フィリピン共和国

地方都市上水道整備計画調查

最終報告書 (付属資料)

昭和62年3月

国際協力事業団

LIBRARY 1031564[6]

フィリピン共和国

地方都市上水道整備計画調查

最終報告書

(付属資料)

昭和62年3月

国際協力事業団

マイク UI フィルム作放

国際協力事	
登入 月日 '87.4.8	118
登錄No. 16160	50S

Angeles City, Pampanga

	•	Page
3.2.1	LIST OF SUBDIVISIONS (MARCH, 1983)	1
3.4.1	POWER RATE OF ANGELES ELECTRIC CORPORATION	5
4.1.1.A	WATER SUPPLY OF THE SUBDIVISIONS VISITED BY JICA	
	STUDY TEAM	6
4.1.1.B	WATER CHARGES FOR THE SUBDIVISIONS VISITED BY JICA	
1	STUDY TEAM	. 7
4.1.2	POPULATION AND NUMBER OF HOUSEHOLDS SERVED BY TYPE	
	OF WATER SOURCE (1980)	8
4.1.3	LEVEL I WATER SUPPLY SYSTEMS (AS OF DECEMBER 1984)	10
4.1.4	LEVEL II WATER SUPPLY SYSTEMS (AS OF 1985)	10
4.2.1	LEVEL I WATER SUPPLY SYSTEM	11
4.2.2	LEVEL II WATER SUPPLY SYSTEM	13
4.2.3	PUMP EFFICIENCY TEST AT NO.1 PUMP STATION	14
4.2.4	WATER PRESSURE IN THE SERVICE AREA	18
4.2.5	NUMBER OF CONNECTION BY METERED AND UNMETERED	27
4.4.1	NUMBER OF CONNECTIONS, CONSUMPTION AND WATER CHARGES	28
4.4.2	COMPOSITION OF EACH BARANGAY IN TERMS OF WATER ZONE	31
4.4.3	WATER CONSUMPTION	32
4.5.1	UNACCOUNTED-FOR WATER/NOT UTILIZED WATER	33
6.6.1	EXISTING WELL INVENTORY IN PAMPANGA PROVINCE	56
6.6.2	WELL LITHOLOGIC LOGS (ANGELES CITY, PAMPANGA)	57
6.7.1	SELECTION OF WATER QUALITY EXAMINATION POINTS	66
6.7.2	WATER QUALITY ANALYSIS - ANGELES CITY	68
7.2.1	DATA ON THE UNIT COST FOR ESTIMATION OF PROJECT COST	70
7.2.2	EXCERPT FROM LWUA METHODOLOGY MANUAL	79
7.3.1	COST ESTIMATES OF WATER SOURCE ALTERNATIVES	81
7.3.2	COMPUTER-AIDED HYDRAULIC ANALYSIS OF DISTRIBUTION	
	SYSTEM (ANGELES CITY)	82
7.3.3	COST ESTIMATES OF ALTERNATIVE WATER SUPPLY SYSTEMS	95
8.2.1.A	BREAKDOWN OF COST ESTIMATES	98
8.2.1.B	PROJECT COST WITH FOREIGN AND LOCAL CURRENCY BREAKDOWN	
	(1986 PRICE LEVEL, ANAGELES CITY)	101
8.2.1.C	OPERATION AND MAINTENANCE COST (ANGELES CITY)	107
9.3.1	MARKET SURVEY	108
9.7.1	FINANCIAL INTERNAL RATE OF RETURN (FIRR)	113
9.8.1	PROPOSED WATER RATE	114

Dagupan City, Pangasinan

:		Page
3.4.1	DECORP POWER RATES (AS OF FEB. 1986)	1
4.2.1	DISCHARGE RATE OF THE EXISTING PUMP	2
4.2.2	PUMP EFFICIENCY TEST	7
4.2.3	WATER PRESSURE IN THE SERVICE AREA	10
6.6.1.1	WATER WELL INVENTORY	13
6.6.1.2	WELL LITHOLOGIC LOGS	16
6.6.2.1	GEORESISTIVITY SURVEY	32
6.7.1	WATER QUALITY EXAMINATION	60
7.1.1	EXCERPT FROM LWUA METHODOLOGY MANUAL	67
7.2.1	ALTERNATIVE STUDY OF WATER INTAKE FACILITY	69
7.2.2	DATA ON THE UNIT COST FOR ESTIMATION OF PROJECT COST	73
7.3.1	COMPUTER-AIDED HYDRAULIC ANALYSIS OF DISTRIBUTION	·
	SYSTEM (DAGUPAN CITY)	82
8.2.1.A	BREAKDOWN OF COST ESTIMATES	89
8.2.1.B	PROJECT COST WITH FOREIGN AND LOCAL CURRENCY BREAKDOWN	
	(1986 PRICE LEVEL, DAGUPAN CITY)	92
8.2.1.C	OPERATION AND MAINTENANCE COST (DAGUPAN CITY)	98
9.3.1	MARKET SURVEY	99
9.7.1	FINANCIAL INTERNAL RATE OF RETURN (FIRR)	104
9.8.1	PROPOSED WATER RATE	105

Cabuyao-Sta. Rosa-Biñan, Laguna

		Page
3.4.1	ELECTRIC CHARGES ADOPTED BY THE MERALCO	. 1
4.1.1	POPULATION AND NUMBER OF HOUSEHOLDS BY WATER SERVICE	
	MUNICIPALITY OF CABUYAO (1980)	2
4.1.2	POPULATION AND NUMBER OF HOUSEHOLDS BY WATER SERVICE	
	MUNICIPALITY OF STA. ROSA (1980)	. 3
4.1.3	POPULATION AND NUMBER OF HOUSEHOLDS BY WATER SERVICE	
	MUNICIPALITY OF BINAN (1980)	4
4.2.1	SURVEY FOR ESTIMATION OF C-VALUE	5
4.2.2	WATER PRESSURE IN THE SERVICE AREA	8
4.2.3	COLLECTED CHARGES FOR THE MONTH OF JUNE, 1986 BY	
	CONSUMER TYPE	25
4.3.1	SPRING DISCHARGE RATE	26
4.4.1	WATER CONSUMPTION (METERED CONNECTION) BY CONSUMER	
	TYPE	28
4.5.1	UNACCOUNTED-FOR WATER/NOT-UTILIZED WATER	29
6.7.1	WELL LITHOLOGIC LOGS	50
6.8.1	SELECTION OF SAMPLING POINT	56
6.8.2	WATER QUALITY ANALYSIS	58
7.2.1	WATER RIGHT IN THE SPRING AREA	60
7.2.2	DATA ON THE UNIT COST FOR ESTIMATION OF PROJECT COST	61
7.3.1	ALTERNATIVE STUDY OF WATER SOURCE AND TRANSMISSION	70
7.3.2	COST COMPARISON OF THE TWO CASES	72
7.3.3	COMPUTER-AIDED HYDRAULIC ANALYSIS OF DISTRIBUTION SYSTEM	76
7.3.4	EXCERPT FROM LWUA METHODOLOGY MANUAL	86
8.2.1.A	BREAKDOWN OF COST ESTIMATES	88
8.2.1.B	PROJECT COST WITH FOREIGN AND LOCAL CURRENCY BREAKDOWN	
	(1986 PRICE LEVEL)	91
8.2.1.C	OPERATION AND MAINTENANCE COST BY PAHSE	97
9.3.1	MARKET SURVEY	98
9.7.1	FINANCIAL INTERNAL RATE OF RETURN (FIRR)	106
9.8.1	FINANCIAL RECOMMENDATION	107

Bayombong-Solano, Nueva Vizcaya

		Page
3.5.6	NUVELCO POWER RATES (AS OF AUGUST 1986)	1
4.2.1	SURVEY FOR ESTIMATION OF "C" VALUE	2
4.2.2	WATER PRESSUR TEST IN THE SERVICE AREA	5
4.3.1	DISCHARGE RATE OF SPRING	8
4.5.1	SURVEY FOR ESTIMATION OF UNACCOUNTED-FOR WATER/NOT	
	UTILIZED WATER	10
6.6.2	WELL LITHOLOGIC LOGS	21
6.7.1	WATER QUALITY EXAMINATION	27
7.1.1	EXCERPT FROM LWUA METHODOLOGY MANUAL	33
7.2.1	ALTERNATIVE STUDY OF WATER INTAKE FACILITY	35
7.2.2	DATA ON THE UNIT COST FOR ESTIMATION OF PROJECT COST	39
7.3.1	COMPUTER-AIDED HYDRAULIC ANALYSIS OF DISTRIBUTION	
	SYSTEM (BAYOMBONG-SOLANO)	48
8.2.1.A	BREAKDOWN OF COST ESTIMATES	80
8.2.1.B	PROJECT COST WITH FOREIGN AND LOCAL CURRENCY BREAKDOWN	
	(1986 PRICE LEVEL, BAYOMBONG SOLANO)	83
8.2.1.C	OPERATION AND MAINTENANCE COST (BAYOMBONG SOLANO)	89
9.3.1	MARKET SURVEY	90
9.7.1.	FINANCIAL INTERNAL RATE OF RETURN (FIRR)	97
9.8.1	FINANCIAL RECOMMENDATION	98

本報告書の構成について

本件フィリピン国地方都市上水道整備計画調査に係る最終報告書については和文、英文の双方が作成されるものである。英文報告書は地方水道公社(Local Water Utilities Administration, 以後LWUAと略す)の要望により、各地域について本編と附属資料を一体としてそれぞれ各1冊に編集したが、和文報告書については、次のような構成とした。

すなわち、本調査の対象地域は、4地域に分かれているが、調査としては一つの調査であることを考え4地域を併せて一つの報告書として取扱うこととするとともに、利用の便宜に配意し、要約編、本編及び付属資料の3分冊構成とした。

(1) 要約編については、英文報告書の第1章「要約」と第2章「一般的背景」をまとめて編集としたもので、その構成は下記のとおりである。

I はじめに

-報告書の構成、調査の背景、調査の範囲・内容、等

Ⅱ 施設計画

- 現況、将来予測、水源、代替案検討、最適施設計画

Ⅲ 財務・経済分析

-市場調查、財務分析、経済分析

IV 組織及び経営

-現況組織、水道区の組織及び経営

V まとめ

ー結論と提言

(2) 本編については、4地区をA. アンヘレス市、B. ダグパン市、C. カブヤオーサンタ・ロサービニャン、D. バヨンボンーソラノの順序に編集した。各地区の章の構成は下記のとおりである。なお、本編のみに着目すれば、第3章から始まることはいささか体載上の問題はあろうが、英文版各章との対比の便宜を考えて、あえて章番号の変更をせぬこととした。

第3章 調査地域の概要

第4章 水道施設及び環境衛生施設の現況

第5章 人口及び水需要予測

第6章 水資源

第7章 代替案の比較検討

第8章 最適施設計画

第9章 財務分析

第10章 経済分析

第11章 組織及び経営

(3) 附属資料

附属資料として採録した主なるものは、下記のようなものである。

- 計画給水区域に係る行政区域細分別(Subdivision 等)現在人口
- ・私営水道、レベルⅠ水道、レベルⅡ水道関係資料
- 既存さく井水源に設置されているポンプに関する調査関係資料
- 現行水道施設における給水水圧調査関係資料
- 無効水量調査関係資料
- 給水栓数関係資料
- 既存井戸地質(岩質)柱状図
- 揚水可能量試算関係資料
- · C 値調査関係資料
- 湧泉取水可能量調查関係資料
- 水質調査資料
- 建設単価関係資料
- 建設費試算関連資料
- 管網計算資料
- 市場調査調査票
- 4地区に係る上記資料を本編と同じ編集順序により一冊にまとめた。

付属資料

アンヘレス市,パンパンガ県

APPENDIX 3.2.1 LIST OF SUBDIVISIONS (March 1983)

NAME OF SUBDIVISION	: OWNER/OPERATOR	: LOCATION		AREA (In Sq. M.)
	•			
1. Abacan Subdivision	: Nicolas Tinio	: Balibago	••	51,180.00
2. Abad Santos Subdivision		••	••	
3. Angelina Subdivision	: Rafael Lazatin	: San Jose	••	55,553.00
4. Eagong Bayan Subdivision	: Don Fepe Henson	: Cutcut	7	460,017,00
5. Lagong Silang Subdivision	: Don Pepe Henson	: Cutcut	••	19,882,00
6. Balibago Subdivision	: Isabelo Concepcion	: Balibago	••	190,960,00
7. Beatriz Pangilinan	: Boatriz Fangilinan	: Balibago	••	7,433.00
8. Belen Fomesite Subdivision	: Atty. R. Morales	: Sto. Cristo	**	237,609,00
9. Carmenville Subdivision	: Renato Tayag	: Cutcut	••	126,605,00
10. Checkpoint Subdivision	: inacleto Nuñoz	: Ealibago		138,444,00
11. Clarkriew Subdivision	: Felipe Juico	: Balibago	••	572,300,00
12. Clemente Dayrit	: Clemente Dayrit, Jr.	: Lourdes Sur East		473,905.70
13. Don Pepe Subdivision	: Don Pepe Henson	: Balibago	••	50,000,00
14. Don Bonifacio Subdivision	: Timoteo Gruz	: Fulung Maragul	••	720,000,00
15. Doña Afripina Subdivision	: Ernesto Lopez, Jr.	: Pandan	·••	154,320,00
16. El Cano Subdivision	: Dante Timbol	: Pulung Bulu	••	193,800,00
17. Ll Cano Subdivision	: Dante Timbol	: Pulung Bulu	**	227,000.00
18. Essel Fark	: Jesus Lazatin	: Sto. Domingo		46,840,00
19; Felisa Subdivision	: Jose Galura	: Balibago	••	94,448.00
20. Eenifel Subdivision	: Enrique Baluyut	: Balibago	••	27,177,00
21. Henson Low Cost Housing	: Don Pepe Henson	: Balibago	••	76,815,00
22. Hensonville Subdivision	: Don Pepe Henson	: Malabañas	••	529,689,00
23. Holy Cross Subdivision	: Carmela Narciso	: Sapangbato	••	184,758,00
	••		••	

NAME OF SUBDIVISION	OMNER/OPERATOR	LOCATION	: AREA (In Sq. M.
Of Tonofo Gubdinicion		700 CT	* 118 XE1 00
T. COSEIR DEBLITEROR	י מלפר ועד כדפס	· nationago	0001/1601
25. Josefaville - 1	: Jose Narciso	: Malabañas-Amsik	: 50,144,00
26. Josefaville - II	: Jose Narciso	: Malabañas	: 65,267.00
27. Kalayaan Subdivision	: Don Pepe Henson	: Lourdes Northwest	: 14,321.00
28. Mountain View Subdivision	: Oscar Santos	: Balibago	: 195,452.00
29. Leoncia Subdivision	: Rafael Lazatin	: Sto. Domingo	: 231,053,00
30. L & S Subdivision	••	: Sto. Domingo	
31. Marisol Subdivision	: Eusebio Lopez, Jr.	: Pandan	: 634,206.00
32. Nepomuceno I	: Francisco G. Nepomuceno	: Cutcut	: 116,142,50
53. Nepomuceno II	: Francisco G. Nepomuceno	: Cutcut	: 323,462.00
34. Meponuceno III	: Francisco G. Mpeomuceno	: Cutcut	: 870,480.00
35. Nepomuceno IV	: Francisco G. Nepomuceno	: Cutcut	: 365,436.00
36. New Valley	: Bonifacio Eusebio	: Balibago	: 88,836.00
37. Cphebia	: Abelardo Tinio	: Balibago	: 17.520.00
38. Flaricel I	: Anacleto Muñoz	: Malabañas	: 479,929.00
39. Plaricel II	: Anacleto Muñoz	: Anumas-Amsik	: 352,444.00
40. Priscilla Subdivision	: Priscilla Santos	: Balibago	5,529,00
41. Raymond Subdivision	: Angel Reyes	: Balibago	: 22,480.00
42. Roque Henson	: Roque Henson	: Balibago	: 27,177,00
43. Rovimer Subdivision	: Vicente Henson	: Dalibago	: 27,185.00
44. Riverside Subdivision	: Trinidad Lazatin	: Anumas	: 337,871.00
45. Sor Maria L,isa	: Renato Tayag	: Balibago	: 27,177,00
46. Sta. Maria I	: Priscilla J. Tinio	: Balibago	: 36,612,00
	-		

OWNER/OPERATOR Priscilla J. Tinio Anacleto Muñoz	LOCATOR	: AREA (In Sq. M)
cilla J. Tinio leto Muñoz		••
cilla J. Inno leto Muñoz	;	00.000
leto Muñoz	: ballbago	187,250.00
	: Sto. Domingo	: 464,300,00
Carlos Sandico	: Pandan	: 34,772,00
Sabina Gomez	: Balibago	: 37,493,00
Renato Tayag	: Pulung Waragul	: 201,658,00
Sarlos Sandico	: Pulung Maragul	: 119,259,00
Carlos Sandico	: Pandan	\$ 38,614,00
Jose P. Dizon	: Pandan	: 146,570,00
Jose Reynoso	: Pulung Bulu	: 62,327,00
Jose Reynoso	: Pulung Bulu	: 50,000,00
Jose Reynoso	: Fulung Bulu	: 108,546.00
Severina Lim	: Balibago	: '578,853.00
Abelardo Tinio	: Cutcut	:1,090,830,00
Abelardo Tinio	: Cutcut	\$ 625,572,00
Ben Tanhueco	: Balibago	3,920,00
Vicente Henson	: Balibago	: 27,177,00
ƙmanda Henson	: Balibago	: 27,176,00
s Lazatin	: Sto. Domingo	: 447,357.00
Pablo Panlilio	: Sto. Domingo	: 220,382.00
Purification Flores	: Malabañas	31,881.00
Abelardo Tínio	: San Jose	: 153,025,00
Don Pepe Henson	: Lourdes Northwest	: 11,859.00
Sabiano Sagulo	: Malabañas	: 528,000.00
	••	••
Sabina Gomez Renato Tayag Carlos Sandico Jose P. Dizon Jose Reynoso Seblardo Tinio Pablo Panlilio Sabiano Sagulo	·	: Belibago : Pulung Maragul : Pulung Maragul : Pandan : Pandan : Pulung Bulu : Pulung Bulu : Balibago : Cutcut : Cutcut : Balibago : Sto. Domingo : Malabañas : San Jose : Lourdes Northwest : Malabañas

MAMÍ OF SUBDIVISION : OWNER/OPERATOR : 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.		
Peter Nepomuceno : vision : Bafael Lazatin : Vladimir Panlilio : :	LOCATION	: AREA (In Sq. M)
pound: vision: Rafael Lazatin: Vladimir Panlilio con: .		
pound: : vision: Refeel Lazatin: : Vladimir Punlilio : : : : : :	Cutcut	: 650,000,00
rision : Rafael Lazatin : Vladimir Panlilio : : : : : : : : : : : : : : : : : : :	Pulung Maragul	••
rision : Rafael Lazatin : Vladimir Panlilio : : : : : : : : : : : : : : : : : : :	Balibago	
* Rafael Lazatin : * Vladimir Panlilio : * On : *	Palibago	••
: Rafael Lazatin : : Vladimir Panlilio : : : : : : : :	Lourdes Sur East	••
on : Vladimir Panlilio : : : : : : : : : : : : : : : : : : :	San Jose	
7. Pincda Compound : : : : : : : :	Fulung Bulu	: 26,673,00
6. Essel Subdivision :		••
		:
	*	

.

APPENDIX 3.4.1 Power Rate of Angeles Electric Corporation

Residential

First	15	kwh	₽	0.40	per	kwh
Next	35	kwh		0.38	per	kwh
Next	51	kwh		0.35	per	kwh
Next	100	kwh		0.33	per	kwh
Excess		kwh		0.32	per	kwh

Minimum Charge: ₹4.80 for the first 12 kwh

Small General Service

Classifi-	Conn. Load			
cation	in Watts	₽0.50/kwh	₽0.40/kwh	<u>₽0.35/kwh</u>
GS-1	2,500 or less	First 50 kwh	Next 150 kwh	Next 300 kwh
GS-2	2,501 to 5,000	90	260	550
GS-3	5,001 to 10,000	160	440	1,200
GS-4	10,001 up	350	900	3,250

Monthly Excess : ₽0.33 per kwh

Minimum Charge : ₹7.20 for the first 12 kwh

Large General Service (GS-5)

Demand Charge				₽1	.0.00	per	kw
Plus Energy Charge	First	100	hrs.	P	0.35	per	kwh
	Next	100	hrs.		0.32	per	kwh
	Next	100	hrs.		0.30	per	kwh
	0ver	300	hrs.		0.28	per	kwh

Minimum Charge : ₱300.00

APPENDIX 4.1.1.A Water Supply of the Subdivisions Visited by JICA Study Team

			Name	of Subd	ivision		
I T E	М	Carmen- ville	Essel	Sunset	Tímog Park	Villa Angela	Villa Teresa
Background Information	Year Established Number of Households	1968 550	1969	1985 70	1981	300	1969
•	Land area	47	-	-	32	-	63
	Ownership of the system	Ass [†] n.	Ass¹n	Ass'n	Ass¹n	Ass'n	Ass'n
Water Supply Status	Commencement of Op'n	1968	1976	1965	1982		1968
	Water source	10 well	l well	2 well	6 well	4 well	2 well
	Dist. Tank capacity (GAL)	50,000	11,000	100,000	100,000	-	100,000
	Number of Connections	550	222	70	174	300	350
	Served percentage	100	100	100	62	100	70

Note: - No data provided

APPENDIX 4.1.1.B Water Charges for the Subdivisions Visited by JICA Study Team

and the second second

Villa Teresa WW:

Water Consumption	Residential	Commercial
0 - 10 cu.m	P14.50 cu.m/minimum	₽17.00 cu.m/minimum
11 - 20	1.50	1.80
21 - 30	1.55	1,90
31 - 40	1.60	2.00
41 - 50	1.65	2.10
51 - 60	1.70	2.20
61 - 70	1.75	2.30
71 - 100	1.90	2.50
over 100	2.00	2.70

Villa Teresa WW:

Water Consumption	Residential
0 - 10 cu.m	₽22.00 cu.m/minimum
11 - 20	2.25
21 - 30	2.30
31 - 40	2.35
41 - 50	2.40
51 - 60	2.45
61 - 70	2.50
71 - 100	2.60
over 100	2.75

Essel WW:

First 10 cu.m (min) is \$28.00 plus \$2.00 per cu.m in excess of 10 m 3 Carmenville, Sunset and Timog Park WW - charge is flat rate at \$160.00 per month.

