> </u>	-	. 0).97	1	.42	0.	70	0.16		1.14		1.08	0	.35	-0.		. (0.87	_	-		_		-		<i>'</i> –	0.	49	0.	.60
.26		_			C	0.03	-0	.42	0.3	30	0.84		-0.14		-0.08	0	.65	1.		(0.13		-		_					0.	51	0.	.40
72	2,	.36			2	2.58	2	58،	2.	52	2.42		2.53		2.47	2	.45	2.	37	2	2.53	2.4	6	Ż	.66	2	2.58	2	2,59	2.	52	2.	.56
0	102.	.0	76	5.2	66	5.51	67	.3	67.	16	42.9		47.3		40.8	40	.9	55.	3	48	8.3	87.8		58.	.4	107	7.2	178	3.0	70.	69	69.	.02
					ļ							_		_														ļ					
H	P	H	P	11	P	H	P	Н	Р	H	P H	P	Н	P	Н	P	Н	P	П	P	Н Н	P	Н	P	Н.	P	Н	P	Н	P	Н	P	Н
38.0	-		_	-	 -	46.3	-	41.9	43.5	42.4	- 38.1	33	.0 32.0	† -	26.9	-	30.3	39.0	44.0		-		<u> </u>				1		 	36.0	34.3	38.5	38,7
1,25	-				_	1.14		1,22	1,18	1,20	- 1.3	0 1	.30 1.3	1 -	1.42		1.33	1,22	1,25	 -	<u> </u>	-		-		_				1,26	1,32	1.23	1.26
1,18		_		→ ·	<u> </u>	1.26		1,11	1,22	1.18	- 0.8	6 0	.95 0.9	3 -	0.74	-	0.84	0.94	0.90	-	 			_		<u> </u>		-	 -	1.00	0.91	1.08	1.03
87.6			_	_	-	94.8		97.4	93,4	94.1	- 95	87	.9 87.1	_	89.8		88.4	98.3	95					_			 	-	 	90,7	95.0	91.3	96.2
	2.9	1	_	•	1.4	40			1.7		1.00		0.90				- J	1.0	5	1.	.01	2.34			<u></u>	-	! -	5.	19	1,9	2	1.8	<u>۔</u> ب4
	2.1	8		-	1,3	24	_		1.4	,	0.88		0.80		-	_		0.9	8	0.	.83	1.97				-		4.	56	1.6	7	1.5	8
	0.1	50		-	0.0	025			0.03	3	0.012		0.01			_	•	0.0	23	0.	.02	0.04	4				-	0.	055	0.0	27	0.0	139
	0,0	103	_	-	0.0	0056	-		0.0	.43	0.0132		0.008		_	_	-	0:0	129	0.	.0066	0.01	31	_		-		0.	0049	0.0	098	0.0)118
	0.0	38			0.0	0104	-		0.0	70	0.006		0.0053			<u>-</u>	-	0,0	1122	0.	.011	0.01	32	_		<u> </u>	_	0,	0089	0.0	093	0,0)128
	4x10	-4	_		4.7x	(10 ⁻⁵	_		1.8x1	0-4	7.9x10 ⁻⁵	4	.2x10 ⁻⁸		-	_	-	1.4x	10-7	6.6	x 10 ⁻⁵	1,7x1	j-4	_		-		4.4	x10 ⁻⁵	0.6x1	10-4	1,2x	10-4
5	_				2.3	26	2.2	22	2.13	-	2.40		2.02		2.92	4.5	5	1,8	7		_					-		-	_	2.7	4	2.4	10
			-		0.7	75	_		0.37		0.5		1.0		-			1.5		<u> </u>						-	÷	-	_	1.0	··	0.6	.8
					22				39		51	4	19		-	_		33		1		_				-	_	-	-	44		42	
					0.4	104			0.8	0	1.23		1.15		_	_		0.6	49	ļ	_					-		-		0.9	66	0.9	900
	0,1	8	-		0.1	12			0.12		0.08		0,22	1		-	· · · · · · · · · · · · · · · · · · ·	0.19	9	1 -		0.0		-		1	-	0.	.50	0.2	0	0.1	6
	30				32				36	1	34	4	13		- .	_		39		-	_	40				-	_	23		36		36	
	0.5	77			0.6	525	-		0.72	6	0.674		0.932		_			0.8	10	1 -	_	0.83	9			-		0.	424	0.7	26	0.7	/26

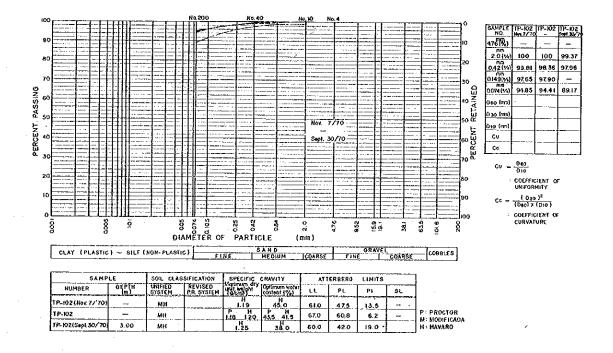
the request of CEDELCA.

Table of Soil Test (Sheet 2 of 2)

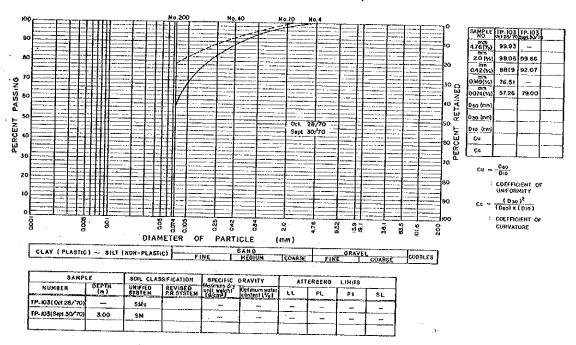
			Headrace t	tunnel	·	Dam site No. 2	В	orrow area No	o. 1		Borrow area N	lo. 2	Dike No. 1	Dike sites	Dike No. 2		DH2 D,DH2
Nam	e of drill hole	DH-2	DH-2,	DH-2	DH-2	DH-203	DH-6	DH-6	DH-6	DH-7	DH-7	DH-7	D.DH-1	D.DH-2	D.DH-2	D.DH-2	Average
Date	of test	Nov. 25/70	Nov. 25/70	Nov. 25/70	Nov. 25/70	Nov. 25/70	Oct. /70	Oct, /70	Oct. /70	_	-	-	May 5/71	May 5/71	May 5/71	May 5/71	_
Dept	h of sampling (m)	5,00 to 6,00	10,00 to 11,00	15.00 to 16.00	20,00 to 21.00	6.00 to 7.00	6.00 to 7.00	10,00 to 11,00	15.00 to 16.00	5.00 to 6.00	10.00 to 11.00	16,00 to 17,00	20.00	5.00	10.00	20,00	
Class	sification U.S.C.E	МН	МН	ML	_	_	МН	МН	ML	МН	ML	-	ML and	ML	ML	ML	-
	4.76 mm>(%)	_		100	99.88	97.31		-		+	99,94	99.63	64.75	100	100	99.97	95.72
tion sis	2.0 mm > (%)	99.92	99.97	99.98	99.86	95.11	99.90		99.86	99.95	99.87	99.17	55.61	99.72	99.55	98.46	96.21
Gradation analysis	70.42 mm >(%)	99.15	99.40	96.31	94.34	81.39	99.34	99.13	98.40	99.17	99.24	97.07	45.83	98.73	98,13	87.01	92,84
Q @	0.149 mm>(%)	93.97	96.20	86.00	80.08	68.58	96.82	94.33	92.68	94.84	93.30	85.87	35.74	93.17	92.75	73,92	85.22
·	0.074 mm>(%)	89,00	94.25	82,80	74,37	65.86	92.42	90.12	88.15	89.81	86.92	74.24	34.98	81.61	84.86	63.44	79,52
	LL (%)	56.0	67.0	35.0	32.8		66.5	56.5	42.5	62.0	47.5		38.50	63.00	58.00	58.00	52.56
	PL (%)	40.3	52,6	26.9	28,8	-	51.6	44.3	32.8	44.4	31.5	-	37.97	56.28	50.61	50,26	42.18
oerg'e	Ip (%)	15.7	14.4	8.1	4.0		14.9	12.2	9.7	17.6	16.0	-	0.53	6.72	7,39	7.74	10.38
Atterberg's limits	I _L ,	1.55	1.68	1,25	2.33	-	1.68	1,16	1.01	0.80	0.98	'	17,88	1,98	0.85	3.38	1,26
	Ic	-0.55	-0.68	-0.25	-1,33		-0.68	-0.16	-0.01	0.20	0.02		-16.88	-0.98	0.15	-2.38	-0.26
	G	2.58	2.43	2.49	2.5	2.60	<u>-</u>	-	-		→		2.59	2.62	2.74	2.66	2.58
ω nai	tural (%)	64.7	76.8	37.0	38,1	37.4	76.7	58,5	42.6	58.4	47.1	42.3	47.45	69.60	56.9	76.39	55.33
γ nat	tural (g/cm³)	1,72	1.65	1.89	1,85					_			_			-	1.78
€ nat	tura1	1.47	1.60	0.80	0.87		-			·	-				<u> </u>		1,25
Sr. na	tural (%)	95<	95<	95<	95<		-	_	, p		-	-	_	_	_	-	95 <
	fined compression the \mathcal{F}_u (kg/cm ²)	1.42	0.71	-	. =		1.63	1.34	4.04	1.17	0.70	0.87	0.72	1.93	2.7	0.49	1.48

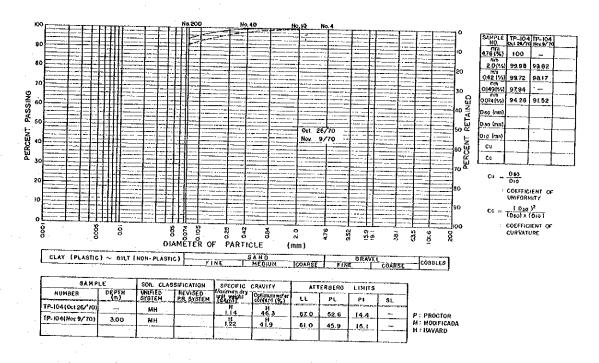

Note 1) This soil test was conducted by Universidard Del Cauca responding to the request of CEDELCA,

