APPENDICES FOR CHAPTER 11

11 - 1	Unit Cost Analysis 269
11 - 2	Construction Cost 275
11 - 3	Project Cost 278
11 - 4	Cash Flow 279

APPENDIX 11-1 Unit Cost Analysis

APPENDIX 11.1-1 UNIT PRICE ANALYSIS FOR CONCRETE SPRAYING (1)

NAME	NAME OF PROJECT	: THE	ILITY STUDY OF	FEASIBILITY STUDY OF PHILIPPINE ROAD	DISASTER P	DISASTER PREVENTION PROGECT	ROJECT		
ITEM NO. 303	NAM	NAME OF ITEM:				Quantity	; 100 sq. M.	M	
	CO	CONCRETE SPRAYING THICKNESS	15	cm.		Unit Price	; 440.00	440.00 P/sq. M.	
		Quantity/		Unit Rate/	CC	COMPONENTS		Financial	
DESCRIPTION		No. of days	Unit	Daily Rate	Foreign	Local	Тах	Cost	
1) Materials		Quantity	Unit	Unit Rate				÷.	
Concrete Class "A"	=	18	Cu. M.	1020.00	10,098	5,508	2,754	18,360	
P.V.C. Pipe		5.25	Li. M.	30.00	62	38	25	158	
Wire Net Ø2.0 ^{mm} -50 ^{mm} ×50 ^{mm}	0 ^{mm} ×50 ^{mm}	140	Sq. M.	32.00	3,181	238	761	4,480	invariant surveyofters
Anchor Bolt Ø 16 ^{mm} - 400 ^{mm}	n - 400 ^{mm}	30	ea.	10.00	213	36	51	300	****
Steel Reinforcement	ut ut	418	. Kg.	8.97	2,625	450	. 675	3,750	
Su	Sub-tota]				16,212	6,570	4,266	27,048	*****
 Equipment 	Ċ	No. of days	Unit	Daily Rate					وي من المراجع ا الم
Air Compressor 10.5 ^{m3}	0.5 ^{m²}	2.7	day	1960.00	3,546	1,058	688	5,292	
Hard Hammer 15 kg	сл D	0.5	day	72.00	24	7	ហ	36	
Dynamo-electric Machine 7.5 kvA	Machine	1.7	day	215.00	245	73	48	366	
Belt Conveyor 7 (m)	(m)	5.1	day	160.50	549	164	106	819	
				-					
				1					Ŧ

UNIT PRICE ANALYSIS FOR CONCRETE SPRAYING (2)

Financial Cost 2,970 440.00 P/sq. M. 100 sq. M. 386 Tax THE FEASIBILITY STUDY OF PHILIPPINE ROAD DISASTER PREVENTION PROJECT . in • • Unit Price Quantity 594 COMPONENTS Local Foreign 1,990 Unit Rate/ Daily Rate 256.00 CONCRETE SPRAYING THICKNESS 15 cm. hour Unit Quantity/ No. of days 11.6 NAME OF ITEM: •• NAME OF PROJECT Concrete Spraying Machine $0.8 \sim 1.2^m / hour$ DESCRIPTION 303 ITEM NO.

150

9,633

61 1,252 5,518 716 33 382 1,476 13,873 1,929 2,800 5,374 <u> 98</u> 6,452 2,000 2,000 24,664 Daily Rate 71.60 44.00 76.32 56.00 49.20 1000.00 Unit day day day day day day No. of days 3.4 5,0 20 50 8 2 Direct Cost Sub-total Assistant Foreman Water Pump Ø50^{mm} Technical Expert Unskilled Labor Skilled Labor Foreman Labor (c) (c)

716

382

1,476

2,000

2,800

440.00

440 6

(13%) Say

(31%)

(*26%)

Unit Cost Per Sq. M.

44,055

7,374

- 270 --

APPENDIX 11.1-2 UNIT PRICE ANALYSIS FOR SPRAYED CONCRETE CRIB (1)

402,876 23,040 748 38,589 85,680 19,551 98,000 6,880 546,695 1,584 Financial Cost 5,457 35,709 792.00 P/sq. M. 1021.2 m² 3,324 12,740 2,995 12,852 87,584 206 709 894 64,461 97 6,947 17,641 Tax THE FEASIBILITY STUDY OF PHILIPPINE ROAD DISASTER PREVENTION PROJECT Unit Price Quantity 48,345 2,346 1,376 25,704 81,025 19,600 4,608 165 4,630 317 1,091 27,157 COMPONENTS Local Foreign 290,070 27,012 47,124 13,881 486 4,610 378,087 65,660 15,437 1,061 3,657 90,911 Unit Rate/ Daily Rate 256:00 215.00 228.00 1020.00 72.00 44.00 160.50 8.97 19.00 1960.00 Cu. M. Li. M. hour Unit Kg. day day day day day ea. SPRAYED CONCRETE CRIB Quantity/ No. of days š 50 4;302 84 1,029 8 17 32 22 1,767 NAME OF ITEM: •• Dynamo-electric Machine 7.5 khA NAME OF PROJECT 10.5^{m³} Concrete Spraying Machine Anchor Bar Ø16^{mm} 1=750 Steel Reinforcement $0.8 \sim 1.2^{m}$ /hour Hard Hammer 15 kg Concrete Class "A" Belt Conveyor 7m Water Pump Ø50^{mm} DESCRIPTION Air Compressor Unit Type Form ITEM NO. 305 Equipment 1) Material 5

- 271 -

17,220 Financial Cost 39,200 30,000 97,396 3,816 7,160 779,801 763.60 792.00 764.00 28.00 792.00 P/sq. M. 1021.2 m² 105,225 Tax (13%) (Say) THE FEASIBILITY STUDY OF PHILIPPINE ROAD DISASTER PREVENTION PROJECT • • ••• Unit Price 175,578 39,200 17,220 64,396 Quantity 3,816 7,160 COMPONENTS Local (23%) UNIT PRICE ANALYSIS FOR SPRAYED CONCRETE CRIB (2) 30,000 30,000 498,998 Foreign (64%) Unit Rate/ Daily Rate 1000.00 76.32 91.60 56.00 49,20 34.00 Sq. M. Unit day day day day day SPRAYED CONCRETE CRIB Quantity/ No. of days 0.83 NAME OF ITEM: 100 700 350 30 50 •• NAME OF PROJECT Direct Cost Unit Cost Per Sq. M. Assistant Foreman Technical Expert DESCRIPTION Unskilled Labor Skilled Labor ITEM NO. 305 Foreman 4) Vegetation 3) Labor

- 27**2** -

APPENDIX 11.1-3 UNIT PRICE ANALYSIS FOR ANCHOR WIRE NET (1)

95,910 11,979 5,382 1,026 1,632 6,264 8,296 4,551 135,040 Financial Cost 290.00 P/sq. M. 640 sq. M. 22,565 I6,305 728 164 1,002 1,917 861 261 1,327 Tax THE FEASIBILITY STUDY OF PHILIPPINE ROAD DISASTER PREVENTION PROJECT • Unit Price 11,509 16,205 646 546 123 196 752 996 Quantity 1,437 COMPONENTS Local Foreign 4,510 5;973 96,270 68,096 8,625 3,875 1,175 739 3,277 Unit Rate/ Daily Rate Unit Rate 139.00 33.00 23.00 61.50 27.00 188.00 57.00 34.00 Sq. M. Li. Μ. Li. M. Unit Unit ea. ea. ea. еа 0 ea. Quantity/ No. of days ANCHOR WIRE NET Quantity NAME OF ITEM: 690 363 234 74 13 48 232 17 NAME OF PROJECT : Wire Net (04.0^{mm}-50^{mm}x50^{mm}) (JIS 3552) Wire Rope Ø12 (JIS 3525) Wire Rope Ø16 (JIS 3525) Wire Connection Clip DESCRIPTION Cross Clip (Ø16) Cross Clip (Ø12) Connection Coil Rock Anchor ITEM NO. 402 1) Materials

UNIT PRICE ANALYSIS FOR ANCHOR WIRE NET (2)