APPENDIX 4.1.2 POPULATION AND NUMBER OF HOUSEHOLDS SERVED BY TYPE OF WATER SOURCE (1980)

	To+21	ייייייייייייייייייייייייייייייייייייייי	3,740	١.	1,111	195	6,149	1,079	10,157	1,782	2,536	445	5,643	066	12,106	2,124	6,772	1,188	•	307	3,897	704	6,651	1,167	1,368	240	2,429	426	,57	1,505
Private and point source	Point source with	pitcherpump	2,456	43	1,111	195	3,841	674	6,042	1,060	2,536	. 445	4,389	770	10,505	1,843	6,772	1,188	1,287	226	2,746	482	4,816	845	1,368	240	1,916	33	4,349	763
Pri	Private pipes	with pump	1.254	220			2,308	405	4,115	722			1,254	220	1,601	281			461	81	1,151	202	$^{\circ}$	322			513	06	4,229	742
	S	Total	798	140			3,328		21,449	3,763			2,052	360	1,898	333	2,929	479	2,012	353	1,043	183	,03	1,235			450	42	3,939	691
	Waterworks	Others	616	108			3,328	584	21,449	3,763			519	91	1,704	299							õ	1,168						
		City	182	32			-						1,533	269	194	34	2,929	6/5	2,012	353	1,043	183	382	67			450	19	3,939	169
	No. of HH	Population	4,508	791	1,111	195	9,477	1,663	31,606	5,545	2,536	445	7,695	1,350	14,004	2,457	9,501	1,667	3,760	099	4,940	867	13,690	2,402	1,368	240	2,879	505	12,517	2,196
	Barangay		A. del Rosario		Amsik		Anunas		Balibago		Capaya		Claro M. Recto		Cutcut		Lourdes North-	west	Lourdes Sur		Lourdes Sur	East	Malabañas		Margot		Pampang		Pandan	
	Area				2		<u></u>		7		<u>ب</u>		9		Urban 7		8		6		10		11		12		13		14	

APPENDIX 4.1.2 (cont'd)

	1	-				ιι	Private and point source	eo
		7,70		Waterworks	- 1	Private pipes	Point source with	Total
ropulation		CILY		Ochers	lotal	Wien pump	picnerpump	
29 Cuayan 433	433						433	433
	. 16						76	76
30 Cutud 672	672						672	672
118	118						118	118
31 Mining 570	570				•		570	570
100	100						100	100
32 Tabun 684	684						684	684
120	120						120	120
Sub-Total 2,359 414	2,359						2,359	2,359
TOTAL 188,912 23,681 33,148 4,120	<u> </u>	23,68	E 2	42,178	65,859	27,872	95,181 16,737	123,053

Note: Above: Population Below: No. of HH

Source: Planning and Development Sec. of Angeles City City Engineer's Office

APPENDIX 4.1.3 LEVEL I WATER SUPPLY SYSTEMS (AS OF DEC. 1984)

Barangay	No. of Wells	Number of HH	Estimated Pop. Served	Popu- lation (1986)	Served Percentage	Remarks
1. A. del Rosario	3	31	186	5,069	3.7	
2. Anunas	1	12	72	575	12.5	
3. Capaya	3	32	192	3,763	5.1	
4. Cutcut	11	110	660	16,227	4.1	
5. Cutud	1	10	60	943	6.4	
6. Lourdes N.W.	9	90	540	11,201	4.8	
7. Lourdes S.E.	4	40	240	7,504	3.2	
8. Pampang	1	10	60	2,347	2.6	
9. Pulungbulu	7	63	378	7,837	4.8	
10. Pulung Cacutud	3	30	180	1,151	15.6	
11. Pulung Maragul	2	20	120	4,760	2.5	
12. Salapungan	2	22	132	7,615	1.7	
13. San Jose	. 7	64	384	7,394	5.2	
14. San Nicolas	1	10	60	4,184	1.4	
15. Sapalibutad	2	18	108	2,214	4.9	
16. Sta. Teresita	3	30	180	11,866	1.5	
17. Sto. Cristo	2	20	120	2,811	4.3	
18. Sto. Domingo	1 1	9	54	14,566	0.4	
19. Tabun	3	30	180	747	24.1	
20. Virgen delos Remedios	1	10	60	1,940	3.1	
Total	67	661	3,966	114,714	3.5%	

Note: Estimated population: 6 persons/HH

APPENDIX 4.1.4 LEVEL II WATER SUPPLY SYSTEMS
(AS OF 1985)

Barangay	No. of HH Served	Estimated Population Served	Population (1986)	Served Percentage	Remarks
1. Anunas	60	360	575	62.6	Ave. persons
2. Cuayan	60	360	342	100	per HH is 6
3. Cutud	40	240	943	25.5	
4. Capaya	120	720	3,763	19.1	
5. Pulung Cacu- tud	125	750	1,151	65.2	
6. Pandan	198	1,188	15,075	7.9	
Total	603	3,610	21,849	16.6%	

APPENDIX 4.2.1

LEVEL I WATER SUPPLY SYSTEM

As of Dec. 31, 1985

High iron concentration concentration Musky taste High iron Remarks Unsatisfactory Unsatisfactory Unsatisfactory Satisfactorý Satisfactory Satisfactory Satisfactory Satisfactory Sarisfactory Satisfactory of System Condition Constructed Date $\begin{array}{c} 1982 \\ 1982 \end{array}$ 1982 1982 1982 1982 1982 1982 1982 1982 1982 1982 1982 1982 1982 1982 1982 1982 Constructed MPW MPW MPW MPW MPW MPW MPW MPW MPM MPW MPW MPW MPW MPW MPW MPW MPW (feet) Well Casing Depth 1201 140¹ 80¹ 100 1 140 1 100 1 120 1 120 1 120 120 1201 140 1101 130 1201 140° 120° 2" 1-1/2" 1-1/2" 1-1/2" 1-1/2"1-1/2" 1-1/2" 1-1/2" 1-1/2" 1-1/2" Dia, 1-1/2" 5.5 (inch) 5 1-1/2" $1-1/2^{n}$ 5 5 $1-1/2^{11}$ Per System Household No. of 10 0.0000 10 10 10 0 10 00000 Well No. 5 9 7 8 10 11 12 13 14 15 17 19 Bgy. Sapalibutad Bgy. Pulung Bgy. San Jose Bgy. San Nicolas North West Bgy. San Jose Bgy. Lourdes Bgy. Pampang Bgy. Tabun Bgy. Pulung Bgy. Capaya Bgy. Pulung Bgy. Cutcut Bgy. Cutcut Bgy. Pulung Cacutud Bgy. Pulung Cacutud Bgy. Cutcut Maragul Cacutud Bgy. Tabun Maragal Bgy. Tabun Location Bgy. Cutud

APPENDIX 4.2.1 (Cont'd)

As of Dec. 31, 1985

		· "									_	٠.				· · ·								-		····, ,					
		Remarks						-																							
	Condition	of System	Satisfactory	Satisfactory		Satisfactory	Satisfactory	Satisfactory	Satisfactory	1	Satisfactory	Sotiefactory	5400000	Satisfactory	`	Satisfactory		Satisfactory	•	Satisfactory	Satisfactory	Satisfactory		Satisfactory		Satisfactory	Satisfactory	Satisfactory	Satisfactory	•	Satisfactory
	Date	Constructed	1982	1982		1982	1982	1982	1982	. (1982	1982	1	1983		1983		1983		1983	1983	1983		1983		1983	1983	1983	1983	,	1983
	Constructed	By	RWDC	RWDC	,	RWDC	RWDC	RVDC	RWDC		RWDC	Diff		RIVDC		RWDC		RVDC		RNDC	RWDC	REDC		RWDC	,	RUDC	RNDC	RWDC	RWDC		RWDC
	Casing	Depth (feet)	1001	1001		09	1001	1001	1001	(1001	108	3	,09		109		.09		. 09	£09	109	•	. 60°		801	401	801	40,		109
- 1	Well (Dia. (inch)	1-1/5"	1-1/2"		1-1/2"	1-1/2"	1-1/2"	1-1/2"	1	1-1/2"	1-1/211	: .	1-1/2"		1-1/2"		1-1/2"	•	1-1/2"	1-1/2"	1-1/2"		1-1/2"		1-1/2"	1-1/2"	1-1/2"	1-1/2"		1-1/2"
- [No. of	Household Per System	10	10		10	10	10	10	1	10	Ç) .	10		10		10		10	10	10		10		10	10	10	10		10
	1.1011	No.	77	45		97	7.7	48	65		20	5.1	, ,	52		53		54		55	56	57		59		09	19	62	63		64
		Location	Sítio Maligaya	Sitio Maligaya	Bgy. Lourdes	North West	Bgy. Cutcut	Sitio Maligaya	Sitio Maligaya	Bgy. Lourdes	North West	Bgy. Lourdes	Bgy. Lourdes	Sur East	Bgy. Lourdes	Sur East	Bgy. Lourdes	Sur East	Bgy. Agapito del	Rosario	Bgy. Pulungbulu	Bgy. Cutcut	Bgy. Virgen de		Bgy. Lourdes	North West	Bgy. Sto. Cristo	Bgy. Cutcut	Bgy. Sto. Cristo	Bgy. Lourdes	Sur East

APPENDIX 4.2.2

LEVEL II MATER SUPPLY SYSTEM

As of Dec. 31, 1985

		No. of	No. of					Ъ	Pipe		Conding	Date	
Location	tion	Household Connec- Served tion	Connec- tion	Source	System	Pump	Tank	Size (mm)	Size Length Type (mm)	Type		Con- structed	Remarks
Bgy.	Bgy. Anuas	09	7	Deepwell	Pumped	Pumped Centrifugal Steel	Stee1	20	541	PE	МРИН	1981	
Bgy.	Bgy. Cauayan	09	Ŋ	Deepwell	Pumped	Centrifugal Steel	Steel	20	498	면	MPWIII	1981	
Bgy.	Bgy. Cutud	05	т	Deepwell	Pumped	Centrifugal Steel	Steel	63-75	207	PE	MPWH	1981	
Bgy.	Bgy. Capaya	120		Deepwell	Pumped	Pumped Centrifugal Steel 3 25-63	Steel 3	25–63	872	PVC	MPIMI	1984	
Bgy.	Bgy, Pulung Cacutud	125	1	Deepwell	Pumped	Deepwell Pumped Centrifugal Steel	Steel	ı	1	PVC	МРИН	1984	
Bgy.	Bgy. Pandan (land												
	tenure)	198	21	Deepwell	Pumped	Centrifugal Steel 3	Steel 3 V=6.4m ³	38- 100	1,440 PVC	PVC	BWP/MLG 1985	1985	

Source: City Engineer's Office

APPENDIX 4.2.3 Pump Efficiency Test at No. 1 Pumping Station

The pump discharge rate, water pressure, and voltage and electric current were measured using different opening ratios of the gate valve. The following is a rough percentage of the opening ratio of the gate valve for the four examination steps. Approximately 50 to 60% of the ratio seemed to be allowable during the examination as a response of the pump and motor to the valve operation.

Valve Operation:

Case	Handle Ope.	Estimated Opening ratio
1	17.5	50 - 60%
2	11.5	40 - 50
3	6.5	30
4	4.5	20

Note: Number of turning for opening the valve completely; 23.5

The following Table shows the results of measurement.

TABLE 4.2.3.1 DATA ON PUMP TEST

Case	Discharge Rate (1/s)	TDH (m)	Ia (Amp)	Va (Volts)	Op (KW)	IPM (KW)	λο (%)	OPM (KW)	p (%)
1	43.3	27.9	93.3	240.0	11.8	33.0	35.8	28.1	42.0
2	43.2	29.9	92.3	246.6	12.7	33.5	37.9	28.5	44.6
3	43.1	32.9	93.0	250.0	13.9	34.2	40.6	29.1	47.8
4	42.2	34.9	94.7	250.0	14.4	34.9	41.3	29.7	48.4

Note: TDH = (measured water pressure) + (distance between pump operation water level and level of pressure gauge: 18.3)

Abbreviations and adopted formulas in the Table are given below.

Q : Pump Discharge Rate (1/s)

TDH : Total Dinamic Head (m)

 $^{O}p = \frac{Q \times TDH}{102}$

IPM : Input Power to Motor (Kw)
$$IPM = \frac{Ia \times Va \times PF \times 3}{1000}$$

PF : Power Factor (0.85)

λο : Overall Efficiency of Pump and Motor (%)

$$\lambda o = \frac{OP}{IPM} \times 100$$

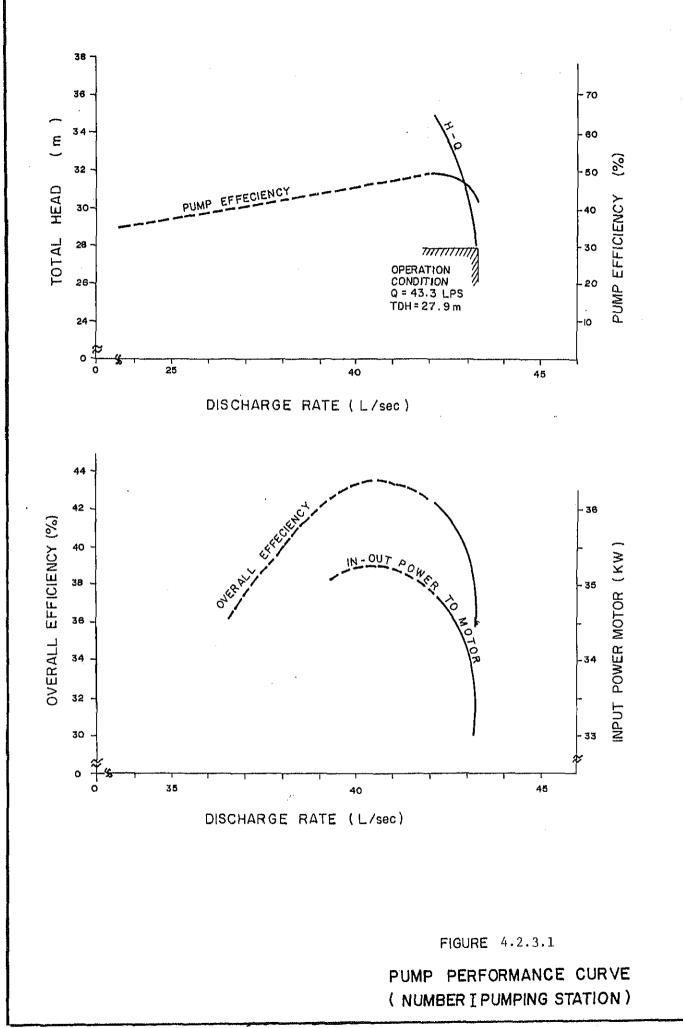
OPM : Motor Output (Kw)

 $OPM = IPM \times m$

 λm : Motor Efficiency (0.85)

λp : Pump Efficiency (%)

$$\lambda P = \frac{OP}{OPM} \times 100$$


FIGURE 4.2.3.1 shows the pump performance curb.

There is no data available on the conditions in selecting an appropriate pump and pump performance curb for the test pumping station. As such, a comparative study of the pump efficiency between those initially planned and operated at present cannot be made except from a general view point.

The coefficient assumed in estimating the efficiency of the pump, the pump and motor, are general figures based on field experience as follows:

PF = 0.85
$$\lambda m = 0.85 - 0.90 \text{ under the conditions of } 60 \text{ Hz},$$

$$2-6p \text{ and } 30-37 \text{ Kw}$$

The distance between water level during pump operation and the elevation of the water pressure gauge in order to estimate dynamic head is also assumed to be 18.3 m using the data on the pumping test conducted about 16 years ago. There is a possibility that the water level during pump operation at present might be about three meters below the assumed water level. This calculation is based on the information on the declining of water level at No. 9 pumping station (0.2m/year).

The result of measurements revealed that the pump discharge rate is around 42 to 43 1/s with a dynamic water head between 28 to 35 m. The input Power to motor and motor output, gradually increased in accordance with reduction of valve open ratio. The figures of OPM varied from 28 to 30 KW.

The motor output (60 Hz) for the vertical type multi-stage turbine pump is as follows:

OPM = 30 KW

d)

Pump discharge rate : 42 1/s

Dynamic water head : 35 m

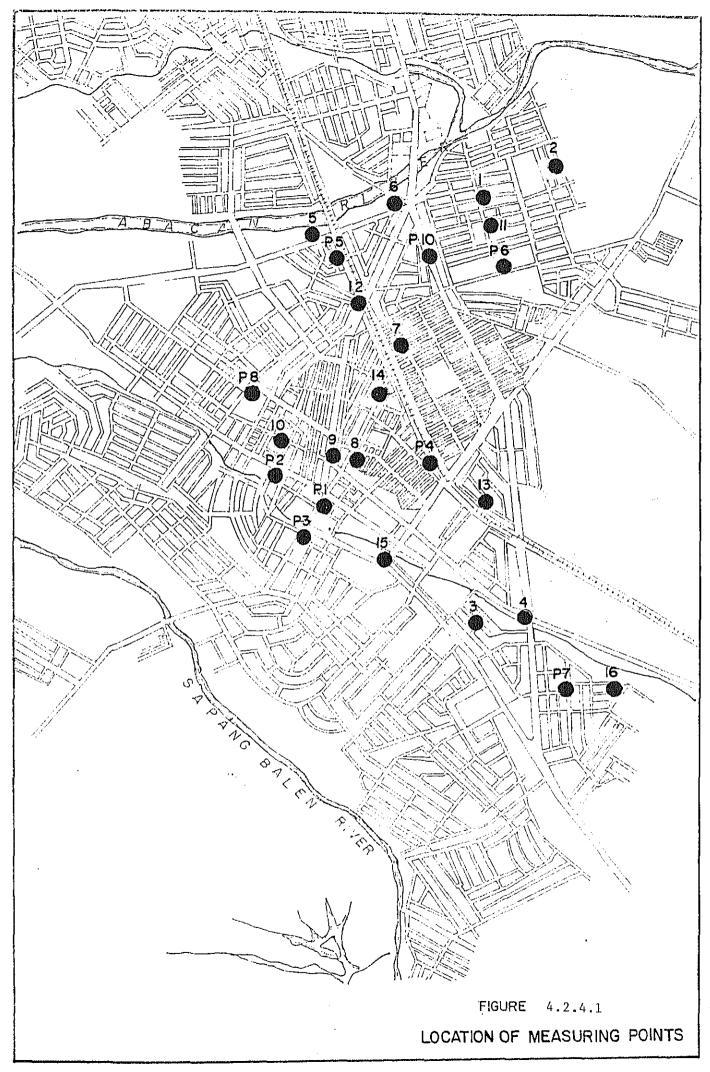
Motor output

The above figures are almost the same as those measured at the pumping station. Because of the lowering of the water table, the present pump operation conditions may be concluded as:

:

28 - 30 KW

a) Pump discharge rate : 42 - 43 1/s
b) Total dinamic water head : 31 - 38 M
c) Input power to motor : 33 - 35 KW

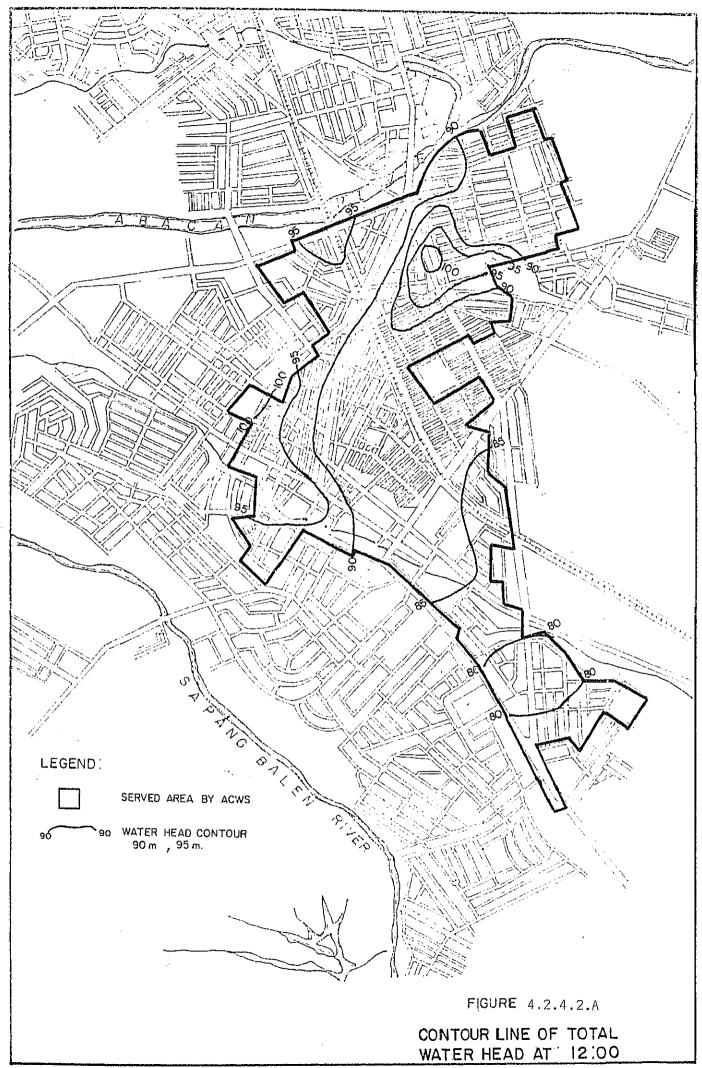

APPENDIX 4.2.4 Water pressure in the Service Area

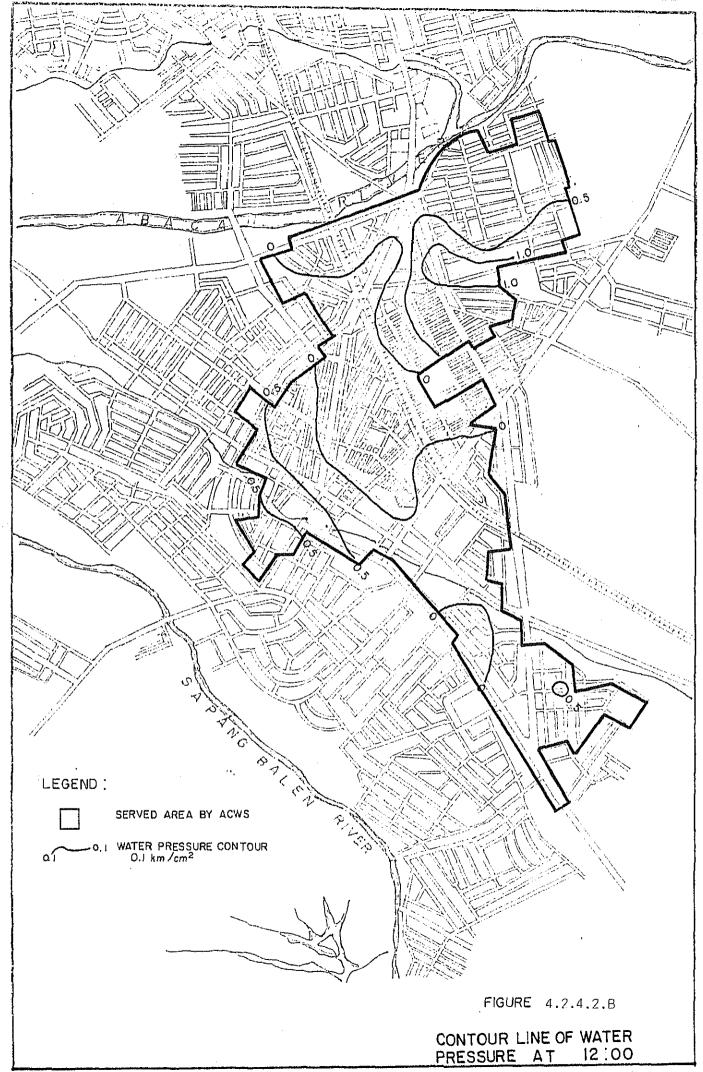
Twenty-five points were pinpointed to measure water pressure as shown in TABLE 4.2.4.1 and FIGURE 4.2.4.1. Sixteen points were service connections, while nine were pumping stations. A topographic survey was likewise conducted at 60 points.

