•

# 008



-

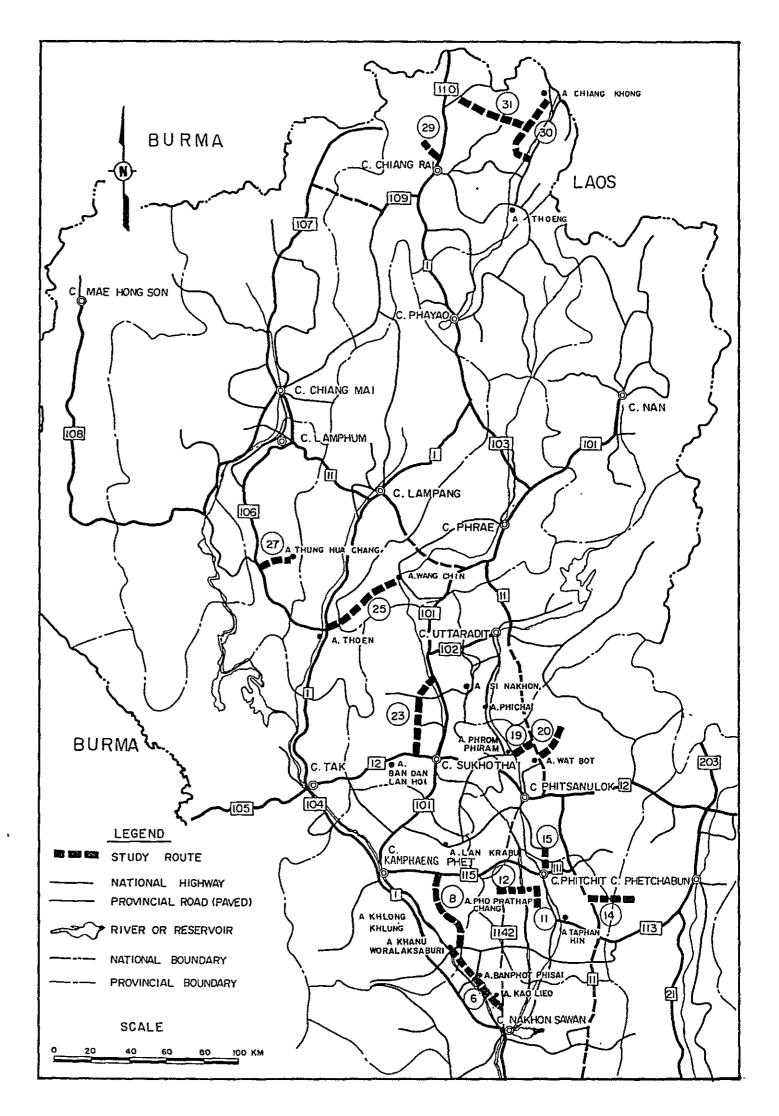
# THE KINGDOM OF THAILAND MINISTRY OF COMMUNICATIONS DEPARTMENT OF HIGHWAYS ROAD DEVELOPMENT STUDY IN THE NORTHERN REGION

PHASE 2 FEASIBILITY STUDY

FINAL REPORT VOLUME 2 ROUTE REPORT MARCH 1982

JAPAN INTERNATIONAL COOPERATION AGENCY

| No 14647     | 国際協力事業団                 |  |
|--------------|-------------------------|--|
| L122<br>73.7 | 受入<br>月日584.79.25: L122 |  |
| 73.1<br>SDF  | 登録No. 19034 SDF         |  |


•

and a second to all all all and a second secon • • • ~

.

STUDY ROADS

| Study<br>Road<br>No. | Changwat                        | Origin - Destination                                | Route<br>Pages | Description<br>(Drawings) |
|----------------------|---------------------------------|-----------------------------------------------------|----------------|---------------------------|
| 6                    | Kamphaeng Phet/<br>Nakhon Sawan | Khanu Woralaksa Buri<br>- Kao Lieo - Rt. 117        | 6-1 - 6-39     | (DWG. 6-1/6-6)            |
| 8                    | Kamphaeng Phet                  | Rt. 115 (B. Thung Mahachai)<br>- B. Nong Takhian    | 8-1 - 8-24     | (DWG. 8-1/8-6)            |
| 11                   | Phichit                         | Rt. 1068<br>- Pho Prathap Chang                     | 11-1 - 11-16   | (DWG. 11-1/ )             |
| 12                   | Phichit                         | B. Wang Chik<br>- Rt. 117 (B. Pa Daeng)             | 12-1 - 12-17   | (DWG. 12-1/12-2)          |
| 14                   | Phichit/<br>Phetchabun          | Rt. 11 (B. Nong Khanak)<br>- B. Wang Pong           | 14-1 - 14-18   | (DWG. 14-1/14-3)          |
| 15                   | Phichit/<br>Phitsanulok         | B. Wang Tham<br>- Rt. 1114 (B. Tha Makham)          | 15-1 - 15-16   | (DWG. 15-1/ )             |
| 19                   | Phitsanulok                     | Phrom Phiram<br>- Rt. 11 (B. Nong Makhang)          | 19-1 - 19-17   | (DWG. 19-1/19-2)          |
| 20                   | Phitsanulok                     | Wat Bot<br>- B. Nakham                              | 20-1 - 20-18   | (DWG. 20-1/20-2)          |
| 23                   | Sukhothai                       | Rt. 12 (Muang Kao Sukhothai)<br>- Si Satchanalai    | 23-1 - 23-32   | (DWG. 23-1/23-6)          |
| 25                   | Lampang/Phrae                   | Toen<br>- Wang Chin                                 | 25-1 - 25-24   | (DWG. 25-1/25-6)          |
| 27                   | Lamphun                         | Rt. 106 (B. Mae Thoei)<br>- Thung Hua Chang         | 27-1 - 27-18   | (DWG. 27-1/27-2)          |
| 29                   | Chiang Rai                      | Rt. 110 (B. Rong Sua Ten<br>- B. Huai Khom          | 29-1 - 29-17   | (DWG. 29-1/29-2)          |
| 30                   | Chiang Rai                      | Rt. 1020 (B. Thung Ngiu)<br>- Rt. 1020 (B. Chumphu) | 30-1 - 30-24   | (DWG. 30-1/30-6)          |
| 31                   | Chiang Rai                      | Rt. 1016 (B. Kiu Phrao)<br>- Rt. 1174 (B. Kaen Tai) | 31-1 - 31-26   | (DWG. 31-1/31-7)          |



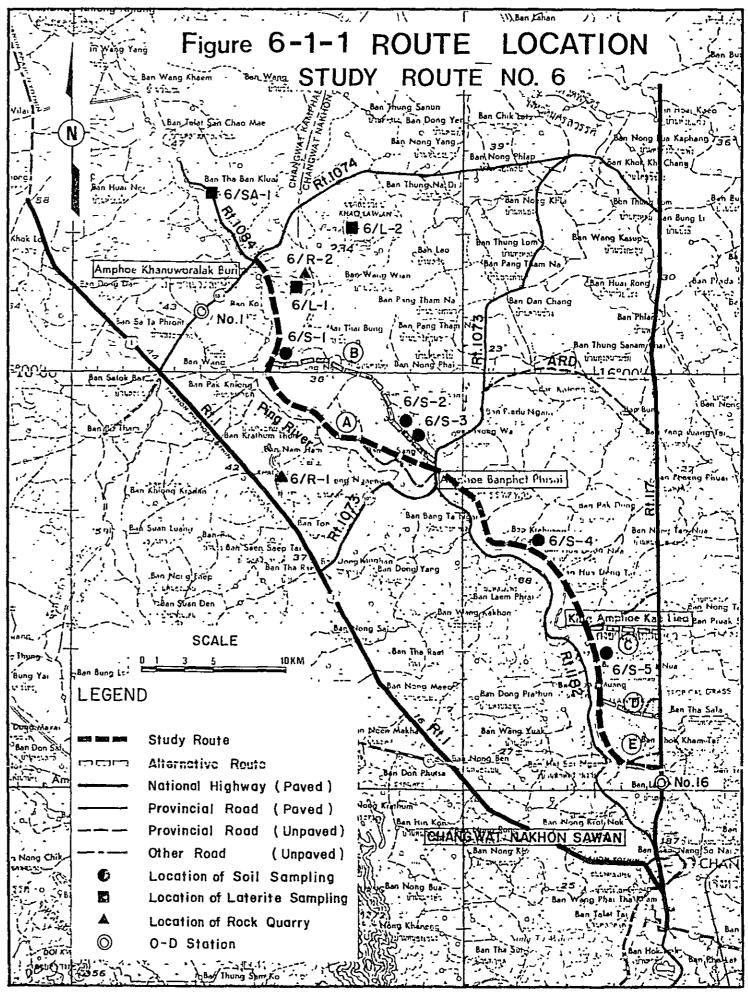


# STUDY ROUTE NO.6

Khanu Woralaksa Buri - Kao Lieo -Rt.117 (B. Don Doo) L = 46.0 Km (6-4)Changwat : Kamphaeng Phet / Nakhon Sawan

#### 1. GENERAL

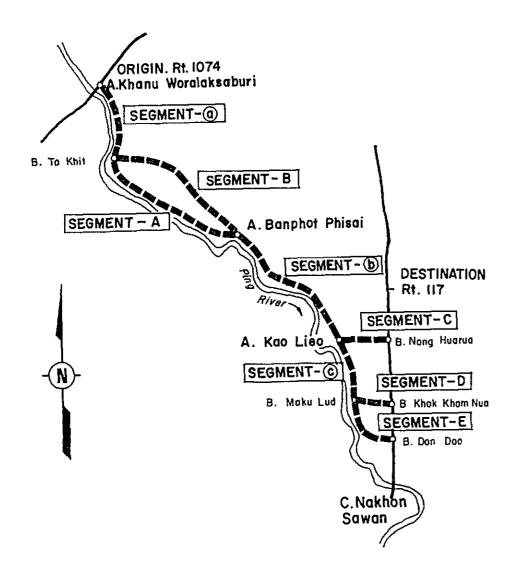
#### 1-1 Location of Route


The study route is located in the north-west of Muang Nakhon Sawan, stretching over two Changwat, Kamphaeng Phet and Nakhon Sawan. (see Figure 6-1-1)

The terrain traversed by the route is almost flat and the land is predominantly cultivated for sugarcane and rice.

The existing road begins at the intersection with route 1074 at Ban Pa Phutsa in Amphoe Khanu Woralaksa Buri, and runs generally south-east along the east bank of the Ping river. The road passes through many villages and two Amphoe, Banphot Phisai and Kao Lieo in Changwat Nakhon Sawan and continues to the end of the study route reaching the national highway Rt.117, due north of Nakhon Sawan, with total length of about 45 Kilometres.

The population in the influence area of the road is about 50 thousand, 70 percent of which settle along the east bank of the Ping.


The whole route lies along the western edge of a large alluvial basin which extends from Bangkok up to Uttaradit.



#### 1-2 Alternative Routes

In view of the availabilities of the existing roads in the area several alternative routes have come into the studies for the selection of the best route connecting A.Khanu W.Buri with Rt.117. All the alternatives were considered in the east side of the Ping with a view to raise agricultural and transportation benefits to the densely populated area. The routes considered for comparison are Segment A and B in the upper section between B.Ta Khit and A. Banphat Phisai and three Segments C,D and E in the lower section between A.Kao Lieo and Rt.117 as shown in the following illustration.

In the middle section between A.Banphot Phisai and A.Kao Lieo, no alternative routes were deemed necessary as the existing road connects those Amphoe with good alignments of short length.



Combining the Segments set out above, four alternative routes were planned for the comparative studies. The following are brief descriptions of the alternative routes.

#### Alternative Routes

| Alternative | Combination     | Route Chai                                                                      | racteristics                                                                                                     |
|-------------|-----------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| Route       | of Segment      | Segment A or B                                                                  | Segment C,D or E                                                                                                 |
| 6 - 1       | (a)-A-(b)-C     | for the benefit of<br>many residents living<br>along bad road in<br>Segment - A | the shortest access to the main road Rt. 117                                                                     |
| 6 - 2       | (a)- B - (b)- C | for the promotion of<br>agricultural develop-<br>ment around Segment-B          | Same as Route 6-1                                                                                                |
| 6 - 3 @·    | - A -(b)-(C)- D | Same as Route 6 - 1                                                             | for the benefits of people<br>along Segments © and of<br>sugar cane factory located<br>near B.Makulua            |
| 6 - 4 a)-   | - A -(b)-(c)- E | Same as Route 6 - 1                                                             | for the benefits of<br>residents along Segmentⓒ<br>and E and of sugar cane<br>factory located near B.<br>Makulua |

#### 1-3 Conditions of Existing Road

In table 6-1-1, main features of the existing roads are summarized from the results of the road inventory survey.

### Segment - (a)

The first 7.8 Km of road between the beginning point and B.Ta Khit runs in parallel with the Ping. First half is a 4-6 m wide laterite surfaced road in bad conditions and remaining section is a bad earth road of low embankment with the width of 3.5-4.0 meters. Horizontal and vertical alignments are fair in whole section.

|          |                                       |               |                                | · ··· <b>_</b>        |                | _       |                       |                         | 1                | Roadway (        | Condition     | n                |                  |               |               |              |                       |                                   |                           |
|----------|---------------------------------------|---------------|--------------------------------|-----------------------|----------------|---------|-----------------------|-------------------------|------------------|------------------|---------------|------------------|------------------|---------------|---------------|--------------|-----------------------|-----------------------------------|---------------------------|
|          |                                       |               | Route S                        | Section               |                |         |                       | Surface                 |                  | Alıgr            | nment         | Road             | Cross Se         | ection        |               | Bridge       | :                     |                                   | Overflow                  |
| Segment  | Changwat                              | Route<br>Name | Origin                         | Destination           | Length<br>(km) | Terrain | Earth<br>Lat.<br>S.T. | : Length<br>:<br>: (km) | Condi-<br>tion   | Hori-<br>zontal  | Verti-<br>cal | Width<br>(m)     | Emb. H.<br>(m)   | Cut D.<br>(m) | Nos.          | Width<br>(m) | ACC.<br>Length<br>(m) | Land Use                          | Height X<br>Length<br>(m) |
| Seg. a   | Kamphaeng<br>phet/<br>Nakhon<br>Sawan | Rural<br>road | A. Khanu-<br>Woralaksa<br>Buri | B. Ta Khit            | 7.8            | Flat    | E<br>L<br>ST.         | : 4.1<br>: 3.6<br>: 0.1 | Bad              | Fair             | Fair          | 3.5<br>\$<br>6.0 | 0<br>{<br>0.9    | -             | -             | -            | -                     | Paddy                             | 0.3x1450                  |
| Seg. A   | Nakhon<br>Sawan                       | Rural<br>road | B. Ta Kit                      | A. Banphot<br>Phisai  | 14.5           | Flat    | E<br>L<br>ST.         | : 9.5<br>: 4.2<br>: 0.8 | Bad              | Fair             | Fair          | 3.0<br>{<br>8.6  | 0.1<br>S<br>0.8  | 0<br>5<br>0.2 | -             | -            | _                     | Paddy                             | -                         |
| Seg. B   | Nakhon<br>Sawan                       | Rural<br>road | B. Ta Kit                      | A. Banphot<br>Phisai  | 15.9           | Flat    | E<br>L                | : 4.4<br>: 11.5         | Bad<br>〉<br>Good | Fair             | Good          | 3.0<br>\$<br>5.5 | 0<br>1.0         | -             | Tim-<br>ber   | 4.0          | 7.5                   | Paddy<br>Sugar-<br>cane           | 0.3x500<br>1.2x3000       |
| Seg. (b) | Nakhon<br>Sawan                       | Rural<br>road | A. Banphot<br>Phisai           | A. Kao<br>Lieo        | 14.8           | Flat    | e<br>S<br>St.         | : 4.6<br>: 9.9<br>: 0.3 | Bad              | Fair             | Good          | 4.5<br>\$<br>8.7 | 0<br>5<br>1.5    | -             | -             | -            | -                     | Sugar-<br>cane<br>Plan-<br>tation | 0.3x3440<br>0.2x40        |
| Seg. C   | Nakhon<br>Sawan                       | Rural<br>road | A. Kao<br>Lieo                 | Rt. 117               | 4.8            | Flat    | L<br>ST.              | : 4.7<br>: 0.1          | Fair             | Fair             | Good          | 4.5<br>{<br>6.0  | 0.3<br>\$<br>1.0 | -             | -             | -            | -                     | Paddy<br>Sugar-<br>Cane           | -                         |
| Seg. D   | Nakhon<br>Sawan                       | Rural<br>road | B. Makulua                     | Rt. 117               | 4.7            | Flat    | L                     | : 4.7                   | Bad              | Bađ              | Fair          | 3.0<br>{<br>10.0 | 0.2<br>()<br>0.8 | -             | -             | -            | -                     | Sugar-<br>cane                    | -                         |
| Seg. C   | Nakhon<br>Sawan                       | Rural<br>road | A. Kao<br>Lieo                 | B. Makulua            | 5.1            | Flat    | L                     | : 5.1                   | Fair             | Fair             | Fair          | 4.0<br>\$<br>7.0 | 0<br>\$<br>1.2   | -             | Con-<br>crete | 7.0          | 15.0                  | Sugar-<br>cane                    | 0.3x40                    |
| Seg. E   | Nakhon<br>Sawan                       | Rural<br>road | B. Makulua                     | Rt. 117<br>B. Don Doo | 4.5            | Flat    | L                     | : 4.5                   | Bad              | Bad<br>{<br>Fair | Fair          | 4.0<br>(<br>5.0  | 0<br>5<br>0.9    | -             | -             | -            | -                     | Sugar-<br>cane                    | 1.2x2000                  |

### Table 6-1-1 SUMMARY OF ROAD INVENTORY

#### Segment - A

The route runs parallel to the Ping, about 150-200 m away from it. As the most villages are built-up to the riverside through this section, private houses and offices are not seen beside the road. About 70% of whole length of 14.5 Km is an earth road of very bad condition. The width is 3 - 6 m. with low embankment height.

Laterite surfaced section is about 4 Km. in both ends of this segment. Surface condition of it is fairly good.

#### Segment - B

Starting at B.Ta Khit, the route proceeds easterly for 4 Kms., then gradually directs to Banphot Phisai through flat sugarcane or paddy field. About 70% of the Segment is a fair to bad laterite surfaced road of 3.0 - 5.5 m. wide.

Vertical alignment is almost flat, but curved horizontal alignment in succession.

For 3 kms. close to Banphot Phisai, existing road has suffered overflows which sometimes exceed one meter above the road surface.

#### Segment - (b)

The route runs in the same situation as in the Segment – A. Laterite surfaced section which shares 70% of this Segment is fair to bad condition. Both vetical and horizontal alignments are fair.

For 3.5 Km in the middle part of the Segment is an earth road and suffered overflows 30 cm above the road surface.

#### <u>Segment - C</u>

The existing route directs north-east from Kao Lieo to Rt-117, taking the length of 4.8 Km. The laterite road is 4.5-6.0 m wide with good alignment.

#### <u>Segment - D</u>

The existing route starting at B.Makulua to Rt.117 is as narrow as 3.0 - 4.0 m, with the low embankment and curved alignment. It makes 2 Km detour between these two points.

#### <u>Segment - (c)</u>

This existing route between Kao Lieo and B.Makulua passes through the populated villages in full length. Private houses stand close to the shoulders, resulting in the shortage of right-of-way width.

The horizontal alignment with right angle curves is not good in general.

#### Segment - E

First half of this Segment follows the bank of the Ping, then proceeds to the east direction until Rt. 117. The riverside section passes through the villages and has the problem of the lack of right-or-way width. The sugarcane refinery factory by the road will be one of the matters in widening of the road. 2. TRAFFIC

#### 2-1 Traffic Zone and Road Links

For four alternative routes, the traffic zoning was made as shown in Figure 6-2-1 to Figure 6-2-4.

The area of influence was divided into 4 traffic zones in cases of 6-1 and 6-2, while it was divided into 5 traffic zones in cases of 6-3 and 6-4.

The total population in the said area in 1981 amounts approximately to 39700, 36300, 48800 and 52200 for 6-1, 6-2, 6-3 and 6-4 alternatives, respectively. The densities in terms of population per unit Km of the proposed road length are 1010, 890, 1100 and 1130 for respective alternatives. Annual rate of population increase in the area is 1.0% in the past 3 years, which is lower than the averages of 2.2% in the Northern Region.

As the major destinations of transport demands originated in the area, four Amphoe of Muang Nakhon Sawan, Khanu Woralaksaburi, Banphot Phisai and Kao Lieo were chosen based on the O/D survey results. Characteristics of the traffic zones by route alternative are shown in Table 6-2-1, Table 6-2-3, Table 6-2-5 and Table 6-2-7, respectively.

The existing and proposed roads in the area together with surrounding roads concerned were divided into totaling 24 road links, 6 links in the proposed roads and 18 links in the surrounding roads for alternatives 6-1 and 6-2, while 7 links in the proposed route and 17 links in the surrounding roads for alternative 6-3 and 6-4.

The details by alternative are shown in Table 6-2-2, Table 6-2-4, Table 6-2-6 and Table 6-2-8, respectively.

