02	Table A.4 (2/40) MACTAN
	Table A.4 (2/40) Table A.4 (2/40) MACTAN THE TAGBILARAN 10.16N - 123.58E 9.38N - 123.53E MINIMUM ANGLE O.0 PEGRES POWER = 0.10 KW ANTENNA GAIN IR. U.0 DB FIELD STRENGTH IN DE FREDUENCIES IN MHZ UT MUF DBU 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 12.0 15.0 - FOT HPF 01 7.8 4 20 25 28 30 22 4 5 A.9 9.2
UT 13 14 15 16 17 16 19 20 21 22 23 24 FREQ 6.0 5.0 5.0 5.0 4.0 4.0 4.0 5.0 8.0 9.0 8.0 6.0 OBU 28 25 78 29 30 30 30 30 30 30 30 00 00	
UT 13 14 15 16 17 18 19 20 21 22 23 24 FREO 6.0 5.0 5.0 5.0 4.0 4.0 4.0 5.0 8.0 9.0 8.0 6.0 OBU 28 25 28 29 30 30 30 30 30 30 30 30 30 30 30 30 30	FRED 6.0 7.0 3.0 8.0 7.0 7.0 6.0 5.0 4.0 3.0 4.0

Table A.4 (1/40)

	Table A	MINIM	- 123.581 UM ANGLE TELD STRI	0.0 {	APRI AGBILA 9.38N DEGREE	RAN ~ 123 S F	OWER	1 8 = (A GA		(W F R• 0•	93 (EO • S	MILE 54	.0 0.0 I			
	ur	М	บร มูชบ	3.0	4.0	5.0	6.0	7 • C	8.0	9.0 1	0 • D	12.0	15.0		FOT	HPF
	01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	7 6 6	.5 12 .2 2 .4 2 .9 3 .6 5 .1 16 .5 17 .8 9 .2 9 .7 9 .7 9 .7 9 .7 9 .7 9 .7 9 .7 9 .7	10 4 1 0 2 7 13 20 29 35 35 26 27 27 27 28 29 35 35 35 35 35 27 27 27 27 27 27 27 27 27 27 27 27 27	14 19 25	22 19 17 16 18 20 24 28 33 28 27 27 28 28 29 30 29 37 33 35 36	25 223 221 222 224 227 228 228 227 228 227 228 230 29 233 29	28 26 25 25 27 29 24 28 27 27 28 29 29 28 37 33 32 33 33 23	21 28 27 27 28 20 22 24 26 28 27 27 28 29 88 29 29 88 27 29 29 29 29 29 29 29 29 29 29 29 29 29	22 19 18 18 19 20 22 24 26 27 27 27 27 28 28 29 8 8 8 70 20 22	22 19 17 17 17 18 20 22 24 26 27 26 27 28 28 28 9 9	16 32 23 32 20 23 24 24 9 9 9 9 9 9 9 9 9 7	5 5 16 17 9 9		10.3 10.2 10.0 10.0 10.0 10.0 10.6 11.0 10.0 9.4 9.1 9.2 8.9 9.1 9.2 8.9 9.1 5.0 9.1 10.0	13.3 13.0 12.7 12.7 14.3 15.1 15.7 15.6 15.4 14.5 13.8 13.3 12.4 10.3 8.6 7 9.0 11.7 13.3
	UT FREO OBU	01 7.0 28	02 03 8.0 8.0 28 27	27 8 • 0	05 8,0 28	06 7.0 27	.07 7.0 29	08 6.0 30	09 5•0 33	10 4.0 36	11 3.0 35	12 6•0 27				
	FRED DRU	6.0 27	7.0 7.0 28 29	7.0	6.C 30	5.0 30	3.0 35	20 6•0 37	21 7.0 37	22 8•0 37	23 7•0 33	24 -6•0 29	1			
	Table A	.4 (4/40)	٠.		APK I	**** !	G	4 50.N	SPOT	NUMBE	R 10	.0	-			
-		MINIM	- 123.58E JH ANGLE IELD STRE	0•0 r	GB1LA -38N EGREE	RAN - 123 5 P A	.53E OWER NTENN	18 0 = 1 A G A I		MUTHS 3. W R . O.	93 E0•51	MILES 54.			٠	
	bŢ	м	JF DBU	3,•0	4.0	5.0	6.0	7.0	8 •0	9.0 1	0.0 1	2.0 1	15.0	-	FOT	НРЕ
	01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18	8 8 8	10 10 10 10 10 10 11 10 10	13 10 10 11 14 19 25 31 35 28 28 28 35 35 35 35	19 17 17 18 20 24 28 33 29 29 28 28 28 28 28 28 36 36 36	23 22 22 23 24 27 31 27 29 29 29 29 29 29 29	77 226 227 227 228 229 229 229 229 229 227 37	29 228 228 228 223 226 228 228 228 228 228 228 228 228 228	13 13 16 20 23 26 28 29 29 28 8 8	11 11 11 12 22 25 27 29 28 8 8 8 8 8	13 5 23 226 27 8 8	66788-			7.2 7.2 7.2	9.1 9.1 9.1 10.2 11.4 12.6 11.8 9.8 9.1 10.8 9.8 17.4 7.3 5.6

UT FREQ UBU	6.0	7.0	7.0	7.0	-6∗₽	6.0	5:•0	5 • 0	09 4.0 33	3.0	3.0	6.0
UT FREQ CRU	5.0	5.0	5 • O	3.0	4 • C	5.0	6.0	7.0	21 7.0 37	8.0	7.0	.7.0

7•0 37

7.0 36

6.0

0.0

UΤ

DBU

13

4.0

28

3.0 28 3.G

28

3.0

28

نا 🛚 3

4.0

4.0

		CTAI				CCTUE	ARAN			A Z	TUMES.		KILF		KM.		
			N - 12 IMUM /			regre					ĶΨ	8.93 REQ.S 3.0 DE	IG.	0.0			
						IN Dr		REQUE	ICTES	IN ME	łZ				5 60		
UT			MUF	DBU	3.0	4.0		6.0		8 •0		10.0		15+0	-	FOT	Н
01 02 03 04		. 1	12.3 11.9 11.5	14 13 3 2	13 7 4	19 14 12 12	23 20 19 18	27 24 23 23	29 27 26 26	22 29 28 28	23 21 19 19	23 20 19 18	20 4 3 3	-	-	10.5 10.6 10.2 10.1	13 13 13
05 06		1	11.8	3	6 10	13 17	19 22	23 25	26 28	29 22	20 22	20 22	3 20	- 5	-	10.5	13
07 08	:	1	13.4 13.2	15 16	16 23	21 27	25 29	28 23	2 2 2 4	23 25	24 25	24 25	23	15 16	-	11.3 11.1	16 15
09 10		1	12.5	17	30 35	32 27	25 28	35 35	26 27	26 27	26 27	56 56	17 17	17	-	10.5 9.5	15
11 12 13		1	11.3 11.0 10.9	17 9 9	27 27 27	27 27 27	27 27 28	27 27 28	27 27 28	27 27	27 27	26 26	9 9 9		-	9.1 8.8	14
14 15		- 1	1.1	9 9	27 28	28	28 29	28 29	28 - 29	. 28 28 29	27 28 29	27 27 28	9	-	-	8.7 8.8 8.8	13 13 13
16 17			0.8	9 9	29 30	30 30	30 30	30 30	30 30	30 30	29 29	29	9	~	-	8.5	12
18 19			9.2 7.3	9	30 29	30 30	30 30	30 20	30 28	29 9	27 9	9	9	-	-	6.2 4.9	12
20 21 22			5.6 5.δ 8.1	8 8 8	35 35 34	29 36 35	28 37 36	8.	8 8 28	9	-	-	-	-	-	3.8 3.9	8
23		1	0.8 2.2	7	27 19	30 24	32 27	36 33 30	26 24	27 27 25	8 27 25	27 25	- 8 23	-	-	6.9 9.3 10.5	9 12 13
												-				1000	
UT FREQ DRU		01 7.0 29	8.0	8.0	8.0	8.0	7.0	6.0	5.0	09 4.0 32	3.0		12 6•0 27				
UT FPEO		13			-					21 5.0	22 6•0	23 6.0	24 6.0				
080		5.8	28	. 29	30	30	30	30	35	37	36	33	36				
Table A	Λ. a	(8 /A)	n)				+							_'		,	
		TAR				rchaei rethi					:: BMUA HTUMI	ER 10	O.O MILE	•	KK.		
	10.	168	- 12			S.38N PEGREI	- 12		1:	3.95 3.10	3	93 REQ.51	54		86.9	٠	
			FIELD	STRE	NGTP	IN DB			EA GA LIES	in Ti	R. 0	•0 D9					
.01		:			:	4+0	5.0	6.0	7.0	8 •0	۰.0	FO • O · 1	12.0	15.0	-	FOT	н
01				5 12	15	24 21	27 25	.55	30 30	22 19	4 1 2	5 13	-	- '	-	7.6. 7.6	9,
03 04 05			6.4 8.3 8.7	1 ! 1 1 1 1		19 19	23	27 26	29	17 17	11	+	-	-	-	7.5 7.4	9
06 07				13	16 26		24 26 28	27 28 24	20 22 25	20 23 25	1 2 22 24	13 4 23	- 5 6	-	-	7+8 8+3	11
08		3 (0.3 J.1	6	27 34	30	25 28	26 28	26 28	26 28	26 27	24	7 7	- -	- - -	8.8 8.9 8.7	12. 12.
10 11			9.7. 9.2	გ 8	3 5 2 0		29 29	29 29	29 29	29 28	27 27	8 8	-	-	-	7.3 6.9	11 10
			8.6 8.3	8	50 :- 58	5.5 5.A	29 29	5 d	29	28 -	_	8 -	-		-	6.5 6.3	10
12			3.0 7.3	8 18 19	29 - 29 29	29 · 36 .30	29 30 30	29 29 29	29 28	27 19	8 19	- -	-	-	•	6.1 5.5	9 8
13 14 15			١		30	30 30	30 29	19 19	19 19 19	19	-	-	-	-	- - -	4.5	. 7
14		ć	5 • 4 5 • 0 5 • 4	19 19	30			19		-		_		-			7
13 14 15 16 17 18 19 20		5	5 • 0 5 • 4 5 • 1 2 • 9	19 19 18 17	30 29 17	28 18	19	14	-	_	-	-	-	-	-	3.5 2.7	5
13 14 15 16 17 18 19 20 21 22		2 2 3 5 5	5.0 5.4 4.1 2.9 5.5	19 18 17 18	29 17 28 35	28 18 18 29	- 19 29				-			-		2.7 1.9 2.3	5. 4.
13 14 15 16 17 18 19 20 21		2 3 3 5 8	5 • 0 5 • 4 5 • 1 2 • 9 3 • 5	19 18 17 18	29 17 28	28 18 18	- 19	-	-	-	-	-	- -	-	-	2.7 1.9	5. 4. 6. 9.
13 14 15 16 17 18 19 20 21 22 23		2 3 3 5 8	5.0 5.4 5.1 2.9 3.5 5.8	19 18 17 18 19	29 17 28 35 30	28 18 18 29 32 28	- 19 29 27 30	- 19 27 25	27 25	- 17 25	- 18 16	17	12	- - -	-	2.7 1.9 2.3 5.0 6.9	5 4 4 6
13 14 15 16 17 18 19 20 21 22 23 24		01	5 • 0 5 • 4 5 • 1 2 • 9 3 • 5 5 • 8 8 • 0 8 • 9	19 18 17 18 19 18 16	29 17 28 35 30 23	28 18 18 29 32 28	19 29 27 30	- 19 27 25	- - 27 25	17 25 09 4.0	- 18 16	- - - 17	-	- - -	-	2.7 1.9 2.3 5.0 6.9	5. 4. 6.

```
Table A.4 (9/40)
            A.4 (9/40)

JANUARY D SUNSPOT NUMBER 100.0

MACTAN TO LICILO AZIMUTHS MILES KM.

10.16N - 123.58L 10.41Y - 122.33E 281.60 101.37 86.8 133

MINIMUM ANGLE 0.0 PEGRES POWER = 0.10 KW RE0.SIG. 0.0 LA

ANTENNA GAIN TR. 0.0 DR RE. 0.0 DB

FIELD STRENGTH IN DB FREQUENCIES IN MHZ
                                                                          SUNSPOT NUMBER 100.0
                                                                                                                            139.6
   UT
                      MUF
                                Dau
                                        3.0
                                               4.0
                                                         2.0
                                                                 6.0
                                                                         7.0
                                                                                8.0 9.0 10.0 12.0 15.0
                                                                                                                                       F01
   ពា
                                                                  65
                                                                          22
                                                                                  23
                                                                                                                                      10.0
                                                                                                                                               13.1
   0.2
                    11.2
                                                         20
                                                                 24
22
                                                                          26
25
                                                                                  21
27
                                                                                                          12
                                                                                                   20
                                                                                                                                        9.7
                                                                                                                                                12.7
    03
                    10.7
                                10
                                                 12
                                                                                                   18
                                                                                                                                        9.2
                                                                                                                                                12.1
                    10.4
                                -2
                                                 11
                                                         17
                                                                  22
                                                                                                                                       9.0
                                                                                                                                               11.8
11.7
   กร
                    10.3
                                                 13
                                                         18
                                                                 22
                                                                         25
27
                                                                                  28
                                                                                                                                       8.9
   0.6
                    10.6
                                                                                                   19
                                                                                          20
                                                                                                            O
                                                                                                                                                12.2
                    11.0
                                                         24
29
26
                                        15
                                                20
   9.0
                                                 26
                                                                 24
                                                                          24
                                                                                                                                       9.4
                                                                                                                                               12:8
   ŊΦ
                    10.9
                                                                 26
                                                                         29
                                                                                                   25
                                                                                                                                       9.3
                                                                                                                                               12.5
   10
                                        34
                                                35
22
                    10.5
                    10.2
                               14
                                                         28
28
                                                                 28
                                                                                                                                               12.5
   12
                                        27
                                                27
                                                                 28
                                                                                                                                       7.6
                                                                                                                                               11.9
   13
                                        27
27
28
                                                         28
                                                                 28
                                                                         28
                                                                                                  14
                                                                                                                                               11.3
                                                58
58
58
                     8.7
                                                                                                                                               10.5
   15
                                                        28
28
                                                                                                                                       6.3
5.8
                                                                                                                                                9.9
   16
17
                                        28
28
28
                                                                2.8
                                                                        28
                                                                                                                                                9.2
                                                                                          25
                               24
                     7.0
                                                                                 24
                                                                                                                                                8.5
                                                2 9
2 9
                                                         29
   10
                                        58
                                                         28
                                                                                                                                       3.9
                                                                                                                                                7.02
   20
                                                         36
                                                                36
                                                                                                                                                5 8
                              35
36
35
                                                        36
35
31
                                       34
34
                     4.3
                                                35
                                                                         30
                                                                                         37
                     5.8
                                                                        36
34
31
                                                35
                                                                36
33
                                                                                                  37
                                                                                                                                                6.7
9.8
                                                                                                                                      5 1
7.5
   23
                                                                                 34
                                                                                         35
                   10.8
                         02
                                  03
                                          04
                                                   05
                                                           06
                                                                   0.7
                                                                           0.8
                                                                                    0.9
                                                                                                             12
                       7:0
26
   FREQ
                                8.0
27
               6.0
                                                                 6.0
27
                                                                          5 • 0
2 9
                                        8.0
27
                                                         7.0
                                                                                  4.0
32
                                                                                          4.0
                                                 \theta \bullet 3
                                                                                                   3. U
34
                                                                                                           6.0
28
   OHO.
                 13
                                                                           20
  FREO
               6.0
                       6.0
                                5.0
                                        5.0
                                                5.F
                                                         4.0
                                                                 4.0
                                                                          6.0
                                                                                  9.0 10.0
                                                                                                   9.0
                                                                                                           7.0
  DBU
Table A.4 (10/40)
                                                            0
                                                                        SUNSPOT NUMBER 10.0
                                             JANUARY
             JANUARY 0 SURSPOT NUMBER 10.00
ACTAN TO ILGILG AZIMUTHS MILES XM
0.16N - 123.58E 10.41N - 122.33E 281.60 101.37 86.8 13*
MINIMUM ANGLE C.O PEGREES POWER = 0.10 KW RCO.SIG. 0.0 CB
ANTENNA GAIN TR. 0.0 DE RE. 0.0 DB
          JANUARY
MACTAN TO TEGILE
10.16N ~ 123.58E TO.41N -
                                                                                                                         KH.
                                                                                                                         139.6
                   FIELD STRENGTH IN DR FREQUENCIES IN MHZ
 IJΤ
                NUF
                                             4.0 . 5.0
                             06U 3.F
                                                              6.0
                                                                     7 • €
                                                                               0.3
                                                                                      9.0 10.0 12.0 15.0
                                                                                                                                     FOT
                                                                                                                                               HPF
 n i
                    7.9
7.5
                                                       26
                                                                                                                                     6.9
                             10
                                      14
                                              20
                                                                                                                                     6.5
                                                                                                                                               8.6
 03
                                      11
                    7.2
                             28
                                                       ź3
                                              18
                                                               2 €
                                                                       28
                                                                                10
                                                                                                                                     6.2
 04
                   7.1
                                                               25
                                                                       38
                                                                                10
                                                                                                                                     6.1
                                                                                                                                               8.2
                   7.3
                                              19
21
                                                      23
                                                                               10
                                                                                                                                     6.3
                                      16
                                                              .
23
 0.7
                                                      28
                                                                       23
                   8.5
                             21
                                              29
27
                                                                       26
                                                                                                21
                                                      28
 10
                                                                                                                                     6.2
5.8
                                                      59
59
59
                   7.3
                                     5.8
5.e
                                              29
29
                                                                       28
                                                                                       15
                   6.7
                                                              29
                             14
                                              Žø
                             13
                                     29
                                              28°
                                     28
                                                      14
                             13
                                     2.8
                             13
                                     28
13
                                             13
 20
                  2.1
                            12
                                                                                                                                    1.5
                            33
35
                                     34
                                                                                                                                    1.5
                                                                                                                                              2.9
22
23
                   3.6
                                     34
                                             35
                                                                                                                                    3.2
                  5.9
7.5
                                                      26
                                                                      13
                                                                                                                                    5.2
6.6
                                                                                                                                              7.0
                                                                                                                                              8.9
                                              05
6•0
26
                       0.2
                               03
                                        04
                                                         06
                                                                 0?
                                                                                        10
3.0
.34
                                                                         08
                                                                                 0.9
                                                                                                . 11
5.0
                              7.0
28
FREO
                    7.0
             6.0
                                      7.0
28
                                                       6.0
28
                                                               5 • 0
2 8
                                                                       4.0
29
                                                                                3.0
DRU
              13
                                      16
3•0
                       14
                                                                                                  23
                                              3. n
28
FREO
             5.0
                     4.0
29
                             3.0
                                                      3.U
28
                                                                                        4.0
                                                                                               4.0
31
                                                               4.0
13
                                                                       3.0
                                                                                3.0
                                                                                                        5.0
DBU
```

