Appendix 3.3.3 Results of Various Tests

Fig. A shows the places at which the in situ tests were carried out.

1. Cross-sectional Investigation

a. Chipping Test

The results of the chipping test for beams and slabs are tabulated in Tables A and B.

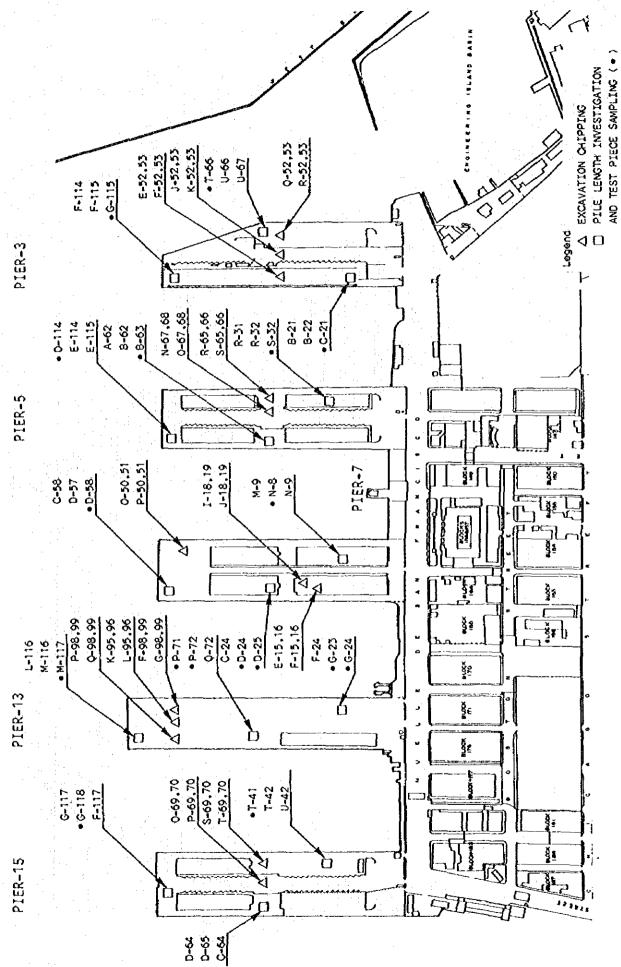


Fig. A Location Map of In-situ Inspection/Investigation

Table A-1 Beam List (1)

Itom	Pier No.	So.				e					\$	
Location			E-52,53 F-52,53	53.	0-52,53 8-52,53	53	J-52,53 K-52,53	£53	R-65,66 S-65,66	99°	N=67,68 0=67,68	89. 68
Bean No.			ы	52	Я	52	Х	52	S	65	×	67
Dimension (cm)	Dimensions of Section (cm)		02	\$ 2	59	6	59	\$	<u>a</u> 8	52	02	\$
Sectional Area (cm ²)	Area)		2,800	3,375	2,275	2,800	2,275	2,800	2,450	3,000	2,450	3,000
Span (m)	(face to face)		2.60	4.25	2,65	4.20	2.65	4.20	2.70	4.30	2.05	4,25.
	Number of	Top	6	3	C	'n	n	3	7	8	4	က
	Nelniorce =	Bottom	m	ક	6	3	en	N	7	S	7	Ŋ
<u> </u>	Diameter	Top	2-#5	2-#8 1-#9	2-#5 1-#8	2-#8	2-#5	1-09	5#-7	1-0525	4-#5	1-0525
Rein-	(mm)	Bortom	3-47	5-#9	3-#7	S-#9	3-#7	3-49	4-45	1-0525	4-#5	1-3525
	Protective	Top	\$		80	ø i	9	9				
	(e) (e)	Bottom	10	10	10	80	9	۶	7.5	8.5	7.5	æ
	Sectional	202	7.87	16.65	9.10	16.65	7.87	14.19	8.00	16.45	8.00	16.45
	(Cm ²)	Востоп	11.61	32.25	11,51	32.25	13.61	25.03	8.00	26.65	8.00	26.65
<u> </u>	Sceal	Top	0.28	0.49	.07*0	0.59	0.35	0.51	0.33	0.55	0.33	0.55
	, 180 (%)	Bottom	0.41	96.0	0.51	1,15	0.51	0.89	0.33	0.89	0.33	68.0
Stirrup (mm)	, mm		#3-@150	#3-6150	#3-6150	#3-@100-	#3-6150	#3-6100-	#3-6150	#3-6150	#3-@150	#3-6150

#...ASTM SIZE (Deformed Bar)
D...Deformed Bar (mm)
S...Square Bar (mm)
W...Screwad Bar (mm)
R...Round Sar (plane) (mm)

Table A-2 Beam List (2)

T=18,19 T=18,19 T=20,51 T=15,16 T=20,599 T=25,56 T=2	1000	Pier No.					6				13		
Top G-016 19.35 1.8	Socation	g		H 7.	91,	84. 84.),51),51	E-15). 16	F-98,	66	Xe-95 1−95	96 96
Solution Solution	Ream No.			ני	18	0	51	ហ	15	Į. Lie	98	×	96
(cm²) (face to face) 4,025 3,150 3,000 7,800 4,025 2,500 4,750 3,750 3,750 (cm²) (face to face) 3.45 5.45 2.60 4,255 2.60 4,500 4,500 4,500 4,500 4,500 4,500 4,500 4,500 4,500 4,500 4,600 4,250 2.60 4,500 2.75 3.45 2.75 2	Ofmensia (CE)	ons of Section			8	│ │└─── ┪─ा	<u></u> -i		▕ ▎┖╌╌╏╌┎	, wi			\$
Number of face to face 3.45 5.45 2.60 4.25 3.45 3.95 2.80 5.45 2.70	Section	al Area m ²)		900,900		3,150	000°°	7,800	4,025	4,500	4,750	3,750	3,600
Number of Top 6 3 4 3 5 3 2 4 7 7 Reinforce	Span (m	(face to face)		3.45	5,45	2.60	4.25	3.45	3.95	2.80	5.45	2.70	06.7
Reinforce-Incometer Dottom 5 3 5 3 5 12 Diameter Top 6-#11 3-#9 4-#5 1-#11 5-#11 3-#9 2-825 4-825 7-513 2 Protective (cm) Dottom 5-#11 3-#9 5-#11 2-#9 3-#9 5-825 4-825 7-513 2 Protective (cm) Top 6-#5 3-#8 5-#11 2-#9 3-PM19 5-825 12-813 2 Sectional (cm) Top 60.36 19.35 8.00 26.44 50.30 19.35 11.83 10.83 11.83 Sectional Axea Com (cm) 50.30 15.30 26.44 50.30 16.77 10.83 31.25 20.28 Sceel Axea Com 15.30 0.38 0.54 0.44 0.44 0.64 0.44 0.48 0.54 0.64 0.42 0.42 0.64 0.42 0.64 0.42 0.64 0.42 0.64		Number of	Top	9	3	4	m	2	m	.61	4	7	7
Diameter Top 6-\(harman\) 3-\(harman\) 4-\(hs\) 2-\(harman\) 5-\(harman\) 3-\(hs\) 4-\(hs\) 3-\(hs\) 3-\(hs\) 4-\(hs\) 3-\(hs\) 4-\(hs\) 3-\(hs\) 3-\(hs\)		Reinforce- ments	Borrom	5	m	9	ะา	\$	e	en .	\$	21	71
Protective Top Covering Sectional Top 60.36 19.35 12.40 50.30 19.35 12.50 11.83	Xain	Diameter	Top	6-#11	3-49	4-#5	2-#10	5-#11	3-#9	2-825	4-525	7-513	2-DW30 2-525
Procective Convering Co	Rein-	(mm)	Bottom	5-#11	3-#8	9-#2	3-#8	11#-5	2-#9	3-DW19	5-825	12-513	2-DW30 2-S25
Covering (cm) Bottom 14 13 7.5 7 12 11 11 8 10 Sectional Area (cm²) Top 60.36 19.35 8.00 26.44 50.30 19.35 12.50 25.00 11.83 Area (cm²) Bottom 50.30 15.30 12.00 15.30 50.30 16.77 10.83 31.25 20.28 Steel (cm²) Top 0.37 0.48 0.25 0.88 0.64 0.48 0.53 0.32 Watio (Z) Bottom 0.73 0.38 0.31 0.64 0.42 0.24 0.66 0.54 up (mm) 144-0300 144-0300 14-0300 14-0300 14-0300 14-0300 14-0300 14-0300 14-0300 14-0300 14-0300 14-0300 13-0300 14-0300 14-0300 13-0300 14-0300 14-0300 14-0300 14-0300 14-0300 14-0300 14-0300 14-0300 14-0300 14-0300 14-0300 14-0300	force	Protective	do:										:
Sectional Top 60.36 19.35 8.00 26.44 50.30 19.35 12.50 25.00 11.83 Area (cm²) Bottom 50.30 15.30 15.30 50.30 16.77 10.83 31.25 20.28 Steel Top 0.97 0.48 0.25 0.88 0.64 0.48 0.28 0.53 0.32 Xatio (X) Bottom 0.73 0.38 0.51 0.64 0.42 0.24 0.66 0.54 (mm) #4-@300 #4-@300 #2-@300 #3-@150 #4-@300 #3-@150 #4-@300 #4-@300 #3-@150 #4-@300 #4-@300 #3-@150 #4-@300 #3-@150 #4-@300 #3-@150 #4-@300 #3-@150 #4-@300 #3-@150	ments	Covering (cm)	Bottom	14	13	7.5		12	1	7.1	8		
Area (em2) Bottom 50.30 15.30 50.30 16.77 10.83 31.25 20.28 Steel Top 0.37 0.48 0.25 0.58 0.64 0.48 0.28 0.53 0.32 Ratio (X) Bottom 0.73 0.38 0.51 0.64 0.42 0.24 0.66 0.54 (mm) #4-@300 #4-@300 #2-@150 #3-@150 #4-@300 #4-@300 #4-@300 #4-@300 #4-@300 #3-@150 #4-@300 #3-@150 #4-@300 #4-@300 #3-@150 #4-@300 #4-@300 #3-@150 #3-@150		Sectional	Top	60,36	19.35	8.00	26.44	50.30	19.35	12,50	25.00	11.83	30,50
Steel Top 0.97 0.48 0.25 0.58 0.64 0.48 0.28 0.52 0.32 Action (T) Bottom 0.73 0.38 0.51 0.64 0.42 0.24 0.66 0.54 (mm) #4-@300 #4-@300 #2-@150 #3-@150 #4-@300 #4-@200 \$13-@150		Area (CH2)	Bottom	50.30	15.30	12.00	15.30	50.30	16.77		31.25	20.28	30.50
Ratio Bottom 0.73 0.38 0.51 0.64 0.42 0.24 0.66 0.54 (mm) #4-@300 #4-@300 #2-@300 #2-@300 #4-@300 #4-@200 \$13-@150		Sceel	Top	0.87	0.48	0.25	0.88	79.0	0.48]	0.53	26.0	0.35
(mm) #4-6300 #4-6300 #2-6150 #4-6300 #4-6300 #4-6300 #4-6300 813-6150		Ratio (I)	Bottom	0.73	0.38	0.38	0.51	99.0	0.42	0.24	0.66	75*0	0,85
	Stirrup	, (mm)		44-6300	#4-6300	#3-@150	#3-6150	#4-0300	44-6300	#4-0350	# 4-6200	\$13-6150	#4-@150

#...ASTM SIZE (Deformed Bar)
D...Deformed Bar (mm)
S...Square Bar (mm)
W...Screwed Bar (mm)

Table A-3 Beam List (3)

Item	PI Pier No.		ij.	13		\$1	10	
Location			36-0 36-0	7-98,99 Q-98,99	S-69,70 T-69,70	07. 07.	0-69,70 P-69,70	,70 ,70
Beam No.			đ	66	S	69	0	69
Dimensic (cm)	Dimensions of Section (cm)		501	1 511	100	51	02	S2
			िक्	45	 			\$
Sectional Area (cm ²)	al Area }		5,250		2,450	3,000	2,450	3,000
Span (m)	(m) (face to face)		3.00	5.00	2.60	4.15	2.70	4.00
	Number of	Top	۲,		r	n	6	۶
1	ments	Soctom	2	5	٤	2		2
X	Diameter	Top	2-525	4-825	2-#5 1-#8	1-#8	2-#5	1-0525
Rein	(mm)	Востоп	2-825	5-825	3-#8	2~525	3-#8	2-0525
force-	Procecting	Top						
Denta	(cm)	Soctom	10	10	ø	ō	∞	80
	Sectional	dor	12.50	25.00	9.10	21.48	9,10	26.65
	(cm ²)	Sottom	12.50	31.25	15.30	12.50	15.30	12.50
· · ·	Steel	Çop	0.24	0.48	0.37	0.72	0.37	-68-0
	(E)	Bottom	0.24	0.60	0.62	17.0	0.62	0.42
Science (m)			94-6300	#5-6250	R9-6150	89-8150	R9-8150	R9-6150
		Ą						

#...ASTM SIZE (Deformed Bar D...Deformed Bar (mm)

S...Square Bar (mm)

W...Screwed Bar (an)

Table B-1 Slab List (1)

		_	<u> </u>	<u> </u>	<u> </u>		'n	ı.	[-	<u> </u>	<u> </u>	Γ				45			· S	·			<u> </u>				<u>:</u>
	I-18,19	25	545 × 345	D21 at 25	13.85	9.0	D21 at 12.5	27.70	1.1	D13 ac 25	5.31	0.2	D13 ac 25	4.52	0.2	D21 at 12.5	27.70	1.1	D21 40 12.5	27.7	1	D13 at 25	5.31	2.0	D13 at 25	5.31	0.2
6	E-15,16 F-15,26	25	397 × 345	D25 ac 25	19.63	8.0	D25 at 12.5	39.26	1.5	D13 &C 25	5.31	0.2	D13 at 12.5	10.62	7.0	D25 ac 12.5	39.26	1.6	025 at 25	19,63	0.8	D13 at 12.5	10,62	7.0	D13 at 25	5.31	0.2
	N-67,68 0-67,68	25	423 × 203	D15 ac 20	78*8	7*0	D15 at 10	17.67	0.7	D12 ac 25	4.52	0.2	D12,D15 ac 12.5	11.59	0.5	D15 at 10	17.67	0.7	D15 ac 20	8.84	7.0	D11,D15 ac.12.5	10.87	0.5	D12 at 25	4.52	0.2
5	R-65,66 S-65,66	23 + AS	423 x 268	D15 at 20	8.84	7.0	D15 ac 10	:7.67	0.3	D12 at 25	4.52	0.2	D12,D15 at 12.5	11.59	0.5	D15 at 10	17.67	0.7	D15 at 20	8.84	7.0	D11-D15 ac 12.5	10.87	5.0	D12 ac 25	4,52	0.2
	J-52,53 X-52,53	21 + AS (9)	420 x 265	D15 &c 20	78.8	0.4	מו שוני 10	17.67	0.8	D12 at 25	7.52	0.2	D12,015 at 12.5	11.59	9.0	D15 at 10	17,67	0.8	D15 at 20	9,84	5.0	D12,015 ac 12.5	ĺ	0.6	D12 at 25	4.52	0.2
3	0-52,53 R-52,53	20	752 × 265	D15 ac 20	8.84	0.4	D15 ac 10	17.67	6.9	D12 ac 25	4.52	2.0	D12,D15 at 12.5	11.59	0.5	D15 at 10	17.67	6.0	D15 at 20	38.8	5.0	D12,D15 at 12.5	11.59	9.6	D12 at 25	4.52	0.2
	E-52,53 Y-52,53	. 25	425 x 262	D15 at. 20	8.84	0.4	D12, D15 ac 10	67.41	9.6	D12 at 25		0.2	D12 at 12.5	50.6	7.0	D15 at 10	17.57	0.7	D12 4E 20	5.66	0.2	D12,D15 ac 12.5	11.59	0.5	D12 ac 25	4.52	0.2
Pier No.		(四)	Lengch and Width (cm)	Reinforcement/Space(cm)	Area (cm2)	Steel Ratio (%)	Reinforcement/Space(cm)	Area (cm2)	Sceel Ratio (X)	Reinforcement/Space(cm)	Area (cm2)	Sceel Ratio (Z)	Reinforcement/Space(cm)	Area (cm2)	Sceel Ratio (%)	Reinforcement/Space(cm)	Area (cm2)	Steel Ratio (%)	Reinforcement/Space(cm)	Area (cm2)	Steel Ratio (Z)	Reinforcement/Space(cm)	Area (cm2)	Steel Ratio (Z)	Reinforcement/Space(cm)	Area (cm2)	Steel Ratio (%)
ij	Location	Thickness	Lengch and		To- Top		Shore R	Botton	J	:	405	Trans	Verse	Botton			Top	I! 		Bottom	I		<u>6</u>	Trana		Borrom	
Item			Stab			· .			Central Andrews	Siab	×	Rein-	forcements	-						End	SIBD						

-85-

D...Deformed Bar (mm S...Square Bar (mm

b. Reinforcement probing

Reinforcement probing was carried out using a pachometer (metal detector) for the purpose of checking the re-bar arrangement in other slabs except for the sections where the chipping tests were excuted.

Table C shows almost the same re-bar spacing as found in the chipping test except for a large difference in reinforcement perpendicular to the axis of Pier 13.

Table C Results of Pachometer Survey

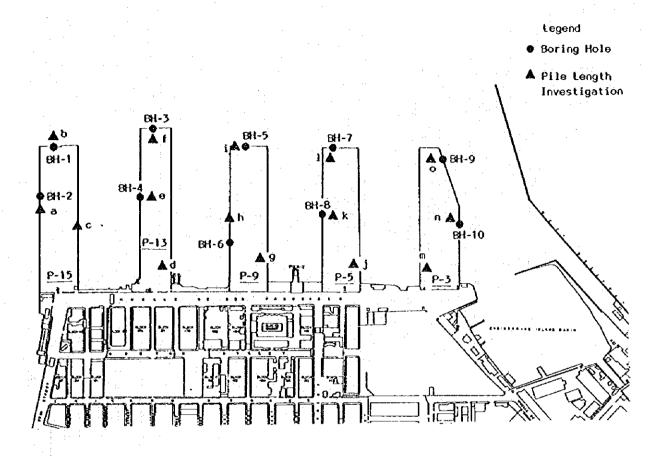
(Unit: centimeters)

Pier	Pier	Axis	Perpendicular to	Pier Axis
No.	Pachometer survey	Chipping test	Pachometer survey	Chipping test
3	$ \begin{bmatrix} 19 \\ 19 \\ 18 \\ 20 \end{bmatrix} 19 \begin{bmatrix} 26 \\ 28 \\ 22 \\ 20 \end{bmatrix} 24 $	20 20 20 20	$\begin{bmatrix} 21 \\ 26 \\ 24 \\ 27 \end{bmatrix} \begin{bmatrix} 23 \\ 27 \\ 17 \\ 22 \end{bmatrix} 22$	25 25 25 25
5	$\begin{bmatrix} 16 \\ 22 \\ 21 \\ 24 \end{bmatrix} = \begin{bmatrix} 29 \\ 23 \\ 32 \\ 27 \end{bmatrix} = 28$	20 20 } 20	$ \begin{vmatrix} 22 \\ 24 \\ $	25 } 25 25 }
9	$\begin{bmatrix} 21 \\ 23 \\ 21 \\ 21 \\ 21 \end{bmatrix} = \begin{bmatrix} 22 \\ 23 \\ 28 \\ 24 \end{bmatrix} = 24$	25 20 25 25	$ \begin{bmatrix} 22 \\ 26 \\ 20 \\ 26 \\ 20 \\ 26 \end{bmatrix} \begin{bmatrix} 22 \\ 24 \\ 32 \\ 29 \end{bmatrix} 26 $	25 20 25 23
13	$ \begin{bmatrix} 25 \\ 18 \\ 26 \\ 26 \\ 20 \end{bmatrix} \begin{bmatrix} 25 \\ 30 \\ 25 \\ 30 \end{bmatrix} 28 $	15 30 15 20	$\begin{bmatrix} 22 \\ 23 \\ 21 \\ 19 \end{bmatrix} 21 \qquad \begin{bmatrix} 24 \\ 22 \\ 20 \\ 19 \end{bmatrix} 21$	25 45 30 } 33
15	$\begin{bmatrix} 26 \\ 25 \\ 22 \\ 24 \end{bmatrix} \begin{bmatrix} 19 \\ 20 \\ 21 \\ 18 \end{bmatrix} = 20$	20 } 22 24 } 22	$\begin{bmatrix} 19\\18\\18\\23 \end{bmatrix} 20 \begin{bmatrix} 21\\20\\16\\22 \end{bmatrix} 20$	20 25 } 23

2. Pile Length Investigation

The sonic pile test is a nondestructive test based on wave theory. Signals caused by an impact applied to the pile head go and return through the pile while being affected by the ground base or a discontinuous plane of the pile and are measured by a transducer installed at the pile head. Table D compares the in situ measurements (average values) with boring survey results.

The table shows piles except for those at Pier 9 and part of Pier 13 have almost reached the bearing strata or its vicinity, raising no particular problems. The estimation of pile length for g and h at Pier 9 and f at Pier 13 is not necessarily reliable as it is only based on the signals.


Considering the result of the soil boring, figures in the parentheses probably refer to the actual pile lengths.

Locations where the pile length investigation and the soil boring were carried out are shown in Fig. B and the results of the pile length investigation are presented in Table B.

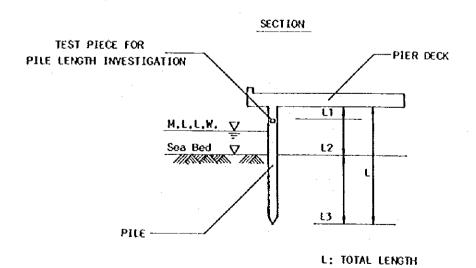
Table D Results of Pile Length Probing

(Unit: meters) Pier No. Average value of length Nearest Bore Hole for three piles No: Depth of Bearing Stratum 24.2 m 10 25 3 26.8 n 10 25 18.6 9 o 20 - 25 j 46.2 8 44 5 43.1 k 8 44 36.7 1 7 39 7.0 (19.8) g 6 24 9 h 6.5 (20.9) 6 24 i 16.1 5 21 đ 23.7 4 17 13 18.9 4 е 17 ſ 3.7 (37.7) 3 43 27.4 2 3 26 15 30.4 b 1 38 28.3 2 26

Figures in parentheses are alternative values.

