APPENDIX 8.2.1.B PROJECT COST WITH FOREIGN AND LOCAL CURRENCY BREAKDOWN (1986 Price Level, Dagupan City)

SUMMARY

<u>P</u>1

Phase I, Stage 1			
		(Unit:	thousand P)
	Loca1	F.E.C	Total
Direct Construction Cost	21,868	26,532	48,400
Physical Cont. (8% of D.C.C.)	1,749	2,123	3,872
Sub Total	23,617	28,655	52,272
Leakage Detection Detailed Design (10% of S.T.	1,020	-	1,020
in Stage 1 & Stage 2) Construction Supervision	3,778	3,779	7,557
(4% of S.T.)	1.045	1.046	2,091
Total	1,045 29,460	1,046 33,480	62,940
Phase I, Stage 2	·	/** A.	1 7)
		•	thousand P)
	Loca1	F.E.C	<u>Total</u>
Direct Construction Cost	9,604	11,965	21,569
	769	957	1,726
Physical Cont. (8% of D.C.C.) Sub Total	10,373	12,922	23,295
Construction Supervision	·	·	•
Total (4% of S.T.)	609	223	932
Total	10,982	223 13,145	932 24,227
Phase II			
		(Unit:	thousand P)
***	<u>Local</u>	F.E.C	<u>Total</u>
Direct Construction Cost	53,133	67,267	120,400
Physical Cont. (8% of D.C.C.) Sub Total	4,251	5,381	9,632
Sub Total	57,384	72,648	130,032
Detailed Design (10% of S.T.)	6,501	6,502	13,003
Construction Supervision	E 001		5 001
(4% of S.T.) Total	5,201 69,086	79,150	5,201 148,236
TOTAL	09,000	/9,150	148,236

The following tables show the breakdown of the project cost in each design year. The unit of all figures is thousand pesos. Project cost is further broken down into the Foreign Exchange Compornent and the Local Currency Compornent. Abbreviations in the tables are as follows:

COST --- Construction Cost

C.FEC --- Cost for Civil Work in the Foreign Exchange Compornent

C.DOM --- Cost for Civil Work in the Local Currency Compornent

C.D.UNSKL --- Cost for Unskilled Laborer of Civil Works in the Local

Currency Compornent.

E.FEC --- Cost for Equipments in the Foreign Exchange Compornent

E.DOM --- Cost for Equipments in the Local Currency Compornent

COST = C.FEC + C.DOM + E.FEC + E.DOM

The exchange rates used in the cost estimates are as follows:

₱20 = \$1.

\$1 = \$155

COST C.FEC	، این				1 1 7	COST	C. FEC	C. WIN	BRD LD. DINSKI		E. DOH	1 1 1 :	C.FEC	C. 00M	990 . D. UNSKU		E. Duff
0.0 0.0 0.0 0.0	0 0.0 0.0 0.0	0.0 0.0	0.0					1177.6		512.0		2560.0	435.2		128.0		435.7
7799			0000			350.0 2520.0 0.0	0.0	0.0	0000	350.0 350.0 2116.8	0.0	100.0	000	0.0	0.00		0.00
0:0 0:0 0:0 0:0 0:0 0:0 0:0	0.0 0.0 0.0	0 0.0	0.0					1807.6		3821.8		4460.0	547.2		218.0	1442.0	613.2
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0	0 0			5419.0 5419.0	975.4 0.0 975.4	1517.3	216.8	1679.0	1246.4	2375.0	427.5	665.0 0.0 665.0	0 0 0	736.2 0.0 736.2	546.3 0.0 548.3
.0 0.0 0.	0.0 0.0 0.0	.0 0.0 0.	0				0.0	0	0.0		0.0		0.0	0.0	0.0	0.0	0.0
0.0 0.0 0.0 0.0 0.0	0.0 0.0	0.0	0	0.0	· · · · ·	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0000000000000000000000000000000000000	0.0.0.0			2838.0 3115.0 1079.0 2620.0	753.5 93.5 54.0 406.1	1248.0 356.9 576.4	202.9 249.2 32.4 52.4	1375.5	115.9 311.5 161.9 262.0		0.00	0.0.0	0.000	0000	0 0 0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0	0.00	0000		2845.0	512.1	796.6	0.0	0.0	0.0		303.3 85.6	113.4	15.9	522.3 0.0 42.7	387.6
		0.0 0.0	0000	0000		2525.0	404.0 0.10		78.0.0.5	783.1	37.3		403.8 9.4 9.4	706.7	101.0 28.1		37.4
2.9 30.2 7.0 72.5 10.4 4.1 41.1 12.3 349.4 16.4 0.0 0.0 0.0 0.0 0.0	30.2 7.0 72.5 10.4 41.1 12.3 349.4 16.4 0.0 0.0 0.0 0.0	72.5 10.4 3 349.4 16.4 0 0.0	0.0			116.0 411.0 286.0	45.8		12.3	341.4	10.4 16.4 62.9	116.0 411.0 285.0	2.9	30.2	12.3		10.4 16.4 65.6
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 3 992.9 26.8	26.9	0 0:0:0	·	0.0	2315.9	6142.8	902.3	7574.3	2326.0		873.7	1665.4		3145.6	
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0	2000	D.5.00		1380.0	124.2	565.8 - 565.8 10033.5	1000		193.2	13679.0	0.0	4138.0	592.9	0.0 0.0 5323.8	0.0 0.0
192.0 150.0 150.0 150.0 0.0 150.0 0.0 132.0 166.8 153.2	132.0 160.0 130.0 132.0 166.8 153.2	150.0 150.0 16.8 3.2	150.0 8 3.2 8 153.2	0:0:0	1 1 1	300.0	0.0	0.0		150.0 280.6 430.6	53.4	0.0	0.0	0.0		0.0 125.2 125.2	23.8
0.0 0.0 0.0 0.0	9.0 0.0 0.0	0.0 0.0	0.0	.0.0		0.0					0.0		0.0	0.0			0.0
500	0.0	0.000	000				0 0 0		000	0.0	0.0.0	000	0:0;0	0.0	0.00	0.0	0.0
0.0	0.0	0.0	0.0									• •		0.0			
0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0	0.0	0.01	; I 40	341.0	0.0	311.0	- io i	:		33800		338.0		20	1 47
1.01 :43.3 159.7 1 180.0	3 19.3 159.7 180.0	.3 159.7 180.0	1 180.01	- -	m)	- 1	3012.4	-	13005.1	14000-4	4503.4	14100-0	1831.4	48:ta-0	392:31		-ii
1988 C. D. DASKIT E. FEC. F. DOM	1988 C. D. HASKIT E. FECT E. DOM	E.F.C. E.Dum	E.F.C. E.Dum	E. Doin	~	TSO	[_c.fec_]	C. Bark	TDB9 C.D.UNSKI	F. FEC	E.Dom	COST	C.FEC	C.Du	1990 K. B. UNSKU	1	E. DITH
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0	0.0	0.0		1	5419.0	597.2 975.4	1807.6	218.0	3824.8 1679.9	1246.4	2375.0	597.2 427.5	<u> </u>	218.0	25.5	613.2 546.3
0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0	0.0	0.0		1.	2898.0	753.5	1883.7	32.4	141.9	115.9	0.0	0.0	000	0.0	0.0	0.0
0-0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 71 3 11 3 012 1 76 8	0.0	0.0	0.00		2620.0 0302.0	1086.0	3151.2	567.3 47.3	1315.5	1722.1	5382.0	856.3	1500	232.5	0.0 1929.0	0.0
132.0 0.0 132.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	132.0 0.0 0.0 0.0	0.0 0.0	0.0 0.0	0,0 6	i	0.0	124.2	565.8	0.00	136.8 0.0 430.6	303.4	0.00	0.0	000	000	0.0	0.0
0.0 0.0 0.0	0.0	0.0	0.0	10.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0			0.0	0.0	0.0

		20	us c		0 0	5 M		-	ع رد -		0	.0	!	0	٥, د	2:0	1	0,6	. c	0	u,	50 (>		_	= -			0	T;	:4	- 17	:Ln	4	<u> </u>	- c	:0	0	0.0	<u>.</u>	0		-
E. Porti.		=	46.5			1	1	103	2.5	3	0.0	0.0		0	0.0		1	٠ -		0	39.6	ž'	<u> </u>	<u>.</u>			1	Ì	0.0	į			-	1		5	3:0	6	ó	- <u>:</u>	0.0			321.3
E.FCC		128.0	211.5	0.0	0.0	364.5	1	8.651	ο α ο		0.0	0.0		0.0	0.0	0.0	1	0.0	0.0	0.0	61.2	527.0	9 6	-			0.00	100	0	0.0	1002.5		23.5	23.5		0.0	2:0	0.0	0.0	0.0	9 9	0.0		116.0
P. UNSKI	- 0.00	32.0	27.5	0.0	0.0			18.0	= = = = = = = = = = = = = = = = = = =		0.0	0.0		0.0	0.0			0.0	2 0	0.0	7.2	9.8		;		-	0.0	6:0	0.0	0.0	E:	1	-			0.0		0.0	0.0 0.0	0.0	0.0	0.0	-	38.3
C. per	- 10	5.867	57.5	0.0	0.0	1 6 15		126.3	0.0	27	0.0	0.0			0.0		· ·	0.0	9 9	0.0	50.4	62.0	0.0	- - - -			0.0	9.4.6	9 0	0.0	35	0.0		0.0							0:0			636,6
c.tkc_ _		8.801	5 c	0.0	0.0	1.00		81.2	0.0	- 4114	0.0	0.0			0.0		:	0.0	0.0	0.0	28.82	6.2	0.0	÷			0 4	9:0	0.0	0.0	205.5		-	0.0		0.0	200	0 0	0.0	0.0	0.0	0.0	0.0	7.00
1503	- 0	640.0	450.0	0.0	0.0	115.0	-	451.0	0.0	125	0.0			0.0	0.0		<u> </u>	0-0	0.0	0.0	180.0	620.0	0.0	⇒ •	0.0	0.0	0.0	0.000	0.0	0.0	2306.0	0.0		78.0		0.0	3 6	0.0	0.0	0.0	0.0	-0		2391.0
E-bort	1	214.15	81.0	0.0	0.0	298.6		340.2	0.0	7:05	0.0	0.0		0.0	36.0) 3:0	i .	936.8	9.0	46.4	39.6	24.8	0.0				0.0	100	2 2	0.0	1822.4	1	2.5	- 6. 6.		0.0		0.0	D C	0.0	0.0	0.0	į	
_[_53.3.3	- 200	70.55	423.0	0.0	0.0	228.0		458.5	0.0		0.0	9.0		0.0	0.630	5 0		1262.7	0 0	350.0	61.2	524.1	0.0	 ⊃;	-		0.0	5.00	2 0	0.0	1052.4	10	7 5	249.1							0:0			130
B. UNSER		D	45.0	0.0	0.0			59.2	0.5	77	0.0	- 0.0	<u></u>	0.0	0.0	50.0		162.9	0.0	31.0	7.2	18.6	0.0				0.) a		387.5		-			0.0		0.0	0,0	0.0	0,0	0:0		~
C. BOH 1.	10	200	315.0	000	0.0	0.6	2	414.1	0.0		0.0	0 0			0.0		2	1140.4	0.0	108.4	20.	61.9	0 0	P. O			0.0	1.61		0.0	20,73.0	0.0	-	0.0		0.0	 a:e	0.0	0.0	0.0	0.0	0.0	0.0	78.7
C.FeC [217.6	0.18	0.0	0.0	0.0		266.2	0.0	1 7:007	0.0	- 0 0		0.0	0.0		<u></u>	733.		0.0	78.87	6.2	0.0	 		•	0.0	800	- 0	0.0	1343.2			0.0		0 0		0.0	0.0	0.0	0.0	0.0	0.0	
Cust	0 0000	1280.0	900-0	0.0	0.0	0-0-6	2	1479.0	0.0	1413.0	0.0			0.0	800.0	0.0	-	4073.0	0 0	516.0	180.0	0.619		9:0	0.0	0.0	0.0	0.8810		0.0	9897.0	0.0	1.8.0	418.0		0.0	3 C	0.0	0.0	0.0	0.0	0.0		7
F. bun	0.70	0.0	324.0	419.2	0.0	0 2 2 3	-	1792.7	0.0	1 1 5 5 6 1 1	0.0	0.0		25.15	F. 5	5.0	!	1042.0	٠ ٢ ٢	133.1	1110.и	74.7	⊃ ;	21.5	28.5	0.0	0.0	3313.1	193.7	193.2	7112.6	0.0	300.0	380.4		0.0	200	0.0	0.0	0.0	0.0	0.0	0.0	
6.756		0.0	0.269.	2200.8	0-0	23/6.0		2416.1	0.0	7.0167	0.0	0.0		-44.9	1464.0	7.5		1401.2	2.0	1458.0	1716.7	8. LRS	57.0	10.18.7	185.5	0.0	0.0	9.72	416.x	436.8	5.25861	0.0	300.0	722.0		= 0	2 0	0.0	0.0	0.0	0.0	0.0	0.0	- 611190
S CARSON S	200	0.0	180-0	0.0	0.0	0.0	-	31.8	0:0	100	0.0	0.0		202.9	210.7	77.5	 		. c		202.0	56.1	0.0	2 2	27.8	0.0	0.0	1 201 - 2	2.0	- G:	2018.3	0.0	0.0	0.0		0.0	2.0	0.0	0.0	0.0	0.0	0.0		
1 S _ Log - 1 _ CS + 1 _ CS + 1		0.0	1260.0	0.0	0.0	3615	1	2187.3	G		0.0	0.0	;;; ;;	1883.7	1246.0	57.6.4	:	1248.1	7 0	150.4	1.113.7	8.68	0.00	23.3	5.63	0.0			2 × 5	565.8	14242.8	132.0	0.0	132.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0201	5
C. FEC.	0.10	0.0	324.0	0.0	0.0	110.0		1402.9	0.0		0.0	0.0		753.5		406.1		8 5.4	3,0	12.9	807.8	18.7	0.0		7.7	0.0	0.0	0.500	1.74.7	124.2		_	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0	0.0	2.01
1 _15112	0 00.0	0.0	3500.0	2620.0	0.0 /	0.0	_	7794.0	0.0		0.0	0.0			_	20,00	_	4530.0	25.0	2145.0	5049.0	1868.0	57.0	_			0.0	26301.0	1380.0	380.0	47165.0	132.0	503.0	1235.0		0,0	0 5	0.0	B. 6	0.0	9.0			0.000
	+	TY	-	FMENT			1	<u> </u>		PLANT	ation			1	╗	ation .	pes		Material		. <u>.</u>	tions	M/ 011 0 1 1	of the column	li tation	-		21.12	******				Fania.		1 P						g Eguio.			
1 76.0	46.11.17	KIJUREF WELL (2)PUMPING FACILITY	1) Pumping Station	ZJETOV METER (3)REPAIR & IMPRUVEMENT	LVELL	HUUSE	TRANSMISSION FACILITIES	ines	reter	WATER PURIFICATION PLANT	(1)Siov Sand Filtration		DISTRIBUTION FACILITIES	VOIT	(2)Pump Facility	TIC Suh-S	(5)Distribution pipes	P pes	2)River Crossing 3)River Crossing Materia	,,	5)Internal Network	6)Service Connections	()Valer meter	4)Srve Cancen America 4074	10)Lateral Rehabilitation	Heter	12)Fire Protection	508-181AL	S. Jagaran S. Fation D. Oneration Center	1		uisition	Stared Material & Faula	1	ent of Eq	S.	Z)Chlorinator	he ser	r Punp	6) Uperation Center	7)Vehicle	יו	Leakage betection	177
DAGUEAN	SOURCE	(2)PUMP1	1)Pumping St	(3)REPAIR	(4)RADIAL VELL	SIR-INTAL	TRANSMISS	(1)Pipelines	(2)Flow Meter	VATER PUR	(1)510v 5	SHR-TOTAL	DISTRIBUT	(1)Resort	(2)Pump		(5)Distr	1)Main Pipes	3)River	4)Valves	5)Interi	6)Service	()Valer meter	9)500	10)Latera	11) Flow Meter	12)Fire	508-191AL	7 20002337	SUB-TOTAL	TOTAL	6.0 Land Acquisition	Stored C	SUB-T0141	Replacen	13,511	Z)Chlori	4) Later Heler	5)Bnoster Pump	6) "Perat	7)Vehicle	SUB-TOTA		CRAND TOTAL
Ш	o- =-						2		-	9			0	_															à						0.	_						'	0.8	_

	r E	149.3	103.7	0.0	0.0	0.0	0.0	3	24.8	0.0	0.0	4.5	0-0	321.9	0.0	321.9
	E. FE	364.5	133.8	0.0	0.0	0.0	0.0	61.2	527.0	0.0	0.0	23.5	0.0	1116.0	0.0	1116.0
1902					_		_	_				0.0			. !	
i	Ĺ							<u>'</u>		. !	L	0.0				
į		<u> </u>			_	_	_:	<u>. </u>			_	0.0				205.5
	LIST	1115.0	451.0	n.0	0.0	0.0	0.13	180.0	620.0	0-0	0.0	28.0	9.0	2394.0	0.0	2394.0
	E. BOIT	2598.6	340.2	0.0	0.0	D.C	0.0	158.8	24.8	0.0	0.0	168.5	0.0	1991.3	0.0	1991.3
	F. F.E.C.	7211.0	458.5	0.0	0.0	0.0	0.0	2338.8	526.1	0.0	0.0	249	0.0	4301.5	0.0	4301.5
1991	1.0.1451	103.0	5, 55	0.0	0.0	0.0	0.0	201.1	18.6	0.0	5	0,0	0,0	387.9	0.0	3×7.9
	200	303.8	414.1	0.0	0.0	0.0	0.0	1299.2	6-19	0.0	0.0	0.0	0.0	2679.0	0.0	2679.0
		218.6	266.2	0.0	0.0	0.0	0.0	772.2	6.2	0.0	0.0	0.0	3.0	1343.2	0.0	1343.2
	CAST	2230.0	1473.0	0.0	0.0	0.0	9.0	5569.0	6111.0	0.0	0.0	418.0	0.0	10315.0	0.0	10315.0
	E. P. H.	1613.6	1792.7	0-0	115.9	6.191	202.0	2818.2	155.1	193.2	0.0	380-4	0.0	7493.0	0.0	7493.0
	Ι	į.			ï			;-		- 1	:	722.6		N	į	10.1
(Stage 1)	ی	ŀ	31.3	0.0	202.9	32.4	52.1	749.8	114.0	0.89	0.0	0.0	9. ₀	2018.3	0.0	2018.3
Phase I		3615.2	2182.3	0.0	1883.7	366.9	576.4	4651.8	100.7	505.8	132.0	0.0	0.0	1437.1.8	1670.0	15391.8
	C. FEC.	11914.4	1402.9	0.0	753.5	54.0	466.1	1942.3	341.7	124.2	0.0	0.0	0.0	5917.1	0	5017
	1500	11000.0	0.1.677	0.0	2898.0	1073.0	2620.0	15681.0	4020.0	1380.0	132.0		0.0	48400.0	10.00	19420.0
DACUPAN	131-	1 Deep Vell Facilities	2 Transmission Facilities	3 Parification Plant	4 Reservoir	5 Disinfection Facilities	G Pleathic Sub-station	7 Bistribution Facilities	A Service Contraction	4 Admini, Risz, & Une, Cir.	10 Land Accussition	11 Vehicle & Stored Material	in Replacement of Equip.	Cus TuT3	The state of the s	13 LP3A1SE DE LECUSOR

E. DUIN	108.8	40.5	0.0	0.0	40.3	109.5	2,5	0.0	0.0	0.0	0.0	0.0		0.0	0.0	39.4	0.0	·		0.0	0.0	0.0	322.9	0	A.	4.5	0.0	0.0	0.0	00	0.0	0.0	327.4	F. Drew	149.3	0.0	9.0	0.0	39.4	0.0	17.0	327.1	327.4
E.FEC	128.0	211.5	0.0	0.0	364.55	147.5	147.5	0.0	0.0		0	0.0		200	0.0	60.6 525.3	0.0			0.0	0.0	0.0	1098.2	0	25	23	0.0	0.0	0.0	0	0.0	0.0	1121.7	1 🗀	364.5						, ri c		<u> </u>
DOS UNSKIL	20.0	22.5	0.0	5.0	54.5	0 C	0.01	0.0	0.0	c	0.0	0.0		0.00	0.0	7.2	0.0	;		-	_						0.0	0	0.0	0	0.0	0.0	99.2	D CINSEL	1.1.	0.0	0.0	0 0	7.2	0.0	0.0	2.2.0	2.01
C. IVIII	200.0	157.5	0.0	0.0	451.9	133	133.3	0.0	0.0	0	0.0	0.0		000	0.0	50.1	0.0	?	•	0.0		0.0	697.1	0.0		0.0	0.0	0.0	0.0	0 0	0 0	0.0	697.1	1 "	7		1	:	!	. !		697.1	انا
C.F.EC				0-0	<u> </u>	 	25.7	0.0	0.0	0	0.0	0.0	}	200		% ⁴	00	·		Ì	<u> </u>	ĺ	269.8	}		0.0	0.0	-	<u> </u>	-	0:0		249.8	I∟	<u> </u>		•	<u> </u>	<u> </u>			9,00	
Teus	0.000			0.0		0.0	i	0.0	0.0	<u> </u>	0.0	ì	<u> </u>						0.0					0.0				-	0.0	1	!	:	2116.0	<u></u>)	,	<u> </u>	:_		2916.0	
Holt-3	217.6			0.0		211.1		0.0	0.0	1	0.0	1		900						_ !	;		573.9	;	0.7	-			0.0	:	<u>:</u>		580.9				1		:	4		1 1	
il E.FCC	256.0			0.0		284.7	1	0.0	0.0	-	0.0			0.0						1	;		1601-6		37.0	37.6		-	0.0		-		1638.6	l			!	!	!	_ !		1633.6	-
C. D. UNSKI	8 54.8			0.0	1	36.7	3	0.0	0.0	i	0.0	i o		0.0	- 0	~ =	-	>		}	!		17.0			0		;	0.0	; ;	1		. 171	5.3	;		<u>!</u>		<u> </u>	1		2 2 2	Ш
L C. DUH	BX5			0.0	<u> </u>	257.0	1	0.0	0.0		0.0	!	<u> </u>	000						_ :	!		0.0	<u> </u>		0.0		0.0		: :	:	1	6 1272	1 5	Ŧ		1	- 1	i	t		6 1272.11	- 1
SEC.	0 717 6			0.0	<u>J.</u>	59.0	3	0.0	0.0 n.0		0.0	1	<u> </u>	0.0						<u>i</u>	į	<u> </u>	498.6			<u> </u>	; ;	!	! !	;	- !	<u> </u>	11.0 498.6	_			<u>i </u>		<u>i</u>	<u> </u>		498.0	0.0
TCOST	R 1780 0	מו מ		0.0	_!_	17.5 918.0 0.0	<u> </u>	0.0	0.0		0.0	!	<u>. </u>	0.0										0.0		:71		;	; ;		į	9,0	7 395		_*		1	-				200.0	,
H(M) 3	O.	- : 4	- -	0.0	٠ <u>.</u>	- 0	4-1 1-1 1-1	0.	0	-			-	0.0	. q	es es		•		0 1	<u> </u>	0:0	331.1	E	9 4	7	1		0	:	-		33		L.C.	<u> </u>		9 0	77.5		5 4. 0	33.5.7	ا منھ
SKI E. F	32,0		.,	0.0	<u> </u>	20.4 158	158	0.0	0.0	u u		0.0	0	0.0		525				;	0.0		100.6		1,12	77	0.0	0.0	0.0	0.0	0.0	0.0	9.ft 1133		.5 364		į	i	7.2 61	- 1		1133	1.6 1133
19/13 0.0.0.005K1	294.4			0.0		143.1 2	1	0.0	0.0	<u> </u>	0.0	1	<u> </u>	0.0						1	ŀ	1	707.2	0.0		0.0	0.0	!	; ;		0.0		0.0 7.2 100.fr			3.1	0.0	0.0	50.4	0.0		707 2 190.8	7.2 10
EC C. Unit	108.8			0.0	<u>j</u>	92.0	1	0.0	0.0		0.0	-	!	0.0					-	0.0			276.3			0.0		-	0.0		0.0	11	276.3 707.	C. FEC. C. bush	1		<u> </u>		28.8 6.2			276.3	
233-22	640.0			0.0			511.0	0.0	0.0	:	0.0	i	!	200			0.0		0.0	0.0	1	;	2,12,4.0 27		2000	20.0	.0.	0.0	9.0	-0-0	9.0	0.0	2453.0	;_		511.0	-		i i	į		2453.0 27	
COST	!				' -	-		-			1 1	1	!										Ť	i-i-	77			-					24	<u> </u> 2					!	,			245
ITEN	7-11	ACILITY	I HPROVENE	113	FACILITY		CT told Dr.A	Filtrati		FACILITI	l i tv	Sub-stati	ion pipes	SSing	SSINS MESS	Network Josephine	er er	th Rhb Lm	tehabi lita er	ection	tion Bldz	Center		tion	12 & ETI	of Fortin	1000	1	Į,	Center	3 6 1012	3 10 10 10	sction	NST	nen seilities	Faciliti		ı Faciliti J-Stalion	Faciliti	5. & One.	tored Mate	of tydip.	ection
UAGUPAN	NEEP UF!	(2)PUNPING FACILITY 1)Pumping Station	Frow Bett)RADIAL UI)PUHP HOUS	B-TOTAL ANSHISSION	(1)Pipelines (2)Flou Meter	B-TOTAL	Slov Sanc	8-T0TAL	DISTRIBUTION FACILITIES	(2)Pump Facility	Chloring)	Distribut	2)River Crossing)Yalver Lr()Yalves)Internal	Vater Het	Srve Chine)Lateral >)Flow Mete	Fire Prot	SUB-TOTAL	Operation	B-T0741	nd Acquis	Stored Material & Equip.	SUB-TOTAL	VELL PUMP	Chiocinate Floo Meter	Vater Mete	Operation	Vehicle	SUB-TOTAL	Leakage Detection GRAND TOTAL	DAGUPAN	Deep Well Facilities	ansmission rification	servair	sinfection ectric Sul	stribution	mini. Bith	11 Vehicle & Stored Material	12 Replacement of Equip	TAL
NA I		:8 ⁻	∾ <u>@</u>	<u> </u>	2.0 783	50		(<u>.</u>		0.1	<u>. 3</u>	<u> </u>	<u></u>	- 67		ι δ (u		o 67)	- 2	22	5.0 15	ā	TOTA	0.0	1 T	SILE	i :	25	Ē	200	23	38	8.0 Le	Δ S	Dec	2 Tr.	4 Re	 	- «		7	5 S	13 Le

	L'initial	0.0	0.0	580.3	76.4	650.7	· ·	9387.5	0.0	-	95.4	95.4	3, 10,	198	17.9	10.2.0	1406.9		3.0%	1337.8	200.0	0.0		0.0	294.6	322.0	0.0	15764 8	200000000000000000000000000000000000000	450.0	593.7		15.0	0.0	0.0	7.20	1350.0	2637.3	18550.N
- 6- cer 1"	20.	0-0	0.0	3:046.7	1337.6	1384.3		3461.5	0.0	-	381.8	381.н		2828.2	5.6	5.0	1806.2	28.0	231.2	2067.5	0.0	0.0		215.0	2,703.5	257.6	0.0	257.6	200000	450.0	1204.3	1	2 C Z	375.0	4151.0	496.8	1350.0	11924.7	48174.0
HASPITA	No.	0-0	0.0	0.0	20.5	597.		1737.0	0.0	2	572.6	572.6	200	308.5	9	20.4	244.7	20.0	20.4	243.2	0.0	0.0		0.0	368.3	80.5	0.0	80.5 475u 4					0.0		0.0	0.0	0.0	0.0	4759.4
To Later Co	Links (a)	0.0	0.0		2041.6	4125.4		12158.7	0.0	17100171	5535.5	5535.5		1005.4	40.5	224.4	1712.8	28.3.3	71.4	1702.7	7.26.6	0.0		0.0	1031.2	869.4	0-0	869.4	1320.0		1320.0						0.0		34582.1
1 444		0.0	0.0	0.0	3590.4	3742.6		7816.3	2816.2	201	3531.3	3531.3	- ;	8,501	; ;	1.88.1	_			973.0	0.0			0.0	,		j	161.0	1.00001		0.0		0.0				0.0		0.0
7.05T		0.0	0.0		7040.0	13203.0		43424.0	0.0	10161	9544.0	0544.0	2000	51/2.0	119.0	0.0201	6117.0	182.0	340.0	6081.0	0.0	0.0		215.0	3683.0	618.0	0.0	1610.0	1320.0	900.0	3118.0	300	2.03	375.0	154.0	0.069	2700.0	14562.0	120400.0
Hand 18		1632.0	597.5	411.2	0.0	2658.7		2674.7	0-0	1	0.0	0.0		1.0	9	7.262.0	1978-8	32.3	2331.5	1308.4	198.5	31.2	49.2	0.0	0.0	9.05.7	113.2	10.180 2	0.0	450.0	200		9.0	0.0	0.0	0.0	0.0	2; O	11050.2
J E. FEC	1	1920.0	3172.5	2200.8	0.0	7818.3		3605.0	0.0	200	0.0	0.0	15	2128.0	496.2	1375.5				2622.1		217.5			0.0	. 0.0	496.8	28846	0.0	450.0	1.080.1				0.	-	0.0	;	29926.7
Telat		480.0		0.0		817.5		465.1	0.0		0.0	0.0	300	249.2	32.4	7.75	341.1	2.0	159.7	238.0	14%.9	21.0	# £	0.0	0.0	0.0	20.00	2875	0.0	9.0	0.0						0.0		2875.8
Phase 1		4416.0	2362.5	0.0		6778.5	{	3256.1	0.0	77	0.0	0.0	1900	1246.0	34.0	576.4	2408.8	6.0	558.8	1.605.1	0.0	96.6	123.3	0.0	0.0	0.0	565.8	20,741	137.0	0.0	132.0		2.0	0.0		0.0		0.0	21441.6
C.FEC		1632.0	667.5	0.0	0.0	2239.5		2093.2	0.0	7	0.0	0.0	1	7.5	54.0)406	1548.5			951.4	19.7	8.7	5.5	0.0	0.0		124.2	2.00	20	0.0	0.0		2 2	0.0	0.0	0.0	0.0	5 O	0.0
Cost	1	9600.0	6756.0	2620.0		19485.0		11629.0	0.00		0.0	0.0		3915.0	1079.0	2620.0	8603.0	25.0	2641.0	5947.0	571.0	348.0	1233.0	0.0	0.0	0.0	1380.0	1380.0	132.0	300.0	1782.0			0.0	0.0	9.0	0.0	0.0	70989.0
E. BUN	1	761.6	283.5	0.0	9.0	1045.1		H82.0	0.0		0.0	0.0		13.6.0	0.0	0.0	936.8	9.0	46.4	8-741	123.8	0.0	0.0	0.0	0.0	0.0	0:0	0.0	0.0	150.0	2.5	, ,		0.0	0.0		0.00		3557.2
E.FEC		836.0	1480.5	0.0	0.0	2551.5			0.8		0.0	0.0		864.0	0.0	0.0	1262.7	0.0	350.9	305.4	26.30.7	0.0	0.0	0.0	0.0	2.0	0.0	0.0	0	150.0	357.5		0.0	0.0	0.0	0.0	0.0	D D	9311.6
CS Lage 2)		224.0	157.5	0.0		381.5		153.3	9.0	21	0.0	0.0		0.0	0.0	0.0	162.9	9.0	3.5	38.0	87.8	0.8	0.0	0.0	Ì	*	0.0	0.0	0.0	D 0	0.0		0.0	9.0	D. 0	0.0	0.0	0.0	857.5
C.DIM	1	2000.8	1102.5	0.0	0.0	3163.3		1073.8	0.0 X 1.201	2	0.0	0.0		0.0	0.0	0.0	1140.4	9 6	108.4	251.4	7. G	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0	0.0	0.0		0.0	o. 5	0.0	5.0	0.0	0.0	0.0 6046.8
C. FEC	Ι.	207	283.5	0.0	0.0	1045.5		ල් }	- S	1	0.0	0.0	. +/-	0		_}	733.1	0.0	. n.	143.6	9.15	0.0	0 ±	0.0	0.0	9 6	0.0	0.0	9.0	0.0	1	1		-	0.0	0:0		0	2453.4
COST		4480.0	3150.0	0.0	0.0	7805.0		3835.0	0.0	0.000	0.0	0.0		890.0	0.0	0.0	4073.0	3 6	516.0	RIN.O	3035.0			0.0	0.0	0.0	0	0.0	0.0	300.0	517.0		20.0	0.0	0.0	0.0	0.0	0.0	21569.0
		. ≥	, u	VENENT			LITIES			PLANT	tration		ורובונצ		acility	tation	201	s Haterial		壮.	ctions	8)Srvc Concto Ribito wo/h	9)Srvc Cancin Rhbiin w/Hr	Un1927	30	Rtile	9				a contract	Wip.		**********	***************************************			हें हैं हिष्या है	
ITEN	SOURCE FACILITY	VELL ING FACIT	1)Pumping Station	(3) REPAIR & IMPROVENENT	IL VELL	10025	RANSHISSION FACILITIES	ittes	Heter	RIFICTION	(1)Slow Sand Filtration		DISTRIBUTION FACILITIES	2)Pump Facility	3)Chlorination Facility	rric Sub-	Pipes	2)Kiver Crossing 3)River Crossing Naterial	Ş.	5)Internal Network	6)Service Connections 7)Water Meter	Concto 81	9)Srvc Cancin Rhbiin w/H	Heter	(2)Fire Protection	UB-101AL	2)Operation Center	1	Land Acquisition	Vehicle	1 1 1 1 1 1 1	ment of E	June 100 to 1	3)Flow Meter	Heter	5)Booster Pump	e le	R)Stored Material & Equip SIR-101AL	O Leakage Detection GRAND TOTAL
DAGDPAN	O SOURCE F	(1)DEEP VELL	1)Pumping St.	(3)REPA!	(4)RADIAL WELL	SUB-TOTAL	"	(1)Pipelines	(2)Flow Meter			SUB-TOTAL		(2)Pump Faci	(3)Chlor	(4)Elect	1)Main Pipes	3)River	1)Valves	5) Inter	(b)Servi	8)Srvc	9)Srvc	11) Flow Meter	(12)Fire	<i>-</i> - ∼	:	SUB-101A	Land 1cq	Vehicle	SUB-TOTA			1)F10v	4)tater Heler	5)Booste	7)Vehicle	R)Stored	GRAND TO
Ц	Ŀ	—					0.2			80			Ā						_				_			_ c	<u>.</u>		0,			0				_			