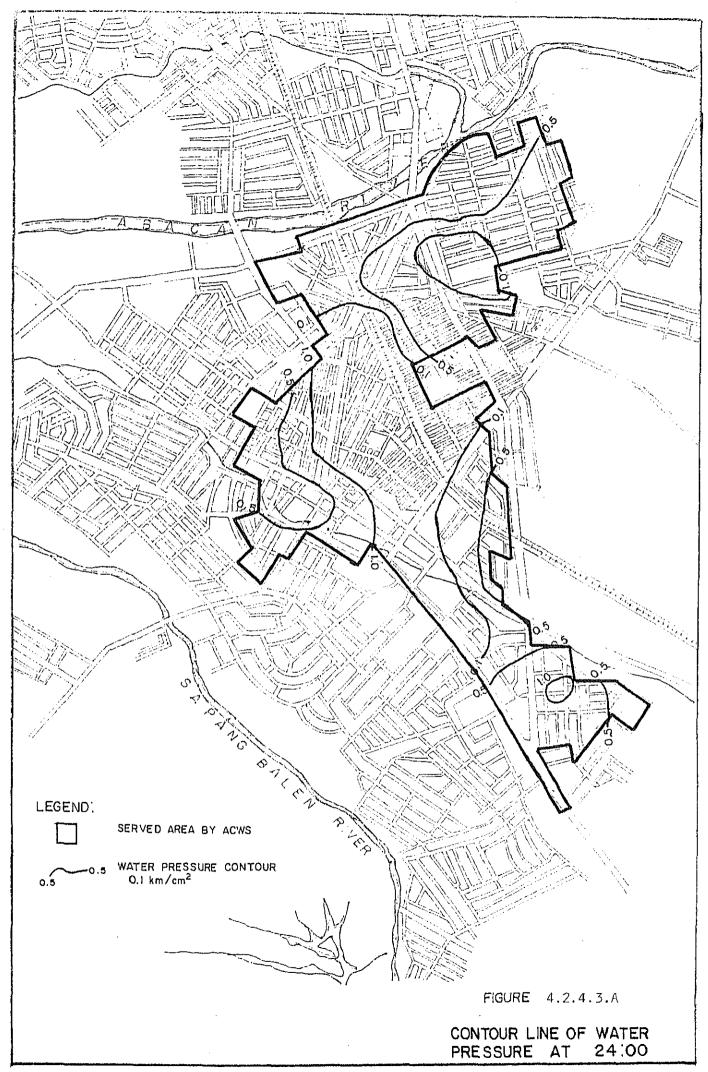
TABLE 4.2.4.1 MEASURING POINTS

ITEM	No.	Location/address of the Points	Consumer type	Dia. of Connect.
Pump		·		
Station	1	A. Mabini St.	Domestic	1/2"
	2	San Nicolas St.	11	11
	3	Rizal Extension	TT .	[*] H
	4	Kuliat St	†1	t t
	5	Sta. Teresita	t f	11
	6	Bo. Pandan Marison	tt	tt
	7	San Angelo	11	11
	8	Pampang Rd	11	11
	9	Division Rd. Mc Arthur Highway	11	11
Service Area	1	224, Astoria cor. Vgutls	Domestic	1/2"
	2	308, 8th St. Marison	11	İt
	3	San Jose St.	11	ti
	4	1524, Jeus St.	**	11
	5	427, Aran Malavak	11	†1
	6	23, Magkalinis St.	11	11
	7	628, M.L. Quezon St.	11	11
	8	593, Rizal St.	Commercial	11
	9	819, Henson St.	Domestic	t t
	10	3 Ar 17 Rizal St.	11	1†
	11	235, Harvard cor. Astoria	n	tt
	12	1042, Henson St.	Commercial	17
	13	J. Surla St.	Domestic	11
	14	1948, Jesus Ext.	n	? 1
	15	319, St. Rosario St.	11	11
	16	San Joaquin St.	11	11

The results of the measurements are given in TABLE 4.2.4.3. The contour line of the total water head and water pressure at 12:00 and 24:00 are depicted in FIGURE 4.2.4.2 A & B and 4.2.4.3 A & B. These may represent distribution of water pressure for day time and night time, respectively. The ground elevation at each point is given in TABLE 4.2.4.2, which is used in estimating the total water head.




4.2.4.3 RESULT OF WATER PRESSURE TEST TABLE


4 6444444444444444444444444444444444444	8 424 9 7 7 9 9 7 9 9 9 9 9 9 9 9 9 9 9 9 9
3 3 0 25 0 25 0 25 0 0 7 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
000000000000000000000000000000000000000	00000111
22 22 00.3 00.3 00.3 00.3 00.3 00.3 00.3	0.8 0.9 0.25 0.1 0.3 0.75 1.0
kg/cm, 21 0.2 0.8 0.3 0.1 0.2 <0.1 <0.1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	0.7 0.25 0.25 0.2 0.75 1.0 1.6
20 0.1 00.1 00.1 00.1 00.1 00.1 00.3 00.3	0.7 0.8 0.25 0.25 0.3 1.0 1.0
Unit 19 19 00.1 00.1 00.1 00.3 00.3	0.7 0.25 0.25 0.3 0.3 1.0 0.75 1.4
18 0 0.2 0 0.1 0 0.1 0 0.1 0 0.1 0 0.1 0 0.1 0 0.1 0 0.1	0.7 (0.1 (0.1 (0.1 (0.2 0.2 0.75 1.4
17 0.1 0.5 0.25 0.1 0.1 0.1 0.1 0.1 0.25 0.25	0.75 0.75 0.75 0.75 1.1
16 00.1 00.1 00.1 00.1 00.1 00.1 00.1	0.75 0.12 0.75 0.75
15 00.25 00.1 00.1 00.1 00.1 00.2 00.1 00.1	0.75 0.12 0.75 0.75 0.75
14 00.00 00	7.7.11.17.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7
13 00.2 00.1 00.1 00.1 00.1 00.1 00.1 00.1	0.7 0.7 0.1 0.1 0.1 0.1 0.2 0.2 0.5 0.5 0.5 0.7
	36 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1	22 C C C C C C C C C C C C C C C C C C
	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	2 1 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0
11111111111111111111111111111111111111	11 0.0 11 0.0 12 0.0 13 1.0
7 9999999999999999999999999999999999999	0.75 0.1 0.2 0.2 0.2 0.3 1.3
600000000000000000000000000000000000000	0.7 (0.3 (0.1 (0.3 (1.0 (1.0 (1.0
5 00.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.8 0.1 0.1 0.1 1.0 0.8 0.8
4 4 0.3 1.0 0.3 0.5 0.1 0.5 0.1 0.5 0.1 0.5 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	0.8 0.4 0.4 0.4 1.0 1.25 1.77
3 0.3 1.1 (0.5 0.5 0.5 (0.1 (0.1 0.25 0.25 0.25 0.1 0.4	0.8 0.4 1.1 0.4 1.0 1.25 0.8
2 0.3 1.2 0.5 0.5 0.5 0.1 0.1 0.1 0.1	0.8 0 0.4 1.3 0.4 0.75 1.25 1.0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.8 0.4 0.2 0.4 0.6 1.25 1.0
hour 10 9 8 4 4 4 12 12 12 12 12 12 12 12 12 12 12 12 12	11 2 3 2 4 4 7 1 1 0 8 8 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 1
No. No. Area	φ, α,
- 20 -	

Note: <0.1; less than 0.1 kg/cm^2

Operation of No. 2 P.S; 6:00 AM - 10: PM

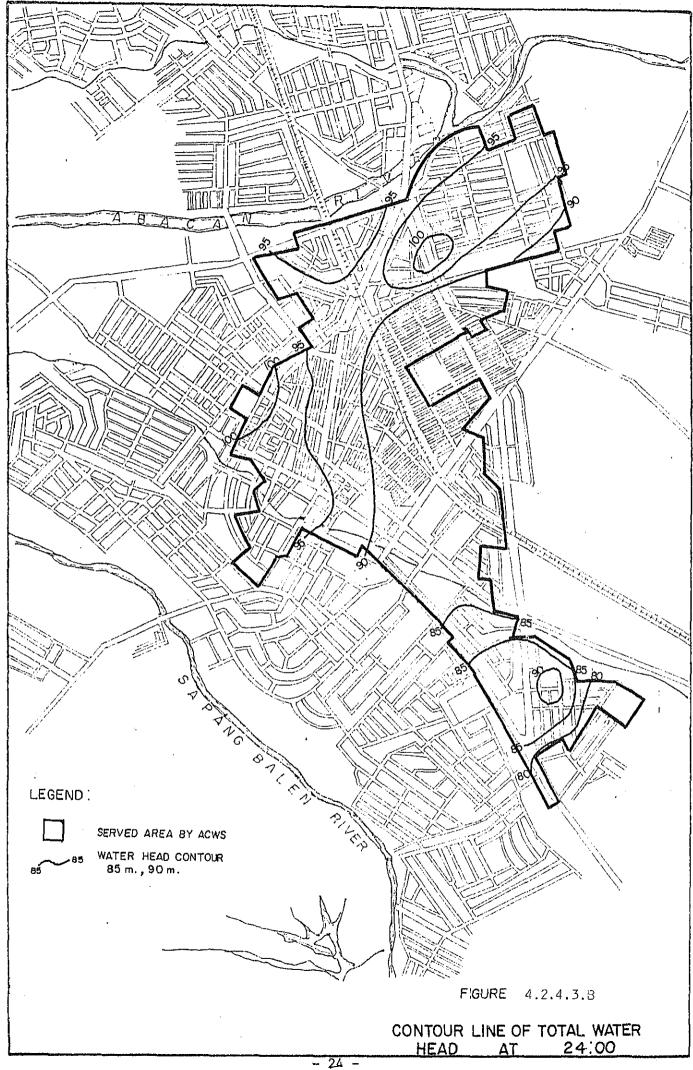


TABLE 4.2.4.2

GROUND ELEVATION AT SELECTED MEASURING POINTS

Point	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Service Area G.L. (m)	86	84	82	81	95	91	89	90	90	95	86	92	83	90	89	72
Point	1	2	3	4	5	6	7	8	9	10						
Pumping Station G.L. (m)	91	93	91	86	94	84	79	97		88						

Source: Topographic survey (JICA) and data from City Engineers Office

The service area has a gentle slope of one to two percent form northeast to southeast. The maximum difference of ground level in the area is approximately 20 meters.

The location of the existing 11 pumping stations in ground level terms is delineated below.

- a) Northern portion of the area with a higher elevation; 8 P.S.
- b) Western portion of the area with a higher elevation; 2 P.S.
- c) Southern portion of the area with a lower elevation: 1 P.S.

The ground level of the pumping stations affects the distribution status of total water head and the area covered by each pumping station, as shown in FIGURE 4.2.4.2.A and 4.2.4.3.A. In addition to the influence made by topographic conditions, water pressure in the area is directly affected by the pumping stations. The figures at the pumping stations vary from 0.2 - 0.4 kg/cm² at No. 5 P.S. to 1.2 - 1.7 kg/cm² at No. 10 P.S. The results of measurements made at the pumping stations revealed a dominant tendency in the daytime and nighttime; the highest water pressure during the hours from 8:00 A.M. to 5:00 P.M.; and the lowest from 6;00 A.M. to 7:00 P.M. This corresponds to general water use patterns during the day.

With regard to the distribution of water pressure in the area and the hourly variation, Figures 4.2.4.2.B and 4.2.4.3.B show the following:

- a) The water pressure changes through the day
- b) The figure during daytime (6:00 A.M. to 7:00 P.M.) is quite low (less than 0.1 kg/cm^2) in most of the area except for the limited area in the vicinity of the pumping stations. Furthermore, there is no water supply to the central portion of the service are in the daytime (about 1/3 of service area).
- c) Water pressure throughout the service are in the nighttime (8:00 P.M. to 5:00 A.M.) shows a little better figure than that in daytime. However the pressure in the central portion (1/3 of service area) is still quite low with a figure of less than 0.1 kg/cm^2 .

APPENDIX 4.2.5 NUMBER OF CONNECTION BY METERED AND UNMETERED

	Ì																					
Total	11.76	970	33690		10	1		263	7026	15	1057	,	,	7	414	2553	22		298	s	5	7
22	276	L1	65	'	,	,	,	55	1114	,	1	ı	'	1	,	72	,	1	87	'	1	,
21	172	6	195	1	'			5	107	1	'	,	,	,	,	63	~	,	2	,	,	,
20	158	91	552	ı	,		,	,	,	1	1	,	,	1	,	4.5	,	,	<u> </u>	,		
19	7,4,2	165	7072	1	,	1	,	7	275	1	-	,	1	i	,	227	ţ	'	~	,	,	,
18	57.5	99	1900	ı	1	,	- 1	1	٠,	1	1	,	<u> </u>	'	1	218	·			'	 '	1
-2	715	27	792	,	Ī	1	'		1.5	1	'	,	,	,	 	14.8	•	,	 	<u> </u>	•	<u> </u>
16	531	61	433	'	,	I,		1	,	ı	,	ı	-	ı	1	210	7		2	,	, 	
15	527	7.5	1011	,	1	,	l	ı	,	-	1	,	1	'	,	134	1	1	0.7	,	,	,
1	630	33	1386		,	,	'	-	50	1	1	1	'	l	1	=	'	,	-			
13	34.2	ı	1	,	'	,	'	1	ı	1	١	1		· +1	,	2	,	,	-		'	<u> </u>
ᄗ	751	15	251	'		,	1	~	7	1	, !	1	1	ŀ		342	ı	1	'	ļ -	<u> </u>	'
=	3	<u>'</u>	1	,	'	'	<u>'</u>		99	1	<u></u>	1	<u>'</u>	1	ı	9	'		32	'	1	ŀ
2	630		799	'_			<u>'</u>	=	513	3	1152		<u>'</u>	 	<u> '</u>	186	I	'	32			<u>'</u>
6	574	(332		,	1	1	1,	4 30		294	1	, , ,	I	'	155	1	'	11	٠,	۱ ا	'
ற	7.13	~~	877	,	,	,	, .	134	339.5	1	553	ı	,	,	,	~	2	,	63	_	~	<u> </u>
	349	5.7	395		•	,		2	99	1	•	ı	1	t	ı	147		,	2	ı	,	1
9	117	30	378	,	1		,	22	582		15	,	,	,	,	34	2	,	37	,	,	•
S	442	105	4519	1	ı	1	ı	ī	30	7	52	1	1	-	717	7.3	,(1	7	'	ı	'
7	270	0.6	2516	,	١ ،	1	'	1	1	1	1	·	_ '	ſ	'	72		,	2	,	,	•
3	241	12	276	1	10	•	1	i	ı	l :	_	1	ì	ı	1	77	-	'	3		1	
2	6.70	173	5687	1	-	1	1	3	350	ı		ı	1	ı	1	136	'	1	9	1		,
1	351	89	2754	ı	-	,	•	1	20	1	14	1	ı	l		9.2	1	ı	2	1	'	2
Zone No.	Type	No. of Connect.		Na. of Connect.	m /month	No. of Connect.	a /month		3/month	No. of Connect.	J/month	No. of Connect.	3/month	No. of Connect.	J/day	No. of Cannect.	No. of Connect.					
		1.73	7 / 7	376	7. ^		-	1/2		3/4						1/1	3/4	-	1/2	3/4	-	1/2
	Consumer			-se≡od	Cic						cial			Institu-	Trough	o c	ric			Commer-	Lein .	Institu- tional
							3,07070	ייי											netered			

Note: Data in May 1026

4.4.1 NUMBER OF CURNECTIONS, CONSUMPTION AND WATER CHARGES APPENDIX

DOMESTIC:

	M e t e	ered		Unmet	rered	Tot	a 1
Zone Number	Number of Connections	Consumption (m ³ /month)	Charges (‡)	Number of Connections	Charges (P)	Number of Connections	Charges (*)
,	O			00	7 107	181	76. 203 7
40	17.3	~ 4	7 678	υ c	0.100,	101	. 107
v ~	77	້ເ	200	007	7.000,	κ α α α	300
) 4	06	2,516	24.	73		163	· ~
'n	105	, ₂ ,	,270.		,772.	179	042.
9	20	∞	846.40		530.0	97	,376
7	57	1,395	1,583.80	148	3,232.60	205	4,816.40
80	12	877	854.00	26	833.00	38	1,687.00
6	12	332	394.00	155	3,404.00	167	3,798.00
10	23	19.9	887.80	187	4,139.13	210	5,026.93
	ı	ı		9	122.00	9	122.00
12	15	251	321.20	342	7,523.60	357	7,844.80
13	1	I	ŀ	23		23	458.00
14	33	1,386	1,430.40	113		146	92
15	27	1,011	1,019.20	134		161	
	19	433	490.00	212	•	231	5,082.60
17	27	792	816.00	148	\sim	175	4,093.40
18	99	1,900	2,140.40	218		282	5
19	165	7,092	9	227	5,453.95	392	12,112.95
20	16	552	550.80	45	,030.0	61	φ.
21	6	195	168.40	64	1,374.00	73	,542.4
22	2	65	64.00	74	1,611.20	76	1,675.20
Sub-Total	971	33,700	34,290.98	2,568	57,112.90	3,539	91,403.88

APPENDIX 4.4.1 (cont'd)

COMMERCIAL & INSTITUTIONAL

t a 1	Charges (P)	535,40	1,436.60	475.00	120.00	354.40	4,793.20	1,052.80	16,549.35	2,615.70	4,850.70	1,132.40	81.60	64.00	554.00	886.00	350.00	48.00	ı	878.00	525.00	741.20	10,771.95	48,815.30
0	Number of Connections	7	10	7	2	52	09	12	209	29	48	6	2	-	9	10	2	-	ı	01	4	10	142	586
ered	Charges (#)	400.00	795.00	475.00	120.00	134.80	3,230.00	00.006	6,471.35	978.90	3,348.00	09.666	1	64.00	450.00	886.00	350.00	1	1	270.00	525.00	450.00	7,277.35	28,134.00
Unmet	Number of Connections	2	7	7	2	2	37	10	89	11	34	∞	ı	p4	57	10	۲۵	1	1	ო	7	2	87	308
	Charges (*)	126.40	641.60	ı	ı	219.60	1,563.20	152.80	10,078.00	1,636.80	1,502.70	132.80	81.60	ı	104.00	ı	ı	48.00	l	608.00	ı	291.20	3,494.60	20,681.30
red	Consumption (m ³ /month)	34	350	1	1	59	597	99	3,948	724	999	89	£1		50	ı	t	15	ı	275	1	107	1,114	8,083
ان≲ا	Number of Connections	2	m	1	ı	ന	23	2	141	18	14		2	I		ı	1		ı	7	ı	'n	55	278
	Zone Number	rI	7	ო	4	5	9	_	∞	σ,	10		12	13	14	15	91	17	18	19	20	21	22	Sub-Total

INSTITUTIONAL:

	Metered	red		Unmetered	red	Total	
Zone Number	Number of Connections	Consumption (m ³ /month)	Charges (\$)	Number of Connections	Charges (P)	Number of Connections	Charges (*)
H 2		414	710.00	2 1	181.20	2	181.20
Sub-Total	,1	414	710.00	2	181.20	8	891.20
TOTAL	1,250	42,197	55,682.28	2,878	85,428.10	4,128	141,110.38

APPENDIX 4.4.2 COMPOSITION OF EACH BARANGAY IN TERMS OF WATER ZONE

	Composition	Percentage	
Barangay	(Zone Number)	of the Zone	Remarks
201-00)			
A. del Rosario	11	75	
A. del Rosallo	13	100	
Claro M. Recto	15	20	
	16	90	
Cutcut	21	50	
Lourdes Northwest	12	100	
	22	50	
Lourdes Sur	7	75	
	9	100	
Lourdes Sur East	16	10	
	17	90	
Malabanas	15	50	
	18	5	
Pampang	22	45	
Pandan	18	95	
	19	100	
Pulung Bulu	3	25	
	4	100	
Calanina	5 20	60 100	
Salapungan San Jose		5	
Jan Jose	2	50	
	3	30	
San Nicolas	8	70	
3411 11260223	10	60	·
	11	25	
Sta. Teresita	14	100	
	22	5	İ
Sta. Trinidad	10	40	
Sto. Cristo	3	15	
	5	40	
	6	50	·
	7	25	
	17	10	
Sto. Domingo	1	95	
	2	50	
Sta. Rosario	3	30	
	6	50	
	8	30	
Vincon do 1 n1:	21	50	
Virgen de los Remedios	15	30	

Note: The percentage is calculated using household number distributed in related barangays.

APPENDIX 4.4.3 WATER CONSUMPTION

4.4.3.A UNIT COMMERCIAL WATER CONSUMPTION (METERED)

	Water Consu		No. of	Per Connection	
Zone	Monthly	Daily	Connection	Per Day(m3)	Remarks
}					
6	630	21	63	0.333	• *
8	4173	139	159	0.874	
9	1228	41	35	1.171	
10	1113	37	39	0.949	
11	82	3	1	3.000	
12	1297	43	18	2.389	
13	0	0	0	-	
21	432	14	14	1.000	
22	570	19	57	0.333	·
Total	9525	317	386	0.821	

4.4.3.B ESTIMATION OF TOTAL WATER CONSUMPTION

No. c	of Connectio	ns	Unit Consumption	Daily Consumption	Remarks
Domestic	Sub-Total	3,567	1.567 m ³ /d	5,589 m ³ /d	
Commer- cial	Metered Unmetered	298 255	0.821 2.18*	245 556	
	Sub-Total	553		801	
	Total	4,120		6,390	

Note: * Average Consumption in Balibago Waterworks System

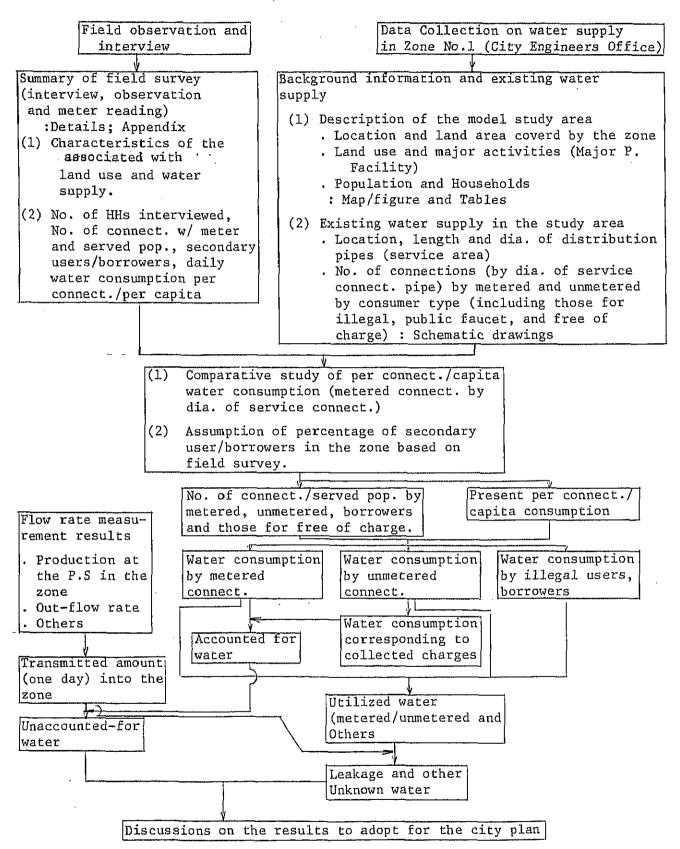
APPENDIX 4.5.1 Unaccounted-for Water/Not Utilized Water

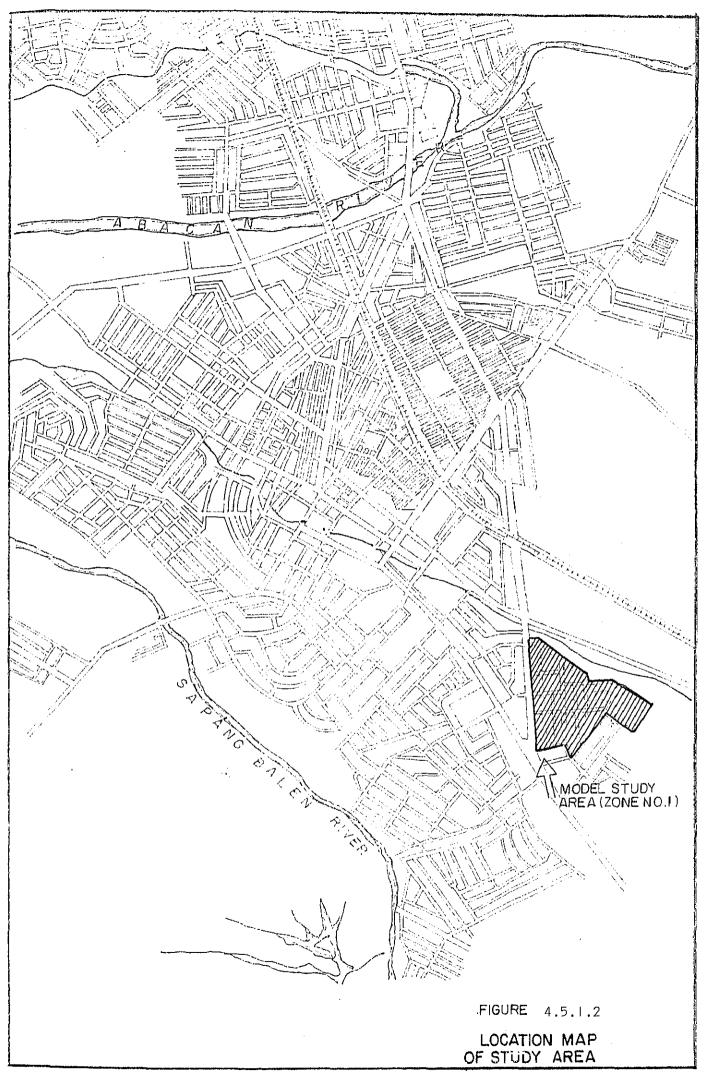
The Zone No. 1, southern tip of the existing service area was selected as a model area in accordance with the following criteria.