Financial Cost 20,412 3,120 23,532 185,603 763 2,148 11,200 8,000 4,920 27,031 290.00 P/sq. M. 290.00 290.00 640 sq. M. 406 25,625 2,654 3,060 (13%) Tax Say THE FEASIBILITY STUDY OF PHILIPPINE ROAD DISASTER PREVENTION PROJECT • • • Unit Price 39,942 4,082 624 4,706 763 2,148 11,200 4,320 19,031 Quantity COMPONENTS (22%) Local Foreign 13,676 15,766 120,036 8,000 2,090 8,000 (82%) Daily/hourly rate Unit Rate/ Daily Rate Daily Rate 1260.00 300.005 76.32 71.60 49.20 56.00 1000.00 Unit Unit hour Unit day day day đay day day Quantity/ No. of days No. of days No. of days ANCHOR WIRE NET NAME OF ITEM: 16.2 10.4 200 100 10 30 ω ••• NAME OF PROJECT Direct Cost Unit Cost Per Sq. M. Truck Crane 20-22 tone Winch 1.0 ton 10 PS Assistant Foreman Technical Expert DESCRIPTION Unskilled Labor Skilled Labor ITEM NO. 402 Foreman Equipment Labor ର ଳ

- 274 -

Construction Cost APPENDIX 11-2 - October 1983 Price -APPENDIX 11.2-1 CONSTRUCTION COST

Description	110:1	Osantitv	Conctwiction Coct		Component	
> - - - - - - - - - - - - - -	2 100	לתמוור ו הא	1	Foreign	Local	Тах
Earth Work			27,439,670	17,016,324	6,986,573	3,436,77
. Removal	Cu.M.	11,500	1,654,350	986,108	431,089	237,153
. Re-cutting	Cu.M.	43,780	3,633,380	2,187,517		
. Excavation	Cu.M.	22,460	1,190,380	726,132		
Forming of allows	Cu M	43,210	4,148,160	N C		`
. Forming of Stope	sq.M.	130,6/0	16,813,400			N.
Drainage Work			17,130,433	9,196,293	5,692,367	2,241,77
. Surface drain	L1.M.	10,138	15,506,410	8,347,798	5,142,779	2,015,833
. Subsurface drain	·~·	I		1	1	1
. Pipe culvert . Box culvert	Li.M.	92	172,046 1,451,977	93,467	55,916 493,672	22,663 203,277
Slope Protection Work	·		76,622,364	45,889,351	20,772,106	9,960,907
. Vegetation	Sq.M.	\sim	2,294,660	1,239,116	757,238	
Concrete spraying Spraved concrete Crib	Sq.w.	68,880 35 070	28,713,600 32 918 040	16,079,616	8,901,216	
. Cast-in-place concrete crib	Sq. M	14,080	9,011,200	5,586,944	2,252,800	1,171,456
. Stone pitching	L1.M.	1,810	3,584,864	1,916,129	1,289,/03	
Catch Work			1,986,500	1,291,225	437,030	258,24
. Catch fence	Li.M.	I	ŧ	1		. 1
. Anchor wire net	Sq . M.	6,850	I,986,500	1,291,225	437,030	258,24
Structural Work			4,931,860	2,836,407	1,509,929	585,52
	·	743	1,118,202	603,828	380,1	134,18
. Gravity type retaining wall	Li.M.	309	2,276,904	1,252,297	751,	273,229
. Supported type retaining wall		56	906,754	507,782	290,1	108,88
. Gabion retaining wall		006	630,000	472,500	88	69,30
. Ancroid	. M.	 I	1		ı	
River and Torrent Work			13,307,553	8,321,653	3,429,331	I,556,57
Other Work			1,695,380	945,392	497,560	252,42
TOTAL			143,113,760	85,496,644	39,324,896	18,292,220
t Dhurical continuous to a	Lob. Long to	-		(60 7%)	127 541	(12 8%)

APPENDIX 11.2-2 CONSTRUCTION COST - October 1983 Price

1

2,867,185 1,781 1,351,509 293,228 11,076 1,376,294 290,340 20,660 27,641 399,322 54,300 9.735.767 (13.2%) 416,337 1,029,184 731,016 417,664 4,575,513 39,913 1,655,813 154,947 154,947 31,907 8,954 53.515 2,626,108 560,917 58,994 Тах 1 4,398,719 3,180 2,867,280 610,027 Unit Pesos 3,448,978 588,798 27,762 1,056,8572,454,208 1,293,336 85,905 56,816 73,709 508,228 54,300 803,200 12,210 7,953,173 73,967 4,065,538 5,693,506 262,218 167,153 262,218 360,206 19,173,876 327.025 Component (26.0%) Local 7,225,546 12,400,530 5,595,7431,104,039 44,586 1,729,402 4,433,408 3,598,848 2,722,650 343,900 165,120 94,694 128,990 60,236 6,744,368 44,906,323 21,318,088 1,881,224 127,630 774,735 774,735 1,991,936 571.960 3,555,712 265,478 Foreign (60.8%) Construction Cost 10,396,2301,986,06583,42411,469,120 3,202,596 7,916,800 5,623,200 3,212,800 172,170 230,340 3,630,200 19,666,434 12,720 452,500 81,400 33,846,774 12,465,719 1,191,900 4,976,835 491,625 052,500 73,815,966 279,000 20,200,838 245,442 1,191,900 Quantity 94,194 19,020 6,190 5,020 261 7,933 2,305 27 2,200 174,062 240 119,470 23,070 4,110 165 45 30 5,186 250 ı Physical contingency is not included. Unit SCU.M. SCU.M. SCU.M. LULL. Li.M. Sq.M. Li.M. Cu.M. Lj.M. Supported type retaining wall Cast-in-place concrete crib Gravity type retaining wall Mahaplag-Sogod Section Sprayed concrete crib Gabion retaining wall c Concrete spraying 0 slope Subsurface drain River and Torrent Work 4 Protection Work Anchor wire net • • • • Stone pitching Surface drain + 0 Stone masonry ч. Pipe culvert Box culvert Catch fence a Forming of Re-cutting Excavation Re-filling Vegetation Anchoring •,--Structural Work Removal Drainage Work ዾ ο Work Earth Work ¥ Work Ś a Slope I р. Catch 0ther Ω • . . .

APPENDIX '11.2-3 CONSTRUCTION COST - October 1983 Price -

		-																:									
		Tax	2,265,906	144,441	1,633,108	83,981	397,524	108,904	45,987 51,840	,01		4,396,249	5,304 946,036	်က်	5	1 401 627	- -	1,334,203	831,389	10	101	318,666	287,352	44,770	1,033,868	.082	1~
Unit Pesos	Component	Local	3,251,300	248,570	1,988,826	174,960	830,807	249,316	117,875		1	8,464,534	13,464	5,300,856	894,282	2 371 985		2,257,882	1,612,996	57,668	292,759		125,44U	61,050	2.156.762	.167.943	23.8%)
		Foreign	10,187,108	600,439		440,899	2,084,369	424,554	189,888 190,080	44,586	1	20,956,517	22,032	14,750,208	2,109,045	7.008.138		537, 173 6,671,015	4,558,527	91,590	487,933	1,48/,108	0/2,000 1,819,896	301,180	4,742,620	644	(63.0%)
	Construction Cost	S)	15,704,314	993,450	10,655,500 42,824	669	3,312,700	782,774	353,750 345,600	ີຕົ		33,817,300	40,8007,277,200	,047,	,452, -	10.781.750	0,010	10,263,100	7,002,912	169,611		Z,035,55I	2,394,600	407.,000	7,933,250	76,429,300	
	Ouantitu	לממורורל		5,250	48,050	7,290	27,760		985 288	27			1,200 18,630	26,130	2,580		300	35,390		72	255		1,140				-pa
	+ יר 	-			Cu.M.		Sq.M.		Li. M.W.	Li.M.			Sq M M PS	•	ст. Ж.			Sq.M.					Li.M.				not included
c) Kennon Road	د ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰۰۰ ۲۰		. Earth Work	. Removal	. Re-cutting . Excavation		Forming of slope	. Drainage Work	 Surface drain Subsurface drain 	Pipe culvert Box culvert		. Stope Protection Work	Vegetation Concrete spraving		. tast-in-place concrete crip	. Catch Work	Catrin fence	. Anchor wire net	. Structural Work	Stone masonry	Gravity type retaining wall Supported type wetaining wall	Sabion retaining wall	. Anchoring	. River and Torrent Work	. Other Work	TOTAL	* Physical contingency is
		d							· ·																t	J	