#### 2-2 Transportation Demands

#### a) Passenger

Passenger transportation demands by O/D pair in the opening year of the project were estimated in both cases of with and without project for each alternative route. The estimated demands in terms of number of trips per day are shown in the following tables:

#### Passenger O/D (Alternative 6-1) -1987

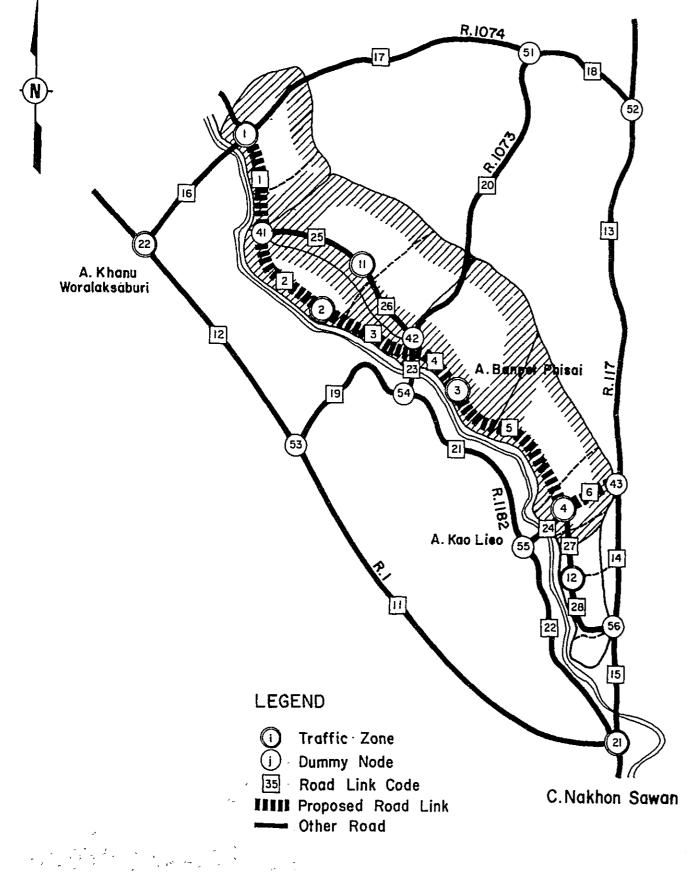
| wit | hout | proj | ect |     |     |     | (Tri | p/Day | wit | h pro | oject |     |       |     |     | (Trip | )/Day |
|-----|------|------|-----|-----|-----|-----|------|-------|-----|-------|-------|-----|-------|-----|-----|-------|-------|
| [ ] | 1    | 2    | 5   | 4   | 11  | 12  | 21   | 22    |     | 1     | . 2   | 5   | 4     | 11  | 12  | 21    | 22    |
| 1   | 0    | 166  | 268 | 132 | 131 | 0   | 0    |       | 1   | 0     | 466   | E43 | • 282 | 178 | 0   | 0     |       |
| 2   | O    | 0    | 395 | 146 | 0   | 62  | 197  | 213   | 2   | lο    | 0     | 762 | 471   | 0   | 194 | 471   | 503   |
| 3   | Q    | 0    | 0   | 687 | 384 | 312 | 467  | 233   | 3   | 0     | 0     | 0   | 950   | 385 | 479 | 616   | 451   |
| 4   | 0    | 0    | 0   | 0   | 102 | 0   | 1021 | 171   | 4   | 0     | 0     | 0   | 0     | 157 | 0   | 1564  | 286   |
| 11  | 0    | 0    | 0   | 0   | 0   | 54  | 122  | 150   | 11  | 0     | - 0   | 0   | O     | 0   | 74  | 187   | 185   |
| 12  | 0    | 0    | 0   | 0   | 0   | 0   | 0    | 145   | 12  |       | 0     | ٥   | 0     | Q   | 0   | 0     | 168   |
| 21  | 0    | 0    | D   | 0   | 0   | 0   | 0    | Û     | 21  | 0     | D     | 0   | 0     | 0   | Q   | G     | ១     |
| 22  | O    | 0    | 0   | 0   | ٥   | 0   | O    | 0     | 22  | 0     | 0     | 0   | ១     | 0   | 0   | 0     | G     |

#### Passenger O/D (Alternative 6-2) -1987

| with  | nout | pro      | ject |     | -      |     | (Tri   | p/Day) | with | i pro    | ject     |       |     |     | (   | Trip | /Day) |
|-------|------|----------|------|-----|--------|-----|--------|--------|------|----------|----------|-------|-----|-----|-----|------|-------|
|       | 1    | 2        | 3    | 4   | 11     | 12  | 21     | 22     |      | 1        | 2        | 3     | 4   | 11  | 12  | 21   | 22    |
| 1     | 0    | 157      | 268  | 132 | 146    | 0   | 0      | 0.     | 1    | 0        | 284      | 599 - | 269 | 180 | - O | 0    | 0     |
| 1 2   | Ō    | <u> </u> | 463  | 123 | D      | 65  | 147    | 181    | 2    | 0        | 0        | 463   | 278 | 0   | 117 | 282  | 294   |
| 1 - 1 | ŏ    | ō        | 0    | 687 | 351    | 312 | 467    | 233    | 3    | ā        | ō        | 0     | 950 | 377 | 479 | 818  | 430   |
| Ă     | ō    | ŏ        | ū    | 0   | 129    | - 0 | 1021   | 171 .  | 4    | l ō      | Ō        | 0     | 0   | 178 | 0   | 1564 | 276   |
|       | ő    | ŏ        | õ    | õ   |        | 73  | 173    | 185    | 11   | Ō        | õ        | ß     | Ó   | 0   | 94  | 247  | 220   |
| 11    | 0    | 0        | ŭ    | ň   | õ      | ័ព  | ិត     | 145    | 12   | Ιŏ       | ň        | ã     | õ   | Ō   | 0   | 0    | 164   |
| 12    | _    | 0        | 0    | 0   | D<br>D | 0   | 6      | , ""Ď  | 21   | l ŏ      | ă        | ō     | ñ   | ō   | 0   | 0    | 0     |
| 21    | 0    | U<br>0   | U    | -   | Ö      | •   | n<br>0 | ñ      |      |          | 0        | n n   | ň   | ភ័  | õ   | ō    | 0     |
| 22    | 0    | U        | U    | 0   | U      | U   |        |        | _22  | <u> </u> | <u> </u> |       |     |     |     |      |       |

-----

Table 6-2-1 ZONE CHARACTERISTICS (6-1)


| Traf. | Rela       | itive Administra                         | t. Div.<br>Tambon              | % of<br>Popul.<br>in<br>Traf. | Popul.<br>in<br>1981 | Past Trend<br>of<br>Popul. | Annual<br>Rate of<br>Increase | Projected<br>in 19 | Population<br>187 |
|-------|------------|------------------------------------------|--------------------------------|-------------------------------|----------------------|----------------------------|-------------------------------|--------------------|-------------------|
| Zone  | Char       | ngwat Amphoe                             | Code                           | Zone                          | (10 <sup>3</sup> )   |                            | 1981-1987                     | Generation         | Attraction        |
| 1     | K.P<br>N.S | Khanu<br>Woralaksabiri<br>Banphot Phisai | 150404(1<br>150404(2<br>010307 |                               | 5.5<br>3.7<br>1.4    | <u> </u>                   |                               | <u></u>            |                   |
|       |            |                                          | Total                          |                               | 10.6                 | 2.0                        | 1.7                           | 11.7               | 11.7              |
| 2     | N.S        | Banphot<br>Phisai                        | 010307<br>010308               | 55<br>65                      | 5.2<br>3.8           |                            |                               |                    |                   |
|       |            |                                          | Total                          |                               | 9.0                  | 1.5                        | 1.4                           | 9.7                | 9,7               |
| 3     | _N_S_      | Banphot Phisai                           | 010302                         | 88                            | _12.1                | 0.3                        | _0_7                          | 12.5               | _ 91.0            |
| 4     | N.S        | Kad Leio                                 | 010401<br>010402<br>010405     | 10<br>80<br>76                | 0.5<br>4.9<br>6.3    |                            |                               |                    |                   |
|       |            |                                          | Total                          |                               | 11.7                 | 0.6                        | 0.7                           | 12.1               | 32.2              |
| 11    | N.S        | Banphot<br>Phisai                        | 010307<br>010308               | 30<br>35                      | 2.8                  |                            |                               |                    |                   |
|       |            |                                          | Total                          |                               | 4.8                  | 0.7                        | 0.7                           | 4.9                | 4.9               |
| 12    | N.S        | Sawan                                    | 010109<br>010110<br>010401     | 41<br>50<br>60                | 2.0<br>4.2<br>2.9    |                            |                               |                    |                   |
|       |            |                                          | Total                          |                               | 9.1                  | 0.6                        | 0.7                           | 9.6                | 9.6               |
| 21    | N.S        |                                          | 010000                         | 100                           | 981.4                | 1.2                        | 1.1                           |                    | 1048.0            |
| 22    | K.P        | Khanu Worala                             | 150400                         | 100                           | 111.0                | 2.0                        | 1.7                           | •                  | 122.4             |

#### Table 6-2-2 ROAD LINK CHARACTERISTICS (6-1)

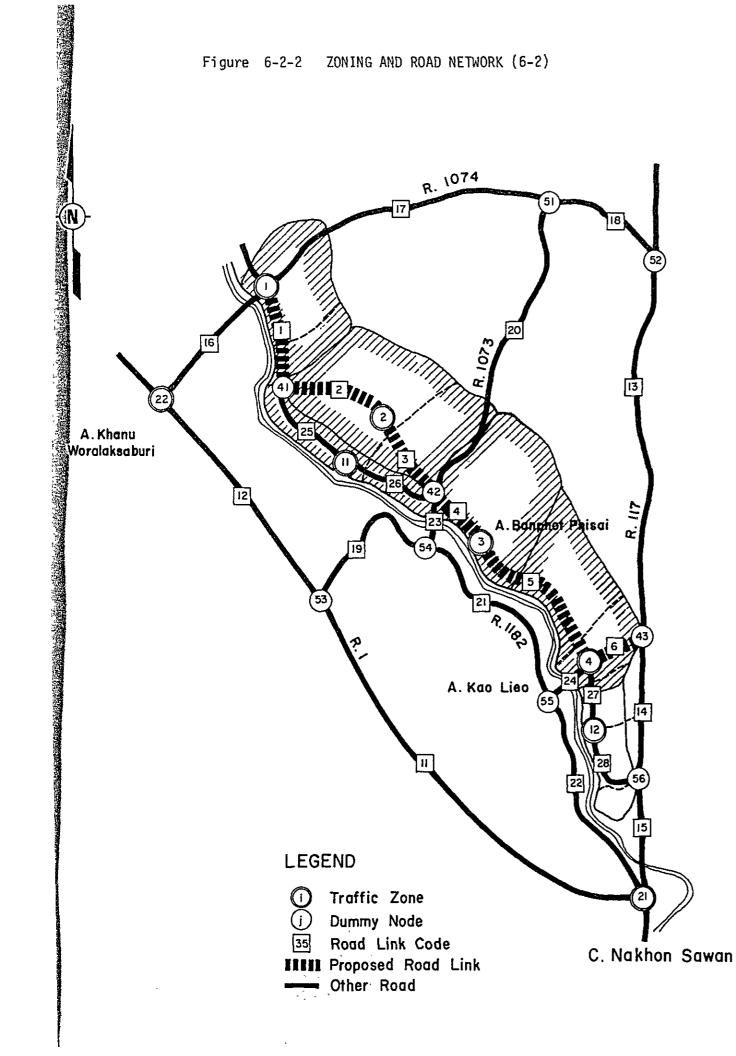
| NÖ | SN       | EN  | LÖ   | GOD  | GÖR | LW          | GWD | GWR | T0   | TW            | REMARKS      |
|----|----------|-----|------|------|-----|-------------|-----|-----|------|---------------|--------------|
| 1  | 1        | 41  | 7.7  | 3    | 11  | 7.7         | 4   | 4   | 11.Б | Б.Б           | Rural        |
| 2  | 2        | 41  | 7.2  | 13   | 15  | 7.2         | 4   | 4   | 21.5 | б. 2          | Rural        |
| 23 | (4 (N (N | 42  | 7.3  | . 13 | 15  | б.1         | . 4 | 4   | 21.8 | 5.2           | Rural        |
| 4  | 3        | 42  | 2.0  | ິຮ   | 11  | 2.0         | 4   | 4   | 3.0  | 1.7           | Rural        |
| 5  | 3        | 4   | 12.8 | 8    | 11  | 12.8        | 4   | 4   | 19.2 | 11.0          | Rural        |
| Б  | 4        | 43_ | 4.8  | S    | 11  | 3.7         | 4   | 4   | 7.2  | 3.2           | _Rural       |
| 11 | 21       | 53  | 31.0 | 1    | 1   | 31.0        | 1   | 1   | 23.8 | 23.8          |              |
| 12 | 22       | 53  | 16.9 | 1    | 1   | 16.9        | 1   | 1   | 13.0 | 13.0          | R.1          |
| 13 | 43       | 52  | 25.0 | 1    | 1   | 27.8        | 1   | 1   | 19.2 | 21.4          | R.117        |
| 14 | 43       | 56  | 10.5 | 1    | 1   | 7.7         | 1   | 1   | 2.1  | 5.9           | R.117        |
| 15 | 21       | 55  | 9.0  | 1    | 1   | 9.0         | 1   | 1   | 6.9  | 6.9           | R.117        |
| 15 | 1        | 22  | 10.5 | 4    | 4   | 10.5        | 4   | 4   | 9,0  | 9.0           | R.1074       |
| 17 | 1        | 51  | 23.0 | 4    | 4   | 23.0        | 4   | 4   | 19.7 | 19.7          | R.1074 (OECI |
| 18 | 51       | 52  | 10.0 | 4    | 4   | 10.0        | 4   | 4   | 8.6  | 8.6           | R.1074       |
| 19 | 53       | 54  | 11.9 | 4    | 4   | 11.9        | 4   | 4   | 10.2 | 10.2          | R.1073       |
| 20 | 42       | 51  | 24.0 | 4    | 4   | 24.0        | 4   | 4   | 20.6 | 2 <b>0.</b> 6 | R.1073       |
| 21 | 54       |     | 15.5 | 4    | 4   | 15.5        | 4   | 4   | 13.3 | 13.3          | R,1182 (OECF |
| 22 | 21       | 55  | 20.0 | 4    | 4   | 20.0        | 4   | 4   | 17.1 | 17.1          | P.1182 (OECF |
| 23 | 42       | 54  | 5.5  | 16   | 16  | 5.5         | 1E  | 16  | 30,0 | 30.0          | Terry        |
| 24 | 4        | 55  | 5.5  | 16   | 16  | 5.5         | 16  | 16  | 30.0 | 30.0          | Ferry        |
| 25 | 11       | 41  | 8.0  | 3    | 11  | 8.0         | ន   | 11  | 12.0 | 12.0          | Rural        |
| 26 | 11       | 42  | S.D  | 8    | 11  | 8.0         | 8   | 11  | 12.0 | 12.0          | Rural        |
| 27 | 4        | 12  | 5.1  | 9    | 12  | 5.1         | 9   | 12  | 10.3 | 10.3          | Rural        |
| 28 | 12       | 56  | E. 1 | 9    | 12  | <b>6.</b> 1 | Э   | 12  | 12.3 | 12.3          | Rural        |

SY Start hode, EN End Hode, LO Link Length (W), GOD. Road Grade in Dry Season (W), GDR Road Grade in Rainy Season (W), LH: Link Length (W), GVD Road Grade in Dry Season (H), GUR- Road Grade in Rainy Season (W), TO Time (W), TH Time (W) Note





6-6


#### Table 6-2-3 ZONE CHARACTERISTICS (6-2)

| Traf. | Relat         | ive Administrat               | . Div.<br>Tambon           | % of<br>Popul.<br>In<br>Traf. | Popul.<br>10<br>1981 | Past Trend<br>of<br>Popul. | Annual<br>Rate of<br>Increase | Projected Popula<br>in 1987 | tion  |
|-------|---------------|-------------------------------|----------------------------|-------------------------------|----------------------|----------------------------|-------------------------------|-----------------------------|-------|
| Zone  | Chang         | wat Amphoe                    | Code                       | Zone                          | (10 <sup>3</sup> )   | Increase                   | 1981-1987                     | Generation Attra            | ction |
| 1     | K.P<br>N.S    | Khanu Worala<br>Bonphot Phisa | 150404(                    | 2) 40                         | 5,5<br>3.7<br>1.4    |                            |                               |                             |       |
|       |               |                               | Total                      |                               | 10.6                 | 2.0                        | 1.7                           | 11.7 $11.7$                 | 7     |
| 2     | N.S           | Bonphot<br>Phisai             | 010307<br>010308           | 35<br>_ 40                    | 3.3<br>2_3           |                            |                               |                             |       |
|       |               |                               | Total                      |                               | 5.6                  | 1.2                        | 1.1                           | 5.9 5.                      | 9     |
| _3    | _N <u>.</u> 5 | Bonphot Phisai                | i <u>01030</u> 2           | 88                            | _12.1                | 0.3                        | 0.7                           | 12.591.                     | 0     |
| 4     | N.S           | Kao Lieo                      | 010401<br>010402<br>010405 | 10<br>80<br>76                | 0.5<br>4.9<br>6.3    |                            |                               |                             |       |
|       |               |                               | Total                      |                               | 11.7                 | 0.6                        | 0.7                           | 12.1 32.                    | 2     |
| 11    | N.S           | Babphot<br>Phisai             | 010307<br>010308           | 50<br>60                      | 4.7<br>3.5           |                            |                               |                             |       |
|       |               |                               | Total                      | : .                           | 8.2                  | 0.9                        | 0.9                           | 8.5 8.                      | 5     |
| 12    | N.S           | Sawan                         | 010109<br>010110<br>010401 | 41<br>50<br>60                | 2.0<br>4.2<br>2.9    |                            |                               |                             | _     |
|       |               |                               | Total                      |                               | 9.1                  | 0.6                        | 0.7                           | 9.6 9.1                     | 6     |
| 21    | N.S           |                               | 01000                      | 100                           | 981.4                | 1.2                        | 1.1                           | - 1048.0                    | D     |
| 22    | N.S           | Khanu Worala                  | 15040                      | 100                           | 111.0                | 2.0                        | 1,7                           | - 122.4                     | 4     |

#### Table 6-2-4 ROAD LINK CHARACTERISTICS (6-2)

| NÖ     | SN | EN   | 10   | GQD | GØR | LW   | GWD | GWR | τo   | TW     | REMARKS       |
|--------|----|------|------|-----|-----|------|-----|-----|------|--------|---------------|
| 1      | i  | 41   | 7.7  | 8   | 11  | 7.7  | 4   | 4   | 11.E | Е.Б    | Kural         |
| 2<br>3 | 2  | 41   | 8.D  | 8   | 11  | 8.0  | 4   | 4   | 12.0 | 6.9    | Rural         |
| 3      | 23 | 42   | 8.0  | 8   | 11  | 6.6  | 4   | 4   | 12.0 | 5.7    | Rural         |
| 4      | 3  | 42   | 2.0  | 3   | 11  | 2.0  | 4   | 4   | 3.0  | 1.7    | Rural         |
| 5      | 3  | 4    | 12.8 | 8   | 11  | 12.9 | 4   | 4   | 19.2 | 11.0   | Rural         |
| 6      | 4  | _ 43 | 4.8  | 8   | 11  | 3.7  | 4   | 4_  | 7.2  | 3.2    | Rural         |
| 11     | 21 |      | 31.0 | 1   | 1   | 31.0 | 1   | -1  | 23.8 | -23.8- | R.I           |
| 12     | 22 |      | 16.9 | 1   | 1   | 16.9 | 1   | 1   | 13.0 | 13.0   | R.1           |
| 13     | 43 |      | 25.0 | 1   | 1   | 27.8 | 1   | 1   | 19.2 | 21.4   | R,117         |
| 14     | 43 | 56   | 10.5 | 1   | 1   | 7.7  | 1   | 1   | S. 1 | 5.9    | R.117         |
| 15     | 21 | 56   | 9.0  | 1   | 1   | 9. D | 1   | 1   | ε. 9 | E. 9   | R.117         |
| 16     | 1  | -    |      | 4   | 4   | 10.5 | 4   | 4   | 9.0  | 9.0    | R.1074        |
| 17     | 1  | 51   | 23.0 | 4   | 4   | 23.0 | 4   | 4   | 19.7 | 19.7   | R.1074 (OECF) |
| 19     | 51 | 52   | 10.0 | 4   | 4   | 10.0 | 4   | 4   | S. E | ε.ε    | R.1074        |
| 19     | 53 | 54   | 11.9 | 4   | 4   | 11.9 | 4   | 4   | 10.2 | 10.2   | R,1073        |
| 20     | 42 | 51   | 24.0 | • 4 | 4   | 24.0 | 4   | 4   | 20.6 | 20.6   | R.1073        |
| 21     | 54 | 55   | 15.5 | 4   | 4   |      | 4   | 4   | 13.3 | 13.3   | R.1182 (OECF) |
| 22     | 21 | 55   | 20.0 | 4   | 4   |      | 4   | 4   | 17.1 | 17.1   | R.1182 (OECF) |
| 23     | 42 | 54   | 5.5  | 15  | 1E  | 5.5  | 1Ë  | 15  | 30.0 | 30.0   | Ferry         |
| 24     | 4  | 55   | 5.5  | 15  | 15  | 5.5  | 16  | 15  | 30.0 | 30.0   | Ferry         |
| 25     | 11 | 41   | 7.2  | 13  | 15  | 7.2  | 13  | 15  | 21.5 | 21.5   | Rural         |
| 26     | 11 | 42   | 7.3  | 13  | 15  | 7.3  | 13  | 15  | 21.8 | 21.8   | Rural         |
| 27     | 4  | 12   | 5.1  | 9   | 12  | 5.1  | 9   | 12  | 10.3 | 10.3   | Rural         |
| 28     | 12 | SE   | E. 1 | 9   | 12  | Б.1  | 9   | 12  | 12.3 | 12.3   | Rural         |

Note SH Start Node, EN. End Node, LO. Link Length (₩), GOD- Road Grade in Ory Season (₩), GOR Road Grade in Rainy Season (₩), LW- Link Length (₩), GVD Road Grade in Dry Season (₩), GNR- Road Grade in Rainy Season (₩), ID- Time (₩), YH- Time (₩)



6-7

#### Table 6-2-5 ZONE CHARACTERISTICS (6-3)

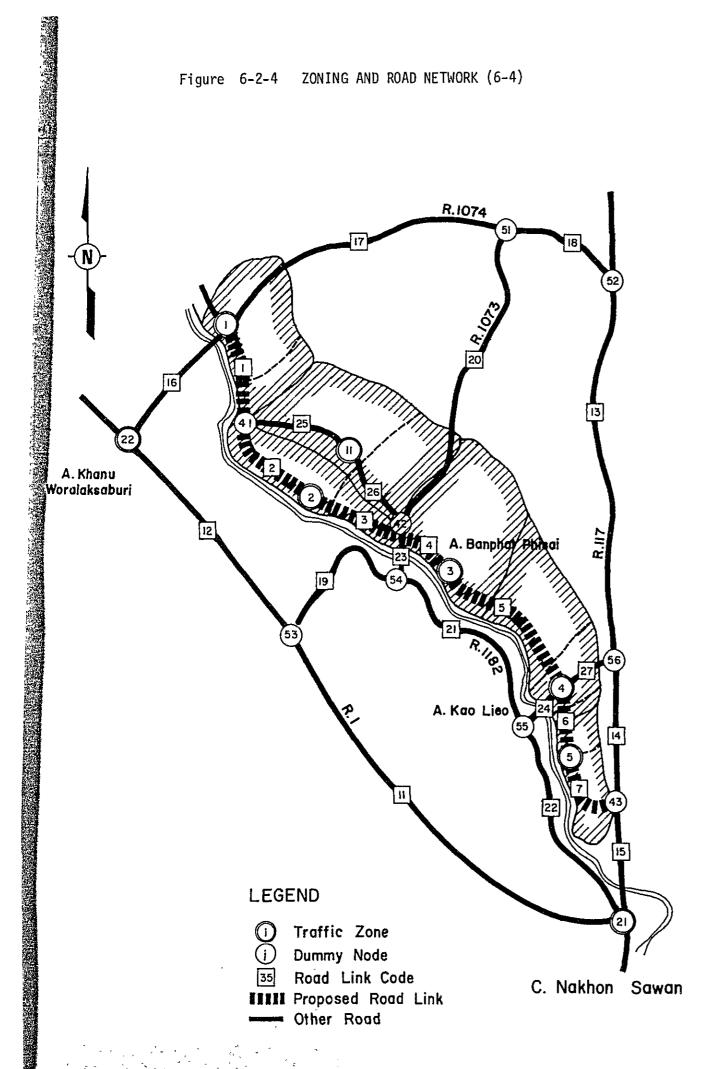
| • 6           | <u>Relative Administra</u>                      |                              | % of<br>Popul.<br>in | Popul.<br>in<br>1981 | Past Trend<br>of<br>Popul. | Annual<br>Rate of<br>Increase | Projected               | Population<br>987 |
|---------------|-------------------------------------------------|------------------------------|----------------------|----------------------|----------------------------|-------------------------------|-------------------------|-------------------|
| Traf.<br>Zone | Changwat Amphoe                                 | Tambon<br>Code               | Traf.<br>Zone        | (10 <sup>3</sup> )   | Increase                   | 1981-1987                     | Generatio               | n Attraction      |
| 1             | K.P Khanu<br>Woralasaburi<br>N.S Banphot Phisai | 150404(<br>150404(<br>010307 |                      | 5.5<br>3.7<br>1.4    |                            |                               |                         |                   |
|               |                                                 | Total                        | : .                  | 10.6                 | 2.0                        | 1.7                           | 11.7                    | 11.7              |
| 2             | Banphot<br>N.S Phisai                           | 010307<br>010308             | 55<br>_ 65           | 5.2<br>3.8           |                            |                               | - <b>-</b> - <b>-</b> - |                   |
|               |                                                 | Total                        | : .                  | _ <u>9.0</u> _       | 1.5                        | 1.4                           | 9.7                     | 9.7               |
| 3             | N.S Banphot Phisai                              | 010302                       | 88                   | 12.1                 | 0.3                        | 0.7                           | 12.5                    | 91.0              |
| 4             | Kao Lieo<br>N.S                                 | 010401<br>010402<br>010405   | 10<br>80<br>76       | 0.5<br>4.9<br>6.3    |                            |                               |                         |                   |
|               |                                                 | Total                        |                      | 11.7                 | 0.6                        | 0.7                           | 12.1                    | 32.2              |
| 5             | M.Nakhon Sawan<br>N.S<br>Kao Lieo               | 010109<br>010110<br>010401   | 41<br>50<br>60       | 2.0<br>4.2<br>2.9    |                            | - #                           |                         |                   |
|               |                                                 | Total                        | -                    | 9,1                  | 0.6                        | 0.7                           | 9.6                     | 9.6               |
| 11            | N.S Banpgit<br>Phisai                           | 010307                       | 30<br>35             | 2.8                  |                            |                               |                         |                   |
|               |                                                 | Total                        |                      | 4.8                  | 0.7                        | 0.7                           | 4.9                     | 4.9               |
| 21            | N.S -                                           | 010000                       | 100                  | 981.4                | 1.2                        | 1.1                           |                         | 1048.0            |
| 22            | K.P Khanu Worala                                | 150400                       | 100                  | 111.0                | 2.0                        | 1.7                           | -                       | 122.4             |