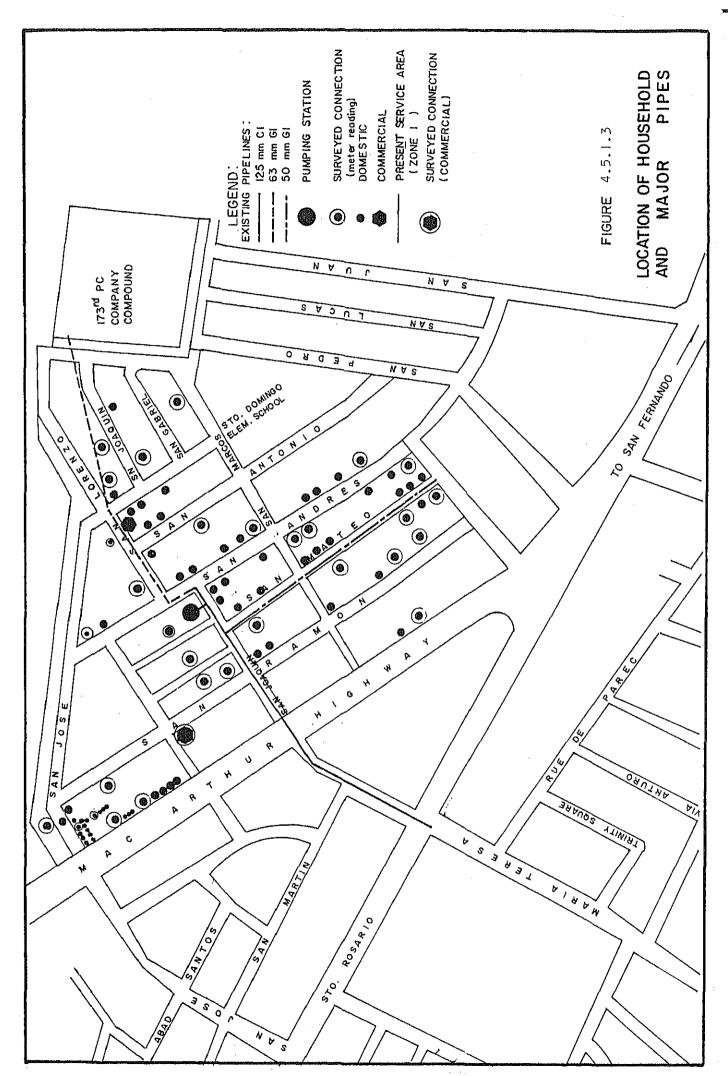
- a) Easy measurements of flow rate into or out of the area ensuring served population of about 10% of the city total population served.
- b) The total maximum number of flow meter required should be less than three.
- c) The area should be predominantly residential.
- d) Easy data collection

FIGURE 4.5.1.1 shows the flow chart to analyze unaccounted for water/not utilized water.

- (1) Background information and existing water supply in Zone No. 1
 - 1) Description of the model study area


The model study area, Zone No. I (see FIGURE 4.5.1.2) is located in the southern tip of the existing service area with an approximate area of 60 ha and population of 2,112 (352 households).


The area is predominantly residential with small commercial establishments along the Mc Arthur Highway. The major public facilities within the zone are St. Domingo Elementary School and Camp Tomas Pepito. The following is information obtained through the field survey.


- o St. Domingo Elementary School: 1,300 pupils and 33 teaching staff members
- o Camp Tomas Pepito : 155 personnel and 150 detainees

The location of households, commercial establishments and public facilities as well as road networks in the zone is given in FIGURE 4.5.1.3.

FIGURE 4.5.1.1 FLOW CHART FOR ESTIMATION OF UNACCOUNTED-FOR-WATER/ AND SOME FUNDAMENTALS

2) Existing water supply in the zone

The water sources for the zone is a deep well with a pumping station (No. 7). The water produced at the pumping station is used not only for the zone including the Camp area but also for Zone No. 2. However the water pressure during daytime in the area far from the pump station in Zone No. 1 is quite low. There is no water supply to the elementary school during daytime. The diameter of distribution pipes ranges from 50 to 125 mm with a total length of 620 m. (Refer to FIGURE 4.5.1.3 on the location of distribution pipes).

a) Served population in the Zone

The served population comprises primary users and secondary users/borrowers, which were identified through the field interview. The following is the outline of the findings.

Field interview results

Investigations on the 36 domestic connections, which account for 40% of total metered connections, revealed the following composition of users.

Type	No. of HHs	Served Pop.
Primary users Secondary users/	36	228
borrowers	21	85
Tota1	57	313

The percentage of secondary users/borrowers to the primary users is calculated at 37%. The figure seems to reflect the fact that the zone is predominantly composed of apartment houses.

Estimating the population in the zone and the number of concessionaires

The study zone consists of 15 sub-areas. Population by sub-area was estimated knowing the number of households and

using six persons as the average number of persons per HH. Number of primary users was also estimated in the same manner.

The population served is the total of primary users and secondary users/borrowers. The percentage of secondary users/borrowers to the primary users was assumed to be 35, based on the field investigation, although this figure should be further studied before an average figure for the city is made (See TABLE 4.5.1.1).

TABLE 4.5.1.1 POPULATION IN THE ZONE AND CONCESSIONAIRES

Sub-	Zone		Served Popul	lation		
Area	Popula- tion	Primary	Secondary/ borrowers	Total	Served Percent	R. M.
1	180	24	8	32	17.8	
2	54	12	4	16	29.6	
3&4	186	84	29	113	60.8	
5	138	42	15	57	41.3	
6	102	66	23	89	87.3	
7	60	60	-	60	100.0	All primary user
8	114	108	6	114	100.0	Most of population
						is primary user
9	312	210	74	284	91.0	
10	-	-		_	-	No connection
11	108	78	27	105	97.2	
12	96	66	23	89	92.7	
14	300	84	29	113	37.7	
15	378	222	78	300	79.4	
Total	2,112	1,098	331	1,429	67.7	

- Note: a) Secondary users/borrowers is 35% of primary users; average number of HH: 6 persons
 - b) Population/pupils at the camp and elementary school is not included in the Table.

The estimated total population served is 1,098 out of the Zone population of 2,112. The percentage of primary users to the zone population is approximately 52%, while total population served is 68%.

b) Water supply status in the Zone.

Number of connections by type of consumer as of May 1986 is summarized in TABLE 4.5.1.2. Public faucets installed in the premise of elementary school and those for the Camp were excluded. The total number of connections is 190 of which 91 (48%) is metered.

TABLE 4.5.1.2 NUMBER OF CONNECTIONS BY CONSUMER TYPE

 Sub-		Domesti			C	ommerci	ial	Instit	tutiona			Total	
Area	No. of HHs	Meter- ed	Unme- tered	Total	Meter- ed		Total	Meter- ed	Unme- tered		Meter-	Unme- tered	Total
1	30	2	2	4		1	1	_	; <u> </u>	- ,	2	3	5
2	9	-	1	1	- .	-	_	-	1	1	-	2	2
3&4	31	1.1	3	14	1	-	1	_	_	_	12	3	1.5
5	23	l	6	7	1	3	4		-		2	9	11
6	1.7	8	3	11	-	-	_	-	_	-	8	3	11
7	10	4	6	10	-	_	_	-		_	4	6	10
8	19	1.5	3	18	-	-		_	_	- .	15	3	1.8
9	52	4	31	35	ļ <u>-</u>			-		-	4	31	35
10	_	_		-	_	_			-	-	_	-	
11	18	10	3	13	_	_	-	_		-	10	3	13
12	16	7	4	11	_		_	-	-	<u>.</u> .	7	4	11
13	14	4	3	. 7	_		_	-	-		4	3	7
14	50	9	5	14	_		_	-		-	9	5	14
15	63	14	22	36	_	1	1 ,		1	1	14	24	38
Total	352	89	92	181	2	5	7	_	2	2	91	99	190

Note: Diameter of service connections by consumer type

Domestic: metered and unmetered; 1/2 inches

Commercial: metered, one 1/2 inch and another 3/4 inch;

unmetered, 1/2 inch institutional: unmetered, 1/2 inch

TABLE 4.5.1.3 SUMMARY OF WATER CONSUMPTION AND CHARGES

Consumer	Met	ered		Unmeter	ed	То	t a 1
	No. of Connect.	m³/ month.	Charge (‡)	No. of Connect.	Charge (∮)	No. of Connect.	Charge (₹)
Domestic	89	2,754	2,802	92	2,077.04	181	4,879.04
Commercial	2	34	126.4	5	409	7	535.40
Institu- tional		_	-	2	181	2	181
Total	91	2,788	2,928.4	99	2,618.04	190	5,546.44

Data Source : City Engineers Office

The following is a summary of connections.

Type of Consumer	Metered	Unmetered	Total	Unmetered Additional Faucet
Domestic	89 (1/2")	92 (1/2")	181	182
Commercial	2 (1/2" & 3/4")	5 (1/2")	7	
Institutional		2 (1/2")	2	
Total	91	99	190	182

Water consumption and collected charges by consumer type

Water consumption and collected charges from metered/unmetered connections by consumer type for the month of May, 1986 are summarized in TABLE 4.5.1.3. (Details are given in TABLE 4.5.1.4.A to 4.5.1.4.C)

c) Per capita water consumption and domestic daily water consumption.

Per capita water consumption was studied by metered and unmetered connection due to the following:

- 1) Insufficiency of water supply because of limited water sources and pump capacity, especially in the remote areas where water pressure is less than 0.1 kg/cm^2 through the day.
- ii) Some areas are provided with water supply only during daytime or nighttime by means of valve operation of the distribution pipes.
- iii) Most of the metered connections are installed along the main distribution pipeline, where comparatively good service is provided. On the other

TABLE 4.5.1.4.A WATER CONSUMPTION AND CHARGES (DOMESTIC CONNECTION)

		Metered		Unmetered			Total	
Sub-	No. of	3	and the second second	No. of		No. of		D 14
area	Connect.	m /month	Charge (F)	Connect	Charge (₱) Connect	Charge(₱)	R.M.
1	2	28	35.20	2	42	4	77.2	
2	-		-	1	20	1 .	20.	
3 & 4	11	318	337.20	3	68	14	405.2	
5	1	35	34.	6	120	7	154	
6	8	266	260.80	3	74	11	334.8	
7	4	99	103.20	6	156	10	259.2	
8	15	328	370.	3	69.45	18	439.45	
9	4	111.	114.4	31	668.06	35	782.46	
11	10	269	276.8	3	62.	13	338.80	
12	7	232	251.6	4	90.	1.1	341.60	
13	4	162	153.6	3	66.	7	219.60	
14	9	405	378.	5	114	14	492.	
15	14	501	487.2	22	527.53	37	1,014.73	
Total	89	2,754	2,802.	92	2,077.04	182	4,879.24	

TABLE 4.5.1.4.B WATER CONSUMPTION AND CHARGES (COMMERCIAL CONNECTION)

	Metered							
Sub- area	No. of Connect.	m ³ /month	Charge(₱)	No. of Connect.	Charge(₱)	No. of Connect.	Charge(P)	R.M.
1	-	-	-	1	90.	1.	90.0	
3 & 4	1	14	70.40	-	-	1	70.40	
5	1	20	56.	3	270	4	326.	
15			No. of the second	1.	49	1	49	w/meter but not working
Total	2	34	126.40	5	409	7	535.40	

TABLE 4.5.1.4.C WATER CONSUMPTION AND CHARGES (INSTITUTIONAL CONNECTION)

Metered			Unmetered Total			al			
Sub- area	No. of Connect.	m ³ /month	Charge(₱)	No. of Connect.	Charge(P)	No. of Connect.	Charge(₱)	R.M.	
2	-		-	1	125.	1	125.		
15		_		1	56.	1.	56.		
Total			-	2	181.	2	181.		

hand, the remaining areas experience shortage of water.

Water consumption and per capita daily consumption (metered)

Daily water consumption (metered)was reported for the month of May at 91.8 cu.m/day for the 89 connections. Total population served for the metered connections is about 700 calculated by estimating the zone total population served (1,429 persons) in Table 2.3.1 and the percentage of metered connections to the total number of connections(89/181 = 49%).

Daily per capita water consumption was calculated to be 131 1/cap.day.

The calculated figure using the meter reading results from concessionaires selected at random during field survey is 183 1/cap.day.

The summary of findings is shown in TABLE 4.5.1.5 in addition to the water consumption for the month of May. The average per capita consumption for the month of May for the 36 concessionaires is calculated at 157 1/cap.day. The figures calculated using data collected through field survey are 20 to 40% bigger than the estimated zone average for the month of May. This result may be attributed to the difference of service level in the zone due to insufficiency in water supply and the daily fluctuation in consumption. The average figure of 131 1/cap.day, can be the daily zone average considering the constraints of the present water supply.

Water consumption and per capita daily consumption for unmetered connections

Collections from unmetered connections for May was \$\mathbb{P}2,077.04\$. These come from the flat rate connections as well as metered connections whose meters are under repair. For the latter, water charge is an average of previous month's consumption. It is difficult to assess the number of faucets per household using collection as a basis. Estimates were made, therefore, using the following:

Water consumption per connection for the flat rate ($\frac{18}{month}$, $\frac{1}{2}$ " service connection) is 15 cu.m/month (($\frac{18}{month}$); $\frac{1}{2}$ 0.8/cu.m + 10 cu.m = 15 cu.m). On the other hand, the consumption range for the metered connection (See TABLE 4.5.1.6) gives an idea of the average figure for majority of the concessionaires.

The Table reveals that approximately 90% of metered connections belongs to the consumption range of 0-60 cu.m/month. The average consumption within the range was calculated at 24.2 cu.m/month.

TABLE 4.5.1.5

			Field Su	rvey			
		Daily	Primary	Secondary	Pop.	Data	
No.	Address	Consump.	User	User	Served		R. M.
1	1-1-8	0.7	5	12	17	0.6	-
2	1-3-13A	0.8	3		3	0.8	
3	1-3-13E	0.7	7		7	0.7	
4	1-8-12M	0.5	4		4	0.8	
5	1-8-12G	1.6	5		5	2.7	
6	1-5-5	2.1	5		5	1.1	
7	1-3-2	1.7	12		12	1.8	!
	1-3-19A	0.5	_3		_3	0.5	Commercial connec-
				ĺ	[tion (excluded from
							the Total)
8	1-9-17A	1.0	6		6	.1.4	
9	1-9-25	1.0	5		5	0.8	
10	1-14-8	2.3	10		10	2.1	
11	1-15-50B	2.2	15		15	0.7	
12	1-14-20A	6.6	5	26	31	4.3	
13	1-15-51	1.0	10		10	1.1	
14	1-14-29	1.0	8		8	(1.0)	
15	1-15-50E	1.8	4	2	6	1.5	
16	1-15-50F	2.3	8	5	13	1.3	
17	1-15-61	1.0	3		3	0.5	
18	1-15-17	0.9	5		5	0.2	
19	1-15-30	2.0	5	10	15	1.7	
20	1-15-37	2.2	6	4	10	2.5	
21	1-11-23	0.8	7		7	0.3	
22	1-13-9	1.7	6		6	(1.7)	
23	1-12-8A	1.4	5		5	0.9	
24	1-11-12	2.0	5	2	7	1.9	
25	1-14-28	1.9	8		8	1.3	
26	1-12-2	0.6	3		3	0.4	
27	1-9-46	0.3	3		3	1.1	

TABLE 4.5.1.5 (cont'd)

		Fie	ld Survey							
No,	Address	Daily Consump.	Primary User	Secondary User	Pop. Served	Data	R.	М.	e e	
28	1-7-2	1.4	5		5	(1.4)	ļ.			
29	1-12-3A	1.9	4	10	14	2.1				
30	1-11 - 7A	2.4	5		.5	2.3				
31	1-6-8	0.6	3		3	0.7				
32	1-6-4	1.4	. 6		6	0.5				
33	1-6-1A	3.0	10	8	18	2.1				
34	1-6-19	0.9	6	5	11	1.5				
35	1-6-17	1.4	10		10	1.3				
36	1-6-14B	2.5	11	3	14	(2.5)				
Total	1							,		
(Dome	estic)	57.6	228	87	315	49.6				

Note: Daily consumption obtained by meter reading (Field survey)

(): used same figures of measured

TABLE 4.5.1.6

RANGE OF WATER CONSUMPTION (METERED) AND MAJORITY AVERAGE CONSUMPTION

					Calcu	lation o	of major:	lty av	erage
Consum	ption			Summation				Ave.	
Range		No. of	Percen-	of	Ave.	cu.m/		cu.m	1/cap.
(cu.m/	mon.)	Connect.	tage	percent.	cu.m	mon.	Total	/mon.	day
0 -	10	15	16.9	16.9	5	84.5			
11 ~	20	22	24.7	41.6	15	370.5			
21 -	30	16	18.0	59.6	25	450			
31 ~	40	13	14.6	74.2	35	511			
41 -	50	6	6.7	80.9	45	301.5			
51 ~	60	7	7.9	88.8	55	434.5	2,152	24.2	102
61 ~	70	4	4.5	$\overline{93.3}$	65	292.5			
71 -	80	3	3.4	96.7	75	255			
81 -	90	1	1/1	97.8	85	93.5			
91 -	100	0	0.0	97.8	95				
101 -	110	1	1.1	98.9	105	115.5			
111 -		1	1.1	100.0	120	132	3,040.5	30.4	128
Tot	al	89	100.0						

Note: Overall average; 128 which corresponds to that estimated using data of May (131)

Per capita daily consumption for the unmetered connections was estimated using estimated served population and number of connections as follows:

i) Figure corresponding to the flat charge:

15 cu.m/month x 92 connect + 30 day+(1429 - 700) = 0.063 cu.m/cap.day

11) The average consumption of majority of metered
 connections 24.2 cu.m/month x 92 connect. + 30 + 729
 = 0.102 cu.m/cap.day

Per average per capita consumption for the unmetered connections seems to be between 63 to 131 1/cap.day. Being within the consumption range, 102 1/cap.day may be used for the purpose of this study.

Daily water consumption for the unmetered concessionaires is accordingly estimated at 74.2 cu.m/day (24.2 cu.m/month + 30 days x 92 connection).

The water consumption of the domestic origin is, therefore, 166 cu.m/day as a total of metered (91.8 cu.m/day) and unmetered (74.2 cu.m/d).

d) Unit water consumption and total consumption for commercial use: Water consumption by the existing metered connections for the month of May was recorded at 34 cu.m/month. Daily per connection consumption is calculated at 0.57 cu.m/day. A figure of 0.5 cu.m/day was meter-read in one of the two connections during the field survey. Inferred consumption for the unaccounted connections was estimated using charge composition as follows:

(P90 - P40) + P1.6/cu.m + 10 cu.m = 41.25 cu.m/month41.25 + 30 = 1.375 cu.m/day

The figure of 1.375 cu.m/day may be used for the unmetered connections since it corresponds to the charges paid by them on a same basis of the metered connection.

Water consumption for commercial use is 8.01 cu.m/day as shown below.

metered : 1.13 cu.m/day (2 connections)

unmetered: 1.375 cu.m/day x 5 = 6.88 cu.m/day

(5 connections)

Total: 8.01 cu.m/day

e) Unit water consumption and total consumption for the institutional use: The existing two connections; the camp and

elementary school are unmetered. Unit water consumption based on the charges is same as that for the commercial unmetered connections. However, it was confirmed in the field that there is no water supply to the elementary school during daytime. Therefore water consumption for the institutional use in the zone may be accounted to be 1.38 cu.m/day (one governmental office).

(4) Water consumption in the zone (Utilized water in Zone No. 1)

The total water consumption including domestic/commercial and institutional uses is estimated at 175.39 cu.m/day.

Estimate of the water transmitted/distributed to Zone No. 1 from No. 7 pumping station

Preliminary survey revealed that part of water produced at no. 7 pumping station is distributed to the Zone No. 2 and is also provided to the Camp without charge (unmetered).

Under these conditions, flow rate measurement was conducted through the day at the two points as shown in FIGURE 4.5.1.4 (the point connected to the Zone No. 2 and that before the Camp compound.) The measurement records are given in TABLE 4.5.1.7.

The water balance between production and distribution/consumption is given below.

 $Q = (q_1 + q_2) = q_3 + q_4$ where, Q: production (cu.m/day)

 q_1 : supply to the Camp (cu.m/day)

 $^{\mathrm{q}}$ 2: supply to the No. 2 zone

 \mathbf{q}_3 : Consumption in the No. 1 zone

q₄: water not utilized in zone No. I (leakage and unknown water)

The results of flow rate measurement are summarized as follows:

Q = 812,8 cu.m/day

 $q_1 = 114.5$ $q_2 = 495.0$ $q_3 + q_4 = Q - (q_1 + q_2)$:water distributed to Zone No. 1 = 203.3 cu.m/day

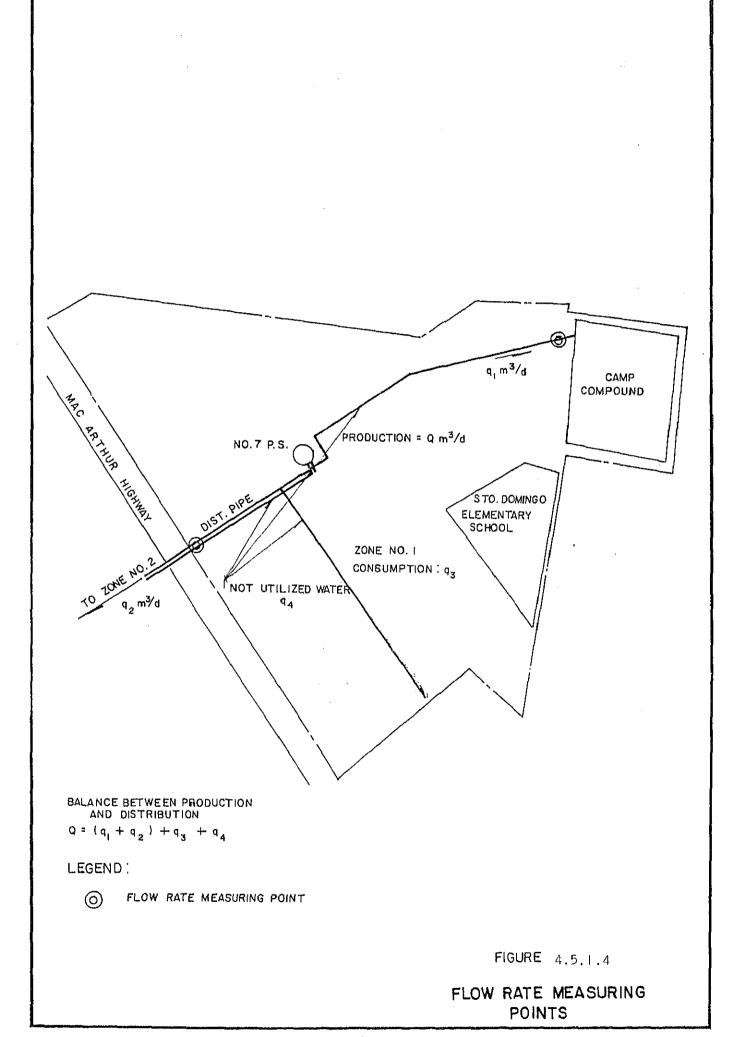


TABLE 4.5.1.7 FLOW RATE MEASUREMENT RESULTS

				Unit: cu.m/hour	
Time	Production Connecti (No. 7 P.S.) (Zone 1 &		e Near Capamp	Distributed into Zone No. 1	R. M.
0 - 1	32.9	26.5	6.4	0.0	
1 - 2	32.9	26.6	6.3	0.0	
2 - 3	32.9	26.9	6.0	. 0.0	·
3 - 4	32.9	26.8	6.1	0.0	
4 - 5	33.0	26.4	6.4	0.2	
5 – 6	33.9	22.1	4.9	6.9	
6 - 17	34.7	17.1	3.4	14.2	
7 - 8	34.6	15.6	3.6	15.4	
8 - 9	34.5	16.0	3.5	15.0	
9 - 10	33.9	16.1	3.5	14.3	
10 - 11	34.0	16.8	3.6	13.6	
11 - 12	34.3	17.6	3.8	12.9	
12 - 13	34.4	17.1	3,8	13.5	
13 - 14	34.2	19.0	4.2	11.0	
14 - 15	34.2	20.3	4.8	9.1	
15 - 16	34.2	19.6	4.5	10.1	
16 - 17	34.4	17.2	3.6	13.6	,
17 - 18	34.5	18.3	3.6	12.6	·
18 - 19	34.2	18.8	4.1	11.3	
19 - 20	34.1	17. 9 .	4.2	12.0	
20 - 21	33.9	19.8	4.7	9.4	
21 - 22	33.8	21.9	5.7	6.2	
22 - 23	33.4	24.6	6.8	2.0	
23 - 0	33.0	26.0	7.0	0.0	
Hourly A	ve. 33.9	20.6	4.8	8.5	
Daily To	tal 812.8	495.0	114.5	203.3	

Utilized water in the zone and unaccounted-for water

Based on the above water consumption and production/distribution from the water source, water utilized in Zone No. 1 is calculated at approximately 85% of distributed amount from No. 7 pumping station (See FIGURE 4.5.1.5).