DAUDINAN		Phase	(Slage 2)		-			Phase 1	Total					I	Ž,		
No. 17EM	CMST C. FEC C. DINH	HING.		-	HIM.3.	150.)	C.FEC.	NIE S	THE WEST	E-FEC	F. but		C. FEC.	- 1	j	E. FEG.	E. E.
1 Deep Vell Facilities	7805.0 1015.1	3163.3		•	1045.1	19495-0	2239.5	6778.5	817.5	7818.3	24558.7		37.12.6			1381.3	650.7
2 Transmission Factilities	3835.0 (388.3	1073.8	153.3		н82.0	11629.0	2013.2	3256.1	465-1	3605.0	2674.7	•	7816.3	_	_	13461.5	9:JR7.5
3 Purification Plant	0.0	0-0	0.0	- 1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1	3531.3		. 1	#. IM.	95.4
4 Pacarvair	0.0	₽.	0.0		0.0	28.18.0	753.5	1883.7	202.9	147.8	115.9		1333.1		_	218.1	174.5
C Biginfortion Facilities	0.0	0.0	0.0		0.0	1079.0	54.0	306.9	32-4	4.06.2	1f.1.9		0.0			54.6	17.9
G Flortrin Sphrstation	0.0	0.0	0.0		0.0	2620.0	406.1	576.4	52.4	1375.5	312.0		158.1	- 1		535.5	0.7.0
7 Dietribution Facilities	6287.0 887.0	1500.2	220.9	١,,	1316.8	21971.0	2829.3	6152.0	1029.7	3854.7	4135.8		2411.1	i	<u>'</u>	579.7	36.79.4
A Carvine Connection	3095.0 31.0	300.5			123-8	7115.0	70.7	730-2	206.8	6055,2	278.9		72.6			6171.9	1-062
d Admin Ride, 2 and Cir.	0.0	0.0	0.0		0-0	1380.0	124.2	567.4	60.0	8 967	193.2	•	101.0	- 1	- 1	257.6	322.9
To Local Actuation Florida	0.0	0.1	0.0	!	0.0	132.0	0.0	132.0	0.0	0.0 0	0.0		0-0		_	0.0	0.0
to traine acquisition by torial	517.0 0.0	0.0	0.0		18H .:	1650.0	9.0	0.0	0.0	1080.1	569.0		0.0			1204.3	593.7
The state of the s	9.0	0.0	0.0		0.0	0.0	20	0.0	0.0	0.0	0.0	_	0.0		_	1934.7	2337.3
Call Total	215(3,0) 7(53.4	6.046.8	857.5	9311.6	3557	69969.0	8570.5	20421-6	2875.8	20026.7	11050.2	120400.0	19003.1	34582.1	4759.4	48174.0	18550 R
12 testave betertion	0.0	0.0	0.0		- -	1020.0	0.0	1020-0	0.0	0.0	0.0		0.0	- 1		0.0	0.0
THITAL	21569.0 2653.4	6046.8	857.5	Τ'Ι	3557.2	70:180.0	H570.5	21441.6	2875.8	29926.7	11050.2		19093.4	34582.1	4759.4	98174.0	18550.R

APPENDIX 8.2.1.C OPERATION AND MAINTENANCE COST (Dagupan City)

(cost; thousand peso)

		Stage 1	Stage 2	Phase II
Item		Cost	Cost	Cost
peration & Mainten	ance Cost		·	
Salary	1,730 p/M.M	1,080	1,495	1,806
Power	0.50 ₽/kwH	484	746	1597
Chemica1	27 ₽/kg	90	122	241
Miscellaneou	s	690	1,051	1,902
Maintenance		511	800	1,482
Total		2,855	4,214	7,028

APPENDIX 9.3.1 MARKET SURVEY

The market survey was conducted by interviews to the residents in the study area using the LWUA's interview sheet as per attached in the end of this section.

The total number of respondents and its estimated coverage ratio to the total number of households in the study area are as follows:

Total Number of Respondents	Estimated Total Household	Coverage Ratio to Total Household
4,050	11,616	35%

The results of the market survey are obtained as shown in TABLE 9.3.1.1.

From the market survey, the income distribution of the respondents are shown as follows:

Income Bracket 1/	Ave.Pesos	Number
₱900 and below	650	1,027
₱901 to ₱1500	1,224	1,227
P1,501 to P2,500	2,121	674
₱2,501 to ₱4,500	3,501	458
₱4,501 and above	8,406	314

^{1/} Residential, excluding no-income and no-answer

TABLE 9.3.1.1 MARKET SURVEY SUMMARY

Tot.	al Number of Respondents: 4050 . Distribution According to Building	; Type	
	<u> </u>	No. %	
	a. Residential	: 3727 92.02	
	b. Commercial c. Industrial	: 269 6.64	
	c. Industrial	: 54 1.33	
2.	Distribution According to Source of	Water No. %	
	a. Connected to System	: 1310 32.35	
	b. Neighbor's Connection	: 567 14.00	
	c. Public Faucet	: 1467 36.22	
	d. Private System	: 665 16.42	
	e. Water Vendor	: 26 0.64	
	f. Others	: 15 0.37	
3.	Average Persons Per Household		
	·a. Residential / Number of Sample	: 6.69 / 3711	
	b. Commercial / Number of Sample	: 6.78 / 267	
	c. Industrial / Number of Sample	: 8.76 / 54	
4.	Willingness To Connect (%)		
	Residential Commer	rcial Industrial Total	
	a. Yes : 31.26 21.5	56 20.37 30.47	
	b. No : 36.84 29.0		
	c. Undecided: 0.78 0.7	74 0.00 0.77	
	d. W/ Own Conn.: 31.12 48.7	70 35.19 32.35	
5.	Average Monthly Water Needs		
	Type / Number of Sample : Resider	ntial Commercial Industrial	
		0.23 8.71 5.50	
	b. Drum / 1705 : 2	2.33 3.98 5.02	
	c. Gallon / 194 : 62	2.65 10.71 10.00	
	d. Others / 1122 : 55	5.52 60.20 118.19	
6.	Ave. Monthly Electric Bills for Resi Number of Effective Respondents	idential Users (PESO):121.20 : 3122	
7.	Income Distribution (Residential, Excluding No-Income a	and No-Answer)	
	AVE.PESO	O NUMBER	
	a. P900 and Below: 650	1027	
	b. P901 to P1500 : 1224	1227	
	c. P1501 to P2500 : 2121	674	
	d. P2501 to P4500 : 3501	458	
	e. P4501 and Above: 8406	314	

Existing major sources of water for the respondents and willingness to connect by each source of water are :

		Willingness	to Connect
Sources of Water	Distribution	Yes	No
Connected to System	32%	- %	 %
Neighbor's Connection	14	64	34
Public Faucet	36	41	58
Private System	16	37	62

Public faucet and connections to the system are the major sources of water for the respondents. The rest draw their water needs from private systems and neighbor's connections. In addition, only 1% of the respondents depends on water vendors and others for its water sources. From the above table, the majority of the respondents using neighbor's connections are willing to connect to the waterworks system, while the majority of respondents using public faucet and private system are unwilling to connect to the waterworks system.

The following results on the distribution of water sources and willingness to connect according to income bracket of the respondents are also obtained from the market survey.

TABLE 9.3.1.2 DISTRIBUTION OF WILLINGNESS TO CONNECT BY INCOME BRACKET

			Income Br	acket	
Sources of Water	₱900 & below	₱901- ₱1,500	₱1,501- ₱2,500	₱2,501- ₱4,500	₱4,501- & above
Connected to System	13 %	27 %	45 %	49 %	61 %
Neighbor's Connection	19	15	13	11	4
Public Faucet	53	42	27	18	10
Private System	14	15	15	21	25
Willingness to Connect					
Yes	33	33	29	29	20
No	54	39	26	21	19
Undecided	1	1	1	1	1
With Own Connection	1.2	27	44	49	60

As shown above, around 50% of the respondents belonging to the high income group is already connected to the existing waterworks system. However, the extention of waterworks is rather limited in the low income group, being dependent mainly on public faucet for their water sources.

As the result of market survey, the respondents' willingness to connect and the user's types are shown as follows:

Answer		Residential	Commercial	Industrial	<u>Total</u>
Yes	:	31.3 %	21.6 %	20.4 %	30.5 %
No	:	36.8	29.0	44.4	36.4
Undecided	:	0.8	0.7	0.0	0.8
With Own Co	nn.	: 31.1	48.7	35.2	32.3

Residential users account for 92% of the total respondents and willingness to connect on the part of the respondents is only 30% of the total, while unwillingness to connect is 36%. It is observed from the result of the market survey that one third of respondents, especially in the low income group, are not willing to connect to the waterworks system in Dagupan city.

	INTERV	IEV	/ S	HEE	T	FOI	RMA	T L	SE	D I	N	THE	Mi	ARK.	ET	su	RVI	<u>Y</u>			
	Respondent																		** * * * * * * * * * * * * * * * * * * *		at the above are true and
STREET	81dg. Cond. Code																				I certify that information are correct. Interviewer
STR	P4, 501 and Above	,																			1 certi informa correct
ZONE	1y Income P2,501 to P4,500																				Code
	Monthly Family P1,501 P to 10 P2,500 P																				huilding Condition 4 - Very Good 6 - Fair D - Poor
	Average Mon P501 to to P1,500															,	,				Building A. Very B. Good C. Fair D. Poor
BARANGAY	P900 and Below				·														• •		3)
	Ave. Elec- tric Bill																				Consumption Code KC - Fero-Can or Gray Container D - Drum G - Gallon O - Others
	Ave. Water Needs																				Consumption NC - Kero-C Gray C D - Drum G - Gallon O - Others
	Willing to Connect YES NO																				2.5
PALITY	VIII to Conn YES	·																		!	dwnd p
UNICI	H dd .																				n ./Han
CITY/HUNICIPALITY	User Code																				COME Contacted to System Relgibor's Connection Public Faucat Private System (Elec./Hand Pump) Water Vendor Others, specify
	Type Ind															-					cd to Syrish System System endor
	Building Res Com	_			_										<u></u>						COARTON COARTON COARTON COARTON COARTON COARTON CARACTER VALUE VANIOR OLINERS, SPECI
к ио.		_							_				_		_			_			113EH 115EH
BLOCK	Stop No.	Ì							}	[}										[15] 超磁压 [15]

APPENDIX 9.7.1 FINANCIAL INTERNAL RATE OF RETURN (FIRR)

In the calculation of Financial Internal Rate of Return (FIRR), the following two indicators are normally used to evaluate financial profitability of a project.

(1) Internal Rate of Return on Investment (IRROI)

The term IRROI indicates the internal rate of return on total capital investment, and assesses the profitability of the Project as a whole and the ability to recover funds invested in the Project.

The IRROI is calculated based on the assumption that the total capital investment is covered by its own capital. Therefore, the financial conditions such as the loan conditions on borrowed capital, changes on the ratio of equity to total capital requirement and others have no effect on the IRROI. Accordingly, the IRROI indicates the profitability of the Project itself.

(2) Internal Rate of Return on Equity (IRROE)

The term IRROE indicates the internal rate of return on equity, and assesses the profitability only with respect to equity and the ability to recover funds invested in the Project as equity. Here, the IRROE is calculated on the basis of such financial conditions proper to the Project as the loan conditions on borrowed capital and amount of capital owned.

In this study, the FIRR was calculated using the same method applied in the study report of the BACOLOD CITY WATER DISTRICT PHASE II WATER SUPPLY FEASIBILITY STUDY, DRAFT REPORT VOLUME 3 by LWUA.

APPENDIX 9.8.1 PROPOSED WATER RATE

The proposed water rates for 1/2 inch connections of commercial users, and 3/4 inch connections of domestic and commercial users to achieve financial self-sufficiency are as follows:

(1) Water rate for 1/2 inch connections of commercial users

Period	Rate/ Unit	First 10cu.m	11-20cu.m	21-35cu.m	Above 35cu.m
1988	P1.0	₱ 50.0	₽ 6.8	P 9.2	₱13.0
1989	1.5	75.0	10.2	13.8	19.6
1990	1.5	75.0	10.2	13.8	19.6
1991	2.0	100.0	13.6	18.6	26.0
1992	2.6	130.0	17.6	24.0	33.8
1993	3.0	150.0	20.2	27.8	39.0
1994	3.2	160.0	21.6	29.6	41.6
1995	3.2	160.0	21.6	29.6	41.6
1996	3.9	195.0	26.4	36.0	50.8
1997	4.5	225.0	30.4	41.6	58.6

(2) Water rate for 3/4 inch connection of domestic users

Period	Rate/ Unit	First 10cu.m	11~20cu.m	21-35cu.m	Above 35cu.m
1988	P1.0	₽ 40.0	₽ 5.4	₽ 7.4	₱10.4
1989	1.5	60.0	8.2	11.0	15.7
1990	1.5	60.0	8.2	11.0	15.7
1991	2.0	80.0	10.9	14.9	20.8
1992	2.6	104.0	14.1	19.2	27.0
1993	3.0	120.0	16.2	22.2	31.2
1994	3.2	128.0	17.3	23.7	33.3
1995	3.2	128.0	17.3	23.7	33.3
1996	3.9	156.0	21.1	28.8	40.6
1997	4.5	180.0	24.3	33.3	46.9

(3) Water rate for 3/4 inch connection of commercial users

Period	Rate/ Unit	First 10cu.m	11-20cu.m	21-35cu.m	Above 35cu.m
1988	P1.0	₽80.0	₱10.8	₱14.8	₱20.8
1989	1.5	120.0	16.4	22.0	31.4
1990	1.5	120.0	16.4	22.0	31.4
1991	2.0	160.0	21.8	29.8	41.6
1992	2.6	208.0	28.2	38.4	54.0
1993	3.0	240.0	32.4	44.4	62.4
1994	3.2	256.0	34.6	47.4	66.6
1995	3.2	256.0	34.6	47.4	66.6
1996	3.9	312.0	42.2	57.6	81.2
1997	4.5	360.0	48.6	66.6	93.8

カブヤオーサンタ・ロサービニヤン、ラグナ県

APPENDIX 3.4.1 ELECTRIC CHARGES ADOPTED BY THE MERALCO

Residential

First 1	14	kwh	₽2.00	(Mi	imum	Charge)
Next 3	36	kwh	0.125	per	kwh	
Next 5	50	kwh	0.15	per	kwh	
Next 10	00	kwh	0.20	per	kwh	
Excess		kwh	0.365	per	kwh	

General Service

Classification

X-1 (Conn. Load : 1-500c Natis)

First 14 kwh \(\mathbb{P}3.00\) (Minimum Charge)

Next 76 kwh 0.21 per kwh Excess kwh 0.365 per kwh

X-MD (Conn. Load : over 5,000 Natis)

Demand Charge ₱12.60 per kw

Plus Energy Charge

First 100 hrs. \raiseta 0.33 per kwh Next 100 hrs. 0.28 per kwh Next 100 hrs. 0.25 per kwh Excess kwh 0.23 per kwh

APPENDIX 4.1.1 POPULATION AND NUMBER OF HOUSEHOLDS BY WATER SERVICE MUNICIPALITY OF CABUYAO (1980)

	Population	Level III	Level I Sy	stem (Point	Source)	
Barangay	No. of HH	System_	Well	Spring	Others	Total
	2298	1638	660			660
l. Bgy.I	383	. 273	110		_	110
	1590	1308	282		<u> </u>	282
2. Bgy. II	265	218	47	_	***	47
,	1698	1014	684	***	•	684
3. Bgy. III	283	169	114	- '	_	114
	1320		1320			1320
4. Baclaran	220	 	220	-	==0	220
5. Banay-	2946		2946			2946
banay	491		491	-	-	491
	3246		3222	36		3246
6. Banlic	541	_	537	6	<u></u>	541
	3954	972	2982			2982
7. Bigaa	659	162	497	-		497
	1632	-	1626	6	écia	1632
8. Butong	272		271	1	_	272
	648		252	144	2 52	648
9. Casile	108		42	24	42	108
	588	-	576	12		588
10. Diezmo	98	-	96	2		98
	5112		5112	[•••	5112
11. Gulod	852	~	852			852
ľ	4794		4794			4794
12. Mamatid	799	-	799		-	799
	5376		5376			5376
13. Marinig	896	-	896		_	896
]	3588		3588]		3588
14. Niugan	598	-	598		-	598
	450		390	ĺ	60	450
15. Pittland	1 75		65		10	75
	2892		2892			2892
16. Pulo	482		482	-	-	482
	3042	582	2424	36		2460
17. Sala	507	97	404	6		410
	1998		1998			1998
18. San						1
Isidro	333		333	-	•	333
mata 7	67172	E517	41112	224	210	41650
Total	47172 7862	5514 919	41112 6852	234 39	312 52	41658 6943

Note: Above : Population Below : No. of Household's

Source: Comprehensive Development Plan

APPENDIX 4.1.2 POPULATION AND NUMBER OF HOUSEHOLDS SERVED BY WATER SOURCE MUNICIPALITY OF STA. ROSA (1980)

	Population	Level III	Level I System	(Point Source)	
Barangay	No. of HH	System	Well/Spring	Others	Total
1. Kan-	4794	1038	1722	2034	3756
luran	799	173	287	339	626
	3198	942	606	1650	2256
2. Malusok	533	1.57	101	275	376
	2142	228	1404	510	1914
3. Market -	357	38	234	85	319
Area	7134	246	6444	444	6888
4. Aplaya	1189	41	1074	74	1148
	5736	1350	1788	2598	4386
5. Balibago	956	225	298	433	731
	4716		4716		4716
6. Caingin	786	- ,	786	_	786
	2376	132	1146	1098	2244
7. Dila	396	22	191	183	374
}	5172	546	3558	1068	4626
8. Dita	862	91	593	178	771
	1416	·	1416		1416
9. Don Jose	236	-	236	***	236
	1626	366	492	768	1260
10. Ibaba	271	61	82	128	210
	3120	288	2310	522	2832
ll. Labas	520	48	385	87	472
12. Maka-	3312		3108	204	3312
biling	552	_	518	34	552
13. Malit-	2964		2898	66	2964
lit	494		483	11	494
	4836		4824	16	4836
14. Pook	806	-	804	2	806
15. Pulong	3156		2634	522	3156
Sta.Cruz	526	-	439	87	526
16. Sto,	714		714		714
Domingo	119	_	119	-	119
	6588	}	6372	216	6588
17.Sinalahan	1098	_	1062	36	1098
	6900	840	4386	1674	6060
18. Tagapo	1150	140	731	279	1010
TOTAL	69900	5976	50502	13422	63924
TOTAL	11650	996	8417	2237	10654
		,,,,	J		

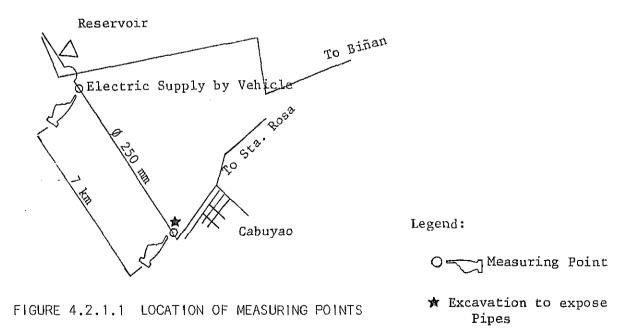
Note: Above : Population Below : No. of Households

Source: Comprehensive Development Plan

APPENDIX 4.1.3 POPULATION AND NUMBER OF HOUSEHOLDS SERVED BY WATER SOURCE MUNICIPALITY OF BINAN (1980)

			Point Son	urce with Pi	cher Pump	
İ	Population	Level	Public	Private		Point
Barangay	No. of HH	III	Well	Well	Total	Source
	8238	150	156	3216	3372	4716
1. Canlalay	1373	25	26	536	562	786
	600		24	264	288	312
2. Casile	100	-	4	44	48	52
	14766	276	282	5736	6018	8472
3. dela Paz	2461	46	47	956	1003	1412
	15174	264	264	5388	5652	9258
4. Malaban	2529	44	44	898	942	1543
	4044	858	66	1350	1416	1770
5. Poblacion	674	143	11	225	236	295
6. San	14100	2088	282	5682	5964	6048
Antonio	2350	348	47	947	994	1008
	4062	366	78	1602	1680	2016
7. San Jose	677	61	13	267	280	336
8. San	7650	222	144	2970	3114	4314
Vicente	1275	37	24	495	519	719
9. Sto.	2856	138	60	1230	1290	1428
Domingo	476	23	10	205	215	238
]	228	60	12	405	72	156
10. Biñan	38	10	2		12	26
201 2211011	222	10	12	48	60	162
II. Bungahan	37		2	8	10	27
- Dunganun	1320		36	408	456	864
12. Calabuso	220	_	6	68	76	144
LZ: Odiabaso	366	_	12	36	48	
13. Ganado	61		2	6	8	318
15. GERIAGO	1608		36	456	492	53
14. Halang	268	_	6	76	82	1116
24. 24. 24.	828	_	24	70	144	186
15. Langkiwa	138	_	4 .	24	28	660
12. Dangarad	762	_	24	180	i I	110
16. Loma	127		4	30	204 34	558
10; Long	90	_	6	12		93
17. Malamig	15	_	1	2	18	72
18. Mampl-	1056	_	30	j .	3	12
lasan	176		5	306 51	336	720
149611	4026	216		4	56	120
19. Platero	671	36	72 12	1476	1548	2262
19. ITALEIO	1086	20	·	246	258	377
20. San Anto	1		36	138	174	912
21. Soro-	h 181 996	_	6	23	29	152
ł .	l	-	36	168	204	792
Soro	166	· -	6	28	34	132
22. Timbao	624		18	126	144	480
LA. TIMDAO	104	-	3	21	24	80
100 master	2292		60	168	228	2064
23. Tubigan	382	-	10	28	38	344
2/ 7	276		12	60	72	204
24. Zapote	46	_ _	2	10	12	34
momat.	87270	45.78	1782	31236	33018	49674
TOTAL	14545	763	297	5206	5503	8279

Note: Above : Population Below : No. of Households Source: Municipal Development Plan


APPENDIX 4.2.1 SURVEY FOR ESTIMATION OF C-VALUE

A section of the transmission pipeline was selected for the purpose of this survey. Measurements of water pressure and flow rate were conducted at the two points throughout the day. The selection criteria for the section of the pipeline are:

- 1) There is no distribution of water in the section.
- 2) There is easy access to the points. Also electricity is available
- 3) Water pressure can be measured using existing devices.

The section between the reservoir area to Cabuyao (diameter of pipes, 250 mm; length, approximately 7 km) was selected in the light of the above conditions.

The test at the selected points was implemented during the unaccount-ed-for-water/not utilized water survey. Although the two points were measured on different dates, both points were measured for about 7 hours. The flow rates in the selected section fluctuated at a certain range daily, but it was expected that the range would be negligible during week days. However, the supplementary measurements mentioned above were still taken into account. FIGURE 4.2.1.1 shows the location of measuring points.

- 5 -


The flow rate in the Cabuyao-Sta. Rosa line is directly affected by the operation of the value at the reservoir. The time period for analysis was determined to be for four hours, from 1:00 P.M. to 5:00 P.M. thus avoiding the value operation time.

The average flow velocity is about $1.4\,\mathrm{m/s}$, thus the time \log is estimated at one hour between the two points. TABLE 4.2.1.2 shows the measurement result on the requirements.

TABLE 4.2.1.2 MEASUREMENT RESULTS

	Res	servoir	Cabuyao Inlet				
Item	Flow Rate	Velocity	Pressure	Flow Rate	Velocity	Pressure	
Time	cu.m/hr.	m/s	(m)	cu.m/hr.	m/s	(m)	
13:00	270	1.33	0.4		_	-	
14:00	274	1.35	0.4	274	1.35	13.3	
15:00	289	1.42	0.4	281	1.38	16.9	
16:00	293	1.44	0.4	289	1.42	19.0	
17:00	→	-		295	1.45	19.8	
Average	282	1.39	0.4	285	1.40	17.3	

FIGURE 4.2.1.2 - presents the profiles of hydraulic grade-line and computation result of "C" value.

UPSTREAM (Reservoir area)

 $Q = 282 \text{ m}^3/\text{hr} = 0.0783 \text{ m}^3/\text{sec}$

ELEVATION = 76.2 m

PRESSURE HEAD = 0.4 m

PIPE DIAMETER= 250 mm

COMPUTATION;

 $C = 3.59028 - Q ave \cdot D^{2.63} H^{0.54} L^{0.54}$

Thus;

 $C = 3.5902 \times 0.0787 \times (0.25)^{-2.63}$

 $x(49.2) \xrightarrow{-0.54} (5680) = 141$

DOWNSTREAM (Entrance of Cabuyao)

 $Q = 285 \text{ m}^3/\text{hr} = 0.0792 \text{ m}^3/\text{sec}$

ELEVATION = 10.1 m

PRESSURE HEAD = 17.3

PIPE DIAMETER = 250 mm

Where;

Qave. = 1/2 (0.078 + 0.0792) = 0.0787

 $D = 0.250 \, \text{m}$

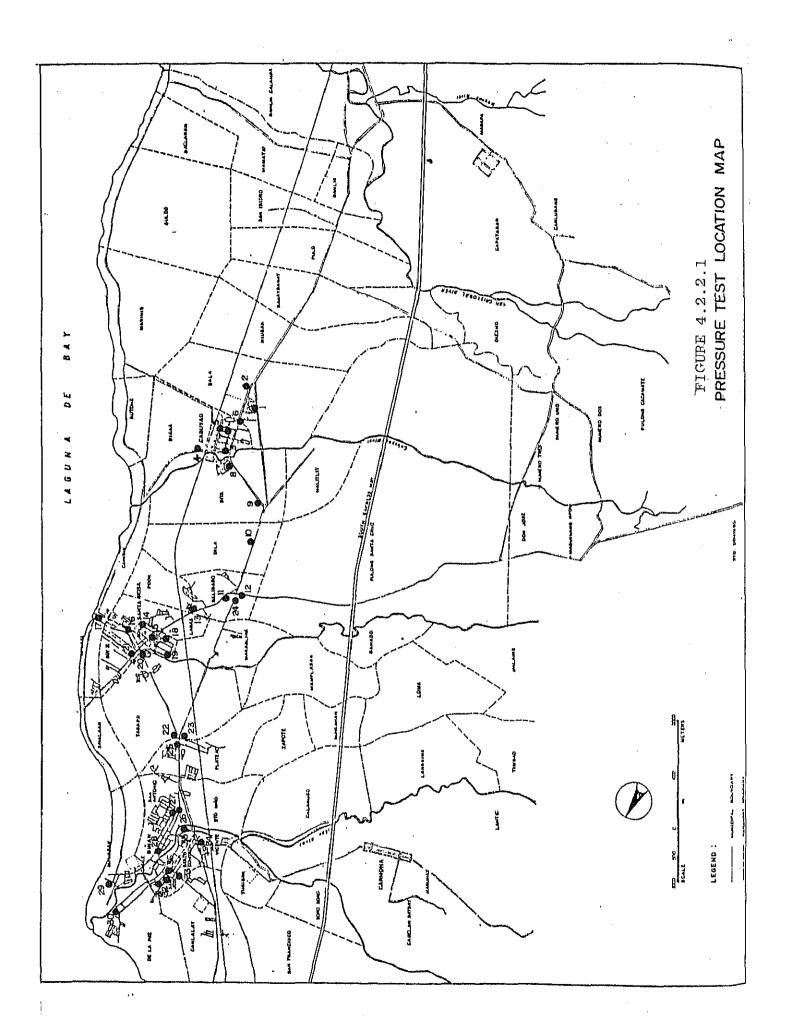
L = 5.680 m

H=(76.2+0.4)-(10.1+17.3)=49.2

FIGURE 4.2.1.2 PROFILE OF HYDRAULIC GRADE LINE

APPENDIX 4.2.2 WATER PRESSURE IN THE SERVICE AREA

The preliminary survey revealed that many of the houses possess additional faucets. The water pressure measurements were done outside the houses covering 36 points; 7 in Cabuyao, 17 in Sta. Rosa and 12 in Biñan. (10 points: Automatic Pressure Recorder). The survey was conducted for three days to cover the three areas, one day for each area. Two shifts had been adopted due to the measuring requirement throughout the day.


