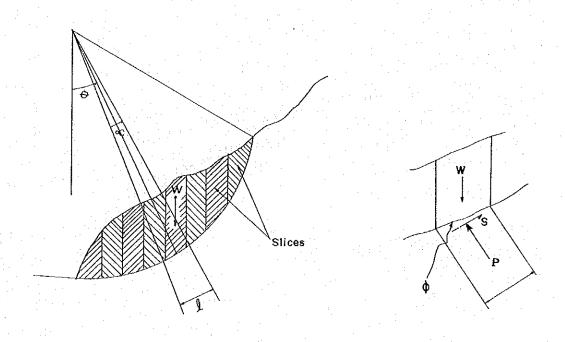
APPENDIX

APPENDIX 1: DESIGN EXAMPLE


No.	1;	Stability Analysis of Embankment
No.	2;	Design of Side Ditch
No.	3;	Design of Retaining Wall With Anchoring
No.		Design of Retaining (Trial Method With Wedge Shape)
No.	5;	Design of Catch Fence

APPENDIX 1:

DESIGN EXAMPLE NO.1; STABILITY ANALYSIS OF EMBANKMENT

I. METHODOLOGY:

According to this method, a mass on the sliding plane is divided into several slices with appropriate width, the shearing forces and resisting forces of slices are totalled, and then the factor of safety is determined from the ratio between them, for which the equation (A) can be used. Normally, the number of slices is greater than 6 to 7.

Fs =
$$\frac{\sum \{c.l + (W \cos \theta - u.l) - \tan \emptyset\}}{\sum W \sin \theta}$$
 - - - - (A)

Where shearing strength is given by:

$$S = c + (\delta.u) \tan \phi$$

Fs = Factor of Safety

 δ = Normal stress (t/m²)

P = Normal reaction acting to the bottom plane of slice (t/m)

W = Weight of slice (t/m)

 ℓ = Length of arc of sliding plane cut by each slice (m)

 $C = Cohesion (t/m^2)$

Ø = Internal friction angle of soil (degree)

M = Pore water pressure (t/m²)

R = Radius of circle (m)

 θ = Refer to figure (degree)

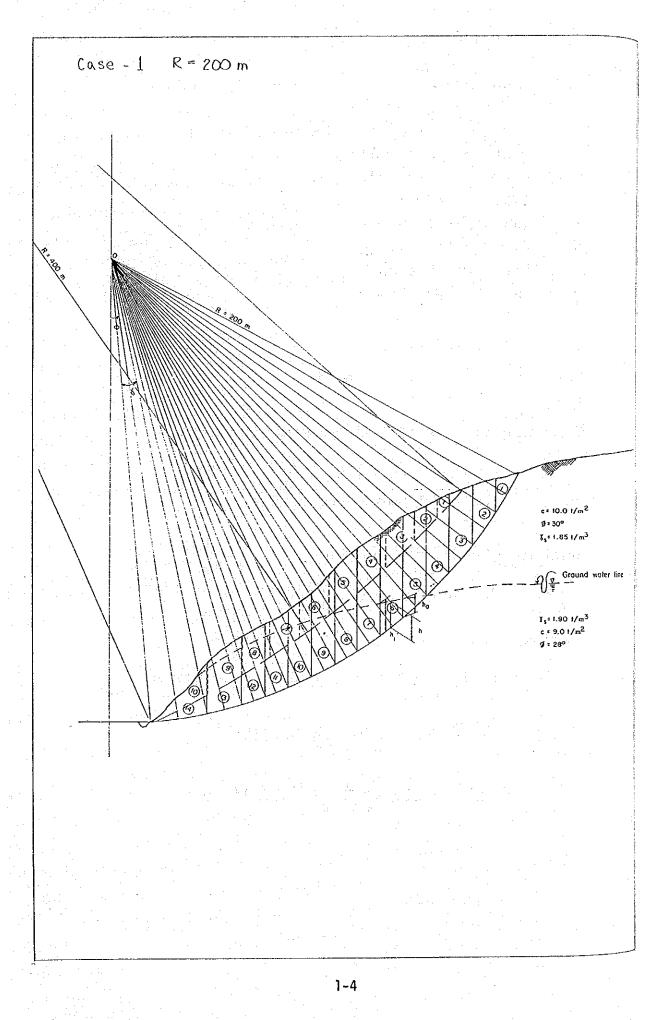
$$P = W \cdot \cos \theta$$

$$S = P/Q = W/Q \cdot \cos \theta$$

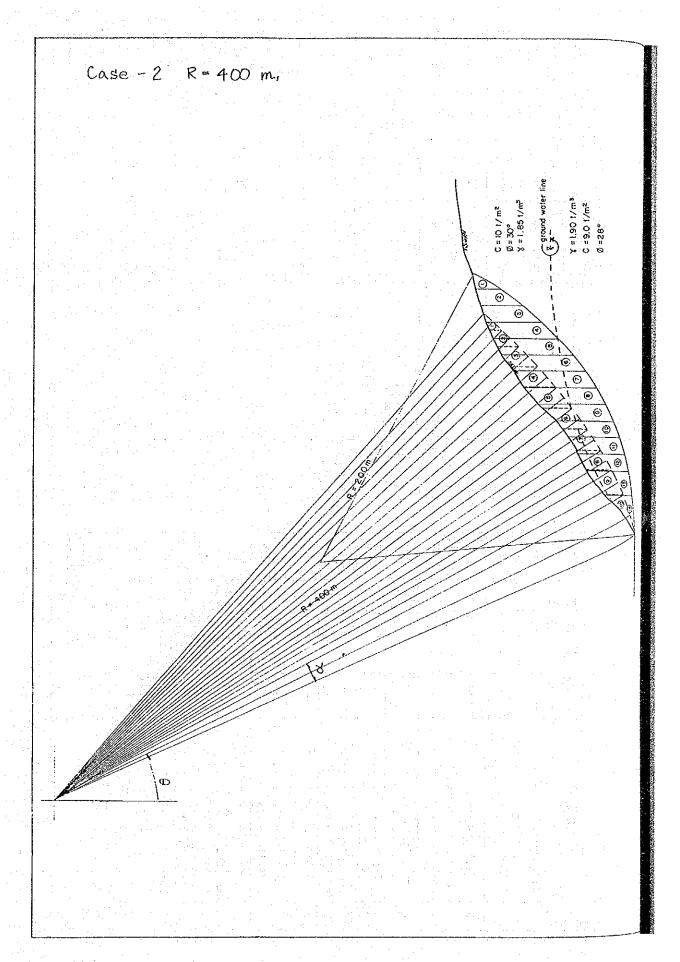
Total resisting shearing force along the surface of sliding

$$S = \sum [\ell \cdot \{c + (\xi - \mu) \tan \emptyset\}]$$
$$= \sum \{c \cdot \ell + (W \cdot \cos \theta - \mu \ell) \tan \emptyset\}$$

Total acting moment:


$$Ma = R \cdot \sin \theta \times W = R \cdot W \sin \theta$$

Total resisting moment:


$$Mr = S \cdot R = R \times \sum \{ c \cdot \ell + (W \cos \theta - \mu \ell) \tan \theta \}$$

... Fs =
$$\mathbb{R} \times \mathbb{Z} \{ c. \ell + (W \cos \theta - \mu \ell) \tan \emptyset \}$$

 $\Sigma \mathbb{R} W \sin \theta$

$$= \frac{\sum\{c.\ell + W \cos \theta - u.\ell\} \tan \emptyset}{\sum W \sin \theta} - - - - (A)$$

 3 c	T .	1 12	R	Ē	16	18	55	1953	84	1 to	89	33	29	l v	l E
(£) (2) (£) (£)	66.163	174.53	157.08	139.963	(25.667	559,901	109.953	789.9	94,248	94.248	94,248	109.953	125,667	235.62	1873.073
(13) L(m) 7 260(2114)	19.199	17.453	15 708	13.963	13.963	12.217	12.217	12.217	10.472	10.472	10,472	12.217	13,963	£6, IB	
{ = 5 }	9.5	0	ı,	0.4	0.4	10	kų AD	3.5	6.0	3.0	3.0	й 3.	0.4	7.5	
(H) ¥ sin Φ	119.547	271.095	422.022	488, 185	516.575	496.753	511.528	462.598	338.426	269,801	221.733	175.357	177.682	77.001	4550.303
(10) 0:01 = 4 ms x	40.654	111.646	208,066	276,993	282.601	275.785	296.027	276.192	217.636	175.633	154.525	124.562	205, 785	141,722	2787.845
66 % ⊕ 503 %	70,4 13	193,373	360.417	479.766	531,495	518.677	556,746	519,442	409.315	330.317	280.620	234,267	367.025	266,541	
(8) M. C. (1/m)					0+7.5) [- 52.361	75+14 2) L = 131.353	(14+19) L = 201.561	19+22) L = 250,448	22+24 2 = 240.856	(24+26) 1 = 261.80	26+26 2) j = 272,272	26+24) p = 305,425	24 ± 19) L = 300.205	(19+0) L = 248.7;	
ф	70.415	57.5	218	992	1				\vdash	 				192	
2 8 ×	<u> </u>	195.373	360.417	2 479.766	6 583.856	0,0.000	2 758.327	0 769.89	7 650.179	6 592,117	5 562.892	0 539.692	3 687.23	: ro : ro	
(e)	0.8616	0.8141	0.760	0.7132	0.6626	0.6087	0.5592	0.5150	0.4517	0.4146	0.3665	0.3090	0.2503	0.1478	
(S)	0.5075	0.5807	0.6494	0.7009	0.7469	0.7933	0.8290	0.8571	0.8870	6606.0	0.9304	0.9510	1896.0	0.9690	1.024
(4) Q (degree)	59.5	54.5	49.5	4 5 5	4. 2.	37.5	\$6	ī.	27.5	24.55	21.5	<u>50</u>	14.5	ر بر	2767.845 303
(5) Weight of Slices W=Y.A (1/m)	136,75	333.00	555.00	684.50	680.132	615.125	601.250	508.75	296.00	175.75	111.00	92.50	97, 125	472,549	Fs 7 1873 - 073 + 2
(2) Unil Weight of Soil Y (1/m3)	. 85	 8.	8 5	- 85	. 85	1.85	- 85	58.1	1.90	1.90	20 G	က တ တ တ	8.5	- 8.5	, .
(1.) Area of Trapetium, A (m2)	. 1/2 (10)(15) = 75	$\left(\frac{10+26}{2}\right)$ 10 ° 180	$\left(\frac{26+34}{2}\right)$ 10 = 300	$\left(\begin{array}{c} 34+40\\ 2&2 \end{array}\right)$ 10 = 370	$\left(\frac{40+44}{2}\right)$ 10 - 52.361 = 367.639	$\left(\frac{44+44}{2} \right)$ 10 - 107 50 × 332 50 $\left(\frac{75+14}{2} \right)$ 10 = 107.50	$\left(\begin{array}{c} 44 + 54 \\ 12 \\ 14 + 19 \end{array}\right)$ 10 - 165.00 = 325.00	$\left(\frac{-54 \pm 42}{19 + 22}\right)$ 10 - 205.00 = 275.00 $\left(\frac{-19 + 22}{2}\right)$ 10 = 205.00	$\left(\begin{array}{c} -32 + 36 \\ -22 + 24 \\ \end{array} \right)$ 10 - 230.00 - 160.00	$\left(\frac{36+33}{2}\right)$ 10 - 250.00 = 95.00 $\left(-24\frac{1}{2}26\right)$ 10 = 250.00	$\left(\begin{array}{c} 35 \pm 3L \\ 2 \end{array} \right)$ 10 - 260.00 = 60.00 $\left(\begin{array}{c} 25 \pm 26 \\ 2 \end{array} \right)$ 10 - 260.00	$\left(-\frac{31+29}{2}\right)$ 10 - 250.00 = 50.00 $\left(-\frac{25+24}{2}\right)$ 10 - 250.00	$\left(\frac{-29\frac{1}{2}2.}{-24\frac{1}{2}19.}\right)$ 15 - 322.50 = 52.50	1/2 (26,18)21-248,71 = 26,18 1/2 (26,18) (19) = 246,71	
Silge	-	2	m	4	. _K	φ	1-	ω	6	Q.	=, ,	ě.	io.	4 :	

,	I	1 12	- m	<u> </u>	h	T 60	T ~	l N	T 5:		1	
	(14) (17)	139.63	157.08	157.08	74.53	157.08	141,372	141.372	141.372	750, 721	235.62	1602.213
	(1.3) (m): 260 (27c)	13.963	15, 708	15.708	17,453	15.708	5.706	15.708	15, 708	17.453	82. 28. 18	
٠,	(2)	0,	2.25	2.25	2.50	2.25	2.25	2.25	2.25	2.50	3.75	
	(11) 0 uja %	හ. 1883	139.724	230.7938	266.8055	267 .7662	234,946	204.3667	200.8335	212, 625	127.4354	1945.084
	(0) (0) (0) (0)	31.444	77 899	140.431	175.652 2	192.607	143,762	96.956 20	81.630 20	84,430	50.897	61 61 61 61 61 61 61 61 61 61 61 61 61 6
	(9) W cos 0 - IL. L	54,464	134.926	243.233	304,238	333,606	270.377	162.349	153,524	62.83	95.724	8
	*	vò	5	24	Ř	ig ig	27.0		 	_	85	
	(B) A (1/m)		1				4	18 7111	164,934	209.436	90	
	(B)						(6/2)(= 47.124	(-6+9-)[1: 1117.81	1 (2))	(12+12)	(12-)[+157.08	
	4 cos 4	22. 28	134.926	243,233	304.236	333.606	317,501	300.159	318,458	356.266	252,904	
			<u> </u>	 	i	 -	177				1	
	(9) vis	0.7431	0.7193	0.6883	0,6593	0.6259	0.5848	0.5628	0.5336	0.5000	0.4501	9.22
	(S)	0.6691	0.6945	.0.7254	0.7518	9677.0	0.8038	0.8266	0.8457	0.8660	0.8929	
	(4) - Q. (depres)	۵. وع	ş.	43.50	41.25	38.75	36.50	34,25	32.25	30	26.75	1975 - 1075 - 708 1975 - 864
	ices /m/			sr ji	7 () () 3 () ()							18. 29.
	(3) Weight of Stices W = 3 A (1/n)	81.40	194.25	335.31	404.68	427.81	323.75	185:00	127 187	83.25	4,625	
		19 <u>4</u> 1				<u></u>						
.]	(2) Unit Wolght ((1/m ³)	- 85		1,85	1.85	 85	 	- 85 	85 - 90	1.90	- 85 - 90	
	pezium				* . :							
	(!) Area of Tropezium A (m²)	44.00	00.501	= 181.25	= 218.75	* 231,25	175.00	93,75) = .68,75 = (31,25)= 45,00 = 180.00	2.50	
	4	1/2 (8) (11) = 44.00	00:501 = 01(2)	(13+16) 12,50 = 181.25	16+19 72.50 = 216.75	(19+18) 12. 50 = 231.25	(18±10_)12.50 = 175.00 1/2 (6) (12.50)=37.50	(- 10356 - 12.50 = 100.00 (- 6+9 - 12.50 = 93.75	$-\frac{6+5}{2} - 3 \cdot 12.50 = 68.75$ $-\frac{9+12}{2} - 3 \cdot 12.50 = 68.75$	$\frac{5+1}{2}$)15.00= 45.00 -\frac{12+12}{2}\)15.00= 180.00	1/2 (24,43) 12 = 146.88	
	Silce	2/2	<u> </u>	<u> </u>	-		7 2		しし		2/2	

