THE PANAY RIVER BASIN-WIDE FLOOD CONTROL STUDY

P

ł

X,

٢

APPENDIX X

(POWER DEMAND AND SUPPLY)

TABLE OF CONTENTS

1 A 4

		Page
1.	Introduction	1-1
2.	Power Supply in Panay Island	2-1
	2.1 Organization	2-1
	2.2 Generating Facilities	2-2
	2.3 Transmission and Distribution Facilities	2-3
	2.4 Historical Power Demand	2-5
3.	Power Demand Forecast	3-1
	3.1 Panay Grid	3-1
	3.2 Negros Grid	3-1
4.	Power Development Plan	4-1
	4.1 Generation Plan	4-1
	4.2 Transmission Plan	4-2
5.	Proposed Hydropower Development	5-1
	5.1 Power Development Plan in Panay System	5-1
	5.2 Implementation of Hydropower Projects	5-2

LIST OF TABLES

()

1

\$

Table No	<u>. Title</u>	Page
X. 2-1	Generating Facilities in Panay Island (1984)	Т2-1
X, 2-2	Present Status of Electric Supply (In 1982, Panay & Guimaras Island)	T2-2
X. 2-3	Provincial Electric Supply Condition	T2-3
X. 2-4	Summary of Interruption Indices	T2-4
X. 2-5	Historical Distribution for Power Supply and Consumption in Panay Island	T25
X. 2-6	Power Generation and Sales in kWh, and No. of Customers (Historical Data in Capiz Province)	- - -
X, 3-1	Demand Forecasts by NPC and under This Study - Panay System	T2-7 T3-1
X. 3-2	Forecast of Power Demand in Negros Grid	T3-2
x. 4-1	Power Development Plans by NPC	T4-1

LIST OF FIGURES

Fig. No.	Title	Page
X. 2-1	Map of Cooperative Service Area	F2-1
x. 2-2	Panay Power System 1984	F2~2
X. 2-3	Electricity Supply System in Panay Island (1984)	F2-3
X. 2-4	Typical Daily Load Curve in Capiz Grid	F2-4
X. 3-1	Panay Grid Generation Level Forecast	F3-1
X. 5-1	Proposed Installation Program of Power Plants in Panay Island	F5-1
X. 5-2	Load Duration Curve in Panay System and Allocation of Power Sources in 1995	F5-2
X. 5-3	Location Map of Transmission Line	F5-3

P

Þ

\$

×.

Ŧ

\$}

1. Introduction

X

ß

Ð

The objective of the present study (the Panay River Basin-wide Flood Control Study) is to formulate an integrated water resources development plan for the Panay river basin placing a particular emphasis on flood control plan.

The study includes in its scope of works hydropower generation plan. This appendix describes the results of study on power demand and supply conditions and hydropower development plans in the study area. The study consists of four parts; i) investigation of power supply condition of Panay island, ii) power demand forecast in the supply area, iii) development plans of the power system, and finally iv) proposed hydropower development plans.

2. Power Supply in Panay Island

2.1 Organization

The electric power supply in the Panay Island is entrusted primarily to the National Power Corporation (NPC) which provides generation and transmission services, and to local power cooperatives which provide distribution services. There are six of such power cooperatives in the Panay Island, each responsible for distributing electric power to its exclusive supply area. They are,

Service Area

Name

(a)	Panay Blectric Company Inc. (PECO)	Iloilo City
(b)	Iloilo Electric Cooperative I (ILECO I)	Southern part of Iloilo province
(c)	lloilo Electric Cooperative II (ILECO II)	Northern part of Iloilo province
(d)	Capiz Electric Cooperative (CAPELCO)	Capiz province
(e)	Aklan Electric Cooperative (AKELCO)	Aklan province
(f)	Antique Electric Cooperative (ANTECO)	Antique province

Figure X. 2-1 presents the electric service area of each cooperative.

Amongst the six, there are two important cooperatives in relation to this Study. The one is PECO, the Panay Electric Company, which is located at the Iloilo city, the principal town of the Iloilo Province. PECO has the largest supply capability amongst the cooperatives.

The other is CAPELCO, the Capiz Electric Cooperative, which assume the responsibility of supplying the electric power to the Capiz province, which covers an area nearly equal to the river basin of the Panay. The supply capability of CAPELCO is second only to that of PECO in the Panay Grid.

2-1

¥

8

×.

X.

2.2 Generating Facilities

Figure X. 2-2 presents the existing power system in the Panay Island, including the existing, under construction (as of 1984) and proposed power systems.

The power generation for the Panay Island is owned by NPC and PECO. The facilities of NPC are four units of diesel generators at Dingle, Iloilo (called the Panay Diesel Power Plant I : PDPP I), two diesel generators at Panitan, Capiz (-ditto- : PDPP II), and four gas tubines at La Paz, Iloilo (called the Power Barge-2, PBP-2). The Power Barge Plant was newly commissioned in 1984, by rehabilitating the original units erected in the Cebu Island.

The total installed capacity of the NPC-owned facilities is 72,200 kW. The facilities owned by PECO totals at 19,750 kW in the installed capacity. The generating facilities of PECO are, however, outdated and inefficient. The total installed capacity of the Panay Grid comes to 91,950 kW and the total supply capability (station capacity) of the whole facilities is estimated to be 72,120 kW, as shown below.

Pow	er Station	Station Capability (kW)	Installed (kW)
NPC:			
PDPP I	(NPC Dingle)	24,820	4 x 7,300
PBP-2	(NPC Power Barge)	27,200	4 x 8,000
PDPP II	(NPC Panitan)	7,600	$2 \times 5,500$
PECO:	· · · · · ·	:	
Total ca	pacity	12,500	19,750
тот	AL	72,120	91,950

Gérating Facilities in Panay Grid

Before the Power Barge Plant (PBP-2) came into operation, the supply capability had been only 44.9 MW in total against the demand of 44.5 MW.

1

Therefore the load shedding had often taken place at time of dropoff of some of the plants. To overcome this problem, the Power Barge was brought from Cebu Island and newly added to the system in July 1984. **(**)

Table X. 2-2 shows a detailed list of the existing generation facilities in the island. The location of the facilities is shown in Figure X. 2-2.

2.3 Transmission and Distribution Facilities

NPC is the implementing agency with full responsibility of setting up transmission grids (138 kV and above) in the Panay Island. It has the 138 kV main grid connecting the substations in Panitan and Sta. Barbara via PDPP II (Dingle). All the six power cooperatives are supplied from this main grid through the self-owned 69 kV spur lines. The power transmission lines in the Panay, thereby, form an interconnected Panay Grid of power supply. Fig. X. 2-3 shows the electricity supply system in the Panay Island in the form of a single line diagram.

The distribution networks are owned by the power cooperatives. The supply areas of the cooperatives cover about 80 % of the Panay Island, with actual house connections accounting for 36 % of the potential users. Table X. 2-2 gives the present situation of electricity supply in the island.

NPC has a criterion to maintain the voltage and frequency within predetermined ranges as shown below.

- Voltage : 1 to 2 % (within transmission line)
- Frequency : 59 to 61 Hz
- Power factor: 90 to 99 % lagging

The power demand has been suppressed due mainly to shortage in power generating capability. NPC assumes that the demand would be as large as 48 MW against the current demand of 44.5 MW, if the system makes additional connections of waiting consumers, in which large power consumers will be rice mills, rice plants, the fishing port, etc. Moreover, it is also presumed that the Guimaras Island, which is located to the southeast of Iloilo City, has a potential electricity demand of 1.5 MW.

E

Ľ,

ĺ,

D

In 1983, total energy supply in the Capiz Province was 27,100 MWh, of which 6,324 MWh was generated by CAPELCO and 20,776 MWh was purchased from NPC. The energy sales amounted to 15,473 MWh with total power revenue of 20.7 million Besos, of which average tariff was 1.34 Pesos per kWh. The number of customers was 26,621 and the peak load was 7.8 MW. Annual load factor at the supply end was 40 %.

Of the total energy produced, the plant use amounted to 652 MWh and the losses 10,975 MWh. This means that own consumption and distribution losses accounted for more than 40 percent. This may imply a possible existence of illegal use of power.

The connected consumers number 26,621 in total, of which residencial consumers accounts for 93 % and the rests are commercial (5 %), public use (2 %) and a negligibly small portion of industrial consumers. In terms of power revenue, 47 % came from residential, 18 % from commercial, 19 % from industrial and the remaining 16 % from public uses.

A typical load curve of the Capiz Grid is shown in Fig. X. 2-4.

Power supply situations, such as service hour, load factor and power factor measured as monthly averages, are shown by province in Table X. 2-3.

Table X. 2-4 presents the summary of interruption indices of the Panay Power Grid, from which faults in the system are classified by types as follows:

Reason of Fault	Interruption Frequency Ratio (times)	Percent (%)
Generation trouble	51,3	38
Load shedding	36.1	27
System trouble	26.5	20
Fault by customers	13,3	10
line fault	6.5	5
Total	133.7	100

Electricity Supply Faults by Type

As seen above, the supply condition of electricity in the Panay Grid is unstable with frequent supply interruptions and load sheddings. The generation capability was insufficient, particularly before the Power Barge came into operation in 1984, and about 38 % of outages were attributable to generation troubles in 1983. Load sheddings due to insufficient supply capability accounted for 27 % of supply interruptions in the same year. The average duration of a supply interruption was 1.5 hours.

With the introduction of the Power Barge Plant in 1984, the supply condition was presumably improved to some extent. Even with this, there still is an ample room for further enhancement in supply capability in this area, that would bring about more despendable and efficient power generation in the Panay Grid.

2.4 Historical Power Demand

1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -

The present power demand in the Panay Island is as follows:

and a straight of the second second second

Area	Demand (MW)
Iloilo City	18
Capiz Province	8
Aklan Province	5
Antique Province	1.5
Iloilo Province (except Iloilo City)	12
Total	44.5 MW

2-5

Table X. 2-5 presents the historical data of power generation, purchase and consumption of each cooperative in the Panay Grid, Table X. 2-6 gives the records of power generation and sales and number of customers in the Capiz Province. According to Table X. 2-5, average growth rate of energy consumption during 1979 through 1983 was 5.5 % per year.

2-6

S)

ŧ,

S.

3. Power Demand Forecast

3.1 Panay Grid

NPC prepared power demand projections in 1984, including those for the Panay Grid, to establish a comprehensive development program of power facilities. Besides this, NPC Panay Grid local office worked out sales target projections in 1983. The latter presumed the growth rate of electricity demand to be about 10 % p.a., while the former presumed the growth rate slightly lower. This Study owed the demand projections mainly to the former on the ground of its more conservative propositions, though minor modification and extrapolation was made by correlation analysis. The demand projections of the above are shown in Table X. 3-1 and as illustrated in Figure X. 3-1. X

S.

3.2 Negros Grid

NPC has a plan of interconnecting the Panay Grid with the Negros Grid by 1989. This will enable integration of power demands in the two islands. The demand forecast of the Negros Grid was made by NPC in 1983 as part of the review of the feasibility study of the interconnection project. The results of the forecast are presented in Table X. 3-2.

4. Power Development Plan

4.1 Generation Plan

NPC has decided to implement submarine cable interconnecting between the Panay and Negros Islands which is scheduled to be in operation in 1989. The Guimaras island, located on the midway of the submarin cable lines, will also be interconnected with the Panay-Negros Power Grid. NPC's power facilities installation plans before and after the interconnection of the Panay and Negros Grids are as summarized in Table X. 4-1.

The NPC's program in Table X. 4-1 shows a favorable balance of the demand and supply until the year 1995. However, the estimated peak demand growth in the Panay Island of 6.3 % per year is on a conservative side and there may be a possibility that the demand will increase more sharply. In addition, the additional units at Palimpinon Geothermal Plant (No.4, 5 and 6 units) are assumed to be commissioned, in 1989-1990, although some delay may be likely. Therefore hydropower project planned in the present study can be implemented before the extension of Palimpinon geothermal plant, provided that the hydropower project is economically more advantageous.

In addition to the NPC's development plans, the following mini-hydro plants are under investigation and planning

Province	Municipality	Site	Capacity (kW)	Status
Iloilo	Igbaras	Nadsadjan	3,600	Feasibility Study (F/S) completed
Antique	Tibiao	Tibiao	800	F/S completed, equipment were manufactured
	Barbara	Dalaren	2,880	- do -
	Tibiao	Villasiga	30,000	F/S completed
Aklan	Madalag	Timbaban	33,000	F/S completed

4-1

Mini-hydro Plants under Planning in Panay Island

2.54

Ŗ

4.2 Transmission Plan

Several transmission schemes in the Panay Island are under consideration in line with the long-term power development program as shown in Figure X. 2-2. It is also envisaged that the interconnection of the Panay and Negros systems will be implemented by means of submarine cable for commissioning in 1989. The financing for this project will be provided by a loan from ADB. X

S,

In the Guimaras Island, a 138 kV substation will be installed and an overhead line will be constructed along the island in connection with the submarin cable project.

Ŷ,

X

5. Proposed Hydropower Development

5.1 Power Development Plan in Panay System

5.1.1 System Output Capacity

The present and its extension of installed capacity and station capability of the Panay system is as illustrated in Figure X. 5-1.

The station capability will drop if one of main generating units is out of service for overhaul. The system dependable output is defined as the total actual output capacity excluding units under overhaul, and is shown in Figure X. 5-1.

The dependable output will increase from 41 MW to 75 MW in 1989 just before the interconnection with the Negros system, by adding 6 MW of diesel unit (extension of Dingle) and 28 MW at the Power Barge (Power Barge B).

5.1.2 Load and Supply Balance before Interconnection

Figure X. 5-1 illustrates the peak load projected by NPC and the actual output capacity of the plants.

In the Figure X. 5-1, it is seen that load-shedding is liable to occur until 1983. During this period, there will be supply shortage because old diesel units will presumably need to be frequently overhauled. This situation will not be improved until the commissioning of power Barge-2.

In addition to the above, NPC intends to develop the expansion of the Dingle diesel plant and another unit at the Power Barge to meet the increasing demands.

It is liable that the PECO's old diesel units will be retired in view of their high operating cost and low reliability. In this case, the dependable output will drop to 62.5 MW, and the shortage of power will occur around 1990. Therefore NPC contemplates to proceed with interconnection with the Negros system to receive surplus power from geothermal plants in Negros.

The load in Panay Island will grow from 60 MV to 100 MW between 1989 and 2000. On the supply side, however, the Power Barge is scheduled to withdraw from the system in 1989 and the PECO's diesel plant will be retired in the same year.

A review of power supply and demand balance in the Negros system revealed that there would a surplus power of more than 90 MW in terms of actual output capacity in the Negros during 1985 through 1995. Therefore the surplus power can be imported from the Negros system to the Panay system, where continuance power supply of 50 MW and swapping of 40 MW will be possible.

From Figure X. 5-1, it is clear that the Panay system will be in short of power after 1995, even if the interconnection is established. Therefore a new power plant should be constructed to make up the deficit of supply capacity after 1995. Hydropower project derived from the present study will be one of the candidate plants to be put into the system around 1995.

5.2 Implementation of Hydropover Projects

(1) Hydropower schemes

As discussed in Appendix V, a hydropower scheme of Panay B dam was identified as a prospective development project.

The Panay B dam will be implemented as part of the 1st stage flood control project, and a tentative schedule assumes its completion in 1994. This scheduling will allow the Panay B hydropower scheme to be put in service in 1995, provided that the installation of power facilities will be undertaken simultaneously with the dam construction.

The Panay B scheme is planned to have an installed capacity of 7,100 kW. The plant will produce 31.4 GWh of annual energy. On condition that the plant is operated at a daily capacity factor of around 0.25, the plant is stacked in the middle to upper portion of daily load duration curve as shown in Figure X. 542.

5-2

P

(2) Transmission Line and Substation

Under the Panay B project, a new 69 kV transmission line will be constructed between the power station and the existing Panitan substation at which the power is fed to the system through the existing 69 kV bus.

The main features of the transmission line are as follows;

Length	:	45.0 km
Voltage	:	69 kV
Number of circuit	:	1
Structure of support	:	Steel tower

The proposed power transmission system is shown in Figure X. 5-3.

It is proposed to construct an incoming transmission line bay of 69 kV circuit at the Panitan substation. The main features of substation are show below:

Panitan Substation:

- Voltage	:	138/69/13.8 kV
- Transformer capacity	:	30 MVA x 1 set (for substation)
		10 MVA x 1 set (for Panitan diesel
		power station and
		power distribution)
- Existing 69 kV circuit	s:	power supply to the cooperatives;
		AKELCO and CAPELCO

Construction costs of the transmission line and the substation extension work will be US\$1.71 x 10^6 and US\$0.50 x 10^6 , respectively.

Þ

X

TABLES

P

Þ

Þ

۲

19

FOR

APPENDIX X

Ð

Ŧ

ß

TABLE X. 2-1 CENERATING FACILITIES IN PANAY ISLAND (1984)

	Station capacity		24 , 820 kw	27,200 ки	7.600 km	12,500 KW
	No. of units			4	~	8 A A
	Unit dependable capacity		0.85 × 7300 kW = 6,205 kW	0.85 × 8000 kW = 6,800 kW	3,800 kw	2,500 kg 4,200 kg 3,300 kg
	Name of capacity		7,300 kw	8,000 kW med	5,500 kw	19,750 kW in cotal
	Completion		Nov. 1979	1981 in Cebu, rhen re-commissionned 1984 July in Panay	7791	N.A.
4 2	Generator	Manufacturer, volt, KVA, power factor	JEUMONT SCHNIDER 13.8 kV, 9,300 kVA 0.8 2.F.	SIENENS 12.8 kV 10 MVA 0.8 P.F.	CEM FRANCE 13.8 kV 6,900 kVA 0.80 P.F.	N.A.
	Engine	Manufacturer, rpm, Hp	PIELSTICK 16:PC2.5 - 514 rpm - 544.8 Hp	HITACHI-ZOSEN - 514 rpm	SENIT PIELSTICK 12:PC2.5 V-400 - 514 rpm - 7800 Hp	VULCAN PIELSTICK MIRRIES
	Type		Diesel	Gas Turbíne	Diesel	Diesel
	Location	• •	Bray Tinucuan, Dingle, Iloilo	WESVICO, Luboc, La Paz Iloilo	Panicun, Capiz	Iloilo City
•	Name of power station		<pre>1. NPC Panay Diesel Power Plant 1 (PDPP I)</pre>	2. NPC Power Plant Barge 2 (PBP-2)	3. NPC PDPP II	4. PECO

TŽ-1

Source: NPC Panay Power Grid and PDPP II

•

Ð

19 19 19 19 19 19 19 19 19 19 235 200 54,133 21,172 39 10,740 7.992 25 11,196 1.06 31 Apr. 25,1972 23,370 15 15 518 172 45,297 8,106 18 3,096 1,968 3,780 1.22 1,000 29 Dec. 10,1972 8,809 17 17 17 468 212 74,289 26,621 36 26,064 14,184 21,204 0.81 7,300 21 30,1971 28,059 16 16 704 297 62,210 24,859 40 21,444 7,196 20 41 30,1971 25,935 16 16 704 297 62,210 24,859 40 21,444 71,968 0.64 3,996 41 0,1971 25,935 28 28 640 237 104,709 18,851 14,232 10,868 21,926 41 0,5176 41 25,355 5 -	No. FROVINCE COOPERATIVE Municipalities Coverage Energized	Ŭ	COVERAGE Energized Coverage Energized	NATE FAC										,		TECHIST	.TD	LOTITU
15 15 518 172 45,297 8,106 18 5,096 1,968 56 3,780 1.22 1,000 29 Dec. 10,1972 8,809 17 17 468 212 74,289 26,621 36 56,064 14,184 21,204 0.81 7,300 41 Jun. 16,1971 28,059 16 16 704 297 62,210 24,859 40 21,444 17,196 20 12,300 42 Jun. 10,1971 25,935 28 28 240 231 104,709 18,851 18,1452 10,568 23 11,968 0.84 3,996 41 0ct. 18,1975 19,325 28 28 28 21 104,709 18,851 18,122 10,868 23 11,988 0.84 3,996 41 0ct. 18,1975 19,325 - 96 - 14,419 - - - - 3,00 42 0ct. 18,1975 19,325 - 96 - 14,419 - - -	L. Aklan		19	19	353	200	54.133	21,172 35	9 10,740	7.992 2	5 11,19	6 1.04	4,000	ĸ	Apr. 25.19	72 23,		45.9
17 17 468 212 74.289 26.621 36 26,064 14.164 41 21,204 0.81 7,300 41 Jun. 16,1971 28,059 16 16 704 297 62,210 24,859 40 21,444 17,196 20 15,888 0.74 5,700 42 Jun. 10,1971 25,935 28 28 840 237 104,709 18,651 18 14,232 10,888 23 11,988 0.84 5,986 41 0ct. 18,1975 19,325 28 28 28 24 14,419 - - - - - Jun. 29,1979 - 5,586 - - - - Jun. 29,1979 - - - Jun. 29,1979 - - - Jun. 29,1979 - - Jun. 29,1979 - - Jun. 29,1979 - - Jun. 29,1979 - Jun. 20,1979 - Jun. 20,1979<	2. Antique		5	15	518 -	172	45,297	8,106 18	3 3,096	1.966 31	5 3.78	0 1.22	- 1	29	Dec. 10,15			50.2
16 16 704 297 52,210 24,859 40 21,444 17,196 20 15,888 0.74 5,700 42 Jun. 10,1971 25,935 28 28 840 231 104,709 18,851 18 14,232 10,848 23 11,988 0.84 3,986 41 0ct. 18,1975 19,325 -3 - 96 - 14,419 Jun. 29,1979 - 000 Membership 0	3. Capiz	CAPELCO	17	17	468	212	74,289	26,621 34	5. 26,064	14,184 4	1 21,20	t 0.81		417	Jun. 16,15			83.1
ILECO II 28 28 840 231 104,709 18,851 18 14,232 10,848 23 11,988 0.84 3,986 41 0ct. 18,1975 19.325 as GUTRELCO -3 - 96 - 14,419 Jun. 29,1979 - City FECO 57,638 21,328 56 Non Membership 0	4. Tioilo		16	16	704	297	62,210	24,859 40	7.21,444	17,196 20	0 15,88	9.0.74	. 5,700	42	Jun. 10, 15		35	34.2
-3 - 96 - 14,419 Jun. 29,1979 - 37,638 21,328 56 Non Membership Q	5. Iloile	ILECO II	58	28	840	231	104,709	18,851 16	3 14,232	10,848 2	5 11,98	5 0. 84	3,986	41	Oct. 18.15			4.7.4
37,838 21,328 56	5. Cuinzra	s CUTALICO	ň	1	96	ŧ	14,419	I I	ľ		1	1	t	ł	Jun. 29.19	61		15.3
	7. Iloilo (bity PECO	I	I	I	ł	37,636	21,328 56	1	1	•	1	1	•	Non Member	ship Q		I

TABLE X.2-2 PRESENT STATUS OF ELECTRIC SUPPLY

(IN 1982, PANAY & GUIMARAS ISLAND)

Source : NEA Year book 1983

Ľ

X)

Year & Itea	PECÓ	IIECO II	AKELCO	CAPELCO	ILECO I	ANTECO
1979	:	· · · · ·				
Service hour	371		. –		-	
Load factor	40	-	=	-	-	a ta ang sa sa sa
Power factor	n.a.	-		•	-	na se
1980	•					
Service hour	708	722	563	576		- -
Load factor	66	43	n.a.	51	-	•• 1 ¹⁻¹
Power factor	n.a.	n.a.	n.a.	n.a.	-	-
1981						
Service hour	723	722	714	666	719	· · ·
Load Tactor	57	45	- 34	56	43	.
Power factor	88	n.e.	n,a.	n.e.	74	
1982		··· · · · ·		· · · ·		
Service hour	721	709	648	705	665	-
Load factor	44	46	61	33	47	
Power factor	83	74	n.a.	n.a.	73	•••
1983						
Service hour	723	712	<i>7</i> 12	707	719	635
Load Pactor	46	49	34	55	52	35
Power factor	83	75	n.a.	n.a.	13	78
	1. A.				2 de la Color	ter ser en

TABLE X.2-3 PROVINCIAL ELECTRIC SUPPLY CONDITION

(Note) 1. Service hour : 730/month for average

 Service hour : YOUMONTH FOR average
 Load factor : Percent in average ; Monthly LF = Sold kwh X 100 (%
 Service hours X peak kw (%) 3. Power factor : Percent in average

4. n.a. means no metered

T2--3

Source : NPC Panay Power Grid

Ŷ,

S

×,

TABLE	X.2-4	SUMMARY	OF	INTERRUPTION	INDICES	
	*****		¥.*			

1982		. N
Classification	IFR	RT
I. Distribution		
a. Outages		· .
System Trouble	17.12	1.327
Transient	7.70	0.768
Effective Sub-Total, Outages	24.82	1.154
d. Pre-Arranged	11.83	2.287
Effective Sub-Total, Distribution	36.65	1.520
II. Generation	37.04	2.367
Effective Total	73.69	1.945
1983	:	
Plassification	IFR	RT
. Distribution		•••
a. Outages		e e e e e e e e e e e e e e e e e e e
System Trouble	26.507	0.7198
Transient	6,507	1.0045
Customers System Failure	13.28	1.969
Effective Sub-Total, Outages	46.294	1.1114
b. Pre-arranged	36.084	1.952
Effective Sub-Total, Distribution	82,378	1.4795
I. Generation	51.315	1.4456
Effective Total	133.693	1.4665
As of June 1984	·	
Classification	IFR	RT
. Distribution		
a. Cutages	•	
System Trouble	16.205	0.698
Translent	1.328	0.5635
Customer's Failure	3.379	
Effective Sub-Total, Outages	18.7174	0,874
b. Pro-Arranged	0.3979	
Effective Sub-Total, Distribution	19,6694	1.028
II. Genration	+7+0074 O	0
Effective Total	19.6694	1.028
Note) 1. IFR : interruption frequency ratio,	•	
IFR = $\frac{N_0. \text{ of occurrence X interm}}{\text{gross generation (kwh)}}$		(duration (hour)
2. RT : restoration time, unit = hours		
or a responsibilitized muri m Uonia		ற

Source : NPC Panay Power Grid.