TABLE 4.2.2.1 and FIGURE 4.2.2.1. show the selected points for this test. FIGURE 4.2.2.2 shows contour line covering the 3 municipalities.

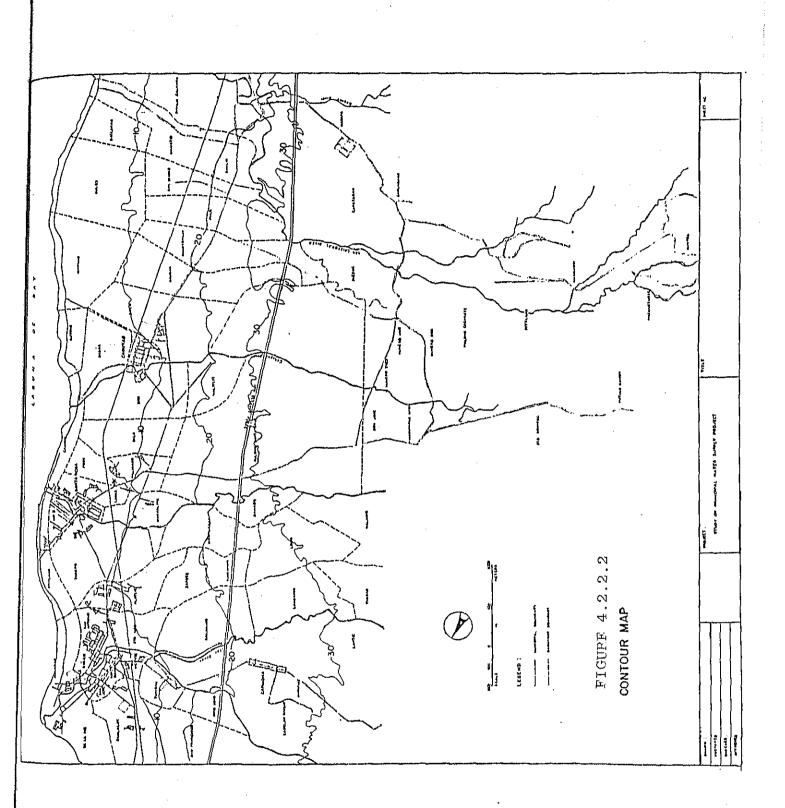
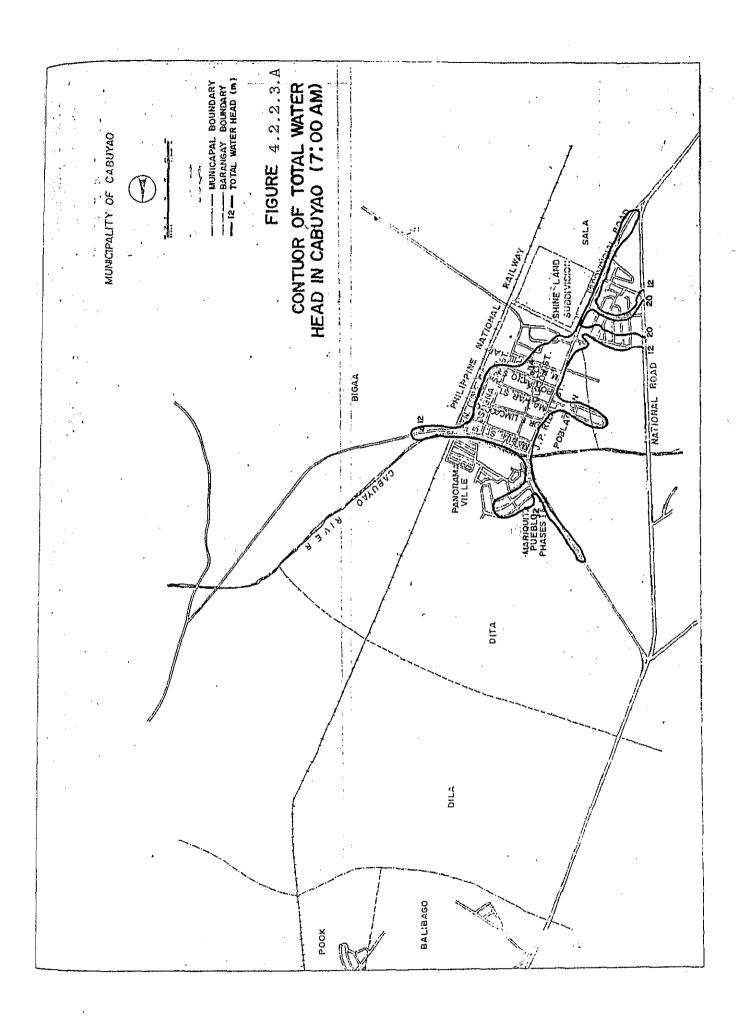
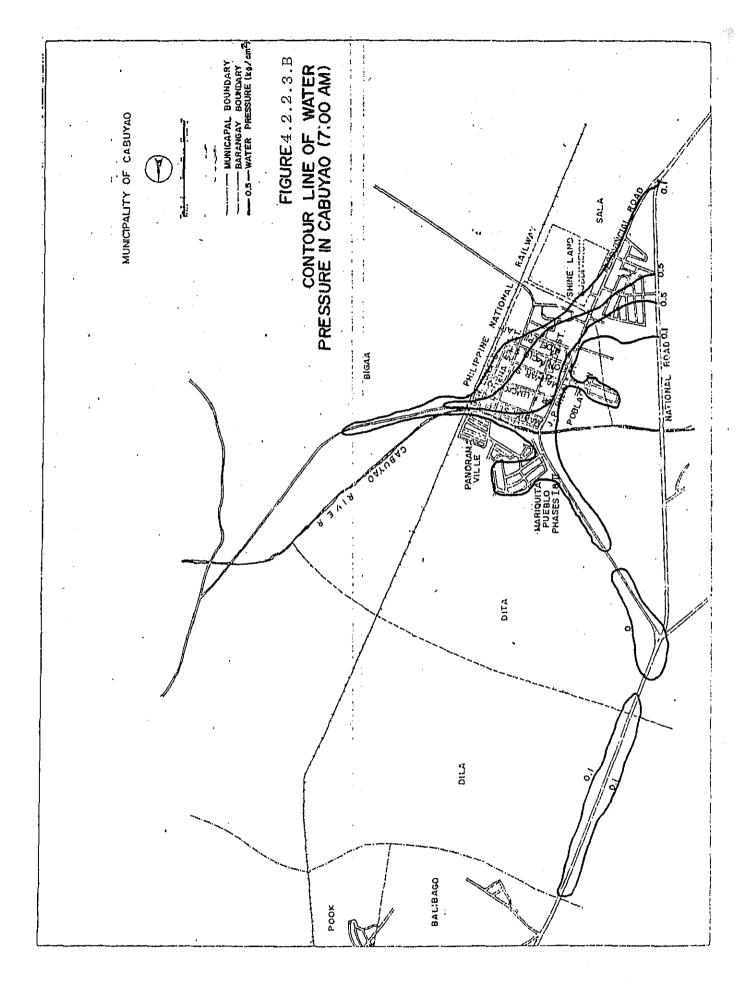
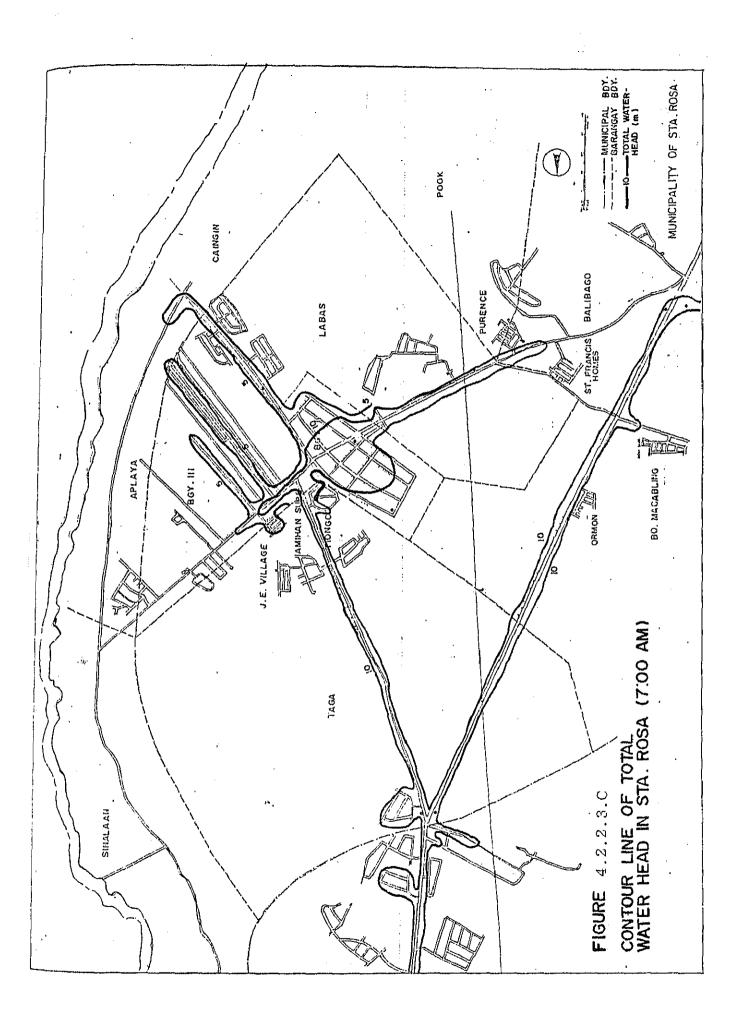

The measurement records for every hour at the 36 points throughout the day are shown in TABLE 4.2.2.2. The contour lines are prepared for the total water head and water pressure based on the records at 7:00 A.M. and 1:00 P.M. which may represent the hours in maximum and minimum water consumption throughout the day, respectively. FIGURE 4.2.2.3.A to FIGURE 4.2.2.3.L present the contour lines by municipality. The total water head at the measurement point is calculated using the topographical contour prepared by each municipality.

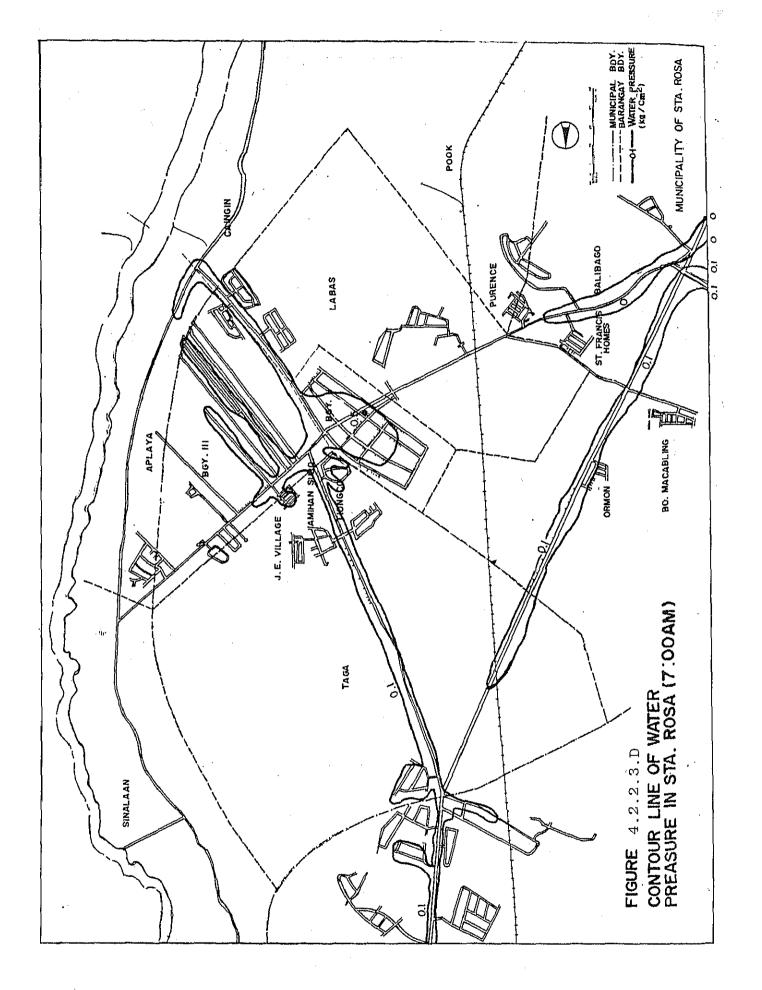
TABLE 4.2.2.1 LOCATION OF SELECTED POINTS FOR PRESSURE TEST

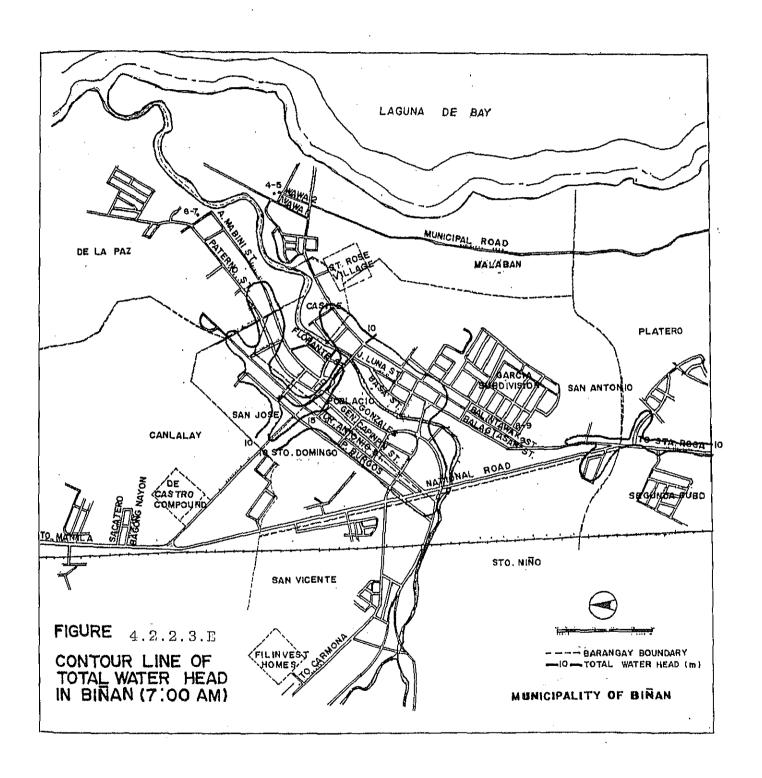
•	Elevation	Address of the Calactus Bright	D. W
No.	(GL m)	Address of the Selected Point	R.M.
1	- 13	Sala, Cabuyao	APR
2	11	144, Sala, Cabuyao	
3	8	8, P. Burgos St. Cabuyao	
4	7	156, Bigaa, Cabuyao	
	9	M.H. Del Pilar St., Cabuyao	
5 6	10	59, AM. Roxas St., Cabuyao	
7	9	176, Malvar St., Cabuyao	
8	9	Max. Pueblo, Sta. Rosa	APR
9	16	1816, Dita, Sta. Rosa	
10	13	1586, Dila, Sta. Rosa	
11	12	1211, Balibago, Sta. Rosa	
12	13	13th, F. Reyes St.	
•		Balibago, Sta. Rosa	,
13	9 -	890, Rizal St. Labas, Sta. Rosa	
14	7	1176, Lucero St. Malusok, Sta. Rosa	
15	8	J.P. Riza, Sta. Rosa	APR
16	6	180, Ibaba, Sta. Rosa	
17	4 ·	Aplaya, Sta. Rosa	APR
18	9 .	1072, Lucero St., Sta. Rosa	
19	9	686, P. Gomez St., Sta. Rosa	
20	7	Tatlong Hari, Sta. Rosa	APR
21	7	Tatlong Hari, Sta. Rosa	APR
22	9	7, Tagapo, Sta. Rosa	
23	9	Hi-way, Tagapo, Sta. Rosa	
24	13	Balibago, Hi-way, Sta. Rosa	
25	9	Platero, Biñan	
26	8	Monalat, Biñan	
27	8	780, Balintawak St., Biñan	•
28	7	Manabat, Biñan	APR
29	4	497, Dalampasigan St., Malabon, Biñan	
30	6	828, Dela Paz, Biñan	
31	8	Capinpin St., Biñan	APR
32	8	55, Dr. A. Gonzales St., San Jose, Biñan	
33	.	67, A. Bonifacio St. Canlacay, Biñan	
34	9	San Vicente, Biñan	
35	ý	San Vicente, Biñan	APR
36	8	Bonifacio St., Biñan	APR
	~	The second control of	

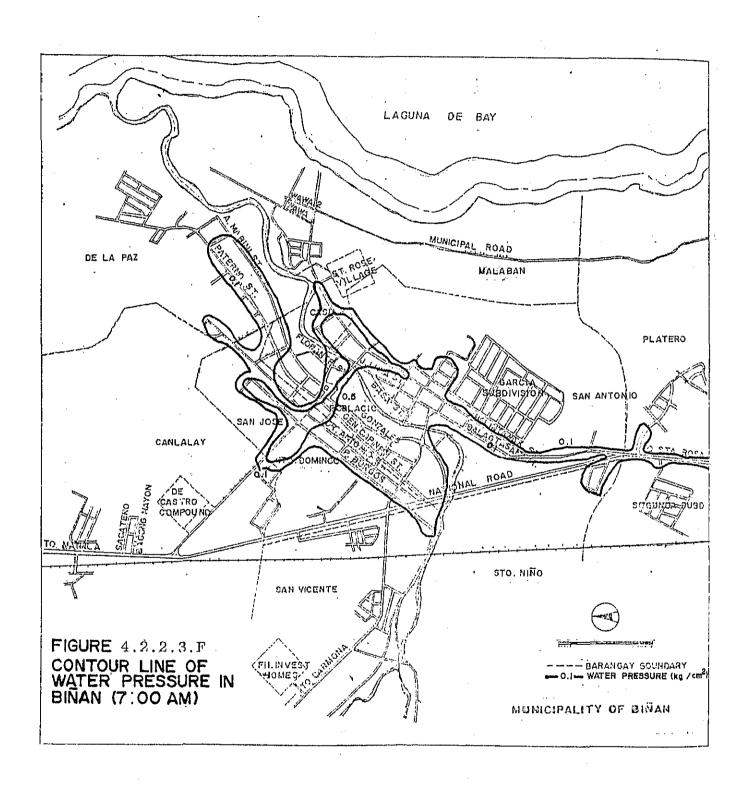

Note: APR ---- Automatic Pressure Recorder

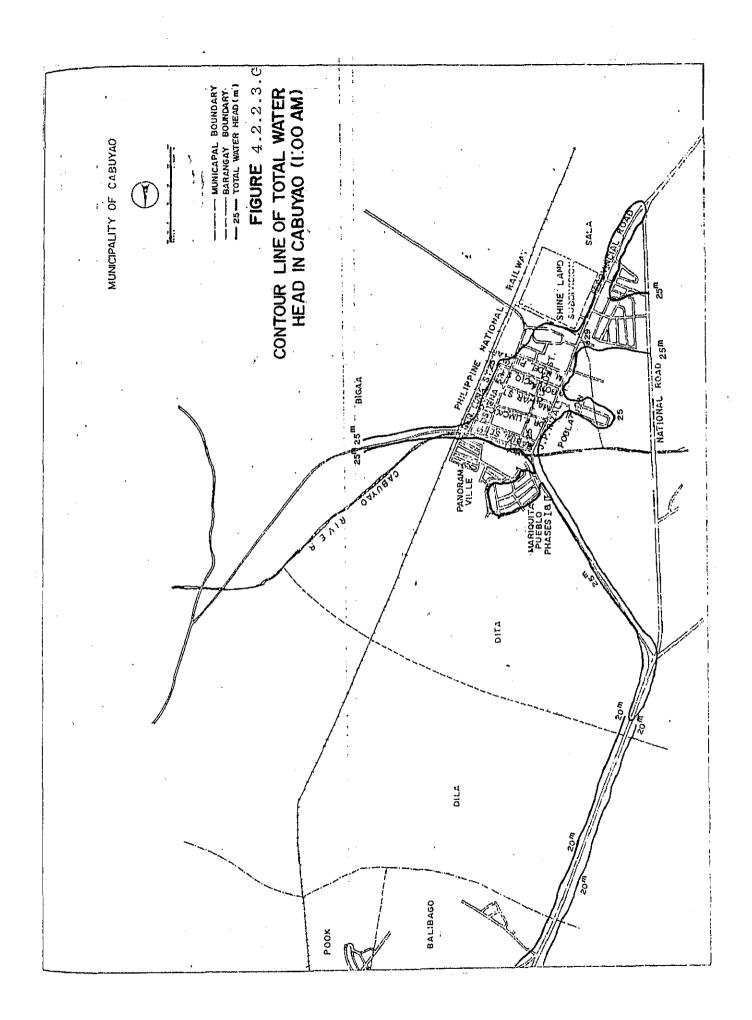


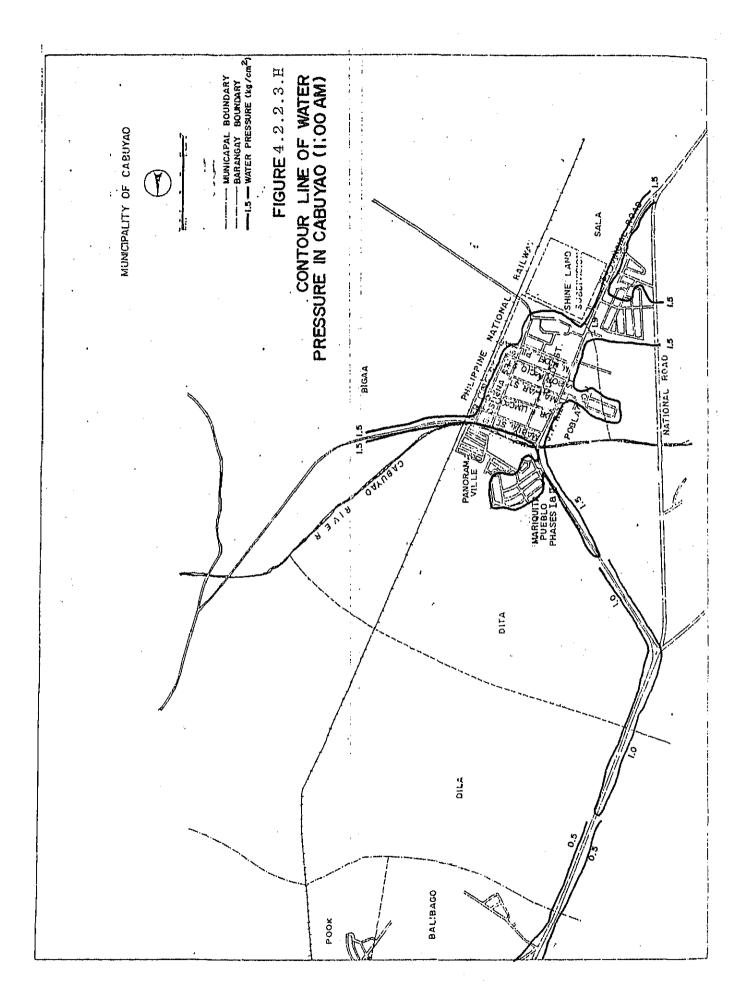


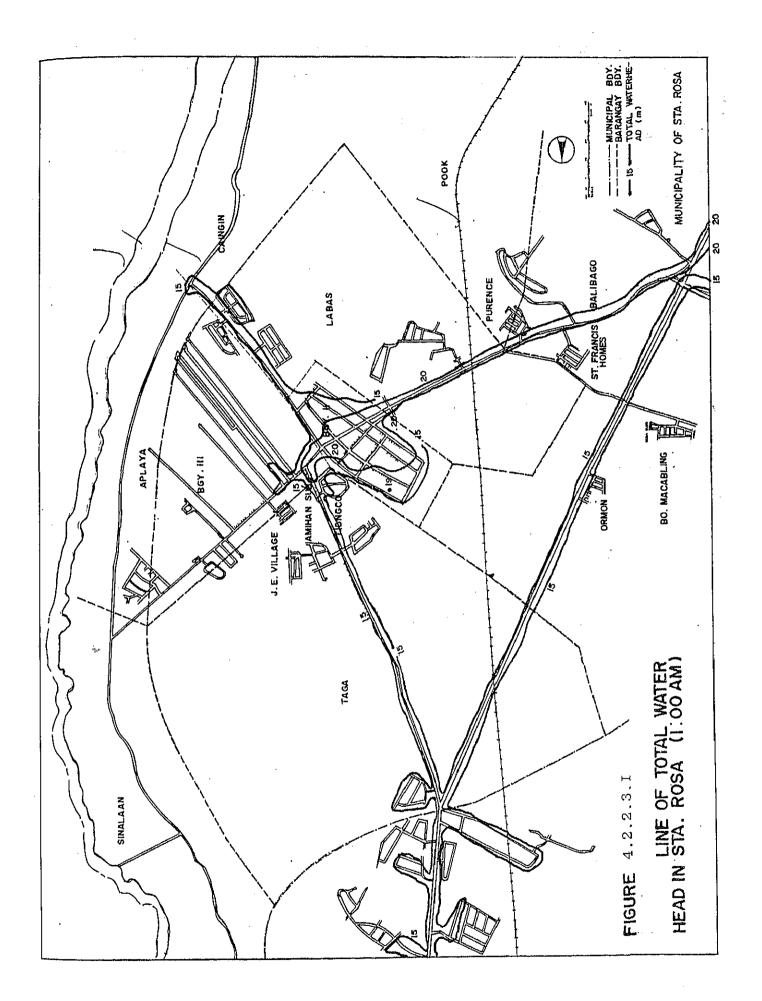

																												•		•		-		
	23	1,3	6	2.0	1,5	1,9	1.6	1,5	ا ا	9 6	, C	8	0.5	1,0	1.0	1.0	1.0	1.0	1,2	0.8	7.0	ο·	r	0.8	0.2	7.0	6. 1	ф. 1	0	60.1	0	•••	4	• •
$(unit: kg/cm^2)$	22					'n	5	w r	ត្	~ ~	u		'n	0	4	0	6	6	٦,	.7	۲,	7.	0.1	-	7	3	بر	۳.	۳.	۲,	7	٦.	4.	٠,
	21	1,2	1.4 1.4	1,4	1,1	1,2	1.2.	֡֓֞֜֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓֓֡֓֓֡֓֡֓֡֓֓֡֓֓֡֓֡֓֡	7.0	۳. د د	, ,	0.4	0,5	0.7	0,3	0.7	0.7	9.0	0.8	9.0	4.0		o -	0,5	0.2	0.3	6. 1	6. 1	0.2	φ.1	0.3	.	ى ئىد	₹•
	20	6.0					•	•	•	- -	•				٠	0.5	0.2	0.3	. 9.0	0.4	0.2	n.0	7.0	0.3	(F)	0.1	6. 1	ф. 1	0.3	ф. 1	0.	υ. Φ.	ب. 0 د	Ţ.;
	, 6 H	6.0	J 4	0	ic.	6	α	_	٠.			m	4	-	m	Ŋ	7	'n	8	ŝ	<u>د</u> ا	m (מי ת	2	-	٦,	۲,	۲,	e,	~	٦,	٦,	~	٦.
	18	6.0											0.2	_	_	_	-	-	_		-	-	0 0 0 0					6. 1	0.3	0.1	0. 1	 •	- C	÷
S	17	6 0	0 4	1.0	0.7	0.0	6.0	C. (-; •}•	-i 9∕€	, 0	0	0.1	0.7	0,3	7 , 0	0.2	0.4	0.7	0.5	ຕຸ: 0	٠ د د د) · ·	0.1	0.1	4. 1	6.1	6. 1	0.1	0.1	0	٠. ٠.	, 0	7.
	16	6.0	- - - - - - - - - - - 		7	6	ω	~ +			. ~	, , .	_	9		'n	~	4	_	ιΩ I	ᇽ,	- 1	· ·	· ,		_		_	~	•		·	m r	_
	15	6.0		•	_	66	80	<u>.</u> .	-i .	- 	. ~		_	9	33	9	7	.	7	4	ო (<u>ہ</u> م	-		_	-	-	S	_	-			_
	7	8.0	7 1	ထ	'n	~	ω	٠,	┪,	<u>-</u> -		(pm)	-	ις.	7	٥	7	4.	9	4	~ (ກຸເ	ก์ <			H	-	-	m		-	•	r.	
.2 PRESSURE TEST	<u> </u>	7.0	- 10	_	ന	ú	œ	G	٠.		,	-	_	.	_	.	2	m	٠	.	H.	t	A 6	,					a			,		
	2	۲,	4.0	40	Η,	9	9	9		⊣	-	, rel		٦.	<u>س</u>	~	7	۳.	9.	ر.	٦,	٦.	4 6	1	!	. [۲,	4		Τ.	•	呵.	
	-	7.0	p=-	. LG	7	'n	9	S.	,	· -	-		-	c.	7	~	_	,	S	4	٦,		M c			_			7	,(·	7	,	-	
		7 0.	-							-ĭ S>c		0											ט סכ			1.	ф 1'	ι. Φ	0 و	⇔	۰. د	0 4	اساً د څرو	> -
	10	٠ د	•							-							•																	
	6	7.0	•							•				•	•	•		•	•	•	•	•	2 0		,	•	•		•	•	•	٠	0,0	٠
4.2.	œ	7.0					•			⇒, c					•		•	•		•	•	٠	2 0					•		•	•	•	•	٠
- 37:	7	7.00				•	•			ئ 1	- 1					•				•	•		0 0 0 0					•			•			
TABLE	9	8 .				•		•		-: ⇒, c	•		•		•	•				•	•	•	٠ د د د	• •			•	•	•			•		
	, ທ	1.7						٠	•	•				•	•	•			•	•	•	٠						•	0		•		4 -	
	. 4	, L.				-		_	_	_				_		-	-	-	-		-	-	•			-		_		_	-	_	ص در د	_
	ពា	1.7					-	•			•					-		-		•												_	ر د د	
	2	1,3	- 0	0	7	6	બ	۳.	ے د د	ء ھ	v	0	တ္	~i		~-	~	-	m	α	ω,	넉.	4 1-	- ∞	7	4	_			m	ر ا	- 1	νį r	۲.
		1,3	- 6	0	7	6	0	<u>ر</u> د	,	ء م		9	9	7			~-	ó	m	α	α ,	ລັດ	יי בי	· თ	4	4,	_			!	พู	ન્યુ	ιή H	-
	Hour No.	,							. ע	3 ~	٠,	ı m	7	r.	9	7	S	6	0	~	. 7	, C.		1 40	7	83	6	0	_	7	ຕຸ	√ † 1	ın v	٥