-- 277 ---

APPENDIX 11.3 PROJECT COST - October 1983 Price -

•

						un		P x Million		
/	Dalton Pass Section	s Section	Mahaplag - 3	Mahaplag - Sogod Section	Kenno	Kennon Road		Tota	1	
	Construction	Component (%)	Construction	Component (%)	Construction	Component	(%)	Construction (%)	Component	t (%)
WORK ITEM	Financial Cost	⊢ u.	Financial Cost	F L T	Financial Cost	F -	T C C	Financial Cost		
100 'Earth Work	27.44	62.0 25.5 12.5	33.85	63.0 23.5 13.5	15.71	64.9 20.7 14.4	4	77 00		
200 Drainage Work	17.13	53.7 33.2 13.1	12.49	54.1 32.6 13.3	_,,	54.2 31.9 13.9	0	30 38		
300 Slope Protection Work	76.62	59.9 27.1 13.0	20.20	58.8 28.2 13.0	33.82	62.0 25.0 13.0	3.0	130.64		
400 Catch Work	1.99	65.0 22.0 13.0	1.19	65.0 22.0 13.0		65.0 22.0 13.0	0.5	13 96		
500 Structure Work	4.93	57.5 30.6 11.9	4.98	71.4 17.3 11.3		65.1 23.0 11.9	6	16.91		
600 Rivèr or Torrent Work	13.31	62.5 25.8 11.7	0.08	74.0 15.0 11.0		74.0 15.0 11.0	C	13 80		
700 Other Work	1.69	55.8 29.3 14.9	1.05	54.3 31.1 14.6		59.8 27.2 13.0	3.0	10.67	<u>.</u> .	
Total	143.11	59.7 27.5 12.8	73.82	60.8 26.0 13.2	76.43	63.0 23.8 13.2		293,36	60.8 26.2	13.0
Physical Contingency (10%)	14.31	59.7 27.5 12.8	7.38	60.8 25.0 13.2	7 64	63 0 23 8 13 2	- C	20 22		
Total Construction Cost	157.42	59.7 27.5 12.8	81.20	50.8 26.0 13.2	84.07	63 0 23 8 13 2			0.01 0.02 0.00	
Detailed Engineering (7%)	11.02	65.0 30.0 5.0	5.68	0.08	5.88	65.0 30.0	· .		50 0 00 0 00 0	2 C
Construction Supervision (7%)	11.02	65.0 30.0 5.0	5.68		5,88		5.0		65.0 30.0	
Total Cost	179.46	60.3 27.8 11.9	92,56	61 3 26 5 12 2	95 83	K2 2 24 6 12 2				

- 278 -

APPENDIX 11.4 CASH FLOW (1)

Price Level : As of Oct. 1983 Exchange Rate : **P14.00** = US\$ 1.00 = ¥ 243.3

_								•			:						
	1990			ſ	(20%)	20.21	13.47	33.68	10.60	6.77	17.37	11.35	6.64	17.99	42.17	26.87	69.04
	1989				(40%)	40.47	26.92	67.39	21.23	13.52	34.75	22.73	13.25	35.98	84.43	53.69	138.12
Million P	1988	-			(35%)	35.40	23.56	58.96	18.57	11.84	30.41	19.88	11.60	31.48	73.85	46.00	120.85
	1987				(2%)	5.06	3.35	8.41	2.66	1.69	4.35	2.84	1.66	4.50	10.56	6.70	17.26
Unit	1986		(%06)			6.44	3.48	9.92	3.32	1.79	5.11	3.44	1.85	5.29	13.20	7.12	20.32
	1985		(10%)			0.72	0.38	1.10	0.37	0.20	0.57	0.38	0.21	0.59	1.47	0.79	2.26
	1984																
	Year		Бu		vision and Construction	Foreign	Local/Tax	Total	Foreign	Loca1/Tax	Total	Foreign	Local/Tax	Tota1	Foreign	Local/Tax	Tota1
	Description		. Detailed Engineering		. Construction Supervision		Dalton Pass	260 61 011	oe [acdaM	Nanapiay - Sogod	Section		Kennon Road			TOTAL	

APPENDIX 11.4 CASH FLOW (2) (PRICES ESCALATED)

Unit : Million P

		1204	C OYI	TARD	198/	1988 1	1969	0221
. Detailed Engineering			(10%)	(%06)				
								Π
. Construction Supervi	Construction Supervision and Construction	· •			(2%)	(35%)	(40%)	(20%)
	Foreign		0.83	7.85	6.54	48.51	58.77	31.12
Dalton Pass	Local/Tax		0.51	5.15	5.30	39.86	48.76	26.08
Section	Total		1.34	13.00	11.84	88.37	107.53	57.20
Mata - 1 and Canada	Foreign		0.43	4.05	3.44	25.44	30.83	16.33
Manapiag-soyou Section	Local/Tax	-	0.27	2.64	2.67	20.04	24.49	13.10
- - - - -	Total		0.70	6.69	6.11	45.48	55.32	29.42
	Foreign		0.44	4.19	3.71	27.23	33.01	17.47
Kennon Road	Local/Tax		0.28	2.73	2.62	19.64	25,80	12.86
	Total		0.72	6.92	6.33	46.87	57.01	30.33
	Foreign		1.70	16.09	13.69	101.18	122 61	64.92
TOTAL	Local/Tax		1.06	10.52	10.59	79.54	97.25	52.04
•	Total		2.76	26.61	24.28	180.72	219.85	116.96
Troolstion Date	Foreign	7.5%	7.0%	6.0%	6.0%	6.0%	6.0%	6.0%
באנשומרוטו אמים	Local	20.0%	12.0%	10.0%	7.0%	7.0%	7.0%	7.0%

* ; Data Source NEDA Exchange rate P14.00 = US\$ 1.00 = ¥ 234.3

APPENDICES FOR CHAPTER 12

12 - 1	Basic Vehicle Operating Cost	281
12 - 2	No. of Tropical Cyclons Passed Through or Approached to Respective Zone	291
12 - 3	Classifications of Typhoon Scale	293
12 - 4	Estimate of Restoration Cost	296
12 - 5	Contingent Fund	299
12 - 6	Calamity Fund	300
12 - 7	Estimated Expenditure for Repair/Restoration of the Subject Section	301
12 - 8	Interview Survey Results	302

Appendix 12-1 Basic Vehicle Operating Cost (BVOC)

12.1.1 General

The Basic Vehicle Operating Costs (BVOC) are expressed in November 1983 price levels. The manual on Basic Traffic Cost procedures, 1/ prepared by MPWH was the main reference for the study with some minor modifications to be consistent with the findings of the Study Team.

12.1.2 Representative Vehicles

The following representative vehicles were selected in this study:

Appendix	12.1.1 PRICE OF REPRESENTATIVE VEH NOVEMBER 1983	HICLES
	Weighted Retail IT	Price (P) ET

	IT	ЕТ
	<u> </u>	
1. Light Cars	108214	82242
2. Jeepney - Ford Fiera	94900	80665
3. Large Bus	423783	379468
4. Truck - 2 Axle	364494	312565

12.1.3 Basic Running Costs

Running costs are defined as part of vehicle operating costs which vary in proportion to the operating distance run by vehicles and comprise the following component:

a) Fuel Cost

Fuel cost was estimated by multiplying fuel consumption (liter/km.) for each representative vehicle by fuel price (pesos/liter).

APPENDIX 12.1.2 PRICE OF FUEL AND OIL AS OF NOVEMBER 1983

· · · ·				Unit:	Pesos/	Liter
	Including Tax	Custom Duty	Specific Tax	Energy Development Impost		Excluding Tax
Fuel				· . 		
Premium Gasoline	6.47	0.66	1.5425	0.625	-	3.6425
Regular Gasoline	6.27	0.66	1.5025	0.681	-	3.4265
Diesel Fuel	4.43	0.66	0.1900	-	.	3.5800
· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·	ramin af new cort Enterthe	

¹/Basic Road Traffic Cost, Highway Planning Manual, Vol. 4 (May 1982 prices updated to November 1983).

