				Frequency = 150 NHz
	TX	DAGUPAN	BAGUIO RADAR	Distance 38.9 Km
Station	RX	BAGUIO RADAR	DAGUPAN	Remarks
Transmitter		ALGO EO AGIDAN		
Power		30 dBm	30 dBm	Pt = 1 watt
Max. Mod. Freq.		3 KHz	3 KHz	
Max Deviation	·	+ - 5 KHz	+ 5 KHz	
Receiver	P-1			
Band width		12 KHz	12 KHz	\mathbf{B}
S/N Improvement		12.2 dB	12.2 dB	
Antenna		1.4. G	**************************************	* BOTH DIRECTION ANT. 5 ELE.YAGL
Gain TX site	line de la companya d	11 dB	*7.5 dB	Isotropic Gain
Feeder loss of TX		-2.6 dB	-2.6 dB	10D-2V-0.065dB/m x 40m
Gain RX site		*7.5 dB	11 dB	5 ELE. YAGI Isotropic Gain
Feeder loss of RX		-2.6 dB	-2.6 dB	$10D-2V-0.065dB/m \times 40m$
Total of Ant. Gai	n	13.3 dB	13.3 dB	Ga
Propagation Loss	·			Measured Value
Free Span Loss		-108.0 dB	-108.0 dB	
Mountain Refracti	on Loss	dB	dB	
lst Fresnel Loss		dB	dB	
Surface Refraction	n Loss	dB	dB	
Corrective Value		-2.5 dB	-2.5 dB	
Total of Propagat	ion Loss	-110.5 dB	-110.5 dB	Lp
Receiving Power	•			
Receiving Power		-67.2 dBm	-67.2dBm	Pt + Ga + Lp≈ Pr
Receiving Level		45.8 ^{dB} µ	45.8 dB	Vi = 113 + Pr
Noise of Receiving s	ide			
Internal Noise Fi	gure	9.5 dB	9.5 dB	;NF
External Noise Fa	ctor	9.5 dB	9.5 dB	;NE
Link Noise Figure		12.3 dB	12.3 dB	$NF = 10 \log (F + E - 1)$
Receiver Front en	d Noise	-120.9 dBm	-120.9 dBm	Prn=-144+101ogB+NF
Quality of Link				
Threshold level		-111.9 dBm	-111.9 dBm	Prn + 9 = Pth
Drop out Margin		44.7 dB	44.7 dB	Pr Pth
Fading Presumed		3.9 dB	3.9 dB	0.1dB x d(Km)
S/N at Threshold	Level	21.2 dB	21.2 dB	
Standard S/N		65.9 _{dB}	65.9 dB	
S/N at Max. Fadin	g	62.0 _{dB}	62.0 dB	
Judgement				
		_ 0	42-	

- 242 -

						Frequency = 150 MHz
	TX	VIGAN		BAGUIO R	ADAR	Distance 135.8 Km
Station	RX	BAGUIO	RADAR	VIGAN		Remarks
Transmitter						
Power		30	dBm	30	dBm	Pt = 1 watt
Max. Mod. Freq.		3	KHz	3	KHz	
Max Deviation		+ 5	KHz	5	KHz	
Receiver						
Band width		12	KHz	12	KHz	В
S/N Improvement		12.2	dB	12.2	dB	
Antenna	فاستنان بريب الزياف التال بين يسيان سيب					* BOTH DIRECTION ANT.
Gain TX site		1.1	dB	*7.5	dB	Isotropic Gain
Feeder loss of TX		-2.	6 dB .	-2.6	dB	$10D-2V-0.065dB/m \times 40m$
Gain RX site		*7.5	dB	11	dB	Isotropic Gain
Feeder loss of RX		-2.	6 dB	-2,6	dB	$10D-2V-0.065dB/m \times 40m$
Total of Ant. Gai	n	13.3	3 dB	13.3	dB	Ga
Propagation Loss						Measured Value
Free Span Loss		-118.6	dB	-118.6	dВ	
Mountain Refracti	on Loss		dB		dB	
lst Fresnel Loss			dB		dB	
Surface Refractio	n Loss		dB		dB	
Corrective Value		+ 1.	1 dB	+ 1.1	dB	
Total of Propagat	ion Loss	-117.5	dB	-117.5	dB	Lp
Receiving Power						
Receiving Power		-74.	2 dBm	-74.2	dBm	Pt + Ga + Lp= Pr
Receiving Level	. 7 1	38.	8 dB _M	38.8	dB _{ju}	Vi = 113 + Pr
Noise of Receiving s	ide					
Internal Noise Fi	gure	9.5	dB	9.5	dB	; F
External Noise Fa	ctor	9.5	ō dB	9.5	dB	; E
Link Noise Figure		12.	3 dB	12.3	dB	NF = 10 log (F + E - 1)
Receiver Front end Noise		-120.9	dBm	-120.9	dBm	Prn=-144+10logB+NF
Quality of Link			·		·	
Threshold level		-111.9	dBm	-111.9	dBm	Prn + 9 = Pth
Drop out Margin		37.7	dB	37.7	ďВ	Pr - Pth
Fading Presumed	, * 1	13.6	dB	13.6	dB	0.1dB x d(Km)
S/N at Threshold	Level	21.2	dB	21.2	dB	
Standard S/N		58.9	dB	58.9	dB	
S/N at Max. Fadin	~	45.3	dB	45.3	dВ	
	g	13.3	420			Į.