This FIGURE is comparatively high attributed seemingly to the low water pressure and water use through the day.

Utilized water (percentage)

a) Distributed: 203.3, 100%

b) Consumption: 175.39, 85%

c) Leakage & Unknown:

27.9, 15%

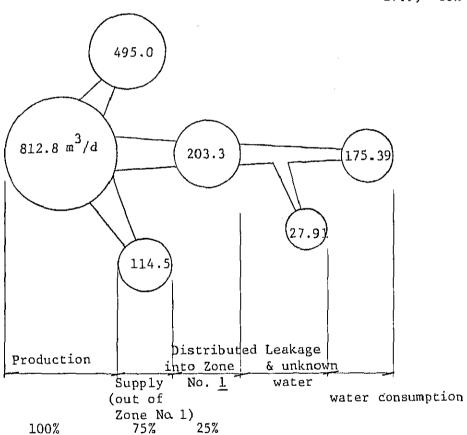


FIGURE 4.5.1.5 RELATIONSHIP AMONG PRODUCTION, DISTRIBUTION,
LEAKAGE & UNKNOWN WATER AND CONSUMPTION

Of the water distributed into the Zone (203.3 cu.m/day), approximately 15% (27.9/cu.m/day) is lost to leakage and other reasons. Accounted-for water was estimated according to the following procedure.

Domestic consumption

- a) metered = 91.8 cu.m/day (89 connections)
- b) unmetered:

87 connections (
$$P18 - P14$$
) + 0.8 + 10 cu.m

$$0.5 \times 87 = 43.5 \text{ cu.m/day}$$

182 additional faucet ₽2 + 0.8

$$0.083 \times 182 = 151 \text{ cu.m/day}$$

5 metered (but not functioning)

1.03 cu.m/connect.day (metered average) x 5

= 5.2 cu.m/day

Sub-total 63.8 cu.m/day

(92 connections & 182 additional faucets)

Total 155.6 cu.m/day

(181 connections & 182 additional faucets)

Commercial consumption

a) metered : 1.1 cu.m/day (2 connections)

b) unmetered: (P90 - P40) + P1.6 cu.m + 10 cu.m

= 41.3 cu.m/connect.month (1.375 cu.m/-

conn.day) $1.375 \times 5 \approx 6.9 \text{ cu.m/day}$

Total: 8 cu.m/day (7 connections)

Institutional consumption

a) unmetered: 1.4 cu.m/day (1 connection)

Total accounted-for water is accordingly 165 cu.m/day. The percentage of accounted-for water distributed form the source is approximately 80, which seems to be above the city's average.

APPENDIX 6.6.1 EXISTING WELL INVENTORY IN PAMPANGA PROVINCE

Well No JICA Original	Depth Well	Tested Yield	Drawdown	Specific Capacity	Trans- missivity	Location Barangay / Municipality
*	(m)	(l/min)	(m)	(l/min/m)	(m²/day)	
	Well	Yield	· l	Capacity	missivity	Magalang Porac Sta.Ana Bacalor Sta.Ana Bacalor Magalang Mabini st Angeles Mabini st Angeles Mabini st Angeles Mabini st Angeles Mabini st Angeles Mabini st Angeles Mabini st Angeles Mabini st Angeles Mabini st Angeles Balagtas Angeles Balagtas Angeles Pandan Angeles Pampang Angeles Pampang Angeles Mirasol Angeles Mining Angeles Mining Angeles Bilbagol Angeles Balibagol Ageles Calzadang Porac Senoral Porac Macantian Porac Margot Angeles Saparbato Angeles Saparbato Angeles Saparbato Angeles Saparbato Angeles Saparbato Angeles Baluga VIII Angeles

APPENDIX 6.6.2 WELL LITHOLOGIC LOGS (ANGELES CITY, PAMPANGA)

NO 22	WELL NO BPW 426025	DEPTH : 13.7	_	CASING DIAMETER: STATIC WATER LEVEL:3.66 m	DISCHARGE: 0.38 Los	N : 1.23	DEFIN (m.) LUG	SAND, COARSE			1											
NO 58	ML 85 ON TISM	DEPTH : 152m		CASING DIAMETER: STATIC WATER LEVEL:	DISCHARGE:		DEPIR (m)	SANDSTONE, F m			SILTY, TUFFACEOUS	22.5	SANDSTONE, m-t	CLAY, STICKY	SANDSTONE, f-m	7.7.7.7. 7.7.7.7.2.2.2.2.2.2.2.2.2.2.2.2	<u>!</u>	GLAY	SANDSTONE, I-m	SANDSTONE, F	150 SANDSTONE, PEBBLY	W/ RESISTIVITY LOG
NO 34	WELL NO 34 TW	DEPTH : 152 m	ш.	CASING DIAMETER: 150mm STATIC WATER LEVEL: 3.66m	111	N : 80.2:	DEPTH (M) LOGS	SAND, F.v.D.	SAND, TUFFACEOUS .	TUFF SAND, F-C	SAND, TUFFACEOUS	SO SESSION SAND, TUFFACEOUS SILTY	SAND, Fe m	WELL SORTED, LOOSE	15 A C A C A C A C A C A C A C A C A C A	SANDY TUFF, SILTY	100 TO TO THE STATE OF STATE O	SANOY THE SHITT		SAND TUFFACEOUS	ISO CLAYEY, TUFF	W/ RESISTIVITY LOG
	OWNER'S NO. CL-34 OWNER'S NO. SAN JOSE MAGALANG	. NOI	WELL DEPTH: Z56.5 m CASING DEPTH:	CASING DIAMETER: STATIC WATER LEVEL: 2.97	SPECIFIC CAPACITY: TRANSMISSIVITY:	WELL STRATA	-	340mm3 81.20:1K				SOME PETELES B.	מחבבתש	SLOTTED			SAND & GRAVE.			2007 2007 2007 2007		
	WELL NO. CL-36 LWU/ CALZADANG BAYO, PGRAC LOCAT	- 71.C		4.65 mpgs		STRATA DESCRIPTION (m)	/ / / / / / / / / / / / / / / / / / /	340mm0 16	SILT	1. (c)	SILTY SAND	THE /M CHES	200mm0	SAND W/ SILT			SAND SAND	10 10 10	0 + 7	256.3		
	LWUA/JICA OWNER'S NO	GROUND ELEVATION	CASING DEPTH :	STATIC WATER LEVEL DISCHARGE:	SPECIFIC CAPACITY TRANSMISSIVITY:	DEPTH WELL	.	<u> </u>			g ()		86		<u>-</u>	20 g z z z z z z z z z z z z z z z z z z	224 237					

	. WELL NO	LOCATION :	оветн :	CASING DEPTH:	CASING DIAMETER : STATIC WATER LEVEL :	DISCHARGE:	. NA	DEPTH (m) LOG														-					•		
NO 52	WELL NO BPW 426253	LOCATION : PASBUL, PORAC	DEPTH : 48.8 m	DEPTH: 48.8m	STATIC WATER LEVEL : 26.2m S	0.63 Lps	2	DEPTH (m) LOG DI	SAND, C	A A A ADORE, SOFT.	/	SAND, C	SANDY CLAY	48.7	- OS	- 1		-			8								
NO 56	WELL NO BPW 531715	LOCATION : MARGOT, ANGELES	DEPTH : 161.6 m		CASING DIAMETER: STATIC WATER LEVEL:24.39m	PUMP TEST DISCHARGE: 9.46 LPS	 z	DEPTH (m) LOG	A A A A A A A A A A A A A A A A A A A		SANDSTONE	A ADOBE	; ;		SAND & GRAVEL	SANDY CLAY WUGRAVEL	O O D LOOSE ROCK	4 . 4	7 , 4	A ADOBE (TUFF)		· 4 ,	\$ \d	OOO SAND & GRAVEL	SANDY CLAY			SANDY CLAY	
NO. 44	LWUA well no.13158(8PW)	LOCATION; BO. MANIBAOG PORAC, PAMPANGA	DCPTH: 11.9 M	CASING DEPTH:	CASINS DIAMETER: STATIC WATER LEVEL: 5.18 M	PURIS TEST DATA		рерти соб	SANDY CLAY	SAND & GRAVEL					9											-	-		
	LWJA well no. 22091 (BPW)	LYCATION: BO. PULUNG MABA PORAC, PAMPANGA	DEPTH: 20.1 M	CASING DEPTH :	CASING DIAMETER: . STATIC WATER LEVEL: 14.63 M	PURP TEST DATA	permoden:	DEPTH LOG	SAND ROCK	SAND	COARSE SAND W				0														
NO. 40	LV/UA well no. 43672 (BPW)	LOCATION : BO. SENORA PORAC, PAMPANGA	DEPTH: 30.0 M	CASING DETH :	CASMG DIAMETER: STATIC WATER LEVEL	PUMP TEST DATA	DRAWDOWN:	DEPTH LOG	ands (%)	BLUE CLAY	ADOBE	SANDSTONE																	

NO. 62	LWUA well no.BPW 2077	P. CCATION:	CASING ESPTH: CASING DAMETER; STATIC WATTR LIVEL:	PUMP TEST DATA GISCHARGE: GRANDGEN:	DEPTH LOG	LOSE ROCK LOSE ROCK FINE SAND COARSE SAND Y Y C COARSE SAND Y Y C COARSE SAND COARSE SAND
NO. 61	LY:UA well no. BPW 20241	LOCATION: CLARK FIELD ANGELES CITY, PAMP CEPTH: 106. 10 M	CASING GEPTH : CASING DIANETER STATE WATER LEYEL: 25.91	PUMP TEST DATA DISCHARGE: 8.83 LPS CRAMPOWN:	CSPTH LOG	SAND SAND SAND SAND SAND SAND
	LYUA well no. 8PW 6286	LOCATION: KULLAT, BO. LOURDES ANGELES CITY, PAMP DEPTH: 103.65 M	CASNIG DEPTH: CASNG DIANGTER STATC WATER LYGE, 2, 44		DEPTH LOG	ADDEE STONE ADDEE STONE BLUE SANDY CLAY YELLOW CLAY YELLOW CLAY ADOBE CLAY ADDBE CLA
	. BPW-10857	SES, GIT, PAMP	u G		9 0	g
	LWUA Wall na.8PW-10857	LCCATICH. BO. LOURDES, ANGELES CITY, PAMP CEPPH 1 106.10 M	CASING LEPTH: CASSAS CIGRETES: STATIL WOTER I FACE 1 2 25	PLARP TEST DATA UNSCHARGE: 18.93 LPS DRAWDORN:	L CESTH	SAND
	LEUCA Well no. BPW-436622 LWUA well no	LCGATICN: MARGOT, ANGELES CITY, PAMPANGA CEPTH: 48.78 M CEPTH: 48.78 M	CASING DEPTH: CASING DIAMETER: CASING DIAMETER: CASING DIAMETER: CASING DIAMETER: CASING DIAMETER:	PUSP TEST DAT	١	

NO. 70	LWUA woll no. 426///.	LOCATION: Balibage, Angelia	25FTH: 67.5m	CASING DEPTH:	CASING DIAMETER: A DELM	STATIC WATER LEVEL: 2.77	DISCHARGE: 0.94 LPS	Canacani .	DEPTH LOG	Said & gravel	10.0 lobbe boulour	Sand, F	Sand, c	Clay, sticks	Tones	0 0		Sand, C											-	Process Nation	
NO. 67	LWUA Well No. BWS 8	LOCATION: HERSON VIMAY, BALLY	0€РТН: 9/5	CASING DEPTH:	CASING DAMETER:	STATIC WATER LEVEL: 64.	DISCHARGE: 44.6 2PS	14.5% - Windings	DEPTH 1.0G		Sand	:: :		condy clay		111	clay w/ gravel	Sandy Clay	sooc Gravel	con Sand wy creavel											
NO 65	WELL NO (Cont.')	LOCATION :	DEPTH	CASING DEPTH:	CASING DIAMETER:	STATIC WATER LEVEL :	DISCHARGE: DRAWDOWN:	DEPTH (m) LOG	021	SAND	SILT W/ SAND		ZOB.8 SILT W/ SAND											-							
NO 65	WELL NO G-5	LOCATION : CALSADONG BAYO PORAC	DEPTH : 208,8m	CASING DEPTH : 208.8m		STATIC WATER LEVEL : 6.67	DISCHARGE: DRAWDOWN:	DEPTH (m) LOG		SAND WY CLAY	SAND, COARSE	SAND CLAYEY		-	SAND W/ PEBBLE -		SAND, COARSE, CLAYEY	: 1	31LT	SILT W/SAND, FINE			CLAY, SILTY - SANDY	SAND B GRAVEL		SAND, F.C	SAND & GRAVEL W/	CLAY	SAND, F. C.		IN SAND, F.C.
69 ON	WELL NO C-4	LOCATION: STA. MARIA,	DEPTH : 143.3m	CASING DEPTH : 135.6 m	CASING DIAMETER : 400/300mm	STATIC WATER LEVEL :1.22	DISCHARGE : DRAWDOWN :	DEPTH (m) LOG	SANDY LOAM	SAND W/ GRANULE		CLAY W/GRANULE .	The state of the s	TOWNS IN CHARGO	CLAY, SANDY	CLAYEY SAND	CLAY, SANDY	+	SAND, FINE - VERY		ri I I-	SAND, FINE ~ MEDIUM	SAND, VERY FINE		SAND, FINE			143.3 WEST SAND, FINE	100		

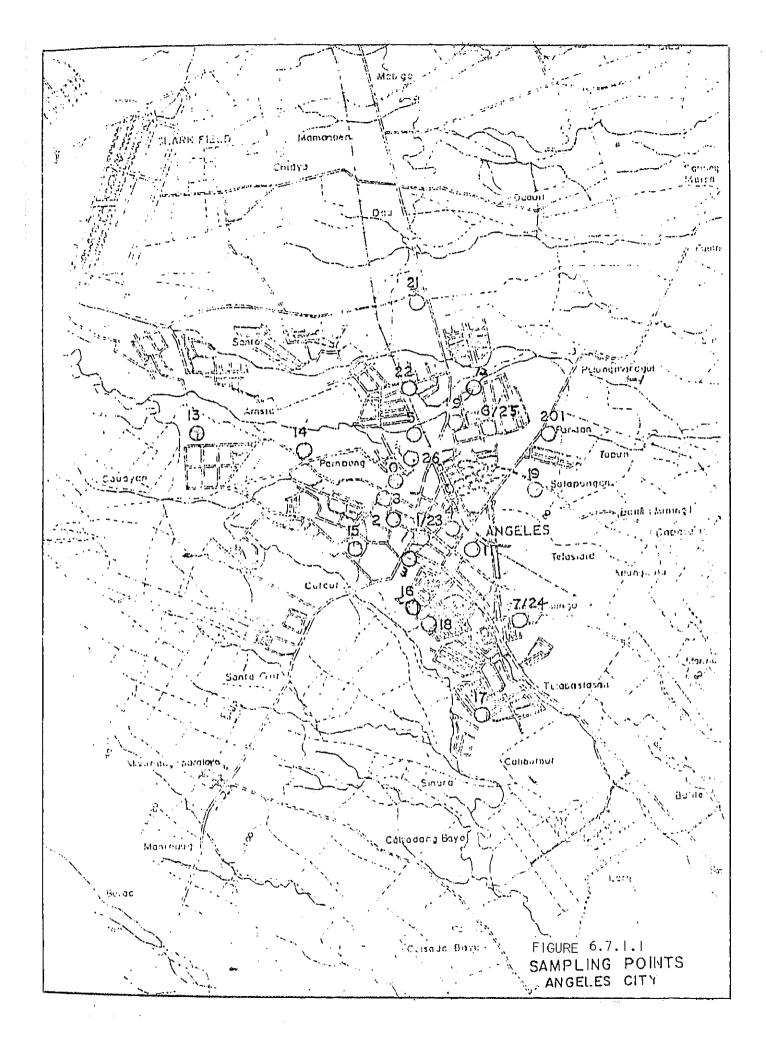
	_							· · · · ·	T	
	LWUA Well No.	LOCATION:	серти:	CASING DEPTH:	CASING DIAMETER:	STATIC WATER LEVEL;	PUMP TEST DATA DISCHARGE:	DRAWDOWN:	DEPTH LOG.	
	LWUA Well No. BPW- 4901	LOCATION:	DEPTH:	CASING DEPTH :	CASING DIAMETER:	SIAIIC WAIER LEVEL	PUMP 1EST DATA DISCHARGE:	DRAWDOWN:	DEPTH LOG	SAND ROCK SAND ROCK This sand CLAY CLAY This sand Blue Shick Clay
	LWUA Well No. BPW-4901	LOCATION: HERANDA ST. ANGELES CITY, PAMPANSA	DEPTH: 271.34 M	CASING DEPTH:	CASING DIAMETER:		.73 LPS	DRAWDOWN:	рертн гос	SANDY CLAY O. O. W. GRAVEL & SAND SANDY CLAY FINE SAND YELLOW YELLOW STICKY CLAY SAND FOCK CLAY CLAY CLAY SAND FOCK TELLOW STICKY CLAY TELLOW TE
NO. 17	WELL NO CAPAYA II	LOCATION : CAPAYA II	DEPTH : 122 m		CASING DIAMETER:		DISCHARGE:	DEPTH (m) LOG		SO SO SO SO SO SO SO SO SO SO SO SO SO S
NO. 8I	WELL NO C-20A	LOCATION: PULONG BOLO, ANGELES	DEPTH :		CASING DIAMETER:		DISCHARGE :	- 1	CLAY	SOUTH TOTAL
NO. 68	WELL NO EPZA	LOCATION : EXPORT PROCESSING ZONE	ОЕРТН : 91.5 ш	CASING DEPTH :	CASING DIAMETER:	PUMP TEST	DISCHARGE: 14.49 Lps	DEPTH (m) LOG		SAND, MEDIUM GRAINED WHITE SILICA W/G3 SAND, VERY FINE GRAINED SILICATE, INTERCALATED W/ BOULDER SAND, FINE GRAINED W/ G3 W/ G3 W/ G3 W/ G3 W/ G4 W/ G5 W/ G

LWII O Well No A	THOU E -M H-M VINNE			} ,	
LACK WELL NO. 2	CWUA Well No. 3 I CON!, 1	LWUA Well No.	LWUA WALL No. 6 (BWS INC.)	LWDA Well No. 6 CONT.	LWUA Well No. 2
LOCATION: BALIBAGO, ANGELES CITY, PAMPANGA	LDCATION:	LOCATION:	LOCATION: BALIBAGO, ANGELES CITY, PAMPANGA	LOCATION: .	LOCATION: BALIBAGO, ANGELES
DEPTH: 183.0 M	DEPTH:	D€РТН:	DEPTH: 183.3 M	DEPTH:	EPTH: 85.4 M
CASING DEPTH:	CASING DEPTH:	CASING DEPTH:	CASING DEPTH:	CASING DEPTH:	CASING DEPTH:
CASING DIAMETER: 300-200 mm STATIC WATER LEVEL: 4.89 M	CASING DIAMETER:	CASING DIAMETER: STATIC WATER LEVEL:	CASING DIAMETER: 300-200 mm STATIC WATER LEVEL: 1.85 M	CASING DIAMETER: STATIC WATER (FVF)	CASING CHAMETER: 300 mm STATIC WATER LEVEL: 4.9 M
PUMP TEST DATE:	PUMP TEST DATA	PUMP TEST DATA	PUMP TEST DATE:	PUMP TEST DATA	PUMP TEST DATA
DISCHARGE: 28.4 LPS DRAWDOWN:	DISCHARGE: Drawdown:	DISCHARGE: DRAWDOWN:	DISCHARGE: 37.85 LPS DRAWDOWN: 14.6 M	DISCHARGE: DRAWDOWN:	DISCHARGE: 28.4 LPS DRAWDOWN: 20.4 M
ОЕРТН LOG	DEPTH LOG	рертн 106	DEPTH LOG	DEPTH LOG	обртн гос
SAND SAND	BLUE SANDY CLAY		SAND	I I I I I I I I I I I I I I I I I I I	CECE SAND
SAND B GRAVEL	0.68		SANDSTONE SANDY CLAY	193.3	SAND
			ONES		
SANDY CLAY	Ř		SANDY CLAY	Ŕ	Sanoy C. Ay
ADOBE CLAY					
SAND B GRAVEL			W/ SHALE		SANO
ADOBE CLAY			1 1 // // CONSE SAND W SHALE		
SANDY CLAY			I YELLOW CLAY		SANDY CLAY
TELLOW SANDY CLAY			CCAPRESSED SAND		SAND SANDY CLAY
ם פועב אטנג אסיים פועד מייא			SANDY CLAY		, qu
BLUE SANDY CLAY					:
SHALE CLAY			CLAY		
פוטב איזוכאי כניא			LIMESTONE SANDY CLAY		
			I A A A ASH		
120 BLUE SANDY CLAY			130- HARD SHALE		
			SANDY SHALE		

LWUA Well No. 5	LOCATION : BALIBAGO, ANGELES CITY, PAMPANGA	DEPTH: 149.2 M	CASING DEPTH:	STATIC WATER LEVEL: 4.9 M	DISCHARGE: 22.08 LPS		DEPTH LOG	89 8 88 88 88 88 88 88 88 88 88 88 88 88
LWUA Well No. 4 (CONT.)	LOCATION:	DEPTH:	CASING DEPTH:	CASING DIAMETER: STATIC WATER LEVEL:	PUMP TEST DATA DISCHARGE:	DRAWDOWN:	рертн сос	8 SAVI
LWUA Well No. 4	LOCATION: BALIBAGO, ANGELES CITY, PAMPANGA	DEPTH; 183.0 M	CASING DEPTH:	CASING DIAMETER: 300-200 mm STATIC WATER LEVEL: 4.9 M	PUMP TEST DATE: DISCHARGE: 22.09 LPS	DRAWDOWN; 25.6	рертн гос	
LWUA well no. BPW 10863	LOCATION:	S.F.H.:	CASING LEPTH:	CASING BAMETER! STATIC WATER LEVEL! 0.91	PUMP TEST DATA DISCHARGE;	DEAWDOWN:	рарти гов	COLPSE SAND STO
LMUK WEIT NO. BPW 6663	Location:	CEPTH : 60.06 M	CASING DEPTH :	CASING DIAMETER. STATIC WATER LEVEL: 26.83	FUSH TEST DATA DISCHARGE, 0.38 LPS	DRAWDOWN.	SEPTH LGG	0.00 S2 MI T
LWUA well 72, BPW 5440	LOCATION :	СЕРТН, 128.04 м	CASH46 DEPTH	STATIC WATER LEVEL 2:44	DISCHARGE: 7.57 LPS			SAM 400 6 5 5 AND 6 5 5 AND 6 5 5 AND 6 5 5 AND 6 5 5 AND 6 5 5 AND 6 5 5 AND 6 5 5 AND 6 5 5 AND 6 5 5 AND 6 5 5 AND 6 5 5 AND 6 5 5 AND 6 5 5 AND 6