ı	PIER-15	1	PIER-13		PIER-9			P	IER-5	P	IER-3
a	D-65 D-64	đ	G-24 G-23	9	ห-8 ห-9	· i	C-58 O-58	j	R-31 R-32	B	B-21 B-22
	C-64		F-24		M-9		0-57		\$-32		C-21
b	G-118	е	P-71	h	D-25			k	A-62	n	T-66
	G-117		P-12		D-24				8-62 8-63		U-66 U-67
	F-117		Q-72		C-24				8-05		U-07
c	T-41	f	H-117					1	D-114	o	F-114
	T-42		M-116						E-114		F-115
	U-42		L-116						E-115		G-115

Fig. B Location of Pile Length Investigation and Bore Holes


Table E-1 Pile Length Investigation

(Unit: m)

Pi	er No.	Pile No.	L ₁	^L 2	^L 3	Total Length
		B ~ 21	2.2	3.4	22.2	27.8
	m.	B - 22	2.2	3.4	23.8	29.4
		C - 21	1.9	3.0	26.6	31.5
		Т - 66	2.0	4.5	24.3	30.8
3	ກຸ	U - 66	1.9	4.4	26.0	32.3
		υ - 67	1.9	4.5	30.0	36.4
		F - 114	1.9	7.9	16.9	26.7
	0	F - 115	2.1	7.9	17.8	27.8
	ļ	G - 115	2.1	7.8	21.1	31.0
		R - 31	2.1	4.5	48.3	54.9
	j	R - 32	1.9	5.7	43.9	51.5
		S - 32	2.0	5.7	46.3	54.0
		A - 62	2.1	8.1	41.5	51.7
5	k	В - 62	2.1	7.0	45.0	54.1
		В - 63	2.1	6.8	42.8	51.7
		D - 114	1.9	6.9	39.5	48.3
	1	E - 114	1.9	6.7	39.7	48.3
	<u>.</u>	E - 115	2.0	6.7	30.9	39.6
		M - 9	3.2	4.7	8,1(26.5)	16.0(34.4)
	g	N - 8	3.2	4.4	6.0(15.6)	13.6(23.2)
		N - 9	3.4	4.3	6.9(17.3)	14.6(25.0)
	g	C - 24	1.8	6.6	7.0(20.6)	15.4(29.0)
9	h i	D - 24	1.9	6.5	6.3(21.5)	14.7(29.9)
		D - 25	1.8	6.6	6,3(20.7)	14.7(29.1)
		C - 58	2.0	7.8	14.2	24.0
}	i	D - 57	2.0	7.7	14.7	24.4
		D - 58	2.0	7.7	19.5	29.2

Table E-2 Pile Length Investigation

						(Unit: m)
P	ier No.	Pile No.	L ₁	r ⁵	L ₃	Total Length
		F - 24	1.7	3.7	22.7	28.1
	d i	G - 23	1.5	3.9	24.2	29.6
	:	G - 24	1.7	3.8	24.2	29.7
* .		P - 71	1.9	4.7	19.3	25.9
13	e	P - 72	2.2	5.0	19.0	26.2
İ		Q - 72	1.8	4.8	18.5	25.1
		L - 116	1.7	5.1	4.5(40.5)	11.3(47.3)
	f [M - 116	1.7	5.2	2.8(38.0)	9.7(44.9)
[<u> </u>	M - 117	1.7	5.3	3.9(34.7)	10.9(41.7)
		C - 64	1.2	6.2	27.4	34.8
	a	D - 64	1.7	5.8	26.2	33.7
		D - 65	1.7	5.7	28.7	36.1
ĺ		F - 117	1.8	8.1	32.0	41.9
15	b	G - 117	1.8	8.0	27.2	37.0
;		G - 118	1.7	8.2	31.9	41.8
		T - 41	1.7	6.3	28.2	36.2
	c	T - 42	1.7	6.3	31.3	39.3
		U - 42	1.6	6.8	25.3	33.7

3. Concrete Compressive Strength Test

a. Compression Test

Table F shows the average values of the concrete compression test. These values are obtained from the test results of slabs and piles shown in Table G and H and Figs. C, D and E.

As seen from the tables, the highest compressive strength for pile core samples was 400 kgf/cm² at Pier 5 and the lowest 160 kgf/cm² at Pier 15, while for slabs 328 kgf/cm² at Pier 15 and Pier 5 were the highest and 185 kgf/cm² at Pier 5 and Pier 13 were the lowest. In both cases, there are considerable variations in concrete compressive strength. Such variations are also large in the same pier from place to place, particularly in the case of slabs.

Pier by pier comparison between slabs and piles shows $50 - 140 \text{ kgf/cm}^2$ larger values for pile concrete.

Each pier, however, satisfies $\sigma ck = 210 \text{ kgf/cm}^2$, the standard strength for designing reinforced concrete structures stipulated by "Concrete Design Manual", a Japanese standard, apparently raising no problems in concrete strength.

Table F Average Value of Concrete Compressive Strength

Kgf/cm² (Unit: Pier No. Classification 13 15 Average 3 5 9 241 Slabs 231 239 270 235 239 244 Piles 294 379 284 320 311

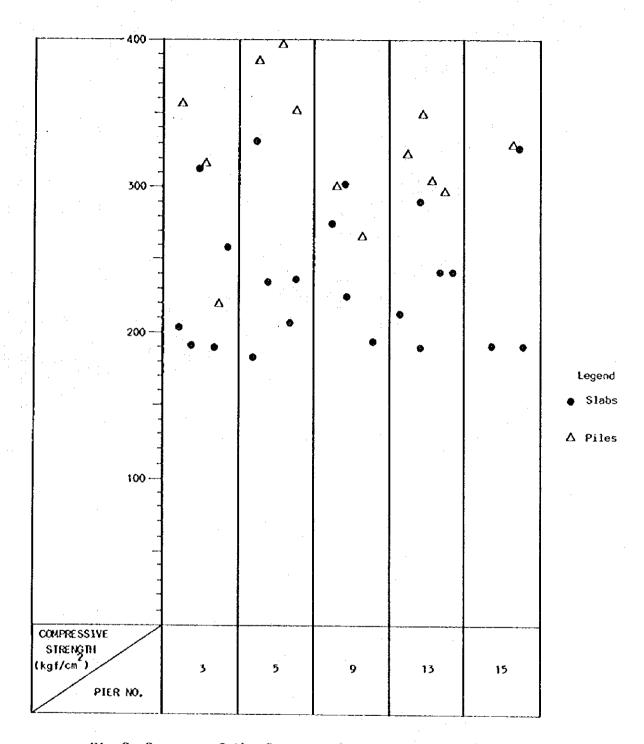


Fig.C Summary of the Concrete Compressive Strength

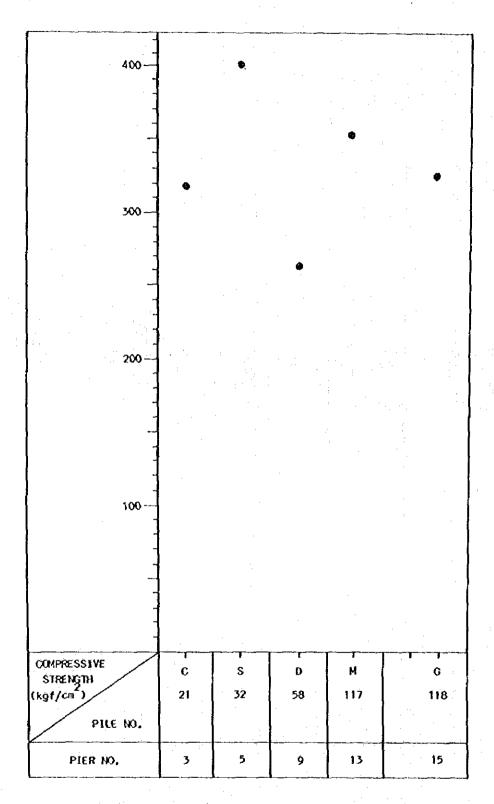
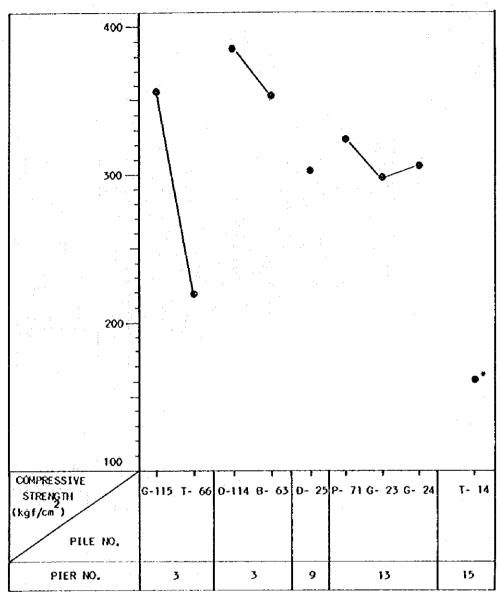
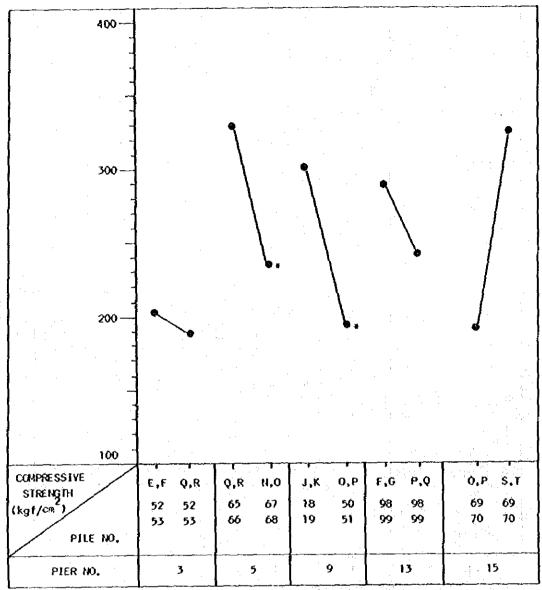




Fig. D-1 Results of Compression Test for Pile Concrete Samples (in Japan)

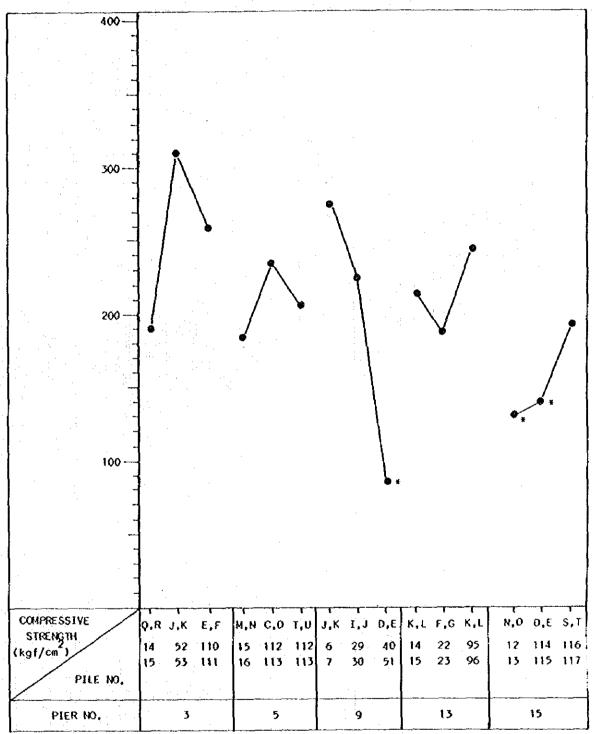

* Sample was damaged before testing.

Fig. D-2 Results of Compression Test for Pile concrete Samples (by UP)

* Sample was damaged before testing.

Fig. E-1 Results of Compression Test for Slab Concrete Samples (in Japan)

* Sample was damaged before testing.

Fig. E-2 Results of Compression Test for Slab Concrete Samples (by UP)

Table G-1 Results of Compression Test for Pile Concrete Samples

Diameter (D) X Length (H) (cm)		_						
X Leng	_	Maximum	Compressive	۵/ ۲۱	Coefficient	Corrected	Existence of	Full
		Load (tf)	Strength (kgf/cm2)		of Correction	Strength (kgf/cm2)	Rein- forcement	Length (cm)
9.9 X 12.84		26.00	338	1.30	76.0	316	none	23.3
9.9 X 15.22		32.30	416	1.53	96.0	007	none	24.7
10.0 X 16.68		21.10	271	1.67	0.97	792	none	26.2
10.01 x 10.98		30.20	388	1.10	0.91	352	none	20.5
9.9 X 17.89		25.70	332	1.80	0.98	327	none	25.1

Table G-2 Results of Compression Test for Pile Concrete Samples

<u>a</u>	д	ڼ	L/		m] _∞		6		
(By-UP)	Full Length (cm)	19.05	21.75	20.88	16.83	20.88	14.21	18.49	20.40	23.01
	Existence of Reinforcement	ក ក ស ភ	None	None	None	Exist	None	None	Exist	None
	Corrected Compressive Strength (kgf/cm2)	345.9	220.7	383.8	352.6	303.0	322.5	298.5	304.9	160.3
	Coefficient of	0.987	1.00	1.00	0.970	1.00	746.0	0.985	766.0	1.00
	H/D	1.842	2.032	2.032	1.619	2.032	1.399	1.810	1.968	2.250
	Compressive Strength (kgf/cm2)	350.5	220.7	383.8	363.5	303.0	340.6	303.0	305.8	160.3
	Maximum Load (tf)	27.53	17.33	30.14	28.55	23.79	26.75	23.79	24.02	12.58
	Diameter(D) x Length(H) (cm)	10.0 × 18.42	10.0 × 20.32	10.0 × 20.32	10.0 × 16.19	10.0 x 20.32	10.0 x 13.99	10.0 x 18.10	10.0 x 19.68	10.0 x 22.50
	Item	G-115	T-66	D-114	B-63	D-25	P-71	c-23	C~24	T-14*
	Pier No.	'n	•	ľ	`	6		£1		15

* Sample was damaged before testing.

Table H-1 Results of Compression Test for Slab Concrete Samples

	**************************************	-						- -			
Ś	Full Length (cm)	24.8	21.0	21.7	23.4	22.4	20.6	22.6	23.3	21.4	20.3
NATAL NATA	Existence of Rein- forcement	2 nos.	1 no.	2 nos.	5 nos.	3 nos.	3 nos.	1 no.	3 nos.	1 no.	2 nos.
	Corrected Compressive Strength (kgf/cm2)	203	189	328	235	303	196	291	244	194	328
	Coefficient of	1.00	26.0	96.0	86.0	86.0	76.0	76.0	76.0	0.98	0.97
	H/D	2.06	1.64	1.46	1.70	1.71	1.61	1.36	1.63	1.73	1.62
	Compressive Strength (kgf/cm2)	203	195	3 42	2 40	309	202	310	252	198	338
	Maximum Load (tf)	15.70	15.20	26.65	18.70	24.25	15.80	24.15	19.60	15.40	26.30
	Diameter (D) X Length (H) (cm)	9.9 X 20.44	10.0 X 16.31	10.0 X 14.55	10.0 X 16.94	10.0 X 17.05	10.0 X 16.09	10.0 X 13.54	10.0 X 16.21	10.0 X 17.20	10.0 X 16.12
	Item Location	E.F-52,53	Q,R-52,53	Q.R-65.66	N,0-67,68*	J.K-18,19	0,7-50,51*	F,G-98,99	P.Q-98,99	0,P-69,70	S,T-69,70
1	Pier No.	m		<u>س</u>		<u></u>		l		٦. ا	

* Sample was damaged before testing.

Table H-2 Results of Compression Test for Slab Concrete Samples

								(by UP)	
Pier No.	Item	Diameter (D) x Length (H) (cm)	Maximum Load (tf)	Compressive Strength (kgf/cm2)	Д/H	Coefficient of Correction	Compressive Strength (kgf/cm2)	Existence of Reinforcement	Full Length (cm)
	Q,R-14,15	10.0 × 20.32	15.19	193.4	2.032	1.00	193.4	None	21.11
m	J.K-52,53	10.0 × 21.11	24.49	311.8	2.111	1.00	311.8	None	21.75
· :	E,F-110, 111	10.0 x 17.62	20.73	264.0	1.762	0.981	259.0	None	18.42
	M,N-15,16	10.0 x 20.80	14.50	184.6	2.080	1.00	184.6	None	21.75
ιν ····································	C,D-112,113	10.0 x 20.48	18.36	233.8	2.048	1.00	233.8	None	21.27
	T,U-112,113	10.0 x 17.94	16.54	210.6	1.794	786.0	207.2	None	18.89
	J,K-6,7	10.0 x 22.86	21.76	277.0	2.286	1.00	277.0	None	23.65
9,	I,J-29,30	10.0 x 17.46	18.36	233.8	1.746	036.0	229.1	None	18.10
	D,E-50,51*	10.0 x 16.99	06.9	6.78	1.699	0.976	85.8	None	17.62
	. K,L-14,15	10.0 x 20.48	16.76	213.4	2.048	1.00	213.4	None	20.96
e E	F,G~22,23	10.0 x 22.07	14.50	184.6	2.207	1.00	184.6	None	23.02
	X,L-95,96	10.0 × 19.05	19.16	244.0	1.905	0.992	242.0	None	21.11
	N,0-12,13*	10.0 x 21.59	10.30	131.1	2.159	1.00	131.1	None	22.23
ë.	D, E-114,115*	10.0 x 18.73	11.32	144.1	1.873	0.990	142.7	None	19.21
	S,T-116,117	10.0 x 16.83	15.62	199.0	1.683	0.975	194.0	None	17.46

* Sample was damaged before testing.

b. Schmidt Hammer Test

- 1) Fig. F summarizes the results of the Schmidt Hammer Test.

 The test results for slabs, beams and piles are also presented in Figs. F and G and Table J.
- 2) The compressive strength F was estimated from the standard hardness RO using the following formula:

$$\sigma_{ck} = -184 + 13 \times R0 \, (kgf/cm^2)$$

where the standard hardness RO was calculated by adding a compensation value ΔR to the repulsive hardness R (average value in twenty places) in accordance with:

$$RO = R + \Delta R$$

and the value for aged dry concrete was further adjusted by using the following equation:

$$Fn = \alpha n \times F$$

where Fn: Estimated strength of material n days old

on: Adjusted value from material age test (constant 0.63 for all materials more than

3,000 days old)

3) Table I shows the average values for piles, slabs and beams at each pier from the Schmidt Hammer Test.

The Schmidt Hammer Test showed about 10% higher values for slabs than those obtained from the concrete compression test which is discussed later.

On the other hand, the values for piles obtained from the Schmidt Hammer test were uniformly about 55% lower than those obtained by the compression tests. This may be attributable to the numerous air cavities in the concrete surface after monotube steel plates are removed preventing proper hardness measurement.

According to the test results, the value increases from piles to beams to slabs.

Table I Average Value of Compressive Strength Measured by Schmidt Hammer Test

(Unit: Kgf/cm²)

Pier No.						
Classification	3	5	9	13	15	Average
Slabs	266	265	273	262	252	265
Beams	259	279	250	243	189	246
Piles	•			171		

In terms of Fn (0.63 x F)

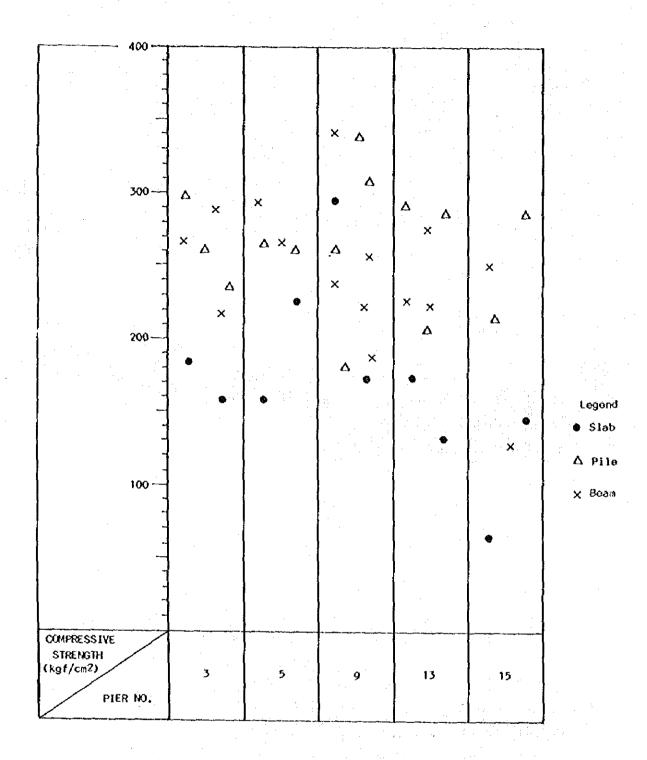


Fig. F Summary of Schmidt Hammer-Compression Test (Piles, Slabs, Beams)