| NØ     | SN | EN | LÜ    | GOD | GOR | LW   | GWD | GWR | rα    | TW    | REMARKS | i       |
|--------|----|----|-------|-----|-----|------|-----|-----|-------|-------|---------|---------|
| 1      | 1  | 41 | 7.7   | 8   | 11  | 7.7  | 4   | 4   | 11.Б  | ε.ε   | Rural   |         |
| 2<br>3 | 2  | 41 | 7.2   | 13  | ទេ  | 7.2  | 4   | 4   | 21.5  | 6.2   | Rural   |         |
| 3      | 2  | 42 | 7.3   | 13  | 15  | ε.1  | 4   | 4   | 21.8  | 5.2   | Rural   |         |
| 4      | 3  | 42 | 2.0   | 8   | 11  | 2.0  | 4   | 4   | 3.0   | 1.7   | Rural   |         |
| 5      | З  | 4  | 12.8  | 8   | 11  | 12.8 | 4   | 4   | 19.2  | 11.0  | Rural   |         |
| 3      | 4  | 5  | 5.1   | 9   | 12  | 5.7  | 4   | 4   | 10.3  | 4.9   | Rural   |         |
| 7      | 5  | 43 | 4.7   | . 9 | 12  | 2,9  | 4   | 4   | 9.5   | 2.5   | Rural   |         |
| 11     | 21 | 53 | 31.0  | 1   | 1   | 31.0 | 1   | 1   | 23.8  | 23.8  | R.1     |         |
| 12     | 22 | 53 | 16.9  | 1   | 1   | 16.9 | 1   | 1   | 13.0  | 13.0  | R.1     |         |
| 13     | 52 | 56 | 25.0  | 1   | 1   | 25.0 | 1   | 1   | 19.2  | 19.2  | R.117   |         |
| 14     | 43 | 55 | 7.3   | 1   | 1   | 8.3  | 1   | 1   | 5.E   | Е.4   | R.117   |         |
| 15     | 21 | 43 | 12.2  | 1   | 1   | 11.2 | 1   | 1   | 9.4   | 8.6   | R.117   |         |
| 1E     | 1  | 22 | 10.5  | 4   | 4   | 10.5 | 4   | 4   | .9 O  | 9.0   | R,1074  |         |
| 17     | 1  | 51 | 23.0  | 4   | 4   | 23.0 | 4   | 4   | 19.7  | 19.7  | R.1074  | (OECI.) |
| 18     | 51 | 52 | 10.0  | 4   | 4   | 10.0 | 4   | 4   | S. 6  | 8.6   | R.1074  |         |
| 19     | 53 | 54 | 11.9. | 4   | 4   | 11.9 | 4   | 4   | 10.2  | 10.2  | R.1073  |         |
| 20     | 42 | 51 | 24.0  | 4   | 4   | 24.0 | 4   | 4   | 20.5  | 20.6  | R.1073  |         |
| 21     | 54 | 55 | 15.5  | 4   | 4   | 15.5 | 4   | 4   | 13.3  | 13.3  | R.1184  |         |
| 22     | 21 | 55 | 20.0  | 4   | 4   | 20.0 | 4   | 4   | 17.1  | 17.1  | R.1184  |         |
| 23     | 42 | 54 | 5.5   | 16  | 18  | 5.5  | 16  | 15  | 30.0  | 30. 0 | Ferry   |         |
| 24     | 4  | 55 | 5.5   | 1E  | 16  | 5.5  | 15  | 16  | 30.0  | 30, 0 | Ferry   |         |
| 25     | 11 | 41 | ຮ.ວ   | 3   | 11  | 3.0  | 8   | 11  | 12. D | 12.0  | Rural   |         |
| 26     | 11 | 42 | S. O  | 3   | 11  | 6. O | 3   | 11  | 12.0  | 12.0  | Rural   |         |
| 27     | 4  | SE | 4.3   |     | 11  | 4.8  | 3   | 11  | 7.2   | 7.2   | Rural   |         |

SH Start Mode, EN End Node, EO Link Length (W), GOO Road Grade in Dry Season (W), GOR Road Grade in Rainy Season (W), LW- Link Length (W), GWD: Road Grade in Dry Season (W), GWR Road Grade in Rainy Season (W), IO Tire (W), TW- Time (W)



6-8


#### Table 6-2-7 ZONE CHARACTERISTICS (6-4)

| Traf. | <u>Rela</u> | tive Administra                          | <u>t. Div.</u><br>Tambon   | % of<br>Popul.<br>In<br>Traf. | Popul.<br>in<br>1981 | Past Trend<br>of<br>Popul.  | Annual<br>Rate of<br>Increase | Projected  |            |
|-------|-------------|------------------------------------------|----------------------------|-------------------------------|----------------------|-----------------------------|-------------------------------|------------|------------|
| Zone  | Chang       | gwat Amphoe                              | Cade                       | Zone                          | (10 <sup>3</sup> )   | Increase                    | 1981-1987                     | Generation | Attraction |
| 1     |             | Khanu<br>Woralaksaburi<br>Banphot Phisai |                            |                               | 5.5<br>3.7<br>1.4    |                             |                               |            |            |
|       |             | 560pace 111541                           | Total                      |                               | 10.6                 | 2.0                         | 1.7                           | 11.7       | 11.7       |
| 2     | N.S         | Banphot Phisai                           | 010307<br>010308           | 55<br>65                      | 5.2<br>3.8           |                             |                               |            |            |
|       |             |                                          | Total                      |                               | 9.0                  | 1.5                         | 1.4                           | 9.7        | 9.7        |
| _ 3   | <u>N.S</u>  | Banphot Phisai                           | 010302                     | _ 33                          | 12.1                 | 0.3                         | 0.7                           | 12.5       | 91.0       |
| 4     | N.S         | Kao Lieo                                 | 010401<br>010402<br>010405 | 10<br>60<br>76                | 0.5<br>4.9<br>6.3    |                             |                               |            |            |
|       |             |                                          | Total                      |                               | 11.7                 | 0.6                         | _0.7                          | 12,1       | 32.2       |
| 5     | N.S         |                                          | 010109<br>010110<br>010401 | 60<br>80<br>60                | 2.9<br>6.7<br>2.9    |                             |                               |            |            |
|       |             |                                          | Total                      |                               | 12.5                 | 0.6                         | 0.7                           | 13.1       | 13.1       |
| 11    | N.S         | Banphot Phisai                           | 010307<br>010308           | 30<br>35                      | 2.8<br>2.0           |                             |                               |            |            |
|       |             |                                          | Total                      | : .                           | 4.8                  | 0.7                         | 0.7                           | 4.9        | 4.9        |
| 21    | <u>N.S</u>  | Nakhon Sawan ·                           | 010000                     | 100                           | <u>981.4</u>         | <sup>1</sup> . <sup>2</sup> | 1_1                           |            | 1048.0     |
| 22    | K.P         | Khanu Worala                             | 150400                     | 100                           | 111.0                | 2.0                         | 1.7                           | -          | 122.4      |

#### Table 6-2-8 ROAD LINK CHARACTERISTICS (6-4)

|   | NO | SN | EN | LÖ    | <b>600</b> | GØR | LW   | GWD | GWR | TO   | тω   | REMARKS       |
|---|----|----|----|-------|------------|-----|------|-----|-----|------|------|---------------|
|   | ĩ  | 1  | 41 | 7.7   | 8          | 11  | 7.7  | 4   | 4   | 11.6 | 6.6  | Rural         |
|   |    |    | 41 | 7.2   | 13         | 15  | 7.2  | 4   | 4   | 21.5 | 6.2  | Rural         |
|   | 3  | 2  | 42 | 7.3   | 13         | 15  | Б.1  | 4   | 4.  | 21.8 | 5.2  | Rural         |
|   | 4  | 3  | 42 | 2.0   | 3          | 11  | 2.0  | 4   | 4   | 3.0  | 1.7  | Rural         |
|   | 5  | 3  | 4  | 12.8  | S          | 11  | 12.8 | 4   | 4   | 19.2 | 11.0 | Rural         |
|   | Б  | 4  | 5  | 5.1   | 9          | 12  | 5.7  | 4   | 4   | 10.3 | 4.9  | Rural         |
|   | 7  | 5  | 43 | E.1   | 9          | 12  | 4.5  | 4   | 4_  | 12.3 | 3.9  | Rural         |
|   | 11 | 21 | 53 | 31.0  | 1          | 1   | 31.0 | 1   | 1   | 23.8 | 23.8 | R.1           |
|   | 12 | 22 | 53 | 16.9  | 1          | 1   | 16.9 | 1   | 1   | 13.0 | 13.0 | R.1           |
|   | 13 | 52 | 56 | 25. D | 1          | 1   | 25.0 | 1   | 1   | 19.2 | 19.2 | R.117         |
|   | 14 | 43 | 5E | 10.5  | 1          | 1   | 11.5 | 1   | 1   | 2. i | 8.8  | R.117         |
|   | 15 | 21 | 43 | 9.0   | 1          | 1   | ε. ο | 1   | 1   | 6.9  | E.2  | R.117         |
|   | 16 | 1  | 22 | 10. ទ | 4          | 4   | 10.5 | 4   | 4   | 9.0  | 9.0  | R.1074        |
|   | 17 | 1  | 51 | 23.0  | 4          | 4   | 23.8 | 4   | 4   | 19.7 | 19.7 | R.1074 (OECF) |
|   | 18 | 51 | 52 | 10.0  | 4          | 4   | 10.0 | 4   | 4   | 8.6  | 5.6  | R.1074        |
|   | 19 | 53 | 54 | 11.9  | 4          | 4   | 11.9 | 4   | 4   | 10.2 | 10.2 | R.1073        |
|   | 20 | 42 | 51 | 24.01 | 4          | 4   | 24.0 | 4   | 4   | 20.E | 20.E | R.1073        |
|   | 21 | 54 | 55 | 15.5  | 4          | 4   | 15.5 | 4   | 4   | 13.3 | 13.3 | R.1182 (OECF) |
| • | 22 | 21 | 55 | 20.0  | 4          | 4   | 20.0 | 4   | 4   | 17.1 | 17.1 | R.1182 (OECF) |
|   | 23 | 42 | 54 | 5.5   | 16         | 16  | 5.5  | 16  | 16  | 30.0 | 30.0 | Ferry         |
|   | 24 | 4  | 55 | 5.5   | 16         | 15  | 5.5  | 16  | 16  | 30.0 | 30.0 | Ferry         |
|   | 25 | 11 | 41 | ε. α  | 3          | 11  | 8.0  | ទ   | 11  | 12.0 | 12.0 | Rural         |
|   | 26 | 11 | 42 | ε. Ο  | ε          | 11  | ε.ο  | 8   | 11  | 12.0 | 12.0 | Rural         |
|   | 27 | 4  | 55 | 4.8   | 8          | 11  | 4.2  | 2   | -11 | 7.2  | 7.2  | Rural         |

S'i Start Node, ER End Node, ED Link Length (W), GOD Road Grade in Dry Season (W), GOR Road Grade in Rainy Season (W), LW Link Length (W), GWD Read Grade in Gry Season (W), GUR- Road Grade in Rainy Season (W), IO Time (W), TW Time (W), Note



#### Passenger O/D (Alternative 6-3)-1987

| wj th          | nout   | proje                            | ect                         |                                                |                                       |                                       | (Trij                                       | p/Day)                                                   | ) 1                      | with                          | pro                             | ject                            |                              |                                 |                             | (                               | Trip/                               | 'Day)                          |
|----------------|--------|----------------------------------|-----------------------------|------------------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------------|----------------------------------------------------------|--------------------------|-------------------------------|---------------------------------|---------------------------------|------------------------------|---------------------------------|-----------------------------|---------------------------------|-------------------------------------|--------------------------------|
|                | 1      | 2                                | 3                           | ۵                                              | 5                                     | 11                                    | 21                                          | 22                                                       | ļ                        |                               | 1                               | 2                               | <u> </u>                     | 4                               | 5                           | 11                              | 21                                  | 22                             |
|                | 0      | 166<br>0                         | 268<br>395                  | 132<br>146                                     | 0<br>82                               | 131                                   | 0<br>197                                    | 213                                                      |                          | 1                             | 0                               | 466<br>0                        | 643<br>762                   | 282<br>471                      | 0<br>256                    | 172                             | 471                                 | 503                            |
|                | ប      | D                                | Ð                           | E67                                            | 312                                   | 384                                   | 467                                         | 233                                                      |                          | 2                             | Û                               | D                               | O                            | 950                             | 701                         | 365<br>157                      | E19<br>1588                         | 451<br>295                     |
| × 4            | 0      | 0<br>D                           | 0<br>0                      | 0                                              | 332<br>0                              | 102<br>54                             | 1021                                        | 171<br>146                                               |                          | 4<br>5                        | 0                               | 0<br>0                          | 0<br>0                       | 0<br>0                          | 588<br>0                    |                                 | 1752                                | 195                            |
|                | D      | D                                | 0                           | D                                              | D                                     | 0                                     | 122                                         | 150                                                      |                          | 11<br>21                      | 0                               | 0<br>0                          | 0<br>0                       | 0<br>0                          | 0<br>0                      | 0                               | 183<br>0                            | 1 E E                          |
| 21<br>22<br>22 | D<br>D | 0<br>0                           | 0                           | 0                                              | 0                                     | 0<br>0                                | 0<br>0                                      | 0<br>0                                                   |                          | 22                            | ŭ                               | Ď                               | õ                            | ŏ                               | ă                           | ō                               | ŏ                                   | ō                              |
|                |        |                                  |                             |                                                | <u></u>                               | Dasse                                 |                                             | 0/0                                                      |                          |                               |                                 |                                 |                              | 987                             |                             |                                 | (Trip                               | (0)                            |
| with           |        |                                  |                             |                                                |                                       |                                       |                                             | p/Day                                                    | /<br>1                   |                               |                                 | oject                           |                              |                                 |                             |                                 |                                     | (Day)                          |
| 241            |        | 165                              | 268<br>268                  | 122                                            | <u>5</u><br>0                         | $\frac{11}{131}$                      | <u>21</u><br>383                            | <u>=:</u><br>0                                           |                          | 1                             |                                 | 466                             | E43                          | • 181                           | <u>5</u>                    | 170                             | JEE                                 |                                |
| 1 2 3          | 0      | 0<br>0                           | 395<br>0                    | 14E<br>E27                                     | 89<br>42E                             | 0<br>384                              | 197<br>467                                  | 213<br>233                                               | ĺ                        | 23                            |                                 | 0<br>D                          | 762<br>0                     | 471<br>950                      | 277<br>957                  | 0<br>385                        | 492<br>884                          | 503<br>451                     |
| - 128 4        | 0      | 0<br>0                           | 0<br>0                      | 0<br>0                                         | 602<br>0                              | 102<br>59                             | 1021<br>1337                                | 171<br>198                                               | ļ                        | 4                             | 0                               | ۵                               | 0<br>0                       | 0                               | 203<br>0                    | 157<br>100                      | 1704<br>1645                        | 286<br>267                     |
| · 译 5<br>· 译 1 | 0      | D                                | Ð                           | 0                                              | ۵                                     | 0                                     | 122                                         | 150                                                      |                          | 11                            | 0                               | ٥                               | 0                            | 0                               | 0                           | 0                               | 194                                 | 18E                            |
| 4 21<br>4 22   | 0<br>0 | 0<br>0                           |                             | 0<br>0                                         |                                       | 0<br>0                                | 0                                           | 0                                                        | ļ                        | 21                            |                                 |                                 |                              |                                 | 0<br>0                      | 0                               |                                     | 0                              |
|                | b)     | Ac<br>in<br>so<br>an<br>Na<br>of | the<br>uth c<br>d 5<br>khon | ing t<br>area<br>of Am<br>for<br>Sawa<br>10 to | o the<br>are<br>phoe<br>alter<br>n. 1 | e agr<br>most<br>Kao<br>nati<br>The e | ro-eco<br>:ly ca<br>Lieo<br>ve 6-<br>estima | onomic<br>arried<br>, in f<br>-3 and<br>ated a<br>for ea | d t<br>tra<br>d 6<br>agr | to tl<br>affi<br>5-4.<br>ricu | he ro<br>c zon<br>Tho<br>I tura | efine<br>ne l<br>e ano<br>al fr | ry f<br>2 fo<br>ther<br>eigh | actor<br>r alt<br>majo<br>t O/D | y lo<br>erna<br>r as<br>vol | cated<br>tive<br>sembl<br>umes, | l at 3<br>6-1 a<br>ly man<br>, in a | 7 km<br>and 6<br>^ket<br>a uni |
|                |        |                                  |                             | <u>Agri</u>                                    | <u>. Fre</u>                          | eight                                 | : 0/D                                       | (Alte                                                    | err                      | <u>ati</u>                    | ve 6                            | <u>-1)-1</u>                    | <u>987</u>                   |                                 |                             |                                 |                                     |                                |

### b) Agricultural Freight

### Agri. Freight O/D (Alternative 6-1)-1987

|          | in the second | with     | out | proje      | ct         |            |     | (1000      | ton/        | year.) | with | n_pro      | ject       |
|----------|---------------|----------|-----|------------|------------|------------|-----|------------|-------------|--------|------|------------|------------|
|          |               |          | 1   | 2          | 3          | _4_        | 11  | 12         | 21          | 22     |      |            | 2          |
|          |               | 1        | 0.0 | 0.0        | 2.0        | 0.0        | 0.0 | 0.0        | 2.9         | 0.0    | 1    | 0.0        | 0.0        |
| ř        |               | 2        | 0.0 | 0.0<br>0.0 | 3.E<br>0.0 | 0.0        | 0.0 | 2.0        | 2.4<br>22.9 | 0.0    | 2    | 0.D<br>0.0 | 0.0<br>0.0 |
| ]        | 影             | 4        | 0.0 | 0.0        | 0.0        | 0.0        | 0.0 | 29.9       | 3.1         | 0.0    | 4    | 0.0        | 0.0        |
|          |               | 11       | 0.0 | 0. D       | 0.0        | 0.0        | 0.0 | 0. O       | 0.0         | 0.0    | 11   | 0.0        | 0.0        |
| 1        | ÷.            | 12       | 0.0 | 0.0        | 0.0        | 0.0        | 0.0 | 0.0        | 0.0         | 0.0    | 12   | 0.0        | 0.0        |
|          |               | 21<br>22 | 0.0 | 0.0<br>0.0 | 0.0        | 0.0<br>0.0 | 0.0 | 0.0<br>0.0 | 0.0<br>0.0  | 0.0    | 21   | 0.0        | 0.0        |
| <u>,</u> |               |          | 0.0 | <u> </u>   |            | <u> </u>   |     |            |             |        | 22   | 0.0        |            |
| ,        |               |          |     |            |            |            |     |            |             |        |      |            |            |
| -        |               |          |     |            |            |            |     |            |             |        |      |            |            |
| -        |               |          |     |            |            |            |     |            |             |        |      |            |            |
| -        |               |          |     |            |            |            |     |            |             |        |      |            |            |
| 1        |               |          |     |            |            |            |     |            |             |        |      |            |            |
| . 1      | Sale          |          |     | · ·        |            |            |     |            |             |        |      |            |            |

-- '

| with | n pro | ject |      |      |      | (1000 | ) ton, | /year |
|------|-------|------|------|------|------|-------|--------|-------|
|      | L     | 2    | . 3_ | _ 4  | _ 11 | 17    | _21    | 2     |
| 1    | 0.0   | 0.0  | 2.0  | 0.0  | 0.0  | 0.0   | 2.9    | 0.0   |
| 2    | 0,0   | 0.0  | 3.6  | 0.0  | 0.0  | 2.0   | 2.4    | 0.0   |
| [ 3] | 0.0   | O. D | 0.0  | 0, 0 | 0,0  | 74.7  | 22.9   | 0.0   |
| 4    | 0.0   | 0,0  | D. D | 0.0  | 0.0  | 29.9  | 3.1    | 0.0   |
| 111  | 0.0   | 0.0  | 0.0, | 0.0  | 0,0  | 0.0   | 0.0    | 0. D  |
| 12   | 0,0   | 0.0  | 0.0  | 0.0  | 0.0  | 0.0   | 0,0    | 0,0   |
| 21   | 0.0   | 0.0  | 0.0  | 0.0  | 0.0  | 0.0   | 0.0    | 0.0   |
| 22   | 0.0   | ۵. ۵ | 0.0  | 0.0  | 0.0  | 0.0   | 0.0    | 0.0   |
|      | •     |      |      |      |      |       |        |       |

| ith | out | oroje | ect  |      | (   | 1000 | ton/ | year) | ۷   | vitk | pro | ject |      |      |      | (1000 ton/yea |      |             |  |
|-----|-----|-------|------|------|-----|------|------|-------|-----|------|-----|------|------|------|------|---------------|------|-------------|--|
|     | 1   | 2     | 2    | 4    | 11  | 12   | 21   | 22    | Γ   |      | 1   | 2    | 3    | 4    | 11   | 12            | 21   |             |  |
| 1   | 0.0 | 0.0   | 2.2  | 0.0  | 0,0 | 3.9  | 3.3  | 0.0   | ľ   | 1    | 0.0 | 0.0  | 2.2  | 0.0  | 0.0  | 3.9           | 1.3  | 0.0         |  |
| 2   | 0.0 | a. a  | 11.1 | 0.0  | 0.0 | 10.5 | 9.9  | 0.0   | - I | 2    | 0.0 | 0.0  | 11.1 | D. D | 0.0  | 10.5          | 9.9  | 0.0         |  |
| 3   | 0.0 | 0.0   | 0.0  | a. a | 0.0 | 74.7 | 22.9 |       | ĺ ĺ | 3    | 0.0 | o. o | 0.0  | 0.0  | 0.0  | 74.7          | 22.9 | 0.0         |  |
| 4   | 0.0 | 0. D  | 0.0  | 0.0  | 0.0 | 29.9 | 3.1  | 0.0 ( |     | 4    | 0.0 | 0.0  | 0.0' | D. O | 0.0  | 29.9          | 3.1  | 0,0         |  |
| 11  | 0.0 | 0.0   | 0.0  | 0.0  | 0.0 | 0.0  | 0.0  | 0.0   | 1   | 11   | 0.0 | 0.0  | 0.0  | 0.0  | 0. D | 0.0           | 0.0  | 0.0         |  |
| 12  | 0.0 | 0.0   | 0.0  | 0.0  | 0.0 | D. D | D. D | 0.0   |     | 12   | 0.0 | 0.0  | 0.0  | D. D | 0.0  | 0.0           | 0.0  | 0.0         |  |
| 21  | 0.0 | 0.0   | 0.0  | 0.0  | 0.0 | 0.0  | 0.0  | 0.0   |     | 21   | 0.0 | 0.0  | 0.0. | 0.0  | 0.0  | 0.0           | 0.0  | ວ. ວ        |  |
| 22  | 0.0 | 0.0   | 0.0  | 0.0  | 0.0 | 0.0  | 0.0  | 0.0   | ļ   | 22   | 0.0 | 0.0  | 0.0  | 0.0  | 0.0  | 0.0           | 0.0  | <b>a.</b> a |  |