т2-4

\$

P

P

Þ

TABLE X.2-5 HISTORICAL DISTRIBUTION FOR POWER SUPPLY AND CONSUMPTION IN PANAY ISLANDS

		the state						and the second second
	Losses MWK	23,388 3,241 1,016	17,095 1,523 500 13	25,295 5,145 1,460 1,400 1,700 1,000	29, 539 6, 893 1, 277 1, 2, 949 2, 600 2, 600 2, 000	34,286 8,200 2,386 3,400 3,050 3,050	37,325 10,044 2,746 16,800 4,200 1,1139 2,396 2,396	42,226 10,975 2,634 17,358 4,834 5,123 5,123
Plant	Service MuH	5,957 1,700 76	3 .913 141 30 97	2,756 2,756 2,756 2,756 2,756 2,025 2,025 2,025 2,025 2,025 2,025 2,025 2,025 2,025 2,025 2,025 2,025 2,025 2,055	5,070 1,228 3,560 128 13 81 81	4,648 1,070 3,300 122 18 78	226 860 3,100 116 11 75	3,823 652 652 2,919 71 71 71
Sol d	Amount	84, 134 10, 431 3, 577	63.714 5.065 757 590	94,824 11,175 4,745 67,080 7,093 3,800 3,800	105,182 5,617 70,060 9,285 1,255 1,255	115,635 13,740 73,387 11,525 11,525 8,658	125,289 14,781 74,531 14,137 14,137 1,940 1,940	134, 644 15, 473 9, 032 80, 143 16, 348 16, 348 16, 348 16, 348 11, 086
	Ochera MWH	6,136 1,668 466	3,250 500 121 131	6,982 1,800 3,558 165 250 250	7,831 2,000 3,900 3,900 217 388	8,659 2,200 4,300 4,300 258 258 520	9,494 2,406 4,600 1368 550 650	10,367 2,502 953 4,919 846 793
P	Industry MWH	29,506 815 73	26,600 2,002 16 0	32,647 1,065 23,900 2,900 2,900 750	35,497 1,571 445 28,100 3,900 1,450	38,336 2,395 2,395 748 28,500 4,800 4,800 1,850	40,450 2,741 982 5,982 5,965 5,965 2,000	22,160 2900 6,866 6,866 2,148
Comman-	cial MWH	17,521 2,506 901	13,846 463 110 145	19,871 2,510 1,100 14,800 14,800 140 800	21,752 2,556 1,294 15,700 15,700 11,400	23,615 2,645 1,627 1,627 16,567 722 16,567 1,800	25,555 2,713 1,690 1,700 914 338 2,200	27,565 2,828 1,846 18,894 1,087 1,087 2,478
Roetfon-	tial MWH	30,521 5,442 2,137	20,018 2,100 510 314	23,324 5,800 2,749 21,100 23,072 2,000 2,000	40,102 6,100 3,228 22,360 4,097 817 3,500	45,025 6,500 4,035 5,012 5,012 6,488	49,790 6,921 6,921 25,531 25,531 1,232 5,150 5,150	54, 552 7, 243 5, 083 7, 549 1, 680 1, 680 5, 667
<	KW Z		2.800 590 n.a.	21,280 45.9 6,200 2,300 16,400 3,480 3,480 2,200		36,870 47.9 7,000 3,350 4,650 920 3,500	39,420 7,500 4,000 17,200 5,760 5,760 1,000 3,960	42,450 7,800 4,200 5,000 13,500 1,150 4,800 4,800
Energy	tion WWH		84, 722 6, 729 1, 287 700	· · · · · ·	139,791 20,400 6,956 89,509 12,013 2,094 8,819	_ · · ·		
Cooperative -:Sold to	from from	-4,669 +4,669	-1,287 +1,287	-6,209 +6,209 +1,601 +1,601	-4,703 +4,703 +2,003 +2,094 +2,094		000000 00000 11 11	-1,628 +1,628 0 0
0wn 0	tion MWN	113,479 20,041 0	84,722 8,016 700	122,929 24,029 83,489 30,528 4,883	65,861 20,567 30,473 14,107 714	51,965 9,539 0 36,323 6,103 6,103	69,046 9,699 57,756 1,591	58,070 6,324 51,746 51,746 0
	Sold Sold		NON	2,747 NON 1,47,5 NON NON	73,930 4,536 2,253 59,036 NON 8,105	102,604 13,471 9,517 9,517 56,664 11,166 Now 11,786	97,794 15,996 10,704 38,675 19,958 19,958 10,471	122,623 20,776 11,721 48,674 22,920 22,920 252 16,280
2	Generated MWH	• •	NON	<mark>2.747</mark> Non Non Non	82, 690	112,689	<u>607,111</u>	134, 360
· · ·	Cooperative	1978 CAPELCO AKELCO	PECO ILECO T ANTECO ILECO II	1979 CAPELCO AKELCO PECO ILECO I ANTECO ILECO II	1980 CAPELCO AKELCO TLECO ILLECO ILLECO ILLECO ILLECO ILLECO	1931 CAPELCO ANTECO ILLECO I ANTECO ILLECO I	1982 GAFELCO ARELCO FECO ILECO ANTECO ILECO I	1983 CAPELCO PECO TILECO I ANTECO ILECO II

T2 - 5

•

Source: NEA Manila and PECO Note : Some figures are modified by the result of study

.

X.

			TABLE X.2-(X.2-6 POWER GENERATION AND (Historical	NERATION (Histori	AND SALES cal Data	ERATION AND SALES IN KWH, AND NO. O (Historical Data in Capiz Province)	AND NO. OF Province)	AND NO. OF CUSTOMERS Province)			
			- 10 sec.	· · ·			• •*					
		1973	1974	3721	1976	<u>1977</u>	1978	<u>1979</u>	1980	1981	1982	<u>1983</u>
	1. Pover Generation by CAPELCO	78,560	1,326,809	3.040.275	4,915,142	6,796,598	20,040,914	28,139,559	20,573,016	11,929,600	10,083,800	6+323,700
	2. Pover Purchased Irom NPC	1	1		1	1			4,969,000	13,176,400 15,596,241	15,596,241	21,042,673
- 194	J. Total Energy Kwh	78, 560	1,326,809	3,040,275	4.915,142	6, 796, 598	20,040,914	28,139,559	25,542,016	25,106,000	25,106,000 25,685,041	27,366,373
	4. Station Uses	18,010	177,082	260, 540	491,354	722,708	1,258,270	1,616,400	1, 382, 659	882,300	1,014,370	568,520
<u> </u>	25. Losses in Distribution Aub and Percent	52,540 66%	430,270 32%	837 , 449 27%	1,304,297 26%	1,261,251 19%	10,079,418 50%	16,891,730 60%	14,159,194 55%	12,039,690 48%	12,262,245 43%	15,169,852 55%
	6. Sold kwh 1) Residential (kwh) (Nos.)	8,610 5,937 172	719,457 649,140 2,289	1,922,286 1,707,422 3,877	3,119,491 2,205,158 5,683	4,812,639 3,666,621 8,499	8,703,226 5,442,169 12,123	9,631,429 5,824,269 15,401	10,000,163 5,854,346 15,829	12,184,010 7,191,154 22,151	12,408,426 6,935,629 23,697	11,628,001 7,243,301 23,697
	2) Commercial (kuh)(Nos.)	720 14	65,852 175	209.177 197	362,472 206	404 . 077 284	2,579,169	2,915,186 899	2,555,717 883	2,569,095	2,662,872 1,017	2,594,805 1,017
	 Trdustrial (kwh) (Nos.) 	00	QO	00	545,114 12	734,429	673 , 769 23	882 , 972 24	1.571.400 22	2,395,150	2,741,002	1,761,161 42
х - Э - Э	4) Street Lights (kuh) (Nos.)) 1.953 35	4.465 143	5,687 307	6, 747 364	7.512 497	8,119 573	9,002 613	18,700 575	28,611 594	27.373 528	28,736 528
	7. Peak Load kr	•	1,080	1,230	1,672	4	ŝ	9,300	8,900	7,150	7,500	7,500
	8. Annual Load Factor %	ļ	14.02	28.22	2 33.56	56 46.40	40 43.17	17 34.54	54 32.76	76 40.08	39.09	09 41-65
	9. Amount of Revenue Pesos 3,242	sos 3,242	503,594	1,085,182	1,694,473	4,167,527	10,007,178	10,305,819	10,305,819 11,122,354 14,419,255 17.717,765 20,751,243	14,419,255	17.717.765	20,731,243
	<pre>lo. Average Tariff (P/kwh)</pre>	1) 0-43	0.70	0.56	0.54	0.87	1.15	1.07	1.11	1.18	2+43	1.78
•	Source: CAPELCO and PDPP II	II ddae		:							·	

Note: Some records are discrepant between this Table and Table X. 2-5.

~

		· · · · ·	en e	Panay	System	
		Sales (target <u>1/</u>	NPC fo	recast 2/	This study
Ye	ear	Peak power (MW)	Energy (GWh)	Peak power (MW)	Energy (GWh)	Peak power (MW)
19	984	45.9	210.7	40	211	41.2
	85	51.8	243.5	41	216	44.8
	86	57.3	265.8	46	240	48.3
	87	63.4	293.2	47	249	51.8
	88	70.6	325.3	50	264	55.4
	89	75.7	344.5	58	303	58.9
19	90	81.6	365.8	62	324	62.4
	91	87.3	400.6	64	343	66.0
	92	93.9	434.7	67	362	69.5
	93	1. A.		69	392	73.0
	94			72	413	76.6
	95			74	437	80.1
	96				-	83.6
	97					87.2
	98					90.7
	99		алана — тока Прила — тока — тока — тока — тока	· .		94.3
20	00					97.8
	01	÷				101.3
	02				. <u>.</u>	104.9

Table X. 3-1 DEMAND FORECASTS BY NPC AND UNDER THIS STUDY

Sources: 1/ By NPC Panay Grid, 1983

a second de la companya de la company

2/ By NPC, 1984

S.

S)

S.

Þ

,	Sales	Target	Demand	Forecast
Year	MW	GWh	MW	GWh
1983	120	613	109	666
1984	146	672	119	730
1985	165	894	159	972
1986	184	1,055	175	1,147
1987	187	1,085	179	1,179
1988	190	1,111	184	1,208
1989	193	1,136	88	1,235
1990	231	1,403	232	1,525
1991	234	1,428	236	1,552
1992	•		(258) <u>1</u> /	(1,775) ¹ /
1983			(265)	(1,684)
1994			(272)	(1,851)
1995			(280)	(1,894)
·····	8,7	11.1	8.2	9.1

Table X. 3-2 FORECAST OF POWER DEMAND IN NEGROS GRID

.

•

(Rivised in July 1983)

Ĵ,

Ť.

Ð

1/ Figures between parentheses show extrapolated values by the study team

		Total	MW Bal	ance	GWh B	alance
Year	Power Plant	Station Capacity	Depend. Cap.	Peak Denand	Depend. Cáp	Energy Require
1984	Existing Facilities	72.1	41	40	317	211
1985	Dingle D., 7.3 MW	78.9	47	41	362	216
1986	Power Barge B, 32 MW	106.1:	75	46	558	240
1988		106.1	75	50	558	264
1989	Interconnection with Negros	$66.4^{1/}$	47	58	259 <u>1</u> /	303

TABLE X. 4-1 POWER DEVELOPMENT PLANS BY NPC

(1) Panay Grid before Interconnection

1/ Decrease due to transfer of power barge B to other system, and retired PECO's diesel plant.

			Total	MW Ba	lance	GWh I	Balance
Year	Power Plant	· · · ·	Station Capacity	Depend. Cap	Peak Demand	Depend Cáp.	Energy Require
1982		0.8 11.0 14.6 13.5 6.0 32.0	МW МW МW 77.9 МW	68	34	466	173
1983		37.5	MW MW 252.2 MW	224	109	947	666
1984	Pullout Barge No.2	32.0	MW 220.2	196	119	1,464	730
1985	-		220.2	196	159	1,464	972
1987			220.2	196	179	1,464	1,179
1988	-		220.2	196	184	1,464	1,208
1989		·	220.2	196	188	1,464	1,235

(2) Negros Grid before Interconnection

<u>ک</u>

A

ŝ

Т4-1

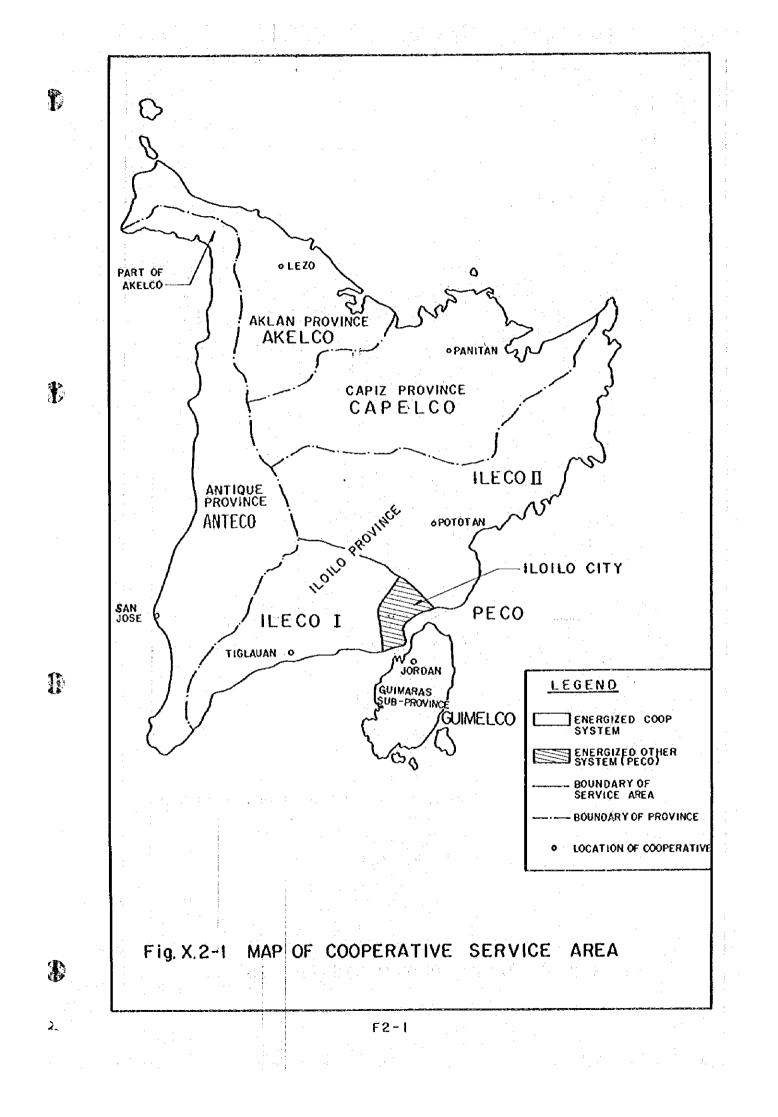
	****		Total	MW Bal	lance	GWh Ba	alance
Year	Power Plant		Station Capacity	Depend. Cap.	Peak Demand	Depend Cap.	Energy Require
1989	Palimpinon Geo 4, " S, Panay Grid Inter,	37.5 1	MW 342.2	315	246	2,265	1,538
1990	Palimpinon Geo 6,	37.5 1	MW 379.7	351	307	2,536	2,017
1991	-		379.7	351	316	2,536	2,076
1992	-		379.7	351	(325)	2,536	2,137
1993	-		379.7	351	(334)	2,536	2,200
1994	-		379.7	351	(344)	2,536	2,264
1995			379.7	351	(354)	2,536	2,330

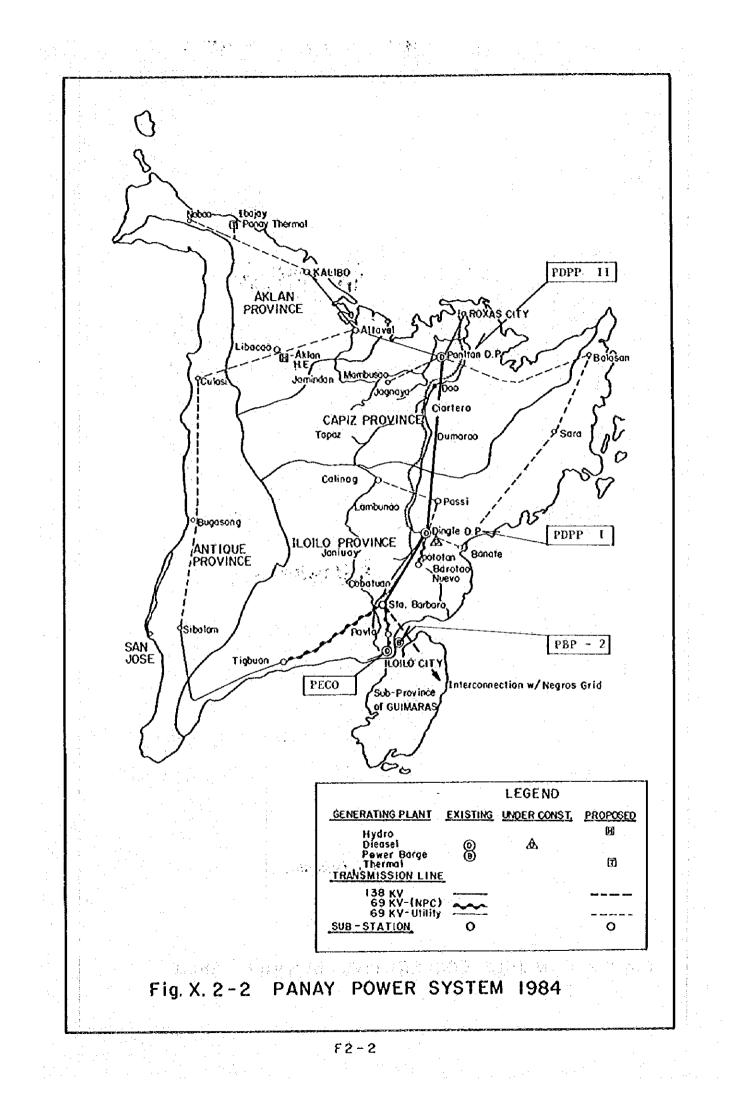
(3) Negros-Panay Grid after Interconnection