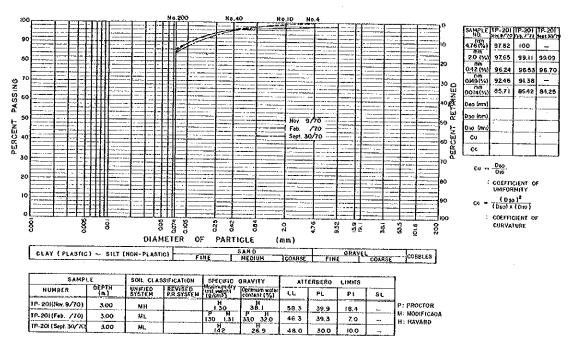
IV-5-3 GRADATION ANALYSIS

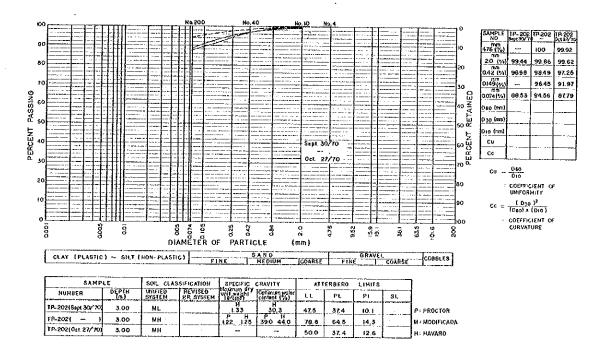

Site	Location Drill Hole of Test Pit	Depth (m)	Date of Testing	Classification of Soil*	Page	Remark
	TP-101		Oct. 26, '70	non-plastic		
	TP-101	3.0	Sep. 30, 170	МН		
Borrow	TP-102		Nov. 7, '70	MH		
	TP-102			MH		Test Pit
Area No. 1	TP-102	3.0	Sep. 30, '70	SMu		
	TP-103		Oct. 28, '70	SM		
	TP-103	3.0	Sep. 30, '70	MH		
	TP-104		Oct, 26, '70	MH		
	TP-104	3.0	Sep. 30, '70	MH		
	TP-201	3.0	Nov. 9, '70	МН		
	TP-201	3.0	Feb. '71	ML		
Borrow	TP-201	3.0	Sep. 30, '70	ML		
	TP-202	3.0	Sep. 30, 170	ML		
Area No. 2	TP-202	3.0		МН		Test Pit
•	TP-202	3.0	Oct. 27, '70	МН		1031 111
	TP-203	3.0	Nov. 4, 170	SMu		
	TP-203	3.0	Sep. 30, 170	SM		
	TP-204	3.0	Sep. 30, '70	SM		
•	TP-204	3.0	Oct. 31, '80	SMu		
fria a	DH-2	5.0 to 6.0	Nov. 25, '70	MH		
Headrace	DH-2	10.0 to 11.0	Nov. 25, '70	MH		Drill Hole
Tunnel	DH-2	15,0 to 16,0	Nov. 25, '70	ML		Dim note
	DH-2	20.0 to 21.0	Nov. 25, '70			
Julumito Dam Site	DH-203	6.0 to 7.0	Nov. 25, '70			Drill Hole
Borrow	DH-6	6.0 to 7.0	Oct. '70	MH		
Area No. 1	DH-6	10.0 to 11.0	Oct. '70	MH		Drill Hole
Alea No. 1	DH-6	15.0 to 16.0	Oct. '70	ML	•	
D	DH-7	5.0 to 6.0	1 -	ML		
Borrow	DH-7	10.0 to 11.0	_	ML		Drill Hole
Area No. 2	DH-7	16.0 to 17.0	_			Em note
Dike No. 1	DDH-1	20,0	May 5, '71	ML with gravel		Drill Hole
	DDH-2	5,0	May 5, '71	ML		<u> </u>
Dike No. 2	DDH-2	10.0	May 5, '71	ML		Drill Hole

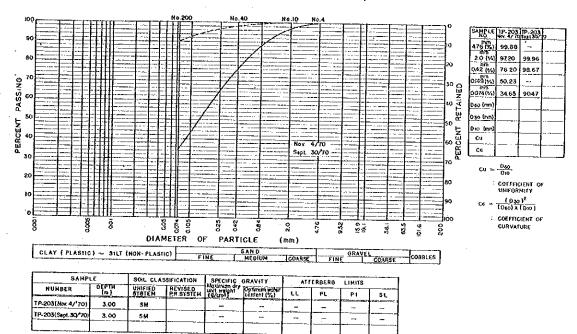
^{*}Classification and group smbols are originated by ASCE.

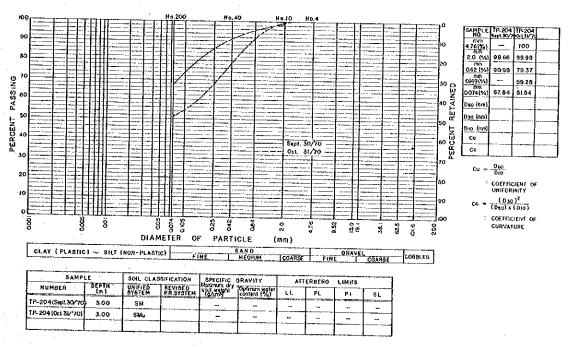

Gradation Analysis Curve TP-101 (Sheet 1 of 23)

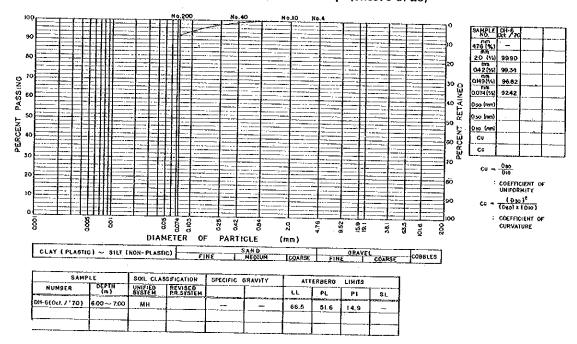

Gradation Analysis Curve TP-102 (Sheet 2 of 23)

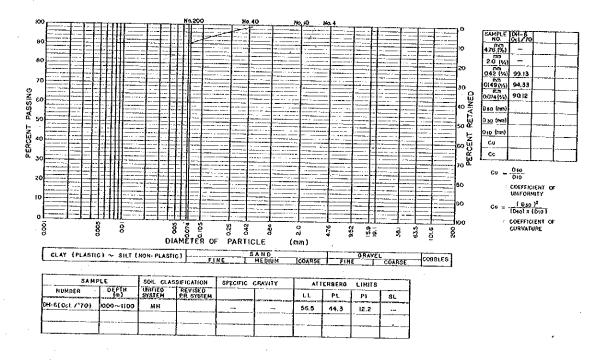

Gradation Analysis Curve TP-103 (Sheet 3 of 23)

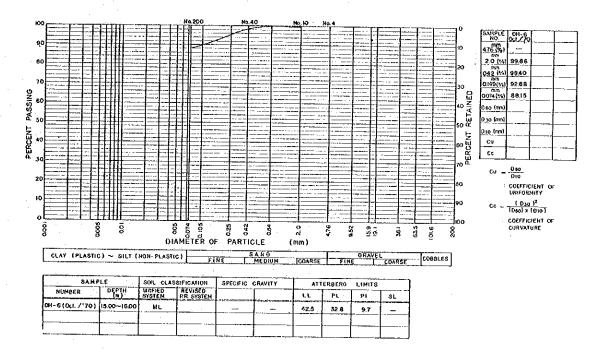

Gradation Analysis Curve TP-104 (Sheet 4 of 23)

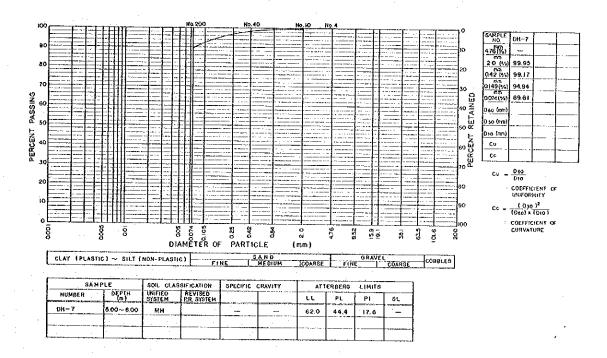

Gradation Analysis Curve TP201 (Sheet 5 of 23)

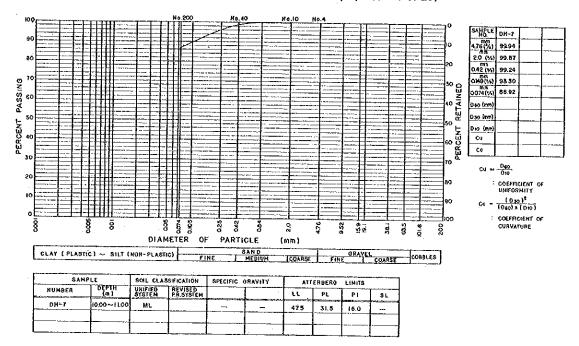

Gradation Analysis Curve TP202 (Sheet 6 of 23)

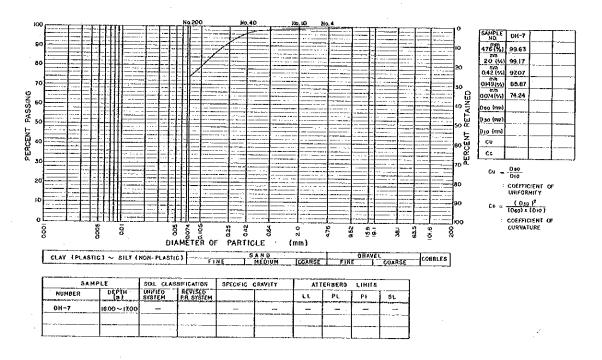

Gradation Analysis Curve TP203 (Sheet 7 of 23)

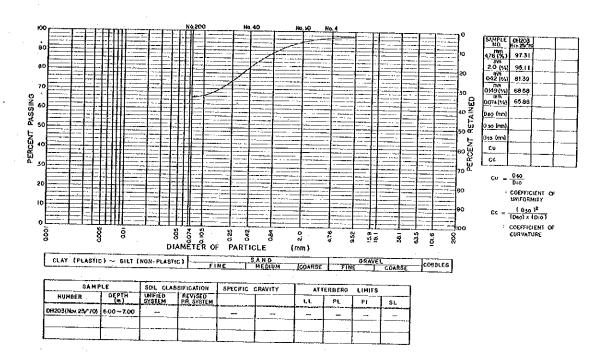

Gradation Analysis Curve TP204 (Sheet 8 of 23)

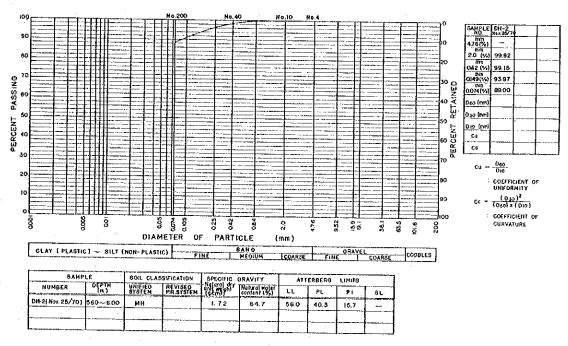

Gradation Analysis Curve DH-6, 6 to 7m deep (Sheet 9 of 23)

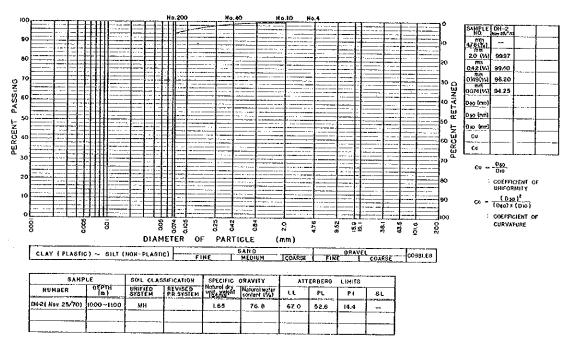

Gradation Analysis Curve DH-6, 10 to 11m deep (Sheet 10 of 23)

