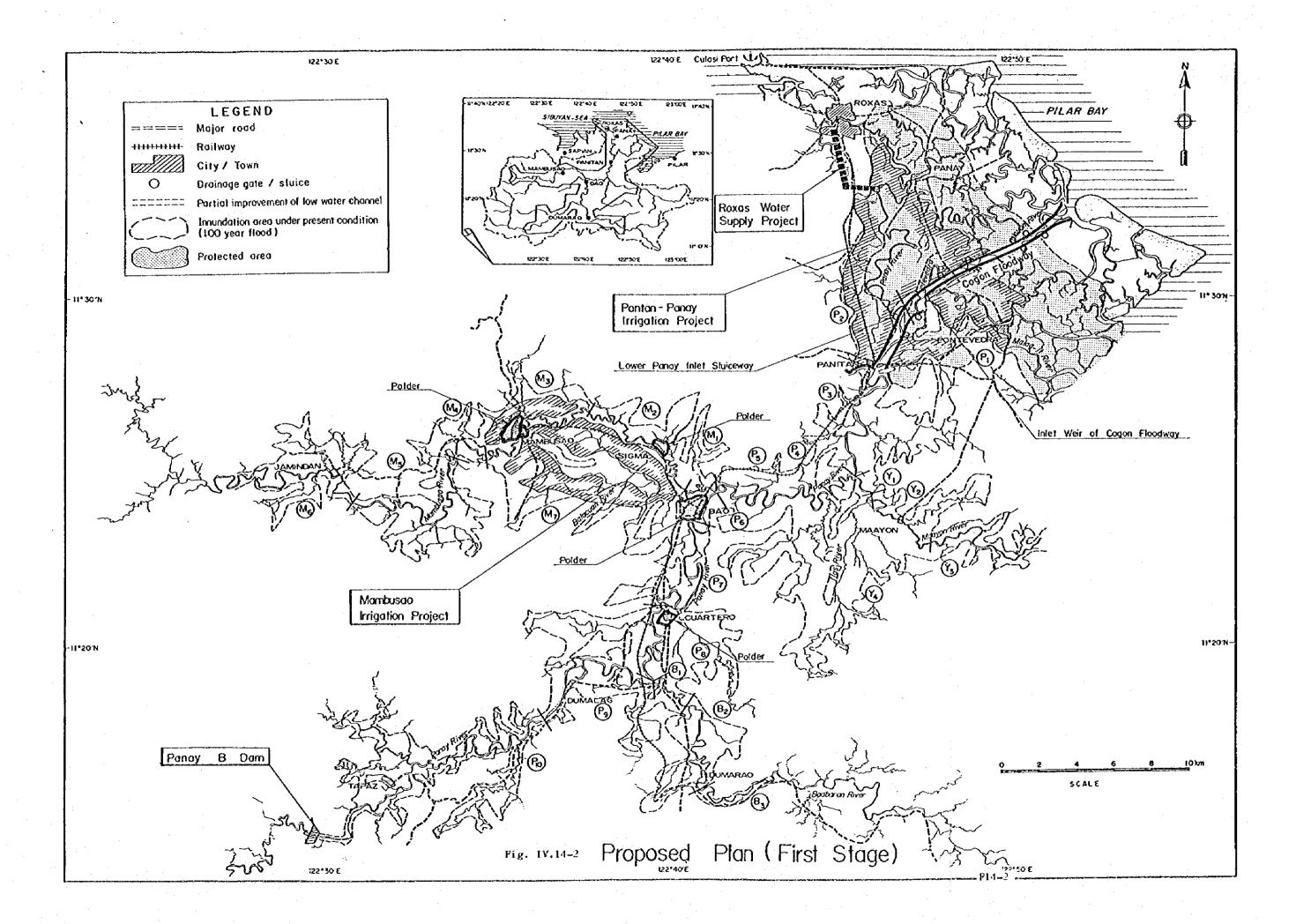


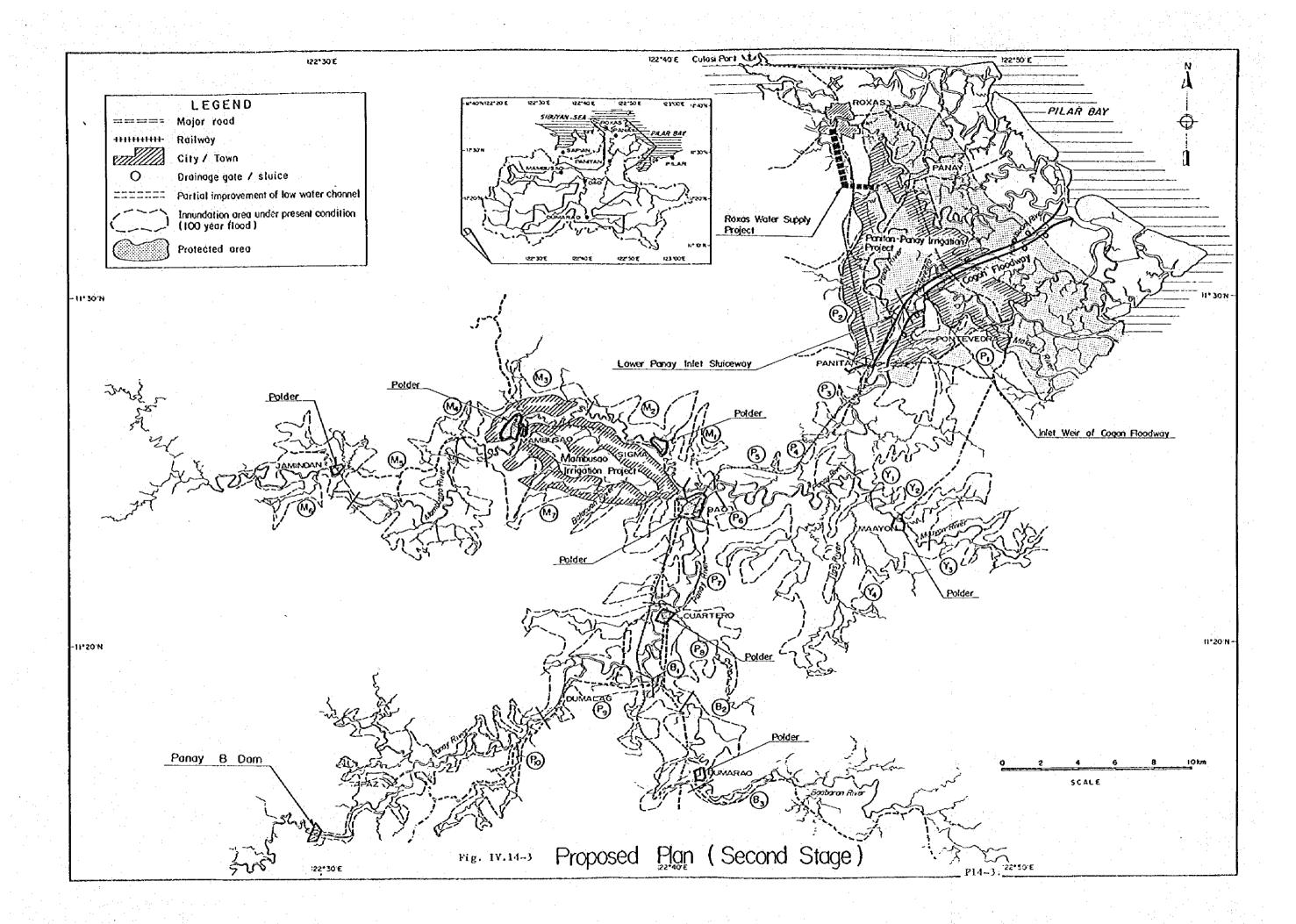
Pig. IV.14-1 IMPLEMENTATION OF PROPOSED PROJECTS MASTER SCHEDULE

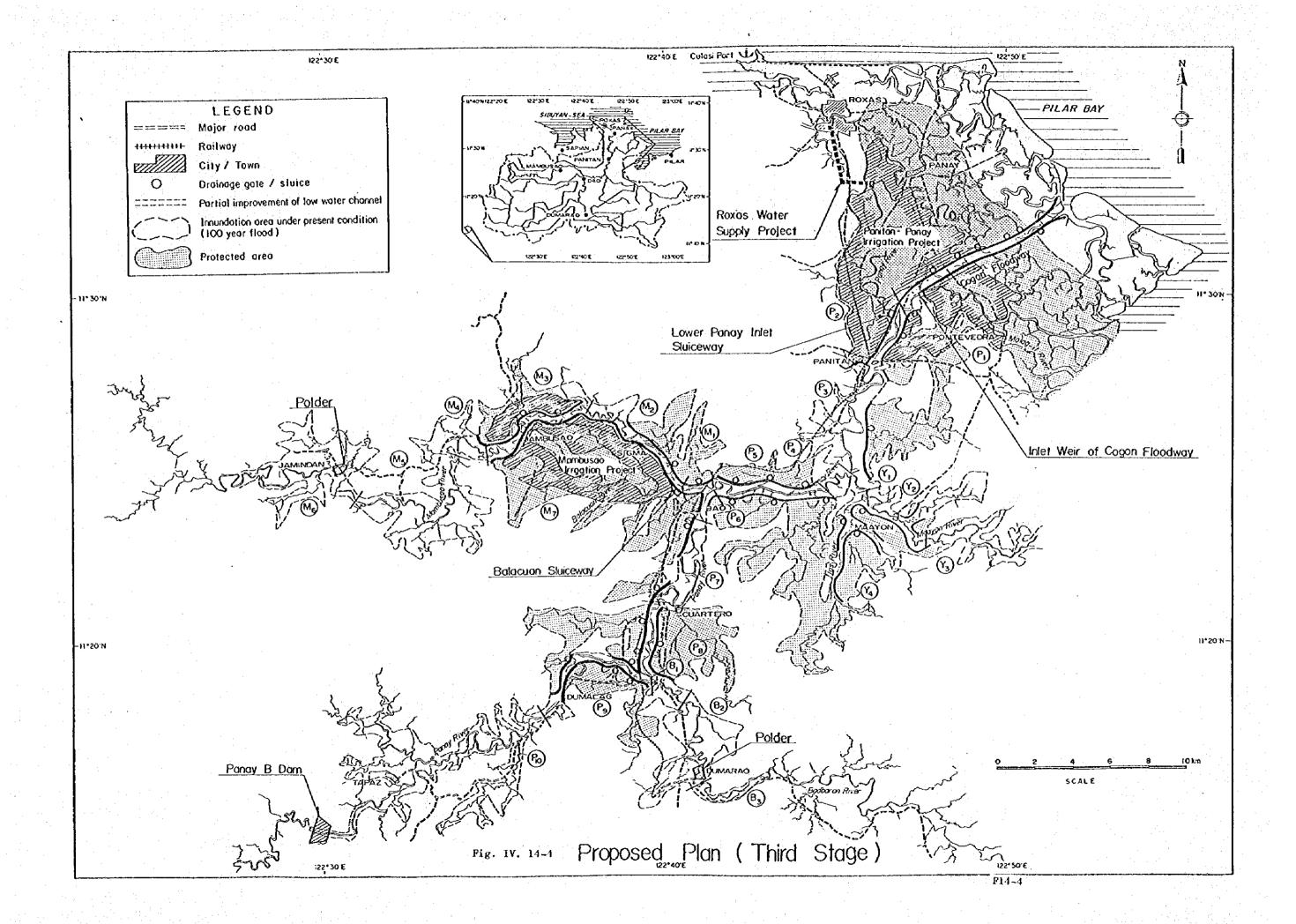
	CONST. A					Sh	iort-te	erm (rogr	am			 			<u> </u>	Long:	-term P	rogra	ım	
PROJECT	COST (₽× 10 ⁶)	84	85	86	87	88	89	90	91	92	93	94	95	96	9700	2001	2010	2011	2020	2021	2030
BASIN-WIDE FLOOD CONTROL STUDY																	······································				
FLOOD CONTROL PROJECT															ļ						
First Stage Project	:			† 																	
- River improvement work (1)	589			н 1⊏		FN		0)))))	TC			Prep.					:				
- Polder - Dao	55					FN		TC					-								
– Polder – Cuartero	59			<u> </u>			Fi	1	TC										· ·		<u> </u>
- Polder - Sigma	42	<u> </u>	İ				Fì	1	TC	1											
- Polder - Mambusao	78					FN — —		TC								<u> </u>					•
Second Stage Project				·		====					· · · · · · · · · · · · · · · · · · ·										
- River improvement work (II)	440	 															N TC				
- Polder - Maayon	49	1.				<u> </u>					<u> </u>		FN	~~~	TC		_1221_				
- Polder - Jamindan	39	 		<u> </u>		<u> </u>			<u> </u>				FN		TC						
- Polder - Dumarao	58	 		 					ļ]	FN TC			
Third Stage Project		-		-						<u></u>									<u> </u>		
- River improvement work (III)	3,486	 		 									<u> </u>		<u> </u>					FN	
Non-structural Measures	51		 	E-street		answa .	FN	Mapp	ing/2	oning	<u> </u>					(Opera	tion)				
Flood Forecasting and Warning System	84	 				FN		T	C				3CH 1652)			(Opera	tion)				
MULTIPURPOSE DAM PROJECT								<i>222</i> 3				3 6574 8	96 £783	en s	2 19810	500 1200 S				Mar mai	pessib
Panay B Dam	471	-				FN			Pre			<u> </u>			<u>:</u>	<u> </u>	 				· · · · · · · · · · · · · · · · · · ·
IRRIGATION PROJECT								((()								:				: .	
Panitan - Panay Scheme	183	1					FN			TC											
Mambusao Scheme	79	-				FN		r l	.c												
WATER SUPPLY PROJECT		 	 													<u>.</u>		·			-
	F.C.			FN	TC									-	' · · · · · · · · · · · · · · · · · ·						
Roxas-WD Water Supply Project	56	<u> </u>																			