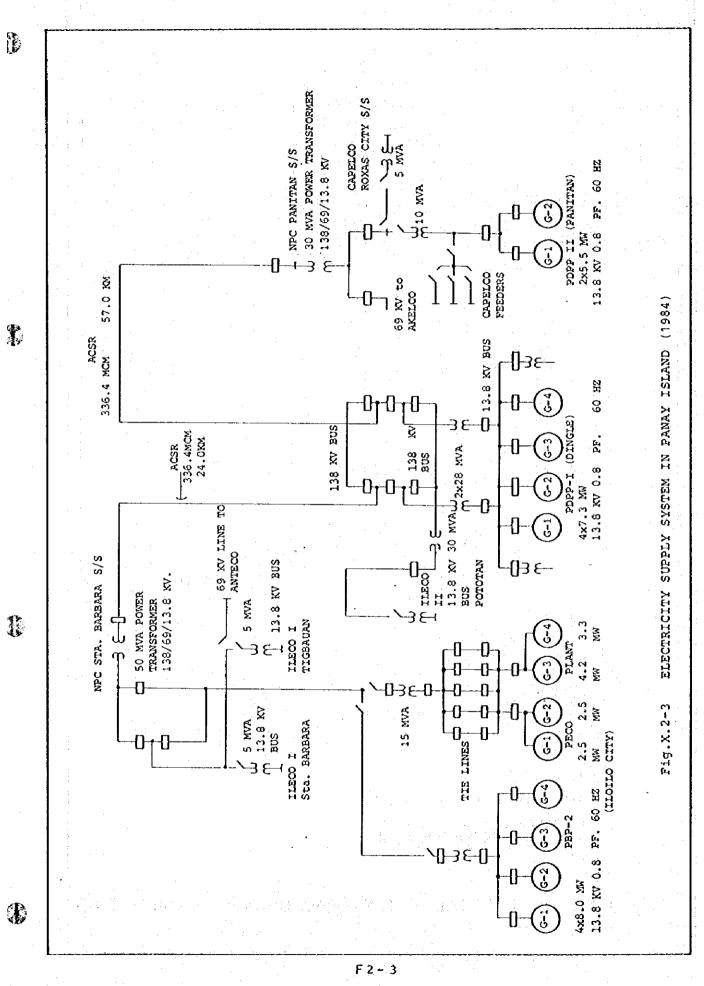
~

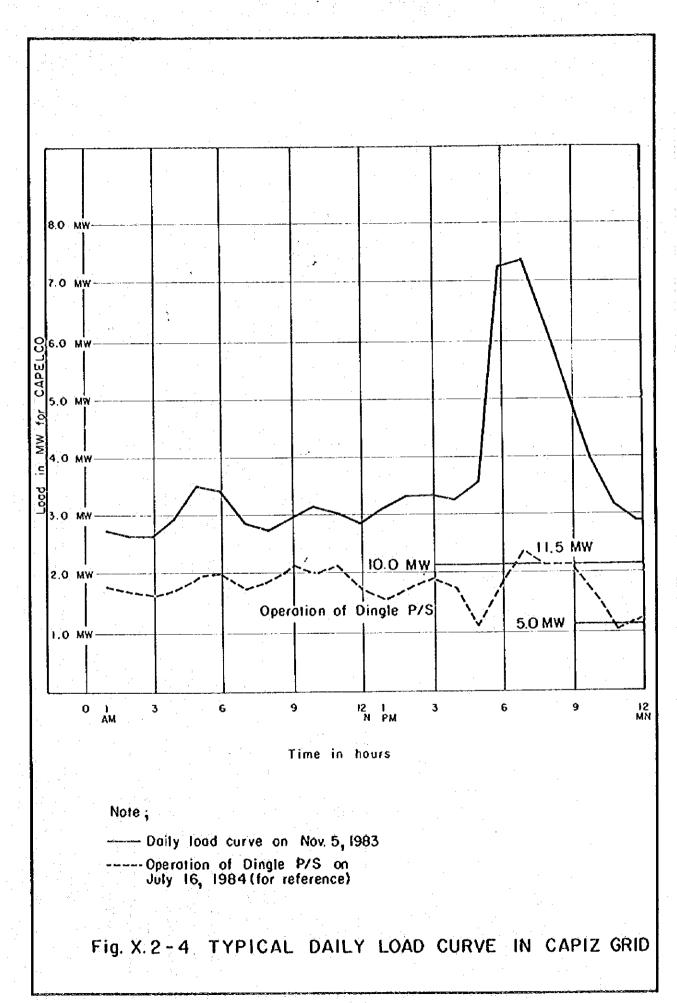
T4-2

FIGURES

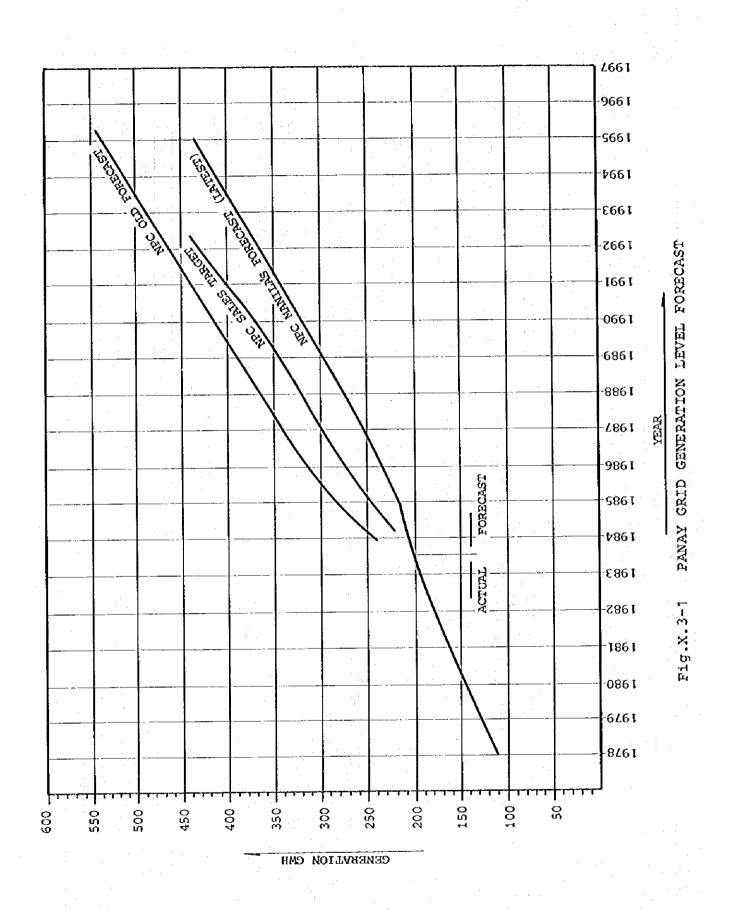

P

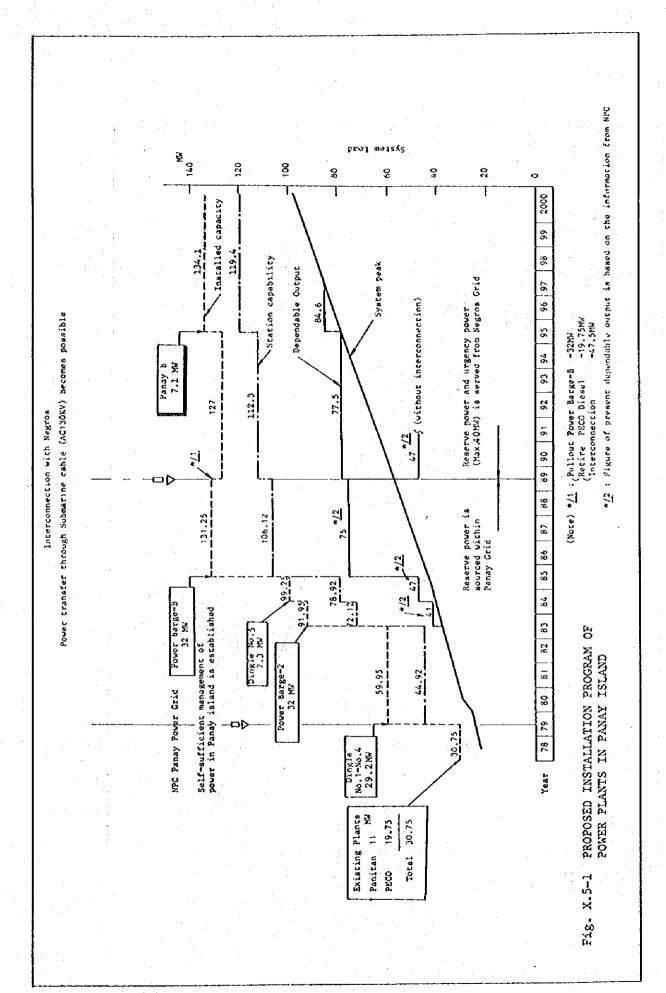

\$


Þ

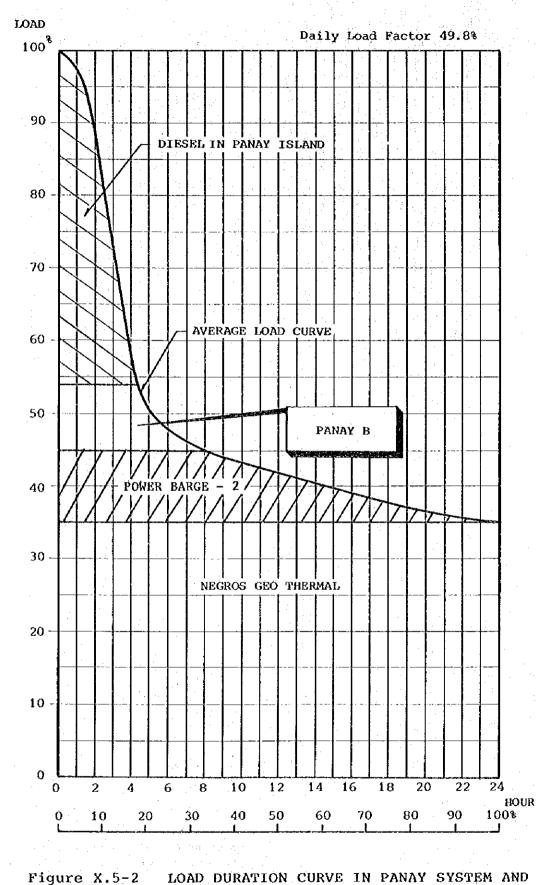

FOR

APPENDIX X





F2-4

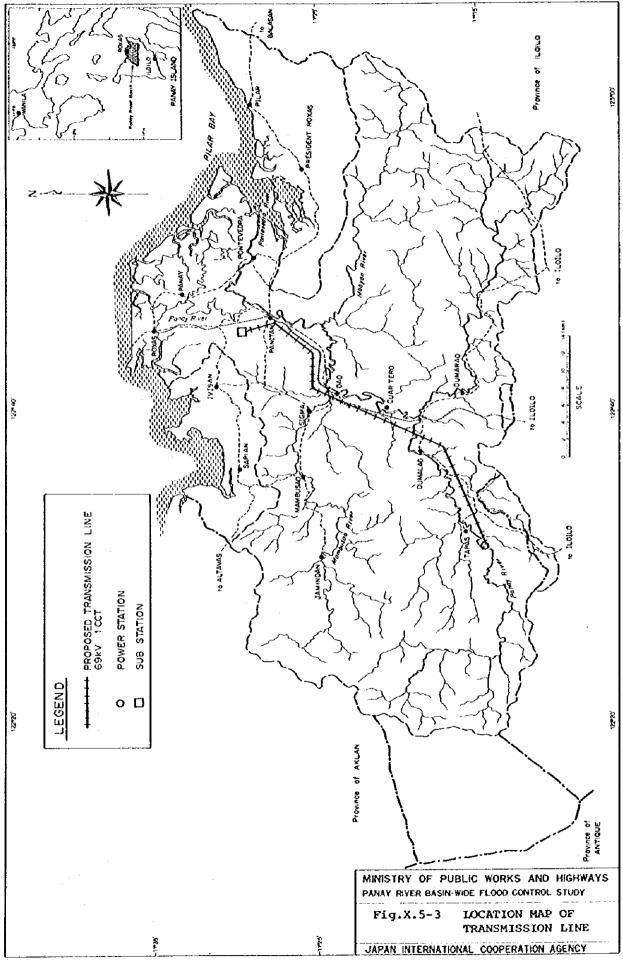


F 3 - 1

F 5 - 1

.

rigure x.5-


LOAD DURATION CURVE IN PANAY SYSTEM AND ALLOCATION OF POWER SOURCES IN 1995

X.

ì

(je

Þ

F 5 - 3

APPENDIX XI

P

e;

P

ENVIRONMENT STUDY

FOR FINAL REPORT

ON

THE PANAY RIVER BASIN-WIDE

FLOOD CONTROL STUDY

APPENDIX XI ENVIRONMENT STUDY

TABLE OF CONTENTS

		Page
1.	Introduction	1-1
2.	Present Condition of Environment in the Panay River Basin	21
	2.1 Natural Environment	2-1
	2.2 Water Quality	2-1
	2.3 Soil Erosion	22
	2.4 Fish Fauna and Wildlife	2-3
	2.5 Water Use	2-4
	2.5.1 Riverine fishery	2-4
	2.5.2 Domestic water use	2-4
	2.5.3 Riverine transportation	25
	2.6 Public Health	2-5
3.	Environmental Impacts by Proposed Flood Control Plan	3-1
	3.1 Water Quality	3-1
	3.2 Sedimentation	3-1
	3.3 Soil Conservation	3-2
	3.4 Fish Fauna and Wildlife	3-3
	3.5 Water Use	3-3
	3.6 Public Health	3-4
4.	Conclusions	4-1

and the second

()

Ð

X.

LIST OF TABLES

Table No.	<u>Title</u>	Page
XI.2-1	Water Quality of Panay River	T2-1
XI.2-2	Fish Species in the Panay River Basin	T2-2
XI.2-3	The Type, Source and Capacity of The Existing Waterwork Systems	T2-3
XI.2-4	Common Parasites Existing in the Roxas City	T2-4
XI.3-1	Classification of Soil Conservation Necessity from Land Suitability Map	Т3-1
XI.3-2	Breakdown of Catchment Area as to Land Use	T3-2

£.

LIST OF FIGURES

Fig. No.	<u>Title</u>	Page
XI.1-1	Location Map of Field Inspection and/or Interview Survey	F1-1
XI.3-1	Flow Chart for Analysis of Soil Conservation Necessity	¥3–1
XI.3-2	Erosion Hazard Classification Map in Catchment Area of Sclected Damsites	F3-2
XI.3-3	Land Use Map in Catchment Area of Selected Damsites	F3-3

÷İ

8

}

A STA

a standard a standard a standard a standard a standard a standard a standard a standard a standard a standard a De generale standard a s Tenna

n sense in de la sense de la La sense de la s

€£

S,

1. Introduction

A

P

Real

This Appendix XI presents the results of the environmental study conducted as a part of the Panay River Basin-wide Flood Control Plan. The Study is based on the field inspection, interviews with local officials, interpretation of aerial photographs and documents provided by relevant authorities. The reconnoitered area during the field trips are roughly shown in Figure XI.1-1.

The major part of this Study is devoted to indentifying potential environmental problems caused by the proposed flood control plan, comprising mainly the river channel improvement and dam construction. The assessment of the environmental impact is to be performed from the qualitative aspects rather than quantitative aspects, due mainly to lack of available data.

1

2. Present Condition of Environment in the Panay River Basin

2.1 Natural Environment

The topography of the Panay River basin is characterized by narrow Plains surrounded by low mountains in the middle reach and an extensive delta plain in the lower reach. The western mountain ridges descend gradually to the middle of the basin and formulate the southern rilly terrain which extends to the undulating mountains in the east. Ĩ

3 ()

The Panay river originates near the Aklan-Capiz boundary. It runs down to the eastern direction passing by the towns of Tapaz, Dumalag, Cuartero, Dao and Panitan, before it finally flows into the Sibuyan Sea. The Panay River bifurcates at some 4 km downstream of the Panitan town to the Lower Panay River and the Pontevedra River which is the present mainstream, that is, most of the discharge of the Panay River is drained through the Pontevedra River instead of through the Lower Panay River. In the 152 km course of its journey seaward, the Panay River is joined by three major tributaries; the Badbaran, Mambusao and Maayon Rivers.

The Badbaran River originates, in the southeastern part of the basin, that is, municipality of Lemery in Iloilo Province. It runs near the Dumarao town, traversing the paddy and sugarcane fields and confluents to the Panay River near the boundary of Dumalag and Cuartero municipalities. The Mambusao River rises in the western part of the basin, that is, municipality of Jamindan. It runs eastward through the towns of Mambusao and Sigma, before it confluents to the Panay river at the Dao town. The Maayon river starts in Iloilo Province located in the eastern part of the basin and confluents to the Panay River in the southern part of Panitan.

2.2 Water Quality

The streamflow of the Panay is usually turbid in yellowish colour in the middle and lower reaches. If heavy rainfall continues for a few days, the riverflow turns dark brown. The temperature of the streamflow is in the range of 26.5 to 31.8 °C according to the measurement by the Study

2 - 1

team. Measurement for water quality of the streamflow was made by using the water sampled from the five river stretches. The results of the analysis are given in Table XI.2-1.

Although turbid, the water quality of streamflow is generally acceptable to use for irrigation as well as domestic purpose. At storage sites of the proposed dam sites, in particular, since the watershed is mostly covered with shrubs, grasses, and forest, inflow of organic material would be small. In this light, possibility of eutrification in the proposed reservoirs is remote.

Salt water intrusion makes a serious problem in the Lower Panay River basin. During the dry seasons (January to April), the lower Panay River receives very small amount of streamflow, from the main Panay River, due mainly to silted banks at the bifurcation point. In addition, as irrigation water is also taken from the Lower Panay River. That is, the Lower Panay flushes out considerably little or sometimes almost null amount of streamflow. Therefore, at the time of high tides, salt water intrudes upstream in the Lower Panay River, up to the pumping station of Roxas Water District. This causes the problem of salinity for drinking water in the supply areas.

2.3 Soil Erosion

The watershed of the Panay River is widely covered with the Luisiana-Sapian complex developed from highly weathered igneous rock units. The upper watershed of the Panay River up to the elevation of 400 to 500 meters is covered with corn, bean and cassava fields or with shrub. Vegitation in the watershed is sparse. The forests exist only at the elevation 600 meters and above. Therefore, the watershed is considered to be principally erosion-prone.

The speed of erosion was measured from sediment load transported in the streamflow, as part of the meteo-hydrological investigation. As the result, the denudation rate of the watershed was assessed to be 1.44 mm annually. This indicates that the denudation due to erosion of soil is relatively fast in the Panay River basin.

2 - 2

ġ.

Þ

R,

According to BFD, the Office of District Forester, Roxas City, there are four forest preservation projects of state forests, as given below. Although the size of the preserved areas is not large enough, continued efforts of forest conservation and reforestration is desirable in the light of effective watershed management against erosion.

List of Reforestration Projects in the Panay River Basin

	Name of Project	Project Area
1.	Tapaz Reforestration Project	Tapaz
2.	Dumalag Reforestration Project	Dolores, Dumalag
3.	Baye Reforestration Project	Baye, Mambusao
4.	Dumarao Integrated Reforestration Project	Tumulaud, Dumarao

Source : BFD, Office of District Forester, the City of Roxas

2.4 Fish Fauna and Wildlife

The study of the fish fauna in the rivers of the basin was conducted based on existing documents 1/, interviews with specialists of SEAPDEC 2/, with officials and local residents in the towns of Dumalag, Dumarao, Dao, Sigma, Mambusao and Panitan. The fish species downstream of the proposed dam sites are summarized in Table XI.2-2.

According to the specialists of SEAFDEC, no original species of freshwater fish exist in the Panay Island. In this regard, no serious potential problems are conceived on the fish fauna relevant to the proposed storage development.

Fish species such as Pantad, Batod, Puyo and Gourami inhabbit in the ditches along paddy fields. In freshwater fishponds, Panat, Tilapia,

Note <u>1</u>/ Source : Feasibility Study of the Amnay Multipurpose Project, Sablayan, Occidental Mindoro

2/ The Southeast Asian Fisheries Development Center

्रि

\$}

Carpa and Puyo are bred. In general, freshwater fishes are hardly exploited as food resource in the Philippines, except those bred in fish ponds. Thus, adverse effect of development on food supply, too, is assessed to be minor.

No information was provided concerning the wildlife in the Panay River basin. The areas along the middle and lower reaches of the Panay river are open and flat, but large-sized wild annimals were scarecely seen during the investigation. At most the big lizards with the body length of more than 1 m are sometimes appear in the swanps or bushes.

2.5 Water Use

3

C

ALL A

ķ

2.5.1 Riverine fishery

There are no full-time riverine fishermen in the Panay River basin, though those living near the estuary are engated in coastal fishery.

Fishing by the local residents is mostly occational and for the purpose of home consumption only. Exceptionally, when they catch merchantable fish, it is peddled or sold on the road sides to the passersby. The riverine fish caught by the local residents are hardly brought to twice-a-week fish market.

Recently, fish in the rivers and in the ditches decrease its number, due mainly to use of chemical fertilizer and pesticide. Instead, the marine fish become more available by development of road network.

2.5.2 Domestic Water Use

There are ten water supply systems in service, capitalizing on the streamflow of the Panay River. The largest system is the waterworks of the Roxas City Water District with the supply capacity of 30.4 liter/sec. Others are minor works for the municipalities of Dao, Dumalag, Dumarao, Ivisan, Mambusao, Pilar, Sigma, Panitan and Jamindan. New waterworks are under construction for the municipalities of President Roxas, Panay and Tapaz. The areas not covered by the above waterworks are served by public or private well, most of which were constructed by the former BPW. The type, source and capacity of the existing water supply systems are shown in Table XI.2-3.

2.5.3 Riverine Transportation

No regular service of transportation is accommodated in the Panay River, except in the stretches near the estuary of the Pontevedra river and in the San Anton River. When the river water is high, a power boat can travel from the estuary up to the town of Cuartero and Dumalag, though no regular service is available. River crossing by ferry boats are conventionally in practice in the towns such as Dumarao across the Badbaran, Hagnaya across the Mambusao and Panay across the Panay River.

The only through-the-river transport is conveyance of bamboo trees in rafts. The bamboo trees are rafted from the largest producing areas of Tapaz and Dumalag to the Roxas City, through the main stretches of the Panay. Production of bamboo is an important industry to the local residents, underlain by extensive demands as house materials. Riverine transportation provides a low cost means of haulage of products.

2.6 Public Health

According to the City Health Office of the Roxas City, the local residents are prone to a parasistic disease by parasites, locally called "lugay". This disease is reported to be common in the Philippines, the infection process of which is attributed partly to insanitary drinking water and infected foods. (Refer to Table XI.2-4)

There are no reports of endemic disease such as schistosomiasis infected through tremadodes or nematodes living on fish or snail. Also no reports are accepted by the Provincial Health Office concerning the epidemic diseases such as malaria, dengue and H fever, infected through bacteria-bearing insects such as flies and chigger. The occurrence of such epidemic diseases is yet to be investigated.

2 - 5

\$;

1

\$}

X

3. Environmental Impacts by Proposed Flood Control Plan

3.1 Water Quality

Ş,

Ţ,

Ð

One of the potential areas of environmental impacts inherent to the proposed development plan is eutrophication of reservoir water. In the case of prospective reservoirs in the upper Panay river basins, however, the issue of eutrophication would not take a severe form, on the grounds that the drainage area of the reservoirs is mostly shrub and forest, inhabited sparesely. Besides, stratification of the reservoir water temperature is unlikely to take place, due to generally high water temperature (presumably 24 to 30 °C) and the organic matter decomposes quickly.

Eutrophication issue is assessed to be slightly different for the Badbaran reservoir. The catchment area of the Badbaran reservoir is covered with cultivated land; 17 % of the area with paddy, 31 % with sugar cane. Inflow load of the organic matter is relatively high in the Badbaran reservoir, as compared with the reservoirs in the upper Panay basins. Even in this case, maintaining the proper water quality in the reservoir would be devised by positive countermeasures, such as seawage treatment, to reduce the inflow of organic matter.

Another area of potential problem is the afflux of toxic substances. In the current years, use of chemical fertilizer, pesticide and herbicide is on the rise, and it is inferred that the effluence of the chemicals may aggravate the water quality of the streamflow. Use of chemicals would naturally increase in the Panay basin, as the fertility of the farmland declines owing to curbed inundation which brings fertile soil. To protect the streamflow from contamination by toxic chemicals, it is important to restrict the use of fertilizer to the safe, pollution-free types only.

3.2 Sedimentation

As shown in the Appendix I, the issue of sedimentation is studied in terms of sediment materials, yielded, transported and trapped in the prospective reservoirs. The storage reservoirs were designed based on the sediment level corresponding to the 100 years of sedimentation. In the long term, therefore, the reservoirs are safe against sediment inflow through the life time, normally assumed to be 50 years. However, continuous sampling of streamflow and measurement of suspended load should be carried out to further ensure the estimated sediment load. ₹Ũ

S.

4

3.3 Soil Conservation

Soll conservation is a long-term theme of a great importance. For the purpose of establishing a comprehensive assessment on the need for soil conservation, a comparative study of the four sub-basins, corresponding to the dam sites of Panay "B", "C", Badbaran and Mambusao, was formulated by using the land suitability maps and land use maps. The outline of the study methodology is presented in Figure XI.3-1. First, Erosion Hazard Classification Map was prepared, as shown in Figure XI.3-2, on the basis of the criteria formerly established for the Land Capability Classification Guide, by the Bureau of Soils in 1976. In parallel with the above, composition of land uses in the sub-basins were read on the land use maps. Accordingly, the necessity for soil conservation was assessed in terms of the percentages of erosion hazard classification and present land use. The results of the erosion hazard classification and present land use are presented in Tables XI.3-1 and XI.3-2, respectively.

The sub-basin of the Panay "B" bears the highest aptitude for erosion. All the area of the sub-basin is classified as being very severe (Class 5) in erosion hazard. Besides, shrub covers more than 70 % of the area, comparing with the forest of 30 %. The sub-basin of the Panay "C" bears an equally high aptitude for erosion, with the Class 5 area covering 76 % of the whole area. The land use of the Panay "C" sub-basin is also predominantly shrub (86.2 %), and the need for protective measures is high.

The Mambusao sub-basin is ranked as slightly lower than the Panay "C" sub-basin in the aptitude for erosion, with the Class 5 areas accounting for 73 % of the total area. The index for the Badbaran is even lower than this, with the Class 5 areas being 45 % of the total area.

As the overall assessment, the sub-basins are deemed to be prone to erosion, judging from the criteria prepared by the Bureau of Soils. Practically, reforestation of shrub areas, resulted from "slash and burn" agriculture, is desirable in view of soil conservation of the sub-basins. In parallel with this, the preservation of the existing forests should be given by a policy consideration.

3.4 Fish Fauna and Wildlife

As discussed in the Section 2.3, no significant loss of fish fauna is foreseeable from the scientific view point. Concerning the wildlife in the Panay River basin, storage development would have no major impacts.

3.5 Water Use

Adverse effect associated with supply of riverine fish for home consumption is only minor, as the dependence of the local residents on the river products is low. Conversely, creation of reservoirs would have a positive benefit, as the confined water body with the large surface area would enable the development of fish culture. The plankton feeders, such as Telepia, Common Carp and Chinese Carp would be the suitable freshwater fishes to bigin with.