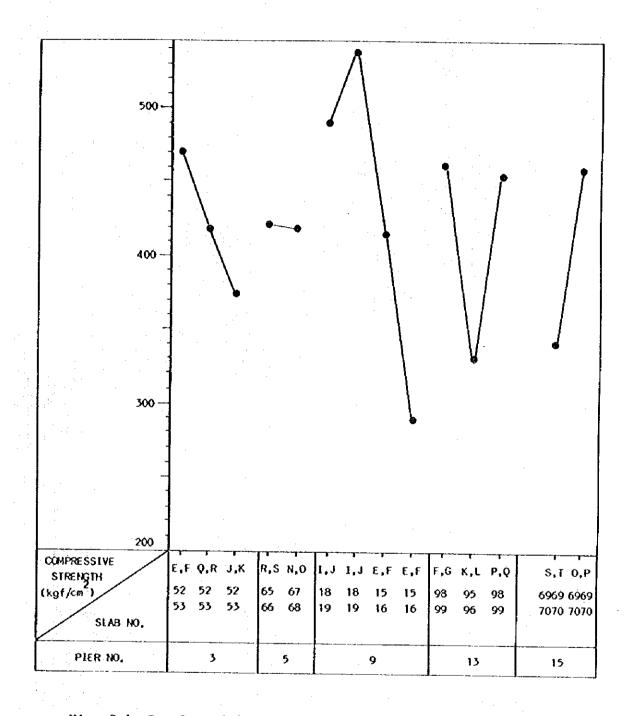


Fig. G-1 Results of Schmidt Hammer-Compression Test for Slabs

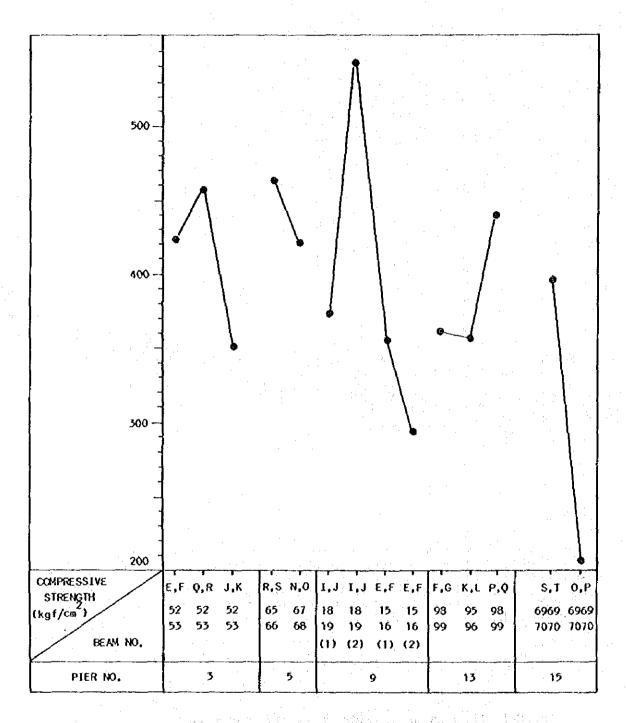


Fig. G-2 Results of Schmidt Hammer-Compression Test for Beams

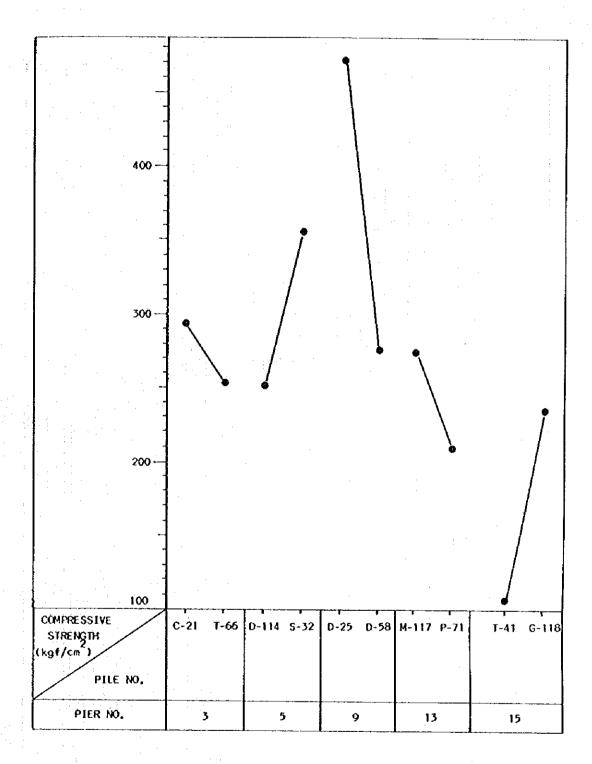


Fig. G-3 Results of Schmidt Hammer-Compression Test for Pile Concrete

Table J-1 Results of Schmidt Hammer - Compression Test for Slabs and Beams (1 of 2)

tag;	Gard	ngth Note	.7 S: Slab	. 4 B: Beam	1.1	.5	-1	.5	†	8.		9.	1	.3	.2			•3	.9	. 9. 2.	£ 8 2 9
datsed	Coefficient Standard		_	ditto 267.4	ditto. 264.1	ditto 289.5	ditto 237.1	ditto 221.5	ditto 267.4	ditto 292.8	ditto 264.1	ditto 266.6	ditto 309.1	ditto 340.3	ditto 236.2	ditto 342.7	ditto 263.3				
	Compressive Co		-	424.4	419.2	459.5	376.3	351.6	7 7 7 7 7	1.494	419.2	423.1	1.064	540.1	375.0	544.0	6.714		415.3	415.3	415.3 289.2 358.1
Coefficient	of	Repulsion (RO)	50.5	8.94	46.4	5.64	43.1	41.2	8.9	6.64	1.91	7.94	51.9	55.7	43.0	56.0	46.3	The state of the s	46.1	46.1	36.4
	H te B	Location	E.F-52,53	ditto	Q,R-52,53	ditto	J.K-52,53	ditto	R,S-65,66	ditto	N,0-67,66	ditto	91.81-LI	ditto	ditto	ditto	0,P-50,51	The second secon	E,F-15,16		
		Pier No.		m	l vo	В Э	S	m	v	m	IZ S	m	S-1	8-2	B-1	8-2	8		S-1	S-1 S-2	2

Table J-1 Results of Schmidt Hammer - Compression Test for Slabs and Beams (2 of 2)

-								· .				·-
		Note	S: Slab	3: Beam								
Design	Standard	Strength (kgf/cm2)	291.9	228.1	208.4	225.6	288.7	277.2	215.0	250.2	289.5	128.1
	Coefficient	Correction	0.63	ditto	ditto	ditto	ditto	ditto	ditto	ditto	ditto	ditto
	Compressive	Strength (kgf/cm2)	7.897	362.0	330.8	358.1	458.2	440.0	341.2	397.1	459.5	203.4
Coefficient	of	Repulsion (RO)	8.64	42.0	39.6	41.7	7 67	0.84	7.07	44.7	5.64	29.8
404	- Trem	Location	F,G-98,99	ditto	K,L-95,96	ditto	P.Q-98.99	ditto	S.T-69,70	ditto	0,8-69,70	ditto
1	/	Symbol	S	മ	S	В	v	வ	တ	മ	S	8
	//	Prer No.			13						tt RV	

Table J-2 Results of Schmidt Hammer - Compression test for Pile Concrete

Note	P:Pile									
Design Standard Strength (kgf/cm2)	184.7	159.3	158.4	224.0	294.4	173.2	171.5	132.2	62.9	146.2
Coefficient of Correction	0.63	di ato	ditto	ditto	ditto	ditto	ditto	ditto	ditto	ditto
Compressive Strength (kgf/cm2)	293.1	252.8	251.5	355.5	467.3	274.9	272.3	209.9	104.6	232.0
Coefficient of Repulsion (RO)	36.7	33.6	33.5	41.5	50.1	35•3	35.1	30.3	22.2	32.0
Item	C-21	T-66	D-114	s-32	D-25	D-58	M-117	P-71	፲ ት – ፲	0-118
Pier No. Symbol	Ω,	ρ,	Ď.	D.	ρ.	ρ, ρ,	ρ,	£4	ρ,	۲. ه

C. Compressive Strength Estimated from Concrete Mix Proportion

Table K shows the concrete compressive strength estimated from the water-cement ratio in accordance with the Japan Construction Society Chart of the relation between water-cement ratio and concrete compressive strength by assuming cement strength K as about $420~\rm kgf/cm^2$ in reference to the current performance results of ordinary Portland cement.

This table shows an overall average decrease in strength of 81-83% of the samples except those at Pier 5 and part of Pier 9 (pile sample) which showed strengths larger than at the time of construction.

Table K Estimated Concrete Compressive Strength

			Water-	Estimated	Compression	Ratio	of
1	1 1		Cement	Concrete	Test Results	Compre	ssive
Pier	Item	and the second second second second	Ratio	Compressive		Streng	
No.		No.		Strength		Estima	
	:		وسوا مورد	2.	2.	Streng	
			W/C (%)	F ₁ (kgf/cm)	F ₂ (kgf/cm ²)	F ₂ /F ₁	Average
		E,F-52,53	70.6	220	203	0.92	
3	Slab	Q,R-52,53	54.2	330	189	0.57	0.81
	Pile	C-21	53.1	340	316	0.93	
		Q,R-65,66	57.4	305	328	1.07	
5	Slab	и,0-67,68	53.6	335	235*	-	1.14
	Pile	S-32	54.1	330	400	1.21	
		J,K-18,19	54.5	325	303	0.93	
9	Slab	0,P-50,51	58.0	300	196*	-	0.98
	Pile	D-58	64.4	255	264	1.04	
		F,G-98,99	54.7	320	291	0.91	ļ
13	Slab	P,Q-98,99	17.2	400	244	0.61	0.83
	Pile	M-117	51.1	357	352	0.98	:
		0,P-69,70	63.7	260	194	0.75	
15	Slab	S,T-69,70	46.7	410	328	0.80	0.82
:	Pile	G-118	50.3	365	327	0.90	

^{*} Cores with cracks.

4. Reinforcement/Steel Piece Tensile Test

Figs H and I and Table M show the results of the tensile tests of reinforcements which showed the highest yield point of 34.9 kgf/mm^2 at Pier 9 and the lowest of 22.3 kgf/mm^2 at Pier 15 with an average value of 30.5 kgf/mm^2 .

The results of the tensile tests of steel pieces (steel monotubes) are further shown in Table L, where the mechanical properties specified by the JIS standards (25 kgf/mm² or higher yeild stress, 41 kgf/mm² or higher tensile strength and 17% or higher elongation rate for Class 8 SS41) are satisfied indicating a quality equivalent to Class B SS41.

Table L Results of Steel Tube Tensile Test Results

Sample No.	Thickness (mm)	Yield Point stress (kgf/mm²)	Tensile Strength (kgf/mm²)	Elongation (%)
1	6.24	43.7	45.6	26.4
2	5.99	44.9	46.2	22.6
3	6.14	40.7	45.5	26.8
h	6.09	42.7	43.8	23.0
5	6.14	44.1	45.3	24.8

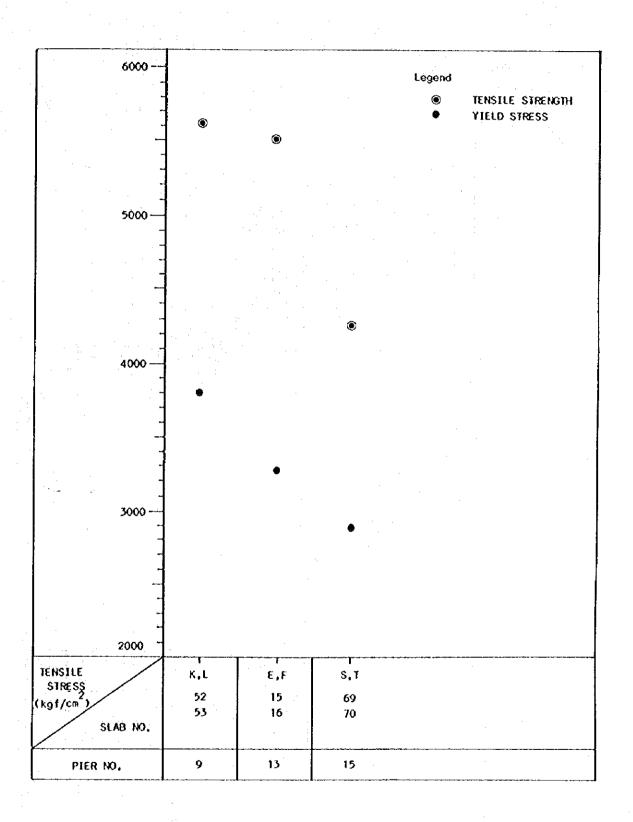


Fig. H-1 Results of Tension Test for Reinforcement Bar (by UP)

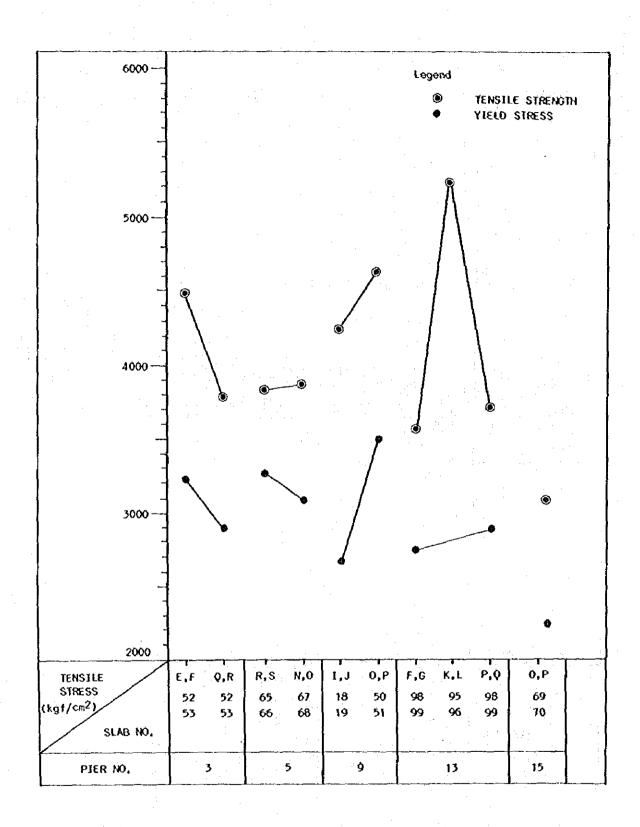


Fig. 11-2 Results of Tension Test for Reinforcement Bar (in Japan)

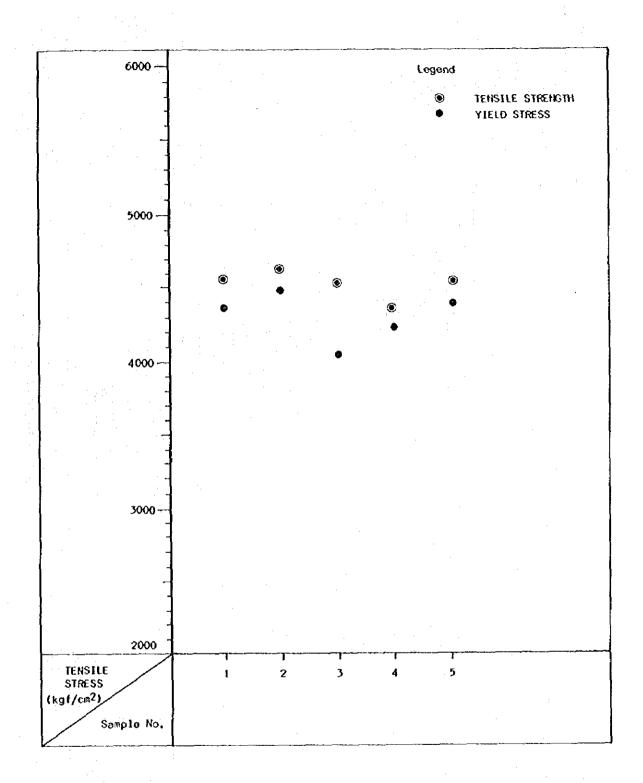


Fig. I Results of Tension Test for Steel Section of Monotube Pile (in Japan)

Table M-1 Results of Tension Test for Reinforcement Bar (by UP)

Note	(): Minimum					
Elongation (%)	(10.0)	23.4	(10.0)	21.9	(18.0)	25.6
Yield Point Stress Elongation (kgf/cm2)	(2804)	3792	(5804)	3273	(5342)	287 4
Tensile Strength (kgf/cm2)	(4895)	5619	(4895)	5509	(3977)	75 75
Kind of Reinforcement	Deformed		ditto			*
Cross Sectional Area (cm2)	1.99		3.86		1.96	
Size (mm)	25.00 0.00		22.2		15.8	
Head	K,L-52,53		国, 8-15, 16		S.T-69.70	
Pier No.	6		6	.:	15	

Tabele M-2 Results of Tension Test for Reinforcement Bar (in Japan)

			0.000					
/	Item		Sectional	Kind of	Tensile	Yield		
Pier		Size	Area	Reinforcement	Strength	Point Stress	Elongation	
No.	Location	(mm)	(cm2)		(kgf/cm2)	(kgf/cm2)	⟨₡⟩	Note
	E,F-52,53	12.5	1.227	Deformed	0877	3.420	25.8 (26.2)	(): Elongation
η 1——	Q,R-52,53	17.3	2.351	ditto	3790	2890	22.7 (28.9)	
	R,S-65,66	16.3	2.087	ditto	3830	3260	30.1 (38.3)	
ν 1	N,0-67,68	14.2	1.584	ditto	3850	3090	26.5 (26.9)	
(1,3-18,19	24.5	4.714	ditto	07 27	2650	23.8 (39.3)	
<u>ک</u>	0,P-50,51	16.2	2.061	Round	4610	3 490	28.6 (36.4)	
	F, C-98, 99	14.6	1.674	Deformed	3580	2750	26.5 (26.9)	
<u></u>	K,L-95,96	21.2	3.530	Twisted Square	5240	Judgement is impossible	8.4 (14.9)	
· · · · · · · · · · · · · · · · · · ·	66.88-94	14.6	1.674	Deformed	3700	2870	25.2 (25.6)	
15	0,8-69,70	16.9	2.243	ditto	3080	2230	22.6 (28.8)	

5. Reinforcement Corrosion

a. Potential Difference Measurement

Table N shows the survey results based on the cumulative frequency chart.

The angle of the cumulative frequency chart in the table refers to the slope angle of a straight line approximately placed through the measurement points plotted in the chart, and a steeper slope is generally recognized as more electro-chemically active, indicating the reinforcement corrosion is greater at the points of measurement.

In the table, "active" is distinguished from "inactive" with the degree of reinforcement corrosion estimated from the results of potential difference measurement classfied as follows:

-85 mV < E (inactive)

: Occurrence of corrosion is more

than 90% improbable.

- 235 mV ≤ E ≤ -85 mV

Uncertain

(Medium value)

E < -235 mV (Active)

Occurrence of corrosion is more

than 90% probable.

(According to Japan Concrete Industrial Association "Corrosion Resistance Guideline")

Table N Results of Reinforcement Potential Measurement

Pier		15	-		13				9					5		3	
	1	2	3	ą	5	6	7	8	9	10	. 11	12	13	14	15	16	17
Place of Measurement	S,T 69 70 (1)	S,T 69 70 (2)	0,P 69 70	F,G 98 99	К, L 95 96	P,Q 98 99	1,J 18 19 (1)	I,J 18 19 (2)	ό _ι Ρ 50 51 (1)	0,8 50 51 (2)	E,F 15 16 (1)	E,F 15 16 (2)	P,S 65 66	N,O 67 68	E,F 52 53	Q,R 52 53	J,K 52 53
Angle of Cumulative Frequency Chart	14.5	15	18	20	17.5	20.5	19.5	6.5	13.5	6.5	9.0	3.5	24	22	22.5	22	10.5
Active or Inactive	М	И	A	×	М	М	н	А	М	м	Α	٨	М	M	A	H	A

A: Active

M: Medium value (between active and inactive)

b. Carbonization Test

Results of the carbonization test are shown in Table $\overline{0}$. As shown in Table $\overline{0}$, no carbonization was recognized in five pile cores, while slab cores have been considerably carbonized to depths of concrete covering 25 mm and 19.6 mm at Pier 9, 22.6 mm at Pier 15 and 18.0 mm at Pier 3, and those values are comparatively large in the test. Although slabs at the same pier have different carbonized depths, the portions where the above deep-carbonized slabs are found are relatively liable to be affected by sea water because these affected area are located at the lowered passageways.

Judging from the result of the inspection, pier by pier carbonization is most developed at Pier 9 and the value decreases in order from Pier 15 to Pier 3 to Pier 5 and then to Pier 13.

The 0 mm depth of carbonization found in some pile cores may be attributable to the monotube steel protecting the concrete surface.

The carbonized depth is found to increase along with an increasing water to-cement ratio and a decreasing unit amount of cement.

Table 0 Result of Carbonization Tests

Pier No.	Item	Core No.	Depth of carbonization (Average) (mm)
3	Slab	E, F - 52, 53	8.3
	Ī	Q, R - 52, 53	18.0
	Pile	C - 21	0.0
5	Slab	Q, R - 65, 66	10.6
		N, O - 67, 66	7.9
	Pile	S - 32	0,0
	Slab	J, K - 18, 19	25.0
9		O, P - 18, 19	19.6
	Pile	D - 58	0.0
	Slab	F, G - 98, 99	0.0
13	Ī	P, Q - 98, 99	5.5
Γ	Pile	M - 117	0.0
	Slab	O, P - 69, 70	22.6
15	·	S, T - 69, 70	11.9
Ī	Pile	G - 118	0.0

c. Salt Content

Test results are shown in Table P, and the relationship between the distance from the concrete surface of a slab or a pile and the salt content (%) are shown in Fig. J. The amount of NaCl increases with decreasing depth from the core surface and decreases with increasing depth from the core surface.

The amount of NaCl contained in the concrete is, however, generally small except for two samples, one collected from Pier 13 (pile core) and the other from the lowered passageway at Pier 15 (slab). In these sample, the content of NaCl exceeded 0.1%.

Pile cores except those at Pier 13 showed low values of null or almost near 0, and this is probably because the surface is covered with steel monotube.

After all, the salt content tends to increase as the core is more liable to be affected by waves. Fig. K shows the survey results on the amount of salt contained in the slabs of piers with piles constructed about twenty years ago in Japan. When compared with the results in the figures, the rate at which the salt content is increasing in South Harbor is relatively slow in view of the time elapsed after construction, although the slab levels above the sea and the climatic conditions are different. Such trace amounts of salt at 5 cm from the surface (0-0.066%) may have little influence on the structure considering possible reinforcement corrosion. For reference, the corrosion of reinforcement allegedly starts when the salt content exceeds 0.4%.