APPENDIX 1:

DESIGN EXAMPLE NO. 2; DESIGN OF SIDE DITCH

(1) Required cross sectional area of side ditch

$$Q = A \cdot V$$

Q ; Discharge of side ditch

A ; Cross-sectional area of side ditch

V ; Mean velocity of stream

$$V = \frac{1}{n} \cdot R^{2/3} \cdot i^{1/2}$$

n ; Coefficient of roughness

i ; Surface slope of water

R; Hydraulic radius (= A)

·Þ

A ; Area of running water

P ; Wetted perimeter

Drainaç	је Туре	n (Coefficient of Roughness)
	Earth	0.02 ~ 0.025
Earth and Travel	Sand and gravel	$0.025 \sim 0.04$
	Rock	$0.025 \sim 0.035$
	Cement mortar	$0.01 \sim 0.013$
Cast-in-Place	Concrete	$0.013 \sim 0.018$
	Stone pitching	$0.015\sim0.03$
Fabricated	Concrete pipe	0.012 ~ 0.016

	Characteristic	es of each Cross Section	and the state of t	
	Cross Section	Area of Running Water	Hydraulic Radius	
Circle	H=d (1-cos Ø)	$d^2 (\varphi - 1 \sin 2\varphi)$ (d : radian)	$\frac{arphi}{2}(1-rac{\sin2arphi}{2})$ $(arphi: radian)$	
Rectangle	8	8 . H	8 H 2H + B	
Trapezoid	## H **	ዘ (B + m.ዘ) or ዛ (B + H cot 0)	$\frac{H (B + m.H)}{B + 2H \sqrt{1 + m^2}}$ $\frac{H (B + H \cot \Theta)}{B + 2H \csc \Theta}$	
Triangle	θι 30° Ε΄	$\frac{H^{2}}{2} (m_{1} + m_{2})$ or $\frac{H^{2}}{2} (\cot \theta_{1} + \cot \theta_{2})$	$\frac{\frac{\text{H}}{2} \cdot \sqrt{\frac{m_1 + m_2}{1 + m_1^2 + \sqrt{1 + m_2^2}}}}{\text{or}}$ $\frac{\frac{\text{H}}{2} \cdot \frac{\sin (\theta_1 + \theta_2)}{\sin \theta_1 + \sin \theta_2}}{\sin \theta_1 + \sin \theta_2}$	
₹- \$- 		$\frac{m. H^{2}}{2}$ or $\frac{H^{2} \cdot \cot \theta}{2}$	$\frac{H}{2} \cdot \frac{m}{1 + \sqrt{1 + m^2}}$ or $\frac{H}{2} \cdot \frac{\cos \theta}{1 + \sin \theta}$	

(2.) Determination of run-off

$$Q = \frac{1}{3.6} \times C \times I \times A$$

Q ; Run-off m³/sec

C ; Coefficient of run-off

I ; Rainfall intensity mm/hour

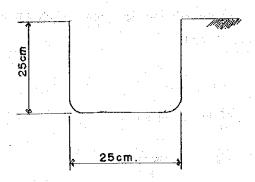
A ; Drainage area (km²)

Table of Coefficient of Run-off

Туре	of Surface	. Coefficient of Run-off
Posdusy cunface	Paved	0.70 ~ 0.95
Roadway surface	Unpaved	0.30 ~ 0.70
	Fine materials	$0.40 \sim 0.65$
Shoulder or	Coarse materials	$0.10 \sim 0.30$
Slope surface	Hard rock	0.70 ~ 0.85
	Soft rock	0.50 ~ 0.75
	Gradient 0~2%	$0.05 \sim 0.10$
Sod on Sandy soil	" 2~7%	$0.10 \sim 0.15$
11	" more than 7%	$0.15 \sim 0.20$
	Gradient 0~2%	$0.13 \sim 0.17$
Sod on Clayey soil	2~7%	0.18 ~ 0.22
	" more than 7%	$0.25 \sim 0.35$

Example - I

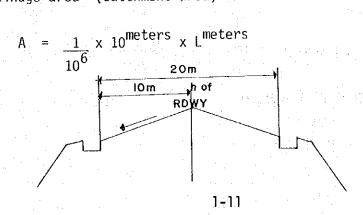
Rainfall intensity curve


$$I = \frac{4725}{t + 45} \quad mn/hour$$

Design Condition

t ; duration of rainfall (minute)

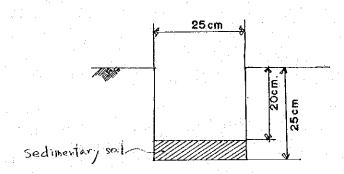
Gradient i = 1/300


Cross section of Concrete - U - type ditch

- . Coefficient of run-off C = 0.95 (paved)
- . Rainfall intensity at t = 10 minutes

$$I = \frac{4725}{10 + 45} = 85.9 \text{ mm/hour}$$

- . L ; spacing of vertical ditch
- . Drainage area (catchment area)



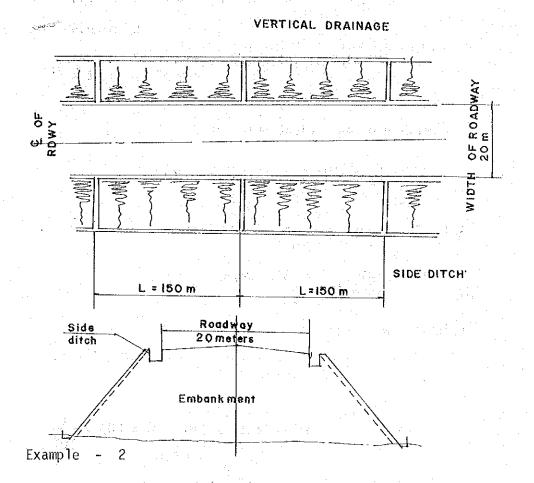
Q =
$$\frac{1}{3.6}$$
 x C x I x A
= $\frac{1}{3.6}$ x 0.95 x 85.9 x 10 x L x $\frac{1}{10^6}$ = 0.00027 L

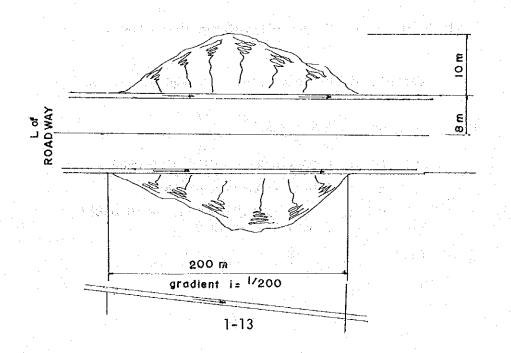
Allowable discharge of side ditch will be obtained by the following formula

Qc =
$$A \times \frac{1}{n} R^{2/3} \cdot i^{1/2}$$

Sedimentary soil will be considered in side ditch at 20 per cent of running water area

Qc =
$$0.25^{\text{m}} \times 0.20^{\text{m}} \times \frac{1}{0.015} \times \left(\left(\frac{0.20 \times 0.25}{2 \times 0.20 + 0.25} \right)^{2/3} \times \left(\left(\frac{1}{300} \right)^{1/2} \right)^{1/2}$$


= 0.0348


Q < Qc is required

0.00027 L < 0.034b

... $L < 153.2^{m}$

Therefore, the spacing of vertical ditch shall be placed at 150 meter interval on this road section.

Design Condition

Coefficient of run-off C = 0.35 for cut slope

C = 0.95 for roadway

. Rainfall intensity curve $I = \frac{4725}{t + 45}$

Computation of equivalent value of C

$$C = \frac{0.35 \times 10 + 0.95 \times 8}{10 + 8} = 0.617$$

Rainfall intensity at t = 10 minutes

$$1 = \frac{4725}{10 + 45} = 85.9 \text{ mm/hour}$$

. Calculation of run-off

$$Q = \frac{1}{3.6} \times C \times I \times A$$

$$= \frac{1}{3.6} \times 0.617 \times 85.9 \times (10 + 8) \times 200 \times \frac{1}{10^6}$$

$$= 0.053 \text{ m}^3/\text{sec} = 53 \text{ //sec}$$

If 0.30×0.36 U-Type of concrete ditch used;

Capable discharge of side ditch Qc;

Qc;
$$A \times \frac{1}{n} \times R^{2/3} \cdot i^{1/2}$$

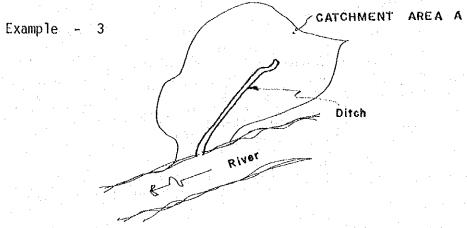
 $A : 0.30 \times 0.36 \times 0.8 = 0.0864$
 $R : 0.30 \times 0.8 \times 0.36 = 0.0986$

$$\frac{1}{200}$$

... Qc =
$$0.0864 \times \frac{1}{0.013} \times 0.09863^{2/3} \times \frac{1}{200}^{1/2}$$

= $0.100 \text{ m}^3/\text{sec} > Q = 0.053 \text{ M}^3/\text{sec} = 0.K$
too much but still 0.K

If 0.30 x 0.30 U-Type concrete ditch used;


A = 0.3 x 0.3 x 0.8 = 0.072 m²
R =
$$\frac{0.30 \times 0.8 \times 0.30}{0.30 + 2 \times 0.8 \times 0.30}$$
 = 0.0923
Qc = 0.072 x $\frac{1}{0.013}$ x 0.0923^{2/3} x $\left(\frac{1}{200}\right)^{1/2}$
= 0.080 m³/sec > Q = 0.053 m³/sec 0.K

If 0.24 x 0.3 U-Type concrete ditch used;

A = 0.24 x 0.8 x 0.30 = 0.0576
R =
$$\frac{0.24 \times 0.8 \times 0.30}{0.24 + 2 \times 0.8 \times 0.30}$$
 = 0.080
Qc = 0.056 x $\frac{1}{.013}$ x 0.0800^{2/3} x $\left(\frac{1}{200}\right)^{1/2}$
= 0.058 m³/sec > Q = 0.053 m³/sec 0.K

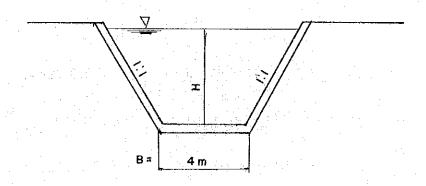
If 0.24 x 0.24 U-Type concrete ditch used;

A = 0.24 x 0.8 x 0.24 = 0.0461
R =
$$\frac{0.24 \times 0.8 \times 0.24}{0.24 + 2 \times 0.8 \times 0.24}$$
 = 0.07385
Qc = 0.0461 x $\frac{1}{0.013}$ x 0.07385^{2/3} x $\left(\left(\frac{1}{200}\right)^{1/2}\right)$
= 0.044 m³/sec < Q = 0.053 m³/sec Not 0.K

- L: Length of Ditch = 1.5 km
- i ; Surface slope of water along ditch(= 1/200)

Design Condition

$$A = 3.0 \text{ km}^2$$


$$L = 1.5 \text{ km}$$

$$t = 20 + \frac{L}{V}$$
 (minutes)

v = Mean velocity of water stream

n = 0.025 (coefficient of roughness)

Cross section of Ditch is indicated below:

. Capable discharge of running water in Ditch

Qc = A · V
V =
$$\frac{1}{n}$$
 x R^{2/3} · i^{1/2}
A = H x (B + H)
R = $\frac{H \times (B + H)}{B + 2 \sqrt{2} \times H}$

If H = 2.5 m

A = 2.5 x (4.0 + 2.5) = 16.25 m²
R =
$$\frac{16.25}{4 + 2 \text{ x} \sqrt{2} \text{ x } 2.5}$$
 = 1.468 m
V = $\frac{1}{0.025}$ x 1.468^{2/3} x $\left(\frac{1}{200}\right)^{1/2}$ = 3.65 m/sec
∴ Qc = 16.25 x 3.65 m/sec = 59.4 m³/sec

. Duration of rainfall

t =
$$20 + \frac{L}{V}$$

= $20 + \frac{1.5 \times 10^3}{3.65 \times 60}$ = 26.85 minutes

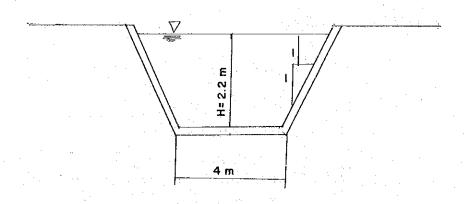
. Rainfall intensity

$$I = \frac{8625}{t + 55} = \frac{8625}{26.85 + 55} = 105.4 \text{ mm/hour}$$

. Coefficient of run-off

C = 0.527 (given value)

$$Q = \frac{1}{3.6} \times C \times I \times A$$


$$= \frac{1}{3.6} \times 0.527 \times 105.4 \times 3.0$$

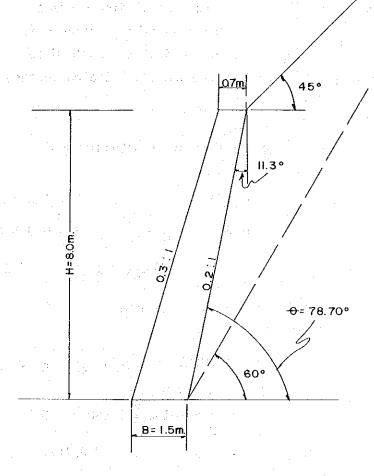
$$= 46.3 \text{ m}^3/\text{sec} \qquad Qc = 59.4 \text{ m}^3/\text{sec} \qquad 0.K$$

If
$$H = 2.2$$
 meter

A =
$$2.2 \times (4.0 + 2.2) = 13.64 \text{ m}^2$$

R = $\frac{13.64}{4.0 + 2.\sqrt{2} \times 2.2} = 1.334 \text{ m}$
v = $\frac{1}{0.025} \times 1.334 \times (\frac{1}{200})^{1/2}$
= 3.428 m/sec
Qc = $13.64 \times 3.428 = 46.8 \text{ m}^3/\text{sec}$
t = $20 + \frac{1500}{3.428 \times 60} = 27.29 \text{ minutes}$
I = $\frac{8625}{27.29 + 55} = 104.8 \text{ mm/hour}$
Q = $\frac{1}{3.6} \times 0.527 \times 104.8 \times 3.0 = 46.0 \text{ m}^3/\text{hour} < \text{Qc}$
Qc = $46.6 \text{ m}^3/\text{hour} = 0.60 \times 100 \times$

Therefore, Used Ditch shall be illustrated as the figure shown below.