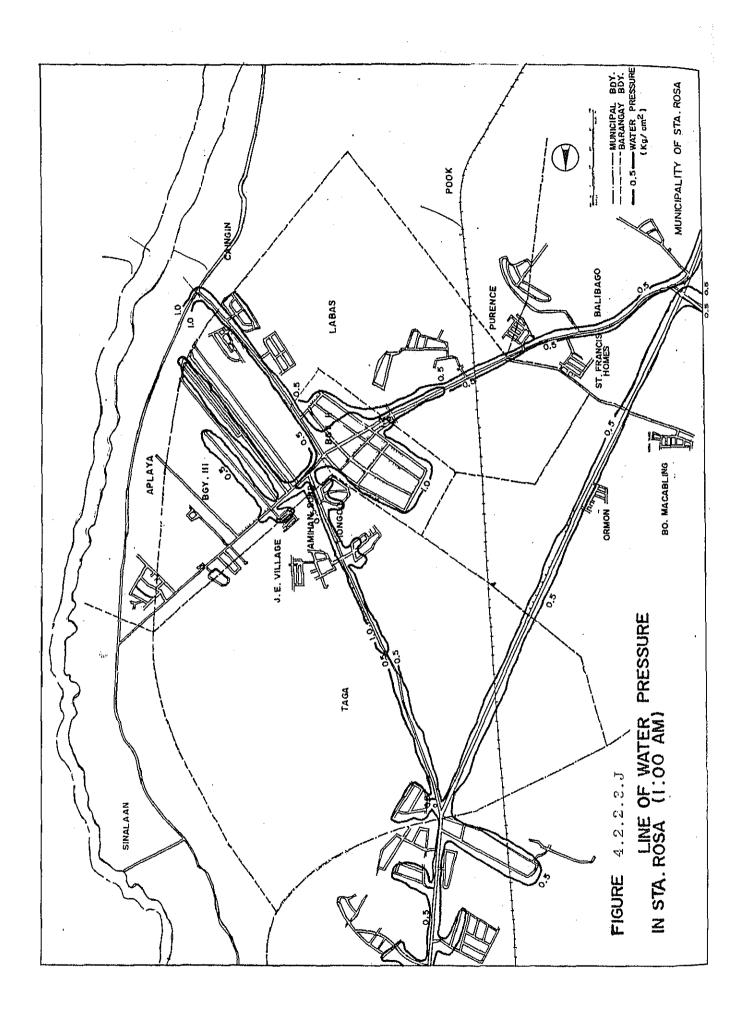

Note: 0.1 : less than 0.1 kg/cm²

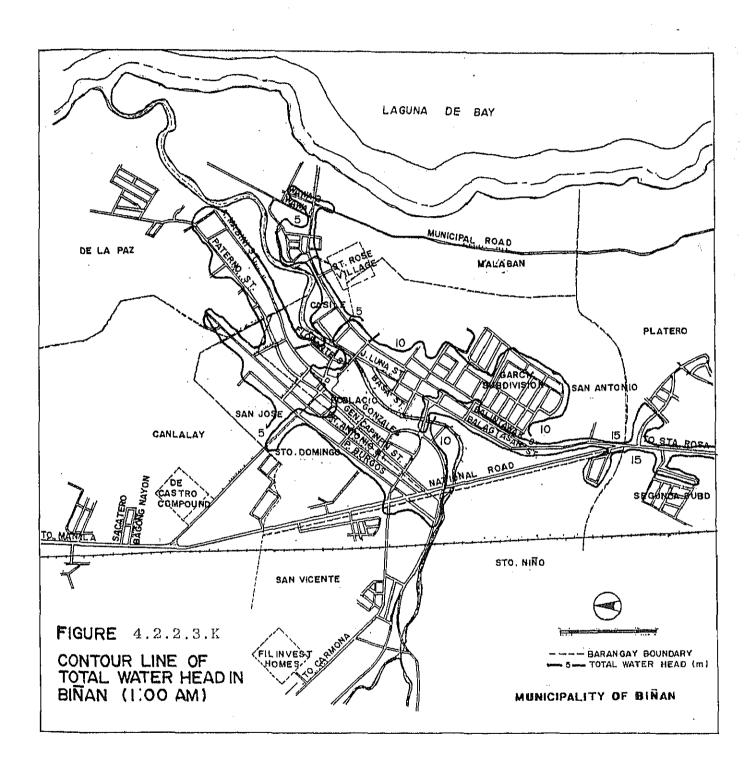


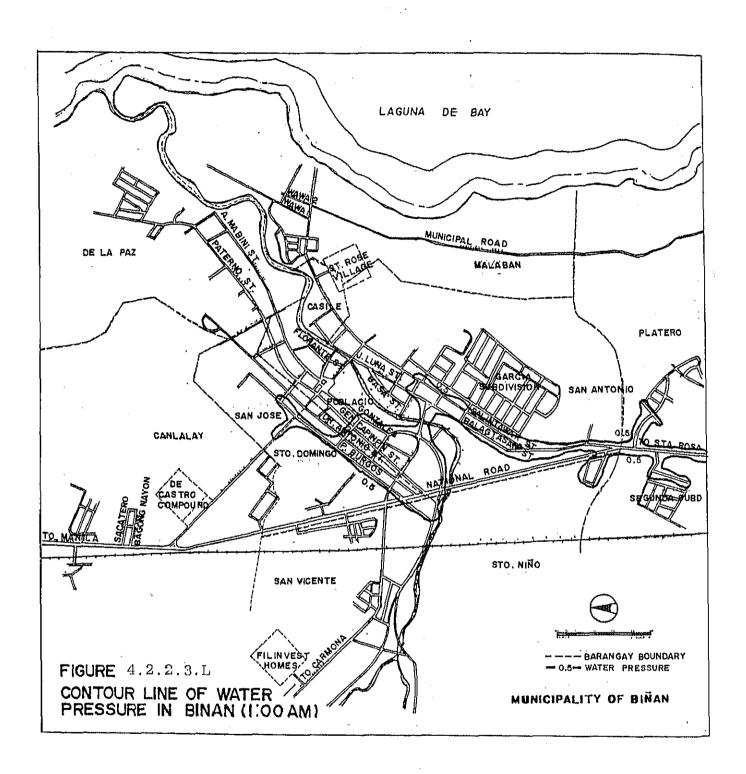












APPENDIX 4.2.3 COLLECTED CHARGES FOR THE MONTH OF JUNE, 1986 BY CONSUMER TYPE

													Uni	Unit:Peso	
· · · · · · · · · · · · · · · · · · ·				Hetered					F 1 a	t Rat	e				
righter-	; ;				į		Nor	Nonfunctioning		Heter	Withou	Without Meter			Total
pality	parangay	Domestic	Commer- cial	Institu- tional	Indus- S rrial	Sub-Total	Domestic Commerc. Insti.	Commerc.		Sub-Total	Domestic Commer. Insti.	Commer.		Sub-Total	
	1 Barangay I	6295.75	1	ı	1	6295.75	750.00	10.00	30.00	790.00	44.00	14.00	30.00	88.00	7173.75
		5565.00	68.50	36.75	ı	5.70.25	402.00	ı	1	402.00	1	ı	1	ı	6072.25
	3 " 111	3900.25	ı	ı	ı	3960.25	287:75	1	ı	287.75	1	ŀ	1	ì	4248.00
Cabuyao		2937.75	1	ı	1	2937.75	312.75	ı	ı	312.75	,	ı	۱.	ı	3250.50
<u></u>	S Sala	3095.25	10.00	20.00	•	3155.25	137.75	'	10.00	147.75	14.00	-	•	14.00	3317.00
	Sub-Total	21854.00	78.50	86.75	-	22019.25	1890.25	10.00	40.00	1940.25	58,00	14.00	30.00	102.00	24061.50
	1 Aplaya	887.75	1		ı	887.75	127.75	1	ŀ	127.75	ı	ı	ı	ı	1015.50
	2 Balibago	10155.00	14.50	1	4219 1	14388.50	897.25	66.25	ı	963.50	14.00	1	1	14.00	15366.00
	3 Barangay I	3523.00	10.00	1	1	3533.00	354.50	ı	1	354.50	57,20	ı	1	57.20	3944.70
	II 5	5874.25	10.00	ı	1	5884.25	359.00	ŀ	ı	359.00	43.80	1	ı	43.80	6287.05
	S # 111	1009.00	ı	ı	ı	1009.00	116.50	1	1	116.50	,	15.20	1	15.20	1140.70
	6 Dila	416.75	ı	ı	1109.00	1525.75	30.00	ı	ı	30.00	ı	ı	1	ı	1555.75
Sta.Rosa		5990.50	2203.00	1	260.50	8454.00	260.25	ı	13.00	273.25	14.00	ı	1	14.00	8741.25
	8 Ibaba	1812.75	ı	ı	1	1812.75	10.00	1	ı	10.00	14.00	ı	1	14.00	1836.75
		1900.00	ı	1	ı	1900.00	139.50	i	ı	139.50	ł	ı	ı	ı	2039.50
	10 Macabling	347.50	ı	1	147.00	494.50	42.00	1	ı	42.00	,	ı	ı	1	536.50
	11 Tagapo	4955.00		160.00	,	5115.00	69.25	•	ı	69.25	28.60	,	,	28.60	5212.85
	Sub-Total	36871.50	2237.50	160.00	\$735.50	45004.50	2406.00	66.25	13.00	2485.75	171.60	15.20	t	186.80	47676.55
	1 Dela Paz	313.25	١,	l	ı	313.25	20.00	ı	l	20.00	143.60	1	١	143.60	476.85
	2 Halaban	176.50	1	ī -	ŀ	176.50	34.00	1	ı	34.00	340.80	ı	15.20	356.00	566.50
	3 Platero	1691.00	ı	ı	1	1691.00	219.75	ı	1	219.75	;	,	1	t	27.0161
	4 Poblacion	1472.25	_	ì	ı	1661.75	133.00	ı	45.00	178.00	925.40	58.40	14.60	998.40	2838.15
Biñan	5 San Antonio	7342.50	34.25	1	1	7376.75	716.25	ı	1	716.25	1008.20	ı	1	1008.20	9101.20
	6 San Jose	607.50	1	ı	1	607.50	22.00	ı	ı	22.00	403.40	1	ı	403.40	1032.90
	7 San Vicente	803.50	ţ	ı	ı	803.50	ı	1	١	i	57.20	ı	t	57.20	860.70
	8 Sto. Domingo	175.25	1	ı	1	175.25	ı	ı	•	1	199.60	1	,	199.60	374.85
	Sub-Toral	12581.75	223.75	,	'	12805.50	1145.00	1	45.00	1190.00	3078.20	58.40	29.80	3166.70	17161.90
	Total	71307.25	2539.75	246.75	5735.50	57.35.50 09829.25	5441.25	76.25	98.00	5675.50	3307.80	87.60	59.80	3455.20	88899.95

APPENDIX 4.3.1 SPRING DISCHARGE RATE

The discharge rate from the existing spring is 115.8 1/s or 10,008 cu.m/day. The total discharge volume from the four springs in the vicinity of the existing spring box, which may be tapped as additional sources of water, is approximately 40 1/s.

TABLE 4.3.1.1 DISCHARGE RATE FROM SPRINGS

Existing/			
Potential	Point	1/s	Measurement Records
Existing spring box	ø 300	82.5	AM. 298 cu.m/hr. Ave. 297 cu.m/hr. PM. 295
	ø 200	33.3	AM. 120 Ave. 120 PM. 120
	Sub-Total	115.8	AM. 418 AVE. 417 PM. 415
	No. 1	5.6	Required time to fill a drum-can 245 l : 43.8 sec
Potential Source	No. 2	21.5	245 1 : 11.4 sec
Bource	No. 3	9.6	245 1 : 25.4 sec
	No. 4	1.6	18 1 : 11.0 sec
	Sub-Total	38.3	
	TOTAL	154.1	

The discharge amount from the existing spring box is almost constant through the year (approximately 8 percent increase in rainy season compared to the amount during dry season). The amount from the four potential water sources (springs) is also constant through the year. TABLE 4.3.1.2 shows the figures measured in dry and rainy season.

TABLE 4.3.1.2 SPRING WATER MEASUREMENT RECORDS

		Daily Discha	rge Rate		
Kind	Detail	Dry	Rainy	R. M.	
Existing	ø 300	6,826 cu.m/d.	7,128	Difference betw	een two
spring box	ø 200	2,462	2,880	seasons is less	than 8%
	Sub-Total		9,288	10,008	
Potential	4	***************************************			
sources	springs	3,283	3,309		

APPENDIX 4.4.1 WATER CONSUMPTION (METERED CONNECTIONS) BY CONSUMER TYPE

Unit: cu.m/month or cu.m/day

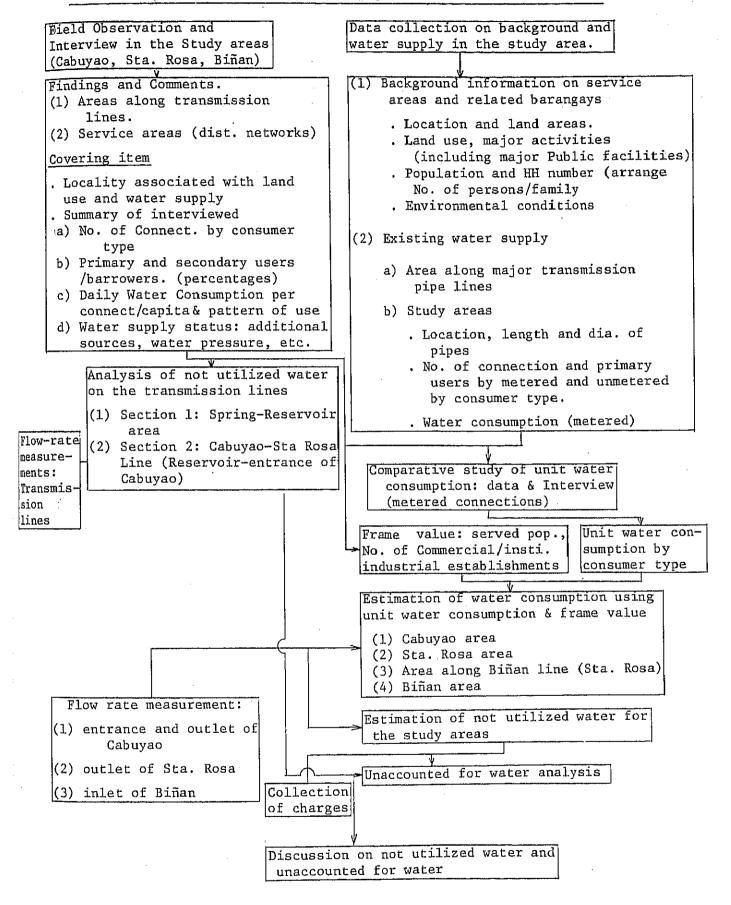
a 1	Daily.	252.4	226.2	165.3	124.7	137.2	905.8	38.5	487.6	149.4	243.1	40.4	45.1	311.0	76.1	75.0	18.3	220.3	1,704.8	13.2	7.9	70.0	71.0	311.0	25.4	33.2	7.8	539.5	3,150.1
Tot		7,573	6,787	096,4	3,742	4,115	27,177	1,155	14,630	4,484	7,294	1,212	1,352	9,330	2,283	2,249	. 548	809,9	51,145 1	397	236	2,100	2,130	9,332	761	166	234	16,187	94,509
ustrial	Daily	ı	1				ı		95.0			•	27.2	7.1			6.4		134.2					•				ı	134.2
Industrial	Monthly	1	. 1	ı	ı	1	ı	i	2,851	. 1	ı	ı	816	212	ı	i	147	1	4,026	ı	ı	ŀ	ı	1	ı	ı	1	-	4,026
		ı	1.5			2.2	3.7				0.1	**						5.7	5.8					•				Į.	9.5
Institutional	Monthly		45	1	ı	65	110	ı	1	1	7	ı	1	ı	ı	, !	ı	171	27.5	ı	١	ı	1	1	ŀ	ı	1	-	285
Commercial	Daily	ı	3.3		,	0.0	3.3		9.0	0.3				50.2					51.1				8.7	1.6				10.3	64.7
Comm	Monthly	1	66	ı	ı	1	100	ı	19	10	ı	t	ı	1,507	ı	1	ı	*	1,536	ı	ı	1	260	49	ı	ı	1	309	1,945
itic	Daily	252.4	221.4	165.3	124.7	135.0	898.8	38.5	392.0	149.1	243.0	7.05	17.9	253.7	76.1	75.0	•	214.6	1,513.7	13.2	. 7.9	70.0	62.3	309.4	25.4	33.2	7.8	529.2	2,941.7
Domestic	Monthly	7.573	6,643	4,960	3,742	4,049	26,967	1,155	11,760	4,474	7,290	1,212	536	7,611	2,283	2,249	401	6,437	45,408	39.7	236	2,100	1,870	9,283	761	997	234	15,878	88,253
,	Barangay	1 Barangay I	2 Barangay II	3 Barangay III	4 Bigaa	5 Sala	Sub-Total	l Aplaya	2 Balibago	3 Barangay I		111 " 2	6 Dila	7 Dita	8 Ibaba	9 Labas	10 Macabling	11 Tagapo	Sub-Total	1 Dela Paz	2 Halaban	3 Platero	4 Poblacion	5 San Antonio		7 San Vicente	8 Sto. Domingo	Sub-Total	Total
Hunici-	pality			Cabuyao									Sta. Rosa											Biñan			. 		

APPENDIX 4.5.1 UNACCOUNTED-FOR WATER/NOT-UTILIZED WATER

This survey comprises two major elements; one for the transmission lines and another for distribution networks in the selected model areas. The two study section of the transmission lines and the four areas are shown in FIGURE 4.5.1.1 and given below.

- Transmission Line : Cabuyao Sta. Rosa Line ; one from the spring to reservoir area and another from the reservoir area to the entrance of Cabuyao
- Distribution network :
 - a) The core area of Cabuyao.
 - b) The Sta. Rosa area including the core area of the municipality and the area along Cabuyao Sta. Rosa line in Sta. Rosa.
 - c) The area along Biñan line in Sta. Rosa.
 - d) The Biñan area.

A flow chart for this investigation and analysis is given in FIGURE 4.5.1.2.


(1) Background Information on the Study Sections of the Transmission Pipeline and the Study Areas

There are no residents along the transmission line from the spring to the entrance of Cabuyao. However, there are large houses approximately 300 m from the transmission pipeline upstream of the reservoir as shown in FIGURE 4.5.1.1. The aforementioned four areas are high population density areas. The following are some information on the study areas based on the field survey.

1) The core area of Cabuyao

The area consists of barangays Bigaa, Sala and Poblacion. The area is predominantly a residential area except for the area along J.P. Rizal St. near the public market which is used both for commercial and institutional purposes in barangay Sala.

- 30 -

Commercial establishments are mainly eateries, grocery stores and a wet market that caters to the local constituents of the municipality.

2) The Sta. Rosa area; the core area of Sta. Rosa and the area along Cabuyao - Sta. Rosa line.

The subject area comprises barangays Aplaya, Balibago, Barangay I, II & III, Pila, Pita, Ibaba, Labas and Tagapo. Although there are many industrial establishments in Sta. Rosa, the area served by the water system is predominantly a residential area except for the municipal building, market and the school areas at the poblacion. Commercial establishments in the poblacion mainly caters to the local constituents.

3) The area along Biñan line in Sta. Rosa

The study area comprises barangays Balibago and Macabling in Sta. Rosa, and Platero in Biñan. The area is also residential.

4) Biñan area

The area includes barangays Dela Paz, Malaban, Platero, Poblacion, San Antonio, San Jose, San Vicente and Sto. Domingo. The area is predominantly a residential area. Commercial establishments include supermarkets, groceries, theaters and the supermarket where food products from other municipalities are regularly delivered.

Existing Water Supply

There are 726 metered domestic connections in Cabuyao, 719 of which are domestic, 4 commercial and 3 institutional connections.

A total of 49 domestic concessionaires or about 7% of the total number of concessionaires was interviewed.

Based on the 49 concessionaires interviewed, except for those at the fringes at barangays Bigaa and Sala, water supply including water pressure was said to be relatively adequate in the service area.

About 316 persons are served by the 49 interviewed domestic connections; 272 persons are primary users while 44 or about 16% of the primary users are secondary users or borrowers. The 49 connections registered a combined consumption of 61.257 cu.m for one day, or an average per capita consumption for the 316 served population of about 194 liters/day.

As of June 1986, there are 1,188 domestic connections, 3 commercial, 4 institutional and 5 industrial connections or a total of 1,200 service connections in the Sta. Rosa service area. One of these connections is the Nissin Monde Biscuits factory which draws about 2,850 cu.m of water monthly. Based on the 37 interviewed domestic concessionaires in the core area of Sta. Rosa, water supply and pressure are relatively adequate in the distribution system except for the area near the Balibago market which draws water from the Cabuyao - Sta. Rosa line. to the 66 domestic concessionaires interviewed along the transmission lines, the same situation as in the market area is also experienced during the day, especially in the morning, along the Biñan transmission line in barangay Pulong St. Cruz, and the Cabuyao - Sta. Rosa transmission line along barangays Dita, Dila These areas get only enough water and pressure and Balibago. during the nighttime. Concessionaires often resort to storing water during the night for use the next day.

Along the distribution line, about 276 persons are served by the 37 interviewed domestic concessionaires; 197 persons are primary users while 79 or about 40% of the primary users are secondary users or borrowers. The 37 connections registered a combined consumption of 48.265 cu.m for one day, or an average per capita consumption for the 276 served population of about 175 liters/day.

Along the transmission line, about 572 persons are served by the 66 interviewed domestic concessionaires; 376 persons are primary users while 196 or about 52% of the primary users are secondary users or borrowers. The 37 connections registered a combined consumption of 80.100 cu.m for one day, or an average per capita consumption for the 572 served population of about 140 liters/day.

As of June 1986, there are 483 domestic and 7 commercial connections, or a total of 490 service connections in the Biñan service area.

According to the interviewed 37 domestic connections, the Biñan area has a scheduled supply of water; corresponding to the operation of the pump at the public market and at the subdivision in barangay Platero. The only area wherein water supply is available anytime is at barangays San Antonio and Platero which draw water from the Cabuyao-Sta. Rosa line. Water supply and pressure are so inadequate in the area that affluent concession-aires often install individual booster pumps. Especially in the poblacion area, interviewed concessionaires contend that they could not draw water anytime without a booster pump.

About 298 persons are served by the 35 domestic connections: 197 are primary users while 101 or 51% of the primary users are secondary users. The 35 domestic connections registered a combined consumption of 55.248 or an average per capita consumption of about 185 liters/day.

TABLE 4.5.1.1 summarizes the results of the interviews on the served population and daily consumption.

TABLE 4.5.1.1 SUMMARY OF INTERVIEWED DOMESTIC CONCESSIONAIRES

	Pri: Use	nary er	Secon Us		Secondary Primary	_	User	Daily Consumpt.	Per Capita Consumption
Area	н.н.	Pop.	н.н.	Pop.		H,H.	Pop.		liters/day
Cabuyao	49	272	7	44	16%	56	316	61.257	194
Sta. Rosa	37	197	20	79	40%	57	276	48.265	175
Biñan Area along	35	197	23	101	51%	58	298	55.248	185
Biñan line (Sta. Rosa)	66	376	49	196	52%	115	572	80.100	140

(2) Unit Water Consumption and Total Water Consumption

Unit water consumption by consumer type was estimated using reported water consumption (metered) for the month of June, 1986 including the secondary users/borrowers as based on the interview results. A summary of average unit water consumption by municipality both from recorded data for the month of June and results of meter reading during the interview is given in TABLE 4.5.1.2.

TABLE 4.5.1.2 UNIT WATER CONSUMPTION BY WATER CONSUMER TYPE (METERED)

		Domestic			····		
Munici- pality		a in June	view	cia1	nstitu- tional	Indus- trial	
	1/cap.d	cu.m/con.d	1/cap.d	cu.m/con	d cu.m	i/con.d	cu.m/con.d
Cabuyao	173.6	1.250	194	1.100	1.	223	•••
Sta.Rosa	151.7	1.274	*175 140	17.033	1.	450	26.840
Biñan	121.7	1.096	185	1.471	_	 	-
Total	150.8	1.231	174	4.621	1.	357	26.840

Note: * Average in the core area. Average in the area along Biñan line.

With regard to the unit domestic consumption, the figures from meter reading are larger than those from the data for the month of June. The figures from the meter readings seem to correspond to the daily maximum as was gathered from the concessionaires during the interview. The average consumption figure by municipality corresponds to the water supply status in relation to the location of the spring water source with service

area. However the figures are comparatively larger than those of similar municipalities. It was concluded through interview with concessionaires and officials concerned that the figures may include the water caused by wastage and leakage in the section of service connection between the water meter and faucets.

The number of metered connections for commercial, institutional and industrial use is limited in the subject area. Therefore estimated average unit water consumption for these uses is not a reliable bases for future demand projection. The average figure by consumer type may however be used to estimate present water consumption by unmetered connections.

The total water consumption by study area as estimated is shown in TABLE 4.5.1.3. The following are the bases of calculation:

Metered connections: Reported figures for the month of

June by consumer type

Unmetered connections: Estimated figures using municipal

average per connection consumption

and number of connections (Data on

June 1986)

TABLE 4.5.1.4 summarizes the total water consumption in round figures by study area.

TABLE 4.5.1.3

NO. OF CONNECTIONS AND CONSUMPTION BY MAIN PIPE LINE

		-	O LLOSSON		•			***************************************	44.44	,			
HYIN	MUNICIPALITY/	FUNCTIONAL METERED	KETEREF	HOH-FUNCT	NON-FUNCTIONAL METERED	D TOTAL	FUNCTI	FUNCTIONAL HETERED	Si	NON-FUNCTIONAL		TOTAL	
FIFELING	DATACHAN I	CONSTITUTE	P/EX	CONNECTIONS	EA 21/4	A) CH SHOTTTON	1	P/LM SNULLUANNO	אַראָראַ	A CONNECTIONS MILE		7500	7/ 27
		COMMECTIONS	7/014	COUNTECTION	П	COUNCELLON	1	Owner's Tolks	ı	ORRECT TORS	27.0	П	
	CABUYAO												
	1. BARANCAY I	203	252	31	39	234	291	ı	i	2	7	7	7
	2. BARANCAY II		221	28	35	206	256	m	m	1	ı	m	۳
	3. BARAHGAY III	130	165	14	18	144	183	ı	ı	1			1
	4. BICAA	66	125	6 0	01	107	135	; ;	ı	ı	•	1	1
01211010	5. SALA	109	135	8	10	117	145	1	0		•	#	0
SIA. ROSA	SUB-TOTAL	719	898	89	112	808	1010	7	3	2	7	9	5
LINE													
	STA. ROSA												
	I. APLAYA	32	33	٠,	9	37	45	•	,	ı	٦.	ı	ı
	2. MALIBACO	59	83	m	•₹,	62	87	ι	ı	ı	1	•	ı
	3. BARANCAY 1	126	149	. 19	24	145	173	-		. 1	•		(and
	BARANCAY	191	243	16	22	207	263	į	1	1	•	t	Ī
	S. BARANCAY III		40	₹	Ŋ	36	45	ı	,		-	-4	 1
	6. DILA	13	18	٣	∢7	22	22	ı	ı	,	1	•	1
	7. DITA	202	254	12	15	214	269		3.0	ı	•	ı	1
	8. IBABA	79	92	7	m	99	. 79	•	,	•	ı	,	ı
	9. IABAS	52	25	'n	9	57	81	1	t	i	i	ı	ł
	10. TACAPO	179	215	9	8	185	223	1	1	1	ı	i	1
	SUB-TOTAL	956	1192	7.5	95	1031	1287	7	51	1	1	2	. 2
	TOTAL	1675	2092	164	207	1839	2297	9	57	£	3	æ	7
	STA. ROSA												
24078	1. RALIBACO	219	309	,	86	176	717	_		-	-	~	,
LINE	2. HACABLING	13,	1	ļ - -1	-	14	; *	۱ ۱	٠,	۱ ۱	• 1	. ,	' '
	SUB-TOTAL	232	322	23	29	255	351	1		1	-	2	2
	BIRAN												,
	1. PLATERO	28	32	2	. 2	30	34	ı	ı	i	•	ı	٠
	TOTAL	260	354	25	ĸ	285	385	-	1	1		7	2
								1					1

TABLE 4.5.1.3 (cont'd)

		P/CH	•	- t	•	t	1	ı				1	ı	ı	ı	ı	7.7	_	•	1		34	*		95	5	100		1	100
	TOTAL	CONN. H3/d		ı	1	ı	•	1			•	· t	•	t	1	1	~	-	ŧ	ŀ		<u>س</u>	<u>س</u>		-4	1	7		`	7
	HETER	H3/d		1	•	•	1	ı	,	,		4	1	•	ı	ı	ŧ	1	1	•	1	•	.'		ı	1	ı		۱	1
	NON-FUNCTIONAL METERED 4/044 METER	CONNECTIONS		ı	1		•	1				1	,	ı	ı	1	1	١,	ı	ı		•	•		•	ı	•		•	ŀ
IAL	ERED	H3/4		t	•	•	. 1	1	i			ı	•	1	J	ı	23	~	1	ı	1	34	34		56	S	100		·	100
INDUSTRIAL	FUNCTIONAL METERED	CONNECTIONS		1	1	ı	1	ι				ı	•	ı	ı	ı	7	-	ı	ı	,	3	3		•••	1	2		ı	2
į	TOTAL F	P/CH		4	~	ı	ι	4	4			•	ŧ	ι	0	1	ι	7	ŧ	ı	٥	8	27		ι	1			ı	ı
		SONN.		m	7	1	1	7	7			1		ı	 1	ı	t	-	1	1	m	~	12		1	ı	ľ		ı	ı
	ONAE OUE HETE	P/6H		4		ı	ı	41 *	45			ŧ	1	t	ı	ι	t	7	ι	ι		7	47		1	ŧ			į	ı
DNAL	NON-FUNCTIONAE METERED w/out METER	CONNECTION		m	ŧ	ı	ı		7			t	1	1	•	t	1	-	1	i	1	-	S.	·	1	1	 		-	-
INSTITUTIONAL	HETERED	H3/4		t	7	1	t	7	4			1	t .	t	0	١,	t	ι	ι	1	٥	اٍی	10		ı	ı	l		ti	ı
IN	NCTIONAL	CONNECTIONS		1	7	ı	1	-	m				ı	1	-1	1	ı	ı	ı	ı	3	,	7		. 1	ı			ł	1
,	CK / EG	lĝ		H	Ħ	III)							_			III)									_	, <u>9</u>				
	HUNICIPALITY/ FUNCTIONAL HETERED BARANGAY		CABUYAO	1. BARANGAY	2. BARANCAY	3. BARANCAY	4. BIGAA	5. SALA	SUB-TOTAL		STA. ROSA	1. APLAYA		3. BARANGAY		5. BARANGAY	6. DILA	7. DITA	8. IBABA	9. LABAS	10. TACAPO	SUB-TOTAL	COLAL	STA. ROSA) BATTRACO	2. MACABLING	SUB-TOTAL	BIRAR	1. PLATERO	TOTAL
	MAIN PIPELINE									CABUYAO	STA. ROSA LINE													BIÑAN	LINE					

TABLE 4.5.1.3 (cont'd)