# Agri. Freight O/D (Alternative 6-3)-1987

| ith | out  | proj | ect  | (1000 ton/year) |      |     |      |      |  |  |
|-----|------|------|------|-----------------|------|-----|------|------|--|--|
|     | 1    | 2    | 3    | 4               | 5    | 11  | 21   | 22   |  |  |
| - 1 | 0.0  | 0.0  | 2.0  | 0.0             | 0.0  | 0.0 | 2.9  | 0.0  |  |  |
| 2   | 0.0  | Q. D | З.Б  | 0.0             | 2.0  | 0.0 | 2.4  | 0.0  |  |  |
| 2   | 0.0  | 0.0  | 0.0  | 0.0             | 59.7 | 0.0 | 21.8 | 0.0  |  |  |
| 4   | 0.0  | 0.0  | 0.0  | 0.0             | 23.5 | 0.0 | 2.1  | 0.0  |  |  |
| s   | 0.0  | 0.0  | 0.0  | 0.0             | ο.ο  | 0.0 | 20.8 | 0.0  |  |  |
| 11  | 0.0  | D. O | 0. D | 0.0             | 0.0  | 0.0 | 0.0  | 0. D |  |  |
| 21  | 0.0  | ۵.0  | 0.0  | 0.0             | 0.0  | 0.0 | ם .ם | D. O |  |  |
| 22  | o. o | 0.0  | ٥.٥  | 0.0             | 0.0  | 0.0 | 0.0  | 0.0  |  |  |

# Agri. Freight O/D (Alternative 6-4)-1987

| with      | out p | oroje | ct  |      | (1   | 000  | ton/ | year |
|-----------|-------|-------|-----|------|------|------|------|------|
| $\square$ | 1     | 2     | 2   | 4    | 5    | 11   | 21   | 22   |
| 1         | 0.0   | 0.0   | 2.0 | 0.0  | 0.0  | 0.0  | 2.9  | 0.0  |
| 2         | 0.0   | 0.0   | 3.6 | 0.0  | 2.0  | 0.0  | 2.4  | 0.0  |
| 3         | 0.0   | 0.0   | 0.0 | 0.0  | 59.7 | 0.0  | 21.8 | 0.0  |
| 4         | 0.0   | 0.0   | 0.0 | 0.0  | 23.5 | 0. Û | 2.1  | 0.0  |
| 5         | 0.0   | 0.0   | 0.0 | 0.0  | 0.0  | 0.0  | 25.7 | a.a  |
| 11        | 0.0   | 0. Ó  | 0.0 | o. a | 0.0  | 0.0  | 0.0  | 0.0  |
| 21        | 0.0   | Ō. D  | 0.0 | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |
| 22        | 0.0   | 0.0   | 0.0 | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  |

with project

(1000 ton/year)

|     | 1   | 2    |             | 4    | 5    | 11   | 21   | 22  |
|-----|-----|------|-------------|------|------|------|------|-----|
| 1   | 0.0 | 0.0  | 2.0         | 0.0  | 0.0  | 0.0  | 2.9  | 0.0 |
| 2   | 0.0 | 0.0  | 3.6 +       | 0.0  | 2.0  | 0.0  | 2.4  | 0.0 |
| 3   | 0.0 | 0.0  | <b>0.</b> D | 0. D | 59.7 | 0.0  | 21.8 | 0.0 |
| 4   | 0.0 | 0.0  | 0.0         | α. α | 23.5 | 0.0  | 2.1  | 0.0 |
| 5   | 0.0 | 0.0  | 0.0         | D. O | 0.0  | 0.0  | 20.8 | 0.0 |
| 111 | 0.0 | 0.0  | 0.0         | 0.0  | 0.0  | D. O | 0.0  | 0.0 |
| 21  | 0.0 | 0. D | 0.0         | D. D | 0.0  | 0.0  | 0.0  | 0.0 |
| 22  | 0.0 | 0.0  | 0.0         | 0.0  | 0.0  | 0.0  | 0.0  | 0.0 |

without project

(1000 ton/year)

|     |     | E O  |      |      |      | •    |      |     |
|-----|-----|------|------|------|------|------|------|-----|
|     | 1   | 2    | 3    | 4    | 5    | 11   | _21_ | 22  |
| 1   | 0.0 | 0.0  | 2.0  | 0.0  | 0.0  | 0.0  | 2.9  | 0.0 |
| 2   | 0.0 | 0.0  | 3.6  | a.a  | 2.0  | 0.0  | 2.4  | 0.0 |
| 3   | -   | D, O | 0.0  | 0.0  | 59.7 | 0.0  | 21.8 | 0.0 |
| 4   | 0.0 | 0. O | 0,0  | D. O | 23.5 | O, O | 2.1  | 0.0 |
| 5   | 0.0 | 0,0  | 0.0' | 0.0  | 0.0  | 0.0  | 25.7 | 0.0 |
| 111 | 0.0 | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | a.a  | 0.0 |
| 21  |     | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0 |
| 22  | 0.0 | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 0.0- | 0.0 |
|     |     |      |      |      |      |      |      |     |

### c) Non-agricultural Freight

The non-agricultural freight transportation demands are estimated based on the model described in 3-3-3 in the Summary Report. Their movements on each road link were obtained relating with the passenger movements which were derived from the assignment of the passenger O/D volumes shown in the above a).

# 2-3 Traffic Composition, Occupancy and Loading Ratio

#### a) Traffic Composition

·

In accordance with the examination of the classified traffic counts in the Phase I and II studies and DOH's traffic records, the traffic composition on the existing roads of the project area was estimated as follows:

| Survey Points |     |     | Passen | ger Tr | affic | •     |     | Frei | ght T | raffic |       |
|---------------|-----|-----|--------|--------|-------|-------|-----|------|-------|--------|-------|
| and Source    | P/C | P/P | L/B    | M/B    | H/B   | Total | P/T | 4/T  | 6/T   | 10/T   | Total |
| OD-2(PhaseI)  | .17 | .00 | .45    | .38    | .00   | 1.00  | .35 | .12  | .13   | .40    | 1.00  |
| M-12(PhaseI)  | .21 | .34 | .4     | 2      | .03   | 1.00  |     | 54   | .21   | .25    | 1.00  |
| NO.1(PhaseII) | .19 | .37 | .13    | .07    | .24   | 1.00  | .54 | .03  | .25   | .19    | 1.00  |
| R. 1182(DOH)  | .30 | .17 | ,3     | 3      | ,20   | 1,00  | .4  | 40   | .33   | .27    | 1.00  |
| R. 1073(DOH)  | .50 | .05 | .3     | 36     | .09   | 1.00  | -4  | 41   | .55   | .04    | 1.00  |
| R. 1074(DOH)  | .36 | .14 | .4     | 1      | .09   | 1.00  | .(  | 61   | .27   | .12    | 1.00  |
| Estimated     | .21 | .24 | .31    | .15    | .09   | 1.00  | .37 | .11  | .28   | .24    | 1.00  |

Existing Traffic Composition

Changes in traffic composition due to income growth and road surface condition were determined for the both cases of with and without projects as shown in the following tables:

#### Freight Traffic Composition

|      |     | Wit | hout Pi | roject |     |     | With | n Proje | ect |     |
|------|-----|-----|---------|--------|-----|-----|------|---------|-----|-----|
| Year | P/C | P/P | L/B     | M/B    | H/B | P/C | P/P  | L/B     | M/B | H/B |
| 1981 | .21 | .24 | .31     | .15    | .09 | .21 | .24  | .31     | .15 | .09 |
| 1987 | .23 | .26 | .29     | .14    | .03 | ,26 | .24  | .27     | .12 | .11 |
| 1993 | .25 | .29 | .25     | .13    | .07 | .30 | .24  | .24     | .09 | .13 |
| 2001 | .28 | .32 | .23     | .11    | .06 | .36 | .24  | .19     | .05 | .16 |

### Passenger Traffic Domposition

|           | W   | ithout | Projec | t    |     | With | Projec | t    |
|-----------|-----|--------|--------|------|-----|------|--------|------|
| Year      | P/T | 4/T    | 6/T    | 10/T | P/T | 4/T  | 6/T    | 10/T |
| 1981-2001 | .37 | .11    | .23    | .24  | .33 | .02  | .35    | .25  |

### b) <u>Occupancy</u>

Occupancy by vehicle type and the average were determined as follows:

#### Occupancy

| Vehicle Type   | Person per<br>Vehicle |
|----------------|-----------------------|
| P/C            | 3.1                   |
| P/P            | 4.4                   |
| L/B            | 10.9                  |
| M/B            | 16.2                  |
| H/B            | 38.3                  |
| Ave. (1993, W) | 9.7                   |
| (1993, W)      | 11.0                  |

### c) Loading Ratio

Loading ratio by vehicle type and the average were determined as follows:

#### Loading Ratio

| Vehicle<br>Type | Ave. Load<br>of Loaded<br>Truck | Rate of<br>Loaded<br>Trucks | Loading<br>Ratio<br>(ton) |
|-----------------|---------------------------------|-----------------------------|---------------------------|
| P/T             | 0.65                            | .45                         | 0.3                       |
| 4/T             | 2.0                             | .50                         | 1.0                       |
| 6/T             | 4.1                             | .55                         | 2.3                       |
| 10/T            | 12.6                            | .60                         | 7.6                       |
| Ave.(W)         | -                               | -                           | 2.7                       |
| · (W)           | -                               | -                           | 2.8                       |

### 2-4 Growth Rates of Transportation Demands

The growth rates of passenger, agricultural freight and non-agricultural freight transport demands for the periods of 1987-1993 and 1993-2001 were projected. The basis for the estimation of growth rate for passenger, and the projected rates are shown in the following tables:

## The Basis for Estimation of Passenger Demands Growth

|                           | Annual Growt |             |            |
|---------------------------|--------------|-------------|------------|
| Indicator                 | 1987 - 1993  | 1993 - 2001 | Elasticity |
| Per capita<br>Income      | 5.8          | 5.6         | 1.08       |
| Transporta-<br>tion price | 3.6          | 3.6         | -0.24      |
| Population                | 1.0          | 1.1         | 1.00       |

### Growth Rate of Transportation Demands

| Type of              | Annual Grou | Index 19    | 87=100 |       |
|----------------------|-------------|-------------|--------|-------|
| Demand               | 1987 - 1993 | 1993 - 2001 | 1993   | 2001  |
| Passenger            | б.4         | 6.3         | 145    | 237   |
| Agri.<br>Freight     | 0.1         | 0.1         | 100.5  | 101.4 |
| Non-Agri.<br>Freight | 7.6         | 7.5         | 155    | 277   |

### 2-5 Forecasted Traffic

# a) Forecasted Traffic by Vehicle Type

The forecasted traffic by route alternative is summarized in the following table:

### Forecasted Traffic

| Alter-<br>tive | Year  | P/C     | L/B        | M/B           | H/B | P/P<br>P/T | 4/T            | 6/T           | 10/T  | ADT        | M/C        |
|----------------|-------|---------|------------|---------------|-----|------------|----------------|---------------|-------|------------|------------|
|                | 1987  | 87      | 91         | 40            | 37  | 132        | 3              | 48            | 34    | 471        | 552        |
| 6-1            | 1993  | 146     | 117        | 44            | 63  | 189        | 4              | 67            | 48    | 677        | 686        |
|                | 2001  | _ 281 _ | 148        | _ 39_         | 125 | 306        | _ 6 _          | 109           | _ 78_ | 1092       | <u>831</u> |
|                | 1987  | 75      | 78         | 35            | 32  | 120        | 3              | 47            | 33    | 423        | 492        |
| 6-2            | 1993  | 126     | 101        | 38            | 55  | 169        | 4              | 63            | 45    | 599        | 611        |
|                | _2001 | _ 242 _ | _ 128      | _ <u>3</u> 4_ | 108 | 269        | <u>   6   </u> | _9 <u>8</u> _ | _ 70_ | <u>955</u> | <u>746</u> |
|                | 1987  | 96      | 100        | 44            | 41  | 147        | 3              | 54            | 38    | 523        | 598        |
| 6-3            | 1993  | 161     | 129        | 48            | 70  | 210        | 4              | 75            | 54    | 751        | 740        |
|                | _2001 | 309     | <u>163</u> | _ 43_         | 138 | 340        | _ 7 _          | 123 _         | _ 88_ | 1211       | 889        |
|                | 1987  | 113     | 118        | 52            | 48  | 173        | 4              | 63            | 45    | 617        | 682        |
| 6-4            | 1993  | 189     | 151        | 57            | 82  | 249        | 5              | 90            | 64    | 887        | 840        |
|                | 2001  | 365     | 193        | 51            | 162 | 404        | 8              | 148           | 105   | 1435       | 995        |

b) Forecasted Traffic by Road Link

Details of the forecasted traffic by road link by traffic type for route alternatives are shown in Table 6-2-9, taking a sample of the case of 1993.

# Table 6-2-9 FORECASTED TRAFFIC BY ROAD LINK

|    | NK                      | 1                       | 2                       | 3                      |                        | 5                        | 5<br>                   | AVR.                    |                                                                                                                                                                                                                                        | Nh.                      | 1                       | 2                      | 3                       | 4                       | 5                      | 6                       | AV |
|----|-------------------------|-------------------------|-------------------------|------------------------|------------------------|--------------------------|-------------------------|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------------|------------------------|-------------------------|-------------------------|------------------------|-------------------------|----|
| -  | N+D<br>I<br>DV<br>TOTAL | 64<br>62<br>0<br>125    | 58                      | 78<br>1 0              | 83<br>D                | 76<br>0                  | 49<br>0                 | Ō                       | P/C                                                                                                                                                                                                                                    | N+D<br>I<br>DV<br>TOTAL  | 54<br>43<br>07<br>107   | 51<br>41<br>0<br>92    | -                       | 51<br>0                 | 104<br>E0<br>0<br>1E4  | 44                      |    |
|    | N+D<br>I<br>DV<br>TOTAL | 51<br>49<br>0<br>100    | Ó                       | 62                     | 66<br>D                | 61<br>D                  | 0<br>23                 | 0                       | 1/8                                                                                                                                                                                                                                    | N+D<br>1<br>DV<br>TOTAL  | 51<br>35<br>0<br>86     | 41<br>33<br>0<br>73    | 0                       | 41<br>0                 | 83<br>48<br>0<br>131   | 35<br>0                 |    |
|    | N+D<br>I<br>DV<br>TOTAL | 19<br>18<br>0<br>38     | 17<br>0                 | 52                     | 25<br>D                | 23<br>0                  |                         | O                       | <br>איז פון איז פון<br>איז פון איז פון | N+D<br>I<br>DV<br>TOTAL  | 19<br>13<br>0<br>32     | 15<br>12<br>0<br>27    | 13                      | 0                       | 0                      | 13                      |    |
|    | N+D<br>I<br>DV<br>TOTAL | 28<br>27<br>0<br>54     | ' 25<br>  0             | 34<br>0                | 35<br>0                | 33<br>0                  | 21<br>0                 | 0                       | H/B                                                                                                                                                                                                                                    | N+D<br>I<br>DV<br>TOTAL  | 28<br>19<br>0<br>47     | 22<br>18<br>0<br>40    | 19<br>0                 | 22<br>0                 | 45<br>• 25<br>0<br>71  | 19<br>0                 |    |
|    | N+D<br>I<br>DV<br>TOTAL | 73<br>76<br>0<br>149    | 71<br>0                 | 97<br>0                | 105<br>0               | 159<br>96<br>0<br>256    | 93<br>60<br>153         | 104<br>85<br>0<br>189   | P/P&T                                                                                                                                                                                                                                  | N+D<br>I<br>DV<br>FOTAL  | 75<br>53<br>0<br>128    | 60<br>49<br>0<br>109   | 93<br>55<br>0<br>148    | 65<br>0                 | 167<br>76<br>0<br>243  | 0                       |    |
| 1  | N+D<br>I<br>DV<br>TOTAL | 1<br>1<br>0<br>3        | _                       | 0                      | 0                      | Û                        | 1                       | 2<br>2<br>0<br>4        | 4/T                                                                                                                                                                                                                                    | N+D<br>I<br>DV<br>TOTAL  | 1<br>1<br>0<br>2        | 1<br>1<br>0<br>2       | 2<br>1<br>0<br>3        | 1                       | 4<br>1<br>0<br>5       | ~                       |    |
|    | N+D<br>I<br>DV<br>FOTAL | 21<br>25<br>0<br>45     | 23                      | 32<br>0                | 36                     | 33<br>0                  | 33<br>20<br>0<br>52     | 39<br>28<br>0<br>67     | 6/T                                                                                                                                                                                                                                    | N+D.<br>I<br>DV<br>TOTAL | 22<br>17<br>0<br>39     | 17<br>15<br>0<br>33    | 35<br>1E<br>0<br>53     | 22                      | 77<br>26<br>0<br>103   | 35<br>17<br>0<br>53     |    |
| ٢  | N+D<br>I<br>OV<br>TOTAL | 15<br>18<br>0<br>32     | 12<br>15<br>0<br>28     | 23                     | 25<br>25<br>0<br>51    | 50<br>23<br>0<br>74      | 23<br>14<br>0<br>37     | 28<br>20<br>0<br>48     | 10/T                                                                                                                                                                                                                                   | N+D<br>I<br>DV<br>OTAL   | 15<br>12<br>0<br>28     | 12<br>11<br>0<br>23    | 25<br>13<br>0<br>38     | 33<br>15<br>0<br>48     | 55<br>18<br>0<br>74    | 25<br>12<br>0<br>38     |    |
| T  | N+D<br>I<br>DV<br>DTAL  | 271<br>275<br>0<br>546  | 220<br>259<br>0<br>431  | 306<br>349<br>0<br>656 | 421<br>179<br>0<br>802 | 546<br>347<br>0<br>393   | 331<br>218<br>0<br>549  | 370<br>307<br>0<br>677  | ADT                                                                                                                                                                                                                                    | N+D<br>I<br>DV<br>DTAL   | 277<br>193<br>0<br>469  | 219<br>179<br>0<br>398 | 330<br>199<br>0<br>529  | 458<br>233<br>D<br>591  | 567<br>175<br>0<br>842 | 339<br>195<br>0<br>534  |    |
| C  | N+D<br>I<br>DV<br>OTAL  | 348<br>259<br>0<br>607  | 296<br>254<br>0<br>550  | 379<br>315<br>0<br>694 | 492<br>318<br>0<br>809 | 537<br>277<br>0<br>815   | 390<br>201<br>592       | 416<br>270<br>0<br>686  | M/C                                                                                                                                                                                                                                    | N+D<br>I<br>DV<br>DTAL   | 351<br>186<br>0<br>.537 | 290<br>182<br>0<br>471 | 382<br>185<br>0<br>568  | 504<br>199<br>0<br>703  | 541<br>221<br>0<br>763 | 393<br>160<br>0<br>573  |    |
| 7L | N+D<br>T<br>DV<br>OTAL  | 519<br>535<br>D<br>1153 | 518<br>512<br>0<br>1031 | 0                      | 696<br>0               | 1034<br>524<br>D<br>1709 | 722<br>420<br>0<br>1141 | 786<br>577<br>0<br>1263 | TOTAL<br>T                                                                                                                                                                                                                             | N+D<br>I<br>DV<br>OTAL   | 628<br>379<br>0<br>1006 | 509<br>361<br>0<br>870 | 712<br>385<br>0<br>1097 | 952<br>432<br>0<br>1393 | 496                    | 731<br>375<br>0<br>1107 | 1  |

| 25.45.06美元  |         |     |       |     |        |  |
|-------------|---------|-----|-------|-----|--------|--|
| 1.2.2       |         |     |       |     |        |  |
|             |         |     |       |     |        |  |
|             |         |     |       |     |        |  |
|             |         |     |       |     |        |  |
|             |         |     |       |     |        |  |
| 2           |         |     |       |     |        |  |
| a contract  |         |     |       |     |        |  |
|             |         |     |       |     |        |  |
|             |         |     |       |     |        |  |
| NC6 192     |         |     |       |     |        |  |
|             |         |     |       |     |        |  |
|             |         |     |       |     |        |  |
| UN Short    |         |     |       |     |        |  |
| 1.1.1       |         |     |       |     |        |  |
| 1140        |         |     |       |     |        |  |
| 上を行ちた       |         |     |       |     |        |  |
|             |         |     |       |     |        |  |
|             |         |     |       |     |        |  |
| · 注意: [1]   |         |     |       |     |        |  |
| 10000       |         |     |       |     |        |  |
|             |         |     |       |     |        |  |
| - FEF 13710 |         |     |       |     |        |  |
|             |         |     |       |     |        |  |
| ***:"派行法理   |         |     |       |     |        |  |
|             |         |     |       |     |        |  |
|             |         |     |       |     |        |  |
|             |         |     |       |     |        |  |
| TRAFFIC     | UMULIME | -CN | ROUTE | 5-1 | 119933 |  |
| COMPANY IC  | VULONE  | 0., |       | ••• |        |  |
| N CARGO AND |         |     |       |     |        |  |

-

. . .

