APPENDIX "D"

DATA OF TESTS CONDUCTED IN THE FIELD LABORATORY

CONTENTS FOR APPENDIX "D"

DATA OF TESTS CONDUCTED IN THE FIELD LABORATORY

		Page
1,.		D-1
	(1) Purpose	•
	(2) Method	D-1
	(3) Results and considerations	D-1
2.	Extraction Test by Aeration Method	D-2
	(1) Purpose	D-2
	(2) Method	D-2
	(3) Results and considerations	D-3
3.		
	(1) Purpose	D-3
	(2) Method	
	(3) Results and considerations	D-4
4.		
	(1) Purpose	D-5
	(2) Method	D-6
gr.	(3) Results and considerations	D-6
5.	Model Test	D-6
	(1) Purpose	D-6
	(2) Method	D-7
6.	Extraction Test for Sieved Samples Under an Acidic Condition	D-7
, ·	(1) Purpose	
	(2) Method	
٠	(3) Results and considerations	D-8
7.		D-9
	(1) Sieve analysis	D-9
•	(2) Precipitation test	
	(3) Grain size analysis	D-9
	(4) Precipitation Test Over a Long Period of Time	D-11
8.	Supplement to the Analysis	· D-12
	(1) Results of the analysis of accessory constituents	D-12
	(2) Results of the cross checking analysis	D-12
	(3) Limit of detection for Cu and Zn	. D-13

LIST OF TABLES FOR APPENDIX "D"

Table D-1	APPARATUS FOR TESTS	
Table D-2	EXTRACTION TEST BY SHAKING METHOD (MILL TAILINGS FROM MILL PLANTS)	
Table D-3	EXTRACTION TEST BY SHAKING METHOD (MILL TAILINGS FROM TAILING PONDS)	\bigcirc
Table D-4	EXTRACTION TEST BY AERATION METHOD	**プ
Table D-5	EXTRACTION TEST BY WET AND DRY REPETITION METHOD (FIRST STAGE)	
Table D-6	EXTRACTION TEST BY WET AND DRY REPETITION METHOD (SECOND AND THIRD STAGE)	•
Table D-7	CULTURE OF BACTERIA	•
Table D-8	EXTRACTION TEST BY A BACTERIA ADDITION	
Table D-9	MODEL TEST (FOR PHILEX MILL TAILINGS)	
Table D-10	MODEL TEST (IRRIGATION CANAL)	
Table D-1 l	SIEVE ANALYSIS OF SS AT FIXED POINTS AND MILL TAILINGS	
Table D-12	CHEMICAL ANALYSES OF SIEVED SUSPENDED SOLIDS AT FIXED POINTS	
Table D-13	CHEMICAL ANALYSES OF SIEVED MILL TAILINGS	
Table D-14	EXTRACTION TEST BY SHAKING METHOD UNDER AN ACIDIC CONDITION	0
Table D-15	SIEVE ANALYSIS OF SEDIMENTS IN THE BINGA RESERVOIR	-
Table D-16	PRECIPITATION TEST OF SEDIMENTS IN THE AMBUKLAO RESERVOIR AND THE BINGA RESERVOIR	
Table D-17	GRAIN SIZE ANALYSIS (1)	
Table D-18	GRAIN SIE ANALYSIS (2)	
Table D-19	PRECIPITATION TEST OVER A LONG PERIOD ON SAMPLES AT FIXED POINTS "A" AND "E"	
Table D-20	CHEMICAL ANALYSES OF ACCESSORY ELEMENTS IN SOLIDS	
Table D-21	CHEMICAL ANALYSES OF MINOR CONSTITUENTS IN THE FILTRATE AT FIXED POINT "A" TO "E"	
Table D-22	CHEMICAL ANALYSES OF MINOR CONSTITUENTS IN THE FILTRATE FOR MINE DRAINAGES AND MILL TAILINGS	
Table D-23	CROSS CHECKING ANALYSES (1)	
Table D-24	CROSS CHECKING ANALYSES (2)	
Table D-25	X-RAY DIFFRACTION ANALYSES	

LIST OF FIGURES FOR APPENDIX "D"

Fig. D-1	Flow Chart of Extraction Test by Wet and Dry Repetition Method (First Stage Survey)
Fig. D-2	Flow Chart of Extraction Test by Wet and Dry Repetition Method (Second and Third Stage Surveys)
Fig. D-3	Flow Chart of Extraction Test by a Bacteria Addition Method
Fig. D-4	Grain Size Distribution by Sieving for SS at Fixed Points and Mill Tailings
Fig. D-5	Precipitation Test
Fig. D-6	Grain Size Accumulation Curve
Fig. D-7	Precipitation Test over a Long Period on Samples Taken at Fixed Points "A" and "F"

 $\overline{}$

APPENDIX D

DATA OF TESTS CONDUCTED IN THE FIELD LABORATORY

1. Extraction Test by Shaking Method

(1) Purpose

This test aims at determining the extent of an elution of Cu, Zn and As which may take place when the tailings flow down a stream. Behind the test is an assumption that the mill tailings are discharged into tributaries of the Agno River as planned in the ELC's Feasibility Study.

(2) Method

Tested were 9 samples taken at 3 mill plants and 30 samples taken at the Philex and the Benguet tailing ponds. Apparatus used in the test are shown in Table D-1.

The procedures of the test are as follows. A sample is placed into one or two 2.02 polyethylene containers. Distilled water is poured into the containers. The mouth of them are sealed tightly. The ratio of the weight of samples to distilled water is 400 g to 42, 800g to 1.72 and 100g to 12 in the first, second and the third stage surveys, respectively. The container is shaken for 30 minutes by the shaker. The shaking width is 4 cm and shaking speed 180 strokes/min. During this shaking process the elution of the ingredients in the sample into the water is supposed to occur. The solution is called cluate. The cluate is filtered by No. 3 filter (5μ) . The filtrate is supplied for chemical analysis after water temperature, pH and EC are measured.

(3) Results and Considerations

The results are shown in Tables D-2 and D-3.

In the first stage survey, The elution ratios cannot be calculated accurately because the amount of Cu, Zn concentrations are much lower than those contained in the stick water of the original samples. The Cu and Zn concentrations in the eluate for the Benguet mill tailings are $1.24 \text{ mg/}\ell$ and $0.04 \text{ mg/}\ell$ respectively, whereas the respective concentrations in the original water (mill waste water) are $22 \text{ mg/}\ell$ and $10.7 \text{ mg/}\ell$. The Cu concentration in the eluate for the Philex mill tailings is less than $0.02 \text{ mg/}\ell$.

Taking the results of the first stage survey into account, efforts in the second stage survey are directed towards reducing the amount of the stick water by dehydration and drying as to minimize the error caused by dissolved Cu and Zn in the stick water. At the same time, the ratio of the sample to distilled water is raised.

In the third stage survey, the mill tailings over No. 3 filter are supplied in place of original mill tailings in order to reduce the amount of the stick water more than in the second stage survey.

In spite of these improvements in the second and the third stage surveys, the Cu and Zn concentrations in cluates are low as shown in the Table D-3.

The actual elution amount is calculated by subtrating the content in the stick water from the content in the eluate. Therefore, a small amount of stick water of high concentration would cause the significant error in elution ratio. The elution ratios in the second and the third stage survey may have large errors.

The test is conducted by using distilled water, which is neutral in terms of pH. After shaking, the cluate turns out to be weakly alkaline (pH≒8−9). Under this condition, the dissolved Cu and Zn concentrations are suppressed because the Cu and Zn ions would become hydroxides and precipitation would occur. After all it is considered that the clution ratios of Cu and Zn under the test condition cannot be much larger than those calculated in this test even if the error is included.

2. Extraction Test by Aeration Method

(1) Purpose

This test aims at determining the extent of elution of Cu, Zn and As from mill tailings when they are discharged into the Agno tributaries and flow down in contact with oxygen in the air as proposed in the ELC's Feasibility Study.

(2) Method

In the first stage survey, 3 tailings samples from 3 mill plants are supplied for this test. In the second stage survey, 3 mill tailings samples from mill plants and 2 tailings samples from the tailing ponds are supplied for this test. In the third stage survey, 3 tailings samples from 3 mill plants are supplied.

The apparatus used in this test are shown in Table D-1.

The procedure is as follows.

In the first and the second stage surveys, wooden boxes which are sealed inside with venyl sheets are prepared as water tanks. A box measures 60 cm by width, 60 cm by height and 180 cm by length. In the third stage survey, plastic water tanks which measured 15 cm by width, 15 cm by height and 60 cm by length were prepared. Then air pipes, through which air is sent into the water, are distributed at the bottom of the tanks. Samples and testing water into which ingredients would move from the sample are placed in these tanks. They are agitated for 6 hours while aerating through the air pipe.

The ratios of weights or volumes between samples and testing water are 60 ℓ to 400 ℓ for the tailings in the first stage survey, 118 kg \pm 303 kg to 300 ℓ in the second stage survey and 0.5 kg and 1 kg to 5 ℓ in the third stage survey.

Compressed to his market

the second of th

(3) Results and Considerations

In the first stage survey, the test was intended to simulate the situation where in the tailings were supposed to be thrown into the river. In order to realize the intention, original samples that had come to the outlet of the mill plants are used. Furthermore, the tapwater (underground water at Binalonan which was supposed to be more similar to the river water of the upstreams than distilled water) was used. The results show that the Cu, Zn and As contents are less than those in the stick water. This means that precipitation rather than elution occurs under the test condition. As a result of the improvement of the method, in the second and the third stage surveys, elution ratios can be calculated as shown in Table D-4.

The Cu elution ratios are 0.23×10^{-4} for average of the samples taken from the Philex mill tailings pond at the second stage survey, 0.14×10^{-3} and 0.27×10^{-4} for the one from the mill plant at the third stage survey. The Cu elution ratios of the Benguet and the Itogon mill tailings cannot be calculated.

The Zn elution ratios for the third stage survey are 0.54×10^{-3} for the Philex mill tailings and $0.10 \times 10^{-3} - 0.19 \times 10^{-3}$ for the Itogon.

The As elution ratios of the Philex mill tailing are 0.65×10^{-3} and 0.87×10^{-2} . Those of the Benguet are 0.14×10^{-2} and 0.19×10^{-2} . Those of the Itogon are 0.38×10^{-3} , 0.43×10^{-3} and 0.10×10^{-1} . The As elution ratio turned out to be able to be calculated in many trials, because the detection limit of chemical analysis was lower than those of Cu and Zn. However the elution ratios vary even among the samples taken from a mill plant.

The elution ratios calculated from the results of the aeration method are in the same order as those calculated by shaking method. It is impossible to distinguish the elution ratios from each other. Therefore, it is not considered that elution are accelerated significantly by oxidation under the test condition.

3. Extraction Test by Wet and Dry Repetition

(1) Purpose

This test aims at determining the extent to which the elution occurs from the sediments settled at the upper part of the San Roque reservoir as planned in the ELC's Feasibility Study, where they are subjected to an alternative environment of wet and dry depending on the water level.

(2) Method

In the first stage survey, three mill tailings samples from three mill plants and one sample from the Binga reservoir were tested. In the second stage survey, one sample which had been sorted as being of the same size that would have been precipitated at the upper part of the reservoir. In the third stage survey two samples over No. 3 filter of the Philex and the Benguet were tested.

The procedure is as follows (in Figs. D-1 and D-2).

In the first stage survey, one liter of sturry state sample material, 10 liters of water (only in the case of the sediments taken from the Binga Dam, 1 kg of solid sample material, and 10 liters of water) were put into a water tank and mixed. After 4 hours of agitation, the first sample for chemical analysis was taken. It was then dried in a drying furnace at 60°C for 18 hours and finally subjected to an elution process for 4 hours. This marks the completion of one cycle. Four cycles were repeated.

In the second stage survey, five cycles were repeated. In one cycle, 4 kg of sample material were moistened with 1 to 1.4 liter of water, then dried in a drying furnace at 105°C, each of these treatments was repeated 6 times, and finally agitated with 10 liters of water for 4 hours.

In the third stage survey, the procedure is the same as that in the second stage except that the weight of the sample and the volume of the water for moistening are reduced to 1 kg and 0.5 ℓ , respectively.

(3) Results and Considerations

The results are shown in Tables D-5 and D-6.

In the first stage survey, the Cu and Zn elution ratios can be calculated only for the first cycle of the test of the Benguet mill tailings and sediments in the Binga reservoir. For other cycles of them and for all the cycle of the other samples, either the Cu and Zn contents in the eluate are less than those in the stick water, or the concentrations are lower than the detection limit of chemical analysis. The As elution ratios of the Binga sediments are between 0.25×10^{-2} and 0.14×10^{-1} .

It was considered that the low rate of elution is due to the character of the samples and also to the short period of time for testing under an ordinary condition. In order to promote the elution in a short time, the temperature in the furnace was raised to 105° C in the second stage survey. At the same time, samples were dehydrated before they were supplied. Owing to this improvement, the Cu and As elution ratios can be calculated as shown in Table D-6. However, the Zn elution ratio cannot be figured out as yet, because the Zn concentrations in the elute are lower than the detection limit of chemical analysis. The Cu elution ratios are between 0.43×10^{-5} and 0.52×10^{-5} , although they do not show a regular tendency in the course of cycles. The As elution ratio are between 0.27×10^{-3} and 0.11×10^{-2} and show a tendency to become lower in the course of the cycles.

In the third stage survey, the Zn elution ratios can be calculated owing to the reduction of the detection limit of chemical analysis. The Cu and As elution ratios are in the same order as ones in the second stage.

The elution ratios of Cu for the Philex mill tailings do not fluctuate very much in the course of the cycles, although they don't show a regular tendency. Those of

- D4 -

()

()

the Benguet mill tailings can be calculated only for the 1st and 4th cycles, that is 0.53×10^{-1} and 0.65×10^{-4} , respectively, showing large differences between them.

The Zn elution ratios for the Philex mill tailings for the 1st, 2nd and 3rd cycles are between 0.32×10^{-3} and 0.74×10^{-3} , although Zn contents of the eluates for the 4th and 5th cycle are lower than the detection limit. The ratios for the Benguet are between 0.69×10^{-4} and 0.87×10^{-4} , showing about one tenth as large as those of the Philex mill tailings.

The "As" elution ratios for the Philex mill tailings are between 0.34×10^{-2} and 0.62×10^{-2} for the 1st, 4th and 5th cycles, and the "As" contents in the eluates for the 2nd and the 3rd cycles are lower than the detection limit. The ratios of the Benguet mill tailings are between 0.10×10^{-2} and 0.32×10^{-2} , showing an increase in the course of the cycles, except for the 3rd cycle.

It is considered that the difference between the elution ratios in the second stage survey and in the third stage survey may be caused by the difference of sizes of the samples: the sample at the third stage survey consists of grains whose sizes are over No. 3 filter; on the contrary, the coarse grains were selected at the second stage survey.

The Zn elution ratios for the Benguet tailings are smaller in order of magnitude than those for the Philex mill tailings. The As elution ratios for the Benguet are a little larger than those for the Philex. Difference of the Cu elution ratios between the Philex and the Benguet are not clear because the 3 cycle data out of 5 cycles are not comparable. It is considered that extraordinary high Cu concentration of the eluate for the first cycle of the Benguet is due to the Cu originated from the stick water. Therefore, the elution ratio probably has a large error and only the one for the 4th cycle is significant.

4. Extraction Test by a Bacteria Addition

(1) Purpose

Oxidation of sulphide and elution of metal and other elements from them are accelerated by bacteria. In the above-mentioned extraction test by wet and dry repetition method in the second and the third survey, the samples supplied for the test are heated up to 105°C. At this temperature activity of the bacteria is weak, even if it survives, so that the oxidation proceedes slowly. In order to estimate the effect of bacteria on the elution under an appropriate condition, this test is performed.

()

(2) Method.

The Philex and the Benguet mill tailings over No. 3 filters were supplied. The procedure is as follows (in Fig. D-3).

The 1.7 kg sample and 102 distilled water are put into a water tank. Two tanks are prepared for the Philex and the Benguet, respectively. In one water tank, a solution with bacteria (Table D-7) is added. In the other tank, bacteria is not added. Then both tanks are treated under the same condition. The water and the sample are agitated for 4 hours once every two days by a mini-pump, while 1 N HCl is added to adjust the pH of the water at 3.

The water sample for chemical analysis is taken from every water tank every other day. Then distilled water is added to compensate for the water taken for chemical analysis. The above-mentioned procedure is repeated 5 times.

(3) Results and Consideration

The results are shown in Table D-8. There is no significant difference between the two kinds of tests in terms of the Cu and Zn concentrations in the eluates. On the contrary, the "As" concentrations in the eluate for the Philex mill tailings with bacteria are lower than those without bacteria. The Cu and Zn concentrations in each test do not show a regular tendency in the course of the cycles. The As concentrations for the Philex seem to decrease as a whole, in the course of cycles, although those for the Benguet do not seem to vary significantly in the course of the cycles.

The higher elution ratios than the ones by the other method are entirely due to an acidic condition caused by the addition of HCl.

The above-mentioned results reveal that bacteria has no effect on the elution so much as the elution ratio changes significantly. The pH condition under which the test was performed was presumably preferable for the activity of bacteria. On the other hand, the pH condition of the river water at the Fixed Point E does not seem to be more preferable to the test condition. Therefore, it is presumed that the Cu, Zn and As elution for the Philex and the Benguet mill tailings would not be increased significantly by bacteria even if the pH condition of the San Roque reservoir would change from about 8 (the present value of the river water at the Fixed Point E) to about 3 (the test condition).

5. Model Test

(1) Purpose

This test is conducted to determine, in combination with the extraction test by

()

()

 \bigcirc

wef and dry repetition method, the extent to which the pollutants are eluted from the tailings deposited at the upper part of the San Roque reservoir. This is to be done by looking into the progress of oxidation in the sulfides contained in the tailings which are let to stand in wet and dry environments for a long time.

(2) Method

()

The Philex tailings were let to stand in an artificial wet environment, and samplings were done once a month to find out changes in the elution ratio.

Two wooden boxes were prepared to simulate the condition. The boxes measure 1 m by width, 2.0 m by length and 1.5 m by height. The sample for this test was the one which had been sorted and selected only for the coarse parts of the Philex mill tailings. The pertinent sample was taken from the depth of about 50 cm by using a hand-auger.

The sediments of the irrigation canal is kept moistened in a natural way. To compare the results obtained in the model test, samples were taken from the sediments on the irrigation canal bed once a month until June.

The results are shown in Tables D-9 and D-10.

The Cu, Zn and "As" contents in the tailings sample do not decrease significantly. This corresponds to the results that the Cu, Zn and As elution ratios are much less than one, showing $0.82 \times 10^{-5} - 0.17 \times 10^{-4}$, $0.28 \times 10^{-3} - 0.97 \times 10^{-3}$ and $0.57 \times 10^{-3} - 0.66 \times 10^{-3}$, respectively. The elution ratios do not show a significant tendency in the course of the month. They are in the same order of magnitude.

On the other hand, the "As" elution ratios for the samples from the irrigation canal are a little higher than those in the model test. The Cu and the Zn elution ratios are in the same order as those in the model test.

6. An Extraction Test for Sieved Samples Under an Acidic Condition

(1) Purpose

The river water and the tailings water from mill plants showed neutral to alkaline in terms of pH. Based on these findings, the above-mentioned tests were conducted under neutral to weakly alkaline conditions except the test by a bacteria addition. Therefore, elution from the mill tailings in the San Roque reservoir or its upstream can be determined on the basis of the results of those test.

On the other hand, it is not deniable that a part of the water discharged from the San Roque reservoir will become acidic in the rice field because of the root acid of rice plants, chemical fertilizers and so on. This test aims at determining the extent of the Cu, Zn and As elutions under such an acidic condition. The mill tailings will be sorted on the way to the rice fields, and will be rich in finer grains. The elution ratios of mill tailings presumably depend on the grain sizes. Therefore, a series of sorted samples are supplied for this test in order to estimate the dependence of the elution upon the grain sizes.

(2) Method

SS from the Fixed Points B, C. D and E, and mill tailings samples of the Philex, the Benguet and the Itogon are supplied for this test. Firstly, the samples are classified into 4 classes by using sieves, the passing size of which are 25μ , 53μ and 74μ . A 50g classified sample is mixed with 500 ml of 0.1 N HCl in a polyethylene container. The container is shaken in the same manner as in the test by shaking method.

(3) Results and Considerations

The results of sieving are shown in Table D-11. The results of chemical analysis of the sieved samples are shown in Tables D-12 and D-13. Then, the results of the extraction test are shown in Table D-14.

The grains of both the SS at the Fixed Points and mill tailings are distributed more in the order of in 5μ - 25μ , in 25μ - 53μ , and in 53μ - 74μ . Among them, the grain size distribution between 5μ and 25μ of the Philex mill tailings, the Benguet mill tailings and Itogon mill tailings are 34.4%, 44% and 12.6%, respectively. The first two samples are thought to be taken from the mill plants at normal operation, although the one of the Itogon might not be taken at the normal operation. On the other hand, the samples from the Fixed Points B, D and E show a similar grain size distribution, although the distributions of the Fixed Point C fluctuate a lot. The samples of the Fixed Point B are rich in finer grains compared to the ones of the Fixed Points D and E.

Differences of the Cu and "As" contents among the different size grains are not clear. The Cu, Zn and "As" contents in the Philex mill tailings are rich in finer size grains. The Cu, Zn and "As" contents of about one half of the samples of the Fixed Points C, D and E are richer in the finer size grains, although the rest do not show this tendency.

The elution ratios show that the Cu, Zn and As in the Philex mill tailings are more easily eluted from the finer size grains. The Cu in the SS at the Fixed Point D, the Zn in the SS at the Fixed Point C and the "As" in the SS at the Fixed Point E are more easily eluted from the finer size grains.

-- D-8 -

()

Ö

*

7. Grain Size Analyses

(1) Sieve Analysis

In the first stage survey, a sieve-analysis was carried out on the samples from the sediments of the Binga reservoir to get to know the grain size distribution of the sediments at the upper part of the reservoir. The test results are shown in Table D-15 and Fig. D-4. The percentage of the grains of less than 2 mm diameter is 60% with BD 102 and as low as 28 to 36% with the other 3 samples. The percentage of grains smaller than 74μ is very small in respect to BD 104 in which they are contained in the largest quantities (1.9%) of all the samples under review. As a result, it became evident that the sediments at the upper part of the reservoir contain only small quantities of fine grains.

(2) Precipitation test

In the second stage survey, a precipitation test was carried out on the field on samples under 2 mm collected at the Ambuklao and the Binga reservoirs to particularly find out the value of the lower limit to the grain size of the sediments at the upper parts of the reservoir. The test results are shown in Table D-16 and Figs. D-5. Most of the grains were precipitated within one minute with AD 204, AD 207, BD 201, BD 202 and BD 203 and within 5 minutes with the other samples. From this, it became evident that the former samples consisted of coarse sand to fine sand and the latter samples of medium sand to very fine sand and that most silt and clay had been washed away down the stream. However, AD 205 is an exception to the sediments at the upper part of the reservoir. Judging from the fact that its volume decreases due to its own weight, it can be considered to consist mainly of silt. From the results of this test, it became clear that classification should be done after a precipitation of 3 minutes to separate the two different parts of the tailings; one sediment settled in the upper part of the reservoir and the other washed down. The coarse part of the Philex tailings classified as such by this operation was used in the extraction test by wet and dry repetition method (in the 2nd stage survey) and the model test.

(3) Grain size analysis

In the first and the second stage surveys, this test was entrusted to the Bureau of Soils and was carried out on the tailings (3 samples per Mine \times 3 Mines), the coarse part of the tailings (classified to be used in the model test), the sediments from the power plant reservoir and irrigation canal. The test results are shown in Table D-17 and Fig. D-6.

In the third stage survey, this test was undertaken in Japan and was carried out on three samples from the 3 mill plants. The results are shown in Table D-18 and Fig. D-6.

1) Tailings

In the first and the second stage surveys, the Philex tailings came up with a wide scattering in the test result with the main part made up of fine sand and very fine sand size grains. They are of the largest grain size of all the tailings from the three Mines. The Itogon tailings consisted mainly of fine sand to silt size; the fine grains came up here in a larger amount than with the Philex tailings. The Benguet tailings, which had eliminated the part of large grain sizes caused by a cyclone, were composed mainly of very fine sand to silt size grains and were of the smallest grain sizes of all the tailings from the three Mines.

In the third stage survey, clayey grain ($<5\mu$) percentages of the Philex, the Benguet and the Itogon mill tailings are 17.5%, 7.8% and 22.3%, respectively. Silt size (5μ - 74μ) grain percentages are 50.3%, 56.9%, 70.4%, respectively.

The clayey grain percentage of the Benguet mill tailings is lower than the other two. It is considered that the result of the analysis does not accurately represent that of the Benguet, as deduced from the fact that the colloidal ($<1\mu$) percentage is 0.5% and extremely low compared to the 7.0% and 8.5% of the Philex and the Itogon, respectively.

2) Sediments in the power plant reservoir

In this test, the same samples as the ones used in the afore-mentioned precipitation test were used. As shown in Table I-17, distinction was made among sand represented by AD 202, AD 204, AD 207, BD 201, BD 202 and BD 203, loamy sand by AD 201, AD 203 and AD 206 and silt loam by AD 205. This distinction, although it deals with AD 202 differently from other distinctions, corresponds very well with the results obtained in the precipitation test.

3) Coarse grain part of the Philex tailings

The sample was classified as such for use in the extraction test by a wet and dry repetition method (in the 2nd stage survey) as well as in the model test. The test results indicate that the sample is similar in grain size composition to the coarser one of the sediments taken from the power plant reservoir so that the purpose of classification was fulfilled.

()

1

{ }

4) Sediments from the irrigation canal

The sample is the same as the sediments taken from the irrigation canal which was used in the extraction test as a reference for the model test. It indicated that the sediments in the irrigation canal were composed of fine-grained and coarse-grained layers.

(4) Precipitation test over a long period of time

The water stored in the Ambuklao and the Binga reservoirs was found to be clear and to show a low turbidity level in the dry season.

From this it can be deduced that the turbid water which flows down the river from the Point E becomes considerably clearer when it enters the reservoir and begins to flow slowly.

In order to forecast the variation of turbidity in the proposed San Roque reservoir, precipitation test over a long period was conducted. Water samples were collected at the Fixed Points A and E. They were subjected to precipitation test.

In the second stage survey, two samples at the Fixed Point E were supplied for this test. In the third stage survey, 3 samples at the Fixed Point E and one sample at the Fixed Point A were supplied for the test. The test results are shown in Table D-19 and Fig. D-7.

As for the 5 samples from the "E" point, the turbidities are 380 ppm—800 ppm at one hour after the beginning, and 1.8 ppm—8.5 ppm after 7 days. On the other hand, turbidity of the sample from the Fixed Point A at flood time in September shows 173 ppm at one hour after the beginning and 11.5 ppm after 7 days, which is higher than those of the Fixed Point E.

8. Supplement to the Analysis

(1) Results of the Analysis of Accessory Constituents

An analysis of accessory constituents was carried out with the main solid materials collected in the preliminary survey. The results are shown in Table D-20. These results indicate that no such constituents were detected that may require to be studied further.

The water samples collected in the preliminary survey were used to analyzed 15 constituents. As a result, the number of the constituents to be analyzed were reduced to 7. The aforementioned Table shows only these 7 constituents; the rest of the constituents are shown collectively in Tables D-21 and D-22.

(2) Results of the Cross Checking Analysis

The results of a checkup analysis using 10 samples in the 1st stage survey and 13 samples in the 2nd stage survey are shown in Table D-23 and D-24.

As can be seen from the resulsts shown in the following table, the results of analysis obtained in the Philippines correspond very closely with those obtained in Japan.

RATIO OF CHEMICAL ANALYSES VALUES IN THE PHILIPPINES AND JAPAN

	2	and Stage			1	st Stage	All Display
	n	ž	σ _{n-1}		n	x	σ_{n-1}
Cu	5	0.994	0.1709	Cu	2	0.890	0.166
Zn	3	1.0	0.03	Zn	4	0.780	0.387
As	5 -	1.362	0.9446	As	4	1.050	0.574
Ca	13	1.083	0.1138	Ca	6	1.245	0.113
Mg	13	1.0146	0.0826	Mg	6	1.080	0.092
SO ₄	13	0.9538	0.0481	SO_4	10	0.764	0.264

n : The number compared

: Average ratio of chemical analyses values

 σ_{n-1} : Standard deviation

(3) Limit of detection for Cu and Zn

Since the concentrations of Cu and Zn in water samples in generally low, it was requested to reduce detection limits of these elements as far as possible. Therefore, the efforts to lower them was made by means of the following analytical methods.

	analytical method	detection	on limit
	analy tical method	Cu (mg/l)	Zn (mg/l)
1st stage	Flame atomic absorption analysis	0.02	0.01
2nd stage	Flame atomic absorption analysis with pretreatment of solvent extraction method	0.01	0.02
3rd stage	Flame atomic absorption analysis with pretreatment of solvent extraction method	0.01	0.01
	Flameless atomic absorption analysis	0,005	0.005

Detection limit of Cu in the 3rd stage survey is 0.01 mg/l since Apr. 1 till Apr. 17, and 0.005 mg/l after Apr. 17.

Detection limit of Zn in the 3rd stage survey is 0.01 mg/l since Apr. 1 till May 9, and

0.005 mg/l after May 9.

()

Table D-1 APPARATUS FOR TESTS

Test	Apparatus	Description	Reference (stage used
Shaking Method	Recipro Shaker	Maker: TAIYO SCIENTIFIC INDUSTRIAL CO.	
	•	Type: SRII	$\begin{cases} 0 \\ 0 \end{cases}$
		Shaking Speed: 100~300 stroke/min	(3)
		Shaking Width: 40 mm	. –
		Input Power: 200VA	
Aeration Method	Compressor	Maker: HITACHI	
		Type: RC20	(0
	•	Normal Pressure: 0.4 kg/cm ²	10
		Discharge: 1309/min at normal pressure	,\
	la.	Input Power: 400W	
	Compressor	Maker: SINKU KIKO	①
	•	Type: DA15S	- ,
		Normal Pressure: 2.7×10^4 Pa	. : :
	÷	Discharge: 15%/min	
		Input Power: 25W	
Wet and Dry Repetition	on Pump	Type: Mini-Pump	∫ o
Method			- (O
4	Pump	Type: Mini Pump	` ③
	Drying Oven	Maker: YAMATO	
		Type: DS63	0
		Temperature: 40°C - 250°C	{②
		Accuracy: ±1°C	(3)
		Input Power: 1400VA	
Bacteria Addition	Pump	Mini-Pump	
Method			•
			:
Common for All	Balance	Maker: Mettler, Switzerland	
the Tests		Type: AE160	· (1)
	pH Mater	Maker: HITACHI-HORIBA	{②
		Type: M-8	(0
	Conductivity	Maker: TOA ELECTRONIC	
	Meter	Type: CM-1K	

()

Table D-2 EXTRACTION TEST BY SHAKING METHOD

			Solid	Solid for Test		1				S	Solution						Plution	Phytica Batic	
Sample No.	Description	Weight	ರೆ	Zn	AS	S		Volume	Water	'	ដ	ටී	uZ	¥.	SO.	,			
		(£)	(mdd)	(mdd) (mdd) (mdd)	(mdd)	88	Description	(%	lemperature (°C)	Н.	(µS/cm)	(mg/k)	(mg/g)	(mg/g)	(mg/2)	ទី	Zu	Αs	w
PM110	Philex Mill Tailings	400	470	20	42.0	0.26	Stick Water	i .	30.0	9.4	2,100	0.04	<0.01	< 0.0005	1,600				
		:					Solvent Eluate	0.4	26.5	1 0	470	000	100	- 0 0 000 c	1 5	τ 2	۳ \$	6	0.13
PM215	Philex Mill Tailings	300	720	100	v)	0.33	Stick Water	1.52	26.0	6	2,700	000	20.05	0.0010	1 584		<u>.</u>	i	
					•		Solvent	1.7	1	ŧ ı	. 1	,	i		ì	• .			
		:					Eluate		31.0	8.	1,700	0.115	<0.02	0.0080	1,084	0.33×10 ⁻³	n.d.	0.26×10-2	n.c.
PM310	Philex Mill Tailings	100	810	45	1.1	0.19	Stick Water	0.023	27.0	7.9	1,300	<0.005	0.014	0.0005	905				
			٠				Solvent Eluate	0.0	29.0	ທີ່ຊຸ ພູ້ຊຸ	3.7 400	<0.005 <0.005	0.005	<0.0005 <0.0005	⊽ 5	ti L	0.93×10-5		0.25
BM110	Benguet Mill Tailings	. 004	270	710	57	2.27	Stick Water	0.76	25.5	11.3	2.900	22.0	10.7	0.0067	1.458	i ·			
-	1						Solvent	0.4		1	1	1	1) - 1				
			٠.				Eluate	4.0	28.0	10.8	240	1.24	0.04	0.0086	182	n.c.	n.c.	0.13×10-2	Э'ц
BM215	BM215 Benguet Mill Tailings	800	300	088	. 73	2.44	Stick Water	2.67	26.0	12.1	4,100	39	15	0.0037	1,443				
							Solvent	1.7	1	i	ì	ŀ	i'	1					
			٠.			٠.	Eluate	1.7	30,0	8.8	2,900	2.7	<0.02	0.0065	1,648	п.с.	n,d.	0.20×10-4	n.c.
BM310	Benguet Mill Tailings	100	230	630	76	2.93	Stick Water	0.045	27.0	9.5	2,500	8.2	1.1	0.0085	1,628			٠	
							Solvent	1.0	.*	5.3	3.7	<0.005	<0.005	<0.0005	V				
		:	:	: :			Eluate	0,1	29.0	8.6	130	<0.00	0.010	0.0245	35	n.d.	g 5	0.31×10^{-2}	E
IM110	IM110 Itogon Mill Tailings	400	130	270	220	1.29	Stick Water	1.24	22.5	10.4	630	0.02	3.60	0.102	98				ı
							Solvent	4 .	1	ı	1	ï	ı	ı	ı		,	٠	
1:			:.				Eluate	4.0	28,5	9.5	890	90.0	<0.01	ı	12	0.57×10-2	p.G	п.с.	п.с.
IM215	IM215 Itogon Mill Tailings	800	130	310	220	1.54	Stick Water	2.12	23.0	11.4	1,400	17	9	0.0505	234				
			- :				Solvent	1.7	ŀ	ŀ	ı	1	ì	1	i 1		•		
							Eluate	1.7	28.0	80 80	009	0,705	<0.02	0.380	206	n.c.	n.d.	0.31×10-2	ņ.ç
IM310	IM310 Itogon Mill Tailings	100	120	300	170	2.23	Stick Water	0.032	27.0	8.3	420	< 0.005	0.016	0.0700	52				
		2					Solvent	1.0	1	5.3	3.7	0.00	<0.005	<0.0005	⊽				•
							Eluate	1.0	29.0	6,8	110	<0.00	0.007	0.0230	56	n.d.	0.13×10 ⁻³	0.12×10-2	0,36×10-2
		-			-				-					-					

Ention ratio cannot be calculated, because precipitation takes place under test conditions.

Table D-3 EXTRACTION TEST BY SHAKING METHOD

												:								
	2,000		į		Solid	Solid for Test					Eluat	Eluate after Shaking	haking				Elution	on Ratio		1
	No.	Description	E (H)	Weight (g)	Ctr (ppm)	Zn (ppm)	As (ppm)	s (%)	Volume (2)	Hd	EC (μS/cm)	Cu (mg/g)	Zn (mg/k)	As (mg/g)	SO ₄	ಶ	Zn	As	S	
	PS211	Philex No. 1 boring	0.0 - 0.5	800	1,400	54	1.4		1.7	8.10	2.350	0.007	<0.02	0.0008	1.456	0.11×10-4	Рu	0.12×10-2	0.33	1
٠.	PS212	- ditto -	2.0- 4.0	800	990	49	13	0.30	1.7	8,20	2,300	0.007	<0.05	0.000	1,359	0.15×10-4		0.15×10 ⁻²	0.32	
	PS213	- ditto -	4.0 - 6.0	800	1,200	9	1.7	0.28	1.7	8.30	2,450	0.010	<0.05	0.000	1,488	0.18×10-4	n.d.	0.11×10-2	0.38	
	PS214		6.0-8.0	800	1,100	47	1.2	0.25	1.7	8.30	2,400	0.008	0.05	0.0010	1,464	0.15×10-4	0.91×10 ⁻³		0.42	
	PS215		8.0-10.0	800	1,200	53	1.	97.0	1.7	8.30	2,300	0.083	0.02	0.0011	1,439	0,15×10 ⁻³	0.80×10-	3 0.21×10-2	0.39	
:	PS221	Phile	0.0 - 0.0	800	1,300	41	1.0	0.30	1.7	8.05	2,500	0.002	<0.02	0.0010	1,365	0.33×10 ⁻⁵	n.d.	0.21×10-2	0.32	
	PS 222	- ditto -	2.0 - 4.0	800	1,100	4	1.1	0.24	1.7	8.20	2,500	0.008	<0.02	0.0005	1,292	0,15×10-4		0.97×10 ⁻³	q 0.38	
	PS223	- ditto -	4.0 - 6.0	800	1,100	44	V 1.0	0.16	1.7	8.25	2,100	0.010	0.03	0.0008	1,373	0.19×10-4	0.7	n.c.	0.61	
	PS224	- ditto -	6.0-8.0	800	1,500	44	1.0	0.18	1.7	8.20	2,000	0.015	0.05	0.0008	1,205	0.21×10-4	0.97×10	0.1	0.48	
	PS225	- ditto -	8.0-10.0	800	1,200	45	1.2	0.29	1.7	8.20	2,500	0.008	0.05	0.0012	1,439	0.14×10-4	0.95×10		0.35	
	PS231	Philex No. 3 boring	0.0 - 2.0	800	1,900	4 ,	1.0	0.28	1.7	8.30	1,800	0.010	0.03	<0.0005	1,067	0.11×10-4	0.13×10	п.б.	0.27	
	PS232	- ditto -	2.0- 4.0	800	1,700	44	710	0.31	1.7	8.25	2,200	0.010	0.03	0.0005	1,359	0.13×10-4	0.97×10	, n.c.	0.31	
	PS233	- ditto -	4.0 - 6.0	800	1,600	46	V.	0.33	1.7	8.30	2,400	0.008	0.02	<0.0005	1,523	0.11×10-4	0.93×10	n,d,	0.33	
	PS234	- ditto -	6.0-8.0	800	1,500	42	1.3	0.35	1.7	8.20	2,450	0.007	0.05	0.0007	1,635	0.99×10-5	0.10×10-2	2 0.11×10-2	0.33	
	PS235	- ditto -	8.0 - 10.0	800	1,400	46	0.12	0.34	1.7	8.00	2,450	0.007	0.03	0.0006	1,511	0.11×10-4	0.14×10	и.с.	0.32	
		Average of 15 samples					:	٠.								0.22×10-4	0.11×10-2	2 0.14×10-2	0.37	
																	1			1
	11759	Beng	0.0-0.0	800	1,000	930	130	3.14	1.7	1	2,600	0.018	0.10	0.0010	1,621	0.38×10 ⁻⁴	0.23×10 ⁻³	0.16×10-4	0.37×10^{-1}	
	BS212		2.0- 4.0	800	1,800	740	140	3.33	1.7	8.80	2,450	0.010	<0.02	0.0032	1,428	0.12×10-4	n.d.	0.49×10-4	0.30×10 ⁻¹	
	BS213		4.0- 6.0	800	2,100	650	120	3 44	1.7	8.90	2,300	0.008	0.05	0.0280	1,508	0.81×10-5	0.66×10-	0.50×10-3	0.31×10-1	
	BS214	- ditto	6.0-8.0	800	2,100	270	120	3.77	1.7	8.10	2,400	0.008	0.04	0.0120	1,500	0.81×10	0.17×10	0.21×10-3	0.28×10-1	
	BS215	- ditto -	8.0 - 10.0	800	1,700	610	130	3.71	1.7	8.15	2,400	0.008	0.04	0.0091	1,387	0.10×10-5	0.14×10-3	0.15×10-3	0.27×10-1	
	BS221	Benguet No. 2 borning	0.0 - 0.5	800	1,300	850	82	2.46	1.7	9.50	2,700	0.024	0.02	0.0064	1,481	0.39×10-4	0.50×10-	. 0.16×10-3	0.43×10-1	
	B\$222	- ditto -	2.0- 4.0	800	290	880	140	3.62	1.7	8.60	2,450	0.016	0.05	0.0230	1,501	0.12×10-3	0.48×10-4	+ 0.35×10-3	0.29×10-1	
	BS223	- ditto -	4.0- 6.0	800	300	840	140	3,33	1.7	8.59	2,350	0.010	0.05	0.0115	1,445	0.71×10-4	0.51×10-4	0.17x10 ⁻³	0.31×10-1	
	BS224	- ditto -	0.8 -0.9	800	330	780	120	3,22	1.7	8.65	2,300	0.011	0.03	0.0127	1,468	0.71×10-4	0.82×10-4	* 0.23×10-3	0.32×10-	
	BS225	- ditto -	8.0-10.0	800	320	680	130	2.99	1.7	8.55	2,300	0.015	0.0	0.0136	1,466	0.10×10^{-3}	0.13×10 ⁻³	0.22×10-3	0.35×10-1	
	BS231	Benguet No. 3 boring	0.0 - 0.5	800	200	800	120	2.94	1.7	8.60	2,400	0.011	0.04	0.0057	1,337	0.12×10-3	0.11×10-3	0.10×10-3	0.32×10-1	
	BS232	- ditto -	2.0 - 4.0	800	180	750	110	2.63	-	8,45	2,400	0.006	0.02	0.0076	1,342	0.71×10-4	0.57×10-4	_	0.36×10-1	
	BS233	- ditto -	4.0 - 6.0	800	260	730	120	2 69	1.7	8.50	2,300	0.007	0.02	0.0142	1,351	0.57×10-4	0.58×10-	_	0.36×10-1	
	BS234	- ditto -	6.0-8.0	800	370	770	120	3.33	1.7	8.20	2,450	900.0	0.03	0.0102	1,350	0.35×10-4	0.83×10-7	0.18×10-3	0.29×10-1	
	BS235	- ditto -	8.0-10.0	800	360	640	110	3.36	1.7	8.50	2,300	600.0	0.03	0.0087	1,347	0.53×10-4	0.10×10	0.17×10-3	0.28×10-1	
		Average of 15 samples			-											0.59×10-4	0.98×10"	0.19×10-3	0.32×10-1	
					-															ı

n.d. : Elution zatio cannot be calculated because the ingredient in the cluate is below a confidence limit of chemical analysis. . Elution ratio cannot be calculated because precipitation takes place under the test condition.