Table /	MACTA 10.16	N N - 1	23.58 Angle	Ĺ	API ILOIL(IO.41/ PEURI	V ~ 1	0 22.33 POWE ANTE	€ R =	281.6 0.10)T NUM \ZIMUT \0 10 KW		MIL 8 51G.	8.6 0.0		,	-
		FIEL	D STR	ENGTH	IN DI		REQUE				0.0 0	D . NL	• 0•	0 00		
UT		MUF	DBU	3.0	4.0	5.0	6.0	7.0	8 +0	y.0	10.0	12.0	15.0	- '	FOT	HPF
01 02 03 04 05 06 07 08 10 11 12 13 14 15 16 17		12.1 11.6 11.3 11.3 11.3 11.5 12.0 12.7 13.2 13.2 11.9 11.4 11.3 11.7 11.9 11.5 10.5 7.5	11 10 9 -2 -1 0 2 -3 14 15 15 15 15 15 15	604532986446677886929	14 10 7 6 8 11 16 23 29 35 27 27 27 27 28 29 29 29	20 16 14 13 15 21 26 31 28 27 27 27 28 29 30 29	23 21 19 19 22 25 28 27 27 27 28 29 29 30	26 24 23 23 23 23 26 28 27 27 28 29 29 28	28 25 25 26 27 22 24 28 27 27 28 29 29 29	22 19 27 27 20 22 24 26 27 27 27 27 28 29 27	22 19 18 18 18 20 22 24 26 27 26 26 27 28 28 15	18 10 -1 -2 -1 -1 21 23 25 15 15 15 15 15	1 1 2 3 3 15		10.4 10.3 10.1 10.1 10.2 10.1 10.7 11.1 11.1 10.1 9.5 9.1 9.1 9.2 9.4 9.1 8.3 6.2	13.4 13.1 12.8 12.8 13.0 14.4 15.3 15.9 15.5 14.7 14.0 13.8 14.1 13.6 12.3
20 21 22 23 24		6.3 8.1 10.5 12.0	14 36 36 14 13	34 34 31 23	35 35 33 27 20	36 36 34 29 24	28 36 35 31 27	14 36 35 32 29	14 14 36 26 24	15 14 14 15 26 24	15 ~ ~ 26 24	21	-	-	5.1 4.3 4.3 7.0 9.1 10.3	10.4 8.7 8.8 9.0 11.7 13.3
UT FREO DBU	01 'ε•0 28	8.0	9.0	\$ • C		0.6 8 • 0 27	7.0	6.0	5 • 6	4.0	3 • €	6.0				
UT FRF0 D8U	13 6 • 0 2 7	7.0	7.0	7 • C		18 6.0 30	5.0	5.0	7.0	8.0	7.0	7.0				
		- 12 NUM AI	NGLF	1 -	APR I ČTLO U.41h JEGREI	= 12 E5	PÖVER	2 = NA GA	AZ 81.60 0.10 IN T	'IMUTH 101 KW R 0	ER 1 15 •37 REO • 5 • 0 DE	85 86 16.	• & Ռ.Ո	KM. 139.6 LB DB		
UT		MUF	080	3.0	4,0	5.0		7 . i:			10.0	12.0	15.0	-	FUT	нрғ
01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	10 10 10 10 10 10 10 10 10 10 10 10 10 1	9.6 0.4 0.7 7.5 8.6 3.0 7.6 7.6 7.7 6.1 6.3 6.4 6.3 7.4 6.3	223 115 115 115 115 115 115 115 115 115 11	11 16 229 34 328 28 28 28 28 28 33 44 33 33 44 33 44 33 44 33 44 33 44 33 44 33 44 33 44 33 44 33 44 33 44 33 44 33 44 33 44 34 3	14 15 21 26 31 28 28 28 28 29 35 35 35 35 28 29 35 35 35 29 24	25 29 27 29 29 29 28 28 28 28 29 29	223345258099888985566529	28 28 15	19 15 14 14 16 20 23 28 29 29 28 15	9 8 7 7 7 8 22 25 27 22 8 15 15 15		111 12 22 23			7.1 7.2 7.2 7.3 7.5 8.9 9.2 7.1 6.4 6.0 5.5 1 4.6 5.7 2.3 4.6 5.1	9.3 9.1 9.2 9.2 9.3 10.4 11.5 12.4 12.7 12.0 9.9 9.2 9.4 8.2 7.5 7.4 4.8 6.0 8.3 9.4
UT FREO DBU	7•0 29	02 7 • 0 2 7	03 7.0 26	04 7.0 26	05 7• S 27	06 6.0 25	07 5.0 25	(8 5 • 0 29	09 4•0 31	10 4+0 35	11 3.0 34	12 3.0 34				
UT FREO DPU	13 5•0 28	14 5.0 28	15 5.0 28	16 5 • 0 29	17 3.0 34	18 4•0 35	19 5.0 36	20 6.0 36	21 7.0 36	22 8.0 36	23 8•0 34	24 7.0 31				

	an d	CIAN		10	* * * * * *	ULY.	U	5 \$	UNSPO	T NUM	BER 1	00.0	<i></i>			
	10	16N	- 123.	58E LE 0•	10.41	1: - 1	POWE	R =	-0.10	κW	REO.	516.	ES 6•8 0•0	f*D		
		F	IELD 5	TRENGTI	TIND	P F	REQUE	NNA G. NCIES	IN M	TR. I	0.0 DI	i RE	0.0	D DB		
10		Mt			3 4.0	5.0	6.0	7+€	8 •0	8 • U	10.0	12.0	15.0	~	FO	г нрғ
01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 20 21 22 23 24		10. 9. 10. 10. 10. 10. 10. 10. 8. 8. 8. 7. 7. 6. 6. 6. 5.	9 29 29 29 29 29 29 29 29 29 29 29 29 29	2 0 -3 -4 -2 2 9 17 25 33 -34 27	14 10 7 8 11 16 22 28 34 22 27 27 27 27 28 28 28 28 28 28 28 28 28 28 28 28 28	20 16 14 15 17 21 26 35 28 27 27 27 27 28 28 28 28 28 28 28 28 28 28 28 28 28	23 21 19 19 20 22 25 27 27 27 27 28 28 27 27 28 28 28 28 27 27 28 28 27 27 27 28 28 27 27 27 27 27 27 27 27 27 27 27 27 27	26 24 23 23 25 27 28 27 27 27 27 27 27 28 16 16 16 14 25 29	28 27 26 25 27 29 23 27 27 27 27 27 26 16 16 16 16 16 25 30	30 28 28 27 28 29 20 22 25 26 27 26 14 14 14 16 16 	25 25 14 14 14 14 14	18 -1 -2 -1 0 1 2 14 14 14			8.5 8.4 8.5 8.5 8.5 8.5 8.5 7.9 6.8 8.7 6.8 8.7 6.8 8.7 7.3 8.3 8.5 7.3 8.4 8.5 8.5 8.7 8.8 8.7 8.8 8.7 8.8 8.7 8.8 8.7 8.8 8.7 8.8 8.9 8.9 8.9 8.9 8.9 8.9 8.9 8.9 8.9	12.7 12.6 12.8 12.8 13.0 13.4 13.8 13.9 13.1 12.5 11.6
UT FRE C DPU)	01 9•0 9 30	0 9	04 (9.0 (8 27	9.0		6.0 8.0 29	08 7.0 30	09 6.0 32	10 5 • 0 35	11 3•0 34	12 6•0 27				
UT FREQ PRU	į		14 1 •0 6• 27 2		6. C	18 5.0 28	19 5±0 28	20 3 • 0 3 4	21 5•0 36	22 5•0 33	23 6+0 30	24 8•0 30				
Table A		4/40)				. •	•									, v
	M/CT 10.1	AN 6N - NIMUM	123.58 ANGLE	##:[E 1 0.0	0.414 DEGREE	- 122 S. Pi	0 •33F DVER	28 0	SPOT AZI 1.60 .10 K	101.	37 FO: ST	86.	E	KH. 139.6 B DB		: :
UT		MUF			4.0					11 11 11	D.O 1.	2•0 1	5.0	•	FOT	HPF
01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24		7.1 6.9 6.8 6.7 6.9 7.37 8.0 7.6 5.5 4.8 4.8 3.5 3.8 2.4 2.9 4.6 4.2	26 28 30 10 11 13 13 12 15 15 15 15 15 34 34 34 34	14 10 7 6 8 11 16 21 28 34 34 34 28 27 34 34 34 34 34 34 34 34 34 34 34 34 34	20 17 15 14 15 18 21 26 335 335 335 335 335 335 335 335 335 33	24	27 28 28 28 28 28 28 28 28 28 28 28 28 28	29 27 26 27 28 8 8 0 1 2 1 2 2 2 3 3 1 1 1 1 1 1 1 1 1 1 1 1	30 29 28 28 28 29 7 8 0 1 1 7 7 1 1 7 7 1 -	8 -7 -7 -8 8 -9 1 1 2 1 1 3 3	1 - 2 - 3		-		5.7 5.7 5.7 5.6 5.6 5.7 6.0 6.3	8.0 9.0 8.9 8.8 8.8 8.8 9.7 10.2 9.7 7.9 6.6 5.7 7.1 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5
FREQ CPU	8.0 30	0.8	0.3	04 8 40 28	8•1	06 7•0 7 28	07 •0 30	08 0 6 32			11 • 0 3 35	12 •0 34			-	

Table A.4 (13/40)

07

19

٠.0

29

5.0

08 5.0 30

20

4.0

09

21

3.0

10

5.0

23

4.0

31

3.0 34

3.0

34

12

5.0

24

6.0

117

080

FREO

DBU

FREO

0.1

28

5•0 29 02

28

7.0

5.0

03 7•0 27

15

5.0

05 7•0 27

17

4 • 0 3 0 6 • U 27

18

4 . ti

04

7.0 27

16 5.0

		MACTA 10.16 MIA	INUM FIEL	123.58 ANGLE .D STR	E O.O ENGTH	CUYOT 10.50 PEGR	R FF	21.026 POWE:		A 277.9 0.10 AIN	KW TR. (BER 1: H5 7•46 : REQ • 0•0 D:	MIL 17 SIG•	5.6 0.0	KM. 282.6 DB DB	•	
	UT		NUF	DBU	3∙0	4.0	5.0	6.0	7.0	8.0	9.0	10.0	12.0	15.0	-	FOT	HPF
	01 02 03 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 21 22 23 24		11.7 11.4 10.8 110.5 110.7 11.0 11.0 11.0 11.0 9.4 9.4 9.4 9.0 8.5 7.8 5.9 4.8 4.0 8.8	13 13 26 25 26 3 4 4 5 6 6 6 6 6 6 17 18 18 13 18 32 33 31 16	-2 -11 -16 -18 -15 -9 1 124 30 30 30 30 26 27 27 27 30 37 27 27 30 30 30 30 30 30 30 30 8 8 8 8 8 8 8 8	12 -2 -4 -2 13 19 26 31 31 27 27 28 28 28 31 31 31 27	16 13 11 11 12 14 17 22 28 32 27 27 27 27 28 28 28 28 28 28 28 28 28 28 28 28 26 20 20 20 20 20 20 20 20 20 20 20 20 20	19 16 15 14 17 20 25 30 27 27 27 27 28 28 28 28 28 33 33 33 32 24	22 20 18 17 18 20 23 27 27 27 27 27 27 27 27 27 27 27 27 27	25 22 21 21 23 25 28 26 27 27 27 27 27 27 27 27 27 27 27 27 27	24 23 23 23 25 27 24 26 26 26 26 26 26 26 27 24 26 27 27 27 27 27 27 27 27 27 27 27 27 27	23 26 25 25 26 22 23 25 26 27 26 27 26 27 27 27 27 27 27 27 27 27 27 27 27 27	14 3 3 3 3 3 3 3 3 3 4 5 6 6 6 6 6			10.8 9.8 9.3 9.0 8.9 9.4 9.5 9.4 8.4 7.4 6.9 5.6 4.7 3.3 1.5 7.4 6.9 5.6 6.0 5.6 6.0	13.3 12.8 12.2 11.8 11.7 12.2 12.7 12.9 12.7 13.2 11.6 10.9 9.5 8.8 8.5 6.0 5.6 6.8 11.5
ſ	UT FREQ CBU	01 9.0 26	10.0	10.0	10.0	10.0	06 10.0 26	07 9.0 27	08 8.0 28	09 6 •0 30	10 5•0 32	11 4•0 31	12 3 • 0 30				
F	U T FREQ DPU	13 6.0 27	6.0	6.0	6.0	17 3.0 30	18 5.0 28	19 4.0 28	. 20 8 • 0 33	21 12 •0 34	22 12.0 34	23 12•0 32	24 10.0 30				
g: -							-							_		٠	÷
1 a	М	MINI	- 12 - 12 A MUM	3.58E NGLE STRE	0.0	0.50% DEGRE	Δ	.02E OWER NTENN	507 27 = C IA GA1	AZ 77•92 3•10 I	<₩ . R	5 46 REO.S	#ILE 175	6 0-0	KM. 282.6 UB DB		
	JT -		MUF		3.0	4.0	5.0	6.0	7 . C	0.8	9.0 1	0.0 1	2.0	15.0	-	FOT	HPF
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 2 2 2 2	678990123345567889012334	2 2 2 2 2 3 6 6 7	8.0 7.6 7.3 7.4 8.6 7.8 8.6 7.6 8.6 7.6 8.6 6.6 8.6 6.6 8.6 6.6 8.6 6.6 8.6 8	29 29 31 30 13	1 -3 -4 -3 -2 9 19 26 30 30 30 330 37 14 4 30 324 17	13 11 11 12 14 18 22 28 31 31 28 28 28 28 27 15 15 15 15 27 21	17 15 16 16 18 21 25 30 29 29 29 28 28 16 16 16 16 32 28 28 28 28 28 28 28 28 28 28 28 28 28	20 19 119 119 121 227 227 229 229 228 166	23 22 22 22 22 23 24 25 27 22 28 28 21 66 16 	27 28 16 16	26 26 26 2 3 15 16 16 16 	27				7.0 6.6 6.2 6.2 6.3 7.5 6.5 6.0 5.5 5.0 3.4 2.8 2.6 2.1 1.5 3.3 5.3 6.7	9.4 8.8 8.3 8.2 8.5 9.6 9.9 9.8 9.2 8.4 7.6 6.0 5.1 4.6 7.4 4.1 3.0 4.7 4.1 9.0
DE	₹E Q :U	01 8.0 27	27	03 10.0 27	04 9.0 26	05 9•0 26	06 8.0 26	٠.	08 6•0 27	09 5.0 30	10 4•0 31	11 4.0 31	12 3•0 30			•	
FR DB	REG	13 3.0 30	3.0 30	15 3•0 30	16 3±0 30	17 3•0 30	18 3•0 27	19 4.0 15	20 3 • 0 14	21 5.0 32	22 7•0 33	.23 6•0 30	7.0 28				•

Table A.4 (17/40)

0.7

8.0

19

33

8.0

08

7.0

09

5.0 32

20 21 22 23 24 9.0 10.0 10.0 10.0 10.0

33

5.0 32

4.0

6.0 29

34

06

8.0

18

33

6.0

9. n 25

17

32

5.0

0.1

9.U 27

13

3.0

30

FREQ

CRU

FREQ

DBU

02 03 10.0 10.0

3.0

3.0

30

04

16

30

3.0

10±0 26

	Table A	.4 (21/4)	0)				-		ς								
		MACTAN 10.16N MINI	– 1 MUM		E 0.40	CUYOI 10.50 DEGR	IN - 1 REES	NCESA 21.02 POWE	E R ≕ NNA G	277.9 0.10 AIN	IZIMUT '2 9 'KW TR∗	BER 1 7.46 REO. 0.0 D	MIL 17 SIG•	5 6 U 0			
	υī		MUF	D BU								10.0	12.0	15.0		FOT	NOT.
	01 02 03 04 05 06 07 08 09 10 11 12 13 14 15	10 14 16 10 10 10 11 10 10 8 8 8 8	0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	26 24 23 24 25 27 -3 5 6 7 7 7 7 6 6	-11 +20 -25 -26 -24 -17 -8 -4 17 -28 30 30 30 30 30 30	1 -5 -9 -10 -8 -3 -4 15 22 29 31 31 26 27 27 27	13 10 8 7 8 11 14 18 25 31 32 27 27 27 27 27 27	17 14 12 12 13 15 17 22 27 27 27 27 27 27 27 27 27 27 27 27	19 17 15 15 15 17 20 24 27 27 27 27 27 27 27 27 27 27 27	22 20 18 18 19 21 23 26 27 27 27 26 26 27 27	9.0 24 22 21 21 22 25 28 24 26 27 26 7 7	26 24 23 23 24 25 27 29 24 25 26 7 7 7 7	12.0 28 27 26 26 27 -6 4 6 7 7 7	5 6 -		8 · 5 · 6 · 8 · 8 · 8 · 8 · 8 · 8 · 8 · 8 · 8	HPF 11.4 12.8 12.7 12.8 12.9 13.1 13.5 13.9 14.1 13.3 12.8 12.0 11.1 11.0 10.7
	18 19 20 21 22 23 24	6 5 5 6 8	• 2 • 7 • 7 • 9 • 9	20 20 19 33 31 17 28	27 27 30 30 25 13	27 28 31 31 27 19	28 32 32 32 29 23 17	28 19 33 30 25 20	27 20 20 33 31 27 23	20 20 20 20 32 28 25	20 20 20 - 17 27	20 20 -	-	-	-	4.6 4.1 3.6 3.6 5.8 7.4 8.5	10.4 9.4 8.3
	UT EREQ DBU	01 12.0 28	02 12•0 27	12.0	12.0	12.0	12.0	10.0	0.8 10.0 29	8.0	6.0	5.0	4 • 0)			•
	UT FREO DBU	13 3•0 30	14 3, 0 30	3.0	-3.40	3.1	6.0	5.0	20 5 • 0 3 2	7.0	8.0	0.8	24 10.0 28				
	Table A	4 (22/40	1				, 4-							-			
•	i	MACIAN 10.16N MINIMU	- 12 JN A		0.0	UYOTO G.SON CEGRE	PRIN - 12 E5	O CESA 1.02E PONER ANTENI	2 = NA GA	AZ 77,92 0,10 IN T	1#UTH 97 KW R- 0		MILE 175 IG.	•6 0•0	KM. 282.6 Cu DB		
	UΤ	ML		DBU	3.0	4.0	5•0	6•0				10.0	t 2. N	15 N		C/: 7	uo E
	01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 22 23 24	7. 7. 6. 6. 7. 7. 8. 8. 8. 5. 4. 3. 3. 4. 7.	2009 804 804 804 804 804 807 507 507 5	24 21 19 19 19 22 25 23 31 66 66 55 51 31 31 30 30 30	1 -6 -10 -11 -9 -4	13	17 14 12 12 13	20 112 16 16 16 21 25 29 28 66 	23 21 20 20 22 24 27 30 33 28 6 - - - - - - - - - - - - - - - - - -	25 23 22 23 24 26 27 28 31 27 28 6	27 25 24 25 26 27 29 5 6 6	10.0 28 27 26 26 27 28 4 5 6	28	15.0		501 501 500 500 500 500 500 500 500 500	HPF 8-1 9-1 8-9 8-9 9-4 90-4 10-0 9-4 10-0 5-3 4-4 4-8 4-1 5-3 8-2
	UT FRE O DBU	01 10.0 1 28	02 0•0 27	03 12.0 28	04 10•0 26	05 10•0 26	. 06 10.0 27	07 10.0 28	08 9.0 29	09 8.0 31	10 7.0 33	5.0 32	12 4.0 31			•	v
	UT FREO DBU	13 4.0 31	14 3.0 30	15 4.0 31	16 4.0 31	1.7 4 • 0 31	18 3•0 30	19 6•0 33	20 8•0 33	21 10.0 34	22 10.0 33	23 9.0 31	24 9•0 29				- i