Contamination of streamflow water is causing a significant decrease in the number of freshwater fishes in the rivers and ditches. The same problem will arise in the proposed reservoirs. The issue of river water contamination is closely nested with the use of chemical fertilizer and pesticide, and thus an utmost care and attention should be paid on the type of chemicals used at present and in the future.

The impact of storage development on the riverine transportation would be minor, too, as the utilization of the river for transportation in itself is in practice only on a restricted extent. Transportation of bamboo trees in rafts would be hampered by the development of reservoir at the Panay "C" dam site, in which case, the haulage will have to be changed into inland transportation, such as truck.

3 - 3

۹. ^{...}. په

2

A S

S.

3.6 Public Health

The sanitary condition of the river basin is bound to be improved, if the water supply plan is implemented. Sufficient amount of potable water would minimize, even if it does not prevent totally, the infection of waterborne diseases.

3 - **4**

4. Conclusions

P

8

In conclusions, the environmental study undertaken hereabove are summarized by the following points:

- (a) No serious problem inherent to the environmental impacts of the proposed plan are conceived,
- (b) Eutrophication of reservoir water is unlikely to take place, due mainly to light organic load and generally high temperature of water,
- (c) Constant attention should be paid to the use of chemicals included in the fertilizer and pesticide, in view of water quality control,
- (d) Soil conservation needs to be advanced as a policy issue, by means of reforestation of shrub areas and conservation of existing forests,
- (e) Alternative means for inland transportation should be provided in place of the riverine transportation for the houlage of bamboo trees, and
- (f) A positive effect is conceived in relation to the public health, due mainly to improved supply condition of potable water, if the water supply plan is to be implemented.

4 - 1

Û

S

TABLES

FOR

APPENDIX XI

Oct.17, 14:00 Lover Panay-0.05 0.49 7.1 110 115 290 2.9 30 Oct.17, 15:00 Panitan 0.82 0.32 7.5 д. 6 225 100 g 8 Table XI.2-1 Water Quality of the Panay River Oct.16, 14:30 0.006 0.007 Cuartero 7.5 0.4 265 ۲. 8 100 125 /1 ; Near the intake of Roxas City district. Oct.16, 11:40 Badbaran 0.15 0.41 ч. Ч. 7.6 165 60 g 80 Oct.16, 10:00 Panay "C" 0.003 0.05 110 01 01 7.9 с 20 300 140 N-NH4, mg/2 ammonia nitrogen N-NO3, mg/2 nitrite nitrogen Total Iron, mg/2 Total Iron mg/2 Chloride Note Alkalinity, mg/k CaCO3 mg/2 CaCO3 **Parameter** Date. Time Chloride, Hardness, EC, $\mu s/cm$ ц

T2 - 1

2

ß

S

þ

Table XI,2-2 Fish Species in the Panay River Basin

	and the second
English Name	Local Name (Ilongo)
Catfish	Pantat
Tilapia	Tilapia
Freshwater cel	Bais
Murel	Batod
Carp	Carpa
Climbing perch	Puyo
Gourami	Gourami
Tarpon	Bulan-bulan
Freshwater shrimps	Ulang
	Catfish Tilapia Freshwater eel Murel Carp Climbing perch Gourami Tarpon

\$

(P)

X,

T2 - 2

. .

· · ·

.

30.4 (10 hours operation) Capacity (%/sec.) Table XI.2-3 The Type, Source and Capacity of The Existing Waterwork Systems 5.00 3.78 3.78 3.15 5.04 2.52 5.00 6.3 3.5 Deep well River River River River River River River River River Source Gravity & Pumping Pumping Gravity Gravity Pumping Gravity Gravity Gravity Pumping Fumping Type Roxas City Water District Name of Waterworks Mambusao Waterworks' Jamindan Waterworks Panitan Waterworks d. Ivisan Waterworks b. Dumalag Waterworks Dumarao Waterworks Sigma Waterworks Pilar Waterworks Dao Waterworks ч Ч न с. • • 60 ů . ام . . .

Ť2 - 3

Ð

Þ

Ŷ,

Ŀ

Name of Carrier Approximate No. of Patients, in 1983	Fly, Man & Water 103		: : 13		r-f	C) E	۳ ۲	315 315		· · ·
English Name Na	Large'intestinal roundvorm of man	Whipworm	ноокчога		Pinworm or Seatworm	Threadworm				
Common Parasites Scientific Name	Ascaris lumbricoides	Trichuris trichiura	Entamoeba histolytica	Entamoeba coil Giardia lamblia	Enterobius vermicularis	Strongyloides stercorales	Trichomonas intestinales		City Health Office, Roxas City	
Local Name	Lugay					£		Total	Source: City	

Ş

P

12

ß

ì

Table XI.3-1 Classification of Soil Conservation Necessity from Land Suitability Map

Soil Conservation Necessity Class	ution SS	Erosion Hazard	Class or Subclass of Suitability	Panay "B"	Panuy "C"	Badbaran	Mambusao
•				ي هر هر	ken ²	km ²	km2
] ow		None	A BV Bs ru			/// u	
	, ,			1	(3.5)	(6.2)	, 4 (1.6)
. (2)		Slight	, В С S S		1	8.8	9.6
Ŷ		Moderate	e S	ł	,	21.7	6. 4.
	·		•		-	(8.4)	(1.6)
4		Severe	De	I	103.5	96.9	41.7
		Very severe	×		(20.3)	(37-5)	(19.3)
high 5	•	Extreme	H	238.8 (100)	387.8 (76.2)	115.1 (44.5)	158.5 (73.2)
Total				238.8	509.2	258.4	216.6

Remark : Figures in the parentheses indicate the proportion to the total area.

T3 - 1

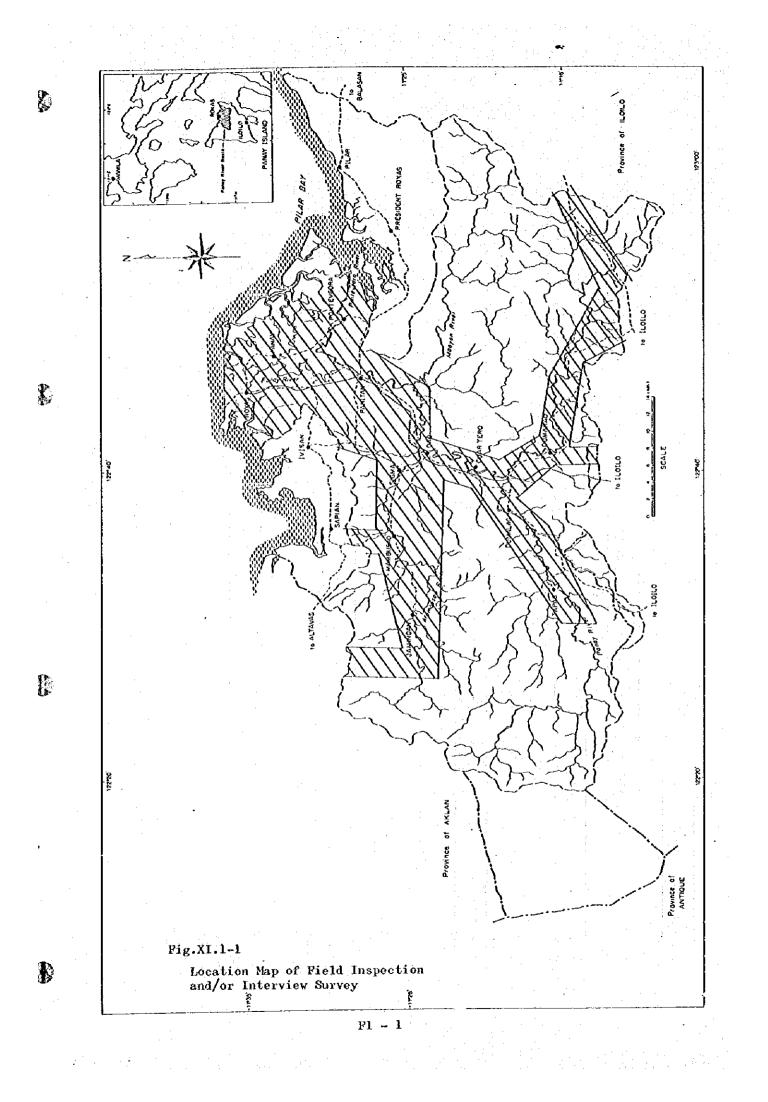
Land Use	Panay "B"	Panay "C"	Badbaran	Mambusao
	km ² (%)	ktil 2 (%)	ken ² (%)	km ² (%)
Lowland/Paddy rice area	\$	13.6 (2.7)	43.5 (16.7)	6.8 (3.1)
Sugarcane	I	132.4 (26.0)	80.5 (31.2)	51.9 (24.0)
Pasture/Grassland	- F		5.3 (2.1)	2.1 (1.0)
Shrub	167.4 (70.1)	277.0 (54.4)	129.1 (50.0)	147.6 (68.1)
Orchard (Coconut)	đ	1	ß	7.5
Forest	71.4 (29.9)	86.2 (16.9)		0.7 (0.3)
Total	238.8 (100)	509.2 (100)	258.4 (100)	216.6 (100)

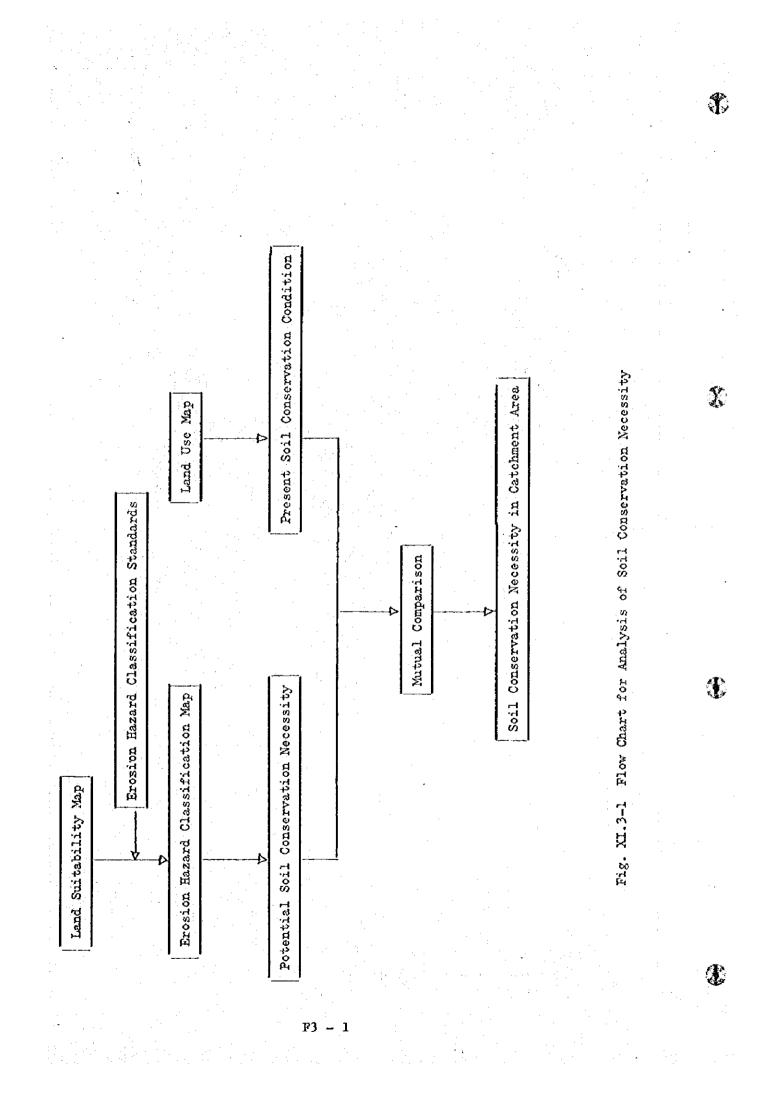
Remark : Figures in parentheses indicate the proportion to the total area.

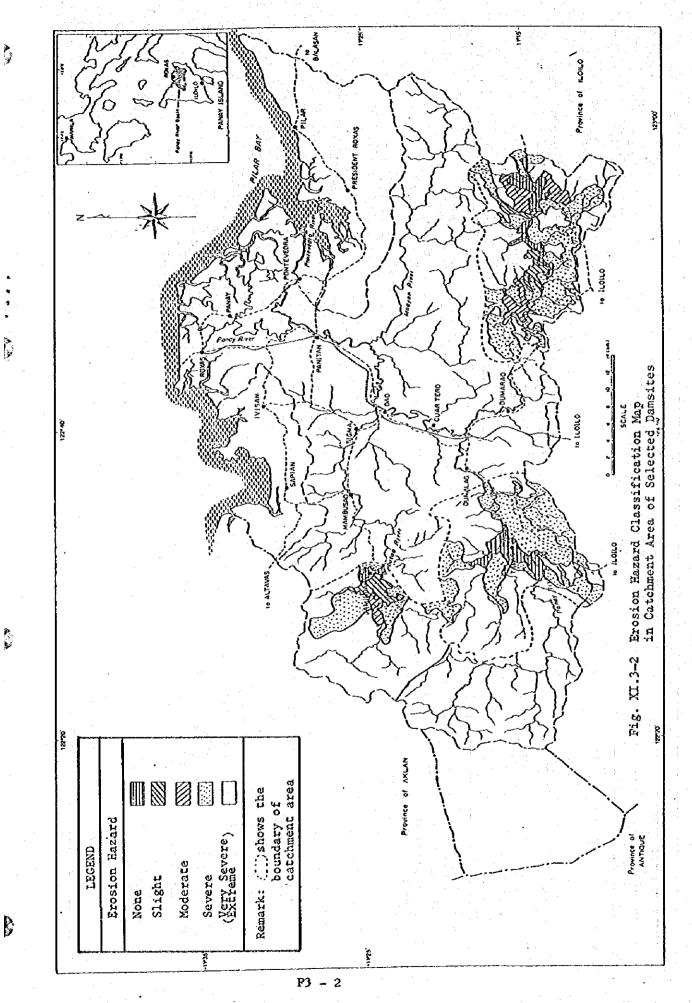
Т**З** -2 Ð

٢

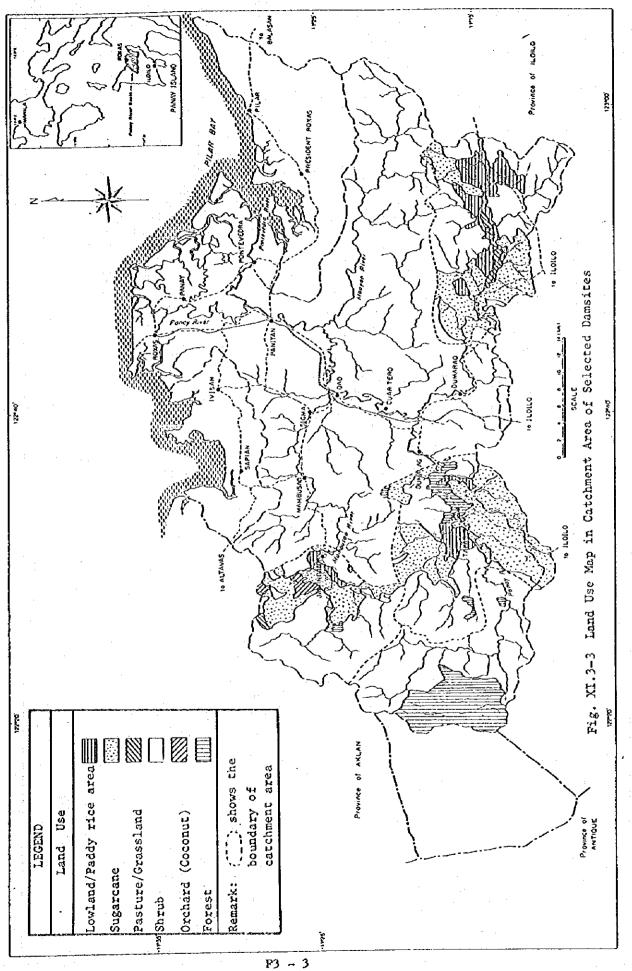
FIGURES


ß


ß


6

FÔR


APPENDIX XI

Ş

APPENDIX XII

¢,

CONSTRUCTION COST STUDY

FOR

FINAL REPORT

ON

THE PANAY RIVER BASIN-VIDE

PLOOD CONTROL STUDY

THE PANAY RIVER BASIN - WIDE PLOOD CONTROL STUDY

APPENDIX XII CONSTRUCTION COST STUDY

A A

P

3

D

TABLE OF CONTENTS

.

		Page
1.	Introduction	1-1
2.	Constitution of Construction Cost	2-1
3.	Construction Cost Estimate	3-1
	3.1 Direct Cost	31
	3.2 Indirect cost	3-4
	3.3 Contingency	3-4
4.	Construction Method	4-1
	4.1 Basic Condition	41
	4.2 River Improvement Works	4-1
	4.3 Dam Construction	4-4
	4.4 Irrigation Works	4-5

LIST OF TABLE

		Page
Table XII 2-1	Constitution of Construction Cost	T2-1
Table XII 3-1	Unit Price for Construction Cost	T3-1
Table XII 3-2	Labor Rates	T36
Table XII 3-3	Unit Price of Material	T3-7
Table XII 3-4	Hourly/Daily Equipment Cost	T3-10
Table XII 3-5	Purchase Cost of Construction Equipment	T3-12
Table XII 4-1	Hourly Production Rate of Construction Equipment	T4-1

Ô

ł,

(

1. Introduction

S

X,

Ð

The construction cost for the basic study of the Panay river project is estimated on the basis of the current cost data under the following condition and assumption.

- (1) Unit price are based at the price level as of July 1984.
- (2) The exchange rate of one (1) United States Dollar (\$) employed in the conversion into Philippine Peso (P) and Japanese Yen (¥) are P18 and ¥234, respectively, in consideration of the prevailing exchange rates during the period from the end of June to early July 1984, at the time of execution of data collection.
- (3) Price escalation rate per annum is assumed to be
 7 percent for foreign currency and 10 percent for local currency portion.
- (4) The project will be implemented by the Government or Government agency with the employment of engineering consultant and the construction works will be carried out by the contract system through the tendering.

1 - 1

2. Constitution of Construction Cost

The construction cost consists of two main items that are the direct cost and indirect cost. The direct cost is categolized into three items for this study, i.e. preparatory works, main works and miscellaneous works. 50

X

1)

The cost of main works, which covers more than eighty percent of the total direct cost, is estimated based on the work items and quantities derived from the basic design layout. This includes the material, labor and equipment cost plus the contractor's indirect cost.

The costs of preparatory works and miscellaneous works are estimated with a certain percentage of main works for minor work items. The indirect cost includes the costs of land acquisition, government administration and engineering services.

As for the contingency, the physical contingency is computed into direct and indirect cost accordingly and the price contingency is estimated for escalation of cost on the financial cost estimate.

On the other hand, the estimated cost is divided into foreign and local currency components according to their sources.

The constitution of construction cost is illustrated is Table XII 2-1.

2

1

3. Construction Cost Estimate

3.1 Direct Cost

3.1.1 General

The construction cost to be required for the project is estimated for the works items as follows;

- (1) River improvement
- (2) Dam
- (3) Irrigation
- (4) Water supply

These works are mainly divided into the civil works and electromechanical works.

The direct cost of these works are estimated by applying the following three estimating method;

- (1) Unit price multiplied by work quantities
- (2) Statistical method using the cost of other similar projects
- (3) Supplier's quotation

The first method is mainly applied for the civil works and the second and third method are used for electro-mechanical work. The statistical method is also applied for the minor items of civil works.

The back data for estimating the unit cost are attached in Data Book II.

3.1.2 Civil Works

The direct cost of civil works is estimated through the method of unit price multiplied by the corresponding quantity of work. The statistical method is applied for estimating cost of preparatory works and minor work items (miscellaneous works).

The unit price of each work item consists of cost of materials, labor and equipment. The contractor's indirect cost and mark-up are incorporated in the unit price for each work item. Development of the unit price is based on the standard construction method which is described in the following section.

3 - 1

Ċ

A

The estimated unit price for each work items adopted for the cost estimate is shown in Table XII 3-1.

t d

S.

P

4

(1) Labor cost

The labor cost is considered in as part of the local currency component of cost estimates and is calculated based on the rates listed in Table XII 3-2. Data of labor wages were gathered in Roxas City and Manila.

The labor wages include labor's fringe benefits given additionally to the basic payment, as itemized below:

- (1) living allowance
- (2) vacation and sick leaves
- (3) Bonus
- (4) Charge of social security system
- (5) medicare
- (6) state insulance and others

The basic monthly wage is principally based on twenty six (26) working days per month and eight (8) hours per day.

(2) Material cost

Prices of material available in local markets were canvassed in Manila and Roxas City in July 1984. They are principally counted into the local currency component but their certain proportions are considered into foreign currency component according to their usage of imported raw material and production facilities.

Prices of imported materials are the prevailing prices in Japan at the end of June 1984. Cost of freight, insurance, landing, handling and other incidental cost are included as part of the prices of imported material.

The unit price of material used for cost estimate is shown in Table XII 3-3.

(3) Equipment cost

P

X,

Ð

Prices of equipment are based on the current price in Japan.

The equipment cost consists of the depreciation cost, repairing cost and administration cost, which are calcurated by a ratio against delivered cost as shown in Table XII 3-4. Purchase cost of equipment is also shown in Table XII 3-5.

Equipment cost is divided into local and foreign compoment as follows,

Foreign currency component

- C.I.F. purchase cost

- Spare parts cost

Local currency component

- Landing cost
- Delivery cost
- Labor cost of repairing
- Administration cost

(4) Contractor's indirect cost

Contractor's expenses are taken account by including them proportionately in the unit prices.

It is assumed to be 30% of direct cost as detailed below:

(a) 20% for - field overhead and administration cost,

- material warehousing and handling,

- camp operation and maintenance,

- security and transportation service,
- communication charges,
- (b) 10% for corporate overhead,

profit,

- estimated risk,

- taxes, and
- other incidentals.

3 - 3

3.1.3 Electro-mechanical Works

Cost estimate of electro-mechanical works is based on past tendered record of similar project with considerations made on locality of this project.

Cost estimate of the above works includes cost on engineering design, material, manufacturing, painting, testing, packing, delivery to the site and installation works.

Principally, F.O.B. cost on imported item, ocean freight and insulance premium are considered as part of the foreign currency component while other costs are counted in local component.

3.2 Indirect Cost

3.2.1 Land Acquisition and Compensation Cost

The cost of right of way and compensation is estimated on the basis of the prevailing government expropriation cost for the land, buildings and other private properties. These unit cost are obtained at Roxas City.

3.2.2 Government Administration Cost

An allowance of 5 percent of the total estimated direct cost is provided for the government administration cost of the project.

3.2.3 Engineering Services Cost

The cost of the engineering services for implementation of the project is estimated as 3 percent of the total estimated direct cost.

3.3 Contingency

The contingency is provided to cope up with the unpredictable physical conditions and price escalation due to inflation. The physical contingency amounting to 10 percent of direct cost is assumed.

Price contingency for financial cost is estimated by applying the inflation rate of 10 percent per annum for the local currency component and 7 percent for the foreign currency component.

3 - 4

4. Construction Method

4.1 Basic Condition

 \sim

Ç

In studying the construction method, the basic conditions and assumptions are considered as follows.

(1) Construction will be executed by a contractor or contractors in a modern mechanized construction method.

(2) The conventional method and type of equipment will be principally applied, giving consideration to the local condition. For the excavation in water, however, the dredging method is selected from the economical view point.

(3) Daily working hour and shift is applied on an 8 hour shift principally. Then 6 hour per day out of 8 hour working shift is assumed to be effective operation hour by taking 0.75 for efficiency of working hours.

(4) Hourly production rate of construction equipment is estimated to meet with the site condition according to the following volume change factor of material.

Material	Loose/Bank	Embank/Bank		
Common	1.25	0.88		
Coarce/Sand & gravel	1.15	1.02		
Rock	1.60	1.15		

The result of estimate is shown in Table XII 4-1.