Table D4 EXTRACTION TEST BY AERATION METHOD

			Solis	Solid for Test					0	Solution					-		Elurio	Elution Ratio	
			100	3		1		:							1			2	
Sample No.	Description	Weight (g)	ට (mgg	Zn (ppm)	As (ppm)	S (%)	Description	Volume T	Water Temperature (°C)	Hd	EC (mS/cm)	Co (mg/g)	Zn (mg/2)	As (mg/k)	SO. (mg/2)	ಸ	Zn	As	S
PM110	PM110 Philex Mil Tailings	ا ما:	470		<2.0	0.26	Stick water Solvent Eluate	55 340 395	30.0 28.0 27.0	9.4 7.6 8.1	2,100 280 960	0.04 0.02 0.03	<0.01 1.86 0.03	<0.0005 0.0011 0.0006	1,600	ì			t
PM215	Philex Mill Tailings	303,000 720	720	100	5.8	0.33		300 381	26.0 27.5 30.0	2,8 2,8 2,8 2,8	2,650 260 1,900	<0.02 0.02 0.008	< 0.02 < 0.02 < 0.02 < 0.02	0.0010	1,584	ı, c.	n.d.	0.65×10-3	0.11
PM310	Philex Mill Tailings	500	310	45	1	0.19		0,115 5 5	27.0	5.3	1,300	<0.005 <0.005 <0.014	0.014 <0.005 <0.005	0.005 <0.0005 <0.0005	965 12 151	0.14×10-3	n.d.	n.d.	0.24
		1,000	810	. 45	7	0.19	Stick water Solvent Eluate	0.230 5 5	27.0	7.9 5.3 8.1	1,300 4.5 620	<0.005 <0.005 0.007	0.014 0.005 0.008	0.005 <0.0005 0.0024	8 V 8	0.27×10-4	0.54×10-3	0.87×10-2	0.20
BM110	Benguet Mili Tailings	17,400	270	710	2.5	2.27	Stick water Solvent Eluate	340 394	25.5 28.0 27.0	11.3 7.6 9.6	2,900 280 810	22.0 <0.02 0.03	10.7 1.86 0.17	0.0067 0.0011 0.0175	1,458 300 390	ı	. 1	1	1
BM215	er and a second	118,000	300	880	73	2.44	Stick water Solvent Eluate	437 300 432	26.0 27.0 30.0	12.1 8.4 10.3	4,100 310 2,300	39 <0.02 15	15 <0.02 20	0.0039 0.0024 0.0135	1,443 3 610	n.c.	n,c	0,40×10-1	n.c.
BM310	Benguet Mill Tailings	200	230	630	76	2.93	Stick water Solvent Eluate	0.225 5 5	27.0	8.3.3 4.8	2,500 4.5 190	8.2 <0.005 <0.005	1.1 <0.005 <0.005	0.0085 <0.0005 0.0150	1,628 ^1 23	n,d,	n.d.	0.19×10-2	n.c.
		1,000	230	630	92	2.93	Stick water Solvent Eluate	0.450 5 5	27.0	8. 5. 8. 8. 8. 8.	2,500 4.5 280	8.2 <0.005 <0.006		0.0085	1,628 10 70	n,d.	ਹ <u>ਾਂ</u> ਦ	0.14×10-2	ij
IM110	Itogon Mill Tailings	5,800	130	270	220	1.29	Stick water Solvent Eluate	58 340 398	22.5 28.0 27.0	10.4 7.6 8.3	630 280 320			0.1021 0.0011 0.1159	888	 	1	. 1	1
IM215	Itogon Mill Tailings	154,000	130	310	220	1.54	Stick water Solvent Eluate	46 300 410	23.0 27.0 26.0	11.4 8.4 9.3	1,400 310 430	17 <0.02 4.2	6.5 <0.02 <0.02	0.0505	234 3	n.c.	п.	0.10×10-4	0.48×10-1
IM310	Itogon Mill Tailings	\$6	170	300	170	2.23	Stick water Solvent Eluate	.0.160 .5 .5	27.0	8 8 8 8 8 4	420 4.5 170	<0.005 <0.005 <0.005	0.0016 <0.005 0.006	0.0700<0.00050.0098	2 4 8	n.d.	0.10×10-3	0.43×10-3	0.27×10-3
		1,000	120	300	170	2.23	Stick water Solvent Eluate	0.320 5 5	27.0	8.3 8.3	420 4.5 240	<0.005 <0.005 <0.005	0.016 <0.005 0.015	0.0700 <0.0005 0.0175	\$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	n.d.	0.19×10-3	0.38×10-3	0.41×10-
PS299	Philex Mill Tailings (in pond)	119,000	1,309		10.7	7 0.27	7 Stick water Solvent Eluate	300	_ 28.0 29.0	88.0	270 1,700	- <0.01 0.017	<0.02 <0.02	0.0041	3 950	2.3×10-4	n,d.	n.c.	0.29
BS299	Benguet Mill Tailings (in pond)	118,000		646 715	125	3.29	Stick water Solvent Eluate	1 8 8	30.0 31.0	1 % %	610	- - - - - - - - - - - - - - - - - - -	<0.03 <0.02	0.0040	128 1,316	ъ'д	n d	0.61×10-3	0.31×10-

n.d. : Ebution ratio cannot be calculated, because the ingredient in the chate is below a confidence limit of chemical analysis. n.c. : Eintion ratio cannot be calculated, because precipitation takes place under test conditions.

EXTRACTION TEST BY WET AND DRY REPETITION METHOD (FIRST STAGE) Table D-5

					. 6	į.				1	1. 11.					1		2				Ē		
					g,	Solid for Test	ار		٠,,	E C	Stick water					Eluate Alter 1 Cycle Process	Let 1 Cy	ie Proce.	SS			Eluta	Elution Katio	
	Sample No.	Description	Cycle	Weight (g)	o (mqq)	Cu Zn (ppm) (ppm)	As (ppm)	S)	Volume (2)	Cu (mg/g)	Zn (mg/g)	As (mg/2)	SO. (mg/2)	Volume (2)) Hd	EC (uS/cm)	Cu (mg/g)	Z _n (mg/α)	As (mg/2)	SO ₄ (mg/2)	O	Zu.	As	s
	PM111	Philex mill tailings after aeration method	.	190	470	50	₹	0.36	0.93	0.03	0.03	900000	40	10	8.2	200	<0.02	<0.01	<0.0005	107	n.d.	n.d.	n.d.	0.50
	PM112	- ditto	7											10	8.5	420	<0.02	0.02	0.0011	47	n.d.	n.c.	n.c.	0.21
	PM113	- ditto -	w 4						,					01 01 01	8,5	400 370	0 00 0 00 0 00 0 00	0.05 0.00 0.00	0.0010	\$ 4	pi pi	p'd L'd	n.c.	0.25
	BM111	Benguet mill tailings after	-	59	270	710	57	2.27	0.99	. 0,03	0.17	0.0175	390	01	8.3	210	0.07	<0.01	0.0173	127	0.86×10-4	n,d.	0.94×10 ⁻¹	0,45
	BM112	aeration method - ditto -	r)			٠			-					10	4	400	<0.02	0.01	0.0184	47	n,d,	п.с.		0.42×10 ⁻¹
. 1	BM113 BM114	- ditto -	ω. 4±				. 11.					:		2 2	8 8 2 5	380 380	0.02 0.02 0.02	0.01 0.01	0.0134	4 4 8 4	n d n	n.d.	0.71×10°° 0.25×10°°	0.42×10** 0.48×10**
	IM111	Itogon mill tailings after	-	99	130	270	220	1.29	0.98	0.17	0.08	0.1159	36	01	8,4	330	<0.02	0.03	0.0675	15	n.d.	n.c.	0.39×10-1	0.45×10°
	IM112 IM113 IM114	acration method — ditto — — ditto — — ditto —	0, w 4		:						÷	•		222	8.6 8.6 8.5	340 300 340	<0.02 <0.02 <0.02	0.04 0.04 40.04	0.0190 0.0118 0.0121	12 13 28	ਰੂ ਹੈ ਹੈ ਹਵਾਲੇ	n.c. n.c.	0.52×10-2 0.22×10-3 0.43×10-3	0.33×10 ⁻¹ 0.37×10 ⁻¹ 0.96×10 ⁻¹
	BD1031	Sediments in		1,000	640	140	7	0.14	ì	1	1	1	1	10	8.3	720	0.03	<0.01	0.0027	41	о' <u>г</u>	n,d.	0.14×10-	0.11
٠.	BD1032 BD1033 BD1034	ditto – ditto – ditto – ditto –	17 th 4				*	•	- :					222	00 00 00 7 7 00	350 320 310	<0.02 <0.02 <0.02	<0.01 <0.01 <0.01	<0.0005 0.0017 0.0008	27 28 27	n.d. n.d. n.d.	n.d. n.d.	n.d. 0.85×10°² 0.25×10°²	0.64×10 ⁻¹ 0.67×10 ⁻¹ 0.64×10 ⁻²

n.d.: Elution ratio cannot be calculated, because the ingredient in the cluate is below a detection limit of chemical analysis, n.c.: Elution ratio cannot be calculated, because precipitation takes place under test conditions.

Table D-6 EXTRACTION TEST BY WET AND DRY REPETITION METHOD SECOND AND THIRD STAGE

Philos 1 Tallings 2 S S Philos 1 Tallings 2 S S Philos 1 Tallings 2 S Philos 1 Tallings 2 S S Philos 2 S Phil	No.	Description Cycle	cycle Cycle			Solld for Test			İ	-	Stick Water				down:	Solvent : Addition	up: Solvent before the cycle process down: Additional Water	eycle pro	KGES				Eluan	Sluate after I Cycle Process	yele Proce	3				Etution Ratio	.و	
1, 10 10 10 10 10 10 10				Weight (xg)	ngd O	2n (ppm)	(ndm)		Volume (f)	Cr (mg/g)	Zn (mg/2)	/s (mg/g)	08 E	Volume (C)	표	•	i -	1		1.	1	1	_	4	1		Į	1.	7		2	S
14 40 640 6016 6010	WPM21.1	Philos Mili	**	0,4	3000	x	1.9	0.44	0.34	<0.02	20:05	0.0010	1384	9	6,4		ļ	<0.02	<0.000.0>	⊽	10.34	**		1	ĺ.,		١.		1.		SxIC-9 0.	1.
2 4-0	WPM212	Tallings	М.	4.0					0.40	9100	<0.02	0.0007	568	. C.	, 8, I	, 6 , 6	-	<0.02	\$000°0>	(₫-	10.00										S×10-3 0.	4×10
4 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.	WPM213			9.0					040	0.010	<0.02	0.0008	25	0.4	· 🐉 :	1 6.1		<0.02	<0.0005	1.∆	10.00	7									7x10-* 0.3	9×10
\$ 4.0 Philos 1.14 810 45 1.1 0.19 0.61 0.0009 1.38 1.0 0.6 0.200 0.0009 0.	WPM214		4	0,4					0.40	0.012	A.02	0,0007	163	01 8.4	4, 1	3.5		<0.02	0.0006	'	10.00	. 7				•			_			5×10
High High High High High High High High	~		٠.	6.6					0,40	0.024	<0.02	6000'0	138	5 %	4.9			. 60°05	90000	· 🗸 :	10.00										1×10-2 0.3	13,10
1,14 1,14		K N		1.14	810	\$\$	17 .	0.19	0.61	<0.005	↑10:0	0.0005	903	10.0	0'9	2.0	0.008	1	<0.000.5	⊽	I.	,	1	ŀ	1	1		1		10 - 0.63		5
3 1.14		Taning:	3	1.14			•		15:	0.012	- :	0.0010	203	3.0	5.3	707	0.008		50005	٠, ٦												ø
4 1.14	N313	1	m	1.14			٠.		0.45	<0.005	0.006	<0.0005	ETT.	10.0	5.1				0.000.0	₹ 🗸 :												8×10
5 11.4	4314		•	1.14	;				0.44	0.006	0.005	<0.0005	3	900	5.3		-	•	0.0005												×10.1 0,7	3×10
Burglet I 109 230 659 76 2.93 0.91 8.2 11 0.00e5 1628 10.0 66 2.0 0.00e	X315		'n	1.14					0.51	0.011	<0.005	0.0009	53	0.0 0.0	5.3				50,0003	⊽											×10° 0.5	01×6.
3 1.07 0.56 1.9 < 0.000 0.00150 4.08 10.0 5.3 4.2 0.000 0.000 0.0005 0.0000 0.01150 4.23 0.000 0.0005 0.0000 0.01150 4.23 0.000 0.0005 0.0000 0.01150 4.23 0.000 0.0005 0.0000 0.01150 4.23 0.000 0.0005 0.0000 0.01150 4.23 0.000 0.0005 0.0000 0.01150 4.23 0.000 0.0005 0.0000 0.01150 4.23 0.000 0.0005 0.0005 0.0005 0.001150 4.23 0.000 0.0005 0.00		Bengoes	1	1.09	230	630	36	2.93	0.91	8.2	1.4	0,0085	1628	0.0	0.9		0.008		<0.0003	⊽.								ŧ			×10.3 0.3	8×10
3 147 0.56 < 40.005 0.007 0.0156 425 180 5.1 5.7 <0.005 0.0007 < 1 10.00 27.0 8.3 400 < 0.005 0.0114 141 140 5.3 1.7 <0.005 < 0.005 0.0005 < 0.0114 141 140 5.3 1.7 <0.005 < 0.005 < 0.0007 < 1 10.00 30.0 8.3 110 0.005 0.008 0.0216 100 0.05510*** 4 1.06 0.05 0.009 0.0016 0.0114 141 140 5.3 1.7 <0.005 < 0.0005 < 0.0007 < 1 10.00 30.0 8.3 110 0.005 0.008 0.0216 100 0.05510*** 5 1.06 0.05 0.0007 0.0008 0.0016 100 100 5.8 2.4 <0.005 < 0.0005 < 0.0007	X312	sSunte 1		1.08					95.0	1.9	<0.005	0.0084	468	3.0	5,3		0.000		:0.0005) 5		29.0 8.		-								2×10
4 1.06 0.64 < < < < < > < < < < > < < < < > < < < < < < < < > < < < < < < < < < < < < < < < < < < < <	E1CW		n.	101		·.			95'0	<0.005	0.007	0.0136	425	10.0 3.0	5.3	v			0,0007											- 1		2×20
3 1.06 C 0.005 0.008 0.0216 100 100 5.8 2.4 C C C C 0.005 0.057 0.057 0.0273 73 n.d.	M314		4	1.06	 				19.0	<0.005	<0.005	0.0114	4.	3.0	5.3	5.7 A			c0.0005 :0.0007	⊽⊽												7×10
	WBM315	÷.	s	1.06					0.57	0.005	0.008	0.0216	001	3.0	5.3	- : -	1.5	1.	:0.0003	V										10- 0.33	×30-1 0.7	91XZ

Table D-7 CULTURE OF BACTERIA

$(NH_4)_2SO_4$	0.15 g
$MgSO_4 \cdot 7H_2O$	0.50 g
Ca(NO ₃) ₂	0.01 g
KCl	0.05 g
K ₂ HPO ₄	0.05 g
Distilled Water	1,000 mg
Culture of Thiobacil	lus thioparus
$Na_2S_2O_3 \cdot 5H_2O$	10.0 g
MgSO ₄ · 7H ₂ O	0.1 g
NH₄Cl	0.1 g
MnSO ₄	0.02 g
K₂HPO₄	2.0 g
CaCl ₂	0.1 g
FeCl ₃ 6H ₂ O	0.02 g
Distilled Water	1,000 mg

Table D-8 EXTRACTION TEST BY A BACTERIA ADDITION

Mailon Maight Car Mailon Maight Car Mailon Car Mailon Car Mailon Mailon Car	Sample	Description Ovele	Ovele		Solic	Solid for Test	ير			Stick Water	ater				Elu	ate afti	Eluate after 1 Cycle Process	Process				3	Elution Ratio	۰	
Philes 1 170 810 45 11 0.19 0.94 Co.05 0.014 0.065 905 10.12 29.5 3.1 600 2.9 0.003 25.0	Š.	ion di mona		Weight (kg)	o (idd	Zu (ppm)	As (ppm)	٠	Volume (R)	Cu (m8/8)		As (mg/g)	SO ₂ (mg/2)	Volume (g)							(g/#c	ರೆ.	42	As	°S
Millings 2 1.70	TPM311	Philex	-	1.70	810	45	1.1	0.19	0.94	<0.005	0.014	0.0005	90\$	10.12	29.5	3.3	1600		ŧ		-	ŧ	0.66×10-1	0.16×10	0.12×10
Without 3 1.70	TPM312	Tailings	7	1.70					9.12	2.4	0.50	0.0030	201	10.17	29.5	3.2	2400	2.9				.55×10"2 .	ۍ'ټ	0.17×10	2 0.16×10°
Phile 1.70 810 45 1.70 810 45 1.1 0.19 0.52 2.4 0.52 2.5 0.0021 419 10.25 2.5 2.5 2.5 0.0021 419 10.25 2.5 2.5 0.0021 419 10.25 2.5 2.5 0.0021 419 10.25 2.5 2.5 0.0022 417 0.18ku10 ⁻² 0.94ku10 ⁻¹ 0.53ku10 ⁻¹ 0.18ku10 ⁻¹ 0.53ku10 ⁻¹ 0.18ku10 ⁻¹	TPM313	Without	8	1.70					9.17	5.9	0.40	0.0030	336	10.20	28.0	3.1	2700	2.2			385		0.19×10-1	O.E.	0.87×10
Shiftex 1 1.70 810 45 1.1 0.19 0.67 0.0020 0.014 0.0002 0.014 0.014 0.0002 0.014 0.0002 0.014 0.0002 0.014 0.0002 0.014 0.014 0.0002 0.014	TPM314	, Bacteria /	4	1.70					9.20	2:3	0.50	0.0025	385	10.23	28.5	3.0	2900	2.4			_	.31×10-2	0.94×10-2		0.77×10
Philes 1.70 810 445 1.1 0.19 0.67 <0.0050 0.014 0.0005 905 10.14 29.0 3.1 2100 2.9 0.28 0.018 338 0.75xij0 ⁻¹ 0.15xij0 ⁻¹ 0.75xij0 ⁻¹ 0.7	TPM315		S	1.70					9.23	2.4	0.52	0,0021	419	10.26	29.0	3.1	2800					.18×10-2	0.43×10 ⁻²		
With	XPM311	Philex	1	1.70	810	145	1.1	0,19	0.67	<0.005	0.014	0.0005	306	10.14	29.0	3.1	2100	2.1	!			.15×10-	0.53×10-4		2 0.21×10°
With House, a control of the contr	XPM312	Tailings	2	1.70					9.14	7.1	0.40	0.0020	263	10.18	29.5	3.0	.0092	2.9				.75×10-2	υ'μ 1	n O	0.11×10°
Secretary 4 1.70	XPM313	With	m	1.70					9.18	2.9	0.28	0.0018	338	10.21	28.0	3.1	2700	2.8				.14×10-2	0.20×10-1	0.26×10	
Segment 1 170 230 630 76 2.93 1.90 8.2 1.1 0.0085 1628 10.2 2.90 3.0 2700 0.105 0.0016 404 0.48k10 ⁻³ 0.16k10 ⁻³ 0.16k10 ⁻³ 0.16k10 ⁻³ 0.10k10 ⁻³	XPM314	Bacteria /	4	1.70					9.21	2.8	0.40	0.0021	394	10.23	28.0	3.1	2800	2.5			401	7.0.	0.80×10-2	n.c.	0.49×10
Maritimus 1 170 230 630 76 2.93 1.90 8.2 1.1 0.0085 1628 10.21 29.0 3.2 2800 0.12 0.10 0.1048 829 0.57xiO ⁺² 0.65xiO ⁺³ 0.65xiO ⁺³ 0.65xiO ⁺³ 0.65xiO ⁺³ 0.65xiO ⁺³ 0.65xiO ⁺³ 0.00xiO ⁺⁴ 8.2 1.70 1.1 0.0148 8.2 0.12 1.1 0.0148 8.2 1.0 1.2 0.1048 8.2 1.0 1.2 0.1041 8.2 1.2 0.12 1.1 0.0148 8.2 1.0 1.2 0.1041 8.2 1.2 0.12 1.1 0.0141 8.2 1.2 0.12 1.1 0.0141 8.2 1.2 0.12 1.1 0.0141 8.2 1.2 0.12 1.1 0.0141 8.2 1.2 0.12 1.1 0.0141 8.2 1.2 0.12 1.1 0.0141 8.2 1.2 0.12 1.2 0.13 8.2 1.2 0.13 0.13 0.	XPM315		S	1.70					9.23	2.5	0.42	0.0019	401	10.25			2700	2.9		٠.			0.16×10-1	л.с.	0.45×10-
Mithout 3 1.70 9.24 0.12 0.10 0.70 0.0085 564 10.36 9.5 3.3 4400 0.12 1.1 0.0148 829 0.35xi10 ⁻³ 0.46xi10 ⁻³ 0.65xi10 ⁻³ 0.65xi10 ⁻³ 0.65xi10 ⁻³ 0.65xi10 ⁻³ 0.0048 829 10.43 28.0 3.2 4800 0.10 1.1 0.0141 837 10.49 0.13 1.20 0.13 1.20 0.13 1.20 0.13 1.20 0.14 1.20 0.14 1.20 0.14 1.20 0.14 1.20 0.14 1.20 0.14 1.20 0.14 1.20 0.14 1.20 0.14 1.20 0.14 1.20 0.14 1.20 0.14 1.20 0.14 1.20 0.15 0.15	TBM311	Benguet	→	1.70	230	630	92	2.93	1.90	8.2	1.1	0.0085	1628	10,21	29.0	3.2	2800	0.12			564		0.57×10°	0.61×10	0.29x1
Without Bacterial Bacterial Bacterial A 1.70 1.70 9.36 0.12 1.1 0.0148 829 10.43 28.0 3.0 4800 0.10 1.1 0.0141 837 n.c. 0.11x10 ⁻³ 0.66x10 ⁻³ Bacterial Bacterial A 1.70 1.70 2.94 0.10 1.1 0.0141 837 1.04 1.2 0.013 82 0.12x10 ⁻³ 0.13x10 ⁻³ 0.15x10 ⁻³	TBM312	Tailings	CI	1.70					9.21	0.12	0.70	0.0085	564	10.36	29.5	3.3	4400	0.12					0.46×10 ⁻²		0.23×10
Bacterial 4 1.70	TBM313	/ Without	m	1.70				•	9.36	0.12	1.1 1.1	0.0148	829	10.43	28.0	3.0	4800	0.10		5.	837	n.c.	0.11×10-2	0.66×10	* 0.65×10
S 1.70	TBM314	Bacteria	4	1.70					9.43	0.10	1.1	0.0141	837	10.49	28.0	3.2	2000	0.10		···		.27×10-3	0.21×10-2	0.34×10	+ 0.56x1
Benguet 1.70 230 630 76 2.93 0.90 8.2 1.10 0.0085 1628 10.24 29.0 3.1 3600 0.14 1.10 0.0115 598 n.c. Mills 2 1.70 9.34 0.14 1.10 0.0115 598 10.35 29.5 3.2 4600 0.15 1.20 0.0185 754 0.66x10^3 With 3 1.70 9.45 0.034 1.06 0.0184 723 10.47 28.0 3.1 4800 0.034 1.06 0.0144 723 n.c. Bacterial 4 1.70 9.42 0.034 1.06 0.0144 723 10.47 28.0 3.1 4800 0.080 1.05 0.0112 753 0.10x10^{-3} S 1.70 9.47 0.080 1.05 0.0112 763 10.55 29.0 3.1 4400 0.110 1.20 0.0120 752 0.10x10^{-3}	TBM315		v2	1.70					9.49	0.10	1.2	0.0131	832	10.57			4700	0.14	-				0.18×10-2		4 0.55×10-2
Tailings 2 1.70 9.24 0.14 1.10 0.0115 598 10.35 33.2 4600 0.15 1.20 0.0185 754 0.56x10°* 0.21x10°* 0.66x10°* 0.21x10°* 0.66x10°* 0.01x10°* 0.66x10°* 0.21x10°* 0.66x10°* 0.01x10°* 0.01x10	XBM311	Benguet	1	1.70	230	630	9/	2.93	0.00	8.2	1.10	0.0085	1628	10.24	29.0	3.1	3600				598	n.c.	0.96×10"	0,85×10	0.31×10
With Sacretial 3 1,70 9.35 0.15 1.20 0.0185 754 1.042 27.5 3.1 4500 0.034 1.05 0.0144 723 10.47 28.0 3.1 4800 0.039 1.05 0.012 765 0.13x10^-3 5 1,70 9.47 0.080 1.05 0.0112 763 10.55 29.0 3.1 4400 0.110 1.20 0.0120 752 0.10x10^-3	XBM312	Tailings	64	1.70					9.24	0.14	1.10	0.0115	298	10.35	29.5	3,2	4600	0.15				.66×10-3	0.21×10-2	0.66×10	* 0.15×10-7
**Naccerial 4 1.70 9.42 0.034 1.06 0.0144 723 10.47 28.0 3.1 4800 0.080 1.05 0.0112 765 0.13x10^2 5 1.70 9.47 0.080 1.05 0.0112 763 10.53 29.0 3.1 4400 0.110 1.20 0.0120 752 0.10x10^2	XBM313	(With	က	1.70					9.35	0.15	1.20	0.0185	754	10,42	27.5	3.1	4500	0.034			723	D,C,	n.c.	n.c.	0.32×10-
5 1.70 5.0 1.20 0.012 763 10.53 29.0 3.1 4400 0.110 1.20 0.0120 752 0.10x10-1	XBM314	Bacteria/	4	1.70					9 42	0.034	1.06	0.0144	723	10.47	28.0	3.1	4800	0.080			_		0.94×10-3		0.79×10-2
	XBM315		vs	1.70	٠.				9.47	0.080	1.03	0.0112	763	10.53		3.1	4400	0.110			. "		0.25×10-2	0.16×10	3 0.46×10-2

WT : Water Temperature n.c. : Elution ratio can not be calculated because precipitation takes place under test conditions.

MODEL TEST (FOR PHILEX MILL TAILINGS) Table D-9

							`												
			S	Solid for Test	Test					Eluate	Eluate after Shaking	aking					a	Elution Katio	
	Sample No.	Sampling Date	ව	Zn	As	ss .	Volume	WT	Hd	23		Zn	As	SO.	Moisture Content	రె	Zn	As	W
			(mdd)	(mdd)	(mdd)	(%)	(8)	(S		(m2/sm)	(mg/g)	(mg/2)	(mg/g)	(mg/k)	(%)				
	YPM2111	Mar. 4	2,800	47	2.6	0.38	1.7	27.0	7.8	1000	0.015	<0.02	0.0007	444	5,4	0.11×10 ⁻⁴	n.d.	0.57×10°3	0.83×10-1
:	XPM2112	Apr. 5	2,400	130	1.6	0.26	1.7	31.0	ر. جن	1000		0.017	<0.0005	528	4.5	0.89×10 ⁻⁵	0.28×10^{-3}	n.d.	0.14
	YPM2113	May 5	2,700	4	1.6	0.21	1.7	29.5	7.9	1100		0.010	0.0005	563	6.0	0.12×10-4	0.53×10^{-3}	0.66×10^{-3}	0.19
	YPM2114	June 5	2,600	45	1.9	<0.10	1.7	30.0	7.6	1100		0.015	<0.0005	620	6.5	0.14×10-4	0.71×10^{-3}	n.d.	n.c.
	YPM2115	July 5	2,600	20	2.0	<0.10	1.7	29.5	8.0	1100		0.03	9000.0	644	7.5	0.82×10 ⁻⁵	0.85×10^{-3}	0.64×10-3	n.c.
	YPM2116	Aug. 5	2,600	35	2.4	0.10	1.7	25.5	7.7	1200		0.016	<0.0005	629	7.5	0.90×10-5	0.97×10 ⁻³	n.d.	n.c.
• • •	Average														er	0.11×10-4	0.67×10-3	0.62×10 ⁻³	0.14
-	YPM2121	Mar. 4	2,800	47	5.6	0.38	1.7	28.0	8.1	900	<0.010	<0.02	<0.0005	396	5.1	n.d.	n.d.	n.d.	0.74×10 ⁻¹
•	YPM2122	Apr. 5	2,600	35	2.5	0.10	1.7	31.0	7.7	950	0.017	0.015	<0.0005	441	4.4	0.14×10^{-4}	0.91×10 ⁻³	n.d.	п.с.
	YPM2123	May 5	2,300	45	2.0	<0.10	1.7	29.5	7.9	1100	0.018	0.012	<0.0005	576	7.4	0.17×10-4	0.57×10 ⁻³	n.d.	n,c.
-	YPM2124	June 5	2,600	53	2:2	0.10	1.7	30.0	11	1100	<0.005	0.010	<0.0005	645	6.7	n,d.	0.40×10^{-3}	n.d.	0.46
	YPM2125	July 5	2,500	50	2.4	0.10	1.7	29.0	7.9	1200	0.010	0.018	< 0.0005	628	7.7	0.85×10-5	0.77×10-3	n.d.	0.44
	YPM2126	Aug. 5	2,700	45	6.	0.11	1.7	26.0	7.7	1200	0.020	0.011	< 0.0005	653	7.3	0.16×10-4	0.52×10^{-3}	n.d.	0.42
	Average						:									0.14×10-4	0.69×10-3	1	0.35

n.d.: Elution ratio cannot be calculated, because the ingredient in the chuate is below a confidence limit of chemical analysis.

n.c.: Elution ratio cannot be calculated, because precipitation takes place under test conditions.

WI: Water Temperature

Table D-10 MODEL TEST (IRRIGATION CANAL)

	:.		Ň	Solid for Test	est		14				Ehr	Eluate					Elution Ratio	ttio	
Ś	Sampling We	ight	రే	Zn	As	w	Volume	WT	표	EC	3	Zn	As	3O°	Moisture			,	
	vale	<u>60</u>	(mđđ)	(mdd)	(mdd) (mdd) (mdd)	(%)	8	(Ç	٠.	(mS/cm)	(mg/2)	ng/a)	(mg/g)	(mg/g)	Content (%)	3	u7	As	Ω.
GS21	Dec. 15		690	39	3.0	<0.10	1.7	,	 	73	0.023	0.03	0.0021	13	ı	0.71×10-	0.16×10-2	0.15×10-2	n.c.
	Feb. 6		630	76	5.7	<0.10	1.7	ŀ	. 7.8	350		0.03	0.0000	126	ŧ	0.26×10^{-3}	0.84×10 ⁻³	0.11×10^{-2}	ų.
	Mar. 5	800	840	44	.3.2	<0.10	1.7	53	7.7	100	0.022	<0.02	0.0025	24	ŧ	0.58×10-4	n.d.	0.17×10 ⁻²	o,
	Apr. 5		830	35	2.2	<0.10	1.7	8	7.9	72		0.010	0.0029	17	3.1	0.67×10-4	0.61×10 ⁻³	0.28×10-2	n.c
	May 10		160	9	3.6	<0.10	1.7	32	8.4	100		0.010	0.0054	22	24.9	0.10×10-3	0.53×10-3	0.32×10-2	п.с.
	June 8		850	46	4.0	0.10	1.7	28	8.3	81		0.007	0.0028	18	30.0	0.53×10-4	0.32×10 ⁻³	0.15×10 ⁻²	,c
	July Aug.	Sampk	s were	amples were not able to be co	to be col	lected be	cause of i	rrigati	on wate	ij							٠		
	Average		760	47	3.6	<0.10			٠							0.10×10-4	0.78×10 ⁻³	0.20×10-3	n.c.

n.d.: Elution ratio cannot be calculated because the ingredient in the cluate is below 0.02 mg/s. n.c.: Elution ratio cannot be calculated because precipitation takes place under test conditions.

Table D-11 SIEVE ANALYSIS OF SS AT FIXED POINTS AND MILL TAILINGS

Date B point Aug. 14 Aug. 14 C point Aug. 3 Aug. 12 Aug. 23 D point Aug. 23	Date				Distribution (wt/o)	, - in V	
		(s/ _e m)	(No.3+, mg/R)	74µm+	53µm-74µm	25µm-53µm	5μm-25μm
	۲.	3.17	190	7.9	5.4	15.0	711.7
	.14	4.94	2,100	4.1	3.1	10.9	81.9
	24	14.30	460	40.5	5.3	4.⊗	45.8
Aug. Aug. D point Aug.	.3	2.85	23,000	14.8	5.1	18.3	61.8
Aug. D point Aug.	12	4.31	5,400	60.5	3.8	9.2	26.5
D point Aug.	. 23	7.82	5,800	39.3	8.7.	14.6	37.4
	4	1.62	1,100	41.5	12.3	16.6	29.6
Aug	Aug. 13	2:43	2,100	51.7	6.3	11.5	30.5
Aug. 22	. 22	4.22	1,700	43.1	6.9	18.1	31.9
E point Aug. 3	m	92.60	630	25.1	7.5	19.7	47.7
Aug. 14	14	88.43	1,800	21.3	8.6	20.8	49.3
Aug. 24	. 24	160.01	1,300	43.8	0.6	16.4	30.8
Philex Mill Tailings July 27	. 27		220,000	40.3	9.1	16.2	34.4
Benguet Mill Tailings July 30	, 30		000'09	28.6	<i>2</i> .6	9.71	44.1
Itogon Mill Tailings July 30	, 30		3,500	73.1	9.9	7.7	12.6

Table D-12 CHEMICAL ANAYSES OF SIEVED SUSPENDED SOLIDS AT FIXED POINTS

Fixed Point	Samp- ing Time	Sampling Date	Size	Analysis No.	Sample No.	Cu ppm	Zn ppm	As ppm	S %
		Aug. 5	74μ +	S-3025	B-311	110	330	35	0.20
	1	n	53μ~74μ	S-3026	B-312	150	440	41	<0.10
	1	ti.	.25μ~53μ	S-3027	B-313	170	550	46	0.44
		n	5μ~25μ	S-3028	B-314	330	740	100	1.44
		Aug. 14	74μ+	S-3029	B-321	100	260	40	<0.10
D		n	53μ~74μ	S-3030	B-322	78	210	28	< 0.10
В	2	H	25μ~53μ	S-3031	B-323	120	350	29	0.40
		v	5μ~25μ	S-3032	B-324	210	780	84 .	1.64
		Aug. 24	74μ+	S-3033	B-331	110	260	35	< 0.10
	3	H	53 <i>μ</i> ~74μ	S-3034	B-332	150	690	43	0.36
		"	25μ~53μ	S-3035	B-333	180	750	49	0.77
		"	5μ~25μ	S-3036	B-334	330	1000	84	0.33
		Aug. 3	74μ+	S-3037	C-311	1000	60	1.2	<0.10
		n	53μ~74μ	S-3038	C-312	1000	49	1.2	<0.10
	1	n	$25\mu\sim53\mu$	S-3039	C-313	830	75	1.0	< 0.10
	•	n	5μ~25μ	S-3040	-C-314	1300	98	1.5	
•		Aug. 12	74μ+	S-3041	C-321	1500	44	1.6	0.11
		n	53μ~74μ	S-3042	C-322	1900	130	1.9	0.24
C	2 .	n	25μ~53μ	S-3043	C-323	1900	. 79	1.9	0.11
		u	5μ~25μ	S-3044	C-324	2400	160	2.0	0.21
		Aug. 23	74μ+	S-3045	C-331	960	43	1.1	< 0.10
		n	53μ~74μ	S-3046	C-332	940	51	1.4	
	3	11	25μ~53μ	S-3047	C-333	910	- 63	1.4	< 0.10
		<i>u</i> .	5μ~25μ	S-3048	C-334	1400	130	1.6	<0.10
		Aug. 4	74µ+	S-3049	D-311	580	56	1.0	<0.10
		"	53μ~74μ	S-3050	D-312	540	57	1.1	< 0.10
	1	tt.	25μ~53μ	S-3051	D-313	820	90	1.5	0.18
		μ	5μ~25μ	S-3052	D-314	1100	190	3.0	0.11
* .		Aug. 13	74μ+	S-3053	D-321	220	68	<1.0	< 0.10
		11	53μ~74μ	S-3054	D-322	260	90	1.2	< 0.10
D	2	"	25µ∼53µ	S-3055	D-323	310	93	1.2	< 0.10
		. ,	5μ~25μ	S-3056	D-324	730	170	2.0	< 0.10
		Aug. 22	74μ+	S-3057	D-331	560	48	<1.0	<0.10
		"	53μ~74μ	S-3058	D-332	1100	100	1.7	0.20
	3	H	25μ~53μ	S-3059	D-333	1100	55	1.7	0.19
		11	5μ~25μ	S-3060	D-334	950	130		< 0.10
		Aug. 3	74μ+	S-3061	E-311	570	68	3.1	<0.10
		11.ug. 5	53μ~74μ	S-3062	E-312	720	140	6.2	< 0.10
	1	,,	25μ~53μ	S-3063	E-313	1200	130	6.1	< 0.10
		<i>n</i>	5μ~25μ	S-3064	E-314	1500	170	7.1	0.11
		Aug. 14	- 74μ+	S-3065	E-321	540	78	2.5	<0.10
		nug. 14	53μ~74μ	S-3066	E-322	750	160	2.8	
E	2	<i>"</i>	25μ~53μ	S-3067	E-323	730	95	2.5	
			5μ~25μ	S-3068	E-324	1200	120	2.9	< 0.10
		# Aug. 24	$\frac{3\mu^{-2}3\mu}{74\mu}$	S-3069	E-331	650	75	6.4	<0.10
			74μ+ 53μ~74μ	S-3070	E-331	950	100	11	0.26
	3	<i>H</i>	25μ~53μ	S-3071	E-333	850	130	7.9	0.24
		"	•		E-334	990	160	6.6	
		"	5μ~25μ	S-3072	10-334	ラブリ	100	0.0	₹0.10

Table D-13 CHEMICAL ANALYSES OF SIEVED MILL TAILINGS

Locality	Grain Size	Sample No.	Cu (ppm)	Zn (ppm)	As (ppm)	S %
	74μ+	PM-311	1200	50	1,1	< 0.10
TM.:1	53μ~74μ	PM-312	430	89	<1.0	< 0.10
Philex	25μ~53μ	PM-313	320	130	<1.0	< 0.10
	5μ~25μ	PM-314	590	120	1.0	< 0.10
	74μ+	BM-311	70	210	28	0.63
Danguat	53μ ~ 74μ	BM-312	260	720	90	3.18
Benguet	25μ~53μ	BM-313	360	840	140	5.35
	5μ~25μ	BM-314	240	840	100	2.73
	74μ+	IM-311	73	190	73	0.72
Itaaan	53μ ~ 74μ	IM-312	140	340	190	2.64
Itogon	25μ ~ 53μ	IM-313	170	440	250	3.55
	5μ~25μ	IM-314	140	520	170	1.31

 $(\dot{})$

Table D-14 EXTRACTION TEST BY SHAKING METHOD UNDER AN ACIDIC CONDITION

				ļ	ŀ	֡	ì	İ	i	i		I	İ						1
Description	Sample No.	Ske (m.)	Welght (kg)	Co (ppm)	Zn (ppm)	(mdd)	w₩	Volume (2)	<u> </u>	£	(ms/cm)	(a/gil	(JE)/2	A (mg/k)	08 (₹/20)	ខ	Ŋ	₹	ss.
Fixed Point B	B311	74 +	0.05	110	330	35	0.20	0.5	30.0	2.3	11000	0,3	7.0	0.0298	2.5	0.27×10°	0.21	0.85×10"	0.87×10
	B312	53~74	0.05	150	24	₹	<0.10	5	32.0	2	26000.	1.2	85 86	0.0773	t.	0.80×10°	0.20	0,19×10"	17.6
•	B313	25~53	0.05	170	550	94	9.	6.5	32.0	3.1	15000	8.1	1.26	0.1100	25	0.11	0.23×10".	0.24×10"	0.61×10°
	B314	5~25	0.05	330	340	100	4.	6.0	32.0	5.6	9700	3	6.0	0.0250	. 89	0.91×10°	0.83×10"	0.25×10*	0.15×10"
Pixed Point C	ີ້ຍຶ	7,	0.05	1000	8	7.	<0.10	0.5	32.0	2	33000	21.0	0,44	0.0041	5	0.21	0.73×10*	0.34×10"	71.6.
	317	53~74	0.05	1000	6	7.7	<0.10	5.0	32.0	2	31000	10.0	0.90	0.0037	79	0.10	0,18	0.31×10"	£,6
	313	25~53	0,05	830	Ş.	0	40 .10	5.0	32.0	2	27005	7.0	23	09000	123	0.84×10"	0.31	9.60×10-1	ů,
	314	\$ ~25	0.05	1300	98	1.5	<0.10	0.5	32.0	12	25000	14.0	3.5	0.0099	-84	0.11	0.36	0.66×10"	. <u>ય</u>
Fixed Point D	D311	7.4	0.0s	98	\$	27	60.10	ង	32.0	-	33000	1.6	6.1	0.0039	7.	0.28×10	0.34	0.39×10"	n.c.
	D312	53~74	0.05	540	57	11	40,10	5.0	33.0	3	28000	5.0	171	0.0069	Ż.	0.93×10"	0:30	0.63×10"	9.6
	0313	25~53	0.05	820	8	2,5	0.18	5.0	33.0	2	26000	0.01	3.7	0.0107	220	0.12	0.41	0.73×10"	0.41
	D314	5~25	0.05	9	8	3.0	0.11	0.5	33.5	~	18000	28.0	4.	0.0178	120	97.0	0.39	0.59×10"	95.0
Fixed Point E	E311	47	0.05	570	52	3.7	<0.10	5.0	33.0	64	00082	6.0	3.02	0.0222	a	110	0,44	0.72×10*	n.c.
	E312	53~74	0.05	52,7	5	6.2	<0.10	5.0	33.0	7.7	28000	8.0	6,4	0.0236	92	0.11	0.46	0.38*10"	316
	E :	25~53	0.05	1200	130	6.1	3 0 ,10	50:	33.0		25000	011	6.4	0,0295	13	0.52×10	0.49	0.48×10"	2,5
	E314	5~25	0.05	1500	170	7.1	0.11	0.5	33.5	2.	18000	31.0	5.5	0.1260	\$9	0.21	0.32	0.18	0.20
Philox Mil Tallings	PM310	*	0.05	430	55	8 6 6 6	0.19	5.0	28.5	. 4	23000	10.0	3	0.0139	8	0.23	0.20	0.15	n.c
	PM311	4	0.05	1200	90	7	<0.10	9.5	28.0	. 71	-00000	2.1	1.82	0.0051	76	0.18×10"	0.36	0,46×10"	
	PM312	53~74	0.05	430	89	6.1 1.0	<0.10	5.0	28.0		29000	0.4	3,6	0,000	82	0.93×10	0;0	0.71×10	ų.
	PM313	25~53	0.05	320	130	6.8) 0.15	<0.10	0.5	29.0	91	29000	2.4	7.5	0.0067	8	0.15	85.0	0.84×10"	ů č
	PM314	5~25	0.05	290	120	1.0	<0.10	5:0	29.0	1.6	19000	14.5	6.3	0.0143	16	0.25	0.53	0.14	ů
Benguet Mill Tailings	BM310	۰۰ +	0.03	230	280	7.8	2.86	9.5	28.5	4,6	9400	0.14	4,8	0.0140	н	0,61×10°	0.83×10"	0.82×10-2	0.26×10-7
	BM311	4.	0.03	20	210	28	0.63	5.0	28,0	2.2	00011	0.060	1.84	0.0268	33	0.86×10-2	0,88×10*	0.96×10**	0.30×10-
-	BM312	53-74	0.05	260	720	96	3.18	5.0	33.0	5.2	0066	41.0	ğ	0.0070	88	0,54×10°2	0.58×10	0.78×10*	0.92×16-
	BM313	25~53	0.05	360	64	· 0¥	5.35	6.0	30.5	0,0	10000	0.080	7	0.0073	ä	0,22×10*	0.27×10"	0.52×10*	0.63×10°
	BM314	5~25	0.05	240	840	100	2.73	5.0	31,0	5.9	9900	6.015	. 1	0.0030	\$	0.63×10**	0.49×10"	0.80×10*	0.19×10
Itogon Mill Taillags	DM310	5	0.03	120	410	120	1.13	5.0	28.5	2.3	11000	0.16	3.2	0.0212	ន	0.13×10-1	0.78×10"	0.14×10-1	0.68×10-
	tM311	74	0.05	5	190	11	0.72	5	30.0	60	15000	9:036	1.21	0.0136	٠	0.49×1G-	0,64×10"	0.19×10-1	0.23×10"
	IM312	53~74	0.05	2	4	190	2,64	3	30.0	9,4	10000	0.030	6	0.0330	•	0.21×10-1	0.56×10"	0.17×10-1	0.11×10°
	194313	25-53	0.05	0.1	4	260	3.55	0.5	31.0	. 📆	9900	0.020	3.5	0.0825	Ξ	0.12×10	0.71×10-1	0.32×10*	0.101.0

Table D-15 SIEVE ANALYSIS OF SEDIMENTS IN THE BINGA RESERVOIR

C. 12 1/2							.*			3	CICCULI I di HOIC DIEC I		ייים פול לי	TOTAL.									
Sample 190.	38.	38.1 mm		25.4 mm	19	.1 mm		9.52 mm	4	1.76mm	Ę	2.00 mm		0.84 mm	E E	0.42 mm	E	0.25 mm	E	0.105 mm	mm	0.07	0.074 mm
BD 101	0.89	٠.	4.58		5.45		22.50		18.99		19.33		11.01	٠٠.	8.38		5.10		3.11		0.33	••	0.33
BD 102	ı	••	1.85		3.49	٠	10.73		12.13	••	10.20	**	8.27		13.66		20.63	•••	15.88	••	1.58	••	1.58
BD 103	68.0	• • •	11.35		9.23		19.85		14.32	•••	13.11		12.40	••	10.46	••	4.35		2.91	••	0.49	٠.	0.64
BD 104	1.29		99.9		4.19		16.09		17.19		16.83	••	11.56		9.48		7.83		5.77	••	1.24	••	1.87

Table D-16 PRECIPITATION TEST OF SEDIMENTS IN THE AMBUKLAO RESERVOIR AND BINGA RESERVOIR

				Time	Passed A	fter Mixin	g	4	
Sample No.	10 s (ml)	30 s (ml)	l min (ml)	2 min (ml)	5 min (ml)	15 min (ml)	30 min (ml)	60 min (ml)	90 min (ml)
AD 201	45	70	70	70	76	76	76	78	83
AD 202	60	70	70	72	88	85	84	83	81
AD 203	50	60	67	72	99	95	92	91:	90
AD 204	45	70	72	72	72	72	70	70	66
AD 205	20	30	40	75	165	128	110	102	100
AD 206	50	70	80	82	89	84	82	82	81
AD 207	75	77	78	80	77	72	72	65	65
BD 201	70	70	71	72	72	72	72	72	62
BD 202	60	. 70	70	71	70	70	69	69	
BD 203	80	81.	81	82	82	81	80	82	73

AD: Sediments in the Ambuklao reservoir BD: Sediments in the Binga reservoir Volume of one tested sample is one liter. Figures show the volume of precipitates.