TRAFFIC VOLUME ON ROUTE 6-1 (1993) ----

| ۔<br> | INK                     |                        |                        |                        |                        |                        |                        |                         |                        |
|-------|-------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|-------------------------|------------------------|
| P/C   | N+D<br>I<br>DV<br>TOTAL | 64<br>63<br>0<br>126   | 53<br>59<br>0<br>112   | 70<br>81<br>0<br>151   | 96<br>87<br>0<br>183   | 104<br>89<br>0         | 118<br>75<br>0<br>193  | 111<br>53<br>0<br>174   | SI<br>7<br>16          |
|       | N+D<br>I<br>DV<br>TOTAL | 51<br>50<br>0<br>101   | 42<br>47<br>0<br>89    | 56<br>55<br>0<br>121   | 77<br>70<br>0<br>147   | 83<br>71<br>0<br>154   | 95<br>E0<br>154        | 89<br>50<br>0<br>139    | 50<br>50<br>125        |
| H/B   | I<br>DV<br>TOTAL        | 19                     | 16<br>18<br>0<br>34    | 21<br>24<br>0<br>45    | 29<br>26<br>0<br>55    | 31<br>27<br>0<br>58    | 35<br>22<br>0<br>58    | 33<br>19<br>0<br>52     | 21<br>2:<br>(<br>4)    |
| н/в   | N+D<br>I<br>DV<br>TOTAL | 28<br>27<br>0<br>55    | 23<br>26<br>0<br>48    | 30<br>35<br>0<br>£5    | 42<br>39<br>0<br>50    | 45<br>39<br>0<br>83    | 51<br>32<br>0<br>84    | 48<br>27<br>0<br>75     | 31<br>31<br>70         |
| P/P&1 | N+D<br>I<br>DV<br>TOTAL | 73<br>77<br>0<br>150   | 50<br>72<br>0<br>i32   | 54<br>101<br>0<br>185  | 116<br>111<br>0<br>227 | 153<br>113<br>0<br>265 | 181<br>95<br>0<br>277  | 148<br>EO<br>D<br>228   | 118<br>94<br>210       |
| 4/T   | N+D<br>I<br>DV<br>TOTAL | 1<br>1<br>0<br>3       | 1<br>1<br>0<br>2       | 1<br>2<br>0<br>- 3     | 2<br>2<br>0<br>4       | 4<br>2<br>0<br>5       | 5<br>2<br>0<br>5       | 3<br>2<br>0<br>5        | 3<br>2<br>0<br>4       |
| б/т   | N+D<br>I<br>DV<br>TOTAL | 21<br>25<br>0<br>46    | 17<br>23<br>0<br>40    | 26<br>33<br>0<br>59    | 35<br>38<br>0<br>73    | 65<br>39<br>0<br>104   | 80<br>33<br>0<br>113   | 55<br>27<br>0<br>92     | 44<br>31<br>75         |
| 1011  | N+D<br>I<br>DV<br>TOTRL | 15<br>18<br>0<br>33    | 12<br>15<br>0<br>28    | 18<br>24<br>0<br>42    | 26<br>27<br>0<br>52    | 46<br>28<br>0<br>74    | 57<br>23<br>0<br>80    | 39<br>19<br>0<br>58     | 31<br>22<br>0<br>54    |
| ADT   | N+D<br>I<br>DV<br>TOTAL | 271<br>280<br>0<br>551 | 222<br>263<br>0<br>486 | 307<br>355<br>0<br>672 | 413<br>398<br>0<br>821 | 531<br>407<br>0<br>939 | 622<br>343<br>0<br>965 | '527<br>287<br>0<br>813 | 411<br>339<br>0<br>751 |
| H/C   | N+D<br>I<br>DV<br>TOTAL | 740                    | 200                    | 779                    | 1.92                   | 575                    | 505                    | 550                     | / CO                   |
| TOTAL | N+D<br>I<br>DV<br>TOTAL | 619<br>543<br>D        | 519<br>521<br>0        | 686<br>693<br>0        | 915<br>731<br>0        | 1066<br>731<br>0       | 1217<br>603<br>0       | 1035<br>520<br>0        | 261<br>630<br>0        |

TRAFFIC VOLUME ON ROUTE 6-4 (1993) 

| <u>د</u> | INK                     | ~                      |                             |                        |                        |                         |                         |                         |                         |
|----------|-------------------------|------------------------|-----------------------------|------------------------|------------------------|-------------------------|-------------------------|-------------------------|-------------------------|
| P/C      | N+D<br>I<br>DV<br>TOTAL | 144                    | 70<br>60<br>0<br>130        | 97<br>93<br>0<br>171   | 114<br>90              | 126<br>99               | 149<br>90<br>0<br>239   | 140<br>77<br>0<br>217   | 109<br>91<br>0<br>152   |
| L/9      | N+0<br>I<br>DV<br>TOTAL | 55<br>51<br>ਹ          | 56<br>48<br>0               | 70<br>67<br>0<br>137   | 91<br>72<br>0<br>163   | 101<br>79<br>0<br>180   | 119<br>72<br>0<br>191   | 112<br>62<br>0<br>174   | 86<br>65<br>C<br>1 51   |
| н/В      | N+D<br>I<br>OV<br>TOTAL | 24<br>19<br>0<br>43    | 21<br>18<br>0<br>39         | 25<br>25<br>0<br>51    | 34<br>27<br>0<br>61    | 39<br>30<br>0<br>67     | 45<br>27<br>0<br>72     | 42<br>23<br>0<br>65     | 32<br>24<br>0<br>57     |
| H/B      | DV<br>TOTAL             |                        |                             |                        |                        |                         |                         |                         |                         |
|          | N+D<br>I<br>DV<br>TOTAL | 95<br>79<br>0<br>174   | 82<br>74<br>D<br>155        | 105<br>105<br>0<br>211 | 139<br>115<br>0<br>254 | 182<br>128<br>0<br>310  | 221<br>117<br>0<br>339  | 187<br>100<br>0<br>287  | 145<br>104<br>0<br>249  |
| 4/T      | N+D<br>I<br>DV<br>TOTAL | 2<br>1<br>0<br>3       | '  <br> <br> <br> <br> <br> | 2<br>2<br>0<br>4       | 3<br>2<br>0<br>5       | 4<br>3<br>0<br>7        | 5<br>2<br>0<br>8        | 4<br>2<br>0<br>E        | 3 - O<br>5 - O<br>5 - S |
| 617      | N+D                     | 28<br>25<br>0          | 24<br>24<br>0               | 33<br>35<br>0          |                        | 75<br>44<br>0           | 94<br>41<br>0           | 69<br>35<br>0<br>104    | 54<br>75<br>0<br>90     |
| 0/1      | N+D<br>I<br>DV<br>TOTAL | 20<br>19<br>0<br>39    | 17<br>17<br>0<br>34         | 24<br>25<br>0<br>49    | 31<br>28<br>0<br>60    | 54<br>32<br>0<br>95     | 67<br>29<br>0<br>97     | 50<br>25                | 39<br>25<br>0<br>64     |
| ADT      | N+D<br>I<br>DV<br>TOTAL | 350<br>286<br>0<br>635 | 301<br>270<br>0<br>570      | 297<br>378<br>0<br>765 | 505<br>413<br>0<br>919 | 634<br>457<br>0<br>1091 | 764<br>418<br>0<br>1:83 | 663<br>358<br>C<br>1021 | 515<br>371<br>587       |
| n/C      | N+D<br>I<br>DV<br>TOTAL | 255                    | 250                         | 324                    | 330                    | 544                     | 302                     | 271                     | 541<br>299<br>0<br>S40  |
|          | N+D<br>I<br>DV<br>TOTAL | <u> </u>               | 213                         | ίΩ <sup>2</sup>        | ,"°?                   | 502                     | 7 <u>2</u> 0            | 623                     | ۰,<br>۲                 |
|          | NOTE                    | NORMAL                 | TRAF                        | FIC                    |                        | D                       | : DIVE                  | ERTED                   | TRAFF                   |

N : NORMAL TRAFFIC DV : DEVELOPED TRAFFIC

D : DIVERTED TRAFFIC 1 : INDUCED TRAFFIC

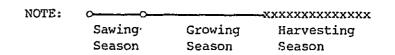
3

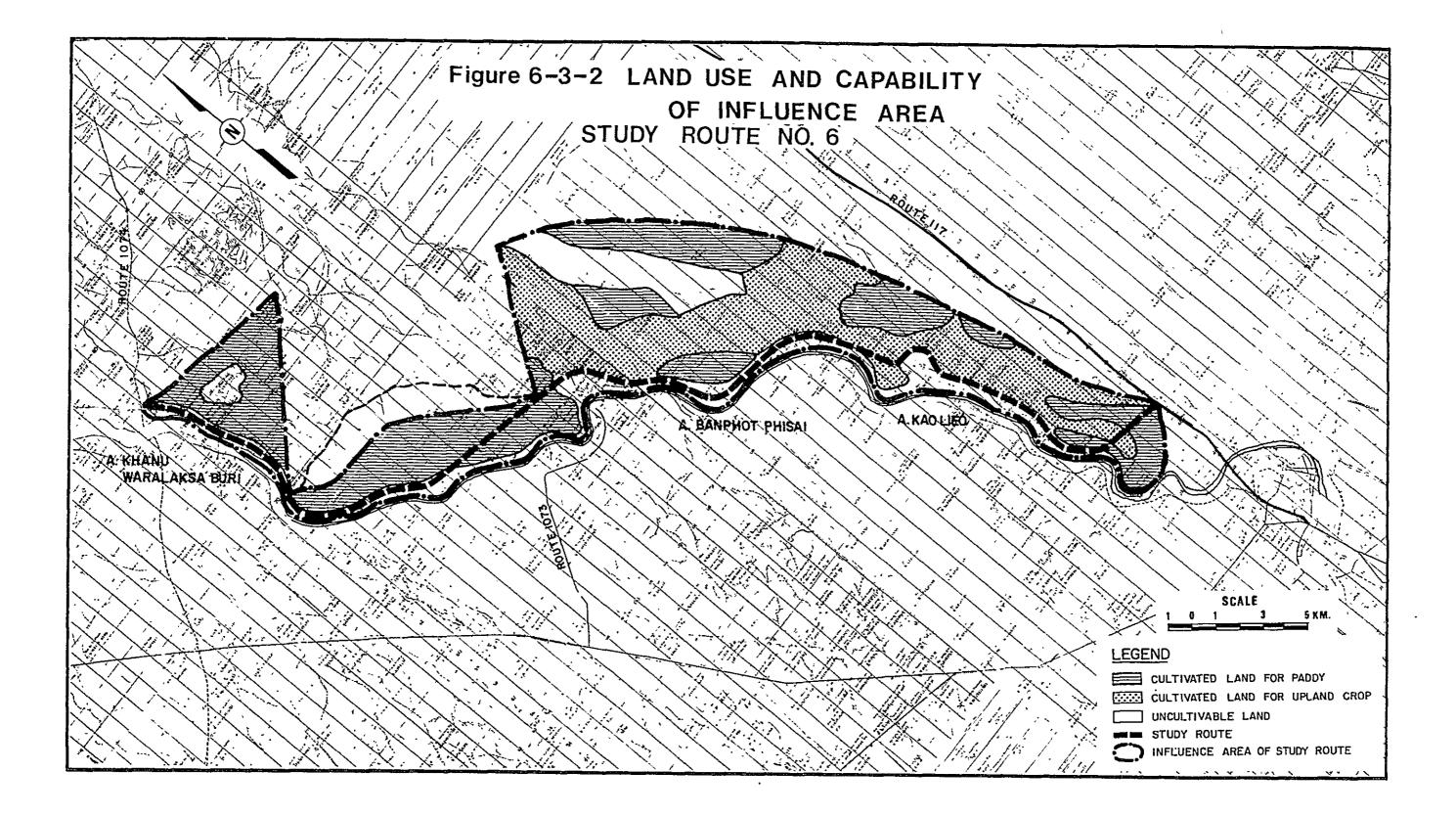
### 3. AGRICULTURAL DEVELOPMENT

#### 3-1 Crop Production

Sugar cane is the most predominant product in the area of influence. A big sugar refinery plant 3,000 ton per day, exists 7 km south of Amphoe Kao Lieo and collects about 350,000 tons of sugar cane annually from the surrounding sugar cane fields in Changwat Nakhon Sawan, Kamphaeng Phet and Uthai Thani. The factory still has enough capacity to absorb future increase of cane production in the area.

Second major products is paddy. Other crops share only 10% of the total production in the area.


Land use and capability in the area of influence is illustrated in Figure 6-3-2. Typical cropping calendar in Nakhon Sawan area is also shown in Figure 6-3-1. Based on the estimated planted area and yields, the future crop production in the area of influence after opening of the proposed road is given in the following Table 6-3-1 to 6-3-4.


### 3-2 Net Value Added

In accordance with the concept discussed in Chapter 4 of Summary Report, net value added was calculated for both cases, with project and without project. The agricultural development benefits, indicated by the increment of net value added of crop production in the with project case, attributable to the project are estimated as follows:

|             | cultural Bo<br>Aillion Bal |       |       |
|-------------|----------------------------|-------|-------|
| Alternative | 1987                       | 1993  | 2001  |
| 6-1         | 7.47                       | 8.60  | 10.11 |
| 6-2         | 10.49                      | 12.05 | 14.13 |
| 6-3         | 7.91                       | 9.12  | 10.76 |
| 6-4         | 8.44                       | 9.77  | 11.56 |

| Description              | Jan  | Feb         | Mar        | Apr        | Мау         | Jun   | Jul        | Aug      | Sep      | Oct      | Nov         | Dec                |
|--------------------------|------|-------------|------------|------------|-------------|-------|------------|----------|----------|----------|-------------|--------------------|
| Rice                     |      |             |            |            | 0           | <br>  | <br> o     |          |          | <br>     | xxxx        | xxxxx              |
| Upland rice              |      |             |            | o          | (           | <br>  |            |          |          | xxxx     | xxxx        |                    |
| Maize                    |      |             |            | <u> </u>   |             | o     |            |          | xxxx     | xxx      |             |                    |
| Sorghum                  | xx   |             | ļ          |            | <u>م</u>    | 0     |            |          | ×××××    | cor      | One<br>a ye | crop<br>ar<br>xxxx |
| Mung bean+Mung bean      | xxx  |             |            | Fir<br>o   | st c:<br>-0 | rop   | xxxx       |          | ~        | cond     | crop        | xxxx               |
| Rice+Mung bean           |      | xxxx        |            |            |             | р.—.с |            | Ri       | <u> </u> | bear     | xxxx<br>0   | -0                 |
| Maize+Mung bean          | xxxx |             |            |            | o           | c     | Mai        |          | —xxx     | ×××××    | Mung        | bean               |
| Maize+Soy bean           |      | xxxx        |            |            | o—          |       | Mai        |          | xxx      | ×××××    | Soy 1       | bean               |
| Groundnut+Groundnut      |      | -xxx        | xxx        |            | <u>م</u>    | F.1   | rst c      | rop      | xxx      | XXX S    | econ<br>o   | d cror<br>—o—      |
| Sugar cane (Plant cane)  |      |             | xxx        | 0<br>XXXXX | C           |       |            |          |          |          |             |                    |
| Sugar cane (Ratoon cane) | xxxx | 0—<br>«XXXX | . <u> </u> |            | <b>)</b>    |       |            |          |          |          |             | -ххх               |
| Cotton                   | xxxx | кхх         |            |            |             | o     |            | c        |          |          |             | -xxx               |
| Tobacco                  | <br> | XXXXX       | xxxx       | cxx        |             |       |            |          |          | 0        | c           |                    |
| Chilli                   |      |             |            |            |             |       | <b> </b>   | -0       | Fir      | st cr    | 1           | xxxx               |
| Rice+Rice                | o    | Sec<br>-o   | ond c      | rop        | xxx         | xxx   | <b>с</b> ( | Rio      |          |          |             | XXXX               |
| Rice+Groundnut           | Grou | indnu       | -xxx       | xx         |             | o     | <b>o</b>   |          |          |          | xxxx        | 0-0                |
| Cassava                  |      |             | xxx        | xxxx       | 0——<br>XXX  | 0     | <br> <br>  |          |          |          |             |                    |
|                          |      | }           |            |            |             | t     |            |          |          |          |             |                    |
|                          | L    |             | <u> </u>   |            | L           | [     | <u> </u>   | <u> </u> | 1        | <u> </u> |             | i                  |





-

# Table 6-3-1 <u>CROP PRODUCTION - Route 6-1</u>

|               |       |       |                |             | (10   | DO TON)        |             |       |             |    |
|---------------|-------|-------|----------------|-------------|-------|----------------|-------------|-------|-------------|----|
| CROP          | 198   | 7     | 193            | 3           | 200   | 1              |             | 198   | 7           | ,  |
|               | W/0   | W     | W W/0          |             | W/0   |                | CRUP        | W/M   | W           | W  |
| PADDY         | 29.9  | 29.9  | 30.0           | 30.5        | 30.3  | 31.3           | PADDY       | 41.0  | 41.1        | 4  |
| MAIZE         | i.2   | i.2   | 1.2            | 1.2         | 1.2   | 1.2            | MAIZE       | 2.9   | 2.9         | :  |
| MUNG BEAN     | 1.9   | 1.9   | 1.9            | 1.9         | 1.9   | 2.0            | MUNG BEAN   | 3.4   | 3.4         |    |
| SOY BEAN      | 0.0   | 0.0   | 0.0            | 0.0         | . 0.0 | 0.0            | SOY BEAN    | 0.i   | 0.1         |    |
| GROUND NUTS   | 0.1   | 0.i   | 0.1            | 0.1         | 0.i   | Ū.1            | GROUND NUTS | 0.3   | 0.3         |    |
| SORGHUM       | 0.1   | 0.1   | 0.1            | 0.1         | 0.1   | 0.i            | SORGHUM     | 0.i   | <b>0.</b> 1 |    |
| CASSAVA       | 0.i   | 0.1   | Q.i            | <b>D.</b> 1 | D. 1  | 0.1            | CASSAVA     | 0.3   | 0.3         |    |
| SUGAR CANE    | 105.9 | 105.9 | i05 <b>.</b> 9 | 105.0       | 105.9 | 105 <b>.</b> 1 | SUGAR CANE  | 116.1 | 115.1       | 11 |
| TOBACCO       | 0.0   | 0.0   | 8.0            | 0.0         | 0.0   | 0.0            | TUBACCO     | 0.0   | 0.0         |    |
| COTTON        | 0.0   | 0.0   | 0.0            | 0.0         | ū. 0  | 0.0            | COTTON      | 0.0   | 0.0         |    |
| GARLIC        | 0.0   | 0.0   | 0.0            | 0.0         | 0.0   | 0.0            | GARLIC      | 0.0   | 0.0         |    |
| CHILLI        | 0.3   | 0.3   | 0.3            | 0.3         | 0.3   | 0.3            | CHILLI      | 0.6   | 0.6         |    |
| SESAME        | 0.0   | 0.0   | 0.0            | 0.0         | 0.0   | 0.0            | SESAME      | Ū. 1  | 0.1         |    |
| VEGETABLES    | 2,4   | 2.4   | 2.4            | 2.4         | 2.4   | 2.4            | VEGETABLES  | 3.7   | 3.7         |    |
| FRUITS        | 1.6   | 1.6   | 1.6            | 1.6         | i.6   | 1.6            | FRUITS      | 2.8   | 2.8         |    |
| <b>OTHERS</b> | 0.0   | 0.0   | 0.0            | 0.0         | 0.0   | 0.0            | OTHERS      | 0.0   | 0.0         |    |
|               |       |       |                |             |       |                |             |       |             |    |

(1000 TGN)

.

# Table 6-3-2 CROP PRODUCTION - Route 6-2

κ.

|                |       | (100  | (אפר טנ |  |  |  |
|----------------|-------|-------|---------|--|--|--|
| ′ i993         |       | 2001  |         |  |  |  |
| W/8            | W     | W/0   | 14      |  |  |  |
| 41.3           | 41.9  | 4i.E  | 42.9    |  |  |  |
| 2.9            | 3.0   | 2.9   | 3.0     |  |  |  |
| 3.4            | 3.4   | 3.4   | 3.5     |  |  |  |
| 0.i            | 0.1   | 0.1   | 0.1     |  |  |  |
| 0.3            | 0.3   | 0.3   | 0.3     |  |  |  |
| D. 1           | D. 1  | D. 1  | 0.i     |  |  |  |
| 0.3            | 0.3   | 0.3   | 0.3     |  |  |  |
| 11 <b>5.</b> i | 116.3 | 116.1 | ii6.5   |  |  |  |
| 0.0            | 0.0   | 0.0   | 0.0     |  |  |  |
| 0.0            | 0.0   | 0.0   | 0.0     |  |  |  |
| 0.0            | 0.0   | 0.0   | 0.0     |  |  |  |
| 0.6            | 0.6   | 0.6   | 0.6     |  |  |  |
| 0.1            | 0.1   | 0.1   | 0.1     |  |  |  |
| 3.7            | 3.7   | 3.7   | 3.7     |  |  |  |
| 2.8            | 2.8   | 2.8   | 2.8     |  |  |  |
| 0.0            | 0.0   | 0.0   | 0.0     |  |  |  |

# Table 6-3-3 CROP PRODUCTION - Route 6-3

1987

W/0

------

30.i

2.0

2.4

0.1

0.1

0.5

0.2

103.2

0.1

0.0

0.0

0.3

0.0

4.0

2.5

D.i

| · ·         |              |              |       |       | (10   | OG TON) |             |
|-------------|--------------|--------------|-------|-------|-------|---------|-------------|
| CROP        | 1987         |              | 199   | 3     | 200   | 1       | CROP        |
|             | W/0          | W            | W/8   | IJ    | W/8   |         |             |
| PAUDY       | 29, 9        | 30.0         | 30.1  | 30.6  | 30.3  | Ji.4    | PADDY       |
| MAIZE       | 1.6          | 1.6          | 1.6   | 1.7   | i.5   | 1.7     | MAIZE       |
| MUNG BEAN   | 2.1          | 2 <b>.</b> i | 2.1   | 2.2   | 2.1   | 2.2     | MUNG BEAN   |
| SOY BEAN    | 0.0          | 0.0          | 0.0   | 0.0   | 0.0   | 0.1     | SOY BEAN    |
| GROUND NUTS | 0 <b>.</b> i | 0.1          | 0.1   | 0.1   | 0.1   | 0.1     | GROUND NUTS |
| SORGHUM     | 0.3          | 0.3          | 0.3   | 0.3   | 0.3   | 0.3     | SORGHUM     |
| CASSAVA     | 0,2          | 0,2          | 0,2   | 0.2   | 0.2   | 0.2     | CASSAVA     |
| SUGAR CANE  | 100.5        | 100.5        | 100.5 | 100.7 | 100.5 | 100.9   | SUGAR CANE  |
| TOBACCO     | 0.i          | 0 <b>.</b> i | 0.1   | 0.1   | 0.i   | 0.i     | TOBACCO     |
| COTTON      | ۵. ۵         | 0.0          | 0.0   | 0.0   | 0.0   | 0.0     | COTTON      |
| GARLIC      | 0.0          | 0.0          | 0.0   | 0.0   | 0.0   | 0.0     | GARLIC      |
| CHILLI      | 0.3          | 0.3          | 0.3   | 0.3   | 0.3   | 0.3     | CHILLI      |
| SESAME      | 0.0          | 0.0          | 0.0   | 0.0   | 0.0   | 0.0     | SESAME      |
| VEGETABLES  | 3.3          | 3.3          | 3.3   | 3.3   | 3.3   | 3.3     | VEGETABLES  |
| FRUITS      | 2.1          | 2.1          | 2.1   | 2.1   | 2.1   | 2.1     | FRUITS      |
| OTHERS      | 0.0          | 0.0          | 0.0   | 0.0   | 0.0   | 0.0     | OTHERS      |

•

•

.

6-18

•

# Table 6-3-4 CROP PRODUCTION - Route 6-4

|              |              | L     | (10)  | 30 TON) |
|--------------|--------------|-------|-------|---------|
| ·            | 199:         | 3     | 200   | 1       |
| W            | W/8          | W     | W/B   | W       |
| 30.2         | 30.3         | 30.8  | 30.6  | 31.6    |
| 2.0          | 2.0          | 2.0   | 2.0   | 2.0     |
| 2.4          | 2.4          | 2.4   | 2.4   | 2.4     |
| 0.1          | 0.i          | 0.1   | 0.1   | 0.1     |
| 0 <b>.</b> i | 0 <b>.</b> i | 0.1   | 0.1   | 0.1     |
| 0.5          | 0.5          | 0.5   | 0.5   | 0.5     |
| 0,2          | 0.2          | 0.2   | 0.2   | 0.2     |
| 103.2        | 103.2        | 103.4 | 103.2 | 103.8   |
| 0 <b>.</b> i | 0.1          | 0.1   | 0.1   | 0.1     |
| 0.0          | 0.0          | 0.0   | 0.0   | 0.0     |
| 0.0          | 0.0          | 0.0   | ۵. ۵  | 0.0     |
| 0,3          | 0.3          | 0.3   | 0.3   | 0.3     |
| ۵.٥          | 0.0          | 0.0   | 0.0   | 0.0     |
| 4 <b>.</b> 0 | 4.0          | 4.0   | 4.0   | 4.0     |
| 2.5          | 2.5          | 2.5   | 2.5   | 2.5     |
| Ũ. 1         | D. 1         | 0.1   | 0.i   | 0.1     |

### 4. ROAD USERS COST SAVINGS

In accordance with the concept and basic data described in Chapter 5 of Summary Report, sums of VOC on each road link concerned were calculated in both cases of with project and without project.

Road users cost savings, defined as the difference of total link VOC in the case of with project and that in the without project case, were estimated as follows:

Road Users Cost Savings (Million Baht/Year)

| <u>Alternative</u> | <u>1987</u> | <u>1993</u> | 2001  |  |
|--------------------|-------------|-------------|-------|--|
| 6-1                | 21.68       | 32.10       | 55.90 |  |
| 6-2                | 19.27       | 28.03       | 48.36 |  |
| 6-3                | 26.83       | 39.18       | 67.21 |  |
| 6~4                | 31.40       | 45.98       | 78.99 |  |
|                    |             |             |       |  |

.

ć

• ·

#### 5. ENGINEERING

### 5-1 Soils and Materials 1/

Test results of subgrade soil, materials for subbase and shoulders and crushed rocks along the route or in the vicinity of the project area are shown in Table 6-5-1.

Location of samplings for the tests above in this study are shown in the Location Map of Figure 6-1-1.