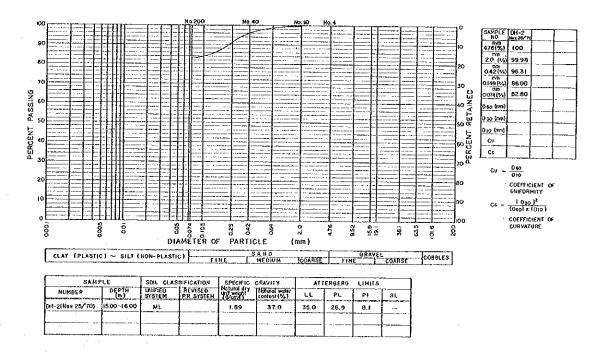

Gradation Analysis Curve DH-6, 15 to 16m deep (Sheet 11 of 23)

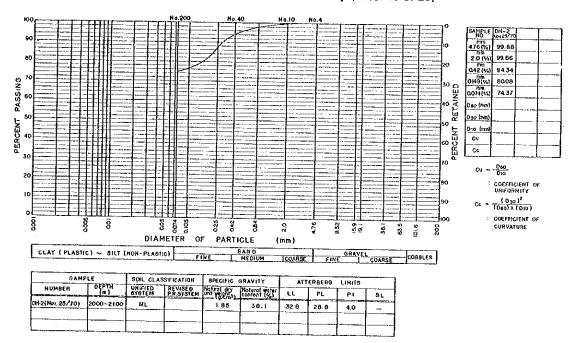

Gradation Analysis Curve DH-7, 5 to 6m deep (Sheet 12 of 23)

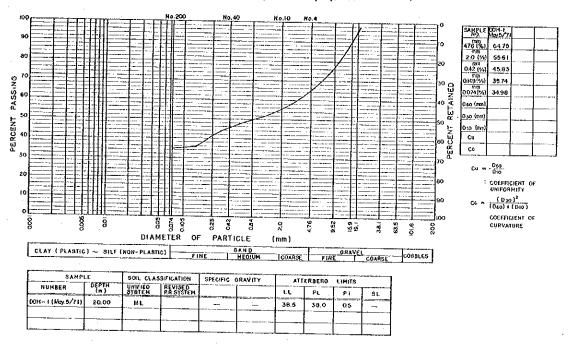

Gradation Analysis Curve DH-7, 10 to 11m deep (Sheet 13 of 23)

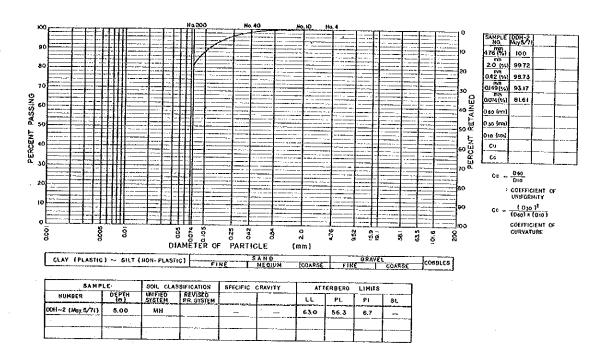

Gradation Analysis Curve DH-7, 16 to 17m deep (Sheet 14 of 23)

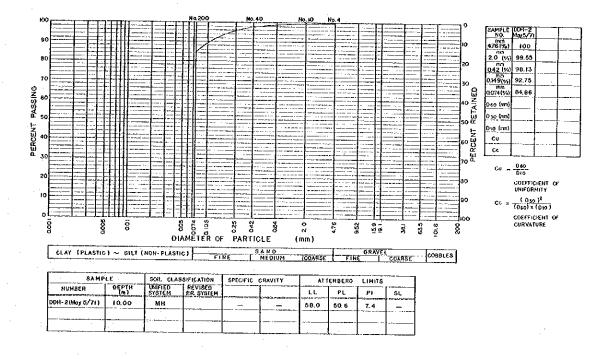

Gradation Analysis Curve DH-203 6 to 7m deep (Sheet 15 of 23)

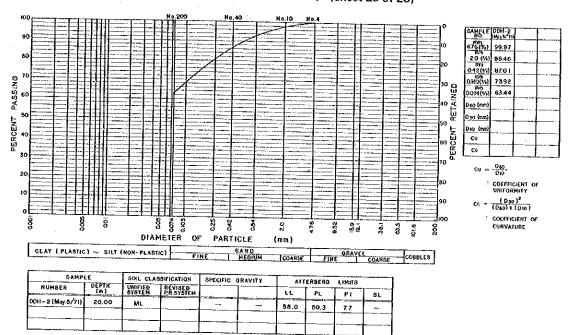

Gradation Analysis Curve DH-2 5.6 to 6.0m deep (Sheet 16 of 23)


Gradation Analysis Curve DH-2 10 to 11m deep (Sheet 17 of 23)


Gradation Analysis Curve DH-2 15 to 16m deep (Sheet 18 of 23)

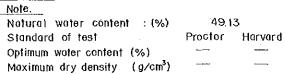

Gradation Analysis Curve DH-2 20 to 21m deep (Sheet 19 of 23)

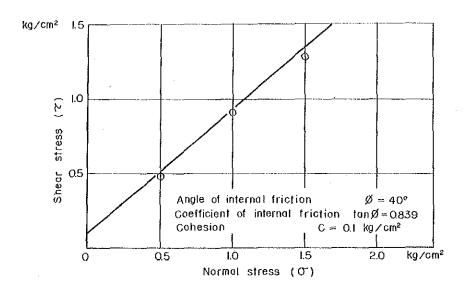

Gradation Analysis Curve DDH-1, 20m deep (Sheet 20 to 23)


Gradation Analysis Curve DDH-2, 5m deep (Sheet 21 of 23)

Gradation Analysis Curve DDH-2, 10m deep (Sheet 22 of 23)

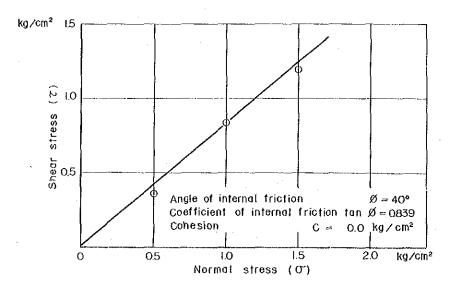
Gradation Analysis Curve DDH-2, 20m deep (Sheet 23 of 23)



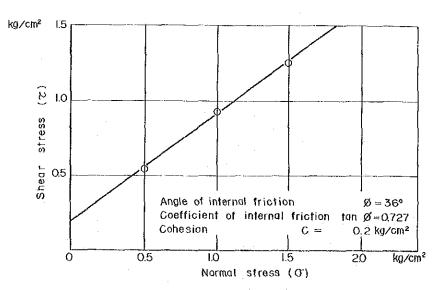

IV-5-4 DIRECT SHEARING TEST

Direct Shearing Test (Sheet 1 of 3)

Locality of sample : TP-IOI Depth; _ m Date. Oct. 26,'70 Type of test, C.R. (Qc)

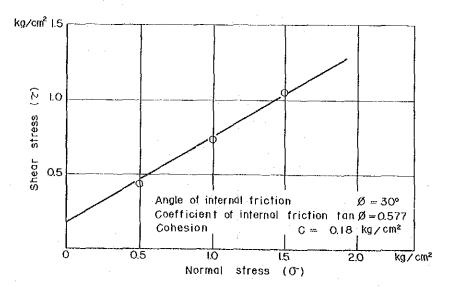

No.	Area(cm2)	O (kg/cm²)	Z(kg/cm²)
	25	0.5	0.48
2	25	1.0	0.91
3	25	1.5	1,29
0:1	Normal str	ess, 7: She	ar stress

Locality of sample; TP-102. Depth - m. Date. Nov. 7, 70 Type of test C.R. (Qc)


2 3	25 25 25	O (kg/cm²) 0.5 1.0 1.5	0.36 0.83 1.19	Standard of test Optimum water content (%)	57.2 Proctor	Harvara
σ:	Normal st	ress, Si	hear stress	Maximum dry density (gr/cm³)	-	1.19

Locality of sample : TP-102, Depth-m Date- Type of test-

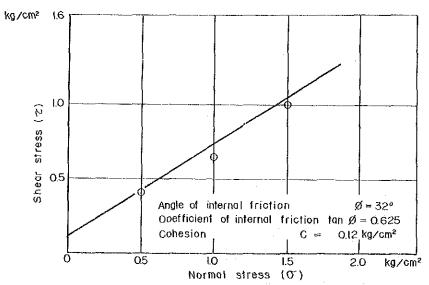
No.	Area(cm²)	O~(kg/cm²)	z (kg/cm²)
Τ	25	0.5	0.54
2	25	I.O	0.93
3	25	1.5	1.26


Noie		
Natural water content :(%)	48.0	
Standard of test	Proctor	Horvard
Optimum water content (%)	43.5	41.5
Maximum dry density (gr/cm³)	1.18	1.20

Locality of sample: TP-103. Depth- m Date Oct 28 '70 Type of test C.R. (Qc)

No.	Area (cm²)	O (kg/cm²)	ť(kg/cm²)
T	25	0.5	0.44
2	25	1.0	0.74
3	25	1.5	1.05
σ: N	lormal str	ess :Shea	r stress

Note
Natural water content: (%) 102.0
Standard of test Proctor Harvaro
Optimum water content (%) ———
Maximum dry density (gr/cm³) ———

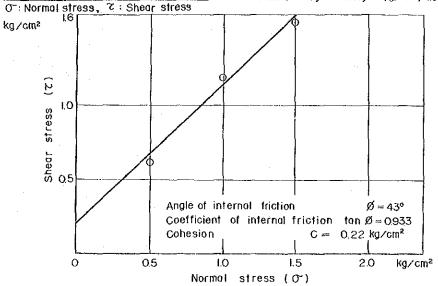

Locality of sample: TP-104 Depth; __ m Date; Oct. 26, '70 Type of test. C.R. (Qc) Locality of sample: TP-201 Depth; 3.00m Date; Feb. '71 Type of test-

Note.