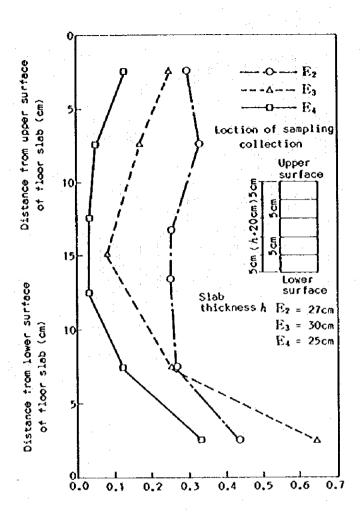


Fig. K Example of the Salt Content in Slabs (%) (Japan)

Table P Salt-Content in Concrete

			Depth	Amou	nt of salt		Amount of
Pier	Item	Core	from			ncrete	salt in sand
No.		No.	core sur-	C1	NaCl	NaC1	NaC1
			face (cm)	(%)	(%)	(kg/m3)	(%)
			1	0.014	0.023	0.49	0.069
- 1		E,F-52,53	5	0.015	0.025	0.56	0.079
	Slab		7	0.009	0.015	0.31	0.043
			1	0.020	0.033	0.72	0.101
3	1.1	Q,R-52,53	5	0.040	0.066	1.47	0.206
			7	0.025	0.041	0.93	0.130
			1	0.010	0.016	0.37	0.052
	Pile	C-21	5	0.005	0.008	0.19	0.027
			7	0.000	0.000	0.00	0.000
			1	0.004	0.007	0.16	0.022
-	·	Q,R-65,66	- 5	0.000	0.000	0.00	0.000
- 1	Slab		7	0.000	0.000	0.00	0.000
I			1	0.012	0.020	0.47	0.066
5		N,0-67,68	. 5	0.009	0.015	0.35	0.049
l			7	0.006	0.010	0.23	0.032
ſ			1	0.000	0.000	0.00	0.000
ı	Pile	S-32	5	0.000	0.000	0.00	0.000
	1		7	0.000	0.000	0.00	0.000
			1	0.050	0.082	1.81	0.254
		J,K-18,19	5	0.009	0.015	0.34	0.048
Į	Slab		7	0.006	0.010	0.23	0.032
	[1	0.009	0.015	0.31	0.043
9	1	0,P-50,51	5	0.002	0.003	0.07	0.010
i			7	0.001	0.002	0.04	0.006
Ì			1	0.000	0.000	0.00	0.000
ł	Pile	D-58	5	0.000	0.000	0.00	0.000
.			7	0.000	0.000	0.00	0.000
			1	0.000	0.000	0.00	0.000
-		F,G-98,99	5	0.000	0.000	0.00	0.000
- 1	Slab		7	0.000	0.000	0.00	0.000
j	Ì		1	0.035	0.058	1.33	0.186
13	ŀ	P,Q-98,99	5	0.016	0.026	0.60	0.084
. [7	0.010	0.016	0.35	0.049
1			1	0.350	0.577	12.90	1.809
	Pile	M-117	. 5	0.265	0.437	9.77	1.370
- 1	1	•	7	0.115	0.190	4.26	0.597
			7	0.144	0.237	5.23	0.734
ŀ		0,P-69,70	5	0.026	0.043	0.94	0.132
l	Slab		Ź	0.016	0.026	0.58	0.081
-	Ì		i	0.020	0.033	0.74	0.104
15	1	S,T-69,70		0.010	0.016	0.37	0.052
_		, , , ,	5 7	0.006	0.010	0.24	0.034
Ì		,	1	0.000	0.000	0.00	0.000
Ì	Pile	.G-118	5	0.000	0.000	0.00	0.000
					17.171717		C # . C 11/11 F

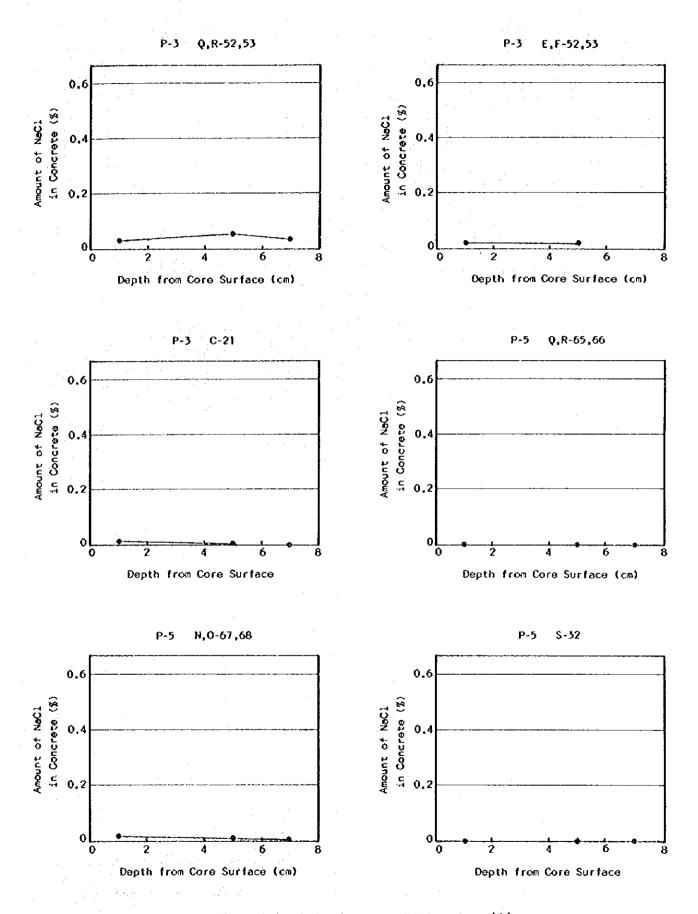


Fig. J-1 Salt-Content in Samples (1)

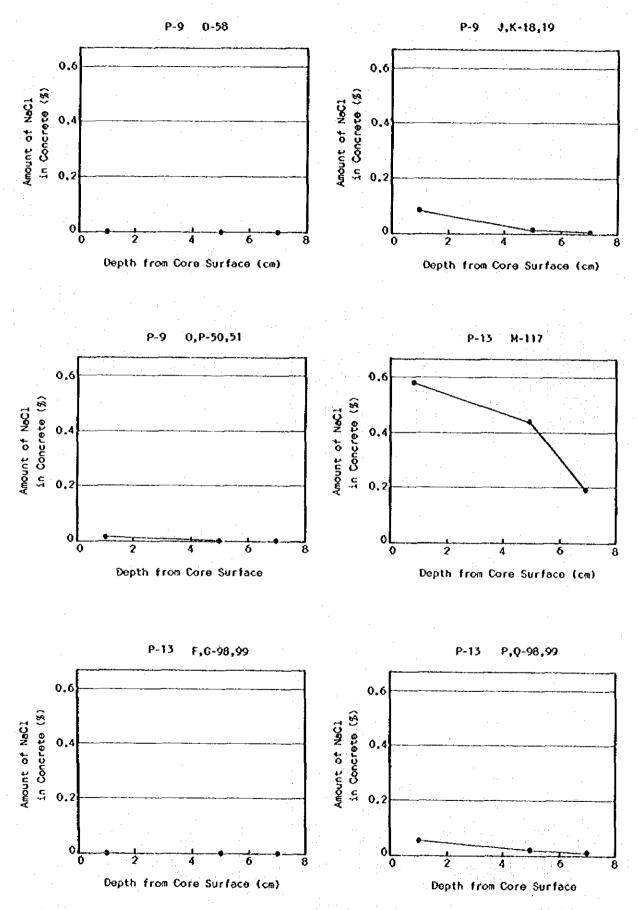
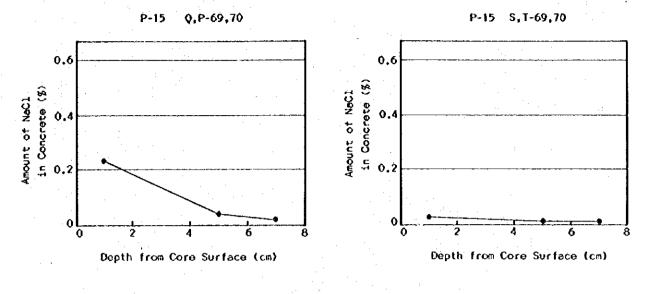



Fig. J-2 Salt-Content in Samples (2)

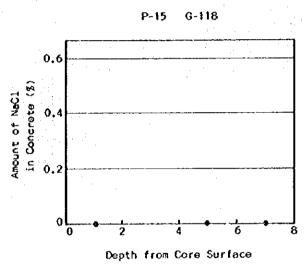


Fig. J-3 Salt-Content in Samples (3)

d. Estimated Concrete Mix Ratio

The test results are summarized in Table S, which shows considerable variations in both the water-to-cement ratio and the unit amount of materials (kg/cm^3) .

The lowest possible ratio of water to cement allegedly improves the concrete corrosion resistance because of increased watertightness. Table Q shows the maximum standard value of water-to-cement ratio stipulated by "The Marine Concrete Structure Corrosion Resistance Guideline", a Japanese standard. Each value for piles resulted from the test is 5-10% higher if constructed under favorable conditions than the 45% set forth in the table. Above all, the value for Pier 9 is extraordinarily high. The 50% standard for Class B is 4-20%, exceeding by all values for the slabs except for two sample from Pier 15 and Pier 13.

On the other hand, all piles except those at Pier 15 and Pier 9 and all slabs satisfy the minimum unit amounts of cement of 350 kg/m^3 and 325 kg/cm^3 stipulated by the same "Corrosion Resistance Guideline" for piles and slabs respectively (Refer to Table R).

Table Q Maximum Standard Value of Water-to-Cement Ratio (%)

Classification	Under Favorable Construction Conditions	Under Unfavorable Construction Conditions
Class A	45	40
Class B	50	45
Class C	50	45

Table R Minimum Standard Value of Unit Amount of Cement (kg/m3)

Construction Conditions	Fav	orable	Unfav	orable
Maximum Coarse Aggrégate Size	25	40	25	40
Classification				
Class A	375	350	400	375
Class B	350	325	375	350
Class C	325	300	350	325

Table S Estimate of Concrete Proportion

100	14.5	3500	140 C 2400	Islaton-comont	Tine sections	Coment	Mater	9.5	Coarse
NO.	111 D	No.	ALL CONFORM	ratio	ratio	content	content	aggregate	
			€ € €		s/a (%)	C(kg/m ²)	$W(kg/m^3)$	S(kg/m ²)	G(kg/m ²)
	4,610	E.F-52,53	0.4	70.6	45.0	24 €	545	711	869
~	9	Q.R-52.53	4.0	54.5	45.0	3.43	186	782	926
	Pile	C-21	0.4	53.1	45.0	371	197	759	927
	رو : ۲	Q,R-65,66	4.0	57.4	45.0	324	186	788	796
ľ) 1	N.0-67.68	4.0	53.6	0.54	388	208	739	904
	Pile	S-32	4.0	54.1	0.54	375	203	750	916
	ر د د د	J.K-18,19	4.0	54.5	45.0	378	506	917 L	911
σ,	3	0,8-50,51	0.4	58.0	45.0	355	206	154	925
· ·	Pile	D-58	0.4	64.4	45.0	329	212	952	925
	ر ر ر	F,G-98,99	0.4	24.7	745.0	384	210	738	606
13) d d	P,Q-98,99	0.4	7.2	0.54	352	991	801	086
	Pile	M-117	0.4	51.1	45.0	370	189	769	939
	44.0	0,P-69,70	0.4	63.7	0.24	325	207	164	933
15) d d	S,T-69,70	0.4	1.94	45.0	336	157	819	1000
	Pile	0-118	0.4	50.3	45.0	298	150	8 41	1028

e. Reinforcement inspection

Table T shows the inspection results of protective covering, the degree of corrosion and the salt content of the reinforcement in the concrete core samples.

Protective covering of the reinforcement in the piles averages 52.3 mm with a maximum of 77.1 mm and a minimum of 29.3 mm while for slab cores the average covering is 58.1 mm with maximum and minimum values of 92.1 mm and 35.0 mm respectively, showing generally thicker covering for slab cores than for piles.

Reinforcement has undergone almost no corrosion as its corrosion level is classified as grade I in Table U and the salt amount contained in the reinforcement is also ranked in the lowest category at 400 ppm according to Table V.

Table U Corrosion Grade

Grade	Development of Corrosion Observed by Visual Inspection
0	Remaining as it was originally built, no corrosion is perceived.
I	Slight corrosion is perceived here and there.
II	Most of the surface is corroded. Cross-sectional loss is perceived here and there.
III	Cross-sectional loss is perceived all over the reinforcement.
IV	1/2 - 2/3 of the original reinforcement is lost.

Table V Degree of Salt Content by the Salt Check Test Method

(Chloride contents in terms of NaCl)

Contained in concrete (g/m ³)	160	320	800	1,200	1,600
Contained in fine aggregate (%)	0.02	0.04	0.1	0.15	0.2
Supernatant liquid concentration (ppm)	400	800	2,000	3,000	4,000

Table T Result of Reinforcement Inspection in Concrete Core Samples

		·	,				
				Protective	the state of the s		
Pier	Item	Core No.	Degree	covering	oi re-bar	Salt content	Depth of
No.			of	Nominal	Pro-	of	carboni-
	1		Corrosion	diameter	tective	re-bar	zation
				of re-bar (mm)	covering (mm)	(ppm)	(Average)
				(1981)	(1881)	/ հեա /	(1011)
		E,F-52,53	· I	D 16	53.3	400	8.3
	Slab						<u> </u>
3		Q,R-52,53	1	D 16	35.0	400	18.0
			I	R 9	77.1		
	Pile	C-21			_		0.0
			I	D 19	69.2	400	
		0.0 65.44	. ·	5.46	00.1	tie -	
	61.1	Q,R-65,66	I	D 16	92.1	400	10.6
_	Slab	N,0-67,68	- I	D 13	67.2	400	7.9
5		-,,	I	D 16	53.0	400	'.'
	Pile	S-32	I	R 9	46.0	-	
	1116	υ- <u>)</u> ε	I	D 19	52.3	400	0.0
		7 10 10 40	1	D 13	62.0	400	<u> </u>
		J,K-18,19	I	D 22	35.5	400	25.0
	Slab						
9		O,P-50,51	. I	R 16	52.5	400	19.6
	D21-	h.co	1	R 9	44.3	-	
	Pile	D-58	I	D 9	49.6	400	0.0
-		Ř C-08 cc	1	D 16	h= ^	hoo	2 2
;	Slab	F,G-98,99	├ ───	D 16	45.0	400	0.0
12	กรสถ	P,Q-98,99	I	D 10	75.8	400	5 5
13			I	D 16	75.8	400	1.7
	Pile	M-117	_	_	<u> </u>	_	0.0
<u> </u>							5.0
		0,P-69,70	I	D 16	64.0	400	22.6
	Slab				· · · · · · · · · · · · · · · · · · ·		
15		S,T-69,70	I	D 16	44.8	400	11.9
	piia	G#119	I	R 9	29.3	· <u> </u>	, ,
	Pile	G-118	I	D 19	51.0	400	0.0

D: Deformed Bar (mm)

R: Round Bar

(mm)

Appendix 3.3.4 Road and Container Yard Survey

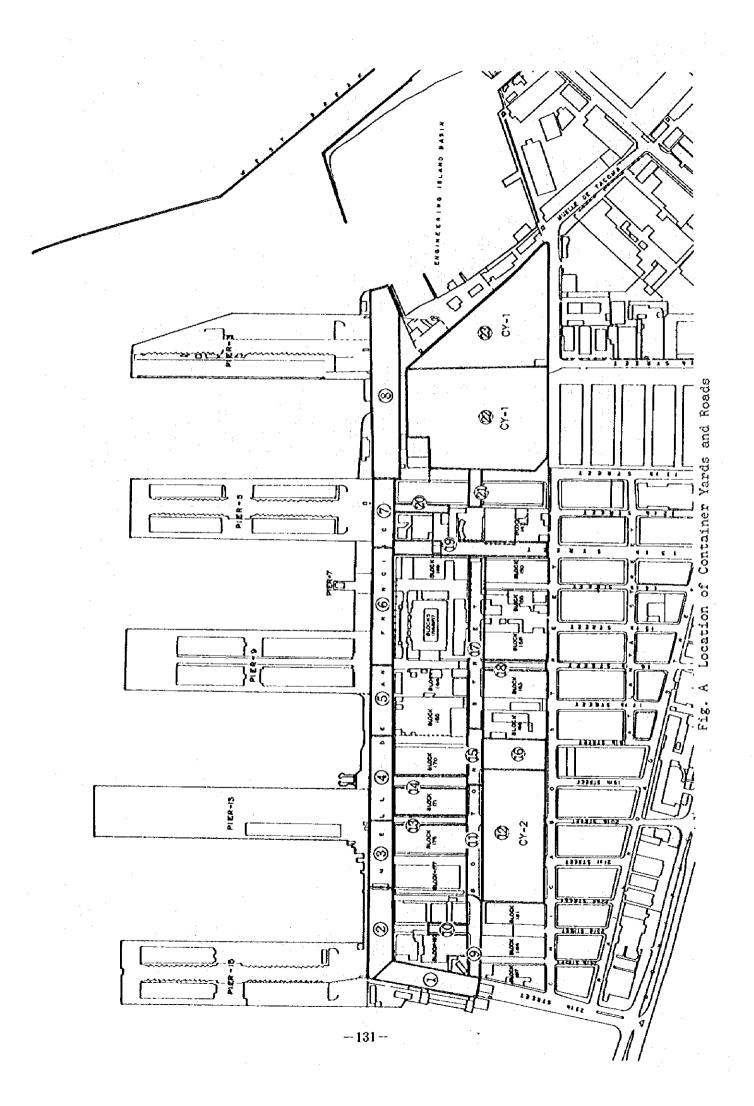
The survey results are summarized in Table A, and repair work has to be carried out on much of the pavement of the roads and the container yards in the port area.

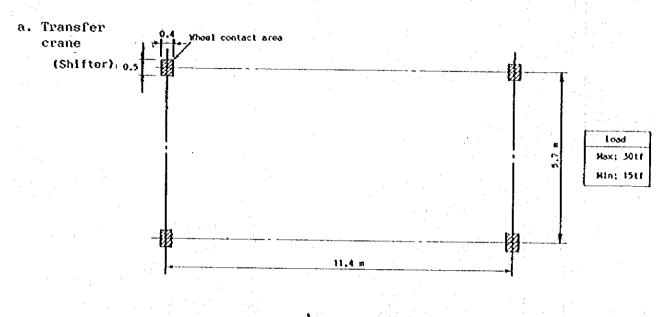
Paved areas requiring repair work comprise 50.2% of the total area. In the following table, A means "no damage is recognized", B "damage, though significant, requires no immediate repair work" and C "major repair work is necessary".

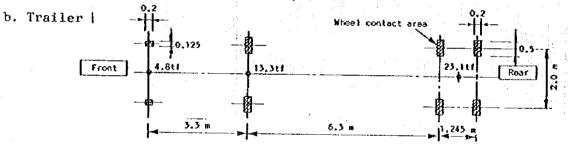
Table A Evaluation of Roads and Container Yards in South Harbor

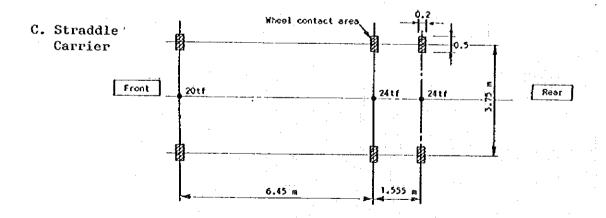
Location	Overall Evaluation	Area (m ²)	Ratio (%)
	Α	22,500	32.0
Roads	В	28,900	41.0
	C	19,000	27.0
	Total	70,400	100
	Α	0	0
Container Yards	В	27,700	31.3
	С	60,900	68.7
	Total	88,600	100

Fig. A shows the location of the surveyed areas and the results are summarized in Table B.




Table B Results of Visual Investigation of Roads and Container Yards (1 of 2)


	Note	ra]	7. E0. X				탮	2.55 × 1.		Тема	· * 보 · *	-	4.0m x 2 APL(CY-2)		Ya.1	4.0 + 3.0B
	Overall Appraisal	Ω	Ω)	ល	ω	ρQ	മ	υ	υ	A	O	¥	മ	∢	¥	∢
	Loss of Pavement	A A	ω	Ω	ω	Ω	Œ	U	O	A	Ö	Ą	മ	¥	¥	¥
Pavement	Cracks	Ω.	m	Ω	щ	മ	ω	ω	m	⋖	Ω	∢.	ပ	рì	ф	4
Condition of	Deformation	A	⋖	A	⋖	<.	4	Δ	0	*	μ	Ą	œ	¥	4	A
	Uniformity of Surface	ďΩ	α	œ ·	a)	ω	M	O	O	4	U	4	m	₩.	Ą	₫.
Pavement	Thickness (cm)	200	50	20	20	50	20	20	20	20	•		Ŋ			
Pav	Kind	Concrete	- op-	-00-	-op-	1 0 0 1	op	- op -	- op -	-do-	Asphalt	Concrete	Asphalt	Concrete	op	-do-
	Area (m2)	4,000	4,800	3,900	4,800	4,300	7,100	3,900	13,900	2,200	1,200	2,900	22,500	1,300	1,400	1,500
Width and	Length (m)	25.3 x 155	35.5 x 135	35.5 x 110	35.5 x 135	35.5 x 120	36.5 x 195	36.5 x 195	45.0 x 310	16.6 x 130	20.0 x 60	16 × 180	215 × 105	11.6 x 112	12.0 x 115	16.1 x 92
	No.		~	m		Ŋ	9	۲-	6	σ,	0	H	75	H	1	15


Table B Results of Visual Investigation of Roads and Container Yards (2 of 2)

				'n	EI O					
	Note	DCA		금	Sidewalk		Dead End	CY-1	CY-2	
	Overall Appraisal	æ	Æ	ď	A	∢	∢	U	υ	
	Loss of Pavement	m	Ą	Æ	Æ	¥	A	O	j	
Pavement	Cracks	മ	മ	∢	ď	Ω	മ	œ	1	
Condition of P	Deformation	£	< *	⋖	∢.	ď	4	Ò	ံ ပ	
)	Uniformity of Surface	æ	4	⋖	Ą	ď	∢	O	υ	
Pavement	Thickness (cm)		20					មា		
Pav	Kind	Asphalt	4,500 Concrete	Asphalt	Congrete	-0p-	Concrete	Asphalt	No	Pavement
	Area (m2)	5,200	4,500	1,100	5,900	1,100	909	36,800	24,100	
Width and	No. Extension (m)	50 x 105	16.1 x 278	10.6 x 105	24.0 x 245	11.3 x 95	15.0 x 40	160 x 230 36,800	စ္က	× 1/2
	No.	16	17	18	139	8	21	25	23	

Appendix 3.3.5 Wheel Load

Appendix 4.2.1 Liner Service at the Port of Manila

Shipping Company	Name of Vessel	Туре	Route	Service Frequency	Remarks (Size of Ship)
Ceylon Shipping Co.	N.Agate	Container (Feeder)	connects at Hong Kong to Colombo, India, Middle East and East-coast of Africa	Weekly	DWI LOA
United States Lines	Integra	Container (Feeder)	connects at Kachsiung to/from USA, Panama, Canada, Europe, S.America, Middle East and Caribbean	Weekly	
United Arab Shipping Co.	N.Agate	Container (Feeder)	connects at Hong Kong to Arabian Culf and Red sea Ports (Jeddah, Aqaba) and Colombo	Weekly	
Safmarine	N.Agate	Container (Feeder)	connects at Hong Kong to South Africa	Weckly	
Dynamic Freight Services			to/from Hong Kong	Weekly	
Eastern Shipping Lines	Eastern Universe Eastern Jupiter Eastern Challenger Eastern Galaxy Eastern Polaris	Container and Break bulk	to/from Kobe, Yokohama and Nagoya	Weekly	7,737 101 7,707 108 7,500 108

Note: The Table is prepared using the sailing schedule printed in newspapers.