#### 5-1-1 Subgrade Soils

, .

,

Subgrade soils along the study route consist mainly of silty clay and clayey silt of low and medium plasticity index ranging from 10.0 to 18.0%. They are classified as A-4 and A-7-6 in the AASHTO Classification. CBR values are from 2.0 to 3.5%.

#### 5-1-2 Subbase and Shoulder Materials

Since the study route lies in a flat area of recent alluvial basin, laterite deposits are not found along the route.

Materials for subbase and shoulder were planned to carry from the laterite deposits adjacent to project area. The nearest sources are Khao Kalon located 4 km southeast of B. Pa Phutsa and Khao I-Kok, 8 km northeast of B. Pa Phutsa as shown in the location map.

Test results of the laterites in these sources indicated that the plasticity index of the portion passing No. 4 sieve was from N.P. to 6.0% and the soaked CBR was from 60.0% to 90.0%. The laterites from these sources are suitable for use for subbase and shoulder.

<u>Note:</u> 1/ Some testing data in this section are extracted from the following source; "MATERIALS INVESTIGATION REPORT" Kamphaeng Phet - Tha Makhua - Pa Phutsa - Khanu Woralaksa Buri - Route 1 June 1979, Louis Berger International, Inc.

#### 5-1-3 Rock Material

Two rock quarries are available for the proposed road. The rock source 6/R-1 is from Khao Rok Kachan, adjacent to national highway Rt. 1, about 30 km North - West from Nakhon Sawan. The aggregate is found to be sound durable limestone of good quality for pavement or concrete aggregates. The fine aggregates passing #40 sieve is non-plastic and Los Angeles abrasion loss was around 26%, far less than specified 40% in DOH specification. One test result indicated that the CBR value is 78%, a little bit less than DOH specified value.

Another rock source R-2 is from Khao Kalon, about 4 km East of Ban Pa Phutsa, beginning point of the proposed road. The rock is a blue-grey limestone with the specific gravity of 2.56. One CBR test showed a high value of 120%, but the abrasion loss was between 44 and 63 per cent.

#### 5-2 Preliminary Design

Engineering studies on the proposed road are described by alternative route (6-1, 6-2, 6-3 and 6-4) formulated in Chapter 1.

Each alternative route comprises several segments as referred to the figure and table in Chapter 1:

| Alternative<br>Route | Segments               |       |   |
|----------------------|------------------------|-------|---|
|                      | <u> </u>               |       |   |
| 6-1                  | (a) - A- (b) - C       | Khanu | W |
| 6-2                  | (a) - B - (b) - C      | Khanu | W |
| 6-3                  | (a) - A- (b) - (c) - D | Khanu | W |
| 6-4                  | a - A- b - c - E       | Khanu | W |
|                      |                        |       |   |

Origin - Destination

d. Buri-Rt. 117 (B. Nong Huarua) d. Buri-Rt. 117 (B. Nong Huarua) d. Buri-Rt. 117 (B. Khok Kham Nua) d. Buri-Rt. 117 (B. Don Doo)

| Description          | Sample                                                | Location<br>of                         |          | Description  | AASHO               | <u> </u> | S      | ieve A | nalysis | (% Pa         | issing      | g)          |             | Plast     | icity     | Compa<br>DH-T      |               | Lab   | CBR          | Moisture<br>Content<br>(After | Abrasi     |
|----------------------|-------------------------------------------------------|----------------------------------------|----------|--------------|---------------------|----------|--------|--------|---------|---------------|-------------|-------------|-------------|-----------|-----------|--------------------|---------------|-------|--------------|-------------------------------|------------|
|                      | No.                                                   | Source<br>(KM)                         | (m)      | of<br>Sample | Classi-<br>fication | 50.0     | 25.0   | 19.0   | 9.5     | #4            | #10<br>     | #40         | #200        | LL<br>(%) | PI<br>(%) | Opt.<br>Mc.(%)     | γd<br>gm/cc.  |       | Swell<br>(%) |                               | (%)        |
|                      | 6/S-1                                                 | 6 <sup>KM</sup> +700<br>(L.10m)        | 0.2-1.0  | silty clay   | A-4                 | -        | -      | -      | -       | -             | 100         | 98.6        | 92.8        | 33.0      | 10.2      | 17.8               | 1.684         | 2.8   | 1.24         | 19.9                          |            |
|                      | 6/S-2                                                 | 19+500<br>(L.10)                       | 0.2-1.0  | silty clay   | A-4                 | -        | -      | -      | -       | -             | 100         | 98.8        | 94.6        | 33.0      | 9.7       | 17.8               | 1.689         | 2.3   | 1.14         | 19.8                          |            |
| Subgrade<br>Soil     | 6/S-3                                                 | 21+000<br>(L.10)                       | 0.3-1.0  | clayey silt  | A-7-6               | -        | -      | -      | -       | -             | 100         | 99.6        | 98.2        | 44.8      | 18.5      | 27.8               | 1.465         | 2.2   | 2.30         | 28.1                          |            |
|                      | 6/S-4                                                 | 32+500<br>(L.7)                        | 0.15-1.0 | clayey silt  | A-6                 | -        | -      | -      | -       | 100           | 99.6        | 97.0        | 90.8        | 35.2      | 11.0      | 20.4               | 1.632         | 3.3   | 1.12         | 22.8                          |            |
|                      | 6/S-5 41+200 0.3-1.0 clayey silt A-6 100 99.<br>(L.7) | 99.4                                   | 97.6     | 86.0         | 34.7                | 10.6     | 19.4   | 1.687  | 3.5     | 1.02          | 20.8        |             |             |           |           |                    |               |       |              |                               |            |
|                      | ·                                                     |                                        |          |              |                     |          |        |        |         |               |             |             |             |           |           |                    |               |       |              |                               |            |
| Subbase/<br>Shoulder | 6/L-1                                                 | Kao Kalo<br>4Km from<br>B.<br>Pa Phuts | 1        |              | GM*                 | -        | 100    | 97     | 79      | 46            | 21          | 16          | 14          | N         | - P       | 6.7                | 2.21          | 98.2  | 0            | 5.5                           |            |
| Material 1/          | 6/L-2                                                 | Kao I Ko<br>8Km from<br>B.<br>Pa Phuts | 1        |              | GM-GC*              | -        | 93     | 87     | 63      | 45            | 28          | 18          | 16          | 21        | 6         | 7.0                | 2.23          | 58.0  | 0            | 6.3                           |            |
|                      | 6/SA-1                                                | 15 Km up<br>of B. Pa                   |          | coarse sand  | -                   | -        | -<br>- | -<br>- | 100     | _<br>96.7<br> | #16<br>74.] | #50<br>10.7 | #100<br>0.8 | N         | - P       |                    |               |       | . <b></b> -  |                               | . <b>.</b> |
| Crushed<br>Rock      | 6/R-1                                                 | Khao Rok I<br>Rt.1, Km.<br>274+500(R)  |          | lime stone   | A-l-a               | 100      | 94.7   | 91.5   | 76.0    | 51.3          | 30.9        | 9 10.5      | 4.7         | N         | - P       | 7.3* <sup>**</sup> | * 2,260       |       | -            |                               | 27.4       |
|                      | 6/R-2                                                 | Khao Kalon<br>4Km from E<br>Pa Phutsa  |          | lime stone   | A-l-b               | 100      | 93.1   | 87.0   | 73.7    | 63.2          | 2 44.6      | 5 26.5      | 20.5        | N         | - P       | 6.3                | * **<br>2.203 | 120.0 | 0.22         |                               | 63/0       |

# Table 6-5-1 TEST RESULTS OF SOILS AND MATERIALS

•

Note: 1/ Extracted from "Materials Investigation Report", op. cit.

\* Classification by Unified Method.

\*\* Compaction by DH-T-MOD.

The design standards adopted for the preliminary designs is Class F4 of DOH Design Standard.

As the terrain is flat all along the proposed road, the design speed of 80 km/hr is taken except for villages sections where it is reduced to 40 km/hr.

#### 5-2-1 Alignment and Earthwork

#### 1) Alternative Route 6-1

As the horizontal and vertical alignments of this route are in fair condition, no major improvements of alignments to the existing road was required. However, the roads width is not enough for Design Standard. Widening required for this route varies from 0.3 to 6.0 m.

The raising up of the existing embankment is also necessary, the height of which ranges from 0.5 m to 1.5 m. The raising up section is indictaed in the Drawings.

A. Banphot Phisai and A. Kao Lieo where the existing road passes through, are densely populated with many houses close to the road. It was judged from the situation that the acquisition of right-of-way width of 20 m is difficult from the economical and social view points.

Bypasses were thus planned in these two Amphoe centers of populated areas, length of 7.0 km and 1.2 km, respectively.

The planned bypass at A. Banphot Phisai takes the route on swampy area. The embankment height proposed in the section was 2.0 m. For Kao Lieo bypass, 1.5 m high embankment was proposed. The existing road of Segment C takes the route of northeastern direction from A. Kao Lieo, thus constituting an unfavorable detoured route to Nakhon Sawan. For prompt access to/from Nakhon Sawan, a new alignment was planned on the extension of a part of the bypass proposed above. The new alignment section is 3,3 km long, with an average embankment height of 1.5 m.

#### 2) Alternative Route 6-2

The alternative route 6-2 takes the route of Segment B instead of Segment A in the route 6-1.

The existing road in Segment B passes through flat area but rather curved horizontal alignment. But no major improvement of horizontal alignment was required.

Widening required for this route varies from 0.3 m to 6.0 m. and required raising up of the existing embankment ranges 0.5 m to 2.0 m.

For 2.9 km of the end section of this route, a new alignment was introduced to detour A. Banphot Phisai. As the new alignment takes the route on swampy area, 2.0 m high embankment was proposed for this section.

Other design features are referred to the descriptions mentioned in 1) above.

3) Alternative Route 6-3

The alternative route 6-3 takes the same route as Route 6-1 between the origin point and A. Kao Lieo. Segment ⓒ between Kao Lieo and B. Makulua passes through populated villages in full length. Private houses stand close to the shoulders, resulting in the the shortage of right-of-way width. Judging from the present situation, Bypass of 2.1 km long was planned in the east side of the existing road aoviding the houses. The embankment height of the bypass section is 1.5 m.

Segment D is a newly planned route in the route 6-3, connecting B. Makulua with Rt. 117 with short distance. The new alignment section is 2.9 km long, with an average embankment height of 1.5 m.

Other design features of this route are referred to the descriptions mentioned in alternative route 6-1.

#### 4) Alternative Route 6-4

The alternative route 6-4 takes the route of Segment E instead of Segment D in the route 6-3.

The design features on the route until B. Makulua from the origin point are referred to the descriptions mentioned in 1) and 3) above.

Segment E was planned as new alignment section, The first 2.5 km is a bypass to avoid B. Makulua, B. Sra Ngam and B. Yang En along the existing road, and the remaining 2.0 km, as new access road to Rt. 117. Average embankment height in the new alignment section is 1.5 m.

#### 5) <u>Summary of Route Length</u>

The length of route by al as follows:

| <u>-</u> |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                |                  |       | <u>(km)</u> |
|----------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------|------------------|-------|-------------|
| Alter-   | Improve-        | and the second s |                       | truction       | Section          |       | <b>T</b>    |
| native   | ment<br>Section | Ban Phot<br>Phisai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | /-pass<br>Kao<br>Lieo | B. Ma-<br>klua | - Access<br>Road | total | Total       |
| 6-1      | 27.6            | 7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.2                   | -              | 3.7              | 11.9  | 39.5        |
| 6-2      | 33.0            | 2.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.2                   | -              | 3.7              | 7.8   | 40.8        |
| 6-3      | 29.6            | 7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.8                   | 2.1            | 2.9              | 14.8  | 44.4        |
| 6-4      | 29.7            | 7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.8                   | 2.5            | 4.0              | 16.3  | 46.0        |

#### 5-2-2 Pavement Design

Pavement structures for F4 class road were designed in accordance with DOH Method introduced in Volume 1.

There is a sugar cane refinery factory at about 7.0 km south of A. Kao Lieo along the study road. For transportation of the sugar cane, traffic of over-loading heavy trucks which are about 30,000 kg in gross weight is expected. Therefore, in about 8.6 km long section near the sugar cane factory; the asphalt concrete pavement was designed taking this into considerations.

#### A) <u>SBST</u>

#### 1) Design Traffic Number

There is no significant difference in ADT among the four alternative routes. Design traffic number was, therefore estimated based on ADT in 6-4 alternative route as follows:

The length of route by alternative routes is summarized

| Average number 39 54 41 134 ADT<br>of Heavy Truck 39 54 41 134 ADT<br>of Heavy Truck 39 54 41 134 ADT<br>Traffic<br>Component 29 40 31 100<br>Gross Weight 15,400 6,150 12,300<br>Average Gross<br>Weight (kg) 4,466 2,460 3,813 10,739<br>(a) $\times$ (b)<br>Note: H/T : Heavy Truck<br>M/T : Medium Truck<br>H/B : Heavy Bus<br>When single-axle load limit is 8,200 kg, from the<br>traffic analysis chart, (ITN) = 1.9.<br>As traffic growth rate is 6.0%.<br>Design Traffic Numbers (DTN) are :<br>DTN 7 (7 years design period) = 19 $\times$ 0.42 $\pm$ 8<br>DTN 15 (15 year design period) = 19 $\times$ 1.16 $\pm$ 22<br>2) Design CBR | ii)  | Thickness of Full-Depth A<br>Entering the thickness de<br>and Design CBR;<br>Pavement thickness for 7<br>(TA7) = 220 mm<br>Pavement thickness for 19<br>(TA15) = 250 mm<br>Thickness of SBST Pavement<br>Assuming that substitution<br>crushed stone base and 2<br>Thickness of pavement sto<br>determined from calculated<br>depth asphalt concrete as<br>SBST<br>Crushed stone base (C<br>Soil aggregate subbase (C) | design chart<br>years dest<br>5 years des<br>ent<br>ion factor<br>2.7 for late<br>tructures of<br>ted TA7 250 | ign period<br>ign period<br>is 2.0 for<br>erite subb<br>f SBST was       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| Traffic<br>Component 29 40 31 100<br>Gross Weight 15,400 6,150 12,300<br>Average Gross<br>Weight (kg) 4,466 2,460 3,813 10,739<br>(a) $\times$ (b)<br>Note: H/T : Heavy Truck<br>M/T : Medium Truck<br>H/B : Heavy Bus<br>When single-axle load limit is 8,200 kg, from the<br>traffic analysis chart, (ITN) = 1.9.<br>As traffic growth rate is 6.0%.<br>Design Traffic Numbers (DTN) are ;<br>DTN 7 (7 years design period) = 19 $\times$ 0.42 $\ddagger$ 8<br>DTN 15 (15 year design period) = 19 $\times$ 1.16 $\ddagger$ 22                                                                                                                 | ii)  | <pre>(TA7) = 220 mm<br/>Pavement thickness for 19<br/>(TA15) = 250 mm<br/>Thickness of SBST Pavement<br/>Assuming that substitution<br/>crushed stone base and 2<br/>Thickness of pavement sto<br/>determined from calculate<br/>depth asphalt concrete as<br/>SBST<br/>Crushed stone base ()</pre>                                                                                                                    | 25 years des<br>ent<br>ion factor<br>2.7 for late<br>tructures o<br>ted TA7 250<br>as follows.                | ign period<br>is 2.0 for<br>erite subb<br>f SBST was<br>mm full<br>12 mm |
| Note: H/T : Heavy Truck<br>M/T : Medium Truck<br>H/B : Heavy Bus<br>When single-axle load limit is 8,200 kg, from the<br>traffic analysis chart, (ITN) = 1.9.<br>As traffic growth rate is 6.0%.<br>Design Traffic Numbers (DTN) are ;<br>DTN 7 (7 years design period) = 19 x 0.42 ÷ 8<br>DTN 15 (15 year design period) = 19 x 1.16 ÷ 22                                                                                                                                                                                                                                                                                                       | ii)  | Assuming that substitution<br>crushed stone base and 2<br>Thickness of pavement sto<br>determined from calculate<br>depth asphalt concrete as<br>SBST<br>Crushed stone base                                                                                                                                                                                                                                            | ion factor<br>2.7 for late<br>tructures o<br>ted TA7 250<br>as follows.                                       | erite subb<br>f SBST was<br>mm full<br>12 mm                             |
| Design Traffic Numbers (DTN) are ;<br>DTN 7 (7 years design period) = 19 x 0.42 ≑ 8<br>DTN 15 (15 year design period) = 19 x 1.16 ≑ 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      | Crushed stone base (                                                                                                                                                                                                                                                                                                                                                                                                   | CBR <u>≥</u> 80                                                                                               |                                                                          |
| DTN 15 (15 year design period) = 19 x 1.16 ÷ 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      | 55 5                                                                                                                                                                                                                                                                                                                                                                                                                   | CBR <u>≥</u> 20                                                                                               | 390 mm                                                                   |
| 2) <u>Design CBR</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | iii) | Thickness of Overlay<br>TA15 - TA7 = 250 mm -                                                                                                                                                                                                                                                                                                                                                                          | - 220 mm =                                                                                                    | = 30 mm                                                                  |
| Design CBR (80% percentile value) was calculated corresponding to the number of tests.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      | When overlay is planned b<br>thickness is:<br>SBST                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                               |                                                                          |
| $\frac{\text{Test Value of CBR (\%)}}{1 2 3 4 5} \qquad \text{Design CBR}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      | Crushed stone base (                                                                                                                                                                                                                                                                                                                                                                                                   | CBR <u>≥</u> 80                                                                                               | 60 mm                                                                    |
| 2.8 2.3 2.2 3.3 3.5 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                               |                                                                          |

iod.

for ubbase. was

the

#### B) Asphalt Concrete Pavement

Empty

procedures:

7.000

estimated in Volume 1 were applied.

40

For the gross weights of other traffic, the values

Design traffic number was calculated by the following

20,800

| 1) Design Traffic Number                                                                               | Item For Sugar O<br>Cane                       |
|--------------------------------------------------------------------------------------------------------|------------------------------------------------|
| Design of pavement was carried out based on ADT of<br>link No. 6 in the alternative route 6-3.         | Number of Heavy 15<br>Truck at 1989 7.5        |
| According to forecasted O/D of agricultural products,                                                  | Traffic Compo- 8<br>sition%(a)                 |
| 25% of heavy trucks are used for the transportation of agricultural and 95% of them is estimated to be | Gross Weight 20,800 1<br>(kg) (b)              |
| used for the transportation of sugar cane.                                                             | AverageGross<br>Weight (kg) 1,664<br>(a) x (b) |
| The average gross weight of the heavy truck for the transportation of the sugar cane was estimated as  |                                                |
| follows:<br>Average Gross Weight of Heavy Truck for Sugar Cane                                         | When single-axle load<br>traffic analysis char |
| Description Gross Weight Empty Average<br>(kg) Rate (%) (ka)                                           | As traffic growth rat                          |
| (kg) (kg)                                                                                              | Design Traffic Number                          |
| Laden 30.000 60                                                                                        | DTN 7 (7 years design                          |

2) Design CBR

of SBST.

3) Thickness of Pavement

i) Thickness of Full-Depth Asphat Concrete

Entering the thickness design chart with DTN and Design CBR;



ruck Medium Heavy Total Remark Others Truck Bus 196 ADT 46 86 49 98 One Direction 29.5 23 43 23 44 25 100 15,400 6,150 12,300 3,542 2,706 3,075 10,987 ad limit is 8,200 kg, from the art, (ITN) = 33rate is 6.0%, er (DTN) are; ign period) =  $33 \times 0.42 = 14$ DTN 15 (15 years design period) = 33 x 1.16 = 38.5 Design CBR is the same value as used for the design

Considering workability, the thickness of the

ii) Thickness of Asphalt Concrete Pavement

(TA7) = 240 mm

(TA15) = 270 mm

asphalt concrete surface was determined at 50 mm.

Pavement thickness for 7 years design period.

Pavement thickness for 15 years design period.

Where the thickness of the crushed stone base is 150 mm, the pavement structures are as follows:

| Asphalt concrete surfa | се                   | 50  | mm |
|------------------------|----------------------|-----|----|
| Crushed stone base     | CBR <u>≥</u> 80      | 150 | mm |
| Soil aggregate subbase | e CBR <u>&gt;</u> 20 | 330 | mm |

#### iii) Thickness of Overlay

TA15 - TA7 = 270 mm - 240 mm = 30 mm

30 m thickness of overlay was calculated theorectically. However 40 mm thickness of overlay by asphalt concrete was finally designed considering workability.

Box culvert (2.4m x 2.4m) was planned at the water course having small catchment area. The number of cells of culvert was determined by comparing discharge with flow capacity.

Box culvert was proposed only in one place of Segment (C) related to the alternative route 6-3 and 6-4 as follows:

### List of Box Culvert

| Station | Existing  | Catchment  | Intensity | Discharge             | e Proposed                  | Capacity              |
|---------|-----------|------------|-----------|-----------------------|-----------------------------|-----------------------|
|         | Structure | Area (km²) | (mm/h)    | (m <sup>3</sup> /sec) | Structure                   | (m <sup>3</sup> /sec) |
| 41+300  | -         | 3          | 60        | 40                    | C-B-2<br>(2.4x2.4)<br>-10.0 | 50                    |

#### 5-2-4 Bridge

Short span concrete bridges were planned where the river is relatively narrow and shallow. The length of bridges was determined by comparing discharge with flow capacity of bridge opening.

The proposed bridges are shown in the following tables by route alternative.

Study Route No. 6-1

#### List of Bridge

| Station | Existing<br>Structure      | Catchment<br>Area (km <sup>3</sup> ) | Intensity<br>(mm/h) | Discharge<br>(m <sup>3</sup> /sec) | Proposed<br>Structure | Capacity<br>(m <sup>3</sup> /sec) |
|---------|----------------------------|--------------------------------------|---------------------|------------------------------------|-----------------------|-----------------------------------|
| 15+800  | C-B-4<br>(1.8x1.8)<br>-4.0 | 5                                    | 57                  | 62                                 | BR-C<br>(7.0x10.0)    | 63                                |
| 22+200  | -                          | 10                                   | 45                  | 97                                 | BR-C<br>(7.0x14.0)    | 98                                |

#### 5-2-3 Drainage

Pipe culverts with the diameter of 1 m were installed at the intervals of 200 m for all alternative routes, except for segment (b) and (c), where intervals of 500 m were proposed.

Total length = 24.0 m

Study Route No. 6-2

| Station | Existing<br>Structure | Catchment<br>Area (km <sup>3</sup> ) | Intensity<br>(mm/h) | Discharge<br>(m <sup>3</sup> /sec) | Proposed<br>Structure | Capacity<br>(m <sup>3</sup> /sec) |
|---------|-----------------------|--------------------------------------|---------------------|------------------------------------|-----------------------|-----------------------------------|
| 15+700  | BR-T<br>(4.0x7.5)     | 4                                    | 70                  | 62                                 | BR-C<br>(7.0x10.0)    | 63                                |
| 22+200  | -                     | 10                                   | 45                  | 97                                 | BR-C<br>(7.0x14.0)    | 98                                |

List of Bridge

Total length = 24.0 m

Study Route No. 6-3/6-4

# <u>List of Bridge</u>

| Station | Existing<br>Structure      | Catchment<br>Area (km <sup>3</sup> ) | Intensity<br>(mm/h) | Discharge<br>(m <sup>3</sup> /sec) | Proposed<br>Structure | Capacity<br>(m <sup>3</sup> /sec) |
|---------|----------------------------|--------------------------------------|---------------------|------------------------------------|-----------------------|-----------------------------------|
| 15+800  | BR-T<br>((1.3x1.8)<br>-4.0 | 5                                    | 57                  | 62                                 | BR-C<br>(7.0x10.0)    | 63                                |
| 22+200  | -                          | 10                                   | 45                  | 97                                 | BR-C<br>(7.0x14.0)    | 98                                |
| 36+800  | -                          | 13                                   | 37                  | 102                                | BR-C<br>(7.0x15.0)    | 106                               |

Total length = 39.0 m

#### 6. CONSTRUCTION COST

Construction costs were obtained by applying the unit rates to the respective work quantities calculated on the basis of the engineering studies.