No.	Area (cm²)	O (kg/cm²)	て(kg/cm²)
i	25	0.5	0.41
2	25	1,0	0.64
3	25	1,5	1.00

Natural water content Proctor Harvard Standard of test 46.3 Optimum water content (%) Maximum dry density (g/cm³) — 1.14

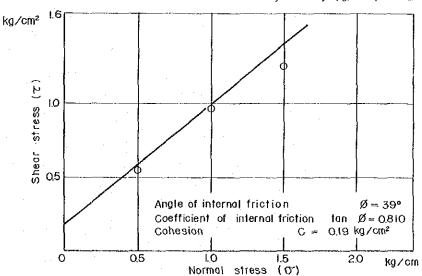
O : Normal stress, τ: Shear stress



Locality of sample: TP-201 Depth; 3.00m Date, Nov. 9,70 Type of test, C.R. (Qc)

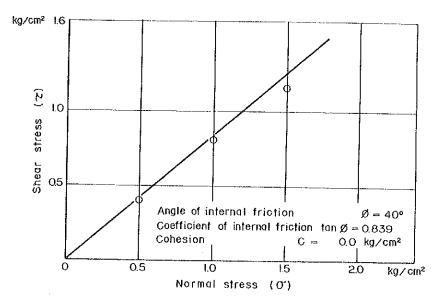
No. Area (cm²) (1 25 2 25 3 25 0 Normal stress	0 (kg /cm²) 0.5 1.0 1.5	7(kg/cm ⁻) 0.37 0.75 1.05 eq stress	Natural water content (%) Standard of test Procter Optimum water content (%) Maximum dry density (g/cm³)	42.9 Harvard 38.1 1.30
kg/cm² 1.4 (2) ssauts roads 0.5		Angle of in	ing, on	

		to (iid) out.	て(kg/cm²)
1	25	0.5	0.62
2	25	I. O	1.18
3	25	1.5	1,56


Natural water content (%) Standard of test Proctor Horvard Optimum water content (%) 33.0 32.0 Maximum dry density (g/cm3) 1.30 1.31

Locality of sample: TP-202 Depth, 3.00m. Date; Type of test =

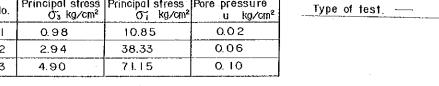
No.	Area (cm²)	O (kg/cm²)	7(kg/cm²)
1	25	0.5	0.55
2	25	1.0	0.97
3	25	1.5	1.25


Note. 55.3 Natural water content (%) Proctor Harvard Standard of test Optimum water content (%) 39.Q 44.0 Maximum dry density (g/cm³) 1.22 1.25

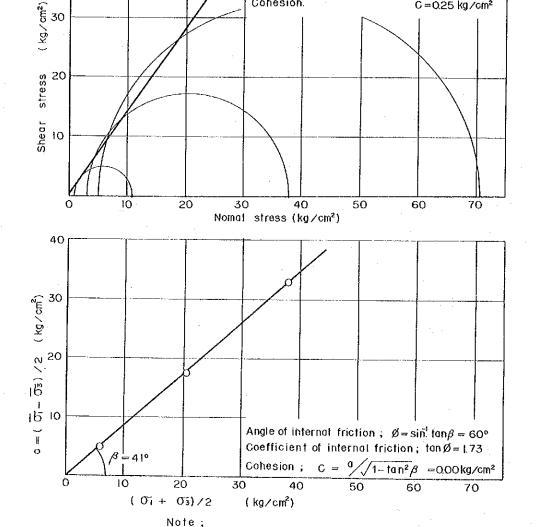
Direct Shearing Test (Sheet 3 of 3)

Locality of sample: TP-203 Depth; 3.00m Date; Nov. 4,70 Type of test C.R. (Qc)

No.	Area(cm²)	O⁻(kg/cm²)	て(kg/cm²)	Note. Natural water content (%)	0	70
	25	0.5	0.40	Standard of test		7.8
2	25	I.O	0.81		Proctor	Harvard
3	25	1.5	1.16	Optimum water content (%) Maximum dry density (a/cm³)		
		<u> </u>	L	Maximum dry density (g/cm³)		


Locality of sample: TP-204 Depth; 3.00m Date; Oct. 31, '70 Type of test C.R. (Qc)

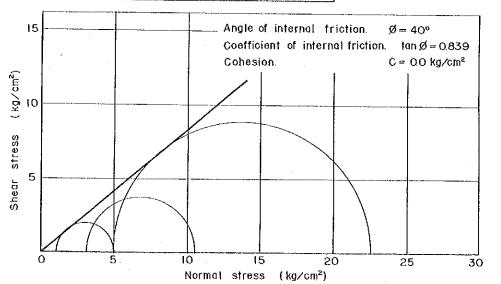
No.		O (kg/cm²)		Note. Natural water content (%) 178.0
2	25 25	0.5 1.0	0.71	Standard of test Proctor Harvard
3	25	1.5	1.13	Optimum water content (%) — — — Maximum dry density (g/cm³) — —
/cm²	' 15			
3	3 1.0			
v.	3			
Stress	,	9		
Shear	0.5			
ď,	, ,,,			
				rnal friction $\emptyset = 23^{\circ}$ of internal friction $\tan \emptyset = 0.424$
			Cohesion	C = 0.5 kg/cm ²
	4			

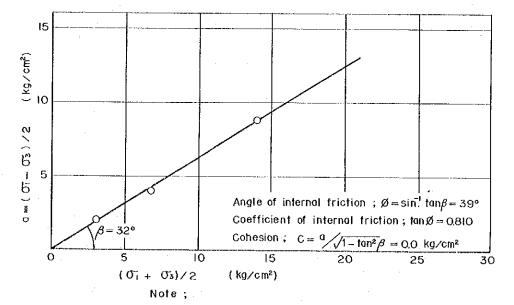

Remark; Test was conducted by Universidad del Cauca responding to the request of CEDELCA

IV-5-5 TRIAXIAL SHEARING TEST

Locality of sample ; TP-102 Depth ; ... m. Date ... Principal stress Principal stress Pore pressure
O'3 kg/cm² O'1 kg/cm² u kg/cm² 10.85 0.02 0.98 2.94 38.33 0.06 71.15 4.90 0.10 Angle of internal friction. Coefficient of internal friction. $\tan \emptyset = 1.43$ Cohesion.

 $C = 0.25 \text{ kg/cm}^2$

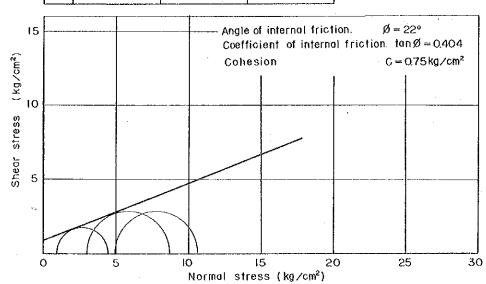


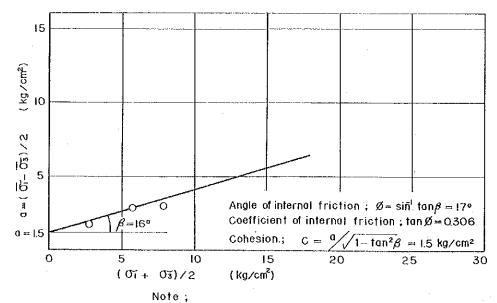

Natural water content (%)	48.0	
Standard of test	PROCTOR	HARVARD
Optimum water content (%)	43.5	41.5
Maximum dry density (g/cm³)	1.18	1.20

Locality of sample; TP-102 Depth; - m. Date; Nov. 7/'70

No.	Principal stress O3 kg/cm²	Principal stess Oï kg/cm²	Pore pressure u kg/cm²
١	0.98	4.90	0.020
2	2.96	10.71	0.045
3	4.94	22.63	0.058

Type of test. C.R. (Qc)

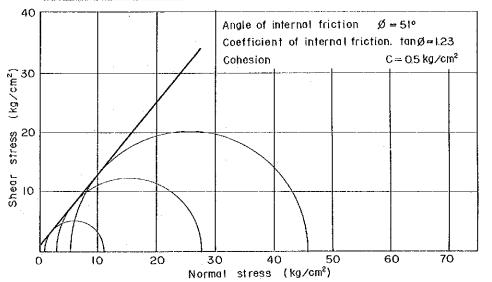


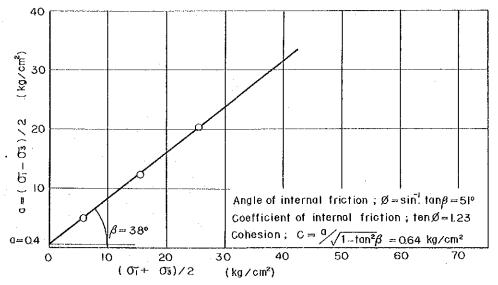

Natural water content (%)	57. 2	
Standard of test	PROCTOR	HARVARD
Optimum water content (%)		45.0
Maximum dry density (g/cm³)		1.19

Locality of sample; TP-104 Depth; - m. Date. Oct. 26/70

No.	Principal stress O3 kg/cm	Principal stress Oï kg/cm²	Pore pressure u kg/cm²
l	0.97	4.47	0.035
2	2.98	8.68	0.020
3	4.95	10.75	0.055

Type of test. C.R. (Qc)

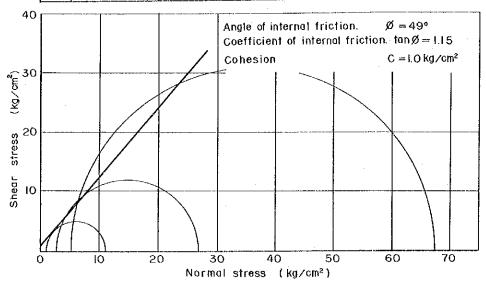


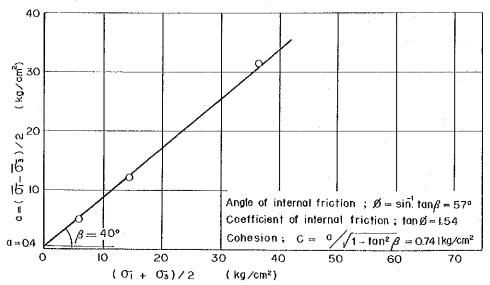

Natural water content (%)	66.51	
Standard of test	PROCTOR	HARVARD
Optimum water content (%)	_	46.3
Maximum dry density (g/cm³)	— .	1.1.4

Locality of sample; TP-201 Depth; 3.00m. Date; Nov. 9/'70

No.	Principal stress O3 kg/cm²	Principal stress Oi kg/cm²	Pote pressure u kg/cm²
	0.99	10.99	0.012
2	2.97	27. 79	0.022
3	4. 99	45.88	0.015

Type of test. C.R. (Qc)

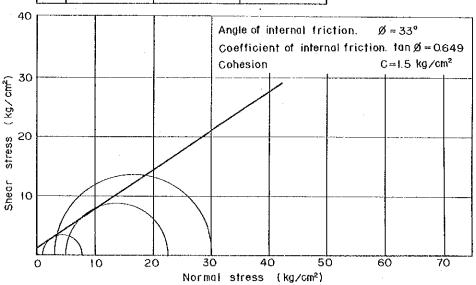

Note:

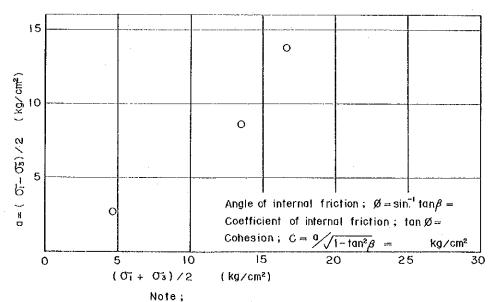

Natural water content (%)	. 42,9	
Standard of test	PROCTOR	HARVARD
Optimum water content (%)		38.1
Maximum dry density (g/cm³)	_	1.30

Locality of sample; TP-201 Depth; 3.00m. Date; Fev. /'71

No.	Principal stress 03 kg/cm²	Principal stress Oi kg/cm	Pore pressure u kg/cm²
1	0.97	10.86	0.03
2	2.69	26.77	0.31
3	4.96	67.76	0.04

Type of test —


Note;


Natural water content (%)	47.3		
Standard of test	PROCTOR	HARVARD	
Optimum water content (%)	33.0	32.0	
Maximum dry density(g/cm³)	1.30	1.31	