Liner Service at the Port of Manila

Shipping Company	Name of Vessel	Type	Route	Service Frequency	Remar (Size of	Remarks e of Ship)
EAC Lines	S.Asia	Container (Feeder)	connects at Hong Kong to US/Canada, PNSL-west Australia	Weekly	DWT 4,500	101 101
Scandurch	Nibon Ned. Dejima	Container (Feeder)	connects at Hong Kong to Burope, Red Sea, Mediterranean	Weekly		
	Bunga Suria Selandla Toyama					
Maersk Line	Tempo	Container (Feeder)	connects at Hong Kong to/from USA/Canada, to/from US Pacific Northwest/MLB, to/from Europe,	Weekly		
			co Korea, Japan, Indonesia, Middle East, West Africa			
Yang Ming Line		Container (Feeder)	connects at Kachslung to US West Coast, East Coast, Gulf and Canada, Continental Europe,	Weekly		
			Mediterranean and Scandinavia		·	
Kyonwa Line	M "Oceania Queen"	Break bulk	from/to Guam, Saipan, Honolulu,	Once a		
	M "Kyowa Orchid"		000111111111111111111111111111111111111		·	
ZEFAL	ZW 11	Container (Feeder)	connects at Hong Kong to Australia- Sydney, Melbourne, Brisbane,	Weekly	2,175	87
			Adelaide			

Liner Service at the Port of Manila

				Commico	9540800	[
Shipping Company	Name of Vessel	Type	Route	Frequency	(Size of Ship)	<u>a</u>
Gold Star Line	Z 11 N/Z	Container (Feeder)	connects at Hong Kong to West, East and South Africa, Sri Lanka, Colombo, India Bombay, South America	Weekly	2,175 LOA 2,175 87	41 <u>6</u> 8
Shofuku Line	Clipper Ace Bonita Ace Asia Ace	Container	from/to Taiwan and Japan; Yokohama, Osaka, Nagoya and Naha	Weekly	5,678	011
Nantai Line Co., Ltd.	2.Ace A.Ace C.Ace	Container (Feeder)	connects at Hong Kong to South Africa and Port Lauis (Mauritius Is.)	Weekly	5,678 11	0 0 1 1 0 0 1 1 1 0 0 1 1 1 1 0 0 1
Showa Line	Bonita Ace Asia Ace Clipper Ace	Container (Feeder)	connects at Hong Kong to Far East, U.S. Pacific, Gulf Ports, Canada, Inner cities of Mexico, U.S. Atlantic (MLB), U.S. Gulf (MLB)	Weekly	5,678	00111
Lloyd Tricstino	N.Agate	Container (Feeder)	connects at Hong Kong to/from Genos, Barcelona and Trieste	Weekly		

Liner Service at the Port of Manila

Shipping Company	Name of Vessel	Type	Route	Service Frequency	Remarks (Size of Sh	rks Ship)
Australian National Line	A.Explorer A.Jade O.Expert		from/to Brisbane, Australia	Bi-monthly		
	O.Ambassador M.Hope A.Pearl				14,258	187
dverett Orient Line	Brad Everett Ross Everett Fernando Everett	Container/Break bulk	from/to Moji, Yokohama, Nagoya, Kobe, Moji, Manila, Cebu, Davao, Tokyo	Twice a week	7,400	143 155 150
Pan Ocean Shipping Co. Ltd.	MV Pan Riser V-E28 MV Haiwoo No.2 V-106		from/to Rotterdam, Antwerp, U.K.(Tilbury), Bremen Sefe. Middle Bast/Mediterranean	Monthly		
Wedloyd	N.Agare S/Asia A/Asia		connects at Hong Kong to West Africa, East Africa, Mauritlus, Seychelles, South Africa, Mexico, Central America, Peru, Chile, Panama, Carribean Sea, Brasil, Agentina, Uruguay and Paraguay	Twice a week	4,500	101
# 8	T.Tubeim	Container (Feeder)		Weekly	3,587	88

Liner Service at the Port of Manila

Name of Water
Container (Feeder)
Container (Feeder)
Container
Container (Feeder)
Container (Feeder)

Liner Service at the Port of Manila

Shinping Company	Name of Vessel	Type	Route	Service	Rem	Remarks
Carlo Sandamo				r requency	Carse or Sarp,	z oarp/
China Ocean Shipping Company (COSCO)	N.Agate	Container (Feeder)	connects at Hong Kong to Europe, Arabian Gulf, Mediterranean, China	Weekly		<u></u>
Mitsuf OSK Lines		Container (Feeder)	connects at Korea to US/Canada,	Weekly		
			Mediterranean, Arabian Gulf,			
			China Chilton Court Merica.	<u> </u>		
						* .
Stolt Tankers	M/T"Stolf Sunrise"	Container (Feeder)	connects at Jakarta to Japan, Korea Australia Rotterdam Via Straits	Weekly		
	M/I"Scolt Spirit"		USEC Via Singapore, USWC, USEC Via			
	M/T"Stolt Energie"		ี บกรอบเรีย		···	
					·	
	-			· · ·		
Y.S. Line	C.Ace	Container (Feeder)	connects at Hong Kong to U.S. Pacifile		· 	
	B.Ace)	*cev' *cev'	5,600	210
	A.Ace				5,678	110
	ZX 11				2,175	87
				, •		
Pan Asia Line Ltd.	Bonita Ace	Container	connects at Hong Kong to Japan	Weekly	5,600	110
	Clipper				•	
		•				

Liner Service at the Port of Manila

Shipping Company	Name of Vessel	Туре	Route	Service	Reman (Size of	sks Ship)
Hong Kong Islands Line	MV Green Island MV Island Container	Container	connects at Brisbane to USA/Canada and Australia	Weekly	DWI 6,699	126 126
Ben Line	P.Plenty	Container (Feeder)	connects at Kaohsiung and Keelung to/from Europe	Weekly	5,600	89
Ben Asia	N.Agate	Container (Feeder)	connects at Hong Kong to Jeddah	Weekly		
AFEA Line Ltd.	N.Agate	Container (Feeder)	connects at Hong Kong to Lagos, Apapa and P. Harcourt	Weekly		
Neptune Orient Lines Ltd.	N.Agate	Container (Feeder)	connects at Hong Kong to/from USWC, Gulf, USEC, Canada, IPI, South-east Asia, South Asia, Indonesia, Far East and China	Weekly		
Krutsen Line	Bonita Ace Asia Ace N.Agate	Container (Feeder)	connects at Hong Kong to/from West Australia, Japan, Korea, Taiwan	Weekly	5,600	110
Overseas Concainers Limited (OCL)		Container (Feeder)	connects at Kaohsiung to/from United Kingdom, Europe, to Far East, Gulf	Weekly	2,600	

Liner Service at the Port of Manila

Shipping Company	Name of Vessel	Туре	Route	Service Frequency	Remarks (Size of Ship)
					DWI
Evergreen		Container (Feeder)	connects at Kachsiung to Far East. US West Coast, inland points via base ports, US East Coast, Caribbean, Houston, New Orleans, Europe, West and East Mediterranean, Adriatic	Weekly	11,857
Uniglory Line		Container (Feeder)	connects at Kachsiung to/from Southeast Asia, to A/Persian Gulf	Weekly	11,857
Sealand		Container (Feeder)	connect at Kashsiung to Asia, USA, Caribbean, Central America, Canada	Weekly	19,286
Asia Australia Express Limited		Container	from/to Brisbane, Australia		25,615
American President Lines	President Kennedy	Container (Feeder)	connects at Kachsiung to Seattle. Los Angeles, Cakland, New York	Weekly	19,286
Barber Blue Sea		Container (Feeder)	connects at Kachslung to Panama, California, Los Angeles, San Dieafo, San Francisco, Stockton, Oakland, New Orleans, Houston, Mobile, South Atlantic, U.S.Culf, East Canada, Montreal, Toronto, St.John,		5,050
			N.Acidnoic		

Liner Service at the Port of Manila

Long to Care	Tone	er nog	Service	
	27.6.4		Frequency	S.
				DWI
,	Container (Feeder)	connects to Mainland China Middle East	Weekly	
	Container (Feeder)	connects at Hong Kong to Far East,	B1-monchly	
J.Napler		Pacific Islands, Papua.		
I.Southland		con Dunedin. New Plymouth.		
		Madang, Wewak, Bontara, Rabaul		
N,Agate	Container (Feeder)	connects at Hong Kong to/from Brazil, to Colombo, Sri Lnaka	Weekly	
	Container (Feeder)	connects at Singapore to Malaysia, Singapore, India, Pakistan, Talwan, Japan, West Coast, East Coast	Weekly	
	Container (Feeder)	connects at Singapore to Colombo,	Weekly	
	Container (Feeder)	connects to USA, Canada Europe, Australia,	Weekly	
	Contract (Nooder)	Southeast Asia, Japan, Taiwan connects at Hong Kong to Venezuela.	B1-monchly	· · · · · · · · · · · · · · · · · · ·
) - B - B - B - B - B - B - B - B - B -		Panama, Trinidad and Tobago, Guyana, Surinam, Colombia,		· .
		Caribbean, Central America		
			· ·	
			-	

Liner Service at the Port of Manila

Chemon on the Chi	Name of Secon	O. C.	Q-1140	Service	Remarks	
Survice Survices	; [) A 74	אסתוב	Frequency	(Size of Sh	Sh12)
					T LSG	LOA
Odessa Ocean Lines	N.Tikhono KH.Prorokv	Container (Feeder)	connects to Far East, Mediterronean and all inland destinations including Trieste.	Weekly		
			Milan, and Venice			
Mon Lines	Bonita Ace	Container (Feeder)	connects at Hong Kong to Japan	Weekly	2,600	oi:
:	Asia Ace Clipper Ace					011
Unicon System (HK)	Unicon	Container (Feeder)	connects at Hong Kong to Mainland China	Weekly		
						_
New Zealand Unit Express (NZUE)	Kwelin Ned Marseilles	Container	connects at Hong Kong to Fill, Auckland, Wellington, Napier,	Once a month		
	Tendal Maru					
			Rotorua, New Plymouth, Masterson			
Compania Chilena de	N.Agate	Container (Feeder)		Weekly		
Interoceanica (Chilean National Line)			Aquique, san Antonio/Valparaiso			
Norasia Line		Container (Feeder)	connects at Hong Kong to Europe. Mediterranean	Weekly		
National Shipping Corp.	N.Dignity N.Honor N.Pride	Container	connects at Bangkok to/from US West Coast, Asia	3 times a month		
Manjin Container Lines, Itd.	A.Agate	Container (Feeder)	connects at Hong Kong to US West Goast, US East Coast	Weekly		

Shipping Activity at the Port of Manila by Type of Ship in 1985 Appendix 4.2.2

CONVENTIONAL SHIPS

Ship Type	No. of Ship calls	of Avg. Avg. p Ship Moor ls Length Time	Ä	Avg. 18 Stay Time	No. of No. o. Cargo Handling Cargo Ships	No. of Non- Cargo Handling	Avg. DWT Avg. Losd /Unl	Avg. Losding Handli /Unloading Volume Volume*	Avg. Handling Volume per Ship	
		(E)	(hrs)	(days)		ad Turo		(tons)	room/ship h)	(tons/ship d)
Per 3	13	138	77.9		13	0	18,227	266	12.8	
ľV	73	121	109.5		. 71	N	10,349	2,757	25.2	
σ,	7,0	110	81.4		92	m	8,411	1,341	16.5	 'I
13	22	146	200.5		22	0	16,147	6,383	37.8	
in H	62	108	59.3		9	N	7,004	1,755	29.6	
Pier Total	5 49	117	94.5		242	7	9,825	2,299	23.5	
Anchorage	192	113		5.6	91	101	10,114	5,394	1.	963
Total	Tht	115			333	108	9,951	3.145		

* Average loading/unloading volume per ship is estimated using the data of cargo handling ships Note:

(excluding non-cargo handling ships).

SEMI-CONTAINER SHIPS

Avg. Handling Volume per Ship Stay Day	(ton/ship h)(tons/ship d)	! 	-v av						
Avg. Handling Volume per Ship Mooring	(ton/ship h)	47.1	30.5	36.3	58.6		38.6		
Avg. Loading/ Unloading Volume per Ship	(tons)	066	1,282	2,139	2,093		1,761		
Avg. DWT Avg. Loadi Unlos Volum Per S		6,974	10,013	9,077	15,248		10,678		
No. of Non- Cargo Handling Ships		.0	0	0	0		0		10.
No. of No. or Cargo Handling Cargo Ships Handles		2	31	30	24		78		
Avg. Stay Time	(days)								
Avg. Mooring Stay Time Time	(hrs) (days)	21.0	12.1	58.9	35.8		46.8		
of Avg. Avg. Ship Moor: Is Length Time	. (ш)	107	143	151	1 49		146	1	
No. of Ship calls	· · · · · · · · · · · · · · · · · · ·	2		30	F. 62	0	78		
Ship Type		Pier 3	'n	σ,	13	សួ	Pier Total	Anchorage	MICT

Ship Type	No. of	of Avg.	Avg.	Avg.	No. of	No. of	Avg. DWT Avg.	Avg	Avg.	Avæ.
·	Ship	2 th	60 L	ing Stay	Cargo Handling	Non- Carao	•	Loading/ Unloading	ling	Handling
					Ships	Handling		Volume	per Ship	per Ship
•				,		Ships		per Ship	Mooring	Stay Day
		(m)	(hrs)	(days)			:	(tons)	(tons/ship h)	(tons/ship h)(tons/ship d)
Pier 3	288	138	15.6		283	0	11.533	1.896	74.4	
'n	59	1 40	25.1		53	0	13,243	1,275	50.8	
σ.	н	166	15.0		н	0	26,320	370	24.7	
చ్	170	122	37.2	• •	170	0	8,257	2,195	59.0	-
ស	н	7.7	0.4		0	~	837			
Pier Total	484	132	29.6		483	€-1	10,493	1,961	67.2	
Pier 5-15										
Sub-Total	201	124	35.2		200	₹₹	9,029	2,052	57.6	
MICT	307	159	23.1		307	0	14,316	1,821	79.0	

Ship Type	No. of Avg. Ship Ship calls Leng	Avg. Avg. Ship Moor Length Time (m) (hp.	Avg. Mooring Stay Time Time (hrs) (day	vg. ooring Stay ime Time (hrs) (days)	No. of No. of Cargo Handling Cargo Ships Ships	No. of Non- Cargo Handling Ships	Avg.DWT	Avg. Loading/ Unloading Volume per Ship (tons)	Avg. Handling Volume per Ship Mooring Hour (tons/ship h)	Avg. Handling Handling Volume per Ship per Ship Mooring Stay Day Hour (tons/ship h)(tons/ship d)
	0		-							
	2	133	108.4		7	0	16.121	4.306	39.7	
	23	155	102.7		07	2)	22,137	3,993	38.9	
	w	133	163.3		m	0	13,184	5.928	36.3	
	50	150	6.66		19	rH	23,553	1,480	14.8	
Pier Total	72	177	105.0		69	80	21,572	3,417	32.2	
Anchorage	123	140		8.7	93	30	15,235	8,436		026
	195	144	:		162	33	17.575	6,298	3	

Ship Type	No. of Avg. Ship Shir calls Leng	tt d	to Fj		No. of Cargo Handling Ships	No. of Non- Cargo Handling	Avg. DWT Avg. Load Unlo Volu	Avg. Loading/ Unloading Volume	Avg. Handling Volume per Ship	Avg. Handling Volume per Ship
		(ii	(hrs)	(days)		s drug	÷.	ton)	Mooring Hour (tons/ship h)	Mooring Stay Day Hour (tons/ship h)(tons/ship d)
Pier 3										
Ŋ								. 1		
თ										
## ##					•		-			
15							•			
Pier Total				TAN IN THE TOTAL			·			
Anchorage	208	114		1.8	185	23	9,554	1,210		672

PASSENGER SHIPS

<u> </u>		
Avg. Handling Handling Volume Der Ship per Ship Mooring Stay Day Hour (tons/ship h)(tons/ship d)		
Avg. Handling Volume per Ship Mooring Hour (tons/ship h)		
Avg. Loading/ Unloading Volume per Ship (tons)		
Avg. DWT Avg. Load Unlo Volu per (ton	7,419 3,664 5,262	
No. of Non- Cargo Handling Ships		
No. of No. of Cargo Handling Cargo Ships Ships		
Avg. Stay Time (days)		
Avg. Avg. Mooring Stay Time Time (hrs) (day	24.9 23.0 23.8	
of Avg. Ship Is Length (m)	147 164 157	
No. of Ship calls	0 0 20 27 47	
Ship Type	Fier 3 5 9 13 15 Pier Total	Anchorage

Avg. Handling Handling Volume per Ship per Ship Mooring Stay Day Hour (tons/ship h) (tons/ship d)		
Avg. Handling Handling Volume per Ship per Ship Mooring Stay Day Hour (tons/ship h) (tons/sh	1 4 0 1 W	
ing/ ading me Ship ns)	320 213 - 275	09
Avg. DWT	602 1,770 1,955 91 383	757
No. of Non- Cargo Handling Ships	1000 n	88
No. of Carso Handling Ships	0 11 22 11 0 14 11 12 13 0	17
Avg. Ing Stay Time (days)		4.6
Avg. Mooring Time (hrs)	719.0 78.0 24.5 41.5 82.7	
Avg. Ship Length	37 50 81 116 105	27
No. of Ship calls	4 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	105
Ship Type No. of Avg. Ship Ship calls Leng	Pier 3 5 9 13 15 Pier Total	Anchorage

Appendix 4.3.1 (1) Estimated Volume of Foreign Trade Cargo Handled at South Harbor by Commodity (1985)

(Taport)	٠					ъ́л)	(Unit: '000 TONS
СОММОБІТХ	Pier 3	Pier 5	Pier 9	Pier 13	Pier 15	Anchorage	Total
Dairy Products	37 (48.39)	9 (11.65)	2 (2.14)	29 (37.81)	(0)	0	75 (2.58)
Fish & Fish Products	- (5.70)	2 (29.27)	- (2,73)	(17.12)	1 (20.86)	1 (20.03)	(81.0) \$
Wheat & Wheat Products	4 (1.03)	3 (0.87)	3 (0.79)	2 (0.63)	(0.05)	356 (96.63)	368 (13.06)
Other Cereals	(66.0) 9	(50,71) 66	89 (15.33)	95 (15.26)	5 (0.95)	288 (49.37)	582 (20.51)
Feeding Stuff	9 (5.03)	4 (2.15)	(7,92)	9	3 (1.50)	157 (83.25)	189 (6,59)
Other Food	25 (41.69)	8 (12.65)	(60.00) -	26 (43,39)	1 (1.47)	0	60 (2,14)
Tobacco	9 (75.21)	1 (6.92)	- (0.13)	2 (15.82)	(1.92)	0	12 (0,44)
wood a wood Manufactures (excluding furniture)	3 (31.32)	(0.04)	4 (36.81)	3 (26.31)	- (0.38)	1 (5.13)	11 (0.38)
Paper and Pulp	28 (35.62)	6 (7.19)	(80:01) 8	36 (46.13)	1 (0.98)	0	79 (2.78)
Textile Fibers	11 (30.94)	15 (40.88)	2 (5,54)	5 (14.52)	3 (8.13)	0	36 (1.32)
Crude Fertilizens & Crude Minerals	2 (2.68)	21 (38.52)	7 (12.50)	3 (5.52)	(0.74)	22 (40.04)	55 (1.95)
Metalliferous Ores 4 Metal Scrap	(79.7)	(46.4 _) -	2 (26.31)	1 (11.50)	1 (9,92)	2 (39,65)	6 (0.23)
Mineral Tuels	2 (2.89)	7 (10.52)	(46 (71.04)	1 (1.85)	2 (2,77)	7 (10.92)	55 (2.29)
Coconut- Oil	(1.03-)	(51.97-) -	(33,33)	(67:61) -	0_	- 0	- (0.01)
Other Coconut Products	- (23.83)	0	(17.32)	(22.24)	0	- (36.61)	1 (0.03)
Other Animal & Vegetable Oil	1 (7.41)	3 (21.07)	1 (3.87)	(51.01.)	(1.63)	8 (55.89)	14 (0.50)
Tertilizer	1 (0 0 22)	3 (0.91)	2 (0.61)	(90.0)	(10.0.)	340 (98.21)	346 (12.27)
Chemicals	97 (21.67)	53 (11,79)	3) (6.85)	82 (18 45)	17 (3.86)	167 (37.37)	447 (15.80)
Textile & Garment Products	24 (45.00)	2 (3.26)	2 (4.35)	21 (39.29)	4 (8,08)	- (0.03)	53 (1.88)
Iron & Steel	(5.95)	(86.8) 7	34 (35,09)	8 (8.43)	19 (19.90)	25 (25,54)	98 (3.48)
Non-Ferrous Metals	8 (31.29)	5 (19.29)	1 (* 4,55)	(25.72)	4 (14.57)	4 (14,58)	27 (0.95)
Manufactures of Motal, n.o.s.	5 (19.06)	2 (7.49)	6 (25.03)	5 (20.08)	\$ (20.08)	2 (8,26)	25 (0.89)
Machinery & Transport Equipment	22 (22:13)	7 (7.02)	20 (20.58)	18 (18.59)	30 (30.27)	1 (1.42)	99 (3.51)
Miscellaneous Manufactured Articles	19 (41.28)	2 (4.43)	\$ (10.39)	15 (32.07)	5 (11.73)	(60.0) -	(1.64)
Others	28 (22.76)	6 (4.73)	3 (2.74).	20 (16,72)	10 (8.08)	54 (44.97)	121 (4.28)
TOTAL	347 (12.30)	261 (9.25)	272 (9.66)	392 (13.88)	113 (4.00)	00)1436 (50.91)	2821 (100 00)

Note: The totals do not equial the sums of the individual values due to rounding errors.

Appendix 4.3.1 (2) Estimated Volume of Foreign Trade Cargo Handled at South Harbor by Commodity (1985)

(Unit: '000 TONS) (Export)

		- 1					
COMMODITY	Pier 3	Pier 5	Plet 9	Prer 13	Pier 15	Anchorage	18201
Dairy Products	- (32.26)	- (13:01)	0	1 (54.72)	0	0	1 (0.08)
the state of the s	(8) (8) 77	() 88)	(80 0) 1	(35.75) 8	- (0.11)	(60'0.)	(60.6) (2.06)
	ŀ	-	6	C	C	C	(00.0) =
Wilear & Wilear Frontice	1		\ \ \	١	*	•	-
Other Cereals	1 (23.89)	0	2 (73.29)	- (2.81)		0	/
Peeding Stuff	(75.09)	(13.07)	(1.82)	(88.6) -	(0.15)	0	-∤
Other Food	34 (25.42)	(98.7) 2	(76.0) -	89 (66,08)	- (0.08)	4 (3.22)	135 (18.40)
Tobacco	\sim	(2.24)	1 (4:14)	6 (39.07)	(20.0) -	(1:64)	16 (2.20)
Wood & Wood Manufactures	20 (15.72)	21 (16.50)	52 (40.25)	10 (7.45)	26 (19.97)	- (0.11)	129 (17.63)
Paper and Pulo	2 (73.26)	(1.29)	- (0.20)	(24.98)	- (0.27)	0	2 (0.21)
Nextile Fibers	1	1 (6.22)	1 (5.11)	(01.68.) 9	(0.27)	0	11 (1.46)
Crude Mertilizers & Crude Minerals	\sim		2 (18.32)	1 (9.83)	1 (6.59)	- 0 -	12 (1.65)
Metalliferous Ores 6 Metal Scrap	2 (62.247)	- (14,38)	- (21.72)	- (1,46)	- 7(0.20)	0	2 (0.28)
Kineral Fuels	1 (54.55)	(10.96)	0	1 (31.92)	- (2,58)	0	2 (0.28)
	(0.22)	,	ç	- (0.21)		84 -(99.57)	84 (11.49)
Other Coconut Products	25 (29.05)	1 (1.0)	(0.16)	1.5 (17.50)	(0.05)	45 (152.23)	88 (12-9)
Other Animal & Vegetable Oil	~	(90.0) -	(0,24)	(86.81) -	(16.0)	2 (60:64)	2 (0.23)
Pertilizeer	- (35.92)		(78,87) -	0	Ó	O	(10.0) =
Chemicals	(05 05) 81	, (3.81)	1 (2.80)	5 (21.46)	- (0.88)	\$ (20.55)	25 (3.48)
Textile 4 Garment Products	, 47		1 (2,90)	13 (41.55)	(1,15)	- (0.33)	31 (4.21)
Iron & Steel	~	(19	- (11.96)	1 (27,55)	(0,59)	0	4 (0.57)
Non-Yerrous Metals	ľ	1 (14.06)	(0.72)	3 (32.35)	- (1.18)	0	9 (1.26)
	3 (43,10)	1 (10.54)	(14,19)	2 (27, 78)	- (4.03)	- (0.27)	6 (0.80)
Machinery & Transport Equipment	~	1 (5.03)	2 (12.35)	2 (18,13)	1 (5.13)	- (0.77)	13 (1.77)
Miscellaneous Manufactured.	36 (54.75)	3 (4,78)	2 (3.66)	24 (36,38)	- (0.20)	- (0.21)	65 (8.88)
Others	35 (51.30)	(21.6) 9	1 (2.12)	22 (31.82)	3 (3.81)	1 (1.78)) 89
TOTAL	233 (31.77)	(69.6)	68 (9.22)	210 (28.66)	31 (4.26)	142 (19,43)	733 (100.00)
			-				
			Ž-1				

Note: The totals do not equial the sums of the individual values due to rounding errors.