4.2 River Improvement Works

(1) Enlargement of river course and shortcut

Works for enlargement of river course are executed by a combination of equipment for dredging and excavation. The dredging work is mainly applied to the excavation in water by using pump suction dredger with a capacity of 1,400 HP, which is transported from the sea.

The work is proceeded from the river mouth toward the upstream side as providing spoil bank along the river where is located outside of levee. Average distance from the river to spoil bank is assumed to be about one (1) km.

The excavation above water level is performed by using back hoe, bulldozer and dump truck.

The excavated material is utilized for levee embankment to the spoil bank provided along the river in case of excess to the embankment. Average hauling distance of material is estimated at 500 m.

(2) Levee embankment

The levee is constructed along the river by means of embankment of carth material.

The embankment material is obtained from surrounding area and utilize the excavated material of river used for excavation with assistance of bulldozer and for loading the material into dump truck.

Dump truck is used for handling the material to embankment site or spoil bank. Embankment is executed by using tamping roller for compaction, bulldozer for spreading and water tanker for sprinkling the water to control moisture contents of material.

Inspection road supplemented to the levee is constructed together with levee. After embankment, gravel metaling is performed by using motor grader, pneumatic roller and macadam roller.

4 - 2

T

32

£

Sod facing is conducted by man power for slope protection.

(3) Revetment and related structure

The revetment and related structure, such as bridge, drainage aluice, diversion weir and others, are constructed gradually according to the progress of enlargement of river course.

These construction works consist mainly of excavation, embankment, backfill, concrete, massonry, gabion and piling, which are conducted by conventional method and equipment described as follows;

Works

Method & Equipment

a) Excavation

2

1. A.

- excavation & loading
- hauling
- spoiling
- b) Embankment
 - spreading
 - cómpaction

c) Backfill - backfill

- d) Concrete
 - mixing
 - transportation
 - placing

- compaction

- e) Massonry
 - placing boulder & concrete
 - mixing concrete
- f) Gabion
 - — production & placing
- g) Piling
 - piling

Back hoe & Buildozer Dump truck Bulldozer

Bulldozer

Vibration roller or tamper

Tamper and manpower

Concrete mixer

Agitator truck or concrete cart Truck crane or direct placing with chute and conveyor

Concrete vibrator

Manpower

Concrete mixer

Manpower

Diesel pile hammer

1 - 3

4.3 Dam construction

Dam construction is proceeded from the construction of diversion tunnel for river diversion. After completion of diversion tunnel, the river is diverted to the tunnel and cofferdam is constructed. Subsequently, main dam is constructed in parallel with various structures ie, intake, spillway, waterway, power station, switchyard and other related structures.

(1) Tunnel

The diversion tunnel is excavated by top heading bottom bench cut excavation method, using following equipment.

<u>Works</u>

Equipment

Leg hammer Dozer shovel

Dump truck

- Drilling - Loading - Hauling - Air supply
- Ventilation
- Water supply

Submersible pump

Air compressor

The steel support is planned to be installed for stabilization of excavated tunnel periphery.

Fan

After excavation, tunnel is lined by reinforced concrete, which is placed by concrete pump and sliding steel form. Concrete is produced by batcher plant and transported by agitator truck to the concrete pump.

(2) Excavation

Excavation for dam and structures is conducted by a combination of bulldozer, dozer shovel and dump truck. Addition to those equipment, crawler drill, leg hammer and air compressor are used for rock excavation.

(3) Embankment

For embankment of dam, soil compactor is used for core and filter embankment and bulldozer is used for rock embankment. ું

(4) Concrete

S

Ŷ,

1

Concrete work is mainly devided into two kind, dam concrete and structural concrete.

Dam concrete is placed by using cable crane. Concrete is produced by batcher plant and transported by transfer car on the banker line to the cable crane.

Structural concrete is placed by a combination of truck crane with bucket, agitator truck and batcher plant.

Concrete vibrator powered by compressed air is used for concrete compaction.

4.4 Irrigation works

Major construction works of irrigation are head works, canal for irrigation and drainage, and related structures, such as siphon, turn out, culvert, drop and so on.

The head works and canal are constructed during the same period and the construction of related structures are carried out gradually as corresponding to the progress of canal construction.

The canal construction consists mainly of excavation and embankment, which are conducted by using backhoe with assistance of bulldozer for excavation and loading, dump truck for hauling, bulldozer for spreading and vibration roller for compaction.

The embankment material is obtained from borrow pit located surrounding area of canal and also utilize the excavated material of canal excavation.

Construction method and equipment to be applied for head works and related structures are the same as those of related structures of river improvement work.

5

Ð

TABLES	
an a	
APPENDIX XII	
Details a second distributed BR succession and the first of the first second se Second second secon second second sec	
이번 문화는 것이 같아요. 그렇게 말했다. 그는 것 같아요. 같이 많이 나는 것이 없는 것이 없다.	

F.C -(a) Preparatory 5-10% of (b) & (c) L.C F.Ç Equipment Cost L.C L.C Labour Cost (b) Direct Cost (A) Direct Cost F.C Material Cost L.C 2 F.C Contractor's Indirect Cost L.C F.C Construction (c) Miscellaneous 3-10% of (b) Cost L.C Vorks F.C (d) Physical 10 % of (a), (b) & (c) L.C Contingency L.C Compensation Cost (e) Administration Cost 5% of (A) L.C (f) Indirect Cost -(B) F.C Engineering Service 5% of (A) (g) P'C (h) Physical 10% of (e), (f) & (g) F.C L.C Contingency F.C Price Contingency F.C 7%, L.C 10% L(C) L.C

TABLE XII 2-1 CONSTITUTION OF CONSTRUCTION COST

9

A

Ķ

 $T^2 - 1$

Î

Ú.

TABLE XII 3-1 UNIT PRICE FOR CONSTRUCTION COST (1)

A. Excavation and Dredging Unit F.C (\$) L.C (\$) Total (\$) ^т3 1.46 0.77 2,23 Common for Cofferdom A - 1 A - 2 Common m3. (a) L = 250 m1.10 0.69 1.79 (b) L = 500 m11 1.25 0.78 2.03 (c) L = 1000 mn. 1.51 0.95 2.46 (d) L = 2000 m17 3.50 2.15 1.35 m3 1.07 1.67 A - 3 Common by Man Power A - 4 Rock _m3 (a) L = 250 m5.51 4.25 9.76 (b) L = 500 mU1 5.75 4.39 10.14 (c) L = 1000 m41 6.05 4.59 10.64 (d) L = 2000 m11 6.86 5.09 11.95 (e) L = 5000 mŦ₽ 8.51 6.12 14.63 A - 5 Rock, Loading & Hauling m3 (a) L = 2000 m3.02 1.89 4.91 (b) L = 1000 m11 2.21 1.39 3.60 (c) L = 500 m11 1.91 1.19 3.10 (d) L = 250 m11 1.67 1.05 2.72 ¥7 (e) L = 5000 m4.67 2.92 7.59 A - 6 Rock, Spreading <u>m</u>3 0.34 0.21 0.55 Rock, Blasting _m3 3.50 6.49 A - 7 2.99 A – 8 Tunnel m3 33.06 13.35 46.41 m3 A - 9 Dredging 1.60 1.05 2.65

T3 - 1

(to be continued)

Ł

B. En	ıbarkment	•.				
-		<u>Unit</u>	<u>F.C</u> (\$)	<u>L.C</u> (\$)	<u>Total</u>	(\$)
B - 1	Common, for Cofferdom	m ³	1.68	0.91	2.59	·
B - 2	Common, Utilizing Excavated Material	т <mark>3</mark>	0.47	0.38	0.85	· · ·
B - 3	Common, Borrowed Material	m3	1.72	1.16	2.88	
B – 4	Common, Compaction	m ³	0.69	0.56	1.25	·
B - 5	Sand & Gravel Pavement	_m 2	3.07	2.28	5.35	30 C
B – 6	Sand & Gravel, Spreading & Compaction	m2	0.29	0.22	0.51	
B – 7	Backfill	_m 3	1.31	1.73	3.04	-
B – 8	Backfill by Tamper	m ³	0.21	1.04	1.25	
C. Co	oncrete Works				· · ·	
		<u>Unit</u>	<u>F.C</u> (\$)	<u>L.C</u> (\$)	<u>Total</u>	(\$)
C - 1	Concrete, Type A (180 kg)	m3	32.14	24.92	57.06	
C – 2	Concrete, Type B (210 kg)	с _т	35.55	25.68	61.23	
C - 3	Concrete, Type C (300 kg)	" 3	39.78	27.95	67.73	
C – 4	Concrete Material, Type A	т ³	24.85	18.06	42.91	
C - 5	Concrete Material, Type B	m3	28.26	18.82	47.08	
с - 6	Concrete Material, Type C	m3	32.49	21.09	53.58	
			A	and the second	1.1.1.1.1.1.1	

TABLE XII 3-1 UNIT PRICE FOR CONSTRUCTION COST (2)

ß

Ż

8

Þ

(to be continued)

TABLE XII 3-1 UNIT PRICE FOR CONSTRUCTION COST (3)

			·	а.
	Unit	<u>F.C</u> (\$)	<u>L.C</u> (\$)	Total (\$)
- 8 Aggregate, L = 2000 m	m3	12.11	8,92	21.03
- 9 Aggregate Processing	m ³	3.37	2.44	5.81
- 10 Concrete Mixing	m3	2.19	1.62	3.81
- 11 Concrete Transportation				e a constante
(a) $L = 2000 \text{ m}$, m3	2.21	1.48	3.69
(b) L = 1000 m	m ³	1.57	1,05	2.62
(c) $L = 500 \text{ m}$	_m 3	1.25	0.85	2.10
		÷.,		
- 12 Concrete Placing by 15-t Truck Crane and Curing	m ³	3.53	4.19	7.79
- 13 Concrete Placing by Man-	_m ع .	_	3.44	3.44
Power & Curing		-		
- 14 Concrete for Dam	m ³	30.73	23.26	53.99
- 15 Concrete Mixing, Transpor & Placing for Dam	tation m3	5.88	5.20	11.08
- 16 Concrete for Tunnel Linnin	ng m ³	45.05	33.05	78.10
- 17 Concrete Transportation, Placing & Curing for Tunn	el m ³	10.37	10.34	20.71
- 18 Rorm	^m 3	1.48	9.09	10.57
- 19 Production of Form	10 m ²	1.06	51.66	52.72
			. 1. 2	e Le recent
. Steel Works				
	Unit	F.C (\$)	L.C (\$)	<u>Total</u> (\$)
	· · ·			
) - 1 Reinforcement Bar	ton	475.42	218.87	694.29
- 2 Steel Support	ton	803.82	553.45	1,357.27
na 1919 – Jacoberg € († 1917) 1919 – Jacoberg € († 1917)	T3 - 3		(to be	continued)

Ð

TABLE XII 3-1 UNIT PRICE FOR CONSTRUCTION COST (4)

2 ° -

E. Others

E. Uti	hers	<u>Unit</u>	<u>F.C (\$)</u>	L.C (\$)	<u>Total (\$)</u>
E - 1	Clearing, Grubbing, Stripping	_m 2	0.38	0.43	0,81
	Sod Facing	2		3.11	3.11
E - 2	Sou racing	121			
E – 3	R.C Pipe				
	(a) 1 m	m	1.16	55.43	56.59
	(b) 0.6 m	r	0.77	36.95	37.72
	(c) 0.4 m	m	0.29	13.86	14.15
	(d) 0.2 m	m	0.19	9.24	9.43
E - 4	Steel Sheet Pile	m	40.33	12.40	52.73
Е – 5	Wet Rubble Massony	2 m ²	7.78	7.17	14.95
E - 6	Gabion, Mattress	m	14.05	6.25	20.30
E - 7	Gabion, Cylinder	m	4.87	3.87	8.74
E – 8	Wooden Pile	ัก	0.87	8.19	9.06
E - 9	Cow Groyne			· · · ·	
	(a) Lange	ent.	393.00	423.45	816.45
	(a) Large		322.47	338.68	661.15
	(b) Medium (c) Small		76.50	103.03	179.53
Е 10	Rubber dam $(3 \text{ m} \times 7 \text{ m})$	set	660,000	100,000	760,000
F. Ну	dromechanical Equipment				
		Unit	F.C (\$)	<u>L.C (\$)</u>	<u>Total (\$)</u>
		•			
	1. Diversion Gate	ton	4,000	400	4,400
	2. Intake Gate	ton	5,000	500	5,500
	3. Tailrace Gate	' ton	4,000	400	4,400
·	4. Spillway Gate	ton	4,500	450	4,950
	5. Intake Screen	ton	3,0002	300	3,300

P

Ð

R

T3 - 4

TABLE XII 3-1 UNIT COST FOR CONSTRUCTION COST (5)

		<u>Unit</u>	<u>F.C</u> (\$)	L.C (\$)	<u>Total (\$)</u>
6.	Penstock Steel Pipe	ton	2,500	250	2,750
7.	Butterfly Valve	ton	5,500	550	6,050
8,	Steel Lining in Tunnel	ton	2,000	200	2,200

Û

3

Ð

£

Note, Exchange rate: 1 US\$ = \$ 234

T3 - 5

	Description	Unit	<u>Cost (P)</u>	Equivalent (\$)
1.	Foreman	md	76	4.22
. 2.	Common Labor	md	35	1.94
3.	Operator			
	Operator	md	63	3.50
•	Assistant Operator	md	45	2,50
4.	Mechanic			
	Mechanic	md	63	3.50
	Assistant Mechanic	md	45	2.50
5.	Welder	md .	55	3.06
6.	Electrician	md	63	3.50
7.	Driver	md	45	2.50
8.	Skilled Labor	md	51	2.83
9.	Dredger Master	md	90	5.00
10.	Dredging Crew	md	60	3.33

Note, Exchange rate: 1 US\$ = ¥234

T3 - 6

Se la

P

ß

Þ

					Unit: (1 US\$ =	US \$ = 18₽ =	= 234 ¥	
				COMPONENT				
	Description	Unit	Price		reign		ocal	
توجد می				p	Price	%	Price	
1.	Fuel and Lubricant	-				•		
	Gasoline	l	0.46	60	0.28	40	0.18	
	Dlesel	1	0.35	60	0.21	40	0.14	
	Motor Oil	1	1.22	60	0.73	40	0.49	
	Gear Oil	1	1.47	60	0.88	40	0.59	
	Grease	kg	0.87	60	0.52	40	0.35	
2.	Reinforcing Steel Bar	kg	0.47	75	0.35	25	0.12	
3.	Portland Cement	ton	72.22	65	46.94	35	25.28	
4.	Aggregate and Sand					·	a tri g	
	River Run (non screened)	m ³	5.56	0	·	100	5.56	
	River Run (screened)	т 3	8.89	35	3.11	65	5.78	
•	Sand	6 _m	6.11	0		100	6.11	
•	Boulder (20-30 cm)	"m ³	6.67	0	-	100	6.67	
5.	Wood	٤.					· · · ·	
	Coconut Trunk	no	2.78	0	 .	100	2.78	
	Plywood 1/4 x 4' x 8'	pes	4.17	0	-	100	4.17	
	Timber, Squer	6 foot	0.33	0	·	100	0.33	
•	Bamboo	pes	2.22	0	-	100	2,22	
6.	Concrete Product	· ·	•					
	R.C Pipe 1 m	L.M	33.33	0	· · · - ·	100	33.33	
÷.,	R.C Pipe 0.6 m	L.M	22.22	0	• *	100	22.22	
	R.C Pipe 0.4 m	L.M	8.33	0		100	8.33	
	R.C Pipe 0.2 m	LIM	5.56	0		100	5.56	
7.	Electric Power	KWH	0.11	60	0.07	40	0.04	
		17441	~ * * * *		~1~1	•••		

TABLE XII 3-3 UNIT PRICE OF MATERIAL (1)

•

(to be continued)

13 - 7

-

ŀ

G

Þ

		. ·		· .	Unit: (1 US\$	US\$ = 18P	= 234 ¥)		
		•	• •		COMPONENT				
	Description	Unit	Price	Fo	reign		ocal		
				%	Price	%	Price		
8.	Blasting	· · ·					- 1		
0.	Dynami te	kg	5.18	50	2.59	50	2.59		
	Detonator	pc	1.50	50	0.75	50	0.75		
•	AN - FO Powder	kg	2.14	50	1.07	50	1.07		
9.	Bit and Rod				 		:		
.	Cross Bit 34	р́с	35.19	85	29.91	15	5.28		
	Cross Bit 65	pc	140.78	85	119.66	15	21.12		
	Rod 22 L = 1.7 m	pc.	45.25	85	38.46	15	6.79		
÷	Rod for Crawler Drill	pc	145.90	85	123.93	15	21.87		
	Pick Steel	pc	10.06	85	8.55	15	1.51		
10.	Steel Material				• 	·			
	Steel Plate	ŧ	467.96	80	374.36	20	93.60		
	H Shape Steel	t	532.05	80	425.64	20	106.41		
	Steel Pipe Piles	t	705.13	80	564.10	20	147.44		
	Sheet Pile	t	705.13	80	564.10	20	141.03		
11.	Metal Form & Access		· · ·	·					
	Metal Form 300 x 1500	\mathbf{pc}	15.08	85	12.82	15	2.26		
	Form Tie	pc	0.25	85	0.21	15	0.01		
•	Separator	pc	0.33	85	0.28	15	0.05		
	Pipe Support	pc	17.60	85	14.96	15	2.64		
	Cone	pc	0.22	85	0.19	15	0.03		
	Washer	pc	0.15	85	0.13	15	0.02		
12.	P.V.C Water Stop	เล	11.56	85	9.83	15	1.73		

TABLE XII 3-3 UNIT PRICE OF MATERIAL (2)

(to be continued)

ي - ر ا

	.	· · ·	Unit: US (1 US = 18P = 234 1				
	•			Сомго	NENT		
Description	Unit	Price	Foreign		Local		
			%	Price	%	Price	
		•		· · · · ·			
13. Others	. · .				: . -		
Barbed Wire	kg	0.75	70	0.53	30	0,22	
Nail	kg	1.06	70	0.74	30	0.32	
Machine Bolt & Nut	kg	0.89	70	0.62	30	0.27	
Welding Rod	kg	2.11	70	1.48	<u>3</u> 0	0.63	
Tire 8.25 - 20 - 14	pe	144.38	50	72.19	50	72.19	
Tire 9.00 - 20 - 14	pc	212.39	50	106.19	50	106.19	
Tire 11.00 - 20 - 14	рс	247.73	50	123,86	50	123.86	

TABLE XII 3-3 UNIT PRICE OF MATERIAL (3)

Ì

Ş

ł

TABLE XII 3-4 HOURLY / DAILY EQUIPMENT COST (in USS) (1)

24.23 5.39 5.63 8.8 15.52 17.41 7 ..68 9.48 2.85 10.01 15.76 2.42 13.30 32.37 2.55 fotal Daily 8 12.07 61.13 3.88 10.11 6.51 19.91 11.78 3.79 4.87 17.13 0.65 0.81 23.06 6.51 Gouinnent Cout 의 2.08 47.56 18:17 30, 16 5.83 27.80 16.43 8.79 1.68 14.46 1.35 76.70 1.1 20.93 15.98 17.72 21.36 6.83 1.92 7.11 8.43 2.4) 3.76 18.57 6.93 37.93 16.07 12.82 13.44 61.9 2 10.16 2,78 9.15 5.23 2 7.07 2.27 1.68 6.71 201 3.64 11.93 2.32 0.54 0.33 13.26 8.86 7.84 2.14 8.23 0.25 0.31 17.94 12.11 0.49 3.45 11.68 13.21 4.53 δ Rule L.C. -Adminiate 0.0078 0.0083 0.0074 0,0061 20.04.07 2110.0 0.0385 0.0082 0.0067 0.0120 0.0088 0.0103 0.0077 0.0417 0.0064 0.0061 0,006) 1,0064 0.0064 0.0058 0.0417 0.006 0,0054 0.007 0,007 100'0 200*0 01007 0.04 000 5 0.41 5.39 2.90 1.21 5.00 0.79 0.39 1.43 0.56 0.66 2.73 0.43 0.18 1,80-1 20 0.10 0.32 5.11 3.64 0.18 0.83 3.80 2.45 1.50 1 17 0.26 0.55 0.66 3.56 1.27 ч Ц থ Ropairing 6.88 2.03 11.8 16.97 17.72 24.66 9.35 3.70 1,90 6.68 2.61 0.00 12.75 -0.84 5.62 2.55. 16-39 0.58 23,83 0.85 11.44 13-51 5.67 6.98 2.77 1.23 4.97 **30.**0 0.47 3.89 ь с 5 0.0121 0.0113 0.0141 0.1333 0.0058 0.0167 0.1111 0.0125 0.0133 0-0125 0.0106 0.0117 0.0120 0.0111 1010-0 0.0107 0.0169 0.1111 0,0833 0.0833 0.0962 0.0132 0.0133 0.0058 0.0058 0.0109 0.013 0.011 0.016 kate 10.0 খ 10.22 7.28 4.35 9 50 3 92 0.63 5.24 0.30 0.1 5.06 5.73 4.92 4 33 6.7 8.3 2, 71 3.03 1.36 1.02 0.76 2.87 1.12 1.33 4.85 3.24 2.87 1.10 1.43 0.38 0.88 . 2 2 à Depreciation 22.90 20.25 15.68 1.50 U 2 17.42 9.00 5.43 1.06 3.02 11.49 4.50 5.32 11.71 5.60 5.53 19.39 21.23 3.50 77.77 10.84 12.01 1.57 12.95 5. 3 S 5.73 40.86 29.10 8.93 11.46 1.21 ণ 7110.0 7010.0 7910-0 7110.0 1910.0 0.0161 0.0135 7110.0 0.0164 0.0138 0.0136 0.0136 0.0231 0.0277 0.0188 0.0265 0.018 0.013 0,015 0.015 0.015 0.015 0.015 0.125 itate 0.013 0.125 0.346 0.24 0.25 0.25 ব Adni nis.Lration 6 ę \mathbf{C} pn.tr-Rn te \widehat{s} 3 ្ល $\frac{2}{3}$ $\hat{\mathbf{Q}}$ 2 S 3 ŝ in. \mathbf{S} ŝ 5 3 5 9 Depre- Reing cia-8 90 ŝ ŝ g ion 2 ç ģ 8 Q6 g ŝ ŝ g 8 8 2 8 8 8 8 g g ŝ 8 8 ŝ ŝ 8 8 90 5,000 360 260^d 5,600 3,900 3,250 360 0,400 5,000 6,000 6,650 7,700 , 700 , 700 5, 500 4,800 6,900 6,000 6,000 6,600 6,600 5,400 5,400 5, 600 720 12° 6,900 6,000 6, 500 373 Lífe Tine 9 33,841 22,639 207,178 220,215 30,695 74,968 98.224 10,391 49,874 86,029 50,903 161,238 20,558 7,069 1,318 138,769 122,475 33,396 39,773 141,919 1.266 42,109 64,764 41,310 719 40,875 115, 1:39 605 605 39.104 194,684 TOTOL $\widehat{\mathbf{C}}$ Purchuse Cost 6,679 8,175 26,139 4,528 17,206 32,248 4,112 24,495 7.995 28,384 38,937 44,043 29,028 19,645 22,078 9,975 6,768 8,262 2.414 27,674 130 130 8,422 12,953 6,981 4 L, 436 5.821 14,994 ģ 2 253 C T € 28,990 65,742 33,048 16,446 1,054 97,980 .04,556 27,073 18, 111 68,823 27,922 5,655 30, 695 26,717 31,818 03,535 32,700 23, 283 1,013 51,811 78.579 88,313 39,899 599 33,687 55,747 76,172 111, 111 59,974 484 с) ж 3 17-m²/min to.5-m³/min Ĩ, 2,2-m³ 80-Kg 80.6 э Х 0, 6-m³ 32-t 21-6 21-1. 13-6. 3.7-m į 0.6-t -t-oc 50**-**1 10-1 ŝ 5-t t e 11 į 15-t 1-20 11-1 ŝ 'n Description Bulldozer w/ripper Bulldozer v/ripper Concrete Vibrator Concrete Vibrator Vibratory Roller Preumatic Koller Vibratory Roller ଞ Swamp Buildozer Soil Compactor Tructor Shovel Plat Red Truck Air Compressor Аіг Сотргеявог Concrete limp Crewler Drill Mator Crader Mater Tanker Agitator Car Road Roller 19 Track Crane Track Crane Track Crane Leg Ilamner Dump Truck Dump Truck Buildozer Bulldozer Bulldozer Buck Hoe Tamper Itom 긐 . 21 5 Ξ റ്റ ۴--E. 83 ġ 2 ଷ୍ପ ನ ទ ž ŝ 8 R ខ្ល