Table D-17 GRAIN SIZE ANALYSIS (1)

	Textural Guide		SL (Sand Loam)	SiL (Silt Loam)	ST (Sand Loam)	SL (Sand Loam)	Sil (Silt Loam)	SL (Sand Loam)	L (Loam)	L (Loam)	SL (Sand Loam)	S (Sand)		LS (Loamy Sand)	S (Sand)	LS (Loamy Sand)	S (Sand)	Sil (Silt Loam)	LS (Loamy Sand)	S (Sand)	S (Sand)	S (Sand)	S (Sand)	S (Sand)	SL (Sand Loam)
	Clay	HI.	8.0	8.0	12.0	10.0	16.0	18.0	15.0	23.0	16.0	8.8		8.4 4.	7.4	8.4	3.2	14.4	8.4	3,00	3.2	4.0	4,4	2.6	8.4
		0.002 mm		• • •															•-		٠.		٠.		
	Silt		19.6	52.6	25.6	17.2	53.8	23.2	34.6	46.4	11.2	0		3.2	1.6	2.2	0	50.0	2.4	0	0	0	0	0	25.4
		0.05 mm	• •	٠	٠.				••		•						٠.		• •				-,-	•	
	Very fine sand		20.4	28.0	20.8	15.4	24.8	16.6	21.0	25.6	23.2	8, 8,		22.8	16.0	26.4	4.2	25.4	16.2	2.2	0.8	6.2	0.1	1.6	38.2
		0.1 mm							•	٠.	••										٠.	٠.			
Percent particle size distribution	Fine	·	26.8	10.4	32.4	27.4	4.6	25.2	22.0	4.6	37.4	35.4		48.6	62.0	59.0	34.0	8.0	34.8	9.4	3.6	31.2	15.4	14.2	8.8
ze dist		0.25 mm	. • •					···		••		••		٠.			• •					٠.	٠-		
rticle si	Medium		17.6	9.0	8.4	21.8	0.4	15.0	7.0	0.2	11.2	43.0		7.2	11.2	2.4	34.2	1.8	28.2	23.2	24.4	40.4	63.2	79.6	18.2
ent pa		0.5 mm			٠.	•••	••	•••	••			. • •		٠.		٠.		٠.	•				•	••	
Perc	Coarse	0	7.0	0.2	9.0	7.2	0.2	1.8	0.7	0.5	8.0	11.6		5.5	4.	0.8	15.0	0.5	8.4	36.4	43.4	14.4	14.0	7.8	0.8
		l mm			••	••	••			••										••	••	••		•	
	Very Coarse sand		9.0	0.2	0.2	1.0	0.5	0.2	0.5	•	0.5	4		4.6	4.0	8.0	4.	0.5	1.6	25.0	24.6	ŝ	2.0	0.5	0.5
	, ;	2 mm	٠.	••	•••		•				:.	٠.		••								٠			
	Total sand		72.4	39.4	62.4	72.8	30.2	58.8	50.4	30.6	72.8	95.2		88.4	91.0	89.4	8.96	35.6	89.2	96.2	8.96	0.96	92.6	97.4	66.2
	Description		Philex mill tailings	Benguet mill tailings	Itogon mill tailings	Philex mill tailings	Benguet mill tailings	Itogon mill tailings	Philex mill tailings	Benguet mill tailings	Itogon mill tailings	Philex mill tailings	(Coarse part)	Sediments, Ambuklao dam	Sediments, Ambuklao dam	Sediments, Ambuklao dam	Sediments, Ambuklao dam	Sediments, Ambuklao dam	Sediments, Ambuklao dam	Sediments, Ambuklao dam	Sediments, Binga dam	Sediments, Binga dam	Sediments, Binga dam	Sediments, Irrigat. canal	Sediments, Irrigat, canal
	Sample No.		PM 11	BM 11	IM 1:1	PM215	BM215	IM 215	PM225	BM225	IM 225	PM219		AD201	AD202	AD203	AD204	AD205	AD206	AD207	BD201	BD202	BD203	G21	G22

Table D-18 GRAIN SIZE ANALYSIS (2)

•	PM31	BM31	IM31
Diameter (mm)	Cumulative Distribution (%)	Cumulative Distribution (%)	Cumulative Distribution (%)
2.00			
0.84	100.0	100.0	
0.42	99.7	99.7	100.0
0.25	98.3	98.5	99.5
0.105	75.6	78.7	94.1
0.074	68.0	64.7	92.7
0.0474	48.2	57.9	76.6
0.0345	35.7	45.3	64.0
0.0221	29.4	26.4	54.6
0.0128	26.3	17.8	42.0
0.0091	23.1	12.2	32.6
0.0065	20.0	9.1	26.3
0.0033	13.7	5.9	16.9
0.0027	12.2	4.4	15.3
0.0014	9.0	1.2	10.6

Table D-19
PRECIPITATION TESTS FOR A LONG PERIOD ON SAMPLES
AT FIXED POINT "A" AND "E"

		Fix	ked Point (Sa	impling Date	e)	
Time Elapsed	E (March)	E (March)	E (Aug. 10)	E (Aug. 15)	E (Aug. 29)	A (Sep. 3)
1 hour	400 ppm	340 ppm	380 ppm	480 ppm	800 ppm	178 ppm
. 2					390	149
4	90	120	138	142	194	103
6	."	•			146	89
1 day	22	32	40	27	59	50
2	13	18	29	6.5	37	47
3	8.5	9.5	17	6.0	23	29
4	60	60	11	4.5	18	22
5	4.5	3.0	6.5	3.5	13	16
6	3.0	2.0	4.0	2.5	11	15
7	2.8	1.8	2.0	3.5	8.5	12
8			1.3	2.0	6.5	10
9					5.5	9
10					4.5	8
11			•	•	4.0	7
12					3.5	6

The figures show the turbidities of the samples at the time elapsed after shaking.

()

Table D-20 CHEMICAL ANALYSES OF ACCESSORY ELEMENTS IN SOLIDS

Description	Date of sampling	Ba (ppm)	Cr (ppm)	F (ppm)	Se (ppm)	Ag (ppm)	CI (bpm)	Be (ppm)	B (ppm)	(mdd)	Li (ppm)	Mo (ppm)	(mdd)	(mad)
Mill tailings Philex	Nov. 30, '83	92	29	172	10	⊽	380	0.3	12	16	∞	4		172
Mill tailings Benguet	Dec. 1, '83	232	34	266	7	P	11	0.4	28	13	29	=	4	146
Mill tailings* Benguet	Dec. 1, '83	244	24	375	9		160	4.0	15	13	30	10	10	150
Mill tailings Itogon	Dec. 2, '83	237	158	554	13	V	18	0.7	12	25	32	5 6 1	89	218
Sediments Binga dam	Dec. 5, '83	138	260	468	4		9	4.0	∞	20	Ξ	,	103	202
Suspended solids Fixed point C	Dec. 6, '83	102	50	890	- ~	,	450	0.3	ν ₁	8	∞	7	7	174
Suspended solids Fixed point D	Dec. 13, '83	234	۲	320	10		160	9.0	. \$	13	4	11	7	ET
Suspended solids Fixed Point E	Dec. 2-7, '83	119	16	1,023	6		420	0.2	6	20		S	∞	143
Suspended solids Fixed point E	Dec. 8-14, '83	114	16	554	2 2	, 7 ,	390	0.2	4	21	0:	7		146

*: Stored in tailings dam

Table D-21 CHEMICAL ANALYSES OF MINOR CONSTITUENTS IN THE FILTRATE AT FIXED POINT A TO E

	_	i													ı					
1	(mg/2)	102	100	ν. υ.	31.2	44.0	29.8	38.2	32.6	28.2	24.1	6		24.0						
	. (πg/2)	2.5	غ ر	55.5	15.0	15.0	8.0	8.0	42.0	42.5	13.5	14.0	2 6	0.71	18.5					:
	(mg/2)	0		7 4	13.5	6.9	1:T	1.1	4 .0	4 6.4	13.1	12.4	; c	7 1	۷.′					
١	re (mg/2)	70.05		<0.05 0.05	0.03	<0.05	<0.05	<0.05	0.14	<0.05	0.37	0.06	5 6	0.1.0	<0.0>					
	Mn. (mg/k)	000	70.07	90.1	80.0 0.0	0.80	<0.05	<0.02	1.40	1.38	0.1.0	0.10	9 6	7.07	7.07					
**************************************	ಗಕ್ಷ (mg/2)	9000	0000	0.0007	<0.000.0															
7	(mg/2)	<0.00	3 6	10.0	70.07	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.07	10:01	10.07	<0.01	-				
 -	(mg/2)															· es				
Samula	No	A12051	120210	012021	C12061	D12031	A12141	A12142	B12141	B12142	C12121	C12122	712121	D12131	D17137	- : No data				
!															•					
1																				
5	(mg/g)	15.6	11.3	31.0	40.0	0.00	0.70	27.3						. '	22.5	19.9	31.9	29.8	25.5	32.6
					•		•	•	9.0	13.5	14.5	5.6	5.6	10.0				•		` .
ž	(mg/2) (mg/2) (mg/2)	10.0	10.5	10.5	3.50	. 0	, .	C.11							16.0	10.0	10.5	11.0	5.6	9.5
K	(mg/k) (5.0 10.0	6.9 10.5	7.9 10.5	6.9	, C. C. C. C. C. C. C. C. C. C. C. C. C.	2,5	6.5	0 6	 	7.7	6.2	6.2	5.9	5.7 16.0	5.7 10.0	7.0 10.5	7.0 11.0	4.4	4.5 9.5
Te X	(mg/2) (mg/2)	<0.05 5.0 10.0	<0.05 6.9 10.5	<0.05 7.9 10.5	0.05	20 C	C.V. 1.0	0.00 0.0	0.00	<0.05	<0.05	0.09 6.2	<0.05 6.2	0.08 5.9	0.15 5.7 16.0	<0.05 5.7 10.0	0.27 7.0 10.5	<0.05 7.0 11.0	0.20 4.4 9.5	<0.05 4.5 9.5
Mn Fe K Na	(mg/2) (mg/2) (mg/2)	<0.02 <0.05 5.0 10.0	0.02 <0.05 6.9 10.5	<0.02 <0.05 7.9 10.5	<0.02 <0.05 69 95	2007 COO	0.00 0.00 0.00	0.00 0.00 0.00	50.02 5.0	<0.02 <0.05 /.3	0.02 <0.05 7.7	0.09 6.2	<0.05 6.2	0.08 5.9	0.15 5.7 16.0	<0.05 5.7 10.0	0.27 7.0 10.5	<0.05 7.0 11.0	0.20 4.4 9.5	<0.05 4.5 9.5
Hg Mn Fe K Na	(mg/2) (mg/2) (mg/2) (mg/2)	<0.0005 <0.02 <0.05 5.0 10.0	0.0007 0.02 <0.05 6.9 10.5	<0.0005 <0.02 <0.05 7.9 10.5	<0.02 <0.05 69 95	0.0007 7.007	0.20 1.0 0.00 30.00 0.00 0.00 0.00 0.00 0.0	CTT 6.0 CO.0 20.0 CO.0.	0.000 <0.02 0.05 5.0	0.0008 <0.02 <0.05 7.3	0.0008 0.02 <0.05 7.7	<0.02 0.09 6.2	<0.02 <0.05 6.2	<0.02 0.08 5.9	0.02 0.15 5.7 16.0	<0.02 <0.05 5.7 10.0	<0.02 0.27 7.0 10.5	<0.02 <0.05 7.0 11.0	<0.02 0.20 4.4 9.5	<0.02 <0.05 4.5 9.5
Cd Hg Mn Fe K Na	(mg/Ω) (mg/Ω) (mg/Ω) (mg/Ω) (mg/Ω) (mg/Ω)	<0.0005 <0.02 <0.05 5.0 10.0	<0.01 0.0007 0.02 <0.05 6.9 10.5	<0.01 <0.0005 <0.02 <0.05 7.9 10.5	<0.01 <0.02 <0.05 69 95	<0.01 0.0007 <0.02 ct 0.65	200 10 2000 2000 2000 2000 2000 2000 20	10.0 C.0 C.0 C.0 C.0 C.0 C.0 C.0 C.0 C.0	10.01 10.0000 10.02 0.00 10.02	Co. 0.0008	50.01 0.0008 0.02 <0.05 7.7	<0.01 <0.02 0.09 6.2	<0.01 <0.02 <0.05 6.2	<0.01 <0.02 0.08 5.9	<0.01 <0.01 0.02 0.15 5.7 16.0	<0.01 <0.02 <0.05 5.7 10.0	<0.01 <0.02 0.27 7.0 10.5	<0.01 <0.02 <0.05 7.0 11.0	<0.01 <0.02 0.20 4.4 9.5	<0.01 <0.02 <0.05 4.5 9.5

()

Table D-22 CHEMICAL ANALYSES OF MINAR CONSTITUENTS IN THE FILTRATE FOR MINE DRAINAGES AND MILL TAILINGS

Sample No.	Pb (mg/2)	Cd (mg/R)	Hg (mg/k)	Mn (mg/l)	Fe (mg/2)	K (mg/ዩ)	Na (mg/2)	Cl (mg/१)
PT11	<0.01	< 0.01	0.0005	0.02	0.18	0.4	5.5	23.0
PT12	< 0.01	< 0.01		0.05	0.94	4.8	9.0	20.0
BT11	< 0.01	< 0.01	< 0.0005	5.20	6.70	1.8	13.0	51.0
BT12	< 0.01	< 0.01		0.88	1.32	12.8	98.0	100
IT11	< 0.01	< 0.01	< 0.0005	0.52	0.26	3.5	12.0	72.0
PM1)	< 0.01	< 0.01	< 0.0005	0.03	0.74	87.2	70.0	48.2
BM11	< 0.01	< 0.01	< 0.0005	0.13	0.76	35.2	172	30.6
IM11	< 0.01	< 0.01		< 0.02	0.50	12.8	32.0	116

P: Philex
B: Benguet
I: Itogon
T: Mine drainage
M: Mili tailings

Table D-23 CROSS CHECKING ANALYSES (1)

Sample No.	Description	Laboratory	Cu (mg/k)	Zn (mg/k)	As (mg/ll)	Ca (mg/2)	Mg (mg/2)	SO ₄ (mg/2)
A1214	Filtrate, Point A	A.	<0.02	<0.0>	0.003	25	5.6	22
		ъ.	<0.02	<0.02	<0.01	22	4 8	22
B1214	Filtrate Point B	بم	0.07	<0.07	1	300	22.0	5,66
		T	60.0	<0.02	0.04	230	21.0	620
C1206	Filtrate Point C	μ۵	<0.02	<0.01	0.001	207	6.7	. I
		₩,	0.02	<0.02	<0.01	160	6.0	410
D1213	Filtrate, Point D	, ۵,	<0.02	<0.01	<0.0005	203	7.6	464
		-	<0.02	<0.02	<0.01	190	6.8	490
F1207	Filtrate Point E	Δ.	<0.02	<0.07	0.007	104	8.5	124
0		, I 5	0.02	<0.02	0.01	78	7.2	170
BW1.1	Benonet mill tailings	ρ.	22	10.7	0.007	840	4.0	1,458
DAY T		, ,	22	8.1	0.01	630	0.44	1,500
W/BM112	Fluste of Extraction test	Ω	<0.02	0.01	0.018			47
Z T TATO II		وسز	<0.02	0.02	0.02			72
WDM:12	1 0 10 1	Q.	<0.02	0.02	0.001			47
7 1 171 14		ر دستا	<0.02	<0.02	<0.01			99
WTW112	- ditto -	ል	<0.02	0.04	0.019			12
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	ì	* -3	<0.02	0.05	0.01			27
WBD1034	- ditto	д	<0.02	<0.01	0.0005			27
		,	0.03	0.02	<0.01			26

P : Chemical analyses in the Philippines J : Chemical analyses in Japan

Table D-24 CROSS CHECKING ANALYSES (2)

			•	ť				
Sample No.	Description	Laboratory	Cu (mg/k)	2n (mg/ℓ)	As (mg/ℓ)	Ca (mg/l)	Mg (mg/l)	SO ₄ (mg/R)
A02262	Filtrate, Point A	ď	<0.02	<0.02	0.0036	24.	5.8	24
		J enny	<0.02	<0.02	<0.01	28	8.2	27
B02262	Filtrate, Point B	. Д .	1.0	<0.02	0.0405	320	24	760
		ſ	1.2	<0.05	0.03	310	22	820
C02272	Filtrate, Point C	<u>o-</u>	10:0	<0.05	0.0007	340	8.0	856
		, ,	<0.02	< 0.02	<0.01	330	8.2	820
D02271	Filtrate, Point D	ሷ	<0.01	<0.02	0.001	260	7.6	662
		,	<0.02	<0.05	<0.01	270	8.0	999
E02291	Filtrate, Point E	Дų.	0.01	<0.02	0.0045	62	6.4	91
		`	<0.02	<0.02	<0.01	23	6.1	96
E02292	. — ditto —	Д	0.01	0.05	0.0044	49	6.5	90
1		- ,	<0.02	<0.02	0.01	26	6.4	86
E03061	- ditto -	Q.	0.01	<0.05	0.0056	142	9.2	308
		فشو	<0.02	0.0 2	<0.01	140	8.6	340
E03062	- ditto -	'Д.	0.01	<0.02	0.0043	143	4.6	321
		⊶'	<0.02	<0.02	<0.07	140	8.6	340
BW22	Mill tailings in Benguet	<u>а</u> .	14	0.75	0.26	290	8 1	1,596
	Phase 2 dam	. وسط	15	0.40	0.09	510	16	1,600
PW21	Mill tailings in Philex	<u>ρ</u> ,	<0.07	<0.02	0.0007	620	17	1,186
	No. 1 dam	, ,	<0.02	0.02	<0.01	200	16	1,200
PM22	Philex mill tailings	<u>α</u>	0.01	<0.02	0.001	720	12	1.533
			0.03	0.02	<0.01	009	11	1,600
IM22	Itogon mill tailings	p .	16	0.9	0.072	122	0.2	212
		–	14	5.8	90.0	100	0.24	240
BM22	Benguet mill tailings	4	29	25	0.0078	720	0.7	1,587
		وسز	24	25	0.01	.069	0.64	1,600

Table D-25 X-RAY DIFFRACTION ANALYSES

				Minerals	rals		
Sample		Quartz	Chlorite	Mica (Biotite, Illite)	Plagioclase	Calcite	Pyrite
Philex mill tailings		0	0	0	0	1	. 1
Benguet mill tailings		0		0	ı	0	0
Itogon mill tailings	•	0	⊲ 	0		o O	0
SS of the fixed point B		0	Ó	0	0	l	- 1
SS of the fixed point C		0	0	0	0	!	*****
SS of the fixed point D		0	0	0	0	1	ı
SS of the fixed point E (between No. 3 and GS-25 Filters)		0	0	0	0	1	, ° 1
SS of the fixed point E (Dec. $2 - Dec. 7$)		0	0	0	0	1	. 1
SS of the fixed point E (Dec. 8 – Dec. 14)		0	0	0	* O.	I	, I

○ : Abundant
 ○ : Common
 - : Not detected
 □ : The feldspar shows an X-ray p
 △ : The chlorite peak may superir

 \square : The feldspar shows an X-ray pattern similar to orthoclase Δ : The chlorite peak may superimpose the kaolinite peak

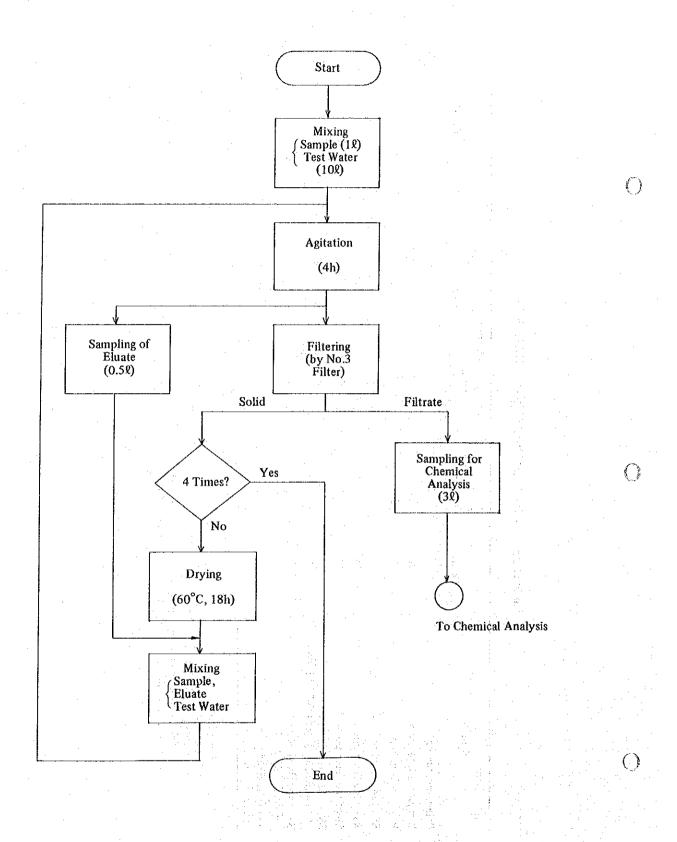


Fig. D-1 Flow Chart of Extraction Test by Wet and Dry Repetition Method (First Stage Survey)

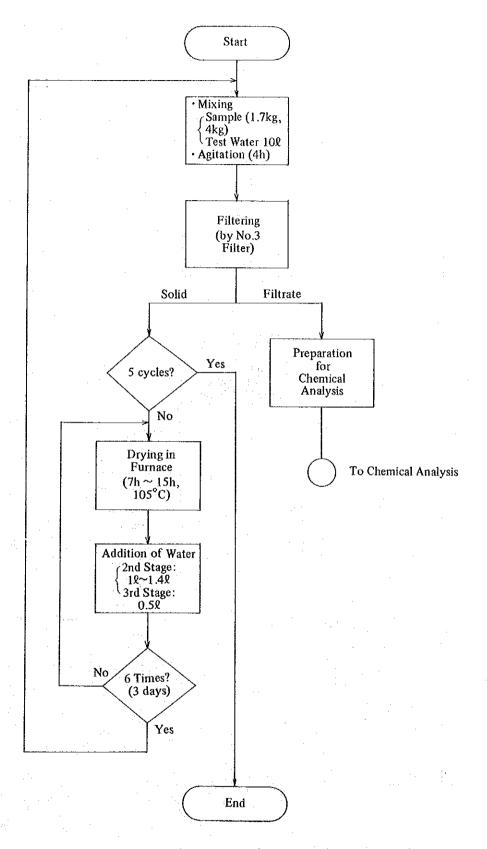


Fig. D-2 Flow Chart of Extraction Test by Wet and Dry Repetition Method (Second and Third Stage Surveys)

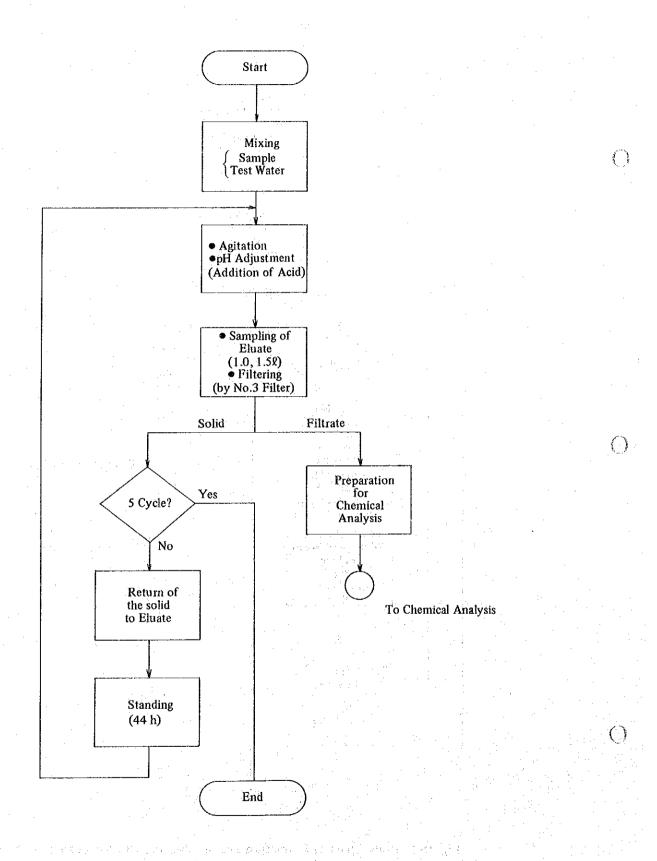
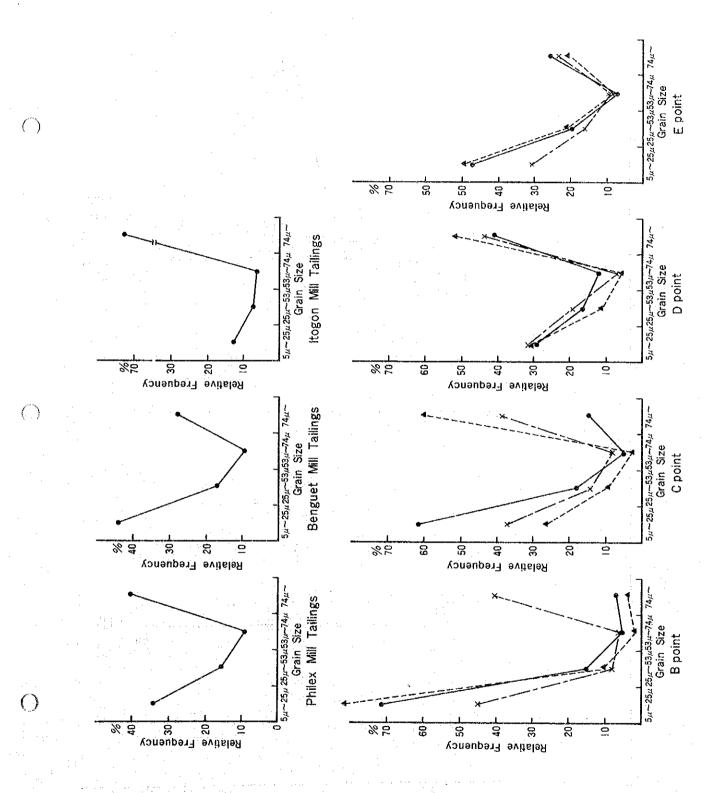
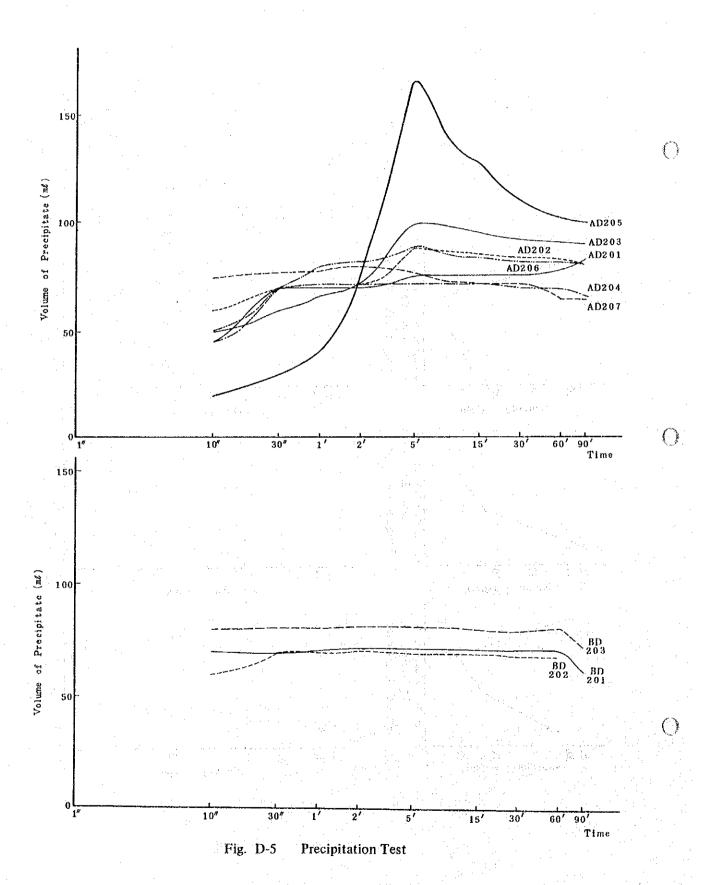
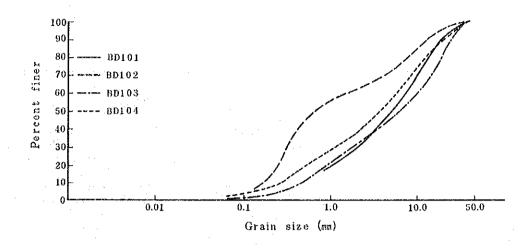
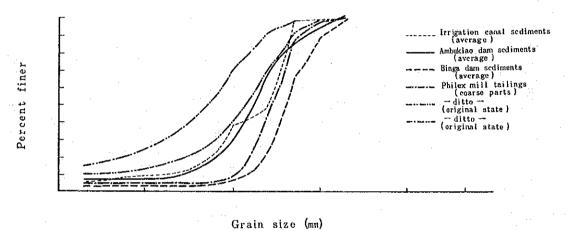






Fig. D-3 Flow Chart of Extraction Test by a Bacteria Addition Method

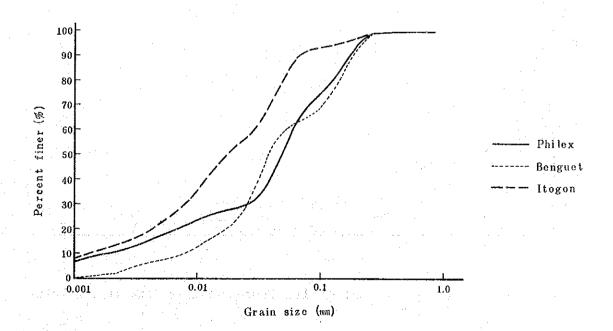


Fig. D-6 Grain Size Accumulation Curve

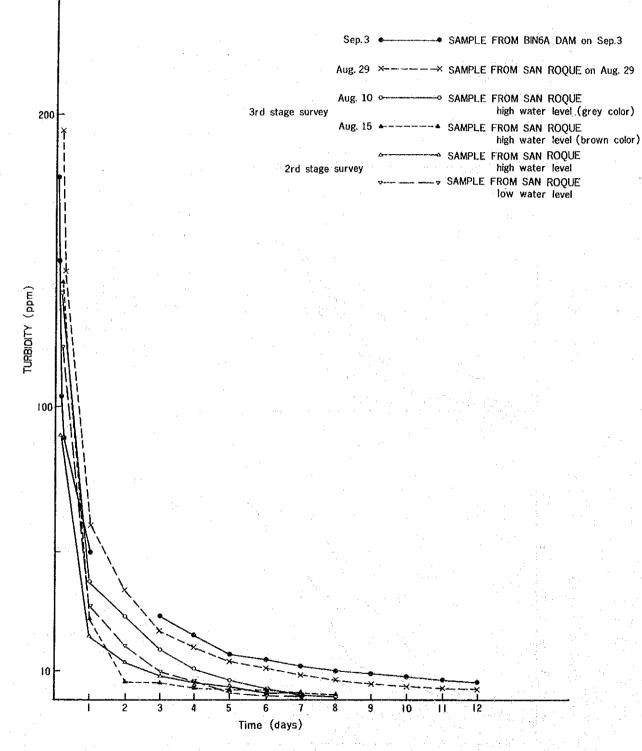


Fig. D-7 Precipitation Test for a Long Period on Samples Taken at Fixed Point "A" and "E"

APPENDIX "E"

OUTPUTS OF THE CALCULATION

CONTENTS FOR APPENDIX "E"

OUTPUTS OF THE CALCULATION

			Page
1.	List	of Calculation Showing Combination of Variables	E-1
2.	List	of Abbreviations	E-2
3.	Tab	les	
	(1)	Rate of Inflow and Outflow Run-1, Run-2	E-3
	(2)	Rate of Inflow and Outflow Run-3, Run-4	E-11
	(3)	Rate of Inflow and Outflow Case 2	E-19
	(4)	Rate of Inflow and Outflow Case 3	E-22
	(5)	Dissolved Matters Run-1, Run-2	E-25
	(6)	Dissolved Matters Run-3, Run-4	E-33
	(7)	Dissolved Matters Case 1	E-41
	(8)	Dissolved Matters Case 2, Case 3	E-43
	(9)	Suspended Solids Run-1 (Soluble)	E-46
	(10)	Suspended Solids Run-1 (Total)	E-54
	(11)	Suspended Solids Run-3 (Soluble)	E-62
	(12)	Suspended Solids Run-3 (Total)	E-70
	(13)	Suspended Solids Case 2 (Soluble)	E-78
	(14)	Suspended Solids Case 2 (Total)	E-81
	(15)	Suspended Solids Case 3 (Soluble)	E-84
	(16)	Suspended Solids Case 3 (Total)	E-87

1. List of Calculation Showing Combination of Variables

		Rate of Inflow	Solibility Product	Reaction rate	Residual rate	Mine life (year)	(year)
	- 1	A: Average E: Measured	ApprepriateWorst	ApprepriateWorst	ApprepriateWorst	Benguet Itogon	Philex
	Run-1	Ą	0	0	0	30	30
1913	Run-2	∀	•	•	•	30	30
sM.	Run-3	I	0	0	0	30	30
ved	Run-4	щ	•	. •	. •	30	30
loss	Case 1	¥	•	0	0	30	30
DI	Case 2	∀	0	0	0	20	30
	Case 3	∢.	0	100	0	30	20
p;	Run-1	Ą	0	0	0	30	30
pu	Run-2	Ħ	0	0	0	30	30
pile	Case 2	*	0	0	0	20	30
uS oS	Case 3	Ą	0	O.	0	30	20

2. List of Abbreviations

Y : year

M: month

Q₀₀: rate of inflow (m³/s)

rate R1: for primary generation (m³/s)

of R2: for secondary generation (m³/s)

outflow R3: overflow (m³/s)

W1: primary energy output (Gwh)

W2: secondary energy output (Gwh)

H1: water level (m)

E1 : evaporation (x10⁶ m³)

WST: volume of sediments stored (x106 m3)

VW: volume of water stored (x106 m³)

TR: residence time (h)

DO: maximum diameter of suspended solids in outflow (μ)

SS: suspended solids (mg/l)

Cu : Copper (mg/l for dissolved Cu, ppm for Cu content in suspended

solids)

Zn: Zinc (mg/2 for dissolved Zn, ppm for Zn content in suspended solids)

As : Arsenic (mg/l for dissolved As, ppm for As content in suspended

solids)

(1) Rate of Inflow and Outflow Run-1, Run-2 (1/8)

1 7 1 8 1 9 1 10	120,4 226,9 216,2 139,3	0.0	0,0	0.0						
1 9 I 10	216.2			0,0	0.0	0.0	225.3	.55	.58	321.34
1 10			0,0	. 0.0	0.0	0.0	288.0	1.40	1.17	927.0
	139.3	0.0	0.0	191.7	0,0	0.0	290.0	1.83	1.73	988.2
		60.9	77.3	0.0	70.6	89.6	290.0	3,04	2.32	987.6
1 11	75.8	62.2	. 12.2	0.0	70.6	13.9	290.0	3.49	2.88	987.1
I 12	39.2	60.8	0.0	0.0	70.6	0.0	286.0	3.54	3,19	925.5
2 1	30.3	93.3	0.0	0.0	103.0	0.0	272.7	3,39	3,29	753.0
2 2	23.1	114.2	0.0	0.0	103.0	0.0	250.5	2.91	3.13	527.3
2 3	-19.8	97.1	0.0	0.0	82.0	0.0	225.1	2.34	2.86	317.5
2 4	20.1	19.6	0.0	0.0	14.7	0.0	225.0	1.62	3.21	316.3
2. 5	40.4	39.9	0.0	0.0	30.8	0.0	225.0	1.34	3.57	316.4
2 6	62.7	57.5	0.0	0.0	43.2	0.0	226.6	1.20	4.17	328.0
2 .7	120.4	50.8	0.0	0.0	43.2	0.0	249.1	1.32	5.32	512.5
2 8	226.9	41.2	9.1	0.0	43.2	3.5	290.0	1.62	6.74	983.20
2 9	216.2	39.4	176.0	0.0	43,2	192.9	290.0	1.95	7.31	982.6
2 10	139.3	60.9	77.3	0.0	70.6	89.6	290.0	3.04	7.39	982.1
2 11	75.8	62.2	12.2	0.0	70.6	13.9	290.0	3.49	8.46	981.5
2 12	. 39.2	60.8	0.0	0.0	70.8	0.0	286.0	3.54	8.70	919.9
3 1	30.3	93.3	0.0	0.0	103.0	0.0	272.7	3.39	8.53	747.4
3 2	23.1	114.3	0.0	0.0	103.0	0.0	250.4	2.91	7.89	521.6
3 3	19.8	96.5	0.0	0.0	81.5	0.0	225.1	2.34	6.81	313.59
3 4	20.1	19.6	0.0	0.0	14.7	0.0	225.0	1.62	7.16	312.8
3 5	40.4	39.9	0.0	0.0	30.8	0.0	225.0	1.34	7.52	312,4
3 6	62.7	57.5	0.0	0.0	43.2	0.0	226.6	1.20	8.19	321.0
3 .7	120.4	50.7	0.0	0.0	43.2	0.0	249.2	1.33	10.05	508.69
3 8	226.9	41.2	.9.7	0.0	43.2	10.2	290.0	1,62	12.32	977.63
3 9	216.2	39.4	176.0	0.0	43.2	192.9	290.0	1.95	12.83	977.12
3 10	139.3	60.9	77.3	0.0	70.6	89.6	290.0	3.04	13.47	976.53
3 - 11	75.8	62.2	12.2	0.0	70.6	13.9	290.0	3.49	14.03	975.9
3 12	39.2	60.8	0.0	0.0	70.6	0.0	286.0	3.54	14.20	914.43
4 I	30.3	93.3	0.0	0.0	103.0	0.0	272.6	3.39	13.76	741.85
4 2	23.1	114.3	0.0	0.0	103.0	0.0	250.3	2.91	12.63	515.93
4 3	19.8	95.8	0.0	0.0	80.9	0.0	225.1	2.33	10.77	309.6
4 4	20,1	19.6	0.0	0.0	14.7	0.0	225.0	1.62	11.11	308.89
4 5	40.4	39.9	0.0	0.0	30.8	0.0	225.0	1.34	11.47	308.53
4 6	62.7	57.5	0.0	0.0	43.2	0.0	226.6	1.20	12.21	320.10
4 7	120,4	50.7	0.0	0.0	43.2	0.0	249.3	1.33	14.78	504.79
4 8	226.9	41.2	10.4	0.0	43.2	10.9	290.0	1.62	17.80	972.11
4 9	216.2	39.4	176.0	0.0	43.2	192.9	290.0	1.95	18.48	971.54
4 10	139.3	60.9	77.3	0.0	70.6	89.6	290.0	3.04	19.04	970.96
4 11	75.8	62,2	12.2	0.0	70.6	13.9	290.0	3.49	19.61	970.39
4 12	39.2	60.8	0.0	0.0	70.6	0.0	286.0	3.54	19.71	908.34
5 I	30.3	93.4	0.0	0.0	103.0	0.0	272.6	3.39	19.00	736.24
5 2	23.1	114.4	0.0	0.0	103.0	0.0	250.2	2.91	17.38	510.20
5 3	19.8	95.1	0.0	0.0	80.3	0.0	225.1	2.83	14.72	305.68
5 4	20.1	19.6	0.0	0.0	14.7	0.0	225.0	1.62	15.08	304.94
5 5	40.4	39.9	0.0	0.0	30.8	. 0.0	225.0	1.34	15.43	304.57
5 6	62.7	57.5	0.0	0.0	43.2	0.0	226.6	1.20	16.23	316.15
7				<u> </u>						