Appendix 4.3.1 (3) Estimated Volume of Foreign Trade Cargo Handled at South Harbor by Commodity (1985)

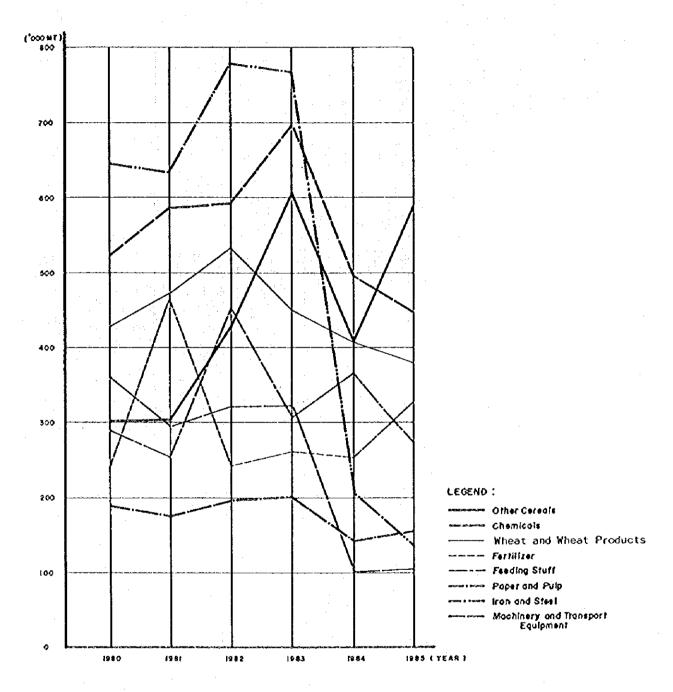
(Total)						(Unit:	(1/W 000,
COMMODIUX	Pier 3	Pier 5	Pier 9	Pier 13	Pier 15	Anchorage	Total
Dairy Products	37 (48.26)	9 (11.68)	1 (- 2,12)	29 (37.94)	(0)	Ó	75 (2:15)
Fish & Fish Products	14 (51.12)	2 (7,63)	(9.56)	9 (33.18)	2 (3 84)	(89.6.8)	0
Wheat & Wheat Products	(70.1) 7	3 (0.87)	3 (0.79)	2 (0.53)	(0.06)	356 (96,62)	J
Other Cereals	7 (1,13)	(66 91.) 66	92 (15.58)	(81, 91) 56	5 (0.95)	287 (584 (16.44)
Feeding Stuff	10 (5,55)	4 (2.23)	4 () 92)	12 (6.18)	3 (1 49)	157 (82,63)	190 (5.35)
Other Food	60 (30,43)	14 (7.26)	1 (0.48)	116 (59,09)	(12.0) 1	4 (2.23)	195 (5.51)
Tobacco	18 (62.52)	1 (4.27)	(07.60)	8 (29,01)	(0.87)	(0.0.33)	28 (0,80)
Wood & Wood Manufactures (excluding furniture)	24 (16.91)	21 (15.24)	56 (39.99)	12 (8,88)	25 (18,48)	(67.0) [140 (3.95)
Paper and Pulp	29 (36 34)	6 (7.08)	(68.6) 8	36 (45.72)	(960) 1		80 (2.25)
Textile Fibers	15 (30.57)	16 (33,12)	2 (-5,45)	12 (24, 50)		0	
Crude Fertilizers 6.	8 (11.40)	23 (34,18)	9 (13.56)	4 (6.30)	X08.1 > 1	í	
Metalliferous Ores & Metal Scrap	2 (-18,51)	1 (9.51)	2 (25.20)	ن .	(7.58)	3 (30.	c C
Mineral Fuels	3 (4.49)	7 (10.53)	(78.89) 97		2 (2.77)	7 (
Coconut Oil	(-0.23)	(16.0)	(80.0)	(=0.25)	- 0 -	4 1	3
Other Coconut Products	26 (29.01)	(66.0)	- (0.33)	16 (17, 55)	K50.0) -	46 (52 083	89 (- 2.51)
Other Animal & Vegetable Oil	1 (8.69)	3 (18.79)	1 (73.67)	(11.09 K	(1, 55)	(56	15 (0.44)
Mertilika	1 (0.23)	(16.0) 8	2 (0.52)	(50.0.)	((0.0)	340 (98	0
Chemicals	109 (23.24)	53 (11.35)	31 (6.64)	(18, 81)	(93.69)	172 (36 46)	471 (13:25)
Textile & Carment Products	38 (45.87)	4.53	3 (3.81)	34 (40 12)	(5,53)	(0.14)	84 (2.37)
Iron & Steel	7 (7.39)	(4.60)	35 (34 (4)	9 (9.22)	(11,61) 61	(25	V
Non-Fearous Metals	13 (36.51)	6 (17.95)	1 (3.57)	7 (19, 98)	4 (11 14)	4 (10.85)	36 (1.02)
Manufactures of Metal, n.e.s.	7 (23.64)	2 (8.09)	7 (22.97)	7 (21.54)	\$ (17,02)	2 (6.73)	31 (0.87)
Machinery & Transport Equipment	29 (26.38)	8 (6.79)	25 (19.62)	21 (18 53)	31 (27 34)	1961	112 (3.15)
Miscellaneous Manufactured Articles	(51.65) 55	5 (4.63)	7 (6.45)	39 (34.64)	(4.98)		ر ج
Others	62 (33.10)	12 (6.34)	5 (2.51)	42 (22.19)	13 (6.54)		
TOTAL	580 (16,33)	310 (8.71)	340 (9.57)	502 (16.94)	144 (4.05)	len	[2]

Note: The totals do not equial the sums of the individual values due to rounding errors.

by Major Commodity Handled at the Port of Manila (NCSO Statistics) Historical Trend of Import and Export Cargo Volume Appendix 4.3.2 (1)

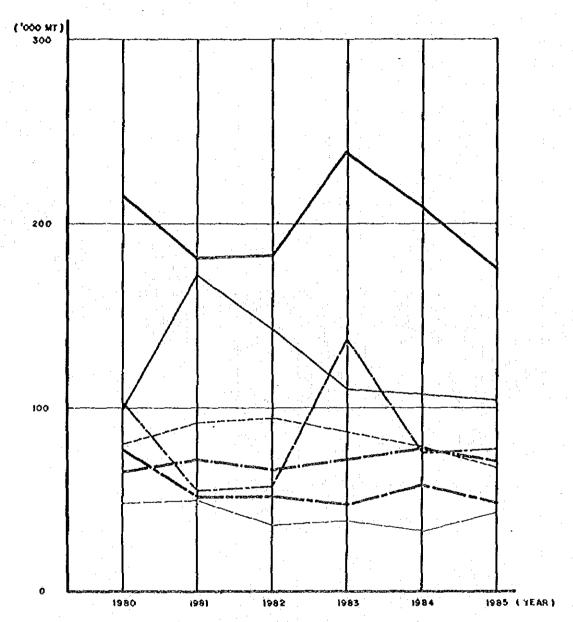
					(Unit:	1,000 Tons)
COMMODITY	1980	1981	1982	1983	1984	1985
Dairy Products	110 *** (3%)	101 (3%)	134 (3%)	111 (2%)	69 (2%)	87 (3%)
Fish & Fish Products	(%1.) ** 68	41 (1%)	60 (1%)	11 (0%)	(20)	5 (.0%)
Wheat & Wheat Products	424 (11%)	471 (12%)	533 (12%)	(701) (777)	413 (14%)	384 (122)
Other Cereals	302 (8%)	319 (8%)	433 (10%)	617 (14%)	422 (14%)	593 (19%)
Feeding Stuff	289 (7%)	256 (6%)	454 (10%)	317 (7%)	361 (12%)	272 (9%)
Other Food	40 (1%)	52 (1%)	(21) (9	26 (1%)	17 (12)	35 (1%)
Tobacco	16 (0%)	18 (0%)	15 (0%)	15 (0%)	6 (0%)	13 (0%)
Wood & Wood Manufactures (excluding furniture)	2 (0%)	1 (0%)	1 (0%)	1 (0%)	(%0) 0	0 (02)
	186 (5%)	172 (4%)	197 (4%)	200 (4%)	142 (5%)	156 (5%)
Textile Fibers	(2%)	68 (2%)	62 (1%)	(%1) 99	(%1) 55	56 (2%)
Crude Fertilizers & Crude Minerals	106 (3%)	114 (32)	128 (3%)	116 (3%)	77 (32)	111 (42)
Metalliferous Ores & Metal Scrap	. 24 (1%)	24 (1%)	11 (0%)	(20) 6	8 (0%)	12 (0%)
Mineral Fuels	(41 (1%)	(21) 77	47 (1%)	44 (1%)	(28) 76	109 (32)
_Coconut Oil	(%0) 0.	(%0) 0	(%0) 0 -	(%0) 0	(%0)- 0	(%0) 0
Other Coconut Products	(20) 0	(20) 0	(20) 0	(%0) 0	0 (0%)	0 (0%)
Other Animal & Vegetable Oil	27 (1%)	31 (1%)	30 (1%)	38 (1%)	25 (1%)	19 (71)
Fertilizer	239 (6%)	455 (112)	247 (62)	259 (62)	254 (9%)	324 (10%)
Chemicals	520 (13%)	585 (14%)	590 (13%)	697 (16%)	(%21) 867	445 (14%)
Textile & Garment Products	28 (1%)	29 00 1%)	29 (1%)	37 (12)	30 (21)	32 (12)
Iron & Steel	(17%)	(291) (293)	778 (17%)	765 (17%)	203 (7%)	132 (4%)
Non-Ferrous Metals	55 (1%)	58 (1%)	67 (1%)	(21) 99	36 (1%)	28 (12)
Manufactures of Metal, n.e.s.	63 (2%)	57 (1%)	55 (1%)	(21.) 09	24 (1%)	35 (1%)
Machinery & Transport ** Equipment	360 (9%)	297 (7%)	320 (7%)	320 (7%)	101 (3%)	103 (3%)
Miscellaneous Manufactured Artícles	31 (0%)	30 (1%)	32 (1%)	29 (1%)	12 (0%)	17 (12)
Others	236 " (7%)	186 "" (5%)	186 (4%)	171 (42)	142 (52)	159 (5%)
TOTAL	3,882	4,039	4,476	4,452	2,982	3,127
Statistics Statistics	ristics					

Source: NCSO Foreign Trade Statistics
Source: * Excluding Imported Ships in Machinery & Transport Equipment.


*** Estimated by Consultant

-155-

Historical Trend of Import and Export Cargo Volume by Major Commodity Handled at the Port of Manila (NCSO Statistics) Appendix 4.3.2 (2)


COMMODITY Dairy Products Fish & Fish Products					. 7 TITO	(SHOT DOO'T
Dairy Products Fish & Fish Products	1980	1981	1982	1983	1984	1985
Fish & Fish Products	(%0) 7	3 (0%)	3 (0%)	4 (0%)	1 (02)	(%0) 0
	(27) 67	2	37 (4%)	38 (42)	33 (4%)	43 (5%)
Wheat & Wheat Products	(%0)	(20)	(%0) 0	(%0)	(%0) 0	0 (02)
Other Cereals	171 (14%)	37 (4%)	(02)	45 (4%)	6 (1%)	5 (0%)
Feeding Stuff	79 (62)	50 (5%)	52 (6%)	58 (5%)	59 (6%)	47 (5%)
Other Food	100 (8%)	173 (16%)	143 (16%)	110 (102)	108 (12%)	104 (12%)
Tobacco		30 (28 (3%)	24 (22)	20 (2%)	! [
Wood 6 Wood Manufactures (excluding furniture)	216 (182)	181 (172)	183 (20%)	238 (22%)	209 (232)	176 (20%)
Paper and Pulp	(20) 9	11 (12)	7 (12)	7 (12)	(21.) 9	7 (1%)
Textile Fibers	33 (3%)	30 (3%)	32 (4%)	_~	٦	26 (3%)
Crude Fertilizers 6 Crude Minerals	7 (02)	20 (2%)	16 (22)	18 (22)	18 (22)	21 (2%)
Metalliferous Ores & Metal Scrap	(%) 5	6 (02)	(21) 9	13 (.12)	(20) 9	16 (22)
Mineral Fuels	2 (0%)	11 (12)	2 (0%)	5 (0%)	3 (3%)	2 (0%)
Coconut Oil	103 (8%)	> 75	57 (6%)	137 (13%)	75 (8%)	77 (7%)
Other Coconut Products	80 (7%)	92 (9%)	95 (10%)	87 (8%)	(%6) 62	66 (7%)
Other Animal & Vegetable Oil	5 (.02)	2 (.0%)		2 (0%)	(20) 9	$ \cdot $
rertilizer	2 (0%)	(20) 0	0	0 (0%)	1 (02)	(20) 0
Chemicals	37. (32)	43 (42)	28 (3%)	32 (32%)	29 (3%)	38 (42)
Textile & Carment Products	30 (2%)	24 (32)	18 (2%)		15 (22)	17 (2%)
Iron & Steel	(20) 7	11 (12)	(20) 7	8 (17)	۲	u
Non-Ferrous Metals	5 (0%)	(%0) 7	6 (12)	(70) 4	9 (1%)	14 (2%)
Manufactures of Metal, n.c.s.	(20) 01.	8 (12)	8 (12)	(21) 9	(02) 7	(20.) 7
Machinery & Transport Equipment	29 (22)	15 (12)	11 (12)	13 (12)	17 (22)	20 (22)
Miscellaneous Manufactured Articles	67 (62)	73 (72)	(27.) 99	71 (7%)	78 (8%)	71 (8%)
Others	167 (14%)	132 (132)	107 (12%)	103 (10%)	112 (12%)	113 (13%)
TOTAL	1,231	1,060	915	1,069	.	668

Appendix 4.3.3 (1) Historical Trend of Selected Foreign Trade Commodities

Source: NCSO Foreign Trade Statistics

Appendix 4.3.3 (2) Historical Trend of Selected Foreign Trade Commodities

Source: NCSO Foreign Trade Statistics

CCOLINO	
	Wood and Wood Manufacturers
	Other Food
Security of Princip	Coconut Oil
	Other Coconut Products
Married & School	Miscellaneous Manufactured Articles
deposit by serious	Feeding Stuff
	Fish and Fish Preparation

Appendix 5.1.1

OBJECTIVES OF PPA

The statuatory objectives of PPA area as follows:

- a) To coordinate, streamline, improve and optimize the planning, development, financing, construction, maintenance and operation of ports, port facilities, port physical plants, and all equipment used in connection with the operation of ports.
- b) To ensure the smooth flow of waterborne commerce passing through the country's ports whether public or private, in the conduct of international and domestic trade.
- c) To promote regional development through the dispersal of industries and commercial activities throughout the different regions.
- d) To foster inter-island seaborne commerce and foreign trade.
- e) To redirect and reorganize port administration beyond its specific and traditional functions of harbor development and cargo handling operations to the broader function of total port district development, including encouraging the full and efficient utilization of port hinterlands and tributary areas.
- f) To ensure that all income and revenue accruing out of dues, rates, and charges for the use of facilities and services provided by the Authority are properly collected and accounted for by the Authority, that all such income and revenues are adequate to defray the costs of providing the facilities and services (inclusive of operating, maintenance, administration, and overhead costs) of the Port Districts, and that a reasonable return on the assets employed shall be realized.

Appendix 5.1.2 Government Agencies Providing Port-Related Services

1. Bureau of Customs (BOC)

Functions:

- assessment and collection of the lawful revenues from imported articles and all other dues, fees, charges, fines and penalties accruing under the tariff and customs laws.
- prevention and suppression of smuggling and other frauds upon the Customs.
- supervision and control over the entrance and clearance of vessels and aircraft engaged in foreign commerce.
- enforcement of the tariff and customs laws and all other laws, rules and regulations relating to tariff and customs administration.
- supervision and control over the handling of foreign mail arriving in the Philippines for the purpose of the collection of lawful duty on dutiable articles thus imported and the prevention of smuggling through the mail.
- assess and collect the export duty on dutiable Philippine export products and all other fees, duties and charges accruing therefrom.

2. Maritime Industry Authority (MARINA)

Objectives:

- to increase the production and productivity of the various islands and regions of the archipelago through the provision of effective sea linkages;
- to provide for the economical, safe, adequate and efficient shipment of raw materials, products, commodities and people;
- to enhance the competitive position of Philippine flag vessels in the carriage of foreign trade;
- to strengthen the balance of payment position by minimizing the outflow of foreign exchange and increasing dollar earnings; and
- to generate new and additional job opportunities.

To attain the goals and objectives of the government, MARINA has the following functions and responsibilities:

The adoption and implementation of a practicable and coordinated Maritime Industry Development Program that includes the following:

- the early replacement of obsolescent and uneconomic vessels;
- modernization and expansion of the Philippine merchant fleet;
- enchancement of the domestic capability for shipbuilding, repairs and

maintenance; and

- the development of a reservoir of trained maritime manpower.

3. The Philippine Coast Guard (PCG)

Functions:

- to enforce all applicable laws upon the high seas and waters under Philippine jurisdiction;
- to promulgate and administer regulations for the promotion of safety of life and property within the Philippine maritime jurisdiction;
- to develop, establish, maintain and operate aids to maritime navigation and rescue facilities for safety at sea, pursuant to IMO, SOLAS and the Maritime Pollution Convention.

4. The Bureau of Quarantine

Quarantine regulations for all ports of entry in the Philippines are promulagated and enforced by the Bureau of Quarantine.

In all ports of entry of the Philippines, all vessels are required to fly the yellow flag and drop anchor at the usual quarantine anchorage and wait for quarantine inspection. Foreign vessels that have been cleared in one port of the Philippines are not required to undergo another quarantine clearance at succeeding ports of call.

The quarantine clearance is pre-requisite to Customs and Immigration clearances. The examination at the ports of entry of the Philippines of incoming and outgoing vessels, the necessary surveillance over their sanitary conditions as well as their cargoes, passengers, crews and all personal effects and the issuance of quarantine certificates, bills of health or other equivalent documents are vested in and conducted by the Brueau of Quarantine.

5. The Bureau of Animal Industy

The Bureau of Animal Industry, through the Animal Control Division, supervises the importation into the country of domestic animals. To prevent the entry or spread within the Philippines of domestic animal diseases, the bureau enforces quarantine and restrictive orders which prohibit and regulate the importation or inter-provincial movement of these animals.

Domestic animals may only be admitted through the ports of entry upon the issuance of permits by the Director of the Bureau of Animal Industry or his authorized representative and after inspection by the respective veterinarians assigned for the purpose.

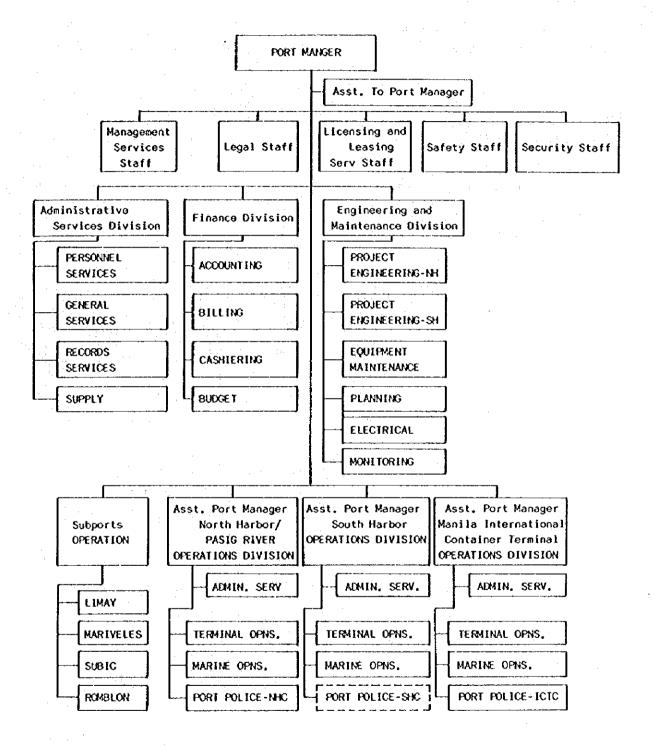
6. The Bureau of Immigration

The functions of the Bureau are the administration of the laws relating to the admission, exclusion, and deportation of aliens and also the fingerprinting of aliens in the Philippines.

The Master, agent, owner or consignee of any vessel arriving in the Philippines from a foreign port or departing from the Philippines for a foreign port upon arrival or departure must provide such crew lists and passenger manifests and such other information concerning the regulations prescribed by the Commissioner of Immigration.

7. Bureau of Forest Development (BFD) Function:

- to check and monitor incoming/outgoing local forest products
- to issue commodity clearance on transported local forest products


8. National Cottage Industry Development Authority (NACIDA) Function:

- inspection of items (cottage industry products) to be exported
- processing and issuance of export commodity clearance
- conducting visual inspection of goods to be exported

9. Bureau of Fisheries & Aquatic Resources (BFAR) Function:

- inspection of fishery products for export
- processing and issuance of export commodity clearance

Appendix 5.1.3 Organizational Chart
of the Port Management Unit of the Port of Manila

Appendix 5.1.4 Principal Port Services Provided at South Harbor,
Port of Manila.

Following is a brief description of the principal port services provided at South Harbor.

** Arrastre

-- refers to the dockside aspect of port cargo handling. It complements stevedoring and comprises the handling of cargo on the wharf or between the consignce/shipper's establishment or trucks's tail-end and the ship's tackle.