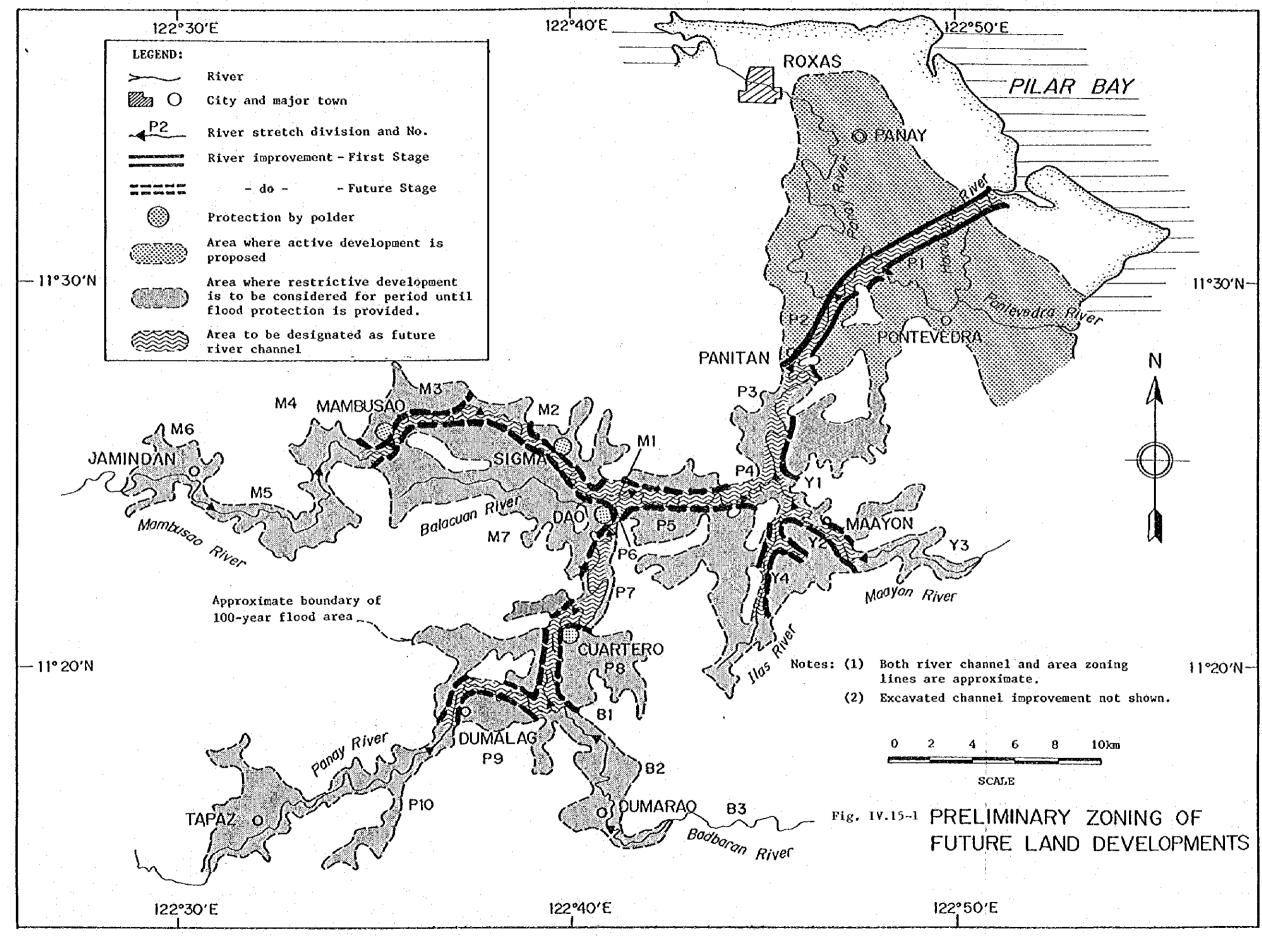
otes; Feasibility study

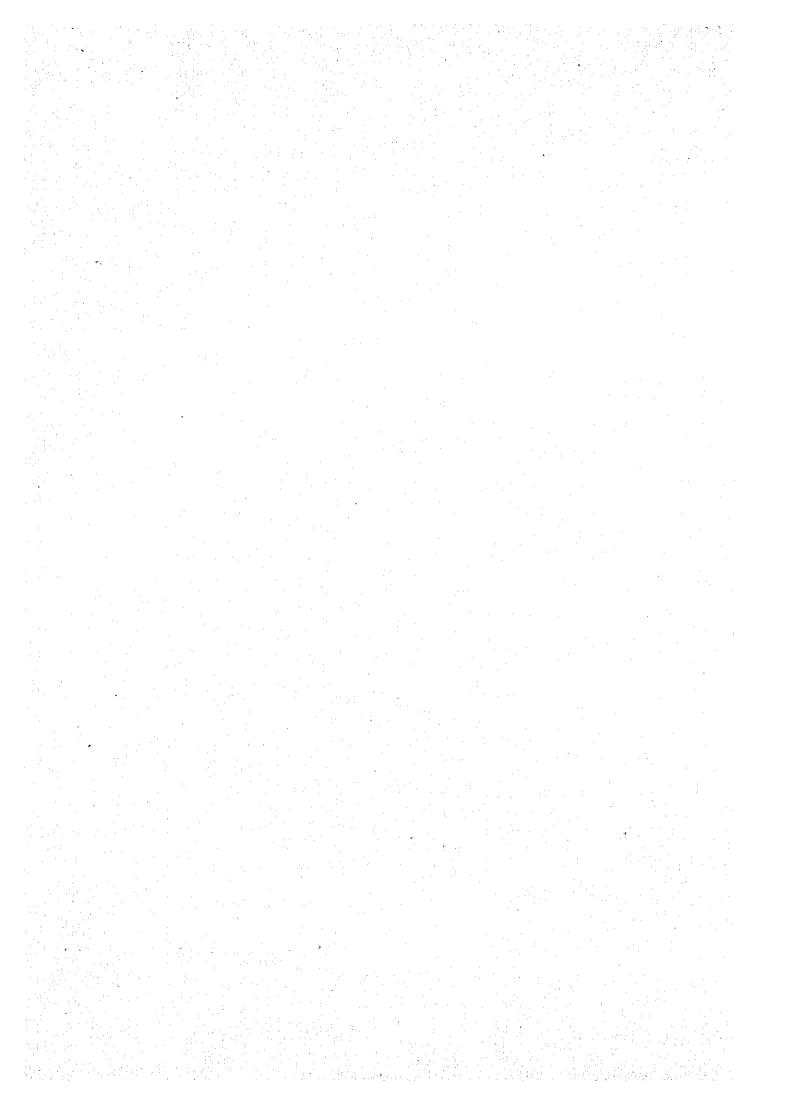
Detailed design


Construction


FN: Financing


TC: Tender and Contract


Prep.: Preparatory works Incl. land acquisition


1984 base price

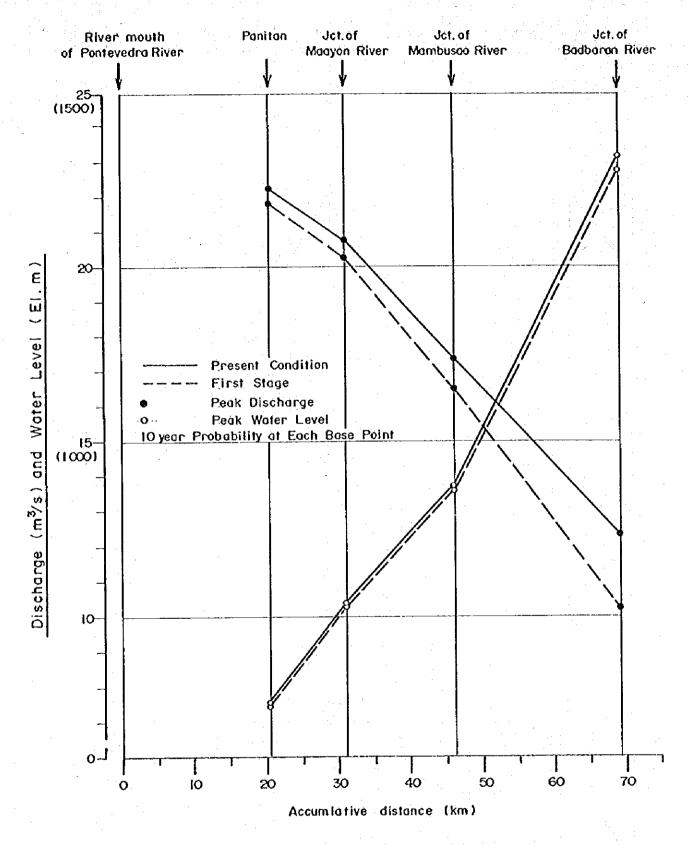


Fig. TV, 15-2 EFFECT OF FIRST STAGE FLOOD CONTROL PLAN ON DISCHARGE AND WATER LEVEL (10 yr Flood)

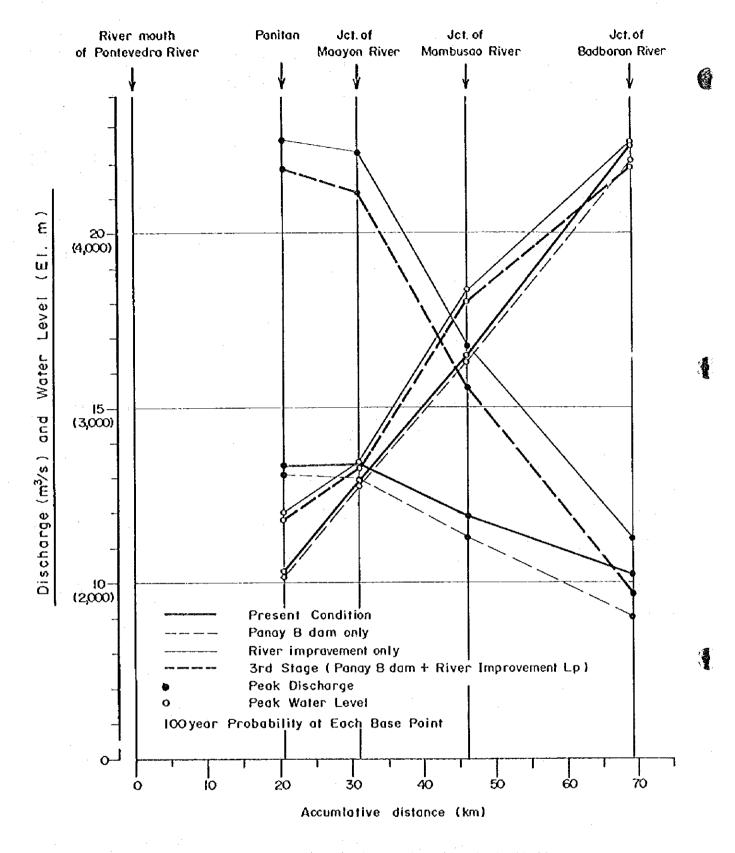


Fig.IV 15-3 EFFECT OF THIRD STAGE FLOOD CONTROL PLAN ON DISCHARGE AND WATER LEVEL (100 yr Flood)

APPENDIX V

MULTI-PURPOSE DAM PLAN

FOR

PINAL REPORT

ON

THE PANAY RIVER BASIN-WIDE

FLOOD CONTROL STUDY

APPENDIX V MULTI-PURPOSE DAM PLAN

TABLE OF CONTENTS

		Page
1.	Introduction	11
2.	Identification of Prospective Dam Sites	2-1
3.	Preliminary Selection	3-1
4.	Geological Conditions at Preliminarily Selected Dam Sites .	4-1
	4.1 Panay B Dam Site	4-1
	4.2 Panay C Dam Site	4-1
	4.3 Badbaran A Dam Site	4-2
	4.4 Mambusao B Dam Site	4-2
5.	Hydrological Conditions at Preliminarily Selected	
	Dam Sites	5-1
	5.1 Monthly Mean Discharge	5-1
	5.2 Flood Discharge	5-2
6.	Alternative Plans at Each Dam Site	6-1
	6.1 Methods and Conditions for Alternative Plans	6-1
	6.2 Alternative Plans	6-2
	6.2.1 Panay B Dam	6-2
	6.2.2 Panay C Dam	6-3
	6.2.3 Badbaran A Dam	6-4
	6.2.4 Mambusao B Dam	6-5
	6.2.5 Panay C Dam Combined with Panay B Dam	6-7
7.	Optimum Development Scale at Each Dam Site	7-1
	7.1 General	7-1
	7.2 Methodology and Conditions of Optimization	7-1

				Page
	7.3	Result	s of Optimization Study	7-5
		7.3.1	Panay B Dam	7-5
		7.3.2	Panay C Dam	7-6
		7.3.3	Badbaran A Dam	7-6
	•	7.3.4	Mambusao B Dam	7-7
		7.3.5	Panay C Dam Combined with Panay B Dam	7-8
3.	Conc	lusion		8-1
	8.1	Genera	1 Features and Costs of Optimum Dam Schemes	8-1
	8.2	Flood	Control Effect of Dam Plans	8-2

LIST OF TABLES

Table No.	<u>Title</u>	Page
V.3-1	Preliminary Study Results of Prospective Dam Sites in Panay River Basin	т31
V.5-1	Monthly Mean Discharge at Panay B Dam	T5-1
V.5-2	Monthly Mean Discharge at Panay C Dam	T5-2
V.5-3	Monthly Mean Discharge at Panay C Dam (Combined with Panay B Dam)	T5-3
V.5-4	Monthly Mean Discharge at Badbaran A Dam	T5-4
V+5-5	Monthly Mean Discharge at Mambusao B Dam	T5-5
V.6-1	Alternative Plans of Panay B Dam	T6-1
V.6-2	Alternative Plans of Panay C Dam	T6-1
V.6-3	Alternative Plans of Badbaran A Dam	T6-2
V.6-4	Alternative Plans of Mambusao B Dam	T6-2
V.6-5	Alternative Plans of Panay C Dam (Combined with Panay B Dam)	т6-2
V.7-1	Economic Evaluation of Each Alternative Plan for Panay B Dam	T7-1
V.7-2	Economic Evaluation of Each Alternative Plan for Panay C Dam	T7-1
V.7-3	Economic Evaluation of Each Alternative Plan for Badbaran A Dam	т7-2
V.7-4	Economic Evaluation of Each Alternative Plan for Mambusao B Dam	т7-2
v.7- 5	Economic Evaluation of Each Alternative Plan for Panay C Dam (Combined with Panay B Dam)	T7-2
V.8-1	General Features of Each Dam Plan	T8-1
V.8-2	Flood Regulating Capacity of Selected Dams	T8-2
v.8-3	Construction Cost of Each Dam Plan	T8-3
V.8-4	Flood Levels and Discharges Before and After Dam Projects (At Panitan Base Station)	T8-4

LIST OF FIGURES

Figure No.	<u>Title</u>	Page
V.2-1	Location Map of Dam Sites	F2-1
V.4-1	Geological Profile Along the Dam Axis of Panay B Dam Site	F4-1
V.4-2	Geological Profile Along the Dam Axis of Panay C Dam Site	F4-2
V.4-3	Geological Profile Along the Dam Axis of Badbaran A Dam Site	F4-3
V.4-4	Geological Profile Along the Dam Axis of Mambusao B Dam Site	F4-4
V.6-1	Area and Storage Curves of Reservoir	F6-1
v.7-1	Net Present Values of Each Dam Plan	F7-1
v.8-1	Panay B Dam Scheme	F8-1
V.8-2	Badbaran A Dam Scheme	F8-2
V.8-3	Mambusao B Dam Scheme	F8-3
V.8-4	Panay C (After Panay B) Dam Scheme	F8-4
V.8-5	Peak Discharge at Base Points of Dam Alternatives (Under the Present River Condition)	F8-5
V.8-6	Peak Water Level at Base Points of Dam Alternatives (Under the Present River Condition)	F8-6

1. Introduction

The objective of the present study (the Panay River Basin-wide Flood Control Study) is to formulate an integrated water resources development plan for the Panay river basin placing a particular emphasis on flood control.

The study includes, in its scope of works, the multi-purpose dam plan. Purposes of multi-purpose dams generally include irrigation water supply, municipal and industrial water supply, flood control and hydropower generation as the main purposes. However, the multi-purpose dams planned in the Study are proposed for limited purposes of flood control and hydropower generation.

As stated in Chapter 6 - Water Budget of the Appendix I Meteorological and Hydrological Study, one of the outstanding characteristics of the river is that water supply capacity of the river is abundant compared with water demand even under natural condition and that even at the end of the study horizon of 50 years, the river water without regulation will be able to meet the expected water demand at any site along the river.

The study in this appendix includes i) identification of prospective dam sites, ii) preliminary selection of dam sites, iii) geological and hydrological condition, iv) alternative plans, v) optimization of dam plan and vi) conclusion.

2. Identification of Prospective Dam Sites

The following eight dam sites were identified, through desk study on 1: 50,000 topographic maps, referring to previous study results. The location of dams is shown in Figure V.2-1.

- · Panay A site, Panay B site, Panay C site (Upper Panay river)
- · Badbaran A site, Badbaran B site (Badbaran river)
- · Mambusao A site, Mambusao B site (Mambusao river)
- · Maayon site (Maayon river)

Among the above dam sites, the Panay A site had been identified in the Feasibility Study of Jalaur River Multi-purpose Project by NIA, and Panay C, Badbaran B, Mambusao B and Maayon sites had been identified in the previous study of "Nation-wide Flood Control Plan" by MPWH. Other sites, i.e., Panay B, Badbaran A and Mambusao A sites were identified in this Study.

1

3. Preliminary Selection

Reconnaissances and surface geological investigations were carried out at these dam sites, and preliminary planning of dams and hydropower generation was made on the basis of 1: 10,000 topographic maps, using estimated runoff data for each dam site.

The results of the investigation and studies are summarized in Table V.3-1. Based on the above information, the following four sites were ruled out from further study.

Panay A site : Though the results of the preliminary planning on maps is prospective, the geology of the dam site is not favourable; the site consists of less-consolidated conglomerates while extraordinary water leakage was recorded in past drillings.

Badbaran B site: The site is situated in a limestone zone. The rock shows cavernous appearance and springs were found near the site. (N.B.: Badbaran A dam site in an upstream reach was found to be outside the limestone zone.)

Mambusao A site: The catchment area is small (73 km²) and geology at the dam site is not favourable. Moreover, cost index value per storage (dam construction cost/total storage) is low.

Maayon site : The catchment area is relatively small (140 km²).

The cost index value is not good, either.

Hence Panay B site, Panay C site, Badbaran A site and Mambusao B site were selected for further study. The locations of dams including the preliminarily selected four dams are shown in Figure V.2-1.

4. Geological Condition at Preliminarily Selected Dam Sites

4.1 Panay B Dam Site (Refer to Fig. V.4-1)

At the dam site, many rock outcrops are observed in the lower parts of the slopes and river bed. Foundation rock is andesitic volcanic breccia which seems to be underlain by massive andesite. The foundation rocks seems to be very hard consolidated and be watertight. Both abutment sites are covered with top soil zone of one meter thick which is underlain by intensively weathered zone of 1.0 - 1.5 m in thickness and weathered rock zone of about 5 to 7 m.

4.2 Panay C Dam Site (Refer to Fig. V.4-2)

Foundation rock seems to be almost the same as that at Panay B dam site. Massive andesite outcrops are outstanding in mountain areas on western part of the site.

On the slopes of the abutments, there are 2 to 3 m thick talus deposits which are generally composed of clayey soil with weathered andesitic gravels.

Below the talus deposits, intensively weathered bedrock is confirmed in the layer of less than 2 m in thickness.

Underlying the intensively weathered rock zone, there are weathered rock zones, which are mainly composed of oxidized weathered fragmental rocks.

.5

The depth of river deposit seems to be 7 to 8 m in the central part of the river channel. Permeability coefficient of the foundation rock is generally 10^{-5} to 10^{-6} cm/sec, however, in some portion in the left abutment, a high permeability zone of 10^{-3} cm/sec is located.

4.3 Badbaran A Dam Site (Refer to Fig. V.4-3)

The foundation rock of the Badbaran A dam site is composed of andesite, occupying the most of the right abutment and volcanic breccia, occupying the left abutment and lower slope of the right abutment. The andesitic volcanic breccia is assumed to be underlain by the andesite. Both types of rock are in general very hard and fresh.

The both abutments are covered with talus deposits or weathered rock of about 2 to 3 m thick. Below the talus deposits, the observed are intensively weathered rock zones with a thickness of 2 to 3 m from which only fragmental weathered cores with soil materials are recovered.

In some parts below the intensively weathered rock zones, slightly weathered rock zones of about 3 m in thickness are confirmed.

River deposit materials are about 3 to 4 m thick.

Permeability of the foundation rocks ranges between the orders of 10^{-4} cm/sec and 10^{-5} cm/sec. Relatively high permeable values of 10^{-4} cm/sec are confirmed in shallow zones of the right abutment area. From these zones fractuated core samples were recovered.

4.4 Mambusao B Dam Site (Refer to Fig. V.4-4)

Upper part of the right abutment is composed of fine to medium grained sandstone. The section covering the left abutment and lower part of right abutment seems to be composed of alternation of conglomerate, siltstone and sandstone.

The ground surface is covered with talus deposits and intensively weathered bed rock zones are developed for about 5 to 10 m.

Below these zones, the weathered bed rock zones seem to be developed for about 3 to 5 m.

At the upper portion of the right abutment, weathered loose sandy soil zone is confirmed. Thickness of river deposit seems to be about 12 m.

Permeability coefficient of the foundation rock ranges between the orders of 10^{-4} and 10^{-5} cm/sec mostly. A zone with relatively high permeability of 10^{-3} cm/sec was found on the right abutment.