Rock materials used for SBST, asphaltic concrete, base course and structure works were supposed to be transported from rock quarries 6/R-1 and 6/R-2 with a weighted average hauling distance of 36 km. The transportation cost for this hauling distance was reflected to each unit rate.

The construction cost together with land acquisition cost are given in Table 6-6-1.

The construction period for the proposed road was estimated to be 3 years. Yearly disbursements of construction cost together with price contingency are shown in the following table.

### YEARLY COST DISBURSEMENT - Route 6-4

| <u> </u>                        |                   |                   |      | - <u> </u> |          |      | (Mill          | ion Ba | ht)   |
|---------------------------------|-------------------|-------------------|------|------------|----------|------|----------------|--------|-------|
|                                 | 198               |                   |      | 985        | <u> </u> | 986  |                | Total  |       |
|                                 | L/C <sup>1/</sup> | F/C <sup>2/</sup> | L/C  | F/C        | L/C      | F/C  | L/C            | F/C    | Total |
| Construction Cost               |                   | 10.5              | 28.7 | 26.4       | 17.2     | 15.9 | 57.4           | 52.8   | 110.2 |
| Price Contingency $\frac{3}{2}$ | 3.7               | 1.7               | 13.0 | 6.2        | 10.3     | 4.9  | 27.0           | 12.8   | 39.8  |
| Total                           | 15.2              | 12.2              | 41.7 | 32.6       | 27.5     | 20.8 | 84.4<br>(3.68) |        | 150.0 |

Note: 1/ Local Currency

2/ Foreign Currency

3/ At assumed annual escalation rates as follows (% p.a.):

|                  | Local C    | . Foreign C.         |
|------------------|------------|----------------------|
| 1981 - 1983      | 15         | 7.5                  |
| 1983 - 1987      | 10         | 6.5                  |
| ( ) Million US\$ | Equivalent | (1US\$ = 22.63 Baht) |
|                  |            |                      |

|                                                                                       | Unit                         | Financial           | 6-1 (F   | -4/39.5 KM)                          | 6-2 (F   | -4/40.8 KM)                          | 6-3 (F   | -4/44.4 KM)                          | 6-4 (F-  | -4/46.0 KM)                          |
|---------------------------------------------------------------------------------------|------------------------------|---------------------|----------|--------------------------------------|----------|--------------------------------------|----------|--------------------------------------|----------|--------------------------------------|
| Description                                                                           | of<br>quantity               | Unit<br>Rate (Baht) | Quantity | Economic<br>Cost (10 <sup>3</sup> Ø) | Quantity | Economic<br>Cost (10 <sup>3</sup> ß) | Quantity | Economic<br>Cost (10 <sup>3</sup> Ø) | Quantity | Economic<br>Cost (10 <sup>3</sup> Ø) |
|                                                                                       |                              | ·                   |          |                                      |          |                                      | <u></u>  | <u></u>                              |          |                                      |
| Clearing & Grubbing<br>Roadway Excavation                                             | ha                           | 17,000              | 93       | 1,439                                | 92       | 1,423                                | 106      | 1,640                                | 110      | 1,702                                |
| - Classified Earth                                                                    | " <sup>3</sup>               | 36                  | 0        | 0                                    | 0        | 0                                    | 0        | 0                                    | 0        | 0                                    |
| Road Excavation<br>- Classified Soft Rock                                             | m <sup>3</sup>               | 80                  | 0        | 0                                    | 0        | 0                                    | o        | 0                                    | 0        | 0                                    |
| Embankment<br>~ Side Borrow                                                           | m <sup>3</sup>               | 45                  | 421,200  | 17,248                               | 389,700  | 15,958                               | 467,300  | 19,136                               | 499,300  | 20,466                               |
| Embankment<br>- Borrow Pit                                                            | m <sup>3</sup>               | 60                  | 0        | 0                                    | 0        | 0                                    | 0        | 0                                    | 0        | 0                                    |
| Embankment<br>- Selected Material                                                     | " <sup>3</sup>               | 80                  | 0        | 0                                    | 0        | 0                                    | 0        | 0                                    | 0        | 0                                    |
| Subbase<br>- Soil Aggregate                                                           | m <sup>3</sup>               | 106                 | 159,900  | 15,085                               | 165,200  | 15,585                               | 179,700  | 16,953                               | 186,200  | 17,566                               |
| Base<br>- Crushed Rock                                                                | m <sup>3</sup>               | 309                 | 38,500   | 10,945                               | 39,800   | 11,314                               | 43,300   | 12,309                               | 44,900   | 12,764                               |
| Shoulder<br>- Soil Aggregate                                                          | m <sup>3</sup>               | 170                 | 16,600   | 2,512                                | 17,100   | 2,587                                | 18,600   | 2,814                                | 19,300   | 2,920                                |
| Asphaltic Prime Coat                                                                  | m <sup>2</sup>               | 10.8                | 256,800  | 2,552                                | 265,200  | 2,635                                | 288,600  | 2,868                                | 299,000  | 2,971                                |
| Single Bituminous<br>Surface Treatment                                                | m <sup>2</sup>               | 27.6                | 217,300  | 5,398                                | 224,400  | 5,574                                | 244,200  | 6,066                                | 253,000  | 6,285                                |
| R.C. Pipe Culvert                                                                     | m                            | 2,400               | 1,880    | 4,151                                | 1,880    | 4,151                                | 2,090    | 4,514                                | 2,210    | 4,880                                |
| .C. Box Culvert                                                                       | m                            | 18,000              | 0        | 0                                    | 0        | 0                                    | 20       | 324                                  | 20       | 324                                  |
| .C. Bridge<br>- Short Span                                                            | m                            | 39,500              | 24       | 844                                  | 24       | 844                                  | 39       | 1,371                                | 39       | 1,371                                |
| P.C. Bridge<br>- Long Span                                                            | m                            | 68,700              | ó        | 0                                    | ٥        | ٥                                    | 0        | 0                                    | 0        | 0                                    |
| Sub-total                                                                             |                              |                     |          | 60,174                               |          | 60,071                               |          | 67,995                               |          | 71,229                               |
| iscellaneous Works $\frac{1}{}$                                                       |                              |                     |          | 4,212                                |          | 4,205                                |          | 4,760                                |          | 4,986                                |
| otal Direct<br>onstruction Cost                                                       |                              |                     |          | 64,386                               |          | 64,276                               |          | 72,755                               |          | 76,215                               |
| HYSICAL CONTINGENCY <sup>2/</sup>                                                     |                              |                     |          | 9,658                                |          | 9,641                                |          | 10,913                               |          | 11,432                               |
| ESIGN AND<br>CONSTRUCTION SUPERVISION <sup>3/</sup>                                   |                              |                     |          | 6,439                                |          | 6,428                                |          | 7,276                                |          | 7,622                                |
| Total                                                                                 |                              |                     |          | 80,483                               |          | 80,345                               |          | 90,944                               |          | 95,269                               |
| Land.Acquisition<br>Highly Devel'd Land                                               | ha                           | 50,000              | 85       | 4,250                                | 77       | 3,850                                | 96       | 4,800                                | 102      | 5,100                                |
| Less Devel'd Land                                                                     | ha                           | 15,000              | 1        | 15                                   | 1        | 15                                   | 1        | 15                                   | 102      | 15                                   |
| Grand Total                                                                           |                              |                     | ~ ~ ~    | 84,748                               |          | 84,210                               |          | 95,759                               |          | 100,384                              |
| INANCIAL COST (10 <sup>3</sup> Baht)                                                  |                              |                     |          | (93,118)                             |          | (92,587)                             |          | (105,606)                            |          | (110,306)                            |
| Note: 1/ 7% of direct constru<br>2/ 15% of direct constru<br>3/ 10% of direct constru | uction cost.<br>uction cost. | -                   | items.   | ······                               | 6-29     |                                      |          |                                      |          |                                      |

LADIE 0 0 1 CONSTRUCTION COST - MOUTE 0

### 7. EVALUATION

In accordance with the basic conditions of economic evaluation discussed in Summary Report and economic costs and benefits as estimated in the foregoing sections, internal rate of return was calculated for each alternative as follows:

|             |     | IRR    |
|-------------|-----|--------|
| Alternative | 6-1 | 25.8 % |
| 61          | 6-2 | 25.8 % |
| 13          | 6-3 | 26.7 % |
| 33          | 6-4 | 28.5 % |

Details of costs and benefit streams are given in Table 6-7-1 to 6-7-5 Having the highest IRR, Alternative 6-4 is recommendable to be selected. Furthermore, Alternative 6-4 is most desirable in view of the better services to the local population, while Alternative 6-3 is best positioned to serve for sugar cane transportation during only a limitted period in a year.

Considering that it is usual practice for sugar cane transportation to load more than 20 tons per truck, asphalt concrete pavement was planned for a section of 8.6 km which is used to have heavy sugar cane traffic. Due to this measure, construction cost was raised up 3.3% and IRR was reduced to 27.9% from 28.5%.

#### Table 6-7-1 COSTS AND BENEFITS STATEMENT - Route 6-1

|                                                                                                                                                                              |                                                                                                   |                                                                                                                                           |                                                                                                                                                              |                                                                                                            |                                                                                                                                                         | (10)                                                                                                                                                                                  | 30 BAHT)                                                                                                                                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                              | COST                                                                                              |                                                                                                                                           | BENEF                                                                                                                                                        | ITS                                                                                                        | ┉┉┉╧╕┈╍╓╄╵╍╺                                                                                                                                            | DISCOUN                                                                                                                                                                               | TED(12%)                                                                                                                                                     |
| YEAR                                                                                                                                                                         | CONST.<br>COST                                                                                    | AGRI.<br>BENEFIT                                                                                                                          | VOC<br>SAVING                                                                                                                                                | RMC<br>SAVING                                                                                              | TOTAL                                                                                                                                                   | COST                                                                                                                                                                                  | BENEFIT                                                                                                                                                      |
| 1983<br>1984<br>1985<br>1986<br>1987<br>1988<br>1989<br>1990<br>1991<br>1992<br>1993<br>1994<br>1995<br>1995<br>1995<br>1995<br>1995<br>1997<br>1998<br>1999<br>2000<br>2001 | 0<br>16,950<br>42,370<br>25,428<br>0<br>0<br>0<br>0<br>0<br>27,111<br>0<br>0<br>0<br>0<br>-41,227 | 0<br>7,470<br>7,559<br>7,848<br>8,037<br>8,225<br>8,414<br>8,603<br>8,792<br>8,981<br>9,170<br>9,359<br>9,547<br>9,736<br>9,925<br>10,114 | 0<br>0<br>21,683<br>23,419<br>25,155<br>26,890<br>28,626<br>30,362<br>32,098<br>35,073<br>38,048<br>41,023<br>43,938<br>45,973<br>49,948<br>52,923<br>55,898 | 0<br>0<br>0<br>-11<br>18<br>47<br>76<br>105<br>134<br>162<br>212<br>262<br>312<br>361<br>411<br>461<br>560 | 0<br>29,142<br>31,096<br>33,049<br>35,003<br>35,956<br>38,910<br>40,863<br>44,077<br>47,291<br>50,504<br>53,718<br>56,931<br>50,145<br>53,359<br>65,572 | 0<br>23,814<br>53,149<br>28,479<br>0<br>0<br>0<br>0<br>0<br>12,264<br>0<br>0<br>12,264<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>26,020<br>24,789<br>23,524<br>22,245<br>20,970<br>19,713<br>18,485<br>17,802<br>17,054<br>16,261<br>15,443<br>14,613<br>13,784<br>12,964<br>12,163 |
| TOTAL                                                                                                                                                                        | 70,572                                                                                            | 131,879                                                                                                                                   | 552,117                                                                                                                                                      | 3,621                                                                                                      | 687,617                                                                                                                                                 | 110,162                                                                                                                                                                               | 275,828                                                                                                                                                      |
|                                                                                                                                                                              |                                                                                                   | OMIC COS                                                                                                                                  |                                                                                                                                                              |                                                                                                            | LD, 162<br>75, 828                                                                                                                                      |                                                                                                                                                                                       |                                                                                                                                                              |
|                                                                                                                                                                              | LTURAL I                                                                                          | DEVELOPM                                                                                                                                  |                                                                                                                                                              | TT :                                                                                                       | 57,283<br>17,456<br>1,090                                                                                                                               |                                                                                                                                                                                       |                                                                                                                                                              |
| NET PRES                                                                                                                                                                     | ENT VAL                                                                                           | UE :                                                                                                                                      |                                                                                                                                                              | 16                                                                                                         | 55,666                                                                                                                                                  |                                                                                                                                                                                       |                                                                                                                                                              |
| BENEFIT                                                                                                                                                                      | COST RA                                                                                           | TIØ :                                                                                                                                     |                                                                                                                                                              |                                                                                                            | 2.50                                                                                                                                                    |                                                                                                                                                                                       |                                                                                                                                                              |
| INTERNAL                                                                                                                                                                     | . RATE DI                                                                                         | F RETURN                                                                                                                                  | 2                                                                                                                                                            |                                                                                                            | 25.8 %                                                                                                                                                  |                                                                                                                                                                                       |                                                                                                                                                              |

- - 25.8 /

# Table 6-7-2 COSTS AND BENEFITS STATEMENT - Route 6-2

Table 6-7-3 COSTS AND BENEFITS STATEMENT - Route 6-3

| C | 1 | 000 | BAHT) |
|---|---|-----|-------|
| • | T | owo | DHUIT |

|                                                                                                                                                                              |                                                                                                                                                                        |                       |                                                                                                                                                    |                                                                                                      |                                                                                                                                                                        | (100                                                                                                                                                                             | DO BAHT)                                                                                                                                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                              | COST                                                                                                                                                                   |                       | BENEF                                                                                                                                              | ITS                                                                                                  |                                                                                                                                                                        | DISCOUNT                                                                                                                                                                         | ED(12%)                                                                                                                                                      |
| YEAR                                                                                                                                                                         | CONST.<br>COST                                                                                                                                                         | AGRI.<br>BENEFIT      | VOC<br>SAVING                                                                                                                                      | RMC<br>SAVING                                                                                        | TOTAL                                                                                                                                                                  | COST                                                                                                                                                                             | BENEFIT                                                                                                                                                      |
| 1983<br>1984<br>1985<br>1985<br>1987<br>1988<br>1989<br>1989<br>1990<br>1991<br>1992<br>1993<br>1994<br>1995<br>1996<br>1995<br>1996<br>1997<br>1998<br>1999<br>2000<br>2001 | 0<br>16, 840<br>42, 100<br>25, 270<br>0<br>0<br>0<br>27, 870<br>0<br>27, 870<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 13,609<br>13,868      | 0<br>0<br>19,265<br>20,725<br>22,186<br>25,106<br>25,567<br>28,027<br>30,569<br>33,110<br>35,651<br>38,192<br>40,734<br>43,275<br>45,816<br>48,357 | 0<br>0<br>20<br>40<br>59<br>99<br>119<br>139<br>174<br>209<br>245<br>280<br>315<br>351<br>385<br>421 | 0<br>0<br>29,774<br>31,515<br>33,255<br>34,995<br>36,736<br>38,476<br>40,216<br>43,052<br>45,889<br>45,889<br>45,889<br>51,562<br>54,398<br>57,234<br>60,071<br>62,907 | 0<br>23,659<br>52,810<br>28,302<br>0<br>0<br>0<br>0<br>0<br>12,607<br>0<br>0<br>12,607<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>25,584<br>25,123<br>23,670<br>22,240<br>20,845<br>19,493<br>18,192<br>17,388<br>16,548<br>15,688<br>14,823<br>13,963<br>13,117<br>12,292<br>11,493 |
| TOTAL                                                                                                                                                                        | 71,256                                                                                                                                                                 | 184,641               | 481,225                                                                                                                                            | 2, 937                                                                                               | 668,804                                                                                                                                                                | 109,920                                                                                                                                                                          | 271,458                                                                                                                                                      |
|                                                                                                                                                                              |                                                                                                                                                                        | OMIC COS<br>OMIC BENN | TS :<br>EFITS :                                                                                                                                    |                                                                                                      | 09,920<br>71,458                                                                                                                                                       |                                                                                                                                                                                  |                                                                                                                                                              |
| AGRICU<br>VÕC SA<br>RMC SA                                                                                                                                                   | IVING                                                                                                                                                                  | DEVELÖPMI             | ENT BENEF                                                                                                                                          |                                                                                                      | 80,263<br>90,252<br>943                                                                                                                                                |                                                                                                                                                                                  |                                                                                                                                                              |
| NET PRES                                                                                                                                                                     | ENT VAL                                                                                                                                                                | UE :                  |                                                                                                                                                    | 11                                                                                                   | E1,538                                                                                                                                                                 |                                                                                                                                                                                  |                                                                                                                                                              |
| BENEFIT                                                                                                                                                                      | COST RA                                                                                                                                                                | TI8 :                 |                                                                                                                                                    |                                                                                                      | 2.47                                                                                                                                                                   |                                                                                                                                                                                  |                                                                                                                                                              |
| INTERNAL                                                                                                                                                                     | . RATE O                                                                                                                                                               | F RETURN              | :                                                                                                                                                  |                                                                                                      | 25.8 %                                                                                                                                                                 |                                                                                                                                                                                  |                                                                                                                                                              |

|                            | COST                                                                                                                                                                        |                                          | BENEF                                                                                                                | ITS                                                                                                          |                                                                                                                                                         | DISCOUN                                                                                                                                                                | FED(12/)                                                                                                                                           |
|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| YEAR                       | CONST.<br>COST                                                                                                                                                              | AGRI.<br>BENEFIT                         | VOC<br>SAVING                                                                                                        | RMC<br>SAVING                                                                                                | TOTAL                                                                                                                                                   | COST                                                                                                                                                                   | BENÉFIT                                                                                                                                            |
|                            | 0<br>19,150<br>47,880<br>28,729<br>0<br>0<br>0<br>0<br>0<br>30,470<br>0<br>30,470<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 10, 152<br>10, 356<br>10, 560<br>10, 764 | 33,005<br>35,063<br>37,120<br>39,178<br>42,682<br>46,186<br>49,690<br>53,194<br>56,698<br>60,202<br>63,706<br>67,210 | 0<br>0<br>-13<br>18<br>49<br>81<br>112<br>143<br>174<br>228<br>282<br>335<br>389<br>443<br>497<br>550<br>604 | 0<br>34,729<br>37,022<br>39,314<br>41,607<br>43,899<br>46,192<br>48,484<br>52,246<br>56,008<br>59,769<br>63,531<br>67,293<br>71,055<br>74,817<br>78,579 | 50,051<br>32,176<br>0<br>0<br>0<br>0<br>0<br>13,783<br>0<br>0<br>13,783<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 31,008<br>29,514<br>27,983<br>26,442<br>24,910<br>23,402<br>21,932<br>21,101<br>20,197<br>19,244<br>18,264<br>17,272<br>16,284<br>15,309<br>14,356 |
| TOTAL                      | 79,580                                                                                                                                                                      | 140,047                                  | 670,605                                                                                                              | 3,892                                                                                                        | 814, 544                                                                                                                                                | 124,402                                                                                                                                                                | 327,218                                                                                                                                            |
|                            |                                                                                                                                                                             | MIC COST                                 |                                                                                                                      |                                                                                                              | 24,402                                                                                                                                                  |                                                                                                                                                                        |                                                                                                                                                    |
| DISCOUNT                   | ED ECON                                                                                                                                                                     | MIC BEN                                  | EFITS :                                                                                                              | 32                                                                                                           | 27,218                                                                                                                                                  |                                                                                                                                                                        |                                                                                                                                                    |
| AGRICU<br>VOC SA<br>RMC SA | VING                                                                                                                                                                        | DEVELOPM                                 | ENT BENEF                                                                                                            |                                                                                                              | 50,785<br>55,265<br>1,168                                                                                                                               |                                                                                                                                                                        |                                                                                                                                                    |
| NET PRES                   | SENT VAL                                                                                                                                                                    | UE :                                     |                                                                                                                      | 20                                                                                                           | 32,816                                                                                                                                                  |                                                                                                                                                                        |                                                                                                                                                    |
| BENEFIT                    | COST RA                                                                                                                                                                     | TID:                                     |                                                                                                                      |                                                                                                              | 2.63                                                                                                                                                    |                                                                                                                                                                        |                                                                                                                                                    |

INTERNAL RATE OF RETURN :

•

25.7 %

### (1000 BAHT)

# Table 6-7-4 COSTS AND BENEFITS STATEMENT - Route 6-4

| <u> </u>                      | COST                                                                                                                                             | <u> </u>                                                                             | BENEF                                                                                                                                    | ITS                                                                                                               | - <u></u> <u></u>                                                                                                                                            |                                                                                                                                                                                  | DO BAHT)<br><br>TED(12%)                                                                                                                                |
|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| YEAR                          | CONST.                                                                                                                                           | AGRI.<br>BENEFIT                                                                     | VOC<br>SAVING                                                                                                                            | RMC                                                                                                               | TOTAL                                                                                                                                                        | <del></del>                                                                                                                                                                      | BENEFIT                                                                                                                                                 |
| 2001 -                        | 50, 190<br>30, 114<br>0<br>0<br>0<br>0<br>0<br>31, 570<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 9,766<br>9,987<br>10,209<br>10,430<br>10,651<br>10,872<br>11,094<br>11,315<br>11,536 | 33,829<br>36,258<br>38,688<br>41,118<br>43,548<br>45,978<br>50,104<br>54,231<br>58,357<br>62,484<br>66,610<br>70,737<br>74,863<br>78,990 | 0<br>0<br>0<br>-19<br>13<br>45<br>78<br>111<br>143<br>175<br>232<br>288<br>344<br>401<br>457<br>514<br>570<br>526 | 0<br>0<br>39,820<br>42,503<br>45,186<br>47,869<br>50,553<br>53,236<br>55,919<br>60,323<br>64,727<br>69,131<br>73,535<br>77,939<br>82,344<br>86,748<br>91,152 | 0<br>28,211<br>62,958<br>33,728<br>0<br>0<br>0<br>0<br>14,281<br>0<br>0<br>14,281<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>35,553<br>33,883<br>32,163<br>30,422<br>28,685<br>26,971<br>25,295<br>24,364<br>23,341<br>22,258<br>21,140<br>20,005<br>18,871<br>17,750<br>16,653 |
| TOTAL                         | 83,015                                                                                                                                           | 149,814                                                                              | 787,191                                                                                                                                  | 3, 980                                                                                                            | 940, 985                                                                                                                                                     | 130,237                                                                                                                                                                          | 377,354                                                                                                                                                 |
|                               |                                                                                                                                                  | MIC COST                                                                             |                                                                                                                                          |                                                                                                                   | 0,237                                                                                                                                                        |                                                                                                                                                                                  |                                                                                                                                                         |
| DISCOUNT                      | ED ECONO                                                                                                                                         | MIC BENE                                                                             | FITS :                                                                                                                                   | 37                                                                                                                | 7,354                                                                                                                                                        |                                                                                                                                                                                  |                                                                                                                                                         |
| AGRICUU<br>VOC SAN<br>RMC SAN | VING                                                                                                                                             | EVELOPME                                                                             | NT BENEFI                                                                                                                                | 31                                                                                                                | 4,982<br>1,192<br>1,181                                                                                                                                      |                                                                                                                                                                                  |                                                                                                                                                         |
| ET PRESE                      | ENT VALU                                                                                                                                         | E :                                                                                  |                                                                                                                                          | 24                                                                                                                | 7,118                                                                                                                                                        |                                                                                                                                                                                  |                                                                                                                                                         |
| BENEFIT (                     | COST RAT                                                                                                                                         | 10 :                                                                                 |                                                                                                                                          |                                                                                                                   | 2.90                                                                                                                                                         |                                                                                                                                                                                  |                                                                                                                                                         |