Present Contractor: Marina Port Services, Inc.

** Stevedoring

-- Refers to cargo handling on board the vessel. Present Contractor: Ocean Terminal Services, Inc. (OTSI)

** Pilotage

-- Refers to the provision of pilotage services. This service is compulsory for all foreign vessels. This is exclusively offered by the Manila Harbor Pilots Association.

Port ancillary services and the number of operations authorized by PPA to operate at the South Harbor of the Port of Manila as of December 1985 are as follows:

** Brokerage

-- the business of assisting port users in complying with port and Customs laws, rules and regulations and expediting the processing of documents in the import/export business, and other similar facilitative services. Number: 590

** Bunkering

-- the business of supplying and delivering oil, gasoline, lubricants, and

other oil products and materials to ships, tug boats and other water craft.

** Canteen/Carinderia/Restaurant/Snack Counter

-- the business of maintaining public eating places with more or less fixed or semi-fixed locations including mobile canteens, selling food items, refreshments and other consumables except wine, liquor and other similarly intoxicating beverages. Number 21

** Cargo Checking

-- the business of inspecting and determining the quantity, condition, packing numbers, marks and countermarks of cargoes for insurance and other related purposes. Number: 22

** Chassis and Container Repair

-- any work performed on equipment used in the handling of materials and goods so as to bring back its usefulness/worthiness. Number: 1

** Equipment Rental/Container Leasing

-- Equipment rental means the business of leasing equipment/machine parts used in the handling of materials and goods for a given period of time; container leasing is the business of renting any structure designed to hold/keep articles, materials and products inside the form of boxes, tanks and the like for singular or unit handling with a volume or capacity of not less than one (1) cubic meter. Number: 1

** Ferry Boat

-- the business of ferry ship's crew/agents, provisions and passengers to and from a vessel at berth or anchorage by means of small water craft. Number: 14

** Food Catering

-- the business of supplying food, refreshments and other consumables

except wine, liquor and other similarly intoxicating beverages to port workers, users and others by a duly licensed food caterer. As differentiated from a canteen/restaurant operator, a caterer does not maintain a fixed or semi-fixed location on the port premises. Number: 3

** Handicraft Selling

-- business, service or activity of engaging in the display/selling of handicraft and other souvenir items whenever there is a tourist/passenger vessel at the pier. Number: 12

** Laundry

-- the business of providing laundry service like washing linen, curtains and similar items used in the vessel and the clothing of the vessel's crew. Number 2

** Lighterage

-- the business of providing lighters (flat-bottomed boats) or barges for the transport of cargoes to and from vessels at berth or anchorage within the port, usually towed by a tugboat. Number: 31

** Maritime Surveying/Adjusting

-- the business of negotiating for or effecting the settlement of claims for damages or losses of cargoes in port. Number: 54

** Maritime Waste and Garbage Collection

-- means the collection of two types of refuse from vessels: garbage including solid waste from kitchens, and Oil Sludge, a precipitate or settling from oils as a result of oxidation that has taken place in the engine. Number: 4

** Ship and Cargo Salvaging

-- means the rescue of a ship and/or crew or the towing, breaking, scrapping or refloating of a ship, or any object to a safe place and/or the

removal of a sunken ship or other hazard from the sea or any body of water within the territorial jurisdiction of the country. Number: 1

** Ship Chandling

-- the business of supplying food items, groceries, consumables and other provisions to vessels and other seagoing craft docking at the piers, whereas and anchorages.. Number: 35

** Ship Cleaning and Barge Chipping

-- refers to vessel cleaning, chipping and painting services carried out manually but with the use of the necessary materials and tools. Vessels' tanks as well as holds and hulls are cleaned manually using brushes and other materials necessary to the operations. On the other hand, chipping services are rendered through the use of scraping or chipping implements. Marine paint is then applied to the space chipped to complete the maintenance operations. Number: 5

** Ship Equipment Repair

-- the business of undertaking minor repairs and upkeep of vessels and their cargo gear and equipment, either simultaneous with loading/unloading operations while at berth or at anchorage. Number: 10

** Shipping/Shipping Agents

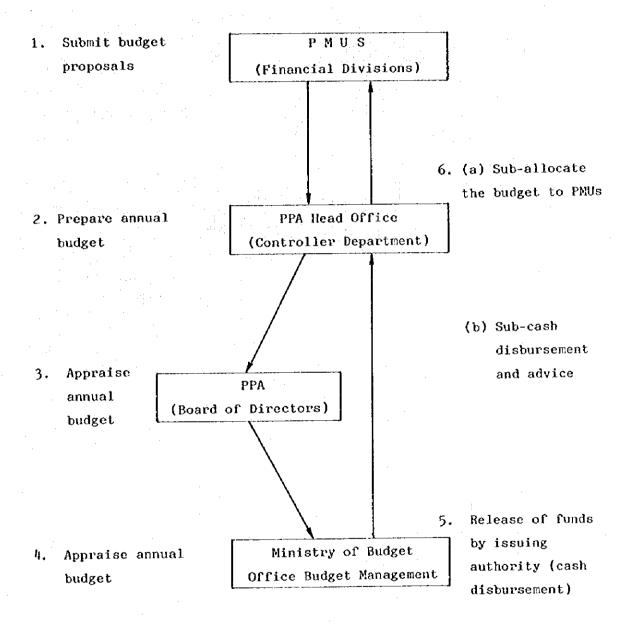
-- are establishments that own and/or operate a vessel or a number of vessels for the purpose of waterborne commerce. Number: 77

** Tank Cleaning

-- refers to the cleaning/washing of tanks, normally oil tanks, either manually or by means of special tools/machines. Number: 1

** Trucking

-- the business of hauling or transporting cargoes to and from the port zone using trucks and similar motorized transport vehicles.


** Tug Assistance

-- the service rendered by a tugboat in the docking of a vessel from outer anchorage to pier side and vice versa. It includes untwisting, mooring, unmooring, and shifting. Number: 5

** Water Supply

-- the business of providing fresh potable water to vessels docked at the piers, wharves and anchorages. Number: 3

FLOW CHART OF BUDGET EXECUTION

Appendix 5.2.2 Port Tariff

A. CHARGES ON VESSELS

1. Vessels engaged in international (foreign) trade that enter any port whether private or government shall be charged a HARBOR FEE on each call based on GRT, as follows:

1989	5
April 1	October 1
\$0.054/GRT	\$0.062/GRT

2. Vessels engaged in international (foreign) trade that berth at any port of call shall also be charged a BERTHING FEE per GRT per calendar day or fraction, as follows, provided that, for purposes of computation, a maximum of 30,000 GRT shall be used:

	198	5
	April 1	October 1
At a Government Port	\$0.026/CRT	\$0.030/GRT
At a Private Port	\$0.019/GRT	\$0.021/GRT

3. Vessels engaged in international (foreign) trade that do not berth but drop anchor at either a government or privately-owned port shall be charged an ANCHORAGE FEE of one-half (1/2) of the corresponding berthing fee at a government port subject to the same maximum 30,000 CRT, as follows:

1985	
April 1	October 1
\$0.013/GRT	\$0.015/GRT

4. Vessels engaged in coastal (domestic) trade that berth or drop anchor at any port whether government or privately-owned shall be charged a port USAGE FEE, as follows:

	198	5
	April 1	October 1
	•	
Up to 5 GRT	NO	CHARGE
6 to 100 GRT per calender		
day or fraction	P 16.40	P 18.80
Over 100 GRT per GRT		
per calendar day or		
fraction	P 0.164	P 0.188
		t contract the contract to the

PROVIDED that the USAGE FEE shall also apply on those vessels authorized to engage in the socalled "Barter Trade" and, PROVIDED FURTHER that registered bay and river trade vessels shall pay one-half (1/2) of the required USAGE FEE but in no case less than or more than the following charges for a calendar day or fraction:

$\mathcal{L}_{\mathcal{A}} = \mathcal{L}_{\mathcal{A}} = $	19	85
	April	October
Not less than	P 16.40	P 18.80
Not more than	P 82.00	P 94.00

5. Vessels engaged in coastal (domestic) trade that are authorized to temporarily lay up and anchor at any port shall be charged a LAY UP FEE corresponding to one-half of the applicable USAGE FEE.

	19	85
	April 1	October 1
6 - 100 GRT per calendar day or		
fraction	P 8.20	P 9.40
Over 100 GRT per GRT per calendar		
day or fraction	P 0.082	P 0.094

B. CHARGES ON CARCOES

6. All non-containerized foreign cargoes coming from (imported), going out (exported) or transshipped through a government-owned wharf shall be charged a WHARFACE FEE for the use of port facilities on the basis of the total revenue tonnage rounded off to the nearest ton, as follows:

	1985	,
	April 1	October 1
TO Tour of 1	D 00 F0	D 00 F0
If Imported, per revenue ton	P 20.50	P 23.50
If Exported, per revenue ton	P 10.25	P 11.75
	•	
Foreign Transshipment a single charge per		
revenue ton payable by the shipping/line	une de dara en de	
agent	\$ 0.466	\$ 0.534

PROVIDED that the minimum charge shall be P5.00.

7. All containerized foreign cargoes wholly owned by a single shipper/consignee (FCL) shall be charged a WMARFAGE FEE per box, as follows:

	•		19	85
			April 1	October
If Imported				
20 - ſt			P 348.50	P 399.50
35 - ft.			440.75	505.25
40 - st			522.75	599.25
45 - ft			615.00	705.00
If Exported				
20 - ft			P 174.25	P 199.75
35 - ft			221.40	253.80
40 - ft		•	262.40	300.80
45 - ft		+ 4 .	307.50	352.50

Foreign Transhipment

20 - ft	\$ 8.01	\$ 9.18
35 - ft	10.06	11.53
40 - ft	11.92	13.67
45 - ft	13.97	16.02

PROVIDED THAT if cargoes in a box are owned by more than one (1) shipper/consignee, that is LCL containers, the WHARFAGE FEE for non-containerized cargoes shall apply; and PROVIDED FURTHER that NO WHARFAGE FEE shall be charged on empty containers, i.e. without contents of any sort. Empty containers are clarified as follows:

- 1. Empty containers which are imported or brought into th Philippines for use in the exportation of Philippine products shall be exempt from wharfage fee.
- 2 Empty containers used in coastwise trade and transported by a vessel of a shiping company which owns said containers or by a vessel of a sister company or brought by a vessel of another shipping company when the container owner does not have a vessel calling at the place of shipment are also exempt from wharfage.
- 3 All other empty containers not falling under paragraphs No. 1 and 2 hereof shall be subject to wharfage in accordance with the rates prescribed in paragraph 7 and 9 of PPA Memorandum Circular No. 06-85.
- 8. All non-containerized domestic cargoes shall be charged a WHARFAGE FEE as they enter or leave a government-owned wharf on the basis of their total revenue tonnage rounded off to the nearest ton at rates as follows:

1985	198
October 1	April 1
P 1.65	P 1.44
	5 4 00

PROVIDED that the minimum charge shall be P 1.00.

9. Domestic containerized cargoes wholly owned by a single shipper/consignee (FCL) shall be charged a WHARFAGE FEE on a box basis as the box enters or leave a government-owned wharf at the following rates

	198	5	
	April 1	October 1	
10 - ft box or shorter	P 11.48	P 13.16	
20 - ft	22.96	26.32	
35 - ft	28.70	32.90	
40 - ft	34.44	39.48	
45 - ft	40.18	46.06	

PROVIDED that if cargoes in a box are owned by more than one shipper/consignee (LCL), the wharfage fee for non-containerized cargo shall apply. PROVIDED FURTHER, that no wharfage fee shall be charged on an empty box, i.e., without contents of any sort. Empty containers clarified as follows:

- 1 Empty containers which are imported or brought into the Philippines for use in the exportaion of Philippine products shall be exempt from wharfage fee.
- 2 Empty containers used in coastwise trade and transported by a vessel of a shiping company which owns said containers or by a vessel of a sister company or brought by a vessel of another shipping company when the container owner does not have a vessel calling at the place of shipment are also exempt from wharfage.
- 3 All other empty containers not falling under paragraphs No. 1 and 2 hereof shall be subject to wharfage in accordance with the rates prescribed in paragraph 7 and 9 of PPA Memorandum Circular No. 06-85.
- 10. The WHARFAGE FEE for all foreign and domestic cargoes whether containerized or not that are loaded or discharged at a privately-owned wharf or at an anchorage area shall be one-half (1/2) of the corresponding charge for one that is government-owned, as follows:

			198	35
			April 1	October 1
a)	Foncton			
a,	Foreign	• .		
	Non-Containerized		Section Section	
	If Imported/R.T.		P 10.25	P 11.75
	If Exported/R.T.		P 5.13	P 5.88
	Transhipment/R.T. Containerized (FCL)	(Per Box)	8 0.23	\$ 0.27

If Imported:		
20 - ft	P 174.25	P 199.75
35 - ft	221.40	253.80
40 - ft	262.40	300.80
45 - ft	307.50	352.50
If Exported:		
20 - ft	P 88.15	P 101.05
35 - ft	110.70	126.90
40 - ft	131.20	150.40
45 - ft	153.75	176.25
	19	85
	April 1	October 1
Foreign Transshipment:		
20 - rt	\$ 3.91	\$ 4.49
35 - ft	5.03	5.77
30 - ft	5.96	6.84
45 - ft	6.89	7.90
Domestic		
Non-Containerized	P 0.72	P 0.82
Containerized (FCL)		
(Per Box)		
	•	•
10 - ft	P 5.74	P 6.58
20 - ft	11.48	13.16
35 - ft	14.35	16.45
40 - ft	17.22	19.74
45 - ft	20.09	23.03

b)

11. The WHARFAGE FEE for all foreign and domestic cargoes whether containerized or not that are loaded or discharged from a vessel at anchor without using any wharf of a government or privately-owned port shall be one-half (1/2) of the corresponding charge for one that is government-owned. (Same as No. 10).

12. A STORAGE FEE shall be charged on cargoes that remain in any government-owned port beyond the "free storage period".

The said period is defined for all types of cargoes as follows:

a) For Imported cargoes

8 calendar days after the day that the last item of cargo is discharged from the carrying vessel.

b) For Export Cargoes 5 calendar days from the day that the cargo is received at the port.

c) For ForeignTransshipment

a total of 15 calendar days from the day of arrival to the day of departure.

d) For Domestic
Cargoes Entering
any port

2 calendar days prior to the day that the carrying vessel is scheduled to arrive as announced and approved by the PPA Port Manager.

e) For Domestic
Cargoes Discharged at any Port
and Export Shutout

2 calendar days after the day that the last item of cargo is unloaded from the carrying vessel.

f) For Domestic
Cargoes that
are "Shutout"
(not loaded on
their scheduled
vessel)

Cargoes

2 calendar days after vessel's departure.

PROVIDED that if the cargo is not loaded as scheduled due to the fault of the vessel or its owner/agent, the resulting fee shall be paid for by the vessel or its owner/agent.

13. The STORAGE FEE for non-containerized cargoes shall be determined on the basis of the number of calendar days that the cargo stays in port after the "free storage period" and the total revenue tonnage of the cargo according to the following schedule per revenue ton per day or fraction, as follows:

		1985		
		April 1	October 1	
Imported Cargoes	e e de	P 6.56	P 7.52	
Cargoes for Export		3.28	3.76	
Foreign Transhipment		\$ 0.164	\$ 0.171	
Domestic Cargoes		4.92	5.64	

14. The STORAGE FEE of a container whether or not it contains cargo shall be determined on the basis of the number of calendar days the cargo stays in port after the prescribed "Free Storage Period", as follows:

	19	1985		
	April 1	October 1		
Foreign Imported Box				
20 - ſt	P 209.92	P 240.64		
35 - ft	367.36	421.12		
40 - ft	419.84	481.28		
45 - ft	472.32	541.44		
	198	35		
	April 1	October 1		
Foreign Exported Box				
20 - ſt	P 52.48	P 60.16		
35 - ft	91.84	105.28		
40 - ft	104.96	120.32		
45 - ft	117.26	134,42		

	19	985
	April 1	October 1
20 - ft 35 - ft 40 - ft 45 - ft Domestic Box 10 - ft 20 - ft 35 - ft		•
Foreign Transhipped Box		
20 - ft	\$ 4.77	\$ 5.47
35 - ft	8.35	9.57
40 - ft	9.54	10.94
45 - ft	10.66	12.22
Domestic Box		
	2.42	
10 = ft	P 55.35	P 63.45
20 - ft	157.44	180.48
35 - ft	274.70	314.90
40 - ft	314.88	360.96

- 15. For those ports declared as congested by the PPA Board of Directors from time to time, the STORAGE CHARGE for the first 7 calendar days after the "Free Storage Period" shall be the rates prescribed above and thereafter shall be escalated, as follows:
 - a) From 8th to the 15th calendar day, twice the prescribed rates.
 - b) From the 16th to the 30th calendar day, thrice the prescribed rates.
 - c) From the 31st day onward, four times the prescribed rates.

 PROVIDED that foreign transhipment containers shall not be subject to the said escalation.
- 16. Extension of the prescribed "free storage period" will be allowed only in the following cases:
 - a) For reasons of force majeure as authorized by the Port Manager concerned and confirmed by the PPA General Manager or his duly authorized representative.

- b) For reasons of delay in the processing of the required entry or exit documents by the Bureau of Customs as formally attrested to by the Commissioner of Customs or his duly authorized representative.
- c) For reasons beyond the control of cargo owner/consignee and found meritorious in accordance with rules and procedures issued by the PPA Board of Directors.

EXEMPTIONS FROM PORT CHARGES

17. Notwithstanding the above provisions, cargoes of duly BOI-registered firms as well as those granted special exemptions by Presidential issuances decreed after 1 January 1976 shall be exempted from payment of port charges until otherwise revoked or amended.

Appendix 5.2.3 (1) Balance Sheet (PPA)

(Unit: Million Pesos)

					11111011	
	1980	1981	1982	1983	1984	1985
Current Assets	448.0	508.7	571.0	690.3	774.6	1177.2
Temporary Investments	267.6	110.9	173.5	228.0	183.4	621.0
Other Current Assets	180.4	397.8	397.5	462.3	591.2	556.2
Bond Sinking Funds	10.9	11.2	9.7	10.3	10.6	10.6
Fixed Assets	2278.4	2533.3	2830.3	3167.6	3333.8	3768.4
Land	730.8	604.7	604.7	604.7	604.7	604.7
Construction in progress	369.5	638.0	418.2	716.7	948.1	1372.7
Total Net Dep'ble Assets	1178.1	1290.6	1807.4	1846.2	1781.0	1791.0
Bldg.,Struct.,Land Impr.	1923.4	1824.5	2254.3	2253.8	2253.2	2254.5
Furn., Fixtures & Eqpt.	23.1	270.1	441.0	555.5	578.2	676.7
Less Accum. Depreciation	768.4	804.0	887.9	963.1	1050.4	1140.2
Other Assets	151.8	172.0	139.3	131.5	3.7	3.0
Total Assets	2889.1	3225.2	3550.3	3999.7	4122.7	4959.2
Current Liabilities	112.5	85.3	104.7	254.0	228.5	362.4
Long-term Liabilities	186.4	486.7	645.9	854.9	1052.8	1512.4
Total Liabilities	298.9	572.0	750.6	1108.9	1281.3	1875.4
Capital Contribution	2349.5	2320.3	2395.8	2390.8	2390.8	2391.1
Surplus Reserves	-	_	3.5	3.8	4.2	3.7
Retained Earnings - Beg	157.5	240.7	330.9	400.4	496.2	446.4
Additional Collections						-
of PY	5.5	6.8	10.4	13.0	118.6	18.5
Net Income	88.7	98.9	79.9	108.8	68.8	224.0
Retained Earnings - End.	240.7	332.9	400.4	496.2	446.4	689.0
Total Net Worth	2590.2	2653.2	2799.7	2890.8	2841.4	3083.8
Liabilities & Net Worth	2889.1	3225.2	3550.3	3999.7	4122.7	4959.2
Debt Ratio (%)	10.3	17.7	21.1	27.7	31.1	37.9

Appendix 5.2.3 (2) Income Statement (PPA)

$(x_1, \dots, x_n) = (x_1, \dots, x_n) \in \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^n$			(Uni	t: Mill	ion Pes	os, %)
	1980	1981	1982	1983	1984	1985
Revenue from Operations	223.1	279.6	341.7	391.2	444.5	612.1
Berthing Charges	22.0	29.5	37.3	27.3	45.9	66.
Anchorage Fees	-	-	-	2.6	10.2	13.2
Wharfage Dues	94.3	128,5	150.8	175.1	181.5	270.
Storage Charges	23.7	24.3	26.7	34.1	26.7	23.6
Arrastre Income	60.2	67.7	79.7	84.4	85.9	121.0
Port Usage Fees	-	-	<u>-</u> .	21.8	27.6	31.7
Harbor Fees	-	_	- :	18.9	33.3	47
Other Income	22.9	29.6	37.2	27.0	33.4	38.
Operating Expenses	173.3	198.0	232.1	228.2	284.8	302.
Personnel Services	54.2	58.0	59.2	58.8	62.9	73.
Maintenance & Operating Exp.	119.1	140.0	172.9	169.4	221.9	228.
Repairs & Maintenance	14.3	24.3	32.7	19.7	41.8	35.0
Depreciation Expenses	45.1	47.4	71.4	78.5	81.2	88.0
Dredging Expenses	33.9	34.8	34.3	33.0	50.8	29.1
Other Administrative Costs	25.8	33.5	34.5	38.2	48.1	149.
Net Operating Income	49.8	81.6	109.6	163.1	159.7	309.
Additional Fund Management						
Income	58.6	51.9	33.5	36.9	58.8	102.
Less Other Expenses in						
Excess of Appreciation	19.7	34.6	63.2	91.3	149.7	187.
Interest on Loans	13.5	21.8	36.1	80.4	128.2	141.
Others	6.2	12.8	27.1	10.9	21.5	45.9
Net Income (Loss) from						
Operations	88.7	98.9	79.9	108.8	68.8	224,0
Working Ratio (%)	57.5	53.9	47.0	38.3	45.8	35.
Operating Ratio (%)	77.7	70.8	67.9	58.3	64.1	49.