Table A.3 (3/16) Level Diagram VHF Link

	F 1.			
	TX	BAGUIO RADAR		Frequency = 150 MHz Distance = 202.0 Km
Station	RX	I.AOAG		Remarks
Transmitter		1,10,10		Nemat KS
Power		44 dBm	44 dBm	
Max. Mod. Freq.		3 kHz	3 kHz	Pt = 25 watt
Max. Deviation		±5 kHz	± 5 kHz	
Receiver		- 5 KiiZ	J Ruz	
Band Width		12 kHz	12 kHz	В
S/N Improvement		12.2 dB	12.2 dB	,
Antenna		12.2 40	12.2 UB	
Gain TX Site		13.0 dB	dB	8 ELE. YAGI
Feeder Loss of TX		-2.3 dB		Isotropic Gain 8D2V 0.09dB/mx25m
Gain RX Site		13.0 dB	dB dB	8 ELE. YAGI
Feeder Loss of RX		-2.3 dB	dB	Isotropic Gain 8D2V 0.09dB/mx25m
Total of Ant. Gair	1	21.4 dB	dB	Ga
Propagation Loss			d D	Measured Value
Free Span Loss		-122.1 dB	dВ	neasured varue
Mountain Refraction	n Loss	-27 dB	dB	
lst Fresnel Loss	711 2000	-6 dB	dB	
Surface Refraction	Loss	dB	dB	
Corrective Value		-13.9 dB	dB	
Total of Propagation	n Loss	-169.0 dB	dВ	Lp
Receiving Power		103.0		~P
Receiving Power		-103.6 dBm	d Bm	Pt + Ga + Lp = Pr
Receiving Level		9.4 dBµ	dВµ	Vi = 113 + Pr
Noise of Receiving Si	de			
Internal Noise Fig	ure	9.5 dB	9.5 dB	; F
External Noise Fac	tor	9,5 dB	9.5 dB	
Link Noise Figure		12.3 dB	12.3 dB	NF = 10 log (F+E-1)
Receiver Front End	Noise	-120.9 dBm	-120.9 dBm	Prn = -144+10 logB+NF
Quality of Link				
Threshold level		-111.9 dBm	-111.9 dBm	Prn + 9 = Pth
Drop Out Margin	- 1.	8.3 dB	dВ	Pr - Pth
Fading Presumed		20 dB	dB	0.1dB x d(Km)
S/N at Threshold L	evel	21.2 dB	21.2 dB	
Standard S/N	**	29.5 dB	dВ	
S/N at Max. Fading		9.5 dB	dB	
Judgement				

- 244 -

Station R Transmitter Power Max. Mod. Freq.	X X	VIGAN LAOAG 44		LAOAG VIGAN		Distance 70 Km Remarks
Transmitter Power Max. Mod. Freq.	X	44		VIGAN		Remarks
Power Max. Mod. Freq.			Jn.			a major assemble de light had
Max. Mod. Freq.			ייי			
		3	dBm	44	dBm	Pt = 25 watt
May Davistian		J	KHz	3	KHz	
Max Deviation		<u>+</u> 5	KHz	+ 5	KHz	
Receiver						
Band width		12	KHz	12	KHz	В
S/N Improvement		12.2	dВ	12.2	dВ	
Antenna						5 ELE.YAGI
Gain TX site		11	dB	11	dВ	Isotropic Gain
Feeder loss of TX	•	-2.6	dB	-2.6	dB	10D-2V-0.065dB/m x 40m
Gain RX site		11	dB	11	dB	5 ELE.YAGI Isotropic Gain
Feeder loss of RX		-2.6	dB	-2.6	d B	$10D-2V-0.065dB/m \times 40m$
Total of Ant. Gain		16.8	dB	16.8	dB	Ga
Propagation Loss					:	Measured Value
Free Span Loss		-112.9	dB	-112.9	dB	
Mountain Refraction L	oss	- 17.5	dB	- 17.5	dB	
lst Fresnel Loss		-10.	8dB	-10.8		
Surface Refraction Lo	ss	- 4.	5dB	- 4.5	dB ·	
Corrective Value		- 5	dB	- 5	dB	,
Total of Propagation	Loss	-150.7	dВ	-150.7	dB	Lp
Receiving Power						
Receiving Power		-89.	9dBm	-89.9		Pt + Ga + Lp = Pr
Receiving Level		23.1	dB _M	23.1	dВ _м	Vi = 113 + Pr
Noise of Receiving side						
Internal Noise Figure		9.5	dB	9.5	dB	; F
External Noise Factor		9.5	dB	9.5	dB	; E
Link Noise Figure		12.3	3 dB	12.3	dB	$NF = 10 \log (F + E - 1)$
Receiver Front end No	ise	_120.9	dBm	-120.9	dBm	Prn=-144+101ogB+NF
Quality of Link					44.4	
Threshold level		-111.9		-111.9	dBm	Prn + 9 = Pth
Drop out Margin	···	22		22	dB	Pr - Pth
Fading Presumed			dB	7	dB	0.1dB x d(Km)
S/N at Threshold Leve	:1.	21.	2 dB	21.2		
Standard S/N		43.	2 dB	43.2		
S/N at Max. Fading		36.	² dB	36.2	dB	
Judgement			245			