Tab	le	М	A C	TA	in N	าบเ	1 a	3 • NG	l, È		TOTO CUYCT 19.50 DEGR	O PRI N = 1 CES		: } = VNA GA	A; 277.9; 0.10 AIN 1	ZIMUTI Z 9 KW [R• (BER 16 HS 7.46 REQ.:	MILE 17: 51G.	0.0	KM. 282 DB DB	• 6		
יט:						·UF			3U	3.0			6 • O	7 • f	8 •0		10.0	12.0	15.0	-		FUT	HPF
01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 11 16 17 18 18 20 21 22 23 24					7	51 65 99 65 8 2 7 4 4 7 8 5 9 7 7 9 9 3 0 4		1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	136-73	-6-151 -22-20-30-30-30-30-30-30-30-30-30-30-30-30-30	5 -2 -6 -7 -5 0 11 17 25 31	15 11 9 10 12 16 21 27 27 27 27 27 27 29 29 29 29 29 29 28 31 31 31 31 31 31 31 31 31 31 31 31 31	185 144 169 247 277 277 288 200 200 200 200 200 200 200 200 200	21 16 16 17 19 22 26 27 27 27 27 28 29 29 29 28 6 6 33 25	23 21 20	25 23 22 22 24 26 27 27 27 27 28 29 26 6 33 31 28	27 25 24 24 26 23 24 25 26 27 27 28 29 27 77 	21 17 27 27 21 23 24 24 24 7 7 7 7 7	456677			10.8 10.8 10.4 10.2 10.6 10.6 11.4 11.3 10.8 9.8 9.8 9.1 9.2 9.3 18.6 6.6 5.3 4.0 7.1 9.5 10.7	13.9 13.7 13.7 13.2 13.5 15.5 16.3 15.4 15.4 14.0 14.0 13.8 13.5 12.8 13.5 12.8 13.5 12.8 13.5 12.8 13.5 12.8 13.5 12.8 13.5 13.5 13.5 13.6 13.6 13.6 13.6 13.6 13.6 13.6 13.6
UT FRI DAL	E Q		1	0 1.0 2	0	10	02 •0 25	12	03 • 0 27	04 12.0 23	10.0	10.0	9.0	08 8.0 28			4.0	3.0					
UT FRE Del				1. 3.0 31	0 :	3	14 .0 30	3	15 • 0 30	1 d 4 • C 3 1	4.0	4.0	3.0	30 30	6.0	22 9•0 -33	9.0	9.0				•	
Tabl	ė	MA	\C.	[A]	i I M	_ U#	12: A		Ε	0.0				SU 2 = NA GA	-AZ 77.92 0.10 (IMUTE 97 KV R 0	ER 1 5 •46 KEQ•S •0 D3	MILE 175 IG.	•6 0.0		. to		
UT					Ħ	ŲF		DB	υ	3.0	4.0	5.0	6.0	7.(8.0	9.0	16.0	1,2.0	15.0	- '		FCT	HPF
01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24				1 1 1	8889100099887665433589	6416185895952692		22222 1111111111611611		4 -3 -7 -8 -6 -1 7 17 25 30 30 30 30 30 30 30 30 32 22 13	15 12 10 9 10 13 14 21 27 31 28 28 29 29 29 28 16 31 25 19	19 16 14 14 15 17 20 24 28 28 28 29 29 16 13 28 23	22 19 17 17 18 27 26 27 28 28 28 29 29 29 29 29 29 29 25 25 25 25 25 25 27 27 27 27 27 27 27 27 27 27 27 27 27	21 20 21 23 25 28 27	26 23 23 24 25 27 26 28 28 28 28 17 17 17 17	28 25 25 25 27 24 26 27 17 17 17	3 27 27 26 23 25 26 17 17 17 17	4 4 5 17 17 17 17 17 17 17 17 17 17 17 17 17				7.8 7.5 7.5 7.9 9.1 9.1 9.1 6.6 5.3 3.0 1 2.1 1.8	10.2 9.9 9.6 9.5 10.0 11.6 12.5 12.6 11.7 11.1 10.5 10.2 10.4 8.5 7.9 8.5 7.9 8.5 7.9 8.5 7.9
UT FRE Deu			9	01 •0 28	1	0.	02 0 27	10,)3 . 0 ? ?	64 10•0 26	05 9.0 25	06 9.0 27	07 8±0 27	08 7.0 28	09 5.0 29	10 4•0 31	11 4•0 31	12 3•0 30					
UT FRE DbU			3	13 • 0 30		3.	0 30	3	5 0 0	16 3.0 30	17 3.0 30	18 3•0 30	19 3 • 0 - 30	.20 3•0 30	21 4.0 31	22 5•0 32	23. 6. U 29	24 8 • D 28	:				

DBU

27

		· • •	20		4 C	41	7.7	_				
15		4.9	27	25	25	27	2.8	_		-	-	-
16		4.4	27	25	26	27	2.8	-	-	-	-	-
17		4.1	27	25	26	27		-				-
18		4 0	26	25	20	27	28	_	-	-	-	-
19		3.5	56	25					-	-		-
20		3.0	25		.26	27	28	~	-	7	, -	-
21		3.5		25	26	27	28	29	29	30	30	-
22			56	25	26	27	23 -	29	29	30	30	30
23		5.4	2.5	ءَ 2	24	25	56	27	28	28	29	29
		7.2	2.3	6	19	21	5.5	- 23	24	25	26	28
24		7.8	20	- 9	13	17	19	21	21	5.5	24	26
UT	01	02	03	04	0.5	0.						
FREQ	15.0					0.6	07	0.8	09	10	11	1.5
DBU	26	25	25		15.0			12.0		10.0	8.0	6.0
000	20	6.3	63	25	25	25	24	. 26	28	29	29	28
UT	13	14	15	16	1.7	18	19	50	21	22	23.	
FREQ	5.0	5.0	6.0	6.0	6.0	5.0	6.0			12.0		
DBU	2.7	27	28	28	2.8	27	2.8	30				12.0
		-		-0		2,	2.0	30	30	29	28	59

3.0

2.6 4.3

6.2

4.8

4.7 6.0 8.1

	Table A	.4 (31/	40)						7								
		MACTAN 10.168 MINI	1 N = 12 IMUM A	23,58E NGLE	10 (0.0	3135UAN 12+13N	IGA RA 1 - 11 ES	POWER		AZ 196.75 0.10	IMUTE 115 KW	15 •97 REQ •5	MILE 306	0.0			
			FIELE	STRE	NGTH	IN D								:			
	UΤ		MUF			4.0							12.0		-	FOT	HPF
	01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	13.2 12.6 11.8 12.6 12.6 13.6 14.7 13.6 14.7 14.7 15.6 16.6 17.6	22 20 19 20 23 17 17 2 2 2 2 13 13 13 13 13 12 29 28	- 1 5 5 4 2 7 9 7 5 5 5 5 5 5 5 5 5 5 4 6 3	-15 -25 -31 -33 -31 -23 -12 13 20 26 26 26 26 26 26 26 26 26 26 26 26 26	17 22 27 27 27 27 27 27 27 27 27 27 27 27	14 11 9 10 12 15 19 28 26 26 26 28 28 28 28 28 28 28 28 28 28 28 28 28	17 15 13 13 13 15 12 29 26 26 26 27 28 28 21 29 28 21 29 28 22 28 28 20 28 20 28 20 20 20 20 20 20 20 20 20 20 20 20 20	19 17 16 15 16 17 22 25 26 26 27 27 28 28 21 33 29 22 24 22	18 19 21 23 26 26 26 27 27 27 27 28 28 13 13	22 20 19 18 19 20 22 24 25 26 26 26 27 27 27 27 27 27 27 27 27 28 27 27 27 28 27 28 27 28 27 28 27 28 27 28 27 28 27 28 28 28 28 28 28 28 28 28 28 28 28 28	23 21 20 19 20 21 23 24 25 25 25 27 27 27 27 27 27 27 27 27 27 28 25	16 24 23 24 16 17 1 2 3 3 13 13 13 13 13		11.4 110.7 10.5 10.9 11.3 11.9 11.9 11.9 11.9 11.0 10.0 10.3 10.3 9.8 7.5 9.8 7.5 9.8 4.5 7.9	14.7 14.2 13.6 13.4 13.9 16.1 17.0 16.9 16.3 16.0 15.5 15.2 15.4 15.5 14.7 15.5 14.7 15.5 14.7 15.6 10.0
	UT FRED DBU	01 12+0 23	15.0	03 15•0 23	15.0		12.0		10.0	0 • 0	7.0	5.0	5.0				
	UT FREC DBU	. 13 5•0 27	5.0	6.0		6.0	6.0	5.0	5.0			23 12.0 28	12.0				
	Table A	.4 (32/	สภา											-			
		MACTAN	- 12	3.58E NGLE	1	CCTOS USUAN 2.13N	ER GA Rai - 11	0 DAR: 9↓53E	. 5	AZ 96.75	IMUTH 115	ER 1 S •97	U.U MILE 306	\$ •5	: KM. 493.2 DB		
				STRE				ANTEU	NA GA	IN - 11	R. 0		RE.				
	UT		EUF	DBU	3.0	4.0	5.0	6.0	7.6	8.0	9.0	10.0	12.0	15.0	-	FOT	НРЕ
	01 07 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	1 1 1 1 1 1 1	8.9 9.45 11.5 11.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7	17 19 22 10 11 11 11 11 11 11 11 11 10 26 29 10 25	23342311055555555555555555555555555555555555	-1.6 -14 -10 -12 -17 -26 -26 -26 -26 -26 -26 -26 -26 -26 -26	10 · · · · · · · · · · · · · · · · · · ·	15 14 14 16 18 21 25 28	16 17 18 20	18 18 19 20 22 24 27	22 19 17 17 19 23 24 26 27 27 27 27 27 27 26 11 11		25 23 23 22 23 24 9 10 11 11 11 11			8.3 8.0 7.9 8.4 9.7 9.8 8.0 7.6 7.4 6.2 5.8 6.2 5.4 2.7 7.9 8.6	10.9 10.5 10.1 10.0 10.7 12.5 13.5 13.5 13.5 12.9 12.4 11.8 11.0 10.0 9.4 9.7 7.4 5.1 5.7 7.6 10.4 11.3
	UT FREO OBU	01 12.0 25	02 12.0 23	03 12 • 0 23	04 12.0 22	05 12+0 23	06 12.0 24	u7 10∗0 23	08 10.0 25	09 8•0 27	10 6.0 28	11 5.0 27	12 5±0, 27				
	UT FRE O DBU	13 5.0 27	14 5•0 27	15 5.0 27	16 5.0 27	17 5•0 27		19 4.0 26	20 4.0 26	21 5.0 27	22 7•0 29	23 8 • 0 26	24 10.0 25				•

•	fable	Ма	AC1	(A)	[WU 4	1. M		581 LE	E O	•0	PUE PE	RT 46: GR	ARY O PI N - FES	11 11	ICES 18.4 PUV ANT	SA 45E VER TEN	E R ≃	GA	0. 0. 1N	Α2 • 5 6 10 1	2181 5 KW TR.	JT1 8	15 1 • 6	8 2 • S	3 • 16 •	LE 352	•6	0 0	CB :	7.5		
	UT				EU	F	Đ	BU	3	•0	4	• 0	5	0	. 6	0	7	0	8	•0	9.	0	10	• 0	12.	0	15.	0	-		FOT	HPF
	01 02 03 04 05 06 07 08 09 10 11 13 14 15 16 17 18 19 21 22 23 24			11 11 11 11 11 11 11 11 11 11 11 11 11	12.1 1.1 10.1 10.1 10.1 10.1 10.1 10.1 1	81556947774254155045507233	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	977568147710000000000000000000000000000000000	-5 -6 -5 -4 -3 -1	870 661283334444444446	-11 -23 -33 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -	85747039555555555557	11 -14 -13 -13 -13 -13 -13 -13 -13 -13 -13 -13	7 4 5 5 5 7 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1411 99 111 151 237 27 25 26 26 26 26 27 27 27 27 27 27 27 27 27 27 27 27 27		17 14 13 12 13 13 15 17 20 23 25 26 26 26 26 26 26 27 28 28 28 28 26 26 26 26 26 26 26 26 26 27 28 28 28 28 28 28 28 28 28 28 28 28 28		151 151 151 151 151 151 151 151 151 151	77 55 55 57 77 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2018 17117 1712 2022 252 252 252 252 252 252 252 252 2	337777777777777777777777777777777777777	21 16 17 17 17 21 22 25 25 25 25 25 25 25 25 25 25 25 25	33 37 77 79 1 1 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	22 20 18 18 19 20 22 24 27 111 111 111 111 111 111 111		242322222222222222222222222222222222222				10.8 10.1 9.5 9.0 9.1 9.3 9.7 10.0 9.9 8.7 7.3 6.4 4.8 3.6 5.9 5.9 5.9	14.1 13.3 12.5 11.9 12.0 12.6 13.5 13.4 14.1 13.7 13.3 12.8 10.1 9.9 8.7 7.8 11.1 13.6 13.6
							_		-			_	•••		••										.4		2.0					13.0
	UT FREO DBU		15.	01 •0 24	15	02	1 :	03 5 • 0 22	1 :	04 5 • 0 2 2	1:	05 0.0 2.5	15	60 0. 23	15	07 •0 24	12	08 • 0 24		09 •0 27		10 •0 28		11 • 0 28	5	12 •0 26						
	UT FREQ DBU	٠	٤.	13 • 0 26		14 •0 26	8	15 0 26		16 7•0 26	1	1 ? 2 6	7	18 •0 26	5	19 •0 26	15	20 • 0 29		21 •0 29		29 29	15		15							
										:				-			:										.				. "	
Ta		M 4 1 0	СТ <i>е</i> •16	4 N 6 N 4 I	- NUM	٨		E	Đ,	, O	1AL R3B R3B P4 PEC	FC 6N RE	PR ES	INC 118 F	O CESA POWE NATE	A SE ER Enn	. = 4A (2 (GA)	62. D.1	A Z 5 6 0 J	K₩ R.	TH: 81	S • 68 REO	. S.		.ES		D 0	_			
•	UT				4UF		ĎВ	Į;	. 3 •	0	4.	0	5 .	0	6.0)	7.	r	8	ŋ	9.	0	10.	0 1	2 • [1	5 • 0)	_		FCT	HPF
11 11 11 11 12 22 22 22 22	01 02 03 03 06 07 08 09 01 11 11 11 11 11 11 11 11 11 11 11 11			20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7157773999999999999999999999999999999999		19 15 10 10 10 10 10 10 10 10 22 24 22 22 23 24 22 24 22 24 24 25 26 26 26 26 26 26 26 26 26 26 26 26 26		179 -36 -35 -35 -35 -36 -36 -36 -36 -36 -36 -36 -36 -36 -36		-9-13 -13-13-13-13-13-13-13-13-13-13-13-13-13-		14 11 10 10 15 19 23 26 26 26 26 26 26 26 26 26 26 26 26 26		175 115 115 115 115 115 115 115 115 115		197166182258266100 88822422		21813 1313 1313 1226 226 226 226 227 228 228 228 228 228 228 228 228 228		20 17 16 15 16 18 21 22 26 11 11 11 		219 18 18 18 22 22 410 111 111 		242212212224		25 24 24 24 24 24 24 24 24 24 24 24 24 24				7.7 7.7 7.5 7.7 7.3 8.3 8.5 7.6 8.9 9.8 1.9 9.8 1.9 9.8 1.9 9.8 1.9 9.8 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9	10.3 9.3 8.5 8.8 9.4 10.9 11.1 11.0 9.3 9.3 8.7 7.5 6.3 5.6 3.8 3.7 2 8.2
F	T REQ BU	1	0 2 • 1 2	0	15.)2 .0 25	15)3 .0 24	.15	04 •0 24	15.	05 • 0 24	12.	0	12,	7 0 4	10.	8	9.	.0 !6	δ	0	7 7 2	0	6 . 2	0 .			-			
U F	T REQ 8U		1 7 • 1 2 •	3	6.	i 4	5	15	5	6 0 26	5	7	1	8		9 · 0	2	0	2 10•	11.	. Z	2	12.	3	2 12 • 2	4						•

```
SUNSPOT NUMBER 100.0
            SURSPOI NUMBER 100.0

OCIAN TO PUPPTO PRINCESA AZIMUTHS MILES KM.

OCIAN - 123.58E 9.46N - 118.45E 262.56 81.68 352.6 567

MINIMUM ANGLE 0.0 DEGRIES POWER = 0.10 KW REQ.51G. 0.0 DB

ANTENNA GAIN IR. 0.0 DF RE. 0.0 DB

FIELD STRENGIR IN DB FREQUENCIES IN MHZ
                                            APRIL
         MACTAN TO PUEPTO PRINCESA
10.16N - 123.58E 9,46N - 118,45E
                                                                                                              567.5
  υī
                  MUF
                           DBU 3.0 4.0 5.0 6.0 7.1 8.0 9.0 10.0 12.0 15.0
                                                                                                                         FOT
                                                                                                                                  HFF
  0.1
                 12.9
                                                                                                                       11.1
                                                                                                                                 14.4
                                 -63
-74
-77
                                                -16
                                                           8
                 12.1
                                         -39
                                                                                        18
                                                                                               18
                                                                                                                       10.7
                                                                                                                                13.6
  03
                 11.6
                                         ~47
                                                 -21
                                                                 10
                                                                         13
                                                                                        17
                                                                                                                       10.3
                                                                                                                                13.1
                 11.4
                                         -5ti
  በፈ
                           15
                                                 -22
                                                                  Q
                                                                         ذ 1
                                                                                15
                                                                                        17
                                                                                               16
                                                                                                       20
                                                                                                                       10.2
                                                                                                                                12.9
                                 ~73
  0.5
                                                 -20
                                                                 10
                           16
                                         -46
                                                                         13
                                                                                16
                                                                                                       21
                                                                                                                       10.5
                                                                                                                                13.3
  06
                 12.3
                                 -62
                                                                                                                       10.4
                                                                                                                                14.8
  0.7
                 13.2
                           22
                                 -44
                                         -25
                                                                         17
                                                                                19
                                                                                        20
                                                                                               21
                                                                                                                       11.1
                                                                                                                                15.8
                           24
15
  3.0
                 13.8
                                 ~23
                                                  13
                                                         16
                                                                 18
                                                                        20
23
                                                                                21
                                                                                               23
                                                                                                                       11.6
                                                                                                                                16.6
                                                                 22
                                                                                                                       11.7
                                                                                                                                16-7
                                                         26
27
27
  10
                 13.5
                                                  25
                                                                                28
                                                                                                                       10.8
                                                                                                                                16.6
                                                                        28
25
25
                                                                                                                       10.4
  11
                 13.0
12.5
                           11
11
                                   23
23
                                          25
25
                                                  26
                                                                 28
25
                                                                                25
  12
                                                  26
                                                                                25
                                                                                       25
                                                                                               25
                                                                                                                                15.4
                                                                                                       11
                                                                                                                       10.0
                                                                                                                        9.9
  14
15
                 12.9
13.6
                                   23
                                                         25
                                                                 25
                           11
                                          25
                                                  25
                                                                         26
                                                                                                                       10.2
                           11
                                          25
                                                  25
                                                         26
                                                                        26
                                                                 26
                                                                                26
                                                                                       26
                                                                                               26
                                                                                                       11
                                                                                                                       10.7
                                                                                                                                16.0
                                                                        26
                 13.6
                           11
                                                  26
                                                         26
                                                                 26
                                                                                       26
                                                                                26
                                                                                               26
                                                                                                       11
                                                                                                                       10.7
                                                                                                                                16.0
  17
                           11
                                                  26
                                                                        27
                                                                                                                        9.9
                                                                                                                                14.8
  18
                 11.0
                           11
                                   24
                                          25
                                                  26
                                                         26
                                                                 26
                                                                        27
                                                                                27
                                                                                                       11
                  9.2
                                   24
                           35
                                          25
                                                                        28
                                                  26
                                                                 28
                                                                                28
                                                                                       11
                                                                                                                        6.3
                                                                                                                                12.9
                                                  26
                                                         27
                                                                 28
                                                                        28
                                                                                28
                                                                                                                                10.9
                                                                                                                        5.3
 21
                  7.8
                           28
                                   24
                                                         27
                                                                 28
                                                                        2.8
                                                                                                                        5.3
                                                                                                                                10.8
                 9.7
12.2
                                   21
                                                                 25
26
                                                                        27
                           85
                                          23
                                                  24
                                                         25
                                                                                27
                                                                                       28
                                                                                               85
                                                                                                       29
                                                                                                                        8.3
                                                                                                                                10.8
  23
                           26
                                   - 2
                                          16
                                                  18
                                                         20
                                                                        23
                                                                                24
                                                                                               25
23
                                                                                                       27
                                                                                       24
                                                                                                                       10.5
                                                                                                                                13.
                                                                                                                                14.8
            FREO
                                                                                                6.0
 DBU
                    14 15 16 17
9.0 10.0 10.0 10.0
74 26 27
             13
5.0
                                                            19
                                                                    20
                                                  9.0
 FRED
                                                         9.0 15.0 15.0 15.0 15.0 15.0
28 29 29 29 27 25
 ÙRU
Table A.4 (36/40)
                                                                SUNSPOT NUMBER 10.6
                                           APRIL
           APRIL U SUNSPUI NUMBER 10.0

CTAN 10 PUERTO PRINCESA AZIMUTHS MILES KM
1.16N - 123.58E 9.46N - 118.45F 262.56 81.68 352.6 56

MINIMUM ANGLE 0.0 DEGREES POWER = 0.10 KW REO.SIG. 0.0 DB

ANTENNA GAIN TR. 0.0 DB RE. 0.0 DB
         MACTAN -
         10.16N - 123.58L
                                                                                                              567.5
                 FIELD STRENGTH IN DR FREQUENCIES IN MHZ
                          DBU 3.0 4.0
 UT
                 SUF
                                                 5.0
                                                        6.0
                                                                7.0
                                                                        8.0
                                                                              9.0 10.0 12:0 15:0
                                                                                                                        FOT
                                                                                                                                 HPF
 01
                                 -28
                                                 12
                                                                18
                                                                        19
                                                                               20
                                                                                              22
                 8 6
8 5
8 5
                                 - 40
                                        -16
 02
03
                          14
                                                  8
                                                         13
                                                                        17
                                                                16
                                                                               15
                                                                                       17
                                                                                                      24.
23
                                                                                                                        7.7
                                                                                                                                 9.7
                                 -48
                           11
                                         -20
                                                   ó
                                                                14
                                                                                              20
                                                                                                                        7.5
                                                                                                                                 9.6
                                 -51
                           11
                                        -21
                                                         10
                                                                1 4
                                                                        16
17
                                                                                              19
                                                                                                                        7.5
                                                                                                                                 9.6
 0.5
                 8.6
                                 -48
                                                         11
                                                                14
                                                                                              20
21
                                                                                                      23
24
                                                                                       16
                                                                                                                        7.7
                                                                                                                                 9.8
 0.6
                9.3
10.3
                          16
                                 -39
                                        -15
                                                         13
                                                                                                                        8.0
                                                                                                                               11.0
 07
                                -26
                                                 12
                                                        15
19
                                                                18
                                                                        20
                                                                                                                        8.9
                                                                                                                               12.3
 08
                                                 16
                                                                21
                                                                        22
                                                                                       23
                                                                                              25
                                        19
 119
                11.9
                                  17
                                                        23
                                                                                       26
                                                                                              24
                                                                                                                      10.2
                                                                                                                               14:2
 10
                12.0
                                  24
                                         25
25
                                                 26
                                                        27
27
                                                                28
                                                                                                                        9.0
                                                                                                                               13.9
                11.6
                                                 26
                                                                28
                                                                        28
                                                                               27
                                                                                       27
                                                                                                                               13.4
                10.7
 12
                                  24
                                                 26
                                                                28
                                                                               26
                                                                                       26
                                                                                                                        8.0
                                                                                                                               12.4
 13
                                  24
24
                                         25
25
                                                 26
                                                        27
                                                                                                                        7.4
7.1
                                                                                             9
                                                                                                                               11.4
                                                        26
27
                                                 26
                                                                26
                                                                                                                               11.5
 15
                 9.0
                                                 5.6
                                                                28
                                                                               26
                 8.5
7.9
                                         25
25
25
 16
                                                 26
                                                        27
                                                                                      29
                                                                                                                               10.5
                                                                                                                        6.5
                                  24
                                                 26
26
                                                        27
                                                                28
                                                                                      29
                                                                                              29
                                                                                                                        6.0
 18
                 7.0
                                                        27
                                                                                      29
29
                                                                                              29
29
                                                                28
                                                                        28
                                                                                                      29
 19
                                         25
                 5.5
                          27
                                                                        28
                                                                               28
                                                                                                      29
29
 20
                 4.1
                          2.5
                                  24
                                         25
25
                                                 26
                                                        27
                                                                28
                                                                                                                        2.7
                 4.3
                                                26
25
                                                                                              29
29
27
                                                        27
                                                                28
                                                                       28
27
                                                                                      29
                                                                                                      29
                                                                                                                                6.0
                                                                                                                        2.8
                 6.6
8.9
                          27
                                         24
                                                        26
                                                                                      28
25
                                                                               28
                                                                                                     29
28
                                -12
                          24
                                         18
13
                                                 21
                                                                                                                               10.1
                                                 16
                                                                                                                               10.8
              01
                     02
                            03
                                            05
                                                06 07 08
15.0 12.0 12.0
                                    04
                                                                          09
                                                                                 1.0
ERFO
           15.0 15.0 15.0 15.0 15.0
                                                                       10.0 10.0
                                                                                               7.0
28
                                                                                      8.0
DBU
                                                                                         28
                                                                      21 22 25 25
15.0 15.0 15.0 15.0
29 29 28 26
                           15 16 17 18 19 20
7.0 10.0 12.0 15.0 15.0 15.0
28 29 29 29 29 29 29
HT
FREO
                   5.0
            6.0
DBU
```