Appendix 5.2.3 (3) Cash Flow (PPA)

(Unit: Million Pesos)

				<u> </u>		
	1980	1981	1982	1983	1984	1985
Cash Balance January 1	396.1	366.9	350.6	406.3	519.7	601.7
(Add) Cash Inflow	314,4	637.7	541.4	656.3	695.4	1145.7
Port Operating Revenue	219.9	271.6	339.3	386.3	440.0	579.6
Interest Income	58.5	51.9	33.6	36.9	52.5	114.6
Foreign Loan Availments	36.0	314.2	168.5	233.1	202.9	451.5
Cash Available	710.5	1004.6	892.0	1062.6	1215.1	1747.4
(Less) Cash Outflow	343.6	654.0	485.7	542.9	613.4	762.4
Operating Expenses	94.5	115.9	126.4	115.9	145.8	168.2
Debt Service	30.0	35.9	42.6	82.6	114.5	31.4
Interest	13.5	21.7	36.1	57.9	47.5	15.7
Principal	16.5	14.2	6.5	24.7	67.0	15.7
Infrastructure Project	156.0	331.4	254.0	296.6	289.3	526.5
Dredging Project	30.0	74.0	31.4	22.1	50.8	29.7
EQ Transfer to NDC	-	*	39.0	5.0		-
Others	33.1	96.8	7.7	20.7	13.0	6.6
Cash Balance December 31	366.9	350.6	406.3	519.7	601.7	985.0

Appendix 5.2.4 (1) Balance Sheet (PMU-Manila)

	1980	1981	1982	1983	1984	1985
Current Assets	19.5	21.0	19.3	32.6	32.9	70.9
Fixed Assets	1006.1	979.4	1087.0	1264.5	1230.7	1195.6
Land	421.3	425.3	425.3	425.3	508.5	425.3
Construction in Progress	3.4	-	_	_	-	0.2
Total Net Dep'ble Assets	581.4	554.1	661.7	839.2	720.6	770.1
Bldgs.,Struct.,Land Impr.	1098.6	1098.8	1173.9	1394.2	1310.3	1393.5
Office, Furn., Fix. & Eqpt.	4.0	15.0	73.0	72.4	73.2	78.6
Less Accum. Depreciation	521.2	547.7	585.2	627.4	662.9	702.0
Other Assets	64.1	97.4	69.6	47.8	1.6	1.7
Total Assets	1089.7	1089.7	1175.9	1344.9	1263.6	1268.2
Current Liabilities	16.4	12.0	10.0	8.9	8.2	18.1
Other Liabilities	_	-		1.9	1.6	3.1
Total Liabilities	16.4	12.0	10.0	10.8	9.8	21.2
Net Income for the Year	55.2	73.3	91.2	123.0	108.2	189.0
CO/PMU Clearing Account	1018.1	1012.5	1074.7	1211.1	1145.6	1058.0
Total Net Worth	1073.3	1085.8	1165.9	1334.1	1253.8	1247.0
Total Liabilities & Networth	1089.7	1097.8	1175.9	1344.9	1263.6	1268.2
Debt Ratio (%)	1.5	1,1	0.9	0.8	0.8	1.7

Appendix 5.2.4 (2) Income Statement (PMU-Manila)

(Unit: Million Pesos)

	5	^		(Oure:	MITTION	resos
	1980	1981	1982	1983	1984	1985
Revenue from Operations	120.2	149.0	187.0	213.5	213.3	297.4
Berthing Charges	8.5	10.3	14.5	15.0	25.0	33.5
Anchorage Fees	5.7	7.8	8.9	0.2	0.6	4.9
Wharfage Dues	46.1	62.2	80.2	88.2	75.3	112.2
Storage Charges	19.2	20.2	23.8	30.9	23.1	21.6
Arrastre Income	34.4	43.1	48.8	50.8	46.9	74.0
Port Usage Fees	-	-	-	7.5	7.8	7.4
Harbor Fees	0.7	0.8	1.2	9.7	12.7	19.2
Other income	12.0	14.8	19.7	17.4	21.9	24.6
Operating Expenses	49.9	67.9	79.7	85.8	91.7	93.8
Personne1	5.7	6.0	9.6	14.8	15.8	18.4
Maintenance & Operating						
Expenses	37.0	53.6	65.2	71.0	75.9	75.4
Repairs & Maintenance	5.7	12.1	8.1	4.9	4.1	11.7
Depreciation-Operating						al, ,
Assets	20.3	20.1	27.2	31.6	30.6	30.2
Amortization - Dredging	4.6	10.4	20.6	23.1	30.0	17.2
Other Administrative Costs	6.4	11.0	9.3	11.4	11.2	16.3
Net Operating Income	70.3	86.3	107.3	133.7	121.6	203.6
Other Charges	15.1	13.0	13.7	9.0	13.4	14.6
Depreciation - Non-operating						
Assets	5.7	5.8	6.4	6.4	6.4	6.4
Interest on Loans	3.8	1.6	1.7	2.6	7.0	8.2
Amort. Pre-Operating Expenses	5.6	5.6	5.6		-	_
Net Income	55.2	73.3	93.6	124.7	108.2	189.0
Working Ratio (%)	24.6	31.0	28.1	24.7	28.6	21.4
Operating Ratio (%)	41.5	44.1	42.6	39.1	43.0	31.5

Appendix 5.2.4 (3) Cash Flow (PMU-Manila)

		5 32.	
		1984	1985
	Current Revenue	190.9	255.3
	Port Charges	129.3	180.8
	Arrastre/Stevedoring Income	47.9	57.7
	Other Income	13.6	16.5
]	Fund Management Income	0.1	0.3
Collections	Prior Years Receivables	11.2	6.9
	Unearned Income/Deposits	-	1.6
	For Other PMUs	4.5	8.4
	Total Collections	206.6	272.2
	Personnel	13.8	16.0
	Maintenance/Other Operating Exp.	9.1	13.1
	R/M of Port Facilities	2.7	3.4
Disbursements	Accounts Payable-Prior Years	4.9	3.9
	Sub-total	30.5	36.4
	Non-budgetary Disbursements	-	3.1
	ATPs disbursed from H.O.	-	0.4
	Total Disbursements	30.5	39.9
Surplus (Defici	it),	176.1	232.3

Appendix 6.2.1 Future Socio-Economic Framework Projection

Low assumption:

"World Development Report - 1985" (World Bank) estimates a 4% annual growth rate from 1985 to 1990 for medium income oil importing countries like the Philippines. It is assumed that the 4% annual growth rate will continue through 2005. The sectoral shares are assumed to remain the same as in 1985.

High assumption:

NEDA established the "Medium-Term Philippine Development Plan, 1987-1992" in December, 1986. NEDA estimates a 5.5 % annual growth rate from 1985 to 1990. This growth rate is also used for 1990. It is also assumed that the 6% annual growth rate from 1990 to 1992 forecast by NEDA will continue through 2005. The sectoral shares are assumed equal to those forecast for 1990 by NEDA.

Medium assumption:

Annual growth rates are assumed based on NEDA's projections, interviews with experts at international agencies and the annual growth rates of the ASEAN countries which have similar sectoral GDP shares. The sectoral shares in 1990 are assumed equal to those in NEDA's preliminary estimate (as of 27 June, 1986). The sectoral shares from 1995 to 2005 are estimated based on the elasticity of each sector to GDP as follows:

Elasticity of each sector to GDP

	Agriculture	Industry	(Unit: %) Services
1990 - 1995	0.90	1.10	1.00
1995 - 2000	0.90	1.05	1.00
2000 - 2005	0.90	1.05	1.00
Country	Period	Target Annual	
Thailan	d 1986 - 1991	5%	
Malaysi	a 1986 - 1995	6.4%	
Indones	ia 1984/85 - 88/89	5%	

Sectoral CDP of ASEAN Countries

			975	Ĭ	980	19	78	1985	35
	CDP	68,361	100.0	92,706	100.0	94,214	100.0	694,06	100.0
Philippines	Agriculture	18,361	26.6	23,732	25.6	25, 439	27.0	26,010	28.8
(Million Pesos)	Industry	22,690	33.2	33,471	36.1	32,159	34.1	28,880	31.9
1972 prices	Services	27,453	40.2	35,503	38.3	36,616	38.9	35,579	39.3
	CDP	204,056	100.0	292,852	100.0	363,563	100.0		
Thailand	Agriculture	62,080	30.4	72,784	24.8	84,297	23.2		
(Million Baht)	Industry	51,312	25.2	87,513	29.9	106,901	29.4		
1972 prices	Services	90,664	44.4	132,555	45.3	172.365	4 - 74		
	CDP	*17,365	100.0	44,702	100.0	57.706	100.0		
Malaysia	Agriculture	4,804	27.7	10,189	22.8	11,623	20.1		
(Million Riaggit)	Industry	4,661	26.8	16,125	36.1	21,627	37.5		
1978 prices	Services	7,900	45.5	18,388	41.1	24,456	42.4		
	CDP	7,631		11,169	100.0	196, 77**	100.0		
Indonesia	Agriculture	2,811	36.8	3,425	30.7	18,747	24.1		
(Billion Rupiah)	Industry	2,082	27.3	2,818	25.2	29,346	37.6		
1973 prices	Services	2,738	35.0	4,926	44.1	29,874	38.3		
	CDP	8,044	100.0	12,161	100.0	16,604	100.0	16.302	100.0
Singapore	Agriculture	136	1.7	1.59	1.3	154	<u>ه</u> ٥	138	6.0
(Million SS)	Industry	2,436	30.3	3,922	32.3	3,902	23.5	3,674	22.5
1968 prices	Services	5,472	68:0	8,080	66.4	12,548	75.6	12,490	9.92
* 1970 prices **	1983 prices								

-187-

Appendix 6.3.1 Supply and Consumption of Dairy Products in the Philippines

(1000 MT, kg/capita)

		Import	Prod	uction	(Moving	Avg. every
Year	Actual	Moving Avg. every 3 years	Actual	Moving Avg. every 3 years	Total Supply	Per capita Consumption
1970	106		2.3			
1971	100	95	2.5	2.5	98	2.59
1972	79	81	2.6	2.6	84	2.16
1973	64	72	2.8	2.6	75	1.87
1974	73	64	2.6	6.6	67	1.63
1975	56	70	2.5	2.5	73	1.73
1976	82	80 %	2.3	2.3	82	1.89
1977	102	90	2.3	2.3	92	2.06
1978	87	104	2.5	2.5	107	2.34
1979	122	106	2.5	2.5	109	2.32
1980	109	108	2.5	2.5	111	2.30
1981	93	107	2.6	2.6	110	2.22
1982	118	106	2.6	2.6	109	2.15
1983	106	97	2.6	2.6	100	1.92
1984	66	85	2.5	2.5	88	1.65
1985	83	and the second				

Sources: (1) Import Volume: NCSO

(2) Production: BAEcon

Appendix 6.3.2 Harvest Area of Corn

	Yel	low corn	White com	rn and Others		[otal
Year	Actual	Moving Avg. every 3 years	Actual	Moving Avg.	Actual	Moving Avg.
1975	281		2,729		3,010	
1976	365	336	2,828	2,812	3,193	3,149
1977	363	376	2,879	2,822	3,243	3,198
1978	400	410	2,758	2,808	3,158	3,218
1979	467	436	2,786	2,786	3,252	3,204
1980	440	461	2,761	2,770	3,201	3,231
1981	475	492	2,763	2,775	3,239	3,267
1982	560	531	2,800	2,721	3,361	3,253
1983	557	588	2,600	2,675	3,158	3,263
1984	646	676	2,624	2,571	3,270	3,248
1985	825		2,490		3,315	

Source: BAEcon

Appendix 6.3.3 Mean Yield of Corn

	Yel	low Corn	White an	d Other Corn	Tot	al Corn
Year	Actual	Moving Avg. every 3 years	Actual	Moving Avg.	Actual	Moving Avg.
1975	0.94		0.82		0.84	
1976	0.71	0.81	0.87	0.85	0.85	0.85
1977	0.78	0.82	0.86	0.87	0.86	0.82
1978	0.96	0.85	0.88	0.91	0.89	0.90
1979	0.80	0.89	0.98	0.95	0.95	0.94
1980	0.92	0.85	0.98	0.98	0.98	0.96
1981	0.84	0.93	0.98	0.98	0.96	0.97
1982	1.03	0.99	0.97	0.97	0.98	0.98
1983	1.10	1.14	0.97	0.97	0.99	1.00
1984	1.29	1.30	0.96	0.94	1.02	1.02
1985	1.50		0.88		1.04	

Source: BAEcon

Appendix 6.3.4 Corn Yields in Other Asian Countries (1984)

 (t/ha)

 Asian average
 2.8

 Thailand
 2.5

 Indonesia
 1.6

 Malaysia
 1.6

 Vietnam
 1.2

 Burma
 1.8

Source: FAO "Production Year Book 1984"

Appendix 6.3.5 Corn Production in the Philippines

Crop	Production	on ('000 mt)	Area	('000 ha.0)	Yield (mt/ha.)
Year	Actual	Avg. 3 years	Actual	Avg. 3 years	Actual	Avg. 3 years
1969/1970	2,008		2,420		0.83	
1971	2,012	2,015	2,428	2,434	0.83	0.83
1972	2,024	1,960	2,454	2,411	0.83	0.81
1973	1,843	2,042	2,351	2,510	0.78	0.81
1974	2,258	2,205	2,726	2,696	0.83	0.82
1975	2,514	1,496	3,010	2,976	0.84	0.84
1976	2,717	2,669	3,193	3,149	0.85	0.85
1977	2,775	2,763	3,243	3,198	0.86	0.87
1978	2,796	2,887	3,158	3,218	0.89	0.90
1979	3,090	3,003	3,252	3,204	0.95	0.94
1980	3,123	3,108	3,201	3,231	0.98	0.96
1981	3,110	3,174	3,239	3,267	0.96	0.97
1982	3,290	3,175	3,361	3,253	0.98	0.98
1983	3,126	3,254	3,158	3,263	0.99	1.00
1984	3,346	3,304	3,270	3,248	1.02	1.02
1985	3,439		3,315		1.04	

Source: BAEcon

Average Annual Crowth Rate

	Production	Area	Yield
1970/71 - 1974/75	5.50%	5.15%	0.30%
1974/75 - 1979/80	4.48	1.66	2.71
1979/80 - 1983/84	1.54	0.13	1.53

Appendix 6.3.6 Domestic Use of Corn in the Philippines

Crop Year		Feed	Other	Food	Use	Ending
(July-June)	Seed ¹	and ² Waste	Non- Food ³	Total 4	Per Capita	Stocks
		. * . + *				Thousand
	thousan	d metric to	ons		kilograms	metric tons
1060/70	20	651		1 005	22.40	
1960/70	39	651	53	1,205	33,19	120
1970/71	39	671	52	1,253	33.50	148
1971/72	40	754	73	1,257	32,70	241
1972/73	38	684	89	1,267	32.07	96
1973/74	43	738	90	1,317	32.43	257
1974/75	49	832	97	1,709	40.95	243
1975/76	52	884	103	1,822	42.48	153
1976/77	53	1,123	112	1,646	37.36	154
1977/78	51	1,202	119	1,559	34.45	153
1978/79	65	1,288	122	1,560	33.56	264
1979/80	64	1,573	136	1,559	32.65	1 48
1980/81	65	1,687	146	1,536	31.32	175
1981/82	67	1,802	155	1,544	30.71	172
1982/83	63	1,893	165	1,479	28.69	104
1983/84	65	1,877	171	1,477	27.95	181

^{1 1969/70-1977/78} seed is at the rate of 16.24 kgs./ha.; 1978/799 onwards at 20 kgs./ha.

Source: Policy Analysis Staff, MAF based on data from BAEcon, NFA and NFAC.

² Based on feed demand equation.

³ Manufacture is based on trend.

⁴ Food demand equation/disappearance method.

Appendix 6.3.7 Population of Poultry and Hogs (thousand heads)

Year	Poult:	ry	Hogs		
	Actual Population	5 year Average			
1973	49,965		8,627		
1974	47,818		6,605		
1975	46,745	47,098	6,647	6,813	
1976	45,671	48,883	6,489	6,469	
1977	45,289	49,184	5,696	6,637	
1978	58,893	50,387	6,910	6,895	
1979	49,321	52,798	3,445	7,149	
1980	52,761	55,682	7,934	7,568	
1981	57,724	56,354	7,758	7,782	
1982	59,711	58,331	7,795	7,816	
1983	62,255		7,980		
1984	59,205		7,612		

Source: BAEcon

Appendix 6.3.8 Trend of Feed Use of Corn and Feed Requirement for Poultry and Hogs

Year	Feed use of Corn (Average every 5 years)	Feed Requirement for Poultry and Hogs (Average every 5 years)
1975	852	6,932
1976	956	6,7006
1977	1,066	6,852
1978	1,214	7,097
1979	1,375	7,375
1980	1,510	7,800
1981	1,649	7,994
1982	1,767	8,081

Appendix 6.3.9 Supply and Use of Soybean Meal

(Unit: Thousand tons)

	Local Production	Import	Total Use		
Year	Actual Volume		Actual	Avg. every 5 years	
1975	9.9	41	51	68	
1976	8.9	76	85	85	
1977	10.9	96	107	105	
1978	6.2	116	122	134	
1979	9.3	124	133	163	
1980	9.6	215	224	225	
1981	12.8	218	231	260	
1982	25,1	387	413	308	
1983	24.5	275	299] . 	
1984		375	375		
1985		226			

Source: BAEcon

Appendix 6.3.10 Population of Commercial Poultry and Hogs

(Thousand heads)

	Comme	rcial Poultry	Commercial Hogs		
Year	Actual	Avg. every 5 years	Actual	Avg. every 5 years	
1972	9,670		554		
1973	9,641		559		
1974	8,297	8,847	564	461	
1975	8,308	9,440	569	615	
1976	8,320	11,008	574	749	
1977	12,636	11,650	808	906	
1978	17,477	12,602	1,228	1,072	
1979	11,511	14,762	1.351	1,278	
1980	13,068	16,233	1,400	1,442	
1981	19,116	16,780	1,605	1,497	
1982	19,992	18,266	1,628	1,477	
1983	20,214		1,500		
1984	18,939		1,253		

Source: BAEcon

Appendix 6.3.11 Estimation of Local Production of Soybean Meal

The future consumption of soybeans is estimated below.

Based on MAF statistics, the per capita use of soybeans in the Philippines increased at an average annual growth rate of 12.7% from 1975 to 1982 using 3 year running averages, and reached 0.76 kg/capita in 1982.

However, the per capita soybean consumption of the Philippines is relatively low compared with the other ASEAN countries; 2.2 kg in Thailand, 4.7 kg in Indonesia and 6.2 kg in Malaysia according to FAO statistics (1979-1981).

Therefore, the high growth rate of the per capita use of soybeans in the Philippines will likely continue.

The following average annual growth rates are assumed for the study period.

Year	Estimated growth rate	Estimated per capita use	Estimated total consumption of soybeans
1982		(kg/capita) 0.76 *	(thousand tons)
1990	12%	1.9	117
1995	10%	3.1	212
2000	8%	4.6	346
2005 *average	5% of 3 years (5.9 1981-1983)	481

From 1975 to 1983, the food use of soybeans (the consumption as unprocessed beans) increased at an average annual growth rate of 6.8% and recorded 8.6 thousand tons in 1983. However the per capita figures were erratic.

So the future volume of the food use of soybeans is estimated assuming an average growth rate of 6%.

The estimated local production of soybean meal is equal to 80% of the total consumption of soybeans minus the estimated food use.

The forecast local production volume of soybean meal is as follows:

	(Year)	1990	1995	2000	2005
Estimated local production					
of soybean meal (thousand tons)		66	123	204	285

Soybean	S:	Domes	tic	Use

		Food Use		Total Use Per capita	
Actual		Actual	-	Actual	Avg. every
<u></u>	5 years		3 years		3 years
			4		- · · · · · · · · · · · · · · · · · · ·
1.64		1.14		2.84	
1.06	1.60	1.32	1.18	2.44	: +
	ļ.,	(0.04)	(0.03)		
2.11	2.70	1.07	1.21	3.24	•
					,
4.92	3.02		4.2	6.23	
2.04	6.46		the second of th	4.25	
12.42	8.54			18.08	14.0
					(0.33)
11.15	12.39		-	19.55	19.8
					(0.46)
13.61	10.84			21.74	18.7
9.96	44.60			Alb Oc	(0.42)
7.76	11.02			14.86	18.8
11 60	10 16			10.71	(0.41)
11.00	10.40			19.71	18.6
11.0/	12.21			21 25	(0.40) 22.4
11.94	1).21		_	21.34	(0.46)
16.00	10.06		-	26.06	30.1
10.00	19.77			20.00	(0.61)
31: 112	26.03			42 80	38.6
J1. 16	20.00	1		""	(0.76)
30.66				46.76	, ,,,,,
)					
 				7.54	
]		(0.14)		'''	
	Actual	1.64 1.06 2.11 2.70 4.92 3.02 2.04 6.46 12.42 8.54 11.15 12.39 13.61 10.84 7.76 11.02 11.68 10.46 11.94 13.21 16.00 19.95 31.42 26.03	Crush (Per canal Avg. every 5 years) Actual Avg. every 5 years 1.64 1.60 1.32 (0.04) 2.11 2.70 1.07 (0.03) 4.92 3.02 1.25 (0.03) 2.04 6.46 2.07 (0.05) 12.42 8.54 5.27 (0.13) 11.15 12.39 7.84 (0.18) 13.61 10.84 7.61 (0.17) 7.76 11.02 6.64 (0.15) 11.68 10.46 7.61 (0.16) 11.94 13.21 8.92 (0.19) 16.00 19.95 9.54 (0.19) 31.42 26.03 10.92 (0.22) 30.66 7.67 (0.15) - 7.16	Crush (Per capita) Actual Avg. every 5 years Actual Avg. every 3 years 1.6h 1.06 1.32 1.18 1.06 1.60 1.32 1.18 (0.0h) (0.03) (0.03) 2.11 2.70 1.07 1.21 (0.03) (0.03) (0.03) 4.92 3.02 1.25 1.46 (0.03) (0.04) 2.07 2.86 (0.05) (0.07) 2.86 (0.05) (0.07) 2.86 (0.05) (0.07) 2.86 (0.05) (0.07) 2.86 (0.05) (0.07) 2.86 (0.05) (0.07) 2.86 (0.13) (0.12) 7.84 (0.13) (0.12) 7.84 (0.18) (0.16) 7.36 (0.17) (0.17) (0.17) 7.76 11.02 6.64 7.29 (0.15) (0.16) 7.72 (0	Crush (Per capita) Per capita Per capita Per capita Per capita Per capita Actual Avg. every 3 years Actual Actual Avg. every 3 years Actual Actual Actual Avg. every 3 years Actual Actual Actual Actual Avg. every 3 years Actual Actual Actual Avg. every 3 years Actual Actual Actual Actual Actual Avg. every 3 years Actual 1.06 1.60 1.32 1.18 2.44 (0.04) (0.03) (0.03) (0.03) 4.92 3.02 1.27 1.26 6.23 (0.03) (0.03) (0.03) (0.04) 2.26 4.25 (0.05) (0.05) (0.07) 18.08 4.25 (0.05) (0.07) 18.08 4.25 (0.13) (0.12) 19.55 4.01 (0.13) (0.12) 19.55 4.01 (0.13) (0.12) 7.36 21.74 (0.15) <td< td=""></td<>

Source: BAEcon

Note: Figures in parentheses show per capita use.