- 245--

Table A.3 (5/16)

				Frequency = 150 MHz
	TX	CARMEN ROSALES	MUÑOZ	Distance 38.0 Km
Station	RX	MUÑOZ	CARMEN ROSALES	Remarks
Transmitter		HONOZ	KODIII233	
Power		40 dBm	40 dBm	Pt = 10 watt
Max. Mod. Freq.		3 KHz	3 KH2	
Max Deviation		+5 KHz	+ 5 KHz	
Receiver	····			
Band width		12 KHz	12 KHz	В
S/N Improvement		12.2 dB	12.2 dB	
Antenna		12,2 03	12.12	
Gain TX site		11 dB	11 dB	5 ELE.YAGI Isotropic Gain
		-2.6dB	-2.6 dB	$10D-2V-0.065dB/m \times 40m$
Feeder loss of TX				5 ELE.YAGI
Gain RX site	<u> </u>	11 dB	11 dB	Isotropic Gain 10D-2V-0.06dB/m x 40m
Feeder loss of RX		-2.6dB	-2.6 dB	
Total of Ant. Gair	1	16.8 dB	16.8 dB	Ga
Propagation Loss				Measured Value
Free Span Loss		-107.6 dB	-107.6 dB	
Mountain Refracti	on Loss	- 19.0 dB	- 19.0 dB	
lst Fresnel Loss		- 11.0 dB	- 11.0 dB	
Surface Refraction	n Loss	dB	dB	
Corrective Value		-4.9 dB	-4.9 dB	
Total of Propagat	ion Loss	-142.5 dB	-142.5 dB	Lp
Receiving Power				
Receiving Power		-85.7 dBm	-85.7 dBm	Pt + Ga + Lp= Pr
Receiving Level		27.3 dB _M	ـــــــــــــــــــــــــــــــــــــ	Vi = 113 + Pr
Noise of Receiving s	ide			
Internal Noise Fi	gure	9.5 dB	9.5 ав	; F
External Noise Fa	ctor	9.5 dB	9.5 dB	, E
Link Noise Figure		12.3 dB	12.3 dB	$NF = 10 \log (F + E - 1)$
Receiver Front en	d Noise	-120.9 dBm	-120.9 dBm	Prn=-144+101ogB+NF
Quality of Link				
Threshold level	 	-111.9 dBm	-111.9 dBm	Prn + 9 = Pth
Drop out Margin		26.2 dB	26.2 dB	Pr - Pth
Fading Presumed		3.8 dB	3.8 dB	0.1dB x d(Km)
S/N at Threshold	Level	21.2 dB	21.2 dB	
Standard S/N		47.4 dB	47.4 dB	
S/N at Max. Fadin	g	43.6 dB	43.6 dB	
Judgement				
		L	246 <i>-</i> -	<u> </u>