5. Hydrological Condition at Preliminarily Selected Dam Sites

5.1 Monthly Mean Discharge

Monthly mean discharge at each dam site were estimated from the monthly mean discharge records observed at the existing gauging stations by using correlation technique. Discharge records of 23 years (1956 - 1978) at Cuartero gauging station were used for estimating the monthly mean discharge at Panay B dam, Panay C dam and Badbaran A dam, and discharge records of 28 years (1950 - 1977) at Tumalalud gauging station near Mambusao town were used for Mambusao B dam.

The correlation factors applied to each dam site are obtained as follows,

Correlation Factors used for Estimating Dam Site Runoff

	Dam S	Site	Gauging		
	C.A.D (km ²)	R.D (mn)	C.A.G (km ²)	R.G (mm)	K <u>/1</u>
Panay B	239	3,350	930	2,600	0.33
Panay C	509	3,100	930	2,600	0.65
Badbaran A	258	1,900	930	2,600	0.20
Mambusao B	217	3,250	307	3,200	0.72

Note; $\underline{/1}$: $K = \frac{C.A.D \times R.D}{C.A.G \times R.G}$

where: K = Correlation factor

C.A.D = Catchment area at dam site

C.A.G = Catchment area at gauging station

R.D = Basin annual rainfall at dam site

R.G = Basin annual rainfall at gauging station

By using these correlation factors, monthly mean discharge at each dam site was estimated as shown in Table V.5-1 to V.5-5. Average run-off at each dam site is obtained as follows.

Average Runoff at Dam Sites

Dam Site	Average Runoff (m³/sec)
Panay B	14.3
Panay C/1	28.3
Panay C/2	28.0
Badbaran A	8.7
Mambusao B	12.2

Notes: /1; Independent scheme

12; Combined with Panay B dam

5.2 Flood Discharge

Probable flood runoff of different return periods was estimated from the past rainfall records. The details of the estimation are discussed in the Appendix I - "Meteorological and Hydrological Study". The results of probable flood discharge at each dam sites are shown below.

Probable Flood Discharge at Dam Sites

	·	<u> </u>	(Unit:	m ³ /sec)					
	<u> </u>	Return Period							
	200-year	100-year	25-year	10-year					
Panay B	3,300	2,420	1,250	750					
Panay C/1	5,580	4,120	2,120	1,260					
Panay C/2	5,580	3,230	1,700	1,020					
Badbaran A	2,450	1,900	1,080	700					
Mambusao B	2,380	1,770	990	620					

Notes: /1; Independent scheme

12; Combined with Panay B dam

6. Alternative Plans at Each Dam Site

6.1 Methods and Conditions for Alternative Plans

The following methods and conditions were applied to the formulation of alternative plans of each dam site.

- (1) Each Alternative plans are formulated for purposes of flood control (Basic design flood: 100-yr flood) and hydropower generation. The allocation of storage capacity is determined with placing a criterion that the flood control should be given a higher priority. Reservoir area and storage volume at each dam site are shown in Figure V.6-1.
- (2) Flood flow regulation is made by a constant ratio ~ constant rate method basically with gate control. Varying outflow ratios, i.e. 1/5, 1/4, 1/3 and 1/2 of peak inflow discharge, were examined for comparison in evaluating the flood control functions of the alternative plans.
- (3) A concept of reservoir water level lowering during flood seasons are not introduced in view that non-flood season lasts only two to three months in a year.
- (4) As spillway design flood, a 200-year probable flood is applied to concrete gravity type dam, and 1.2 times the 200-year probable flood applied to rockfill type dam.
- (5) Spillway should be capable of discharging the maximum peak inflow discharge determined in the above item (4), that is, no flood retardation effect in the reservoir is taken into account.
- (6) Dam crest elevation is determined by adding a freeboard above the flood water level. The freeboard is 2.5 m for the concrete gravity type dam and 3.0 m for the rockfill type dam.
- (7) For hydropower generation, the rated water level is fixed at a 2/3 of drawdown depth above the low water level.

- (8) Maximum plant discharge is selected to be 4 times the exploitable firm discharge in this master plan study.
- (9) Power output calculation is based on simulated reservoir operation study. For a uniform comparison among alternative plans, overall efficiency of generating plant is assumed as 0.84 for all the schemes.

6.2 Alternative Plans

6.2.1 Panay B Dam

Relatively low and thin ridges are developed on the left bank of the dam site. If the crest elevation of the dam should be lower than these ridges, the dam will be of 49.5 m in height at the maximum, with crest elevation of E1.74.5 m. In case of building a higher dam than 50m in height, it will be necessary to construct sub-dams on these low ridges.

In regard to the dam type, a concrete gravity type is selected due to the following reasons.

- (1) On the upstream right bank of dam axis, a comparatively deep valley exists. The fill type dam is not economical at this topography.
- (2) As ungated type of spillway is desirable, a concrete gravity type is beneficial for taking the crest length of spillway overflow weir as long as possible.
- (3) The foundation is composed of volcanic breccias which is stable enough for a concrete gravity dam of about 50 m high.

Twelve (12) alternative plans were examined as summarized below and detailed in Table V.6-1.

Alternative Plans of Panay B Dam

Case No.	Dam Crest El. (m)	Flood Outflow Ratio	SWL/1 (m)	HWL /2 (m)	Installed Power (MW)	Energy Output (GWh/y)
1.1	71.3	0.5	65.0		_	_
1.2	73.4	0.5	67.3	60.0	4.2	23.7
1.3	77.4	0.5	71.3	65.0	7.1	31.4
1.4	80.9	0.5	75.0	70.0	10.0	36.8
2.1	76.2	0.333	68.9	- .		-
2.2	78.1	0.333	70.9	60.0	4.2	23.7
2.3	81.5	0.333	74.3	65.0	7.1	31.4
2.4	84.6	0.333	77.6	70.0	10.0	36.8
3.1	78.7	0.25	71.0	-	-	-
3.2	80.5	0.25	72.8	60.0	4.2	23.7
3.3	83.7	0.25	76.0	65.0	7.1	31.4
3.4	86.8	0.25	79.2	70.0	10.0	36.8

Notes: /1; SWL = Surcharge water level for flood control

/2; HWL = High water level for power generation

6.2.2 Panay C Dam

According to the result of preliminary study, hydropower generation at this dam is not so favorable, but the site is favorable in an aspect of having a large storage capacity which can be used for flood control. Therefore, the primary purpose of this dam shall be flood control.

The concrete gravity type is selected due to the following reasons.

- (1) It seems that a concrete dam on the rock after excavation of gravel zone is benefitial and more reliable in comparison with a fill dam on the river bed gravel zone of about 8 m deep.
- (2) The river diversion need much works in case of fill type dam.

(3) The foundation rock is composed of andestic volcanic breccias. The concrete gravity dam of 30 - 50 m high is stable enough on the foundation, though some treatment of permeable zone located on the left bank is necessary.

In order to decide the optimum dam scale, twelve alternative plans were compared as shown in Table V.6-2 and summarized below.

Alternative Plans of Panay C Dam

Case No.	Dam Crest E1. (m)	Flood Outflow Ratio	SWL /1 (m)	HWL /2 (m)	Installed Power (MW)	Energy Output (GWh/y)
1.1	40.2	0.333	33.4	30.0	5.7	22.6
1.2	42.5	0.333	35.4	32.5	8.5	27.1
1.3	44.8	0.333	37.5	35.0	11.0	31.4
1.4	47.1	0.333	39.6	37.5	13.0	35.1
2.1	41.7	0.25	34.1	30.0	5.7	22.6
2.2	43.9	0.25	36.1	32.5	8.5	27.1
2.3	46.2	0.25	37.9	35.0	11.0	31.4
2.4	48.5	0.25	40.1	37.5	13.0	35.1
3.1	42.7	0.2	34.6	30.0	5.7	22.6
3.2	44.9	0.2	36.4	32.5	8.5	27.1
3.3	47.1	0.2	38.3	35.0	11.0	31.4
3.4	49.5	0.2	40.4	37.5	13.0	35.1
					and the second s	

Notes: $\frac{1}{2}$; SWL = Surcharge water level for flood control $\frac{1}{2}$; HWL = High water level for power generation

6.2.3 Badbaran A Dam

Similar to Panay B dam site, there exist relatively low ridges on the left bank. If the dam crest should be lower than this level, the maximum dam height will be 29.5 m with crest elevation of B1.45.5 m. In case that a higher dam is to be constructed, it is necessary to construct a sub-dam on the ridge.

The rockfill type dam is selected due to the following reasons.

- (1) The riberbed gravel zone is comparatively deep especially at the right bank side.
- (2) The suitable materials for rockfill dam are available in the vicinity area.

In view of a limited storage capacity available at this dam site, no notable storage could be allocated for hydropower generation. For deciding the optimum dam scale, the following six alternative plans including flood control single purpose plans were listed for comparison. Outline of the plans are summarized below and the details shown in Table V.6-3.

Alternative Plans of Badbaran A Dam

Case No.	Dam Crest El. (m)	Flood Outflow Ratio	SWL <u>/1</u> (m)	∺₩L <u>/2</u> (ա)	Installed Power (MW)	Energy Output (GWh/y)
1.1	46.9	0.5	40.2	-	•••	-
1.2	47.0	0.5	40.5	37.5	1.0	6.3
2.1	49.8	0.333	41.6	-	-	
2.2	50.0	0.333	41.8	37.5	1.0	6.3
3.1	51.4	0.25	42.4		· _ :	-
3.2	51.6	0.25	42.7	37.5	1.0	6.3

Notes: /1; SWL = Surcharge water level for flood control

/2; HWL = High water level for power generation

6.2.4 Mambusao B Dam

The combined type of rockfill and concrete gravity is selected at the site of Mambusao B dam due to the following reasons.

(1) The riverbed gravel zone is as deep as 12 m and the soft conglomerate zone underlies this gravel zone. On this condition, the fill type is desirable.

(2) On the other hand, the river diversion treatment has to be done for the discharge of about 800 m³/S diameter. However, the difficulty is expected for the excavation of tunnel, judging from the topography and geology at the damsite. Therefore, on the right bank side foundation, it is recommended to construct a concrete gravity dam and to provide the facilities of river diversion, spillway and intake of power plant on this concrete portion as the depth of riverbed gravel zone is comparatively shallow on the right bank side.

As in the case of Badbaran A dam, this dam has also a limited storage capacity and only a small portion could be allocated for hydropower generation. With a similar consideration applied to the case of Badbaran A dam, the following six alternative cases were examined, with details given in Table V.6-4.

Alternative Plans of Mambusao B Dam

Case No.	Dam Crest El. (m)	Flood Outflow Ratio	SWI./1 (m)	HWL <mark>/2</mark> (m)	Installed Power (MW)	Energy Output (GWh/y)
1.1	44.7	0.5	36.6	-	-	÷
1.2	45.2	0.5	37.6	35.0	0.8	5.1
2.1	48.7	0.333	38.0	-	· -	-
2.2	49.1	0.333	38.7	35.0	0.8	5.1
3.1	50.7	0.25	38.7	←	<u>-</u>	-
3.2	51.2	0.25	39.4	35.0	0.8	5.1

Notes: /1; SWL = Surcharge water level for flood control

/2; HWL = High water level for power generation

1

1

6.2.5 Panay C Dam Combined with Panay B Dam

An alternative plan conceivable is the case that the Panay C dam will be constructed in combination with the Panay B dam. In this case, runoff at the Panay C dam site as well as flood inflow will be these regulated by the Panay B dam. Considering these changes in hydrological regimes by the Panay B dam, the optimum scale of the Panay C dam was evaluated.

Alternative plans of the Panay C dam, combined with Panay B dam, were formulated based on the following considerations:

- (i) Flood control function of the Panay C dam is examined by comparing three different flood outflow ratios, ranging from 1/3 to 1/5 of peak inflow.
- (ii) High water level (H.W.L) for hydropower generation of the Panay C dam is determined to be tailwater level (T.W.L) of the Panay B power station, i.e. EL.30.0 m.
- (iii) Flood outflow ratio of the Panay B dam is assumed to be 1/2 of peak inflow discharge.
 - (iv) Installed capacity of the Panay B power station is assumed to be 7,100 MW, associated with the maximum plant discharge being $27.2~\text{m}^3/\text{s}$.

The latter two conditions were derived from Case 1.3 of the Panay B independent dam scheme.

Selected alternative plans of the Panay C dam, combined with the Panay B dam, are summarized below and the details are shown in Table V.6-5.

Alternative Plans of Panay C Dam (Combined with Panay B Dam)

Case No.	Dam Crest El. (m)	Flood Outflow Ratio	SWL/1 (m)	HWL /2 (m)	Installed Power (MW)	Energy Output (GWh/y)
1	39.9	0.333	33.1	30.0	6.8	22.6
2	41.4	0.25	33.8	30.0	6.8	22.6
3	42.3	0.2	34.3	30.0	6.8	22.6

Notes: /1; SWL = Surcharge water level for flood control

 $\frac{1}{2}$; HWL = High water level for power generation

7. Optimum Development Scale at Each Dam Site

7.1 General

The optimum development scale of each dam is deemed to be the one that yields the largest net benefit, defined as the benefit less the cost, both expressed in present worth at a discount rate of 8% p.a. The cost stream is composed of the economic costs of the dam scheme, including capital cost and operation/maintenance cost. The benefits of dam plan comprise the flood control benefit and power benefit.

7.2 Methodology and Conditions of Optimization

(1) Cost estimation and disbursement

The cost of each alternative plan was estimated on 1984 price level. Major cost items were computed based on the quantities measured on plans, whereas the minor items were estimated on lump-sum basis or by applying cost formulas. Quantities of land acquisition and resettlement in the reservoir area were derived from 1: 10,000 map, assuming that the compensation would be effected for the area below the maximum flood water level.

Respectively, 100% and 82% of the estimated foreign and local currency costs were regarded as the economic costs.

The construction period of the dam plan was assumed to be 5 years including preparatory works. Disbursements of the construction cost would be 10% in the first year, 15% in the second year, 25% in the third year, 30% in the fourth year and 20% in the fifth year. The annual amount of the operation and maintenance cost was assumed to be 2% of the economic construction cost.

(2) Flood control benefit

The flood control benefit was assessed in the manner shown in the Appendix IV. In this optimization study, the flood control benefit is assumed to be combined with Long-term Plan of river improvement works.

(3) Power benefit

Benefit of hydropower generation in this study is regarded to be the costs of the most likely least cost thermal alternative. Diesel plant with unit capacity of 6,000 kW is considered to be the most likely alternative sources in the Panay power system.

Power benefit is assessed dividing into capacity benefit and energy benefit by applying the unit capacity value and unit energy value.

(i) Unit capacity value

Unit capacity value is assessed based on the following assumptions and procedures.

The construction cost of Diesel unit is estimated to be US\$600 per kW. The annualized capital cost and annual operation and maintenance cost are calculated to be 14.7% and 4% of construction cost, respectively. Therefore, the total cost is US\$112 per kW.

Adjustment factor to be applied to the above cost is assessed to take into account different performances between hydropower and diesel power and then kW value is calculated as shown below.

		(Unit: %)	
	Hydropower	Diesel Power	
Transmission loss	0.8	0	
Auxiliary power use	0.7	4.4	
Forced outage	0.5	2.0	
Overhau1	0.4	10.0	

Adjustment factor =
$$\frac{(1-0.008)(1-0.007)(1-0.005)(1-0.004)}{(1-0.044)(1-0.02)(1-0.1)}$$
$$= \frac{0.976}{0.843} = 1.16$$

Unit kW value = Total kW cost x Adjustment factor = US $$112/kW \times 1.16$ = US\$130/kW = P2,340/kW

(ii) Unit energy value

Unit energy value is assessed based on the following assumption and procedure:

Fuel consumption and fuel cost are assumed to be 0.24 lit per kWh and US\$42.1 per barrel, respectively. Then, fuel cost is assessed to be 63.5 mills per kWh. Lubricant cost, repair cost and other associated cost are assumed to be 4% of fuel cost (2.5 mills per kWh), 0.7 mills per kWh and 1.0 mill per kWh, respectively. Therefore, the total energy cost is calculated as 67.7 mills per kWh.

Unit kWh value is then calculated by multiplying an adjustment factor estimated as below.

Adjustment factor =
$$\frac{(1-0.008)(1-0.007)}{(1-0.044)}$$
 = 1.03

Unit kWh value = Total energy cost x Adjustment factor = 67.7 mills/kWh x 1.03 = 69.7 mills/kWh = Pl.255/kWh

(4) Negative benefit

The negative benefits due to the implementation of the dam plan are those associated with the production of crops which would be foregone by impounding the reservoir.

The net production values per hectare are broken down into four categories in accordance with major crops in the reservoir area. Net production value per hectare at 1984 price level was estimated as follows.

Net Production Value per Hectare

Item	Net Production Value (P/ha/year) 11,200		
Irrigated Paddy			
Rainfed Paddy	9,460		
Upland Paddy	860		
Sugar Cane	2,910		

The area of land uses in the reservoir area was measured on 1:10,000 maps. The annual amount of production foregone at each dam site is estimated by elevation as summarized below.

Annual Production Foregone 1984 Price

		and the second s			
			(Un	it: Px 103)	
Elevation	Panay B	Panay C	Badbaran A	Mambusao B	
<u>(m)</u>	dam	<u>dam</u>	dam	dam	
75.0	290	. 			
72.5	275	-	-	~	
65.0	233	· · · · - ·	· -	-	
55.0	172	-	<u>-</u>	-	
50.0	-	15,444	-	_	
45.0		_ :	9,089	: <u>-</u>	
42.5	••	• -	7,325	—	
40.0	-	14,745	5,488	5,739	
37.5	-	· 	~	5,450	
35.0		13,640	1,586 5,038		
30.0	· -	11,639	703	703 1,079	
20.0	-	1,021	· _ ·	-	

In this study, production foregone in the reservoir area was assessed for areas situated below surcharge water level during inflow of 100-year flood.