Table A.4 (35/40)

Table	A.4 (37/40)						c								
	MAL' 10.	TAN IAN ~ IN[MUM	123.58 ANGLE	3E	£UER1 9.47	5N - 1	NCE 5. 18.4: POW	A SE ER ≂	262. 0.11	0 KW	THS 31.68 REQ	MIL 35 -516	2.6	KM. 567.5	, ···:	
		EIE	LD STR	RENGT	H IN C	в г	REQUI	ENNA G ENCLES	SAIN S IN I	TR. MHZ	0.0	DB RE	. 0.	8d 0		
UT		MUF	. DBu	3 • 4	0 4.7	5.0	6.6	7.0	8.0	9.0	10.	12.0	15.0	-	FOT	HPF
01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24		11.0 10.5 10.3 10.3 10.4 10.5 10.9 11.4 11.6 11.7 11.5 11.0 9.8 9.7 9.5 9.5 9.7 8.6 7.8 6.8 8.0 10.0 11.1	18 15 12 13 15 18 25 28 10 10 10 10 10 10 27 26 23 21	-47 -62 -71 -60 -65 -23 -23 -23 -24 -24 -28 -28	-27 -38 -45 -485 -37 -27 16 225 25 25 25 25 25 25 25 25 25 25 25 25	7 -16 -20 -21 -19 -15 8 13 18 24 26 26 26 26 26 26 26 26 26 27 26 26 26 26 26 26 26 26 26 26 26 26 26	111 8 6 5 6 8 12 16 20 24 27 27 25 25 26 26 27 27 27 27 26 15 15	14 12 10 10 10 12 15 18 22 25 25 25 26 26 26 26 28 27 28 27 28 27 28 27 28 27 28 28 28 28 28 28 28 28 28 28 28 28 28	17 15 14 13 14 15 17 20 23 26 26 26 26 26 26 26 26 26 26 26 27 28 26 26 26 26 26 26 26 26 26 26 26 26 26	19 17 16 15 16 17 19 21 23 27 28 25 25 25 26 26 20 10 28 28 22 25 25 25 26 26 26 27 28 27 28 27 27 28 27 27 28 27 27 27 27 27 27 27 27 27 27 27 27 27	20 17 16 15 16 17 19 21 24 27 26 25 25 25 10 10 10 10 10 10 27 27 23 27 27 27 27 27 27 27 27 27 27 27 27 27	20 18 16 16 17 18 20 23 25 28 10 10 10 10 10 10 10 10 10 23 25 25 25 26 27 27 28 28 28 28 28 28 28 28 28 28 28 28 28	23 22 21 21 21 22 23 25 27 2		9.39 8.68 8.88 8.88 8.89 9.49 7.86 7.65 7.65 4.32 6.74 8.3	13.2 13.3 13.5 14.0 14.5 14.0 13.4 12.5 12.4 12.5 11.9 11.5 12.8 11.5 9.8 9.8
UT FREQ DAU	15	01 0 10 15. 23 2	0 15.0	15.0	0 15.9	15,0) 15 •(15.0	15.0	0 12.0	9.	0 6.0)			
UT FREQ DPU	5	13 1 10 5 1 26 2	0 5.0	5.0) 5 . ∙(8.0	7.0	9.0	12.0	12.0	12.	15.0				
	MACTA 10.16	N - 12 INUM A	3.58E	O.O HTDN	PUERTÓ 9.46N DÉGRE	- 11 ES 1	CESA 8.45E POWER ANTEN	.2 = NA GA	AZ 62.56 0.10 IN T IN MH	KW R. O	5 •68 REQ.5 •0 DE	MILE 352	0.0 0.0		FOI	HPF
01 02 03 04 05 06 07 08 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24		7.2 6.1 5.4 4.8 4.5 4.3 3.7 3.5 5.5 7.5	6 7 10 15 20 24 28 28 9 27 26 26 25 25 24 23 24 27 26 27 27 26 27 27 27 27 27 27 27 27 27 27 27 27 27	-39 -49 -49 -28 -15 -24 -24 -24 -24 -24 -24 -24 -24 -24 -24	-9 -15 -19 -20 -19 -18 13 124 -25 25 25 25 25 25 25 25 25 25 25 25 25 2	26 26 26 26 26 24 20 15	13 16 19 226 27 27 27 27 27 27 27 27 27 27 27 27 27	14 13 14 16 18 20 27 28 28 26 29 - - - - - - - - - - - - - - - - - -	15 10 10 10 10 11 21 22 28 28 28 28 28 27 23 21	17 13 13 14 18 21 22 28 10 - - - 28 28 27 24 21	19	22 21 20 19 20 21 22 24 27 29 	25 24 23 23 23 24 25 26 		6.9 7.2 7.3 7.4 7.4 7.3 6.9 6.6 6.6 6.6 6.0 4.5 4.0 3.6	8.7
UT FREQ DBU UT	01 15.0 25	15 .0 24	23	23	23	24	25	: 26	27	. 29	11 9.0 28	12 7.0 28				
FREQ DBU	6.0		15 6•0 27	16 6.0 27	17 6•0 27	18 8.0 28	19 12•0 29	20 15•0 29	21 15•0 29	22 15•0 29	23 15.0 27	24 15•0 26				÷
								– 2	78 —						4	

Table A.4 (39/40)

Appendix B

Appendix B. Preliminary Design of the Project

Appendix B (*1) Teletype, facsimile and radio frequency system

(*1) 1 Comparison between Teletype and Facsimile

1.	Operation	<u>Teletype</u>	Facsimile
	Suitable data type	Digital (such as characters)	Analog (such as line drawing)
	Transmission rate	100 characters/ 22 seconds (11 bits/charac- ter, 50bps)	A4-size 1 sheet/6 minutes (GII, fine mode)
	Noise resistance	Noise resistance to be improved due to ARQ use	Noise causes partial loss of picture but no practical problems in understanding its outline.
2.	Cost	₽227.000/set	₽76.000/set
3.	Maintenance	Easy	Comparatively complicated

(*1) 2 Comparison among dual radio frequency system

1.	Operation	Dual radio frequency system	Simplex channel	Duplex <u>channel</u>
	Data trans- Mission	Independent of telephone	Switching with telephone	Simultaneous data trans- mission and telephone, but limited to only one station

		Dual radio frequency system	Simplex channel	Duplex channel
	Action against faults	Quick action possible because of two independent channels	No action possible before recovery	Action possible for faults only with circuits in front of channel filter
	Overall evaluation of operation	Good	Bad	Moderate
2.	Allotment of frequency	Need frequency twice that of simplex channel	Standard	150MHz prohibi- ted due to wide base band
3.	Antenna	Two systems preferable	One system	One system
4.	Complexity of equip-ment	Complicated allotter (common unit)	Standard	Difficult to obtain standard equipment
5.	Redundancy	High	Standard	Moderate
6.	Cost	High	Standard	High
7.	Mainte- nance	Almost similar to simplex channel system	Standard	High maintain- ability because of dual system

Appendix B. (*2) Telecommunication equipment and peripheral facilities in main trunk

(*2) 1 Telecommunication equipment

The constitution, the specification and overall view sketch on a main equipment of the main trunk telecommunication system are described as below;

- (*2) 1.1 Telecommunication equipment in each stations
- (1) OH multiplex telecommunication equipments

The equipments are shown as below.

Terminal equipments, Relay, Ringer, Compander, PABX includes standard spare parts (Lamp, Fuse and standard tools) and standard accessary (maintenance cord, instruction and engineering tools).

(2) Spare unit

Spare unit keeps in the PFC and DCC

- (3) Existing telecommunication equipments of TANAY and NAGA are utilized after remodeled.
- (4) A new antenna in TANAY and NAGA for GAPAS will be installed new one, while, the other stations utilized existing antennas.
- (5) Arrangement of the measuring equipment required for maintenance.
- (6) In order to reduce the wind pressure, a 6.7 GHz band $4.0\text{m}\phi$ plate parabolic antenna must be covered by a ray-dome.
- (*2) 1.2 Specification of main equipment

The specification on main equipments used in the main trunk of meteorological telecommunication system is shown as below;

- (1) 800 MHz Band SS-PM multiplex radio equipment FD/SD system (PM 6/12/24-800-70 FD/SD)
- (i) General

Radio Frequency Band Channel Capacity

T-R Separation
Type of Modulation
Relay System
Diversity System

770 - 960 MHz
6/12/24 channels + 1
service channel
30 - 60 MHz
SS-PM
Baseband Relay
Frequency or Space
Diversity

Baseband Frequency

6 chs: 12 - 36 kHz 12 chs: 12 - 60 kHz 24 chs: 12 - 108 kHz 0.3 - 8.0 kHz

Service Channel

Frequency Power Supply

AC 220V±10% or -24V±10%

(Positive-grounded)

(ii) Transmission characteristics

Overall S/N

50 dB or better at modulation index of 2 rad peak and baseband width of 12 to 108 kHz and at receiver input level of -71 dBm

(iii) Transmitter

RF Power Output Frequency Tolerance Modulation Index

70W
within ±20 x 10⁻⁶
6 chs: 0.8 rad rms/ch
12 chs: 0.4 rad rms/ch
24 chs: 0.2 rad rms/ch

(iv) Receiver

Receiving System

Noise Figure
Local Frequency
Tolerance
Intermediate Frequency
IF Bandwidth

Crystal-Controlled Double

Super-heterodyne 3 dB or less within $\pm 20 \times 10^{-6}$

70 MHz/10.7 MHz

Approx. 460 kHz at 3dB

point

(v) Duplexer loss

Transmitter Side Receiver Side

1.5 dB 1.5 dB

(vi) Layout

See Fig. B.1

- (2) 800 MHz Band SS-PM multiplex radio equipment (PM 6/12-800-5)
- (i) General

Radio Frequency Band Channel Capacity 770 - 960 MHz 6/12/24 channels + 1 service channel T-R Separation
Type of Modulation
Relay System
Stand-by System
Baseband Frequency

30 - 60 MHz SS-PM Baseband Relay Set stand-by 6 chs: 12 - 36 kHz 12 chs: 12 - 60 kHz

Service Channel Frequency Power Supply

0.3 - 8.0 kHz

AC. 220V±10% or -24V±10% (Positive-grounded)

(ii) Transmission Characteristics

Overall S/N

50 dB or better at modulation index of 2 rad peak and baseband width of 12 to 108 kHz and at receiver input level of -67 dBm

(iii) Transmitter

RF Power Output Frequency Tolerance Modulation Index 5W within $\pm 20 \times 10^{-6}$ 6 chs: 0.8 rad rms/ch 12 chs: 0.4 rad rms/ch

(iv) Receiver

Receiving System

Noise Figure
Local Frequency
Tolerance
Intermediate Frequency
If Bandwidth

Crystal-controlled Double Super-heterodyne 7 dB or less within $\pm 20 \times 10^{-6}$

70 MHz/10.7 MHz Approx. 460 kHz at 3 dB point

(v) Duplexer loss

Transmitter Side

2.5 dB (including coaxial)
relay loss)
5.5 dB (including HYB loss)

Receiver Side

(vi) Layout

See Fig. B.2.

(3) 800 MHz Band SS-FM multiplex radio equipment (FM 60-800-5)

(i) General

Radio Frequency Band Channel Capacity

T-R Separation
Type of Modulation
Relay System
Stand-by System
Baseband Frequency

Service Channel Frequency Power Supply 770 - 960 MHz
60 channels + 1 service
channel
30 - 60 MHz
SS-FM
Baseband Relay
Set Stand-by
60 - 300 kHz or 12 - 252
kHz
0.3 - 8.0 kHz

AC 220V±10% or -24V±10% (Positive-grounded)

(ii) Transmission characteristics

Basic/Intermodulation Noise Power

Less than 300 pW on the worst channel (weighted)

(iii) Transmitter

RF Power Output Frequency Tolerance Frequency Deviation 5W within $\pm 30 \times 10^{-6}$ 50 kHz rms/ch or 100 kHz rms/ch

(iv) Receiver

Receiving System

Noise Figure
Local Frequency
Tolerance
Intermediate Frequency
If Bandwidth

Crystal-Controlled Sigle Super-heterodyne 6.5 dB or less within ±10x10

70 MHz Approx. 3.5/4.6 MHz at dB point

(v) Duplexer loss

Transmitter Side

Receiver Side

2.5 dB (including coaxial relay loss)
5.5 dB (including HYB loss)

(vi) Layout

See Fig. B.2.

- (4) 6700 MHz Band SS-FM multiplex radio equipment (FM 60-6700-1)
- (i) General

Radio Frequency Band Channel Capacity

T-R Separation
Type of Modulation
Relay System
Stand-by System
Baseband Frequency
Service Channel
Frequency
Power Supply

6.57 - 6.87 GHz
60 channels + 1 service
channel
160 MHz
SS-FM
Baseband Relay
Set Stand-by

AC 220V±10% or -24V±10% (Positive-grounded)

60 - 300 kHz

0.3 - 3.4 kHz

(ii) Transmission characteristics

Overall S/N

More than 70 dB (weighted Value) at saturation input level in noise loading test

(iii) Transmitter

RF Power Output Frequency Tolerance Frequency Deviation 1W within ±30x10⁻⁶ 100 kHz rms/ch or 200 kHz rms/ch

(iv) Receiver

Receiving System

Noise Figure
Local Frequency
Tolerance
Intermediate Frequency
If Bandwidth

Crystal-Controlled Single Superheterodyne 4 dB or less within ±20x10⁻⁶

70 MHz

Approx. 4.5/6.0 kHz at 3 dB point

(v) Duplex loss

Transmitter Side Receiver Side

2 dB 4.5 dB (including HYB loss)

(vi) Layout See Fig. B.2.

(5) Antenna

Table B.1 shows a standard specification.

(6) Feeder

Table B.2 shows a standard specification.

- (7) Dehydrator
- (i) General

The dehydrator is used to charge dry air into the RF feeder of SF type and waveguide.

(ii) Specifications

Dry Air Output Pressure to operate Humidity of Output Air Motor

Compressor

3± litters/Min
150 g/cm² - 250 g/cm²
Less than 5% RH (20°C)
A split phase start, 1 φ,
induction motor, four poles
continuous duty.
A centrifugal pump with
four vanes, directly
driven.