				Unit	Pesos	/Liter
•	Including Tax	Custom Duty	Specific Tax	Energy Development Import		Excluding Tax
Engine Oil Petron Motor						
011 10 Caltex SAE 40	19.90	0.66	0.80	0.653	0.1183	17.6687
(RPM Delo) Mobil HD90	19.50	0.66	0.80	0.653	0.1183	17.2687
(Super)	22.65	0.66	0.80	0.653	0.1183	20.4187

Source: Board of Energy

Appendix 12.1.3 FUEL AND OIL CONSUMPTION

		Consu	nption
Vehicle Type	Fuel Type	Fuel (liters/km)	0i1 (liters/1000 kms)
 Light Car Jeepney 	Premium Gasoline	0.10	0.70
Fiera Type	Diesel	0.09	0.90
3. Large Bus 4. Truck-	Diesel	0.24	3.00
2 Axle	Diesel	0.28	3.50

b) Tire Cost

Tire cost was estimated by dividing the price of a set of tires by tire life expressed in kilometers. For commercial vehicles the following assumptions were made:

- The tire life will be extended by 50% of the original life at 85% use.
- 2) The cost of recapping will be 30% of the brand new price.
- Recapping will be done once per original tire on average for commercial vehicles.

-		No. of	Tire	Aver Tire Set	age Price Tir	e Life	¹ ∕(000 kms.
		Tires	Size	IT	ET	New	Recapped
1. 2.	Car Jeepney-	4	5.60-13,4, PRT	1850.33	1682.12	35	· · · -
	Ford Fiera	4	6.50-13,4 PR	1905.44	1732.22	30	40
3 1.	Large Bus Truck-	6	10.00-20,14 PR	19711.26	17919.33	60	81
	2 Axle	6	10.00-20,14 PR	19711.26	17919.33	60	81

Appendix 12.1.4 PRICES AND LIFE OF TIRES November 1983

c) Maintenance and Repair Cost

The maintenance and repair cost per kilometer are calculated as follows:

Cost of Parts: Percent of retail price reduced by cost of tire set divided by the annual operating distance.

Cost of Labor: Retail labor rate times annual number of labor hours divided by the annual operating distance.

	Appendix 12	2.1.5 MAINTENANCE AND	REPAIR COSTS		
Vehicle	Spare Parts	No. of Labor	Unit Cos Labor		
Туре	Requirement (%)	Hours Required/Year	IT	ET	
Car	2.5	60	0.08	0.08	
Jeepney	10.0	200	0.07	0.06	
Large Bus Heavy Truck	8.0	300	0.07	0.07	
2-Axle	7.0	300	0.12	0.11	

d) Distance-Related Depreciation Cost

The distance related depreciation costs per kilometer are calculated as the distance related share in percent of the retail vehicle price, reduced by the cost of the tire set in use, divided by the life time kilometrage. The split of the capital costs into distance and time related cost is shown in Appendix 12.1.6.

	Append	lix	12.1.6 OPER	ATING CHARAC	TERISTICS	
· .	Vehic	le_Type	Annual Operating	Annual	Split R Depreciat	ion Costs
Vehicle Type	Years	1000 Kms.	Distance (1000 kms.)	Operating Hours	Distance Related (%)	Time- Related (%)
Light Car Jeepney-	10	150	15	2,000	50	50
Fiera Type	5	300	60	3,000	85	15
Large Bus Truck-	8	640	80	3,000	85	15
2-Ax1e	12	600	50	3,000	65	35

1/ Labor rate (P/hour) = P19.62 Minimum Wage (P/day) = P41.85

- 283 --

			IN PESOS	, NOVEMBE	R 1983	tan' ila		
	<u>Ligh</u> IT	<u>t Car</u> ET	<u>Jeëpney Fi</u> IT	<u>era Type</u> ET	<u>Large</u> 1T	<u>Bus</u> ET	Heavy Truck IT	2-Axle ET
Fuel Oil Tires	0.65 0.01 0.05	0,36 0.01 0.04	0.40 0.02 0.06	0.32 0.02 0.05	1.06 0.06 0.31	0.86 0.05 0.28	1.24 0.07 0.31	1.00 0.06 0.28
Maintena	nce:	12					•••	
Parts Labor	0.18 0.08	0.13 0.08	0.16 0.07	0.13 0.07	0.41 0.08	0.36 0.07	0.48	0.41 0.12
Depre- ciation	0.35	0.27	0.26	0.22	0.55	0.48	0.37	0.32
Total	1.32	0.90	0.97	0.81	2.47	2.10	2.59	2.19

Appendix 12.1.7 BASIC RUNNING COST/VEHICLE-KILOMETER IN PESOS, NOVEMBER 1983

12.1.4 Basic Fixed Costs

Defined as the part of vehicle operating costs which vary directly with operating time (running and waiting time), this cost component is composed of the following cost items:

a) Time-Related Depreciation Costs

The time dependent depreciation costs are calculated as the time dependent share in percent of the vehicle retail price, reduced by the tire set costs, and divided by the product of vehicle life in years and annual operating hours. The calculations method was based on the straight line depreciation and no salvage value was assumed. Refer to Appendix 12.1.6.

b) Opportunity Cost of Capital

The average capital employed over a vahicle's lifetime is assumed to be half the initial purchasing costs in the absence of any salvage value. Using 15%, which is the estimated annual opportunity cost of capital for the country, this cost component is calculated by the following equation:

Opportunity Cost _	Vehicle Price Including Tire x 0.50 x 0.15
of Capital -	Annual Operating Hours

c) Crew Cost

The estimated costs per hour including salary, allowance, social benefits and commission and the crew sizes are as follows:

Vehicle Type	Driver	Conductor	Helper
Car Jeepney	1 at \$7.32		
Bus Truck	1 at \$7.32 1 at \$7.32	1 at P 4.20	2 at \$4.20 = \$8.40

d) Overheads, Licenses, Motor Vehicle Fees

The assumed overhead cost figures as of November 1983 are as follows:

	#/nour
Jeepney	3.90
Large Bus	10.40
Heavy Truck	10.40

Registration Fees

0/Hour

Total

Light Car	300.00/Vehicle	300.00
Jeepney	15.00/100 kg.	315.00
Bus	15.00/100 kg.	2100.00
Truck	15.00/100 kg.	2325.00

e) Insurance Cost

The insurance cost per vehicle per hour could be calculated as the annual premiums over the annual operating hours. The cost of insurance is quoted from June 1983 prices.

f) Basic Fixed Cost Reduction Factors

Based on the MPWH Highway Planning Manual, only 30% of light and medium cars are considered to be in commercial use.

The fleet reduction factors are supposed to express the degree at which time saving due to road improvement can lead to productivity gain in the form of fleet reduction. Fleet reduction factors will vary with the type of vehicle, type of operation and area.

The utilization of saved time will probably be highest for vehicle characterized by traditionally short and frequent trips such as jeepney and commercial cars, while large vehicles would not be utilized effectively because they were subject to extensive repair and rescheduling trips over longer distances.