							· · · · · · · · · · · · · · · · · · ·	*Municipal building consumption = 40 " May																:					
	REHARKS							*Hunici					,										•	•					
		₽/€ ¥	ļ .	297	261	183	135	188	1064		45	87	174	263	95	67	328	79	81	229	1381	2445		434	19	453		34	487
	CD TOTAL	CONNECTIONS		239	211	144	107	120	821		37	62	146	207	37	77	216	99	57	188	1040	1861		244	15	259		8	289
A.L.	ONAL HETER	P/E H		45	35	18	10	51	159		۵	æ	24	20	\$	-4	17	m	9	8 0	98	257		23	pril I	29		2	32
CRAND TOTAL	NON-FUNCTIONAL HETERED W/out HETER	CONNECTIONS		36	28	3,4	ю	O.	95		א	m	19	16	٧٦	m	13	7	47	9	7.7	172		23	-4	7,7		2	36
	ETERED	H 3/4 C		252	226	165	125	137	905		33	83	150	243	70	45	341	92	25	221	1283	2158		405	18	423		32	455
	CIIONAL P	CONNECTIONS		203	183	130	66	111	726		32	59	127	191	32	71	203	99	25	182	963	1689		221	14	,235		28	263
	HUNICIPALITY/ FUNCTIONAL H		CABUYAO	1. BARANCAY I	2. BARANCAY II		4. BICAA	S. SALA	SUB-TOTAL	STA. ROSA	1. APLAYA	2. BALIBAGO	3. BARANGAY I	4. BARANCAY II	5. BARANCAY III	6. DILA	7. DITA	8. IBABA	9. IABAS	10. TAGAPO	SUB-TOTAL	TOTAL	STA. ROSA	1. BALIBACO	ZECKCABLING	SUB-TOIAL	BIRAN	PLATERO	TOTAL
	MAIN PIPELINE								CABUYA0 STA, ROSA	LINE													RIBAN	LINE					

COMMERCIAL

LATE													
PIPELINE				HETERED W/Our HETER	out KE	E		,	ï	HETERED V/OUR HETER	OUT HETER		
		SHAEC	CONNECTIONS H 3/d	COMMECTIONS	H 3/4	CONH.	H 3/4	CONNECTIONS	H 3/4	COMMECTIONS	K 3/4	сони.	N 3/4
•	BIÑAN										•	٠	
			:	:		.1	ì			•			
CUMBINED	ויוני דא געד איני		14 T	21	= :	53	4:	1	ı	ı	ı	ı	
TYPOSY.	אאורואויי.	•	o ;	77	₹,	ሩ ;	3:	1	ı		ı	ı	
A A A	J-FLAIEKU			۰ ;	9 9	1	* :		1 4		. 1	, :	
BINAN	* rugracium			7 :		071	1	•	, ì	^ -	-		
2417	S.SAN ABTURE	10 263	500	071	77	787		7	7	1	•	7	
	6.5AH 305E			8	=	3	20	1	ı	1	1	ı	
	7.SAN VICENTE		33	~	'n	42	38	•	ı	ŧ	ı	•	
	8.STO. DOHI		8 2	7.	.2	22	23	1	ı	ı	1	1	
	SUB-TOTAL	(55)	967 5	284	113	739	608	1	=	S	\ \ -	12	
	·		IXI	INSTITUTIONAL				POXI	INDUSTRIAL				
WATER	BARANGAY	FUNCTI	FUNCTIONAL METERED	NOH-FUNCTIONAL	¥.	TOLY	144	FUNCTIONAL HETERED		HON-FUNCTIONAL	F	TOTAL	1
SOURCE		1		HETERED 4/0	wlout HETER					TERED v/our			
		CONNECTIONS	TONS H 3/d	CONNECTIONS	H 3/4	CONN.	H 3/4	CONNECTIONS	H3/4 CO	CONNECTIONS H3/d	11	CONN. H	3/4
	BIRAN												
	1. DE LA PA	- 24	1	ı	1	,	ı	ı	1	i	,		
COHE THED	٠.	•	1.	,,,,	7	****	7		•		1	ı	
CABUTAO	3. FLATERO	•	1	ı		,	,		•	•		•	ı
CHY .	A. POBLACIO	De 1	•	'n	•	m		1	•	1	•		•
BINAH	S. SAN ANTONIO			ı	۱,	٠	•	•	,		•		•
FIRE	6. SAN JOSE		,	ı	1	,	ı	1	•	1	,		
	2. SAN VILENIE			ı	1	ŧ	ŧ	ı	1	ı	,		ı
	o. sto. Denimo	1		,	,	,	1	-	ı	-	,		
	SUB-TOTAL	•	,	•	٥	4	٥	•		1	,	ı	
				TOIL									
									İ				
WATER	BARAHGAY	FUNCTIO	FUNCTIONAL HETERED	HON-FUNCTIONAL	KAL	TOTAL	ي ا			,			
SOURCE		İ		HETERED W/our METER	ur KETE			Đ.	EMARK	S X			
		CONNECTIONS	LIONS H 3/d	CONNECTIONS	H 3/4	1 1	CONNECTIONS H3/d	H3/4					ł
	BIRAH												
		71 27	. 13	12	12	36		26				•	
COMBINED	4;		953	28	32	36		07					
CABUYAO	3. PLATERO			٧٦	s	7.		77					
QN7			141	200	90	3		231					
BIRAH	5. SAN ANTONIO	NIO 2		120	132	384		443					
LINE				2	2			58					
	7. SAN VICENTE	ENTE 38	E *	₹	~ !	42		38					
	8. STO. DONINGO	HINCO	8	†]	2	22		.73					1
													١

TABLE 4.5.1.4 SUMMARY OF WATER CONSUMPTION BY STUDY AREA

]	Unit: cu.m/day
Stu	ıdy Area	Water Consumption	Percentage
а.	Core area of Cabuyao	1,050	27.6
ъ.	Core area and area along Cabuyao-Sta. Rosa line in Sta. Rosa	1,350	48.7
c.	Area along Biñan line in Sta. Rosa	500	
d.	Biñan area	900	23.7
	Total	3,800	100

(3) Flow Rate Measurement Results

The measurement results are summarized (rounded off) by section of pipeline in TABLE 4.5.1.5. Continuous measurement for one day was conducted at 6 points and a short time measurement at the spring and another point. Detailed records are given in TABLE 4.5.1.6.

TABLE 4.5.1.5 MEASUREMENT RESULTS

Section of Pipe Line	Measuring Point	Daily flow	R. M.
Transmission line: Spring - Reservoir area	Total of 2 out- lets from exist- ing spring	10,000	Details are given in "Discharge rate of Spring"
Reservoir area	Approx. 3 km from spring	11,000	reference point
Cabuyao-Sta. Rosa Line:	Manhole in the pre- mise of Reservoir	5,600	24 hours
Reservoir - exit of Sta. Rosa	Entrance of core area of Cabuyao Outlet of Cabuyao	5,600 3,400	11
	Outlet of Sta. Rosa	50	" 53 cu.m/day = flow into Biñan line
Biñan Line:	Reservoir premise	4,050	24 hours
Reservoir area - Biñan area	Entrance of Biñan	1,550	11

TABLE 4.5.1.6 FLOW RATE MESUREMENT (24 HOURS)

	CABUYAO STA. ROSA	BIRAN	RESERV	OIR 3 STORAGE	CABUYAO STA. ROSA	C. S. ROSA	SUPPLIED AHOUNT TO		Of S. R. /Outflow	SUPPLIED AHOURT TO	ENTRANCE OF BIRA
	TIME		LEVEL	VOLUME	LINE 4	5	CABUYAO	6	6	STA. ROSA	7
0 - t	135	167	1,42	994	191	133	58	0	5	128	88
1 ~ 2	100	166	1.37	1;112	197	137	60	0	6	131	88
2 - 3	122	166	1.76	1,266	201	141	60	0	6	135	88
3 - 4	100	166	1.92	1,398	206	143	63	0	5	138	88
4 - 5	244	162	2.10	1,552	211	140	71	0	2	138	85
5 - 6	254	169	2.06	1,500	219	129	90	8	0	137	78
6 - 7	272	173	1.94	1,415	223-	113	110	31	0	144	56
7 - 8	282	174	1.03	1,323	219	108	11 t	49	0	157	37
8 - 9	293	174	1.77	1,274	219	111	108	55	0	166	32
7 - 10	299	170	1.61	1,144	222	111	111	49	0	160	41
10 - 11	301	166	1.49	1,049	-218	108	110	43	0	151	45
11 - 12	293	169	1.40	978*	236	128	108	48	o	176	. 38
12 - 13	273	173	1.31	909	267	155	112	42	0	197	46
13 - 14	262	165	1.10	750	274	168	106	28	0	196	64
14 - 15	263	(168)	1.08	736	281	175	106	25	0	200	67
15 - 16	275	(168)	1.05	714	289	182	107	20	o	202	71
16 - 17	290	(168)	0.98	662	295	186	109	32	0	218	57
17 - 18	296	(168)	0.90	604	298	183	115	39	0	222	46
18 - 19	316	(168)	0.85	569	293	182	111	39	O	221	47
19 - 20	300	(168)	0.85	569	297	182	115	20	0	202	36
20 - 21	187	161	0.85	569	224	141	83	17	. 0	158	74
21 - 22	135	169	0.95	641	169	112	57	6	0	115	82
22 - 23	140	168	1.11	758	176	120	36		o	121	18
23 - 24	131	167	1.26	870	185	129	56	0	5	124	89
JATOL	5,364	1,033	-	983	5,610	3,417	2,195	552	29	3,940	1,533

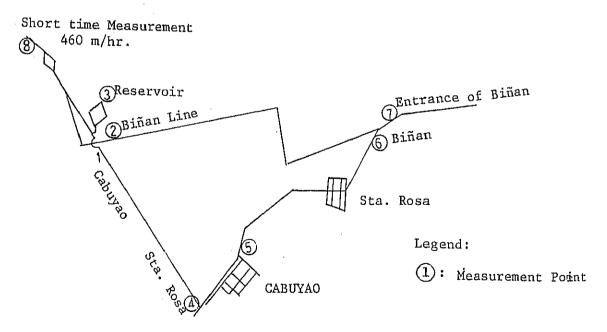


FIGURE 4.5.1.3 LOCATION OF MEASUREMENT POINT

FIGURE 4.5.1.4 shows the flow rates along the main pipeline from the spring to the service areas together with the amount of water calculated to be to major service areas.

Because of no flow/quite low pressure at the junction area of Biñan and Cabuyao-Sta. Rosa lines, approximately 550 cu.m/day is transmitted by the Biñan line to supply part of Sta. Rosa through the Cabuyao-Sta. Rosa line. Approximately 1,000 cu.m/day is discharged from the reservoir into Cabuyao - Sta. Rosa line between 4:00 A.M. and 6:00 P.M.

(4) Discussions and Conclusions on not utilized water/unaccounted-for water

1) Transmission lines

The two sections of the transmission line from the spring to the entrance of Cabuyao area were studied using flow rate measurement results.

a) Transmission line from the spring to the reservoir area

Discharge rate from the spring box : 10,000 cu.m/day

Transmitted amount at the reservoir area:

9,650 cu.m/day

Supply to the high class residents, leakage and other losses : 350 cu.m/day

Although approximately 3,000 cu.m/day were suspected to be leaked in the study section during the Phase I survey, the measurement result revealed that the amount of water transmitted from the intake of the spring box was substantial. The "C" value may be more than the expected figure taking into consideration the existing pipe alignment and the year of its construction. It is concluded that the pipeline installed is in straight alignment with the field and that the water does not contain unfavorable materials associated with "C" value and the joint portions are not damaged.

b) Transmission line from the reservoir area to the entrance of Cabuyao.

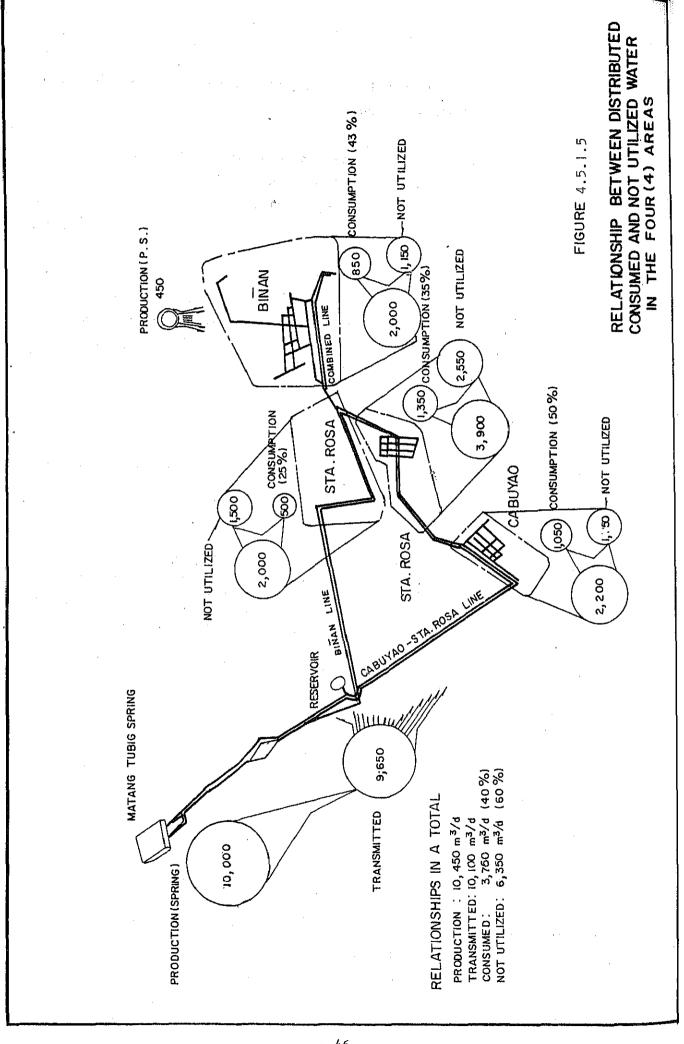
Transmitted rate at the reservoir area: 5,600 cu.m/day (Cabuyao - Sta. Rosa line)

Transmitted rate at the entrance of

Cabuyao

: 5,600 cu.m/day

There is no difference between the above measurement results in rounded off figures. Additional flow rate measurement between the two points were conducted thereby confirming that the figure is almost the same as the one mentioned.


2) Distribution networks

The relationship between distributed water amount and water consumption is summarized in TABLE 4.5.1.7 and FIGURE 4.5.1.5 by study area.

TABLE 4.5.1.7 RELATIONSHIP BETWEEN DISTRIBUTED AND CONSUMED WATER

	Study Area	Distributed Water (cu.m/d.)		Percentage of utiliz water	
a.	Core area of Cabuyao	2,200	1,050	48%	
b.	Core area and area along Cabuyao - Sta. Rosa line	3,900	1,350	35	
с.	Area along Biñan line in Sta, Rosa	2,000	500	25	
d.	Biñan area	*2,000	900	45	
	Total	10,100 (8,100)	3,800 (3,300)	38 (41)	() means excluding C. area

Note: * Distributed amount includes that from the existing pumping station (reported supply amount)

The percentage of utilized water for the four service areas shows low levels with a maximum of less than 50 percent. The water consumption is estimated using the monthly average figure (June, 1986), however, the result of the meter reading for the domestic consumption as revealed during interview was higher than the average (10% to 50%). Assuming that about 20% is added to the average water consumption, the average percentage of utilized water in the system excluding the area along Biñan line is calculated at approximately 50 percent. Accordingly almost half of distributed water is counted as unutilized water.

As to the causes of not utilized water, further detailed investigations will be required with a special emphasis on service connections with leakage, and non-metered and illegal connections as the culprits.

Unaccounted-for water

An accounted-for water was estimated by municipality based on the following:

- a) Metered connections : water consumption reported for the month of June
- b) Non-metered connections

: 18 cu.m/connection-month for the concessionaires with one faucet.

(P14/connect.) and 1 cu.m/additional faucet-month (P0.6/connect.)

c) Metered but not

functioning

: Average charges per connection are calculated and water consumption per connection is estimated according to the metered rate.

TABLE 4.5.1.8 shows the accounted-for water by municipality.

TABLE 4.5.1.8 ACCOUNTED-FOR WATER

	~	HETERED		ON	NON-METERED	ERED.		NOT FUNCT	NOT FUNCTIONING METERED TOTAL CONSUMPTION	ED T	OTAL CONS	MOLLON
HUNICIPALITY	NO. OF CONNECT	CHARGE	CONSUMPTION m 3/m	NO. OF CONNECT		١.	CONSUMP.	NO. OF CONNECT	CHARGE 7	CONSUMP.	HONTHLY DAILY # 3/d	DAILY E 3/d
				One f /	One f / Addition							
CABUYAO	726	¥ 22,019.25	27,177	2	53	F 102.00 143	143	06	¥ 1,940.25	2,880	30,200 1,007	1,007
STA. ROSA	1,200	45,004.50	51,145	13	7	186.80 241	241	88	2,485.75	3,608	54,994 1,833	1,833
BINAN	7490	12,805.50	16,187	221	154	3,166.40 4,132	,132	74	1,190.00	1,628	1,190.00 1,628 21,947	732
				`			•					
TOTAL	2,416	#79,829.25 94,509	94,509	239	214	¥3,455.20 4,516	,,516	252	¥ 5,615.50 8,116 107,141 3,572	8,116	107,141	3,572

Approximately 3,600 cu.m/day corresponds to the accounted-for-water, while 6,500 cu.m/day or about 65 percent of production amount is unaccounted-for water.

It may be worthwhile to notice that there are a number of additional faucets in the category of non-metered connections. The water consumption in the whole system was estimated at 3,800 cu.m/day without considering the consumption at the additional faucets because there was no data available on the per faucet consumption. Additional faucets are for the primary consumer or for other families (secondary users/borrowers). Depending on who uses the faucets, per faucet consumption could differ.

If the average per faucet consumption is assumed to be 1.231 cu.m/day which is the overall average of the domestic metered connection, about 260 cu.m/day would be the additional consumption. The following is the percentage of utilized water in the total system, except the area along Biñan line, using the above assumption.

Distributed water : 8,100 cu.m/day

Water consumption (1) : 3,600 (* 3,300 + 300)

Water consumption (2)

(20% additional) : 4,300

Percentage of utilized water : 55%

APPENDIX 6.7.1 WELL LITHOLOGIC LOGS

LWUA Well No. P-10	LWUA Well No.	I WILL Wall No. P - 13	LWUA Well No. P-14	LWUA Well No. P-16	LWUA Well No. P-17
LDCATION: P. Sta. Cruz, Sta. Rosa	LOCATION:	LOCATION :Mangera, Sta. Rosa	LOCATION: P. SIG. Cruz, SIG. Rosa	LOCATION: P. SIG. COZ., SIG. ROSG	LOCATION: Bo. Dita, Sta. Rosa
0EPTH: 250 m	DEPTH:	рерти:200 m	0£РТН; 200 m	DEPTH: 200 m	DEPTH: 235 m
CASING DEPTH:	CASING DEPTH:	CASING DEPTH:	CASING DEPTH:	CASING DEPTH:	CASING DEPTH:
CASING DIAMETER:	CASING DIAMETER:	CASING DIAMETER:	CASING DIAMETER: STATIC WATER LEVEL:	CASING DIAMETER: STATIC WATER LEVEL:	CASING DIAMETER: STATIC WATER LEVEL:
PUMP TEST DATE:	PUMP TEST DATA	PUMP TEST DATA	PUMP TEST DATE :	PUMP TEST DATA	PUMP TEST DATA
DISCHARGE:	DISCHARGE:	DISCHARGE:	DISCHARGE.	DISCHARGE; DRAWDOWN:	DISCHARGE: DRAWDOWN:
			рертн гос	DEPTH . LOG	DEPTH LOG
UEPIH COU	-		TY RESIDUAL CLAY	A A A RESIDUAL CLAY	
V-V- CLAY, TUFF		<,'?;	CLAY CLAY	V V V	PUMICE
V-V TUFF		-V-V TUFF, PUNICEOUS	V-V- TUFF, PUMICEOUS	- 1	TUFF.CLAY, PUMICEOUS
			:1:1	AAA VOL. ASH , TUFFACEOUS	
> > >		177	<u> </u>	SZOIMO O O	TUFF. CLAYEY.
>!>!>		Electric AAA			
		VOL. ASH	TUPP TUPP		1222
		7,7,7	12121		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
COD COD CODE CLAY		\neg	14-14-1 14-14-1	A A VOL. ASH, TUFFACEDUS	?>>
		12.7.1	AAAA SILTY	THE Y Y THE	
> 12		IF	VVV	1 1 1 1 C THEF	~~~) カカカ VBL. ASH
> >		記が		10	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
>->->->->->->->->->->->->->->->->->->-		AAAA VOL. ASH	-V-V-	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	TUFF, CLANEY
->-X		Ш	AAAA VOL. ASH	VV TUFF.WELDED	117 VOL. ASH, SILTY
		-V-	A S Publice		
		ZOO TUFF, PUMICEOUS	200 SULVE TUFF, CLAYEY	200	
1>1>1>1>1>1>1>1>1>1>1>1>1>1>1>1>1>1>1>					233
TUFF, CLAYEY					^^^
>>>>>					
250 V-V TUFF, SOME CLAY					
				,	
				14	

LWUA Well No.	LOCATION:	ж.н:	CASING DEPTH;	CASING DAME FER. STATIC WATER LEVEL:	PUMP TEST DATA	DRAWDOWN:	ОЕРТН 106	
LWUA Well No. P-22	LOCATION: M-FIELD, Canlubang	0EPTH: 200 m	CASING DEPTH:	LEVEL:	¥.	DRAWDOWN:		
LWUA Well No. P-12	LOCATION : Pulong Sta.Cruz, Sta.	DEPTH:200m	CASING DEPTH:	EVEL:	PUMP TEST DATE:	DRAWDOWN;	рертн сос	1
							Γ	
LWUA Well No.	LOCATION:	DEPTH:		CASING DIAMETER: STATIC WATER LEVEL:	PUMP TEST DATA	DRAWDOWN:	оертн сос	
_	LOCATION: Alasasan, Sla.Rosa LOCATION:	DEPTH: 202 m		LEVEL: STATIC	PUMP TEST DATA PUMP TEST DATA			1

	<u>.</u>	····		, 140, 150, 1		· · ·		
			2	TER: r LEVEL:	*	·	٦٥٥	
LWUA Well No.	LOCATION:	DEPTH:	CASING DEPTH:	CASING DAMETER: STATIC WATER LEVEL:	PUMP TEST DATA	DISCHARGE: DRAWDOWN:	= = = = = = = = = = = = = = = = = = =	
3					3		DEPTH	
LWUA Well No. m-3	Location:Macabling, Sta. Rosa	0ЕРТН: 240 m	CASING DEPTH:	CASING DIAMETER: STATIC WATER LEVEL:	PUMP TEST DATA	DISCHARGE: Drawdown:	DEPTH LOG	A PUMICE SAND W/ A PUMICE SAND W/ A DETER SAND W/ A DETER SAND W/ A DETER SAND W/ A DETER SAND W/ A DETER SAND W/ A DETER SAND WITH TUFF CAND
3				- · ·	And A		123	
LWUA Well No. P-40	LOCATION: Langkiwa, Biñan	0ЕРТН: 161 m	CASING DEPTH:	CASING DIAMETER: STATIC WATER LEVEL:	PUMP TEST DATE:	DISCHARGE: Orawdown:	100	10 ASH B TUFF CLAY VOL. ASH CLAY VOL. ASH VOL. ASH VOL. ASH VOL. ASH CLAY VOL. ASH CLAY VOL. ASH CLAY SANDY VOL. ASH CLAY CLAY SANDY VOL. ASH CLAYEY VOL. ASH CLAYEY VOL. ASH CLAYEY VOL. ASH CLAYES VOL. TUFF SANDY VOL. ASH CLAYES VOL. TUFF SANDY CLAY VOL. ASH CLAY SANDY VOL. ASH CLAY SANDY CLAY VOL. TUFF CLAYES CLAY VOL. TUFF CLAYES CLAY VOL. TUFF CLAYES CLAY VOL. TUFF CLAYES CLA
LWUA	2007	DEP-1	CAS	CASI	PUMP	DISCI	DEPTH	90 20 20
LWUA Well No. P-23	LOCATION : Kawad, Sto. Domingo,	Sta . Rosa ace TH : 186 m.	CASING DEPTH:	CASING DAMETER: STATIC WATER LEVEL:	PUMP TEST DATA	DISCHARGE: DRAWDOWN:	рертн год	
LWUA Well No. P-24	LOCATION: Alasasan, Sta. Rosa	0ЕРТН: 200 m.	CASING DEPTH:	CASING DIAMETER:	PUMP TEST DATA	DISCHARGE: DRAWDOWN:	рертн сос	A
LWUA Well No. P-26	LOCATION: Macabling, Sta. Rosa	DEPTH: 204 m.	CASING DEPTH:	CASING DIAMETER: STATIC WATER LEVEL:	. E.	DISCHARGE; DRAWDOWN;	ОЕРТН 106	ハ

LWUA Well No. (2)	LOCATION: Brancybandy, Cabuyro	№тн: 91 m	CASING DEPTH: CASING DAMETER: STATIC WATER LEVEL:	PUMP TEST DATA DISCHARGE:	DOWN:		
LWUA Well No. (I)	LOCATION: Banaybanay, Catuyoo	рертн: 91 т	CASING DEPTH: CASING DIAMETER: STATIC WATER LEVEL:	2	DOWN:	DEPTH LOG DEPTH LOG DEPTH LOG DEPTH LOG DEPTH LOG SAND A GRAVEL SILTY SANDY CLAY SANDY CLAY SANDY CLAY SANDY CLAY SANDY CLAY SANDY CLAY SANDY CLAY	
LWUA Well No. P-45	LOCATION: San Isidra, Cabuyoo	о€РТН: 172 м	CASING DEPTH: CASING DIAMETER:	PUMP TEST DATE.	DRAWDOWN:	100 DEPTH LOG	
LWUA Well No.	LOCATION:	GEPTH :	CASING DEPTH: CASING DIAMETER: STATIC WATER LEVEL:	PUMP TEST DATA DISCHARGE:	DRAW DOWN:	DEPTH L06	
LWUA Well No. C-41	LOCATION (Elem. Sch. Binan	рертн : 152 m	CASING DEPTH: CASING DIAMETER: STATIC WATER LEVEL:	PUMP TEST DATA DISCHARGE:	DOWN:	CLAY WF FINE SAND CLAY WF FINE SAND SA	
LWUA Well No. (B)	LOCATION : S an Vicente, Binon	0£РТН: 61.m	CASING DEPTH; CASING DIAMETER; STATIC WATER LEVEL;	PUMP TEST DATE: DISCHARGE:	YOOWN:	100 EPTH LOG	

·			
	LWUA Well No. P-56 (cont.) LOCATION: DEPTH: CASING DEPTH: CASING DAMETER: STATIC WATER LEVEL: PIUMP TEST DATA DISCHARGE: DRAWDOWH:	DEPTH LOG	
	LWUA Well No. P-56 LOCATION: Mamplasan, Biñan DEPTH: 446 m CASING DEPTH: CASING DEPTH: STATIC WATER LEVEL: PUMP TEST DATA DISCHARGE; DRAWDOWN:	DEPTH LOG	700
	LWUA. Well No. LOCATION: DEPTH: CASING DEPTH: CASING DIAMETER: STATIC WATER LEVEL: PUMP TEST DATE: DISCHARGE: DRAWDOWN:	DEPTH LOG	
	LWUA Well No. P-55 LDCATION: Pasong Manga, Sta. Rosa DEPTH: 172 m CASING DEPTH: CASING DEPTH: STATIC WATER LEVEL: PUMP TEST DATA DISCHARGE: DRAWDOWN:	DEPTH LOG	\(\frac{\sqrt{\sq}\sqrt{\sq}}\sqrt{\sq}}}}}}}\sqrt{\s
	LWUA Well No. P - 20 LOCATION: P. Sta. Cruz, Sta. Rosa DEPTH: 200 m CASING DEPTH: CASING DAMETER: STATIC WATER LEVEL: PUMP TEST DATA DISCHARGE: DRAWDOWN:	DEPTH LOG	VOL. 454 . CLAYEY VOL. 454 . CLAYEY VOL. 454 . CLAYEY VOL. 14FF. 5ANDY. VOL. 14FF. CLAYEY VOL. 14FF. CLAYER VOL
	LWUA Well No. P - 52 LOCATION: Aplaya, Sta.Rosa DEPTH: 167 CASING DEPTH: CASING DEATH: STATIC WATER LEVEL: PUMP TEST DATE: DISCHARGE: DRAWDOWN:	рертн гос	

,

LWUA Well No. (A)	LOCATION : Binan , Laguna	0ЄРТН : 183 m	CASING DEPTH:	STATIC WATER LEVEL:	PUMP TEST DATA	DISCHARGE: DRAWDOWN:	рертн сов	ADOB ADOB ADOB ADOB ADOB ADOB ADOB ADOB									
LWUA Well No. P - 43	LOCATION: SoroSoro, Biñan	оертн:169 ш	CASING DEPTH:	CASING PRAMETER.	PUMP TEST DATA	DISCHARGE: DRAWDOWN:	DEPTH . LOG	AND RESIDIAL CLAY AND	LWUA Well No. P-58	LOCATION: Calabuso, Binan	0€РТН: I7O m	CASING DEPTH:	STATIC WATER LEVEL:	TE:	DRAWDOWN:	ОЕРТН LOG	100 100 100 100 100 100 100 100 100 100

APPENDIX 6.8.1 SELECTION OF SAMPLING POINT

Sampling points in the project area took into account the following:

- Existing sources, i.e., spring and deep well, to evaluate the qualitative characteristics of the present water system;
- The other deep well sources at representative locations, thus, a general impression on the areas overall water quality could be established;
- Important well sources, e.g. the free-flowing wells in Sta. Rosa. By comparing test results of each, relative analysis on the continuity of the aquifer i.e. similar valves would probably describe some water source, could be done; and
- Large well source (NIA wells) and the Laguna de Bay as they pose to be alternative sources for the system.

To summarize:

- Two (2) existing deep wells in the city water supply system
- One (1) existing spring in the city water supply system
- Seven (7) deep wells
- Four (4) shallow wells
- One (1) potential spring
- One (1) surface water source (Laguna de Bay)
- Three (3) faucets and one (1) shallow well for bacteriological analysis

FIGURE 6.8.1.1 shows location of the selected points.