- (8) FDM multiplex terminal equipment
- (i) General

Channel Capacity in channels
Baseband
Transmission System

Voice FRequency Frequency Allocation Attenuation Distortion Group Delay Distortion 24 chs

60 chs

12 - 108 kHz 60 - 300 kHz Carrier Suppressed Single Side Band System 300 - 3400 Hz Conform to the CCITT Rec. do

(ii) Specification

Overall Noise/ch Linearity

63 dBm OP ±3 dB or better Input/Output Impedance Voice Side Baseband Side Input/Output Level Voice Side

600Ω Balanced 75Ω alanced

2-wire

Baseband Side

Carrier Supply Master Oscillator Accuracy

Producing Method

Input O dBr/-8 dBr Output -8 dBr/-4 dBr 4-wire Input -8 dBr/-16 dBr Output o dBr/+4 dBr Transmission: -25 dBr Reception : -15 dBr

Synchronization Power Supply

3.72 MHz $\pm 1 \times 10^{-7}$ $\begin{array}{c} 8 \text{ MHz} - 6 \\ \pm 1 \times 10 \end{array}$ Phaselock Loop Harmonics from 4/12 kHz Pulse Independent synchronization AC 220 $V\pm10\%$ or $-24V\pm10\%$

- (9) Remote supervisory and control equipment
- (i) General

Transmission Frequency Number of Supervisory item Number of Control item Capacity of Remote Station Route Encording Synchronization Transmission Rate Modulation Method

2.58 - 3.3 kHz

12 Items/Station

6 Items/Station 10 Stations (7 station for one Route) 3 Routes RZ long-short Code Word Synchronization 50 Baud Frequency-shift Modulation

(ii)Specifications

Input/Output Impedance Signal Level Control Contact Condition

Supervisory Contact Condition Frequency Deviation

600 Ohms Balanced -24 dBmo/carrier Action: Make contact at ground potential during 200 m sec Capacity 100 mA 50V DC Action: Continuous grounding Capacity 15 mA 50V DC Mean Carrier Frequency ±30 Hz

Error Detection

Double Transmission Parity

Check

Operation S/N Ratio Power Supply

Unweighted 25 dB or more AC 220V±10% or DC -24V±10%

(Positive ground)

(iii) Layout

See Fig. B.3.

(10)FS Ringer/Compander equipment

(i) General

Compander consists of the compressor and the expander.

(ii) Specifications

FS Ringer Unit

Modulation System Signal Frequency

Frequency Shift width Signal Level

Frequency Shift Modulation

3.2 kHz ±100 kHz -15 dBmo

Compressor Unit

Compressor Ratio

Input/Output Level

2±20%

Input Level Output Level

-4 dBm -8

 -6 ± 0.5 dBr -8 ± 0.1

-28

 -18 ± 1.0

-48

 -28 ± 2.0

Expander

Expansion Ratio

Input/Output Level

2±20%

Input Level Output Level

+2 dBm 0

 $+4\pm0.5$ dBr 0 ± 0.1

-10

 -20 ± 1.0

-20

 -40 ± 2.0

(11)Telephone exchange (Digital switching equipment)

(i) General

Type of Telephone

Switching Equipment

Time Division Multiplex (TDM)

Type of electronic system

controlled by stored program technique

Line Current Numbering Plan 36 lines 3 digits

(ii) Interface conditions

Dial Speed
Make Ratio
Minimum Pause
Dial Tone

Busy Tone

Ringing Tone

Minimum Loop Resistance of Local Extension Minimum Insulation Resistance of Local Cable

4 Wire Interface Circuit 10±1 PPS 33%±3%

600 m sec or more

 400 ± 4 Hz (0.25 sec ON -

0.25 sec OFF)

 400 ± 4 Hz (0.5 sec ON - 0.5

sec OFF)

 400 ± 4 Hz/18 - 24 Hz

modulation 1 sec ON, 2 sec

OFF, interval

200 ohms or less (including

Telephone set)

100 kilo-ohms minimum

Dialling signal is received/Transmitted by SR/SS wire Speech wire interface: 4 wire $600\Omega\pm10\%$ balanced

(*2) 2 Telecommunication facility

(*2) 2.1 Existing facility

As for TANAY and NAGA, the existing office buildings and iron towers will be used.

(*2) 2.2 New facility

- (1) For economical reasons, the 7 new office buildings shall be of similar specifications. (See Fig. B.4.) Although they are unmanned, a restroom, toilet, utility Kitchen, etc. will be included to meet the needs of maintenance personnel. A room for telecommunication equipment will be equipped with an air conditioner. A fence will be installed around the facilities to prevent unauthorized persons from entering them.
- (2) The auxiliary power supply, a generator, will be installed in a separate room. The indoor or outdoor

installation of an auxiliary fuel tank will depend on its size.

(3) Iron towers for radio transmission

A total of 12 iron towers will be constructed in seven sites. The design conditions are illustrated in Table B.3. The iron towers have been classified into three categories based on their height; iron towers of 15 m, 22 m and 40 m have been designed in a general manner. (See Fig. B.5)

(4) Access roads covered by gravel with 3 m width are planned to be constructed for the new stations except for CAPACUAN. They are planned to have some wider portions for vehicles to pass by each other. Since the CAPACUAN Station is too far from the highway, a path, instead of gravel road, will be opened out for peoples to reach the station. The approximate length of access roads are as shown below.

GAPAS	1,350	m
MALABOG	300	
BALOD	300	m
CAPACUAN	2,000	m
TINAMBACAN	1,350	
DANAO	400	m
MALASAG	400	m

(*2) 3 Power supply facility

(*2) 3.1 The fundamental configuration

When planning the meteorological telecommunication aspects of the project, improvement of the channel routes and terminal equipment used to collect and allocate meteorological data as well as a power supply equipment supporting the terminal equipment were regarded as very important factors. The quality of power supplied to the equipment is dependent on the power supply equipment specifications.

The optimum power supply equipment for the main trunk telecommunication system are presented in Fig. B.6, the block diagram of power supply equipment for the main trunk telecommunications system, based on the above fundamental factors, and the operation of telecommunications is smoothly made.

- (1) While the optimum power supply equipment for the multiplex radio equipment and terminal station equipment (including relay, FS ringers and compander equipment), which form the branches of the channel route appear to be the charger-rectifier and battery-based DC power supply, equipment, which are not subject to power failures, as a result of giving priority to economy and maintainability of the telecommunication network, it was decided that an AC power supply equipment based on AVR will be used.
- (2) Commercial power can be utilized in the existing building of TANAY and NAGA stations. However, the other relay stations have to wire the leading wire along side of the access road. The rough distance of leading wire are shown as below;

GAPAS	900	m
MALABOG	: 80	m
BALOD	160	m
TINAMBACAN	700	m
DANAO	900	m
MALASAG	200	m

Branch wiring must be prepared from an existing distribution line through a transformer. And an electric pole must be set up every 25 m distance. To prevent from the voltage drop a transformer must be installed near the building, and the electric power for every equipment are supplied through a distribution board in the building.

- (3) Auxiliary power supply equipment will be installed to cover power failures of the commercial power supply. A diesel-powered generator having the capability of providing stable low and high voltage power will be used as the back-up power supply equipment. For unmanned facilities of the trunk lines which significantly affect operations and require considerable time to get to, diesel-powered generators using the dual stand-by method will be employed to extend the operating time period of the auxiliary power supply equipment as well as to enhance the reliability thereof.
- (4) Arrester equipment of devices should be installed to prevent system breakdowns due to lightning or its impact. The installation of a lightning resistant transformer on commercial power supply lines will

effectively eliminate the effects of lightning. The installation and grounding of arrester equipment or devices will be examined in detail at the appropriate stage. A ground-to-air pilot lamp will be installed as shown in the block diagram so that lightning striking the lines will not affect the equipment in the room.

(*2) 3.2 The design condition

The following design condition of the power supply equipment for the main trunk telecommunication system are presented in its block diagram.

- (1) Power consumption for each piece of equipment is as shown in Table B.6.
- (2) The efficiency and power factors of the automatic voltage regulator are as follows:

 Efficiency: 85%

 Power factor: 75%
- (3) Diesel engine generator
- (i) The cooling method of the diesel engine is the air cooling and the water cooling method. For the auxiliary power supply equipments the air cooling method is more advantageous than the water cooling, because the former has a number of positive characteristics in repair and maintenance.
- (ii) The diesel engine generator of the dual standby method will be introduced to the GAPAS, MALABOG, BALOD and TINAMBACAN stations, where are important relay stations in main trunk and are located on the peak with a little long approach.
- (iii) The period of non-maintenance operating time, which is primarily the time when engine oil is replaced, is as shown below.

Single standby system: 120 hours Dual standby system: 120 hours x 2

The above non-maintenance operating time period for the single standby system is based on the assumption that power failures of the commercial supply occur 4 times a month, its average time period is 4 hours and the non-maintenance period is not less than 6 months. For the dual stand-by system, the assumption is that power failures of the commercial supply will occur 6 times a month and the average power failure time period is 6 hours.

- (iv) The capacity of the bulk tank allows an operating period twice as long as the above non-maintenance running time period.
- (4) Specifications of indoor lamps

General indoor lamp: 320 W (40 W x 8)
Indoor lamp for emergencies: 160 W (40 W x 4)

(5) Specifications of outlet

For measuring instruments: 500 VA
For other miscellaneous power supplies: 2000 VA

(6) Capacity of air conditioner

The required cooling capacity of the air conditioner is determined by the building structure, sunshine condition, temperature difference and equipment's thermal emission. Since the current stage involves a number of undefined factors including building structure, it is extremely difficult to determine the capacity of the air conditioner. The power supply will be designed on the assumption that the required cooling per station is 4500 kcal/hr (input power is 4.5 kVA).

(*2) 3.3 Equipment configuration in each station

The configurations of the equipment covered by the power supply equipment are shown in Table B.5. Table B.5 is based on Table B.6, which presents the power supply equipment capacity figures.

- (*2) 3.4 Outline of equipment specifications
- (1) Automatic voltage regulator

The AVR is used to regulate AC voltage and supply load with the regulated AC voltage. The following are the major specifications:

- (i) Input/output voltage: 220V AC, 60 Hz, single phase
- (ii) Output voltage stability: Witin ±2% (Input from +10 to -15%)
- (iii) Input frequency range: ±2 Hz
- (iv) Efficiency: Higher than 84%

- (v) Power factor: Higher than 75%
- (vi) Output capacity: 3 kVA/5 kVA/10 kVA
- (2) Diesel engine generator (Single stand-by or dual stand-by system)
 - (i) Output voltage: 220 V AC, 60 Hz, single phase
 - (ii) Output voltage regulator: Within ±2.5%
 - (iii) Frequency regulation: Within 4.5% under constant condition
 - (iv) Power factor: 0.8 (lagging)
 - (v) Waveform distortion: Less than 10% at no load
 - (vi) Changeover condition from AC main power to generator: More than ±10%
 - (vii) Diesel engine: Air-cooled, 4 cycles
 - (viii) Revolution speed: 1800 rpm
 - (ix) Generator output capacity: 15 kVA/25 kVA/35 kVA
- (3) Lightning transformer
 - A lightning transformer will be installed on the commercial supply lines to eliminate the effects of thunderbolt. The following are its major specifications:
 - (i) Input/output voltage: 220V AC, 60 Hz, single phase
 - (ii) Cooling system: Air-cooled
 - (iii) Discharge capacity: 15 kVA x 2 element
 - (iv) Voltage resistance: 2 kV AC
 - (v) Capacity: 20 kVA/30 kVA/40 kVA
- Appendix B (*3) Telecommunication equipment and peripheral facilities in VHF and HF link
- (*3) 1 Telecommunication equipment
- (*3) 1.1 Equipment configuration

The equipment configurations for each station are shown below:

(1) PFC

An equipment block diagram is shown in Fig. B.7.

(2) DCC and SCIENCE GARDEN

An equipment block diagram is shown in Fig. B.8.

(3) LEGASPI

An equipment block diagram is shown in Fig. B.9.

(4) CARMEN ROSALES and TANAY

An equipment block diagram is shown in Fig. B.10.

(5) DILIMAN

An equipment block diagram is shown in Fig. B.11.

(6) Weather station

An equipment block diagram is shown in Fig. B.12.

(*3) 1.2 Equipment specification

The outline of the main equipment specifications (excluding multiplex communication equipment) is shown below.

(1) VHF radio telephone set

Frequency range:
Communication method:
Modulation method:
Frequency deviation:
High frequency input
output impedance:
Transmitting output:
Receiving method:

Receiving sensitivity:

Frequency tolerance: Voltage supply:

142 - 174 MHz Full duplex FM Up to ±5 kHz

50 ohm
25 W
Double superheterodyne system
1µV or less (Receive input against 20 dB noise suppression)
Within ±1 x 10⁻⁵
220V AC 50/60 Hz 1¢ or
24V DC (negative ground)
Sending: 5A (24 V DC)
Receiving: 0.3A (24 V DC)
-10°C - +50°C, 95% RH at

Temperature and humidity:

35°C Weight: 15 kg Appearance is shown in Fig. B.13.

(2) HF SSB radio telephone set

Frequency range:

Number of radio channels:

Modulation method:

Communication method: High frequency impedance:

Transmitting output:

Receiving method:

Receiving sensitivity:

Frequency tolerance:

Supply voltage:

AC power source:

Temperature and humidity:

Weight:

284,000 channels in 100 Hz step (Synthesizer) 40 channels can be preset. J3E-USB, J3E-LSB, H3E,

A3E, A1A, and F2B

1.6 - 29.9999 MHz

Simplex of half duplex

50 ohm

150 W PEP for J3E, A3E,

AlA, and F2B

40 W carrier wave for H3E

Double superheterodyne

system

1.5 μV or less for J3E,

A3E, A1A, and F2B 5 uV or less for H3E

Within $\pm 1 \times 10^{-6}$

24V DC (Negative ground)

Sending: 23A Receiving: 2.5A 220V AC for input

24V DC 30 A for output $-10^{\circ}\text{C} - +50^{\circ}\text{C}$, 95% RH at

35°C

Approximately 34 Kg (including AC power

supply)

Appearance is shown in Fig. B.14, Fig. B.15.

(3) MF, HF all wave receiver

Frequency range:

90 KHz - 29.99999 MHz

in 10 kHz step

Receiving method:

Double superheterodyne by

phase locked frequency

synthesizer

Reception mode:

A1A, A2A, H2A, A3E, R3E,

H3E, J3E, F1B, F3C

Frequency display:

Presetting:

LED, 8 digits

62 channels (including 500 kHz and 2182 kHz)

Receiving sensitivity:

	AlA	A3E	J3E
90-200 kHz	20µV or less	60μV or less	•
200-1600 kHz	10μV or less	30μV or less	•••
1.6-29.99999 kHz	2μV or less	6μV or less	3μV or less

Conditions: S/N; 20 dB Receiving output: 100 mW

Band width: 3 kHz and 1 kHz (A3E)

30% modulation

Frequency tolerance: Within $\pm 5 \times 10^{-7}$

BFO Variable Range ±2 kHz in 10 Hz step Clarifier Variable Rang: ±120 Hz in 1 Hz step

Power source: 220V AC 50/60 Hz 1 \$\phi\$

70 VA

24V DC (Negative ground)

50 W.

Temperature and humidity: -10°C - +50°C, 95%RH at

35°C

Weight: Approximately 17 Kg

Appearance is shown in Fig. B.16.

(4) Data processor for DCC

The specifications of the data processor for DCC are as follows. Appearance of the equipment is shown in Fig. B.17.

(i) Communication controller

Micro-computer is used for control.

- A. Central processing unit Processor: 16 bits Memory: 128KB for RAM area 64KB for ROM area
- B. Link connections
 Weather stations are called and data are collected by operator commands (polling). Input data are stored in the memory and then transferred to the PFC. Data of the PFC are transmitted to weather stations.

Transmitting route: OH, VHF
Telecommunications method: Half duplex

Transmission rate: 200 bps

Synchronization: Frame synchronization

C. ARQ input section

Data from the ARQ device are automatically inputted. Input data are stored in the memory and transferred to the PFC.

Interface: RS 232C

Transmission rate: 50 bps

Code: CCITT NO.5

Synchronization: Start-stop synchronization

(ii) CRT display

- A. Peformance Number of display characters: 80 characters x 24 lines (1920 characters) Display color: Green against black background Display character: JIS 128 types Transmission rate: 1200 bps
- B. Conditions for installation Power source: 220 V AC±10%, 50/60 Hz Operating temperature: 0 - +40°C Operating humidity: 35 - 80%

(iii) Serial printer

- A. Performance Number of characters printed per line: 80 characters Sign: JIS 8 unit Printing method: Impact, 9 x 7 dot matrix
- B. Conditions for installation Power source: 220 V AC \pm 10%, 50/60 Hz Operating temperature: +5 - +40°C Operating humidity: 90% or less
- (5) ARQ equipment at DCC and weather stations (HF) The overall view of ARQ equipment is shown in Fig. B.18. The components of ARQ are as follows.

(i) ARO Unit

Operation mode: ARQ (Automatic Request for Repetition) and FEC (Forward

Error Correction)

Telegraphy code:

Local: 7 levels, ASCII Line: 7 levels, constant B/Y

ratio

Modulation rate: Local: 300 baud Line: 100 baud

Modulation method: 1,700 Hz ±85 Hz, according to

CCIR recommendation 476-2

Selective call: Via keyboard Buffer memory: 2,000 characters

CRT display interface: EIA RS-232C

220V AC, 50/60Hz, 16, 65VA Power:

0 to 55°C Temperature: Relative humidity: 90% at 35°C Weight: Approx. 10 kg

(ii) CRT display unit

Code: 7 units, ASCII Display: 9 x 7 dots

Number of characters displayed:

80 characters x 25 lines

(2,000 characters)

Storage capacity: 8 screens (13,000 characters)

Line interface: EIA RS-232C Printer interface: Parallel

Power: 220V AC, 50/60Hz, 14, 100VA

Temperature: 0 to 40°C Relative humidity: 90% at 35°C Weight: Approx. 36 kg

(iii) Printer

Code:

7 units, ASCII Impact, 9 x 7 dot matrix Printing method:

Characters/line: 69 characters

Power: 220V AC, 50/60Hz, 80VA

(during printing)

Temperature: 5 to 40°C Relative humidity: 90% at 35°C

Weight: Approx. 11 kg

(6) Data terminal for weather station (VHF, multiplex)

The data processing equipment at weather stations is as described below. The overall view is illustrated in Fig. B.19.

(i) Data input equipment

Transmit input data to DCC or the PFC.

A. Performance

Processor: 16 bit processor

Telecommunication link:

VHF, multiplex

Telecommunication method:

Half-duplex

Calling method: Polling method

Transmitting speed: 200 BPS

Synchronization: Frame synchronization

B. Installation Requirements Power:

220V AC ±10%, 50/60 Hz

Operating temperature:

5 to 35°C

Operating relative humidity:

10 to 80%

(ii) CRT display

Same as that for DCC.

(iii) Serial printer

Same as that for DCC.

(7) Telecommunication control console (PFC)

The control console for voice and FAX telecommunication links. In addition to the three systems of TANAY, CARMEN ROSALES and LEGASPI, which telecommunicate directly with the PFC, 7 multiplex links for telecommunicating with DCC and SCIENCE GARDEN are accommodated in this console. Simultaneous bracketed instructions and individual calls can be provided through operator switching. The overall view is given in Fig. B.20.

Number of links accommodated: 10 links max. Telecommunication method: Simplex and duplex Connection requirements

Input impedance: 600-ohm balance

Input level (voice): 0 dBm±3 dB Output level (voice: -8 dBm±3 dB Power: 220V AC, 16

(8) Telecommunication control console (DCC)

The control console for voice and FAX telecommunication links. Provided to DCC, this console accommodates weather station VHF links and voice telecommunication multiplex links from the PFC. With operator attendance, voice and FAX telecommunications with the PFC and weather stations are possible. The overall view is given in Fig. B.21. Number of links accommodated

Multiplex link: 3 links max. Terminal link: 3 links max.

Telecommunication method: Simplex and duplex

Connecting requirements

Input impedance: 600-ohm balance

Input level (voice): 0 dBm±3 dB Output level (voice): -8 dBm±3 dB Power: 200V AC, 1¢

(9) Facsimile

GI

Paper width: 252 mm (B4) 252 mm (B4)

Scanning line: 3.521/mm 3.851/mm

density

Reading method: CCD solid scanning scanning

Recording: Heat-sensing Heat-sensing

method

Modulation: FS AM-PM-VSB method 1,900±400Hz Carrier 2,100Hz

Transmission: Approx. 10 min. Approx. 3 min.

rate (B4)

Power: 220V AC 220V AC

Stand-by, 30VA Stand-by, 30VA Transmit, 170VA Transmit, 250VA Receive, 300VA

Temperature: 0 to 40°C 0 to 40°C

Relative: 40 to 90% 40 to 90% humidity

The overall view is given in Fig. B.22.