7.3 Results of Optimization Study

7.3.1 Panay B Dam

Twelve alternative plans, formulated for varying flood outflow ratios and power generation capacities, were compared by the results of economic evaluation. The results are shown in Table V.7-1 and summarized below. The net present values evaluated for the alternative plans are illustrated in Figure V.7-1.

Economic Evaluation of Panay B Dam

Case	Dam Crest	Present	Value/1	(₽ x 10 ⁶)	в/с	EIRR
No.	E1. (m)	Cost	Benefit	NPV		(%)
1.1	71.3	157.9	106.0	-51.9	0.67	5.8
1.2	73.4	275.9	384.0	108.1	1.39	11.0
1.3	77.4	345.7	499.3	153.6*	1.44	11.4
1.4	80.9	451.0	594.4	143.4	1.32	10.6
2.1	76.2	190.2	126.4	-63.8	0.66	5.7
2.2	78.1	330.5	404.4	73.9	1.22	9.7
2.3	81.5	425.6	519.8	94.2	1.22	9.8
2.4	84.6	536.0	614.9	78.9	1.15	9.2
3.1	78.7	234.7	139.0	-95.7	0.59	5.1
3.2	80.5	384.2	417.1	32.9	1.09	8.7
3.3	83.7	501.1	532.4	31.3	1.06	8.5
3.4	86.8	610.0	627.5	17.5	1.03	8.3

Notes: /1; At discount rate of 8% p.a.

/2; * indicates the largest net benefit

The above table shows that Case 1.3 would have the largest net benefit among twelve alternative plans at the Panay B dam site. This plan will have a flood control capability of reducing the flow to a half rate (outflow ratio: 0.5) and a generating capacity of 7,100 kW.

7.3.2 Panay C Dam

Economic evaluation was carried out for twelve alternative plans. The results are shown in Table V.7-2 and summarized below. The net present value evaluated for alternative plans are illustrated in Figure V.7-1.

Economic Evaluation of Panay C Dam

Case	Dam Crest	Present	Value /1 (P	× 10 ⁶)	в/с	EIRR
No.	E1. (m)	Cost	Benefit	NPV	D/ C	(%)
1.1	40.2	513.1	463.0	-50.1	0.90	7.3
1.2	42.5	582.7	543.4	-39.3	0.93	7.5
1.3	44.8	644.5	618.0	-26.5	0.96	7.7
1.4	47.1	709.6	680.5	-29.1	0.96	7.7
2.1	41.7	531.0	510.7	-20.3	0.96	7.7
2.2	43.9	601.1	591.4	-9.7	0.98	7.9
2.3	46.2	671.4	667.0	-4.4	0.99	8.0
2.4	48.5	738.8	729.6	-9.2	0.99	7.9
3.1	42.7	546.8	530.2	-16.6	0.97	7.8
3.2	44.9	618.3	611.7	-6.6	0.99	7.9
3.3	47.1	687.3	687.3	0 *	1.00	8.0
3.4	49.5	760.7	750.2	-10.5	0.99	7.9

Notes: /1; At discount rate of 8% p.a.

/2; * indicates the largest net benefit

The above table shows that Case 3.3 is accorded the largest net benefit among the twelve alternative plans of the Panay C independent dam scheme. The plan contemplates to regulate the flood flow to a 1/5 rate and to have a generating capacity of 11,000 kW.

7.3.3 Badbaran A Dam

Economic evaluation was carried out for six alternative plans. The results are shown in Table V.7-3 and summarized below. The net present value of the alternative plans are illustrated in Figure V.7-1.

Economic Evaluation of Badbaran A Dam

Case	Dam Crest	Present	Value 1	P x 10 ⁶)	в/с	EIRR	
No.	El. (m)	Cost	Benefit	NPV		(%)	
1.1	46.9	212.7	74.9	-137.8*	0.35	3.3	
1.2 47.0		289.3	145.1	-144.2	0.50	4.1	
2.1	49.8	319.9	97.2	-222.7	0.30	2.7	
2.2	50.0	403.0	167.9	-235.1	0.42	3.2	
3.1	51.4	391.5	106.8	-284.7	0.27	2.2	
3.2	51.6	471.7	177.0	-294.7	0.38	2.8	

Notes: /1; At discount rate of 8% p.a.

/2; * indicates the largest net benefit

The above table shows that Case 1.1 is accorded the largest net benefit among the six alternative plans at the Badbaran A dam site, though the net benefit indicates a negative value. The plan represents a minimum development scale at the site, i.e. a flood control single purpose scheme with the minimum flow regulating capacity (outflow ratio 0.5)

7.3.4 Mambusao B Dam

Economic evaluation was carried out for six alternative plans. The results are shown in Table V.7-4 and summarized below. The net present value of the alternative plans are graphically shown in Figure V.7-1.

Economic Evaluation of Mambusao B Dam

Case	Dam Crest	Present	Value /1 (P x 10 ⁶)	в/с	EIRR
No.	E1. (m)	Cost	Benefit	NPV	B/ C	(%)
1.1	44.7	290.1	15.2	-274.9*	0.05	_/2
1.2	45.2	355.3	72.2	-283.1	0.20	_
2.1	48.7	350.6	48.6	-301.9	0.14	
2.2	49.1	419.6	106.2	-313.4	0.25	0.8
3.1	50.7	423.8	72.9	-350.9	0.17	0.3
3.2	51.2	508.7	130.4	-378.3	0.26	0.9

Notes: /1; At discount rate of 8% p.a.

/2; - indicates no EIRR value

13; * indicates the largest net benefit

The above table shows that Case 1.1 is accorded the largest net benefit among the six alternative plans at the Mambusao B dam, though the net benefit value is negative. Being similar to the case of Badbaran A dam, the plan is formulated to be of a minimum scale, i.e. a flood control single purpose scheme with the minimum flow regulating capacity (outflow ratio: 0.5).

7.3.5 Panay C Dam Combined with Panay B Dam

Three alternative plans of varying flood outflow ratios were compared based on the results of economic evaluation. Flood control benefit accrued by the Panay C dam was regarded to be the total flood damage reduction achieved by two dams (Panay C dam and Panay B dam) less the flood damage reduction by Panay B dam alone. Commencement of the Panay C dam construction was assumed to be four years after the commencement of the Panay B dam construction. The results are shown in Table V.7-5 and summarized below. The net present value evaluated for the alternative plans are graphically shown in Figure V.7-1.

Economic Evaluation of Panay C Dam (Combined with Panay B Dam)

Case	Dam Crest	Present	Value/1 (2 x 10 ⁶)	в/с	EIRR
No.	E1. (m)	Cost	Benefit	NPV		(%)
1	39.9	508.1	392.7	-115.4	0.77	6.2
2	41.4	525.6	438.9	-86.7	0.84	6.7
3	42.3	537.8	461.7	-76.1*	0.86	6.9

Notes: /1; At discount rate of 8% p.a.

/2; * indicates the largest net benefit

The above table shows that Case 3 is accorded the largest net benefit among the three alternative plans examined, though the evaluated NPV is negative. The proposed plan contemplates to have a maximum flood control function (outflow ratio of 0.2) within the range studied and an installed capacity of 6,800 kW for hydropower generation.

8. Conclusion

8.1 General Features and Costs of Optimum Dam Schemes

The development scale of the four dams was examined to have dual purposes of flood control and hydropower generation as described in the previous section. Among the four sites, however, Badbaran A and Mambusao B dams were finally proposed as single purpose scheme for flood control, because only a small portion of storage could be allocated for power generation, resulting the power scheme to be less attractive. The general features of the selected dam plans are shown in Table V.8-1 and summarized below.

General Features of Selected Dams

Item	Panay B	Panay C/1	Badbaran A	Mambusao B	Panay C/2
Type of Dam	Concrete gravity	Concrete gravity	Rockfill	Combined C. gravity & rockfill	Concrete gravity
Catchment Area (km²)	239	509	258	217	509
Dam Height (m)	52.4	39.1	30.9	34.7	34.3
Storage for Flood Control (106m ³)	33.8	144.8	38.0	31.5	130.2
Storage for Power Generation (10^6m^3)	30.5	252.3	· <u>-</u>	-	127.6
Installed Power (kW)	7,100	11,000	_	~	6,800

Notes: /1; Independent scheme

/2; Combined with Panay B dam

The allocation of storage volume for each selected dam is shown in Figure V.6-1. Flood regulating capacity of the selected dam plans are summarized in Table V.8-2. The estimated cost of the selected plans are summarized below, with breakdowns of foreign and local cost portions, and the details are shown in Table V.8-3.

Construction Cost of Each Dam Plan

		(Unit	Px 100)
	Co	onstruction Cos	st
Dam Plan	Foreign Currency	Local Currency	Total
Panay B	227.24	193.96	471.2
Panay C/1	457.12	587.58	1,044.7
Badbaran A	118.00	235.20	353.2
Mambusao B	129.16	309.54	438.7
Panay $C^{\frac{1}{2}}$	345.83	488.47	834.3

Notes: /1; Independent scheme

/2; Combined with Panay B dam

The general layout of dam and power staiton for each dam plan is shown in Figure V.8-1 to V.8-4.

8.2 Flood Control Effect of Dam Plans

A flood flow analysis for downstream reaches was made taking into account flood regulation effects of each dam plan. As its outcome, flood flow discharges and flood water levels at the Panitan base point are shown in Table V.8-4, and flood peak discharges for 2-, 5-, 10-, 25- and 100-year floods at major base points along the Panay mainstream are summarized in Figure V.8-5 and flood water levels are illustrated in Figure V.8-6.

The figures suggested the following:

i) The flood control effect of the Panay C dam would be largest, followed by the Panay B dam, Badbaran A dam and Mambusao B dam among the independent dam plans. It is noteworthy that the flood control effect of the Mambusao B dam is very small; though the Mambusao B dam would cut the peak inflow flood of 1,770 m³/sec to 885 m³/sec in case of a 100-year flood, the flood control effect at the Panay-Mambusao junction is almost nil. Flood discharge reduction would only be 20 m³/sec (from

- 2,720m³/sec to 2,700m³/sec), due mainly to substantial natural retardation effects in the downstream reach.
- reduction would gradually decrease in the downstream reaches. In case of the Panay B dam, the peak discharge reduction for a 100-year flood is 180 m³/sec at the Badbaran junction, while it would further drop to 60 m³/sec at Panitan. This tendency is common to all other cases.
- the cases of small floods and large ones. In case of the Panay B dam, the decrease in the flood water level at Mambusao junction is 0.2 m, in either case of 100-year, 5-year and 2-year floods. This tendency is common to all other cases.

TABLES

FOR

APPENDIX V

Table V.3-1 Preliminary Study Results of Prospective Damsites in Panay River Basin (1)

cy Conglomerate, Sandstone and silk- acone which are not well con- acone which are not well con- acone which are not well con- acolidated. Lot of water leakage accarded in the part drilling ty Andesitic volcanic breccia with anny outcrop in river bed gates Andesitic volcanic breccia with same outcrop in riverbed gates Andesitic volcanic breccia. Lom Kareiic limestone much lankage 290.0 expected expected shitestone overburden very thick shitestone, conglomerate and siltestone. Site is covared with thick overburden. Sandstone. Sandstone. Site is covared with thick overburden.	Cacch D	Flood 10 m ³ /scc (a	nun-off 10 ⁶ m (m ³ /sec-km ²)	H.W.L El.m.	Scoregee	Stornge Stornge 10 ⁵ m ³	Stornge 100m3	Scyroge 10°m	Cont. Stycoge 10cm
Size H=47m, L=130m Size H=47m, L=130m V=92,000m ³ Spillway with gates C Concrete gravity Andesitic volcanic bracca with Size H=26m, L=153m V=41,500m ³ Spillway with gates Andesita and volcanic bracca with Spillway with gates Andesita and volcanic braccia. Spillway with gate A Concrete gravity Concrete gravity A Concrete gravi	·	1,000 (200yr. flood)	560.5	120	334	12	cu	56.5	8. N
C Concrete gravity Andesitic volcanic breaca with 509.2 Site H=26m, L=153m same outcrop in riverbed V-41,500m³ Spillway with gates Andesite and volcanic brecia. 258.4 Site H=23m, L=335m karetic limestone much leakage 290.0 Site H=24m, L=335m karetic limestone much leakage 290.0 Site H=44m, L=335m karetic limestone much leakage 290.0 Site H=44m, L=130m karetic limestone and siltetone overburden very thick Spillway with gate Sandstone, Site is coyored V=146,000m³ with thick overburden. Spillway with gate with thick overburden. 140.1 Maayon Rockfill silterone with thick overburden. 140.1		1,120 (200yr. Elopd)	632.6 (0.0839)	75	23	5.5	67	24.5	24.5
Site Site Depth to fresh rock is about 10m Site 10-20m 10m Reverted 11mestone much leakage 290.0 Site 11-20m, L-335m expected Expected Spillway with gate 10-20m Site 11-44m, L-130m conglomerate, sandstone and 172.9 Site 11-44m, L-130m siltatone overburden very thick Spillway free overw site 10-700m siltatone, conglomerate and Spillway free overw 10mes		2,400	1,151,3	8	229	12	178	68	89
Site 11-210, 1-335m expected Site 11-210, 1-335m expected V=554,000m ³ Spillway with gate Concrete grayity Site 11-44m, 1-130m V=77,000m ³ Spillway free overw flow type Rockfill Site 11-15m, 1-280m V=168,000m ³ Alth thick overburden. Site 11-15m, 1-280m V=168,000m ³ Spillway with gate Y=168,000m ³ Spillway with gate Nockfill Nockfill Sandstone, conglomerate and Site 11-15m, 1-280m V=168,000m ³ Spillway with gate Nockfill Nockfill		2,130 (1,2x200yr. flood)	(0,0435)	42.5	115.3	37.5	77.8	35.1	42.7
A. Concrete gravity Moderately hard consolidated Site 10-44m, L-130m conglomerate, and stateme and V-77,000m ³ siltatone overburden very thick Spiilway free overv flow type B. Rockfill Sandstone, conglomerate and Site 10-15m, L-280m siltatone, Site is covered V-48,000m ³ with thick overburden. Masyon Rockfill 140.1		2,260 (1,2×200yr, [100d)	431.5 (0.0472)	£ .	93	59	89	4	ಕ
B Rockfill Sandstone, conglowerste and Site H-15m, L-280m siltstone. Site is covered V-148,000m3 vith thick overburden. Spillway with gate Masyon Rockfill		250 (200yr. flood)	(0.0593)	8	38	•	#	15.5	5.5
Mayon Rockfill	216.6	910	405.2	ë,	7.	er er	000	25	x
N=400, L=383m V=480,000m ³ Spillway wich gates	140.1	910	177.5	6	Š	14	36	18	89 FT

River System	Damsíta	Firm disch. m3/sec	Max. disch.	Inteke N.W.L EL.e	C.4.C	T.W.L EL.m	Total Head	Inst. Cops.	Depend. Output KW	Annual Angrey 10 ⁵ KWli	Construc	Construction Cost #106 Dum Power S. Tota	P106 Total	Dem Cost Eff. Storage P/m ³	1 Energy Cost PKWh
Panay	A Sáte	14.46			86.0	59.0	44.5	10,700	6,360	6.54	627.5	242.4	869.9	5.55	¥.0
	52 SACO	12.50	25.0	68.0	61.5	39.0	29.0	5, 700	007*7	. 35.5	403.7	166.3	570.0	9.1¢	27.0
	C Sice	24.6	20.0	25.5	21.2	14.0	11.5	7,480	2,760	24-1	523.1	212.4	735.5	2.94	0.88
Badbarem A Site	A Site	8.79	18.0	0.04	36.8	22.0	18.0	2,250	2,120	11.7	275.6	97.5	373.1	3,55	0.83
	B Sice	ý	13.0	31,5	27.5	17.0	14,5	1,400	066	8.7	441.7	106.1	547.8	6.50	1:21
Mambusso A Site	A Sice	3.2	6.5	83.0	73.0	35.0	28.0 ~18.0	1,440	920	6.8	297.4	63.7	361.1	9.59	76*0
	8 Site	7.8	15.0	30,0	26.0	19.0	27.0	Head fa planned	Head is too low.	Not	358.4			7.17	
Maayon	Manyon	3.6	6.8	42.5	38.0	29.0	18.5 ~14.0	900	710	5.8	293.2	74.3	367,5	8.14	1.29
	-														•

Remark: 1. Energy cost is tentatively calculated to be Construction Cost of Power House x annual cost factor.
Annual energy output