FIGURE 6.8.1.1 LOCATION OF SUMPLING POINTS

APPENDIX 6.8.2 WATER QUALITY ANALYSIS - CABUYAO-STA. ROSA-BIÑAN

~^	Z2	7 7	E E8	8등 등_
NH4-N (#8/1)	0.0		0.01 0.03 0.03	
ND ₂ -N (mg/1)	1.24 0.78 - 9.67 0.87	- 1.09 1.46 1.58	0.87 0.44 5.04	0.50 0.30 4.45 4.48
E.Coli.	1 1 🛨 1 1	£ !!!!	' ⊕ ' ' ①	1 1 1 1 1
(1.7gg)	0.2 ni1 ni1 0.10	- nii 0.10	0.05 nii 0.20	0.05 ni:1 ni:1
Fe (mg/1)	0.10 0.10 0.10	- 0.03 0.03 0.06	0.10 0.20 0.20 0.20	0.06 0.10 0.13 0.13
SO. ([88/1)	71.5 90 5	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 - 10.0 34.5	ಬಹ∣ಗು <u>4</u>
C1 (mg/1)	13.9 18.6 - 83.6 18.6	- 13.9 11.6 11.6	18.6 - 18.6 190.4	13.9 11.6 11.6 9.3
HCD3 (mg/1)	284.3 344.7 - 400.2 312.3	- 289.1 286 278.2	335.5 - 312.3 173.2	301.3 324.5 - 214.7 208.6
Ø₃ (∰2/1)	00100	11000	01001	00100
為([2]	16.3 22.8 - 40.1 21.9	 22.8 21.9	28.2 - 17.5 17.5 -	22.8 27.2 - 14.6 18.2
Ga (1/2)	31.6 42.0 76.5 32.8	22.8 - 22.8 4.04 - 4.04	82 - 82 <u>44</u> - 8:83	88.23 - 88.88 8.80 - 8.00
K (mg/1)	9.7 15 15 8.7	- 7.4 6.4	6.7 8.5 7.1	7.5 6.8 7.8 8.8
Na (mg/1)	१ ८८ । स्टब्स	. 1888 5	. 72.5 120 120	36 27.5 - 17.5
Acid. (mg/l)	821.58	%% =	ତ । ତୟୁ ।	28.88
Hard. (mg/1)	983 · 8822	- 176 191	85 · 85 8 ·	표 <u>점</u> - 전표
AIK, (mg/1)	88 · 88	238 238 238	275 - 256 142 -	58 · EE
EC (#S/011)	68 - 88 - 88 - 88 - 88 - 88 - 88 - 88 -	- 400 455 470	BB - BB BB -	\$3.55 \$3.55
TCS pH EC (mg/1) (-) (#5/cm)	7.43 7.21 - 7.68 7.56	- 6.96 7.41 6.92 7.35	7.73 7.84 7.47	5.7. 6.87 7.01 6.96
85 <u>88</u>	88 - 88 82 82 82 83 83 83 83 84 84 84 84 84 84 84 84 84 84 84 84 84	- 314 288 314	374 - 376 576	88 · 88
Fig.	0.61 0.61 1.25 1.33	- 1.45 0.45 0.58	2.45 _ 0.43 25.8	2.75 0.75 0.41 0.43
# droug	O O O	७₹ ∪∪∪	ರ್ಥಾಚಿ	ലാറജങ
Location	Galaboso, Biran Biran Market, Biran San Antonio, Biran Malaban, Biran San Antonio, Biran	San Antonio, Biñan Tulay Bato, Biñan Hacabiling, Sta. Rosa Mamplasan, Biñan Paguyo, Sta. Rosa	Labes, Sta. Rosa Aplayo, Sta. Rosa Aplayo, Sta. Rosa Laguna de Bay, Sta. Rosa Waterworks Office, Gatuyao	Waterworks Office, Cabuyao Cabuyao San Isidoro, Cabuyao Katan Tubig Matan Tubig
well No.	NIA P-58 WW-1 Faucet B-2 B-1	B-1 WW-2 NIA M-3 NIA P-56 NIA P-18	SR-1 Faucet NIA P-57 Faucet Fau	C-1 AFP-MBA1 NIA P-45 Spring 1 Spring 2
Sample No.	ZE 4 G	0-86g	122248	85875

*: Category; A - Deep wells in the city water supply system
B - Spring in the city water supply system
C - Deep well
D - Shallow well
E - Potential spring for the city water supply system
F - Surface water source
G - For bacteriological analysis

Philippine National Standard for Drinking Water

Water Quality: Physical, Chemical and Radiological Requirements

Bacteriological Quality Standards

Pa	Parameter	
Turbidity		- 5 units
Color		5 units (s) **
Odor		Unobejetionable
Threshold odor number	· r	Note more than 3
Taste	•	Unobjectionable
Total Solids		500 (s)
pH		6,5 - 8,5
Phenolic substances		100.0
Radioactive Subs.	Gross Alpha	3 pCi/1
Nacional	Gross Beta	30pCi/1
Trace Elements	Arsenic	0.05
11425	Barium	1.0
	Cadmium	0.01
	Chromium	0.05
	Copper	i.0
	Cyanide	0.05
	Fluoride	0.6
	Iron	1.0
	Lead	0.05
	Manganese	0.5 (s)
	-	0.002
	Mercury	0.002
•	Selenium Zinc	5.0 (s)
Organic Cehmicals	; Synthetic	
Organic Centinears	Detergents (MB.	AS) 0.5
	Oil & Grease	Nil
Persistent Pesticides	; Aldrin	0.001
1 0(0)0(0)11	TUD	0.05
	Dieldrin	0.001
	Chlordane	0.003
	Endrin	0.0002
	Heptachlor	0.0001
*	Lindane	0.004
	Toxaphane	0.005
	Methoxychlor	0.1
	<u>.</u>	
	2,4 E	0.1
lian	2, 4, 5 T	0.0 1 Nil
PCB	. Culaires	75
Other Chemicals	: Calcium	:
	Cluoride	200 (s)
	Magnesium	50 (s)
	Nitrate (NO ₃)	30
	Sulfate	200 (s)
	Hydrogen sulfic	de 0.05 (s)

Minimum Requirements on Bacteriological Quality

a) Chlorinated or Otherwise Disinfected Supplies

Efficient treatment culminating in chlorination or some other form of disinfection should yield a water free or any coliform organism however polluted the original raw water may have been. In practice it should not be possible to demonstrate the presence of coliform organisms in any sample of 100ml. The efficacy of the purification process and method of sampling should be looked into when a sample of the water entering the distribution system does not conform to this standard. In testing chlorinated water, presumptive positive tubes should always be subjected to appropriate confirmatory tests.

b) Non-disinfected Supplies

Where supplies of this sort exist, no water entering the distribution system should be considered satisfactory if it yields E coli in 100ml. If E. coli is absent, the presence of not more than 3 coliform organisms per 100ml may be tolerated in occasional samples from established non-disinfected pipes supplies, provided that they have been regularly and frequently tested and that the catchment area and storage conditions are found to be satisfactory. If repeated samples show the presence of coliform organisms, steps should then be-taken to discover and, if possible, remove the source of pollution. If the number of coliform organisms increases to more than 3 per 100ml, the supply should be considered unsuitable for use without disinfection.

c) Individual or Small Community Supplies

Where supply of waters are individual wells, bores and springs everything possible should be done to prevent pollution of the water. It should be possible to reduce the coliform count of water from even a shallow well to less than 10 per 100ml. Persistent failure to achieve this, particularly if E. coli is repeatedly found, should, as a general rule lead to chlorination or boiling of the water for domestic consumption.

^{*} All units are in mg/2 unless, otherwise stated.

^{** (}s) - Secondary standards; compliance with the standard and analysis are not obligatory.

APPENDIX 7.2.1 WATER RIGHT IN THE SPRING AREA

		Water	Volume		·
	User Name	1/sec	cu.m/day	Purpose	Remarks
1)	Canlubang Sugar	*			
•	Estate	461	39,830	industry	the water after power
2) 3)	Yulo Canlubang Pulp	96	8,294	irrigation	Padme
3,	Manufacturing	457	39,485	electric power	
	Total	1,014	87,609		

Source; NWRC

The total of 48,124 cu.m/day comprising item 1) and 2) in the above table may be water amount available including river water and spring water. The amount was also field confirmed as follows:

- a) Existing spring for the CSBWS waterworks and potential springs
 - : 12,600 cu.m/day
- b) Transmitted amount to Canlubang Sugar estate
 - : 15,000 cu.m/day
- c) Flow rate at the upstream of nearby river

15,500 cu.m/day

Total : 43,100 cu.m/day

The water utilized for the Canlubang Sugar Estate at present might be used for the CSBWS waterworks in the future when its business activities would be discontinued as related to the survey term. It is advantageous to consider spring water sources for the water supply, however, a total of 12,600 cu.m/day may be the maximum available volume at this stage. Negotiations with the private sector to acquire additional spring water should be done in the future.

APPENDIX 7.2.2 DATA ON THE UNIT COST FOR ESTIMATION OF PROJECT COST

(1) Deep Well Construction: Peso

Depth (m)	Casing size (m/m)	Cost
200	250	940,000
200	300	1,160,000
250	150	640,000

BREAKDOWN OF COSTS IN %

	Local Component			I		
	Material	Labor		Direct	Indirect	Total
		Skilled	Unskilled	Darce	111011000	, o ca .
Equipment	17		_	B00	20	37
Civil Works	33	8	5		17	63
Total	50	8	5		37	100

(2) Deep Well Pump Station (Electric Motor Drive) : Thousand Peso

KW	Cost
7	450
15	560
22	640
29	720
37	790
44	840
51	890
59	960
66	1,020
74	1,080

BREAKDOWN OF COSTS IN %

	Local Component			FEC		_
	Material	Labor		Direct	Indirect	Total
	III OI III	Skilled	Unskilled			
Equipment	9	_	-	42	5	56
Civil Works	21	9	5		9	44
Total.	30	9	5	42	14	100

(3) Booster Pump Station

C =
$$(72.16 - 13.68 \log Q) \times Q^{(0.42 + 0.1 \log Q)}$$

 $\times H^{0.305(\log Q - 0.7)}$

where,

C = cost for electric motor drive (thousand peso)

Q = design capacity (1/sec)

H = total dynamic head (m)

BREAKDOWN OF COSTS IN %

	Local Component					
	Material	Labor		- Direct	Indirect	- Total
		Skilled	Unskilled	222000		
Equipment	11	-	-	53	2	66
Civil Works	17	9	6	-	2	34
Total	28	9	6	53	4	100

(4) Pipeline Cost

Following pipe materials are presently available in the Philippines:

- GI (galvanized iron),
- PE (poly-ethylene),
- PB (poly-butylene),
- PVC (poly-viny1-chloride),
- SP (steep pipe),
- CI (cost iron), and
- AC (asbestos cement).

Among these materials, the use of CI pipe is limited due to its high cost and AC pipe is also rare by safety reason.

Followings are comparison of unit cost at the 1985 price level.

•				(Unit: P	/m)
Diameter	GI	PE	PB	PVC	SP
13	20.8	13.8	9.1	-	-
19	24.7	19.9	13.6		~
25	32.3	25.3	22.0		~
38	59.2	41.5	44.7	-	
50	87.5	61.4	76.4	33.9	
63	117.7	-		48.0	
75	180.3	-		81.3	~
100	230.8	_		122.4	235.0
150	-	-	-	256.9	250.0
200	-	-		506.5	290.0
250	-	-		-	315.0
300	-	-	-	-	425.0
400			-	_	520.0
500	-	-	-	-	700.0
600		_	<u>-</u>		890.0

Based on the above comparison, SP is advantageous for the diameter of 200 mm and above than PVC. Thus, for the cost estimates of major transmission and distribution pipes, SP is considered for diameter of 200 mm and above, while PVC for diameter of less than 150 mm taking into account the transportation cost and easy installation.

Diameter (mm)	Unit Cost (₽/m)
150 (PVC)	410
200(SP)	520
250(")	630
300(")	760
350(")	900
400(")	970
450(")	1,160
500(")	1,330
600(")	1,600
700(")	1,910

Source : LWUA Design Depart

BREAKDOWN OF COSTS IN %

	Local Component					
	Material	Labor		Direct	Indirect	- Total
		Skilled	Unskilled			10041.
Equipment	23	=	These	4	27	54
Civil Works	17	7	4	_	18	46
Total	40	7	4	. 4	45	100

(5) Valve In-place Cost

Diameter (mm)	Gate Valve (₽)	Butterfly Valve (₽)
50	1,700	
75	2,900	•••
100	3,900	~
150	5,300	~
200	6,700	-
250	11,200	~
300		34,800
350	-	74,400
400	•••	95,200
450	-	125,900
500	av-s	174,000
600	_	243,600
700	-	313,200

Source : LWUA Design Depart

BREAKDOWN OF COSTS IN %

	Local Component			F E C			
	Material	La	bor	Direct	Indirect	Total	
		Skilled	Unskilled	DITECT	Indifect	TOTAL	
Equipment	9	Sirver	-	63	5	77	
Civil Works	12	3	6	· _	2	23	
Total	21	3	6	63	7	100	

(6) Internal Network

Population Density	Total Length of	Unit Cost	(₽/ha)
	Pipeline	Diameter	Diameter
(Person/ha)	(m/ha)	(100/150)	(75/100)
50 .	64	18,300	14,900
60	67	19,300	15,700
75	72	20,900	16,800
100	80	23,100	18,700
150	90	25,700	21,000
200	100	28,300	_
250	108	30,400	
300	116	32,500	_

BREAKDOWN OF COSTS IN %

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Local Component			FEC		
	Material	La	bor	Direct	Indirect	Total
		Skilled	Unskilled	DII 600		
Equipment	22		_	7	27	56
Civil Works	17	7	4	-	16	44
Total	. 39	7	4	7	43	100

(7) In-place of Service Connections

Diameter	Without Meter	With Meter	Meters
(inch)	₽/unit	₽/unit	P/unit
1/2	450	810	400
5/8 - 3/4	520	1,280	880

SERVICE CONNECTION WITHOUT METER BREAKDOWN OF COSTS IN %

	Local Component					
	Material	La	bor	Direct	Indirect	Total
		Skilled	Unskilled	DITECT	ING II CCC	10141
Equipment	9	•		60	2.5	71.5
Civil Works	17	3	6	-	2.5	28.5
Total	26	3	6	60	5	100

SERVICE CONNECTION WITHOUT METER BREAKDOWN OF COSTS IN %

	Local Component		FEC			
•	Material	Labor		- Direct	Indirect	- Total
	Skilled Unskilled	<i>D</i> 11 00 0	Indirect	TOTAL		
Equipment	4	· _	-	83	2	89
Civil Works	6	1	3		1	11
Total	10	1	3	83	3	100

(8) Fire Hydrant In-place Cost

Type	Size (mm)	Unit Cost (P)
Commercial .	150	16,800
Residential	100	9,400

BREAKDOWN OF COSTS IN %

		Local Comp	onent]	FEC	
	Material	La	bor	Direct	Indirect	- Total
<u> </u>	110,001 101	Skilled	Unskilled	DILECT	indirect	IOLAL
Equipment	8		-	57	5	70
Civil Works	10	8	10	-	2	30
Total	18	8	10	57	7	100

(9) Elevated Tank/Ground Reservoir

Elevated Tank: $C = 0.615 \text{ H}^{1.144} \text{V}^{0.749}$

Ground Reservoir: $C = 20.05 \text{ V}^{0.639}$

where, C = cost (thousand peso)

H = overflow elevation above ground level

V = storage volume (cu.m)

BREAKDOWN OF COSTS IN %

		Local Comp	onent	FEC			
•	Material	La	bor	Direct	Indirect	Total	
	XIII COL LCL	Skilled	Unskilled	Direct	THOTLECE	iotai	
Equipment	4	-	-	3	2	9	
Civil Works	53	5	7	***	26	91	
Total	57	5	7	3	28	100	

(10) Gas Chlorinator In-place Cost

Type I-A	Water Flow Condition	Maximum Chlorine Feed (kg/day)	Unit cost $\frac{1}{p}$
I-A	constant	22	98,100
I-B	constant	45	119,100
II-A	Variable	22	147,700
II-B	Variable Variable	45	169,300

1/ Empty gas cylinders and automatic switchover include

TYPE I-A, I-B BREAKDOWN OF COSTS IN %

	Local Component			FEC		·
	Material	La	ibor	Direct	Indirect	Total
		Skilled	Unskilled	Direct		
Equipment	1.5		_	41	5	61
Civil Works	25	6	3		5	39
Total	40	6	3	41	10	100

TYPE II-A, II-B BREAKDOWN OF COSTS IN %

		Local Comp	onent	FEC		
	Material	La	bor	Direct	Indirect	Total
		Skilled	Unskilled	Direct		
Equipment	21	•••	, <u>-</u> -	53	2	76
Civil Works	12	6	2	-	4	24
Total	33	6	2	53	6	100

(11) Administration & Operation Building

Future Service Population	Administration Bldg. (Thousand Peso)	Operation Center (Thousand Peso)
30,000	1,000	810
40,000	1,110	890
50,000	1,220	990
60,000	1,320	1,090
70,000	1,410	1,180
80,000	1,500	1,280
100,000	1,610	1,380
110,000	1,820	1,590

ADMINISTRATION BUILDING BREAKDOWN OF COSTS IN %

		Local Comp	onent		FEC		
	Material	Labor		Direct	Indirect	Total	
		Skilled	Unskilled			10041	
Equipment	20	_	-	_	16	36	
Civil Works	42	7	5	_	10	64	
Total	62	7	5	-	26	100	

OPERATION CENTER BREAKDOWN OF COSTS IN %

		Local Comp	onent		FEC		
	Material	Labor		Direct	Indirect	Total	
		Skilled	Unskilled	DITECT	Inditect	TOTAL	
Equipment	14	_	-	30	6	50	
Civil Works	26	10	5	_	9	50	
Total	40	10	5	30	15	100	

(12) Energy Cost

$$C = N_p(h) (Pu) (Em)^{-1}$$

where,

C = cost (thousand peso)

 $N_p = pump power demand (kw)$

h = hours of operation

 $P_{u} = unit power cost (P/kwH)$

 $E_{m} = motor efficiency (0.85)$

(13) Chemical Cost

C = (Annual Water Demand) . D .
$$U_{\rm CL} \times 10^{-3}$$
 where,

C = annual cost for chlorine (P)

D = chlorine dosage (mg/1)

 $U_{\rm CL} = unit cost of chlorine gas (P/kg)$

(14) Minimum Cost Diameter

Following cost function is applied to determine the most economical diameter of pipelines that are not simulated by the network analysis.

Oe = overall efficiency

APPENDIX 7.3.1 ALTERNATIVE STUDY OF WATER SOURCE AND TRANSMISSION

(1) Cost Estimates of Water Source and Transmission Alternatives

Required Facilitie	s Unit Cost	Altern	ative S-1	A1te	rnative S-2
	(4)	Q'ty	Cost (P1, 000 pes	Q'ty o)	Cost (P 1,000 peso
Construction Cost					-
1. Water Sources					
Deep Well	1,160,000	16 units	18,560	4 units	4,640
-	mp 790,000	16 units	12,640	4 units	3,160
Intake Pump	Station				
·	8,366,000		~	l unit	8,366
Sub Total			31,200		16,166
. Transmission Li	пе				
ø 250 mm	630 /m	10,000 m	6,300	2,400 m	1,512
ø 350 mm	900 /m	700 m	630		· •
ø 400 mm	970 /m	1,800 m	1,746	1,100 m	1,067
ø 450 mm	1,160 /m			1,300 m	1,508
∮ 500 mm	1,330 /m	500 m	665	´ <u>-</u>	, <u>.</u>
ø 700 mm	1,910 /m	4,400 m	8,404	1,000 m	1,910
Sub Total			17,745		5,997
3. Water Treatment	:				
Rapid Sand Filter	61,204,000	w	. -	l unit	61,204
TOTAL			48,945		83,367
Operation & Mainte	nance Cost (15	years)			
l. Energy	₽ 0.3 /KWH	77,790	23,337	48,360 MWH	14,508
2. Laborer	₽ 1,200 /MM	16 persons	3,456	5 persons	1,080
	.0% of Const-	•	4,895	-	8,337
TOTAL			31,688		23,925
GRAND TOTAL			80,633		107,292

(2) Cost Estimates of Transmission Alternatives

Pipe Size	P1	pe Length (m)	Unit Cost	C	ost (P x 1,0	000)
	Phase I	Phase II	Total	(P /m)	Phase I	Phase II	Total
Alternative T-	<u>1</u>						
ø 250 mm	1,400	4,800	6,200	630	882	3,024	3,90
ø 350 mm	-	700	700	900	-	630	630
ø 400 mm	-	1,800	1,800	970	-	1,746	1,740
ø 500 mm	-	500	500	1,330	_	665	66
∮ 700 mm	3,200	1,200	4,400	1,910	6,112	2,292	8,40
TOTAL	4,600	9,000	13,600		6,994	8,357	15,35.
	**************************************	9,000	13,600		6,994	8,357	15,35
	**************************************	9,000 4,800	7,000	630	1,386		
Alternative T-	2			630 900			15,35: 4,41(
Alternative T-	2	4,800	7,000			3,024 630	4,41
Alternative T- φ 250 mm φ 350 mm	2,200	4,800 700	7,000 700	900	1,386	3,024 630	4,410 630
Alternative T- φ 250 mm φ 350 mm φ 400 mm	2,200	4,800 700 1,800	7,000 700 2,900	900 970	1,386 - 1,067	3,024 630 1, 746	4,41 63 2,81
### Alternative T- ### 250 mm ### 350 mm ### 400 mm ### 450 mm ### 500 mm ### 600 mm	2,200	4,800 700 1,800	7,000 700 2,900 1,300	900 970 1,160	1,386 - 1,067	3,024 630 1, 746	4,41 63 2,81 1,50
### Alternative T- ### 250 mm ### 350 mm ### 400 mm ### 450 mm ### 500 mm	2,200	4,800 700 1,800 - 500	7,000 700 2,900 1,300 500	900 970 1,160 1,330	1,386 - 1,067	3,024 630 1, 746	4,41 63 2,81 1,50

APPENDIX 7.3.2 COST COMPARISON OF THE TWO CASES

- Case 1 Construction of transmission line from the spring to the existing reservoir area, enabling use of the additional springs.
- Case 2 Development of an additional well in Biñan with a production of approx. 5,200 cu.m/day, as an alternative, to utilize new spring water sources.

A new well site for Case 2 is tentatively scheduled for development in Sta. Rosa, with a minimum transmission pipeline length of 1 km. The cost requirement for Case 1 is bigger than that of Case 2.

Case 1

Item	Unit	Quantity	Unit Cost	Cost	R.M.
Pipeline	m	4,100	970	3,977,000	
Total		***************************************		3,977,000	3,300cu.m/day
Case 2					
Item	Unit	Quantity	Unit Cost	Cost	R.M.
Well Construction \$\phi 250 \times 200m Pipe line \$\phi 200	unit m	1,000	940,000 410	940,000 410,000	Q=5,200 cu.m/d
Pump Station	unit	1	teration that the state of the	790,000	3.7 cu.m/min x 40m x 37kw
Sub-Total			***************************************	2,140,000	
Operation & Mainte- nance Cost Electricity Labor Maintenance	kwh unit	5,208,000 1	0.3₽/kwh	1,562,400 216,000 214,000	15 years Const. Cost x 0.1
Sub-Total				1,992,400	
Total				4,132,400 (2,622,500	for 5,200 cmd for 3,300 cmd)

-- Existing PhaseII LEGEND 2400 Well Calngan To Sta. Rosa, and Biñan 00£ 8 Reservoir Вау тип Bigao £=1800 Sala Marilng 000 £=2 Ø FIGURE 7.3.2.1 SCHEMATIC LAYOUT OF CABUYAO Case National Road Pulo %=2400 4€00 Calngan 0022=77 0 400 Bigaa Вау Іпп eservoir. 0099=2 000¢ Marting To Sta. Rosa, and Biñan Case 1 Sala Pulo

- 73 -

TABLE 7.3.2.1 COST CONPARISON ON CABUYAO SYSTEM

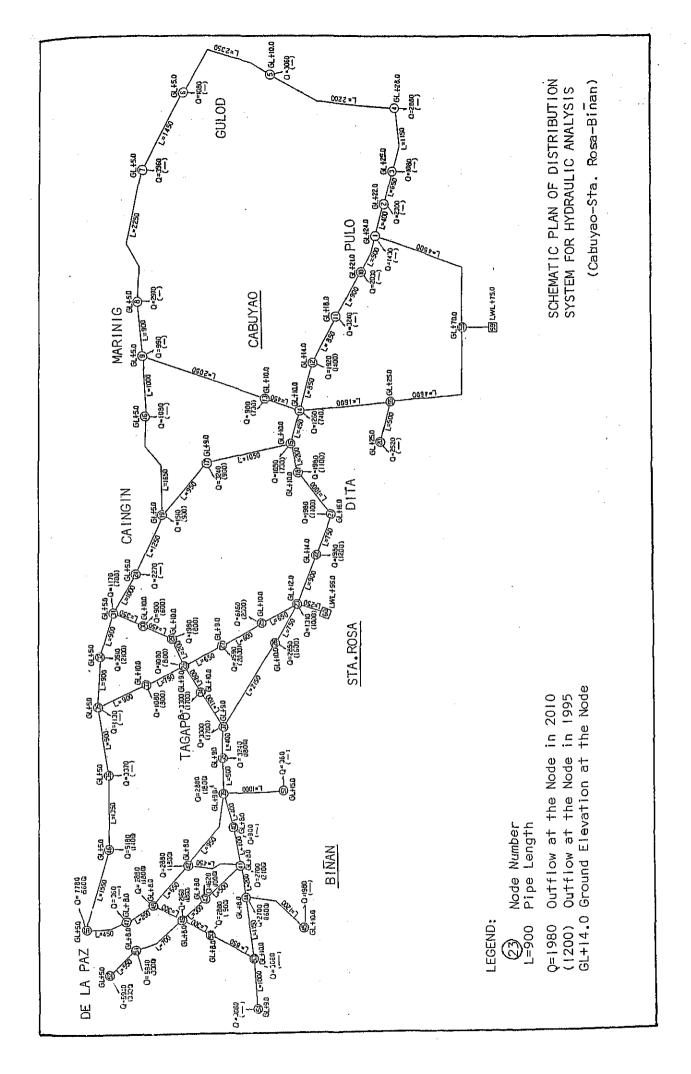
Case 1

Phase	Ітеп	Unit	Unit Cost	Cost	Remarks
H	Transmission Lain \$400	6,500 m	四/毫 026	6,305,000	
	Sub Total			6,305,000	
	Distribution Lain \$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	3,300 1,800 3,200	970 12/m 900 12/m 760 12/m	3,201,000 1,620,000 2,432,000	
	Reservoir V = 1,800 cu.m	l unit		2,411,000	
II	Pump Station	l unit		20,449,000	\$250x7.0 cu.m/min x 35m x 59kw x 4sets
	Sub Total			30,113,000	
	Operation & Maintenance Electricity	69,532,000 kwh	0.3 P/kwh	20,859,600	
H 3 H	Labor	l unit		1,944,000	Mechanical Engineer 1 Pump Operator 4
	Maintenance			3,641,800	Cost x
	Sub Total			26,445,400	
II	Land Acquisition	ш·bs 006	120 爭/皿	108,000	
	Total			62,971,400	

TABLE 7.3.2.1 COST CONPARISON ON CABUYAO SYSTEM (CONT'D)

Case 2

; ;					
 	Pipe Line	5.400m	1.600 P/m	8,640,000	
-	\$500	2,400m	1,330 ₽/m	3,192,000	
	ø350	1,000世	™/± 006	000,006	•
	ø300	2,300m	760 æ/m	1,748,000	
	Sub Total			14,480,000	
	Distribution				-
	Pipe Line			1	
	Ø500	3,000m	1,330 P/m	3,990,000	
	945U	E000	1, TOO 1/2	280,000	
	9400	T,800m	日/# 0/6	1,746,000	
II	ø300	I,200m	m/≢ 097	912,000	
	Reservoir V = 1.800 cu.m	l unit		2,411,000	
	Sub Total			9,639,000	
II & I	Operation & Maintenance				
	Maintenance			2,412,000	Construction Cost $x = 0.1$
II	Land Acquisition	m.ps 006	120 F/m	108,000	
	•				
	Ground Total			26,639,000	


APPENDIX 7.3.3 COMPUTER-AIDED HYDRAULIC ANALYSIS OF DISTRIBUTION SYSTEM (Cabuyao-Sta. Rosa-Biñan)

o List of Computed Cases

Alternative D-1-A (1995, 2010) D-1-B (1995, 2010) D-2 (2010)

o Note

This appendix show the results of Hydraulic Analysis aided by the computer. The distribution network is shown in the figure of following page. The nodes, however, with no flow and 20.00 m in Dynamic Head was treated as a dummy node. Those nodes can be ignored and have no relation to the computation results.

ALTERNATIVE D-1-A (Recommended Plan, Single Pipeline Alignment) 2 Reservoir System, Year 1995

ALTERNATIVE D-1-A (Recommended Plan, Single Pipeline Alignment) 2 Reservoir System, Year 1995

70.00 60.00 5.00 20.00

20.00 0.00 0.00 0.00

34.54 35.00 35.00 35.00

5600, 00 0, 00 0, 00 0, 00 0, 00

5.00 75.00 75.00 75.00 55.00

533 238 238 238 238

H. G. L. ELEV. (m)

(cu.m/day)

FLOW

GROUND ELEV. (m)

NODE No

<< NODES >>

<< NODES >>

STATIC HEAD	1.4.0.4.0.4.0.0.0.0.0.0.0.0.0.0.0.0.0.0.
DYNAMIC HEAD (m)	1000000000000000000000000000000000000
H. G. L. ELEV.	44444888686448444466886648848466468464646484888666888888
FLOW (cu. m/day)	2 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
GROUIJD ELEV.	4474% 5 cm, mm, m, 2, 55 dm, m, d, d, d, d, d, d, d, d, d, d, d, d, d,
NODE No.	

	gnment)		1,0SS (0/00)	
	ne Ali		HEAD (m)	6495-09-1-684-00-09-1-00-0-0-0-0-0-0-0-0-0-0-0-0-0-
	Pipeli		VEL. (m/sec)	66949964449949999999994999499999999999
	an, Single	•	FLOW (cu. m/day)	1.130. 2.130.
	9 93 93		±0 ¥20	25.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.
· !	tecommend Year 19		LENGTH (m)	8.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00
	-A (A stem,	Ý	DIA. (mm)	82 84 84 84 84 84 84 84 84 84 84 84 84 84
	L So	INE >	1, ₹ 0,0	44000000000000000000000000000000000000
	ERWATIVE Reservoir	PIPELIN	NODE	2024400-1020202020202020202020202020202020202
	ALTER 2 Re	¥	PIPE No.	- 0.00 4 70 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

ALTERNATIVE D-1-A (Recommended Plan, Single Pipeline Alignment) 2 Reservoir System, Year 2010

70.00 60.00 5.00 0.00

10, 12 11, 09 4, 97 0, 00 0, 00

15. 12 26. 09 74. 97 75. 00 55. 00

7780.00 360.00 0.00 0.00

5.00 15.00 70.00 75.00 55.00

Iteration Times: 42

STATIC HEAD (m)

NODE GROUND FLOW
No. ELEV.
(m) (cu. m/day)

<< NODES >>

:	
1	
-	
2010	
Year	
tem.	
Ş	1
Reservoir System, Year 2010	NODES
é	Ž

STATIC HEAD (m)	
DYNAMIC HEAD (m)	68.8.8.8.8.9.9.6.14.6.4.1.1.2.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1
H. G. L. ELEV. (m)	4-17-48/48/48/48/48/48/48/48/48/48/48/48/48/4
FLOW (cu.m/day)	1430, 00 28840, 00 28840, 00 28840, 00 28870, 00 2990, 00 2990, 00 2990, 00 2990, 00 2990, 00 2990, 00 2990, 00 2880, 00 33300, 00 3000, 00 3000, 0
GROUND ELEV. (m)	4448%50000000000000000000000000000000000
NODE No.	

ALTERNATIVE D-1-A (Recommended Plan, Single Pipeline Alignment) 2 Reservoir System, Year 2010

	HEADLOSS (m) (0/00)	なたらららよる一本でもあれてしてもできませましているのでもとしています。 なんらららん よっしゅうしゅう でき 女子 におい はん ない ない ない ない ない ない ない ない ない ない ない ない ない
	EAD (a)	$\frac{1}{2}$
	VEL. (m/sec)	+
	FLOW (cu.m/day)	1833130 1833130 1833130 1833130 1833130 1833130 1833130 1833131 1833130 183313 183313 183313 183313 183313 183313 183313 183313 183313 183313 183313 183313 18
<u>:</u>	≹υ	220 220 220 220 220 220 220 220 220 220
	LENGTH (m)	22.25.00.00.00.00.00.00.00.00.00.00.00.00.00
	Cam)	88888888888888888888888888888888888888
} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	<u>و</u> .و	82508448601124448611866612448661866666666666666666
IPELINE	NODE P	
4 ×	PIPE So.	