Basic fixed cost reduction factors comprising commercial use and fleet reduction factors were assumed as follows:

12.1.8 REDUCTION FACTOR

Vehicle Type	Commercial	Reduction Use	Factor Fleet Use
Lanha Com	0.30	·····	1.00
Light Car Jeepney-Fiera Type	1.00		0.90
Large Bus	1.00		0.70
Heavy Truck (2-Axle)	1.00		0.75

Appendix

12.1.9 SUMMARY ON BASIC FIXED COST/ Vehicle-Hour in Pesos

	Light	Light Car Je		oney	Larg	e Bus	Heavy Truck	
	IT	ET	IT	ET	IT	ET	<u>IT E</u>	٢ <u> </u>
Depreciation Opportunity	2.66	2.01	0.93	0.79	2.58	2.26	3.35 2	.86
Cost of Capital Crew Cost	4.06 .00	3.08	2.37	2.02 7.32	10.82 11.51	9.49 11.51	9.11 7 15.69 15	•
Overhead, Taxes and Licenses Insurance <u>1</u> /	0.15 1.24	.00 1.20	4.00 1.93	3.90 1.87	11.10 2.66	10.40 2.58		.40 .64
FIXED COST Reduction Factor	8.11 :	6.30	16.56	15.90	38.67	36.24	41.02 38	.41
Commercial Use Fleet Use	0.30 1.00	0.30 1.00	1.00 0.90	1.00 0.90	1.00 0.70	1.00 0.70		.00 .75
BASIC FIXED COST	2.43	1.89	14.90	14.31	27.07	25.37	30.77 28	.82

 $\frac{1}{as}$ of June 1983

12.1.5 Time Cost

In general, time cost is defined as a possible benefit which drivers and passengers could produce had they allocated their invehicle time for other economic activities resulting from running on the improved road system.

Time cost was allocated a monetary value for those "at work" and "to/from work", while no time cost was assumed for travels with other purposes. The updated hourly rate value of time is shown below:

		in Pesos Per Ho To/From Work	
Car	19.00	9.50	0
Driver, otherwise and			
passenger	7.20	3.60	0
	3.30	1.65	0
Jeepney Passenger Bus Passenger	3.90	1.95	0

Based on the survey conducted by the Study Team, the average passenger occupancy was 3.3 for cars, 9.0 for jeepneys and 25.9 for bus (Refer to Appendix 12.1.10).

Appendix	12.1.10 VEHI	CLE OCCUPANO	CY RATES B	Y STATION
	Dalton (2)	Kennon (5)	Leyte (8)	Total
Car				
Passenger Vehicle Passenger Occupancy	1924 588	2931 874	199 69	5054 1531
Rate	3.3	3.4	2.9	3.3
Jeepney			· ·	
Passenger Vehicle	1634 212	1506 169	723 47	3863 428
Passenger Occupancy Rate	7.7	8.9	15.4	9.0
<u>Bus</u>				
Passenger Vehicle	6752 261	12270 464	1129 52	20151 777
Passenger Occupancy Rate	25.9	26.4	21.7	25.9

Appendix 12.1.11 shows the survey result on the number of passengers by trip purpose distribution.

		Арре	ndix	12.1.	11		
Vehicle Type	No. of Pas In Work	senger Per Veh To/From Work	icle by Tr Leisure	<u>ip Purpc</u> TOTAL	ose/Trip.P In Work	urpose Distrib To/From Work	ution(%) Leisure
Car	2112	135	2677	4924	43	3	54
Jeepneys and Buses	4180	2313	15806	22299	19	10	71

Note:

note.

Refer to Appendix. 12.1.12 and 12.1.13 for detailed information.

Using the survey result in Appendix 12.1.10 and 12.1.11, the passenger time value per hour per vehicle and the assumption that driver-owners are 80% and 20% are employed drivers, the time value by vehicle type are calculated as follows:

Vehicle: Car

Trip Purpose:	43%	In Work
		To/From Work
	54%	Leisure

Persons Per Car: 3.3

Total Time Cost

Owner Driver	80%
Driver, not owner	20%

In Work

 $P19.00 \times .80 + 7.20 \times .20 = P16.64$

To/From Work

 $p9.50 \times .80 + 3.60 \times .20 = p8.32$

Total Cost/Car-Hour

 $P16.64 \times 1.0 \times .43 = 7.16$
 $P7.20 \times 2.3 \times .43 = 7.12$
 $P8.32 \times 1.0 \times .03 = 0.25$
 $P3.60 \times 2.3 \times .03 = 0.25$

Total Weighted Average = **P**14.78 per car-hour

Vehicle: Jeepney At Work : P3.30 x 9.0 x .19 = To/From Work: P1.65 x 9.0 x .10 =

Total Weighted Average Jeepney-Hour

<u>7.13</u>

5.64

1.49

Vehicle: Bus At Work : $P3.90 \times 25.9 \times .19 = P19.19$ To/From Work: $P1.95 \times 25.9 \times .10 = 5.05$ Total Weighted Average Bus-Hour = P24.24

				· · · · · · · · · · · · · · · · · · ·
	S	tation	S	
Purpose	Dalton (2)	Kennon (5)	Leyte (8)	Total
1) To/From Work	92	34	9	135
	(5)	(1)	(10)	(3)
2) To/From School	39	44	0	83
	(2)	(2)	(0)	(2)
3) At Work/Business	949	1123	40	2112
	(49)	(38)	(55)	(43)
4) Shopping	52	94	12	158
	(3)	(3)	(15)	(3)
5) Medical/Dental	39	20	3	62
	(2)	(1)	(5)	(5)
6) Social/Recreation	72	171	3	246
	(4)	(6)	(5)	(5)
7) Visit Relatives	321	241	9	571
	(17)	(8)	(10)	(12)
8) Tourism	39	94	0	133
	(2)	(3)	(0)	(2)
9) Others	314	1110	0	1424
	(16)	(38)	(0)	(29)
TOTAL	1917	2931	76	4924
	(100)	(100)	(100)	(100)

Appendix 12.1.12 TRIP PURPOSE DISTRIBUTION BY STATION-CAR

			a t i o n	S	
	Purpose	Dalton (2)	Kennon (5)	Leyte (8)	Total
1)	To/From Work	964 (11)	1320 (10)	29 (21)	2313 (10)
2)	To/From School	601 (7)	870 (6)	(4) 5	1476 (7)
3)	At Work/Business	1500 (18)	2646 (19)	34 (25)	4180 (19)
4)	Shopping	584 (7)	666 (5)	29 (21)	1279 (6)
5)	Medical/Dental	191 (2)	286 (2)	3 (2)	480 (2)
6)	Social/Recreation	315 (4)	1047 (8)	6 (4)	1368 (6)
7)	Visit Relatives	2711 (32)	4220 (31)	27 (20)	6958 (31)
8)	Tourism	104 (1)	1073 (8)	0 (0)	1177 (5)
9)	Others	1414 (17)	1638 (12)	4 (3)	3056 (14)
	TOTAL	8386 (100)	13776 (100)	137 (100)	22299 (100)

12.1.13 PURPOSE DISTRIBUTION BY STATION JEEPNEYS AND BUS

Appendix

÷

Year	DALTON P	ASS/KENNON ZONE	MAHAPLAG	- SOGOD ZONE
, cui	Typhoon	T. Storm T. Depression	Typhoon	T. Storm T. Depression
1965	Miling Unding			
1966	Klaring Loleng	T.D. Heling T.S. Gading T.S. Titang T.S. Uding	Klaring Loleng Aning	T.D. Yoling
1967	Karing Gening Rosing Trining Welming	T.D. Oniang T.S. Pepang	Bebeng Welming Yayang	
1968	Huaning Nitang Toyang	T.S. Gloring	Reming Seniang	
1969	Elang		Atring	T.D. Kuring
1970	Pitang Sening Yoling	T.S. Emang T.S. Heling		T.S. Deling T.S. Uding
1971	Luding Uring	T.D. Oniang T.S. Ading T.S. Krising T.S. Dadang	Herming Mameng Neneng Pepang Barang Goying	T.S. Diding T.S. Etang T.D. Oniang
1972	Konsing Edeng Gloring	T.S. Nitang T.D. Seniang	Konsing Asiang Toyang	
1973	Luming Narsing	T.D. Atring T.S. Ibiang		T.S. Openg
1974	Bising Iliang Susang Tering Wening Aning Bidang			T.S. Yaning T.D. Kading T.D. Delang
1975	Herming	T.S. Neneng T.S. Pepang	Auring	· · · · · · · · · · · · · · · · · · ·

APPENDIX 12.2 NO. OF TROPICAL CYCLONES PASSED THROUGH OR APPROACHED TO RESPECTIVE ZONES

APPENDIX 12.2 (Cont'd.)