			Frequency = 150 MHz
TX	MUÑOZ	BALER RADAR	Distance 78.0 Km
Station RX	BALER RADAR	MUÑOZ	Remarks
Transmitter			
Power	44 dBm	44 dBm	$p_t = 25$ watt
Max. Mod. Freq.	3 KHz	3 KHz	
Max Deviation	+ 5 KHz	+ 5 KHz	
Receiver			
Band width	12 KHz	12 KHz	В
S/N Improvement	12.2 dB	12.2 dB	
Antenna			5 ELE.YAGI
Gain TX site	11 dB	11 dB	Isotropic Gain
Feeder loss of TX	-2.6 dB	-2.6 dB	10D-2V-0.065dB/m x 40m 5 ELE.YAGI
Gain RX site	11 dB	11 dB	Isotropic Gain
Feeder loss of RX	-2.6 dB	-2.6 dB	$10D-2V-0.065dB/m \times 40m$
Total of Ant. Gain	16.8 dB	16.8 dB	Ga
Propagation Loss			Measured Value
Free Span Loss	-113.8 dB	-113.8 dB	
Mountain Refraction Loss	-29.2 dB	-29.2 dB	
lst Fresnel Loss	- 6 dB	- 6 dB	
Surface Refraction Loss	dB	dB	
Corrective Value	-1.5 dB	-1.5 dB	
Total of Propagation Loss	-150.5 dB	-150.5 dB	Lp
Receiving Power			
Receiving Power	-89.7 dBm	-89.7 dBm	Pt + Ga + Lp= Pr
Receiving Level	23.3 dB _M	23.3 dB _µ	Vi = 113 + Pr
Noise of Receiving side			
Internal Noise Figure	9.5 dB	9.5 dB	; F
External Noise Factor	9.5 dB	9.5 dB	; E
Link Noise Figure	12.3 dB	12.3 dB	$NF = 10 \log (F + E - 1)$
Receiver Front end Noise	-120.9 dBm	-120.9 dBm	Prn=-144+101ogB+NF
Quality of Link			
Threshold level	-111.9 dBm	-111.9 dBm	Prn + 9 = Pth
Drop out Margin	22.2 dB	22.2 dB	Pr - Pth
Fading Presumed	7.8 dB	7.8 dB	0.1dB x d(Km)
S/N at Threshold Level	21.2 dB	21.2 dB	
Standard S/N	43.4 dB	43.4 dB	•
S/N at Max. Fading	35.6 dB	35.6 dB	
Judgement			

				Frequency = 150 MHz
	TX	CASIGURAN	BALER RADAR	Distance 79,3 Km
Station	RX	BALER RADAR	CASIGURAN	Remarks
Transmitter				
Power		44 dBm	44 dBm	Pt = 25 watt
Max. Mod. Freq.		3 KHz	3 KHz	
Max Deviation		- 5 KHz	- 5 KHz	
Receiver				
Band width		12 KHz	12 KHz	В
S/N Improvement		12.2 dB	12.2 dB	
Antenna				C. DYD. WAGT
Gain TX site		11 dB	11 dB	5 ELE.YAGI Isotropic Gain
Feeder loss of TX		-2.6 dB	-2.6 dB	10D-2V-0.065dB/m x 40m
Gain RX site	2.	11 dB	11 dB	5 ELE.YAGI Isotropic Gain
Feeder loss of RX		-2.6 dB	-2.6 dB	$10D-2V-0.065dB/m \times 40m$
Total of Ant. Gain	ı	16.8 dB	16.8 dB	Ga
Propagation Loss				Measured Value
Free Span Loss		-114.0 dB	-114.0 dB	
Mountain Refractio	n Loss	dB	dB	
lst Fresnel Loss		dB	dВ	
Surface Refraction	Loss	-26.4 dB	-26.4 dB	
Corrective Value		-1.6 dB	-1.6 dB	
Total of Propagati	on Loss	-142.0 dB	-142.0 dB	Lp
Receiving Power				
Receiving Power		-81.2 dBm	-81.2 dBm	Pt + Ga + Lp= Pr
Receiving Level		31.8 dB _{/m}	31.8 dB _{/4}	Vi = 113 + Pr
Noise of Receiving si	de			
Internal Noise Fig	gure	9.5 dB	9.5 dB	; F
External Noise Fac	tor	9.5 dB	9.5 dB	; E
Link Noise Figure		12.3 dB	12.3 dB	$NF = 10 \log (F + E - 1)$
Receiver Front end	l Noise	-120.9 dBm	-120.9 dBm	Prn=-144+101ogB+NF
Quality of Link			a.	
Threshold level		-11 1. 9 dBm	-111.9 dBm	Prn + 9 = Pth
Drop out Margin		30.9 dB	30.9 dB	Pr - Pth
Fading Presumed		8.0 _{dB}	8.0 вь	0.1dB x d(Km)
S/N at Threshold Level		21.2 dB	21.2 dB	
Standard S/N		51.9 _{dB}	51.9 dB	
S/N at Max. Fading	3	43.9 _{dB}	43.9 dB	
Judgement				