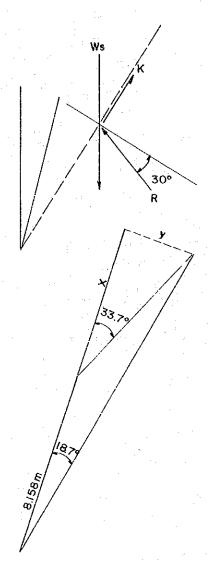
APPENDIX 1:

DESIGN EXAMPLE NO. 3; DESIGN OF RETAINING WALL WITH ANCHORING

1) Dimension of slope

sliding surface

2) Characteristics of soil (or rock)


Unit weight

 $Y = 1.8 \text{ t/m}^3$

Angle of internal friction

Ø = 30°

We assumed that the safety factor of stability is equal to 1.0 along the sliding surface (see figure)

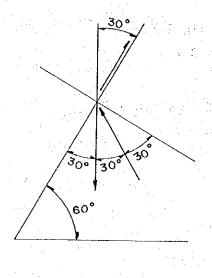
Forces act on the sliding wedge

k ; Resisting shearing force due to cohesion (= $c \times L$)

C ; Cohesion

; Length of sliding surface

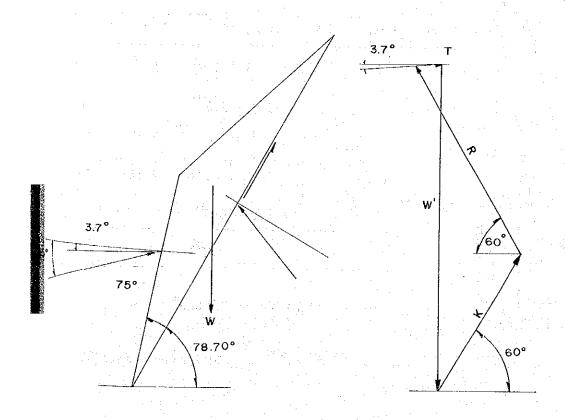
R ; Reaction (the reaction R is inclined at the angle Ø to the normal to sliding surface)


 W_{S} = Weight of sliding wedge

$$k = (8.158 + 8.381) \frac{1}{\cos 18.7^{\circ}} = 17.461$$

$$Ws = A \times Y$$

$$= \frac{1}{2} \times 8.158 \times 5.590 \times 1.8 = 41.043t/m$$


$$K = C \times k = C \times 17.461t/m$$

$$W_{S} = R \cos 30^{\circ} + K \cdot \cos 30^{\circ}$$
 $R \sin 30^{\circ} = K \sin 30^{\circ}$
 $R = K$
 $K = R = W / (2x \cos 30^{\circ}) = \frac{41.043}{2 \times \cos 30^{\circ}}$
 $= 23.696t/m$
 $C = 23.696t/m = c \times 17.461$
 $C = 1.357 (t/m^{2})$

3) Computation of earth pressure

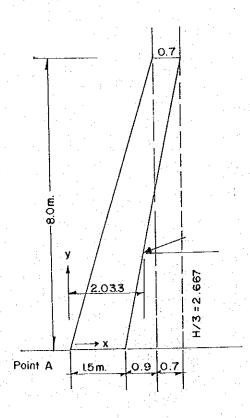
Proposed safety factor
$$S_{pf} = 1.5$$

$$W' = S_{pf} \times W_{s} = 1.5 \times 41.043 t/m = 61.565 t/m$$

$$K = c \times \ell = 1.375 \times 17.461 = 23.696 t/m$$

$$W' = K \sin 60^{\circ} + R \sin 60^{\circ} + T \sin 3.7^{\circ}$$

K . cos 60° = R cos 60° - T cos 3.7°


$$61.565 = 23.696 \times \sin 60^{\circ} + R \sin 60^{\circ} + T \sin 3.7^{\circ}$$

 $23.696 \times \cos 60^{\circ} = R \cos 60^{\circ} - T \cos 3.7^{\circ}$

$$R = 23.696 + 1.996T$$

$$41.044 = 0.866 (23.696 + 1.996T) + 0.0645T$$

1.793 T. =
$$20.523$$
 T = 11.45^{t}

- 4) Stability check of retaining wall
 - a) Computation of self-weight

¹ No	1	Area	' X	' A _X
(1)	1	$\frac{1}{2}$ x (1.5 + 0.9)	1.6 ^m	15.360
		$x 8.0 = 9.6^{m2}$		
(2)		$0.7 \times 8.0 = 5.6$	^{m2} 2.75	15.400
(3)	1	$\frac{1}{2}$ x (0.9 + 0.7)	2.567	-16.429
		$x 8.0 = 6.4^{\text{m}}$		
٤		8.8 ^{m2}		14.331
	X =	$\frac{14.331}{8.8} = 1.62$	29 ^m	
	W =	$8.8^{m2} \times 2.403t$	$/m^3 = 21$.146t/m

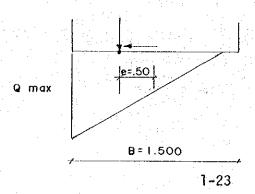
- b) Resultant forces at point A
 - i) Earth pressure

Horizontal (
$$\leftarrow$$
) $T_H = T \times \cos 3.7 = 11.45 \times \cos 3.7 = 11.426t/m$
Vertical (\downarrow) $T_V = T \times \sin 3.7 = 11.45 \times \sin 3.7 = 0.739t/m$

ii) Concrete weight

$$W = 21.146^{t}$$

iii) Resultant forces


April 6	1 1	γ	V.x 1 H	ı t v	1 U V I
Earth pressure	0.739	2.033	11.502 11.4	26 2.667	30.473
Concrete weight	21.146	1.629	34.447		
Z	21.885		35.949 11.4	26	30.473

$$V = 21.885^{t}$$
 $H = 11.426^{t}$
 $M = V_{\chi} - H_{\gamma} = 35.949 - 30.473 = 5.476^{t.m}$
 $e = M/V = 0.250^{m}$

c) Stability check

for overturning (within middle third)

$$e_o = \frac{B}{2} - e = \frac{1.5}{2} - 0.250 = 0.500^{\text{m}} \ge \frac{B}{6} = 0.25$$

for soil reaction

$$Q \max = \frac{2 \times V}{3 \times (\frac{B}{2} - e_o)}$$

= $\frac{2 \times 21.885}{3 \times 0.250} = 58.36 \text{ t/m}^2$ $Q a = 30 \text{t/m}^2$

Qa; Allowable bearing capacity

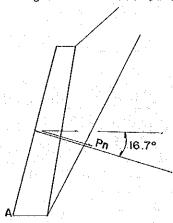
for sliding

$$S_f = \frac{Hr}{H}$$

 S_f ; Safety factor (more than 1)

H_u ; Resistant horizontal force

 H_{u} ; μ . V + c. B_{o}


 μ ; Coefficient of friction between concrete and rock (= 0.7)

C; Cohesion of rock = $2.0t/m^2$

$$S_f = \mu \cdot V + C \cdot B_0 = \frac{0.7 \times 21.885 + 2.0 \times 1.5}{11.426}$$

= 1.60 > 1.5

4) Stability check of retaining wall in case of anchoring

Required force due to anchor Pn

$$P n H = Pn \cos 16.7^{\circ} = 0.96 Pn \text{ (ton)}$$

 $P n V = Pn \sin 16.7^{\circ} = 0.29 Pn \text{ (ton)}$

Resultant forces at point A

	V	X	V _X	H	Υ	Нү
Earth pressure	0.739	2.033	1.502	11.426	2.667	30.473
Concrete weight	21.146	1.629	34.447			
Anchor force	0.29Pn	1.20	0.348Pn	-0.96Pn	4.00	-3,840Pn
# N	21.885 + 0.29Pn		35.949 + 0.348Pn	11.426 - 0.96Pn		30.473 - 3.840Pn

$$V = 21.885 + 0.2Pn$$

$$H = 11.426 - 0.96Pn$$

$$M = 35.949 + 0.34Pn - (30.473 - 3.840Pn)$$

$$\Theta_0 = \frac{B}{2} - e \le \frac{B}{6}$$

$$= \frac{1.5}{2} - \frac{M}{V} \le \frac{B}{6} = \frac{1.5}{6} = 0.250$$

Therefore

$$\frac{5.476 + 4.188Pn}{21.885 + 0.29Pn} \ge 0.750 - 0.250 = 0.500$$

$$5.476 + 4.188$$
Pn $\ge (21.885 + 0.29$ Pn) (0.500)
 4.043 Pn ≥ 5.467 ton
Pn ≥ 1.35

Resultant force at point A

$$V = 21.885 + 0.29 \times 1.5 = 22.320$$
 ton
 $H = 11.426 - 0.96 \times 1.5 = 9.986$ ton
 $M = 5.476 + 4.188 \times 1.5 = 11.758$ t.m
 $e = M/V - 11.758/22.320 = 0.527$ m

. Stability check

overturning

$$e_o = \frac{B}{2} - e = \frac{1.50}{2} - 0.527 = 0.223 \le \frac{B}{6} = 0.250^{m}$$

Sliding

$$S_f = \frac{0.7 + 0.8}{H}$$

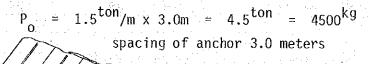
$$= \frac{0.7 \times 22.320 + 2.0 \times 1.5}{9.986} = 1.87 > 1.5$$

Design of anchor material

Required area of anchor material

(Note) Uncoated stress-relieved steel wire, and strand for prestressed concrete is usually used for anchor materials.

$$A_s \geq \frac{Po}{pa}$$


T 10.8

69.68

 A_s ; Required area of anchor material (mm²)

 P_0 ; Designed anchor force (kg)

 \mathcal{G} pa; Allowable tension stress (kg/mm^2)