Locality of sample; TP-202 Depth; 3.00m. Date;

No.	Principal stress O3 kg/cm²	Principal stress Oi kg/cm²	Pore pressure u kg/cm²
- 1	0.95	8.36	0.055
2	2.92	30.54	0.080
3	4.92	22.19	0.080

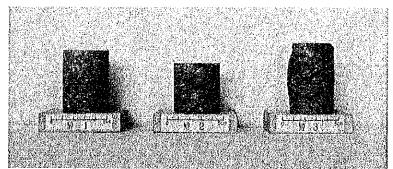
Type of test. —

 Natural water content (%)
 55.3

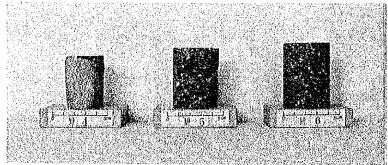
 Standard of test
 PROCTOR
 HARVARD

 Optimum water content (%)
 39.0
 44.0

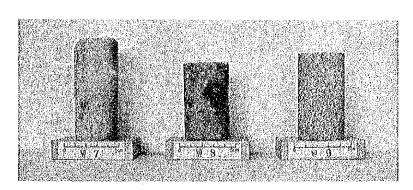
 Maximum dry density(g/cm³)
 1.22
 1.25

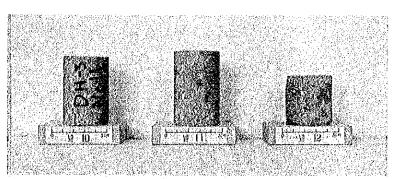

IV - 85

IV-6 ROCK MATERIAL

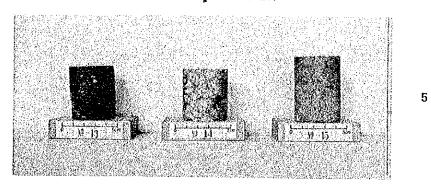

- IV-6-1 PHOTOGRAPH OF ROCK SPECIMEN
- IV-6-2 TABLE OF ROCK TEST
- IV-6-3 STRESS-STRAIN CURVES IN COMPRESSION STRENGTH TEST