(1) Rate of Inflow and Outflow Run-1, Run-2 (2/8)

Y M	Q00	RI	R2	R3	WI	W2	HI	El	WST	vw.
5 7	120.4	50.7	0.0	0.0	43,2	0.0	249.4	1.33	19.52	500.89
5 8	226.9	41,2	11.0	0.0	43.2	11.5	290.0	1.62	23,47	966.53
5 9	216.2	39.4	176.0	0.0	43.2	192.9	290.0	1.95	24.03	965.97
5 10	139.3	60.9	77.3	0.0	70.6	89.6	290.0	3.04	24.62	965.38
5 11	75.8	62.2	12.2	0.0	70,6	13.9	290.0	3.49	25.18	964.82
5 12	39.2	60.8	0.0	0.0	70.6	0.0	286.0	3.54	25.21	903.26
6 1	30.3	93.4	0.0	0.0	103.0	0.0	272.6	3.39	24.24	730,64
6 2	23.1	114.4	0.0	0.0	103.0	0.0	250.1	2.90	22.11	504.48
6 3	- 19.8	94.5	0.0	0.0	79.7	0.0	225.1	2.33	18,68	301.73
6 4	20.1	19.6	0.0	0.0	14.7	0.0	225.0	1.62	19.02	300.98
6 5	40.4	39.9	0.0	0.0	30,8 43,2	0.0	225.0	1.34	19.38	300.62
6 6	62.7	57.5	0.0	0.0	43,2	0.0	226.6	1.20	20.25	312.21
6 7	120.4	50.7	0.0	0.0	43,2	0.0	249.5	1.33	24.26	496.99
6 8	226.9	41.2	11,6	0.0	43.2	12.2	290.0	1.62	29.05	960.95
6 9	216.2	39.4	176.0	0.0	43.2	192,9	290.0	1.95	29.61	960.39
6 10	139.3	60.9	77.3	0.0	70.6	89.6	290.0	3.04	30.19	959.81
6 11	75.8	62.2	12.2	0.0	70.6	13.9	290.0	3.49	30.76	959,24
6 12	39.2	60.8	0.0	0.0	70.6	0.0	286.0	3.54	30.72	897.68
7 1	30.3	93,4	0.0	0.0	103.0	0.0	272.5	3.39	29.47	725.04
7 2	23.1	114.5	0.0	0.0	103.0	0.0	250.0	2.90	26.85	498.75
7 3	19.8	93.8	0.0	0.0	79.2	0.0	225.I	2.33	22,63	297,77
7 - 4	20.1	19.6	0.0	0.0	14.7	0.0	225.0	1.62	22.97	297.03
7 5	40.4	39.9	0.0	0.0	30.8	0.0	225.0	1.34	23.33	296.67
7 6	62.7	57.5	0.0	0.0	43.2	0.0	226.6	1.20	24,27	308.26
7 7	120.4	50.7	0.0	0.0	43.2	0.0	249.6	1.33	29.01	493,09
7 8	226.9	41.2	12.3	0.0	43.2	12.9	290.0	1.62	34.62	955.38
7 9	216.2	39.4	176.0	0.0	43.2	192.9	290.0	1.95	35.19	954.81
7 10	139.3	60.9	77.3	0.0	70.6	89.6	290.0	3.04	35.77	954.23
7 11	75.8	62.2	12,2	0.0	70.6	13.9	290.0	3.49	36.33	953.67
7 12	39.2	60.8	0.0	0.0	70.6	0.0	286.0	3.54	36.22	892.11
8 1	30.3	93.4	0.0	0.0	103.0	0.0	272.5	3.39	34.70	719.43
8 2	23.1	114.6	0.0	0.0	103.0	0.0	249.9	2.90	31.58	493.02
8 3	19.8	93.2	0.0	0.0	78.6	0.0	225.1	2.33	26.59	293.82
8 4	20.1	19.6	0.0	0.0	14.7	0.0	225.0	1.62	26.92	293.08
8 5	40.4	39.9	0.0	0.0	30.8	0.0	225.0	1.34	27.29	292.71
8 6	62.7	57.5	0.0	0.0	43.2	0.0	226.7	1.20	28.29	304.31
8 7	120.4	50.6	0.0	0.0	43.2	0.0	249.7	1.33	33.77	489.20
8 8	226.9	41.2	12.9	0.0	43.2	13.6	290.0	1.62	40.20	949.80
8 9	216.2	39.4	176.0	0.0	43.2	192.9	290.0	1.95	40.76	949.24
01 8	139.3	60.9	77.3	0.0	70.6	89.6	290.0	3.04	41.35	948.65
8 11	75.8	62.2	12.2	0.0	70.6	13.9	290.0	3.49	41.91	948.09
8 12	39.2	60.8	0.0	0.0	70.6	0.0	286.0	3,54	41.72	886.53
9 1	30.3	93.4	0.0	0.0	103.0	0.0	272.5	3.39	39.93	713.83
9 2	23,1	114.6	0.0	0.0	103.0	0.0	249.8	2.90	36.30	487.29
9 3	19.8	92.5	0.0	0.0	78.0	0.0	225.I	2.32	30.54	289.86
9 4	20.1	19.6	0.0	0.0	14.7	0.0	225.0	1.62	30.88	289.13
9 5	40.4	39.9	0.0	0.0	30.8	0.0	225.0	1.34	31,24	288.76
9 6	62.7	57.5	0.0	0.0	43.2	0.0	226.7	1.20	32.31	300.36

(1) Rate of Inflow and Outflow Run-1, Run-2 (3/8)

Y M	Q00	R1	R2	R3	WI	W2	HI	, El	WST	VW
9 7	120.4	50.6	0,0	0.0	43.2	0,0	249.8	1.33	38.53	485,30
9 8	226.9	41,2	13.6	0.0	43.2	14.2	290,0	1.62	45.77	944,23
9 9	216.2	39.4	176.0	0.0	43,2	192.9	290.0	1.95	46.34	943.66
9 10	139.3	60.9	77.3	0.0	70.6	89.6	290.0	3.04	46.92	943.08
9 11	75.8	62.2	12,2	0.0	70.6	13.9	290.0	3.49	47.49	942.51
9 12	39,2	60.8	0.0	0.0	70.6	0.0	286.0	3.54	47.23	880.95
10 1	30.3	93.4	0.0	0.0	103.0	0.0	272,4	3.39	45.16	708,23
10 2	23.1	114.7	0.0	0.0	103.0	0.0	249,6	2.89	41.01	481.50
10 3	19.3	91.8	0.0	0.0	77.4	0.0	225.1	2.32	34.50	285.91
10 4	20.1	19.6	0.0	0,0	14.7	0.0	225.0	1.62	34.83	285.17
10 5	40.4	39.9	0.0	0.0	30.8	0.0	225.0	1.34	35,19	284.8
10 6	62.7	57.5	0.0	0.0	43.2	0.0	226,7	1.20	36.33	296.42
10 7	120.4	50.6	0.0	0.0	43.2	0.0	249.9	1,33	43.29	481.40
10 8	226.9	41.2	14.2	0.0	43.2	14.9	290.0	1.62	51.35	938.65
10 9	216.2	39.4	176.0	0.0	43.2	192.9	290.0	1,95	51.91	938.09
10 10	139.3	60.9	77.3	0.0	70.6	89.6	290.0	3,04	52.50	937.50
10 11	75.8	62.2	12.2	0.0	70.6	13.9	290.0	3.49	53.06	936.94
10 12	39.2	60.8	0.0	0.0	70.6	0.0	286.0	3.54	52.73	875.37
11 1	30.3	93.4	0,0	0.0	103.0	0,0	272,4	3,39	50.39	702.62
11 2	23.1	114.7	0.0	0.0	103,0	0.0	249.5	2.89	45.72	475.8.
11 3	19.8	91.2	0.0	0.0	76.8	0.0	225.1	2.32	33.45	281,96
11 4	20.1	19.6	0.0	0.0	14.7	0.0	225.0	1.62	33.78	281.22
11 5	40.4	39.9	0.0	0.0	30.8	0.0	225.0	1,34	39.14	280.86
11 6	62.7	57.5	0.0	0.0	43.2	0.0	226.7	1.20	40.35	292.47
11 7	120.4	50.6	0.0	0.0	43.2	0.0	250.0	1.33	48.06	477.5
11 8	226.9	41.2	14.8	0.0	43.2	15.6	290.0	1.62	56.92	933.08
11 9	216.2	39.4	176.0	0.0	43.2	192.9	290.0	1.95	57.49	932.5
11 10	139.3	60.9	77.3	0.0	70.6	89.6	290.0	3.04	58.07	931.93
11 11	75.8	62.2	12.2	0.0	70.6	13,9	290.0	3.49	58.64	931.38
11 12	39.2	60.8	0.0	0.0	70.6	0.0	286.0	3.54	58.23	869.80
12 1	30.3	93.4	0.0	0.0	103.0	0.0	272.4	3.39	55.62	697.02
12 2	23.1	114.8	0.0	0.0	103.0	0.0	249.4	2.89	50.42	470.09
12 3	19.8	90.5	0.0	0.0	76.3	0.0	225.1	2.32	42.41	278.00
12 4	20.1	19.6	0.0	0.0	14.7	0.0	225.0	1.62	42.73	277.2
12 5	40.4	39.9	0.0	0.0	30.8	0.0	225.0	1.34	43.09	276.9
12 6	62.7	57.5	0.0	0.0	43.2	0.0	226.7	1.20	44.38	288.52
12 7	120.4	50.6	0.0	0.0	43.2	0.0	250.1	1.33	52.83	473.6
12 8	226.9	41.2	15.5	0.0	43.2	16.2	290.0	1.62	62.50	927.50
12 9	216.2	39.4	176.0	0.0	43.2	192.9	290.0	1.95	63.06	926.94
12 10	139.3	60.9	77.3	0.0	70.6	89.6	290.0	3.04	63.65	926.33
12 11	75.8	62.2	12.2	0.0	70.6	13.9	290.0	3.49	64.21	925.79
12 12	39.2	60.8	0.0	0.0	70.6	0.0	286.0	3.54	63.74	864.2
13 1	30.3	93.4	0.0	0.0	103.0	0.0	272.3	3.39	60.84	691.42
13 2	23.1	114.8	0.0	0.0	103.0	0.0	249.3	2.89	55.11	464.30
13 3	19.8	89.8	0.0	0.0	75.7	0.0	225.1	2.32	46.36	274.03
13 4	20.1	19.6	0.0	0.0	14.7	0.0	225.0	1.62	46.68	273.3
13 5	40.4	39.9	0.0	0.0	30.8	0.0	225.0	1.34	47.05	272,93
13 6	62.7	57.5	0.0	0.0	43.2	0.0	226.7	1.20	48.40	284.58

(1) Rate of Inflow and Outflow Run-1, Run-2 (4/8)

Y	М	Q00	RI	R2	R3	Wi	W2	HI	EI	WST	vw
13	7	120.4	50.5	0.0	0.0	43,2	0.0	250.2	1.34	57.61	469.72
3	8	226.9	41.1	16.1	0.0	43,2	16.9	290.0	1.62	68.07	921.93
3	9	216.2	39.4	176.0	0.0	43.2	192.9	290.0	1.95	68.64	921,36
3	10	139.3	60.9	77.3	0.0	70.6	89.6	290.0	3.04	69.22	920.78
3	11	75.8	62,2	12.2	0.0	70.6	13.9	290.0	3.49	69.79	920.21
3	12	39,2	60.8	0.0	0.0	70.6	0.0	286.0	3.54	69.24	858.64
4	1	30.3	93.4	0.0	0.0	103.0	0.0	272,3	3.39	66.07	685.81
4	2	23.1	114.9	0.0	0.0	103.0	0.0	249.2	2.89	59.79	458.62
4	3	19.8	89,2	0.0	0.0	75.1	0.0	225.1	2.32	50.32	270.10
4	4	20.1	19.6	0.0	0.0	14.7	0.0	225.0	1.62	50.64	269.37
4	5	40.4	39.9	0.0	0.0	30.8	0.0	225.0	1.34	51.00	269.00
4	6	62.7	57.5	0.0	0.0	43.2	0.0	226.7	1.20	52.42	280.63
4	7	120.4	50.5	0.0	0.0	43,2	0.0	250.3	1.34	62.39	465.83
4	8	226.9	41.1	16.7	0.0	43,2	17.6	290.0	1.63	73.65	916.35
4	9	216.2	39.4	176.0	0.0	43.2	192.9	290.0	1.95	74.21	915.79
4	10	139.3	60.9	77.3	0.0	70.6	89.6	290.0	3.04	74.80	915.20
4	11	75.8	62.2	12.2	0.0	70.6	13.9	290.0	3,49	75.36	914.64
4	12	39.2	60.8	0.0	0.0	70.6	0.0	286.0	3,54	74.74	853.06
5	1	30.3	93.5	0.0	0.0	103.0	0.0	272.3	3.39	71.29	680.21
5	2	23.1	114.9	0.0	0.0	103.0	0.0	2491	2.88	64.47	452.88
5	. 3	19.8	88.5	0.0	0.0	74.5	0.0	225.1	2.31	54.27	266.14
5	4	20.1	19.6	0.0	0.0	14.7	0.0	225.0	1.62	54.59	265.41
5	5	40.4	39.9	0.0	0.0	30.8	0.0	225.0	1.34	54.95	265.05
5	6	62.7	57.5	0.0	0.0	43.2	0.0	226.7	1.20	56.45	276.68
5	. 7	120.4	50.5	0.0	0.0	43.2	0.0	250.4	1.34	67.17	461.93
5	8	226.9	41.1	17.4	0.0	43.2	18.3	290.0	1.63	79.22	910.78
5 .	9	216.2	39.4	176.0	0.0	43.2	192.9	290.0	1.95	79.79	910.21
5	10	139.3	60.9	77.3	0.0	70.6	89.6	290.0	3.04	80.37	909.63
5	11.	75.8	62.2	12,2	0.0	70,6	13.9	290.0	3.49	80.94	909.06
5	12	39.2	60.8	0.0	0.0	70.6	0.0	286.0	3.54	80.25	847.49
6		30.3	93.5	0.0	0.0	103.0	0.0	272.3	3.39	76.51	674.61
6	2	23,1	115.0	0.0	0.0	103.0	0.0	248.9	2.88	69.13	447.14
6	3	19.8	87.8	0.0	0.0	73.9	0.0	225,1	2.31	58.22	262.19
6	4	20.1	19.6	0.0	0.0	14.7	0.0	225.0	1.62	58.54	261.46
6	5	40.4	39. 9	0.0	0.0	30.8	0.0	225.0	1.34	53.90	261.10
6.	6	62.7	57.5	0.0	0.0	43.2	0.0	226.7	1.20	60.47	272,74
6	7	120.4	50.5	0.0	0.0	43.2	0.0	250.5	1.34	71.96	458.04
6	8	226.9	41.1	18.0	0.0	43.2	18.9	290.0	1.63	84.80	905.20
6	9	216.2	39.4	176.0	0.0	43.2	192.9	290.0	1.95	85.37	904.63
6	10	139.3	60.9	77.3	0.0	70.6	89.6	290.0	3,04	85.95	904.05
6	11	75.8	62.2	12.2	0.0	70.6	13.9	290.0	3.49	86.51	903.49
6	12	39.2	60.8	0.0	0.0	70.6	0.0	285.9	3,54	85.75	841.91
7	1	30.3	93.5	0.0	0.0	103.0	0.0	272.2	3.39	81.73	669.00
7	. 2	23.1	115.1	0.0	0.0	103.0	0.0	248.8	2.88	73.78	441.40
7	3	19.8	87.2	0.0	0.0	73.3	0.0	225.1	2,31	62.18	258.24
7	4	20.1	19.6	0.0	0.0	14.7	0.0	225.0	1.62	62.49	257.51
7	- 5	40.4	39.9	0.0	0.0	30.8	0.0	225.0	1.34	62.85	257.15
7	. 6	62.7	57.5	0.0	0.0	43.2	0.0	226.7	1.20	64.50	268.79

(1) Rate of Inflow and Outflow Run-1, Run-2 (5/8)

Y M	Q00	RI	R2	R3	WI	W2	HI	El	WST	vw
17 7	120.4	50.5	0.0	0.0	43.2	0.0	250,6	1,34	76.75	454,14
17 8	226.9	41.1	18.6	0.0	43.2	19.6	290.0	1.63	90.38	899.62
17 9	216.2	39.4	176.0	0.0	43.2	192.9	290.0	1.95	90.94	899,00
17 10	139.3	60.9	77.3	0.0	70.6	89.6	290.0	3.04	91,52	898.48
17 11	75.8	62.2	12.2	0.0	70.6	13,9	290.0	3.49	92.09	897.9
17 12	39.2	60,8	0.0	0.0	:70.6	0.0	285.9	3.54	91.25	836.3.
18 1	30.3	93.5	0,0	0.0	103.0	0.0	272.2	3.39	86.95	663.40
18 2	23.1	115.1	0.0	0.0	103.0	0.0	248,7	2.88	78.43	435.6
18 3	19.8	86.5	0.0	0.0	72.8	0.0	225.1	2.31	66.13	254,2
18 4	20.1	19.6	0,0	0.0	14.7	0.0	225.0	1,62	66.44	253.5
18 5	40.4	39.9	0.0	0.0	30.8	0.0	225.0	1.34	66.80	253,20
18 6	62.7	57.5	0.0	0.0	43.2	0.0	226.8	1.20	68.52	264.8
18 7	120.4	50.4	0.0	0.0	43.2	0.0	250.7	1.34	81.55	450.2
18 8	226.9	41.1	19.3	0.0	43,2	20.3	290.0	1.63	95.95	894.0
18 9	216.2	39.4	176.0	0.0	43.2	192,9	290.0	1.95	96,52	893.4
18 10	139.3	60.9	77.3	0.0	70.6	89.6	290.0	3.04	97.10	892.9
18 11	75.8	62.2	12.2	0.0	70.6	13,9	290.0	3.49	97.67	892.3
18 12	39.2	60.8	0.0	0.0	70.6	0.0	285.9	3.53	96.75	830.7
19 1	30.3	93.5	0.0	0.0	103.0	0.0	272,2	3.38	92,17	657,7
19 2	23.1	115.2	0.0	0.0	103.0	0.0	248.6	2.87	83.07	429.9
19 3	19.8	85.8	0.0	0.0	72.2	0.0	225.1	2.31	70.08	250.3
19 4	20.1	19.6	0.0	0.0	14.7	0.0	225.0	1.62	70.39	249.6
19 5	40.4	39.9	0.0	0.0	30.8	0.0	225.0	1.34	70.75	249.2
19 6	62.7	57.5	0.0	0.0	43,2	0.0	226.8	1.20	72.55	260.9
19 7	120.4	50.4	0.0	0.0	43.2	0.0	250.8	1.34	86.35	446.3
19 8	226.9	41.1	19.9	0.0	43.2	21.0	290.0	1.63	101.53	888.4
19 9	216.2	39.4	176.0	0.0	43.2	192.9	290.0	1.95	102.09	887.9
19 10	139.3	60.9	77.3	0.0	70.6	89.6	290.0	3.04	102.68	887.33
19 11	75.8	62.2	12.2	0.0	70.6	13.9	290.0	3.49	103.24	886.76
19 12	39.2	60.8	0.0	0.0	70.6	0.0	285,9	3.53	102.25	825.13
20 I	30.3	93.5	0.0	0.0	103.0	0.0	272.1	3.38	97.39	652.1
20 2	23.1	115.2	0.0	0.0	103.0	0.0	248.4	2.87	87.70	424.1
20 3	19.8	85.2	0.0	0.0	71.6	0.0	225.1	2.30	74.04	246.3
20 4	20.1	19.6	0.0	0.0	14.7	0.0	225.0	1.62	74.34	245.6
20 - 5	40.4	39.9	0.0	₹ 0.0	30.8	0.0	225.0	1.34	74.70	245.3
20 6	62.7	57.5	0.0	0.0	43.2	0.0	226.8	1.21	76.58	256.9
20 7	120.4	50.4	0.0	0.0	43.2	0.0	250.9	1.34	.91.15	442,4
20 8	226.9	41.1	20.6	0.0	43.2	21.6	290.0	1.63	107.10	882.9
20 9	216.2	39.4	176.0	0.0	43.2	192.9	290.0	1.95	107.67	882,3
20 10	139.3	60.9	77.3	0.0	70.6	89.6	290.0	3.04	108.25	881.7
20 11	75.8	62.2	12.2	0.0	70.6	13.9	290.0	3.49	108.82	881.1
20 12	39,2	60.8	0.0	0.0	70.6	0.0	285.9	3,53	107.75	819.6
21 1	30.3	93,5	0.0	0.0	103.0	0.0	272.1	3.38	102.60	646,5
21 2	23.1	115.3	0.0	0.0	103.0	0.0	248.3	2.87	92.32	418.43
21 : 3	19.8	84.5	0.0	0.0	71.0	0.0	225.1	2.30	77.99	242.43
21 4	20.1	19.6	0.0	0.0	14.7	0.0	225.0	1.62	78.29	241.7
21. 5	40.4	39.9	0.0	0.0	30.8	0.0	225.0	1,34	78.66	241.3
21 6	62.7									

(1) Rate of Inflow and Outflow Run-1, Run-2 (6/8)

Y. M	Q00	RI	R2	R3	W1	W2	HI	ΈI	WST	vw
21 7	120.4	50.4	0.0	0.0	43.2	0.0	251.0	1:34	96.21	438.3
21 8	226.9	.41.1	21.2	0.0	43.2	22.3	290.0	1.63	113.05	876.93
21 9	216.2	39.4	176.0	0.0	43.2	192.9	290.0	1.95	113.74	876.20
21 10	139.3	60.9	77.3	0.0	70.6	89.6	290.0	3,04	114.45	875.5
21 11	75.8	62.2	12.2	0.0	70.6	13.9	290.0	3.49	115.14	874.8
21 12	39.2	60.8	0.0	0.0	70.6	0.0	285.9	3.53	113.99	813.2
22 1	30.3	93,5	0.0	0.0	103.0	0.0	272.0	3.38	108.50	640,2
22 2	23.1	115.4	0.0	0.0	103.0	0.0	248.2	2.87	97.54	411.8
22 3	19.8	83.7	0.0	0.0	70.3	0.0	225.1	2.30	82.46	237.9
22 4	20.1	19.6	0.0	0.0	14.7	0.0	225.0	1.62	82.76	237.2
22 5	40.4	39.9	0.0	0.0	30.8	0.0	225.0	1.34	83.12	236.8
22 .6	62.7	57.5	0.0	0.0	43.2	0.0	226.8	1.21	85.23	243,4
22 7	120.4	50.4	0.0	0.0	43.2	0.0	251.1	1.34	101.66	433.9
2 8	226.9	41.1	21.9	0.0	43,2	23.1	290.0	1.63	119.38	870.6
2 9	216.2	39.4	176.0	0.0	43.2	192.9	290.0	1.95	120.07	869.9
22 10	139.3	60.9	77.3	0.0	70.6	89.6	290.0	3.04	120.78	869.2
22 11	75.8	62.2	12.2	0.0	70.6	13.9	290.0	3.49	121.47	868.5
22 12	39.2	60.8	0.0	0.0	70.6	0.0	285.9	3.53	120.23	806.9
23 1	30,3	93.5	0.0	0.0	103.0	0.0	272.0	3.38	114.40	633.8
23 2	23.1	115.4	0.0	0.0	103.0	0.0	248.0	2.86	102.74	405.3
3 3	19.8	83.0	0.0	0.0	69.6	0.0	225.1	2.30	86.92	233.4
3 4	20.1	19.6	0.0	0.0	14.7	0.0	225.0	1.62	87.22	232.7
23 5	40.4	39.9	0.0	0.0	30.8	0.0	225.0	1.34	87,53	232.4
3 6	62.7	57.5	0.0	0.0	43.2	0.0	226.8	1,21	89.84	243.9
3 - 7	120.4	50.3	0.0	0.0	43.2	0.0	251,2	1,35	107.12	429.5
3 8	226.9	41.0	22.7	0.0	43.2	23.9	290.0	1.63	125.71	864.2
3 9	216.2	39.4	176.0	0.0	43.2	192.9	290.0	1.95	126.39	863.6
3 10	139.3	60.9	77,3	0.0	70.6	89.6	290.0	3.04	127.10	862.9
3 11	75,8	62,2	12,2	0.0	70.6	13.9	290.0	3.49	127.79	862.2
3 12	39.2	60.8	0.0	0.0	70.6	0.0	285.9	3.53	126.47	800.6
4 1	30.3	93.6	0.0	0.0	103.0	0.0	272.0	3.38	120.30	627.5
4 2	23.1	115.5	0.0	0.0	103.0	0.0	247.9	2.86	107.93	398.8
4 3	19.8	82.2	0.0	0.0	69.0	0.0	225.1	2.29	91.39	229.0
4 4	20.1	19.6	0.0	0.0	14.7	0.0	225.0	1.62	91.68	228.3
4 5	40.4	39.9	0.0	0.0	30.8	0.0	225.0	1.34	92.05	227.9
4 6	62.7	57.5	0.0	0.0	43.2	0.0	226.8	1.21	94,39	239.5
4 7	120.4	50.3	0.0	0.0	43.2	0.0	251.3	1.35	112.58	425.1
4 8	226.9	41.0	23.4	0.0	43.2	24.6	290.0	1.63	132.03	857.9
4 9	216.2	39.4	176.0	0.0	43.2	192.9	290.0	1.95	132.72	857.2
4 10	139.3	60.9	77.3	0.0	70.6	89.6	290.0	3.04	133.43	856,5
4. II	75.8	62.2	12.2	0.0	70.6	13.9	290.0	3.49	134.12	855.8
4 12	39.2	60.8	0.0	0,0	70.6	0.0	285.9	3.53	132.70	794.29
5 1	30.3	93.6	0.0	0.0	103.0	0.0	271.9	3.38	126,20	621.1
5 2	23.1	115.6	0.0	0.0	103.0	0.0	247.7	2.86	113.11	392.3
5 3	19.8	81.4	0.0	0.0	68.3	0.0	225.:	2.29	95.85	224.50
5 4	20,1	19.6	0.0	₫0.0	14.7	0.0	225.0	1.62	96.15	223.8
	40.4	39.9	0.0	0.0	30.8	0.0	225.0	1.34	96.51	223,49

(1) Rate of Inflow and Outflow Run-1, Run-2 (7/8)

Y M	Q00	R1	R2	R3	WI	W2	Н!	El	WST	vw
25 6	62.7	57.5	0,0	. 0.0	43,2	0.0	226.8	1.21	98,95	235.06
25 7	120.4	50.3	.0.0	0.0	43.2	0.0	251.4	1.35	118.05	420.75
25 8	226.9	41.0	24.1	0.0	43.2	25.4	290.0	1.63	138.36	851.64
25 9	216.2	39.4	176.0	0.0	43.2	192.9	290.0	1.95	139.04	850.96
25 10	139.3	60.9	77.3	0.0	70.6	89.6	290.0	3.04	139.76	850.24
25 . 11	75.8	62,2	12,2	0.0	70.6	13.9	290.0	3.49	140,44	849.56
25 12	39.2	60.8	0.0	0.0	70.6	0.0	285.9	3.53	138.94	787.96
26 I	30.3	93,6	0.0	0.0	103.0	0.0	271.9	3.38	132,09	614.78
26 2	23.1	115.6	0.0	0.0	103.0	0.0	247.6	2.85	118.28	385,76
26 3	19.8	80.6	0.0	0.0	67.6	0.0	225.1	2.29	100.32	220,10
26 4	20.1	19.6	0.0	0.0	14.7	0.0	225.0	1,62	100.61	219.39
26 5	40.4	39.9	0.0	0.0	30.8	0.0	225.0	1.34	100.97	219.03
26 6	62.7	57.5	0.0	0.0	43.2	0.0	226,9	1.21	103.51	230.61
26 7	120.4	50.3	0.0	0.0	43.2	0.0	251.5	1.35	123.53	416.36
26 8	226.9	41.0	24.9	0.0	43.2	26.2	290.0	1,64	144.68	845.32
26 9	216.2	39.4	176.0	0.0	43.2	192,9	290.0	1.95	145,37	844.63
26 10	139.3	60.9	77.3	0.0	70.6	89.6	290.0	3.04	146.03	843.92
26 11	75.8	62.2	12.2	0.0	70.6	13.9	290.0	3.49	146.77	843.23
26 12	39,2	60.8	0.0	0.0	70.6	0.0	285.9	3.53	145.17	781.63
27 . 1	30.3	93.6	0.0	0.0	103,0	0.0	271.8	3.38	137.98	608,42
27 2	23.1	115.7	0.0	0.0	103.0	0.0	247.4	2.85	123,43	379.22
27 3	19.8	79.9	0.0	0.0	66.9	0.0	225.1	2.29	104.78	215,63
27 4	20.1	. 19.6	0.0	0.0	14.7	0.0	225.0	1.62	105.07	214.93
27 5	40.4	39.9	0.0	0.0	30.8	0.0	225.0	1.34	105.43	214.57
27 6	62.7	57.5	0.0	0.0	43,2	0.0	226.9	1.21	108.07	226,15
27 7	120.4	50.2	0.0	0.0	43.2	0.0	251.7	1.35	129.01	411.97
27 8	226.9	41.0	25.6	0.0	43.2	27.0	290.0	1.64	151.01	838.99
27 - 9	216.2	39.4	176.0	0.0	43.2	192.9	290.0	1.95	151.70	838.30
27 - 10	139.3	60.9	77.3	0.0	70.6	89.6	290.0	3.04	152.41	837.59
27 - 11	75.8	62.2	12.2	0.0	70.6	13.9	290.0	3.49	153.09	836.91
27 12	39.2	60.8	0.0	0.0	70.6	0.0	285.9	3,53	151.41	775.30
28 1	30.3	93.6	0.0	0.0	103.0	0.0	271.8	3.38	143.87	602.06
28 2	23.1	115.8	0.0	0,0	103.0	0.0	247.3	2.85	128.57	372.68
28 3	19.8	79.1	0.0	0.0	66.3	0.0	225.1	2.28	109.25	211.17
28 4	20.1	19.6	0.0	0.0	14.7	0.0	225.0	1.62	109.53	210.47
8 5	40.4	39.9	0.0	0.0	30.8	0.0	225.0	1.34	109.89	210.11
28 6	62.7	57.5	0.0	0.0	43.2	0.0	226.9	1.21	112.63	221.70
28 7	120.4	50.2	0.0	0.0	43.2	0.0	251.8	1.35	134.50	407.57
8 8	226.9	41.0	26.3	0.0	43.2	27.8	290.0	1.64	157.33	832.67
28 9	216.2	39.4	176.0	0.0	43.2	192.9	290.0	1.95	158.02	831.98
28 10	139.3	60.9	77.3	0.0	70.6	89.6	290.0	3.04	158.73	831.27
8 11	75.8	62.2	12.2	0.0	70.6	13.9	290.0	3.49	159.42	830.58
28 12	39.2	60.8	0.0	0.0	70.6	0.0	285.9	3.53	157.64	768.98
9 : 1	30.3	93.6	0.0	0.0	103.0	0.0	271.8	3.38	149.76	595.70
9 2	23.1	115.9	0.0	0.0	103.0	0.0	247.1	2.85	133.70	366.14
29 3	19.8	78.3	0.0	0.0	65.6	0.0	225.1	2.28	113.71	206.70
29 4	20.1	19.6	0.0	0.0	14.7	0.0	225.0	1.62	113.99	206.01
9 5	40.4	39.9	0.0	0.0	30.8	0.0	225.0	1.34	114.36	205.64
.9 6	62.7	57.5	0.0	0.0	43.2	0.0	226.9	1.21	117.19	217,24

(1) Rate of Inflow and Outflow Run-1, Run-2 (8/8)

	·									
Y M	Q00	Ri	R2	R3	WI	W2	HI	EI	WST	vw
29 7	120.4	50.2	0.0	0.0	43.2	0.0	251.9	1.35	139.99	403.18
29 8	226.9	41.0	27.0	0.0	43.2	28.5	290.0	1.64	163.66	826.34
29 9	216.2	39.4	176.0	0.0	43.2	192.9	290.0	1.95	164.35	825.65
29 10	139.3	60.9	77.3	0.0	70.6	89.6	290.0	3.04	165.06	824.94
29 11	75.8	62.2	12.2	0.0	70.6	13.9	290.0	3.49	165.75	824.25
29 12	39.2	60.8	0.0	0.0	70.6	0.0	285.9	3.53	163.88	762.65
30 1	30,3	93.6	0.0	0.0	103.0	0.0	271.7	3.38	155.65	589.34
30 2	23.1	115.9	0.0	0.0	103.0	0.0	246.9	2.84	138.81	359.59
30 3	19.8	77.5	0.0	0.0	64.9	0.0	225.1	2,28	118.18	202.24
30 4	20.1	19.6	0,0	0.0	14.7	0.0	225.0	1.62	118.46	201,54
30 5	40.4	39.9	0.0	0.0	30.8	0.0	225.0	1.34	118.82	201.18
30 6	62.7	57.5	0.0	0.0	43.2	0.0	226.9	1.21	121.75	212.79
30 7	120.4	50.2	0.0	0.0	43.2	0.0	252.0	1.35	145.49	398.79
30 8	226.9	41.0	. 27,8	0.0	43.2	29.3	290.0	1.64	169.98	820.02
30 9	216.2	39.4	176.0	0.0	43.2	192.9	290.0	1.95	170.67	819.33
30 10	139.3	60.9	77.3	0.0	70.6	89.6	290.0	3.04	171.38	818.62
30 - 11	75.8	62,2	12.2	0.0	70.6	13.9	290.0	3,49	172.07	817.93
30 12	39.2	60.8	0.0	0.0	70.6	0.0	285.9	3.53	170.11	756.32
31 1	30.3	93.6	0.0	0.0	103.0	0.0	271.7	3.38	161.53	582.98
1 2	23.1	116.0	0.0	0.0	103.0	0.0	246.8	2.84	143.91	353.05
31 ; 3	19.8	76.8	0.0	0.0	64.2	0.0	225.1	2.28	122.64	197.78
31 4	20.1	19.6	0.0	0.0	14.7	0.0	225.0	1.62	122.92	197,08
11 5	40.4	39.9	0.0	0.0	30.8	0.0	225.0	1.34	123.28	196.72
31 6	62.7	57,5	0.0	0.0	43.2	0.0	226.9	1.21	126.32	208.34
31 7	120.4	50.1	0.0	0.0	43.2	0.0	252.1	1.36	151.00	394.40
31 8	226.9	41.0	28.5	0.0	43.2	30.1	290.0	1.64	176.31	813.69
31 9	216.2	39.4	176.0	0.0	43.2	192.9	290.0	1.95	177.00	813.00
31 10	139,3	60.9	77.3	0.0	70.6	89.6	290.0	3.04	177.71	812.29
31 11	75.8	62.2	12.2	0.0	70.6	13.9	290.0	3.49	178.40	811.60
31 12	39.2	60.8	0.0	0.0	70.6	0.0	285.9	3.53	176.35	749.99

()

(2) Rate of Inflow and Outflow Run-3, Run-4 (1/8)

Y M	Q00	RI	R2	R3	W1	W2	HI	El	WST	vw
1 7	97.6	0.0	0.0	0,0	0.0	0,0	217,0	.48	.53	260.35
1 8	126.5	0.0	0.0	0.0	0.0	0.0	257.8	1.11	1.17	597.47
1 9	181,3	0.0	0.0	29.7	0.0	0.0	290.0	1.68	1.73	988.27
1 10	165.5	61.3	103.1	0.0	70.6	118.7	290.0	3.04	2.32	987.68
1 11	64.0	62.I	.5	0.0	70.6	.6	290.0	3.49	2.88	987.12
1 12	51.1	60.4	0.0	0.0	70.6	0.0	288.2	3.57	3.22	958.32
2 1	45.7	91.1	0.0	0.0	103.0	0.0	279.3	3.53	3,44	832.97
2 2	23.4	108.5	0.0	0.0	103.0	0.0	260,5	3.17	3.45	621.95
2 3	18.5	115.9	0.0	0.0	103.0	0.0	230.4	2.58	3.04	358.25
2 4	18.5	33,7	0.0	0.0	25.8	0,0	225,0	1.69	3.23	316.84
2 5	43.7	43.2	0.0	0.0	33.4	0.0	225.0	1.34	3.59	316.4
2 .6	. 49.6	49.1	0.0	0,0	36.7	0.0	225.0	1.19	4.16	315.84
2 . 7	180.8	48.2	0.0	0.0	43.2	0.0	265.3	1.46	5.75	668.93
2 8	357.9	41.4	198.3	0.0	43.2	207.3	290.0	1.74	6.74	983.20
2 9	121.9	38.4	82.7	0.0	43.2	93.2	290.0	1.95	7.31	982.69
2 10	289.6	64.3	224,1	0.0	70.6	245.9	290.0	3.04	7.89	982.1
2 11	56.7	62.3	0.0	0.0	70.6	0.0	288.9	3.47	8.43	963.50
2 12	31.3	61.4	0.0	0.0	70.6	0.0	283.1	3.47	8.60	879.1
3 1	22.9	95.8	0.0	0.0	103.0	0.0	266.6	3.25	8.36	630.4
3 2	16.1	121.2	0.0	0.0	103.0	0.0	238.7	2.64	7.27	420.9
3 : 3	10.6	49.8	0.0	0.0	40.6	0.0	225.0	2.15	6.84	313.3
3 4	12,5	12.0	0.0	0.0	9.0	0.0	225.0	1.62	7.18	312.8
3 5	54.6	54.1	0.0	0.0	41.8	0.0	225.0	1.34	7.55	312.43
3 6	68.0	57.I	0.0	0.0	43.2	0.0	228.6	1.22	8.33	338.8
3 7	105.3	50.9	0.0	0.0	43.2	0.0	246.2	1.32	9.89	482.5
3 8	327.3	42.3	99.3	0:0	43.2	101.6	290.0	1.59	12.32	977.6
3 9	212.0	39.4	171.9	0.0	43.2	188.7	290.0	1.95	12.88	977.13
3 10	70.9	60.2	9.6	0.0	70.6	11.3	290.0	3.04	13.47	976.53
3 11	53.9	62.4	0.0	0.0	70.6	0.0	288.4	3.46	13.96	950.5
3 12	35.1	61.5	0.0	0.0	70.6	0.0	283.3	3.47	14.07	876.19
4 I	21,1	95.8	0.0	0.0	103.0	0.0	266.4	3.25	13,47	672.59
4 2	18.0	121.3	0.0	0.0	103.0	0.0	238.8	2.64	11.76	417.6
4 3	13.0	52.5	0.0	0.0	42.8	0.0	225.0	2.15	10.84	309.3
4 4	18.7	18.2	0.0	0.0	13.6	0.0	225.0	1.62	11.19	308.8
4 5	37.1	36.6	0.0	0.0	28.3	0.0	225.0	1.34	11.55	308.4
4 6	56.3	55.8	0.0	0.0	41.7	0.0	225.0	1.19	12.12	307.8
4 7	49.5	49.1	0.0	0.0	37.9	0.0	225.0	1.10	12.70	307.3
4 8	180.6	48.2	0.0	0.0	43.2	0.0	265.5	1.23	16.56	660.1
4 9	154.2	40.8	0.0	0.0	43.2	0.0	288.8	1.73	18.41	951.7
4 10	139.1	61.0	69.6	0.0	70.6	80.5	290.0	3.03	19.04	970.9
4 11	58.2	62.3	0.0	0.0	70.6	0.0	289.1	3.48	19.57	956.3
4 12	31.8	61.3	0.0	0.0	70.6	0.0	283.5	3.48	19.58	873.6
5 1	24.5	95.4	0.0	0.0	103.0	0.0	267.6	3.28	18.80	680.1
5 2	16.6	120.2	6.0	0.0	103.0	0.0	240.2	2.68	16.52	424.3
5 3	13.7	57.2	0.0	0.0	46.9	0.0	225.0	2.17	15.09	305.1
5 4	13.4	12.9	0.0	0.0	9.6	0.0	225.0	1.62	15.43	304.5
5 5	15.2	14.7	0.0	0.0	11.4	0.0	225.0	1.34	15.80	304.2
5 6	148.0	51.7	0.0	0.0	43.2	0.0	254.9	1.43	19.63	551.8

 \bigcirc

(2) Rate of Inflow and Outflow Run-3, Run-4 (2/8)