 $\delta pa \leq 0.60$ δpu and 0.75 δpy

 \mathfrak{fpu} ; Ultimate tension stress kg/mm^2

12,20

150

10.40

δρy ; Yield tension stress kg/mm²

~~~	1.1-	. 000		110 1011 9010	22 1697 11111	
				*.		est de la companya de
			erio de la composición La composición de la composición de la La composición de la			
Composition	(mm ² ) Area	(kg/m) Unit Weight	Tensile (kg/mm²)	Stress (t/ea)	Yield (kg/mm ² )	Stress (t/ea)
Ø 5	19.64	0.154	165	3.25	145	2.85
Ø 7	38.48	0.302	155	5.95	135	5.20
Ø 8	50.27	0.395	150	7.55	130	6.55
T 9.3	51.61	0.405	175	9.05	150	7.70

$$A_s \ge \frac{Po}{Pa}$$
 0.60 x & pu x  $A_s \ge Po = 4,500$  kg and 0.75 x & py x  $A_s \ge Po = 4,500$  kg

175

0.546

$$\begin{cases} \text{6pu } \cdot A_{s} \ge 7,500 \\ \text{6py } \cdot A_{s} \ge 6,000 \end{cases}$$

#### Used Ø 8 steel wire

$$\text{Cpu} \cdot \text{A}_{\text{S}} = 7,550 \text{kg/ea}$$
 7,500 kg 0.K  
 $\text{Cpy} \cdot \text{A}_{\text{S}} = 6,550 \text{kg/ea}$  6,000 kg 0.K

Allowable bond stress between steel wire (or stand) and concrete grout.

Designed Concrete Compression Strength at 28 days **6ck** (kg/cm²)

	180	240	 300	more than 4	00
Steel wire	7	8	9	10	
Strand	14	16	 18	20	

Parks with Property and

Source: Standard specification of Japan Civil Engineering Association

$$\textbf{A}_1 \; \underset{\text{tab}}{\succeq} \quad \frac{\textbf{Po}}{\textbf{tab}}$$

 $A_1$ ; Required surface area of anchor (cm²)

Po ; Designed anchor force (kg)

tab ; Allowable bond stress (kg/cm²)

$$A_1 \ge \frac{4,500 \text{kg}}{8 \text{kg1cm}^2} = 562.5 \text{cm}^2$$

$$A_1 = \widehat{I} \times D \times \ell = 3.14 \times 0.8 \times \ell = 562.5 \text{cm}^2$$
  
 $\ell = 223.8 \text{cm} = 230 \text{cm} = 2.3 \text{ meters}$ 

#### Design of Anchorage

1	Diameter of	Anchor hole '	Applicable Soil
	90 ~	140 mm	clay, sand, silt
	60 ~	110 mm	sand and gravel, boulder, rock

### . Ultimate tension force

$$T = \widehat{1} \cdot la \cdot D \cdot tu$$

T ; Ultimate tension force in anchorage

D ; Diameter of anchor hole

L; Anchor length

tu ; Bond strength between concrete grout and soil

(or rock)

Type of	Soil	or Rock	Recommended tu Remarks
Rock	Sc We Cc	ard rock oft rock eathered rock onsolid-	$15 \sim 25$ $10 \sim 15$ $6 \sim 10$ Similar to adobe
Sand and Gravel	Standard Penetration Test	<pre>ced clay N = Value</pre>	$1.0 \sim 2.0$ $1.0 \sim 2.0$ $1.7 \sim 2.5$ $2.5 \sim 3.5$ $3.5 \sim 4.5$ $4.5 \sim 7.0$
Sand distance	Standard Penetration Test	N = Value = 10 = 20 = 30 = 40 = 80	$1.0 \sim 1.4$ $1.8 \sim 2.2$ $2.3 \sim 2.7$ $2.9 \sim 3.5$ $3.0 \sim 4.0$
Cohesive Soil			1.0 x C C; Cohesion of Soil

Used 80mm anchor hole

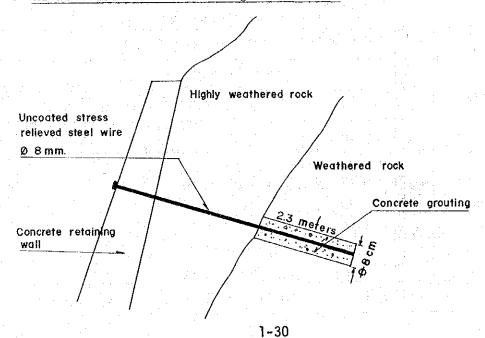
Type of rock; weathered rock tu =  $6 \text{ kg/cm}^2$ 

... 
$$T = \hat{n} \times \hat{l} \times D \times tu$$
  
=  $\hat{n} \times \hat{l} \times 8^{cm} \times 6 \text{ kg/cm}^2$   
=  $150.8 \times \hat{l} \times 8^{cm}$ 

Safety factor of anchoring

Permanent force ;  $F_s = 3.0$ 

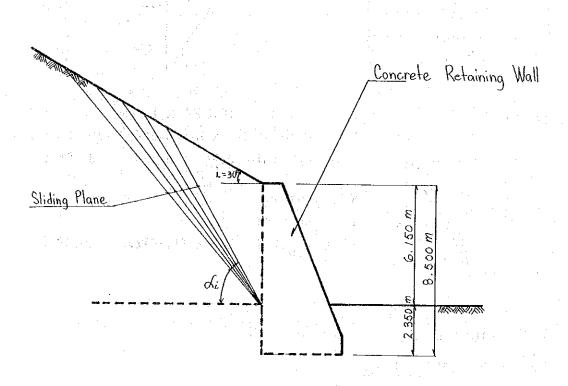
Tentative force ; F_s = 2.0 (Earthquake force, under construction)


 $Po \leq \frac{T}{F_s}$ 

Po ; Designed anchor force = 4,500 kg

4,500  $150.8 \times la$ 

 $\ell$  a  $\geq$  89.5cm = 1.0m < 2.3m =  $\ell$ 


. We will used 2.3 meters length of anchor



#### APPENDIX 1:

# DESIGN EXAMPLE NO. 4; DESIGN OF RETAINING WALL BY TRIAL METHOD WITH WEDGE SHAPE

#### 1) Dimension of Slope



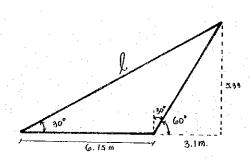
$$\mathcal{L}_{i} = \begin{cases}
60^{\circ}, 56^{\circ} \\
52^{\circ}, 48^{\circ} \\
44^{\circ},
\end{cases}$$

#### 2) Characteristics of back soil

Unit Weight of Soil  $\emptyset = 1.9 \text{ ton/m}^3$ Internal Angle of Friction  $\emptyset = 30^\circ$ Cohesion  $C = 1.0 \text{ t/m}^2$ Proposed Safety Factor Fsp = 1.3
Friction between wall and soil  $f = 1/2 \times C = 0.5 \text{t/m}^2$ Angle of Reaction Force  $\delta = 2/3 \emptyset = 20^\circ$ 

#### 3) Computation of Earth Pressure

A ; Area of Wedge


 $\downarrow$  ; Length of Sliding Plane