Year	DALTON PA	SS/KENNON ZONE	MAHAPLAG	- SOGOD ZONE
Tedr	Typhoon	T. Storm T. Depression	Typhoon	T. Storm T. Depression
1976	Didang Huaning	T.S. Paring	Huaning	T.S. Aring T.D. Kayang
1977	Openg Unding	T.S. Elang T.S. Luming	Kuring	T.D. Atring T.S. Elang T.D. Tasing T.S. Yeyeng
1978	Kading Yaning	T.S. Miding T.D. Subang	Atang Weling	T.D. Deling T.D. Garding
1979	Mameng Yayang	T.D. Karing T.S. Pepang T.D. Sisang T.S. Krising	Bebeng	T.D. Karing T.S. Krising
1980	Ditang Nitang Osang Aring	T.S. Gloring T.D. Isang T.D. Maring T.D. Paring T.S. Yoning		T.D. Asiang T.D. Biring T.S. Huaning T.D. Seniang T.D. Basing
1981	Anding Rubing	T.S. Elang	Dinang	T.D. Saling T.S. Unsing
1982	Norming Weling	T.S. Emang T.S. Ruping T.S. Bidang	Bising Norming Aning	T.S. Bidang
Total	47	37	28	29
lverage Der year	2.6	2.1	1.6	1.6

		:			an an tha an
Year	Typhoon	Max. 24-Hour Rainfall (mm)	Damages (Million P)	Casualties (Dead + (Missing)	Classification (S : Small) (L : Large)
1965	Miling Unding	368 212	20	46 0	S S
1966	Klaring Loleng	286 133	4	77 0	S S
1967	Karing Gening Rosing Trining Welming	157 510 266 979 227	- 1 - 17 - 8	3 8 0 244 13	S L S L S
1968	Huaning Nitang Toyang	364 650 273	3 2 -	0 2 0	S L S
1969	Elang	512	5	20	L
1970	Pitang Sening Yoling	138 235 205	9 460 116	95 768 611	S L L
1971	Luding Uring	207 145		5 0	S S
1972	Konsing Edeng Gloring	237 131 480	100 - Billion	131 214 -	S L L
1973	Luming Narsing	380 311	39 204	1 162	S L
1974	Bising Iliang Susang Tering Wening Aning Bidang	494 142 781 228 679 410 301	34 39 55 68 126 29 42	105 67 29 13 23 3 1	L S L S L L S
1975	Herming	174	-	0	S
1976	Didang Huaning	605 334	625 28	347 16	L S
1977	Openg Unding	359 321	21 457	65 40	S S

APPENDIX 12.3-1 CLASSIFICATION OF TYPHOON SCALE : DALTON PASS/KENNON ZONE

.

Year	Typhoon	Max. 24-Hour Rainfall (mm)	Damages (Million ₽)	Casualties (Dead + Missing)	Classification (S : Small) (L : Large)
1978	Kading	304	1,000	724	L
	Yaning	275	88	53	S
1979	Mameng	398	48	27	S
	Yayang	235	5	5 6	S
1980	Ditang Nitang Osang Aring	730 165 536 699	2 101 1,300	0 	L S L L
1981	Rubing Anding	467 287	106 576	5 375	L
1982	Norming	147	82	52	S
	Weling	123	626	126	L

APPENDIX 12.3-1 (Cont'd.)

		Max. 24-Hour	Damages	Casualties	Classification
Year	Typhoon	Rainfall (mm)	(Million P)	(Dead + Missing)	(S : Small) (L : Large)
1965	-	_			-
1966	Klaring Loleng Aning	286 133 264	4 - 2	77 0 20	L S L
1967	Bebeng Welming Yayang	94 227 145	- 8 1	1 13 2	S L S
1968	Reming Seniang	565 377	39 55	56 365	L L
1969	Atring	169	-	24	S
1970					-
1971	Herming Mameng Neneng Pepang Barang Goying	121 190 139 180 106 86	4 7 - - 5	27 1 1 0 0 8	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$
1972	Konsing Asiang Toyang	237 189 234	100 145 5	131 209 9	L L L
1973	- ¹	••	-		
1974	-	-	-		
1975	Auring	102	16	47	S
1976	Huaning	334	28	16	L
1977	Kuring	44	-	0	S
1978	Atang Weling	222 276	245 64	111 48	L
1979	Bebeng	291	267	93	L
1980			-	-	**
1981	Dinang	179	592	342	L
1982	Bising Norming Aning	176 147 122	587 82 ~	203 52 0	L S S

APPENDIX 12.3-2 CLASSIFICATION OF TYPHOON SCALE : HAHAPLAG - SOGOD ZONE

Type of Disaster	No. of Spot	Total Length (m)	Kind and Quantity of Restoration Work	Unit Price (p)	Estimated Cost (Million P)
C-SF/DF	¢ -	UL L	Removal of Slides as ^{m2} v 1170 ^m - 107 600 ^{m3}		:
(W)	27	2,200	x 2,200 ^m =		
Total	39	3,370		35	5.71
E-D.F					
	13	1,520	Stone Masonry 9,700 ^{m3}	350	3.40
· · ·	·		Re-filling 42,000	09	2.52
					5.92
C-F		•	Removal of Rocks	•	
(H)	1	160	25 x 160 = 4,000 ^{m3}		
(W)	ي د	200	$12.5 \times 700 = 8,800$		· . · .
Total			12,800	70	0.90
р- Е			Removal of Slides		•
(H)	2	130	1/2 (12+18)x2.0 ^m x130= 3,900 ^{m3}		
(W)	12	330	. 1		
Total			7,900	35	0.28
				Total	
				Excluding E-D.F P	P 6.89 M11100

APPENDIX 12.4-1 ESTIMATE OF RESTORATION COST DUE TO SUPER-LARGE TYPHOON - DALTON PASS SECTION -

- 296 -

lype of Disaster	No. of Spot	Total Length (m)	Kind and Quantity of Restoration Work)f	Unit Price (P)	Estimated Cost (Million P)
-SF/DF			Removal of Slides			
(H)	n	430	92 x 430 x 1.5 =	59,300 ^{m3}		
(W)	16	1,030	25 ×1030 × 1.5 =	38,600		
Total		1,460		98,000	35	3.43
E- DF						
	13	443	Stone Masonry	4 "200 ^{m3}	350	1.47
			Re-filling	24,100 ^{m3}	60	1.45
			Re-pavement	2,470 ^{m2}	250	0.62
					· · ·	3.54
с- 1			Removal of Rocks	·	· · · · ·	
(W)	N	110	12.5 x 100 x 1.5 =	2,060	20	0.14
			Removal of Slides			
(H)	щ	- 120	1/2 (12+18)x1.0x120 =	1,800		
(W)	0	400	$12 \times 0.8 \times 400 =$	3,800		•
Total			•	5,600	35	0.20