					200					
Y M	Q00	RI	R2	R3	Wţ	W2	Ш	El	WST	vw
5 7	219.2	40.6	22.6	0.0	43.2	24.1	290.0	1.97	22.89	967.11
5 8	358.2	39.8	266.2	51.5	43.2	289.4	290.0	1.95	23.47	966.53
5 9	184.7	39.0	144.9	0.0	43.2	160.6	290.0	1,95	24.03	965.97
5 - 10	121.8	60.7	60.0	0.0	70.6	69.8	290,0	3.04	24.62	965,38
5 - 11	116.2	62.6	52,2	0.0	70,6	58.9	290.0	3.49	25.18	964.82
5 12	56,2	60,3	0.0	0.0	70.6	0.0	289.1	3.59	25.48	950,04
6 1	31.3	91.4	0.0	0.0	103.0	0.0	277.2	3.52	24.75	785.33
6 2	19.6	110.7	0.0	0.0	103.0	0.0	256,1	3.07	22.81	559,88
6 3	17.0	112.5	0.0	0.0	96.6	0.0	225.0	2.43	18.70	301.33
6 4	18.8	18.2	0.0	0.0	13.6	0.0	225.0	1.62	19.05	300.95
6 5	19.9	19.4	0.0	0.0	15.0	0.0	225.0	1.34	19.42	300.58
6 6	24.1	23.6	0.0	0.0	17.7	0.0	225.0	1.19	19.98	300.02
6 7	37.1	36.7	0.0	0.0	28.4	0.0	225.0	1.10	20.56	299.44
6 8	148.8	49.7	0.0	0.0	43.2	0.0	256.8	1.16	25.70	563.18
6 9	182.9	41.9	0.0	0.0	43.2	0.0	287.8	1.66	29.44	926.16
6 10	121.0	60.9	46.2	0.0	70.6	53.6	290.0	3.01	30.19	959.81
6 11	143.0	63.0	78.7	0.0	70.6	88.2	290.0	3.49	30.76	959.24
6 12:	65.4	60.1	3.9	0.0	70.6	4.6	290.0	3.60	31.12	958.88
7 1	26.1	91.1	0.0	0.0	103.0	0.0	277.3	3,53	30.14	780.90
7 2	18.6	110.7	0.0	0.0	103.0	0.0	255.9	3.07	27.79	552.90
7 3	13.1	107.6	0.0	0.0	92.4	0.0	225.0	2,42	22.91	297,10
7 4	11.3	10.7	0.0	0.0	8.0	0.0	225.0	1.62	23.26	296,74
7. : 5	15.8	15.3	0.0	0.0	11.8	0.0	225.0	1.34	23.62	296.38
7: 6	21.5	21.0	0.0	0.0	15.8	0.0	225.0	1,19	24.18	295.82
7 . 7	46.7	46.3	0.0	0.0	35.8	0.0	225.0	1.10	24.77	295.23
7 8	84.3	53.7	0.0	0.0	43.2	0.0	235.6	1.00	27.26	375.48
7 9	107.4	50.1	0.0	0.0	43.2	0.0	253.0	1.21	30.70	522.18
7 - 10	81.4	74.4	0.0	0.0	70.6	0.0	254.8	2.[3	31.57	538.12
7 11	42.0	79.4	0,0	0.0	70.6	0.0	243.5	2.31	30.19	438.30
7 12	17.2	70.4	0.0	0.0	. 58.3	0.0	225.0	1.97	26.93	293.34
8 I	21.9	21,3	0.0	0.0	16.5	0.0	225.0	1.78	27.28	292,72
8 2.	14.3	13.6	0.0	0.0	9.6	0.0	225.0	1.82	27.61	292.39
8 3	12.4	11.7	0.0	0.0	9.0	0.0	225.0	1.93	27.97	292.03
8 : 4	18.1	17.5	0.0	0.0	13.1	0.0	225.0	1.62	28.32	291,68
8.5	26.9	26.4	0.0	0.0	20.4	0.0	225.0	1.34	28.68	291.32
8 : 6	24.0	23.5	0.0	0.0	17.6	0.0	225.0	1.19	29,25	290.75
3 7	40.9	40.5	0.0	0.0	31.3	0.0	225,0	01.1	29.83	290.17
8 8	82.6	53.9	0.0	0.0	43.2	0.0	235.0	1.00	32.46	365,54
8 9	170.0	47.5	0.0	0.0	43.2	0.0	269,5	1.34	38.51	681.22
8 . 10.	84.2	66.7	0.0	0.0	70.6	0.0	273.4	2.56	39,55	724.91
8 11	74.7	67.9	0.0	0.0	70.6	0.0	274.7	3.01	40.26	739.09
3 12	54,7.	66.0	0.0	0.0	70.6	0.0	271.8	3.08	40.27	705.51
) [37.8	102.9	0.0	0.0	103.0	0.0	254,4	2.89	38.07	528,03
2	27.5	124.9	0.0	0.0	96.8	0.0	225.0	2.25	32.23	287.80
9 3	27.0	26,3	0.0	0.0	20.3	0.0	225.0	1.93	32.59	287.41
9 4	32.9	32.3	0.0	0.0	24.2	0.0	225.0	1.62	32.94	287.06
9 - 15	29.7	29.2	0.0	0.0	22.6	0.0	225.0	1.34	33.30	286.70
9 6	49.3	48.8	0.0	0.0	36.5	0.0	225.0	1.19	33.87	286.13

(2) Rate of Inflow and Outflow Run-3, Run-4 (3/8)

Y M	Q00	RI	R2	R3	wı	W2	н	El	WST	vw
9 7	- 73,5	54.6	0.0	0,0	43.2	0.0	231.6	1.15	35.99	334.82
9 8	106.9	49,7	0.0	0.0	43.2	0.0	250.1	1.16	40.39	486.33
9 9	207.2	42.7	0,0	0.0	43.2	0.0	287.9	1.61	46.15	910.44
9 10	119.6	60.8	45.2	0.0	70.6	52.5	290.0	3.02	46.92	943.08
9 11	74.4	62.2	10.9	0.0	70.6	12.3	290.0	3.49	47,49	942,51
9 12	60.9	60,1	0.0	0.0	70.6	0.0	289.9	3.60	47.84	940.65
10 1	42.9	90,2	0.0	0.0	103,0	0.0	280.9	3,59	47.14	809.95
0 2	28.0	106.9	0.0	0.0	103.0	0.0	263.8	3.25	45.02	613.94
10 3	25.5	.111.6	0.0	0.0	103.0	0.0	237.7	2.75	40.03	380.2
0 4	23.2	54.7	0.0	0.0	43.2	0.0	226.8	. 1.81	37.55	296.43
10. 5	25.2	29.7	0.0	0.0	23.2	0.0	225.0	1.36	37.39	282,63
0 6	42.8	42.3	0.0	0.0	31.7	0.0	225.0	1.19	37.95	282;0.
10 7	69.9	54.9	0.0	0.0	43.2	0.0	230.3	1.14	39.99	320.39
0 8	61,1	53,2	0.0	0.0	43.2	.0.0	232,9	1.02	41.26	339.80
0 9	66.4	53.6	0.0	0.0	43.2	0.0	237.0	1.07	42.86	371.2
10 10	44.6	77.8	0.0	0.0	62.7	0.0	225.0	1.59	40.08	280.0
11 01	23.5	22.9	0.0	0.0	17.2	0.0	225,0	1.66	40.64	279.30
0 12	21.5	20.9	0.0	0.0	16.2	0.0	225.0	1.71	41.00	279.00
1 1 1	30.4	29.7	0.0	0.0	23.0	0.0	225.0	1.78	41.36	278.6
1 2	20.9	20.2	0.0	0.0	14.2	0.0	225.0	1.82	41.69	278.3
1 3	15.5	14.8	0.0	0.0	11.4	0.0	225.0	1,93	42.06	277.9
1 4	19.9	19.3	0.0	0.0	14.4	0.0	225.0	1.62	42.41	277,5
1 5	29.3	28.8	0,0	0.0	22,3	0.0	225.0	1.34	42.77	277.23
1 6	74.8	56.5	0.0	0.0	43.2	0.0	231.2	1.25	45.18	322.63
1 7	84.8	51.1	0.0	0.0	43.2	0.0	242.4	1.31	48.55	410.84
1 8	444.8	44.6	204.4	0.0	43.2	198.3	290.0	1.57	56.92	933.08
1 9	112.9	38.3	73.8	0.0	43.2	83.2	290.0	1.95	57.49	932.5
1 10	80.9	60.2	19.5	0.0	70.6	22.9	290.0	3.04	58.07	931.93
11 11	27.4	63,2	0.0	0.0	70.6	0.0	283.5	3.39	57.81	835,26
11 12	14.8	64.2	0.0	0.0	70.6	0.0	272.7	3.23	56.56	699.7
2 1	25.0	103.6	0.0	0.0	103.0	0.0	251.5	2.86	52.87	486.29
2 2	25.2	110.9	0.0	0.0	85.4	0.0	225.1	2.21	45.84	274.5
2 3	23.2	22.6	0.0	0.0	17.5	0.0	225.0	1.93	46.18	273.82
2 4	22.2	21.6	0.0	0.0	16.2	0.0	225.0	1.62	46.53	273,4
2 5	29,3	28.8	0.0	0.0	22.3	0.0	225.0	1.34	46.89	273.1
2 6	47.2	46.7	0.0	0.0	34.9	0.0	225.0	1.19	47.46	272.5
2 7	164.7	48.8	0.0	0.0	43.2	0.0	261.8	1.43	57.56	580.9
2 8	135.4	40.5	0.0	0.0	43.2	0.0	283.6	1.66	61,68	832.8
2 9	157.1	39.1	8.08	0.0	43.2	89.4	290.0	1.89	63.06	926.9
2 10	106.3	60.5	44.7	0.0	70.6	52.1	290.0	3.04	63.65	926,3
2 11	46,2	62.6	0.0	0.0	70. 6	0.0	287.0	3.44	63.82	879.8
2 12	40.1	61.8	0.0	0.0	70.6	0.0	282.7	3.44	63.54	818.0
3 1	27.2	95.8	0.0	0.0	103.0	0.0	266.9	3.25	61.13	630.6
3 2	20.4	120.6	0.0	0.0	103.0	0.0	239.9	2.66	54.80	383.1
3	29.1	70.4	0.0	0.0	57.4	0.0	225.0	2.17	50.18	270.0
13 4	31.5	31.0	0.0	0.0	23.2	0.0	225.0	1.62	50.51	269.4
13 5	43.5	43.0	0.0	0.0	33.2	0.0	225.0	1.34	50.88	269.13
13 6	36.4	35.9	0.0	0.0	26.9	0.0	225.0	1.19	51.44	268.5

 $(\dot{})$

()

(2) Rate of Inflow and Outflow Run-3, Run-4 (4/8)

									1. 4. 4.	
Y M	Q00	RI	R2	R3	wı	W2	ні	El	WST	vw
13 7	180,2	48.0	0.0	0.0	43.2	0.0	266,2	1.47	63.54	620,44
13 8	175.0	39.3	22.3	0.0	43.2	24.5	290.0	1.75	68.07	921,93
13 9	243.8	39.9	203.2	0.0	43.2	220.3	290.0	1.95	68.64	921.36
13 10	104.8	60.5	43.2	0.0	70.6	50.4	290.0	3.04	69.22	920.78
13 11	45.1	62,7	0.0	0.0	70.6	0.0	286.8	3.44	69.32	871.34
13 12	44.9	61.7	0.0	0.0	70.6	0.0	283.4	3.44	69.12	822,59
14 1	48.9	93.8	0.0	0.0	103.0	0.0	273,6	3,37	67.63	698.65
14 2	39.5	111.9	0.0	0.0	103.0	0.0	256.1	3.01	63.97	518.74
14 3	35.2	118.5	0.0	0.0	103.0	0.0	228.7	2.48	55.56	293.05
14 4	28.1	37.9	0.0	0.0	28.8	0.0	225.0	1.67	54.39	265.66
14 5	22.3	21.8	0.0	0.0	16.9	0.0	225,0	1.34	54.75	265.25
14 6	153.6	51.2	0.0	0.0	43.2	0,0	257.3	1.50	65.92	523.51
14 7	112.3	42.0	0.0	0.0	43.2	0.0	275.1	1.84	70.48	714.07
14 8	131.9	38.3	17.2	0.0	43.2	19.4	190.0	1.82	73.65	916.35
14 9	347.6	41.1	264.9	40.8	43.2	278.7	290.0	1.95	74.21	915.79
14 10	92.0	60,3	30.5	0.0	70.6	35.7	290.0	3.04	74.80	915.20
14 11	36.7	62.9	0.0	0.0	70.6	0.0	285.3	3.42	74.57	843,36
14 12	18.6	63.3	0.0	0.0	70.6	0.0	275.8	3.30	73.05	720.21
15 1	17.2	101.9	0.0	0.0	103.0	0.0	253.5	2.94	67.69	490.28
15 2	8.81	110.9	0.0	0.0	86.0	0.0	225.1	2.24	57,54	262.91
15 3	10.0	9.4	0.0	0.0	7.3	0.0	225.0	1.93	57.87	262.13
5 4	24.1	23.5	0.0	0.0	17.6	0.0	225.0	1.62	58.22	261.78
5 5	17.1	16.6	0.0	0.0	12.9	0.0	225.0	1.34	58.59	261.41
5 6	21.4	20.9	0.0	0.0	15.7	0.0	225.0	1.19	59.15	260.85
15 7	55.7	55,3	0.0	0.0	42.7	0.0	225.0	1.10	59.74	260.26
5 8	502.1	47.4	211.0	0.0	43.2	192.4	290.0	1.44	79.22	910.78
5 9	255.3	40.1	214.5	0.0	43.2	231.4	290.0	1.95	79.79	910.21
5 10	282.2	64.1	217.0	0.0	70.6	238.9	290.0	3.04	80.37	909.63
5 11	99.5	62.4	35.7	0.0	70.6	40.4	290.0	3.49	80.94	909.06
5 12	57.0	60.2	0.0	0.0	70.6	0.0	289.2	3.59	81.17	896.48
6 1	14.0	92.4	0.0	0.0	103.0	0.0	273.1	3,45	78.06	682.78
6 2	9.2	115.8	0.0	0.0	103.0	0.0	245.9	2.85	70.19	419.44
6 3	13.6	72.8	0.0	0.0	60.7	0.0	225.0	2.26	62.03	258.32
6 4	10.4	9.9	0.0	0.0	7.4	0.0	225.0	1.62	62.36	257.64
6 5	6.3	5.8	0.0	0.0	4.5	0.0	225.0	1.34	62.72	257.28
6 6	33.4	32.9	0.0	0.0	24.7	0.0	225.0	1.19	63.29	256.71
6 7	193.6	47.4	0.0	0.0	43.2	0.0	270.0	1.50	79.84	646.14
6 8	167.2	38.9	30.7	0.0	43.2	34.1	290.0	1.78	84.80	905.20
6 9	129.7	38.5	90.5	0.0	43.2	101.7	290.0	1.95	85.37	904.63
6 10	116.4	60.6	54.7	0.0	70.6	63.7	290.0	3.04	85.95	904.05
6 11	29.9	63.1	0.0	0.0	70.6	0.0	284.0	3.40	85.28	814.05
6 12	16.0	63,9	0.0	0.0	70.6	0.0	273.5	3.25	83.10	682.28
7 1	7.9	105.0	0.0	0.0	103.0	0.0	246.4	2.80	74.68	419.09
7 2	8.0	74.4	0.0	0.0	56.6	0.0	225.0	2.13	65.74	254.60
7 3	8.1	7.5	0.0	0.0	5.8	0.0	225.0	1.93	66.08	253,92
7 4	8.6	8.0	0.0	0.0	6.0	0.0	225.0	1.62	66.43	253.57
7 5	229.4	46.1	0.0	0.0	43.2	0.0	278.7	1.94	86.14	742.31
7 6	175.9	39.5	74.1	0.0	43.2	0.18	290.0	2.38	89.21	900.79

(2) Rate of Inflow and Outflow Run-3, Run-4 (5/8)

	· - · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·								
Y • M	Q00	R!	R2	R3	wi,	W2	HI	El	WST	VW
17 7	156.8	37.5	118.5	0.0	43.2	136.7	290.0	2,31	89.79	900.21
17 8	178.6	37.7	140.2	0.0	43,2	160.8	290.0	1.95	90.38	899.62
17 9	244.6	39.9	204.0	0.0	43.2	221.1	290.0	1.95	90.94	899.06
17 10	60,0	160.1	0.0	0.0	70,6	0.0	289,8	3.04	91.48	895.07
17 11	54,3	62.5	0.0	0.0	70.6	0.0	288.2	3.46	91,71	869.94
17 12	58.5	60.8	0.0	0.0	70,6	0.0	287.6	3.53	91,93	859.94
18 1	27.1	92,6	0.0	0.0	103.0	0.0	273.8	3,44	88.63	680,68
8 2	14.5	114.5	0.0	0.0	103.0	0.0	248.6	2.90	80.03	433,32
18 3	10.3	77.4	0.0	0,0	65.2	0.0	225.1	2.31	69.39	251.0
8 4	14.9	14.4	0.0	0.0	10.8	0.0	225.0	1,62	69.71	250.29
18 5	18.5	18.0	0.0	0.0	13,9	0.0	225.0	1.34	70.08	249.92
18 6	15.7	15.2	0.0	0.0	11.4	0.0	225.0	1.19	70,64	249,30
18 7	0.801	51.9	0.0	0.0	43.2	0.0	244.6	1.27	80.58	397.67
18 8	561.1	45.7	260.3	69.0	43.2	246.4	290.0	1.58	95.95 •	394.05
18 9	726.0	41.1	264.9	419.2	43.2	278.7	290.0	1.95	96.52	893.48
18 10	275.0	63.9	210.0	0.0	70.6	232.1	290.0	3.04	97.10	892.90
18 11	60.1	62.2	0.0	0.0	70.6	0.0	289.4	3.48	97.54	883.39
18 12	24.9	61.4	0.0	0.0	70.6	0.0	282.4	3.47	96.08	781.82
19 1	21.7	96.5	0.0	0.0	103.0	0.0	264.7	3.21	90,85	577.9
19 2	20.4	123.4	0.0	0.0	103.0	0.0	235.6	2.56	78.74	323.88
19 3	24.0	51.9	0.0	0.0	41.8	0.0	225.0	2.10	73.44	246.74
9 4	10.0	9.4	0.0	0.0	7.1	0.0	225.0	1.62	73.78	246.2.
19 5	43.0	42.5	0.0	0.0	32.9	0.0	225.0	1.34	74.14	245,86
9 6	64.3	57.4	0.0	0.0	43,2	0.0	227.4	1.21	76.04	261.9
19 7	213.7	46.0	0.0	0.0	43,2	0.0	276.9	1.59	97,39	709.0
9 8	244.8	39.1	137.8	0.0	43,2	: 152.5	290.0	1.84	101,53	888.4
19 9	350.2	41.1	264.9	43.4	43.2	278.7	290.0	1.95	102.09	887.9
19 10	188.3	61.7	125.5	0.0	70.6	143.5	290.0	3.04	102,68	887.32
19 11	58.2	62.3	0.0	0.0	70.6	0.0	289.1	3.47	103.03	872.70
19 12	18.2	61.8	0.0	0.0	70.6	0.0	280.6	3.44	100.97	752.34
20 I	72.2	94.0	0.0	0.0	103.0	0.0	275.5	3,35	99.74	690,19
20 2	70.4	107.6	0.0	0.0	103.0	0.0	267.0	3,21	97.06	596.0
20 3	54.9	105.1	0.0	0.0	103.0	0.0	252.6	3.04	91.51	458.4
20 4	41.3	47.7	0.0	0.0	43.2	0.0	250.5	2.32	90.86	439.2
20 5	47.8	46.4	0.0	0.0	43,2	0.0	250.7	1.90	91.33	440.8
20 6	84.3	46.3	0.0	0.0	43.2	0.0	261.3	1.79	96.43	536.78
20 7	200.5	39.9	30.2	0.0	43.2	32.7	290.0	2.03	106.52	883.4
20 8	270.9	39.1	231.1	0.0	43.2	255.8	290.0	1.95	107.10	882.9
20 9	240.6	39.8	200.0	0.0	43.2	217.2	290.0	1.95	107.67	882.3
20 10	259.6	63.4	195.1	0.0	70.6	217.1	290.0	3.04	108.25	881.7
20 11	71,2	62.2	7.7	0.0	70.6	8.7	290.0	3.49	108.82	881.18
20 12	23.1	61.3	0.0	0.0	70.6	0.0	282.7	3.48	107.04	775.18
21 1	36.5	95.2	0.0	0.0	103.0	0.0	269.2	3.29	102,62	614.4
21 2	32.0	117.0	0.0	0.0	103.0	0.0	246.7	2.80	92.77	403.99
21 3	24.9	85.2	0.0	0.0	71.2	0.0	225.0	2.28	80.55	239.82
21 4	28.7	28.2	0.0	0.0	21.1	0.0	225.0	1.62	80.87	239.1
21 5 21 6	77.5	54.2	0.0	0.0 0.0	43.2	0.0	233.6	1.43	86.56 95.11	299.8
	95.4	51.4	0.0		43.2	0.0	247.9	1.49		411.70

(2) Rate of Inflow and Outflow Run-3, Run-4 (6/8)

Y	M	Q00	RI	R2	R3	WI	W2	HI	El	WST	· VW
2!	7	124,1	43.9	- 0.0	0.0	43.2		270,4	1.71	105.86	624.00
21	8	95.0	39.6	0.0	0.0	43.2	0.0	282.6	1.72	110.88	769.91
21	9	123.6	38.9	42.7	0.0	43.2	47.4	290.0	1.88	113.74	876.26
21	10	109.7	60.5	48.0	0.0	70.6	56.0	290.0	3.04	114.45	875.55
21	- 11	350.3	67.1	238.9	43.0	70.6	251.3	290.0	3.49	115.14	874.86
21	12	79.3	60.2	17.7	0.0	70.6	20.8	290.0	3.60	115,50	874.50
22	1	31.9	90.8	0.0	0.0	103.0	0.0	278.4	3,55	112.04	712.78
22	2	-21,1	109,8	0.0	0.0	103.0	0.0	257.6	3.11	103.53	493,12
22	3	16,2	111.4	0.0	0.0	96.2	0.0	225.0	2.45	84.63	235.41
22	4	13.8	13.2	0.0	0.0	9.9	0.0	225.0	1.62	84.97	235.03
22	. 5	11.9	11.4	0.0	0.0	8.8	0.0	225.0	1.34	85.34	234.66
22	6	25.0	24.5	0.0	0.0	18.4	0.0	225.0	1.19	86.02	233.98
22	7	97.6	52.6	0.0	0.0	43.2	0.0	241.3	1.24	97.20	352.58
22	. 8	126.5	45.6	0.0	0.0	43.2	0.0	265.6	1.36	110.41	567.27
22	9	181.3	40.7	22.9	0.0	43.2	24.3	290.0	1.74	120.07	869.93
22	10	165.5	61.3	103.1	0.0	70.6	118.7	290.0	3,04	120.78	869.22
22	11	64.0	62.1	0,5	0.0	70,6	0.6	290.0	3.49	121.47	868.53
22	12	51.1	60.4	0,0	0.0	70.6	0.0	288.2	3,57	121,28	839.72
23	.1	45.7	91.1	0.0	0.0	103.0	0.0	279.0	3.53	118.39	714.15
23	2	23.4	109.0	0.0	0.0	103.0	0.0	259.1	3.14	109.96	501.83
23	3	18.5	118.6	0.0	0.0	102.8	0.0	225.0	2.48	89.21	230.79
23	4	18.5	17.9	0.0	0.0	13.4	0.0	225.0	1.62	89.56	230,44
23	5	43.7	43.2	0.0	0.0	33.4	0.0	225.0	1.34	89.92	230.08
23	: 6	49.6	49.1	0.0	0.0	36.7	0.0	225.0	1.19	90.61	229,39
23	7	180.8	47.8	0.0	0.0	43.2	0.0	267.7 290.0	1.48 1.76	116.52 125.71	583.39 864.29
23	.8	357.9	41.3	210.8	0.0	43.2	220.7				863.61
23	9	121.9	38.4	82.7	0.0	43.2	93.2	290.0	1.95	126.39	
23	10	289.6	64.3	224.1 . 0.0	0.0	70.6 70.6	245.9	290.0 288.8	3.04	127.10 127.43	862.90 844.21
23 23	.11 12	56.7 31.3	62,3 61,4	0.0	0.0	70.6	0.0 0.0	283.0	3,47 3,47	125.70	759.76
24	1	22,9	96.1	0.0	0.0	103.0	0.0	265.7	3,24	118.60	560.23
24	2	16.1	123.3	0.0	0.0	103.0	0.0	234.8	2.57	100.57	295.85
24	3	10.6	35.6	0.0	0.0	28.6	0.0	225.0	2.09	93,69	226.48
24	4	12.5	11.9	0.0	0.0	8.9	0.0	225.0	1.62	94.02	225.98
24	5	54.6	54.1	0.0	0.0	41.8	0.0	225.0	1.34	94,39	225.61
24	. 6	68.0	57.0	0.0	0.0	43.2	0.0	228.9	1.23	98.09	252,05
24	7	105.3	50.5	0.0	0.0	43.2	0.0	248.1	1.34	111,67	396.68
24	8	327.3	42.2	112.0	0.0	43.2	114.8	290.0	1.61	132.03	857.97
24	9	212.0	39.4	171.9	0.0	43.2	188.7	290.0	1,95	132.72	857.28
24	10	70.9	60.2	9.6	0.0	70.6	11.3	290.0	3.04	133.43	856.57
24	11	53.9	62.4	0.0	0.0	70.6	0.0	288.4	3.46	133.57	830.43
24	12	35.1	61.5	0.0	0.0	70.6	0.0	283.2	3.46	131.96	756.01
25	1	21.1	96.1	0.0	0.0	103.0	0.0	265.4	3.24	124.24	551,59
25	2	0.81	123,4	0.0	0.0	103.0	0.0	234.9	2.57	105.57	291.66
25	3	13.0	38.1	0.0	0.0	30.6	0.0	225.0	2.09	98.22	221,96
25	4	18.7	18.1	0.0	0.0	13,6	0.0	225.0	1.62	98.55	221.45
25	- 5	37.1	36.6	0.0	0.0	28.3	0.0	225.0	1.34	98.91	221.09
25	6	56.3	55.8	0.0	0.0	41.7	0.0	225.0	1.19	99.60	220.40

(2) Rate of Inflow and Outflow Run-3, Run-4 (7/8)

 		······								
Y M	Q00	RI	R2	R3	WI	W 2	H1	- E1	WST	vw
25 7	49.5	49.1	0,0	: 0.0	37.9	0.0	225,0	1,10	100.31	219,69
25 8	180.6	47.8	0.0	0.0	43.2	0.0	267.9	1.25	129,01	573.49
25 9	154.2	40.4	5.8	0.0	43.2	6.3	290.0	1.76	139,04	850.96
25 10	.139,1	60.9	77.1	0.0	70.6	89,3	290.0	3.04	139.76	850.24
25 11	58.2	62.3	0.0	0.0	70.6	0.0	289.1	3,47	140.14	835.55
25 12	31.8	61.3	0.0	0.0	70.6	0.0	283.4	3.48	138.27	752.7
26 1	24.5	95.7	0.0	0.0	103.0	0.0	266.7	3.26	130.82	558.49
26 2	16.6	122.1	0.0	0.0	103.0	0.0	236.5	2,61	111.85	298.0
26 3	13.7	43.0	0.0	0.0	34.7	0.0	225.0	2.11	103.03	217.1
26 4	13.4	12.8	0.0	0.0	9.6	0.0	225.0	1.62	103.36	216,64
26 5	15.2	14.7	0.0	0.0	11.4	0.0	225,0	1.34	103.72	216.2
26 6	148.0	51.3	0.0	0.0	43.2	0.0	257.1	1.50	127.48	464.7
26 . 7	219.2	40.4	35.4	0.0	43,2	37.9	290.0	1.99	143.97	846.0
26 8	358.2	39.8	266.2	51.5	43.2	289.4	290.0	1.95	144.68	845.33
26 9	184.7	39.0	144.9	0.0	43.2	160.6	290.0	1.95	145.37	844.6
26 10	121.8	60.7	60.0	0.0	70.6	69.8	290.0	3.04	146.08	843,93
26 . 11	116.2	62.6	52.2	0.0	70.6	58.9	290.0	3.49	146.77	843.23
26 12	56.2	60.3	0.0	0.0	70.6	0.0	289.1	3.59	146.79	828.4
27 1	31.3	91.5	0.0	0.0	103.0	0.0	276.8	3.51	141.68	663.4
27 2	:19.6	111.4	0.0	0.0	103.0	0.0	254.3	3.03	129.24	436.2
27 3	17.0	99.1	0.0	0.0	84.9	0.0	225.1	2,40	107.13	213,39
27 4	18.8	18.4	0.0	0.0	13.8	0.0	225.0	1.62	107.42	212.53
27 5	19.9	19,4	0.0	0.0	. 15.0	0.0	225.0	1,34	107.78	212.2
27 6	24.1	23.6	0.0	0.0	17.7	0.0	225.0	1.19	108.47	211.5
27 7	37.1	36.7	0.0	0.0	28.4	0.0	225.0	1.10	109.18	210.82
27 - 8	148.8	49.3	0.0	0.0	43.2	0.0	259.0	1.18	135.41	475.48
27 9	182.9	41.4	0.6	0.0	43.2	0.6	290.0	1.69	151.70	838.30
27 10	121.0	60,6	59.2	0.0	70.6	68.9	290.0	3.04	152,41	837.59
27 11	143.0	63.0	78.7	0.0	70.6	88.2	290.0	3.49	153.09	836.9
27 12	⇔ 65.4	60.1	3.9	0.0	70.6	4.6	290.0	3.60	153,46	836.5
28 1	26.1	91.2	0.0	0.0	103.0	0.0	276.9	3,53	147.82	658.3
28 2	18.6	111.5	0.0	0.0	103.0	0.0	254.0	3.03	134.67	428.2
28 3	13.1	94.0	0.0	0.0	80.5	0.0	225.1	2.39	111.90	208.6
8 4	11.3	10.9	0.0	0.0	8.1	0.0	225.0	1.62	112.19	207.8
28 5	15.8	15.3	0.0	0.0	11.8	0.0	225.0	1.34	112.55	207.4
8 6	21.5	21.0	0.0	0.0	15,8	0.0	225.0	1.19	113.24	206.70
2.8 7	46.7	46.3	0.0	0.0	35.8	0.0	225.0	1.10	113.95	206.0
28 8	84.3	53.5	0.0	0.0	43.2	0.0	236.7	1.01	124.81	286.7
8 9	107.4	49.5	0.0	0.0	43.2	0.0	255.2	1.24	139.36	434.8
8 10	81.4	73.2	0.0	0.0	70.6	0.0	257.4	2.19	141.54	453.7
28 11 .	42.0	78.0	0.0	0.0	70.6	0.0	246.2	2.38	134.12	357.4
28 12	17.2	73.7	0.0	0.0	61.5	0.0	225.0	2.00	116.50	203.8.
29 1	21.9	21.3	0.0	0.0	16.5	0.0	225.0	1.78	116.82	203.1
29 2	14.3	13.6	0.0	0.0	9.6	0.0	225.0	1,82	117.15	202.8
29 3	12.4	11.7	0.0	0.0	9.0	0.0	225.0	1.93	117.51	202.49
29 4	18.1	17.5	0.0	0.0	13.1	0.0	225.0	1.62	117.86	202.1
29 5	26.9	26.4	0.0	0.0	20.4	0.0	225.0	1.34	118.23	201.7
29 6	24.0	23.5	0.0	0.0	17.6	0.0	225.0	1.19	118.91	201.0

 $(\tilde{})$

(2) Rate of Inflow and Outflow Run-3, Run-4 (8/8)

Y	M	Q00	Ri	R2	R3	Wi	. W2	Hi	El	WST	VW
29	7	40.9	40.5	0.0	0.0	31.3	0.0	225.0	1.10	119.63	200,37
29	- 8	82.6	53.6	0.0	0.0	43.2	0.0	236.0	1,01	130.29	276.19
29	9	170.0	46.9	0,0	0.0	43.2	0.0	272.1	1.37	155.85	593.18
29	10	84.2	65.6	0.0	0.0	70.6	0.0	276.2	2.63	158.73	639,49
29	Ш	74,7	66.8	0.0	0.0	70,6	0,0	277,7	3.09	160.16	656.29
29	12	54.7	64.8	0.0	0.0	70.6	0,0	275.1	3.18	159.21	625.83
30	1	37.8	100,6	0.0	0.0	103.0	0.0	258,3	3.00	149.53	454.43
30	2	27.5	131.1	0.0	0.0	103.0	0.0	225.2	2.31	122.56	199.06
30	3	27.0	26.8	0.0	0.0	20.8	0.0	225.0	1.94	122.71	197.30
30	4	32.9	32,3	0.0	0.0	24.2	0.0	225.0	1.62	123.06	196.94
30	5	29.7	29.2	0.0	0.0	22.6	0.0	225.0	1.34	123.42	196.58
30	-6	49.3	48.8	0.0	0.0	36.5	0.0	225.0	1.19	124.11	195,89
30	7	73.5	54.4	0.0	0.0	43.2	0.0	232.4	1.16	131.81	245.11
30	8	106.9	49.2	0.0	0.0	43.2	0.0	252.3	1.18	148.78	397.85
30	9	207.2	42.2	1.4	0.0	43,2	1.4	290.0	1.64	170.67	819.33
30	10	119,6	60.6	57,8	0.0	70.6	67.3	290.0	3,04	171.38	818.62
30	11	74.4	62.2	⊴ 10.9	0.0	70.6	12.3	290.0	3.49	172.07	817.93
30	12	60.9	1,00	0.0	0.0	70.6	0.0	289.9	3.60	172.40	816,06
31	1	42.9	90.3	0.0	0.0	103.0	0.0	280.6	3.58	168.46	685.20
31	2	28.0	107.4	0.0	0.0	103.0	0.0	262.6	3.22	158,41	483.07
31	- 3	25.5	113.9	0.0	0.0	103.0	0.0	233.3	2.66	135.52	248.49
31	4	23.2	44.0	0.0	0.0	34.0	0.0	225.0	1,72	127.73	192.39
31	5	25.2	24.7	0.0	0.0	19.2	0.0	225.0	1.34	128.08	[91.92
31	6	42,8	42.3	0.0	0,0	31.7	0.0	225.0	1.19	128.77	191.23
31	7	69.9	54.7	0.0	0.0	43.2	0.0	230.9	1.15	135.35	229.74
31	. 8	61.1	52.9	0.0	0.0	43.2	0.0	233.9	1.03	138.90	249.91
31	9.	66,4	53.1	0.0	0.0	43.2	0.0	238.4	1,09	143,70	282,41
31	10	44.6	78.7	0.0	0.0	63.8	0.0	225.0	1.60	131,35	188.83
31	11	23.5	22.9	0.0	0.0	17.2	0.0	225.0	1.66	132.02	187.98
31	12	21.5	20.9	0.0	0.0	16.2	0.0	225.0	1.71	132.38	187.62

(3) Rate of Inflow and Outflow Case 2 (1/3)

Y M	Q00	RI	R2	- R3	WI	W2	HI	El	WST	vw
21 7	120.4	50.4	0.0	0,0	43.2	0.0	251.0	1.34	96.21	438.33
21 8	226.9	41.1	21.2	0.0	43.2	22.3	290.0	1.63	113.05	876.93
21 9	216.2	39.4	176.0	0.0	43.2	192.9	290.0	1.95	113.74	876.2
21 10	139.3	60.9	77.3	0.0	70.6	89.6	290.0	3.04	114.45	875.5
21 11	75.8	62,2	12.2	0.0	70.6	13.9	290.0	3.49	115,14	874.8
21 : 12	39.2	60.8	0.0	0.0	70.6	0.0	285.9	3.53	113.99	813.2
22 1	30.3	93.5	0.0	0.0	103.0	0.0	272.0	3,38	108.48	640,2
22 2	23.1	115.4	0.0	0,0	103.0	0.0	248.2	. 2.87	97.50	411.9
22 3	19.8	83.7	0.0	0.0	70.3	0.0	225.1	2.30	82.41	238.0
22 4	20.1	19.6	0.0	0.0	14.7	0.0	225.0	1.62	82.68	237.3
22 5	40.4	39.9	0.0	0.0	30.8	0.0	225.0	1.34	83.02	236,9
22 6	62.7	57.5	0.0	0.0	43.2	0.0	226.8	1.21	85.16	248.5
22 7	120.4	50.4	0.0	0.0	43.2	0.0	251.1	1.34	101.49	434.0
22 8	226.9	41.1	21.9	0.0	43.2	23.1	290.0	1.63	119.17	870.8
22 9	216.2	39.4	176.0	0.0	43.2	192.9	290.0	1.95	119.83	870.1
22 10	139.3	60.9	77.3	0.0	70.6	89.6	290.0	3.04	120.52	869.4
22 11	75.8	62.2	12.2	0.0	70.6	13.9	290.0	3.49	121.18	868.8
22 12	39.2	60.8	0.0	0.0	70.6	0.0	285.9	3.53	119,92	807.2
23 1	30.3	93,5	0.0	0.0	103.0	0.0	272.0	3.38	114.08	634,2
23 2	23.1	115.4	0.0	0.0	103.0	0.0	248.0	2.86	102.44	405.7
23 : 3	19.8	83.0	0.0	0.0	69.7	0.0	225.1	2.30	86.65	233.7
23 4	20.1	19.6	0.0	0.0	14.7	0.0	225.0	1.62	86.92	233.0
23 5	40.4	39.9	0.0	0.0	30.8	0.0	225.0	1.34	87.25	232.7
23 6	62.7	57.5	0.0	0.0	43.2	0.0	226.8	1.21	89.48	244.3
23 7	120.4	50.3	0.0	0.0	43.2	0.0	251,2	1.35	106.67	429.9
23 8	226.9	41.1	22.6	0.0	43,2	23.8	290.0	1.63	125.18	864.8
23 9	216.2	39.4	176.0	0.0	43.2	192.9	290.0	1.95	125.84	864.1
23 10	139.3	60.9	77.3	0.0	70.6	89.6	290.0	3.04	126.53	863.4
23 11	75.8	62,2	12.2	0.0	70.6	13.9	290.0	3.49	127.19	862.8
23 12	39.2	60.8	0.0	0.0	70.6	0.0	285.9	3.53	125.84	801.2
24 I	30.3	93.6	0.0	0.0	103.0	0.0	272.0	3.38	119.69	628.1
24 2	23.1	115.5	0.0	0.0	103.0	0.0	247.9	2.86	107.37	399.5
24 3	19.8	82.3	0.0	0.0	69.0	0.0	225.1	2.29	90.89	229.5
24 4	20.1	19.6	0.0	0.0	14.7	0.0	225.0	1.62	91.16	228.8
24 5	40.4	39.9	0.0	0.0	30.8	0.0	225.0	1.34	91.49	228.5
24 6	62.7	57.5	0.0	0.0	43.2	0.0	226.8	1,21	93.80	240.1
24 7	120.4	50.3	0.0	0.0	43.2	0.0	251.3	1.35	111.86	425.7
24 8	226.9	41.0	23.3	0.0	43.2	24.6	290.0	1,63	131.19	858.8
24 9	216.2	39.4	176.0	0.0	43,2	192.9	290.0	1.95	131.85	858.1
24 10	139,3	60.9	77.3	0.0	70.6	89.6	290.0	3.04	132.54	857.4
24 11	75.8	62.2	12.2	0.0	70.6	13.9	290.0	3,49	133.20	856.80
24 12	39.2	60.8	0.0	0.0	70.6	0.0	285.9	3.53	131.77	795.2.
25 1	30.3	93.6	0.0	0.0	103.0	0.0	271.9	3.38	125.29	622,12
25 2	23.1	115.6	0.0	0.0	103.0	0.0	247.7	2.86	112.29	393.3
25 3	19.8	81.5	0.0	0,0	68.4	0.0	225.1	2.29	95.13	225,29
25 4	20.1	19.6	0.0	0.0	14.7	0.0	225.0	1.62	95.39	224.6
25 5	40.4	39.9	0.0	0.0	30.8	0.0	225.0	1.34	95.73	224.2
25 6	62.7	57.5	0.0	0.0	-0.0	3.0	223.0		10.13	LL 1.6

(3) Rate of Inflow and Outflow Case 2 (2/3)

Y M	Q00 .	RI	R2	R3	WI.	W2	Hi	El	WST	yw
25 7	120.4	50.3	0.0	0.0	43.2	0.0	251.4	1,35	117.06	421.57
25 - 8	226.9	41.0	24.0	0.0	43.2	25,3	290.0	1.63	137.20	852,80
25 9	216.2	39.4	176.0	0.0	43.2	192.9	290.0	1.95	137,87	852.1.
25 10	139,3	60.9	77,3	0.0	70.6	89.6	290.0	3.04	138,55	851.4
25 11	75.8	62.2	12.2	0.0	70.6	13.9	290.0	3.49	139.21	850.79
25 12	39.2	60.8	0.0	0.0	70.6	0,0	285.9	3.53	137.69	789.22
26 I	30.3	93.6	0.0	0.0	103.0	0.0	271.9	3.38	130.89	616.0
26 2	23.1	115.6	0.0	0.0	103.0	0.0	247.6	2.86	117.20	387.1
26 3	19.8	80.8	0.0	0.0	67.8	0.0	225.1	2,29	99.36	221.0
26 4	20.1	19.6	0.0	0.0	14.7	0.0	225.0	1.62	99.63	220.3
6 5	40.4	39.9	0.0	0.0	30.8	0.0	225.0	1.34	99.96	220.0
6 6	62.7	57,5	0.0	0.0	43.2	0.0	226.9	1.21	102.46	231.6
6 7	120.4	50.3	0.0	0.0	43.2	0.0	251.5	1.35	122.25	417.40
6 8	226.9	41.0	24.7	0.0	43.2	26.0	290.0	1.63	143.21	846.79
6 9	216.2	39.4	176.0	0.0	43.2	192.9	290.0	1.95	143.88	846.17
6 10	139.3	60.9	77.3	0.0	70.6	89.6	290.0	3.04	144,56	845.44
6 11	75.8	62.2	12.2	0.0	70.6	13,9	290.0	3.49	145.22	844.78
6 12	39.2	60.8	0.0	0.0	70.6	0.0	285.9	3.53	143.62	783.2
7 1	30.3	93.6	0.0	0.0	103.0	0.0	271.8	3.38	136.48	610.03
7 . 2	23.1	115.7	0.0	0.0	103.0	0.0	247.4	2.85	122,10	380.90
7 3	19.8	80.1	0.0	0.0	67.1	0.0	225.1	2.29	103.60	216.8
7. 4	20.1	19.6	0.0	0.0	14.7	0.0	225.0	1,62	103.86	216.14
7 5	40.4	39.9	0.0	0.0	30.8	0.0	225.0	1.34	104.20	215.80
7 6	62.7	57.5	0.0	0.0	43.2	0.0	226.9	1.21	106.79	227.41
7 7	120.4	50.2	0.0	0.0	43.2	0.0	251.6	1.35	127.46	413.23
7 . 8	226.9	41.0	25.4	0.0	43.2	26.8	290.0	1.64	149.23	840.7
7 9	216.2	39.4	176.0	0.0	43.2	192.9	290.0	1.95	149.89	840.11
7 10	139,3	60.9	77.3	0.0	70.6	89.6	290.0	3.04	150.57	839.43
7 11	75.8	62.2	12.2	0.0	70.6	13.9	290.0	3.49	151.23	838.77
7 12	39.2	60.8	0.0	0.0	70.6	0.0	285.9	3.53	149,54	777.19
8 - 1	30.3	93.6	0.0	0.0	103.0	0.0	271.8	3.38	142.08	603.99
8 2	23.1	115.8	0.0	0.0	103.0	0.0	247.3	2.85	126.98	374.68
8 3	19.8	79.3	0.0	0.0	66,5	0.0	225.1	2.29	107.84	212.58
8 4	20.i	19.6	0.0	0.0	14.7	0.0	225.0	1.62	108.10	211.90
8 5	40.4	39.9	0.0	0.0	30.8	0.0	225.0	1.34	108.43	211.57
8 6	62.7	57.5	0.0	0.0	43.2	0.0	226.9	1.21	111,12	223.18
8 7	120.4	50.2	0.0	0.0	43.2	0.0	251.7	1,35	132.67	409.07
8 8	226.9	41.0	26.1	0.0	43.2	27.5	290.0	1.64	155.24	834.76
8 9	216.2	39.4	176.0	0.0	43.2	192,9	290.0	1.95	155.90	834.10
8 10	139.3	60.9	77.3	0.0	70.6	89.6	290.0	3.04	156,58	833.42
8 11	75.8	62.2	12.2	0.0	70.6	13.9	290.0	3.49	157.24	832.76
8 12	39.2	60.8	0.0	0.0	70.6	0.0	285.9	3,53	155,47	771.18
9 1	30.3	93.6	0.0	0.0	103.0	0.0	271.8	3.38	147.67	597.94
9 2	23.1	115.8	0.0	0.0	103.0	0.0	247.1	2.85	131.85	368.46
9. 3	19.8	78.6	0.0	0.0	65.8	0.0	225.i	2.28	112.08	208.34
9 4	20.1	19.6	0.0	0.0	14.7	0.0	225.0	1.62	112.33	207.67
9 5	40.4	39.9	0.0	0.0	30.8	0.0	225.0	1,34	112.67	207.33
9 6	62.7	57,5	0.0	0.0	43.2	0.0	226.9	1.21	115.45	218,99