Table A.3 (8/16)

				in die eerste v		Frequency	= 150 MHz
talia y	TX	AMBULONG		TANA	Y	Distance	61.5 Km
Station	RX	TANA		AMBULONG		Remar	ks
Transmitter		(25W)		(50W)			
Power		44 (1Bm	47	dBm	Pt =	watt
Max. Mod. Freq.		3 1	ζΗz	3	KHz		
Max Deviation		+ 5	(Hz	± 5	KHz		
Receiver							
Band width		12	(Hz	12	KHz	В	
S/N Improvement		12.2	dB	12.2	dВ		
Antenna						1	6 ELE.CO-LINER
Gain TX site		13 (iВ	8	dВ	AMBU.: Isotr	8 ELE.YAGI opic Gain
Feeder loss of TX		- 2.6	1B	-2.6	dB	10D-2V-0.0	65dB/m × 40m
Gain RX site		8 ,	dВ	13	dB	Isotr	opic Gain
Feeder loss of RX	:	- 2.6	dВ	- 2.6	dB.	10D-2V-0.0	65dB/m x 40m
Total of Ant. Gair	n	15.8	dB	15.8	dB	Ga	
Propagation Loss						Measu	red Value
Free Span Loss		-111.7	dB	-111.	7 _{dB}		
Mountain Refracti	on Loss	-15.5	dВ	-15.5	dВ		
lst Fresnel Loss		- 6 ,	dB	- 6	dB		
Surface Refraction	n Loss		dB		dВ		
Corrective Value		-16.2	dB	-16.2	dB		
Total of Propagat	ion Loss	-149.4	d B	-149.4	dВ	Lp	
Receiving Power				,			
Receiving Power		-89.6	dBm	-86.6	dBm	Pt +	Ga + Lp= Pr
Receiving Level		23.4	dB _{ju}	26.4	dB _{ju}	Vi =	113 + Pr
Noise of Receiving s	ide						
Internal Noise Fi	gure	9.5	dВ	9.5	dB	; F	
External Noise Fa	ctor	9.5	dB	9.5	dВ	; E	
Link Noise Figure		12.3	dB	12.3	dB	NF =10 1c	og $(F + E - 1)$
Receiver Front en	d Noise	-120.9	d Bm	-120.9	dBm	Prn=-	-144+101ogB+NF
Quality of Link							
Threshold level	1 + 1	-111.9	dВm	-111.9	dBm	Prn -	+ 9 = Pth
Drop out Margin		22.3	dB	25.3	dВ	Pr -	Pth .
Fading Presumed		6.2	dВ	6.2	dВ	0.1dl	3 x d(Km)
S/N at Threshold	Level	21.2	dB	21.2	dB		•
Standard S/N		43.5	dB	46.5	dВ		· · · · · · · · · · · · · · · · · · ·
S/N at Max. Fadin	g	37.3	dB	40.3	dВ		•
Judgement				<u> </u>			

-249-

	+1		Frequency = 150 MHz
TX	CALAPAN	TANAY	Distance 127 Km
Station RX	TANAY	CALAPAN	Remarks
Transmitter			
Power	47 dBm	47 dBm	Pt = 50 watt
Max. Mod. Freq.	3 KHz	3 KHz	
Max Deviation	+ 5 KHz	+ 5 KHz	
Receiver			
Band width	12 KHz	12 KHz	В
S/N Improvement	12.2 dB	12.2 dB	
Antenna			TANAY: 6 ELE.COLINER
Gain TX site	13 dB	8 dB	CALAP: 8 ELE.YAGI Isotropic Gain
Feeder loss of TX	-2.6 dB	-2.6.dB	$10D-2V-0.065dB/m \times 40m$
Gain RX site	8 dB	13 dB	Isotropic Gain
Feeder loss of RX	-2.6 dB	-2.6 dB	10D-2V-0.065dB/m x 40m
Total of Ant. Gain	15.8 dB	15.8 dB	Ga
Propagation Loss			Measured Value
Free Span Loss	-118.0 dB	-118.0 dB	
Mountain Refraction Loss	-22.0 dB	-22.0 dB	
lst Fresnel Loss	-6.0 dB	-6.0 dB	
Surface Refraction Loss	dB	dB	
Corrective Value	-6.4 dB	-6.4 dB	
Total of Propagation Loss	-152.4 dB	-152.4 dB	Lp
Receiving Power			
Receiving Power	-89.6 dBm	-89.6 dBm	Pt + Ga + Lp= Pr
Receiving Level	23.4 dB _µ	23.4 dB _M	Vi = 113 + Pr
Noise of Receiving side			
Internal Noise Figure	9.5 dB	9.5 dB	; F
External Noise Factor	9.5 dB	9.5 dB	Б
Link Noise Figure	12.3 dB	12.3 dB	$NF = 10 \log (F + E - 1)$
Receiver Front end Noise	_120.9 dBm	-120.9 dBm	Prn=-144+101ogB+NF
Quality of Link			
Threshold level	-111.9 dBm	-111.9 dBm	Prn + 9 = Pth
Drop out Margin	22.3 dB	22.3 dB	Pr - Pth
Fading Presumed	13 dB	13 dB	0.1dB x d(Km)
S/N at Threshold Level	21.2 dB	21.2 dB	
Standard S/N	43.5 dB	43.5 dB	
S/N at Max. Fading	30.5 dB	30.5 dB	
Judgement			
		250 —	