LWUA well no.	LOCATION:	CASING DEPTH: CASING DAMETER; STATE OF THE LINE!	PUMP TEST DATA	DISCHARGE: DEANGGRN:	DEPTH LOG																			
LINUA WELL NO. BPW 4901	LOCATION: HERANDA ST. ANGELES CITY, PAMP DEFTH: 142.86 M	CASING DIANGTER: CASING DIANGTER:	PURAP TEST DATA	DISCHARGE 4.73 LPS DRAWDOWN:	DEPTH LOG	SANDY CLAY	FINE SAND	SECTION B GRAVEL	Sandy Clay	FINE SAND	אברוסא צוומא מיסא.	SAND ROCK W/	YELLOW ST	Des GRAVEL & SAND	SAND BOCK			CLAY	SAND ROCK	YELLOW STICKY CLAY	A DOBE			
LWUA well no. BPW 436617	LOCATION: BO. SAN JOS., ANGELES CITY, PAMP. DEPTH: 123.47 M	CASHIS DEPTH: CASHG DIAMETER: STATE WATER! WELL	PUMP TEST DATA	DECHARGE: 0.94 LPS DRAWDOWN:	рертн гос	THE SAND	COARSE SAND	- SC	BOULDER W/ SAND	20	95		Sand		HOUS CHES	2	ONTS	BLUE STICKY CLAY	CLAY	THE RESERVE			-	
				-	home	, see == -		~~~~	معد جرزوك	***************************************	**				******	ģ					 			
LWUA wail no.	LCGNON: CEPTH:	CASING EEPTH: CASING DAMETER:	PUSE TEST DATA	DISCHARGE: PRAYTOWN:	BO 1 HTWED											9						•		
1	LOCATION: FORAC, PAMPAHGA CEPTH: CEPTH: A: CASING DEPTH: CASING DEPTH: CASING DEPTH: CASING DIAMETER: PLANE TEST DATA	DISCHAREE: 0.94 LPS DISCHAREE: DIAMBORN: DAMYDOWN:	DEPTH LO	SANDY CLAY WORRYEL	- 3 SANO & GRAYEL				3					9					,					

LOCATION: SAN ANGELO SUBD. ANGELES CITY, PAMP. DEPTH: 213.41 M CASING DEPTH: CASING DEPTH: CASING DUAMETER: STATIC WATER LEVEL: 3.65 M DUAP TEST DATA DISCHARGE: 15.78 LPS DRAWDOWN: DEPTH LOG SAND SAND SAND SAND SAND SAND SAND SAND	LWUA Well No. BPW-43678	WIS WELL NO BPW-10864	CENTRA Well No.
DEPTH: 56.70 M			
CASING DEPTH: 213.41 M CASING DEPTH: CASING DIAMETER: STATIC WATER LEVEL: 3.65 M JUNP TEST DATA DISCHARGE: 3.78 LPS DRAWDOWN: DDSCHARGE: 15.78 LPS DRAWDOWN: DDSC ROCK CODARSE SAND CODARSE	LOCATION: BALIBAGO, ANGELES CITY, PAMPANSA	LOCATION: SAN ANGELO SUBD. ANGELES CITY, PAMP.	LDC4TION:
CASING DEPTH: CASING DIAMETER: CASING DIAMETER: STATIC WATER LEVEL: 3.48 M STATIC WATER LEVEL: 3.65 M JUMP TEST DATA DISCHARGE: 3.78 LPS DISCHARGE: 15.78 L	DEPTH: 56.70 M	DEPTH: 213,41 M	DEPTH:
CASING DIAMETER: STATIC WATER LEVEL: 3.46 M STATIC WATER LEVEL: 3.65 M DUMP TEST DATA DUM	CASING DEPTH:	CASING DEPTH:	CASING DEPTH:
DISCHARGE: 3.78 LPS DRAWDOWN: DISCHARGE: 15.78 LPS DRAWDOWN: EPTH LOG DEPTH CASING DIAMETER: STATIC WATER LEVEL: 2 44 M	CASING DIAMETER:	CASING DIAMETER:	
DISCHARGE: 3.78 LPS DISCHARGE: 15.78 LPS DRAWDOWN: DRAWDOWN: EPTH LOG DEPTH LOG DE EPTH LOG DE	PUMP TEST DATE:	PUMP TEST DATA	PUMP TEST DATA
DRAWDOWN: DRAWDOWN: DRAWDOWN: DRETH LOG DEFTH LOG DE COARSE SAND COARSE SAND SAND STORE SAND S		DISCHARGE: 15.78 LPS	DISCHARGE:
FINE SAND DODSE ROCK SAND SAND COARSE SAND	DRAWDGWN:	DRAWDOWN:	DRAW DOWN:
COARSE SAND			обртн гос
COARSE SAND SAND STORE COARSE SAND COARSE SAND SAND STORE SAND SAND SAND SAND SAND SAND SAND SAND	FINE SAND	COMPSE SAND	
COARSE SAND COARSE SAND COARSE SAND COARSE SAND SAND COARSE SAND SAND COARSE SAND SAND COARSE SAND SAND COARSE SAND SAND COARSE SAND COARSE SAND SAND COARSE S	LOOSE ROCK	SAND	
COARSE SAND COARSE SAND SAND SAND SAND SAND COARSE SAND SAND SAND SAND CLAY CLAY SAND CLAY CLA	5	BUE SANDY CLAY	
COARSE SAND SAND & GRAVEL PLOS SAND & GRAVEL SAND CLAY BROWN SANDY CLAY SAND CLAY C	SAND STONE	LIGHT BROWN	BLUE SANDY CLAY
SAILD & GRAVEL YELLOW CLAY YELLOW CLAY SAND CLAY CLAY SAND CLAY CLAY CLAY SAND CLAY	COARGE SAND	Ova	- Wa
SAID & GRAVEL YELLOW CLAY SAID STOIE CLAY SAID			
YELLOW CLAY SAND STONE CLAY SAND SAND LIGHT BROWN SLEY SAND SAND SAND SAND SAND SAND SAND SAND SAND	SAMO B		
SAND STONE USAND STONE CLAY LIGHT BROWN LIGHT BROWN SALIDY CLEY	- t	XETTOM O'TA	
SAND STONE BROWN SANDY CLAY SAND BROWN SANDY CLAY SAND SAND SAND SAND SAND SAND			I
			ò
		[구설문]	
LIGHT BROWN SAIDY CLAY	000		
LIGHT BROWN SaidY CLAY		ONES I	
		SAIDY CLAY	
2010 AGNUS 3118			


APPENDIX 6.7.1 Selection of Water Quality Examination Points

Selection of these source were done in consideration of the following favors.

- The points are located strategically i.e. possibly covering the whole municipality whereby the results would be representative of the overall condition in the area.
- Samples were collected from areas where water quality is reported to be undesirable.
- Accessibility and easy facilitation for sampling

Over selection of these points was done comprising of:

- Eleven (11) deep wells int he city water supply system (ACWS)
- Five (5) deep wells in the private/public system
- Five (5) shallow wells
- One (1) river
- Four (4) water taps on the service pipe for bacteriological analysis the location of these points is shown in FIGURE 6.7.1.1.

WATER QUALITY ANALYSIS - ANGELES CITY 6.7.2 APPENDIX

*: Calegory; A - Deep wells in the city water supply system B - Deep wells in private/public system C - Shallow wells
D - River
E - Water taps on the service pipe

Philippine National Standards for Drinking Water

Water Quality: Physical, Chemical and Radiological Requirements

Bacteriological Quality Standards

Pa	rameter	Maximum Permissible level*
Turbidity		5 units
Color		5 units (s) **
Odor		Unobejetionable
Threshold odor number	•	Note more than 3
Taste		Unobjectionable
Total Solids		500 (s)
pH		6.5 - 8.5
Phenolic substances		0.001
Radioactive Subs.	Gross Alpha	3 pCi/1
	Gross Beta	30pCi/1
Trace Elements	Arsenic	0.05
	Barium	1.0
	Cadmium	0.01
	Chromium	0.05
	Copper	i.o
	Cyanide	0.05
•	Fluoride	0.6
	Iron	1.0
	Lead	0.05
	Manganese	0.5 (s)
	Mercury	0.002
	Selenium	0.01
	Zinc	5.0 (s)
Organic Cehmicals	; Synthetic	
J	Detergents (MBAS)	0.5
	Oil & Grease	Nil
Persistent Pesticides	: Aldrin	0.001
	DUT	0.05
•	Dieldrin	0.001
	Chlordane	0.003
	Endrin	0.0002
	Heptachlor	0.0001
	Lindane	0.004
	Toxaphane	0.005
	Methoxychlor	0.1
	2,4E	0 . l
	2, 4, 5 —— T	0.01
PCB	• •	Nil
Other Chemicals	: Calcium	75
	Chloride	200 (s)
	Magnesium	50 (s)
	Nitrate (NO3)	30
	Sulfate	200 (s)
	Hydrogen sulfide	0.05 (s)

Minimum Requirements on Bacteriological Quality

a) Chlorinated or Otherwise Disinfected Supplies
Efficient treatment culminating in chlorination or some other form of disinfection should yield a water free or any coliform organism however polluted the original raw water may have been. In practice it should not be possible to demonstrate the presence of coliform organisms in any sample of 100mg. The efficacy of the purification process and method of sampling should be looked into when a sample of the water entering the distribution system does not conform to this standard. In testing chlorinated water, presumptive positive tubes should always be subjected to appropriate confirmatory tests.

b) Non-disinfected Supplies

Where supplies of this sort exist, no water entering the distribution system should be considered satisfactory if it yields E coli in 100ml. If E. coli is absent, the presence of not more than 3 coliform organisms per 100ml may be tolerated in occasional samples from established non-disinfected pipes supplies, provided that they have been regularly and frequently tested and that the catchment area and storage conditions are found to be satisfactory. If repeated samples show the presence of coliform organisms, steps should then be taken to discover and, if possible, remove the source of pollution. If the number of coliform organisms increases to more than 3 per 100ml, the supply should be considered unsuitable for use without disinfection.

c) Individual or Small Community Supplies

Where supply of waters are individual wells, bores and springs everything possible should be done to prevent pollution of the water. It should be possible to reduce the coliform count of water from even a shallow well to less than 10 per 100ml. Persistent failure to achieve this, particularly if E. coli is repeatedly found, should, as a general rule lead to chlorination or boiling of the water for domestic consumption.

^{*} All units are in mg/l unless, otherwise stated.

^{** (}s) — Secondary standards; compliance with the standard and analysis are not obligatory.

APPENDIX 7.2.1 Data on the Unit Cost for Estimation of Project Cost

(1) Deep Well Construction: Peso

Depth (m)	Casing size (m/m)	Cost
200	250	940,000
200	300	1,160,000
250	150	640,000

BREAKDOWN OF COSTS IN %

	Local Component		FEC			
	Material	La	bor	Direct	Direct Indirect	
		Skilled	Unskilled	Direct	Indifect	Total
Equipmen t	17	bins		_	20	37
Civil Works	33	8	5	-	17	63
Total	50	8	5	_	37	100

(2) Deep Well Pump Station (Electric Motor Drive) : Thousand Peso

KW	Cost
7	450
15	560
22	640
29	720
37	790
44	840
51	890
59	960
66	1,020
74	1,080

BREAKDOWN OF COSTS IN %

	Local Component			F E C		
	Material	La	bor	Direct	Direct Indirect	
		Skilled	Unskilled	DITECT	Indifect	Total
Equipment	9	_	berr	42	5	56
Civil Works	21	9	5	-	9	44
Total	30	9	5	42	14	1.00

(3) Booster Pump Station

$$C = (72.16 - 13.68 \log Q) \times Q^{(0.42 + 0.1 \log Q)}$$

$$\times H^{0.305(\log Q - 0.7)}$$

where,

C = cost for electric motor drive (thousand peso)

Q = design capacity (1/sec)

H = total dynamic head (m)

BREAKDOWN OF COSTS IN %

	Local Component			F E C		
	Material	La	bor	Direct	Indirect	Total
	110001101	Skilled	Unskilled	221000		1001
Equipment	11		- .	53	2	66
Civil Works	17	9	6	-	2	34
Total	28	9	6	53	4	100

(4) Pipeline Cost

Following pipe materials are presently available in the Philippines:

- GI (galvanized iron),
- PE (poly-ethylene),
- PB (poly-butylene),
- PVC (poly-vinyl-chloride),
- ~ SP (steep pipe),
- CI (cost iron), and
- AC (asbestos cement).

Among these materials, the use of CI pipe is limited due to its high cost and AC pipe is also rare by safety reason.

Followings are comparison of unit cost at the 1985 price level.

				(Unit: ₽/	/m)
Diameter	GI	PE	PB	PVC	SP
13	20.8	13.8	9.1		-
19	24.7	19.9	13.6	-	_
25	32.3	25.3	22.0		_
38	59.2	41.5	44.7	, 	***
50	87.5	61.4	76.4	33.9	
63	117.7	-	-	48.0	
75	180.3	-	_	81.3	_
100	230.8	-	-	122.4	235.0
150	-		-	256.9	250.0
200	-		-	506.5	290.0
250	_	-	_	-	315.0
300	-	_	-	_	425.0
400	-	_	-		520.0
500	***	-		-	700.0
600	_	<u> </u>	***	-	890.0

Based on the above comparison, SP is advantageous for the diameter of 200 mm and above than PVC. Thus, for the cost estimates of major transmission and distribution pipes, SP is considered for diameter of 200 mm and above, while PVC for diameter of less than 150 mm taking into account the transportation cost and easy installation.

Diameter (mm)	Unit Cost (₽/m)
150 (PVC)	410
200(SP)	520
250(")	630
300(")	760
350(")	900
400(")	970
450(")	1,160
500(")	1,330
600(")	1,600
700(")	1,910

Source : LWUA Design Depart

BREAKDOWN OF COSTS IN %

	Local Component			FEC		
	Material	La	bor	- Direct Indirect		Tota1
		Skilled	Unskilled		2	3044
Equipment	23	····		4	27	54
Civil Works Total	17 40	7	4	4	18 45	46 100

(5) Valve In-place Cost

Diameter (mm)	Gate Valve (₽)	Butterfly Valve (*)
50	1,700	••
75	2,900	-
100	3,900	=-
150	5,300	***
200	6,700	-
250	11,200	-
300	-	34,800
350	-	74,400
400	aus .	95,200
450	-	125,900
500		174,000
600	~	243,600
700	-	313,200
	C	. IIIIA Dandana Danasat

Source : LWUA Design Depart

BREAKDOWN OF COSTS IN %

	Local Component			FEC		
	Material	La	bor	- Direct Indirect		- Total
	THE CELLUL	Skilled	Unskilled			10021
Equipment	9	_	~~	63	5	77
Civil Works	12	3	6		2	23
Tota1	21	3	6	63	7	100

(6) Internal Network

Population Density	Total Length of	Unit Cost	(₽/ha)
	Pipeline	Diameter	Diameter
(Person/ha)	(m/ha)	(100/150)	(75/100)
50	64	18,300	14,900
60	67	19,300	15,700
75	72	20,900	16,800
100	80	23,100	18,700
1 50	90	25,700	21,000
200	100	28,300	-
250	108	30,400	-
300	116	32,500	

BREAKDOWN OF COSTS IN %

	Local Component			F E C		
	Material	La	bor	Direct Indirect		Total
		Skilled	Unskilled	21100		1000
Equipment	22	_	-	7	27	56
Civil Works	17	7	4	_	16	44
Total	39	7	4	7	43	100

(7) In-place of Service Connections

Diameter	Without Meter	With Meter	Meters
(inch)	₽/unit	₽/unit	₽/unit
1/2	450	810	400
5/8 - 3/4	520	1,280	880

SERVICE CONNECTION WITHOUT METER BREAKDOWN OF COSTS IN %

	Local Component]	······································	
	Material	Labor		Direct	Indirect	Total
		Skilled	Unskilled	DITECT	markee	10000
Equipment	9		***	60	2.5	71.5
Civil Works	17	3	6	-	2.5	28.5
Total	26	3	6	60	5	100

SERVICE CONNECTION WITHOUT METER BREAKDOWN OF COSTS IN %

***	Local Component			FEC			
	Material	Labor		Direct	Indirect	Total	
		Skilled	Unskilled				
Equipment	4	-	_	83	2	89	
Civil Works	6	1	3	***	1	11	
Total	10	1	3	83	3	100	

(8) Fire Hydrant In-place Cost

Type	Size (mm)	Unit Cost (P)
Commercial	150	16,800
Residential	100	9,400

BREAKDOWN OF COSTS IN %

	Local Component			F E C		
	Material	Labor		Direct	Indirect	Total
		Skilled Unskilled	***************************************			
Equipment	8	-	_	57	5	70
Civil Works	10	8	10		2	30
Total	18	8	10	57	7.	100

(9) Elevated Tank/Ground Reservoir

Elevated Tank: $C = 0.615 \text{ H}^{1.144} \text{V}^{0.749}$

Ground Reservoir: $C = 20.05 \text{ V}^{0.639}$

where, C = cost (thousand peso)

H = overflow elevation above ground level

V = storage volume (cu.m)

BREAKDOWN OF COSTS IN %

]	Local Comp	onent	FEC			
	Material	Labor		Direct	Indirect	Total	
	110001111111111111111111111111111111111	Skilled	Unskilled		211222000		
Equipment	4 .			3	2	9	
Civil Works	53	5	7	-	26	91	
Total	57	5	7	3	28	100	

(10) Gas Chlorinator In-place Cost

Туре	Water Flow Condition	Maximum Chlorine Feed (kg/day)	Unit cost $\frac{1}{(P)}$
I-A	constant	22	98,100
I-B	constant	45	119,100
II-A	Variable	22	147,700
II-B	Variable	45	169,300

1/ Empty gas cylinders and automatic switchover include

TYPE I-A, I-B BREAKDOWN OF COSTS IN %

		Local Comp	onent	FEC		Total
	Material	Labor		Direct	Indirect	
•		Skilled	Unskilled	DII.CC.	IIIIIII OCC	1000
Equipment	15	_	w-a	41	 5	61
Civil Works	25	6	3	-	5	39
Total	40	6	3	41	10	100

TYPE II-A, II-B
BREAKDOWN OF COSTS IN %

	Local Component			F E C		
	Material	Labor		Direct	Indirect	Total
	racella.	Skilled	Unskilled	D	IMILECT	10041
Equipment	21	_	_	53	2	76
Civil Works	12	6	2	***	4	24
Total	33	6	2	53	6	100

(11) Administration & Operation Building

Future Service Population	Administration Bldg. (Thousand Peso)	Operation Center (Thousand Peso)
30,000	1,000	810
40,000	1,110	890
50,000	1,220	990
60,000	1,320	1,090
70,000	1,410	1,180
80,000	1,500	1,280
100,000	1,610	1,380
110,000	1,820	1,590

ADMINISTRATION BUILDING BREAKDOWN OF COSTS IN %

	Local Component				FEC		
	Material	La	bor	- Direct	Indirect	Total	
		Skilled	Unskilled				
Equipment	20		-	2000,	16	36	
Civil Works	42	7	5	-	1.0	64	
Total	62	7	5	-	26	100	

OPERATION CENTER BREAKDOWN OF COSTS IN %

	Local Component			FEC		
	Material	Labor		Direct	Indirect	Total
		Skilled	Unskilled	Direct	Indirect	10041
Equipment	14	_		30	6	50
Civil Works	26	10	5	-	9	50
Total	40	10	5	30	15	100

(12) Energy Cost

$$C = N_p(h) (Pu) (Em)^{-1}$$

where,

C = cost (thousand peso)

 $N_p = pump power demand (kw)$

h = hours of operation

 $P_{u} = unit power cost (P/kwH)$

 $E_{m} = motor efficiency (0.85)$

(13) Chemical Cost

$$C = (Annual Water Demand) \cdot D \cdot U_{CL} \times 10^{-3}$$

where,

C = annual cost for chlorine (P)

D = chlorine dosage (mg/1)

 $^{\mathrm{U}}$ CL= unit cost of chlorine gas ($^{\mathrm{P}}$ /kg)

(14) Minimum Cost Diameter

Following cost function is applied to determine the most economical diameter of pipelines that are not simulated by the network analysis.

Dmin. =
$$187.7 \text{ Q}^{0.486} \text{ C}^{-0.315} \text{ (Ec/Oe)}^{0.17}$$

where,

Dmin. = minimum cost diameter

Q = water flow (1/sec)

C = "C" value (Hazen William Formula)

Ec = energy cost (P/kwh)

Oe = overall efficiency

APPENDIX 7.2.2 Excerpt from LWUA Methodology Manual

F. COST COMPARISON

General

Analysis and evaluation of alternative are based largely on present-worth cost studies, taking into consideration the salvage value after the design period. Cost comparison is based on present worth of net disbursement during the period of 1980-2010 without any escalation factor applied to the 1980 unit prices.

If the differences between net PW cost of an alternative and that of the least-cost alternative is within the limit of cost estimating accuracy (10-15%) further cost comparison shall be made applying escalation factor to 1980 unit prices. For escalation rates, refer to Chapter VII-C: Escalation Rates. Moreover, non-economic parameters may also be influence the selection of the recommended plan.

Construction Cost

Construction cost estimates of the proposed improvements are based on the projected July 1980 unit prices. All estimates on imported materials are based on an exchange rate of \$\mathbb{P}\$7.40 per 1 US dollar. Further, it is assumed that no custom duty will be charged on items imported for the public water supply project. The cost of any facility to be replaced during the design period (1980-2010) is included under the capital cost for the particular year.

Annual Cost

Annual costs are all costs associated with the maintenance, operation, and management of the project. These include labor, power, chemical and maintenance costs. These estimates are carried out for the period 1980-2010. The present-worth cost of annual expenditure is based on uniform and gradient series at a given interest.

Personnel and maintenance costs may abruptly increase as additional facilities are put into operation - e.g., the power cost at a pump station increases in relation to the daily pumpage of water.

Salvage Value

The salvage values of facilities at the end of the design period 2010 are important in calculating net present worth of the total expenditures. It is assumed that the value of a facility depreciates linearly throughout its service life therefore, a facility with longer service life depreciates less than a facility with shorter service life (Refer to Table VI-I for service life of different facilities). Moreover, a facility constructed at a later stage has higher salvage value than one constructed at an earlier stage.

Civil Works	Economic Life	Equipment	Economic Life
Wells	30 years	Wells (pumping engine or motors)	15 years
Springs	50	Springs (vales, pipes)	50
Transmission Mains	50	Transmission (pipes, valves)	50
Storage Facilities	50	Storage (valves, pipes, level gauge, etc.)	50
Disinfection Facilities	50	Disinfection facilities (chlorinators, mech	-
Distribution Mains	50	anical equipment and filter equipment,	
Internal Network	50	pipes, valves)	15
Service Connections	50	Distribution mains (pipes, valves)	50
Fire Hydrants	50	Internal networks (pipes, valves)	50
Operational Buildings	. 50	Service connections (meters, pipes)	50
		Operational buildings (workshop, etc.)	15
		Fire hydrants	30
		Vehicles	7

Net Present Worth

The net present worth cost of an alternative scheme is the difference between the total present worth of capital cost and annual cost minus the present worth of salvage values.