$$W = A \times X$$

$$K = C \times \emptyset$$

$$S = c/2 \times H$$

$$W' = F_{sp} \times W$$



$$\frac{30^{\circ}}{8}$$

$$\frac{2}{3} \phi = 20^{\circ}$$

$$6.150 \text{ m}$$

$$W = A \times V = 16.39 \text{m}^2 \times 1.96 \text{m}^3 = 31.141 \text{t/m}$$

$$K = C \times \ell = C \times \ell = 1.0 t/m^2 \times 10.68 m = 10.68 t/m^2$$

$$S = c/2 \times H = 0.5t \times 6.15m = 3.08t/m$$

$$W' = F_{sp} \times W = 1.3 \times 31.141t/m = 40.483t/m$$

$$A_{\Lambda} = 16.390 \text{m}^2$$

$$\cos 30^{\circ} = \underline{6.150 \times 3.100}$$

$$\oint = \frac{6.150 \times 3.100}{\cos 20^{\circ}}$$

$$\beta = 30 + 30 = 60^{\circ}$$

W' = 
$$K \sin 60^{\circ} + S + R \sin \beta + T \sin 20^{\circ}$$
 (1)  
 $K \cos 60^{\circ} + T \cos 20^{\circ} = R \cos \beta$  (2)

From Equation (1)

$$40.483 = 10.680 \sin 60^{\circ} + 3.080 + R \sin 60^{\circ} + T \sin 20^{\circ}$$

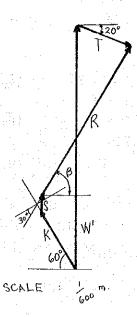
$$28.150 = R \sin 60^{\circ} + T \sin 20^{\circ}$$

R sin 
$$60^{\circ} = 28.150 - T \sin 20^{\circ}$$
  
R =  $(28.150 - T \sin 20^{\circ})$  (3)

In Equation (2)

$$10.680 \cos 60^{\circ} + T \cos 20^{\circ} = \frac{(28.150 - T \sin 20^{\circ})}{\sin 60} \cos 60^{\circ}$$

$$5.340 + .940T = 16.250 - .197T$$


$$1.137T = 10.910$$

$$T = 9.60$$

Substituting T in Equation (3)

$$R = \frac{28.150 - 9.600 \sin 20^{\circ}}{\sin 60^{\circ}}$$
$$= \frac{24.870}{\sin 60^{\circ}}$$
$$R = 28.720$$

# VECTOR ANALYSIS



ii) 
$$d$$
 i = 56°

(6.82m.

W' = K sin 
$$56^{\circ}$$
 + S + R sin  $\beta$  + T sin  $20^{\circ}$  — (1)  
K cos  $56^{\circ}$  + T cos  $20^{\circ}$  = R cos  $\beta$  (2)

#### From Equation (1)

$$51.800 = 12.180 \sin 56^{\circ} + 3.080 + R \sin 64^{\circ} + T \sin 20^{\circ}$$
  
 $38.620 = R \sin 64^{\circ} + T \sin 20^{\circ}$   
 $R = \frac{(38.620 - T \sin 20^{\circ})}{\sin 64^{\circ}}$  (3)

#### In Equation (2)

12.180 cos 56° + T cos 20° = 
$$\frac{(38.620 - T \sin 20^\circ)}{\sin 64^\circ}$$
 Cos 64°  
6.810 + .940T = 18.840 - .167T  
1.110T = 12.030  
T = 10.830

#### Substituting T in Equation (3)

$$R = \frac{(38.620 - 10.830 \sin 20^{\circ})}{\sin 64^{\circ}}$$

$$= \frac{34.920}{\sin 64^{\circ}}$$

$$R = 38.850$$

$$R = 38.850$$

$$R = 38.850$$

$$R = 38.850$$

K

26.9 x 1.9

1 x 14.26

51.110t/m

14.260t/m

$$A_{A} = 26.900 \text{m}^{2}$$

$$A_{A} = \frac{6.150 \times 5.090}{\text{Cos } 38^{\circ}}$$

$$W' = K \sin 52^{\circ} + S + R \sin \beta + T \sin 20^{\circ} - (1)$$
  
 $K \cos 52^{\circ} + T \cos 20^{\circ} = R \cos \beta - (2)$ 

#### From Equation (1)

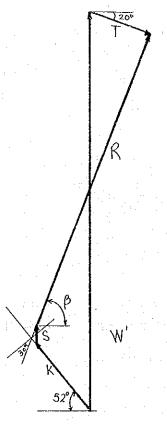
$$66.443 = 14.260 \sin 52^{\circ} + 3.080 + R \sin 68^{\circ} + T \sin 20$$

$$52.125 = R \sin 68^{\circ} + T \sin 20^{\circ}$$

$$R = \frac{52.125 - T \sin 20^{\circ}}{\sin 68^{\circ}}$$
(3)

#### In Equation (2)

14.260 cos 52° + T cos 20° = 
$$\frac{52.125 - T \sin 20^{\circ}}{\sin 68^{\circ}}$$
 Cos 68°  
8.780 + .940T = 21.060 - .138T  
1.078T = 12.280  
T = 11.390


#### Substituting T in Equation (3)

$$R = \frac{52.125 - 11.390 \sin 20^{\circ}}{\sin 68^{\circ}}$$

$$= \frac{48.230}{\sin 68^{\circ}}$$

$$R = 52.020$$
VECTOR

VECTOR ANALYSIS



Scale: 600 m

iv) 
$$\sqrt{1} = 48^{\circ}$$

11.595

42°

(6.15 m. (6.73 m.

$$W = 35.65 \times 1.9 = 67.735t/m$$
 $K = 1.0 \times 17.33 = 17.330t/m$ 
 $S = 0.500 \times 6.160 = 3.080t/m$ 
 $R = Unknown$ 
 $T = Unknown$ 
 $W' = 1.3 \times 67.735 = 88.055t/m$ 

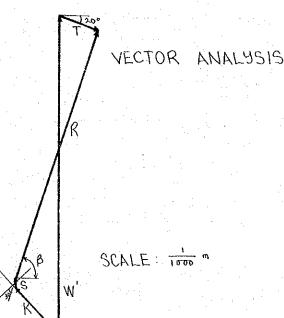
$$W' = K \sin 48^{\circ} + S + R \sin \beta + T \sin 20^{\circ}$$
 (1)  
 $K \cos 48^{\circ} + T \cos 20^{\circ} = R \cos \beta$  (2)

#### From Equation (1)

$$88.055 = 17.330 \sin 48^{\circ} + 3.080 + R \sin 72^{\circ} + T \sin 20$$

$$72.100 = R \sin 72^{\circ} \times T \sin 20^{\circ}$$

$$R = \frac{(72.100 - T \sin 20^{\circ})}{\sin 72^{\circ}}$$
(3)


#### In Equation (2)

17.330 cos 
$$48^{\circ}$$
 + T cos  $20^{\circ}$  =  $\frac{(72.100 - T \sin 20^{\circ})}{\sin 72^{\circ}}$  Cos  $72^{\circ}$   
11.600 + .940T = 23.430 - .110T  
1.050T = 11.820  