table W.S (10/10)						
			f-th-able to the state of the state of			Frequency = 150 MHz
	TX	ALABAT		TANAY		Distance 88.4 Km
Station	RX	TANAY		ALABAT		Remarks
Transmitter						
Power		47	dBm	47	-dBm	Pt = 50 watt
Max. Mod. Freq.		3	KHz	3	KHz	
Max Deviation		+ 5	KHz	<u>+</u> 5	KHz	
Receiver	· · · · · · · · · · · · · · · · · · ·	·····				
Band width		12	KHz	12	KHz	В
S/N Improvement		12.2	dB	12.2	dB	
Antenna				· · · · · · · · · · · · · · · · · · ·		TANAY: 6 ELE.COLINER
Gain TX site		13	dB:	8	dB	ALABAT: 5 ELE.YAGI Isotropic Gain
Feeder loss of TX		-2.6	dB	-2.6	dB	$10D-2V \ 0.065dB/m \times 40m$
Gain RX site		8	dB	13	dB	Isotropic Gain
Feeder loss of RX		-2.6	dB	-2.6	d B	$10D-2V-0.065dB/m \times 40m$
Total of Ant. Gain	n	15.8	dB	15.8	dB	Ga
Propagation Loss						Measured Value
Free Span Loss		-114.9	dB	-114.9	dB	
Mountain Refracti	on Loss	-25.5	dB	-25.5	dB	
lst Fresnel Loss		- 6	dB	- 6	dB ·	
Surface Refraction	n Loss		dB		dB	
Corrective Value		- 5	dB	- 5	dВ	
Total of Propagat	ion Loss	-151.4	dB	-151.4	dB	Lp
Receiving Power						
Receiving Power		-88.6	dBm	-88.6	dBm	Pt + Ga + Lp= Pr
Receiving Level		24.4	dB _M	24.4	dB' _{ju}	Vi = 113 + Pr
Noise of Receiving s	ide			. :		
Internal Noise Fi	gure	9.5	dB	9.5	dB	; F
External Noise Fa	ctor	9.5	dB	9.5	dВ	; E
Link Noise Figure		12.3	dB	12.3	dB	$MF = 10 \log (F + E - 1)$
Receiver Front en		-120.9	dBm	-120.9	dBm	Prn=-144+101ogB+NF
Quality of Link						
Threshold level		-111.9	dBm	-111.9	dBm	Prn + 9 = Pth
Drop out Margin		23.3	dB	23.3	dВ	Pr - Pth
Fading Presumed		8.8	dB	8.8	dB	0.1dB x d(Km)
S/N at Threshold	Level	21.2	dB	21.2	dB	
Standard S/N		44.5	dB	44.5	dB	
S/N at Max. Fadin	g	35.7	dB	35.7		
Judgement	0		-			
o na Sement			<u> </u>	<u> </u>	***************************************	<u> </u>

			ومرحوا والمعادم وجواحي			Frequency = 150 MHz
	TX	INFANT	A	TANAY		Distance 38.3 Km
Station	RX	TANAY		INFANTA		Remarks
Transmitter						
Power		47	d Bm	47	dBm	Pt = 50 watt
Max. Mod. Freq.		3	KHz	3	KHz	
Max Deviation		+ 5	KHz	± 5.	KHz	
Receiver	:					
Band width		12	KHz	12	KHz	В
S/N Improvement	1	12.2	dB	12.2	dВ	
Antenna						TANAY: 6 ELE.COLINER
Gain TX site		13	dB	8	dВ	INFANTA: 8 ELE YAGI Isotropic Gain
Feeder loss of TX		-2.6	dВ	-2.6	dB	10D-2V-0.065dB/m x 40m
Gain RX site		8	dB	13	dB	Isotropic Gain
Feeder loss of RX	an a top a	-2.6	dB	-2.6	dB	10D-2V-0.065dB/m x 40m
Total of Ant. Gain		15.8	dВ	15.8	dВ	Ga
Propagation Loss						Measured Value
Free Span Loss		-107.6	dB	-107.6	dВ	
Mountain Refractio	n Loss	-33.5	dB	-33.5	dВ	
lst Fresnel Loss		- 12	dB	- 12	dВ	
Surface Refraction	Loss		dB		dВ	
Corrective Value		-1.7	dВ	-1.7	dB	
Total of Propagati	on Loss	-151.4	dB	-151.4	dВ	$_{ m Lp}$
Receiving Power						
Receiving Power		-88.6	dBm	-88.6	dBm	Pt + Ga + Lp= Pr
Receiving Level		24.4	dB _M	24.4	dBµ	Vi = 113 + Pr
Noise of Receiving si	de		* . :			
Internal Noise Fig	ure	9.5	dB	9.5	dB	; F
External Noise Fac	tor	9.5	dB	9.5	dB	; E
Link Noise Figure		12.3	dB	12.3	dB	$NF = 10 \log (F + E - 1)$
Receiver Front end	Noise	-120.9	d Bm	-120.9	dBm	Prn=-144+101ogB+NF
Quality of Link		·				
Threshold level	1. 1. 1.	-111.9	dBm	-111.9	dBm	Prn + 9 = Pth
Drop out Margin		23.3	dB	23.3	dВ	Pr - Pth
Fading Presumed	1	3.8	dB	3.8	dB	0.1dB x d(Km)
S/N at Threshold L	evel	21.2	dB	21.2	dВ	
Standard S/N		44.5	dB	44.5	dB	
S/N at Max. Fading		40.7	dB	40.7	dB	
Judgement						