For Construction Cost: $C_{n} = C_{c} - C_{s}$ $C_{c} = C \times \frac{1}{(1+i)^{n}}$ $C_{c} = C \times \frac{1}{(1+i)^{n\times}} \times (1 - \frac{n\times - n}{SL})$

For Annual Cost:

$$C_c = A_c \times \frac{1}{(1+i)^n}$$

where,

C = net present worth comparable cost

 $C_c = present worth of construction cost$

 $C_{s} = present worth of salvage value (design year)$

C = construction cost

SL = service life

1 = discount rate

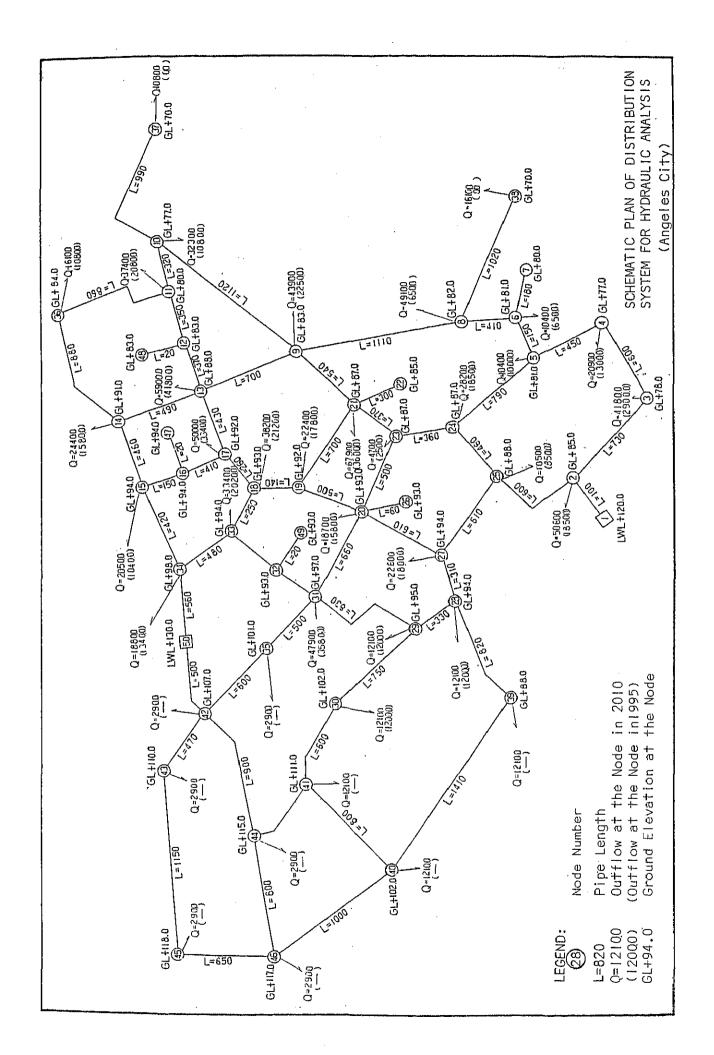
nx = number of years between design year and base year

n = number of years between year of construction and base year

A = annual cost

	(Unit : Px1,000
rce Alternatives)
PPENDIX 7.3.1 Cost Estimates of Water Source Alternatives	(Unit : Px1,000
ENDIX 7.3.1 Cost	
A.P.P.	

Required Facilities							
Facilities	Unit Cost (P)	Alternative	tive S-1	Alternative	re S-2	Alternative	e S-3
1		Q¹ty	Cost	Q'ty	Cost	Q¹ty	Cost
Deep Well	940,000	18	16,920		10,340	ı	1
Deep Well Pump	640,000	18	11,520	11	7,040	ı	ı
River Water Intake							
Booster Pump (226 1/s, H=25m)	1	ı	ı	 1	3,694	ı	ı
	ı	ı	ı	1	ı	 -	8,414
Sub Total			28,440		21,074		8,414
Transmission Line							,
\$200 mm	520	4,700 m	2,444	2,700 m	1,404	i	1
ø250 mm	630	2,300 m	1,449	2,300 m	1,449	1	1
	760		380	i	ı	i	ı
	970		485	1	I	1	l
	1,160		3,248	l	ı	ı	I
ф600 шш	1,600	ı	i	10,000 m	16,000	ı	ı
ø700 mm	1,910	1	ł	1	ı	10,000	19,10
Sub Total			8,006		18,853		19,100
Treatment Facility							
Slow Sand Filter	i	ł	ļ	3,900 sq.m	8,190	10,280 sq.m	18,504
TOTAL CONSTRUCTION COST			36,846		48,117		46,018
Operation & Maintenance(15 years)	(s:						
Energy Maintenance	0.30/kWH	52,003 MWH	15,610	44,320 MWH	13,296	52,000 MWH	15,600
(10% of Construction Cost)	a a		3,685 19,295		4,812 18,108		4,602
GRAND TOTAL			56,141		66,225		66,220


APPENDIX 7.3.2 COMPUTER-AIDED HYDRAULIC ANALYSIS OF DISTRIBUTION SYSTEM (Angeles City)

o List of Computed Cases

Alternative	D-1	(2010)			
	D-2	(2010)			
	D-3	(2010)		Southwest	Area
	D-3/D-4	(2010)		Northeast	Area
	D-4-A	(1995,	2010)	Southwest	Area
	D-4-B	(1995,	2010)	Southwest	Area

o Note

This appendix shows the results of Hydraulic Analysis aided by the computer. The distribution network is shown in the figure of following page. The nodes, however, with no flow and 20.00 m in Dynamic Head was treated as a dummy node. Those nodes can be ignored and have no relation to the computation results.

ALTERNATIVE D-1 1 Supply System #/2 Reservoirs, Year2010

۸

<< NODES

STATIC HEAD (m)	54.28.44.84.48.44.48.48.48.48.48.48.48.48.48
DYNAMIC HEAD (m)	0.45888888884448444444444444444444444444
H.G.L. ELEV.	20.05.05.05.05.05.05.05.05.05.05.05.05.05
FLOW (cu.m/day)	200.00 200.00
GROUND ELEV.	63887.188887.68889.944989898888444869988998898989898989898888844488988898
NODE No.	

ALTERNATIVE D-1

Supply System w/2 Reservoirs, Year2010

C PIPELINE >>

PIPE NODE No. DIA, LENGTH H-W FLOW VEL. HEADLOSS

No. from—to tum) 100, 130, 126224, -1, 01 1, -1, 12

2 3 450, 100, 130, 126224, -1, 01 1, -1, 12

2 4 450, 600, 130, 130, 1368, 1, 29

2 5 4 450, 600, 130, 130, 1368, 1, 29

2 5 4 450, 600, 130, 130, 1368, 1, 29

2 6 4 400, 130, 130, 130, 1368, 1, 29

3 8 150, 110, 120, 1368, 1, 29

3 8 150, 110, 120, 1368, 1, 29

3 8 150, 110, 120, 1368, 1, 10

3 10 200, 130, 120, 130, 130, 1, 10

3 10 200, 130, 130, 130, 130, 1, 10

3 11 2 250, 130, 10

3 11 36, 130, 10

3 11 36, 130, 10

3 11 36, 130, 10

3 11 36, 130, 10

3 11 36, 130, 10

3 11 36, 130, 10

3 11 36, 130, 10

3 11 36, 130, 10

3 11 36, 130, 10

3 11 36, 130, 10

3 11 36, 130, 10

3 11 36, 130, 10

3 11 36, 130, 10

3 11 36, 130, 10

3 11 36, 130, 10

3 11 36, 130, 10

3 11 36, 130, 10

3 11 36, 130, 10

3 11 36, 130, 10

3 11 36, 130, 10

3 11 36, 130, 10

3 11 36, 130, 10

3 11 36, 130, 10

3 11 36, 130, 10

3 11 36, 130, 10

3 11 36, 130, 10

3 11 36, 130, 10

3 11 36, 130, 10

3 11 36, 130, 10

3 11 36, 130, 10

3 11 36, 130, 10

3 11 36, 130, 10

3 11 36, 130, 10

3 11 36, 130, 10

3 11 36, 130, 10

3 11 36, 130, 10

3 11 36, 130, 10

3 11 36, 130, 10

3 11 36, 130, 10

3 11 36, 130, 10

3 11 36, 130, 10

3 11 36, 130, 10

3 11 36, 130, 10

3 11 36, 130, 10

3 11 36, 130, 10

3 11 36, 130, 10

3 11 36, 10

3 11 36, 10

3 11 36, 10

3 11 36, 10

3 11 36, 10

3 11 36, 10

3 11 36, 10

3 11 36, 10

3 11 36, 10

3 11 36, 10

3 11 36, 10

3 11 36, 10

3 11 36, 10

3 11 36, 10

3 11 36, 10

3 11 36, 10

3 11 36, 10

3 11 36, 10

3 11 36, 10

3 11 36, 10

3 11 36, 10

3 11 36, 10

3 11 36, 10

3 11 36, 10

3 11 36, 10

3 11 36, 10

3 11 36, 10

3 11 36, 10

3 11 36, 10

3 11 36, 10

3 11 36, 10

3 11 36, 10

3 11 36, 10

3 11 36, 10

3 11 36, 10

3 11 36, 10

3 11 36, 10

3 11 36, 10

3 11 36, 10

3 11 36, 10

3 11 36, 10

3 11 36, 10

3 11 36, 10

3 11 36, 10

3 11 36, 10

3 11 36, 10

3 11 36, 10

3 11 36, 10

3 11 36, 10

3 11 36, 10

3 1

Iteration Times : 20

ALTERNATIVE D-1 1 Supply System w/2 Reservoirs, Year2010 << PIPELINE >>

LOSS (0700)	0. 40 0. 17 0. 12
HEAD!	0.36 -4.09 0.14 0.09
VEL. (m/sec)	0. 29 -1. 78 0. 11
FLOW (cu. m/day)	1790. -19347. 290. 290.
₹o	120. 120. 110.
LENGTH	900. 500. 1150. 800.
DIA.	300. 400. 200.
Š.	46554
NODE -	3354
PIPE No.	55 51 58 50 51 58

ALTERNATIVE D-2 1 Supply System w/1 Reservoir, Year2010

^
NODES
y

STATIC HEAD (m)	9.844.88.44.49.89.89.89.89.89.89.89.89.89.89.89.89.89
DYNAMIC HEAD (m)	0.48860866666666666666666666666666666666
H. G. L. ELEV. (m)	926 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
FLOW (cu.m/day)	2000 000 000 000 000 000 000 000 000 00
GROUND ELEY. (m)	2.00
NODE No.	

ALTERNATIVE D-2 1 Supply System W/1 Reservoir, Year2010

<< PIPELINE >>

1,00% (0/00)	
HEADL(+ + + + + + + + + + + + + + + + + + +
VEL.) (m/sec)	
FLOW (cu. m/day)	2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2
₹o	0.000000000000000000000000000000000000
LENGTH (m)	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
DIA.	0.000000000000000000000000000000000000
9. 19.	
NODE 1	44444444444444444444444444444444444444
PIPE No.	

ALTERNATIVE D-2 | Supply System w/! Reservoir, Year2010 | Suppline >>

HEADLOSS (m) (0/00)	2.91 -1.53 0.48 0.48
HEAD (m)	2.62 0.26 0.55 0.38
VEL. (m/sec)	0. 66 0. 37 0. 19 0. 19
FLOW (cu. m/day)	1790, 3051. -5771. 290. 290.
¥,T	120. 120. 120. 110.
LENGTH (m)	900. 500. 500. 1150. 800.
DIA.	200. 350. 350. 150.
No.	45 55 55 54 56 56 57 58 58 58 58 58 58 58 58 58 58 58 58 58
NODE	445 43 43 45 45 45 45 45 45 45 45 45 45 45 45 45
PIPE No.	56 59 59 60

r2010

ALTERNATIVE D-3 2 Supply Systems */3 Reservoirs, Southwest Area, Year2010

<< PIPELINE >>

Yea			
st Area.		STATIC HEAD (m)	- 44.0.0.4.4.0.0.4.4.0.0.0.0.0.0.0.0.0.0.
Southwes		DYNAMIC HEAD (m)	0.44 8.86 8.86 8.95 4.75 4.75 4.4 6.85 4.86 8.95 6.75 6.75 6.75 6.75 6.75 6.75 6.75 6.7
eservoirs,		H. G. L. ELEV. (m)	0.001-14-14-11-14-14-14-14-14-14-14-14-14-14
D-3 stems w/3 Re	٨	FLOW (cu.m/day)	2000 00 00 00 00 00 00 00 00 00 00 00 00
RNATIVE D	NODES >	GROUND ELEV. (m)	66.85
ALTER 2 Su	Ÿ	NODE No.	

HEADLOSS (m) (0/00) FLOW VEL. (cu. m/day)(m/sec) ŤΩ LENGTH (m) OIA (mm) NODE No. from-to

?

Supply Systems w/2 or 3 Reservoirs, Northeast Area, Year2010
Supply Systems w/2 or 3 Reservoirs, Northeast Ar.
Energy Systems w/2 or 3 Reservoirs, Norther
Supply Systems W/2 or 3 Reservoirs,
Supply Systems W/2 or 3 Reservance
Supply Systems w/2 or 3
Supply Systems W/
Supply Syste
Supply

STATIC HEAD (m)	
DYNAMIC HEAD (m)	
H. G. L. ELEV. (m)	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
FLOW (cu. m/day)	00000000000000000000000000000000000000
GROUND ELEV. (m)	2.5. 1.0.000
NODE No.	

ALTERNATIVE D-3, D-4(Recommended Plan);-A(Single P.);-B(Parallel P.) 2 Supply Systams w/2 or 3 Reservoirs, Northeast Area, Year2010 HEADLOSS (m) (0/00) FLOW VEL. (cu. m/day)(m/sec) -1230 -2402. -128. -128. -141. -1659. -5080. DIA. LENGTH H-W (m) C 250. 250. 150. 150. 150. 250. 250. << PIPELINE >> NODE No. from—to 80144449 8014449 801449 86444464464 PIPE No. ~26466~860

Pipeline Alignment) Area, Year1995 겉~

LTERNATIVE D-4-A (Recommended Plan, Single 2 Supply Systems w/2 Reservoirs, Southwest	
TERNATIVE D-4-A (Re) Supply Systems W/2	<

STATIC HEAD (m)	0.000 0.000
DYNAMIC HEAD (m)	9. 200 000 000 000 000 000 000 000 000 00
H. G. L. ELEV.	10.00
FLOW (cu. m/day)	1850.00 1300.00 1300.00 1300.00 1300.00 1300.00 1300.00 1300.00 1300.00 1300.00 1300.00 1300.00 1300.00 1300.00 1300.00 1300.00
GROUND ELEV. (m)	28.000
NODE No.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

HEADLOSS (m) (0/00) ALTERNATIVE D-4-A (Recommended Plan, Single Pipeline Alignment) 2 Supply Systems w/2 Reservoirs, Southwest Area, Year1995 FLOW VEL. (cu. m/day)(m/sec) ₹υ LENGTH (m) OIA. << PIPELINE >> NODE No. from-to P.P.

HEADLOSS (m) (0/00)

<u>‡</u>Ω

OIA.

٨

<< PIPELINE

ALTERNATIVE D-4-A (Recommended Plan, Single Pipeline Alignment) 2 Supply Systems w/2 Reservoirs, Southwest Area, Year2010

e Alignment) ear2010			
le Pipelin st Area, Y		STATIC HEAD (m)	60000000000000000000000000000000000000
lan, Sing , Southwe		DYNAMIC HEAD (m)	9.8.9.8.9.9.9.9.7.1.1.1.4.4.6.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9
Commended P		H. G. L. ELEV. (m)	25. 11. 12. 12. 12. 12. 12. 12. 12. 12. 12
D-4-A (Recom stems w/2 Re	Ņ	FLOW (cu.m/day)	2080.00 2080.00 2080.00 2080.00 3740.00
RNATIVE C	NODES >	GROUND ELEV. (m)	2.000 000 000 000 000 000 000 000 000 00
ALTER 2 Su		NODE No.	

FLOW VEL. (cu. m/day)(m/sec) 135107. 135107 LENGTH (m) NODE No. from-to PIPE No.

Iteration Times : 18

ALTERNATIVE D-4-B (Parallel Pipeline Alignment of Recommended Plan) 2 Supply Systems #/2 Reservoirs, Southwest Area, Year1995

ALTERNATIVE D-4-B (Parallet Pipeline Alignment of Recommended Plan) 2 Supply Systems w/2 Reservoirs, Southwest Area, Year1995

<< PIPELINE >>

<u>^</u>
NODES
V

STATIC HEAD (m)	0.0.444 0.0.444
DYNAMIC HEAD (m)	0.44.84.99.99.99.44.61.09.99.99.99.99.99.99.99.99.99.99.99.99.
H. G. L. ELEV. (m)	0.0014111101010888855000000000000000000000
FLOW (cu.m/day)	1850.00 185
GROUND ELEY. (m)	28
NODE No.	

HEADLOSS (m) (0/00)	Laar - ar ar ar ar ar ar ar ar ar ar ar ar ar
VEL. (m/sec)	44499946944644494646464646464644444469696644 82888828848846846848486868888888888
FLOW VEL. (cu.m/day)(m/sec)	2.796.6. 2.7
∄ο	130 120 120 120 120 120 120 120 120 120 12
LENGTH (m)	2000 2000
DIA.	00000000000000000000000000000000000000
95	
NODE	00000400000000000000000000000000000000
P.P.	

(ue)

ALTERNATIVE D-4-B (Parallel Pipeline Alignment of Recommended Plan) 2 Supply Systems w/2 Reservoirs, Southwest Area, Year2010

<< PIPELINE >>

υ,	
f Recommended Year2010	
IVE D-4-B (Parallel Pipeline Alignment of V Systems W/2 Reservoirs, Southwest Area,	
ALTERNATIVE D-4-B 2 Supply Systems	<< NODES >>

STATIC HEAD (m)	- 0.8.44.8.8.8.8.8.4.8.6.6.8.8.2.8.2.8.2.8.2.8.2.8.2.8.2.8.2
DYNAMIC HEAD (m)	2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.
H. G. L. ELEV. (m)	119.00 119.00
FLOW (cu. m/day)	2050 00 2250 00 200 2
GROUND ELEV. (m)	720. 00 727. 00 777. 00 881. 00 883. 00 883. 00 883. 00 94. 00 94. 00 95. 00 95. 00 96. 00 97. 00
NODE No.	

HEADLOSS (m) (0/00) FLOW VEL. (cu. m/day)(m/sec) -35109 -3 LENGTH (m) DiA. NODE No. from-to PIPE No.

ALTERNATIVE D-4-B (Parallel Pipeline Alignment of Recommended Plan)
2 Supply Systems w/2 Reservoirs, Southwest Area, Year2010
. << PIPELINE >>

HEADLOSS (m) (0/00)	& - & & & & & & & & & & & & & & & & & &
HEAD (m)	4-0-5-6-6-4-4-4-4-4-6-6-8-8-8-8-8-8-8-8-8-8-8
FLOW VEL.	1,01,14,14,14,000,000,000,000,000,000,00
FLOW (cu. m/day)	29698. 29698. 29698. 29698. 29698. 2469. 2469. 2569. 276. 2769. 276. 276. 276. 276. 276. 276. 276. 276
₹υ	1220 1220 1220 1220 1220 1220 1220 1220
LENGTH (m)	889.000.000.000.000.000.000.000.000.000.
DIA.	2000.000.000.000.000.000.000.000.000.00
No.	C 2 C C C C C C C C C C C C C C C C C C
NODE from-	2022222222222222222222222222222222222
Pipe No.	

APPENDIX 7.3.3 Cost Estimates of Alterntive Water Supply Systems

(1) Water Sources (Common Facilities)

- o Replacement of Pumps at existing wells
 5 pumps x 320,000 P/pump = P 1,600,000
- o Reconstruction of one existing well 940,000 P/well + 640,000 P/pump = P 1,580,000
- o Pump installation at test well \$\mathbb{P}\$ 640,000
- o 16 new well construction 16 wells x (940,000 P/well + 640,000 P/well) = P25,280,000

TOTAL \$\mathbb{P}29,100,000\$

(2) Transmission Line

	Inde	Albornati	D. 1	Albanasta		A1+	D. 3		₽x1,000	
Pipe	Cost	Alternati	Ae D-I	Arternati	.ve D-2	Alternati	د ۳ ve.	Alternative D-4		
	(P)	Q'ty	Cost	Q'ty	Cost	Q'ty	Cost	Q'ty	Cost	
ø200 mm	520	4,500 m	2,340	3,500 m	1,820	5,500 m	2,860	4,500 m	2,340	
∮ 250 mm	630	500 m	315	1,000 m	630	500 m	31.5	1,000 m	630	
∮350 mm	900	500 m	450	1,000 m	900	500 m	450	1,000 m	900	
∮400 mm	970	1,000 m	970	1,500 m	1,455	500 m	485	500 m	485	
∮ 500 mm	1,330	500 m	665	500 m	665	500 m	665	500 m	665	
TOTAL		7,000 m	4,740	7,500 m	5,470	7,500 m	4,775	7,500 m	5,020	

(3) Reservoir

Costs were estimated based on the cost functions adopted in the LWUA Methodology Manual.

Alternative D-1

Ground Reservoir: Q = 3,525 cu.m P 3,705,000 Q = 9,531 cu.m P 6,996,000

TOTAL \$\mathbb{P}10,701,000\$

Alternative D-2

Ground Reservoir: Q = 13,056 cu.m # 8,554,000

Alternative D-3

Elevated Tank : Q = 458 cu.m x 2

(H=15 m) \mathbb{P} 1,339,000 x 2= \mathbb{P} 2,678,000 Ground Reservoir : Q = 4,026 cu.m \mathbb{P} 4,034,000 Q = 8,175 cu.m \mathbb{P} 6,342,000

TOTAL ₱13,054,000

Alternative D-4

(4) Booster Pump Station

Costs were estimated based on the cost functions adopted in the LWUA Methodology Manual.