(*3) 2 Telecommunication facility

The telecommunication facilities for weather stations in LUZON are to be located in the existing station buildings. In the case a weather station has no backup power supply, a new power station should be provided for telecommunication facilities. A new power station should be constructed apart from the weather station in order not to bother people in the weather station with the noise generated by the power station.

Extra petroleum is to be stored in drums.

(*3) 3 Power facility

(*3) 3.1 Weather station

(1)Fundamental structure

The commercial power supply at a weather station stable power. power supply not always provide the Therefore, а floating charging consisting of a charger and batteries should be provided to energize the receiver and a MF/HF all-wave receiver. Other equipments are to energized from a commercial power source. Antilightning transformers should be provided in the commercial power circuitry to prevent failures due to lightning.

A gasoline engine generator is to be installed for use in case of a commercial power supply failure. The block diagram of the power equipment is presented in Fig. B.23.

The power consumption rates at weather stations are listed in Table B.7.

As no commercial power can be available at the (2) ROMBLON relay station, solar cells must be provided to the station. Solar cells must be provided to the AMPUCAO relay station as a back-up power supply. The capacity of the cell will be defined under consideration of the duration of the sunshine in the

The block diagram of solar cell is shown in Fig. B.24.

(*3) 3.2 Equipment specification (additional)

Charger

- Input voltage: 220V AC, 60 Hz, 1¢ (i)
- Output voltage, current: 24V DC, 4A (ii)
- Cooling method: Air cooling (iii)
 - (iv) Temperature: -10 to 50°C
 - Relative humidity: 95% (v)
 - (vi) Weight: Aprox. 35 kg

(2)Gasoline-engine generator

: 4-stroke, gasoline, single (i)Engine type

cylinder, air cooled

Generator type : Self-excited 2-pole (ii)

(iii) Output : 220V AC 60 Hz 16, 3KVA : 1.0

(iv) Power factor

: 3600 rpm Revolution (v)

speed

: Recoil starter Starting (vi)

(vii) Weight : Approx. 90 kg

(3) Isolation transformer

(i) Input/Output : 220V AC, 60 Hz, 1ϕ voltage

(ii) Capacity

(iii) Discharge : 15 KVA 2 elements

capacity

(iv) Dielectric : 3 KV AC for 1 minute

: 3 KVA

strength

(v) Cooling : Natural air

(vi) Weight : Approx. 50 kg

Appendix B (*4) Telecommunication controlling system at the PFC

(*4) 1 Fundamental system function

To meet the needs of the users of weather data, the system should provide certain basic functions.

(*4) 1.1 Collecting function

Sends weather data obtained at various weather stations to multiple links via DCC or DRS, and store them directly in computers.

(*4) 1.2 Processing function

Relays, edits, converts, or analyzes the obtained weather data to meet the application needs.

(*4) 1.3 Accumulating function

Accumulates weather data required for statistical preparation and other purposes on magnetic disk or tape for retransmission upon request or inquiry.

(*4) 1.4 Disseminating function

Supplies various weather information on a real-time basis for specific applications.

(*4) 2 Data link

The telecommunication volume of the PFC is described by the amount of messages and number of links.

- (*4) 2.1 Accommodating link
- (1) Domestic link (Multiple link)
 - (i) Link with DCC
 Three links with MACTAN RADAR, CAGAYAN DE ORO and
 TUGUEGARAO.
 - (ii) Link with DRS
 Three links with CARMEN ROSALES, LEGASPI and
 TANAY.
 - (iii) Other link
 One link with SCIENCE GARDEN.
 - (iv) Cord CCITT NO. 5
 - (v) Transmitting speed 200 b/s, while HF link is at speed of 50 b/s.
- (2) GTS link

CCITT No. 5 code is used for the GTS links.

- (i) Link with TOKYO
 A link of 200 b/s
- (ii) Link with SINGAPORE A link of 75 b/s
- (3) Operation link
 - (i) System console

 Monitors link and systems
 One link
 - (ii) Supervisor
 Input/Output operating instructions of an
 entire system.
 One link
- (4) Extra link

Extra links are provided for future expansion of business.

(5) Number of link

The total number of links required should be 30 according to the results in paragraphs (1) through (4).

- (*4) 2.2 Estimated data volume
- (1) Domestic link

The daily volume of telecommunication date is estimated by location, based on the number of observations. 54,760 characters/day
The results are listed in Table B.8.

(2) Link with TOKYO

The transmission volume from TOKYO on July 25, 1984 was 581,978 characters (at a link speed of 75 b/s). Link speed changed to 200 b/s under the date of October 1, 1984. Adding the possible increase, the volume should be 1,000,000 characters/day.

- (3) Other link
 The information obtained from other links are to be incorporated in the data transmitted from TOKYO.
- (4) Daily data telecommunication volume

Domestic: 60,000 characters = 60,000 bytes = 0.06

MB

Overseas: 1,000,000 characters = 1,000,000 bytes =

1 MB

The total data telecommunication volume received at the PFC would therefore be 1.06 MB.

- (*4) 3 System configuration
- (*4) 3.1 Data processing equipment

Fig. B.25 illustrates the data processing system configuration, and Fig. B.26 the overall view of the system.

- (1) Central processing equipment
 - (i) Control method

Micro program control

(ii) Operation control

32 bits, binary, Operation method:

parallel

Data word length: 1, 8, 16, 32, 64

bits

Basic instructions: 148

4 levels External interruption:

Calculation rates (fixed-point)

Add/subtract:

0.45 μs 7.85/10.25 μs Multiply/divide:

Calculation rates (floating-point) Add/subtract:

1.25 μs 1.85/3.85 μs Multiply/divide:

(iii) Main storage

Cycle time: 500 ns Storage capacity: 1 MB Error check: ECC

(iv) Input/Output control

> Transfer rates Program control: DMA control:

387 kB/s max. 8.0 MB/s (Read) 5.71 MB/s (Write)

(2) Magnetic disk unit

Performance

Capacity: 40 MB Bytes/sector: 256 B Average rotation waiting time: 8.3 ms Average head access time: 35 ms Recording method: MFM method Transfer rate: 806 kB/s

(3) Magnetic tape unit

Performance

Tape driving method: Tape buffer method: Recording density: Tape speed: Tape length: Recording method: Transfer rate:

Single capstan Tension arm 1600 BPI 75 IPS 2,400 feet PE method 120 kB/s

(4) Console display

Performance

Number of characters displayed:

80 characters x 24 lines (1920 charac-

ters) Green

Color displayed:

Character types:

Data transfer rate:

JIS 128 types

1,000

characters/s max.

(5) Color CRT display

The overall view is illustrated in Fig. B.27.

Performance -

Number of characters displayed:

90 characters x 45

lines (4,050 characters)

Color displayed:

Character types:

Seven colors JIS 128 types, 64 picture

element types

64 special

character types 1,200 characters/s

max.

Data transfer rate;

(6) Line printer

The overall view is shown in Fig. B.28

Performance

Printing speed: Characters/line:

600 lines/m 136 characters/

line

Character types:

64 character types

(ASCII)

Character spacing:

10 characters/inch

Line spacing:

6 lines/inch, 8 lines/inch

(7) Serial printer

The overall view is shown in Fig. B.29

Performance

Printing speed:
Characters/line:
Characters types:
Character spacing:
Line spacing:

160 character/s
132 characters
JIS 128 types
10 characters/inch
6 lines/inch,
8 lines/inch

(8) Floppy disk unit

Performance

Recording capacity: 1 MB
Maximum rotation waiting time: 167 ms
Data transfer rates

Read:
Write:
Medium used:

2 MB/s max. 667 kB/s max. Double-side, double density

(9) Bus switch

The device to allow both existing equipment (system in operation) and extra equipment (waiting system) to share (by switching) each peripheral equipment unit.

Switching time:
Propagation delay time
Inter-board delay:

5 μ s max.

Inter-cable delay: Switching modes: 500 ns max (go and return) 12 ns/m Manual/auto

(10) Processor connecting unit

Provides data transfer between existing and extra equipment. Should be duplex.

Transfer method: Transfer rate: Error check:

8 bits, parallel 167 kB/x max. Horizontal parity check. Transferred number of bytes check

(*4) 3.2 Telecommunication controlling equipment

Receives data from weather stations (VHF), DCC, and GTS international links, and transfers data to data processing unit. Also transfer data to weather stations (VHF), DCC and GTS international links when the required instruction is given from the data processing unit.

(1) OH link interface

Telecommunication links: Telecommunication method: Transmitting speed: Synchronization: Multiplex links Half-duplex 200 BPS Frame synchronization

(2) GTS link interface

Telecommunication links: Telecommunication method: Transmitting speed: Code used: Synchronization: Exclusive links Half-duplex 200 BPS CCITT No. 5 Start-stop

(3) System console

The overall view is shown in Fig. B.30 Displays system status, link status, and others.

(4) CRT display

Number of characters displayed:

80 characters x 24 lines (1,920 characters)
Green with black background
JIS 128 types
1,200 BPS

Color displayed:

Character types: Transmitting speed:

(*4) 3.3 Installing condition

Power

Operating temperature:
Operating relative humidity:

100V AC ±10%, 50/60 Hz 10 to 35°C 35 to 80% (without condensation)

(*4) 4 Data processing

The system functions used in processing the data transferred from weather stations are described below:

(*4) 4.1 Code conversion

Internal data processing code system is provided to convert all the external codes inputted from each link to appropriate machine codes.

(*4) 4.2 Relay processing

Identifies each piece of weather data heading (data type, location, and time observed) and outputs them to the selected link.
Output may be performed on data reception, or via the timer.

(*4) 4.3 Edit processing

(1) Location selection

Selects data associated with the designated location.

(2) Block configuration

A block accommodates one or more locations.

(3) Parameter selection

Analyzes weather data and selects only predetermined parameters.

(*4) 5 System operation

The system usually operates in the master or slave mode together with the stand-by mode.

The CPU in the master mode provides the system monitoring function for monitoring the status of each piece of equipment. The system console displays the monitored status.

For the system to function properly, the following operations are required.

- . Monitoring the component equipment of the system
- Operation of input/output equipment for on-line operations
- . Monitoring link status
- . Monitoring telecommunication status
- . Monitoring power and air conditioning
- (*4) 6 System relevant facilities
- (*4) 6.1 Computer room facility
- (1) Area

The minimum room are allowing normal operations and maintenance. It is to be approx. 35 m^2 .

- (2) Floor
 - (i) Floor load

The minimum floor load is to be approx. 300 kg/m^2 .

(ii) Floor structure

Cables can be placed between the ceiling of the n-th floor room and the floor of the (n+1)-th floor room, and are accessible.

(3) Window

Windows are to be such that the equipment in the room are not exposed to direct sunshine.

(*4) 6.2 Power supply facility

A non-interrupted power supply (CVCF + battery) is required to prevent the systems at the PFC from shutting down.

Block diagram for power supply system is shown in Fig. B.6

(1) Power capacity

20 kVA is required.

(*4) 6.3 Air conditioning facility

The temperature and relative humidity best suited for the calculator room are:

Temperature: 20 to 27°C Relative humidity: 50 to 70%

To maintain the room under the above conditions, an air conditioning facility is necessary.

(1) Air conditioning capacity

A capacity of 10 HP is required.

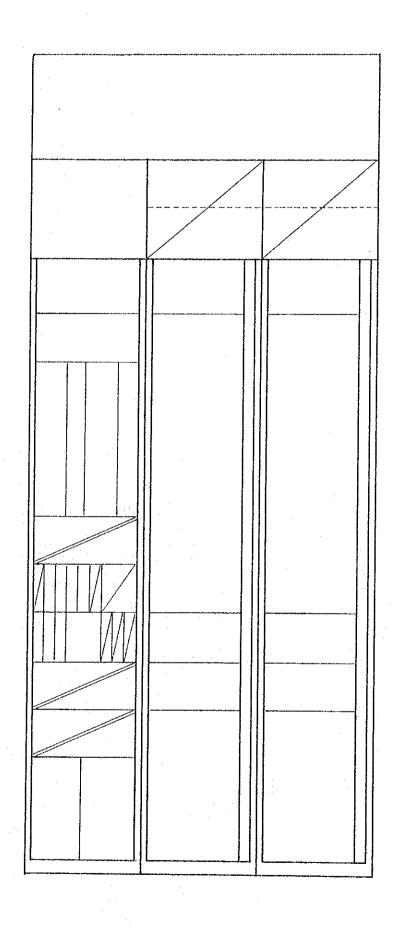


Fig. B. 1 Typical Layout of Driver/Receiver,700w PA Equipment

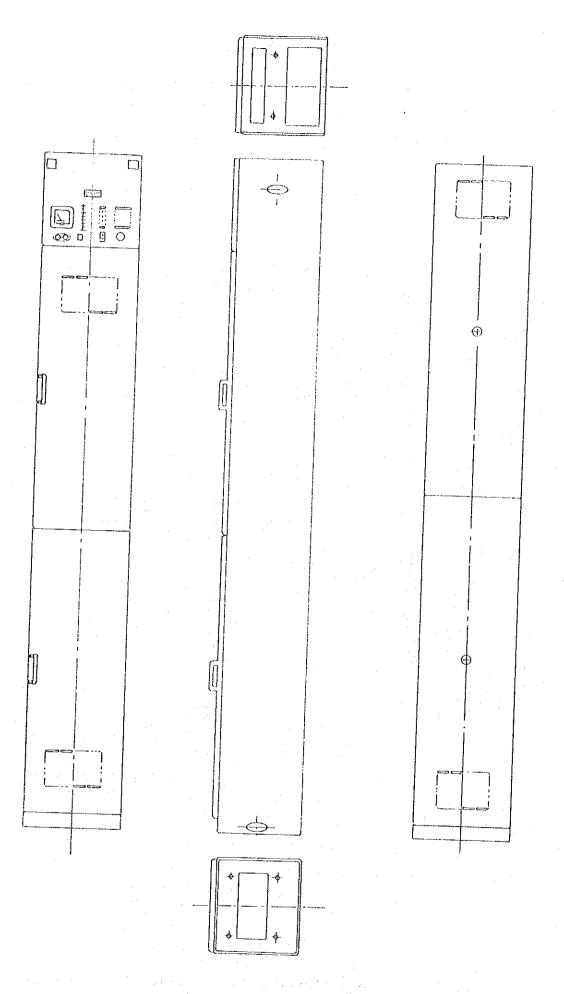


Fig. B. 2 Typical Outline Drawing -318-

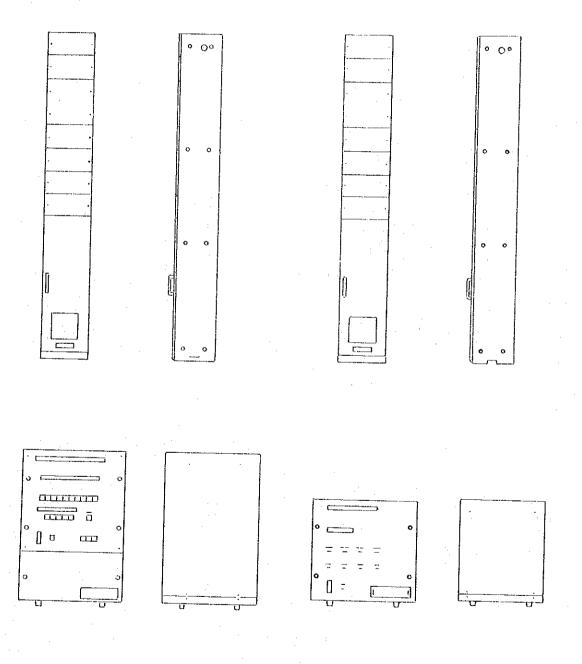
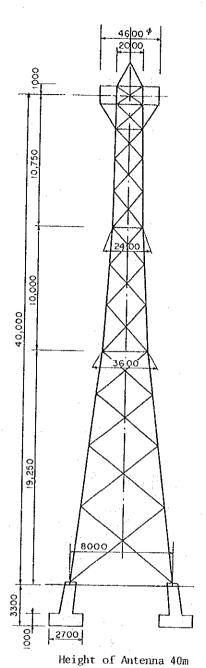
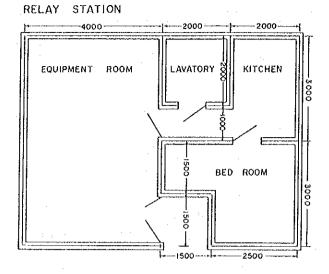
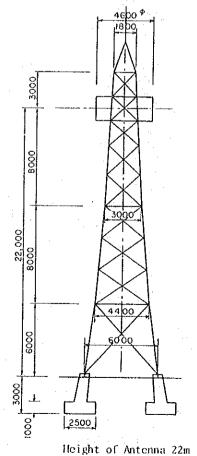
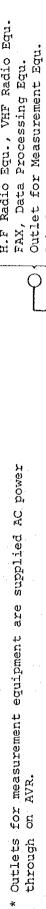
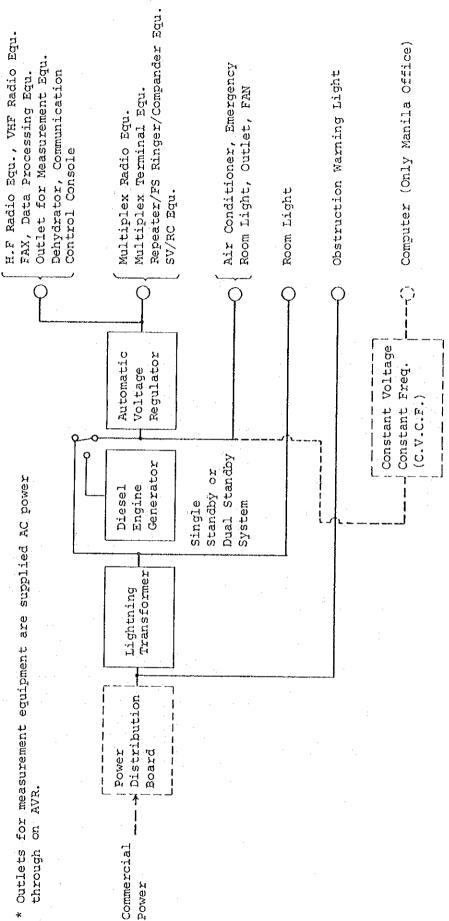



Fig.B.3 Remote Supervisory and Control Equipment

Typical Outline Drawing -319-


Fig. B.4 Layout of Relay Station

Height of Antenna 15m.

Fig. B.5 General View of Antenna Tower

Block Diagram for Power Supply System B.6

Fig.