Annual coat factor is taken at 0.1,

Table V.5-1 Monthly Mean Discharge at Panay B Dam

14.34	20.32	26.28	18.07	16.91	15.98	17.89	12.10	7.33	2.96	7.05	96.6	14.28	AVERAGE
		.		: }	7.0		7.				٧,		On.
13.10				3.0		3	•	انجا	١,	7		9.0	ò
7		•	* ~ • c	,	•	•	٦,	٠,		Ψ	9	Ψ	Ġ
15.99				! c				7	3	œ	0	9.7	ò
15.76				• -		•	•	•		9		in L	o.
14.04	ω,	12.0		. 0	•] E 	``	,	٧,	in o	00	(A)	0
21.73	φ	C	6	00				•	•	- L	י הָי	9	•
13.28	o,	4		S.		. O		, 0	• •		, c	, c	٠,
14,36	œ	an,	6	7		5	-		. "	•	4 6	P 4	٠.
12.95	v,	œ	4.4	6		00				; ;	4 ¢	. v	7
11.06	7	٠.	7	8	٠,	Š	U	0	, [2 0 4 m	3 6	٠,	Ň
14.18	'n	c,	5		~			7	יי ייי	•	٠,	٦,	ž (
15.61	φ	ា	2	6	8	0		, 0	יי	•	0. 1.	, ,	7
19.37	~	7	5	1,2	•	v	. 6	: 0	•	! -	4 (? (
13.85	~.	4	6.7	3.6	2		3		ģ		št)	5
11.68	'n	'n	8	5.4	-	S			•	•	? (n (
10.80	ဖ	ç		3	2	6.7	-	α			• •		,
17.18		27.09	12.08	46.60	27.39	25.28	13.66	60	, (4) (4) (f	90	ი -	7 C
11.60	~!	₽,	φ.		2	5.6	•	1	• 4	•	Ò	0 f	2
75-42		∹	4	e G	9	0.2	4	00		! <	٠, ٥	3 6	
15.26	<u>``</u>	₫.	ω	ī.	50	4.0	ທ			•	ŗr	V	
13.26	ထ္	ئ	Ş	9.0	6.5	5	4	ľď		•	9 4	? (2
13-16	4	œ	5	5	7	6		! ~		. o	4 0	٠, ۶	,
15.16	26.04	18.12	1 - 6	6	8	3.7	6	I -	١°	٦	١ ،		13
AVERAGE	DEC	VON	ocr	SEP	AUG	300	NOS	MAY	APR	MAR	F88	JAN	YEAR
/ 1 / 2 c - / 1 / 2	1017												

Table V.5-2 Monthly Mean Discharge at Panay C Dam

00000	AVERAGE	29.86	25	26	000		36	22	33				7	88	ဗ္ဗ	73	21,	7,	α	2 0	07	42	27	33	•	200	1 C	0-67	28		
3 1	DEC	51.29	7.7	7.2		•	7	8	7		5 0	•		90	9.6	2	1				٠,	4	ď	8	5	Ċ		ķ.	7A A2	3	
	NON	35.69	•		•	•				Ι.	5.	٠.	_	_	~					'n.	~	m	M	ĆC.	•	S c	2	39		6/-76	
	OCT	_•	-	_	:.		_		٠.		* A		Ň	~	À				o c	n i	m	0	60	4	٠.	٠,	55 57	-	,	٧٥. دد	
	SEP	•	' '	٠.	٠.	•			•	٠.	66.02	٠.				: _	: -			. i	~	"	_			٠,	À	- -1	١,	33.43.	
	AUG	0.1				es es	2		፤ (• •	, ,	44.40	2.	6.	00		יי וו			'n.	4	w	9	·		• ·			٠	- [31.48	
	JUE	α	•	ተ ሮ •	;	o,	Ó			•	13.26	6	2) (ייי	ອ	יי	9	8	ľ				ັ: ດ	٠,		35.24	
	JON	ر. ر			4	5	4	r .	7	σ.		ぺ	9	'	P 0	, e	2	2	9	~	7.9			; `	, ,		4		- 1	23.83	
	MAX	α	0 -	7.	φ. 80	0	֓֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֓֓֓֜֜֜֜֜֜֓֓֓֜֜֜֜֜֓֓֓֓	4 1	d.	ന	Ψ	~	ď			٠,	"	_	9	٠,	 		•	Υ.	•	۳. ۳	~	26.26		14-43	
	APR	,	٠,	7	თ	4	֓֞֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜	ان		ď	7.09	'n	v) () L	7 1	ر د	•	ຕຸ	લ	9,	·	;		Ţ	o,	00	S	60.0		11.74	
	MAR	;	U.	4	4	_	. ,	`:	0	v	œ				9		ω, «	٠,	6	2	•	•	-	-	'n		~	ju		13.89	
	FEB	1 '	ω. 00	ヹ	α	: -		9	د	9	•	0	•	•	ω,	φ	3.	4.0	6	. 6	•	•	,	'n	5	_	į	200		19.61	
	JAN		o,	7.4			,	n		σ))	3		çi G	5.2	, N					8	a,	3			01		28.13	
11	YEAR		1956	1957	000	0.0	1959	1960	1961	1967	2001) 4) (4000	1965	1966	1967	1968	1969	0.00	100	7/67	1972	1973	1974	1975	94.0	17.7	7767	B/ 6T	AVERAGE	

Table V.5-3 Monthly Mean Discharge at Panay C Dam (Combined with Panay B Dam

AVERAGE	29.62	25.75	25.86	29.76	30.15	22.61	33.61	21.97	70 66	777	50-17	31.96	30.52	27.74	21.60	25.27	20.00	1000	12.07	/0-24	7. 44	30 -82	31.29	27.77		VC - C7	20 04	
Dad		2	9	8	6	8		. ~		7 1	w.	?	00	6	5	9		10		y• +	3.2	Ų.	9			7	20.04	
NON		~					77.	٠.		∴.		a.	'n	Ä	οò	6	ċ	ú.	'n	o.	ďί	άÓ	4	ė	4 (\$2	١.	7.4.40
00.1	7	•	· ·		α		200		•	3		ζ.	ς;	9	-				~	_	2	8	_	4 <	: `	٥	,	75-00
SEP	יא	8		5		•	900	•	•	D	œ. ش	~	0	7.	(C)		2° C	90		'n	ထ	7	نه نم ا	4 :	7 ·	in S	ľ	31.87
AUG	7	2) ~	, c	30	001	` r		9	4	9	7			, c	2 ' 1 '	A .	4	4	9		į	<u>.</u>	4	60	ľ	30.68
305	"				•	•	76.67	•	•										Š	~							ı	33.70
NDC	~	א כל	v	٠.	, ·	7.6	17 76	7 •	6.61	19 6	3	4	_	ıe	100	٠	4		4	0	. 7	• •	r ,		ው	36.25	ļ	22.75
MAY	u	'n) d		. ·	v i	13.74	•	m.	9.4	~	6		,	9 6	,	9	۲,	5.0	8	r		P 1	i,	ω. Δ.			14.55
APR	9	Ďι	` '		,	ď	90.0	-	0	<u>ر</u>	m		. 6	•	0 (œ.	6	2			4 -		Ü	4	13.74		12.83
MAR.] [7	7	9		න ප	e,	.5	4	9	u			•			~	2	7				·		ហ	9.29		14.90
ញ ម		-: c	7	SO.	9	5.7	ņ	S.	8.9	-	. 0	ינ זכ) F		7 °	20	9.8	6.1	. 6	• ·			, ,	7	2	20.28	- Long American	20.28
NAC		· •	. 7	13.6	4.	ਜ਼ ਨ	7	9	7	4		•		77	α† . •	~	2	4		•	• ·	יים	~	9	S	14.24		28.15
(A (A (A	\$ <u> </u>	Š	Ś	Š	Š	9	9	8	9	×		2	D 1	יי ס	φ.	9	9	0		5	n (o,	ð	σ	1978		AVERAGE

Table V.5-4 Monthly Mean Discharge at Badbaran A Dam

Table V.5-5 Monthly Mean Discharge at Mambusao B Dam

2 2 2 3 3 4 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	239 228 228 222 222 222 222 222 222 233 244 111 252 264 274 111 264 274 113 264 274 113 264 274 113 275 275 275 275 275 275 275 275 275 275
2000 2000 11 12 12 12 12 12 12 12 12 12 12 12 12	0.000 0.000
22 22 24 24 24 25 25 25 25 25 25 25 25 25 25 25 25 25	0220011122122 0221221221221222136 0324582136
1444 0.00 0440 0.00	1441 CU THELL
30.1 555 4.3 21 15.1	255 274 274 274 274 275 276 277 277 277 277 277 277 277 277 277
42. 6.5 68 32.4 59: 53.2	4446 84 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
46 8. 36 40. 74 56.	23.46 24.22 24.44 25.23 25.23 25.23 25.23 25.23 25.23 25.23 25.23 25.23 25.23 25.23 25.23
N 00.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
~ 69	๛๛๚๛ <i>๛</i> ๛๛๛๛ ๛๛๛๛๛๛๛๛๛ ๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛
v	2.61 2.62 2.62 2.62 2.63 2.64 2.64 2.64 2.64 2.64 2.64 2.64 2.64
7	0112 0120 0120 0480 047 0480 0480 0480 0480 0480 0480
	119959 119959 119961 19961 19961

Table V.6-1 Alternative plans of Panay B Dam

Case	Dam	F.100d	100-year Flood	r Flood	Operati	ration	ion Levels	(m)	SEC	Storage Volume	(106 m ³)		Installed	Energy	Max.
8	Crest El. (m)	Outflow Rate	Inflow (m3/sec)	Outflow (m3/sec)	FWL	SWL	HWL	LWI	For Flood Control	For Power Generation	Dead Water	Total	Power (kW)	Output (GWh/y)	Discharge (m3/sec)
ਜ ਜ	71.3	0.0	2,420	1,210	8.89	65.0		56.7	93.00		31.7	65.5		: :. : 1	
7.7	73.4	0.5	2,420	1,210	70.9	67.3	0.09	56.7	8,00	10.7	31.7	76.2	4.2	23.7	18.0
٠ د	77.4	0.5	2,420	1,210	6.74	71.3	65.0	56.7	33.8	30.5	31.7	0.96	7.1	31.4	27.2
4.4	80.9	5.0	2,420	1,210	78.4	75.0	70.0	56.7	33.8	56.2	31.7	121.7	10.0	36.8	34.9
2.1	76.2	0.333	2,420	807	73.7	68.9	1	56.7	52.8		31.7	84.5			
2.2	78.1	0.333	2,420	807	75.6	0.0	0.09	56.7	52.8	10.7	31.7	95.3	4.2	23.7	18.0
2.3	81.5	0.333	2,420	807	79.0	74.3	65.0	56.7	52.8	30.5	31.7	115.0	7-1	31.4	27.2
7.4	34.6	0.333	2,420	807	82.1	77.6	70.0	56.7	52.8	56.2	32.7	140.7	10.0	36.8	34.9
3.7	78.7	0.25	2,420	605	76.2	-	,	56.7	63.8	i	31.7	95.5	ı]: _;\$
8	80.5	0.25	2,420	605	78.0	~	0.09	56.7	63.8	10.7	31.7	106.2	4.2	23.7	18.0
ლ ი ლ -	က် ကို ရ	0.25	2,420	605	81.2	76.0	9,00	56.7	63.8	ر د د د د د د د د د د د د د د د د د د د	31.7	126.0	7:7	31.4	27.2
,	0.00	67.0	7,440	620	04.50	וית	0.0/	79.	63.8	20.2	31.7	151.7	10.0	36.8	34.9
ть															
_													٠	٠.	
					H	Table V.	V.6-2	Mterna	Alternative Plans	of Panay	C Dam				
S S S S	Dam	Flood	100-year Flood	r Flood	Opes	Operation 3	Level (m)	0)	Sc	Storage Volume	(106 m³)		Installed	Energy	Max
No.	Crest El. (m)	Outflow Rate	Inflow (m3/sec)	Outflow (m3/sec)	Ful	SWL	HWL	LST	For Flood	For Power	Dead	Total	Power (KW)	Output (GWh/y)	Discharge (m ³ /sec)
	40.2	0.333	4 120	1.373	37.7		30.0	25.6	103 4	95.9	0 84	0.830	5.7	200	0 (4
1.2	42.5	0.333	4,120	1.373	0.04		32.5	25.6	103.4	167.2	6.89	339.5	. vr	27.1	7 6
е. Н	8.44	0.333	4,120	1,373	42.3	37.5	35.0	25.6	103.4	252.3	689	424.6	11.0	31.4	0.0
1.4	47.1	0.333	4,120	1,373	44.6		37.5	25.6	103.4	355.7	6.89	528.0	13.0	35.1	98.5
2.1	41.7	0.25	4,120	1,030	39.2		30.0	25.6	125.8	95.9	6.89	290.6	5.7	22.6	62.8
2.2	43.9	0.25	4,120	1,030	41.4	36.1	32.5	25.6	125.8	167.2	6.89	361.9	8	27.1	81.3
•	46.2	0.25	4,120	1,030	43.7		35.0	25.6	125.8	252.3	68.9	77.0	11.0	31.4	93.0
5.4	48.5	0.25	4,120	1,030	76.0		<u> </u>	25.6	125.8	355.7	6.89	550.4	13.0	35.1	98.5
3.7	42.7	0.5	4,120	824	40.2	34.6	30.0	25.6	144.8	95.9	68.89	309.3	5.7	22.6	62.8
3.5	6.47	0.2	4,120	824	45.4	36.4	32.5	25.6	344.8	167.2	68.9	380.9	8,0	27.1	81.3
ო ო	47.1	0.2	4,120	824	9.44		35.0	25.6	144.8	252.3	68.9	0.997	11.0	31.4	93.0
4.6	49.5	0.2	4,120	824	47.0		37.5	25.6	144.8	355.7	68.8	569.4	13.0	35.1	98.5

Table V.6-3 Alternative Plans of Badbaran A Dam

8 8 9	Dam	Flood	100-yea	r Flood	Oper	ation l	Operation Levels (m)	(m)	St	Storage Volume (106 m ³)	(106. m3)		Installed	Energy	Max
No.	Crest El. (m)	Outflow	Inflow Outflow (m ³ /sec)	Outflow (m3/sec)	FWL	SWL	HWL	LWL	For Flood Control	For Power Generation	Dead	Total	rower Ou (kW) (G	(CMP/x)	Ulscharge (m ³ /sec)
	6.97	0.5	1,900	950	43.9	40.2	1	36.8	38.0	ŧ	37.5	75.5	3	1	1
4	7.0	0.5		950	0.44	40.5	37.5	36,8	38.0	6.3	37.5	81.8	1.0	6.3	8.2
7	8 67	0.333		633	8.97	41.6	,	36.8	60.0	•	37.5	97.5	1	ï	1
2.2	20.0	0.333	1,900	633	47.0	41.8	37.5	36.8	0.09	6.3	37.5	103.8	1.0	6.3	8.2
	51.4	0.25		475	48.4	42.4		36.8	76.1		37.5	113.6	•	. •	
3.2	51.6	0.25		475	48.6	42.7	37.5	36.8	76.1	6.3	37.5	119.9	1.0	6.3	8.2

Table V.6-4 Alternative Plans of Mambusao B Dam

. 0	Dam	Flood	100-yea	100-year Flood	Oper	tation I	Operation Levels (m)	æ	Sto	Storage Volume (106 m3)	(106 m3)		Installed	Energy	Max.
No.	Crest El. (m)	Outflow Rate	Inflow (m ³ /sec)	Outflow (m3/sec)	FUL	SWL	HML	LWL	For Flood Control	For Power Generation	Dead Water	Total	Power (kW)	Output (GWh/y)	Discharge (m3/sec)
	7.77	0.5	1,770	885	41.7	36.6	,	33.6	31.5		28.7	60.2	ı		1
~	45.2	0.5	1,770	885	42.2	37.6	35.0	33.6	31.5	12.9	28.7	73.1	8	5.1	7.2
H	7.87	0.333	1,770	590	45.7	38.0	i	33.6	50.1	. 1	28.7	78.8	1	ť	1
2.3	16.1	0.333	1,770	590	46.1	38.7	35.0	33.6	50.1	12,9	28.7	91.7	0.8	5.1	7.2
. ~1	50.7	0.25	1,770	773	47.7	38.7	ı	33.6	63.0		28.7	91.7	, t .	. 1.	
N	51.2	0.25	1,770	443	48.2	39.4	35.0	33.6	63.0	12.9	28.7	104.6	8.0	5.1	7.2

Table V.6-5 Alternative Plans of Ponay C Dam (Combined with Panay B Dam)

Max	(m3/sec)	80.0	80.0	80.0
Energy	(GWh/y)	22.6	22.6	22.6
Installed	(ku)	8.9	8	6.8
	Total	255.0	278.0	295.0
(106 m ³)	Dead Water	37.2	37.2	37.2
Storage Volume	For Power Generation	127.6	127.6	127.6
Sto	For Flood Control	60.2	113.2	130.2
â	LWL	23.5	23.5	23.5
Levels (m)	HWL	30.0	30.0	30.0
i d	Sul	33.1	33.8	34.3
Operat	FWL	37.4	38.9	39.8
r Flood	Outflow (m ³ /sec)	1,077	808	979
100-year	Inflow (m3/sec)	3,230	3,230	3,230
Flood	Outflow Rate	0.333	0-25	0.2
Dam	Crest El. (m)	39.9	41.4	42.3
Case	No.	ا	٠,	M