(to be continued)

T3 - 10

Specification V_{12}	Description M/T N/T H/T H/T <t< th=""><th></th><th></th><th>Sanding &</th><th></th><th></th><th></th></t<>			Sanding &			
	$ \begin{pmatrix} (a) & (d) & (d) & (e) \\ 0.7 & 0.3 & 22.0 \\ 0.5 & 0.09 & 7.5 \\ 0.3 & 0.029 & 1.5 \\ 0.3 & 0.021 & 3.5 \\ 0.3 & 0.021 & 3.5 \\ 0.1 & 0.2 & 0.2 & 1.5 \\ 0.2 & 0.2 & 0.2 & 0.5 \\ 0.3 & 0.015 & - \\ 0.4 & 0.5 & 0.2 & 0.5 \\ 0.5 & 0.1 & 0.5 & 0.5 \\ 0.5 & 0.006 & 60^{6} \\ 0.6 & 0.5 & 0.5 \\ 0.5 & 0.2 & 0.5 & 0.5 \\ 0.7 & 0.5 & 0.0 & 0 \\ 0.8 & 0.1 & 0.2 & 0.6 \\ 0.6 & 0.6 & 0.6 \\ 0.6 & 0.6 & 0.6 \\ 0.7 & 0.5 & 0.0 & 0.6 \\ 0.7 & 0.7 & 0.7 \\ 0.7 & 0.7 & 0.$				7.0	Co et	Remarks
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.7 0.3 22.0 0.5 0.09 7.5 0.3 0.029 1.5 1.5 0.3 0.029 1.5 1.5 0.3 0.029 1.5 1.5 0.3 0.029 1.5 1.5 0.3 0.029 1.5 1.5 0.3 0.029 1.5 1.6 0.11 37.0 1.10 0.015 - 2.0 3.1 37.0 1.100 1.100 1.400 2.0 3.1 37.0 2.0 3.1 37.0 2.0 3.1 37.0 2.0 1.300 1.400 2.0 3.1 37.0 30 0.50 200 30 122 80 ^k 480 ^k 1,1			<u>ل</u> م الم			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.5 0.09 7.5 1.5 0.13 0.029 1.5 1.5 0.13 0.029 1.5 1.5 0.11 0.11 0.11 1.6 0.015 - - 1.0 0.015 - - 1.0 0.015 - - 1.0 0.015 - - 1.0 0.015 - - 1.0 0.015 - - 1.0 0.015 - - 1.10 0.015 - - 1.10 0.015 - - 1.10 1.100 1.1400 1.137.0 1.1 350 100 600 1.1400 1.1 350 100 600 1.1400 1.1 350 102 1.137.0 1.1400 1.1 350 102 1.137.0 1.1400 1.1 1.1200 1.122 800 ^{ku} 1.1 1.1 550 122 80 ^{ku} 1.1 1.1 550 122 80 ^{ku} 1.1 1.1 10 20 ^{ku} 20 ^{ku} 20 ^{ku}				2,687	is - P	
	0.3 0.029 1.5 1.5 5.0 0.53 3.7 1.5 5.0 0.53 3.7 1.0 0.015 - 3.1 1.0 0.015 - 4.0 1.0 0.015 - 1.400 1.0 0.11 37.0 1.400 1.00 1.100 1.1400 1.400 1.100 1.100 1.400 2.5 1.100 1.100 10 600 1.1 800 200 200 20 1.1,200 122 80 ^{kk} 1,1 1.200 122 80 ^{kk} 1,1 1.200 122 80 ^{kk} 1,1 1.400 20 ^{kk} 20 ^{kk} 1,1 1.400 122 80 ^{kk} 1,1 1.400 10 20 ^k	÷			1,256	•	: • •
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.5 0.21 3.5 1.5 5.0 0.59 3.7 1.0 0.013 - 1.1 0.013 - 1.1 0.013 - 1.1 0.013 - 1.1 0.013 - 1.1 0.013 - 1.1 0.013 - 1.1 0.05 0.013 1.1 0.05 0.006 1.1 0.05 0.0 1.1 0.05 0.006 1.1 0.05 0.006 1.1 0.05 0.006 1.1 0.05 0.006 1.1 0.05 0.006 1.1 0.012 0.02 1.1 0.012 0.02 1.1 0.012 0.02 1.1 0.012 0.02 1.1 0.01 2.044 1.1 0.01 2.044 1.1 0.01 2.044		5		481		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		ð •		947	· .	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.0 0.015 - 2.0 3.1 37.0 1.37.0 1.1400 1,400 50 10 60 1,40 50 0.5 0.006 60 1,1 50 1.200 193 480 ^{kl} 1,1 7 99 1.22 80 ^{kl} 1,1 4 1 200 10 20 ^{kl}			-	2,197	•	:
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.300 3.1 37.0 1.300 1.300 1.400 1.400 1.300 50 10 60 1,1 50 10 60 1,5 50 0.5 0.006 60 1,5 1.200 193 480k ⁴ 1,1 1,200 193 480k ⁴ 1,1 1,200 122 80k ⁴ 1,1 1,200 193 480k ⁴ 1,1 1,200 102 20k ⁴ 1,1 1,200 102 20k ⁴ 1,1		61		217	۰.	
II.300 I.400 $2,529,000$ $110,500$ 11.400 11.300 11.300 11.300 11.300 11.300 11.300 11.300 11.300 11.300 11.300 11.300 11.300 11.300 $11.300,322,375$ $11.300,322,375$ $11.300,322,375$ $11.300,322,375$ $11.300,300$ $11.300,300$ $11.300,300$ $11.300,300$ $11.300,300$ $11.300,300$ $11.300,300$ $11.300,300$ $11.300,300$ $11.300,300$ $11.300,300$ $11.300,300$ $11.300,300$ $11.300,323,375$ $11.300,323,375$ $11.300,323,375$ $11.300,323,375$ $11.300,323,375$ $11.300,323,375$ $11.300,323,375$ $11.300,323,375$ $11.300,323,375$ $11.300,323,375$ $11.300,323,375$ $11.300,323,375$ $11.300,323,375$ $11.300,323,375$ $11.300,323,375$ $11.300,323,375$ $11.300,323,375$ $11.300,323,375$ $11.300,323,375$ $11.301,371$ $11.301,371$ $11.301,371$ $11.301,371$ $11.301,371$ $11.301,321$ $87,033$ 101.122 $800,120$ 101.122 101.1271 $21.30,302$ 101.1271 $21.30,302$	1.300 1.400 1.400 2.3 1.400 50 10 60 1,5 1.400 0.5 0.05 60 1,2 1.400 200 200 200 20 1.400 10 60 1,2 1.400 1,20 102 1,1 1.200 122 80 ^{ku} 1,1 1.400 122 80 ^{ku} 1,1 1.400 122 80 ^{ku} 1,1 1.400 122 80 ^{ku} 1,1 1.550 122 80 ^{ku} 1,1 1.40 10 20 ^{ku} 1,1		·		9,263		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	410 800 600 1,2 50 10 60 60 51 05 0.006 60 51 350 200 200 51 350 50 75 1,2 51 1,200 193 480 ^{kW} 1,1 7 99 10 20 ^{kW} 1,1 4 (h) 10 20 ^{kW} 1,1				2.667,071	15	
Anchor Barge 50 10 60 53,400 4,250 58,252 14,558 58,252 14,558 56,252 58,552 14,558 56,252 57,252 1,922 51,925 43,121 10,7182 54,121 192,489 44,121 192,149 1,210,1718 2,549 44,121 192,489 44,121 192,449 44,121 192,449 44,121 192,449 44,121 192,449 44,121 192,449 44,121 192,449 44,121 192,449 44,121 192,449 44,121 192,449 44,121 192,449 44,121 192,449 44,121 192,450 1,92 480 ⁴⁴ 1,196,660 11,111 1,111,111 1,211,717 27,799 1,111,717 27,99 1,111,717 21,99 1,111 1,11,11,11,11,11,11,11,11,11,11,1	50 10 60				1,290,300	1	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	•••• 05 0.0006 60° •• 350 200 200 •• 350 50 75 •• 1,200 193 480 ^{kw} •• 1,200 193 80 ^{kw} •• 1,200 102 1,1 •• 1,200 103 80 ^{kw} 1,1 •• 1,200 102 20 ^{kw} 1,1 •• 1,1 200 ^{kw} 1,1		•		58,232	•	
-(h) 800 200 200 (5,000 (5,000 (4,11) (11,11) 107,828 (11,11) 107,828 (17,10)	 */h 800 200 200 200 ************************************	-	•		108		
m^3/h^{h} 350 50 75 $213,700$ $2,975$ $2,189$ $218,864$ $54,716$ $218,864$ $54,716$ $218,864$ $54,716$ $218,864$ $54,716$ $218,703$ $48,121$ 122 $133,333$ 7.225 $1,922$ $48,121$ $192,483$ $48,121$ $227,929$ $1.1,217$ $227,929$ $1.1,717$ $22,1450$ $89,7798$ $22,1450$ $89,7798$ $22,1450$ $89,7798$ $22,1450$ $89,7798$ $22,1450$ $89,7798$					121,313		•
4^{1} 85 57.6 102 $183,333$ $7,225$ $1,92,483$ $48,121$ $192,483$ $48,121$ $192,483$ $48,121$ $192,483$ $48,121$ $192,483$ $48,121$ $192,483$ $48,121$ 1727 $327,929$ $1,311,717$ $1,312,718$ $1,312,718$ $1,312,718$ $1,312,718$ $1,312,718$ $1,312,718$ $1,312,718$ $1,312,718$ $1,312,718$ $1,312,718$ $1,32,7450$ $1,312,7450$ $1,312,718$ $1,312,718$ <td>- 85 57.6 102 - 1,200 193 480^{kw} 1,1 - 550 122 80^{kw} 1,1 + (h) 10 20^{kw} 10 20^{kw} 1,1 - 10 20^{kw} 1,1 - 10 20^{kw} 1,1</td> <td></td> <td></td> <td>÷</td> <td>218,864</td> <td>- - </td> <td></td>	- 85 57.6 102 - 1,200 193 480 ^{kw} 1,1 - 550 122 80 ^{kw} 1,1 + (h) 10 20 ^{kw} 10 20 ^{kw} 1,1 - 10 20 ^{kw} 1,1 - 10 20 ^{kw} 1,1			÷	218,864	- - 	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-t 1,200 193 480 ^{kW} 1,1 -m ² 550 122 80 ^{kW} 1,1 + (h) + (h)				192,483		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-m ² 550 122 80 ^{kW} -m ³ 80 10 20 ^{kW} + (h)				1,311,717	e f	
					348,131		
Remarks: $(\Delta, (g) = (c) \cdot x \cdot 85)$ $(2 \cdot (h) = (r) + (g) / 9 + (g) + (g) + (g) + (g) + (h)$ $(3 \cdot (1) = (1) \times 0.25$	Remarks: $(\underline{L} \ (\underline{g}) = (c) \times \85 $(\underline{2} \ (b) = (f) + (g) / 99$ $(\underline{2} \ (i) = (f) + (g) + (h)$ $(\underline{4} \ (j) = (i) \times 0.25$				89,798		
Remarka: $(a_1 = (c) \cdot x \cdot s5)$ $(a_2 = (c) + (g) / 99$ $(a_1) = (c) + (g) + (h)$ $(a_2 = (a_1) \times 0.25$ $(a_3 = (a_1) \times 0.25$	Remarkas: $(\underline{\lambda}, (\underline{g}) = (c) \cdot x$ \$35 $(\underline{\lambda}, (c) = (c) + (g) / 99$ $(\underline{\lambda}, (c) + (g) + (g) + (h))$ $(\underline{\lambda}, (c) = (i) \times 0.25$						
$\frac{1}{\sqrt{2}} (k) = (c) + (g) / (9)$ $\frac{1}{\sqrt{2}} (1) = (c) + (g) + (h)$ $\frac{1}{\sqrt{2}} (1) = (1) \times 0.25$	$\frac{1}{\sqrt{2}} \langle \mathbf{h} \rangle = \langle \mathbf{f} \rangle + \langle \mathbf{g} \rangle / \langle 9 \rangle$ $\frac{1}{\sqrt{2}} \langle \mathbf{i} \rangle = \langle \mathbf{f} \rangle + \langle \mathbf{g} \rangle + \langle \mathbf{h} \rangle$ $\frac{1}{\sqrt{4}} \langle \mathbf{i} \rangle = \langle \mathbf{i} \rangle \times 0.25$	· · ·					÷
$\frac{2}{\sqrt{2}} (1) = (1) + (2) + (3) / 99$ $\frac{2}{\sqrt{2}} (1) = (1) \times 0.25$ $\frac{2}{\sqrt{2}} (1) = (1) \times 0.25$	$\frac{2}{2} \{ h \} = \{ f \} + \{ g \} / 9 \}$ $\frac{2}{2} \{ i \} = \{ f \} + \{ g \} + \{ h \}$ $\frac{2}{4} \{ i \} = \{ i \} \times 0.25$						
$\frac{1}{\sqrt{2}} (1) = (1) \times 0.25$	$\frac{2}{\sqrt{4}}$ (i) = (i) + (g) + (h) $\frac{2}{\sqrt{4}}$ (j) = (i) × 0.25	•.		·	-		•
$(4) = (3) = (3) \times 0.25$	$(4 (3) = (1) \times 0.25$				•	•	
				•			
		-		:			
						-	
			-				

•

÷

£

Ľ

1

()

A.

P

Ş

TABLE XII 3-5 PURCHASE COST OF CONSTRUCTION BOULTMENT (in USS) (1)

										1 × 1 × 1 × 1				
T ten	Description		Slie V	Specification		P.0.B (F)	Freight(F)	Insurance	C.I.P (P)	Delivery	G	Delivered Comb	5.4 L	itema.rk.s
			1/12	1/1					-	COM (1.)	с К	2	['U) 6.[
(u)	(P)	• • • •	(c)	(q)	(e)	(t)	77	<u>/2</u>	<u>73</u>	<u>/4</u>	(¥)≡(¥)	() (V) (i)	. (m)- (k) (() .	
н Г	Bulldozer	32-t	24	33.5	610	149,600	4,590	7,557	155,747	729.95	155.747	38.937	194,684	
т са	Bulldozer w/ripper	32-t	66	38.6	319	168,800	5,610	1,762	176,172	44,043	176,172	14,043	220.215	
т г	Bulldozer	31-6	46	22.1	211	009'66	01610	1,046	104,556	26,139	104.,556	26,139	130,695	
4 4	Bulldoxer w/ripper	21-t	50	25.0	511	110,700	4,250	1,161	116,111	29,028	116,111	29,028	145,139	
н. -	Bulldozer	ll-t	30.5	9.11	108	48,700	2,593	518	51,811	12,953	51,811	12,953	64,764	
9. 9	Swamp Buildozer	13-t	35	13.7	112	56.400	2,975	599	59,974	14,994	59,974	14, 994	74,968	
-	Back Hoe	0.6-m []]	70.5	18.7	108	71,800	5,993	984	78,579	19.645	78.579	19.645	98.224	
50	Tractor Shovel	12,24m ³	38	21.1	200	(84, 200	3,230	843	88,313	22,078	88, 313	22,078	110, 391	· . · .
н 6	Dump Truck	10-4	9	9.3	314	34,400	5,100	66C	39,899	9.975	39,899	9.975	19.874	
요 2	Dump Truck	6-t	41.2	7.0	242	23, 300	3,502	171	27,073	6 768	27,073	6, 768	33,841	
1	ll Flat Bed Truck	6-t .	86	4,4	175	14,700	3,230	181	16, 111	1,528	18, 111	4, 528	22,639	•
ų. M	Motor Grader	n-7.4	15	12.0	1.26	63,800	4,335	688	.68,823	17,206	68,823	17.206	96,029	•
ส	Road Roller	10-4	20.5	8.0	06	25, 900	1.743	279	27.922	6,981	27,922	6,981	34,903	•
1	Pheumatic Roller	8-1	15.5	90 . J	89	31,400	1,318	330	33,048	8,262	33,048	н, 262	11,310	
₩. 90	Soil Compactor	17-4	3	17,7	172	122,600	2,100	1,290	128,990	32,248	128,990	32,248	161,238	
16 . V	Vibratory Roller	3-t	9,2	3.7	22.6	15,500	787	1.64	16,446	4,112	16.446	4, 112	20,558	
7. V	Vibratory Roller	· 0.6-t	3.5	0.6	6 0	- 5, 300	298	57	5,655	1,414	5 655	1,414	7 069	
18	Tamper	80-kg	0.5	0.08	5.0	000'T	ţ.	1.1	1,054	56A	1,054	264	1,318	•
19 . 1	Truck Crane	30-t	121	34 .4	000	153,800	10,285	1,657	165,712	41,436	165,742	41,436	207 178	•
8 2	Truck Crane	20-t	97.5	27.0	230	101,300	8,248	1, 107	110,695	27, 674	110,695	1 20 5	138.369	
۲. ۲.	Truck Crune	15-4	8	19.8	230	. 90, 200	6.800	086	97,980	24,495	97,980	24.191	122,475	
्र देव	Water Tanker		50	11.0	160	22,200	1,250	267	26,717	6,679	26.717	10.9	13, 396	
× د	Agitator Car	3-m ³	çş	4.1	220	26.400	5,100	9TE .	31,818	7,955	31,818	7.955	39.773	
5. 5	Concrete Pump	- 2 0	80	14.7	200	105,600	6,800	1,135	113,535	28, 384	113, 535	2H,)HA	141,919	
5	Concrete Vibrator	34 ø	0.1	0.04	•	470	¢	s.	484	121	484	121	605	
2	Concrete Vibrator	80 %	0.15	0.036	•	580	Cr	و	299	150	2.99	051	414	
ج		17-m ³ /min	17.5	1.1	771	30,900	1, 198	312	32,700	8,175	8 175	. 8, 175	10, 875	
 20	1064	10.5-m ³ /nin	ģ	2.3	116	20,500	2,550	533	23, 243.	5,821	23, 283	5,821	79, 104	
	Leg Hammer	30-kg	0.5	0.031	•	096	€;	10	1,013	253	1,013	253	1 266	
ŝ	Crawler Drill (10 m ³)	·) 3" ·	g	4.5	•	30,800	2,550	78.6	33,687	8,422	33,687	. 8 422	12, 109	
												•		

(to be continued)

.

T3 - 12

(2)
US\$)
(in
COST
TNEM!
EQUII
DAILY
\geq
HOURLY
ž
XIJ
TABLE

.

.

***		. !	Pui	Purchage Cost	<u>ء</u> ر	Life	De pre-		Adman-	dun	Deprecietion	5	้อม	Repairing		74 1 1 0 1		Hourly / Daily	IN / Dai
	uoradribuan		V.C	ວ 1	Total	Time	cie- tion	puir- Ing	istra- tion	Rute	Ъ, С Ж	u L	kate	5. 	i L	Rate	 	Fruitment Con	
Ξ) . (2)		(C) .	(H) [.]	- (2)	(9)	(2)	(8)	(6)	-1	75	ব	হা	গ	رو آو	レ	Ħ	গ	017
11	31 Submersible Pump		2,647	672	3,359	600 ^d	90	. 011	25	0,15	0.1	1.01	0.1833	4,31	0.92	2110.0	1.40	8.32	3.33
ц Ц	32 Submersible Tump	- 4	1,256	314	1,560	600 ^d	8	110	25	0,15	1.85	0.47	0.1833	2.10	0.43	2110.0	0.65	3.49	1.55
5	Submersible Pump	- 13	481	120	. 60.1	600 ^d	8	001	52	0, 15.	0.74	0.18	0.1833	0.77		2110.0	0.25	1.49	09*0
ž	Belt Conveyor	4 F	747	207	1,184	180 ^d	ŝ	9	75	0.5	4.74	1.19	0.3333	2.76	0.59	0,0447	0.49	7.50	2.27
35	35 Concrete Mixer	0.2 . m ³	2,197	549	2,746	600 ^d	8	10	23	0.15	3.30	0.82	0.1167	2.24	0.48	0-0417	1.15	5.54	2.45
36	36 Concrete Curt	0.1-m ³	217	54.	271	÷													
5	37 Winch	·	9,263	2,316	11,579	1,040 ^d	6	120	6	0.0865	8.01	2.00	0.1154	9.35	5.00	2,0385	4.46	17.36	8.46
38	Dredger	1,400-HP	2,667,071 666,768 3,333,839	666,768	3,333,839	21,420	8	85	46	0.0042	112.02	26.00	0+00+0	93.35	20.00	0.0023	76.68	205.37	127.68
39	Dredger	600-MP	1,290,300 322,575 1,612,875	322,575	1,612,875	17,640	8	65	49	0.0051	65.81	16.45	0.0037	11.77	8.95	0.0037	59.68	107.58	85,08
9	Anchor Darge		58,232	14,558	77,790	22,400	8	125	02	0.0040	2.33	0.58	0.0056	3.03	0.65	1(00.0	2.41	5.38	. 6
41	Chain Sav	500-mm	801	500	100'1	360đ	8	83	8	0.25	2.00	0.50	0.2361	1.65	0.35	0.0556	0.56	3.65	1,4]
4	Crushing Plant	60-t/h	431,313 107,828	107,828	539,141	0000*6	8	55	44	10.0	43.13	10.75	0.0061	23.02	4.93	0.0049	26.04	66,15	41.75
43	Butcher Plant	30-m ³ /h	218,864	54,716	273,580	7,000	8	20	61	0.0129	28.23	1.01	0.01	19.15	4,10	0.007	21-61	47, 38	16.00
44	Diesel Hammer	2.5-t	192,483	48,121	240,604	5,250	8	60	35	0.0171	32.91	8.23	0.0114	19.20	4.11	0.0067	16.12	52.11	28.46
45	Cable Crane	9-t	1,311,717 .327,929 1,639,646	327,929	1,639,646	11,600	8	40	49	0.0078	102.31	25.58	0.0034	39.02	8.36	0.0042	68.87	141.33	102.81
46	46. Batcher Plant	50- - 1 ³ ∕11	348,131	87,033	435,164	13,000	Ş	75	49	0.0069	24.02	6.01	0.0058	17.67	3.79	0.0018	16.34	41.69	26.34
47	47 Transfer Car	. cm-c	89.798	22,450	1,12,248	12,000	8	5	35	0.0075	6.73	1.68	0.0058	4.56	0.98	0,0029	3.26	11.29	5.92

. . .