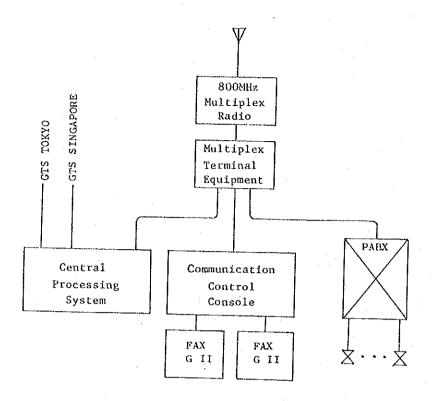


Fig. B.7 Block Diagram of the PFC



Fig. B.8 Block Diagram of DCC

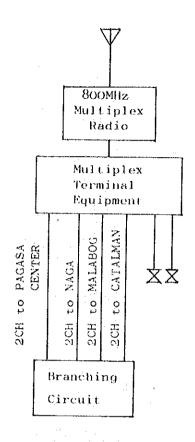


Fig. B.9 Block Diagram of LEGASPI

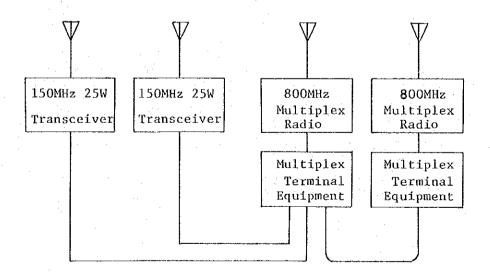


Fig. B.10 Block Diagram of CARMEN ROSARES and TANAY

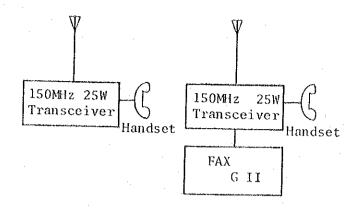
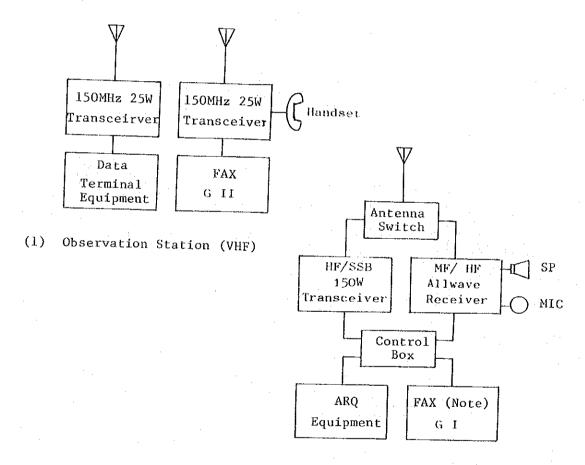



Fig. B.11 Block Diagram of DILIMAN

Note, For radar station only

(2) Observation Station (HF)

Fig. B.12 Block Diagram of Observation Station

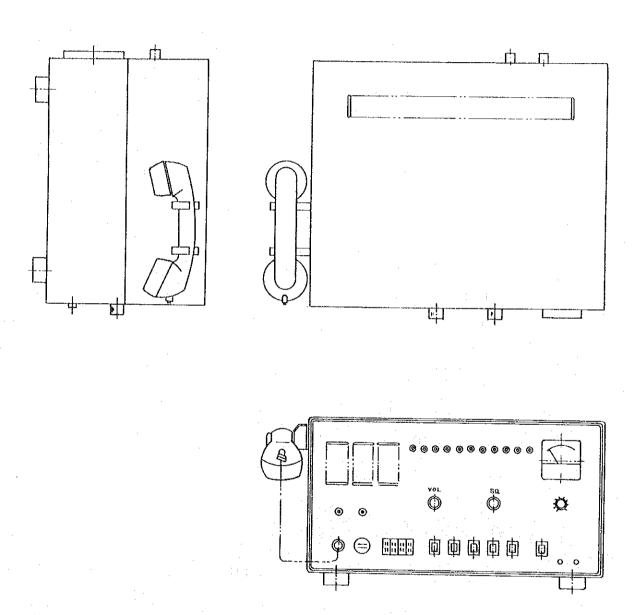
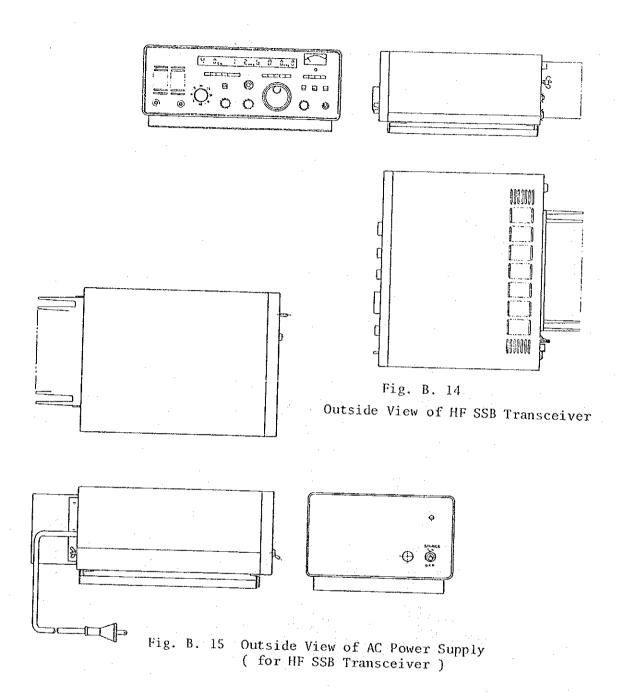



Fig. B. 13 Outside View of VHF Transceiver

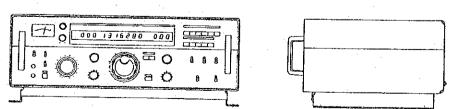


Fig. B. 16 Outside View of MF/HF Allwave Receiver

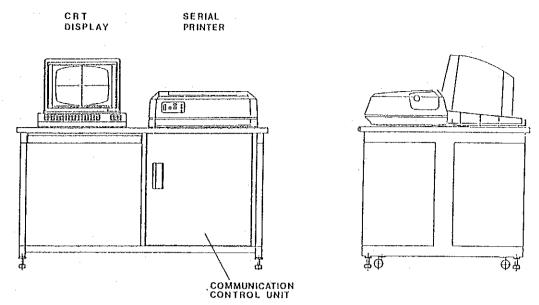


Fig. B. 17 Outside View of Terminal Equipment (for DCC)

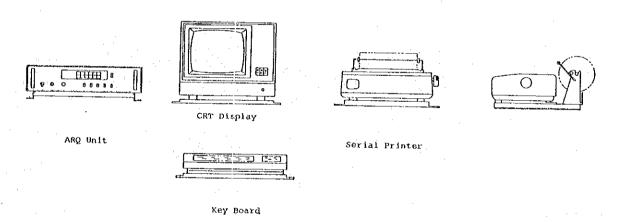


Fig. B. 18 Outside View of ARQ Equipment

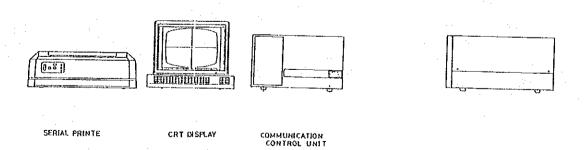


Fig. B. 19 VHF/Cable Link Station

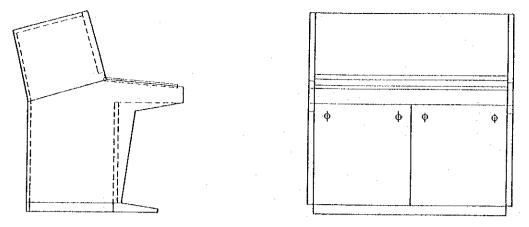


Fig. B. 20 Outside View of Communication Control Console (for PFC)

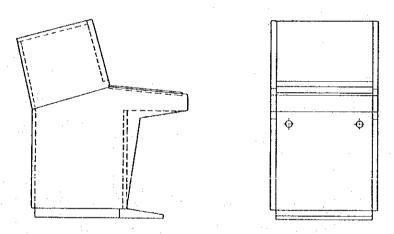


Fig. B. 21 Outside View of Communication Control Console (for DCC)

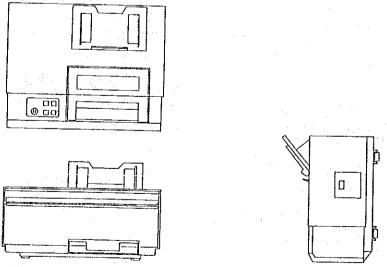


Fig. B. 22 Outside View of Facsimile

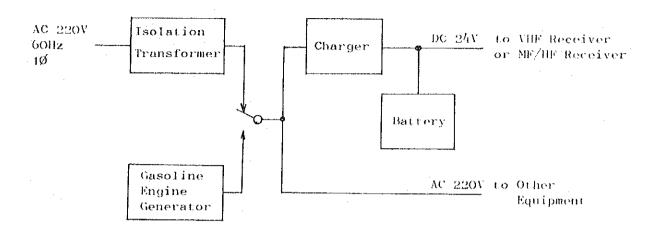


Fig. B. 23 Block Diagram of Power in Observation Station

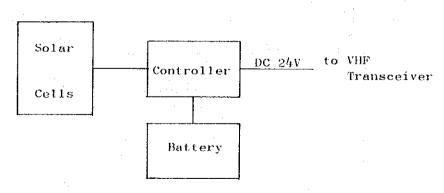
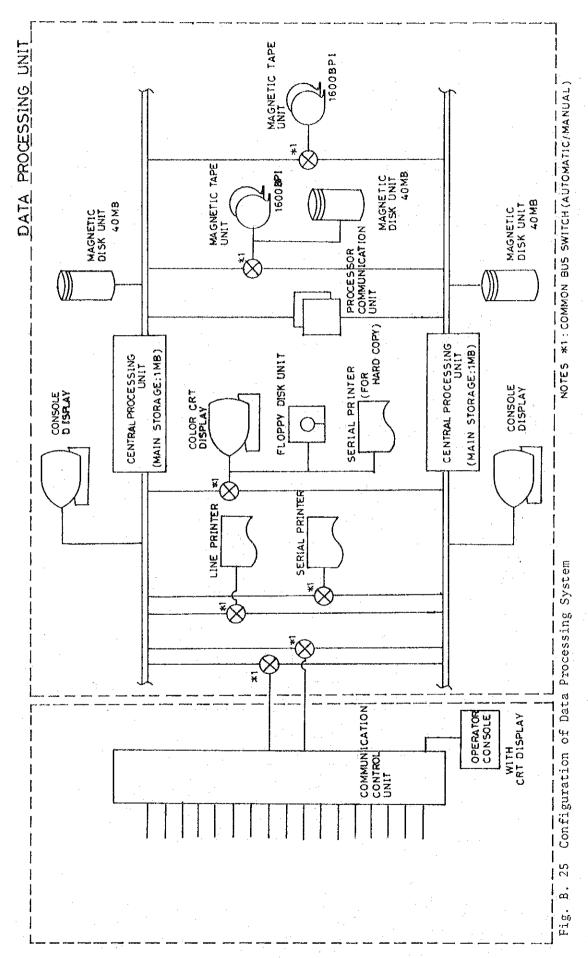



Fig. B. 24 Block Diagram of Solar Cell Power Supply

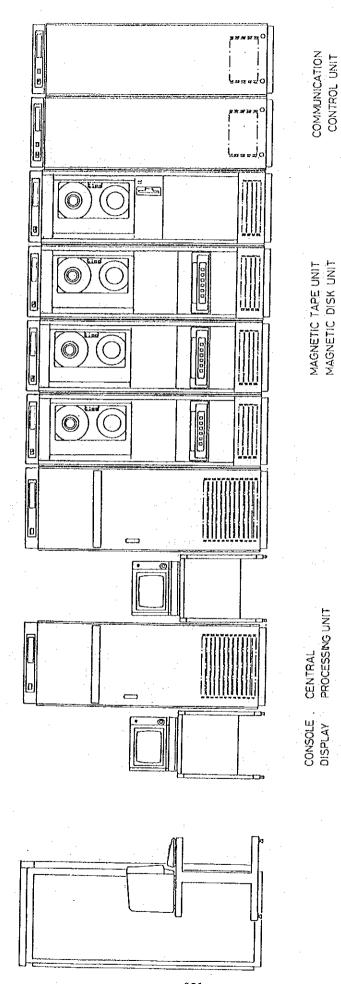


Fig. B. 26 Outside View of Computer System (for PFC)

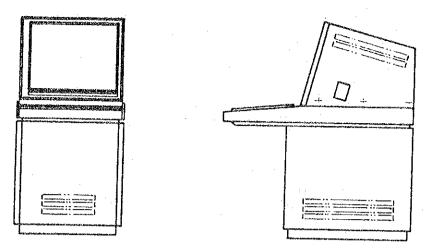


Fig. B. 27 Outside View of Color CRT Display

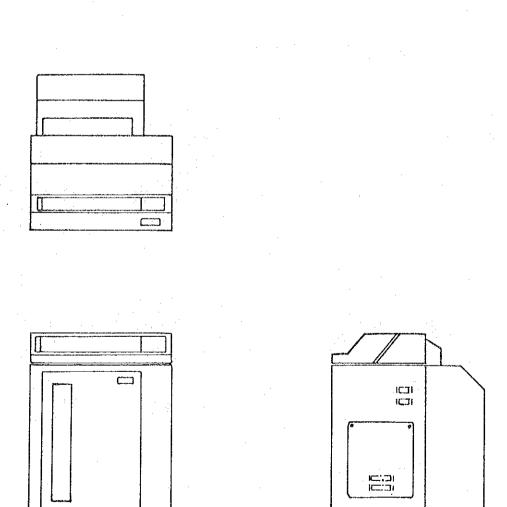


Fig. B. 28 Outside View of Line Printer

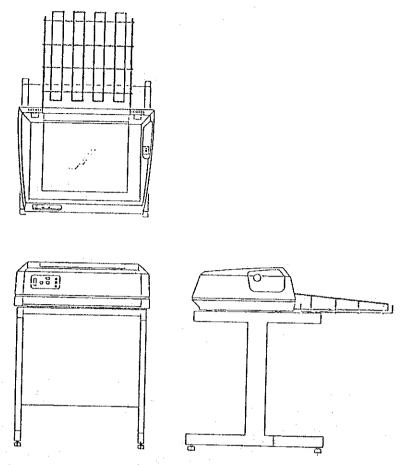
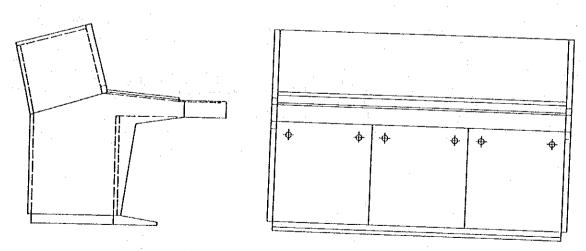
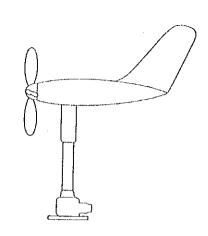
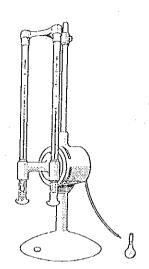
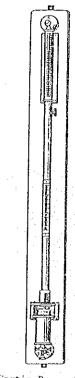
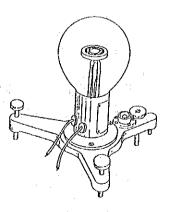


Fig. B. 29 Outside View of Serial Printer


Fig. B. 30 Outside View of Operation Console (for PFC)


Propelter Type Wind Sensor

Psychrometer

Fortin Barometer

Pyranometer

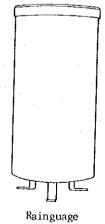


Fig.B 31 Exterior View of Observation Instruments

Table B.1 Specification for Antenna

Antenna Type	Frequency Band	T-R Spacing	Isotropic Gain	F/B Ratio	Weight	Apparent Area		ressure t 60m/s	Mounting Type
800MHz Band 12 ele. YAGI Antenna	620-960 Miz	Less than 10% of center freq.	More than 13.0 dB at 800 MHz		Less than 5 kg		less t		-
800 MHz Band 1.8mg Grid Parabolic Ant.	620-960 MHz	Less than 10% of center freq.	More than 20,0 dB at 800 MHz		Less than 90 kg	Less than 1.3 m ²	less t	han 483 kg	Pole mount
" 3.Omø "	te .	11	More than 25.0 dB at 800 MHz		Less than 140 kg	Less than 2.7 m ²	Less t	han .003 kg	"
" 4.2mø "	II.	11	More than 28.0 dB at 800 MHz	More than 25.0 dB	,	Less than 4.7 m ²	Less t		
" 6.0mg "	14	1)	More than 31.5 dB at 800 MHz	More than 25.0 dB		Less than 9.4 m ²	Less t	han 1,491 kg	16
" 10.0mø "	34	()	More than 35.5 dB at 800 MHz		Less than 1,950 kg	_	Less t	han ,505 kg	Bolt mount
6700 MHz Band 4.0mø Plate Parabolic Ant. (Value marked * is with radom)	6.5-6.9 GHz	••	46.0 дв		less than 415 kg *535 kg			han ,949 kg ,450 kg	31

Table B.2 Specification for Feeder

Feeder Type	Impedance	Attenuation	v.s.w.r.	Inner Conductor	Tusulation	Outer Conductor	Jacket
Coaxial Cable (Typical Model AFZE50~7)	50 ohms	Typical 0.06 dB/m at 800 MHz	Less than 1.2	Copper Tube	Highly Formed Polyethylene	Aluminum Tube	Polyethylene Coloured Black
Coaxial Cable (Typical Model SFZE50-13W)	50 ohms	Typical 0.03 dB/m at 800 MHz	Less than 1.2		Air & Poly- ethylene Tape	Aluminum Tube	Polyethylene Coloured Black
Rectangular Flexible Wave; le (Typical Model FR-6U)	<u>-</u>	Less than 0.05 dB/m at 6.4 GHz	Less than 1.17	-	-	Corrugated Copper Tube	Polyethylene Coloured Black

Table B.3

Setting Condition of Antenna Tower

Station	Number of tower	Number of antenna	Antenna height (m)	Antenna size
GAPAS	1	2	22	4.2 mф G.P 6.0 mф G.P
MALABOG	2	2	22	3.0 mφ G.P 10.0 mφ G.P
		1.	15	10.0 mφ G.P
BALOD	2	1	22	10.0 mф G.P
		2	40	10.0 mφ G.P 4.0 mφ P.P
CAPACUAN	1	2	15	4.0 mφ P.P x 2
I I NAMBACAN	2	2	10	4.0 m¢ P.P 10.0 m¢ G.P
		1	10	10.0 mφ G.P
DANAO	2	4	15	10.0 mф G.P x 2 6.0 mф G.P x 2
MALASAG	2	2	10	6.0 mф G.P x 2

P.P: PLATE PARABOLA ANTENNA

Table B.4 Power Consumption of Communication Facilities

Facilities	Specification	Power Consumption (at AC 200V)
Multiplex Radio Equipment	800MHz Band SS-PM 70W FD System	1200 VA
v ·	800MHz Band SS-PM 70W SD System	700 VA
tt .	800MHz Band SS-PM 5W System	120 VA
n	800MHz Band SS-FM 5W System	160 VA
u u	6.7GHz Band SS-FM 1W	200 VA
Multiplex Terminal Equipment	29 ch (SGI), (GA, GB)	70 VA
и	12 ch (GA)	60 VA
Baseband Dis. Subrack		60 VV
HYB & CB/FXC Rep.	Subrack 12 ch	30 AV
. 11	" 6 ch	15 VA
n	Rack type 24 ch	60 VA
н	" 12 ch	50 VA
SV/RC Equipment	Master Station	30 VA
n ·	Remote Station	15 VA
FS/COMP Equipment	24 ch	200 VA
n	12 ch	160 VA
HF Radio Equipment		2000 VA
VHF Radio Equipment		150 VA
ARQ Equipment		250 VA
Facsimile		300 VA
Data Processing Equipment	for DCC, DRS	1000 VA
n	for	900 VA
Communication Control	for MANILA	300 VA
Console	for DCC, DRS	200 VA
C.V.C.F. for MANILA		60000 VA
Dehydrator		300 VA
Room Light		400 VA
u di	for emergency	200 VA
Outlet	for measurement equip.	500 VA
ı		2000 VA