28.5 /

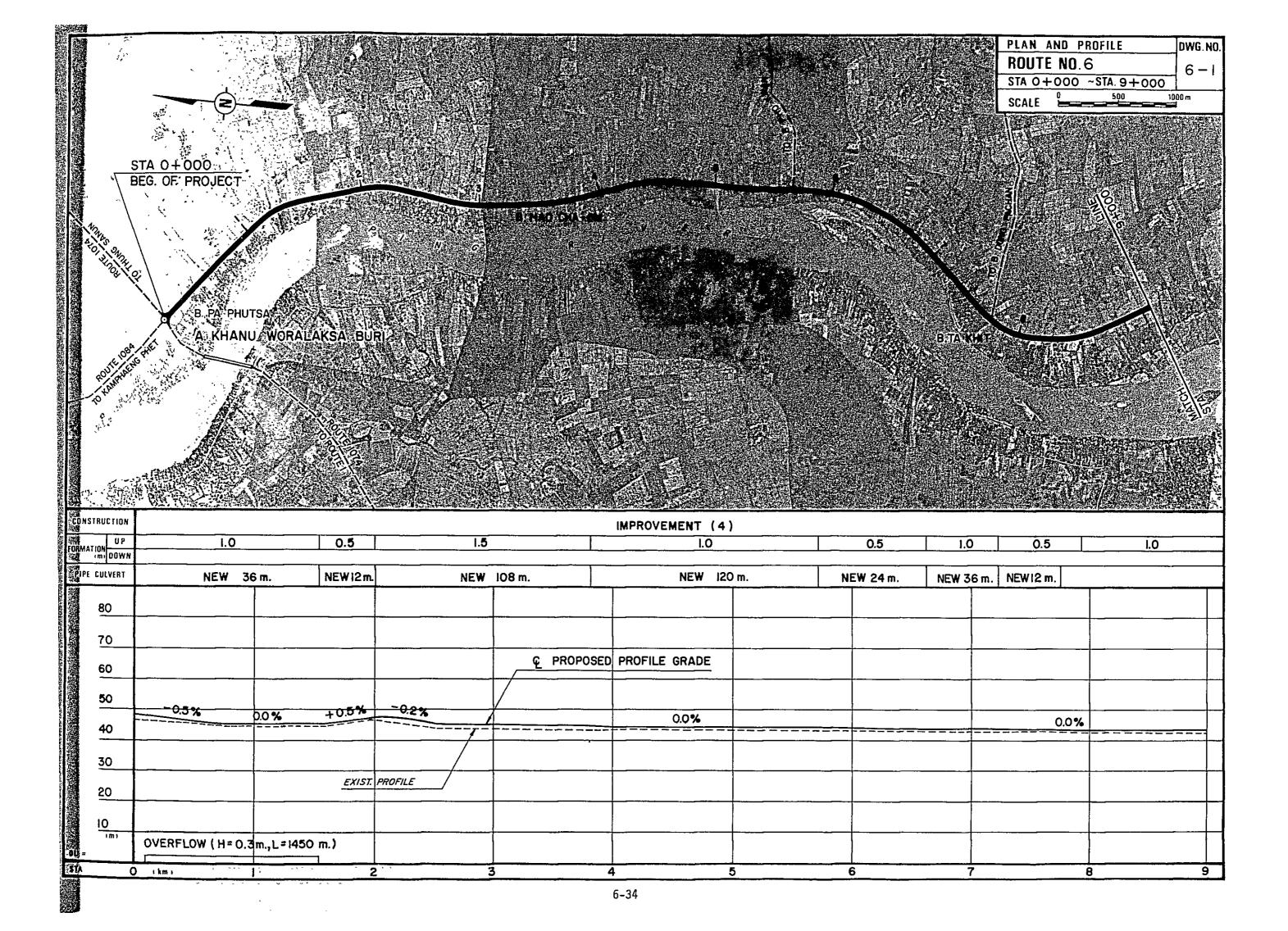
INTERNAL RATE OF RETURN :

| ť | 1000 | BAHT)  |
|---|------|--------|
| • | ruuu | wmin 2 |

|                                                                                                                                                                              |                                                                                                                                                                                  |                                      |                  |                                                                                                              |                                                                                                                                | (10                                            | ОО ВАНТ)                                                                                                                                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                              | COST                                                                                                                                                                             |                                      | BENEF            | ITS                                                                                                          |                                                                                                                                | DISCOUN                                        | TED(12%)                                                                                                                                 |
| YEAR                                                                                                                                                                         | CONST.<br>COST                                                                                                                                                                   | AGRI.<br>HENEFIT                     | VOC<br>SAVING    | RMC<br>SAVING                                                                                                | TOTAL                                                                                                                          | COST                                           | BENEFIT                                                                                                                                  |
| 1983<br>1984<br>1985<br>1986<br>1987<br>1988<br>1989<br>1989<br>1990<br>1991<br>1993<br>1994<br>1993<br>1994<br>1995<br>1996<br>1997<br>1998<br>1998<br>1999<br>2000<br>2001 | 20,742<br>51,855<br>31,113<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>30,795<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 70,737<br>74,863 | 0<br>0<br>-19<br>13<br>46<br>78<br>111<br>143<br>175<br>232<br>288<br>344<br>401<br>457<br>514<br>570<br>626 | 42,503<br>45,186<br>47,869<br>50,553<br>53,236<br>55,919<br>60,323<br>64,727<br>69,131<br>73,535<br>77,939<br>82,344<br>86,748 | 0<br>0<br>0<br>13,930<br>0<br>0<br>0<br>0<br>0 | 35,553<br>33,883<br>32,163<br>30,422<br>28,685<br>26,971<br>25,295<br>24,364<br>23,341<br>22,258<br>21,140<br>20,005<br>18,871<br>17,750 |
| 1 OTAL                                                                                                                                                                       | 84,036                                                                                                                                                                           | 143,814                              | 787,191          | 3,980                                                                                                        | 940,985                                                                                                                        | 133,744                                        | 377,354                                                                                                                                  |
|                                                                                                                                                                              |                                                                                                                                                                                  | MIC COS                              | TS :<br>EFITS :  |                                                                                                              | 53,744<br>77,354                                                                                                               |                                                |                                                                                                                                          |
| AGRICL<br>VOC SA<br>RMC SA                                                                                                                                                   | VING                                                                                                                                                                             | )EVELOPM                             | ENT BENEF        |                                                                                                              | 54,982<br>11,192<br>1,181                                                                                                      |                                                |                                                                                                                                          |
| NET PRES                                                                                                                                                                     | SENT VALI                                                                                                                                                                        | JE :                                 |                  | 24                                                                                                           | 43,610                                                                                                                         |                                                |                                                                                                                                          |
| BENEFIT                                                                                                                                                                      | COST RA                                                                                                                                                                          | TIÖ :                                |                  |                                                                                                              | 2.82                                                                                                                           |                                                |                                                                                                                                          |
| NTERNAL                                                                                                                                                                      | . RATE OF                                                                                                                                                                        | F RETURN                             | :                |                                                                                                              | 27.9 %                                                                                                                         |                                                |                                                                                                                                          |

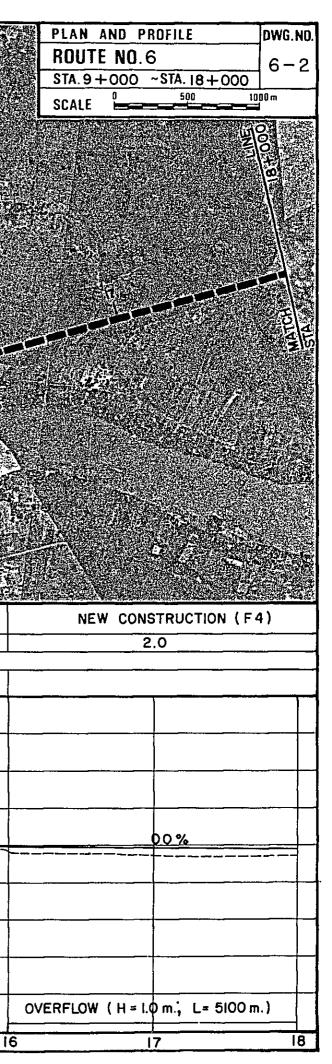
-

# ABBREVIATIONS for PLAN and PROFILE

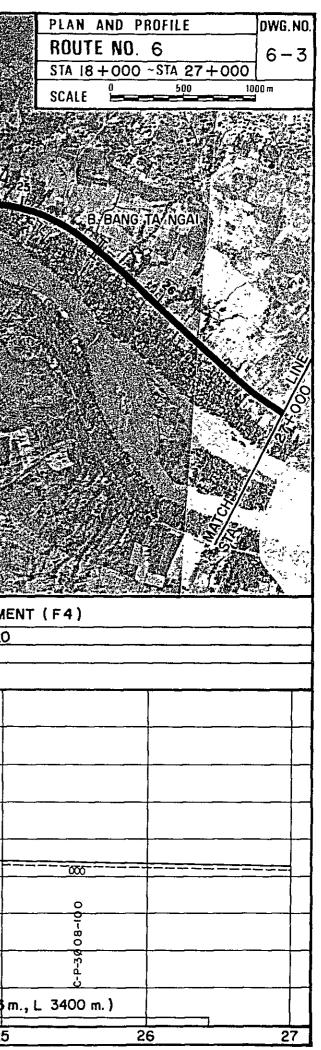

| C-P-nøa – 1           | EXISTING PIPE CULVERT, n (ROW), øa(Di    |
|-----------------------|------------------------------------------|
| C-B-n (a xb)-1        | EXISTING (below grade line) and PROPOSED |
|                       | BOX CULVERT, n (NOS. OF TUBE ), axb (LAT |
| BR-T(axl)(n)          | EXISTING (below grade line) and PROPOSED |
|                       | TIMBER BRIDGE, ax1 (WIDTHxLENGTH, M),    |
| $BR-C(a \times L)(n)$ | EXISTING (below grade line) and PROPOSED |
|                       | CONCRETE BRIDGE, a x / ( CARRIAGE WAY    |
|                       |                                          |

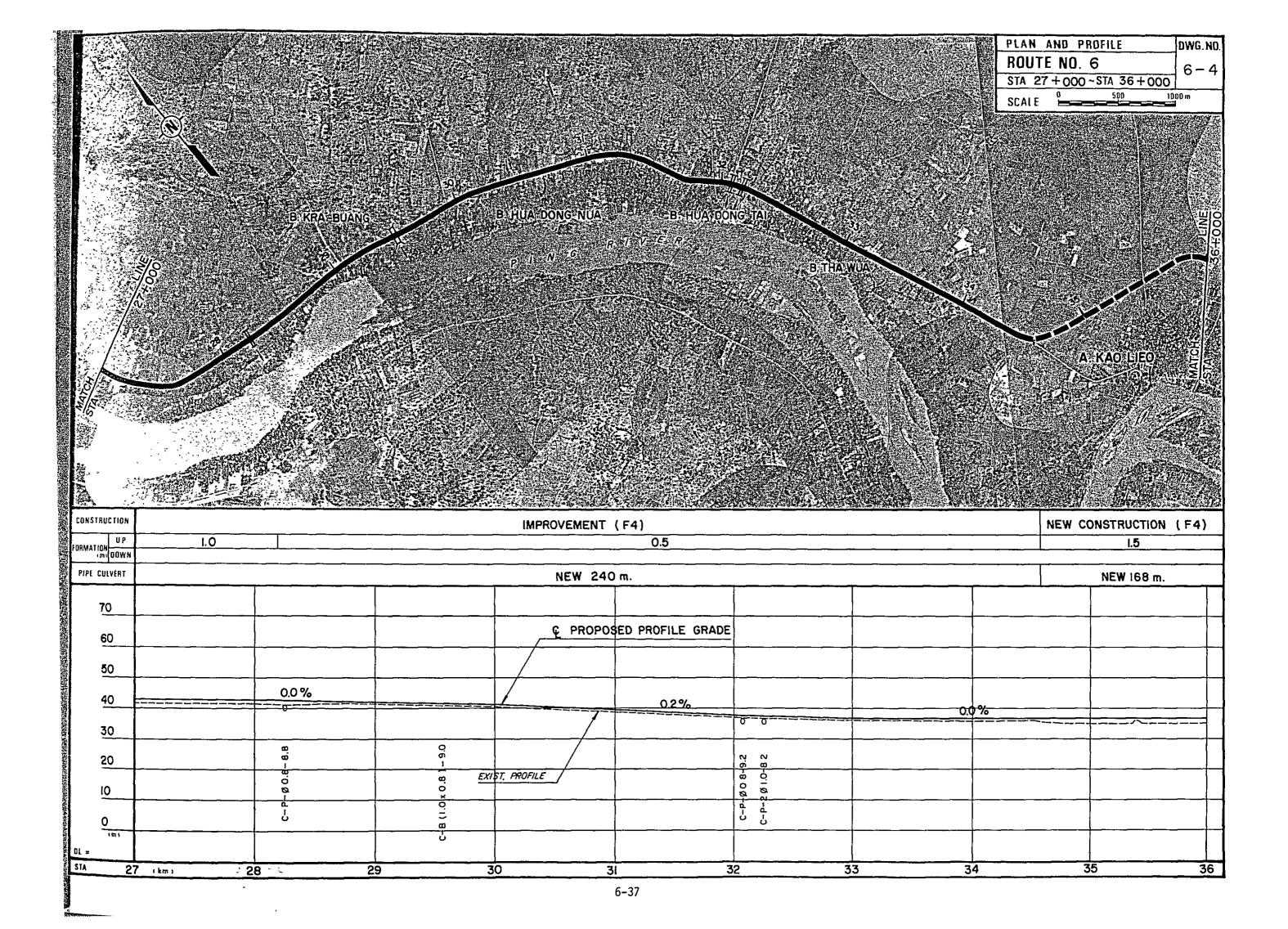
**....** 

DIAMETER,M), & (LENGTH, M) ED (abave grade line) ATERAL x VERTICAL,M), & (LENGTH, M) ED (abave grade line) I), n (NOS. OF SPAN) ED (abave grade line) Y WIDTH x LENGTH,M), n (NOS. OF SPAN)

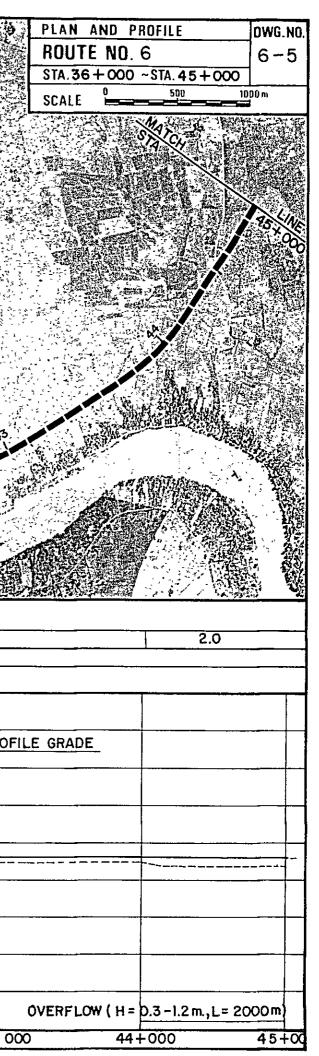

.

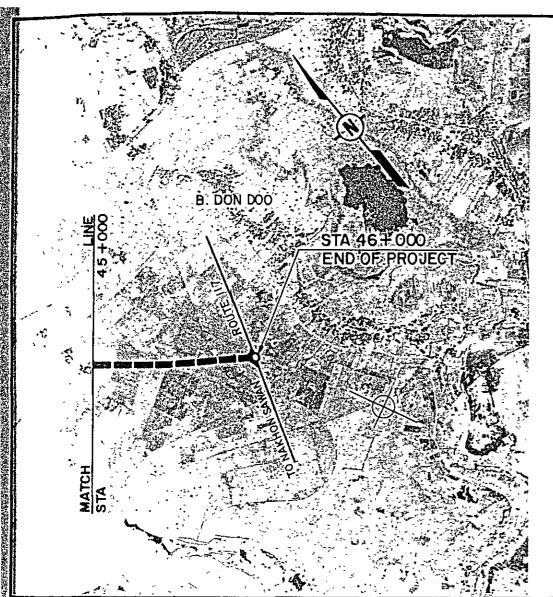
•





| We down with a reaction of the second s |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| WAT, MAI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

.





| e                                                                                                                   | TO B DONG PA  | <u>CHAN</u>        |                                    |           |             | TELTHA SA |               |               |
|---------------------------------------------------------------------------------------------------------------------|---------------|--------------------|------------------------------------|-----------|-------------|-----------|---------------|---------------|
|                                                                                                                     |               |                    |                                    | BANEHOT P | HSA)        |           |               |               |
|                                                                                                                     |               |                    |                                    |           |             |           |               |               |
| 3                                                                                                                   | B. TA SANG IT | A)                 | с<br>1917 го<br>1917 го<br>1917 го |           |             |           | 齐了。<br>注      |               |
| INSTRUCTION                                                                                                         |               | N                  | EW CONSTRUCTIO                     | ON (F4)   |             |           |               | IMPRO         |
| IPE CULVERT                                                                                                         |               | NEW 252 n          | 1.                                 |           | NEW 180 m   |           |               |               |
| 70                                                                                                                  |               |                    |                                    |           | 70 × 14 C ) |           |               |               |
| 50                                                                                                                  |               |                    |                                    |           |             | ç PRO     | POSED PROFILE | GRADE         |
| 40                                                                                                                  |               | 0.0 %              |                                    |           |             |           | ·             |               |
| 30                                                                                                                  |               |                    |                                    | 7         |             |           | 0.1%          |               |
| 20                                                                                                                  |               |                    | EXIST. PROFILE                     | /         |             |           |               |               |
| 10                                                                                                                  |               |                    |                                    |           |             |           |               |               |
|                                                                                                                     |               |                    |                                    |           |             |           |               |               |
| 0                                                                                                                   |               |                    | ·                                  |           |             |           |               | 1             |
| DASTRUCTION<br>RMATION<br>RMATION<br>PIPE CULVERT<br>70<br>60<br>50<br>40<br>30<br>20<br>10<br>0<br>(m)<br>14<br>15 | OVER          | FLOW ( H=1.0 m., 1 | =5100 m.)                          |           |             | <br>      | OVE           | R FLOW (H=O.I |





| 8                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                   |                                  |            |                                                                            |                              |
|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------|------------|----------------------------------------------------------------------------|------------------------------|
|                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                   |                                  |            |                                                                            |                              |
|                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                   |                                  |            |                                                                            |                              |
|                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | i dinang bing Alega<br>Ing Kang bing Alega<br>Ing Kang bing ang ang ang ang ang ang ang ang ang a |                                  | PHOTO A    |                                                                            |                              |
|                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                   |                                  | PING RIVES |                                                                            | 2                            |
|                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                   |                                  |            |                                                                            | B. YANG EN                   |
| * #***********************************                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                   | THE PARTY AND A REPAIR OF A SAME |            |                                                                            |                              |
|                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                   |                                  |            |                                                                            |                              |
| CONSTRUCTION<br>FORMATION                                                                | NEW CONSTRUCTION ( F4 )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | IMPROVEMENT (F4                                                                                   | · )                              |            | NEW CONS<br>1.5                                                            | TRUCTION (F4)                |
| CONSTRUCTION<br>CONSTRUCTION<br>FORMATION<br>(m)<br>DOWN<br>PIPE CULVERT                 | NEW CONSTRUCTION ( F4 )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                   |                                  |            |                                                                            | ·····                        |
| FORMATION<br>(m) DOWN<br>PIPE CULVERT                                                    | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.5                                                                                               |                                  |            | I.5<br>NEW                                                                 | 408                          |
| FORMATION<br>(m) DOWN<br>PIPE CULVERT                                                    | 1.5<br>( 0 \$<br>* 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.5                                                                                               |                                  | EXIST PROF | I.5<br>NEW                                                                 | 408                          |
| UP<br>FORMATION<br>(m) DOWN<br>PIPE CULVERT<br><u>60</u><br><u>50</u>                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.5<br>NEW 60                                                                                     |                                  |            | 00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00 | 408<br>& PROPOSED PRO        |
| FORMATION<br>(m) DOWN<br>PIPE CULVERT                                                    | 1.5<br>( 0 \$<br>* 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.5                                                                                               |                                  |            | I.5<br>NEW                                                                 | 408                          |
| UP<br>FORMATION<br>(m) DOWN<br>PIPE CULVERT<br><u>60</u><br><u>50</u><br>40<br><u>30</u> | 1.5<br>( 0<br>( 0<br>( 0<br>( 0<br>( 0<br>)<br>( 0))<br>( 0)))<br>( 0))<br>( 0))<br>( 0))<br>( 0)))(<br>( 0)))(<br>( 0)))(<br>( 0)))(<br>( 0)))(<br>( 0)))(<br>( 0))(<br>( 0))(<br>( 0))()()())()() | 0.5<br>NEW 60                                                                                     |                                  |            | L-B-2(24×24)100<br>NEW                                                     | 408<br><u>E PROPOSED PRO</u> |
| UP<br>FORMATION<br>(m) DOWN<br>PIPE CULVERT<br>60<br>50<br>40<br>30<br>20                | 1.5<br>( 0<br>( 0<br>( 0<br>( 0<br>( 0<br>( 0<br>( 0<br>( 0<br>( 0<br>( 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.5<br>NEW 60                                                                                     |                                  |            | L-B-2(24×24)100<br>NEW                                                     | 408<br><u>E PROPOSED PRO</u> |
| UP<br>FORMATION<br>(m) DOWN<br>PIPE CULVERT<br>60<br>50<br>40<br>30<br>20<br>10          | 1.5<br>( 0<br>( 0<br>( 0<br>( 0<br>( 0<br>( 0<br>( 0<br>( 0<br>( 0<br>( 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.5<br>NEW 60                                                                                     |                                  |            | L-B-2(24×24)100<br>NEW                                                     | 408<br><u>E PROPOSED PRO</u> |





| ·          |        |                             |                       |                                              | <br> | <br> |                |
|------------|--------|-----------------------------|-----------------------|----------------------------------------------|------|------|----------------|
| CONSTR     | אמודסט | NEW CONSTRUCTION (F4<br>2.0 | 4)                    |                                              |      |      |                |
| E CORMATIO | UP     | 2.0                         |                       |                                              |      |      |                |
| (0         | DOWN   |                             |                       |                                              | <br> | <br> | <br>           |
| PIPE CI    |        |                             |                       |                                              | <br> | <br> | <br>- <b>.</b> |
|            | 60     |                             |                       |                                              |      |      |                |
|            | 50     | <u>E</u> P                  | ROPOSED PROFILE G     | RADE                                         |      |      |                |
|            | 40     | EXIST                       | PROFILE               |                                              |      |      |                |
|            | 30     |                             |                       |                                              |      |      |                |
|            | 20     | / 0.0%                      |                       |                                              |      |      |                |
|            | IQ     |                             |                       |                                              |      |      |                |
|            | 0      |                             |                       |                                              |      |      |                |
|            |        |                             |                       |                                              |      |      |                |
| DL =       | (m)    | OVER FLOW (H=0.3            | -1.2 m., L = 2000 m.) |                                              |      |      |                |
| STA        | 45 -   |                             | + 000                 | <u>,                                    </u> | I    | <br> | <br><u> </u>   |
| 1          |        |                             |                       |                                              |      |      |                |

| PLAN AND PR<br>ROUTE NO.6<br>STA.45+000 | 5 | DWG.NO.<br>6-6 |
|-----------------------------------------|---|----------------|
|                                         |   | 00 m           |
|                                         |   |                |
|                                         |   |                |
|                                         |   |                |
|                                         |   |                |
|                                         |   |                |
|                                         |   |                |
|                                         |   |                |
|                                         |   |                |
|                                         |   |                |