Recommended Plans

LT.	
Alignment of	
ALIEMMAIIVE DAYAR (Parallel Pipeline 2 Reservoir System, Year 1995	<< NODES >>

STATIC HEAD (m)	1.000 000 000 000 000 000 000 000 000 00
DYNAMIC HEAD (m)	22.20.20.20.20.20.20.24.4.20.24.1.20.20.20.20.20.20.20.20.20.20.20.20.20.
H. G. L. ELEV. (m)	44488988898484448844488488888888888888
FLOW (cu.m/day)	1400.00 1400.00 1400.00 1400.00 1400.00 173
GROUND ELEV. (m)	444484500000000000000000000000000000000
NODE No.	

STATIC HEAD (m)	70.00 50.00 5.00 20.00
DYNAMIC HEAD (m)	11, 52 20, 00 4, 99 0, 00 0, 00
H. G. L. ELEV. (m)	16. 52 35. 00 74. 99 75. 00 55. 00
FLOW (cu.m/day)	5600.00 0.00 0.00 0.00
GROUND ELEV.	75.00 70.00 75.00 55.00
NODE No.	55 57 58 60

ALTERNATIVE D-1-B (Parallel Pipeline Alignment of Recommended Plan) 2 Reservoir System, Year 1995

<< NODES >>

ALTERNATIVE D-1-8 (Parallel Pipeline Alignment of Recommended Plan) 2 Reservoir System, Year 1995

<< PIPELINE >>

(00/00)	64494444444444444444444444444444444444
HEADL(Cm) (I	<u>も</u> -1-1-0-4-0-1-4-0-1-1-1-1-1-1-1-1-1-1-1-1
VEL.	66-1-0-1-0-1-0-1-0-1-0-1-1-0-1-0-1-1-0-1-1-0-0-1-0-1-0-1-0-1-0-1-0-1-0-1-0-1-0-1-0-1-0-1-0-0-1
FLOW (cu. m/day)	2.23.0. 2.23.0
∄o	22000000000000000000000000000000000000
LENGTH (m)	846 646 646 646 646 646 646 646 646 646
OIA.	200 000 000 000 000 000 000 000 000 000
200	44Rbr/xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
NODE from	00144400000000000000000000000000000000
14.9	

ed Plan)

ALTERNATIVE D-1-8 (Paralle! Pipeline Alianment of Recponmended Plan) 2 Reservoir System, Year 2010

ALTERNATIVE D-1-B (Paralle) Pipeline Alignment of Recpommende. 2 Reservoir System, Year 2010 << NODES >>	TATIC HEAD (m)	51.00
ine Aligm	DYNAMIC STATIC HEAD HEAD (m) (m)	40, 33
lel Pipel ir 2010	H. G. L. ELEY.	64, 33
⊢1-8 (Paral System, Yea >	FLOW (cu. m/day)	1430.00
ALTERNATIVE D-1 2 Reservoir Sy << NODES >>	GROUND ELEV. (m)	24. 00 22. 00
ALTER 2 Re	NODE -	-6

に 1 に 1 に 1 に 1 に 1 に 1 に 1 に 1
6.8.25.25.45.45.8.8.5.45.45.45.45.45.45.45.45.45.45.45.45.4
44FF4888576455584485644888564548888888888888
23290.000 22880.
<u>4෭෦ඁ෭෭ඁ෯ඁ</u> ෫෦෫෦෬෦෬෦෫ඁඁ෭ඁ෫ඁ෫ඁ෫ඁ෦෫෦෫෦෫෦෫෦෫෦෫෦෫෦෫෦෫෦෫෦෫෦෫෦෫෦෫

20.50 20.50 20.00 20.00

12. 91 12. 74 4. 98 0. 00 0. 00

17, 91 27, 74 74, 98 75, 00 55, 00

7789.00 360.00 0.00 0.00

55.00 75.00 55.00 55.00

59 29 29 60

NODE GROUND FLOW No. ELEV. (m) (cu.m/day)

<< NODES >>

pommended Plan) H~

ALTERNATIVE D-1-B (Parallel Pipeline Alignment of Recpommended Plan) 2 Reservoir System, Year 2010

<< PIPELINE >>

of Rec	
4	
ent	
IERNATIVE D-1-B (Parallel Pipeline Alignm Reservoir System, Year 2010	

٨

PIPELINE

HEADLOSS (m) (0/00)	ტიოიოგო-ქტიტო-ქნენტტე4-იოტეეტტქ-ქტნეო-ქნელტაფოოოდიფო-4-ი-9-4-ე-ლაფ ლფეფიეგო-ეგოფიგინენტტე4-იოტებტქ-ქტენელ-ქნელ-ეგო-იატი-ა
	0 0
VEL. (m/sec)	444446464644444664466666666464466666666
FLOW (cu. m/day)	133.184 16428. 16428. 16428. 16428. 1663.
±°	1200 1200 1200 1200 1200 1200 1200 1200
LENGTH (m)	450.0 45
DIA.	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
15°	82.00.440.00 - 80.00.1244444.00.00.00.00.00.00.00.00.00.00.00.0
NODE	
PIPE No.	

HEADLOSS (m) (0/00) FLOW VEL. (cu. m/day)(m/sec) 293999 293999 293999 203924 27162 27175 27 ŤΩ LENGTH PIA (EE) NODE No. from-to PIP So.

ALTERNATIVE D-2 3 Reservoir System, Year 2010 << NODES >>

	STATIC HEAD (m)	FREST COLORS CON CONTROL CONTR
į	DYNAMIC HEAD (m)	888.848.69.40.40.58.88.88.44.84.40.40.40.40.40.40.40.40.40.40.40.40.40
	H. G. L. ELEV. (m)	路
\	FLOW (cu. m/day)	1430. 00 28880. 00 28880. 00 28880. 00 28880. 00 28960. 00 28960. 00 28960. 00 28960. 00 28960. 00 28860. 00
COCC	GROUND ELEV. (m)	44448454444444444444444444444444444444
/,	NODE NO.	

ALTERNATIVE D-2 3 Reservoir System, Year 2010 << NODES >>

	STATIC HEAD (m)	70.00 60.00 50.00 35.00 35.00
,	DYNAMIC HEAD (m)	11. 45 14.81 4.97 0.00 0.00
	H. G. L. ELEV. (m)	16. 45 29. 81 74. 97 75. 00 40. 00
	FLOW (cu.m/day)	7780.00 350.00 0.00 0.00 0.00 0.00
	GROUND ELEV. (m)	75.00 76.00 75.00 40.00
i	NODE No.	55 58 59 60 61

ALTERNATIVE D-2 3 Reservoir System, Year 2010

<< PIPELINE >>

HEADLOSS (m) (0/00)	6460000048644645545468006684666666666666
VEL. (m/sec)	######################################
FLOW (cu.m/day)	133518 1173596 1173596 1173596 1173596 1173596 1173596 1173596 1173596 1173596 1173596 1173596 1173596 1173596 117359 117
#-H	122000000000000000000000000000000000000
LENGTH (m)	450.000.000.000.000.000.000.000.000.000.
DIA. (mm)	28444888828288888888888888888888888888
9.5 1.5	800004000000000000000000000000000000000
Nobe	
PIPE No.	

HEADLOSS (m) (0/00) ₹₹₹\$ FLOW VEL. (cu. m/day)(m/sec) ځن ALTERNATIVE D-2 3 Reservoir System, Year 2010 LENGTH (m) DIA. << PIPELINE >> 6.5 t NODE From

 $\frac{1}{2} \frac{1}{2} \frac{1}$

F. COST COMPARISON

General

Analysis and evaluation of alternative are based largely on present-worth cost studies, taking into consideration the salvage values after the design period. Cost comparison is based on present worth of net disbursement during the period of 1980-2010 without any escalation factor applied to the 1980 unit prices.

If the differences between net PW cost of an alternative and that of the least-cost alternative is within the limit of cost estimating accuracy (10-15%) further cost comparison shall be made applying escalation factor to 1980 unit prices. For escalation rates, refer to Chapter VII-C: Escalation Rates. Moreover, non-economic parameters may also be influence the selection of the recommended plan.

Construction Cost

Construction cost estimates of the proposed improvements are based on the projected July 1980 unit prices. All estimates on imported materials are based on an exchange rate of \$\mathbb{P}7.40\$ per 1 US dollar. Further, it is assumed that no custom duty will be charged on items imported for the public water supply project. The cost of any facility to be replaced during the design period (1980-2010) is included under the capital cost for the particular year.

Annual Cost

Annual costs are all costs associated with the maintenance, operation, and management of the project. These include labor, power, chemical and maintenance costs. These estimates are carried out for the period 1980-2010. The present-worth cost of annual expenditure is based on uniform and gradient series at a given interest.

Personnel and maintenance costs may abruptly increase as additional facilities are put into operation - e.g., the power cost at a pump station increases in relation to the daily pumpage of water.

Salvage Value

The salvage values of facilities at the end of the design period 2010 are important in calculating net present worth of the total expenditures. It is assumed that the value of a facility depreciates linearly throughout its service life therefore, a facility with longer service life depreciates less than a facility with shorter service life (Refer to Table VI-1 for service life of different facilities). Moreover, a facility constructed at a later stage has higher salvage value than one constructed at an earlier stage.

SERVICE LIFE CATEGORIES OF FACILITIES

Civil Works	Economic Life	Equipment	Economic Life
Wells	30 years	Wells (pumping engine or motors)	15 years
Springs	50	Springs (vales, pipes)	50
Transmission Mains	50	Transmission (pipes, valves)	50
Storage Facilities	. 50	Storage (valves, pipes, level gauge, etc.)	50
Disinfection Facilities	50	Disinfection facilities (chlorinators, mech	-
Distribution Mains	50	anical equipment and filter equipment,	
Internal Network	50	pipes, valves)	15
Service Connections	50	Distribution mains (pipes, valves)	50
Fire Hydrants	50	Internal networks (pipes, valves)	50
Operational Buildings	50	Service connections (meters, pipes)	50
•		Operational buildings (workshop, etc.)	1.5
		Fire hydrants	30
		Vehicles	7

Net Present Worth

The net present worth cost of an alternative scheme is the difference between the total present worth of capital cost and annual cost minus the present worth of salvage values.

For Construction Cost:

$$C_n = C_c - C_s$$

$$C_c = C \times \frac{1}{(1+1)^n}$$

$$C_c = C \times \frac{1}{(1+i)^n}$$
 $C_c = C \times \frac{1}{(1+i)^{nx}} \times (1 - \frac{nx - n}{SL})$

For Annual Cost:

$$C_c = A_c \times \frac{1}{(1+1)^n}$$

 $\mathbf{C}_{\mathbf{n}}$ = net present worth comparable cost

 $C_c =$ present worth of construction cost

 C_a = present worth of salvage value (design year)

C = construction cost

SL = service life

i = discount rate

nx = number of years between design year and base year

n = number of years between year of construction and base year

A_c = annual cost

(Unit: thousand Pesos)

Cabuyao-Sta.Rosa-Binan	UNIT COST (Phase IC	Stage 1X	Phase IC	Stage 2X	Phase I	Total I	Phase II	Cost
(TEM	ORIT COST	NUMBER	COST	NUMBER	COST	NUMBER !		NUMBER	
1 SOURCE FACILITY									
(1)DEEP WELL CONSTRUCTION	1160000	0	0	4 !	4640	4	4640	11	12760
(2)DEEP WELL PUMP W/HOUSE	790000	1 !	790 82	4 1	3160 248	5 5	3950 310	11	8690 682
Flow Meter 0=150	62000		852		8048				22132
2 TRANSMISSION FACILITIES			902					!	
(())Pipe Protection									
0=200	251	400	100	0	0	400	100		0
0=300	337	400	135	0 1	0	400	135		.0
(2)Main Pipes	000	1.00	202	1300	819	2400	1512	4800	3024
0≈250 (Steel Pipe) 0≈350 (Steel Pipe)	630 900	1100	693 0	1300	919	2400	1312	700	830
D=400 (Steel Pipe)	970	1100	1067	ŏ	ŏ	1100	1067	1800	1746
D=450 (Steel Pipe)	1160	1300	1508	Ö	Ğ	1300	1508	ä	ō
0=500 (Steel Pipe)	[330]	0	0	Q	0	0	0	500	865
D=600 (Steel Pipe)	1600	0	0	0	0	0 (0	3200	5120
[D=700 (Steel Pipe)	1910	0 !	0	0.		0	4322	1200	2292 13477
SUB-TOTAL			3503				4322	<u> </u>	13171
3 DISTRIBUTION FACILITIES (1)Reservoir			3417	0	~~~~~~~		3417	<u> </u>	11291
(2) Pump Facility (Eqip.)			2000				5174	1	6437
-do- (Civil)			2666		0		2666	1	3316
(3)Chirata Facility 22kg/d		2 0	196		98	3	294	! ! !	98
- do - 45kg/d	119000	0	0	0	0	0	0	 	119
(4)Electric Sub-station			3643	!	 		 	 	4858
(5)Distribution pipes			•						
1)Main Pipes D=150 (PVC Pipe)	410	0	0	2950	1210	2950	1210	4000	1640
0=200 (Steel Pipe)	520	ŏ	ŏ	1850	962	1850	962	5950	3094
0=250 (Steel Pipe)	630	2050	1292	0	0	2050	1292	8000	5040
0=300 (Steel Pipe)	760	2000	1520	2300	1748	4300	3268	7100	5396
0=350 (Steel Pipe)	900	1450	1305	1400	1260	2850	2565	2500	2250
D=400 (Steel Pipe)	970	600	582	0	0	600	582	2400	2328
0=450 (Steel Pipe) 0=500 (Steel Pipe)	1160 1330	1450 950	1682 [264	800	0 10G4	1450 1750	1682 2328	0	. 0
D=600 (Steel Pipe)	1800	3800	6080	300	0	3800	6080	4500	7200
0=700 (Steel Pipe)	1910	250		Ō	Ŏ	250	478	Ö	0
2)Valves								1	
D=150 (Gate Valve)	5300	0	0	15	80	15	80	18	. 95
0=200 (Gate Valve)	6700	0	_0	6	40	6	40	20	134
0=250 (Gate Valve)	11200	7	79	0	270	7 !	79	27	302
0=300 (Butterfly Valve) 0=350 (Butterfly Valve)	34800 74400	5	243 372	8 5	278 372	15 10	521 744	24	835 595
D=400 (Butterfly Valve)	95200	2	190	3	286	5	476	١٥	333
D=450 (Butterfly Valve)		5	630	Ō	0	5	630	0	ő
0=500 (Sutterfly Valve)	174000	3	522	3	522	6	1044	0	0
D=600 (Sutterfly Valve)		13	3167	0	0	13	3167	15	3654
0=700 (Butterfly Valve)	313200		313	0	0	<u>!</u> .	313	0	
3) Internal Network Commercial 150pop/ha	25700	٥	a	18	463	18	463	0	a
Commercial 250pop/ha	30400		ŏ	0,	403	10	. 0	62	1885
Residential 100pop/ha	18700	52		0	ŏ	52		02	
Residential 150oop/ha	21000	0		394	8274	394		o i	Ö
Residential 250pop/ha	30400	0	Q	0	0	0		561	17054
4)Service Conections								40	
0=1/2 0=3/4	810	4901	3970	15464	12525		16495	42879	34732
5)Rehabilitation	1280	16.	84	12	17	78	101	7.1	95
Vater Meter 1/2"	400	t : 491	196	0		491	196	0	0
Water Meter 3/4"	880	730	100	ŏ	Ö	130	130	ŏ	ŏ
Old Laterals			- 860	Ŏ	Ŏ]	860	0	Ō
Service Conctn.vo/Meter	, , , , ,	246	117	0	0	246	117	0	0
Service Concto.v/Meter	880	1208	1064	0				0	
B)Flow Meter 0=150	62000 164000		62	0			62		0
7)Fire Protection	(04000		164	<u> </u>	<u> </u>	 	164	2	328
D=150	16800		0	0	0	0	; 0	75	1260
0=100	9400	Ô		_ ŏ			1		
SUB-TOTAL			39220		32283		71503		117185
4 DAdministration Bldg.					i		<u>}</u>	l I	
2)Operation Center			1583		i •=	<u> </u> L		ļ	<u> </u>
SUB-TOTAL	100	1000	1 12170		300		1583	14102	1820
5 tand Acquisition Vehicle	100 300000							14100	
Stored Material & Equip.	200000	·2	501		561	6	1800		: 3900 : 1841
SUB-TOTAL		}	1281		1981		3242		7151
6 Replacement of Equipment			0		0		0	1	20848
TUTAL			46439		43]]]		89550		182613
7 Leak Detection	240	2907		0					
GRAND TOTAL		!	47138		· 43111		90249		182613

(Unit: thousand Pesos)