APPENDIX 12.4-2 ESTIMATE OF RESTORATION COST DUE TO CONTINUOUS HEAVY RAIN - MAHAPLAG - SOGOD SECTION -

- 297 -

Type of Disaster No. of Spot Length (m) Kind and Quantity of Restoration Work C-SF/DF Removal of Slides 3.000 ^m C-SF/DF Removal of Slides 3.000 ^m (H) 1 100 30 x 100 = 2,200 (m) 4 310 7 x 310 = 2,200 (m) 4 310 7 x 310 = 2,200 (m) 4 310 7 x 310 = 2,200 (m) 5 410 7 x 310 = 5,200 (m) 10 1,235 Stone Masonry = 6,200 ^m (m) 21 1,235 30 x 1,235 = 48,200 (H) 10 1,235 30 x 1,235 = 37,100 (m) 21 1,580 7 1,235 = 48,200 (n) 21 1,580 7 1,235 = 11,00 (n) 21 1,580 7 1,235 = 48,200 (L) 1 1,50 ^m 0<	•	
of110030 x 100=1)110030 x 100=1)43107 x 310=1054107 x 100=11541088101,235881,2351)101,23530 x 1,235=1)211,5807 x 1,580=1)12,8157 x 1,580=1)11,500verlay 20^{Cm} 11)11500verlay 20^{Cm} =	Unit Price (P)	Estimated Cost (Million P
(1) 1 100 30 x 100 = (1) 4 310 = (1) 4 310 = (1) 5 410 7 x 310 = (1) 10 560 Stone Masonry = Re-filling = (1) 10 1,235 30 x 1,235 = (1) 21 1,580 7 x 1,580 = (1) 21 1,580 7 x 1,580 = (1) 1 2,815 7 x 1,580 = (1) 1 150 0verlay 20^{Cm} (1) 1 150 0verlay 20^{Cm}		
 (1) 4 310 7 × 310 = btail 5 410 btail 5 410 cal 410 f × 310 = f × 310 = f × 310 = f × 310 = f × 1,235 = 	3 , 000 ^{m3}	
tal 5 410 9 560 Stone Masonry = 8 - filling = 1) 10 1,235 30 x 1,235 = 1) 2,815 7 x 1,580 = 1) 1 150 0verlay 20^{Cm} 1) 1 150 150 ^m x 0.30 x 6.5 ^m x 2.3 =	,200	
9 560 Stone Masonry = 10 10 1,235 Removal of Rocks = 1) 10 1,235 30 × 1,235 = 1) 21 1,580 7 × 1,580 = 1) 21 1,580 7 × 1,580 = 11 12 2,815 7 × 1,580 = 1) 1 150 ^m x0.30x6.5 ^m x2.3 = 150 ^m x0.30x6.5 ^m x2.3 =	,200 35	0.18
9 560 Stone Masonry = Re-filling = Removal of Rocks 1) 10 1.235 30 x 1.235 = 1.580 7 x 1.580 = otal 31 2.815 7 x 1.580 = 150 ^m x0.30x6.5 ^m x2.3 =		
Re-filling(H)10(H)10(M)21(M)211,580771,58072,815(H)11150(H)11150(H)11150(H)1	6,200 ^{m3} 350	2.17
(H) 10 1.235 Removal of Rocks (M) 21 1.235 30 x 1.235 = (M) 21 1.580 7 x 1.580 = Total 31 2.815 7 x 1.580 = (H) 1 150 0verlay 20^{Cm}	6,800 ^{m3} 60	0.41
(H) 10 1.235 Removal of Rocks (M) 21 1.235 30 x 1.235 = (M) 21 1.580 7 x 1.580 = Total 31 2.815 7 x 1.580 = (H) 1 150 0verlay 20^{Cm} (H) 1 150 150 m_X 0.30x6.5 m_X 2.3 =		2.58
(H) 10 1.235 30 x 1.235 = (M) 21 1.580 7 x 1.235 = (M) 21 1.580 7 x 1.580 = Total 31 2.815 7 total 2.815 (H) 1 150 0verlay 20^{Cm} (H) 1 150 0verlay 20^{Cm} 2.5 ^m x2.3 = 150 ^m x0.30x6.5 ^m x0.30x6.5 ^m x2.3 = 150 ^m x0.30x6.5 ^m x0.30x6.5 ^m x2.3 = 150 ^m x0.30x6.5 ^m x0.		
(M) 21 1.580 7 x 1.580 = Total 31 2.815 7 x 1.580 = (H) 1 150 0verlay 20^{Cm} (H) 1 150 150 ^m x0.30x6.5 ^m x2.3 =	,100	•
Total 31 2,815 (H) 1 150 Overlay 20 ^{CM} . 150 ^M x0.30x6.5 ^M x2.3 =	100	
(H) 1 150 Overlay 20 ^{CM} 150 ^M x0.30x6.5 ^M x2.3 =	,200 70	3.37
1 150 Overlay 20 ^{Cm} 150 ^m x0.30x6.5 ^m x2.3 =		
u		
	670 1,000	0.67
	Total P Evolution E.D E B	6.80 Million 4 22 Million

APPENDIX 12.4-3 ESTIMATE OF RESTORATION COST DUE TO SUPER-LARGE TYPHOON

- 298 -

APPENDIX 12.5 CONTINGENT FUND

		Unit :	Million P
	1980	1981	1982
Appropriation By Geneneral Appropriations Act	189.2	241.6	278.0
Amount Released For Repair/Restoration Improvement of National Roads ^{1/}	55.5	43.3	12.4
- Region I	10.6	2.3	0.9
- Region II	5.6	0.1	2.2
- Region II & III	-	13.5 ^{2/}	-
- Region III	3.9	1.3	-
- Region VIII	3.0	0.9	1.7
- Other Regions	32.4	25.2	7.6
Estimated Amount Released for Repair/Restoration of the Subject Section <u>1</u> /		· · ·	
- Dalton Pass Section (Region II and III)	1.6	13.5	-
- Mahaplag-Sogod Section (Region VIII)	0.3	0.1	-
- Kennon Road (Region I)	6.5	••	· _

Note:

 $\frac{1}{Refer}$ to Appendix

 $\frac{2}{For}$ repair/restoration and damages by Typhoon Aring

Source: Bureau of Maintenance, MPWH

- 299 -

APPENDIX 12.6-1 CALAMITY FUND

		Unit : In Million P
Year	Amount Requested	Amount Released
1977	181.4	92.3
1978	110.5	110.5
1979	38.9	15.3
1980	36.8	33.5
1981	Not Available	24.5
1982	44.9	Not Available

Source: Bureau of Maintenance, MPWH

APPENDIX 12.6-2 ESTIMATED CALAMITY FUND RELEASED TO SUBJECT SECTIONS

		Unit : I	n Million P
	1980	1981	1982
Dalton Pass Section	0.4	-	1.1
Mahaplag - Sogod Section	0.3	0.1	
Kennon Road	0.2		0.4

Note: Refer to Appendix

Source: Bureau of Maintenance, MPWH

APPENDIX 12.7 ESTIMATED EXPENDITURE FOR REPAIR/RESTORATION OF THE SUBJECT SECTIONS

		1980			1981			1982	
source of Fully	Min.	Max.	Average	Min.	Max.	Average	Min	Max.	Average
DALTON PASS SECTION									
Fund (20-	0.7	1.4		0.7	1.5	1.1	0.7	1.4	1.1
- Maintenance Fund (20-30%)	0.4	1.0	0.7	0.5	1.2	6.0	0.5		0.8
- Contingent Fund	1.6	1.6	1.6	I3.5	.13.5	13.5	ı	1	Ϊŧ
- Calamity Fund	0.4	0.4	0.4	1	1	1		1.1	
Total	ы. Т.	4.4	3°8	14.7	16.2	15.5	2.3	3.6	3.0
MAHAPLAG - SOGOD SECTION								-	
(20-	0.4		0.6	0.4	0.8	0.6	0.3	0.7	0.5
- Maintenance Fund (30-50%)	0.6	1.9	1.3	0.5	1.6	1.1	05	1.6	1.1
	0.3		0.3	0.1	0.1	1.0	•	ł	ı
- Calamity Fund	0.3	- 1	0.3	0.1	0.1	0.1	ł	•	ı
Total	1.6	3.3	2.5	1.1	2.6	1.9	0.8	2.3	1.6
KENNON ROAD						· ·			
- Discretional Fund (20-40%)		0.8	0*6	0.4	0.7	0.6	4.0	0.7	0.6
- Maintenance Fund (20-30%)	0.2	0.5	0.4	0.2	0.5	0.4	0.2	0.5	0.4
 Contingent Fund 		6 •5	ۍ 0	ł		ı	1	1	1
 Calamity Fund 		0.2	0.2	ï	I	I	0.4	4.0	0.4
- BBKN Fund		0.5	0.5	0.5	0.5	0.5	0	0.5	0.5
Tatal	C F	L	c	Ţ	1	1	1		•