(3) Rate of Inflow and Outflow Case 2 (3/3)

Y	M	Q00	Ri	R2	R3	WI	W2	Н1	El	WST	vw
29	7	120.4	50.2	0.0	0.0	43.2	0.0	251.9	1.35	137.89	404.90
29	8	226.9	41.0	26.8	0.0	43.2	28.3	290.0	1.64	161.25	828.75
29	9	216.2	39.4	176.0	0.0	43,2	192.9	290.0	1.95	161.91	828.09
29	.10	139,3	60.9	77.3	0.0	70.6	89.6	290.0	3.04	162.59	827.41
29	Н	75.8	62.2	12.2	0.0	70.6	13.9	290,0	3,49	163.26	826.74
29	12	39.2	60.8	0.0	0.0	70.6	0.0	285.9	3,53	161.39	765.17
30	. 1	30,3	93,6	.0.0	0.0	. 103.0	0.0	271.7	3.38	153.27	591.90
30	2	23.1	115.9	0.0	0.0	103.0	0.0	247.0	2.84	136.71	362.24
30	3	19.8	77.9	0.0	0.0	65.2	0.0	225.1	2.28	116.31	204.10
30	4	20.1	19.6	0.0	0.0	14.7	0.0	225.0	1.62	116.57	203.43
30	5	40.4	39.9	0.0	0.0	30.8	0.0	225.0	1.34	116.90	203.10
30	6	62.7	57.5	0.0	0.0	43.2	0.0	226.9	1.21	119.78	214,73
30	7	120.4	50.2	0.0	0.0	43.2	0.0	252.0	1.35	143.11	400.73
30	. 8	226,9	41.0	27.5	0,0	43.2	29.0	290.0	1.64	167.26	822.74
30	9	216.2	39.4	176.0	0.0	43.2	192.9	290.0	1.95	167.92	822.08
30	10	139.3	60.9	77.3	0.0	70.6	89.6	290.0	3.04	168.60	821.40
30	- 11	75.8	62,2	12,2	0,0	70.6	13.9	290.0	3.49	169.27	820.73
30	12	39,2	60.8	0.0	0.0	70,6	0.0	285.9	3.53	167.32	759.15
31	1	30.3	93.6	0.0	0.0	103.0	0.0	271.7	3.38	158.86	585,85
31	2	23.1	116.0	0.0	0.0	103.0	0.0	246.8	2.84	141.56	356.02
31	3	19.8	77,1	0.0	0.0	64.5	0.0	225.1	2.28	120.55	199.86
31	4	20.1	19.6	0.0	0.0	14.7	0.0	225.0	1.62	120.80	199.20
31	- 5	40.4	39.9	0.0	. 0.0	30.8	0.0	225.0	1.34	121.14	198.86
31	6	62.7	57.5	0.0	0.0	43.2	0.0	226.9	1,21	124.11	210.50
31	7	120.4	50.2	0.0	0.0	43.2	0.0	252.1	1.35	148.33	396.56
31	8	226.9	41.0	28.2	0.0	43.2	29.8	290.0	1.64	173.27	816.73
31	9	216.2	39.4	176.0	0.0	43.2	192.9	290,0	1.95	173.93	816.07
31	.10	139.3	60.9	77.3	0.0	70.6	89.6	290.0	3.04	174.62	815.38
31	11	75.8	62.2	12.2	0.0	70.6	13.9	290.0	3.49	175.28	814.72
31	12	39.2	60.8	0.0	0.0	70.6	0.0	285.9	3.53	173.24	753.14

(4) Rate of Inflow and Outflow Case 3 (1/3)

Y	M	Q00	RI	R2	R3	WI	W2	HI	El	wst	vw
21	7	120.4	50,4	0.0	0.0	43.2	0.0	251.0	1,34	96.21	438,33
21	8	226.9	41.1	21.2	0.0	43.2	22.3	290,0	1.63	113.05	876.95
21	9	216.2	39.4	176.0	0.0	43,2	192.9	290.0	1.95	113.74	876.26
21	10	139.3	60.9	77.3	0.0	70.6	89.6	290.0	3.04	114.45	875,55
21	11	75.8	62.2	12.2	0.0	70.6	13.9	290.0	3,49	115.14	874.86
21	12	39.2	60.8	0.0	0.0	70.6	0.0	285.9	3.53	113.99	813,27
22	l	30.3	93.5	0.0	0.0	103.0	0.0	272.0	3,38	108.21	640.56
22	2	23.1	115,3	0.0	0.0	103.0	0.0	248.2	2.87	97.08	412.56
22	3	19.8	83.9	0.0	0.0	70.5	0.0	225.1	2,30	81.85	238,56
22	4	20.1	19.6	0.0	0.0	. 14.7	0.0	225.0	1,62	81.83	238.17
22	5	40.4	39.9	0.0	0.0	30.8	0.0	225.0	1.34	81.85	238.15
22	6	62.7	57.5	0.0	0.0	43.2	0.0	226.8	1,21	83.68	250.02
22	7	120.4	50.4	0.0	0.0	43.2	0.0	251.1	1.34	99.51	435.84
22	8	226.9	41.1	21.8	0.0	43.2	22.9	290.0	1.63	116.75	873.25
22	9	216.2	39.4	176.0	0.0	43.2	192.9	290.0	1.95	117.11	872.89
22	10	139.3	60.9	77.3	0.0	70.6	89.6	290.0	3.04	117.49	872.51
22	11	75.8	62.2	12.2	0.0	70.6	13.9	290.0	3.49	117.85	872.15
22	12	39.2	60.8	0.0	0.0	70.6	0.0	285.9	3.53	116.32	810.90
-23	1	30.3	93.5	0.0	0.0	103.0	0.0	272.0	3,38	110.40	638.17
23	2	23.1	115.4	0.0	0.0	103.0	0.0	248.1	2.87	99.00	410.10
23	3	19.8	83.6	0.0	0.0	70.2	0.0	225.1	2.30	83.49	236.93
23	. 4	20.1	19.6	0.0	0.0	14.7	0.0	225.0	1.62	83,46	236,54
23	5	40.4	39.9	0.0	0.0	30.8	0.0	225.0	1.34	83.49	236.51
23	6	62.7	57.5	0.0	0.0	43.2	0.0	226.8	1.21	85.35	248,39
23	7	120.4	50.4	0.0	0.0	43.2	0.0	251.1	1.34	101.53	434.23
23	8	226.9	41.1	22.1	0.0	43.2	23.2	290.0	1.63	119.12	870.88
23	9	216.2	39.4	176.0	0.0	43.2	192.9	290.0	1.95	119.48	870.52
23	10	139.3	60.9	77.3	0.0	70.6	89.6	290.0	3.04	119.86	870.14
23	11	75.8	62.2	12.2	0.0	70.6	13.9	290.0	: 3.49	120.22	869.78
23	12	39.2	60.8	0.0	0.0	70.6	0.0	285.9	3,53	118.65	808.52
24	1	30,3	93,5	0.0	0.0	103.0	0.0	272.0	3.38	112.58	635.79
24	2	23.1	115.4	0.0	0.0	103.0	0.0	248.1	2.86	100.91	407.64
24	31	19.8	83.3	0.0	0.0	69.9	0.0	225.1	2,30	85.12	235.30
24	4	20.1	19.6	0.0	0.0	14.7	0.0	225.0	1.62	85.09	234.91
24	5	40.4	39.9	0.0	0.0	30.8	0.0	225.0	1,34	85.12	234.88
24	6	62.7	57.5	0.0	0.0	43.2	0.0	226.8	1.21	87.02	246.76
24	7	120.4	50.3	0.0	0.0	43.2	0.0	251.1	1.35	103,55	432.63
24	8	226.9	41.1	22.4	0.0	43.2	23.5	290.0	1.63	121.49	868.51
24	9	216.2	39.4	176.0	0.0	43.2	192.9	290.0	1.95	121.86	868.14
24	10	139.3	60.9	77.3	0.0	70,6	89.6	290.0	3.04	122.23	867.77
24	11	75.8	62.2	12.2	0.0	70.6	13.9	290.0	3.49	122.60	867.40
24	12	39.2	60.8	0.0	0.0	70.6	0.0	285.9	3.53	120.99	806.15
25	1	30,3	93.5	0.0	0.0	103.0	0.0	272.0	3.38	114.77	633.40
25	2	23.1	115.4	0.0	0.0	103.0	0.0	248.0	2.86	102.83	405.18
25	3	8.91	83.0	0.0	0.0	69.6	0.0	225.1	2.30	86.75	233,66
25	4	20.1	19.6	0.0	0.0	14.7	0.0	225.0	1.62	86.73	233.27
25	5	40.4	39.9	0.0	0.0	30.8	0.0	225.0	1.34	86.75	233.25
25	6	62.7	57,5	0.0	0.0	43.2	0.0	226.8	1,21	88.69	245.13

(4) Rate of Inflow and Outflow Case 3 (2/3)

	:									
Y M	Q00	R1	R2	R3	WI	W2	HI	El	WST	VW
25 7	120.4	50.3	0.0	0.0	43,2	0.0	251.2	1,35	105.57	431,02
25 8	226.9	41.1	22.6	0.0	43.2	23.9	290.0	1.63	123,87	866.13
25 9	216.2	39.4	176.0	0.0	43.2	192.9	290.0	1,95	124.23	865.77
25 10	139.3	60.9	77.3	0.0	70.6	89.6	290.0	3.04	124.61	865.39
25 11	75.8	62.2	12.2	0.0	70,6	13.9	290.0	3,49	124.97	865.03
25 12	39.2	60.8	0.0	0.0	70.6	0.0	285.9	3.53	123.32	803.77
26 I	30,3	93.6	0.0	0.0	103.0	0.0	272.0	3.38	116.96	631.0
26 2	23,1	115.5	0.0	0.0	103.0	0.0	248.0	2.86	104.74	402.72
26 3	19.8	82.6	0.0	0.0	69.4	0.0	225.1	2.30	88.39	232.03
26 4	20.1	19.6	0.0	0.0	14.7	0.0	225.0	1.62	88.36	231.64
26 5	40.4	39.9	0.0	0.0	30.8	0.0	225,0	1.34	88.39	231.6
6 6	62.7	57.5	0.0	0.0	43.2	0.0	226.8	1.21	90.36	243,50
26 7	120.4	50,3	0.0	0.0	43.2	0.0	251.2	1.35	107.59	429,42
26 8	226.9	41.0	22.9	0.0	43.2	24.2	290.0	1.63	126.24	863.76
26 9	216.2	39.4	176.0	0.0	43.2	192.9	290.0	1.95	126.60	863.40
26 10	139.3	60.9	77.3	0.0	70.6	89.6	290.0	3.04	126.98	863.02
26 11	75.8	62.2	12.2	0.0	70.6	13,9	290.0	3,49	127.34	862.66
6 12	39.2	60.8	0.0	0.0	70.6	0.0	285.9	3,53	125.65	801.40
27 1	30.3	93.6	0.0	0.0	103.0	0.0	272,0	3.38	119.15	628,62
7 2	23.1	115.5	0.0	0.0	103.0	0.0	247.9	2.86	106.65	400,26
7 3	19;8	82.3	0.0	0.0	69.1	0.0	225.1	2.29	90.02	230.39
7 4	20.1	19.6	0.0	0.0	14.7	0.0	225.0	1.62	89.99	230.01
27 5	40.4	39.9	0.0	0.0	30.8	0.0	225.0	1:34	90.02	229,98
27 6	62.7	57,5	0.0	0.0	43,2	0.0	226.8	1,21	92.04	241.87
7 7	120.4	50.3	0.0	0.0	43.2	0.0	251.3	1,35	109.61	427.81
27 8	226.9	41.0	23.2	0.0	43.2	24.5	290.0	1.63	128.61	861,39
7 9	216.2	39.4	176.0	0.0	43.2	192.9	290.0	1.95	128.98	861.02
27 10	139.3	60.9	77.3	0.0	70.6	89.6	290.0	3.04	129.35	860.65
7 11	75.8	: 62.2	12,2	0.0	70.6	13.9	290.0	3.49	129.72	860.28
7 12	39.2	60.8	0.0	0.0	70.6	0.0	285.9	3.53	127.98	799.03
28 1	30.3	93.6	0.0	0.0	103.0	0.0	271.9	3.38	121.34	626.23
8 2	23,1	115.5	0.0	0.0	103.0	0.0	247.8	2.86	108.56	397.80
8 3	19,8	82.0	0.0	0.0	68.8	0.0	. 225.1	2.29	91.66	228.76
8 4	20.1	19,6	0.0	0.0	14.7	0.0	225.0	1.62	91.63	228.37
8 5	40.4	39.9	0.0	0.0	30.8	0.0	225.0	1.34	91.65	228.35
8 6	62.7	57.5	0.0	0.0	43.2	0.0	226.8	1.21	93.71	240.24
8 7	120.4	50.3	0.0	0.0	43.2	0.0	251.3	. 1.35	111.64	426.21
8 8	226.9	41.0	23.5	0.0	43,2	24.8	290.0	1.63	130.99	859.01
8 9	216.2	39.4	176.0	0.0	43.2	192.9	290.0	1.95	131.35	858.65
8 10	139.3	60.9	77,3	0.0	70.6	89.6	290.0	3.04	131.73	858.27
8 11 .	75.8	62.2	12.2	0.0	70.6	13.9	290.0	3.49	132.09	857.9
8 12	39.2	60.8	0.0	0.0	70.6	0.0	285.9	3.53	130.31	796.65
9 1	30.3	93.6	0.0	0.0	103.0	0.0	271.9	3,38	123.52	623.84
9 : 2 -	23.1	115,6	0.0	0.0	103.0	0.0	247.8	2.86	110.47	395,34
9 3	19.8	81.7	0.0	0.0	68,6	0.0	225.1	2.29	93.29	227.13
9 4	20.1	19.6	0.0	0.0	14.7	0.0	225.0	1.62	93.26	226.74
9 5	40.4	39.9	0.0	0.0	30.8	0.0	225.0	1.34	93.29	226.71

(4) Rate of Inflow and Outflow Case 3 (3/3)

Y M	Q00	RI	R2	R3	WI	W2	HI	E!	WST	vw
29 7	120.4	50.3	0.0	0.0	43.2	0.0	251.4	1.35	113.66	424.60
29 8	226.9	41.0	23.8	0.0	43.2	25.1	290.0	1.63	133.36	856.64
29 9	216,2	39,4	176.0	0.0	43.2	192.9	290.0	1.95	133.72	856.28
29 10	139.3	60.9	77.3	0.0	70.6	89.6	290.0	3.04	134.10	855.90
29 11	75.8	62.2	12.2	0.0	70.6	13.9	290.0	3.49	134.46	855.54
29 12	39.2	60.8	0.0	0.0	70.6	0.0	285.9	3.53	132.64	794.28
30 1	30.3	93.6	0.0	0,0	103.0	0.0	271.9	3.38	125.71	621.45
30 2	23.1	115.6	0.0	0.0	103.0	0.0	247.7	2.86	112.38	392,88
30 3	19.8	81.4	0.0	0.0	68.3	0.0	225.1	2.29	94.92	225.49
30 4	20.1	19,6	0.0	0.0	14.7	0.0	225.0	1.62	94.89	225.11
30 5	40.4	39,9	0.0	0.0	30.8	0.0	225.0	1.34	94.92	225.08
30 6	62.7	57.5	0.0	0.0	43.2	0.0	226.8	1.21	97.05	236.98
30 7	120.4	50.3	0.0	0.0	43.2	0.0	251.4	1:35	115.69	423.00
30 8	226.9	41.0	24.1	0.0	43.2	25.4	290.0	1.63	135.73	854.27
30 9	216.2	39.4	176.0	0.0	43.2	192.9	290.0	1.95	136.10	853.90
30 10	139.3	60.9	77.3	0.0	70.6	89.6	290.0	3.04	136.47	853.53
30. 11	75.8	62.2	12.2	0.0	70.6	13.9	290,0	3.49	136.84	853.16
30 12	39.2	60.8	0.0	0.0	70.6	0,0	285.9	3.53	134.97	791.90
31 1	30.3	93.6	0.0	0.0	103.0	0.0	271.9	3.38	127.90	619.07
31 2	23,1	115.6	0.0	0.0	103.0	0.0	247.6	2.86	114.28	390.42
31 3	19.8	81.1	0.0	0.0	68.0	0.0	225.1	2.29	96.56	223.86
31 4	20.1	19.6	0.0	0.0	- 14.7	0.0	225.0	1.62	96.52	223.48
31 5	40.4	39,9	0.0	0.0	30.8	0.0	225.0	1.34	96.55	223.45
31 6	62.7	57.5	0.0	0.0	43.2	0.0	226.9	1.21	98.72	235.35
31 7	120.4	50.3	0.0	0.0	43.2	0.0	251.5	1,35	117.71	421.39
31 8	226,9	41.0	24.4	0.0	43.2	25.7	290.0	1.63	138.11	851.89
31. 9	216.2	39.4	176.0	0.0	43.2	192.9	290.0	1.95	138,47	851.53
31 10	139.3	60.9	77.3	0.0	70.6	89.6	290.0	3.04	138.85	851.15
31 11	75.8	62.2	12.2	0.0	70.6	13,9	290.0	3.49	139,21	850.79
31 12	39.2	60.8	0.0	0.0	70.6	0.0	285.9	3.53	137.30	789.53

Y	M	Cu		Zn	As		Cu	Zn	As
1	7	0.012	5	0.0062	0.0031		0.0197	0.0095	0.0031
i	8	0.008		0.0102	0.0029		0.0144	0.0124	0.0029
1	9	0.00		0.0112	0.0028		0.0135	0.0125	0.0028
ì	10	0.004		0.0117	0.0029		0.0146	0.0126	0.0029
l	. 11	0.003		0.0131	0.0030	1.1	0.0169	0.0137	0.0030
1.	12	0.002		0.0154	0.0032		0.0182	0.0157	0.0032
2	1	0.002	25	0.0179	0.0033		0.0192	0.0182	0.0033
2	2	0.002		0.0208	0.0035		0.0201	0.0210	0.0035
2	3	0,002		0.0235	0.0038		0.0213	0.0238	0.0038
2	4	0.00		0.0270	0.0042		0.0229	0.0275	0.0042
2	5	0.00-		0.0293	0.0043	:	0.0246	0.0302	0.0043
2	6	0.003		0.0275	0.0041		0.0260	0.0287	0.0041
2	. 7	0.00		0.0209	0.0036		0.0229	0.0226	0.0036
2	8	0.00		0.0156	0.0032	1.	0.0168	0.0174	0.0032
2	9	0.00		0.0144	0.0030		0.0151	0.0156	0.0030
2	10	0.00		0.0139	0.0030		0.0158	0.0148	0.0030
2	- 11	0.00		0.0150	0.0031		0.0179	0.0156	0.0031
2	12	0.00		0.0171	0.0033		0.0191	0.0174	0.0033
3	1	0.00)5	0.0195	0.0034	 -	0.0200	0.0198	0.0034
3	2	0.00		0.0223	0.0036		0.0209	0.0225	0.0036
3	3	0.00		0.0249	0.0039		0.0220	0.0252	0.0039
3	4	0.00		0.0282	0.0043		0.0235	0.0287	0.0043
3	5	0.00		0.0302	0.0043		0.0251	0.0311	0.0043
3	6	0.00		0.0281	0.0041		0.0264	0.0292	0.0041
3	. 7	0.00		0.0211	0.0036	1.	0.0231	0.0228	0.0036
3	8	0.00		0.0157	0.0032		0.0169	0.0176	0.0032
3	- 9	0.00		0.0145	0.0030		0.0151	0.0157	0.0030
3	10	0.00		0.0139	0.0030		0.0158	0.0149	0.0030
3.	11	0.00		0.0151	0.0031	:	0.0179	0.0156	0.0031
3	12	0.00		0.0171	0.0033		0.0191	0.0174	0.0033
4	. 1	0,00	25	0.0196	0.0034	-	0.0201	0.0199	0.0034
4	2	0.00		0.0223	0,0036	. 4 -	0.0209	0.0226	0.0036
4	. 3	. 0.00		0.0250	0.0039	•	0.0221	0.0253	0.0039
4	4	0.00		0.0283	0.0043		0.0236	0.0287	0.0043
4	5	0.00	47	0.0303	0,0044	. 10	0.0252	0.0312	0.0044
4	6	0.00		0.0281	0.0041		0.0264	0.0293	0.0041
4	. 7	0.00		0.0211	0.0036		0.0231	0.0228	0.0036
4	8	0.00	70	0.0157	0.0032		0.0169	0.0176	0.0032
4	9	0.00		0.0145	0.0030		0.0151	0.0157	0.0030
4	10	0.00		0.0140	0.0030		0.0158	0.0149	0.0030
4	11	0.00		0.0151	0.0031		0.0179	0.0156	0.0031
4	12		26	0.0171	0.0033		0.0191	0.0175	0.0033
5	1	0.00	25	0.0196	0.0034		0.0201	0.0199	0.0034
5		0.00		0.0224	0.0036		0.0210	0.0226	0.0036
5	3	0.00		0.0250	0.0039		0.0221	0.0253	0.0039
5	4	0.00		0.0283	0.0043		0.0236	0.0288	0.0043
5		0.00		0.0304	0.0044		0.0252	0.0312	0.0044
,		0.00		0.0381	0.0041		0.0265	0.0293	0.0041

(5) Dissolved Matters Run-1, Run-2 (2/8)

 	· · · · · · · · · · · · · · · · · · ·		<u>:</u>							
Y	M		Cu	Zn		As		Cu	Zn	As
5	7		0.0070	0.0210		0.0036		0.0231	0.0227	0.0036
5	8		0.0070	0.0157		0.0032		0.0168	0.0176	0.0032
5	9		0.0053	0.0145		0.0030		0.0151	0.0158	0.0030
5	10		0.0045	0.0140		0.0030		0.0158	0.0149	0,0030.
5	11		0.0034	0.0151		0.0031		0.0179	0.0156	0.0031
5	12		0.0027	0.0172	_ ·	0.0033		0.0191	0.0175	0.0033
6	1		0.0025	0.0196		0.0034		0.0201	0.0199	0.0034
6	2		0.0024	0.0224		0.0036		0.0210	0.0226	0.0036
6 .	3		0.0028	0.0251	7.79	0.0039	1.	0.0221	0.0254	0.0039
6.	4		0.0036	0.0284		0.0043		0.0236	0.0289	0.0043
- 6	5		0.0048	0.0304		0.0044		0.0253	0.0313	0.0044
6	6		0.0056	0.0281		0.0041		0.0265	0.0293	0.0041
6	7		0.0071	0.0210		0.0036	1,	0.0231	0.0227	0.0036
6	8		0.0071	0.0157	100	0.0032		0.0168	0.0176	0.0032
6	9		0.0054	0.0145		0.0030	- ::	0.0151	0.0158	0.0030
6	10		0.0045	0.0140		0.0030		0.0158	0.0149	0.0030
6	11		0.0034	0.0151	- 7	0.0031		0.0180	0.0157	0.0031
6	12		0.0027	0.0172	1.5%	0.0033	. :	0.0192	0.0175	0.0033
7	1	1.7	0.0025	0.0197	4, 1	0.0034		0.0201	0.0199	0.0034
7 -	2	100	0.0024	0.0224	100	0.0036	1	0.0210	0.0227	0.0036
7	3		0.0029	0.0251	- 1	0.0039		0.0221	0.0254	0.0039
7	4		0.0036	0.0284		0.0043		0.0237	0.0289	0.0043
7	5		0.0048	0.0304		0.0044		0.0253	0.0313	0.0044
7.	6		0.0056	0.0281		0.0042		0.0265	0.0293	0.0042
7	7		0.0071	0.0209	1. 199	0.0036		0.0231	0.0226	0.0036
7	8		0.0071	0.0157		0.0032	1000	0.0168	0.0176	0.0032
7	9		0.0054	0.0146	1.1	0.0030		0.0151	0.0158	0.0030
7	10		0.0045	0.0140	100	0.0030	2	0.0158	0.0149	0.0030
7	11		0.0034	0.0151	4.3	0.0031		0.0180	0.0157	0.0031
7.	12		0.0027	0.0172		0.0033		0.0192	0.0175	0.0033
. 8	1		0.0025	0.0197		0.0034		0.0202	0.0200	0.0034
8	2	.*	0.0025	0.0225	100	0.0036		0.0210	0.0227	0.0036
8	3		0.0029	0.0251	1.	0.0039		0.0222	0.0255	0.0039
8	4		0.0037	0.0285		0.0043	+ 13.1	0.0237	0.0290	0.0043
8	5		0.0048	0.0305		0.0044	45	0.0254	0.0314	0.0044
8	, , 6		0.0056	0.0281		0.0042	A 1.1	0.0266	0.0293	0.0042
8 .	7	-	0.0071	0.0208	. **	0.0036		0.0231	0.0226	0.0036
8	8	100	0.0071	0.0157		0.0031		0.0168	0.0175	0.0031
. 8	9		0.0054	0.0146	. 1	0.0030		0.0151	0.0158	0.0030
8	10		0.0045	0.0140		0.0030	10 1	0.0158	0.0149	0.0030
. 8	11		0.0034	0.0151		0.0031		0.0180	0.0157	0.0031
8	12		0.0027	0.0172		0.0033	the the	0.0192	0.0175	0.0033
9	ı		0.0025	0.0197	. * (0.0034	des.	0.0202	0.0200	0.0034
9:	2		0.0025	0.0225	F . 9	0.0036	ry rise	0.0211	0.0228	0.0036
9	3	*	0.0029	0.0252	1 1	0.0039	1.1	0.0222	0.0255	0.0039
9	4		0.0037	0.0286		0.0043		0.0238	0.0291	0.0043
9	5		0.0049	0.0305		0.0044		0.0254	0.0315	0.0044
9	- 6		0.0057	0.0281		0.0042	1, 71	0.0266	0.0293	0.0042

(5) Dissolved Matters Run-1, Run-2 (3/8)

Y	M		Cu	Zn	As	Cu	Zn	As
9 .	7		0.0072	0,0208	0.0036	0.0231	0.0225	0,0036
9	8		0.0071	0.0157	0.0031	0.0168	0.0175	0.0031
9	9		0.0054	0.0146	0.0030	0.0151	0.0158	0.0030
9	10		0.0045	0.0140	0,0030	0.0157	0.0149	0.0030
9	111		0,0034	0.0151	0.0031	0.0180	0.0157	0.0031
9	12		0.0027	0.0172	0.0033	0,0192	0.0175	0,0033
10	ŀ		0.0025	0.0197	0.0034	0.0202	0.0200	0.0034
10	2		0.0025	0.0225	0.0036	0.0211	0.0228	0.0036
10	3		0.0029	0.0252	0.0039	0.0222	0.0256	0,0039
10	4		0.0037	0.0286	0.0044	0.0238	0,0291	0.0044
10	5		0.0049	0.0306	0.0044	0.0255	0.0315	0.0044
10	6		0.0057	0.0280	0.0042	0.0267	0.0293	0.0042
10	7		0.0072	0.0207	0.0036	0.0231	0.0225	0.0036
10	8		0.0072	0.0157	1: 0,0031	0.0168	0.0175	0.0031
10	9		0.0054	0.0146	0.0030	0.0151	0.0159	0.0030
10	10		0.0045	0.0140	0.0030	0.0157	0.0149	0.0030
10	. 11		0.0034	0.0151	0.0031	0.0180	0.0157	0.0031
10	12		0.0027	0.0172	0.0033	0.0192	0.0176	0.0033
Н	l	19.1	0.0025	0.0198	0.0034	0.0202	0.0200	0.0034
11	2		0.0025	0.0226	0.0036	0.0211	0.0228	0.0036
11	3	1	0.0029	0.0253	0.0039	0.0223	0.0256	0.0039
11	4		0.0038	0.0287	0.0044	0,0239	0.0292	0.0044
П	5		0.0049	0.0306	0.0044	0.0255	0.0316	0.0044
11	6 -		0.0057	0.0280	0.0042	0.0267	0.0293	0.0042
· 11	7		0.0072	0.0206	0.0036	0.0231	0.0224	0.0036
- 11	8	17.	0.0072	0.0157	0.0031	0.0167	0.0175	0.0031
11	9	· · · · · .	0.0055	0.0146	0.0030	0.0150	0.0159	0.0030
H	10		0.0045	0.0140	0.0030	0.0157	0.0149	0.0030
Ĥ	- !1		0.0034	0.0151	0.0031	0.0180	0.0157	0.0031
$= \Pi + \mathbb{N}$	12		0.0027	0.0172	0.0033	0.0192	0.0176	0.0033
12			0.0026	0.0198	0.0034	0.0202	0.0201	0.0034
12	2		0.0025	0.0226	0.0036	0.0211	0.0229	0.0036
12	3		0.0029	0.0253	0.0039	0.0223	0.0256	0.0039
12	4	*	0.0038	0.0287	0.0044	0.0239	0.0292	0.0044
12	5	٠.	0.0050	0.0307	0.0044	0.0256	0.0316	0.0044
12	6		0.0058	0.0280	0.0042	0.0268	0.0292	0.0042
12	7	•	0.0073	0.0206	0.0036	0.0231	0.0223	0.0036
12	8		0.0072	0.0156	0.0031	0.0167	0.0175	0.0031
12	9		0.0055	0.0146	0.0030	0.0150	0.0159	0.0030
12	10	.:-	0.0046	0.0140	0.0030	0.0157	0.0149	0.0030
12	11		0.0034	0.0151	1.000.0	0.0180	0.0157	0.0031
12	12	institution and	0.0027	0.0172	0.0033	0.0192	0.0176	0.0033
13	. 1	. 1.5	0.0026	0.0198	0.0034	0.0202	0.0201	0.0034
13	2	275	0.0025	0.0226	0.0036	0.0211	0.0229	0.0036
13	3		0.0030	0.0253	0.0040	0.0223	0.0257	0.0040
13	4		0.0038	0.0288	0.0044	0.0240	0.0293	0.0044
13	5	1.5	0.0050	0.0307	0.0044	0.0256	0.0317	0.0044
13	6	fields to	0.0058	0.0280	0.0042	0.0268	0.0292	0.0042

(5) Dissolved Matters Run-1, Run-2 (4/8)

· Y	. M	Cu	Zn	As	Cu	Zn	As
13	7	0.0073	0.0205	0.0036	0.0231	0.0223	0.0036
13	8	0.0072	0.0156	0.0031	0.0167	0.0175	0.0031
13	9	0.0055	0.0146	0.0030	0.0150	0.0159	0.0030
13	10	0.0046	0.0140	0.0030	0.0157	0.0150	0.0030
13	11	0.0034	0.0151	0.0031	0.0180	0.0157	0.0031
13	12	0.0027	0.0173	0.0033	0.0192	0.0176	0.0033
14	l	0.0026	0.0198	0.0034	0.0203	0.0201	0.0034
14	2	0.0025	0.0227	0.0036	0.0212	0.0229	0.0036
14	3	0.0030	0.0254	0.0040	0.0224	. 0,0257	0.0040
14	4	0.0038	0.0288	0.0044	0.0240	0.0294	0.0044
14	5	0.0050	0.0307	0.0044	0.0257	0.0317	0.0044
14	6	0.0059	0.0280	0.0042	0.0268	0.0292	0.0042
14	7	0.0074	0.0204	0.0036	0.0231	0.0222	0.0036
14	8	0.0073	0.0156	0.0031	0.0167	0.0175	0.0031
14	9	0.0055	0.0146	0.0030	0.0150	0.0159	0.0030
14	10	0.0046	0.0140	0.0030	0.0157	0.0150	0.0030
14	H	0.0034	0.0151	0.0031	0.0180	0.0157	0.0031
14	12	0.0027	0.0173	0.0033	0.0192	0.0176	0.0033
15	1	0.0026	0.0198	0.0034	0.0203	0.0201	0.0034
15	2	0.0025	0.0227	0.0036	0.0212	0.0230	0.0036
15	3	0.0030	0.0254	0.0040	0.0224	0.0258	0.0040
15	4	0.0039	0.0289	0.0044	0.0241	0.0294	0.0044
15	5	0.0051	0.0308	0.0044	0.0257	0.0318	0.0044
15	6	0.0059	0.0279	0.0042	0.0269	0.0292	0.0042
15	· 7	0.0074	0.0203	0.0036	0.0231	0.0222	0.0036
15	8	0.0073	0.0156	0.0031	0.0167	0.0175	0.0031
15	9	0.0055	0.0146	0.0030	0.0150	0.0159	0.0030
15	10	0.0046	0.0140	0.0030	0.0157	0.0150	0.0030
15	11	0.0035	0.0151	0.0031	0.0180	0.0157	0.0031
15	12	0.0027	0.0173	0.0033	0.0193	0.0176	0.0033
16	1	0.0026	0.0198	0.0034	0.0203	0.0201	0.0034
16	2	0.0025	0.0227	0.0036	0.0212	0.0230	0.0036
16	3	0.0030	0.0254	0.0040	0.0224	0.0258	0.0040
16	4	0.0039	0.0289	0.0044	0.0241	0.0295	0.0044
16	5	0.0051	0.0308	0.0044	0.0258	0.0318	0.0044
16	6	0.0059	0.0279	0.0042	0.0269	0.0292	0.0042
16	7	0.0074	0.0203	0.0036	0.0231	0.0221	0.0036
16	8	0.0073	0.0156	0.0031	0.0166	0.0175	0.0031
16	9	0.0055	0.0146	0.0030	0.0150	0.0159	0.0030
16	10	0.0046	0.0140	0.0030	0.0157	0.0149	0.0030
16	11	0.0035	0.0151	0.0031	0.0180	0.0157	0.0031
16 :-	12 .	0.0027	0.0173	0.0033	0.0193	0.0176	0.0033
17	1	0.0026	0.0199	0.0034	0.0203	0.0202	0.0034
17	2	0.0025	0.0228	0.0036	0.0212	0.0230	0.0036
.17	3	0.0030	0.0255	0.0040	0.0225	0.0258	0.0040
17	4	0.0039	0.0290	0.0044	0.0242	0.0295	0.0044
17	5	0.0052	0.0309	0.0044	0.0258	0.0319	0.0044
17	6	0.0060	0.0279	0.0042	0.0270	0.0292	0.0042

(5) Dissolved Matters Run-1, Run-2 (5/8)

Y	M	Cu	Zn	Λs	Cu	Zn	As
17	7	0.0075	0.0202	0.0036	0,0230	0.0220	0.0036
17	8	0.0073	0.0155	0.0031	0.0166	0.0174	0.0031
17	9	0.0056	0.0146	0.0030	0.0149	0.0159	0.0030
17	10	0.0046	0.0140	0.0030	0.0157	0.0149	0.0030
17	11	0.0035	0.0151	0.0031	0.0180	0.0157	0.0031
17	12	0.0027	0.0173	0.0033	0.0193	0.0176	0.0033
18	1.	0.0026	0.0199	0,0034	0.0203	0.0202	0.0034
18	2	0.0025	0.0288	0.0036	0.0212	0.0231	0.0036
- 18	3	0.0030	0.0255	0.0040	0.0225	0.0259	0.0040
18	4	0.0040	0.0290	0.0044	0.0242	0.0296	0.0044
18	5	0.0052	0.0309	0.0045	0.0259	0.0319	0.0045
18	6 - 1	0.0060	0.0278	0.0042	0.0270	0.0291	0.0042
.18	7	0.0075	0.0201	0.0036	0.0230	0.0219	0.0036
18	8 .	0.0074	0.0155	0.0031	0.0166	0.0174	0.0031
18	9	0.0056	0.0146	0.0030	0.0149	0.0159	0.0030
18	10	0.0046	0.0140	0.0030	0.0157	0.0149	0.0030
18	11	0.0035	0.0151	0.0031	0.0180	0.0157	0.0031
. 18	12	0.0027	0.0173	0.0033	0.0193	0.0176	0.0033
19	1	0.0026	0.0199	0.0034	0.0203	0.0202	0.0034
19	2	0.0025	0.0228	0.0037	0.0213	0.0231	0.0037
19	3	0.0031	0.0256	0.0040	0.0225	0.0259	0.0040
19	4	0.0040	0.0291	0.0044	0.0243	0.0297	0.0044
19	5	0.0052	0.0309	0.0045	0.0259	0.0319	0.0045
- 19	6	0.0061	0.0278	0.0042	0.0271	0.0291	0.0042
19	7	0.0076	0.0200	0.0036	0.0230	0.0219	0.0036
19	8	0.0074	0.0155	0.0031	0.0166	0.0174	0.0031
- 19	9	0.0056	0.0146	0.0030	0.0149	0.0159	0.0030
19	10	0.0047	0.0139	0.0030	0.0157	0.0149	0.0030
19	H	0.0035	0.0151	0.0031	0.0180	0.0157	0.0031
19	12	0.0028	0.0173	0.0033	0.0193	0.0176	0.0033
20	ı	0.0026	0.0199	0.0034	0.0203	0.0202	0.0034
20	2	0.0026	0.0228	0.0037	0.0213	0.0231	0.0037
20	3	0.0031	0.0256	0.0040	0.0226	0.0260	0.0040
20	4	0.0040	0.0291	0.0045	0.0243	0.0297	0.0045
20	5	0.0053	0.0310	0.0045	0.0260	0.0320	0.0045
20	6	0.0061	0.0277	0.0042	0.0271	0.0291	0.0042
20	7	0.0076	0.0199	0.0036	0.0230	0.0218	0.0036
20	8	0.0074	0.0155	0.0031	0.0165	0.0174	0.0031
20	9	0.0056	0.0146	0.0030	0.0149	0.0159	0.0030
20	10	0.0047	0.0139	0.0030	0.0157	0.0149	0.0030
20	11	0.0035	0.0151	0.0031	0.0180	0.0157	0.0031
20	12	0.0028	0.0173	0.0033	0.0193	0.0176	0.0033
21	1	0.0026	0.0199	0.0034	0.0204	0.0202	0.0034
21	2	0.0026	0.0229	0.0037	0.0213	0.0231	0.0037
21	3	0.0031	0.0256	0.0040	0.0226	0.0260	0.0040
21	4	0.0041	0.0292	0.0045	0.0244	0.0298	0.0045
21	5	0.0053	0.0310	0.0045	0.0260	0.0320	0.0045
21	6	0.0062	0.0277	0.0042	0.0271	0.0290	0.0042

0

(5) Dissolved Matters Run-1, Run-2 (6/8)

				•	· · · · · · · · · · · · · · · · · · ·		
Y	M	Cu	Zn	As	Cu	Zn	As
21	7	0.0076	0.0198	0.0036	0.0230	0.0217	0.0036
21 .	8	0.0074	0.0154	0.0031	0.0165	0.0174	0.0031
21	9	0.0056	0.0146	0.0030	0.0149	0.0159	0.0030
21	10	0.0047	0.0139	0,0030	0.0156	0.0149	0.0030
21	H	0.0035	0.0151	0.0031	0.0180	0.0157	0.0031
21	12	0.0028	0.0173	0.0033	0.0193	0.0176	0.0033
22		0.0026	0.0199	0.0034	0.0204	0.0202	0,0034
22	2 .	0.0026	0.0229	0.0037	0.0213	0.0232	0.0037
22	3	1 200.0	0.0257	0.0040	0.0227	0.0260	0.0040
- 22	4	0.0041	0.0292	0.0045	0.0244	0.0298	0.0045
22	5 .	0.0054	0.0310	0.0045	0.0261	0.0321	0.0045
22	6	0.0062	0.0276	0.0042	0.0272	0.0290	0.0042
22	7	0.0077	0.0197	0.0036	0.0230	0.0216	0.0036
22	8	0.0075	0.0154	0.0031	0.0165	0.0173	0.0031
22	9 .	0.0057	0.0146	0.0030	0.0149	0.0159	0.0030
22	10 .	0.0047	0.0139	0.0030	0.0156	0.0149	0.0030
22	11	0.0035	0.0151	0.0031	0.0180	0.0157	0.0031
22	12	0.0028	0.0173	0.0033	0.0193	0.0177	0.0033
23	1	0.0026	0.0200	0.0034	0.0204	0.0203	0.0034
23	2 .	0.0026	0.0229	0.0037	0.0214	0.0232	0.0037
23	3 .	0.0032	0.0257	0.0040	0.0227	0.0261	0.0040
23	4 .	0.0042	0.0293	0.0045	0.0245	0.0299	0.0045
23	5	0.0054	0.0311	0.0045	0.0262	0.0321	0.0045
- 23	6	0.0063	0.0276	0.0042	0.0272	0.0290	0.0042
23	7	0.0077	0.0196	0.0036	0.0230	0.0215	0.0036
23	8	0.0075	0.0153	0.0031	0.0165	0.0173	0.0031
23	9 .	0.0057	0.0146	0.0030	0.0148	0.0159	0.0030
23	10	0.0047	0.0139	0.0030	0.0156	0.0149	0.0030
23	11	0.0035	0.0150	0.0031	0.0180	0.0157	0.0031
23	12	0.0028	0.0173	0.0033	0.0193	0.0177	0.0033
24	1	0.0026	0.0200	0.0034	0.0204	0.0203	0.0034
24	2	0.0026	0.0230	0.0037	0.0214	0.0232	0.0037
24	3	0.0032	0.0257	0.0040	0.0227	0.0261	0.0040
24	4	0.0042	0.0293	0.0045	0.0246	0.0300	0.0045
24	5	0.0055	0.0311	0.0045	0.0262	0.0322	0.0045
24	6	0.0063	0.0275	0.0042	0.0273	0.0289	0.0042
24	7	0.0078	0.0195	0.0036	0.0230	0.0214	0.0036
24	8 .	0.0075	0.0153	0.0031	0.0164	0.0173	0.0031
24	9	0.0057	0.0146	0.0030	0.0148	0.0159	0.0030
24	10	0.0047	0.0139	0.0030	0.0156	0.0149	0.0030
24	11	0.0036	0.0150	0.0031	0.0180	0.0157	0.0031
24	12	0.0028	0.0173	0.0033	0.0194	0.0177	0.0033
25	1	0.0027	0.0200	0.0034	0.0204	0.0203	0.0034
25	2:	0.0026	0.0230	0.0037	0.0214	0.0233	0.0037
25	3	0.0032	0.0258	0.0040	0.0228	0.0262	0.0040
25	4	0.0042	0.0294	0.0045	0.0246	0.0300	0.0045
25	5	0.0055	0.0311	0.0045	0.0263	0.0322	0.0045
25	6 .	0.0064	0.0274	0.0042	0.0273	0.0289	0.0042