Table A.3 (12/16) Level Diagram VHF Link

						Frequency = 150 MHz
	TX	TANAY				Distance = 116.6 Km
Station	RX	JOMAL1G				Remarks
Transmitter		,				
Power		47	d Bm	47	d Bm	7h - 50
Max. Mod. Freq.		3	kHz	. 3	kllz	Pt = 50 watt
Max. Deviation	100	± 5	kHz	± 5	kHz	
Receiver						
Band Width		12	kHz	12	kHz	В
S/N Improvement		12.2	dВ	12.2	dВ	
Antenna						do L'ENDAD
Gain TX Site		8.0	dB	· .	d B	CO-LINEAR Isotropic Gain
Feeder Loss of T	x	-2.6	d B		d B	10D2V 0.065dB/mx40m
Gain RX Site		13.0	dB		dB	8 ELE. YAGI Isotropic Gain
Feeder Loss of R	X	-2.6	dB		dB	10D2V 0.065dB/mx40m
Total of Ant. Ga	in	15.8	dB		dB	Ga
Propagation Loss						Measured Value
Free Span Loss	 	-117.3	dB		dB	
Mountain Refract	ion Loss	-27.0	d B		dB	
1st Fresnel Loss			dВ		dB	
Surface Refracti	on Loss		dВ		dB	
Corrective Value		-8.5	dB		dB	
Total of Propagat	Lon Loss	-152.8	dВ	. "	dB	Lр
Receiving Power					-	
Receiving Power		-90.0	d Bm		d Bm	Pt + Ga + Lp = Pr
Receiving Level		23.0	dΒμ		dΒμ	Vi = 113 + Pr
Noise of Receiving	Side					,
Internal Noise F	lgure	9.5	dВ	9.5	dВ	; F
External Noise Fa	actor	9.5	dВ	9.5	dВ	; E
Link Noise Figure	5	12.3		12.3		NF = 10 log (F+E-1)
Receiver Front E	nd Noise	-120.9	d Bm	-120.9	d Bm	Prn = -144+10 logB+NF
Quality of Link				****		
Threshold level		-111.9	d Bm	-111.9	d Bm	Prn + 9 = Pth
Drop Out Margin		21.9	dВ		dB	Pr - Pth
Fading Presumed		11.7	dB		dB	0.1dB x d(Km)
S/N at Threshold	Level	21.2	dВ	21.2	dВ	
Standard S/N		43.1	dВ		dВ	
S/N at Max. Fadi	ng	31.4	d B		dB	
Judgement						