	Linear Charles Charles	UNIT COST	ingo		1000		1000		1001	
	buyao-Sta.Rosa-Binan ITEM	null coal	1988 i (1K	COST	1989	COST	1990	COST	1991 NU 1	COST
1 1	SOURCE FACILITY	i	11.2			1000	- 30	<u>, (c.u.,)</u>	100	
	(1)DEEP WELL CONSTRUCTION	1160000	0 1	0	·				T	1160
ì	(2) DEEP WELL PUMP W/HOUSE	790000	0	. 0	i	790	ō į	ŏ	il	790
	Flow Meter D=150	62000	0 1		[]	62	0	ŏi		62
	SU8-TOTAL		1	~~~~~~	2 7	852	1	0		2012
2	TRANSMISSION FACILITIES				· · · · · · · · · · · · · · · · · · ·		!		1	
	(1)Pipe Protection						·			
Ι΄	D=200	251	į	0	400	100	ŀ	0	i	a
1	D=300	. 337	1	ā	400	135	i	õ	;	ŏ
[]	(2)Main Pipes	1			1		[· •	
	D=250 (Steel Pipe)	630		0	1100	693	 	0	800	504
i	0≃350 (Steel Pipe)	900	1	. 0	0	0	1	ō		Ö
ĺ	D=400 (Steel Pipe)	970 [1	ō	1100	1067		ā	(ā
1	D=450 (Steel Pipe)	1160	1	ŏ	1300	1508	1	ő		ŏ
1	D=500 (Steel Pipe)	1330		ō	0 1	0	:	ŏ	1	ŏ
ĺ	D=600 (Steel Pipe)	1600	1	ō	Õ	ā	1	ä۱	i i	ă
	0=700 (Steel Pipe)	1910		ō	ői	. 0	ŀ	ŏl	;	. 0
1	SUB-TOTAL					3503	-	0		504
3	DISTRIBUTION FACILITIES	1					i		-	
١	(1)Reservoir			,		3417		~		
!	(2) Pump Facility (Egio.)	i				2030		~		3084
ĺ	-do- (Civil)					2666		~		
	(3)Chirnth Facility 22kg/d	98100			2		0	0		98
1	- do - 45kg/d			,		0		0	0	0
1	(4)Electric Sub-station		·							
	(5)Distribution pipes	` -	1988		1989		1990		1991	
	l)Main Pipes		.000	}			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
ĺ	D=150 (PVC Pipe)	410		0		٥]	0	2950	1210
	D=200 (Steel Pipe)	520		ő		ŏ		ŏ	1850	962
	D=250 (Steel Pipe)	630		0	1050	662	1000	630	1.500	0
1	0=300 (Steel Pipe)	760	i	ŏ	700	532	1300	988	2300	1748
1	D=350 (Steel Pipe)	900		ő	750	675	700	630	1400	1260
ļ	0=400 (Steel Pipe)	970		ŏ	300	291	300	291	١٠٠٥	ō
1	D=450 (Steel Pipe)	1160		ő	650	754		928	i ă:	ő.
ļ	0=500 (Steel Pipe)	1330		ő	950	1264		Õ	800	1064
1	0=600 (Steel Pipe)	1600		ď	3800	6080		ă	j ,,,,	Ö
1	0=700 (Steel Pipe)	1910		i		478		ŏ	1	ō
1	2)Valves									
1	D=150 (Gate Valve)	5300		0		0	i ;	a	15	80
1	0=200 (Gate Valve)	6700		Ŏ		ő	; ;	ŏ	6	40
	0=250 (Gate Valve)	11200		ŏ	4	45	3	34	0	0
i	n-700 (date salse)	11400					, ,			
•		2/12/00		i n	া ব	104				97X I
1	0=300 (Butterfly Valve)			0	3	104	4 2	139	8	278 372
	D=350 (Butterfly Valve)	74400		Ó	3	223	2	149	5	372
	D=350 (Butterfly Valve) D=400 (Butterfly Valve)	74400 95200	. !	0	3 1	223 95	Ī	149 95	5 3	372 286
	D=350 (Butterfly Yalve) D=400 (Butterfly Yalve) D=450 (Butterfly Yalve)	74400 95200 125900	. !	0 0 0	3 1 2	223 95 252	l 3	149 95 3 7 8	5 3 0	372 286 0
	0=350 (Butterfly Yalve) 0=400 (Butterfly Yalve) 0=450 (Butterfly Yalve) 0=500 (Butterfly Yalve)	74400 95200 125900 174000	. !	0 0 0	3 1 2 3	223 95 252 522	l 3	149 95 378 0	5 3 0 3	372 286 0 522
	0=350 (Butterfly Yalve) 0=400 (Butterfly Yalve) 0=450 (Butterfly Yalve) 0=500 (Butterfly Yalve) 0=800 (Butterfly Yalve)	74400 95200 125900 174000 243600		0 0 0 0	3 1 2 3 13	223 95 252 522 3167	l 3	149 95 378 0	5 3 0 3	372 286 0 522
	0=350 (Butterfly Valve) 0=400 (Butterfly Valve) 0=450 (Butterfly Valve) 0=500 (Butterfly Valve) 0=600 (Butterfly Valve) 0=700 (Butterfly Valve)	74400 95200 125900 174000 243600		0 0 0	3 1 2 3 13	223 95 252 522	l 3	149 95 378 0	5 3 0 3	372 286 0 522
	0=350 (Butterfly Valve) 0=400 (Butterfly Valve) 0=450 (Butterfly Valve) 0=500 (Butterfly Valve) 0=700 (Butterfly Valve) 0=700 (Butterfly Valve) 3)Internal Network	74400 95200 125900 174000 243600 313200	. !	0 0 0 0 0	3 1 2 3 13	223 95 252 522 3167 313	l 3	149 95 378 0 0	5 3 0 3 0	372 286 0 522 0
	0=350 (Butterfly Valve) 0=400 (Butterfly Valve) 0=450 (Butterfly Valve) 0=500 (Butterfly Valve) 0=500 (Butterfly Valve) 0=700 (Butterfly Valve) 3)Internal Network Commercial 150pop/ha	74400 95200 125900 174000 243600 313200		0 0 0 0 0	3 1 2 3 13	223 95 252 522 3167 313	l 3	149 95 378 0 0	5 3 0 3 0 0	372 286 0 522 0 0
	0=350 (Butterfly Valve) 0=400 (Butterfly Valve) 0=450 (Butterfly Valve) 0=500 (Butterfly Valve) 0=600 (Butterfly Valve) 0=700 (Butterfly Valve) 3)Internal Network Commercial 150pop/ha Commercial 250pop/ha	74400 95200 125900 174000 243600 313200 25700 30400		0 0 0 0 0	3 1 2 3 13	223 95 252 522 3167 313	I 3 	149 95 378 0 0 0	5 3 0 3 0 0	372 286 0 522 0 103
	0=350 (Butterfly Valve) 0=400 (Butterfly Valve) 0=450 (Butterfly Valve) 0=500 (Butterfly Valve) 0=600 (Butterfly Valve) 0=700 (Butterfly Valve) 3)Internal Network Commercial 150pop/ha Commercial 250pop/ha Residential 100pop/ha	74400 95200 125900 174000 243600 313200 25700 30400 18700		0 0 0 0 0 0	3 1 2 3 1 3 1 3 1 1 1 1 2 5 5 5 5 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6	223 95 252 522 3167 313 0 0	1 3 1	149 95 378 0 0 0	5 3 3 0 0 0	372 286 0 522 0 0
	0=350 (Butterfly Valve) 0=400 (Butterfly Valve) 0=450 (Butterfly Valve) 0=500 (Butterfly Valve) 0=600 (Butterfly Valve) 0=700 (Butterfly Valve) 3)Internal Network Commercial 150pop/ha Residential 150pop/ha Residential 150pop/ha	74400 95200 125900 174000 243600 313200 25700 30400 18700 21000	· · · · · · · · · · · · · · · · · · ·	0 0 0 0 0 0	3 1 2 3 1 3 1 3 1 1 1 1 2 5 5 5 5 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6	223 95 252 522 3167 313 0 0 486	1 3 1	149 95 378 0 0 0 0 486	5 3 3 0 0 0	372 286 0 522 0 0 103 0 0
	0=350 (Butterfly Valve) 0=400 (Butterfly Valve) 0=450 (Butterfly Valve) 0=500 (Butterfly Valve) 0=500 (Butterfly Valve) 0=700 (Butterfly Valve) 3)Internal Network Commercial 150pop/ha Residential 150pop/ha Residential 150pop/ha Residential 150pop/ha	74400 95200 125900 174000 243600 313200 25700 30400 18700		0 0 0 0 0 0	3 1 2 3 1 3 1 3 1 1 1 1 2 5 5 5 5 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6	223 95 252 522 3167 313 0 0	1 3 1	149 95 378 0 0 0	5 3 3 0 0 0	372 286 0 522 0 0
	0=350 (Butterfly Valve) 0=400 (Butterfly Valve) 0=450 (Butterfly Valve) 0=500 (Butterfly Valve) 0=700 (Butterfly Valve) 0=700 (Butterfly Valve) 3)Internal Network Commercial 150pop/ha Commercial 250pop/ha Residential 100pop/ha Residential 150pop/ha Residential 250pop/ha Aesidential 250pop/ha	74400 95200 125900 174000 243600 313200 25700 30400 18700 21000 30400		0 0 0 0 0 0	3 1 2 3 13 1 1	223 95 252 522 3167 313 0 0 486 0	1 3 1 26	149 95 378 0 0 0 486 0	5 3 0 3 0 0 4	372 286 0 522 0 0 103 0 1659
	0=350 (Butterfly Valve) 0=400 (Butterfly Valve) 0=450 (Butterfly Valve) 0=500 (Butterfly Valve) 0=700 (Butterfly Valve) 0=700 (Butterfly Valve) 3)Internal Network Commercial 150pop/ha Commercial 250pop/ha Residential 100pop/ha Residential 150pop/ha Aesidential 250pop/ha 4)Service Conections 0=1/2	74400 95200 125900 174000 243600 313200 25700 30400 18700 21000 30400		0 0 0 0 0 0	26 2451	223 95 252 522 3167 313 0 0 486 0	2450	149 95 378 0 0 0 486 0	5 3 3 0 0 4 79	372 286 0 522 0 103 0 1659 0
	0=350 (Butterfly Valve) 0=400 (Butterfly Valve) 0=450 (Butterfly Valve) 0=500 (Butterfly Valve) 0=600 (Butterfly Valve) 0=700 (Butterfly Valve) 3)Internal Network Commercial 150pop/ha Commercial 250pop/ha Residential 100pop/ha Residential 150pop/ha Assidential 250pop/ha 4)Service Conections 0=1/2 0=3/4	74400 95200 125900 174000 243600 313200 25700 30400 18700 21000 30400		0 0 0 0 0 0	26 2451	223 95 252 522 3167 313 0 0 486 0	1 3 1 26	149 95 378 0 0 0 486 0	5 3 0 3 0 0 4	372 286 0 522 0 103 0 1659 0
\$1	0=350 (Butterfly Valve) 0=400 (Butterfly Valve) 0=450 (Butterfly Valve) 0=500 (Butterfly Valve) 0=600 (Butterfly Valve) 0=700 (Butterfly Valve) 3)Internal Network Commercial 150pop/ha Residential 100pop/ha Residential 150pop/ha Residential 250pop/ha 4)Service Conections 0=1/2 0=1/.4 5)Renabilitation	74400 95200 125900 174000 243600 313200 25700 30400 18700 21000 30400	101	0 0 0 0 0 0 0	2451 2451	223 95 252 522 3167 313 0 486 0 0	2450 233	149 95 378 0 0 0 486 0 0	5 3 3 0 0 4 79	372 286 0 522 0 0 103 0 1659 0
**************************************	0=350 (Butterfly Valve) 0=400 (Butterfly Valve) 0=450 (Butterfly Valve) 0=500 (Butterfly Valve) 0=500 (Butterfly Valve) 0=700 (Butterfly Valve) 0=700 (Butterfly Valve) 3)Internal Network Commercial 150nop/ha Residential 150nop/ha Residential 150nop/ha Residential 150nop/ha Residential 250nop/ha 4)Service Conections 0=1/2 0=3/4 5)Renabilitation Vater Meter 1/2	74400 95200 125900 174000 243600 313200 25700 30400 18700 21000 30400 810 1280	191	0 0 0 0 0 0 0 0 0	2451 2451 33 13	223 95 252 522 3167 313 0 0 0 1985 42	2450 33	149 95 378 0 0 0 486 0 0	5 3 0 0 0 4 79 3093 3	372 286 0 522 0 0 103 0 1659 0 2505
	0=350 (Butterfly Valve) 0=400 (Butterfly Valve) 0=450 (Butterfly Valve) 0=500 (Butterfly Valve) 0=500 (Butterfly Valve) 0=700 (Butterfly Valve) 3)Internal Network Commercial 150nop/ha Residential 150nop/ha Residential 150nop/ha Residential 150nop/ha Residential 250nop/ha A)Service Conections 0=1/2 0=3/4 5)Renabilitation Vater Meter 3/4"	74400 95200 125900 174000 243600 313200 25700 30400 18700 21000 30400	191	0 0 0 0 0 0 0 0 0	2451 2451 33 13 10 26	223 95 252 522 3167 313 0 0 486 0 0	2450 33	149 95 378 0 0 0 486 0 0 1985 42	5 3 0 3 0 0 4 79	372 286 0 522 0 0 103 0 1659 0
**************************************	0=350 (Butterfly Valve) 0=400 (Butterfly Valve) 0=450 (Butterfly Valve) 0=500 (Butterfly Valve) 0=500 (Butterfly Valve) 0=700 (Butterfly Valve) 3)Internal Network Commercial 150pop/ha Commercial 250pop/ha Residential 150pop/ha Residential 150pop/ha Residential 250pop/ha 4)Service Conections 0=1/2 0=3/4 5)Renabilitation Vater Meter 3/4" -01d Laterals	74400 95200 125900 174000 243600 313200 25700 30400 18700 21000 30400 810 1280	0	0 0 0 0 0 0 0 0 0	2451 33 13 13 1 26	223 95 252 3167 313 0 0 486 0 0 1985 42	2450 33	149 95 378 0 0 0 486 0 1985 42 0 430	5 3 0 0 0 4 79 3093 3	372 286 0 522 0 103 0 1659 0
	0=350 (Butterfly Valve) 0=400 (Butterfly Valve) 0=450 (Butterfly Valve) 0=500 (Butterfly Valve) 0=500 (Butterfly Valve) 0=600 (Butterfly Valve) 3)Internal Network Commercial 150pop/ha Residential 100pop/ha Residential 150pop/ha Residential 150pop/ha Residential 250pop/ha 4)Service Conections 0=1/2 0=1/4 5)Renabilitation Vater Meter 1/2' Vater Meter 1/2' Vater Meter 3/4' -01d Laterals Service Conections/Meter	74400 95200 125900 174000 243600 313200 25700 30400 18700 21000 30400 810 1280 400 880	0 82	0 0 0 0 0 0 0 0 0 0	2451 2451 33 13 10 26	223 95 252 522 3167 313 0 486 0 0 1985 42	2450 33 00	149 95 378 0 0 0 486 0 1985 42 0 -430 39	5 3 3 0 0 4 79 3093 3	372 286 0 522 0 0 103 0 1659 0 2505 4
	0=350 (Butterfly Valve) 0=400 (Butterfly Valve) 0=450 (Butterfly Valve) 0=500 (Butterfly Valve) 0=600 (Butterfly Valve) 0=700 (Butterfly Valve) 3)Internal Network Commercial 150pop/ha Residential 100pop/ha Residential 150pop/ha Residential 150pop/ha Residential 250pop/ha 4)Service Conections 0=1/2 0=1/4 5)Renabilitation Vater Meter 3/4 -01d Laterals Service Conections/Meter	74400 95200 125900 174000 243600 313200 25700 30400 18700 21000 30400 810 1280 400 880 880	0 82 403	0 0 0 0 0 0 0 0 0 196 0	2451 33 13 13 14 26 2451 33 1 0 0	223 95 252 522 3167 313 0 486 0 0 1985 42 0 0 430 39 355	2450 33 0 0 82 402	149 95 378 0 0 0 486 0 0 1985 42 0 0 430 39 351	3 0 0 0 4 79 3093 3	372 286 0 522 0 0 103 0 1659 0 2505 4
	0=350 (Butterfly Valve) 0=400 (Butterfly Valve) 0=450 (Butterfly Valve) 0=500 (Butterfly Valve) 0=600 (Butterfly Valve) 0=700 (Butterfly Valve) 3)Internal Network Commercial 150pop/ha Residential 150pop/ha Residential 150pop/ha Residential 150pop/ha Residential 250pop/ha 4)Service Conections 0=1/2 0=3/4 5)Renabilitation Vater Meter 1/2'' Vater Meter 3/4'' -01d Laterals Service Conection-w/Meter Service Conection-w/Meter	74400 95200 125900 174000 243600 313200 25700 30400 18700 21000 30400 810 1280 400 880 480 880 62000	0 82 403	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2451 2451 33 13 13 14 26 15 16 182 403	223 95 252 3167 313 0 486 0 0 1985 42 0 430 333 355 62	2450 33 2450 33 0 0	149 95 378 0 0 0 0 486 0 0 1985 12 0 430 39 354	5 3 0 0 0 4 79 3093 3	372 286 0 522 0 0 103 0 1659 0 2505 4
	0=350 (Butterfly Valve) 0=400 (Butterfly Valve) 0=450 (Butterfly Valve) 0=500 (Butterfly Valve) 0=500 (Butterfly Valve) 0=600 (Butterfly Valve) 0=700 (Butterfly Valve) 3)Internal Network Commercial 150pop/ha Residential 150pop/ha Residential 150pop/ha Residential 150pop/ha Residential 250pop/ha 4)Service Conections 0=1/2 0=3/4 5)Renabilitation Vater Meter 1/2' Vater Meter 3/4'' -01d Laterals Service Conctn.vo/Meter Service Conctn.vo/Meter Service Conctn.vo/Meter Service Conctn.vo/Meter 5)Flow Meter D=150 -do- D=350	74400 95200 125900 174000 243600 313200 25700 30400 18700 21000 30400 810 1280 400 880 880	0 82 403	0 0 0 0 0 0 0 0 0 196 0	2451 33 13 13 14 26 2451 33 1 0 0	223 95 252 522 3167 313 0 486 0 0 0 1985 42 0 430 333 355 62	2450 33 2450 33 0 0	149 95 378 0 0 0 486 0 0 1985 42 0 0 430 39 351	5 3 0 0 0 4 79 3093 3	372 286 0 522 0 0 103 0 1659 0 2505 4
	0=350 (Butterfly Valve) 0=400 (Butterfly Valve) 0=450 (Butterfly Valve) 0=500 (Butterfly Valve) 0=500 (Butterfly Valve) 0=500 (Butterfly Valve) 0=700 (Butterfly Valve) 3)Internal Network Commercial 150pop/ha Residential 150pop/ha Residential 150pop/ha Residential 150pop/ha Residential 150pop/ha A)Service Conections 0=1/2 0=3/4 5)Renabilitation Vater Meter 1/2' Vater Meter 3/4' -01d Laterals Service Conctn.v/Meter Service Conctn.v/Meter 6)Flow Meter 0=150 -do- 0=350 7)Fire Protection	74400 95200 125900 174000 243600 313200 25700 30400 18700 21000 30400 810 1280 400 880 480 880 62000	0 82 403	0 0 0 0 0 0 0 0 0 0 196 0 0 39 355	2451 2451 33 13 13 14 26 15 16 182 403	223 95 252 3167 313 0 0 486 0 0 1985 42 0 430 38 355 62 161	2450 33 2450 33 0 0	149 95 378 0 0 0 0 486 0 0 1985 42 0 0 430 39 354	5 3 0 3 0 0 4 79 3093 3	372 286 0 522 0 0 103 0 1659 0 2505 4
	0=350 (Butterfly Valve) 0=400 (Butterfly Valve) 0=450 (Butterfly Valve) 0=500 (Butterfly Valve) 0=500 (Butterfly Valve) 0=700 (Butterfly Valve) 0=700 (Butterfly Valve) 3)Internal Network Commercial 150pop/ha Residential 150pop/ha Residential 150pop/ha Residential 250pop/ha 4)Service Conections 0=1/2 0=3/4 5)Renabilitation Vater Meter 1/2' Vater Meter 3/4' -01d Laterals Service Conctn.w/Meter 5)Flow Meter 0=150 -do 0=0=500 7)Fire Protection 0=150	74400 95200 125900 174000 243600 313200 25700 30400 18700 21000 30400 810 1280 400 880 480 880 62000 164000	0 82 403	0 0 0 0 0 0 0 0 0 196 0 39 355	2451 2451 33 13 13 14 26 15 16 182 403	223 95 252 522 3167 313 0 486 0 0 1985 42 0 430 33 355 62 164	2450 33. 2450 33. 0 0	149 95 378 0 0 0 486 0 1985 42 0 0 430 354 0	5 3 0 3 0 0 4 79 3093 3	372 286 0 522 0 0 103 0 1659 0 2505 4
	0=350 (Butterfly Valve) 0=400 (Butterfly Valve) 0=450 (Butterfly Valve) 0=500 (Butterfly Valve) 0=600 (Butterfly Valve) 0=600 (Butterfly Valve) 3)Internal Network Commercial 150pop/ha Residential 150pop/ha Residential 150pop/ha Residential 150pop/ha Residential 250pop/ha 4)Service Conections 0=1/2 0=1/4 5)Renabilitation Vater Meter 1/2'' Vater Meter 1/2'' Vater Meter 3/4'' -01d Laterals Service Conection-w/Meter Service Conection-w/Meter Service Conection-w/Meter 6)Flow Meter 0=150	74400 95200 125900 174000 243600 313200 25700 30400 18700 21000 30400 810 1280 400 880 480 880 62000	0 82 403	0 0 0 0 0 0 0 0 0 196 0 355 0	2451 33 13 13 1 1 26 2451 33 1 0 0	223 95 252 522 3167 313 0 486 0 0 1985 42 0 0 430 39 355 62 164	2450 333 00 82 402	149 95 378 0 0 0 486 0 0 1985 42 0 0 430 351 0	3093 3093 3093	372 286 0 522 0 0 103 0 1659 0 2505 4
	0=350 (Butterfly Valve) 0=400 (Butterfly Valve) 0=450 (Butterfly Valve) 0=500 (Butterfly Valve) 0=500 (Butterfly Valve) 0=600 (Butterfly Valve) 0=700 (Butterfly Valve) 3)Internal Network Commercial 150pop/ha Residential 150pop/ha Residential 150pop/ha Residential 150pop/ha Residential 250pop/ha 4)Service Conections 0=1/2 0=3/4 5)Renabilitation Vater Meter 1/2'' Vater Meter 3/4'' -01d Laterals Service Conection-w/Meter Service Conection-w/Meter Service Conection-w/Meter Service Conection-w/Meter Service Conection-w/Meter 10)Flow Meter 0=150 100 D=150 0=100 SUB-TOTAL	74400 95200 125900 174000 243600 313200 25700 30400 18700 21000 30400 810 1280 400 880 480 880 62000 164000	0 82 403	0 0 0 0 0 0 0 0 0 196 0 39 355	2451 33 13 13 1 1 26 2451 33 1 0 0	223 95 252 522 3167 313 0 486 0 0 1985 42 0 430 33 355 62 164	2450 333 00 82 402	149 95 378 0 0 0 486 0 1985 42 0 0 430 354 0	3093 3093 3093	372 286 0 522 0 0 103 0 1659 0 2505 4
	0=350 (Butterfly Valve) 0=400 (Butterfly Valve) 0=450 (Butterfly Valve) 0=500 (Butterfly Valve) 0=500 (Butterfly Valve) 0=600 (Butterfly Valve) 0=700 (Butterfly Valve) 3)Internal Network Commercial 150pop/ha Residential 150pop/ha Residential 150pop/ha Residential 150pop/ha Residential 150pop/ha Alservice Conections 0=1/2 0=1/4 5)Renabilitation Water Meter 1/2' Water Meter 3/4' -01d Laterals Service Conctn.w/Meter Service Conctn.w/Meter Service Conctn.w/Meter 6)Flow Meter 0=150 -do D=350 7)Fire Protection 0=150 0=100 SLB-TOTAL	74400 95200 125900 174000 243600 313200 25700 30400 18700 21000 30400 810 1280 400 880 480 880 62000 164000	0 82 403	0 0 0 0 0 0 0 0 0 196 0 355 0	2451 2451 33 13 1 0 0 0	223 95 252 3167 313 0 486 0 0 1985 42 0 430 355 62 164	2450 33 2450 33 0 0	149 95 378 0 0 0 486 0 0 1985 42 0 0 430 351 0 0	3093 3093 3093	372 286 0 522 0 0 103 0 1659 0 2505 4
	0=350 (Butterfly Valve) 0=400 (Butterfly Valve) 0=450 (Butterfly Valve) 0=500 (Butterfly Valve) 0=500 (Butterfly Valve) 0=600 (Butterfly Valve) 0=700 (Butterfly Valve) 3)Internal Network Commercial 150pop/ha Residential 150pop/ha Residential 150pop/ha Residential 150pop/ha Residential 150pop/ha Residential 250pop/ha 4)Service Conections 0=1/2 0=3/4 5)Renabilitation Vater Meter 1/2' Vater Meter 3/4'' -01d Laterals Service Conctn.w/Meter Service Conctn.w/Meter 5)Flow Meter 0=150 -do- 0=350 7)Fire Protection 0=150 0=100 SLB-TOTAL 1)Administration Bldg. 2)Operation Center	74400 95200 125900 174000 243600 313200 25700 30400 18700 21000 30400 810 1280 400 880 480 880 62000 164000	0 82 403	0 0 0 0 0 0 0 0 0 0 196 0 355 0 0	2451 2451 33 13 1 1 26 2451 33	223 95 252 3167 313 0 0 486 0 0 1985 42 0 430 335 62 164 0 31032	2450 33 2450 33 0 0	149 95 378 0 0 0 0 486 0 0 1985 42 0 430 351 0 0	3093 3093 3093	372 286 0 522 0 0 103 0 1659 0 2505 4
	0=350 (Butterfly Valve) 0=400 (Butterfly Valve) 0=450 (Butterfly Valve) 0=500 (Butterfly Valve) 0=600 (Butterfly Valve) 0=600 (Butterfly Valve) 0=700 (Butterfly Valve) 3)Internal Network Commercial 150pop/ha Residential 150pop/ha Residential 150pop/ha Residential 150pop/ha Residential 250pop/ha 4)Service Conections 0=1/2 0=1/4 5)Renabilitation Vater Meter 1/2'' Vater Meter 1/2'' Vater Meter 1/2'' Vater Meter 3/4'' -01d Laterals Service Conctn.w/Meter Service Conctn.w/Meter 6)Flow Meter 0=150	74400 95200 125900 174000 243600 313200 25700 30400 18700 12000 30400 400 880 480 880 480 62000 164000	0 82 403	0 0 0 0 0 0 0 0 0 0 0 196 0 0 39 355 0 0	2451 2451 33 13 1 0 0 0	223 95 252 522 3167 313 0 486 0 0 1985 42 0 430 355 62 164 0 0	2450 33 0 0 402	149 95 378 0 0 0 486 0 0 1985 42 0 430 39 354 0 0	3093 3093 3093	372 286 0 522 0 0 103 0 1659 0 2505 4 0 0 0 0
	0=350 (Butterfly Valve) 0=400 (Butterfly Valve) 0=450 (Butterfly Valve) 0=500 (Butterfly Valve) 0=600 (Butterfly Valve) 0=600 (Butterfly Valve) 0=700 (Butterfly Valve) 3)Internal Network Commercial 150pop/ha Residential 150pop/ha Residential 150pop/ha Residential 150pop/ha Residential 250pop/ha 4)Service Conections 0=1/2 0=1/4 5)Renabilitation Vater Meter 1/2'' Vater Meter 1/2'' Vater Meter 1/2'' Vater Meter 3/4'' -01d Laterals Service Conctn.w/Meter Service Conctn.w/Meter 6)Flow Meter 0=150	74400 95200 125900 174000 243600 313200 25700 30400 18700 21000 30400 810 1280 400 880 480 880 164000 164000	0 82 403	0 0 0 0 0 0 0 0 0 196 0 39 355 0 0	2451 2451 33 13 1 1 26 2451 33	223 95 252 522 3167 313 0 486 0 0 1985 42 0 430 355 62 164 0 0	2450 33. 2450 33. 0 0	149 95 378 0 0 0 486 0 0 1985 42 0 430 39 351 0 0	3093 3093 3093 3093	372 286 0 522 0 0 103 0 1659 0 2505 4 0 0 0 0 0 15275
	0=350 (Butterfly Valve) 0=400 (Butterfly Valve) 0=450 (Butterfly Valve) 0=500 (Butterfly Valve) 0=500 (Butterfly Valve) 0=600 (Butterfly Valve) 0=700 (Butterfly Valve) 3)Internal Network Commercial 150pop/ha Residential 150pop/ha Residential 150pop/ha Residential 150pop/ha Residential 250pop/ha 4)Service Conections 0=1/2 0=3/4 5)Renabilitation Vater Meter 1/2'' Vater Meter 3/4'' -01d Laterals Service Connection/Meter Service Connection/Meter Service Connection/Meter 1)Flow Meter 0=150 -do	74400 95200 125900 174000 243600 313200 25700 30400 18700 12000 30400 400 880 480 880 480 62000 164000	0 82 403	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2451 2451 33 13 1 1 26 2451 33	223 95 252 522 3167 313 0 486 0 0 1985 42 0 430 33 355 62 164 0 0 1583	2450 33 0 0 402	149 95 378 0 0 0 0 486 0 0 1985 42 0 0 430 354 0 0 7598	3093 3093 3093 3093	372 286 0 522 0 0 103 0 1659 0 2505 4 0 0 0 0 0 15275
	0=350 (Butterfly Valve) 0=400 (Butterfly Valve) 0=450 (Butterfly Valve) 0=500 (Butterfly Valve) 0=500 (Butterfly Valve) 0=600 (Butterfly Valve) 0=700 (Butterfly Valve) 3)Internal Network Commercial 150pop/ha Residential 150pop/ha Residential 150pop/ha Residential 150pop/ha Residential 250pop/ha 4)Service Conections 0=1/2 0=1/4 5)Renabilitation Vater Meter 1/2' Vater Meter 3/4' -01d Laterals Service Conctn.vo/Meter Service Conctn.v/Meter 6)Flow Meter 0=150 -do	74400 95200 125900 174000 243600 313200 25700 30400 18700 21000 30400 810 1280 400 880 480 880 164000 164000	0 82 403	0 0 0 0 0 0 0 0 0 0 0 196 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2451 2451 33 13 1 1 26 2451 33	223 95 252 3167 313 0 486 0 0 1985 42 0 430 355 62 164 0 0 31032 1583 0 0 31332	2450 33 0 0 82 402	149 95 378 0 0 0 486 0 0 1985 12 0 430 351 0 0 0 7598	3093 3093 3093 3093	372 286 0 522 0 0 103 0 1659 0 2505 4 0 0 0 0 0 0 15275
5	0=350 (Butterfly Valve) 0=400 (Butterfly Valve) 0=450 (Butterfly Valve) 0=500 (Butterfly Valve) 0=500 (Butterfly Valve) 0=600 (Butterfly Valve) 0=700 (Butterfly Valve) 3)Internal Network Commercial 150nop/ha Residential 150nop/ha Residential 150nop/ha Residential 150nop/ha Residential 150nop/ha Residential 250nop/ha 4)Service Conections 0=1/2 0=3/4 5)Renabilitation Vater Meter 1/2' Vater Meter 3/4'' -01d Laterals Service Conctn.w/Meter Service Conctn.w/Meter 6)Flow Meter D=150 -do- D=150 0=100 SLB-TOTAL 1)Administration Bldg. 2)Operation Center SUB-TOTAL Land Acquisition Vehicle Stored Material & Equip. SUB-TOTAL	74400 95200 125900 174000 243600 313200 25700 30400 18700 21000 30400 810 1280 400 880 480 480 62000 164000 16800 9400	0 82 403	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2451 2451 33 13 1 1 26 2451 33 1 0 0 1	223 95 252 522 3167 313 0 486 0 0 1985 42 0 430 355 62 164 0 31032 1583 1583 0 387 387	2450 33 0 0 82 402	149 95 378 0 0 0 486 0 0 1985 42 0 430 354 0 0 7598	3003 3000 44 79 3003 3	372 286 0 522 0 0 103 0 1659 0 2505 4 0 0 0 0 0 0 15275
5	0=350 (Butterfly Valve) 0=400 (Butterfly Valve) 0=450 (Butterfly Valve) 0=500 (Butterfly Valve) 0=500 (Butterfly Valve) 0=600 (Butterfly Valve) 0=700 (Butterfly Valve) 3)Internal Network Commercial 150pop/ha Residential 150pop/ha Residential 150pop/ha Residential 150pop/ha Residential 150pop/ha Residential 250pop/ha 4)Service Conections 0=1/2 0=3/4 5)Renabilitation Vater Meter 1/2' Vater Meter 3/4'' -01d Laterals Service Conctn.vs/Meter Service Conctn.vs/Meter 6)Flow Meter 0=150 -do- 0=350 7)Fire Protection 0=150 0=100 SLB-TOTAL 1)Administration Bldg. 2)Operation Center SUB-TOTAL Land Acquisition Vehicle Stored Material & Equip. SUB-TOTAL Replacement of Equipment	74400 95200 125900 174000 243600 313200 25700 30400 18700 21000 30400 810 1280 400 880 480 880 164000 164000	0 82 403	0 0 0 0 0 0 0 0 0 0 196 0 39 355 0 0 0 590	2451 2451 33 13 1 1 26 2451 33 1 0 0 0	223 95 252 3167 313 0 0 486 0 0 1985 42 0 430 39 355 62 164 0 31032 1583 0 0 31032	2450 33 0 0 82 402	149 95 378 0 0 0 486 0 0 1985 42 0 0 430 351 0 0 7598 0 0 103 0 0	3003 300 44 79 3003 3	372 286 0 522 0 0 103 0 1659 0 2505 4 0 0 0 0 0 15275
5	0=350 (Butterfly Valve) 0=400 (Butterfly Valve) 0=450 (Butterfly Valve) 0=500 (Butterfly Valve) 0=600 (Butterfly Valve) 0=600 (Butterfly Valve) 0=700 (Butterfly Valve) 3)Internal Network Commercial 150pop/ha Residential 150pop/ha Residential 150pop/ha Residential 150pop/ha Residential 150pop/ha Residential 250pop/ha 4)Service Conections 0=1/2 0=1/4 5)Renabilitation Vater Meter 1/2'' Water Meter 1/2'' Water Meter 1/2'' Water Meter 3/4'' -01d Laterals Service Conctn.w/Meter Service Conctn.w/Meter 6)Flow Meter D=150 -do- D=150 0=100 SLB-TOTAL 1)Administration Bldg. 2)Operation Center SUB-TOTAL Land Acquisition Webicle Stored Material & Equip. SUB-TOTAL Land Acquisition Webicle Stored Material & Equip.	74400 95200 125900 174000 243600 313200 25700 30400 18700 21000 30400 810 1280 400 880 480 880 164000 164000	0 82 403	0 0 0 0 0 0 0 0 0 0 0 196 0 0 39 355 0 0 0 590 180 600 1381	2451 2451 33 0 0 1 82 403	223 95 252 522 3167 313 0 486 0 0 1985 42 0 0 31032 1583 0 0 31733 7	2450 33 0 0 0 82 402	149 95 378 0 0 0 486 0 0 1985 42 0 430 39 351 0 0 7598 0 103 103 103 103 103 103	3093 3093 3093 3093	372 286 0 522 0 0 103 0 1659 0 2505 4 0 0 0 0 0 0 0 15275
5	0=350 (Butterfly Valve) 0=400 (Butterfly Valve) 0=450 (Butterfly Valve) 0=500 (Butterfly Valve) 0=500 (Butterfly Valve) 0=500 (Butterfly Valve) 0=700 (Butterfly Valve) 3)Internal Network Commercial 150pop/ha Residential 150pop/ha Residential 150pop/ha Residential 150pop/ha Residential 250pop/ha 4)Service Conections 0=1/2 0=1/4 5)Renabilitation Vater Meter 1/2'' Vater Meter 3/4'' -01d Laterals Service Conection-v/Meter Service Conection-v/Meter Service Conection-v/Meter 6)Flow Meter 0=150 -do: D=350 7)Fire Protection D=150 0=100 SL8-TOTAL 1)Administration Bldg. 2)Operation Center SUB-TOTAL Land Acquisition Vehicle Stored Material & Equip. SUB-TOTAL Replacement of Equipment T 1 T 4 L Leak Octection	74400 95200 125900 174000 243600 313200 25700 30400 18700 21000 30400 810 1280 400 880 480 880 62000 164000 16800 9400	1800 2 969	0 0 0 0 0 0 0 0 0 0 0 196 0 39 355 0 0 0 590 11 791 11 791 1381	2451 2451 33 0 0 1 82 403	223 95 252 522 3167 313 0 486 0 0 1985 42 0 0 39 355 62 164 0 0 31032 1583 0 0 387 387 37357	2450 33. 0 0 82,402	149 95 378 0 0 0 486 0 0 1985 42 0 0 430 39 354 0 0 7598 0 0 7598	3093 3093 3093 3093 3093	372 286 0 522 0 0 0 103 0 0 1659 0 2505 4 0 0 0 0 0 0 0 15275
5	0=350 (Butterfly Valve) 0=400 (Butterfly Valve) 0=450 (Butterfly Valve) 0=500 (Butterfly Valve) 0=600 (Butterfly Valve) 0=600 (Butterfly Valve) 0=700 (Butterfly Valve) 3)Internal Network Commercial 150pop/ha Residential 150pop/ha Residential 150pop/ha Residential 150pop/ha Residential 150pop/ha Residential 250pop/ha 4)Service Conections 0=1/2 0=1/4 5)Renabilitation Vater Meter 1/2'' Water Meter 1/2'' Water Meter 1/2'' Water Meter 3/4'' -01d Laterals Service Conctn.w/Meter Service Conctn.w/Meter 6)Flow Meter D=150 -do- D=150 0=100 SLB-TOTAL 1)Administration Bldg. 2)Operation Center SUB-TOTAL Land Acquisition Webicle Stored Material & Equip. SUB-TOTAL Land Acquisition Webicle Stored Material & Equip.	74400 95200 125900 174000 243600 313200 25700 30400 18700 21000 30400 810 1280 400 880 480 880 62000 164000 16800 9400	0 82 403	0 0 0 0 0 0 0 0 0 0 0 196 0 0 39 355 0 0 0 590 180 600 1381	2451 2451 33 0 0 1 82 403	223 95 252 522 3167 313 0 486 0 0 1985 42 0 0 31032 1583 0 0 31733 7	2450 33. 0 0 82,402	149 95 378 0 0 0 486 0 0 1985 42 0 430 39 351 0 0 7598 0 103 103 103 103 103 103	3093 3093 3093 3093 3093	372 286 0 522 0 0 103 0 1659 0 2505 4 0 0 0 0 0 0 0 15275

(Unit: thousand Pesos)

SURCE FACILITY	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SOURCE FACILITY	0 0 0
(1) DEEP VELL CONSTRUCTION 180000 1 1160 1 11	0 0 0
(2)DEEP VELL PUMP V/NOUSE 790000 1 790 1 790 1 790 1 790	0 0 0
Flow Meter D=150	0
SUB-TOTAL 3 2012 3 2012 3 2012	0
2 TRANSMISSION FACILITIES	0
Ci)Pipe Protection	0
D=200	0
D=300	0
(2)Main Pipes	0
D=250 (Steel Pipe) 630 200 126 200 126 100 63 D=350 (Steel Pipe) 900 0 0 0 D=400 (Steel Pipe) 970 0 0 0 D=450 (Steel Pipe) 1160 0 0 0 D=500 (Steel Pipe) 1330 0 0 0 D=600 (Steel Pipe) 1600 0 0 0 D=700 (Steel Pipe) 1910 0 0 0 SUB-TOTAL 126 126 63 O	0
D=350 (Steel Pipe) 900 0 0 0 0 0 0 0 0	0
D=400 (Steel Pipe) 970 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0
D=450 (Steel Pipe) 1160 0 0 0 0 0 0 0 0 0	0
D=450 (Steel Pipe) 1160 0 0 0 0 0 0 0 0 0	0
D=500 (Steel Pipe) 1330 0 0 0 0 0 0 0 0 0	0
D=800 (Steel Pipe) 1600 0 0 0 0 0 0 0 0	0
D=700 (Steel Pine) 1910 0 0 0 0	0
SUB-TOTAL 126 126 63	0
3 0 STRIBUTION FACILITIES (1)Reservoir (2)Pumm Facility (Eqip.) -do- (Civil) -do- 45kx/d 119000 0 0 0 0 0 0 0 -do- 45kx/d 119000 0 0 0 0 0 0 0 (4)Electric Sub-station (5)Distribution pipes 1992 1993 1994 1)Main Pipes D=150 (PVC Pipe) 410 0 0 0 0 D=200 (Steel Pipe) 520 0 0 0 D=250 (Steel Pipe) 630 0 0 0 0 D=350 (Steel Pipe) 760 0 0 0 D=350 (Steel Pipe) 900 0 0 0 D=450 (Steel Pipe) 970 0 0 0 D=450 (Steel Pipe) 1160 0 0 0	0
(1)Reservoir (2)Pumm Facility (Eqip.) (3)Chirnth Facility 22kx/d 98100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 :
(2)Pump facility (Eqp.) -do- (Civil) (3)Chirnth facility 22kx/d 98100 0 0 0 0 0 0 0 0 -do- 45kx/d 119000 0 0 0 0 0 0 0 (4)Electric Sub-station (5)Distribution pipes 1992 1993 1994 1)Main Pipes 0=150 (PVC Pipe) 410 0 0 0 0 0 0=250 (Steel Pipe) 520 0 0 0 0 0=250 (Steel Pipe) 630 0 0 0 0 0=350 (Steel Pipe) 760 0 0 0 0=350 (Steel Pipe) 900 0 0 0 0=400 (Steel Pipe) 970 0 0 0 0=450 (Steel Pipe) 970 0 0 0 0=450 (Steel Pipe) 1160 0 0 0	0 :
-do - (Civil) (3)Chirpth Facility 22kx/d 98100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 :
(3)Chirnth Facility 22kg/d 98100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 :
O	0 :
(4)Electric Sub-station 1992 1993 1994 (5)Distribution pipes 1992 1993 1994 1)Main Pipes 0 0 0 0=150 (PVC Pipe) 410 0 0 0 0=200 (Steel Pipe) 520 0 0 0 0=250 (Steel Pipe) 630 0 0 0 0=300 (Steel Pipe) 760 0 0 0 0=350 (Steel Pipe) 900 0 0 0 0=400 (Steel Pipe) 970 0 0 0 0=450 (Steel Pipe) 1160 0 0 0	
(5) Distribution pipes 1) Main Pipes D=150 (PVC Pipe) D=200 (Steel Pipe) D=250 (Steel Pipe) D=300 (Steel Pipe) D=350 (Steel Pipe) D=350 (Steel Pipe) D=400 (Steel Pipe) D=400 (Steel Pipe) D=450 (Steel Pip	1995
1) 1 1 1 1 1 1 1 1 1	1995
D=150 (PVC Pipe) 410 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
D=200 (Steel Pipe) 520 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1
D=200 (Steel Pipe) 520 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1
0=250 (Steel Pipe) 630 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
0=300 (Steel Pipe) 760 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	į
0=350 (Steel Pipe) 900 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	!
D=400 (Steel Pipe) 970 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
0=450 (Steel Pipe) 1160 0 0	1
	1
0=500 (Steel Pipe) 1330 0 0 0	į
0 0=600 (Steel Pipe) 1600 0 0 0 0	i
0=700 (Steel Pine) 1910 0 0 0:	
2)Valves	ł
D=150 (Gate Valve)	· [
0=200 (Gate Valve)	į
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	į
0=300 (Sutterfly Valve) 34800 0 0 0	i
0=350 (Butterfly Valve) 74400 0 0 0	1
0=400 (Butterfly Valve) 95200 0 0	1
1 1 4 44 3	1
	İ
0=500 (Butterfly Valve) 174000 0 01 0	į
0=600 (Butterfly Valve) 243600 0 0 0	į
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	~~~- <u>-</u>
3)Internal Network	_
Commercial 150pop/ha 25700 4 103 4 103 3 77	3
Commercial 250pop/ha 30400 0 0 0	i
	ì
Residential 150pop/ha 21000 70 1650 70 1650 70 1650	78 : 10
Residential 250poo/ha 30400 0 0	i
4)Service Conections	
	3002 2
0=3/4 1280 3 4 2 3 2 3	2
5)Rehamilitation	
Vater Meter 1/2'' 400 0 0	Ì
1 1 100	į
	ì
Old Laterals	į
Service Conctn.wo/Meter 480 0 0 0	i
Service Cancin. v/Meter 880 0 0 0	!
6)Flow Meter 0=150 62000 0 0	
-do- D=350 164000 0 0 0	
7) Fire Protection	
D=150 16890 0 0 0	i
0=100 9400 0 0	
SUB-TOTAL 127! 4270 4211	
4 (1) Administration Blug.	
2) Operation Center	1
SUR-TOTAL 0 0 0	
5 Land Acquisition 100 0 0	~~~- !
Vehicle 300000 I 300 I 300 I 300	
Stored Material & Eduip. 1 85 85 85	
SUB-TOTAL 385 384 .	<u> </u>
6 Replacement of Equipment 0 0 0	
T 0 T A L 6794 6793 6703	1 4
7 Leah Detection 240 0 0 0	
[GRAND TOTAL 6791 6793 6793	