Table V.7-1 Economic Evaluation of Each Alternative Plan for Panay B Dam

Lase Crest Outflow Power Output Cost Cost (kW) (GWh/y) (Px106) 1.1 71.3 0.5 - 195.9 1.2 73.4 0.5 7.1 31.4 428.9 1.4 80.9 0.5 10.0 36.8 559.5 2.1 76.2 0.333 - 23.7 410.0 2.2 78.1 0.333 7.1 31.4 528.0 2.4 84.6 0.333 10.0 36.8 664.9	cc Cost 06)								2133
El. (m) Rate (KW) (GWh/y) 71.3 0.5 - 23.7 77.4 0.5 7.1 31.4 80.9 0.5 10.0 36.8 76.2 0.333 78.1 81.5 0.333 7.1 31.4 84.6 0.333 10.0 36.8				Benefit				B/C	3
71.3 0.5 7.2 23.7 77.4 0.5 7.1 31.4 80.9 0.5 10.0 36.8 76.2 0.333 4.2 23.7 81.5 0.333 7.1 31.4 84.6 0.333 10.0 36.8		Flood	Power	Energy	Negative	Total	NEV)
73.4 0.5 4.2 23.7 77.4 0.5 7.1 31.4 80.9 0.5 10.0 36.8 76.2 0.333 7.1 81.5 0.333 7.1 31.4 84.6 0.333 10.0 36.8		107.9	. 1	1	-1.9	106.0	-51,9	19.0	8,
77.4 0.5 7.1 31.4 80.9 0.5 10.0 36.8 76.2 0.333 7.1 81.5 0.333 7.1 31.4 84.6 0.333 10.0 36.8	•	107.9	69.1	209.0	-2.0	384.0	108.1	1.39	11.0
80.9 0.5 10.0 36.8 76.2 0.333 23.7 78.1 0.333 4.2 23.7 81.5 0.333 7.1 31.4 84.6 0.333 10.0 36.8		107.9	116.7	276.9	-2.2	499.3	153.6*	1.44	11.4
76.2 0.333 - 23.7 78.1 0.333 4.2 23.7 81.5 0.333 7.1 31.4 84.6 0.333 10.0 36.8		107.9	164.4	324.5	-2.4	294.4	143.4	1.32	10.6
78.1 0.333 4.2 23.7 81.5 0.333 7.1 31.4 84.6 0.333 10.0 36.8		128.5		į t	-2.1	126.4	-63.8	99.0	5.7
81.5 0.333 7.1 31.4 84.6 0.333 10.0 36.8		128.5	69.1	209.0	-2.2	404.4	73.9	1.22	9.7
84.6 0.333 10.0 36.8		128.5	116.7	276.9	-2 3	519.8	94.2	1.22	8
		128.5	164.4	324.5	-2.5	6.419	78.9	1.15	9.2
78.7 0.25 -		141.2	, t	ŧ	-2.2	139.0	-95.7	0.59	. Y
0.25 4.2 23.7		141.2	69.1	209.0	-2.2	417.1	32.9	1.09	8.7
83.7 0.25 7.1 31.4	- •	141.2	116.7	276.9	-2.4	532.4	31.3	7.06	8
86.8 0.25 10.0 36.8		141.2	164.4	324.5	-2.6	627.5	17.5	1.03	α
Notes: /1 At discount rate of 8% p.a. /2 * indica	* indicates the largest net benefit	est net ber	nefit						

Table V. 7-2 Economic Evaluation of Each Alternative Plan for Panay C Dam

	1		for Louis	Property	Economic			Present V	Present Value $\frac{1}{2}$ ($\mu \times 10^6$)	106)			<u>;</u>	
Case	Crest	Outflow	Power	Output	Const.				Benefit				B/C	¥
NO.	E1. (n)		(kW)	(GWh/y)	(P x 10 ⁶)	Cost	Flood	Power	Energy	Negative	Total	NPV		(i)
[40.2	0.333	5.7	22.6	636.6	513.1	276.2	93.7	199.3	-106.2	463.0	~50.1	06.0	7.3
1.2	42.5	0.333	. so	27.1	722.9	582.7	276.2	139.8	239.0	-111.6	543.4	-39.3	0.93	7.5
	8.44	0,333	11.0	31.4	799.5	644.5	276.2	180.9	276.9	-116.0	0.819	-26.5	96.0	7.7
7.4	47.1	0.333	13.0	35.1	880.3	9.607	276.2	213.8	309.6	-119.1	680.5	-29.1	96.0	7.7
2.3	41.7	0.25	5.7	22.6	658.7	531.0	325.9	93.7	199.3	-108.2	510.7	-20.3	96.0	7.7
2.5	43.9	0.25	ω ν	27.1	745.7	601.1	325.9	139.8	239.0	-113.3	591,4	-6-1	96.0	7.9
	46.2	0.25	0.11	31.4	832.9	671.4	325.9	180.9	276.9	-116.7	667.0	7.7-	0.99	8
2.4	48.5	0.25	13.0	35.1	916.5	738.8	325.9	213.8	9.608	-119.7	729.6	-9.2	66.0	7.9
3.1	42.7	0.2	5.7	22.6	678.4	546.8	346.8	93.7	199.3	-109.6	530.2	-16.6	0.97	7.8
2	6.44	0.5	ω v	27.1	767.0	618.3	346.8	139.8	239.0	-113.9	611.7	.9-9-	66.0	4.9
์ ๓	47.1	0.2	0.11	31.4	852.6	687.3	346.8	180.9	276.9	-117.3	687.3	ð	1.00	0.8
3.4	49.5	0.2	13.0	35.1	943.7	7.097	346.8	213.8	9.600	-120.0	750.2	-10.5	0.99	7.9
Notes:	/1 At di	At discount rate of 8% p.a	s of 8% p.a.	77	* indicate	s the larg	* Indicates the Largost not benefit	mefit						

Table V.7-3 Economic Evaluation of Each Alternative Plan for Badbaran A Dam

•

	Dam	'	Installed	Energy	Economic	. :		Present Va	Present Value (Px 106)	106)			i.	EIRR
0 0 C	Crest	Outflow	Power	Output	Cost				Benefit				۵/2 ا	8
	El. (m)	i.	(KKV)	(GWh/y)	(P×106)	COST	Flood	Power	Energy	Negative	Total	NAN		
1-1	6.97			1	263.9	212.7	120.6	ı		-45.7	74.9	-137.8*	0.35	3.3
1.2	47.0	0 .v	٥٠٦	6.3	358.9	289.3	120.6	16.4	55.6	-47.5	145.1	-144.2	0.50	4.1
2.1	8.67		•	ı	396.8	319.9	151.2	1		-54.0		-222.7	0,30	2.7
2.2	50.0		1.0	6.3	0.002	403.0	151.2	16.4	55.6	-55.3	167.9	-235.1	0.42	3.2
3.1	51.4		•	ı	485.7	391.5	165.6	. 1	1	-58.8	106.8	-284.7	0.27	2,2
3.2	51.6	0.25	1.0	6.3	585.2	471.7	165.6	16.4	55.6	-60.6		-294.7	0.38	2.8
Notes: /1		At discount rate of 8% p.a.	of 8% p.a.	72	* indicates	indicates the largest net benefit	est net ber	sefit		:		· ·	.*	

Table V.7-4 Economic Evaluation of Each Alternative Plan for Mambusao B Dam

	Dam	Flood	Installed	Energy	Economic			Present Value (Px106)	lue (P x	106)				EIRR
Case	Crest	Outflow	Power	Output	Const.				Benefit				B/C	(%)
· Og	(a) (a	Rate	(kW)	(GWh/y)	(P x 106)	Cost	Flood	Power	Energy	Negative	Total	MPV		
1.1	7.47	0.5	1	ľ	359.9	290.1	58.4	ı	ı	-43.2	15.2	-274.9*	0.05	খ
4	45.2	0.5	0.8	5.3	8.077	355.3	58.4	13.2	45.0	7. 77-	72.2	-283.1	0.20	1
2.1	7 87	0.333	,		6.787	350.6	93.4			8.47-	78.6	-301.9	0.14	
2.2	49.1	0.333	9.0	5.1	520.6	419.6	93.4	13.2	45.0	-45.4	106.2	-313.4	0.25	8.0
3.7	50.7	0.25		1,	525,7	423.8	118.3		,	-45.4	72.9	-350.9	0.17	0.3
3.2	51.2	0.25	8.0	5.1	631.1	508.7	118.3	13.2	45.0	-46.1	130.4	-378.3	0.26	6.0
Notes: /l	/1 - AE d	Ar discount rate of 8% p.a.	of 8% p.a.	/2	* indicates the largest net benefit	the large	st net ber	efic				4		
	; :		TOD	1					:					

(Combined with Panay B Dam)

Table V.7-5 Economic Evaluation of Each Alternative Plan for Panay C Dam

	Dam	Flood	Installed	Energy	Economic			Present Va	Present Value (Px 106)	106)				ETRR
Case V	Crest	Outflow	Power	Output	. 1000				Benefit			N.D.Y.	3/C	(%)
į	El. (m)	Rate	(KW)	(CWb/y)	(P × 10 ⁶)	200	Flood	Power	Energy	Negative	Total	14.E V	- 2 - 3 - 3	•
-	م مر	0 123	αν	22 K	630 3	508.1	186.8	111.8	199.3	-105.2	392.7	-115.4	0.77	6.2
46	7.17) () () () «	22.6	652.1	525.6	235.1	111.8	199.3	-107.3	438.9	-86.7	8.0	6.7
	42.3	0.2	, 40 90	22.6	667.2	537.8	259.3	111.8	199.3	-108.7	461.7	-76.1*	0.86	6.9
Notes:	/1 Ac d1	At discount rate of 8% p.a.	of 8% p.a.	77	* indicates the largest net benefit	the large	se net ben	efir	٠					

Table V.8-1 General Features of Each Dam Plan

					The second secon	
Item	Unit	Panay B	Panay C	Badbaran A	Mambusao B	Panay C (After Panay B)
Reservoir						
Total storage capacity	106 m3	0.96	0.997	75.5	60.2	295.0
Sediment capacity	106 m3	31.7	68.9	37.5	28.7	37.2
Effective storage capacity	106 m3	64.3	397.1	38.0	31.5	257.8
(for flood control)	106 m3	(33.8)	(144.8)	(38.0)	(31.5)	(130.2)
(for power generation) 106 m ³	1) 106 m3	(30.5)	(252.3)	0)	(0)	(127.6)
Flood water level	E1. H	74.9	9.77	43.9	41.7	39.8
Surcharge water level	E1.	71.3	38.3	40.2	36.6	34.3
High water level	El. n	65.0	35.0	1		30.0
Low water level	면 명	56.7	25.6	36.8	33.6	23.5
Dam						
Туре		Concrete gravity dam	Concrete gravity dam	Rockfill dam	Rockfill dam	Combined dam
Crest elevation	81. B	77.4	47.1	6.97	44.7	42.3
Crest length	ផ	160.0	190.0	240.0	280.0	175.0
Height	8	52.4	39.1	30.9	34.7	34.3
Power Station						
Maximum discharge	m3/sec	27.2	93.0	1	ì	80.0
Rated head	ឧ	31.7	14.4	ŧ	•	10.3
Installed capacity	k₩	7,100	11,000	•	١.	6,800
Annual energy output	GWh	31.4	31.4	•	1	22.6
Tail water level	El. m	30.0	17.0	ŧ	1	17.0
			•			

Table V.8-2 Flood Regulating Capacity of Selected Dams

(Unit: m³/sec) Panay C Dam/2 Mambusao B Badbaran A Panay C Dam/1 Panay B Item Dam Dam Dam 100-year flood - peek inflow 1,900 1,770 3,230 2,420 4,120 950 885 - outflow 824 646 1,210 25-year flood 990 1,080 - peak inflow 1,250 2,120 1,700 495 - outflow 625 424 340 540 10-year flood - peak inflow 750 1,260 1,020 700 620 310 - outflow 375 252 204 350

Notes; /1 Independent scheme.

Vith Panay B dam in upper reach, in which FSL of Panay C dam is planned to be equal to TWL of Panay B dam.

Table V.8-3 Construction Cost of Each Dam Plan

														(Unic:	P×10°)
Work Item		Panay B			Panay C		คั	Badbaran .	A	Μe	Mambusao)	ខ្ម	Panay C	(after Panay E)	Panay E)
	F.C.	L.C.	Total	¥.C.	r.c.	Total	F.C.	r.c.	Total	F.C.	r.c.	Total	F.C.	1.0.1	Total
A. Preparatory Works				-											
(1) Road construction	•	17.01	17.01	0	60.19	60.19	0	38,95	38.95	0	87.59	87.59	0	60,19	60.19
(2) Workshops, offices, etc. $\frac{\lambda}{\lambda}$	8.86	6.92	15.78	15.74	10.40	26.14	5.84	5.17	11.01	66.9	7.90	11.89	11.58	7.67	19.25
Sub-total of A	8.86	23.93	32.79	15.74	70.59	86.33	5.84	44.12	96.67	66.9	70.38	77.37	11.58	67.86	79.64
B. CIVII Works							:			:					
(1) River diversion works	11.56	8.78	20.34	35.05	23.38	58.43	13.18	9.13	22.31	Included Spillway	in Dam	and	34.24	22.84	57.08
(2) Dam and Spillway	88.04	68.89	68.89 156.93	123.84	78.77	202.61	59.85	55.46	115.31	87.32	61.25	148.57	82.28	52.25	13/.53
(3) Waterway	Included in Dam and Spillway	In Dam	and	15.21	10.67	25.88	0	0	0	•	0	0	12,60	8.86	21.46
(4) Power station	11.12		8.82 19.94	22.61	17.19	39.80	0	0	0	0	0	•	15.60	11.88	27.48
Sub-total of B	110.72	86.49	86.49 197.21	196.71	130.01	326.72	73.03	65.79	137.62	87.32	61.25	148.57	144.72	95.83	240.55
C. Metal Works	29.63	2.96	32.59	47.34	4.73	52.07	20.02	2.00	22,02	13.48	1,35	14.83	47.54	4.77	52.31
D. Electrical Works							٠.					.:	Š.		
(1) Generating equipment	55.65	7.63	7.63 63.28	99.31	13.68	112.99	0	0		0	0	0	79.56	10.94	90.50
(2) Transmission line	16.93	13.85	30.78	12.42	10.15	22,57	0	0	0	0	0	0	92.0	19.0	1.37
(3) Substation	7.20	1.80	00-6	7.20	1.80	9.00	0	0	•	0	0	0	2.88	0.72	3.60
(4) Others	7.98	2.33	10.31	11.90	2.56	14.46	0	0	0	0	o	0	8.32	1.22	9.54
Sub-total of D	87.76	25.61	113.37	130.83	28.19	159.02	0	0	•	•	0		91.52	13.49	105.01
E. Land Acquisition and Compensation	0	14.72	14.72	0	263.16	263.16	0	90.54	90.54	· ;	133.92	133.92	0	233.46	233.46
F. Government Administration 12	0	18.80	18.80	0	31.21	31.21	0	10.48	10.48	0	12.04	12.04	•	23.87	23.87
G. Engineering Service/3	12.04	3.76	18.80	24.97	6.24	31.21	8.38	2.10	10.48	9.63	2.41	12.04	19.10	4.77	23.87
H. Physical Contingency/4	25.23	17.69	42.92	41.53	53.45	94.98	10,73	21.37	32.10	11.74	28.19	39.93	31.37	44.42	75.79
Grand Total	227.24	193.96	471.20	457.12	587.58	1,044.70	118.00	235.20	353.20	129.16	309.54	438.70	345.83	488.47	834,30

(2) - 8% of item B

F = 5% of item (A+B+C+D) G = 5% of item (A+B+C+D)

H = 10% of items A to G

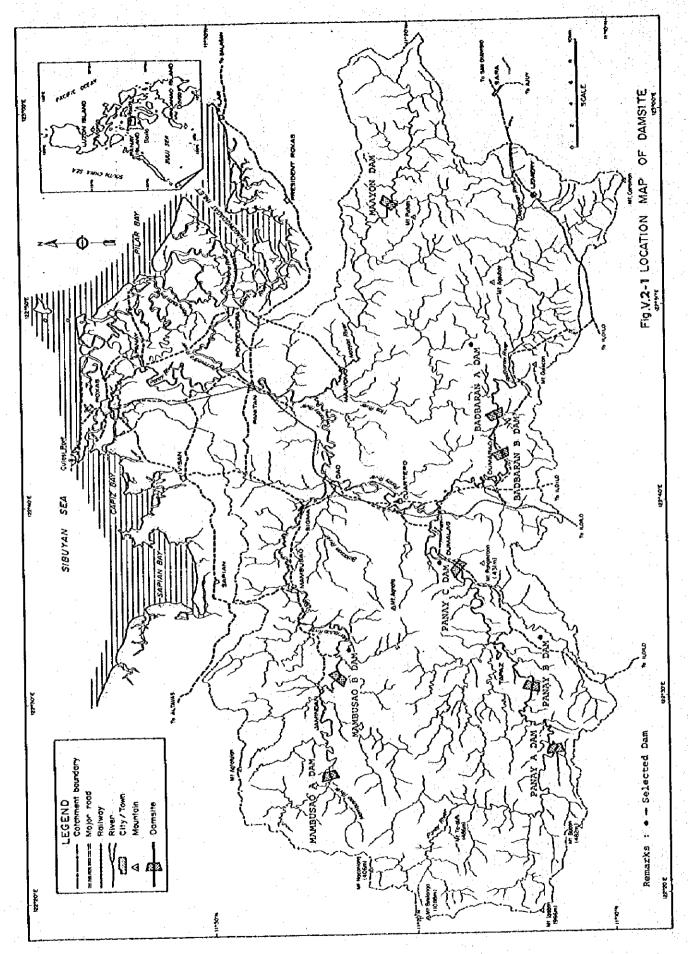
Table V.8-4 Flood Levels and Discharges Before and After Dam Projects

(At Panitan Base Station)

	111+1.	out Dam	Ui+	h Dam
Dam	Flood Level (El. m)	Flood Discharge (m ³ /sec)	Flood Level (El. m)	Flood Discharge (m ³ /sec)
Panay B dam	10.30	2,670	10.19	2,610
Panay C dam/1	10.30	2,670	9.62	2,300
Panay B dam + Panay C dam / 2	10.30	2,670	9.51	2,240
Badbaran A dam	10.30	2,670	10.17	2,600
Mambusao B dam	10.30	2,670	10.25	2,645

Notes: The above represents flood levels and discharges at occurrence of 100-year flood under present river channel condition.