(5) Dissolved Matters Run-1, Run-2 (7/8)

Υ -	М		Cu	Zn	As	Cu	Zn	As
25	7	:	0.0078	0.0194	0.0036	0.0230	0.0213	0.0036
25	8		0.0075	0.0153	0.0031	0.0164	0.0172	0.0031
25	9		0.0057	0.0146	0.0030	0.0148	0.0159	0.0030
25	10		0.0048	0.0138	0.0030	0.0156	0.0149	0.0030
25	11		0.0036	0.0150	0.0031	0.0180	0.0156	0.0031
25	12		0.0028	0.0173	0.0033	0.0194	0.0176	0.0033
26	1		0.0027	0.0200	0.0034	0.0205	0.0203	0.0034
26	2		0.0026	0.0230	0.0037	0.0214	0.0233	0.0037
26	3		0.0032	0.0258	0.0040	0.0228	0.0262	0.0040
26	4		0.0043	0.0294	0.0045	0.0247	0.0301	0.0045
26	5		0.0056	0.0311	0.0045	0.0264	0.0322	0.0045
26	6		0.0064	0.0274	0.0042	0.0274	0.0288	0.0042
26	7		0.0079	0.0193	0.0036	0.0230	0.0212	0.0036
26	8		0.0076	0.0152	0.0031	0.0164	0.0172	0.0031
26	9		0.0057	0.0145	0.0030	0.0148	0.0159	0.0030
26	10		0.0048	0.0138	0.0030	0.0156	0.0149	0.0030
26	11		0.0036	0.0150	0.0031	0.0180	0.0156	0.0031
26	12		0.0028	0.0173	0.0033	0.0194	0.0176	0.0033
27	ı		0.0027	0.0200	0.0035	0.0205	0.0203	0.0035
27	2		0.0026	0.0230	0.0037	0.0215	0.0233	0.0037
27	3		0.0033	0.0258	0.0041	0.0229	0.0262	0.0041
27	4		0.0043	0.0295	0.0046	0.0248	0.0301	0.0046
27	5		0.0057	0.0311	0.0045	0.0264	0.0323	0.0045
27	6		0.0065	0.0273	0.0043	0.0275	0.0287	0.0042
27	7		0.0080	0.0273	0.0042	0.0279	0.0211	0.0042
27	8		0.0030	0.0152	0.0031	0.0163	0.0211	0.0031
27	9		0.0078	0.0132	0.0031	0.0147	0.0172	0.0031
27	- 10		0.0038	0.0138	0.0030	0.0156	0.0148	0.0030
27				0.0150	0.0031	0.0180	0.0148	0.0030
	- 11 12		0.0036			0.0194		0.0031
27		·	0.0028	0.0173	0.0033		0.0176	
28	1	100	0.0027	0.0200	0.0035 0.0037	0.0205	0.0203	0.0035 0.0037
28	2		0.0026	0.0231		0.0215	0.0234	
. 28	3		0.0033	0.0259	0.0041	0.0229	0.0263	0.0041
28	4		0.0044	0.0295	0.0046	0.0248	0.0302	0.0046
28	5		0.0057	0.0312	0.0046	0.0265	0.0323	0.0046
28	6		0.0066	0.0272	0.0042	0.0275	0.0287	0.0042
28	7		0.0080	0.0190	0.0036	0.0229	0.0210	0.0036
28	8		0.0076	0.0151	0.0031	0.0163	0.0171	0.0031
28	9		0.0058	0.0145	0.0030	0.0147	0.0159	0.0030
. 28	- 10		0.0048	0.0138	0.0030	0.0156	0.0148	0.0030
28	11		0.0036	0.0150	0.0031	0.0181	0.0156	0.0031
28	12		0.0028	0.0173	0.0033	0.0194	0.0176	0.0033
29	- 1		0.0027	0.0200	0.0035	0.0205	0.0203	0.0035
: 29	: 2		0.0027	0.0231	0.0037	0.0215	0.0234	0.0037
29	3	*	0.0033	0.0259	0.0041	0.0230	0.0263	0.0041
29	4		0.0044	0.0296	0.0046	0.0249	0.0303	0.0046
29	5		0.0058	0.0312	0.0046	0.0266	0.0323	0.0046
29	6		0.0066	0.0271	0.0042	0.0276	0.0286	0.0042

(5) Dissolved Matters Run-1, Run-2 (8/8)

Υ	M	Cu	Zn	As	Cu	Zn	As
29	7	0.0081	0.0189	0.0035	0.0229	0.0209	0.0035
29	8	0.0077	0.0151	0.0031	0.0163	0.0171	0.0031
29	9	0.0058	0.0145	0.0030	0.0147	0.0158	0.0030
29	10	0.0048	0.0138	0.0030	0.0155	0.0148	0.0030
29	11	0.0036	0.0149	0.0031	1810.0	0.0156	0.0031
29	12	0.0028	0.0173	0.0033	0.0194	0.0176	0.0033
30	1 .	0.0027	0.0200	0.0035	0.0205	0.0204	0.0035
30	2	0.0027	0.0231	0.0037	0.0216	0.0234	0.0037
30	3 .	0.0034	0.0259	0.0041	0.0230	0.0263	0.0041
30	4	0.0045	0.0296	0.0046	0.0250	0.0303	0.0046
30	5	0.0058	0.0312	0.0046	0.0266	0.0324	0.0046
30	6	0.0067	0.0270	0.0042	0.0276	0.0285	0.0042
30	7	1800.0	0.0187	0.0035	0.0229	0.0208	0.0035
30	8	0.0077	0.0150	0.0031	0.0162	0.0171	0.0031
30	9	0.0058	0.0145	.0.0030	0.0146	0.0158	0.0030
. 30	10	0.0048	0.0137	0.0030	0.0155	0.0148	0.0030
30	,H	0.0036	0.0149	0.0031	0.0181	0.0156	0.0031
30	12	0.0029	0.0173	0.0033	0.0194	0.0176	0.0033
31	1	0.0027	0.0200	0.0035	0.0206	0.0204	0.0035
31	2	0.0027	0.0232	0.0037	0.0216	0.0234	0.0037
31	3	0.0034	0.0259	0.0041	0.0231	0.0264	0.0041
31	4	0.0046	0.0297	0.0046	0.0250	0.0304	0.0046
31.	5	0.0059	0.0312	0.0046	0.0267	0.0324	0.0046
31	6	0.0068	0.0269	0.0042	0.0277	0.0284	0.0042
31	7	0.0082	0.0186	0.0035	0.0229	0.0206	0.0035
31	8 .	0.0077	0.0150	0.0031	0.0162	0.0170	0.0031
31	9	0.0058	0.0144	0.0030	0.0146	0.0158	0.0030
31	10	0.0049	0.0137	0.0030	0.0155	0.0148	0.0030
31	11	0.0037	0.0149	0.0031	0.0181	0.0155	0.0031
31	12	0.0029	0.0172	0.0033	0.0194	0.0176	0.0033

Y	M	Cu	Zn	As	Cu	Zn	As
l	7	0.0127	0.0062	0.0033	0.0237	0,0096	0.0033
- 1	8	0.0077	0.0126	0.0031	0.0210	0.0144	0,0031
1,	9	0.0062	0.0133	0.0030	0.0179	0.0148	0.0030
1	10	0.0048	0.0135	0.0030	0.0170	0.0145	0.0030
į	11	0.0031	0.0148	0.0031	0.0187	0.0153	0.0031
1	12	0.0029	0.0166	0.0032	0.0200	0.0170	0.0032
2	ı	0.0028	0.0185	0.0033	0.0211	0.0189	0.0033
2	2	0.0023	0.0212	0.0035	0.0219	0.0214	0.0035
2	3	0.0025	0.0239	0.0038	0.0227	0.0241	0.0038
2	4	0.0032	0.0270	0.0042	0.0239	0.0274	0.0042
2	5	0.0048	0.0282	0.0042	0.0254	0.0291	0.0042
2	6	0.0049	0.0283	0.0042	0.0265	0.0292	0.0042
. 2	7	0.0080	0.0182	0.0034	0.0189	0.0202	0.0034
2	8	0.0055	0.0131	0.0029	0.0127	0.0150	0.0029
2	9	0.0041	0.0132	0.0030	0.0153	0.0140	0.0030
2	10	0.0050	0.0117	0.0029	0.0128	0.0131	0.0029
2.,	11	0.0030	0.0129	0.0030	0.0157	0.0133	0.0030
2	12	0.0025	0.0155	0.0032	0.0169	0.0157	0.0032
3		0.0023	0.0184	0.0034	0.0179	0.0186	0.0034
3	2	0.0023	0.0217	0.0036	0.0187	0.0219	0.0036
3	3	0.0026	0.0255	0.0040	0.0199	0.0257	0.0040
3	4	0.0031	0.0317	0.0045	0.0214	0.0320	0.0045
3	5	0.0052	0.0310	0.0043	0.0238	0.0321	0.0043
3	6	0.0056	0.0275	0.0041	0.0256	0.0287	0.0041
3	7	0.0065	0.0220	0.0037	0.0241	0.0235	0.0037
3	8	0.0062	0.0140	0.0030	0.0142	0.0161	0.0030
3	9	0.0053	0.0130	0.0029	0.0136	0.0142	0.0029
3	10	0.0033	0.0140	0.0031	0.0164	0.0145	0.0031
3	ii	0.0029	0.0159	0.0032	0.0180	0.0164	0.0032
3	12	0.0026	0.0182	0.0033	0.0191	0.0185	0.0033
4	1	0.0023	0.0210	0.0035	0.0199	0.0212	0.0035
4	2	0.0024	0.0241	0.0037	0.0208	0.0243	0,0037
4	3	0.0028	0.0274	0.0042	0.0219	0.0277	0.0042
4	4	0.0035	0.0321	0.0045	0.0234	0.0326	0.0045
4	5	0.0045	0.0339	0.0046	0.0250	0.0347	0.0046
4	6	0.0053	0.0315	0.0044	0.0263	0.0326	0.0044
4	7	0.0051	0.0297	0.0043	0.0272	0.0307	0.0043
4	8	0.0080	0.0187	0.0034	0.0191	0.0207	0.0034
4	9	0.0056	0.0172	0.0032	0.0180	0.0185	0.0032
4	ıó -	0.0045	0.0172	0.0032	0.0178	0.0176	0.0032
4	ii	0.0030	0.0178	0.0032	0.0174	0.0183	0.0032
4	12	0.0025	0.0200	0.0034	0.0203	0.0203	0.0033
5	1	0.0024	0.0226	0.0036	0.0211	0.0228	0.0036
5	2	0.0023	0.0257	0.0038	0.0211	0.0258	0.0038
5	3	0.0028	0.0288	0.0042	0.0229	0.0291	0.0042
5	4	0.0032	0.0203	0.0047	0.0242	0.0346	0.0042
	5	0.0034	0.0343	0.0051	0.0254	0.0413	0.0047
5							

(6) Dissolved Matters Run-3, Run-4 (2/8)

Y	М	Cu	Zn	Λs	Cu	Zn	As
5	7	0.0069	0.0188	0.0033	0.0161	0.0205	0.0033
.5	8	0.0048	0.0142	0.0030	0.0122	0.0159	0,0030
5	9	0.0050	0.0129	0.0029	0.0139	0.0140	0.0029
5	10	0.0042	0.0131	0.0030	0.0154	0.0140	0.0030
5	11	0.0041	0.0138	0.0030	0.0166	0.0146	0.0030
5	12	0.0030	0.0153	0.0031	0.0183	0.0158	0.0031
6	1	0,0025	0.0178	0.0033	0.0193	0.0181	0.0033
6	2	0,0023	0.0208	0.0035	0.0201	0.0210	0.0035
6	3	0.0026	0.0237	0.0038	0.0211	0.0240	0.0038
6	4	.0.0035	0.0270	0.0042	0.0228	0.0274	0.0042
6.	5	0.0037	0.0331	0.0046	0.0242	0.0336	0.0046
6	6	0.0038	0.0377	0.0048	0.0255	0.0382	0.0048
6	7	0.0046	0.0377	0.0048	0.0266	0.0385	0.0048
6	8	0.0077	0.0238	0.0038	0.0208	0.0257	0.0038
. 6	9	0.0064	0.0190	0.0033	0.0177	0.0205	0.0033
6	10	0.0043	0.0185	0.0033	0.0182	0.0194	0.0033
6	11	0.0045	0.0173	0.0032	0.0179	0.0183	0.0032
.6	12	0.0032	0.0180	0.0033	0.0196	0.0186	0.0033
7	1	0.0024	0.0205	0.0035	0.0204	0.0207	0.0035
7	2	0.0023	0.0233	0.0037	0.0212	0.0235	0.0037
7	3	0.0025	0.0265	0.0040	0.0220	0.0267	0.0040
7	4	0.0031	0.0309	0.0045	0.0234	0.0312	0.0045
7	5	0.0034	0.0380	0.0049	0.0247	0.0384	0.0049
7	6	0.0037	0.0428	0.0051	0.0258	0.0433	0.0051
7	7	0.0051	0.0395	0.0049	0.0269	0.0405	0.0049
7	8	0.0064	0.0303	0.0042	0.0270	0.0318	0.0042
7	9	0.0062	0.0245	0.0038	0.0248	0.0259	0.0038
7	10	0.0048	0.0234	0.0037	0.0258	0.0244	0.0037
7	11	0.0035	0.0250	0.0038	0.0265	0.0256	0.0038
7	12	0.0029	0.0286	0.0042	0.0272	0.0289	0.0042
8		0.0038	0.0317	0.0045	0.0281	0.0323	0.0045
8	2	0.0032	0.0391	0.0049	0.0288	0.0394	0.0049
8	3	0.0032	0.0457	0.0054	0.0296	0.0461	0.0054
8	4	0.0036	0.0508	0.0056	0.0301	0.0513	0.0056
8	5	0.0041	0.0511	0.0056	0.0303	0.0517	0.0056
8	6	0.0039	0.0522	0.0057	0.0306	0.0528	0.0057
8	7	0.0049	0.0474	0.0054	0.0303	0.0484	0.0054
8	8	0.0064	0.0351	0.0045	0.0292	0.0366	0.0045
8	9	0.0074	0.0229	0.0036	0.0213	0.0247	0.0036
8.	10	0.0043	0.0226	0.0036	0.0229	0.0234	0.0036
8	11	0.0039	0.0226	0.0036	0.0241	0.0233	0.0036
- 8	12	0.0034	0.0234	0.0036	0.0250	0.0239	0.0036
				<u> </u>	0.0256	0.0255	0.0038
9	1	0.0030	0.0251	0.0038		0.0255	0.0040
9	2	0.0030	0.0274	0.0040	0.0263		0.0040
9	3	0.0042	0.0281	0.0043	0.0273	0.0287	
9	4	0.0044	0.0315	0.0045	0.0280	0.0323	0.0045
9	5	0.0043	0.0340	0.0046	0.0286	0.0347	0.0046
9	6	0.0052	0.0328	0.0045	0.0288	0.0339	0.0045

9 8 0.0966 0.0221 0.0037 0.0256 0.0236 0.0039 9 9 0.0071 0.0169 0.0032 0.0188 0.0186 0.003 9 10 0.0043 0.0170 0.0032 0.0191 0.0179 0.003 9 11 0.0034 0.0179 0.0033 0.0208 0.0184 0.003 9 12 0.0032 0.0190 0.0033 0.0208 0.0184 0.003 10 1 0.0028 0.0298 0.0035 0.0229 0.0114 0.003 10 2 0.0025 0.0231 0.0036 0.0225 0.0234 0.0031 10 3 0.0028 0.0251 0.0038 0.0024 0.0255 0.0031 10 4 0.0034 0.0276 0.0041 0.0254 0.0281 0.004 10 5 0.0040 0.0307 0.0044 0.0254 0.0281 0.004 10 6 0.0040 0.0307 0.0044 0.0255 0.0313 0.004 10 7 0.0061 0.0272 0.0041 0.0274 0.0225 0.004 10 7 0.0061 0.0272 0.0041 0.0272 0.0285 0.004 10 8 0.0054 0.0258 0.0040 0.0282 0.0285 0.004 10 9 0.0054 0.0246 0.0039 0.0284 0.0257 0.003 10 10 0.0045 0.0259 0.0040 0.0287 0.0266 0.0041 10 11 0.0044 0.0259 0.0040 0.0287 0.0267 0.0041 10 11 0.0044 0.0290 0.0044 0.0293 0.0260 0.004 10 11 0.0044 0.0372 0.0041 0.0279 0.0285 0.0041 11 1 0.0044 0.0390 0.0044 0.0287 0.0267 0.0041 11 1 0.0044 0.0390 0.0044 0.0293 0.0264 0.0057 0.0031 11 1 0.0044 0.0390 0.0044 0.0293 0.0260 0.0041 11 1 0.0044 0.0390 0.0044 0.0293 0.0260 0.0041 11 1 0.0044 0.0390 0.0044 0.0293 0.0260 0.0041 11 1 0.0044 0.0390 0.0044 0.0293 0.0350 0.0041 11 1 0.0044 0.0390 0.0044 0.0293 0.0350 0.0041 11 1 0.0044 0.0390 0.0044 0.0293 0.0350 0.0041 11 1 0.0044 0.0390 0.0044 0.0293 0.0350 0.0041 11 1 0.0044 0.0390 0.0044 0.0293 0.0350 0.0041 11 1 0.0044 0.0390 0.0044 0.0293 0.0350 0.0041 11 1 0.0044 0.0390 0.0044 0.0293 0.0350 0.0041 11 1 0.0044 0.0390 0.0044 0.0293 0.0350 0.0041 11 1 0.0044 0.0390 0.0044 0.0293 0.0350 0.0041 11 2 0.0039 0.0345 0.0047 0.0298 0.0350 0.0041 11 2 0.0039 0.0345 0.0047 0.0298 0.0350 0.0041 11 2 0.0039 0.0345 0.0047 0.0051 0.0399 0.0350 0.0041 11 1 0.0044 0.0030 0.0157 0.0152 0.0056 0.0031 11 1 0.0045 0.0056 0.0034 0.0055 0.0310 0.0472 0.0056 0.0031 11 1 0.0046 0.0050 0.0056 0.0056 0.0310 0.0472 0.0056 0.0031 11 1 0.0046 0.0050 0.0050 0.0050 0.0057 0.0313 0.0515 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.0056 0.	Υ	М		Cu	Zn	As		Cu	Zn	As
9 8 0.0066 0.0221 0.0037 0.0256 0.0236 0.0036 9 9 0.0071 0.0169 0.0032 0.0188 0.0186 0.003 9 10 0.0043 0.0170 0.0032 0.0191 0.0179 0.003 9 11 0.0034 0.0179 0.0033 0.0208 0.0184 0.003 9 12 0.0032 0.0199 0.0033 0.0208 0.0184 0.003 10 1 0.0028 0.0208 0.0035 0.0229 0.0219 0.003 10 2 0.0025 0.0231 0.0036 0.0225 0.0234 0.0031 10 3 0.0028 0.0251 0.0036 0.0235 0.0229 0.0211 0.003 10 3 0.0028 0.0251 0.0036 0.0235 0.0235 0.0234 0.0031 10 4 0.0034 0.0276 0.0041 0.0254 0.0281 0.004 10 5 0.0040 0.0307 0.0044 0.0255 0.0313 0.0041 10 6 0.0049 0.0315 0.0044 0.0255 0.0313 0.0041 10 7 0.0061 0.0272 0.0041 0.0274 0.0285 0.004 10 8 0.0054 0.0258 0.0040 0.0225 0.0285 0.004 10 9 0.0054 0.0246 0.0039 0.0284 0.0257 0.003 10 10 0.0045 0.0259 0.0040 0.0287 0.0285 0.0041 10 10 0.0045 0.0259 0.0040 0.0287 0.0267 0.0041 10 11 0.0044 0.0259 0.0040 0.0287 0.0267 0.0041 10 11 0.0044 0.0290 0.0044 0.0293 0.0284 0.0257 0.003 10 12 0.0039 0.0345 0.0047 0.0298 0.0350 0.0041 11 1 0.0044 0.0390 0.0047 0.0298 0.0350 0.0041 11 1 0.0044 0.0390 0.0044 0.0293 0.0260 0.0041 11 1 0.0044 0.0390 0.0047 0.0298 0.0350 0.0041 11 1 0.0044 0.0390 0.0047 0.0298 0.0350 0.0041 11 1 0.0045 0.0259 0.0047 0.0298 0.0350 0.0041 11 1 0.0044 0.0372 0.0048 0.0311 0.0379 0.0051 11 1 0.0045 0.0250 0.0047 0.0298 0.0350 0.0041 11 1 0.0044 0.0372 0.0048 0.0311 0.0379 0.0051 11 1 0.0045 0.0502 0.0056 0.0312 0.0569 0.0041 11 2 0.0039 0.0345 0.0047 0.0298 0.0350 0.0041 11 2 0.0039 0.0345 0.0047 0.0298 0.0350 0.0041 11 2 0.0030 0.0366 0.0047 0.0311 0.0319 0.0051 11 4 0.0038 0.0509 0.0057 0.0313 0.0515 0.0031 11 5 0.0044 0.0050 0.0057 0.0313 0.0515 0.0031 11 5 0.0044 0.0050 0.0056 0.0031 0.0057 0.0151 0.0051 11 6 0.0066 0.00386 0.0047 0.0301 0.0379 0.0051 11 6 0.0066 0.00386 0.0047 0.0311 0.0319 0.0051 11 1 0.00040 0.0050 0.0056 0.0019 0.0057 0.0151 0.0051 11 1 0.00040 0.0050 0.0050 0.0057 0.0313 0.0515 0.0051 11 1 0.00040 0.0050 0.0050 0.0057 0.0313 0.0515 0.0051 11 2 0.0030 0.0056 0.0044 0.0029 0.0056 0.0094 0.0052 0.0056 0.0051 11 2 0.0030 0.0056 0.0044 0.0029 0.0056 0.0094 0.002	9	7	0.0	1061	0.0274	0.0041		0.0287	0.0287	0.0041
9 9 0 00071 0.0169 0.0032 0.0188 0.0186 0.0036 9 11 0 0.0043 0.0179 0.0033 0.0208 0.0184 0.003 9 11 0.0034 0.0179 0.0033 0.0208 0.0184 0.003 9 12 0.0032 0.0199 0.0033 0.0220 0.0195 0.003 10 1 0.0028 0.0208 0.0035 0.0220 0.0195 0.003 10 2 0.0025 0.0231 0.0036 0.0235 0.0229 0.0211 0.003 10 3 0.0028 0.0251 0.0036 0.0235 0.0234 0.033 10 4 0.0034 0.0276 0.0041 0.0225 0.0234 0.003 10 5 0.0040 0.0307 0.0044 0.0225 0.0313 0.0042 10 6 0.0049 0.0315 0.0044 0.0225 0.0313 0.0041 10 6 0.0049 0.0315 0.0044 0.0274 0.0325 0.0041 10 7 0.0061 0.0272 0.0041 0.0279 0.0285 0.0041 10 8 0.0054 0.0258 0.0049 0.0229 0.0285 0.0041 10 9 0.0054 0.0258 0.0049 0.0222 0.0269 0.0041 10 9 0.0054 0.0258 0.0049 0.0282 0.0269 0.0041 10 10 0.0045 0.0259 0.0040 0.0287 0.0267 0.0031 10 11 0.00045 0.0259 0.0040 0.0287 0.0267 0.0041 10 11 0.0044 0.0290 0.0044 0.0293 0.0266 0.0041 10 12 0.0039 0.0345 0.0047 0.0298 0.0350 0.0041 11 1 0.0044 0.0390 0.0044 0.0293 0.0266 0.0041 11 1 0.0044 0.0390 0.0044 0.0293 0.0266 0.0041 11 1 0.0044 0.0390 0.0044 0.0293 0.0266 0.0041 11 1 0.0044 0.0390 0.0041 0.0287 0.0267 0.0041 11 1 0.0044 0.0390 0.0041 0.0287 0.0267 0.0041 11 1 0.0044 0.0390 0.0044 0.0293 0.0296 0.0041 11 1 0.0045 0.0290 0.0040 0.0287 0.0267 0.0041 11 1 0.0044 0.0390 0.0041 0.00293 0.0296 0.0041 11 1 0.0044 0.0390 0.0041 0.00293 0.0296 0.0041 11 1 0.0044 0.0390 0.0041 0.00293 0.0296 0.0041 11 1 0.0044 0.0390 0.0041 0.0042 0.0050 0.0041 11 1 0.0044 0.0030 0.0051 0.0031 0.0052 0.0051 11 3 0.0035 0.0468 0.0055 0.0313 0.0472 0.0051 11 4 0.0038 0.0509 0.0057 0.0313 0.0515 0.0061 11 5 0.0034 0.0052 0.0056 0.0031 0.0042 0.0059 0.0051 11 5 0.0034 0.0052 0.0056 0.0031 0.0052 0.0052 0.0056 0.0031 0.0052 0.0056 0.0031 0.0052 0.0056 0.0031 0.0052 0.0056 0.0031 0.0052 0.0056 0.0031 0.0052 0.0056 0.0031 0.0052 0.0056 0.0031 0.0052 0.0056 0.0031 0.0052 0.0056 0.0031 0.0052 0.0056 0.0031 0.0052 0.0056 0.0036 0.0058 0.0055 0.0036 0.0052 0.0056 0.0036 0.0052 0.0056 0.0056 0.0058 0.0055 0.0036 0.0058 0.0056 0.0058 0.0056 0.0058 0.0056 0.0058 0.0056 0.0058 0.0056 0.0058						0.0037		0.0256	0.0236	0.0037
9 10 0.0043 0.0170 0.0032 0.0191 0.0179 0.003 9 11 0.0034 0.0179 0.0033 0.0208 0.0184 0.003 9 112 0.0032 0.0190 0.0033 0.0208 0.0184 0.003 9 112 0.0032 0.0190 0.0033 0.0220 0.0195 0.003 10 1 0.0028 0.0208 0.0035 0.0229 0.0211 0.003 10 2 0.0025 0.0231 0.0036 0.0235 0.0223 0.00214 0.003 10 3 0.0028 0.0251 0.0038 0.0244 0.0235 0.003 10 4 0.0034 0.0276 0.0041 0.0254 0.0281 0.004 10 5 0.0040 0.0307 0.0044 0.0256 0.0313 0.004 10 6 0.0049 0.0315 0.0044 0.0256 0.0313 0.004 10 7 0.0061 0.0272 0.0041 0.0279 0.0285 0.004 10 8 0.0054 0.0258 0.0040 0.0282 0.0269 0.004 10 9 0.0054 0.0246 0.0039 0.0284 0.0257 0.003 10 10 0.0045 0.0259 0.0044 0.0288 0.0266 0.004 10 11 0.0040 0.0290 0.0044 0.0293 0.0287 0.0267 0.004 10 12 0.0039 0.0345 0.0047 0.0298 0.0330 0.004 11 1 0.0044 0.0372 0.0044 0.0293 0.0296 0.004 10 12 0.0039 0.0345 0.0047 0.0298 0.0350 0.004 11 1 0.0044 0.0372 0.0048 0.031 0.0376 0.004 11 1 0.0044 0.0372 0.0041 0.0298 0.0350 0.004 11 1 1 0.0044 0.0372 0.0048 0.031 0.0376 0.004 11 1 1 0.0044 0.0372 0.0048 0.031 0.0376 0.004 11 1 1 0.0044 0.0372 0.0048 0.0310 0.0376 0.004 11 1 1 0.0044 0.0372 0.0048 0.0310 0.0376 0.004 11 1 1 0.0044 0.0372 0.0048 0.0310 0.0376 0.004 11 1 1 0.0044 0.0372 0.0048 0.0310 0.0376 0.004 11 1 1 0.0044 0.0372 0.0048 0.0310 0.0376 0.004 11 1 1 0.0044 0.0372 0.0048 0.0310 0.0376 0.004 11 1 1 0.0044 0.0370 0.0055 0.0310 0.0375 0.003 11 1 3 0.0035 0.0468 0.0059 0.0056 0.0312 0.0515 0.005 11 1 5 0.0044 0.0502 0.0056 0.0312 0.0515 0.005 11 1 7 0.0062 0.0306 0.0055 0.0310 0.0379 0.004 11 1 1 0.0044 0.0502 0.0056 0.0312 0.0509 0.005 11 1 7 0.0062 0.0306 0.0055 0.0310 0.0376 0.003 11 1 9 0.0044 0.0502 0.0056 0.0312 0.0509 0.005 11 1 9 0.0044 0.0068 0.0068 0.0017 0.0018 0.0071 11 1 0.0006 0.0039 0.0036 0.0019 0.0088 0.004 12 1 0.0039 0.0341 0.0047 0.0238 0.0241 0.003 12 1 0.0039 0.0341 0.0047 0.0033 0.0199 0.0188 0.001 12 1 0.00040 0.0177 0.0031 0.0189 0.0229 0.006 12 2 0.0030 0.0266 0.0039 0.0036 0.0199 0.0188 0.000 12 1 0.0040 0.0174 0.0032 0.00199 0.0188 0.001 12 1 0.00040 0.0174 0.0032 0.00199 0.018						0.0032		0.0188	0.0186	0.0032
9 11 0.0034 0.0179 0.0033 0.0208 0.0184 0.003 9 12 0.0032 0.0190 0.0033 0.0220 0.0195 0.003 10 1 0.0028 0.0208 0.0035 0.0229 0.0211 0.003 110 2 0.0025 0.0231 0.0036 0.0235 0.0234 0.003 110 3 0.0028 0.0251 0.0038 0.0244 0.0255 0.003 110 4 0.0034 0.0276 0.0041 0.02244 0.0255 0.003 110 5 0.0040 0.0307 0.0044 0.0265 0.0313 0.004 110 6 0.0049 0.0315 0.0044 0.0274 0.0325 0.004 110 7 0.0061 0.0272 0.0041 0.0279 0.0225 0.004 110 8 0.0054 0.0258 0.0040 0.0282 0.0269 0.004 110 9 0.0054 0.0258 0.0040 0.0282 0.0269 0.004 110 10 0.0045 0.0259 0.0040 0.0282 0.0267 0.004 110 11 0.0040 0.0290 0.0044 0.0293 0.0267 0.004 110 12 0.0039 0.0345 0.0044 0.0293 0.0266 0.004 111 1 0.0044 0.0372 0.0048 0.0301 0.0379 0.094 111 2 0.0037 0.0417 0.0051 0.0305 0.0422 0.005 111 3 0.0035 0.0468 0.0055 0.0310 0.0472 0.005 111 4 0.0038 0.0509 0.0057 0.0313 0.0515 0.005 111 5 0.0044 0.0502 0.0056 0.0312 0.0379 0.005 111 6 0.0062 0.0386 0.0057 0.0313 0.0515 0.005 111 7 0.0062 0.0386 0.0057 0.0313 0.0515 0.005 111 8 0.0036 0.0569 0.0057 0.0313 0.0515 0.005 111 8 0.0057 0.0141 0.0030 0.0127 0.0165 0.005 111 9 0.0041 0.0144 0.0300 0.0127 0.0165 0.005 111 1 0.0044 0.0502 0.0386 0.0057 0.0313 0.0515 0.005 111 1 0.0044 0.0502 0.0386 0.0031 0.0399 0.005 111 1 0.0044 0.0502 0.0386 0.0057 0.0313 0.0515 0.005 111 1 0.0044 0.0502 0.0386 0.0057 0.0313 0.0515 0.005 111 1 0.0044 0.0502 0.0386 0.0057 0.0313 0.0515 0.005 111 1 0.0036 0.0154 0.0031 0.0181 0.0160 0.005 111 1 0.0036 0.0154 0.0031 0.0181 0.0160 0.005 111 1 0.0026 0.0239 0.0037 0.0028 0.0034 0.0065 112 2 0.0039 0.0044 0.0044 0.0030 0.0157 0.0152 0.005 112 1 0.0026 0.0239 0.0037 0.0048 0.0289 0.0315 0.006 112 2 0.0039 0.0044 0.0030 0.0157 0.0181 0.006 112 2 0.0039 0.0044 0.0030 0.0157 0.0181 0.006 112 1 0.0026 0.0239 0.0037 0.0028 0.0044 0.0238 0.0036 0.0041 0.0022 0.0069 0.005 112 2 0.0039 0.0046 0.0030 0.0157 0.0181 0.0060 112 2 0.0039 0.0040 0.0035 0.0199 0.0188 0.0060 112 4 0.0030 0.0056 0.0049 0.00229 0.0056 0.0031 0.0060 0.0060 0.0060 0.0060 0.0060 0.0060 0.0060 0.0060 0.0060 0.0060 0.0060 0.0060								0.0191	0.0179	0.0032
9 12 0.0032 0.0190 0.0033 0.0220 0.0195 0.003 10 1 0.0028 0.0208 0.0035 0.0229 0.0211 0.003 10 2 0.0025 0.0231 0.0036 0.0235 0.0224 0.003 10 3 0.0028 0.0251 0.0038 0.0244 0.0255 0.003 10 4 0.0034 0.0276 0.0041 0.0254 0.0281 0.004 10 5 0.0040 0.0307 0.0044 0.0255 0.0313 0.004 10 6 0.0049 0.0315 0.0044 0.0274 0.0325 0.004 10 7 0.0061 0.0272 0.0041 0.0279 0.0285 0.004 10 8 0.0054 0.0258 0.0040 0.0282 0.0266 0.004 10 9 0.0054 0.0258 0.0040 0.0282 0.0266 0.004 10 10 0.0045 0.0259 0.0040 0.0284 0.0257 0.006 10 11 0.0040 0.0290 0.0044 0.0293 0.0266 0.004 10 12 0.0039 0.0345 0.0047 0.0298 0.0350 0.004 11 1 0.0044 0.0372 0.0048 0.0391 0.0296 0.004 11 1 0.0044 0.0372 0.0048 0.0301 0.0379 0.004 11 1 0.0044 0.0372 0.0048 0.0301 0.0379 0.004 11 1 0.0044 0.0372 0.0048 0.0301 0.0379 0.004 11 1 0.0044 0.0372 0.0048 0.0301 0.0379 0.004 11 1 0.0044 0.0372 0.0048 0.0301 0.0379 0.004 11 1 0.0044 0.0372 0.0048 0.0301 0.0379 0.004 11 1 0.0043 0.0355 0.0468 0.0055 0.0310 0.0472 0.005 11 3 0.0035 0.0468 0.0055 0.0310 0.0472 0.005 11 4 0.0038 0.0509 0.0057 0.0313 0.0515 0.005 11 5 0.0044 0.0502 0.0056 0.0011 0.0399 0.004 11 7 0.0062 0.0386 0.0047 0.0311 0.0472 0.005 11 8 0.0062 0.0386 0.0047 0.0311 0.0399 0.004 11 9 0.0041 0.0144 0.0502 0.0056 0.0112 0.0509 0.005 11 1 8 0.0057 0.0141 0.0030 0.0157 0.0152 0.005 11 1 8 0.0057 0.0141 0.0030 0.0157 0.0152 0.005 11 1 1 0.0024 0.0179 0.0033 0.0190 0.0181 0.0165 0.003 11 1 1 0.0026 0.0396 0.0044 0.0238 0.0288 0.004 12 1 0.0026 0.0239 0.0035 0.0197 0.0212 0.005 12 2 0.0030 0.0265 0.0044 0.0238 0.0288 0.004 12 3 0.0041 0.0282 0.0044 0.0238 0.0288 0.004 12 4 0.0039 0.0341 0.0047 0.0230 0.0165 0.003 11 1 1 0.0026 0.0139 0.0035 0.0190 0.0181 0.0165 0.003 11 1 1 0.0026 0.0396 0.0035 0.0197 0.0212 0.003 12 1 0.0026 0.0039 0.0036 0.0044 0.0238 0.0288 0.0038 12 2 0.0030 0.0045 0.0046 0.0274 0.0016 0.0031 12 1 0.0026 0.0396 0.0035 0.0019 0.0018 0.0229 0.0065 12 3 0.0044 0.0282 0.0044 0.0238 0.0288 0.0038 0.0041 12 1 0.0026 0.0039 0.0033 0.0026 0.0019 0.0029 0.0029 0.0029 0.0024 0.0031 13 1 0.0025 0.023					0.0179	0.0033		0.0208		0.0033
10					0.0190	0.0033		0.0220	0.0195	0.0033
10	10	1	0.0	0028	0.0208	0.0035				0.0035
10		2	0.0	025						0.0036
10 5 0.0040 0.0307 0.0044 0.0265 0.0313 0.004 10 6 0.0049 0.0315 0.0044 0.0274 0.0325 0.004 10 7 0.0061 0.0272 0.0041 0.0279 0.0285 0.004 10 8 0.0054 0.0258 0.0040 0.0282 0.0269 0.004 10 9 0.0054 0.0246 0.0039 0.0284 0.0257 0.003 10 10 0.0045 0.0259 0.0040 0.0287 0.0267 0.004 10 11 0.0040 0.0290 0.0044 0.0293 0.0296 0.004 10 12 0.0039 0.0345 0.0047 0.0298 0.0350 0.004 11 1 0.0044 0.0372 0.0048 0.0301 0.0379 0.004 11 2 0.0037 0.0417 0.0051 0.0305 0.0422 0.005 11 3 0.0035 0.0468 0.0055 0.0310 0.0472 0.005 11 4 0.0038 0.0569 0.0057 0.0313 0.0515 0.005 11 5 0.0044 0.0562 0.0056 0.0312 0.0509 0.005 11 6 0.0062 0.0386 0.0047 0.0301 0.0399 0.005 11 7 0.0062 0.0386 0.0047 0.0301 0.0399 0.005 11 8 0.0057 0.0141 0.0030 0.0157 0.0152 0.003 11 9 0.0041 0.0144 0.0030 0.0157 0.0152 0.003 11 11 0.0026 0.0301 0.0042 0.0289 0.015 0.005 11 11 0.0026 0.0399 0.0037 0.00181 0.0165 0.003 11 12 0.0022 0.0210 0.0035 0.0197 0.0212 0.003 12 1 0.0026 0.0239 0.0037 0.0208 0.0241 0.003 12 2 0.0030 0.0265 0.0044 0.0228 0.0241 0.003 12 3 0.0041 0.0222 0.0010 0.0035 0.0197 0.0212 0.003 12 4 0.0039 0.0341 0.0047 0.0253 0.0347 0.004 12 5 0.0044 0.0368 0.0046 0.0198 0.0229 0.005 12 5 0.0044 0.0368 0.0044 0.0228 0.0044 0.0238 0.0047 12 5 0.0044 0.0368 0.0046 0.0198 0.0229 0.005 12 8 0.0057 0.0191 0.0044 0.0228 0.0044 0.0238 0.0045 0.0191 0.0044 0.0031 12 13 0.0028 0.0036 0.0035 0.0191 0.0044 0.0038 0.0036 0.0198 0.0229 0.005 13 4 0.0045 0.0203 0.0036 0.0043 0.0226 0.0045 0.0035 0.0045 0.0045	10	3					**			0.0038
10 6 0.0049 0.0315 0.0044 0.0274 0.0325 0.004 10 7 0.0061 0.0272 0.0041 0.0279 0.0285 0.004 10 8 0.0054 0.0258 0.0040 0.0282 0.0269 0.004 10 9 0.0054 0.0259 0.0040 0.0284 0.0257 0.003 10 10 0.0045 0.0259 0.0040 0.0287 0.0267 0.004 10 11 0.0040 0.0290 0.0044 0.0293 0.0296 0.004 10 12 0.0039 0.0345 0.0047 0.0298 0.0350 0.004 11 1 0.0044 0.0372 0.0048 0.0301 0.0379 0.004 11 2 0.0037 0.0417 0.0051 0.0305 0.0422 0.005 11 3 0.0035 0.0468 0.0055 0.0310 0.0472 0.005 11 4 0.0038 0.0509 0.0057 0.0313 0.0515 0.005 11 5 0.0044 0.0502 0.0056 0.0312 0.0509 0.005 11 6 0.0062 0.0386 0.0047 0.0301 0.0399 0.005 11 7 0.0062 0.0386 0.0047 0.0301 0.0399 0.005 11 8 0.0057 0.0141 0.0030 0.0127 0.0165 0.003 11 9 0.0041 0.0144 0.0030 0.0127 0.0165 0.003 11 11 0.0024 0.0179 0.0033 0.0197 0.0165 0.003 11 12 0.0026 0.0239 0.0037 0.0181 0.0160 0.003 12 1 0.0026 0.0239 0.0037 0.0288 0.0241 0.003 12 2 0.0030 0.0265 0.0044 0.0220 0.0269 0.005 12 3 0.0041 0.0282 0.0044 0.0238 0.0288 0.004 12 3 0.0041 0.0282 0.0044 0.0238 0.0288 0.004 12 4 0.0039 0.0341 0.0047 0.0253 0.0386 0.0047 0.038 0.0288 0.004 12 3 0.0041 0.0282 0.0044 0.0238 0.0288 0.004 0.0280 0.0055 0.0059 0.	10	4	0.0	034		0.0041				0.0041
10	10	5	0.0	0040	0.0307	0.0044				0.0044
10		6	0.0	049	0.0315	0.0044	•			0.0044
10 9	10	7	0.0	0061	0.0272	0.0041				0.0041
10	10	8	0.0	054						0.0040
10	10	9	0.0	054	0.0246	0.0039				0.0039
10 12 0.0039 0.0345 0.0047 0.0298 0.0350 0.0048 0.011 1 1 1 0.0044 0.0372 0.0048 0.0301 0.0379 0.0048 11 2 0.0037 0.0417 0.0051 0.0305 0.0422 0.005 11 3 0.0035 0.0468 0.0055 0.0310 0.0472 0.005 11 3 0.0035 0.0468 0.0055 0.0310 0.0472 0.005 11 4 0.0038 0.0509 0.0057 0.0313 0.0515 0.005 11 5 0.0044 0.0502 0.0056 0.0312 0.0509 0.005 11 5 0.0064 0.0502 0.0056 0.0312 0.0509 0.005 11 7 0.0062 0.0386 0.0047 0.0301 0.0399 0.004 11 7 0.0062 0.0301 0.0042 0.0289 0.0315 0.004 11 8 0.0057 0.0141 0.0030 0.0127 0.0165 0.003 11 9 0.0041 0.0144 0.0030 0.0157 0.0152 0.003 11 10 0.0036 0.0154 0.0031 0.0181 0.0160 0.003 11 11 0.0024 0.0179 0.0033 0.0190 0.0181 0.003 11 12 0.0022 0.0210 0.0035 0.0197 0.0212 0.003 12 2 0.0022 0.0210 0.0035 0.0197 0.0212 0.003 12 2 0.0030 0.0265 0.0040 0.0220 0.0269 0.006 12 3 0.0041 0.0282 0.0044 0.0238 0.0241 0.003 12 4 0.0039 0.0341 0.0047 0.0253 0.0347 0.0058 0.0041 0.0036 0.0044 0.0238 0.0248 0.0041 0.0036 0.0044 0.0253 0.0347 0.0058 0.0041 0.0052 0.0351 0.0046 0.0274 0.0361 0.006 12 7 0.0081 0.0208 0.0048 0.0265 0.0376 0.006 12 8 0.0057 0.0191 0.0036 0.0198 0.0229 0.005 0.0177 0.0032 0.0180 0.0188 0.004 0.0040 0.0174 0.0032 0.0180 0.0188 0.005 0.0177 0.0032 0.0180 0.0188 0.006 12 11 0.0028 0.0191 0.0034 0.0191 0.0244 0.0031 0.0045 0.0298 0.0035 0.0213 0.0212 0.005 0.0055 0.0233 0.0036 0.0213 0.0212 0.005 0.0055 0.0233 0.0036 0.0229 0.02665 0.0031 0.0245 0.0052 0.0255 0.0262 0.0039 0.0229 0.02665 0.0031 0.0245 0.0052 0.0255 0.0262 0.0039 0.0229 0.02665 0.0031 0.0055 0.0205 0.0205 0.0043 0.0258 0.0299	10	10								0.0040
11	10		0.0	040						0.0044
111 2 0.0037 0.0417 0.0051 0.0305 0.0422 0.005 111 3 0.0035 0.0468 0.0055 0.0310 0.0472 0.005 11 4 0.0038 0.0509 0.0056 0.0312 0.0509 0.005 11 5 0.0044 0.0502 0.0056 0.0312 0.0509 0.005 11 6 0.0062 0.0366 0.0047 0.0301 0.0399 0.004 11 7 0.0062 0.0301 0.0042 0.0289 0.0315 0.003 11 8 0.0057 0.0141 0.0030 0.0127 0.0165 0.003 11 10 0.0036 0.0154 0.0031 0.0181 0.0160 0.003 11 11 0.0024 0.0179 0.0033 0.0190 0.0181 0.003 11 12 0.0022 0.0210 0.0035 0.0197 0.0212 0.003 11	10	12	0.0	0039	0.0345	0.0047		0.0298		0.0047
11 3 0.0035 0.0468 0.0055 0.0310 0.0472 0.005 11 4 0.0038 0.0509 0.0057 0.0313 0.0515 0.005 11 5 0.0044 0.0502 0.0056 0.0312 0.0509 0.005 11 6 0.0062 0.0366 0.0047 0.0301 0.0399 0.004 11 7 0.0062 0.0301 0.0042 0.0289 0.0315 0.004 11 8 0.0057 0.0141 0.0030 0.0127 0.0165 0.003 11 9 0.0041 0.0144 0.0030 0.0157 0.0165 0.003 11 10 0.0036 0.0154 0.0031 0.0181 0.0160 0.003 11 11 0.0022 0.0210 0.0033 0.0199 0.0181 0.003 11 12 0.0022 0.0210 0.0035 0.0197 0.0212 0.003 12	П	1	0.0)044	0.0372					0.0048
11 4 0.0038 0.0509 0.0057 0.0313 0.0515 0.005 11 5 0.0044 0.0502 0.0056 0.0312 0.0509 0.005 11 6 0.0062 0.0386 0.0047 0.0301 0.0399 0.004 11 7 0.0062 0.0301 0.0042 0.0289 0.0315 0.004 11 8 0.0057 0.0141 0.0030 0.0127 0.0165 0.003 11 9 0.0041 0.0144 0.0030 0.0157 0.0152 0.003 11 10 0.0036 0.0154 0.0031 0.0181 0.0160 0.033 11 11 0.0024 0.0179 0.0033 0.0190 0.0181 0.016 0.003 11 12 0.0022 0.0210 0.0035 0.0197 0.0212 0.003 12 1 0.0026 0.0239 0.0037 0.0208 0.0241 0.003	- 11	2	0.0	037	0.0417					0.0051
11 5	11	3								0.0055
11 6 0.0062 0.0386 0.0047 0.0301 0.0399 0.004 11 7 0.0062 0.0301 0.0042 0.0289 0.0315 0.004 11 8 0.0057 0.0141 0.0030 0.0127 0.0165 0.003 11 9 0.0041 0.0144 0.0030 0.0157 0.0152 0.003 11 10 0.0036 0.0154 0.0031 0.0181 0.0160 0.003 11 11 0.0024 0.0179 0.0033 0.0190 0.0181 0.003 11 12 0.0022 0.0210 0.0035 0.0197 0.0212 0.003 11 12 0.0022 0.0210 0.0035 0.0197 0.0212 0.003 12 1 0.0026 0.0239 0.0037 0.0208 0.0241 0.03 12 1 0.0026 0.0239 0.0037 0.0208 0.0269 0.004 12	H^{-1}	4			0.0509	0.0057				0.0057
11 7 0.0062 0.0301 0.0042 0.0289 0.0315 0.004 11 8 0.0057 0.0141 0.0030 0.0127 0.0165 0.003 11 9 0.0041 0.0144 0.0030 0.0157 0.0152 0.003 11 10 0.0036 0.0154 0.0031 0.0181 0.0160 0.003 11 11 0.0024 0.0179 0.0033 0.0190 0.0181 0.003 11 12 0.0022 0.0210 0.0035 0.0197 0.0212 0.003 12 1 0.0026 0.0239 0.0037 0.0208 0.0241 0.003 12 2 0.0030 0.0265 0.0040 0.0220 0.0269 0.004 12 3 0.0041 0.0282 0.0044 0.0238 0.0288 0.004 12 4 0.0399 0.0341 0.0047 0.0253 0.0347 0.004 12	. III	5	0.0	0044	0.0502	0.0056				0.0056
11 8 0.0057 0.0141 0.0030 0.0127 0.0165 0.003 11 9 0.0041 0.0144 0.0030 0.0157 0.0152 0.003 11 10 0.0036 0.0154 0.0031 0.0181 0.0160 0.003 11 11 0.0024 0.0179 0.0033 0.0190 0.0181 0.003 11 12 0.0022 0.0210 0.0035 0.0197 0.0212 0.003 12 1 0.0026 0.0239 0.0037 0.0208 0.0241 0.003 12 2 0.0030 0.0265 0.0040 0.0220 0.0269 0.004 12 3 0.0041 0.0282 0.0044 0.0238 0.0288 0.004 12 4 0.0039 0.0341 0.0047 0.0253 0.0347 0.002 12 5 0.0044 0.0348 0.0265 0.0376 0.004 12 5	11	6	0.0	0062	0.0386					0.0047
11 9 0.0041 0.0144 0.0030 0.0157 0.0152 0.0031 11 10 0.0036 0.0154 0.0031 0.0181 0.0160 0.0031 11 11 0.0024 0.0179 0.0033 0.0190 0.0181 0.0031 11 12 0.0022 0.0210 0.0035 0.0197 0.0212 0.0031 12 1 0.0026 0.0239 0.0037 0.0208 0.0241 0.0031 12 2 0.0030 0.0265 0.0040 0.0220 0.0269 0.004 12 3 0.0041 0.0282 0.0044 0.0238 0.0288 0.004 12 4 0.0039 0.0341 0.0047 0.0253 0.0347 0.004 12 5 0.0044 0.0368 0.0048 0.0265 0.0376 0.004 12 6 0.0052 0.0351 0.0046 0.0274 0.0361 0.004 12 <td>11</td> <td>. 7</td> <td>0.0</td> <td>0062</td> <td>0.0301</td> <td>0.0042</td> <td></td> <td></td> <td></td> <td>0.0042</td>	11	. 7	0.0	0062	0.0301	0.0042				0.0042
11 10 0.0036 0.0154 0.0031 0.0181 0.0160 0.003 11 11 0.0024 0.0179 0.0033 0.0190 0.0181 0.003 11 12 0.0022 0.0210 0.0035 0.0197 0.0212 0.003 12 1 0.0026 0.0239 0.0037 0.0208 0.0241 0.003 12 2 0.0030 0.0265 0.0040 0.0220 0.0269 0.004 12 3 0.0041 0.0282 0.0044 0.0238 0.0288 0.004 12 4 0.0039 0.0341 0.0047 0.0253 0.0347 0.004 12 5 0.0044 0.0368 0.0048 0.0265 0.0376 0.004 12 6 0.0052 0.0351 0.0046 0.0274 0.0361 0.004 12 7 0.0081 0.0288 0.0036 0.0198 0.0229 0.004 12	11	8				0.0030				0.0030
11 11 0.0024 0.0179 0.0033 0.0190 0.0181 0.0031 11 12 0.0022 0.0210 0.0035 0.0197 0.0212 0.003 12 1 0.0026 0.0239 0.0037 0.0208 0.0241 0.003 12 2 0.0030 0.0265 0.0040 0.0220 0.0269 0.004 12 3 0.0041 0.0282 0.0044 0.0238 0.0288 0.004 12 4 0.0039 0.0341 0.0047 0.0253 0.0347 0.004 12 5 0.0044 0.0368 0.0048 0.0265 0.0376 0.004 12 6 0.0052 0.0351 0.0046 0.0274 0.0361 0.004 12 7 0.0081 0.0208 0.0036 0.0198 0.0229 0.003 12 8 0.0057 0.0191 0.0034 0.0191 0.0204 0.001 12	11	9								0.0030
11 12 0.0022 0.0210 0.0035 0.0197 0.0212 0.003 12 1 0.0026 0.0239 0.0037 0.0208 0.0241 0.003 12 2 0.0030 0.0265 0.0040 0.0220 0.0269 0.004 12 3 0.0041 0.0282 0.0044 0.0238 0.0288 0.004 12 4 0.0039 0.0341 0.0047 0.0253 0.0347 0.004 12 5 0.0044 0.0368 0.0048 0.0265 0.0376 0.004 12 6 0.0052 0.0351 0.0046 0.0274 0.0361 0.004 12 7 0.0081 0.0208 0.0036 0.0198 0.0229 0.003 12 8 0.0057 0.0191 0.0034 0.0191 0.0204 0.003 12 10 0.0040 0.0174 0.0032 0.0180 0.0188 0.003 12	Π	10	0.0	0036						0.0031
12 1 0.0026 0.0239 0.0037 0.0208 0.0241 0.003 12 2 0.0030 0.0265 0.0040 0.0220 0.0269 0.004 12 3 0.0041 0.0282 0.0044 0.0238 0.0288 0.004 12 4 0.0039 0.0341 0.0047 0.0253 0.0347 0.004 12 5 0.0044 0.0368 0.0048 0.0265 0.0376 0.004 12 6 0.0052 0.0351 0.0046 0.0274 0.0361 0.004 12 7 0.0081 0.0208 0.0036 0.0198 0.0229 0.003 12 8 0.0057 0.0191 0.0034 0.0191 0.0204 0.001 12 9 0.0050 0.0177 0.0032 0.0180 0.0188 0.001 12 10 0.0040 0.0174 0.0032 0.0190 0.0182 0.001 12	11	11								0.0033
12 2 0.0030 0.0265 0.0040 0.0220 0.0269 0.004 12 3 0.0041 0.0282 0.0044 0.0238 0.0288 0.004 12 4 0.0039 0.0341 0.0047 0.0253 0.0347 0.004 12 5 0.0044 0.0368 0.0048 0.0265 0.0376 0.004 12 6 0.0052 0.0351 0.0046 0.0274 0.0361 0.004 12 7 0.0081 0.0208 0.0036 0.0198 0.0229 0.005 12 8 0.0057 0.0191 0.0034 0.0191 0.0204 0.001 12 9 0.0050 0.0177 0.0032 0.0180 0.0188 0.001 12 10 0.0040 0.0174 0.0032 0.0190 0.0182 0.001 12 11 0.0028 0.0190 0.0033 0.0202 0.0194 0.001 12	11	12	0.0	0022	0.0210	0.0035		0.0197	0.0212	0.0035
12 3 0.0041 0.0282 0.0044 0.0238 0.0288 0.004 12 4 0.0039 0.0341 0.0047 0.0253 0.0347 0.004 12 5 0.0044 0.0368 0.0048 0.0265 0.0376 0.004 12 6 0.0052 0.0351 0.0046 0.0274 0.0361 0.004 12 7 0.0081 0.0208 0.0036 0.0198 0.0229 0.005 12 8 0.0057 0.0191 0.0034 0.0191 0.0204 0.005 12 9 0.0050 0.0177 0.0032 0.0180 0.0188 0.005 12 10 0.0040 0.0174 0.0032 0.0190 0.0182 0.00 12 11 0.0028 0.0190 0.0033 0.0202 0.0194 0.00 12 12 0.0028 0.0208 0.0035 0.0213 0.0212 0.00 13										0.0037
12 4 0.0039 0.0341 0.0047 0.0253 0.0347 0.004 12 5 0.0044 0.0368 0.0048 0.0265 0.0376 0.004 12 6 0.0052 0.0351 0.0046 0.0274 0.0361 0.004 12 7 0.0081 0.0208 0.0036 0.0198 0.0229 0.005 12 8 0.0057 0.0191 0.0034 0.0191 0.0204 0.005 12 9 0.0050 0.0177 0.0032 0.0180 0.0188 0.005 12 10 0.0040 0.0174 0.0032 0.0190 0.0182 0.00 12 11 0.0028 0.0190 0.0033 0.0202 0.0194 0.00 12 12 0.0028 0.0208 0.0035 0.0213 0.0212 0.00 12 11 0.0028 0.0208 0.0035 0.0213 0.0212 0.00 13										
12 5 0.0044 0.0368 0.0048 0.0265 0.0376 0.004 12 6 0.0052 0.0351 0.0046 0.0274 0.0361 0.004 12 7 0.0081 0.0208 0.0036 0.0198 0.0229 0.005 12 8 0.0057 0.0191 0.0034 0.0191 0.0204 0.005 12 9 0.0050 0.0177 0.0032 0.0180 0.0188 0.005 12 10 0.0040 0.0174 0.0032 0.0190 0.0182 0.005 12 11 0.0028 0.0190 0.0033 0.0202 0.0194 0.005 12 12 0.0028 0.0208 0.0035 0.0213 0.0212 0.005 13 1 0.0025 0.0233 0.0036 0.0221 0.0236 0.005 13 2 0.0025 0.0262 0.0039 0.0229 0.0265 0.005 13					0.0282					
12 6 0.0052 0.0351 0.0046 0.0274 0.0361 0.004 12 7 0.0081 0.0208 0.0036 0.0198 0.0229 0.003 12 8 0.0057 0.0191 0.0034 0.0191 0.0204 0.003 12 9 0.0050 0.0177 0.0032 0.0180 0.0188 0.003 12 10 0.0040 0.0174 0.0032 0.0190 0.0182 0.002 12 11 0.0028 0.0190 0.0033 0.0202 0.0194 0.00 12 12 0.0028 0.0208 0.0035 0.0213 0.0212 0.00 13 1 0.0025 0.0233 0.0036 0.0221 0.0236 0.00 13 2 0.0025 0.0262 0.0039 0.0229 0.0265 0.00 13 3 0.0037 0.0273 0.0041 0.0243 0.0279 0.00 13										
12 7 0.0081 0.0208 0.0036 0.0198 0.0229 0.003 12 8 0.0057 0.0191 0.0034 0.0191 0.0204 0.003 12 9 0.0050 0.0177 0.0032 0.0180 0.0188 0.003 12 10 0.0040 0.0174 0.0032 0.0190 0.0182 0.003 12 11 0.0028 0.0190 0.0033 0.0202 0.0194 0.003 12 12 0.0028 0.0208 0.0035 0.0213 0.0212 0.001 13 1 0.0025 0.0233 0.0036 0.0221 0.0236 0.00 13 2 0.0025 0.0262 0.0039 0.0229 0.0265 0.00 13 3 0.0037 0.0273 0.0041 0.0243 0.0279 0.00 13 4 0.0045 0.0290 0.0043 0.0258 0.0298 0.00 13										
12 8 0.0057 0.0191 0.0034 0.0191 0.0204 0.001 12 9 0.0050 0.0177 0.0032 0.0180 0.0188 0.002 12 10 0.0040 0.0174 0.0032 0.0190 0.0182 0.002 12 11 0.0028 0.0190 0.0033 0.0202 0.0194 0.002 12 12 0.0028 0.0208 0.0035 0.0213 0.0212 0.001 13 1 0.0025 0.0233 0.0036 0.0221 0.0236 0.00 13 2 0.0025 0.0262 0.0039 0.0229 0.0265 0.00 13 3 0.0037 0.0273 0.0041 0.0243 0.0279 0.00 13 4 0.0045 0.0290 0.0043 0.0258 0.0298 0.00 13 5 0.0052 0.0297 0.0043 0.0269 0.0307 0.00										
12 9 0.0050 0.0177 0.0032 0.0180 0.0188 0.00 12 10 0.0040 0.0174 0.0032 0.0190 0.0182 0.00 12 11 0.0028 0.0190 0.0033 0.0202 0.0194 0.00 12 12 0.0028 0.0208 0.0035 0.0213 0.0212 0.00 13 1 0.0025 0.0233 0.0036 0.0221 0.0236 0.00 13 2 0.0025 0.0262 0.0039 0.0229 0.0265 0.00 13 3 0.0037 0.0273 0.0041 0.0243 0.0279 0.00 13 4 0.0045 0.0290 0.0043 0.0258 0.0298 0.00 13 5 0.0052 0.0297 0.0043 0.0269 0.0307 0.00										
12 10 0.0040 0.0174 0.0032 0.0190 0.0182 0.002 12 11 0.0028 0.0190 0.0033 0.0202 0.0194 0.001 12 12 0.0028 0.0208 0.0035 0.0213 0.0212 0.002 13 1 0.0025 0.0233 0.0036 0.0221 0.0236 0.001 13 2 0.0025 0.0262 0.0039 0.0229 0.0265 0.001 13 3 0.0037 0.0273 0.0041 0.0243 0.0279 0.004 13 4 0.0045 0.0290 0.0043 0.0258 0.0298 0.009 13 5 0.0052 0.0297 0.0043 0.0269 0.0307 0.006							· · · · .			
12 11 0.0028 0.0190 0.0033 0.0202 0.0194 0.00 12 12 0.0028 0.0208 0.0035 0.0213 0.0212 0.00 13 1 0.0025 0.0233 0.0036 0.0221 0.0236 0.00 13 2 0.0025 0.0262 0.0039 0.0229 0.0265 0.00 13 3 0.0037 0.0273 0.0041 0.0243 0.0279 0.00 13 4 0.0045 0.0290 0.0043 0.0258 0.0298 0.00 13 5 0.0052 0.0297 0.0043 0.0269 0.0307 0.00										
12 12 0.0028 0.0208 0.0035 0.0213 0.0212 0.00 13 1 0.0025 0.0233 0.0036 0.0221 0.0236 0.00 13 2 0.0025 0.0262 0.0039 0.0229 0.0265 0.00 13 3 0.0037 0.0273 0.0041 0.0243 0.0279 0.00 13 4 0.0045 0.0290 0.0043 0.0258 0.0298 0.00 13 5 0.0052 0.0297 0.0043 0.0269 0.0307 0.00										
13 1 0.0025 0.0233 0.0036 0.0221 0.0236 0.00 13 2 0.0025 0.0262 0.0039 0.0229 0.0265 0.00 13 3 0.0037 0.0273 0.0041 0.0243 0.0279 0.00 13 4 0.0045 0.0290 0.0043 0.0258 0.0298 0.00 13 5 0.0052 0.0297 0.0043 0.0269 0.0307 0.00							:			
13 2 0.0025 0.0262 0.0039 0.0229 0.0265 0.00 13 3 0.0037 0.0273 0.0041 0.0243 0.0279 0.00 13 4 0.0045 0.0290 0.0043 0.0258 0.0298 0.00 13 5 0.0052 0.0297 0.0043 0.0269 0.0307 0.00		12	0.0	0028	0.0208	0.0035	: '			
13 3 0.0037 0.0273 0.0041 0.0243 0.0279 0.00 13 4 0.0045 0.0290 0.0043 0.0258 0.0298 0.00 13 5 0.0052 0.0297 0.0043 0.0269 0.0307 0.00							1 4 W			0.0036
13 4 0.0045 0.0290 0.0043 0.0258 0.0298 0.0043 13 5 0.0052 0.0297 0.0043 0.0269 0.0307 0.00										0.0039
13 5 0.0052 0.0297 0.0043 0.0269 0.0307 0.00										
		· ·								
						and the second second				0.0043 0.0044