- 301 --

CTOR CTOR Transportation 1. Detour 2. While Commuting 2.3 2.3	DALTON Patapat Road and Aritao-Kayapa-Ba Longer travel time due to trans Longer travel time due to trans other velicie (vaiking & valti and additional travel expenses. Trip schedule is altered Scarcity of transportation via A	KENNON Guio Road 1. Maguilian Road and Marcos Highway ¹ erring to 2.1 It takes 1-5 houre delay due to detour after) 2.2 Additional travel fare (Additional F10-12) 2.2 Eigher risks due to increase istace-	LEYTE 1. Baybay-Bato-Sogod Road 1. Baybay-Bato-Sogod Road 2.1 Distance and hour travelled are longor; 2.2 Eigher risks due to increased unreliability of the road
2.4 Transport 3.5 3.5 3.5	 2.4 No feasible location for detour hence transportion has to wait until road block/road outs are removed. 5.1 Cargoes to/from Manila are either delayed. 3.2 Increased transport cost due to porterage either thre carabao-drawn cart or carried by persons. 5.5 Spoilage of some commodities and rampant booting. 5.4 Traffic Jam occurs and hard to control because the road was an marrow and no carge transport can enter the carago fransport of bar occurs and enter the some commodities is delayed. 5.5 Transport of portine commodities is delayed. 	 3.1 Delay/suspension of clugo flow using Kennon 3.2 Heavy cargo trucke don't use Kennon because of the road's weak pavement and narrow carriageway width 3.3 Production sales for consumer goods is affected by 5-10% 3.4 Loss of 40% water for fresh (leafy) wego- table in case of delay 5.5 Contracted truckere by the government (TTLADIWA) refused to the government 	3.1 Delay and expensive cargo handiing
Economic Activities 1. Slack/Slow Business Activities	causing artificial shortage. (1 Artificial shortage in consumer's food construction materials, feeds for pulliny and livestock due to stoppage cargo ship- ment from Manila. Construction materials food and	because there is no price adjustment in case of additional detour expenses 3.6 Truckers vait for half-a-day for road block clearance or just wait longer if there is no gas allowance for detour. 1.1 Slight increase in price of perishable stuffs, particularly those coming from low- land areas 1.2 In termo of permanent residents, no effect because the city is highly urbanized and the because the city is highly urbanized and	 Artificial shortage and price increase Interprovincial road trafitic increase cousty reduced. Food creating flow in and out of the province through the Sogod-Mahaplag corridor is stopped

- 302 --

ROAD SECTOR SECTOR	DALTON	KENNON	11 1 12 12 12 13 13 14 14 14 14 14 14 14 14 14 14 14 14 14
 B. Economic Activities 1. Slack/Slow Period of Business Activities Activities 1. Community Life 	 Ferishable goods are entirely lost Temporary isolation; no market produce from other places due to disaster and there are no trucks and buses from the south section of the Dalton Pass. Vehicular traffic is paralyzed. 	1.3 If delay is beyond regular fifice hours, additional expense in terms of man-hour is incurred. If the cargoss delay are scheduled for immediate processing, losses will be incurred (man-hour salary expenses and cancellation of order	 The eastern (Pacific) towns of South Leyte suffer considerably from economisiump during disaster period. Gall farmers are forced to sell their products to middlemen at lover prices Fish production from Sogod area can't go to .orth anymore
1. Community Life	 Food shortage and sudden artificial price increase, sanitation, peace and order deterioration during prolonged period of digaster Commerce among the citizenry is at stand still Low supply of food dtens and higher prices of food arrivals taking other routes Panic buying Fampering students in travelling to Manils 	 Everybody near mountain side are always on alert against landslides 1-2 days delay in business and office transaction Sustenance for this function and sorvices come from within the city. A disarter that occurs along Kennon Road which usually occurs within a short period of time do not affect them (Baguio Residents) 	 1.1 Mobility is hampered due to lack of transportation 1.2 Delay in travel time and the risk involved in travel time and the risk and block 1.5 Residents along Sogod-Mahaplag route get thebr supplies from Sogod. In case of disaster, they have to travel to Abuyog for supplies which already is too far and too expensive. 1.4 Increase in passengers! transport fare
2. Medical Services	 2.1 Supply of medicines runs out of stock 2.2 The transfer of patients who need inten- sive medication in Manila are delayed 2.5 Slow distribution of medicines to remote areas like National Authority's Kalusugan arease like National Authority's Kalusugan 2.4 Treatment of putlents are not attended immediately and sickness became provalent especially among the poor 	2.1 No effect	 2.1 Delay in medical extension services 2.2 Patients in interior barangars needing immediate a tention cannot be brought to the nearest hospital which is in Sogod
3. Administrative Function	3.1 Due to higher travelling expenses, travel of employeed are suspended 5.2 Supervision of projects in the province by central office personnel are affected as well as delay in submission of reports by field personnel to Central Office.	 3.1 The city disaster coordinating center is activated during disaster period. 2/ 3.2 Minimal effect in the city, however, the medical servicer of Ministry of Health as veri as its instrumentalities are in alored to kennon. 	 3.1 Proximity is the primary consideration. Communication and relief scryices are disturbed and delayed 3.2 Delay in making affected road passable due to lack of suitable equipment and lack of fund

- 303 --

ROAD SECTOR SECTOR	DALTON	K E N NON	ΓEYTE
G. Community Life			
3. Administrative Function	3.5 Suspension of both physical and non- physical government project operations 3.4 Normal transmission or transfer of admi- nistrative function are very difficult due to lack of transportation	3.3 Delayed operation from 1-2 days in the mining activities	
4. Security	4.1 Rampant looting of stranded cargoos 4.2 Eigh incidence of orime on stranded travellers	4.1 No problem due to existence of mutual agreement between provinces to converge to disaster area for assistance	 4.1 Risk for travelling public due to the presence of known insurgents in the area 4.2 Leftigt tend to surface and ake advantage of the situation, thus making the area 4.5 Considerable effect on military logistic
Tourisn	 Delayed/cancellation of tourists arrival and tourist-related activities (e.g. seathars etc.) Slack period in tourist-oriented-estab- lishments (e.g. hotels, lodging house, etc.) Transportation is disrupted Organized toure bypass the region due to inconveniences brought about by the closing of Dalton Pass 	 Slack period in tourist flow Significant effect on touris-generated income and tourist-oriented establishments activities Cancellation of tourist-related activities and organized tours 	1. Tourist flow to Massin, Leyte is affected 2. Tourists do not take detour just to see the place because of longer distance
C ther Problems	1. High incidence of crimes	1. Delay in remittance of toll gate share to gity Government 2. The vane used in EFUA (Baguio City Export Processing Zone) is higher than the cables of 2 telephone companies in $H_{\rm aguio}$ City	 The alternative route via Egroy is longer and in poor gravel condition adding to inconventance of committers The alternatives route through Mahaplag- Baybay has several timber bridges which has a tendency to be destroyed during the season when landslides occurs; thus, the passengers were stranded
			3. The development and security of the eastern towns (pacific) of south Leyte is dependent on the project road, any distur- dependent on the project road, any distur- bance will directly affect these people.

- 304 -

LEYTE	Reduce degree and slopes thus reducing the possibility of landslides improve lateral and cross drainage	
KENON	Widening of Kennon Road and proper mainte- nance Proposal for tunneling to protect the natural contour Investigate the mining activities in the area as maybe the cause for soil instability areal lation of 24-hours diseaster monitoring parallation of 24-hours diseaster monitoring paraleton of 24-hours diseaster monitoring paraletons of Kennon Raditenance equipment for Kennon raditenance equipment for Kennon raditenance dupment for the activical sections of Kennon Road should be covered by wire mesh and poured with concrete Frovision of adequate traffic warning-signer Provision of adequate traffic warning-signer	
DALTON	 Suitable equipment should be permanently transformed within the section for immediate use Widening and improvement of Aritao-Kayapa-Saguaban Road The Kayapa-Baguio Road should be converted The Kayapa-Baguio Road should be converted The Kayapa-Baguio Road should be converted The Kayapa-Baguio Road as an alternative to the Kayapa-Baguio Road as an alternative to train the Yizet-Class road as an alternative to the train the Yizet-Class road as an alternative to the train the Yizet-Class road as an alternative to the train the Yizet-Class road as an alternative to the train the the train the the train the train the tendent of the train the tendent through the tendent through the train the tendent through the tendent to the train the tendent through the tendent to the tendent to the tendent tendent to the tendent tendent to the tendent tendent to the tendent tendent tendent to the tendent tendent tendent to the tendent tendent tendent tendent to the tendent tendettent tendettent tendettent tendettent tendettent tendettent tendettent tendettent tendettent tendettentent tendettent tendettent tendettent tendettent tendettent t	
ROAD SECTION SECTOR	F. Suggestions/ Commente Comme	

- 305 -

###