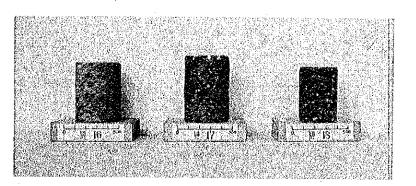
IV-6-1 PHOTOGRAPH OF ROCK SPECIMEN

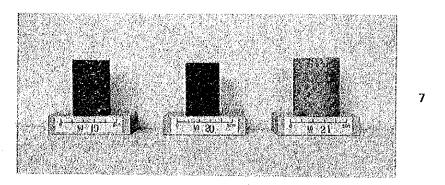

(Plate 1 of 2) PHOTOGRAPH OF ROCK SPECIMEN BEFORE THE ROCK TEST NO. SPECIMEN NUMBER



2

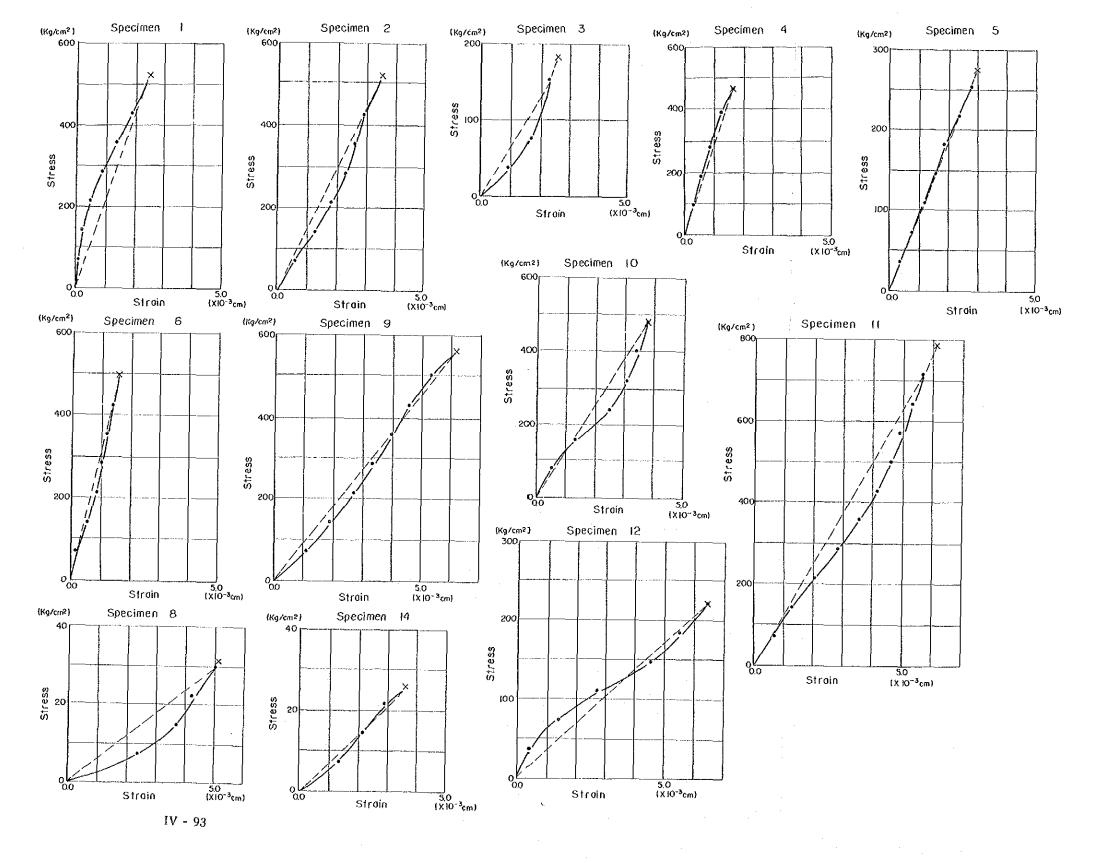



3

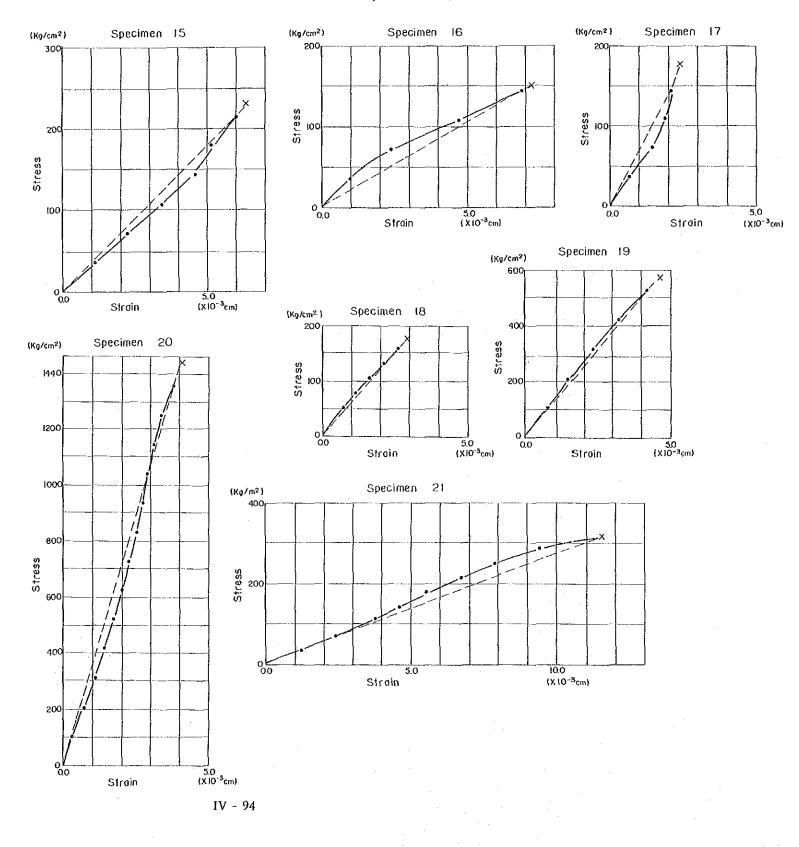


4

(Plate 2 of 2) PHOTOGRAPH OF ROCK SPECIMEN BEFORE THE ROCK TEST NO. SPECIMEN NUMBER

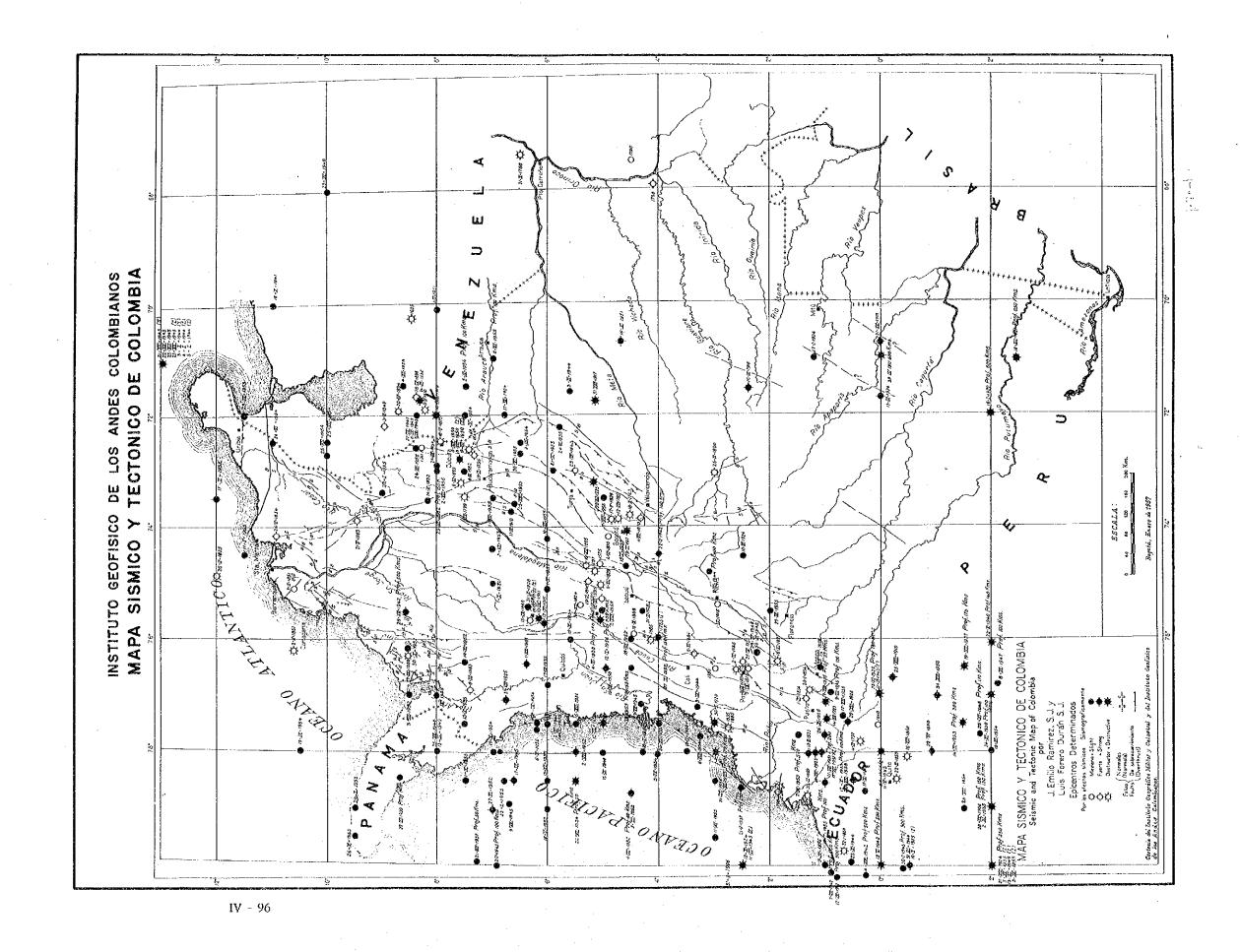

IV-6-2 TABLE OF ROCK TEST

Specimer	Sample	Depth	Rock name	Length	Diameter	Area	of cross (cm ²)			Weigl	nt		Specific	gravity	Ratio of		ra sonic velocity (m/		····	Poisso	n's ratio
No.	Locality	(m)		(cm)	(cm)	Upper	Bottom	Average	Natural	Dry	In water	Wet	Dry	Wet	tion (%)	Dry	wave Wet	S-w Dry	Wet	Dry	Wet
1	DH- 1	38.00	Andesite	5.52	4.19	13.8	14.1	14.0	175.84	175,30	103.50	178.74	2.33	2,37	1.96	3410	3430	2100	2170	0.192	0.166
2	DH- 1	65.00	Andesite	4.36	4.20	14.0	14.1	14,1	140.68	140.33	83.02	143.02	2.34	2,38	1,92	3350	3600	2180	2190	0.136	0.206
3	DH- 1	83,00	Andesite	6.21	4.19	13.7	12,2	13.0	182.01	181.27	107.11	188.25	2.23	2.32	3.85	2770	2890	1670	1730	0.180	0.221
4	DH- 1	98.00	Andesite	4.63	4.19	10.1	11.3	10.7	106.38	106.05	60.73	110.50	2,13	2,22	4.20	3260	3480	2020	2060	0.186	0.230
5	DH- 1	105.00	Andesite	5.31	4.19	13.5	14.1	13.8	166.97	166.66	97.32	168.63	2.34	2.36	1,18	3880	4180	2380	2410	0.198	0.251
6	DH- 1	135.00	Andesite	5.72	4.20	14.0	14.2	14.1	187.05	185.94	108.96	187.76	2.36	2.38	0.98	2860	3030	1740	1820	0.204	0.218
7	DH- 1	150.00	Silty tuff	8.99	3.91	11.9	12.8	12.4	113.70	99.82	56.33	169.16	0.88	1.50	69.47	814		490		0.221	
8	DH- 1	158.00	Tuff breccia	6.78	4.12	13.6	13.6	13.6	134.33	132.40	69.40	155.64	1,54	1.80	17.55	1600	1650	860	880	0.297	0.301
9	DH- 2	40.00	Andesite	7.61	4.18	14.0	14.0	14.0	235.70	235.10	139.80	243.00	2.28	2.36	3.36	2550	2800	1620	1710	0.159	0.203
10	DH- 3	15.00	Andesite	6.07	4.18	13.0	12.0	12.5	173.83	173.26	102.38	177.25	2.31	2.37	2.30	3490	3680	2090	2130	0.221	0.248
11	DH- 3	25.00	Andesite	6.53	4.19	14.1	13.9	14.0	208.00	207.00	122.64	211,50	2.33	2.38	2.17	3800	4110	2280	2420	0.221	0.235
12	DH- 4	10.00	River gravel	4.34	4.18	13.8	13.3	13.6	125.96	125.44	73.91	131.27	2,19	2.29	4.65	2080	2420	1250	1360	0.215	0.269
13	DH- 4	19.00	Tuff breccia	4.70	3.99	12.2	12.7	12.5	125.34	119.35	73.53	136.46	1.90	2.17	14.34	1640	1830	890		0.294	_
14	DH- 5	50.00	Weathered andesite	4.62	4,19	13.7	13.9	13.8	113.35	112.31	65.37	126.64	1.83	2.07	12.76	1230	1340	720	750	0.235	0.272
15	DH- 5	57.00	Andesite	5.80	4.19	14.0	13.8	13.9	173.75	172.87	102.61	181.65	2.19	2.30	5.08	2040	2220	1270	1310	0.180	0.233
16	DH-204	6.00	Weathered andesite	5.26	4.19	13.8	13.7	13.8	150.89	149,46	88.67	159.97	2.10	2.24	7.03	2050	2240	1180	1250	0.249	0.274
17	DH-204	12.00	Weathered andesite	5.81	4.18	13.7	13.5	13.6	169.75	169.20	98.32	175.68	2.19	2.27	3.83	2110	2370	1260	1310	0.221	0.280
18	Power House	_	Dacitic andesite	4.78	3.05x3.04	9.3	9.4	9.4	100.26	100.16	58.36	101.27	2.33	2.36	1,11	2100	2330	1190	1250	0.262	0.298
19	3-6-1 Rio Cauca	-	Andesite	4.81	3.05x3.05	9.6	9.4	9.5	103.21	102.77	60.23	104.23	2.34	2.37	1.42	4010	4040	2200	2100	0.329	0.315
20	La Titella		Meta Dolerite	4.54	3.05x3.03	9.7	9.5	9.6	123.36	123.08	81.76	123.45	2.95	2.96	0.30	5540	5670	3070	3100	0.280	0.287
21	DH- 5	57.00	Andesite	5.09	4,19	13.7	14.0	13,9	151.63	150.81	89.64	158.63	2.19	2.30	5.19	2140	2230	1330	1410	0.186	0.167

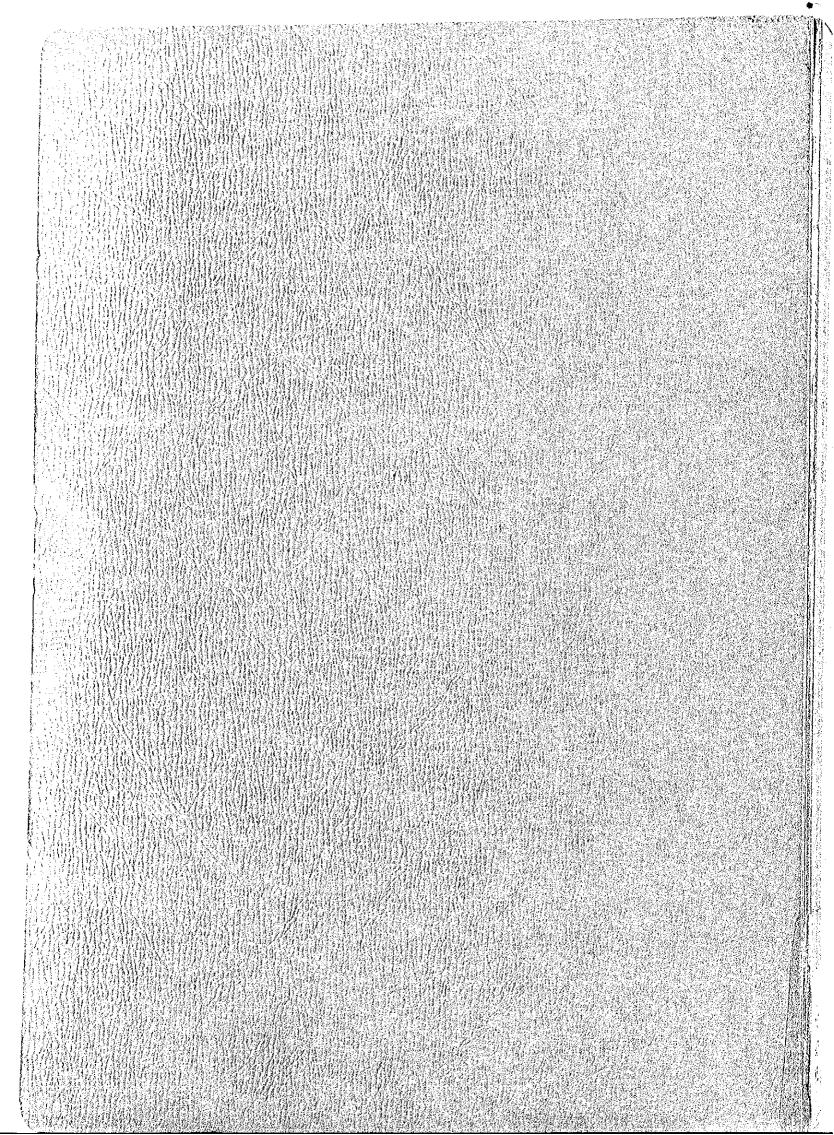

ght)		Specific	c gravity	Ratio of	Ultr	a sonic v	elocity (m	ı/sec)	Poisso	n's ratio			Compress	ive strength		of elasticity	
In wate	r Wet	Dry	Wet	absorp- tion (%)	Dry	-wave Wet	S-w Dry	ave Wet	Dry	Wet	Max. load	Max. strein (x10 ⁻³)	Strength (kg/cm ²)	Future of breaking		/cm ²)	Remarks
103.50	170 74	•			 _			 		ļ	<u> </u>				Static	Dynamic	Walter and the National Contract
			2.37	1.96	3410	3430	2100	2170	0.192	0.166	7300	2.50	521.4	Large pieces	2.11x10 ⁵	2.60x10 ⁵	
83.02	143.02	2.34	2,38	1.92	3350	3600	2180	2190	0.136	0.206	7300	3,50	517.7	Large pieces	1.48x10 ⁵	2.75x10 ⁵	
107.11	188.25	2.23	2.32	3.85	2770	2890	1670	1730	0.180	0.221	2400	2,55	184.6	Large pieces	6.52×10^4	1.70×10 ⁵	
60,73	110.50	2,13	2,22	4.20	3260	3480	2020	2060	0.186	0.230	5000	1.65	467.3	Something into pieces	2.86x10 ⁵	2.32x10 ⁵	
97.32	168.63	2.34	2.36	1,18	3880	4180	2380	2410	0.198	0,251	3800	3.00	275.4	Large pieces	9.52x10 ⁴	3.43x10 ⁵	
108.96	187.76	2.36	2.38	0.98	2860	3030	1740	1820	0.204	0.218	7000	1.60	496.6	Large pieces	2.86x10 ⁵	1.92x10 ⁵	
56.33	169.16	0.88	1.50	69.47	814		490	-	0.221				*****	Broken in water		(D) 5.14x10 ³	
69.40	155.64	1,54	1.80	17.55	1600	1650	860	880	0.297	0.301	420	5.10	30.9	Large pieces	5.71x10 ³	3.63x10 ⁴	
139,80	243,00	2.28	2.36	3.36	2550	2800	1620	1710	0.159	0.203	7800	6.15	557.1	Small pieces	9.09x10 ⁴	1.66x10 ⁵	
102.38	177.25	2,31	2.37	2.30	3490	3680	2090	2130	0.221	0.248	6000	3.75	480.0	Small pieces	1.25x10 ⁵	2.68x10 ⁵	
122,64	211.50	2.33	2.38	2.17	3800	4110	2280	2420	0.221	0.235	11000	6.10	785.7	Something into pieces	1,25x10 ⁵	3.44x10 ⁵	
73.91	131,27	2.19	2,29	4.65	2080	2420	1250	1360	0.215	0.269	3000	6.40	220.6	Small pieces	3.39x10 ⁴	1.07x10 ⁵	
73.53	136.46	1,90	2.17	14.34	1640	1830	890		0.294	_			_	Broken after measure P wave		(D) 3.89x10 ⁴	
65.37	126.64	1.83	2.07	12.76	1230	1340	720	750	0.235	0.272	350	3.60	25.4	Something into pieces	6.90×10 ³	2.96x10 ⁴	
102.61	181.65	2.19	2.30	5.08	2040	2220	1270	1310	0.180	0.233	3200	6.30	230.2	Large pieces	3.57x10 ⁴	9.73x10 ⁴	
88.67	159.97	2.10	2.24	7.03	2050	2240	1180	1250	0.249	0.274	2070	7.20	150.0	Small pieces	2.08x10 ⁴	8.92x10 ⁴	
98.32	175.68	2.19	2,27	3.83	2110	2370	1260	1310	0.221	0.280	2400	2.40	176.5	Small pieces	7.14x10 ⁴	9.97x10 ⁴	· · · · · · · · · · · · · · · · · · ·
58.36	101.27	2.33	2.36	1.11	2100	2330	1190	1250	0.262	0.298	1650	2,90	175.5	Small pieces	5.88x10 ⁴	9.57x10 ⁴	
60.23	104.23	2.34	2.37	1.42	4010	4040	2200	2100	0.329	0.315	5400	4.60	568.4	Small pieces	1.29x10 ⁵	2.75×10 ⁵	
81.76	123.45	2.95	2.96	0.30	5540	5670	3070	3100	0.280	0.287	13800	4.10	1437.5	Small pieces	3.64x10 ⁵	7.32x10 ⁵	,
89.64	158.63	2.19	2.30	5,19	2140	2230	1330	1410	0.186	0.167	4400	11.50	316.5	Small pieces	2.78x10 ⁴	1.07x10 ⁵	