Remarks: <u>/1</u> (10) = (7) / (6)

(11) = (10) × (2)	(10) x (4)	(8) / (6)	(13) × 0.7 × (5)	(13) x 0.15 x (5)	(9) / (6)	(16) × (5)	(11) + (4)	(12) + (12) + (19)
4	ĸ	Ħ	8	8	Ħ	1	Ħ	Q
(11)	(75)	(13)	(14)	(15)	(91)	(11)	(18)	(61)
ণ	ସ	2	ণ	খ	4	শ	গ	9
		-						

-

\$

Ţ,

Ű

1

TABLE XII 4-1 HOURLY PRODUCTION RATE OF CONSTRUCTION EQUIPMENT

(1) Bulldozer

Excavating Work

 $Q = \frac{60 \times q \times F \times E}{Cm}$

where:

Q = Hourly production (m^3/h) q = Blade capacity (m^3) F = Swell factor of material E = Operating efficiency Cm = Cycle time (min.) Cm = $\frac{L}{V1} + \frac{L}{V2} + tg$ L = Hauling distance (m) V1 = Forward speed (m/min) V2 = Reverse speed (m/min) tg = Gcar change and others

32 ton Bulldozer

	Work	ያ	<u></u>	E	L	<u>V1</u>	<u>V2</u>	tg	Cm	Q
	Fine	6.94	0,80	0.70	20	42	58	0.33	1.15	203
	Coarse	6.94	0.87	0.60	20	42	58	0.33	1.15	189
	Rock	6.94	0.63	0.35	20	42	58	0.33	1.15	80
•	<u>21 ton Bu</u>	lldozer								
	<u>Work</u>	đ	F	Ē	L	<u>V1</u>	. <u>V2</u>	tg	Cm	<u>Q</u>
	Fine	3.19	0.80	0.70	20	42	58	0.33	1.15	94
	Coarse	3.19	0.87	0.60	20	42	58	0.33	1.15	87
	Rock	3.19	0.63	0.35	20	42	58	0.33	1.15	37
	<u>11 ton Bu</u>	lldozer	, .							
	<u>Work</u>	ם	. <u>F</u>	E	Ŀ	<u>V1</u>	<u>¥2</u>	\underline{tg}	Cm	2
	Fine	1.63	0.80	0.7	20	42	58	0.33	1.15	48
	Coarse	1.63	0.87	0.6	20	42	58	0.33	1.15	44

î. V

.

≜ ∂

Spreading Work

 $Q = \frac{W \times V \times D \times P \times E}{N}$

where:

Q = Hourly production (m³/h)

W = Effective spreading width (m)

V = Operating speed (m/hr)

D = Spreading depth (m)

 $\mathbf{F} = \mathbf{Swell}$ factor of material

E = Operating efficiency

N = Number of spreading

21 ton Bulldozer

Work	<u>N</u>	v	<u>D</u>	<u>F</u>	Ē	N	2
Fine	3.96	1,700	0.3	0.80	0.60	5	194
Coarse	3.96	1,700	0.3	0.87	0.55	5	193
Rock	3.96	1,700	0.3	0.63	0.50	5.	127
<u>11 ton B</u>	ulldozer		-			-	•
<u>Work</u>	<u>¥</u> ,	<u>v</u>	D	F	Ē	N	Q
Fine	3.05	1,700	0.3	0.80	0.6	5	150
Coarse	3.05	1,700	0.3	0.87	0.55	5	149
13-t Swan	np full		н 19				
<u>Work</u>	<u>N</u>	<u>v</u>	<u>D</u>	<u>F</u>	Ē	<u>N</u>	Q
Fine	3.50	1,200	0.2	0.80	0.4	3 :	90

Ô

A

Compacting Work

$$\mathbf{p} = \frac{\mathbf{V} \times \mathbf{V} \times \mathbf{D} \times \mathbf{F} \times \mathbf{E}}{\mathbf{W} \times \mathbf{V} \times \mathbf{D} \times \mathbf{F} \times \mathbf{E}}$$

Where:

Q = Hourly production (m³/h) W = Effective compacting width (m) V = Compacting speed (m/h) D = Compacted depth (m)

F = Swell factor of material

E = Operating efficiency

T4 - 2

A STATE

21 ton Bulldozer

<u>Work</u>	<u>W</u>	<u>¥</u> .	D	<u>F</u>	Ē	<u>N</u>	2
Fine	0.8	4,000	0.3	0.8	0.6	6	77
Coarse	0.8	4,000	0.3	0.87	0.6	6	84
<u>11 ton Bu</u>	lldozer		a at e				 _
<u>Work</u>	<u>₩</u>	<u>v</u>	D	<u>P</u>	E	<u>N</u>	Q
Fine	0.6	4,000	0.3	0.80	0.6	6	58
Coarse	0.6	4,000	0.3	0.87	0.6	6	63
• •	· .		· · · ·			-	

(2) Loader

 $Q = \frac{3,600 \times q \times K \times P \times E}{Cms}$

Where:

Q = Hourly production (m³/h)
q = Bucket capacity (m³)
K = Bucket coefficiency
P = Swell factor of material
E = Operating efficiency

Cms= Cycle time (sec)

0.7 m³ Back hoe

Work	B	<u>K</u>	F	Ē	<u>Cms</u>	2
Fine	0.7	0.85	0.80	0.7	21	57
Coarse	0.7	0.80	0.87	0.7	21	58
Rock	0.7	0.75	0.63	0.7	21	40

2.2 m³ Tractor Shovel

<u>Work</u>	g	<u>K</u>	<u>P</u>	Ē	Cms	2
Fine	2.2	1.0	0.80	0.7	42	106
Coarse	2.2	0.7	0.87	0.7	42	80
Rock	2.2	0.5	0.63	0.7	42	42
			a standard and the			

1.4 m ³ T	ractor Sh	ovel			н .	·
Work	<u>e</u>	<u>K</u>	<u>F</u>	Ē	Cms	2
Fine	1.4	1.0	0.80	0.7	42	67
Coarse	1.4	0.7	0.87	0.7	42	51
Rock	1.4	0.5	0.63	0.7	42	26
6 m ³ Whee	el Loader					
Work	9	K	Ē	E	Cas	Q
Fine	6.0	1.0	0.80	0.7	36	336
Coarse	6.0	0.7	0.87	0.7	36	256
Rock	6.0	0.5	0.63	0.7	36	132
3.5 m ³ W	heel Load	er				4
Work	đ	<u>K</u>	Ē	<u>B</u>	Cms	Q
Fine	3.5	1.0	0.80	0.7	36	196
Coarse	3.5	0.7	0.87	0.7	36 ·	149
Rock	3.5	0.5	0.63	0.7	36	77
2.1 m ³ WI	neel Load	er			·	
Work	<u>q</u>	<u>K</u>	F	Ē	Cms	<u>0</u>
Fine	2.1	1.0	0.80	0.7	36	118
Coarse	2.1	0.7	0.87	0.7	36	90
Rock	2.1	0.5	0.63	0.7	36	46
			1	1. C		

(3) Dump Truck

$$Q = \frac{60 \times C \times F \times Et}{Cmt}$$

Where:

Q = Hourly production (m³/h) C = Vessel capacity (m³) F = Swell factor of material Et = Operating efficiency of dump truck Cmt= Cycle time of dump truck (min) 1

đ6

Ð

\$

$$Cmt = \frac{Cms \times n}{60 \times Es} + \frac{D}{Vl} + \frac{D}{V2} + t1 + t2$$

$$Cms = Cycle time of loader (min)$$

$$n = Number of loading$$

$$n = \frac{C}{q \times k}$$

$$q = Bucket capacity of loader (m3)$$

$$K = Bucket coefficient$$

$$Es = Operating efficiency of loader$$

$$D = Hauling distance (m)$$

$$Vl = Travel speed with load (m/min)$$

$$V2 = Travel speed without load (m/min)$$

6

ß

\$

Ð

t1 = Unloading time (min)
t2 = Waiting, setting and others (min)

ဖွဲ့ 40 ğ 2 ĥ H 8 ŝ ŝ 2 000 H o 0 د. م к. О 0.5 0 0.5 5.0 5. 0 <u>с</u> 0 ۍ. م ю. О 0.5 رب م с. О 얽 t2 1.0 Ö H 1.0 1.0 1.0 0 о. Ч 1.0 ч. С 1.0 ч. О 긔 ţ 500 333 333 333 333 333 333 333 200 333 333 333 22 S 250 250 250 250 250 417 250 417 250 250 417 417 Б 티 1,000 2,000 1,000 5,000 2,000 2,000 1,000 5,000 5,000 5,000 2,000 2,000 A À١ 0.7 0.7 0.7 0.7 1-0 0.7 0.7 0.7 0.7 0.7 0.7 2.0 S E S Es. 0.6 <u>ь.</u> 0.6 6.0 0.6 ۍ. م 0.6 0.5 5.0 0 0.5 ۍ 0 м ы **6.**0 3.5 5.0 jn M 3.5 ы с ი ო 5° • 5.0 Ó 9 6.0 **0**.0 ы ы 2.9 2.9 4 ⊷. 5.1 4.0 ы К 5.1 4.0 q 며 Cms Cms 36 36 36 90 36 36 36 36 36 36 30 8 19.8 20.6 27.2 27.9 18.0 19.2 19.9 11.0 12.2 12.9 27.8 28.6 Cmt Cat 0.9 0.0 0.9 0.9 **6**.0 6.0 о. 9 6.0 6°0 6.0 6°°O <u>е.</u> 뷥 뷞 0.63 0.80 0.87 0.63 0.80 0.87 0.87 0.63 0.87 0.63 0.87 0.63 2,000 m (Dam Excavation) <u>م</u> Fz. <u>C</u> 5,000 m (Aggregate) Coarse 0.6 18.0 0.6 0.6 0 0 0 0 0.6 18.0 18.0 18.0 2,000 m (Spillway) 15 ton Dump truck <u>Work</u> <u>C</u> 5,000 m (Quarry) (,000 m (Others) 32 t Dump truck Coarse Coarse Coarse Coarse Rock Rock Rock Fine Fine Rock Rock

£

B

T4 –

6

Î

Ì

10

\$

\$

10 ton Dump truck

	VID TO															
<u>Work</u> 2,000 H	U]	۲ ۰ ۲	+ E	tel S	SHS OHS	되	୶	M	ू द्व	AI	5	$\overline{V2}$	11	t2		
Fine	5.6	0.80		17.9	36	5. 0	2.1	6.0	0.7	2,000	250	333	1.0	0.5	14	
Coarse	.4 ℃		0.0	19.1	36	4.2	2.1	0.6	0.7	2,000	250	333	1.0	0.5	, T	-
Rock	4 0			19.8 (29.1)	36	5.0) (5.0)	2.Y	0.5	0.7	2,000	250 (150)	333 (200)	1.0	0.5	7 (6.2)	
1,000 B	. '					•	÷.		.:	÷.					•	
Fine	5.6	0.80		10.9	36	2.8	ч. 1	0.9	0.7	1,000	250	333	1:0	0.5	22	
Coarse	4 2		6.0	12.1	36 3	4.2	2.1	0.6	0.7	1,000	250	333	0.1.	0.5	18	
Rock	4			12.8	36	5.0	2.1	5.0	2.0	1,000	250	333	0 . 1.	0.5	ц Ч	
500 B					:					:	·					
Fine	5.6		0.9	4.7	36	2.8	2.J	6. 0	0.7	200	250	333	1.0	5 * 0	33	
Coarse	4.5			8.6	3.6	4.2	2.1	0.6	0.7	200	250	333	1.0	0.5	25	
Rock	4.0	0.63	- 1	9.3	36	2.01	2.1	0.5	0.7	200	250	333	1.0	0.5	ч 4	
250 m	• •				-										•	
Fine	5.6	0.80	0.9	5.7	36	2.8	2.1	6.0	0.7	250	250	333	1.0	0.5	42	
Coarse	4.5			6.9	36	4.2	2.1	0.6	0.7	250	250	333	1.0	0.5	31	
Rock	4.0		0.9	7.6	36	5.0	2.1	0.5	2.0	250	250	333	1.0	0.5	18	
Rock	4	0.63	0.9	35.0	36	5.6	6	0.5	0.7	5,000	300	4 00 00	1.0	0.5	4	
•	• •			•									·			

Note: Figures in parentheses show the travelling in tunnel

T4 - 7

					3.6			:					00				с. Ф
•	୍ଷ		-	9	3		12	5	Ŷ						22	16	, ,
	4 2		0	0.1	0.5	•	0.5	0-5	0-5		0.5	0.5	0.5		0.5	0.5	0.5
	다		0.1	о Н	1.0	-	0 	0 	0.1		1 0	0.1	1.0		1.0	0.1	1.0
	2		333	333	333	 	333	333	333	•	333	333	333		333	333	333
·	티		250	520	250		250	250	250		250	250	250		250	250	250
	A		2,000	2,000	2,000	:. 	1,000	1,000	1,000	- - 	500	200	500		250	250	250
. **	्र ध		0.7	2.0	2.0		1.0	0.7	0.7		0.7	0.7	0.7		0.7	0.7	0.7
. ·	×I.	· .	0.9	0.6	0-5	11. 1.	6.0	0.6	0.5		6.0	0.6	0.5		6.0	0.6	0.5
	ज		4	4	1 . 4	•	1.4	4	ч 4	•	л.4	4	4		ц.	4	ч 4
	A	•	3.2	4 8.	5.7		3.2	4.8	5.7		3.2	4 89	5.7		3.2	4 8	5.7
	Cms		4	. 4 14	4 .01		4 ()	42	42		42	42	4 0		42	40	42
	Cmt	:	18.7	20-3	21.2		11.7	13.3	14.2	:	8	6 8	10.7	÷	6.5	8.1	0.6
: : :	Bt B		6.0	0.9	.6.0		6.0	0.0	0.9		6:0	6.0	0.9		0.9	6.0	6.0
	[14]	· · ·	0.80	0.87	0.63	•	0.80	0.87	0.63		0.80	0.87	0.63		0 80	0.87	0.63
uck	U U	•	3.3	2.7	2.4	· ·	а. ч	2.7	2.4		30.0	2.1	4.5	·	3.3	2.7	4
6 ton Dump truck	Work	2,000 m	Fine	Coarse	Rock	1,000 m	Fine	Coarse	Rock	500 田	Fine	Coarse	Rock	250 m	Fine	Coarse	Rock

Ł

Û

T

T4 --

(4) Motor grader
$$Q = \frac{60 \times W \times L \times D \times F \times E}{N \times Cm}$$

Where:

L,

1

Q = Hourly production (m³/h)

W = Width of blade

W = Length of blade x sin $\theta = 0.3$

 $= 3.7 \times \sin 60^{\circ} - 0.3$

L = Length of grading (m)

D = Depth of layer (m)

F = Swell factor of material

E = Operating efficiency

N = Number of grading

Cm = Cycle time (min)

$$Cm = \frac{L}{V1} + \frac{L}{V2} + 2t$$

V1 = Forward speed (m/min)

V2 = Reverse speed (m/min)

t = Gear change and others (min)

Work	<u> </u>	Ľ	D	F	Ē	N	<u>Cm</u>	<u>V1</u>	<u>V2</u>	<u>t</u>	Q
Fine	2.9	200	0.3	0.80	0.4	3	7.0	66.7	100	1.0	159
Coarse	2.9	200	0.3	0.87	0.4	3	7.0	66.7	100	1.0	173
	1			1						· · · ·	

(5) Compacting Equipment

$$Q = \frac{W \times V \times D \times F \times E}{N}$$

Where:

Q == Hourly production (m³/h)
W = Width of compaction (m)
 Road roller = width of roller - 0.3
 Vibrating roller = width of roller - 0.2
V == Operating speed (m/h)
D = Depth of layer (m)
F = Swell factor of material
E = Operating efficiency

N = Number of compaction

T4 – 9

Ŧ,

<u>17 ton</u>	Tamping	Roller	2		۰.			. *
Nork	<u>N</u>	<u>¥</u>	D	F	Ē	N	Q	
Fine	3.5	3,000	0.3	0.8	0.5	6	210	·
<u>15 ton</u>	Vibrato	ry Roller		· · ·				, t
<u>Work</u>	<u>N</u>	<u>Y</u>	D	<u>P</u>	<u>E</u>	N	Q ∙	
Coarse	1.79	1,000	0.4	0.87	0.6	6	62	
Rock	1.79	1,000	1.5	0.63	0.6	6	169	
<u>8/10 to</u>	on Road I	Roller		: 	н на селоти На селоти на селоти На селоти на селоти н		•: • • • • •	
<u>Work</u>	<u>.</u>	<u>v</u>	D	P	Ē	N	2	
Fine	1.2	1,500	0.3	0.80	0.6	6	43	1
Coarse	1.2	1,500	0.3	0.87	0.6	6	47	
<u>3.0 ton</u>	Vibrato	ory Roller					· .	·
Work	<u>W</u>	<u>¥</u>	D	Ē	E	. <u>Ň</u>	Q ¹	•
Fine	0.8	1,500	0.3	0.80	0.6	6	29	
Coarse	0.8	1,500	0.3	0.87	0.6	6	31	
0.6 ton	Vibrati	ing Roller	* . . *					-1 :
Work	<u>N</u>	<u>v</u>	D	<u>F</u>	Ē	N	Q	
Fine	0.4	1,300	0.3	0.80	0.6	6	12	
Coarse	0.4	1,300	0.3	0.87	0.6	6	14	
80 kg T	amper			• • •		2 		
<u>Work</u>	<u>¥</u>	<u>v</u>	Ð	<u>P</u>	Ē	<u>N</u>	2	
Fine	0.24	900	0.3	0.80	0.6	6	5	
Coarse	0.24	900	0.3	0.87	0.6	6	6	
	4	:						

(6) Concrete Mixer

 $Q = \frac{60 \times q \times E}{Cm}$

¢

Where: Q = Hourly production (m³/h) `q = Mixing capacity (m³) E = Working efficiency Cm = Cycle time (min)

0.2 m³ Mixer

WorkqECmConcrete0.20.44

(7) Truck Mixer

$$Q = \frac{60 \times q \times E}{Cm}$$

Where:

Q = Hourly production (m³/h)

q = Capacity of truck mixer (m³)

E = Operating efficiency

Cm = Cycle time (min)

$$Cm = t1 + t2 + t3 + \frac{L}{V1} + \frac{L}{V2}$$

tl = Charging time (min)

t2 = Discharging time (min)

t3 = Waiting and setting (min)

L = Hauling distance

V1 = Transporting speed (m/min)

V2 = Returning speed (m/min)

3.2 m³ Truck Mizer

<u>Work</u>	đ	E	<u>Cm</u>	<u>t1</u>	<u>t2</u>	<u>t3</u>	Ē	<u>V1</u>	<u>V2</u>	Q
2,000 m	3.2	0.8	24	3	.5	2	2,000	250	333	6.4
1,000 m	3.2	0.8	17	3	5	2	1,000	250	333	9.0
500 m	3.2	0.8	13.5	3	5	2	500	250	333	11.4
250 m	.3.2	0.8	11.8	3	5	2	250	250	333	13.0
2,000 m	· · ·		(33.3)					(150)	(200)	(4.6)

2

1.2

T4 - 11

12

(8) Concrete bucket handled by 30 ton Grane

 $Q = \frac{C \times E \times 60}{Cm}$

Wheret

Q = Hourly production

C = Concrete bucket capacity

E = Operating efficiency

Cm = Cycle time

Cm = t1 + t2 + t3

tl = Bucket detaching and attaching

t2 = Lifting and setting

t3 = Discharging

<u>C</u>	$\underline{\mathbf{E}}$	<u>t1</u>	<u>t2</u>	<u>t3</u>	Cm	8
	0.7					
1.5	0.7	2	3	i 1 /	6	11

(9) Dredger

150 HP, \$8", Cutter Suction Dredger

Hourly Dredging Capacity

Discharge distance = (S. Pipe) 400 m + (F.Pipe) 100 m = 500 m

Materials to be dredged = Sand and sandy silt

N - Value = 10 Hourly standard capacity of 1,000 HP dredger = 230 m³/h Power conversion ratio from electric to diesel = 0.8 $Q = \frac{230 \text{ m}^3 \text{ x 150 HP x 0.8}}{1,000 \text{ HP}} = 28 \text{ m}^3/\text{h}$

400 HP, \$10" Cutter Suction Dredger

Hourly Dredging Capacity

Discharge distance = (S. Pipe) 400 m + (F. Pipe) 100 m = 500 m Materials to be dredged = Sand and sandy silt N - Value = 10 Hourly standard capacity of 1,000 HP dredge = 230 m³/h • Power conversion ratio from electric to diesel = 0.8

$$Q = \frac{230 \text{ m}^3 \text{ x} 400 \text{ HP x} 0.8}{1.000 \text{ HP}} = 74 \text{ m}^3/\text{h}$$

800 HP, \$12", Cutter Suction Dredger

Hourly Dredging Capacity

Discharge distance = (S. Pipe) 815 m + (F. Pipe) 150 m = 965 m Materials to be dredged = Sand and sandy silt N - Value = 10 Hourly standard capacity of 1,000 HP dredger = 220 m³/h Power conversion ratio from electric to diesel = 0.8

 $Q = \frac{220 \text{ m}^3 \text{ x 800 HP x 0.8}}{1,000 \text{ HP}} = 140.8 = 141 \text{ m}^3/\text{h}$

1,100 HP, \$16" Cutter Suction Dredger

Hourly Dredging Capacity

Discharge Distance = (S. Pipe) 815 m + (F. Pipe) 150 m = 965 m Material to be dredged = Sand and sandy silt N - Value = 10

Hourly standard capacity of 1,000 HP dredger = $220 \text{ m}^3/\text{h}$

Power conversion ratio from electric to diesel = 0.8

 $Q = \frac{220 \text{ m}^3 \text{ x } 1,100 \text{ HP x } 0.8}{1,000 \text{ HP}} = 194 \text{ m}^3/\text{h} \cdot$

1,400 HP, \$16" Cutter Suction Dredger

Hourly Dredging Capacity

Discharge Distance = (S. Pipe) 815 m + (F. Pipe) 150 m = 965 m Materials to be dredged = Sand and sandy silt N - Value = 10

T4 - 13

1. A.

A

Hourly standard capacity of 1,000 HP dredger = 220 m³/h

Power conversion ratio from electric to diesel = 0.8

,

$$Q = \frac{220 \text{ m}^3 \text{ x } 1,400 \text{ HP x } 0.8}{1,000 \text{ HP}} = 246 \text{ m}^3/\text{h}$$

۰.

APPENDIX XIII

ADDITIONAL SURVEY ON NOV. '84 FLOOD

FOR

FINAL REPORT

ÔŃ

THE PANAY RIVER BASIN-WIDE

FLOOD CONTROL STUDY

TABLE OF CONTENTS

		'age
1.	GENERAL 1	-1
2.	METEO-HYDROLOGICAL DATA 2	2-1
		2-1
	2.2 Rainfall Record 2	2-1
	2.3 Stream flow Record 2	2-4
	2.4 Other Meteo-hydrological Record 2	2-5
3,	PLOOD INUNDATION DATA	9-1
	3.1 Plood Mark Survey 3	9-1
	3.2 Inundation Area Survey 3	9-1
4.	PLOOD DAMAGE SURVEY 4	-1
	4.1 Procedure of Damage Survey 4	-1
	4.1.1 Progress of the Field Research 4	i-1
	4.1.2 Objects of the Study 4	-1
	4.1.3 Data Collected 4	2
	4.2 Damages by the Typhoon 4	-4
	4.2.1 Total Damage by the Typhoon 4	-4
	4.2.2 Segregation of the Plood Damage 4	-5
	4.2.3 Crop Damage 4	-7
	4.2.4 Livestock Damage 4	-8
	4.2.5 Fishpond Damage 4	-8
•	4.2.6 Building Damage 4	-9
	4.2.7 Infrastructure Damage 4	-9
		-9 ,:
	4.3 Analysis of Flood Damage by the Typhoon 4	-10

P

Þ

Þ

LIST OF TABLES

<u>Table No</u> .	<u>Title</u>	Page
XIII.3-1	Results of Survey on Undang and Openg Floods	T3-1
XIII.4-1	Progress of the Field Research	T4-1
XIII.4-2	Consolidated Total Damage by Typhoon Undang	T4-2
ХШ.4-3	Damages of Crops and Livestocks Caused by Typhoon Undang in Region VI	T4-3
XIII.4-4(1)	Area and Value Damaged by Typhoon Undang in the Province of Capiz (Crops)	T4-4
XIII.4-4(2)	Number of Heads and Value Damaged by Typhoon Undang in the Province of Capiz (Livestocks)	T4-5
XIII.4-4(3)	Fishery Damages Caused by Typhoon Undang in the Province of Capiz	T46
XM.4-5(1)	Area and Value Damaged by Typhoon Undang in the Panay River Basin Area (Crops)	T4-7
XIII.4-5(2)	Number of Heads and Value Damaged by Typhoon Undang in the Panay River Basin (Livestocks)	- T4-8
XIII.4-5(3)	Fishery Damages Caused by Typhoon Undang in the Panay River Basin Area	T4-9
ХШ.46	Flood Damages Caused by Typhoon Undang in the Panay River Basin Area	T4-10
XIII.4-7(1)	Residential Building Damage in Capiz Province	T4-11
XIII.4-7(2)	Residential Building Damage in the Panay River Basin Area	T412
XIII.4-7(3)	Non-residential Building Damage in Capiz Province	T4-13
XIII.4–7(4)	Non-residential Building Damage in the Panay River Basin Area	T4-14
XIII.4-8(1)	Infrastructure Damage	T4-15
XIII.4-8(2)	Damage of Roads and Bridges	T4-16
XШ.48(3)	Damage of Flood Control Facilities	T4-17
XШ.48(4)	Damage of Water Supply Pacilities (Level I)	T4-17

Ľ

C.