^{/1} Independent scheme


¹² Scheme with Panay B dam in upper reach

FIGURES

FOR

APPENDIX V

>

F2-1

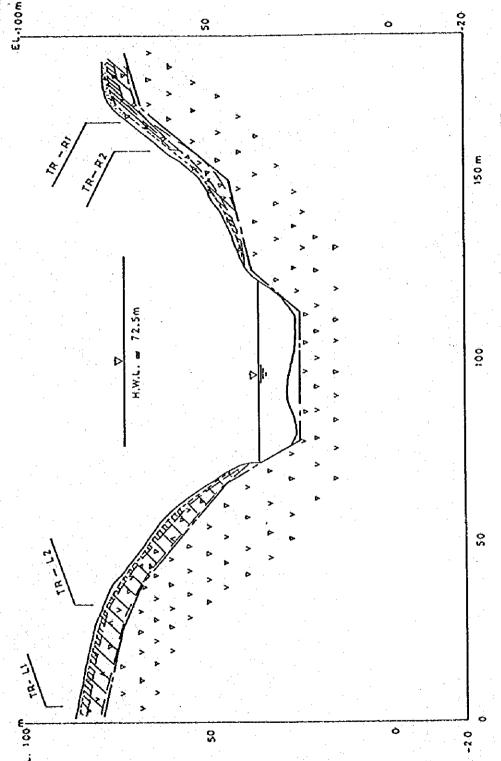


Fig.V.4-1 GEOLOGICAL PROFILE ALONG THE DAM AXIS OF PANAY B DAMSITE

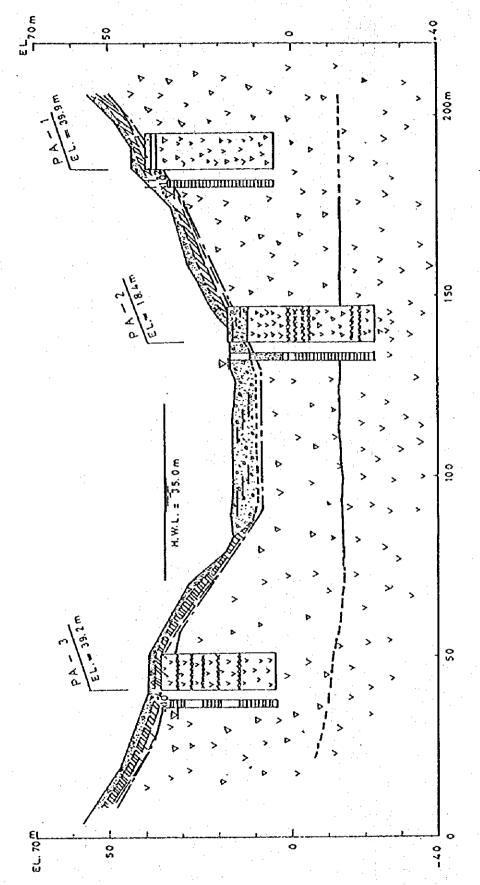


Fig.V.4-2 GEOLOGICAL PROFILE ALONG THE DAM AXIS OF PANAY C DAMSITE

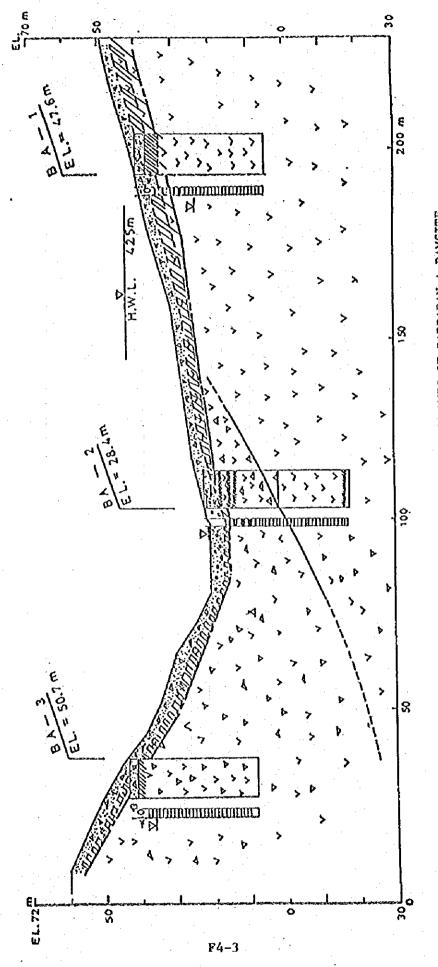


Fig.V.4-3 GEOLOGICAL PROFILE ALONG THE DAM AXIS OF BADBARAN A DAMSITE

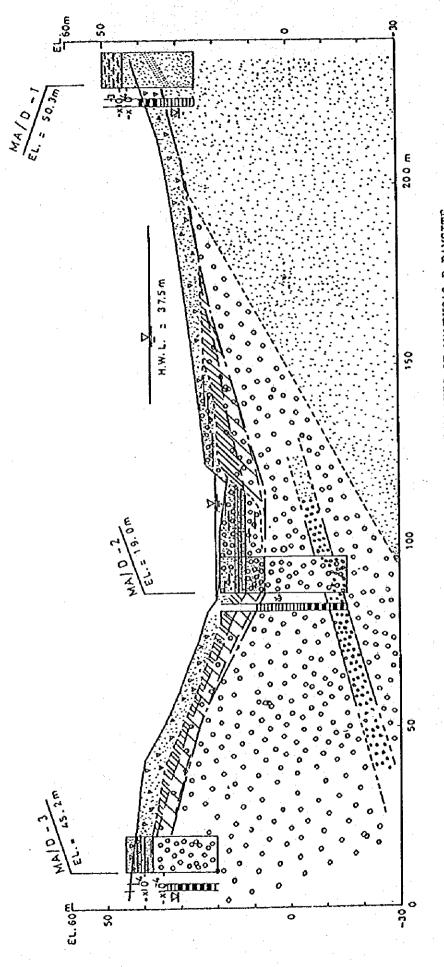
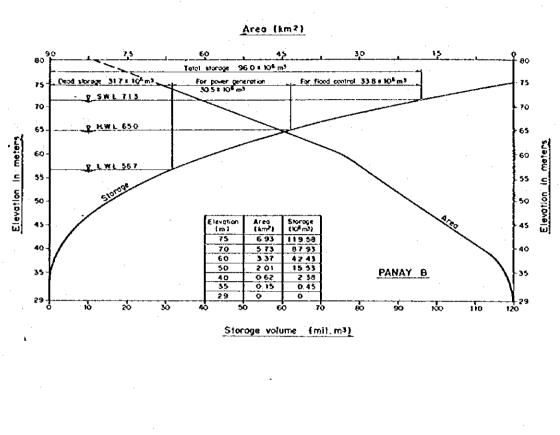
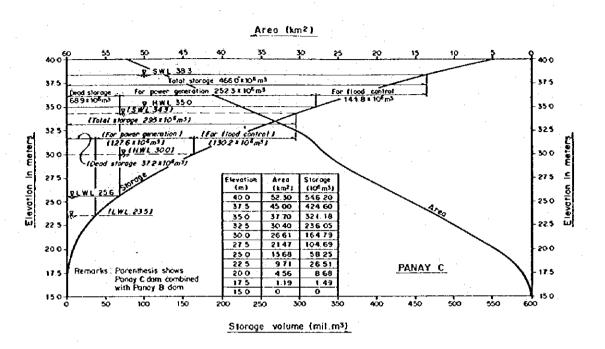
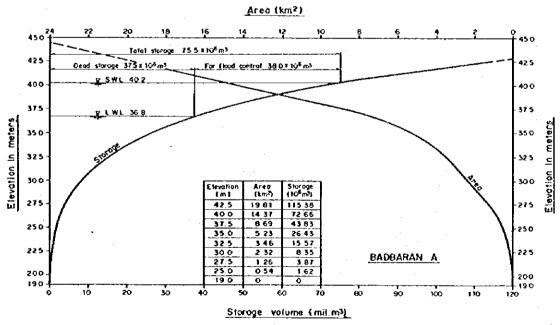
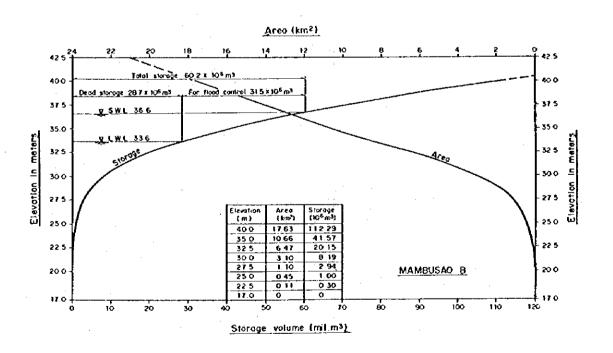
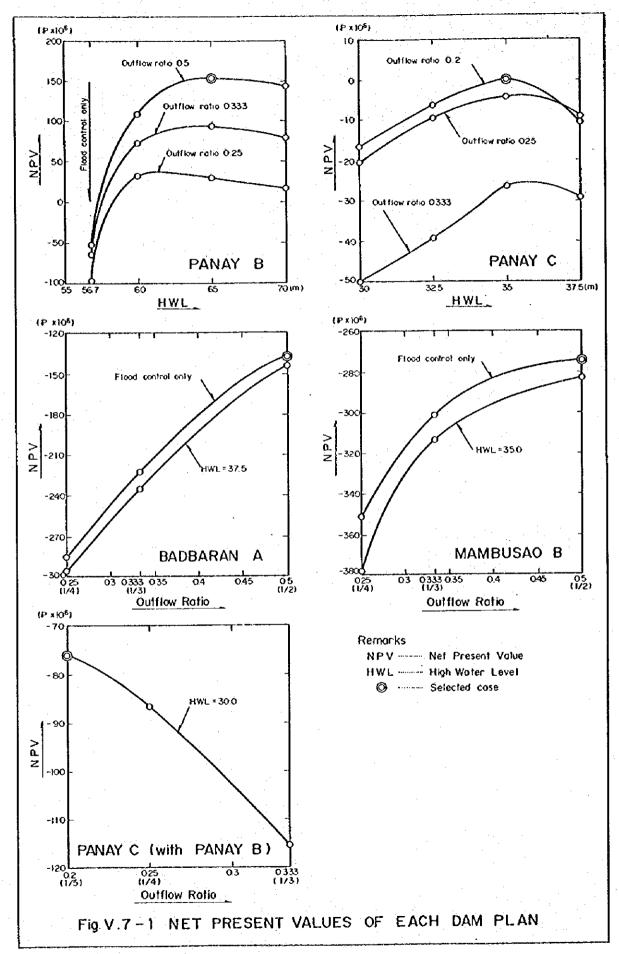
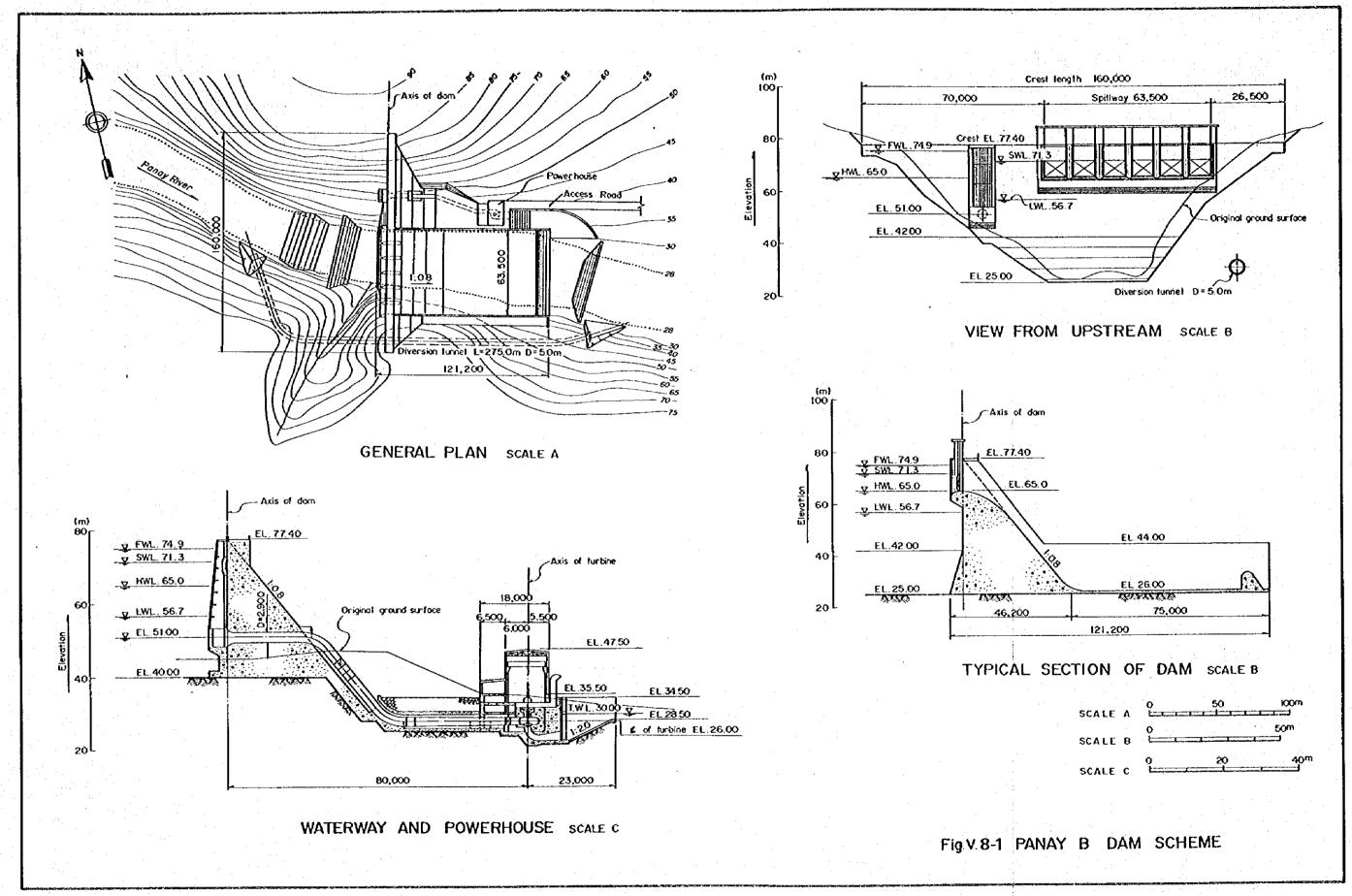
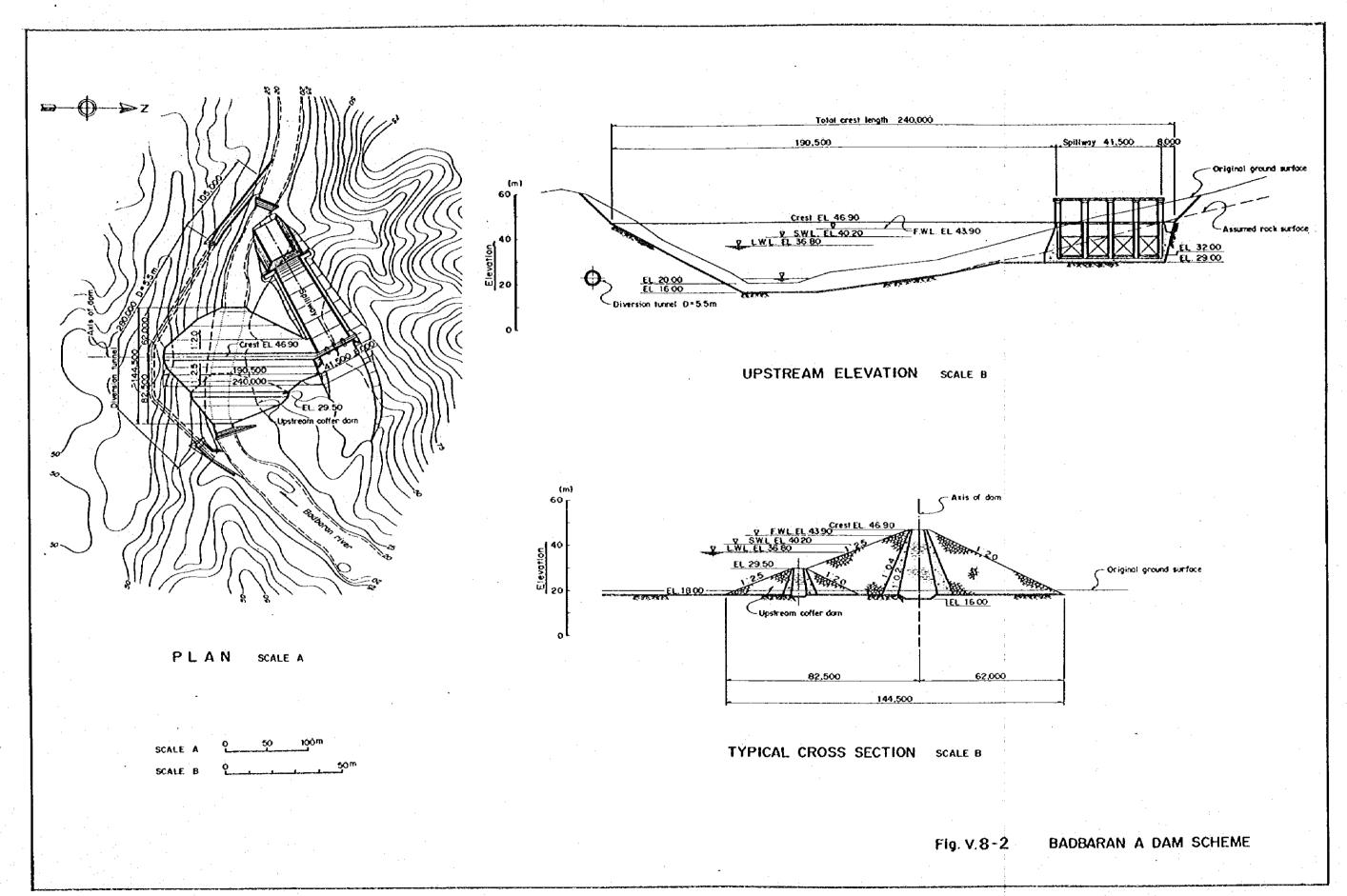
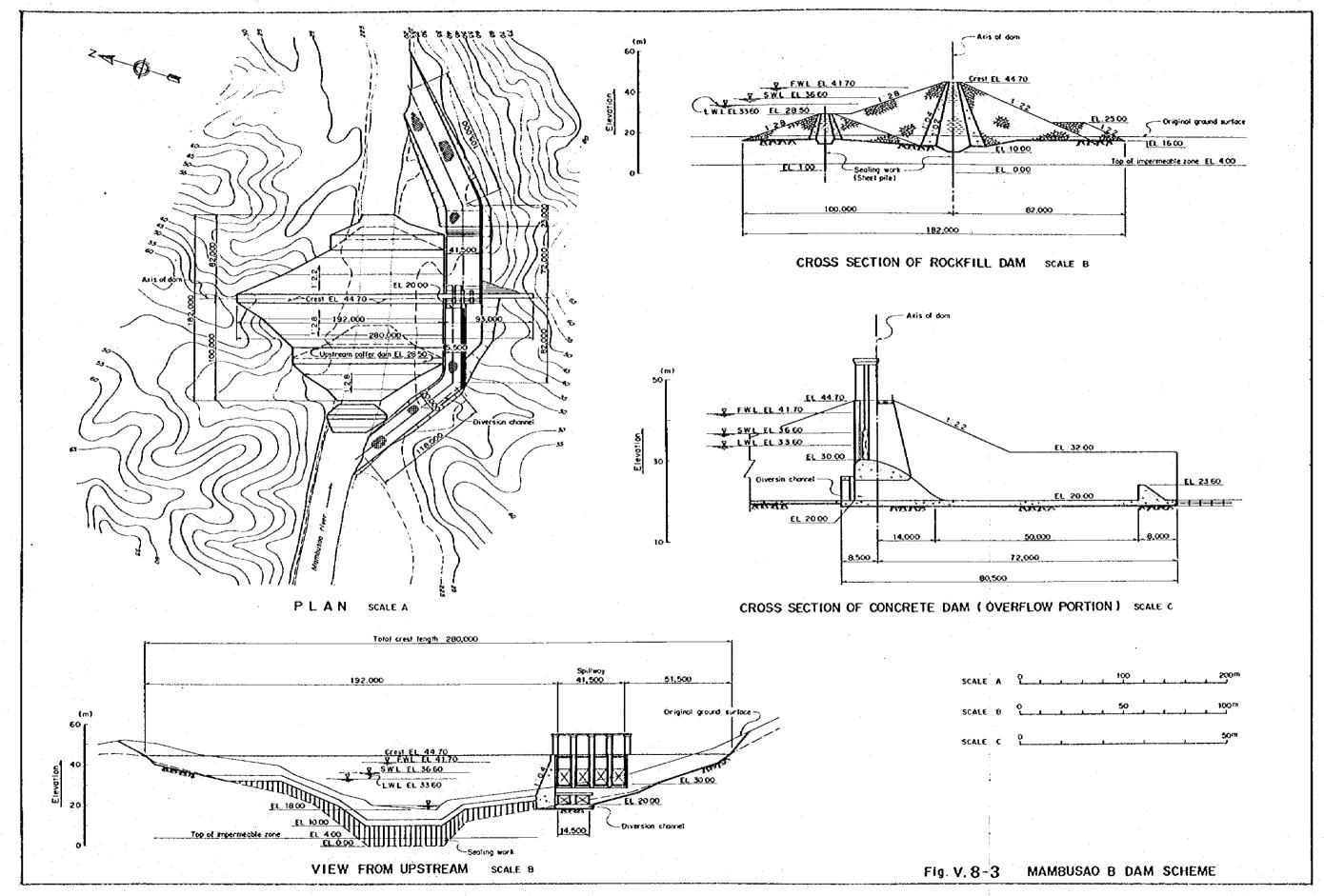
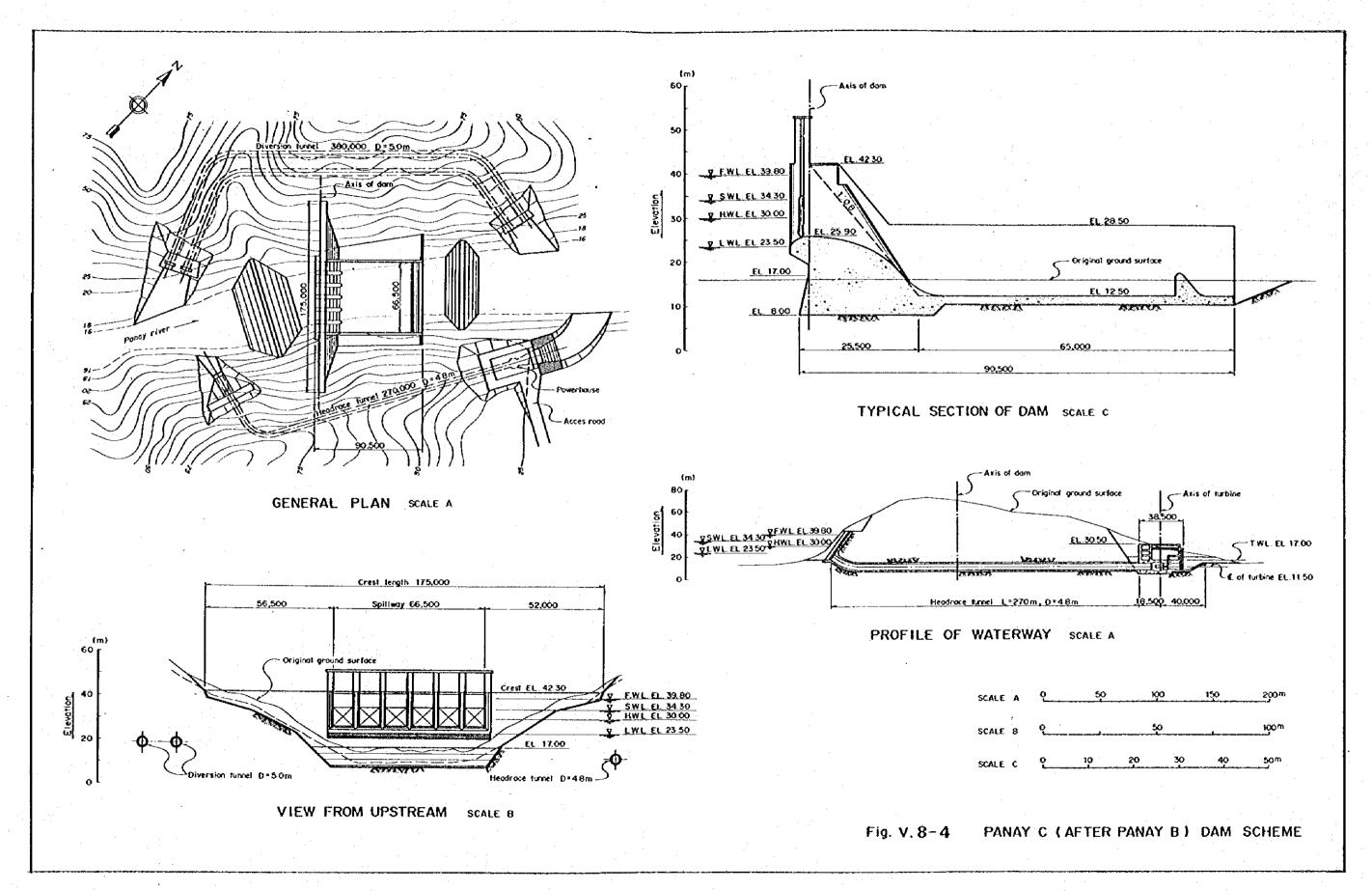