IV-6-3 STRESS-STRAIN CURVES IN COMPRESSION STRENGTH TEST

Stress-strain Curve in Unconfined Compression Test (Sheet 1 of 2)


Stress-strain Curve in Unconfined Compression Test (Sheet 2 of 2)

Summorized results of compressive strength and static modulus of elasticity.


	Specimen	Compress-	Static	
NO.	Locality	ive strength (kg/cm²)	modulus of elasticity (kg/cm²)	Remork
ı	DH-1, 38 ^m deep	521.4	2.11x10 ⁵	
2	DH-I, 65 ^m deep	511.7	1.48x10 ⁵	
3	DH-I, 83 ^m deep	184.6	6,52×10 ⁴	
4	DH-I, 98 ^m deep	467.2	2,86x10 ⁵	
5	DH-1, IO5 ^m deep	275.3	9.52x10 ⁴	
6_	DH-1,135 ^m deep	496.4	286x10 ⁵	
_7	DH-1,150 ^m deep			
8	OH-2,158 ^m deep	30.8	5.71x10 ³	
9_	DH-2, 40 ^m deep	557.1	9.09x10 ⁴	
10	DH-3, I5 ^m deep	480.0	1.25x10 ⁵	
Ц	DH-3, 25 ^m deep	785.7	1.25 x 10 ⁵	
12	DH-4, IO ^{ffi} deep	220.5	3,39x10 ⁴	
13	DH-4, I9 ^m deep			<u> </u>
14	DH-S, 50 ^M deep	25.8	6.90x10 ³	
15	DH-5, 57 ^m deep	230.2	3,57 x10 ⁴	
16	DH-204, 6 ^m deep	150.0	2,08x10 ⁴	···
17	DH-204, 12 ^m deep	176.4	7.14 x 10 ⁴	
18	Powerhouse site	175,5	5.88xIO4	
19	3-6-1 Rio Couco	568.4	1,29xIQ ⁵	
20	La Titella	1,437.5	3.64 x10 ⁵	
21	DH-5, 57 ^m deep	316.5	2.78x10 ⁴])