T = 11.260

#### Substituting T in Equation (3)

$$R = \frac{72.100 - 11.260 \sin 20^{\circ}}{\sin 72^{\circ}}$$

 $= \frac{68.250}{\sin 72}$  R = 71.760



v)  $\sqrt{i} = 44^{\circ}$ 

W' = K sin 44° + S + R sin 
$$\beta$$
 + T sin 20° — (1)  
K cos 44° + T cos 20° = R cos  $\beta$  — (2)

#### From Equation (1)

$$120.956 = 22.150 \sin 44^{\circ} + 3.080 + R \sin 76^{\circ} + T \sin 20^{\circ}$$

$$102.490 = R \sin 76^{\circ} + T \sin 20^{\circ}$$

$$R = \frac{102.490 - T \sin 20^{\circ}}{\sin 76^{\circ}}$$
(3)

#### In Equation (2)

22.150 cos 44° + T cos 20° = 
$$\frac{(102.490 - T \sin 20^{\circ})}{\sin 76^{\circ}}$$
 Cos 76°  
15.930 + .94T = 25.550 - .085T  
1.025T = 9.620  
T = 9.390

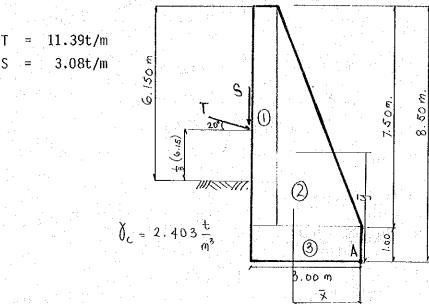
#### Substituting in Equation (3)

$$R = \frac{102.490 - 9.39 \sin 20^{\circ}}{\sin 76^{\circ}}$$
$$= \frac{99.280}{\sin .76^{\circ}}$$

R = 102.320

VECTOR ANALYSIS

W


SCALE

#### ... Critical Earth Pressure

$$T = 11.39t/m$$

#### 4) Computation of Resulting Forces at Point A

FIGURE:



Area:

$$A_1 = .5 \times 7.5 = 3.750m^2$$
  
 $A_2 = \frac{1}{2} (2.5) (7.5) = 9.375m^2$   
 $A_3 = 1 (3) = \frac{3.000m^2}{ZA = 16.125m^2}$ 

Description	A (m ² )	Х _о (m)	Y _O (m)	Ax _o (m ³ )	Ayo (m ³ )
(1) (2)	3.750 9.375	2.750 1.667	4.750 3.500	10.313 15.656	17.813 32.813 1.500
(3)	$\frac{3.000}{\Sigma_{=16.125}}$	1.500	0.500	$\frac{4.500}{\Xi = 30.469}$	$\Sigma = 52.126$

$$X = Ax_0 = 30.469 = 1.889m.$$

$$\ddot{Y} = \frac{\sum A y_o}{\sum A} = \frac{52.126}{16.125} = 3.233m.$$

## Consider 1m. strip:

Vertical Forces:

#### Horizontal Forces:

Earth Pressure, 
$$T_{\chi}$$
 =  $T \cos 20^{\circ}$   
=  $11.39 \cos 20^{\circ}$   
 $T_{\chi}$  =  $10.703t$ 

Description	V	χ	٧×	Н	Y	Hy
Earth Pressure, T	3.896	3.000	11.688	10.703	4.4	47.093
Earth Pressure, S	3.080	3.000	9.240	0	0	. 0
Concrete Weight	38.749	1.889	73.240	0	0	00
	Σ=45.725		≥=94.168	∑=10.703		Σ=47.093

$$M_0 = Vx - Hy$$
  
= 94.168 - 47.093  
 $M_0 = 47.075 t-m$ .

#### Total Resulting Forces at Point A

$$V = 45.725t$$

$$H = 10.703t$$

$$M = 47.075t-m$$
.

#### 5) Stability Check of Retaining Wall

- 1) Bearing capacity of soil;  $q \max \le 30t/m^2$
- 2) Overturning ; resultant force with middle third
- 3) Sliding; SF > 1.5

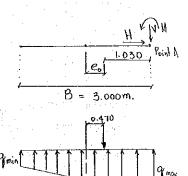
e = 
$$\frac{M}{V}$$
 =  $\frac{47.075}{45.725}$  = 1.030m.  
e_o =  $\frac{B}{2}$  - e = 0.470  $< \frac{B}{6}$  = 0.500 OK.

$$\frac{Q \max}{\min} = \frac{V}{A} + \frac{Mc}{I} \times Y$$

$$= \frac{V}{A} + \frac{6Mc}{B^2}$$

$$= \frac{45.725}{3.000} + \frac{6 \times 45.725 \times 0.470}{9}$$

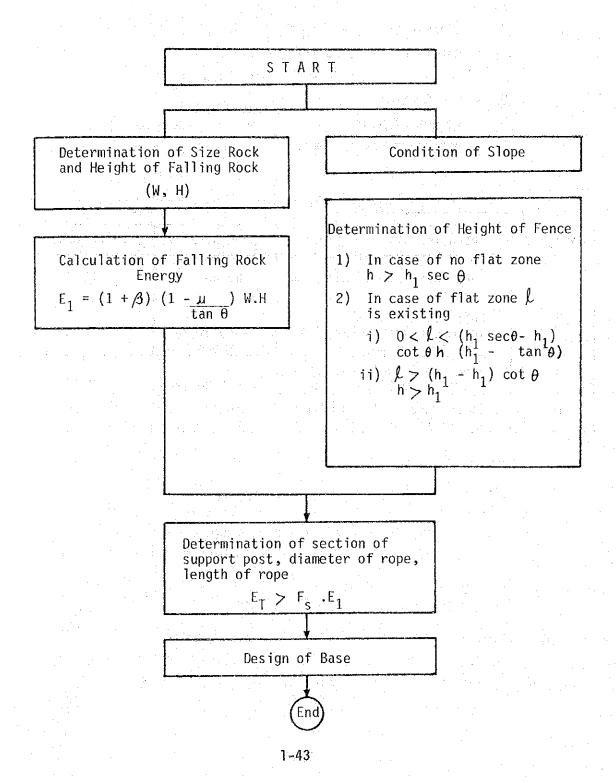
$$= 15.242 + 14.327$$


$$\frac{Q}{Q} \max = 29.569t/m^2 < 30t/m^2$$

$$\frac{Q}{Q} \min = 0.915t/m^2$$

$$S_f = \frac{H_R}{H} = \frac{V \times M}{H}, M = 0.6$$

$$= \frac{45.725 \times 0.6}{10.703}$$


$$S_f = 2.56 > 1.5$$
O. K.



#### APPENDIX 1:

#### DESIGN EXAMPLE NO. 5; CATCH FENCE

#### 1) Design Flow Chart



Computation of Falling Rock Energy

$$E_1 = (1 + \beta) (1 - \frac{\mu}{\tan}) \text{ W.H}$$

Wherein;

$$(1+\beta) \quad (1-\frac{4}{\tan}) \le 1.0$$

E = Kinetic Energy

 $\beta$  = Rotation Energy Factor (= 0.1)

 $\mu$  = Equivalent coefficient of friction

 $\theta$  = Gradient of Slope

W = Weight of Rock

H = Height of Falling Rock

# Value of u

Category	Characteristics of Slope	Shape of Rock	µ to be designed
A	Hard Rock, small [] [] No tree	Round	0.05
В	Soft Rock, medium to large [_], No tree	Angular to round	0.15
C	Sand and Gravel, talus山凸 deposit, small to medium	No tree	0.25
D	Talus deposit (with boulder)	Angular	0.35

#### Computation of Energy absorbed by the Fence

#### Computation of Reaction "R"

$$\left(\frac{a}{2} + \frac{T_{Y} \cdot L}{2 \cdot E_{W} \cdot A}\right) \left(\cos \theta_{1}\right) = \frac{a}{2}$$

#### Characteristics of Wire Rope

•		grand and the state of the stat
Diameter	Cross Sectional Area, A (cm. ² )	Yield Stress T _Y (tons)
Ø 18	1.29	12.0
Ø 16	1.01	9.0
Ø 14	0.78	7.5
Ø 12	0.59	5.3