Fig. V. 4-4 GEOLOGICAL PROFILE ALONG THE DAM AXIS OF MAMBUSAO B DAMSITE


FIG. V.6-1 AREA AND STORAGE CURVES OF RESERVOIR

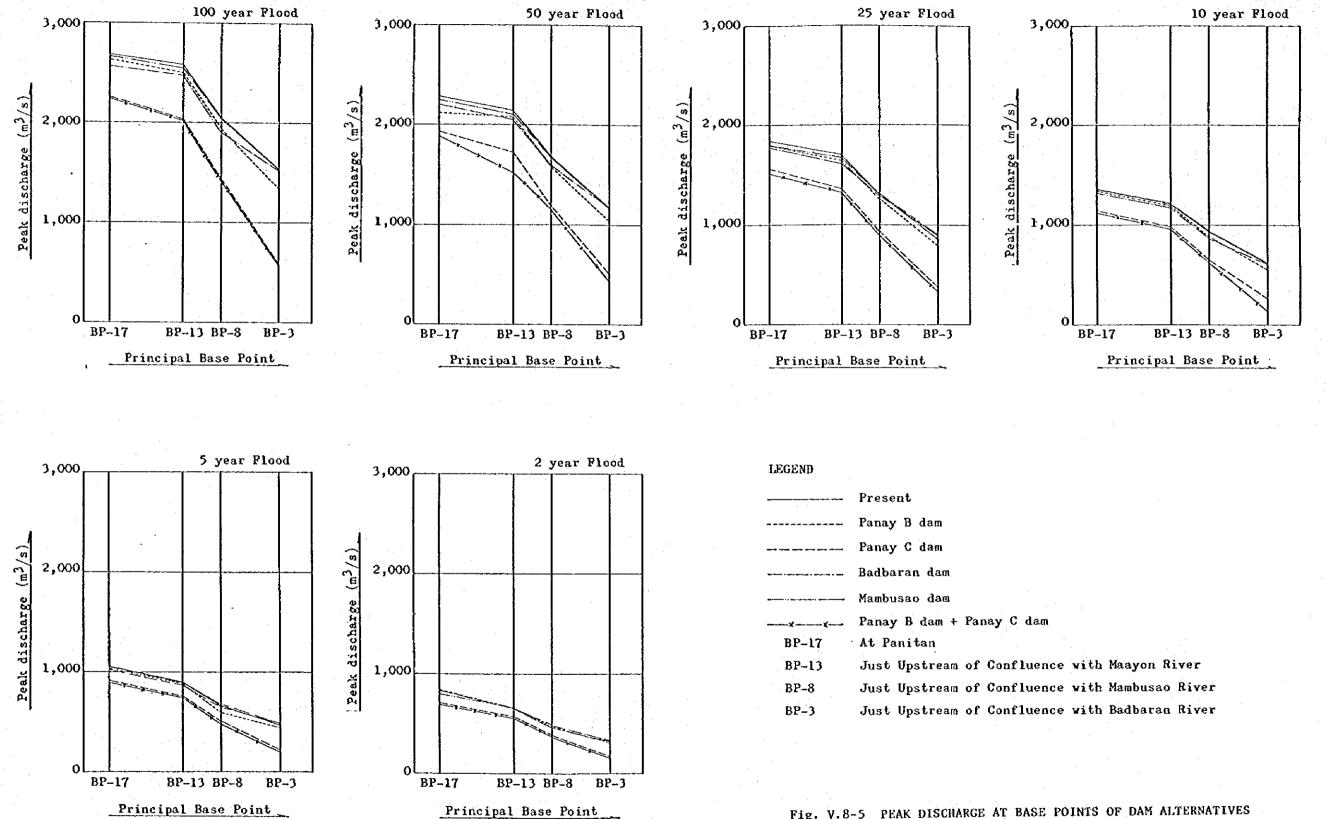
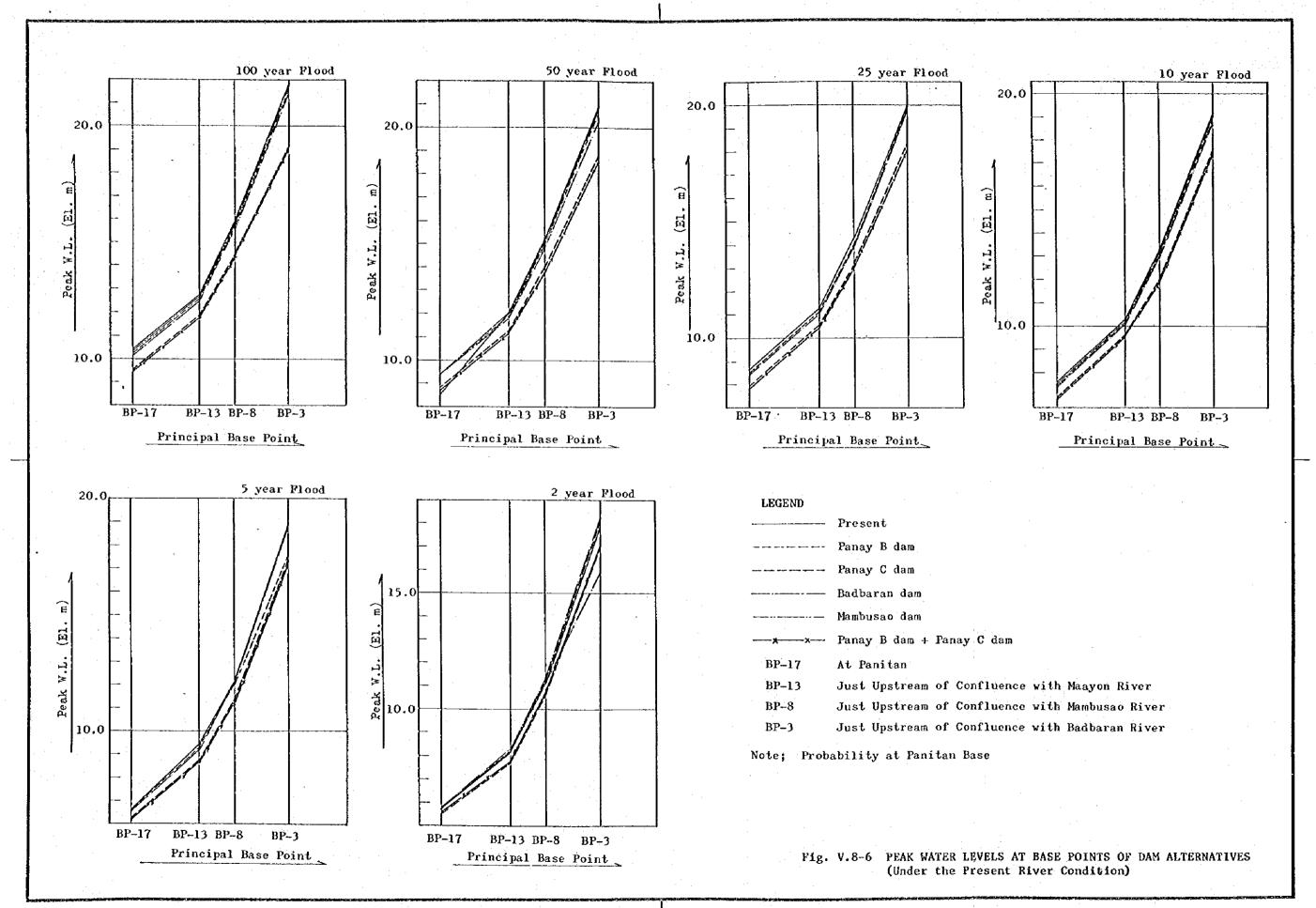
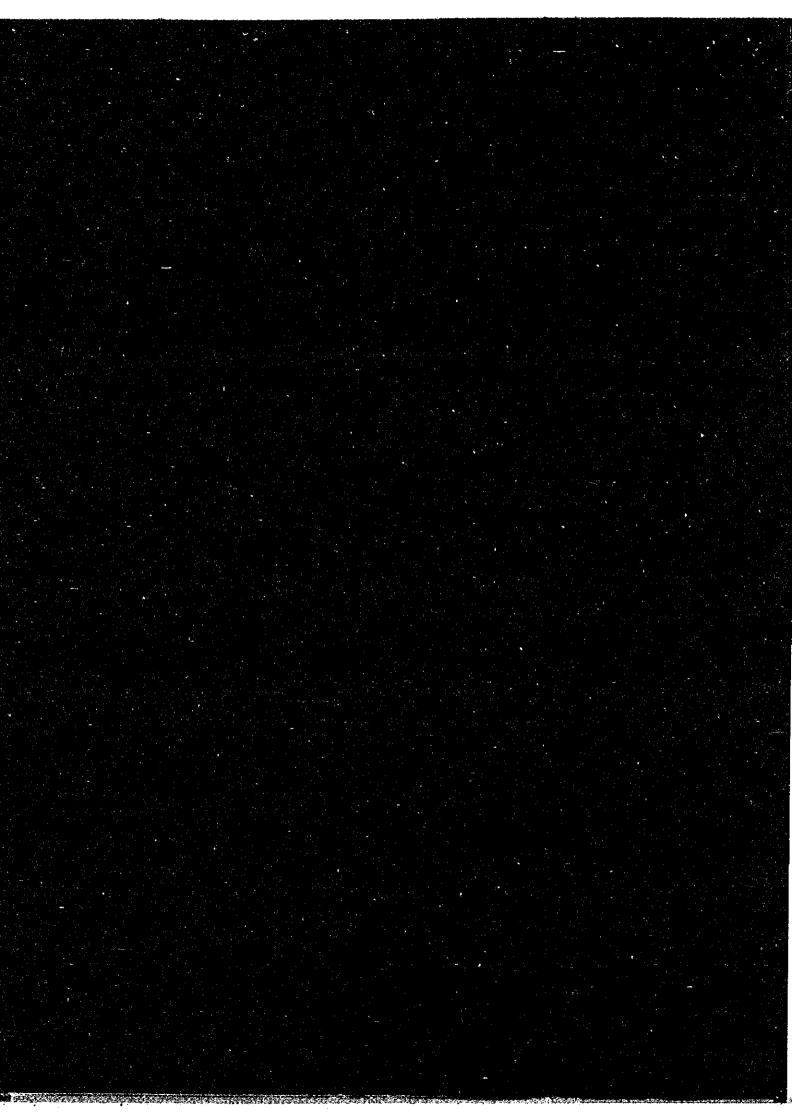




Fig. V.8-5 PEAK DISCHARGE AT BASE POINTS OF DAM ALTERNATIVES (Under the Present River Condition)