Ŧ

Þ

Table No.	Title	Page
XⅢ.4-8(5)	Damage of Electricity Network System	T4-18
XIII.4-8(6)	Damage of Telephone Network System	T4-18
XIII.4-8(7)	Damage of Railway	T4-19
ХШ.4-9	Relief Operations	T4–19
ХШ.4-10	Human Damage in Capiz Province	T4-20
XIII.4-11	Direct Damage by the Flood in the Basin	T4-21
ХШ.4-12	Damage Ratio of Infrastructure	T4-22

þ

D

3

Þ

LIST OF FIGURES

Fig. No.	<u>Title</u>	Page
XIII.3-1	Location Map of Survey on Undang and Openg Floods	F3-1
XIII.3-2	Longitudinal Water Profile by Undang Flood	F3-5

•

- .

I)

Ť

1. GENERAL

P

P,

The additional survey on the flood, caused by the typhoon "Undang" which passed by the Panay river basin in November 1984, was performed by JICA team consisting of 4 members during 20 days from June 3 until June 22, 1985.

The following are the main items of the survey performed in June 1985.

(a) Collection of Meteo-hydrological data

(b) Collection of Flood inundation data

(c) Collection of Flood damage data

(d) Suggestion for meteo-hydrological observation

(e) Discussion on the draft final report

Note; (d) and (e) are carried out in addition to the survey on the Flood. Therefore, the description of these items are omitted in this Appendix XIII.

The first survey on "Undang" flood was performed in November 1984, during and just after the flood, as the JICA study team stationed in the basin at the time. However the first survey was limited in the capacity due to the following.

(a) Most of the engineers have already left the site before the flood.

(b) As most of the hydrological analysis have been finished before the flood and it was impossible to revise the basic conditions/data at the time for preparing the report in time of the schedule.

Therefore, the first survey was performed as follows, taking account of the importance of the records.

(a) The data which need the clear memory of inhabitants in the flooded area were collected at the representative points.

(b) As a visible evidence of the flood, the photographs during the flood were taken.

1

1

1

I)

- (c) The records of water level and rainfall at each gaging station were collected and the doubtful and/or unobserved records were checked.
- (d) The discharge measurement during the flood was performed at Panitan.
- (e) The flood mark survey was performed along the river.
- (f) The inundation conditions were observed by going around the area during the flood.
- (g) The information about the damage was unofficially obtained though the data were still on the way of compilation by the government agencies.

The extension of the field assignment was once proposed by a JICA expert stationed in MPWH. However, the proposal was cancelled in consideration of the difficulty to change the assignment contract within a short period. Instead, the proposal of additional survey on "Undang" flood was newly given from MPWH in the meeting between JICA and MPWH held in January 1985. MPWH requested JICA to conduct the additional survey for obtaining more accurate fresh data which are available for making more reliable plan based on the analysis. MPWH mentioned to accept some delay of preparing the final report. These are the reason why JICA head office decide to order the additional survey.

The additional survey team could collect the data almost on schedule owing to the cooperation of the authorities and agencies of the philippine government.

In the following sections, described are the data collected during the additional survey.

2. Meteo-Hydrological Data

2.1 General

In regard to the meteo-hydrological data for "Undang" flood, the data of rainfall and stream flow in the Panay river basin were collected during the survey ended in January 1985. During the additional survey performed in June 1985, the following data are additionally collected.

- (a) Rainfall data during "Undang" flood at the stations located outside of the Panay river basin but in the Panay island.
- (b) Supplemental stream flow and rainfall data in the Panay river basin which could not be collected during the previous survey.

As it is considered to be easy to understand the contents of data collected, the description of meteo-hydrological data are to be done without separating them by the period of survey; the previous survey and the additional survey. Additionally, it is noted that the meteohydrological data were collected not only for "Undang" flood but also for "Openg" flood for comparing the both past biggest two flood.

The following are the brief description of the data collected during the additional survey (June 1985) as well as during the last period (Nov. 1984 - Jan. 1985) of the pervious survey.

2.2 Rainfall Record

(1) Rainfall during Flood

The rainfall records during about the time of "Undang" flood in Nov. 1984 and "Openg" flood in Nov. 1973 are collected as listed below.

Station	Undang flood	Openg flood
<u>Capiz Province</u>		
Roxascity	Collected	Collected
Astonga	н	
Matec	Н	-
President Roxas	18	Collected
Mambusao (NIA)	1	_

2 - 1

Ì,

S.

ķ

Station	Ŭ	ndang flood	<u>Open</u>	g flood
Aglinab		Collected	· · · ·	-
Brgy Roxas	:	• • • •		-
Lenrery		н	÷	. <u>-</u>
Villa Froreg	•	H		- .
Jamindan		28	r.	-

Iloilo Province

Iloilo	Collected	Collected
Eotancia	Not yet	R. R.

Aklan Province

Pandan

Balete	Collected	Collected
Kalibo	н	, H
Libacao	H	i n
Antique Province		an a
Valderama	Not yet	Collected
Barbaza	Collected	17
San Jose	Not yet	п
Culasi	Collected	И Г

D.

Note; " - " means no record and "Not yet" means that the records are not yet sent to the head office as of June 1985

The daily rainfall records before, during, and after the floods at the stations listed above are shown in Appendix.

(2) Annual Maximum daily rainfall

During the additional survey the annual maximum 7-days and 3-days rainfall records at the stations which have the records of more than 10 years and located outside of the Panay river basin. The records are available for estimating the probable rainfall. The daily rainfall

2 - 2

£

ी्रे

records in the stations located in the Panay river basin are already collected in the survey performed in late 1983. The stations and the period of which records are available for the estimation of probable rainfall are listed below.

Þ

R.

Station	Period of Records		
Roxas city, Capiz	1949 - 1984		
Hoilo, Iloilo	1949 - 1984		
Balete, Aklan	1970 - 1984		
Kalibo, "	1955 - 1984		
Libacao, "	1966 - 1984		
Valderama, Antique	1970 - 1984		
Barbaza, "	1955 - 1984		
Culasi, "	1966 - 1984		

Note; Some unobserved periods and some doubtful records are included in the records at the above listed stations, though they are discarded for the analysis.

The records are attached in Appendix I.

12

£,

2.3 Streamflow Record

(1) Water Level

The water level records during "Undang" flood at the following streamflow gaging stations are collected.

- (a) Dumalag, Panay river
- (b) Cuartero,
- (c) Panitan,
- (d) Sigma, Mambusao river
- (e) Salocon, Lower panay river
- (f) Pontevedra, Pontevedra river

Note; The record at Dumarao gaging station could not be obtained as the gage was washed away during the flood.

At most of the above stations, the peak water level was more or less higher than the maximum reading of gages and additionally a gage keeper couldn't continue the observation as his house suffered serious damage due to the strong wind and flood. Therefore, records during the flood peak and unobserved period are supplemented by the following.

- (a) Flood marks near the station
- (b) Information from the inhabitants and the gage keeper
- (c) Records at the time of discharge measurement (for Panitan G.S.)

(2) Discharge Measurement

The discharge measurement at each stream gaging station except Pontevedra G.S. has been performed since the beginning of 1984 after the establishment of gages. However, the number and range of measurement are not sufficient for making the rating curve of water level and discharge at each station. During "Undang" flood, the discharge measurement was performed at Panitan by the study team. This measurement was the first one performed during flood in the Panay river basin. Owing to this measurement, it become possible to prepare the comparatively reliable rating curve at Panitan which is the most important base point for the hydrological analysis.

The records of discharge measurement are attached in Data Book I.

2.4 Other Meteo-Hydrological Data

(1) Tide Water Level

ŝ

P,

K

The tide water level fluctuation at Culasi port during flooding period of not only "Undang" typhoon but also "Openg" typhoon was prepared to see the influence of tide water level to the flood water level in the downstream reach, based on the tide tables at Cebu in November 1973 and November 1984 by using the conversion height explained in Appendix I.

(2) Typhoon Records

The typhoon records including the course with time, the atmospheric pressure and the wind velocity at "Openg" typhoon and "Undang" typhoon are collected at PAGASA. The records are attached in Appendix I. It is noted that the course of the two typhoons is quite similar.

5

3. FLOOD INUNDATION DATA

3.1 Flood Mark Survey

The flood mark survey along the river has been carried out at about 35 points for "Undang" typhoon. First, the flood water level at each representative points were marked in accordance with the mark line remained on a structure and the information from the residents. Then the elevation survey was carried out from a nearest bench mark. The results of survey are attached in Data Book I. Ϊ.,

S

4

3.2 Inundation Area Survey

The survey in the inundation area was carried out to get the information of "Undang" flood as well as "Openg" flood on the following items.

- (a) Inundation area
- (b) Inundation water depth
- (c) Duration and time of inundation
- (d) Flow direction and velocity
- (e) Damage

The members of survey team visited almost all the inundation areas in the Panay river basin and got the information at about 300 points. The inhabitants in the flood prone area showed cooperative answers to the questions given by a JICA number. At the time of the survey, the elevation of inundation water level is roughly surveyed from the elevation marks on the map of 1/10,000 in scale by using a hand level. These data collected are available for making the flood rish map.

The summary and results of the inundation area survey are shown in in Figs. XIII.3-1 and XIII.3-2 and Table XIII.3-1.

4. PLOOD DAMAGE SURVEY

Ť,

Ļ

₽

- 4.1 Procedure of Damage Survey
- 4.1.1 Progress of the Field Research

The investigation of the flood caused by the typhoon "Undang" on November 5, 1984 was carried out during 20 days in June 1985. The investigation covered the collection of meteorological data, hydrological data and the damage data by the typhoon. The progress of the collection of the damage data was shown in Table XIII.4-1.

- 4.1.2 Objects of the Study
- (1) Agricultural Damage
 - (A) Crop Damage Data
 - (a) MAF (in Manila)
 - (b) BFAR (in Manila)
 - (c) MAF (in Iloilo City)
 - (d) BAECON (in Iloilo City)
 - (e) NIA (in Iloilo City)
 - (f) MAF (in Roxas City)
 - (g) BEACON (in Roxas City)
 - (h) Sugar Central (in Pilar, Asturia)
 - (i) NIA (in Provincial Office of NIA, Mambusao)
 - (B) Livestock Damage Data
 - (a) MAF (in Iloilo City)
 - (b) MAF (in Roxas City)
 - (C) Fisheries Damage Data
 - (a) BFAR (in Roxas City)
 - (b) Municipal Mayor's Office (in Panay, Panitan, Pontevedra)
- (2) Building and other damage
 - (A) Comprehensive Damage Data
 - (a) NEDA (in Manila)
 - (b) NEDA, Region VI (in Iloilo City)

\$}

- (c) NDCC (in Manila)
- (d) OOCD (in Manila)
- (e) OOCD, Regional Center (in Iloilo City)
- (f) OOCD, Provincial Office (in Roxas City)
- (B) Building Damage Data
 - (a) MSSD, Regional Office (in Iloilo City)
 - (b) MSSD, Provincial Office (in Roxas City)
 - (c) MSSD, City Office (in Roxas City)
 - (d) Governor's Office (in Capiz)
 - (e) Roxas city Mayor's Office
 - (f) Municipal Mayor's Office (in Cuartero, Dao, Dumalag, Dumarao, Maayon, Mambusao, Panay, Panitan, Pontevedra, Sigma)
 - (g) PNRC

(C) Intrastructure

- (a) MPWH, District engineer's Office
- (b) MPWH, City Engineer's Office
- (c) NPC (in Municipality of Panitan)
- (d) PLDT (in Manila)
- (e) PRI (in Iloilo City)
- (f) CAPELCO (in Municipality of Panitan)
- (D) Relief Operations
 - (a) NEDA, Region VI
 - (b) OOCD (in Manila)
 - (c) Governor's Office (in Capiz)
 - (d) Roxas City Mayor's Office

4.1.3 Damage Data Collected

- (1) Agricultural Damage Data
 - (a) Typhoon Undang Damage Report as of November 20, 1984
 Information Section, Ministry of Agriculture and Pood

(b) Final Report on Typhoon Damage Caused by Typhoon Undang, 1984-12-03

Bureau of Fisheries and Aquatic Resource

(c) Summary Report of Damage Caused by Typhoon Undang Ministry of Agriculture and Food, Region VI

(d) Area Effected and Estimated Crop Production Losses Caused by Typhoon Undang in Region VI, 1984

BAECON, Region VI

Ş

P,

(c) Monthly Volume of PALAY and CORN Harvested and Yield Per ha in Western Visayas, January to December, 1984

BAECON, Region VI

(f) Typhoon Damage Caused by Undang in Mambusao

NIA, Region VI

(g) "Typhoon Undang Final Damage Report"

MAF, Capiz

- (h) Estimated Damage to Crops Caused by Typhoon Undang BAECON, Roxas City
- (i) Report of Damages Caused by Typhoon Undang on Nov. 5, 1984
 in Municipal Fisheries in the Province of Capiz

BFAR, Roxas City

 (j) Paddy Damage Caused by Typhoon Undang by Growing Stages by Barangay

> Municipal Mayor's office in Panitan, Pontévedra, Panay, Cuartero, Dao, Roxas City, Mambusao, Tapaz

- (2) Building and Other Damage Data
 - (a) "TYPHOON UNDANG, Relief, Recovery and Rehabilitation Plan (1984-1987) Western Visayas (Region VI)", NEDA

- (b) Damage Caused by Typhoon Nitang/Undang on Infrastructure Sector, Region VI", NEDA
- (c) "Summary of Proposed Infrastructure Rehabilitation Projects", NEDA

Ĩ

S

(

R

- (d) "Estimated Cost of Typhoon Damages on Public Works and Highways Projects caused by Typhoon Undang", MPWH
- (e) "Comprehensive Report of Typhoon Undang", OOCD
- (f) "TYPHOON UNDANG, Relief, Recovery and Rehabilitation Plan (1984-1987), Capiz Province", Governor
- (g) "TYPHOON UNDANG, Relief, Recovery and Rehabilitation Plan (1984-1987), Roxas City", Mayor
- (h) "Summary Report of Damages caused by "Typhoon Undang", November
 27, 1984, OOCD, Regional Office
- (i) "Status Report on Extent of Assistance to Victims of Typhoon Undang in Roxas City", PNRC
- (j) "Estimated Cost of Repair for Damages on PRI Property caused by Typhoon Undang", PRI
- (k) "Summary of CAPELCO's Distribution Line Damages", CAPELCO
- Replies to the questionnaire distributed in advance from the following municipal mayor's offices; Cuartero, Dao, Dumalag, Maayon, Mambusao, Panay, Panitan, Pontevedra and Sigma.

4.2 Damages by the Typhoon

4.2.1 Total Damage by the Typhoon

Typhoon "Undang" passed through the central part of the Philippines on November 5, 1984. In particular, northern Panay Island was heavily affected by its attendant destructive forces such as strong gusty winds, maximum center wind of 205 km/h (57 m/s), and a heavy downpour of rain.

According to Table XIII.4-2, casualties were 3,390 persons, 80% of which comes from Capiz province. There were 721 persons dead, 2,145 persons injured and 524 persons missing. Most of them come from Region VI, especially in Capiz province. **B**

A.

On houses, 141,336 units were totally destroyed while 79,740 units were partially damaged. Therefore, 221,096 units were affected, 74% of which comes from Region VI. In Capiz, 78,691 units were damaged, which occupies 35% of the total damaged houses in the country.

The worth of damaged properties such as crops, buildings and infrastructures amounts to P1.91 billion. More than half of the worth of damages takes place in Capiz province.

4.2.2 Segregation of the Flood Damage

Table XIII.4-2 shows total damages in the whole country, which is caused by the typhoon "Undang". The figures necessary for this study, however, is the damages caused not by winds or tidal waves but by floods of the typhoon in the Panay river basin. To segregate the flood damages from the whole damages, the following assumptions are adopted in this study:

(1) Agricultural Damages

A summary of crop and livestock damages caused by the typhoon "Undang" in the Western Visayas Region, excluding Negros occidental, is provided in Table XIII.4-3. The total crop damage, except sugarcane, in the region VI was estimated at approximately 271.2 million pesos with the province of Capiz accounting for the highest percentage of 54.7, followed by Iloilo of 24.5, Aklan of 17.0, Antique of 3.4 and Guimaras of 0.4, respectively.

With regard sugarcane damages, suffered by the typhoon Undang were reported only from the province of Capiz and Antique as shown below.

Province	Affected Area (ha)	Damaged Value (₽)
Capiz	3,878	40,189,500
Antique	37	204,000
Total	3 ,915 street of the	40,393,500

The livestock and poultry damages suffered by the typhoon Undang was amounted to an estimated value at about 9.7 million pesos. The province of Capiz accounted for the highest percentage of 71.2, followed by Iloilo of 12.6, Alkan of 12.4 and Antique of 3.7, respectively. Guimaras was negligible small. 10

X

1

In the agricultural field, the cereal, coconut, sugar and fish industries were hardest damaged by the typhoon Undang. In the strict sense of the word, the cause of the agricultural damages were resulted by the wind, flood water and tidal waves. Among the crop damages, the annual crops, as like cereal and vegetables, were damaged by the flood water. The perenual crops such as coconut, mango, banana and so on were mainly resulted by the wind. It was reported that no less than sixty percent of the sugarcane damage was also damaged by the wind.

In fishery marginal fish farmers had lost almost all their boats and fishing gears through twisting fury of the wind and tidal waves. The fry and fingerlings stocked in reserve for the succeeding crops were washed away by flood waters spawned by the typhoon.

For the flood control study the agricultural damages caused by the typhoon Undang segregated by the cause of the damages through field survey.

A summary of agricultural damages caused by the typhoon Undang in the all province of Capiz is shown in Table XIII.4-4.

The agricultural damages caused by the typhoon Undang in the Panay river basin are as shown in Table XIII.4-5.

(2) Building Damages

A lot of damaged buildings are affected by compound causes, that is, a strong gusty wind and a flood. These buildings are considered to be affected by a flood as a flood related damage, even if they are first destroyed by a heavy wind. Because even if they are not affected by the wind, the flood would undcubtfully give a damage to the buildings within the inundation areas.

4 - 6 :

The number of buildings affected by the typhoon "Undang" is calculated by the river system model. Input data for the model are used meteorological records gathered during the field research in June. Accordingly, the flood damage amount is estimated on the prorated building number basis.

(3) Infrastructure Damages

2

Ľ,

- (a) Whole damages on roads, bridges and river structures are caused by a flood.
- (b) Damages on water supply facilities are caused by a flood except a case affected clearly by the wind such as a plant roof blown off.
- (c) Damages on the railway facilities are also caused only by the flood.
- (d) Most of electricity supply facilities are affected by the heavy wind. Some parts of distribution are damaged by the flood secondary. First roads are destroyed by the flood and, then, the electricity poles on the roads are blown down. Therefore, the flood damage amount for the electricity is estimated on the basis of a proportion of the destroyed road length to the total length of the national roads.

(4) Relief Operations

Relief operations for people affected by the flood are segregated from the total operations on the prorated family number basis.

4.2.3 Crop Damage

The crop damages by the cause resulted by typhoon Undang are as follows.

Crops	<u>By typhoon</u>	By flood water
	(10 ³ £)	(10 ³ P)
Paddy	100,243	100,243
Corn	1,664	1,664
Sugar cane	40,189	7,231
Fruit	13,989	-
Banana	14,794	—
Other crop (Veget.)	6,800	6,800
Total	177,679	115,938

4.2.4 Livestock Damage

Livestock damages are as shown below.

-	· · · · · ·	
Animals	Head	Value $(10^3 P)$
Buffalow	138	552
Cattle	37 -	146
Swine	2,935	2,347
Goat	1,020	178
Poultry	88,977	2,580
Total		5,803

4.2.5 Fishpond Damage

The fishpond damages by the cause resulted by typhoon Undang are as shown follow.

	<u>By tidal waves (10³₽)</u>	By flood (10 ³ P)
Fishpond		
Milkfish		948
Prawn	-	2,816
Repairing pond	4) -	104
Fishing Boat		
With motor	6,930	—
Non motor	650	–
	7,580	3,868

4 ~ 8

£

\$

(

Ť,

Detailed agricultural damages by municipality/city caused by flood water spawned by typhoon Undang is shown in Table XIII.4-6.

4.2.6 Building Damage

In Capiz province, 78,671 units of residential buildings are affected by the typhoon as shown in Table XIII.4-7 (1). The total loss of the damage amounts to P284 million. The damages of residential building within the municipalities related to the Panay river basin are shown in Table XIII.4-7 (2). The loss of them amounts to P214,614 thousand and the number of damaged houses aggregate to 63,376 units, which accounts for 89.0% of existing housing units. 12,513 units in the basin would be inundated by the flood according to the result of the computational analysis of the river system model. As a result, the damage caused by the flood would amount to P42,373 thousand.

In Capiz province, the damages of non-residential buildings amounts to P137 million as shown in Table XIII.4-7 (3). The damages in the basin amounts to P95,224 thousand as shown in Table XIII.4-7 (4). The number of damaged non-residential buildings in the basin would be estimated at 2,300 units on the assumption that 89.0% of the total number (2,600 Units), which is the same rate as residential building, is affected by the typhoon. 1,154 unit of non-residential buildings would be inundated by the flood according to the computational analysis. Therefore, the damage by the flood would aggregate to P47,776 thousand.

4.2.7 Infrastructure Damage

The total damage of the infrastructure in the basin which would be affected by the flood amounts to P31,868 as shown in Table XIII.4-8 (1). The details of each facility are shown in Tables XIII.4-8 (2) to XIII.4-8 (7).

4.2.8 Relief Operations

In Capiz Province, emergency relief operations has been executed since calamity occurred. A commodity assistance program for typhoon victims of 124,201 families amounts to £34,776 thousand. Therefore,

6

N.S.A

since the number of families affected by the flood aggregate to 12,523, the commodity assistance program for flood victims would amount to P3,504 thousand on the assumption that each family affected by the flood gets the same amount as the typhoon victims. Adding it to the preventive measures against epidemics after the flood, the relief operations amounts to P4,027 thousand as shown in Table XIII.4-9.

4.3 Analysis of Flood Damage by the Typhoon

Casualities in Capiz province as of November 22, 1984 aggregated to 2,729 including missing as shown in Table XIII.4-10. There are 487 confirmed death, 1965 reported injuries and 277 reported missing.

The total direct damage caused by the flood to private and public properties in the Panay river basin would add up to P247,628 thousand as shown in Table XIII.4-11. Crop damage accounts for 47% of the total or P115,938 thousand. Of the crop damage, 86% is paddy and 6% is sugar cane. Building damage accounts for 36% or P90,149 thousand. Of the building damage, 47% is residential building and 53% is non-residential building.

Infrastructure damage amounts to P31,868 thousand. This amount corresponds to 35% of the building damage of P90,149 thousand as shown in Table XJII.4-12. This figure is somewhat small in compare with the infrastructure damage rate adopted in the nationwide flood control study. In this study, however, 35% is adopted because this figure reflects the latest conditions of facilities in the basin.

- 10

P

्रि