Alternative D-1

Alternative D-2

Q = 75,300 cu.m/day = 880 1/sec H = 50m Q = 5,711 cu.m/day = 70 1/sec H = 20m P1,814,000 P1,532,000

TOTAL ₱13,346,000

Alternative D-3

Q = 50,800 cu.m/day = 590 1/sec H = 50m P 8,638,000 Q = 22,320 cu.m/day = 290 1/sec H = 40m P 4,856,000

<u>TOTAL</u> <u>₱13,494,000</u>

Alternative D-4

Q = 70,214 cu.m/day = 820 1/sec H = 50m P11,171,000 TOTAL P11,171,000

(5) Energy Consumption

Unit Cost: 0.3 P/KWH, Operation Period: 15 years

Alternative D-1

Deep Well Pump : 4,432.7 MWH/year x 15 years x 0.3 P/KWH = P19,947,000 Booster Pump : (2,217 MWH/year + 568.6 MWH/year)

x 15 years x 0.3 P/KWH = P12,535,000 TOTAL = P32,482,000

Alternative D-2 Deep Well Pump : Same as Alternative D-1 **₽**19,947,000 Booster Pump : 2,904.6 MWH/year x 15 years x 0.3 P/KWH = P13,071,000 = \$33,018,000TOTAL Alternative D-3Deep Well Pump : Same as Alternative D-1 P19,947,000 Booster Pump : 2,937.7 MWH/year x 15 years x 0.3 P/KWH = P13,220,000 TOTAL = ₱33,167,000 Alternative D-4 Deep Well Pump : Same as Alternative D-1 ₱19,947,000 Booster Pump : 2,892.9 MWH/year x 15 years x 0.3 P/KWH = P13,018,000 TOTAL **= ₽**32,965,000 (6) Labor Unit Cost : ₽ 2,000/MM Alternative D-1 and D-2 \mathbb{P} 2,000/MM x 2 persons x 15 years 720,000

 $\frac{P}{2,000}$ MM x 3 persons x 15 years

= P 1,080,000

Alternative D-3 and D-4

SURCE FACILITY							(Unit:	thous	sand Pe	sos)
SOURCE FACILITY S00000	Angeles .						Phase I		Phase I	Cost
Cliper Vill. Construction September Septembe		UNIT COST	NUMBER :	COST	NUMBER	COST	NUMBER	COST	NUMBER	COST
C2DEEP VELL PUMP W/BIOUSE A00000 2 1280 6 3840 8 5120 10 6400 Flow /heter 0=150 82000 7 434 8 372 13 800 10 6200 StB-T0TAL 4251 9852 14108 16420 1			1;							
Veli Punp	CIDEEP WELL CONSTRUCTION		1 1							
Plow Meter, D=150						3840			10	6400
Sile_TopTal.					_				0 }	0
2 TRANSISSION FACILITIES Main Pipes 0=200 (Steel Pipe)	Flow Meter D=150	62000	7 i		6		13		10	620
Main Pipes D=200 (Steel Pipe) D=200 D=350 (Steel Pipe) D=300 D=300 (Steel Pipe) D=300	SUB-TOTAL		<u> </u>	4254		9852		14106	i	16420
D=200 (Steel Pipe)			li		l		l		li	
B=350 (Steel Pipe)	Main Pipes		l i						\$	
D=400 (Steel Pipe)		520	0	0		780	1500	780	3500	1820
D=500 (Steet Pipe)	D=350 (Steel Pipe)	900	0	0	500	450	500	450	500	450
SUB-TOTAL	D=400 (Steel Pipe)	970	0	0	500	485	500	485	500	485
3 DISTRIBUTION FACILITIES (C) Reservoir. (C) Reserv		1330	<u>0</u>	0	l 0 .	0	0	0	2800	3724
(C) Reservoir.			0 1	0	0	1715	0	1715	İ	6479
C2Ptens Facility (Eqlp.) 1301 3765 5066 4246 -40	3 DISTRIBUTION FACILITIES		ī			!				
C2Ptens Facility (Eqlp.) 1301 3765 5066 4246 -40	(1)Reservoir		[4202	0	0		4202	[6210
Content Cont	(2)Pump Facility (Eqip.)	[,		!	3765				4246
(3)Chirnth Facility 22kg/e 98100		[,	2228	i		,		,	2187
(A)Elevaked Tank	(3)Chirnth Facility 22kg/c	98100	777	687	i		ī 8		3	294
(\$)Electric Sub-station (6)Distribution pipes (6)Distribution pipes (7)Diain Pipes D=150 (PVC Pipe)			1 0 1	0				0	7 2 1	2678
(86) istribution pipes 1) Main Pipes 0=150 (PVC Pipe)						+ <u></u>		,		5131
Disso (PVC Pipe)	(6)Distribution nines	† 	† - -†		†- -	+ 		+ I	† -	
B=150 (FVC Pipe)					[!				
D=200 (Skeel Pipe) 520 2370 1233 1080 562 3450 1795 2100 1092		410	1440	590	300	123	1740	713	6190	2538
D=250 (Steel Pipe)					1					
D=350 (Steel Pipe)						1			,	
D=100 (Steel Pipe)		ľ			i	1			1 1	
D=150 (Steel Pipe)					· ·					
D=500 (Steel Pipe) 1330 460 612 0 0 460 612 0 0					•				-	-
D=700 (Steel Pipe)					:					
2)Valves						_				-
D=150 (Gate Valve)		1310	1	1301	 	<u>:</u>	1100		100	
D=200 (Gate Valve)	D=150 (Coto Volva)	5200] - [20				91	21	111
D=250 (Gate Valve)					F					
D=350 (Butterfly Valve) 74400 9 670 1 74 10 744 0 0 0 0 0 0 0 0 0			, ,		1 4	1	!	1	1 9	
D=400 (Butterfly Valve) 95200 5					1				i .	
D=450 (Butterfly Valve) 125900 7 882 0 0 7 882 0 0 0 0 0 0 0 0 0	D=350 (Biltterfly Valve)	74400							,	
D=500 (Butterfly Valve) 174000 1 1774 0 0 1 1774 0 0 0 0 0 0 0 0 0	D=450 (Butterfly Valve)	95200	1		F				1	
D=700 (Butterfly Valve) 313200 2 626 0 0 0 2 626 0 0 0 3 1 1 1 1 1 1 1 1 1			1 ! !						i - 1	
3 Internal Network Commercial 100pop/ha 23100 0 0 0 0 0 0 0 0 75 1733 Commercial 150pop/ha 25700 0 0 0 46 1181 46 1181 46 1181 150pop/ha 18700 140 2618 0 0 140 2618 672 12560 Residential 150pop/ha 21000 0 0 403 8463 403 8463 0 0 403 8463 403 8463 0 0 403 8463 403 8463 0 0 403 8463 403 8463 60 0 403 8463 403 8463 60 0 403 8463 403 8463 60 60 60 60 60 60 60			!;							
Commercial 100pop/ha		313200	<u>2</u>	626	ļQ		<u> </u>	626	<u>u</u>	
Commercial 150pop/ha Residential 100pop/ha 18700 140 2618 0 0 140 2618 672 12566 Residential 150pop/ha 21000 0 0 0 403 8463 403 8463 Commercial 150pop/ha 21000 0 0 0 403 8463 Augusta 150pop/ha 21000 Commercial		00100		_			_ ا	,		1700
Residential 100pop/ha 18700 140 2618 0			,						(5)	
Residential 150pop/ha 21000 0 0 403 8463 403 8463 0 0 40 405ervice Conections D=1/2 810 3940 3192 14370 11640 18310 14832 17540 14207 1280 20 26 30 40 50 66 30 38 38 38 38 38 38 38			- 1	_		,				0
A)Service Conections						, –			672	
D=1/2		21000	ļ0 <u>.</u>	0	<u> 403</u>	8463	403	8463	¦¦	0
D=3/4										
5)Rehabilitation Vater Meter 1/2'' 400 2878 1151 0 0 2878 1151 0 0 0 2878 1151 0 0 0 2878 1151 0 0 0 2878 1151 0 0 0 2878 1151 0 0 0 2878 1151 0 0 0 2878 1151 0 0 0 0 2878 1151 0 0 0 0 0 0 0 0 0						,				
Water Meter 1/2''		1280	20 !	26	1 30	40	50	66	30	38
Old Laterals Service Connect.wo/Metr 480 1440 690 0 0 0 1440 690 690 625 550 60 625 550 60 625 550 60 625 550 60 625 6350 60 625 6	5)Kenabilitation				_	1				
Service Connect.wo/Metr 480 1440 690 0 0 1440 690 625 550 6)		400	2878		0		2878		[
Service Connect.4/Meter						_			[
6)Flow Meter 0=400 215000 1 215 0 0 1 215 1 215 7)Fire Protection 0=150 16800 0 0 0 0 0 0 0 0 0 95 1596 0=100 9400 0 0 0 0 0 0 0 0 430 4042 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0								1		
7)Fire Protection D=150 D=100 9400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				550	10					
D=150		215000	11	215	10	10	<u> </u>	215	ļl.;	215
D=100 9400 0 0 0 0 0 0 430 4047 SUB-TOTAL 34114 26553 60667 61900 4 1) Administration Bidg. 1 1590 1 1590 1 1590 1 1090 SUB-TOTAL 1 1590 0 0 1 1590 2 2910 5 Land Acquisition 120 2900 348 2000 240 4900 588 9300 1116 Vehicle 300000 2 600 4 1200 6 1800 4 1200 Stored Material & Equip. 438 519 957 966 SUB-TOTAL 1386 1959 3345 3280 6 Replacement of Equipment 0 0 0 0 26000 T O T A L 41344 40079 81423 117086 7 Leak Detection 240 4128 990 0 0 4128 990 0			1			!	Į	!		
SUB-TOTAL 34114 26553 60667 61900 4 1) Administration Bilg. 1 1590 1 1590 1 1590 1 1090 1 1090 1 1590 2 2910 5 Land Acquisition 120 2900 348 2000 240 4900 588 9300 1116 2000 2 2000 348 3000 3 30000 2 600 4 1200 6 1800 4 1200 5 1800 4 1200 5 1800 4 1200 5 1800 4 1200 5 1800						_			1	1596
4 1) Administration Bldg. 1 1590 1 1590 1 1090 1		9400	0				0			4042
2)Operation Center				34114	!	26553	1	60067		6190G
SUB-TOTAL 1 1590 0 0 1 1590 2 2910 5 Land Acquisition 120 2900 348 2000 240 4900 588 9300 1116 Vehicle 300000 2 600 4 1200 6 1800 4 1200 Stored Material & Equip. 438 519 957 967 967 SUB-TOTAL 1386 1959 3345 3345 3345 6 Replacement of Equipment 0 0 0 2609 T O T A L 41344 40079 81423 11708 7 Leak Detection 240 4128 990 0 0 4128 990 0			1		1	1	i	ļ.	1	
5 Land Acquisition 120 2900 348 2000 240 4900 588 9300 116 Vehicle 300000 2 600 4 1200 6 1800 4 1200 Stored Material & Equip. 438 519 957 967 967 SUB-TOTAL 1386 1959 3345 3280 6 Replacement of Equipment 0 0 0 26090 T O T A L 41344 40079 81423 117087 7 Leak Detection 240 4128 990 0 0 4128 990 0		<u> </u>	+			ļ	+		+	1090
Vehicle 300000 2 600 4 1200 6 1800 4 1200 Stored Material & Equip. 438 519 957 967 SUB-TOTAL 1386 1959 3345 3280 6 Replacement of Equipment 0 0 0 26093 T O T A L 41344 40079 81423 11708 7 Leak Detection 240 4128 990 0 0 4128 990 0					0				1 2	2910
Stored Material & Equip. 438 519 957 966 SUB-TOTAL 1386 1959 3345 3280 6 Replacement of Equipment 0 0 0 26090 T O T A L 41344 40070 81423 117088 7 Leak Detection 240 4128 990 0 0 4128 990 0							+		9300	
SUB-TOTAL 1386 1959 3345 3280 6 Replacement of Equipment 0 0 0 26093 T 0 T A L 41344 40079 81423 117088 7 Leak Detection 240 4128 990 0 0 4128 990 0		300000	$\overline{1}$			1200	6	1800	4	1200
SUB-TOTAL 1386 1959 3345 3280 6 Replacement of Equipment 0 0 0 26093 T 0 T A L 41344 40079 81423 117088 7 Leak Detection 240 4128 990 0 0 4128 990 0	Stored Material & Equip.	T		438	1	519	I	957		964
6 Replacement of Equipment 0 0 26000 T 0 T A L 41344 40070 81423 117085 7 Leak Detection 240 4128 990 0 0 4128 990 0	SUB-TOTAL	T	Ţ			1959	T			3280
TOTAL 41344 40079 81423 117085 7 Leak Detection 240 4128 990 0 0 4128 990 0		1							[26093
7 Leak Detection 240 4128: 990 0: 0 4128: 990 (1						81423		
		240	4128				4128		 	0
		7	1							117088

(Unit: thousand Pesos)

	· · · · · · · · · · · · · · · · · · ·	1000		1000		(Unit:	CHOUS	and re	
Angeles		1388	0000	1080		1990	0000	1991	N.C. O. W.
ITEM	UNIT COST	טא	COST	NO :	COST	NO	COST	NO !	COST
1 SOURCE FACILITY	1					! _~~!]	
(I)DEEP WELL CONSTRUCTION	940000	}	0 [1 }	940		0	2	1880
(2)DEEP WELL PUMP W/HOUSE	640000	į	0	2 :	1280	l į	0	2	1280
Well Pump	320000	j	0		0	l 5 !	1600	0	0
Flow Meter D=150	62000	ł	Ŏ l	2		5	310	2 1	124
SUR-TOTAL	1		·		2344		1910		3284
SUB-TUTAL			<u></u>		2344		1910		3204
2 TRANSMISSION FACILITIES	ļ				اســــــــــــــــــــــــــــــــــــ				
Main Pipes		1		1	0	: :	0	l :	. 0
D=200 (Steel Pipe)	520	1	0	. !	0	!	0	į	0
D=350 (Steel Pipe)	900	į	0	į	0	į	0 1	500	450
D=400 (Steel Pipe)	970		o l		Ö		0	500	485
D=500 (Steel Pipe)	1330	!	ŏ		ŏ		ŏl	1	0
	1550		0 1		0	···	0 1		
SUB-TOTAL CASH AT ICO							<u>U</u>		935
3 DISTRIBUTION FACILITIES	 				إحرجوس وحدة				
(1)Reservoir	1	1		4292		<u> </u>		11	
(2)Pump Facility (Eqip.)	ii				651	ĺ	650	i	753
-do- (Civil)	1				2228			1	
(3)Chirnth Facility 22kg/c	98100			2 1	196	5	491	[]	98
	1339000			; -	0	0	0	0	
(1)Elevated Tank	โ เจจติกักก็ โ							-	0
(5)Electric Sub-station	ļ			أحاج سحرسدة	2757			ļ ,,	
(6)Distribution pipes		1988	l	1989		1990		1391	
1)Main Pipes	l . [, l		į į			1
D=150 (PVC Pipe)	410		0	240	98	1200	492	300	123
D=200 (Steel Pipe)	520	į	ŏ	1490	775	880	458	1080	562
		į				,			
D=250 (Steel Pipe)	630		0	380	239	0 ;	0	310	195
D=350 (Steel Pipe)	900	ļ	0	1500	1350	1300	1170	410 ;	369
D=400 (Steel Pipe)	970	į	0	910 !	883	730	708	0 į	0
D=450 (Steel Pipe)	1160	i	o i	1580	1833	660	766	l of	0
0=500 (Steel Pipe)	1330		ŏΙ	460	612		0	l ő:	ŏ
0=700 (Steel Pipe)	1910	į	ŏl	700	1337		ő	l " !	ő
	11910 ((00 !	1331				
2)Valves]		_]						_
D=150 (Gate Valve)	5300	!	0	1	5	4	21	1 !	5
D=200 (Gate Valve)	6700		0	5 !	34	3	20	4 i	27
D=250 (Gate Valve)	11200	1	0	1 1	11	0	0	; ;	11
D=350 (Butterfly Valve)		!	ő	5	372	4	208	;;	74
		i j			1				
D=400 (Butterfly Valve)		1	0	3	286	2 !	100		0
D=450 (Butterfly Valve)		!	0	5	630	2 ;	252	0	0
D=500 (Butterfly Valve)		ļ į	0	1 !	174	!	0	0 :	0
D=700 (Butterfly Valve)	313200	i	0	2	626		0	0:	0
3)Internal Network	1							i i	
Commercial 100pop/ha	92100	į	o l	į į	0		0	!	0
	23100	i		i	- 1		- 1	ا مر	
Commercial 150pop/ha	25700	1	0	1	0	!	0	[0]	257
Residential 100pop/ha	18700	į	0	70	1309	70 ;	1309	1	0
Residential 150pop/ha	21000	l i	0	, i	0	i i	0	81	1701
4)Service Conections	 							(
0=1/2	810	į	o i	1970	1596	1970	1596	2874	2328
D=3/4		į	ŏ	10 10		10	1330	6	8
	1280	}	<u>v</u>		13	{ <u>t</u>			
5)Rehabilitation		_ }			j		_		
Vater Meter 1/2''	400	2878	1151	0 }	0) 0 ;	0		
Old Laterals	· .				429	(428		
Service Connect.wo/Met	480	480	230	480	230	480	230	[
Service Connect.w/Meter		209	184	208	183	208	183		
6) Flow Meter D=400					100			0	0
	215000	0	0		215	0 ;	0	<u>-</u>	
7)Fire Protection)	}			;	1			
D=150	16800	ļ		į	;	, !	,	!	
D=100	9400			; ;	! !	, ,			
SUB-TOTAL	1	i	1565		23274		9275	1	6511
4 (L)Administration Bldg.	 							1	
	}	i	ŀ	, , ,	1500			}	
2)Operation Center	i		}	:L_	1590				
SUB-TOTAL	<u> </u>		.0	1 !	1590	<u> </u>	0		0
5 Land Acquisition	120	2900	348	· !	0	L!	0	2000 1	240
Vehicle	300000	2			0 1		0	1 !	300
Stored Material & Equip.	† †		30	; -	246		162		136
SUB-TOTAL				;			162	 	
	<u> </u>		978		246	ļ	102	<u> </u>	676
	1			i		<u> </u>	·		
6 Replacement of Equipment							11347		11100
TOTAL			2543	<u></u>	27454				11406
7 Leak Detection	240	1376		1376			330		
TOTAL	240	1376	2543 330 2873	1376	330	1376			0

(Unit: thousand Pesos)

SURREC FALLITY	l la sal sa		1992		1993		1994		tons		
SOURCE FACILITY	Angeles.	-		COCT		COCT		COCT	1995	0000	
(C)DEEP VELL CONSTRUCTION 940000		UNIT COST	NU !	CUST	nu		טא	CUST	NO 1	COST	
C2DEEP VELL PURP #/180955		 							<u>-</u> -4		
Veil Punp			- 1	1	Į (1	1	* 1		
Figs Reker =150		640000	1 ¦	640	,	640	1 1	640	L j	640	
Flow Inteller B=150	Well-Pump	320000 l	0 į	0	0	0	0	0	0 !	0	
SUB-TOTAL	Flow Meter D=150		1 1	62	1	62	1 1	62	1;	62	
2 TANSNISSION FACILITIES	SUR-TOTAL	, , , , , , , , , , , , , , , , , , ,			3		3 1		3 1		
Main Pipes D=200 (Steel Pipe) 520 500 500 500 500 0 0 0	2 TRANSMISSION FACILITIES	 		1072		1012	-	1012		1072	
B=200 (Steel Fipe)		├									
D=300 (Steel Pipe) 970									i		
D=400 (Steel Pipe) 1330 0 0 0 0 0 0 0 0 0			500 ;		500		500		- 1		
D=500 (Steel Pipe) 1339		900	: 1	0	!	0	1	0	!	. 0	
	0=400 (Steel Pipe)	970	į	0	į	0	į	0	į	0	
Sile-Total Sil			1		i	n		اما	· ·		
3 DISTRIBUTION FACILITIES (C)Resproir (C)Punn Facility (Eqip.) (3)Chirnth Facility (Eqip.) (4)Chirnth acility (Eqip.) (4)Chirnh Facility (Eqip.) (4)Chirnh Facility (Eqip.) (4)Chirnh Facility (Eqip.) (4)Chirnh Facility (Eqip.)		1000									
Chespervoir Capump Facility (Eqip.) 753	2 DICTRIBUTION CACHAITICS			200		200		200	i	·················	
(2)Pump Facility (Eqip.)		<u></u>									
Color Colo	(I)Keservoir	l									
(3)Chirnth facility 22kg/d 98100		ll	. 1	753 !		753	1	753		753	
(3)Chirnth facility 22kg/d 98100	-do- (Civil)	[<u>-</u>	i					i		
(S)Electric Sub-station (6)Distribution pipes 1992 1993 1994 1995 1994 1995 1996 199	(3)Chirnta Facility 22kg/d	98100		0		0	0	0		0	
(S)Electric Sub-station (6)Distribution pipes 1992 1993 1994 1995 1994 1995 1996 199			i		·	·	-	-			
(6)0istribution pipes 1)Main Pipes D=150 (PVC Pipe)		1-1-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2	-				<u>v</u>				
1)Main Fipes		∤									
D=150 (PVC Pipe)		i . I	1992 ¦		1993		1994		1995		
D=200 (Steel Pipe) S20			į		' i				į į		
D=200 (Steel Pipe) S20	D=150 (PVC Pipe)	410	۱,	0	į	0		0		0	
D=250 (Steel Pipe)			i			n		n l			
D=350 (Steel Pipe)			į		į					ň	
D=400 (Steel Pipe)			į		i	-	i			۸ ۸	
D=450 (Steel Pipe)			1		. 1			-		ñ	
D=500 (Steel Pipe)		970		0						0	
D=700 (Steel Pipe) 1910 0 0 0 0 0 0 0 0 2 2	D=450 (Steel Pipe)	1160 [į	0		0		0	Ì	0	
D=700 (Steel Pipe) 1910 0 0 0 0 0 0 0 0 2 2	D=500 (Steel Pipe)	1330	j	0	: ;	0		0	į	0	
December December	D=700 (Steel Pine)		:								
D=150 (Gate Valve)		 2 0									
D=200 (Gate Valve)		-	}	_	i	_			i		
D=250 (Gate Valve)] D=150 (Gate Valve)		- :					-	 		
D=350 (Butterfly Valve) 74400 0 0 0 0 0 0 0 0 0	D=200 (Gate Valve)	6700	į	0		0		0	!	0	
D=350 (Butterfly Valve) 74400 0 0 0 0 0 0 0 0 0	D=250 (Gate Valve)	l 11200 l	;	a	į	0		0 i	į	0	
D=400 (Butterfly Valve) 15200			!					ā			
D=450 (Butterfly Valve) 125000 0 0 0 0 0 0 0 0 0			į						!		
D=500 (Butterfly Valve) 174000 0 0 0 0 0 0 0 0 0			i		i			-			
D=700 (Butterfly Valve) 313200 0 0 0 0 0 0 0 0 3 1 1 1 1 1 1 1 1 1											
3 Internal Network Commercial 100pop/ha 23100 0 0 0 0 0 0 0 0 0				0		0		0		0	
3 Internal Network Commercial 100pop/ha 23100 0 0 0 0 0 0 0 0 0	D=700 (Butterfly Valve)	313200	i	0	į	0	ļ	0		0	
Commercial 100pop/ha 23100 9 231 231		1	 1								
Commercial 150pop/ha 25700 9 231 9 231 9 231 9 0 0 0 0 0 0 0 0 0	1 1	22100	į	•		_ ^	,	۱ ۵		٥	
Residential 100pop/ha 18700 Residential 150pop/ha 21000 Residential 150pop/ha Residential 150pop/ha 21000 Residential 150pop/ha Residential 150pop/ha 21000 Residential 150pop/ha Resi			_		, ,		_		ا م		
Residential			9 ¦	231	9		9) ម		
A)Service Connections		18700	}	0						0	
A)Service Connections	Residential 150pop/ha	21000 i	81	1701	81	1701	80	1680	80	1680	
D=1/2	4)Service Conections	[,		 			
0=3/4		810	227.1 i	ევედ	2974	2328	2874	2328	2874	2328	
5)Rehabilitation Vater Meter 1/2'' 400 Old Laterals Service Connect.wo/Metr 480 Service Connect.w/Meter 830											
Water Meter 1/2'' 400 0 0 1 1 1 1 1 1 1		<u>140U</u>		ŏ			<u>-</u> <u>0</u>	i			
Old Laterals Service Connect.wo/Meth 480 Service Connect.w/Meter 880		<u></u>	!				,				
Service Connect.wo/Meter		400	į			!	ł				
Service Connect.w/Meter		j	į			!		1	,	,	
Service Connect.w/Meter	Service Connect.vo/Metr	i 480 l	i			į		į			
Solution Signature Signa	Service Connect.u/Meter	980	!			! !	'	¦			
7)Fire Protection		215000				;		;		0	
D=150	2/6/20 0001-11	t 410000	<u>7</u>			<u></u> -	t		† <u>-</u>		
D=100 9400		1	¦		i			į			
SUB-TOTAL 5021 5000 5000	l ,					! !		!			
SUB-TOTAL 5021 5020 5000 5000		9400	_ i		i		<u> </u>	I	L		
4 1 Administration Bidg.	SUB-TOTAL			5021		5021		5000	1	5000	
2)Operation Center 0 0 0 0 0 0 0 0 0		·			i	1		!	1		
SUB-TOTAL 0 0 0 0 0 0 0 0 0]	Ì			:	1	}	 .		
5 Land Acquisition 120 0 0 0 0 Vehicle 300000 1 300 1 300 1 300 0 Stored Material & Equip. 97 97 97 96 93 SUB-TOTAL 307 397 396 93 6 Replacement of Equipment 70 T A L 7320 7320 7298 6735 7 Leak Detection 240 9 6735 6735 9 6735			-,		l	·		; <u>-</u>		0	
Vehicle 300000 1 300 1 300 1 300 0 0 0 0 0 0 0 0 0							<u> </u>				
Stored Material & Equip. 97 97 96 93					! !		 		<u> </u>	0	
Stored Material & Equip. 97 97 96 93	Vehicle	300000	1	300	1	300	11_			0	
SUB-TOTAL 307 397 396 93 6 Replacement of Equipment 93 T 0 T A L 7320 7320 7298 6735 7 Leak Detection 240 93	Stored Material & Funin.	[- - -†			·					93	
6 Replacement of Equipment 7320 7320 7298 6735 7 Leak Detection 240		t+							 -	93	
7 0 7 4 L 7320 7320 7298 6735		├───┤	····	201	L			500	 	J ()	
7 Leak Detection 240		 					<u> </u>	MARK	Ļ <u>.</u>	020-	
				7320	· · · · · · · · · · · · · · · · · · ·	7320	· •	7298	<u> </u>	0 (35	
		240				<u> </u>	<u> </u>	<u> </u>			
	GRAND TOTAL			7320	;	7320	1	7298		6735	