Table B.5 List of Power Facilities

	ner			100	1,8	1,8	B	12 12 12	1,8	1,8	13	12	ъø
	Isolation Transformer			60HZ,	60HZ,	60Hz,	60Hz,	60HZ,	60Hz,	60Hz,	60HZ,	60Hz,	
	ion Tr	į t	1	220V,	220V,	220V,	220V,	220V,	220V,	220V,	220V,	220V,	220V, 60Hz,
	Isolat			30kVA,	30kVA,	20kva,	20kVA, 220V,	30kva,	20kva,	30kVA,	20kva,	40kVA,	40kVA,
	Bulk Tank)	1	6,000	000,9	4,000	4,000	2,000	2,000	2,000	1,000	4,000	4,000
	Day Tank (litre)		1	300	300	200	200	200	200	200	200	300	300
				1,6	1,6	18	1,8	1,00	1,8	1,00	18	1,0	18
				60Hz,	, ZH09	60HZ,	60Hz,	60Hz,	60Hz,	60Hz,	60Hz,	, zH09	60Hz,
	rator			220V,	220V,	220V,	220V,	220V,	220V,	200V,	220V,	220V,	220V,
	Diesel Engine Generator			stem	System	stem	System	Stand-by System	System 220V,	System	Single Stand-by System 220V,	System 220V,	System 220V,
	l Engir		1	Dual Stand-by System		15kVA Dual Stand-by System		nd-by	Stand-by	Stand-by	nd-by	1	Stand-by
	Diese			. Stand	L Stand-by	Stand	Stand-by	i			ile Sta	Single Stand-by	1
					25kVA Dual	A Dua]	A Dual	Single	Single	25kVA Single	Sing	ŀ	Single
				25kva			15kVA	25kVA	15kva	25kV?	lskva	35kVA	35kva
	<u>Li</u>	1.00	18	1¢	1,6	ъ Д	1,0	Ιφ	1%	1,6	1,0	Ø.	1,0
	atic julato:	60Hz,	60Hz,	220V, 60Hz, 1¢	60Hz	60Hz,	220V, 60Hz, 1Ø	60Hz,	60Hz,	60Hz,	60Hz,	60Hz,	60Hz,
	Automatic Voltage Regulator	220V,	220V,	220V,	220V,	220V,	220V,	220V,	220V,	220V,	220V,	220V,	220V,
	Voltā	10.0kVA, 220V, 60Hz, 1ø	5.0kVA, 220V, 60Hz, 1ø	5.0kva,	5.0kVA, 220V, 60Hz, 1¢	3.0kva, 220v, 60Hz, 1ø	3.0kVA,	5.0kVA, 220V, 60Hz, 1ø	3.0kVA,	5.0kva, 220v, 60Hz,	3.0kVA, 220V, 60Hz, lø	10.0kVA, 220V, 60Hz, 1ø	10.0kVA, 220V, 60Hz, 1¢
-		1(71	- I		.,,	u)		ι.	ω, 	10	
	φ			<u>.</u>			AN					ADAR	CAGAYAN DE ORO
	Site	r 3	Ä	AS	MALABOG	go.	TINAMBACAN	TAO	MALASAG	LEGASPI	CATARMAN	MACTAN RADAR	AYAN
		PFC	NAGA	GAPAS	MAI	BALOD	TIN	DANAO	MAI	LEG	CAT	MAC	CAG

Calculation Sheet of Power Facilities

		Isolation Transformer Capacity (kVA, 220V)	1	ı	,	30.0		30.0	30.0	20.0	20.0	20.0	30.0	40.0	20.0	0.04
		DEG Capacity (kva, 220v)		ı		25.0		25.0	25.0	15.0	15.0	15.0	25.0	35.0 4	15.0	35.0
ator		fistor (S.f. x fistor)	77.2	1	1	14.9	7.9	14.9	14.9	11.7	11.7	11.7	14.9	22.7	11.7	22.7
Gener	A) .	Ехсрапдет	1.5	,		,	1		1		ŧ	ı	1	1	ı	,
Engine Generator	on (kVA)	191310	ı	1	1	2	ı	7	72	CI	74	61	2	61	C1	(2)
Diesel	Consumption	Idaid moos	1	1	I	0.2	ı	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
. 6 7	Power Co	NVA	1	ı		0.3	L	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0	0.3
Capacity	AC Por	.4.0.V.o	09	. 1	1	t	ŀ	1	t	1	ı	ı	1	ŀ	1	ı
		renoitibned riA	ı	'	1	4.5	ı	4.5	4.5	4 7	7.7	5.5	4.5	4 د	4.5	4.5
		sitsmotuk TotslugsH sgetloV	15.7	1	,	7.9	7.9	7.9	7.9	4.7	4.7	7.4	7.9	15.7	4.7	15.7
	ļ	AVR Capacity (kva, 220v)	10.0	I	1	5.0	5.0	5.0	5.0	3.0	3.0	3.0	5.0	10.0	3.0	10.0
		(S.f x IstoT) istoT	4.6	2.0	1.2	3.3	2.4 (2.9)	2.4 (2.9)	3.4 (4.1)	2.1 (2.5)	2.0	2.2 (2.6)	2.9 (3.4)	5.0 (6.0)	1.7 (2.0)	5.3 (6.3)
		noitasinummoD elosnoO lortnoD	0.3	0.2	ı	1.	1	0.2	ı	ı	ı	1	: 	0.2	· r	0.2
tor		-eruzseM rof delluO fremtingf frem	0.5	1	ı	0.5	0.5	0.5	5.0	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Regulator		Dehydrator	l	ı	I	0.3	I	1	0.3	0.3	l l	0.3	0.3	,	£ ,	
Voltage	ion (kVA)	Facsimile Equipment	6.0	0.3	1	ı	1	0.3	-	,	0.3	,	1	9.0	1	9.0
υ :	ption	Data Processing Equipment	1	6 0	t	ı	ı	1.0	ı	,	0.0	1	-	1.0	ı	1.0
Automati	Power Consumpt	tnomqinpd QuA	0.25		l i	ı	ı	1	1.	1	-1	. 1	1	0.25	ı	0.25
οF	Power	JusudinpB oibs8 4HV	1	ı	0.3	ı	0.3	ŀ	0.3	ı	-	0.3	0.3	1	1	0.3
Capacity	O.	JnamqiupH oibsH .4.H	2.0	ı	ı	ı	1	1	1	1	1		•	5.0	1	2.0
		Supervisory/ Control Equipment	0.03	ı		0.02	ı	0.03	0.02	0.02	0.03	0.02	0.02	0.03	0.02	0.03
		rebnaqmoO\regnis 24 tnemqiupA	0.2	1	ı	1.	0.16	0.16	1 ,	1		1	1	0.16	I	0.16
		xəlqidin Tuəmqinbi lənimrəf	0.26	0.27	0.81	1	0.21	0.08	0.25	0.18	0.08	0.12	0.19	0.08	ï	60.0
		Multiplex Multiplex	0.16	0.28		2.4	1.2	0.12	2.02	1.02	0.12	6.0	1.52	0.12	0.82	0.12 (
	nordinesar	Site	PFC	SCIENCE GARDEN	TANAY	GAPAS	NAGA	LEGASPI	MALABOG	BALOD	CATARMAN	TINAMBACAN	DANAO	MACTAN RADAR		CAGATAN DE ORO

AVR Input Power Consumption: 0.75 x 0.85

				· · · · · · · · · · · · · · · · · · ·								
	Sattory	Output	Impus	Visy fransmitter (25W)	HF Fransmirter (150%)	Date Ferminal Equipment	ARQ Equipment	acsimile	Measuring Equipment	otal Power onsumption	Isolation Fransformer	Gasoline Engine Generator
	ļ ————	ļ			- = -	១៣	₹	<u>+</u>	* 7 2	7ot Con		S E S
Observation Station (VHF-1)	24V 20AB	24V 4A	0.2kVA	0.4kVA (2 Sets		O.9kva		O.3kVA	O. 1kVA	1.9kVA	3kVA	3kVA
Observation Station (VHF 2)	24V 20AH	24V 4A	O.2kVA	0.8kVA (4 Sets)		O.9kVA		O. 3kvA	O, 1kVA	2.3kVA	3kVA	3kVA
Observation Station (HF)	24V 20AH	24V 4A	O.2kVA		1.OKVA		O.25kVA	O.3kVA	O. 1kVA	1.85kVA	3kVA	3kVA

Note. The station (VHF 1) is a observating station.

The station (VHF 2) is a observating and repeating station.

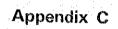

(VIGAN, BAGUIO RADAR, MENOS, BALER RADAR, MASBAIL and TACLOBAN)

Table B.8

Observing Data (Number of Figure) in each Observing Time

Qbserving		,	,	·		·					
Time Region	002	032	06Z	09%	12Z	15Z	182	212	Total	Emer- gency Time	Total
Mindanao	2760	600	1230	600	1530	600	1230	600	9150	1250	10400
Visayas	4390	550	1360	550	3460	550	1360	550	12770	1600	14370
Southern Luzon	3660	590	1490	590	3390	590	1490	590	12390	2000	14390
Northern Luzon	4870	540	1440	540	3940	540	1440	540	13850	1750	15600
Total	15680	2280	5520	2280	12320	2280	5520	2280	48160	6690	54760

is of Estimation		
SM (Synop)	90 figure/1 report	4 times/day
SI (Synop)	u	u u
US (Temp.)	930 figure/l report	1 time/day
UP (Pilot)	300 figure/l repott	2 times/day
RA (Radar)	400 figure/l report	
SE (Seismic)	50 figure/1 day	Emergency case
BE (Business)	100 figure/l day	11,
Marine	90 figure/l report	3 times/day

Appendix. C A Questionaire on the Estimated Mitigation of Typhoon Damage by the Propose Meteorological Telecommunication System

1. Objective of the questionaire:

To estimate the economic benefit to be realized by the proposed meteorological telecommunication system.

For the above-mentioned objective, the opinions of the concerned distinguished and experienced personnels are to be collected.

2. Assumptions for the future situations:

- (1) The meteorological telecommunication system now under study is assumed to have been completed and operated with its full effects.
- (2) Consequently, the weather forecast is much improved in terms of its accuracy and the typhoon track forecast can be disseminated to the general public quickly enough to take all the possible preventive actions for the coming typhoon.
- (3) Mitigation of typhoon damage can be fully realized by the aggregated effects of flood control structure such as dams and levees, and non structural measures such as flood forecasting and warning system and meteorological telecommunication system. In this questionaire, please estimate the typhoon damage mitigation assuming the conditions in which structural measures such as dams and levees are constructed and non structural measures such as FFWS and MTS are installed.

3. Filling the "ANSWER SHEET"

Attached hereto is the "ANSWER SHEET", of which last column (utmost right) is that to be filled by you. On the said sheet, the damage data of the typhoon Bebeng in December 1983 is presented to show the breakdown of the typhoon damage. The damage amount and its percentage share shown are for your reference only.

What you are requested is to estimate the future decrease (or increase if any) of typhoon damage assuming that the proposed meteorological telecommunication system is fully operating. The present damage values of each damage item are represented by 100 in the third column and, for example, if you think that "Agricultural Crops" damage can be mitigated and decreased to 60 in the future, then please fill "60" in the right-most column of the "Agricultural Crops".

- 4. Procedures of aggregating the "Answers"
 - (1) This questionaire will be replied by the distinguished and experienced personnels of the government agencies concerned to natural disaster mitigation such as OCD, PNRC, MPWH, MOA, NIA, TCS and PAGASA.
 - (2) The "ANSWER SHEET" filled by you and sent to PAGASA 1/ will be compiled to show the result of "FIRST FILLING", which will be sent back to you later. Then, please make the "SECOND FILLING" by following the same procedures as the first one; but, prior to make the "SECOND FILLING", you are requested to refer and take into consideration the opinions of the other people which are shown in the result of "FIRST FILLING".

 Your opinion may or may not be varied and/or adjusted to those of other people.
- /1 The officer in charge is Mr. Juan F. Asuncion, Assistant Weather Services Chief, National Weather Office, PAGASA, QCDB Bldg., 1424 Quezon Ave., Quezon City, Metro Manila Tel. No. 968-077
 - (3) After the "SECOND FILLING", please send the "ANSWER SHEET" to PAGASA, where the result of the "SECOND FILLING" will be compiled and sent back to you again. Please make the "THIRD FILLING" by following the same procedures as the second one; again you are requested to refer and take into consideration the opinions of the other people which are shown in the result of "SECOND FILLING".
 - (4) After obtaining the "THIRD FILLING" from you, the result will be compiled and reviewed by PAGASA and JICA Study Team.

(5) The above-mentioned procedure is called "Delfi Method". This is one of the ways of future forecast through aggregating the wide areas of knowledge of experienced personnels in various fields. In "Delfi Method", it is expected that, through referring and taking into consideration the opinions of other people, the opinion of each person will become astringent to one point as the time of voting proceeds.

Attachment: "ANSWER SHEET" for "FIRST FILLING" (1 copy)

Prepared by: Mr. K. YANAGISAWA

Project Economist, JICA Study Team

April 2, 1984

Estimated Mitigation of Typhoon Damage by the Proposed Meteorological Telecommunication System

				rence data of eng" in 1983	Estimate Indices	
			Number		Present	Future
r.	Casu	alties				
	(1)	Dead or Missing	142		100	
	(2)	Injured	145		100	
II.	Hous	es Destroyed				
	(1)	Totally destroyed	29,054		100	
	(2)	Partially destroye	xd 76,346		100	
				rence data of eng" in 1983	Estimated Indices : Present	
III.	Dama	ge to Properties				
	(1)	Agricultural Crops	129,860	27.8	100	
	(2)	Livestocks	1,633	0.3	100	· · · · · · · · · · · · · · · · · · ·
	(3)	Fishponds	214,734	46.0	100	
	(4)	Government Propert	ies			
		(i) Public Works				
		a) Ports, Pie or Sea Wa	ers 111s 7,650	1.6	100	·
		b) School Bui dings	.1- 27,861	6.0	100	·
		c) Public Bui dings	11,457	2.4	100	
	e de la companya de l	d) Fl∞d Cont Facilitie		1.9	100	
		e) Irrigatior Facilitie		0.5	100	
		f) Other Publ Facilitie	the state of the s	0.5	100	
		(ii) Road & Bridge	44,880	9.6	100	-
		(iii) Others	1,017	0.2	100	
	-(5)	Private Houses	15,136	3.2	100	
		Grand Total	467,832	(100.0)	-	***

Result of First Filling on Estimated Mitigation of Typhoon Damage

				-			resent ated b	y: /l
		(1)	(2)	(3)	(4)	(5)	(6)	(7)
I.	Casualties (in Number)							
	(1) Dead or Missing	80	40	20	_80	62	50	30
	(2) Injured	80	40	20	80	63	50	50
ıı.	Houses Destroyed (in Number)							
	(1) Totally destroyed	100	80	80	90	75	80	90
	(2) Partially destroyed	125	90	80	90	74	80	90
III.	Damage to Properties (in Peso)							
	(1) Agricultural Crops	100	90	85	90	82	80	90
	(2) Livestocks	90	50	70	80	67	50	30
	(3) Fishponds	90	90	60	80	76	70	80
	(4) Government Properties		eg e e					
	(i) Public Works						*	
	a) Ports, Piers or Sea Walls	100	95	95	90	82	90	90
	b) School Buildings	100	95	90	90	80	_80	90
	c) Public Buildings	100	95	90	90	80	80	90
•	d) Flood Control Facilities	80	95	70	90	78	90	90
	e) Irrigation Facilities	80	95	_70	90	77	80	9.0
	f) Other Public Facilities	1.00	95	90	90	81	80	90
	(ii) Road & Bridge	100	100	95	90	87	90	90
	(iii) Others	100	95	95	90	82	80	90
	(5) Private Houses	100	90	_80_	90	73	80	85

Note; /1 Name of estimater in alphabetical order:

⁽¹⁾ Dr. Generoso C. Caridad; Secretary General, PNRC

⁽²⁾ Mr. Bienvenido P. Faustino; Senior Vice President, PCIC

⁽³⁾ Dr. Roman L. Kintanar; Director General, PAGASA

⁽⁴⁾ Mr. Leonardo A. Nuñez; Assistant Director, BOM, MPWH

⁽⁵⁾ Col. Victor R. Pagulayan Jr.; Administrator, OCD

⁽⁶⁾ Mr. Avelino S. Rivera; Manager, PDD, NIA

⁽⁷⁾ Mr. Hideaki Yokouchi; Hydrologist, ESCAP/WMO TCS

Result of Second Filling on Estimated Mitigation of Typhoon Damage

	Future Damage Indices (with Present damage assuming at 100) estimated by: /1				: by: /l		
I. Casualties (in Number)	(1)	(2)	(3)	(4)	(5)	(6)	(7)
					٠.		-
(1) Dead or Missing	_70	<u>40</u>	20	<u>75</u>	- 80	40	50
(2) Injured	_70	_40	30	75	85	40	60
II. Houses Destroyes (in Number)							
(1) Totally destroyed	80	80	80	90	_80	80	90
(2) Partially destroyed	90	90	80	90	_85	_80	90
III. Damage to Properties (in Peso)							
(1) Agricultural Crops	85	90	85	90	85	90	90
(2) Livestocks	60	60	70	80	85	50	60
(3) Fishponds	85	90	60	80	85	60	85
(4) Government Properties		•					
(i) Public Works			. 1		,		
a) Ports, Piers or Sea Walls							
	95	95	95	_90	90	90	90
b) School Buildings	90	90	90	90	<u>85</u>	80	90
c) Public Buildings	90	90	90	90	85	90	90
d) Flood Control Facilities	<u>70</u>	90	75	90	85	70	90
e) Irrigation Facilities	70	90	<u>75</u>	90	85	70	90
f) Other Public Facilities	90	90	90	90	85	70	90
(ii) Road & Bridge	90	100	90	90	90	80	95
(iii) Others	85	95	90	90	85	80	90
(5) Private Houses	85	85	80	90	90	75	85

Note: /1 Name of estimater in alphabetical order:

⁽¹⁾ Dr. Generoso C. Caridad; Secretary General, PNRC

⁽²⁾ Mr. Bienvenido P. Faustino; Senior Vice President, PCIC (3) Dr. Roman L. Kintanar; Director General, PAGASA

⁽⁴⁾ Mr. Leonardo A. Nuñez; Assistant Director, BOM, MPWH (5) Col. Victor R. Pagulayan Jr.; Administrator, OCD (6) Mr. Avelino S. Rivera; Manager, PDD, NIA

⁽⁷⁾ Mr. Hideaki Yokouchi; Hydrologist, ESCAP/WMO TCS

Result of Third Filling on Estimated Mitigation of Typhoon Damage

	Future Damage Indices (with Present damage assuming at 100) estimated by: /l						
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
I. Casualties (in Number)							
(1) Dead or Missing	70	40	30	_75	<u>75</u>	40	60
(2) Injured	<u>75</u>	40	40	75	80	40	<u>70</u>
II. Houses Destroyes (in Number)							
(1) Totally destroyed	80	80	80	85	80	80	90
(2) Partially destroyed	85	85	80	85	85	80	90
III. Damage to Properties (in Peso)							
(1) Agricultural Crops	85	90	85	90	80	80	90
(2) Livestocks	65	60	70	80	75	50	60
(3) Fishponds	80	85	60	80	80	60	85
(4) Government Properties							
(i) Public Works							
a) Ports, Piers or Sea Walls	:00	00	0.5				
	90	90	95	90	90	80	90
b) Sch∞l Buildings c) Public Buildings	90	90	90	90.	<u>85</u>		90
	90 7 5	90	90	90	85	80	90
d) Flood Control Facilities		90	75	90	90	70	90
e) Irrigation Facilities	75	90	75	90	85	70	90
f) Other Public Facilities	90	90	90	90	<u>85</u>	80	90
(ii) Road & Bridge	90	95	90	90	90	80	95
(iii) Others	85	95	90	90	85	_80_	90
(5) Private Houses	85	85	80	85	85	<u>75</u>	90

Note: /1 Name of estimater in alphabetical order:

⁽¹⁾ Dr. Generoso C. Caridad; Secretary General, PNRC

⁽²⁾ Mr. Bienvenido P. Faustino; Senior Vice President, PCIC

⁽³⁾ Dr. Roman L. Kintanar; Director General, PAGASA

⁽⁴⁾ Mr. Leonardo A. Nuñez; Assistant Director, BOM, MPWH

⁽⁵⁾ Col. Victor R. Pagulayan Jr.; Administrator, CCD

⁽⁶⁾ Mr. Avelino S. Rivera; Manager, PDD, NIA

⁽⁷⁾ Mr. Hideaki Yokouchi; Hydrologist, ESCAP/WMO TCS