IV-7 EARTHQUAKE RECORDS

TEMBLORES SENTIDOS EN COLOMBIA

NUMBRO 18	SIDAU DIDAU			PICENTRO	HORA	DE O	RIGEN (74)	NUMERO	<u> </u>	FECI		INTEN- SIDAD	PROFUN- DIDAD	E F	PICENTRO		DE C	DRIGEN			
ORDEN	AÑO	ÐIA	MES	TRIPLE ESCALA	FOCAL EN	COORDENADAS	MUNICIPIO	HORAS	MINUTOS	SEGUNDOS	DE ORDEN	AÑO	DIA	MES	TRIPLE ESCALA	FOCAL EN KILOMETROS	COORDINADAS	MUNICIPIO	HORAS	MINUTOS	T
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	1666 1675 1595 1610 1625 1643 1644 1697 1735 1736 1736 1743 1761 1763 1768	12 3 23 2 2 2 2 18 25 21	Marzo Febrero Abrit Enero Febrero Getubre Abril Enero Octubre Julio	1 11 11 111 111 111 111 111 111 111 11		76, 500; 3, 60 N 74, 500; 5, 10 N 75, 400; 5, 10 N 71, 500; 5, 10 N 71, 500; 8, 50 N 73, 500; 5, 50 N 74, 500; 7, 50 N 74, 500; 7, 50 N 75, 500; 2, 50 N 75, 500; 2, 50 N 76, 600; 2, 50 N 76, 600; 2, 50 N 76, 600; 2, 50 N 76, 600; 4, 50 N 76, 500; 4, 50 N 76, 500; 4, 50 N	Santander, Cauca Guaduas, Condinamarea Manizates, Callas (Venezuela) (Venezuela) Pesca, Bayacá Herrán, Santander N. Honda, Tolima Caibló, Cauca Popayán, Cauca Popayán, Cauca Puracó, Cauca Tuluá, Valle (Venezuela) Ja Calera, Cundinamarea	11 20 14 5	30 30 45		1113 119 120 121 122 123 124 125 125 127 128 129 130	1942 1942 1942 1943 1943 1943 1943 1943 1943 1944 1944	4 7 12 26 30 2 17 21 22 23 23 3	Julio Julio Julio Julio Diclerabre Enero Mayo Miciembre Diciembre Dictembre Enero Enero Enero		500 509 500 500? 600? 109	80,200, 0.30N 80,400, 0.50N 80,500, 0.50N 80,500, 0.50N 80,200, 0.40S 80,100, 1.00N 71,000, 13,00N 71,000, 13,00N 71,000, 13,00N 71,000, 13,00N 71,000, 13,00N 71,000, 13,00N	(Feusdor) (Ecusdor) (Ecusdor) (Ecusdor) (Ecusdor) (Feusdor) (Feusdor) (Feusdor) (Mar Caribe)	20 7 0 12 2 3 7 10 20 5	53 32 5 31 33 12 47 46 53 56 00 19	5 42 17 48 54 12 12 20 7 3 14 13
16 17 18 19 19 19 19 19 19 19 19 19 19 19 19 19	1790 1792 1796 1797 1798 1799 1500 1806 1816 1825 1825 1827 1827 1824 1834 1834	15 15 4 26 16 11 326 17 16 9 21 24	Abril Febrero Septiembre Febrero Julio Septiembre Distembre Mayo Novlembre Distembre Enero Mayo Febrero			13, 200; 4, 20N 14, 20N 15, 200; 5, 20N 17, 200; 6, 20N 17, 200; 8, 20N 17, 200; 1, 20N 18, 20	(Venezuela) Medellin, Antioquia Famplona, Santander N. ¡Ecuador] Comisatia del Vichada (Océano Taefiko) Puerto Wilches, Santander Intendencia del Meta Hondo, Tolirra Neiva, Itulia (Océano Atfentico) La Calera, Condinamarca San Agustin, Hulla Carablanca, Tolina El Tablón, Nariño El Tablón, Nariño El Tablón, Nariño Chagas, Magdalea Ticundor; Marquetalis, Caldas	00 00 22 17 4 8 2	45 55 30		131 132 133 134 135 136 137 139 140 141 142 143 144 145 146 147 148 149 150	1944 1944 1944 1944 1944 1945 1945 1945	331 332 233 233 237 67 111 29 29 29 29 29 29 29 29 29 29 29 29 29	Febrero Mayro Mayro Mayro Mayro Mayro Sepilombro Octubre Murzo Abril Abril Abril Abril Abril Abril Abril Aulio Marzo Junio Julio		100 100 100 170	71, 800; 12, 90N 71, 800; 5, 60N 80, 801; 0, 5, 60N 80, 801; 0, 5, 60N 71, 800; 3, 3, 90N 80, 800; 00, 10, 80N 80, 900; 01, 80N 72, 900; 8, 40N 72, 900; 8, 40N 72, 900; 8, 40N 76, 800; 2, 30N 76, 800; 3, 8, 80N 71, 900; 1, 8, 90N	(Mar Caribo) Orceuk, Boyaca (Ecuador) Baraya, Hurla San Antonio, Velle (Ecuador) (Cetano Pacífico) (Venesueln) (Venesueln) (Océano Pacífico) (Océano Pacífico) (Océano Pacífico) (Océano Pacífico) (Océano Pacífico) C. Putumayo Volcán Puracé (Océano Pacífico) (Veneraucia) (Ecuador) (Ecuador) (Panamá)	5 15 18 18 18 18 18 18 1	25 25 25 25 25 27 27 27 27 27 25 21 21 22 21 22 21 24	10 24 4 49 36 55 42 50 50 28 18 28 18 22 29 19
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 64 65 66	1849 1851 1851 1859 1868 1868 1868 1868 1876 1878 1878 1878	32 72 22 16 18 18 4 18 21 6 20 20 21 31	Mayo Frbireto Frbireto Probreto Probreto Agosto Septiembre Octubre Matzo Junio Mayo Septiembre Septiembre Suptiembre Matzo Mayo Mayo Mayo Mayo Abril Abril Dicilembre Enero			76: 350; 10. 75N 75: 190; 10. 55N 79: 909; 0. 75N 78: 550; 0. 35S 78: 550; 0. 35S 78: 550; 0. 35S 78: 550; 0. 35S 78: 550; 4. 35N 78: 550; 2. 45N 78: 550; 2. 55N 78:	(Venezuela) (Oceano Pacífico) Repelón, Attantico (Ecuador) (Cachira, Santander N. (Guetame, Cundinamarca Cúcuta, Santander N. Popayán, Cauca Turbo, Antioquia Riosuelo, Chocó Chimichagua, Magdalena La Plorida, Valle Turbora (Cauca Vénezuela) (Venezuela) (Venezuela) (Venezuela) (Venezuela) (Venezuela) (Venezuela) (Venezuela) (Venezuela)	7 9 11 2	49 50 16 50		153 154 155 166 167 159 169 162 162 163 164 165 167 167 167	1949 1949 1950 1950 1950 1950 1950 1951 1951 195	25 13 13 12 22 8 8 9 17 17 16 18 18 16 3 4	Septiembre Noviembre Abril Junio Julio Julio Julio Julio Julio Julio Julio Julio Julio Octubre Octubre Octubre Diciembre Energo February Mayo Mayo Junio Junio		200	18.090; 8.09N 18.500; 2.09S 18.500; 1.09S 12.890; 7.69N 12.890; 7.69N 12.890; 7.69N 12.890; 7.69N 12.890; 7.69N 13.900; 1.09S 18.900; 1.09N 16.000; 4.79N 17.500; 5.59N 17.500; 5.59N 17.600; 4.59N 17.600; 8.59N 17.600; 8.59N	(Panamá) (Evando, Chocó (Evando, Chocó (Evando, Santander N. Arboledas, Santander N. Arboledas, Santander N. Arboledas, Santander N. (Evandor) Cumbal, Nariño Cumbal, Nariño Arnalíi, Antioquia S. José de Ocane, Vichada (Océano Panílico) (Océano Panílico) Pavarandocito, Antioquia La Victoria, Valle Matanza, Santander (Océano Panílico)	11 11 11 11 11 12 12 17 18 18 18 18 18 18 18 18 18 18 18 18 18	37 10 43 35 31 25 31 19 32 32 31 19 32 32 27 145 45 45 45 45 45 47 47 47 47 47 47 47 47 47 47 47 47 47	42 38 38 30 31 16 20 17 17 30 26 18 17 26 18 17 26 18 17 26
553 509 61 623 64 65 65 65 67 77 77 77 77 77	1906 1911 1911 1011 1015 1017 1917 1918 1918 1918 1919 1010 1920 1920 1922 1923 1023 1023	28 10 28 17 29 31 16 21 10 23 30 18 14 14 14 22 27 10	Septiembre Abril Junio Agosto Marzo Marzo Dictembre Eacro Dictembre Eacro Dictembre Eacro Dictembre Eacro Dictembre Eacro Dictembre Eacro Dictembre Ebiclembre Ebiclembre Ebiclembre Ebiclembre Ebiclembre Ebiclembre Ebiclembre		600 600 650 600	St. 090; 1. 09N 78. 090; 2. 09S 72. 590; 3. 39N 75. 690; 5. 29N 71. 690; 6. 19N 71. 190; 4. 69N 71. 190; 5. 29N 71. 790; 5. 29N 71. 790; 2. 49N 70. 790; 6. 19N 71. 590; 2. 49N 70. 790; 0. 0. 09 71. 590; 3. 69N 71. 590; 3. 69N 71. 590; 2. 59S 71. 590; 1. 69N 71. 590; 1. 69N 71. 590; 1. 20N 71. 200; 5. 20N 71. 200; 5. 20N	(Océano Pacífico) (Ecuador) Puerto Villamizar, N. de S. Medeillin, Antioquia C. Amazonas Angelépolis, Antioquia Bogotá, Condinamarca Orocuó, Boyacá Barrancabermeia, Santander C. Vaupés G. Amazonas (Venezuela) (Ecuador) Micay, Cauca C. Vaupés C. Vaupés Funes, Nariño Ricaurte, Nariño Miraflores, Iloyacá C. Yupés C. Juppés	10 10 11 22 6 11 8 4 19 23 13 10 22 5 2	36 24 52 24 35 37 24 50 44 26 29 50 31 36 64	54 56 10 29 00 52 41 38 00 45 24 18 40 00 34	173 174 175 176 177 178 179 189 181 182 183 184 185 185 188 189 190 100	1952 1952 1952 1952 1952 1953 1953 1953 1953 1953 1953 1953 1953	29 29 20 20 14 1 7 31 21 23 28 7 23 25	Junto Junto Junto Octubre Noviembre Enero Abril Junio Junio Junio Junio Junio Agosto Agosto Agosto Enero Electrobre Pebrero Marzo Abril		200 570 100	78.100; 4.50N 71.000; 8.00N 71.000; 8.00N 71.500; 6.50N 71.500; 7.50N 71.500; 1.50N 71.500; 1.50N 71.700; 1.50N 71.400; 7.60N 71.500; 3.00N	(Océano Pacífico) Bucaristica, Sant. N. (Océano Pacífico) Montecta, Córdoba (Océano Pacífico) (Panaméa) (Ecundor) (Océano Pacífico) Los Andes, Natiño Remeilos, Antiquia (Océano Pacífico) Manta. Cundineniarca Verselles, Valle San Vicente, Santander (Venezuela) Urcusique, Putumayo (Venezuela) El Espino, Boyacá (Ecuador)	06 4 19 8 20 4 17 17 6 7 9 22 11 23 23 24 4 8	3066823323655332655332655332655332655332655332655332655332655332655332655532655326553265532655326553265532655326553265532655326553265532655532655532655532655532655532655532655532655532655532655532655532655532655532655555555	456 27 56 9 20 20 51 36 00 57 57 36 445 23 27
778 99 8234456 87899 99234456 87899 9934 9956	1924 1924 1924 1924 1925 1925 1926 1926 1926 1931 1931 1931 1932 1932 1932 1933 1933	105 221 12 21 12 23 31 20 31 24 1 1 12 17	Merzo Marzo Junio Julio Octubre Junio Junio Junio Junio Junio Junio Septiembre Pebrero Mayo Marzo Mayo Mayo Febrero Mayo Mayo Mayo Mayo Mayo Mayo Mayo May		60 250 176 180 100	74.590; 2.59N 71.790; 0.09 78.690; 5.59N 88.090; 2.69S 88.090; 2.59N 77.090; 6.89N 77.190; 6.8N 77.190; 6.8N 77.190; 6.8N 77.190; 6.8N 77.590; 6.8N 77.590; 3.9N 71.590; 3.9N 71.590; 3.9N 71.590; 3.9N 71.590; 8.29N 71.590; 8.29N	I. Meta C. Amazonas (Océano Pacífico) (Ecuador) (Océano Pacífico) (Océano Pacífico) (Océano Pacífico) (Ecuador) La Isla, Chocó (Ecuador) Medelliti, Antioquis (Ecuadoris) (Océano Pacífico) (Mar Caribe) (Venezuela) (Ido Coro, Magdalena Ricaurle, Naritio (Ecuadori) (Ecuadori)	18 20 17 23 16 18 11 3 23 01 17 10 11 17 17 23	00 22 29 04 05 41 46 46 41 06 41 06 42	29 56 08 18 27 42 58 20 35 48 36 37 48 38	193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 211	1954 1954 1954 1954 1954 1954 1954 1954	10 24 24 25 5 26 8 8 17 10 6 6 10 11 10 22 22 28 8 24	Abril Abril Mayo Junio Junio Julio Julio Julio Julio Julio Julio Septiembre Septiembre Octubre Octubre Enero Enero Enero Enero Enero Enero Enero Abril	I I I I I I I I I I I I I I I I I I I	100	72.905, 8.00N 72.906, 7.55N 72.500, 11.00N 72.500, 11.00N 72.700, 10.00N 72.700, 10.00N 73.000, 1.50S 77.600, 6.20N 73.000, 7.00N 73.500, 7.00N	(Mar Caribe) Villa Caro, Sant. N. (Venezuela) Maicao, Gnajira (Venezuela) (Venezuela) (Ecuador) Mutts, Chocó Arauquita, Arauca (Océano Pacifico) Andes, Antioquia (Ecuador) (Maribe) (Ecuador) (Maribe) (Maribe) (Ecuador) (Océano Pacifico) Carmen, Santander N. (Ecuador) Pacrto Villamitar, Sant. N.	10 22 23 30 5 6 14 23 14 10 45 10 11 15 8	15 57 37 40 9 59 11 219 33 34 34 44 11 24	76 16 37 3 46 16 90 11 52 40 29 29 43 10 7 53 9
999 100 1002 1003 1003 1003 1006 1008 1008 1008 1008 1008 1008 1008	1924 1934 1935 1925 1925 1935 1936 1937 1937 1937 1937 1937 1937 1940 1940 1941 1942	27 17 27 24 17 26 17 27 27 24 17 26 17 27 27 27 27 27 27 27 27 27 27 27 27 27	Noviembre Abril Agosto Agosto Septiembre Octubre Newiembre Julio Octubre Mayo Junio Julio Julio Julio Cetubre Noviembre Junio Octubre Nayo Mayo Mayo Mayo Mayo Mayo Mayo		95 150 130 200 50 130 80 140	88. 600; 2. 605 78. 600; 4. 60N 71. 800; 3. 40N 71. 800; 3. 40N 71. 800; 1. 60N 76. 600; 4. 60N 76. 600; 4. 60N 76. 600; 4. 60N 77. 600; 4. 60N 77. 600; 5. 60N 78. 600; 7. 80N 78. 600; 7. 80N 78. 600; 7. 80N 78. 600; 7. 80N 78. 800; 1. 50N 78. 800; 1. 60N 79. 600; 11. 60N 79. 600; 11. 60N 79. 600; 11. 60N 79. 600; 10. 60	(Océano Pactiteo) (Océano Pactiteo) (Océano Pactiteo) (Océano Pactiteo) (Océano Pactiteo) Funes, Nariño Beté, Checó Pardo, Valle (Ecuador) Potosi, Nariño (Océano Pactiteo) (Océano Pactiteo) (Panamá) (Ecuador) Manizales, Celhas (Panamá) (Venezuela) (Venezuela) (Venezuela) (Cenador) (Océano Pactiteo) (Océano Pactiteo) (Panamá) (Venezuela) (Venezuela) (Cenador) (Océano) (O	87 27 44 28 177 16 77 120 20 10 114 21 21 21 13 21 18 21 21	11 36 7 58 5 5 24 30 43 43 12 13 23 23 35 23 36 37 38 7 38 7 38 38 38 38 38 38 38 38 38 38	20 12 25 21 44 38 32 22 22 44 44	212 214 215 216 217 218 219 220 221 222 223 224 225 227 227 228 229 231 232 233 243 224 225 227 228 239 231 233	1955 1955 1985 1985 1985 1985 1985 1955 195	25 11 13 21 21 20 10 13 20 10 13 20 14 24 12 18 60 12 18 60 22 22 23 24 24 24 25 26 27 28 28 28 28 28 28 28 28 28 28 28 28 28	Abril Meyo Meyo Meyo Meyo Meyo Meyo Meyo Meyo		100 290	16.501; 2.00N 18.001; 0.40 17.601; 7.50N 14.701; 4.80N 12.901; 6.90N 14.201; 6.00N 14.201; 6.00N 14.201; 6.00N 14.201; 6.00N 17.700; 6.50N 17.501; 6.20N 18.500; 1.00N	Andelucla, Huila (Ecuador) Juvadó, Chocó Jurasalen, Cundinamaren Sta. Resa de Viterbo, Boy. (Panamó, Puente Nacional, Boyacá (Océano Facifica) Capitanejo, Santander Santalá, Chocó (Océano Pacifico) Támara, Casanare Arauca, Arauca Vilin María, Caddas (Océano Pacifico) (Ceano Pacifico) (Ceano Pacifico) (Ceano Pacifico) (Océano Pacifico)	166 160 192 14 123 223 148 223 148 222 148 222 148 222 148 222 148 223	25 4 4 55 2 4 11 12 8 00 00 31 6 57 42 8 8 10 11 11 11 11 11 11 11 11 11 11 11 11	45 21 00 47 12 40 16 25 51 43 25 16 16 11 27 27 25 7