(6) Dissolved Matters Run-3, Run-4 (4/8)

Y	M		Cu	Zn	Λs		Cu	- Zn	As
13	7	0.	0084	0.0187	0.0034		0.0189	0.0209	0.0034
13	8	0.	0062	0.0168	0.0032		0.0171	0.0183	0.0032
13	9	0.	0053	0.0147	0.0030		0.0146	0.0161	0.0030
13	10		0040	0.0146	0.0031		0.0164	0.0154	0.0031
13	11	0.	0028	0.0165	0.0032		0.0179	0.0169	0.0032
13	12		0029	0,0185	0.0033		0.0194	0.0189	0.0033
14	1	. 0.	0031	0.0202	0.0035		0.0208	0.0207	0.0035
14	2	0.	0029	0.0222	0.0036		0.0219	0.0226	0.0036
14	3	. 0.	0034	0.0236	0.0038		0.0232	0.0241	0.0038
14	4	0.	004}	0.0253	0.0041		0.0248	0.0260	0.0041
14	5		0041	0.0304	: 0.0045		0.0261	0.0310	0.0045
14	6	0.0	0800	0.0206	0.0036		0.0200	0.0226	0.0036
14	. 7		0056	0.0197	0.0034		0.0205	0.0209	0.0034
14	8		0051	0.0185	0.0033		0.0198	0.0197	0.0033
14	9		0049	0.0142	0.0030		0.0142	0.0159	0.0030
14	10		0038	0.0142	0.0031		0.0165	0.0149	0.0031
14	11		0026	0.0165	0.0032		0.0178	0.0168	0.0032
14	. 12		0023	0.0195	0.0034		0.0170	0.0197	0.0034
15	1	0.0	0024	0.0229	0.0037	· · · ·	0.0196	0.0231	0.0037
15	2		0027	0.0262	0.0040	•	0.0207	0.0265	0.0040
. 15	3		0032	0.0306	0.0046		0.0223	0.0309	0.0046
15	4		0042	0.0369	0.0049		0.0241	0.0376	0.0049
15	5		0038	0.0424	0.0052		0.0255	0.0429	0.0052
15	6		0040	0.0467	0.0054		0.0267	0.0473	0.0054
15	7		058	0.0396	0.0034		0.0275	0.0408	0.0034
15	8		9058	0.0130	0.0049	1.9	0.0273	0.0154	0.0049
15	9		1054 1054	0.0130	0.0029		0.0127	0.0136	0.0029
15	10		1052	0.0122	· · · · · · · · · · · · · · · · · · ·				
15	11		1032 1039	0.0107	0.0028		0.0120	0.0122	0.0028
15	12		1039 1031	0.0113	0.0029		0.0145 0.0166	0.0123 0.0140	0.0029 0.0030
16	<u>·</u>		0021	0.0168	0.0033	,	0.0174	0.0169	0.0033
16	2		1021	0.0108	0.0035		0.0174	0.0109	0.0035
16	3							the state of the s	
16 16	3 4		028 1032	0.0242	0.0039	1.1	0.0195	0.0245	0.0039
16	5			0.0304	0.0046		0.0211	0.0308	0.0046
16			030	0.0416	0.0053	100	0.0225	0.0418	0.0053
	: 6.		047	0.0434	0.0052	200	0.0245	0.0442	0.0052
16	7		086	0.0221	0.0036	100	0.0169	0.0243	0.0036
16	8		060	0.0193	0.0033	3.5	0.0162	0.0207	0.0033
16	9		044	0.0185	0.0033	11.7	0.0169	0.0194	0.0033
16	10		043	0.0176	0.0032	44.7	0.0178	0.0185	0.0032
16	11		025	0.0197	0.0034		0.0188	0.0200	0.0034
16	12	0.0	022	0.0227	0.0036		0.0196	0.0229	0.0036
17	1 .		021	0.0268	0.0039	111	0.0203		0.0039
17	2	and the second s	024	0.0313	0.0043	100	0.0212	0.0314	0.0043
17	3		031	0.0371	0.0050		0.0227	0.0374	0.0050
17	4		031	0.0479	0.0056		0.0241	0.0481	0.0056
17	5		086	0.0223	0.0036	31 SE	0.0152	0.0246	0.0036
17	. 6	0.0	057	0.0198	0.0033		0.0150	0.0211	0.0033

·		<u> </u>					
Y	М	Cu	Zn	As	Cu	Zn	As
17	7	0.0049	0.0177	0.0032	0.0153	0.0187	0.0032
17	8	0.0052	0.0156	0.0031	0.0149	0.0167	0.0031
17	9	0.0053	0.0133	0.0029	0.0133	0.0147	0.0029
17	10	0.0032	0,0143	0.0031	0.0163	0.0148	0.0031
17	11	0.0030	0.0164	0.0032	0.0180	0.0169	0.0032
17	12	0.0032	0.0180	0.0033	0.0197	0.0185	0.0033
18	. 1	0.0025	0.0206	0.0035	0.0206	0.0208	0.0035
18	2	0.0022	0.0239	0.0037	0.0214	0.0241	0.0037
18	3	0.0026	0.0277	0.0042	0.0224	0.0279	0.0042
18	4	0.0036	0.0324	0.0047	0.0240	0.0328	0.0047
18	5	0.0040	0.0391	0.0051	0.0254	0.0396	0.0051
18	6	0.0037	0.0458	0.0055	0.0266	0.0463	0.0055
18	7	0.0074	0,0305	0.0042	0.0240	0.0323	0.0042
18	8	0.0052	0.0129	0.0029	0.0100	0.0149	0.0029
18	9	0.0041	0.0092	0.0026	0.0082	0.0105	0.0026
18	10	0.0053	0.0085	0.0027	0.0092	0.0100	0.0027
18	H	0.0032	0.0102	0.0028	0.0121	0.0107	0.0028
18	12	0.0024	0.0133	0.0031	0.0146	0.0135	0.0031
19	!	0.0024	0.0167	0.0033	0.0158	0.0169	0.0033
19	2	0.0026	0.0202	0.0036	0.0172	0.0204	0.0036
19	3	0.0038	0.0227	0.0040	0.0196	0.0233	0.0040
19	4	0.0033	0.0304	0.0046	0.0213	0.0303	0.0046
19	5	0.0054	0.0322	0.0045	0.0239	0.0333	0.0045
19	6	0.0062	0.0281	0.0042	0.0259	0.0295	0.0042
19	7	0.0088	0.0160	0.0032	0.0165	0.0183	0.0032
19	8	0.0061	0.0144	0.0030	0.0140	0.0161	0.0030
19	9	0.0050	0.0117	0.0028	0.0112	0.0134	0.0028
19	10	0.0053	0110.0	0.0028	0.0131	0.0122	0.0028
19	11	0.0031	0.0127	0.0030	0.0154	0.0132	0.0030
19	12	0.0022	0.0158	0.0032	0.0164	0.0160	0.0032
20	1	0.0038	0.0172	0.0033	0.0189	0.0179	0.0033
20	2	0.0037	0.0184	0.0034	0.0209	0.0190	0.0034
20	3	0.0038	0.0193	0.0035	0.0225	0.0200	0.0035
20	4	0.0038	0.0211	0.0037	0.0239	0.0218	0.0037
20	5	0.0042	0.0230	0.0038	0.0252	0.0237	0.0038
20	6	0.0052	0.0220	0.0037	0.0259	0.0231	0.0037
20	7	0.0068	0.0171	0.0032	0.0194	0.0188	0.0032
20	8	0.0054	0.0144	0.0030	0.0153	0.0159	0.0030
20	9	0.0054	0.0124	0.0029	0.0136	0.0138	0.0029
20	10	0.0054	0.0110	0.0028	0.0125	0.0125	0.0028
20	11	0.0034	0.0122	0.0030	0.0156	0.0128	0.0030
20	12	0.0024	0.0152	0.0032	0.0167	0.0154	0.0032
21	1	0.0029	0.0179	0.0034	0.0182	0.0182	0.0034
21	2	0.0029	0.0206	0.0035	0.0196	0.0209	0.0035
21	3	0.0034	0.0230	0.0039	0.0213	0.0235	0.0039
21	4	0.0046	0.0255	0.0042	0.0236	0.0263	0.0042
21	5	0.0068	0.0230	0.0039	0.0259	0.0245	0.0039
21	6	0.0066	0.0207	0.0036	0.0252	0.0222	0.0036

0

()

(6) Dissolved Matters Run-3, Run-4 (6/8)

	Y	M		Cu	Zn	As	Cu	Zn	As
	21	7		0.0064	0.0186	0.0034	0.0227	0.0201	0.0034
	21	8		0.0048	0.0193	0.0034	0.0233	0.0203	0.0034
	21	9		0.0047	0,0187	0.0033	0.0221	0.0197	0.0033
	21	10		0.0042	0.0183	0.0033	0.0220	0.0191	0.0033
	21	11		0.0050	0.0137	0.0029	0.0151	0.0154	0.0029
	21	12		0.0037	0.0139	0.0031	0.0177	0.0146	0.0031
	22	1		0.0026	0.0165	0.0032	0.0189	0.0168	0.0032
	22	2		0.0024	0.0197	0.0035	0.0198	0.0199	0.0035
	22	3		0.0027	0.0230	0.0038	0.0210	0.0233	0.0038
	22	4		0.0037	0.0273	0.0044	0.0228	0.0277	0.0044
	22	5		0.0036	0.0372	0.0050	0.0244	0.0376	0.0050
	22	6		0.0045	0.0421	0.0052	0.0259	0.0428	0.0052
	22	7		0.0074	0.0291	0.0042	0.0248	0.0309	0.0042
	22	8		0.0069	0.0227	0.0036	0.0220	0.0243	0.0036
	22	9		0.0064	0.0189	0.0033	0.0185	0.0204	0.0033
	22 :	10		0.0051	0.0173	0.0032	0.0174	0.0184	0.0032
	22	11		0.0033	0.0180	0.0033	0.0192	0.0186	0.0033
	22	12		0.0031	0.0196	0.0034	0.0206	0.0201	0.0034
	23	1	, .	0.0030	0.0213	0.0035	0.0218	0.0218	0.0035
	23	2		0.0025	0.0240	0.0037	0.0226	0.0243	0.0037
	23	3		0.0028	0.0267	0.0040	0.0235	0.0270	0.0040
	23	4		0.0041	0.0293	0.0045	0.0252	0.0299	0.0045
	23	5		0.0056	0.0306	0.0045	0.0266	0.0317	0.0045
	23	6		0.0058	0.0291	0.0043	0.0276	0.0303	0.0043
	23	7	1	0.0088	0.0169	0.0033	0.0184	0.0191	0.0033
	23	8		0.0058	0.0130	0.0029	0.0122	0.0151	0.0029
	23	. 9	73.0	0.0044	0.0134	0.0030	0.0155	0.0143	0.0030
	23	10		0.0053	0.0134	0.0028	0.0128	0.0132	0.0028
	23	Н	***	0.0031	0.0129	0.0030	0.0154	0.0134	0.0030
	23	12		0.0026	0.0157	0.0032	0.0168	0.0160	0.0032
	24	1		0.0025	0.0189	0.0034	0.0180	0.0192	0.0034
	24	2	- 11	0.0025	0.0226	0.0037	0.0190	0.0228	0.0037
	24	.3		0.0031	0.0268	0.0043	0.0206	0.0271	0.0043
	24	4		0.0036	0.0350	0.0049	0.0225	0.0354	0.0049
	24	5		0.0061	0.0326	0.0045	0.0251	0.0339	0.0045
	24	6		0.0065	0.0269	0.0041	0.0267	0.0284	0.0041
	24	7		0.0074	0.0207	0.0036	0.0244	0.0224	0.0036
	24	8		0.0066	0.0134	0.0030	0.0137	0.0157	0.0030
-	24	9 .	2	0.0057	0.0134	0.0029	0.0134	0.0137	0.0029
	24	10		0.0037	0.0131	0.0029	0.0167	0.0146	0.0029
	24	11		0.0031	0.0140	0.0030	0.0184	0.0146	0.0030
•	24	12	*	0.0037	0.0102	0.0033	0.0197	0.0189	0.0032
		· ·							
	25	I.		0.0024	0.0217	0.0036	0.0206	0.0219	0.0036
	25	2		0.0026	0.0251	0.0038	0.0215	0.0253	0.0038
	25	3 -		0.0033	0.0287	0.0044	0.0230	0.0290	0.0044
	25	4		0.0042	0.0346	0.0049	0.0248	0.0352	0.0049
	25	. 5		0.0054	0.0356	0.0048	0.0264	0.0366	0.0048
	25	6		0.0062	0.0313	0.0044	0.0274	0.0326	0.0044

(6) Dissolved Matters Run-3, Run-4 (7/8)

Υ .	М	Cu	Zn	As	Cu	Zn	As
25	7	0.0060	0.0284	0.0043	0,0281	0.0296	0.0043
25	8	0.0089	0.0165	0.0033	0.0184	0.0188	0.0033
25	9	0.0061	0.0169	0.0032	0.0176	0.0183	0.0032
. 25	10	0.0048	0.0167	0.0031	0.0176	0.0177	0.0031
25	- 11	0.0032	0.0178	0.0032	0.0193	0.0183	0.0032
25	12	0.0026	0.0202	0.0034	0.0204	0.0205	0.0034
26	1	0.0025	0.0231	0.0036	0.0213	0.0233	0.0036
26	2	0.0025	0.0265	0.0039	0.0222	0.0267	0.0039
26	3	0.0033	0.0298	0.0044	0.0236	0.0301	0.0044
26	4	0.0038	0.0368	0.0050	0.0253	0.0373	0.0050
26	5	0.0040	0.0448	0.0055	0.0267	0.0454	0.0055
26	6	0.0084	0.0255	0.0039	0.0202	0.0277	0.0039
26	7	0.0074	0.0185	0.0033	0.0157	0.0204	0.0033
- 26	. 8	0.0051	0.0140	0.0029	0.0118	0.0158	0.0029
26	. 9	0.0053	0.0125	0.0029	0.0139	0.0138	0.0029
26	10	0.0045	0.0128	0.0030	0.0156	0.0137	0.0030
26	- 11	0.0043	0.0135	0.0030	0.0169	0.0144	0.0030
26	12	0.0032	0.0152	0.0032	0.0187	0.0157	0.0032
27	1	0.0026	0.0180	0.0033	0.0198	0.0183	0.0033
27	2	0.0024	0.0212	0.0036	0.0207	0.0215	0.0036
27	3	0.0029	0.0245	0.0039	0.0220	0.0248	0.0039
27	4	0.0043	0.0279	0.0045	0.0240	0.0285	0.0045
27	5	0.0044	0.0352	0.0049	0.0257	0.0359	0.0049
27	6	0.0046	0.0401	0.0052	0.0270	0.0409	0.0052
27	7	0.0055	0.0388	0.0050	0.0280	0.0398	0.0050
27	. 8	0.0086	0.0217	0.0037	0.0204	0.0239	0.0037
27	9	0.0070	0.0184	0.0033	0.0173	0.0201	0.0033
27	10	0.0046	0.0185	0.0032	0.0181	0.0194	0.0032
27	11	0.0048	0.0170	0.0032	0.0178	0.0181	0.0032
27	12	0.0034	0.0178	0.0033	0.0197	0.0183	0.0033
28	. 1	0.0025	0.0205	0.0035	0.0206	0.0207	0.0035
28	2	0.0024	0.0237	0.0037	0.0215	0.0239	0.0037
28	3	0.0027	0.0272	0.0041	0.0226	0.0274	0.0041
28	4	0.0037	0.0323	0.0048	0.0243	0.0327	0.0048
28	. 5	0.0042	0.0413	0.0053	0.0259	0.0418	0.0053
28	. 6	0.0045	0.0464	0.0055	0.0272	0.0471	0.0055
28	7	0.0061	0.0403	0.0050	0.0280	0.0415	0.0050
- 28	. 8	0.0074	0.0281	0.0042	0.0276	0.0298	0.0042
28	9	0.0070	0.0227	0.0037	0.0249	0.0244	0.0037
28	10	0.0054	0.0227	0.0036	0.0261	0.0238	0.0036
28	11	0.0039	0.0245	0.0038	0.0269	0.0252	0.0038
28	12	0.0032	0.0285	0.0042	0.0276	0.0289	0.0042
29	ı	0.0047	0.0313	0.0047	0.0287	0.0320	0.0047
29	2	0.0039	0.0406	0.0052	0.0297	0.0411	0.0052
29	3	0.0039	0.0490	0.0058	0.0306	0.0495	0.0058
. 29	4	0.0043	0.0547	0.0061	0.0311	0.0554	0.0061
29	. 5	0.0050	0.0534	0.0059	0.0312	0.0543	0.0059
29	6	0.0048	0.0535	0.0060	0.0313	0.0542	0.0060

(6) Dissolved Matters Run-3, Run-4 (8/8)

Y	M	Cu	Zn	As	Cu	Zn	As
29	7	0.0059	0.0462	0.0054	0.0307	0.0474	0.0054
29	8	0.0074	0.0312	0.0044	0.0291	0.0330	0.0044
29	. 9	0.0082	0.0200	0.0035	0.0204	0.0220	0,0035
. 29	10	0.0047	0.0214	0.0035	0.0224	0.0223	0.0035
29	11	0.0041	0.0217	0.0035	0.0239	0.0225	0.0035
29	. 12	0.0036	0.0227	0.0036	0.0249	0.0233	0.0036
30	1	0.0032	0.0246	0.0037	0.0257	0.0251	0.0037
30	2	0.0032	0.0270	0.0040	0.0264	0.0274	0.0040
30	3	0.0051	0.0267	0.0044	0.0277	0.0276	0.0044
30	4	0.0054	0.0307	0.0046	0.0286	0.0317	0.0046
30	. 5	0.0053	0.0333	0.0048	0.0292	0.0343	0.0048
30	6	0.0062	0.0313	0.0045	0.0292	0.0326	0.0045
30	7	0.0072	0.0245	0.0040	0.0289	0.0262	0.0040
30	8	0.0075	0.0198	0.0036	0.0252	0.0216	0.0036
30	9	0.0077	0.0158	0.0031	0.0180	0.0177	0.0031
30	. 10	0.0046	0.0168	0.0031	0.0187	0.0178	0.0031
30	11	0.0036	0.0176	0.0032	0.0206	0.0182	0.0032
30	. 12	0.0034	0.0188	0.0033	0.0220	0.0194	0.0033
31	I	0.0030	0.0208	0.0035	0.0230	0.0212	0.0035
31	2	0.0026	0.0234	0.0036	0.0238	0.0237	0.0036
31	3	0.0031	0.0255	0.0039	0.0247	0.0259	0.0039
31	4	0.0042	0.0276	0.0043	0.0261	0.0282	0.0043
31	5	0.0051	0.0313	0.0047	0.0275	0.0321	0.0047
31	6	0.0060	0.0317	0.0046	0.0283	0.0329	0.0046
31	7	0.0072	0.0254	0.0041	0.0284	0.0271	0.0041
- 31	. 8	0.0064	0.0241	0.0040	0.0287	0.0255	0.0040
31	9	0.0062	0.0230	0.0038	0.0287	0.0244	0.0038
31	10	0.0052	0.0248	0.0040	0.0290	0.0258	0.0040
31	- 11	0.0049	0.0279	0.0045	0.0298	0.0287	0.0045
31	12	0.0049	0.0346	0.0049	0.0304	0.0354	0.0049

Y	M	Cu	Zn	As
1.	7	0.0125	0.0062	0.0031
1	8	0.0124	0.0102	0.0029
1	9	0.0133	0.0112	0.0028
1	10	0.0133	0.0117	0.0029
1	11	0.0139	0.0131	0.0030
1	12	0.0141	0.0154	0.0032
2	l	0.0141	0.0179	0.0033
2	2	0.0142	0.0208	0.0035
2	3	0.0143	0.0235	0.0038
2	4	0.0144	0.0270	0.0042
2	5	0.0141	0.0293	0.0043
2	6	0.0138	0.0275	0.0041
2	7	0.0133	0.0209	0.0036
2	. 8	0.0127	0.0156	0.0032
2	9	0.0133	0.0144	0.0030
2	10	0.0136	0.0139	0.0030
2	П	0.0139	0.0150	0.0031
2	- 12	0.0141	0.0171	0.0033
3	ı	0.0141	0.0195	0.0034
3	2	0.0142	0.0223	0.0036
3	3	0.0143	0.0249	0.0039
3	4	0.0144	0.0282	0.0043
3	, 5	0.0141	0.0302	0.0043
3	6	0.0138	0.0281	0.0041
3	- 7	0.0133	0.0211	0.0036
3	- 8	0.0127	0.0157	0.0032
.3	9	0.0133	0.0145	0.0030
. 3	10	0.0136	0.0139	0.0030
3	11	0.0139	0.0151	0.0031
3	12	0.0141	0.0171	0.0033
4	1	0.0141	0.0196	0.0034
4	. 2	0.0142	0.0223	0.0036
4	3	0.0143	0.0250	0.0039
4	4	0.0144	0.0283	0.0043
4	5	0.0141	0.0303	0.0044
4	6	0.0138	0.0281	0.0041
. 4	7	0.0133	0.0211	0.0036
4	8	0.0127	0.0157	0.0032
4	9	0.0133	0.0145	0.0030
4	10	0.0136	0.0140	0.0030
4	11	0.0139	0.0151	0.0031
4	12	0.0141	0.0171	0.0033
. 5	I	0.0141	0.0196	0.0034
5	2	0.0142	0.0224	0.0036
. 5	· 3	0.0143	0.0250	0.0039
5	4 .	0.0144	0.0283	0.0043
5	- 5	0.0141	0.0304	0.0044
- 5	- 6	0.0138	0.0281	0.0041

(7) Dissolved Matters Case 1 (2/2)

Υ.	M	Cu	Zn	As
5	7	0.0133	0.0210	0.0036
5	8	0.0127	0.0157	0.0032
5 5	9	0.0133	0.0145	0.0030
5	10	0.0136	0.0140	0.0030
5	u .	0.0139	0.0151	0.0031
5	12	0.0141	0.0172	0.0033
6	1	0.0141	0.0196	0.0034
6	2	0.0142	0.0224	0.0036
6	3	0.0143	0.0251	0.0039
6	4 .	0.0144	0.0284	0.0043
6	5	0.0141	0.0304	0.0044
6 -	6	0.0138	0.0281	0.0041
- 6	7	0.0133	0,0210	0.0036
6	8	0.0127	0.0157	0.0032
6	9	0.0133	0.0145	0.0030
6	10	0.0136	0.0140	0.0030
6	11	0,0139	0.0151	0.0031
6	12	0.0141	0.0172	0.0033