 $E_{W}$ ; Young Modulus of Wire Rope = 1.0 x  $10^{6}$  kg/cm²

L ; Length of Wire Rope = 60.0 meters

a ; Spacing of Supporting Post = 3.0 meters

$$\therefore ; \cos \theta_1 = \frac{a}{2} / \left( \frac{a}{2} + \frac{T_{Y} \cdot L}{2 E_{W} \cdot A} \right)$$

Diameter	Ø 18	Ø 16	Ø 14	Ø 12
Cos 0 ₁	0.843	0.849	0.839	0.848
$\theta_1$	32.53°	31.93	33.00	32.04
R (ton)	12.904	9.519	8.169	5.623

$$R = 2 \times T_{\gamma} \times Sin \Theta_{1}$$

$$\cos \theta_1 = \frac{a}{2} / \left( \frac{a}{2} + \frac{T_{\gamma} \cdot L}{2 E_{W} A} \right)$$

#### for Ø 18 wire

$$\cos \emptyset_1 = \frac{300}{2} / \left\{ \frac{300}{2} + \frac{(12000)(6000)}{2(1.0 \times 10^6)(1.29)} \right\}$$

$$\cos \theta_{\hat{1}} = 0.8431372$$

$$\theta_1 = 32.53^{\circ}$$

 $R = 2 T_{\gamma} \sin \phi_1 = 2 (12,000) \sin 32.53 = 12,904.763 kg$ 

#### for Ø 16 wire

$$\cos \theta_1 = \frac{300}{2} / \left\{ \frac{300}{2} + \frac{(9000)(6000)}{2(1.0 \times 10^6)(1.01)} \right\}$$

$$\cos \vartheta_1 = .8487394$$

$$\theta_1 = 31.93^{\circ}$$

$$R = 2 (9000) \sin 31.93^{\circ} = 9,518.6012 \text{ kg}$$

#### for Ø 14 wire

$$\cos \theta_1 = \frac{300}{2} / \left\{ \frac{300}{2} + \frac{(7500)(6000)}{2(1.0 \times 10^6)(0.78)} \right\}$$

$$\cos \theta_1 = 0.8387096$$
 $\theta_1 = 32.995885^{\circ}$ 

$$R = 2 (7500) \sin 32.995885 = 8,168.682 \text{ kg}$$

#### for Ø 12 wire

$$\cos \theta_1 = \frac{300}{2} / \left\{ \frac{300}{2} + \frac{(5300)(6000)}{2(1.0 \times 10^6)(0.59)} \right\}$$

$$\cos \theta_1 = .8477011$$

$$\theta_1 = 32.037493^{\circ}$$

$$R = 2(5300)$$
 (sin 32.037493) = 5,623.025 kg

2) Computation of " $F_{\gamma}$ "

$$F_y = \frac{\delta' y \cdot 2}{h2}$$

3.0 = h 
$$\frac{F_{\gamma}}{\frac{2}{3}}$$
. h = h2 = 2.0 meters

h : Height of Fence = 3.0 meters

 $\delta'$  y: Yield Point of H-steel = 2,400  $^{\text{kg}}$ /cm² (Material; 5541)

Section Modulus of H-Steel



H x B (mm)	Section Modulus Z (cm ³ )	F _γ (kg)		
1) 150 x 75	88.8	1,065.		
2) 175 x 90	139.	1,668		
3) 200 x 100	184.	2,208		
4) 250 x 125	324.	3,888		
5) 200 x 200	472.	5,664		
6) 300 x 200	771.	9,252		
7) 250 x 250	867.	10,404		
8) 300 x 300	1360.	16,320.		

3) Comparison of "R" and "F  $_{\gamma}$  "

				$F_{oldsymbol{\gamma}}$							
			150x75 1.1	175x90 1.7	200×100 2.2	250x125 3.9	200x200 5.7	300x200 9.3	250x250 10.4	300x300 16.3	
	Ø 18	12.9	0	0	. 0	0	0	0	0	Х	
R	Ø 16	9.5	0 .	0	. 0	0	0	0	×	X	
	Ø 14	8.2	0	0	0	0	0	x	×	. x	
	Ø 12	5.6	0	0	0	0	х	X	x	X	

Note;

0 ; R 
$$>$$
  $F_{\gamma}$  x ; R  $<$   $F_{\nu}$ 

$$F_{\gamma} = \frac{6\gamma \cdot 2}{h_2}$$

1) 
$$F_{\gamma} = (2400) (88.8) = 1065.6 \text{ kg}$$

2) 
$$F_{\gamma} = (2400) (139) = 1668 \text{ kg}$$

3) 
$$F_{\gamma} = (2400) (184) = 2208 \text{ kg}$$

4) 
$$F_{\gamma} = (2400) (324) = 3888 \text{ kg}$$

5) 
$$F_{\gamma} = (2400) (472) = 5664 \text{ kg}$$

6) 
$$F_{\gamma} = (2400) (771) = 9252 \text{ kg}$$

7) 
$$F_{\gamma} = (2400) (867) = 10404 \text{ kg}$$

8) 
$$F_{\gamma} = (2400) (1360) = 16320 \text{ kg}$$

- 4) Computation of Absorption Energy
- A) in case of  $R > F_{\gamma}$

i) Absorption Energy by Wire Rope  $^{"}E_{R}^{"}$ 

$$E_{R} = \frac{L}{E_{W} \cdot A} (T^{2} - T_{o}^{2}) \qquad (1)$$

$$\left(\frac{a}{2} + \frac{T.L}{2E_W.A}\right) \left(\sqrt{1 - \frac{F_Y^2}{4T^2}}\right) = \frac{a}{2}$$
 (2)

 $T_0$ ; initial stress of wire-rope = 500 kg

From Equation (2)

Diameter	Ø 18	Ø 16	Ø 14	Ø 12
Т	6.3	4.7	2.9	2.25
From Equation	(1)			
E _R	1.8	1.3	.66	.49

Equation (2)

$$\left(\frac{a/2 + \frac{T.L}{2 E_W A}}{\sqrt{1 - \frac{F_Y^2}{4 T^2}}}\right) = \frac{a}{2}$$

Ø 18

$$\left\{\frac{300}{2} + \frac{7}{2} \frac{6000}{(1.0 \times 10^6)} (1.29)\right\}^2 (47^2 - 5664^2) = 90,0007^2$$

$$T^4 + 127197.04T^3 - 8020212.77T^2 - 1.035T - 3.34 \times 10^{16} = 0$$

$$f = 6320 \text{kg} = 6.3 \text{ ton}$$

$$\left\{\frac{300}{2} + \frac{T}{2} \frac{6000}{(1.0)} \times 10^{6}\right\} (1.01)^{2} (4T^{2} - 3888^{2}) = 90,000T^{2}$$

$$T^{4} + 105839.21T^{3} - 3778843.44T^{2} - 3.808 \times 10^{11}T - 9.59 \times 10^{15} = 0$$

$$f_{2} 4699.5kg = 4.7 \text{ ton}$$

Ø 14

$$\left\{ \frac{300}{2} + \frac{T}{2} \frac{6000}{(1.0)} \times 10^{6} \right\} (.78)^{2} (4T^{2} - 2208^{2}) = 90,000T^{2}$$

$$T^{4} + 77972.97T^{3} - 1218817.5T^{2} - 9.503 \times 10^{10}T - 1.85 \times 10^{15} = 0$$

$$f = 2980.5kg = 2.9 \text{ ton}$$

Ø 12

$$\left\{\frac{300}{2} + \frac{T}{2} \frac{6000}{(1.0)} \times 10^{6}\right\} (.59)^{2} (4T^{2} - 1668^{2}) = 90,000T^{2}$$

$$T^{4} + 58994.20T^{3} - 695551.26T^{2} - 4.10 \times 10^{10}T - 6.05 \times 10^{14} = 0$$

$$f = 2253.5kg = 2.25 \text{ ton}$$

ii) Absorption Energy by Supporting Post  $^{\rm u}{\rm E_p}^{\rm u}$ 

$$E_p = 0.54 \times h_2 \cdot F_{\gamma}$$
  
= 0.54 ×  $\frac{2}{3}$  × 300 ×  $F_{\gamma}$ 

				#				
Size of H-Steel	150 x 75	175 x 90	200 x 100	250 x 125	200 x 200	300 x 200	250 x 250	300 x 300
E _P	1.15	1.80	2.40	4.2	6.12	9,99	11.2	17.6

iii) Absorption Energy by Wire Mesh "E_N"

$$E_{N} = 2.5 \text{ t-m}$$
 (by the experiment)

iv) Total Absorption Energy by the Fence

$$E_T = E_R + E_P + E_N$$

					Ε _P			
		150x75	175x90	200x100	250x125	200x200	300x300	250x250
	Ø 18					10.42		
E _R	Ø 16			. *	8.00			
	Ø 14		: .	5.56	*			$\geq \leq$
	Ø 12		4.79					$\rightarrow$

$$E_N = 2.50 \text{ t.m}$$

- B) In case of R < F $_{\gamma}$ 
  - i) Absorption Energy by Wire Rope

$$E_R = 2 T_{\gamma} \cdot L.S.$$

$$S = \frac{T_{\gamma}}{E_{W} \cdot A} \qquad (Max S = 0.05)$$

Diameter	Ø 18	Ø 16	Ø 14	Ø 12
Š	0.009	0.012	0.015	0.020
E _R	12.96	17.28	21.60	28.80

ii) Absorption Energy by Supporting Post

$$E_{p} = \frac{R^{2} \cdot H_{2}^{3}}{3 E_{H} \cdot 1}$$

 $E_{\rm H}$ ; Young Modulus of H-Steel (= 2.1 x  $10^6$  kg/cm²)

I ; Inertia of H-Steel

Size of H-Steel	200. x 200	300 x 200	250 x 250	300 x 300
Inertia (1)	4720	11,300	10,800	20,400
Ep	.448	.187	.195	.103

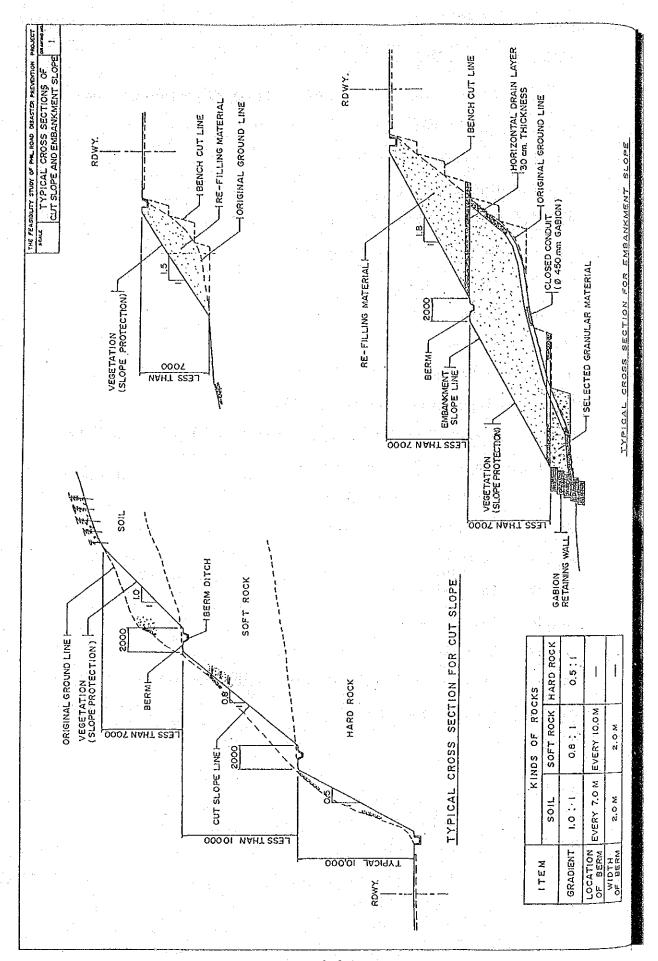
iii) Absorption Energy of Wire Mesh

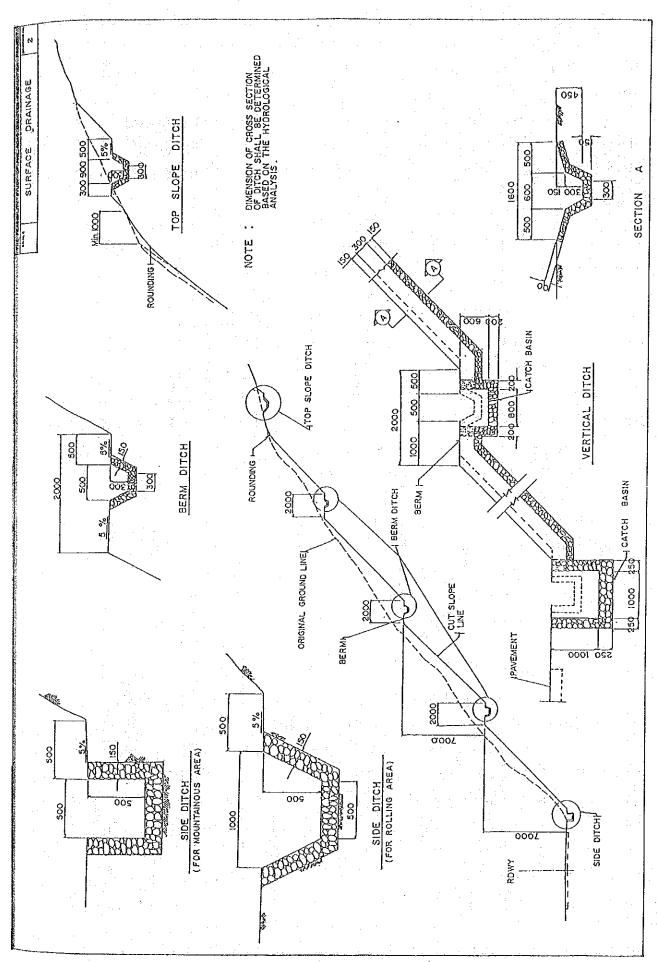
$$E_{N} = 2.50 \text{ t.m}$$

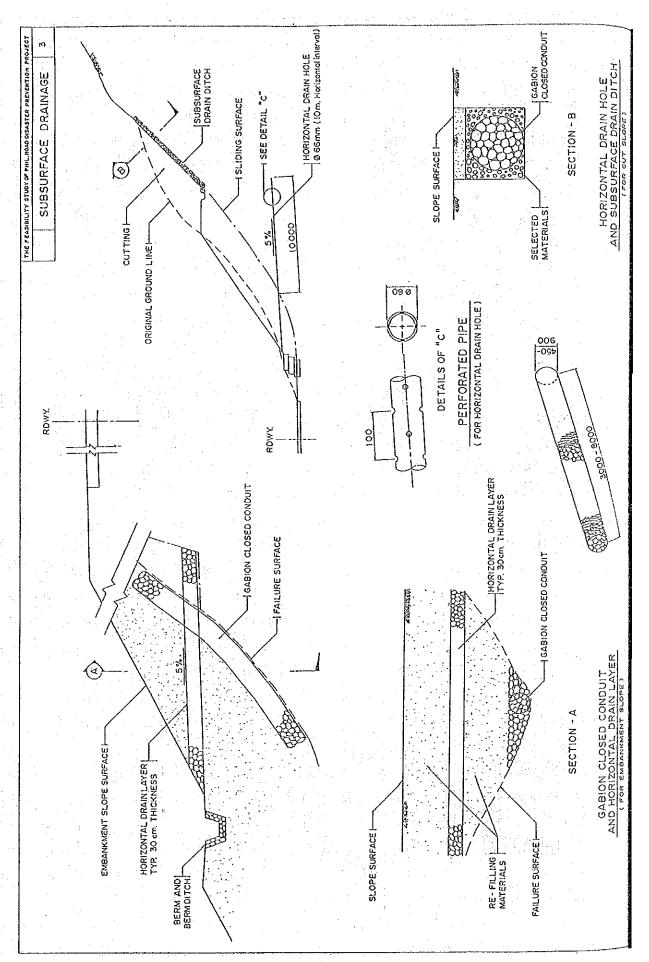
iv) Total Absorption Energy of the Fence

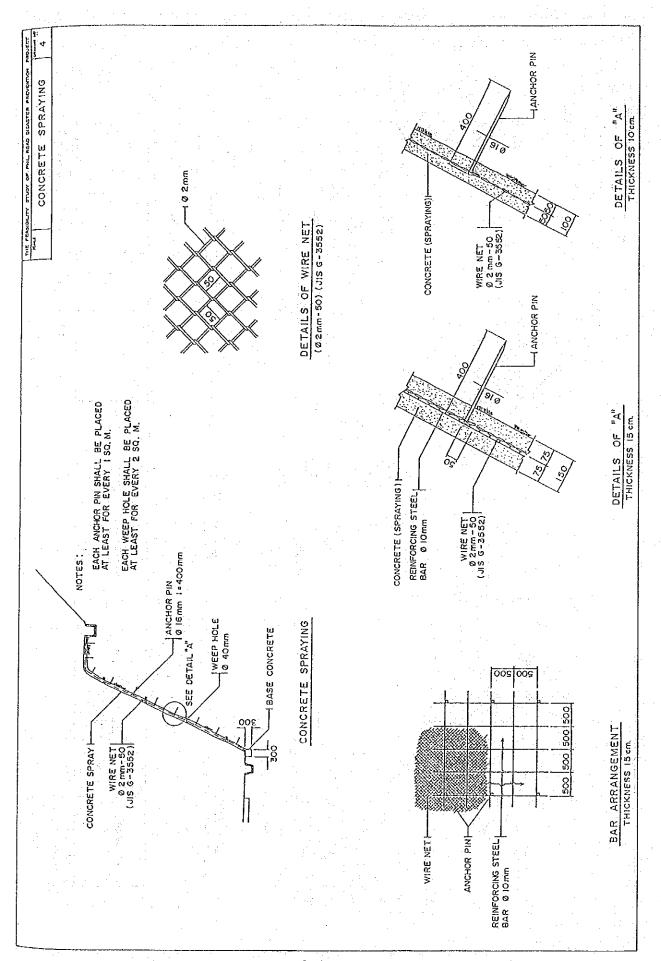
$$E_T = E_R + E_P + E_N$$

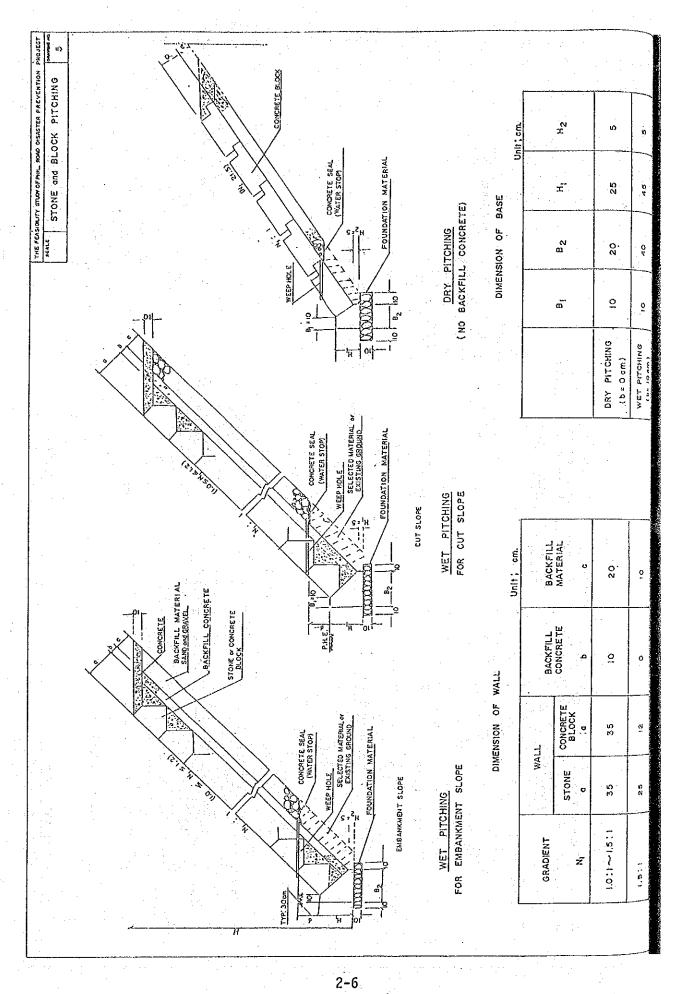
				· ·
		E _P		
	200 x 200	300 x 200	250 x 250	300 x 300
Ø 18				15.536
E _R Ø 16			19.075	
Ø 14		24.287		
Ø 12	31.75			

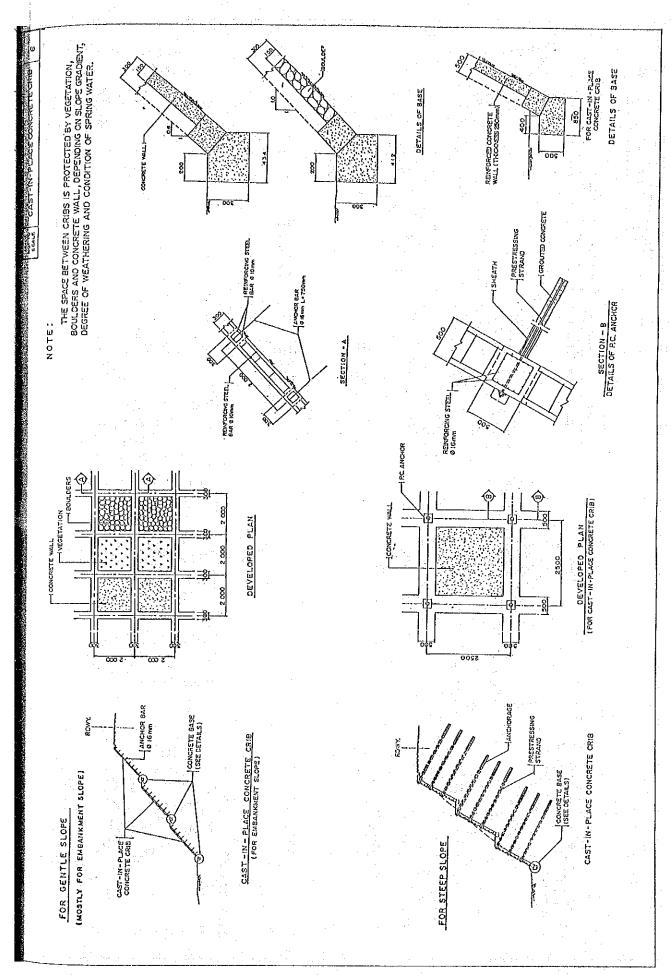

E_N = 2.5 t.m

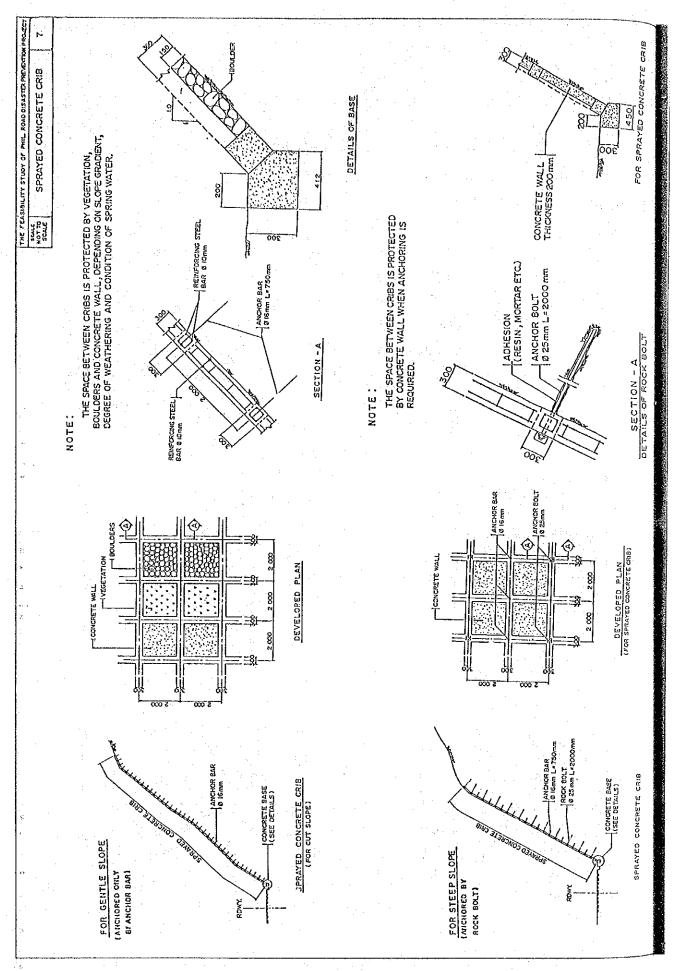

### C) Summary of Absorption Energy by the Fence


	150	175	200	250	200	300	250	300
	x 75	x 90	x 100	x 125	x 200	x 200	x 250	x 300
Ø 18			1		10.42			25.563
Ø 16			4 . 4.	8.00			15.975	N.
Ø 14			5.56			24.647		
Ø 12		4.79			31.75			

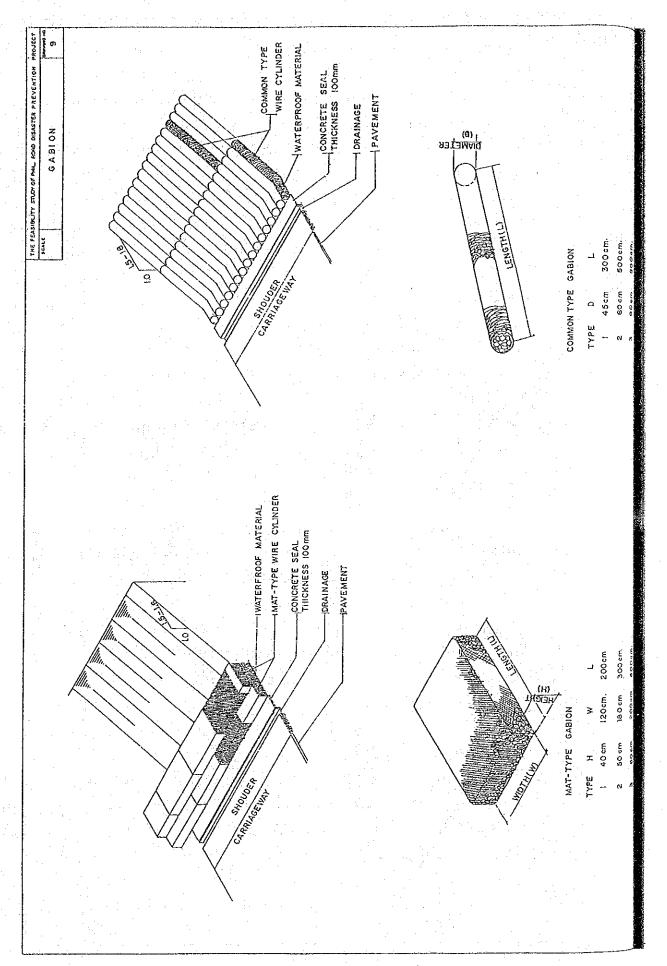

#### APPENDIX 2 STANDARD DRAWINGS

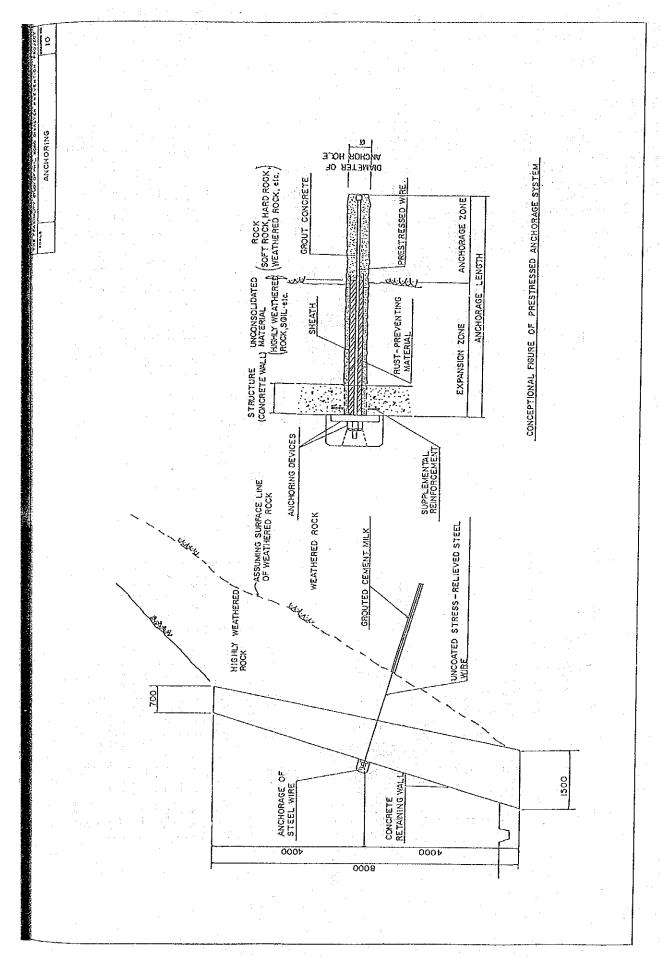

- No. 1. Typical Cross Sections of Cut Slope and Embankment Slope
- No. 2. Surface Drainage
- No. 3. Subsurface Drainage
- No. 4. Concrete Spraying
- No. 5. Stone and Block Pitching
- No. 6. Cast-in-Place Concrete Crib
- No. 7. Sprayed Concrete Crib
- No. 8. Wicker
- No. 9. Gabion
- No. 10. Anchoring
- No. 11. Stone Masonry Retaining Wall
- No. 12. Gravity Type Retaining Wall and Gabion Type Retaining Wall
- No. 13. Supported Type Retaining Wall
- No. 14. Catch Fill and Ditch
- No. 15. Catch Wall
- No. 16. Catch Fence
- No. 17. Catch Wire Net
- No. 18. Anchored Wire Net
- No. 19. Rock Shed
- No. 20. Stone Pitching Waterway and Foot Protection
- No. 21. Concrete Sabo Dam

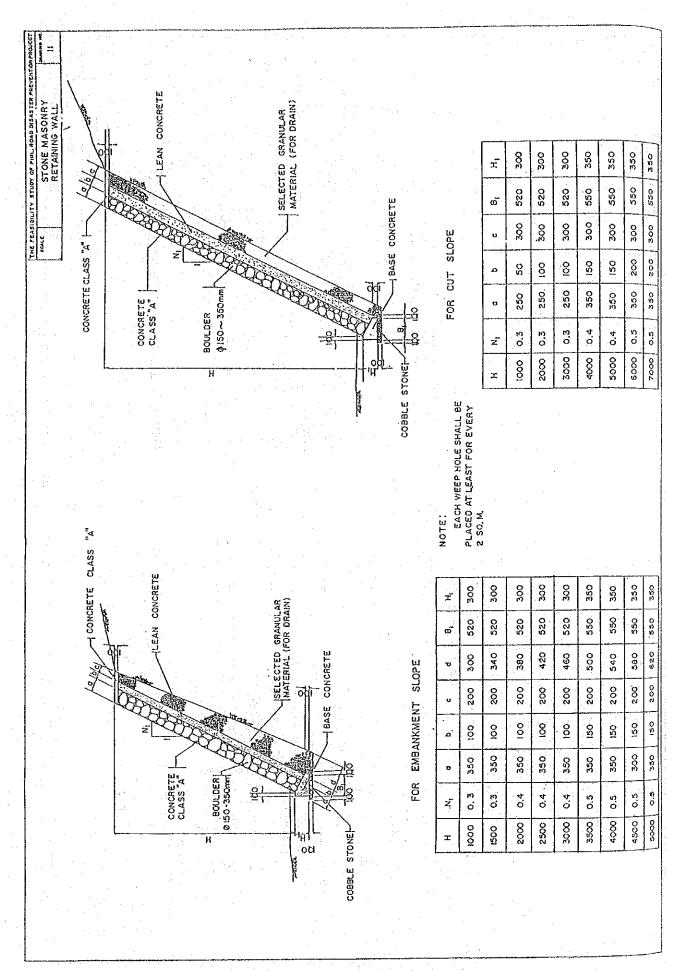


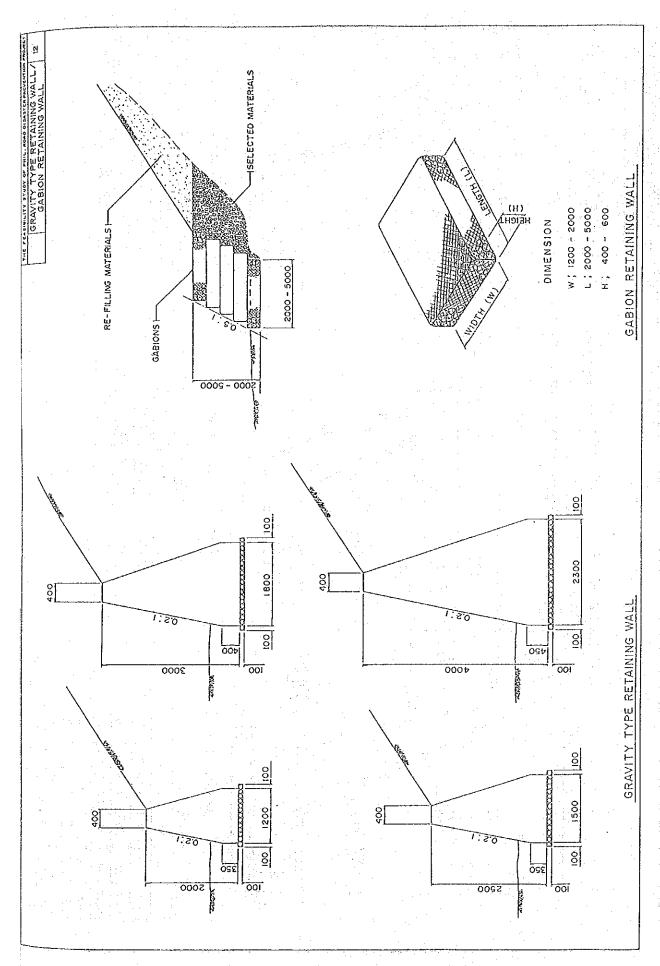



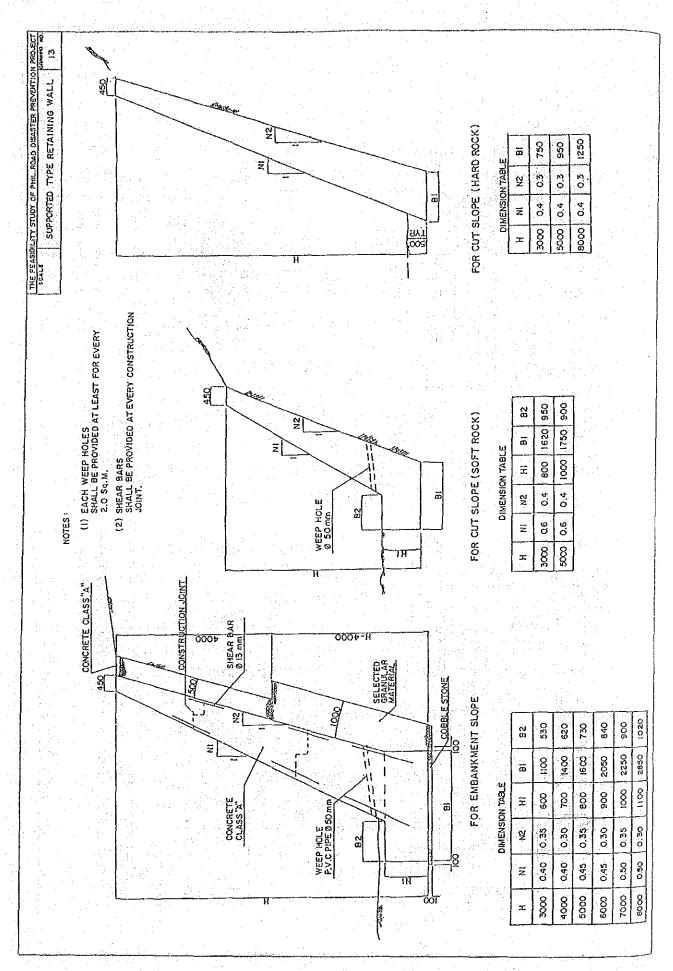


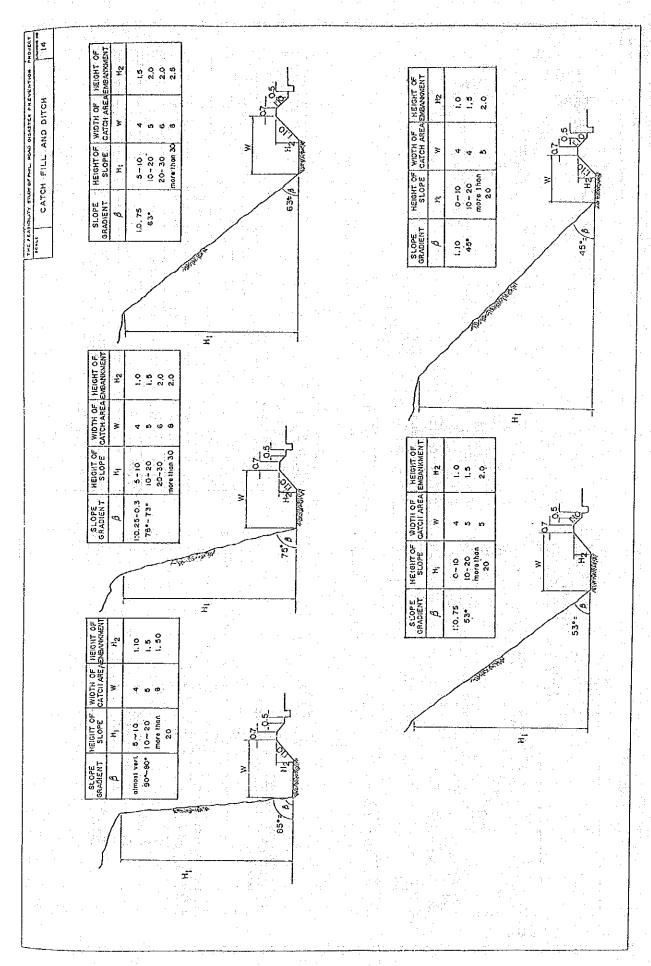



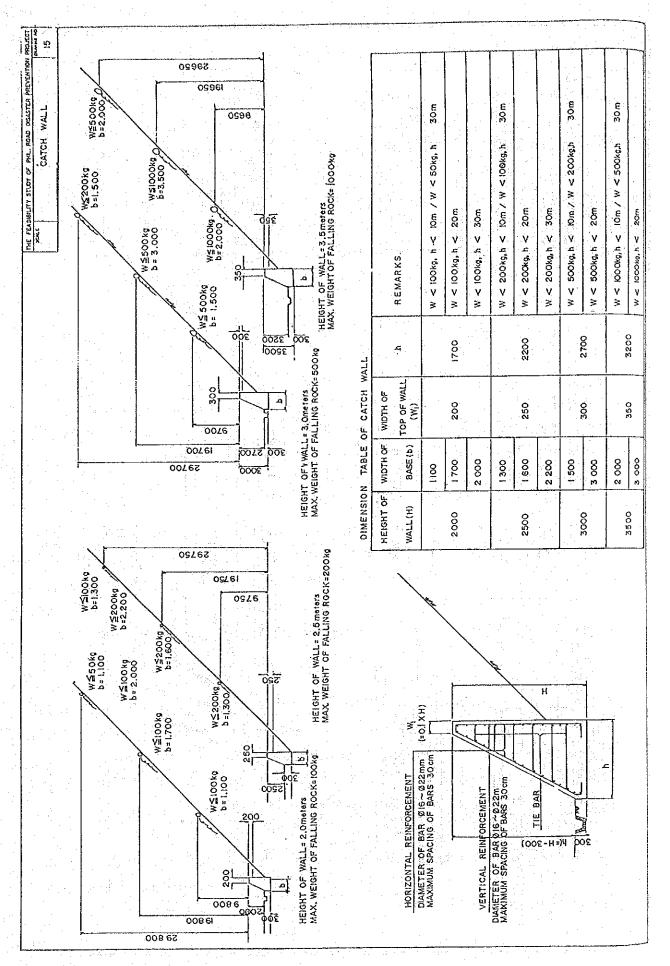



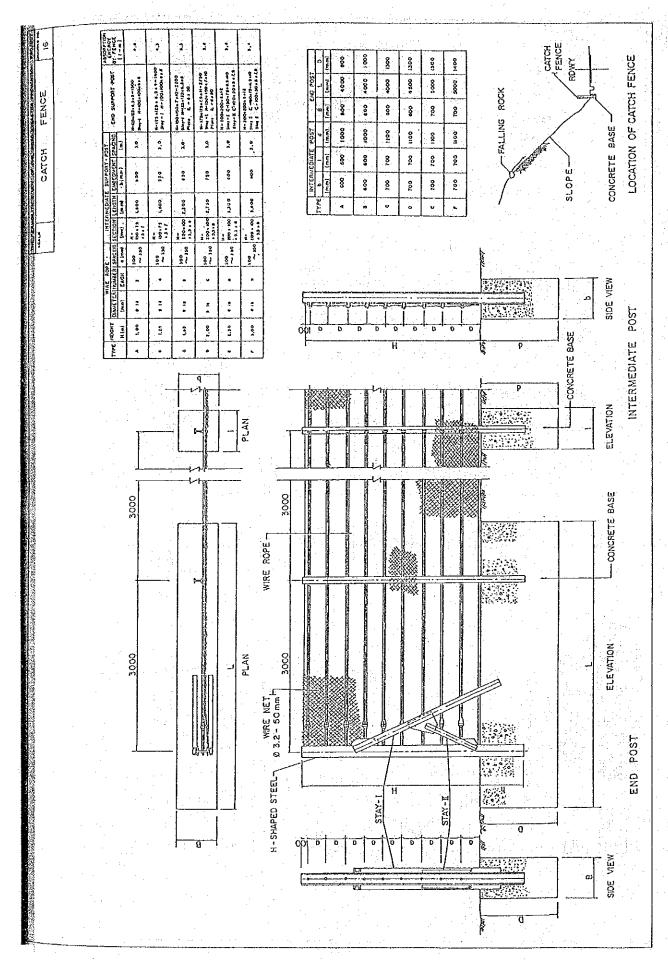



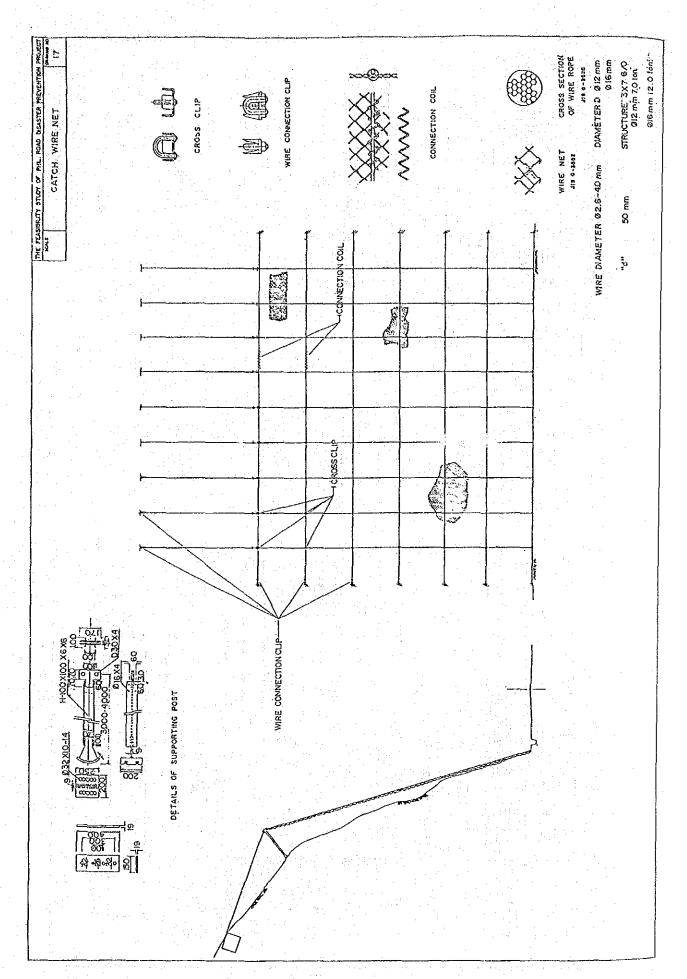



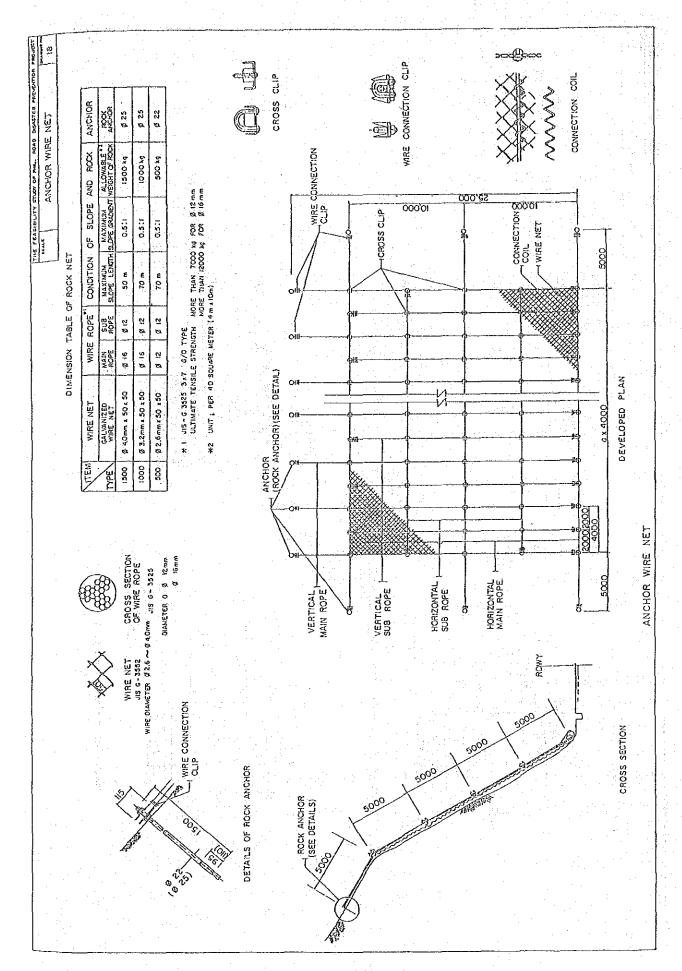



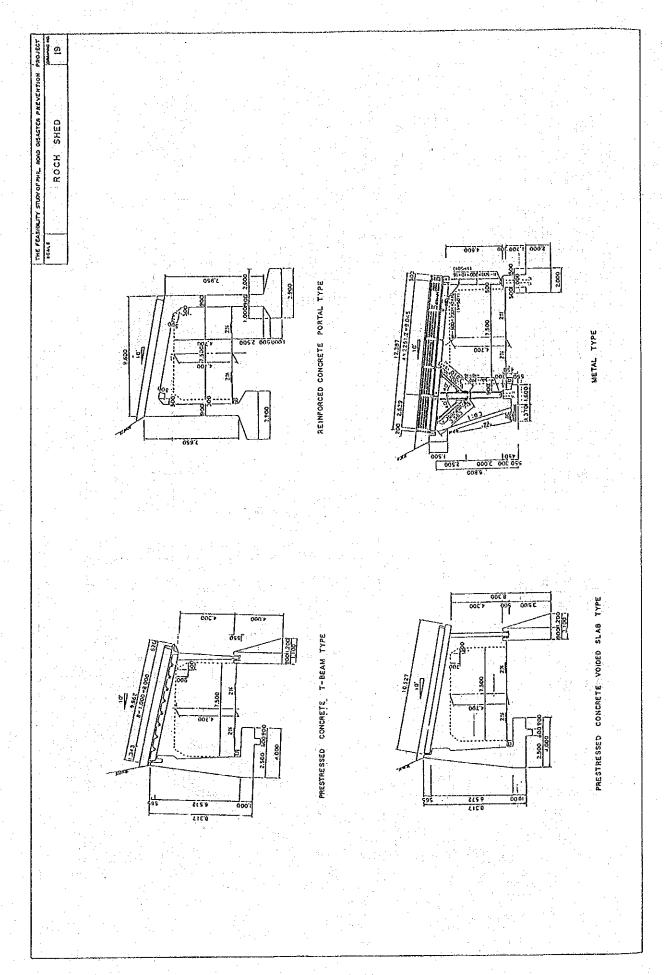



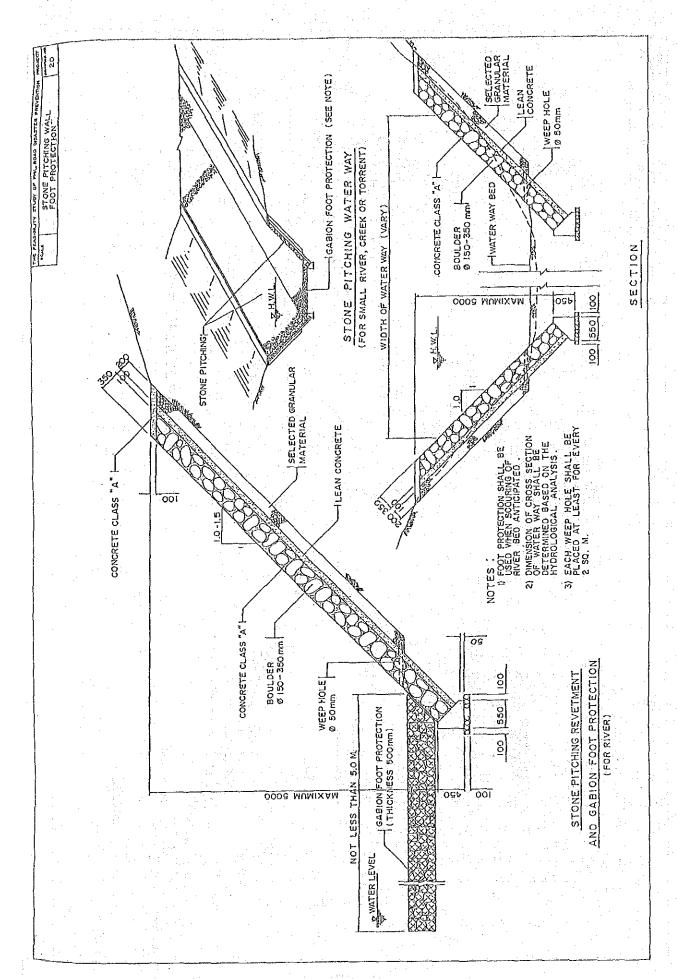



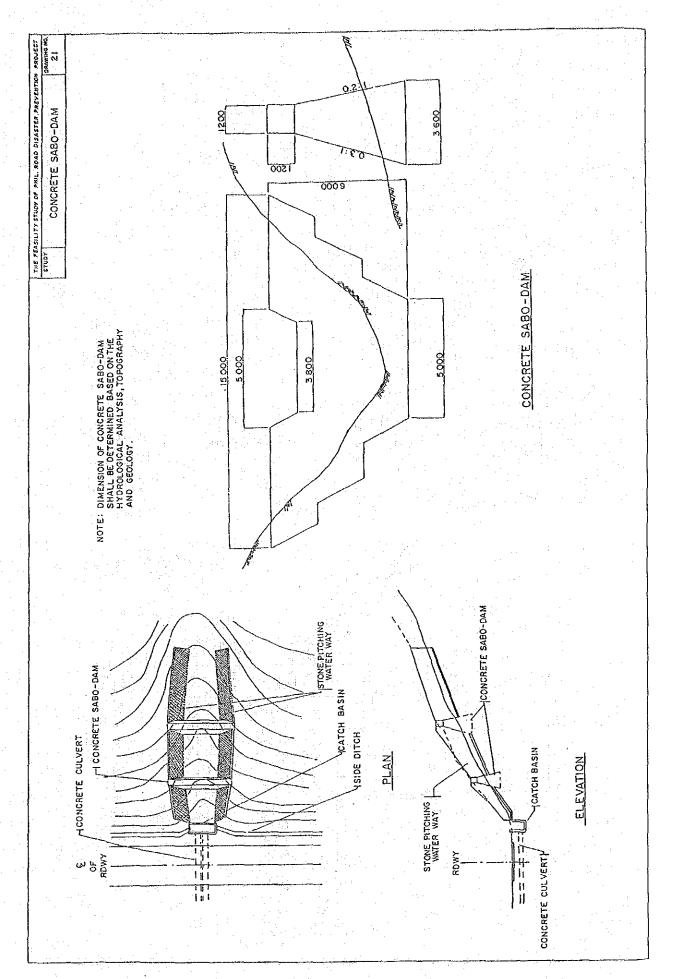



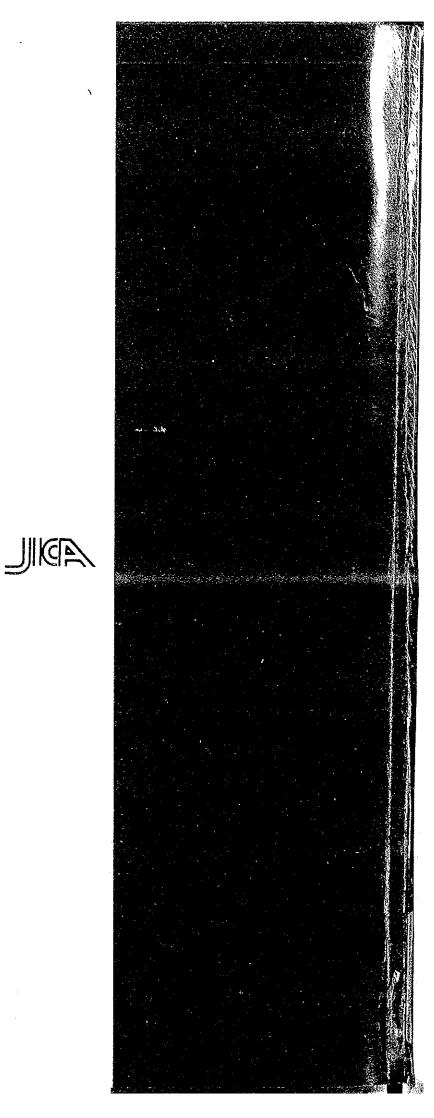












		!
		!