-- 253 --

Table A.3 (13/16) Level Diagram VHF Link

			1	Frequency = 150 MHz
Charles	TX	MALABOG	The state of the s	Distance = 88.6 Km
Station	RX	MASBATE		Remarks
Transmitter				
Power	er e	44 dBm	44 d Bm	
Max. Mod. Freq.		3 kHz	3 kHz	Pt = 25 watt
Max. Deviation		±5 kHz	±5 kHz	
Receiver				
Band Width		12 kHz	12 kHz	В
S/N Improvement		12.2 dB	12.2 dB	
Antenna				
Gain TX Site	:: '	13 dB	dВ	8 ELE. YAGI
Feeder Loss of TX		-2,3 dB	dB	Isotropic Gain 8D2V 0.09dB/mx25m
Gain RX Site		13 dB	dB	8 ELE. YAGI Isotropic Gain
Feeder Loss of RX	1.1.5	-2.3 dB	d B	8D2V 0.09dB/mx25m
Total of Ant. Gai	n	21.4 dB	dВ	Garrier West Committee
Propagation Loss				Measured Value
Free Span Loss		-114.9 dB	dВ	
Mountain Refracti	on Loss	-26.5 dB	dB	
lst Fresnel Loss		-6.0 dB	dB	
Surface Refraction	n Loss	dB	d B	
Corrective Value	· · · · · · · · · · · · · · · · · · ·	-2.6 dB	dB	
Total of Propagation	on Loss	-150.0 dB	dВ	Lp de el
Receiving Power				
Receiving Power		-84.6 dBm	d Bm	Pt + Ga + Lp = Pr
Receiving Level		28.4 dBµ	dВµ	Vi = 113 + Pr
Noise of Receiving S	ide			
Internal Noise Fig	gure	9.5 dB	9.5 dB	; F
External Noise Fac	ctor	9.5 dB	9.5 dB	
Link Noise Figure	.777	12.3 dB	12.3 dB	$NF = 10 \log (F+E-1)$
Receiver Front End	l Noise	-120.9 dBm	-120.9 dBm	Prn = -144+10 logB+NF
Quality of Link				
Threshold level		-111.9 dBm	-111.9 dBm	Prn + 9 = Pth
Drop Out Margin		27.3 dB	dB	Pr - Pth
Fading Presumed		9,0 dB	dB	0.1dB x d(Km)
S/N at Threshold I	Leve1	21.2 dB	21.2 dB	
Standard S/N		48.5 dB	dB	
S/N at Max. Fading	3	39.5 dB	dB	
Judgement				

- 254 --

Table A.3 (14/16) Level Diagram VHF Link

						Frequency = 150 MHz
Station	TX	MASBATE	. :			Distance = 147.5 Km
Scatton	RX	ROMBLON (Mt.)	1		Remarks
Transmitter					 -	
Power		47	d Bm		d Bm	D4
Max. Mod. Freq.		3	kHz	3	kHz	Pt = watt MASBATE 50 W
Max. Deviation		± 5	kHz	± 5	kHz	ROMBLON 25 W
Receiver						
Band Width		12	kHz	12	kHz	В
S/N Improvement		12.2	dB	12.2	dB	
Antenna		· · · · · · · · · · · · · · · · · · ·				BOTH DIRECTION ANT
Gain TX Site		7.5	d B		d B	5 ELE. YAGI Isotropic Gain
Feeder Loss of TX		-2.6	dВ		dB	10D-2V 0.065dB/mx40m
Gain RX Site		11	dB		dB	5 ELE, YAGI Isotropic Gain
Feeder Loss of RX		-2.6	d B		dВ	10D-2V 0.065dB/mx40m
Total of Ant. Gai	n	13.3	d B		dB.	Ga
Propagation Loss						Measured Value
Free Span Loss		-119.3	dB		dВ	
Mountain Refracti	on Loss		dB	·	dВ	
lst Fresnel Loss			dB		dB	
Surface Refractio	n Loss		dB		dB	e de
Corrective Value		-27.1	dB		dB	
Total of Propagati	on Loss	-146.4	d B		dB	Lp
Receiving Power						
Receiving Power		-86.1	d Bm		d Bm	Pt + Ga + Lp = Pr
Receiving Level		26.9	dΒμ		dΒμ	Vi = 113 + Pr
Noise of Receiving S	ide					
Internal Noise Fi	gure	9.5	dВ	9.5	dВ	; F
External Noise Fac	ctor	9,5	dB	9.5	d B	; E
Link Noise Figure		12.3	dB	12.3	dB	$NF = 10 \log (F+E-1)$
Receiver Front End	i Noise	-120.9	d Bm	-120.9	d Bm	Prn = -144+10 logB+NF
Quality of Link						
Threshold level		-111.9	d Bm	-111.9	d Bm	Prn + 9 = Pth
Drop Out Margin		25.8	d B	:	dB	Pr - Pth
Fading Presumed		14.8	dВ		dB	0.1dB x d(Km)
S/N at Threshold I	revel	21.2	d B	21.2	dВ	
Standard S/N		47.0	d B		dВ	
S/N at Max. Fading	3	32.2	d B		dB	
Judgement						

Table A.3 (15/16) Level Diagram VHF Link

			*	Engage 150 M
Chalifun	TX	SAN FRANCISCO		Frequency = 150 MHz Distance = 89.0 Km
Station	RX	ROMBLON (Mt.)		Remarks
Transmitter				
Power		44 dBm	44 dBm	
Max. Mod. Freq.		3 kHz	3 kHz	Pt = 25 watt
Max. Deviation		± 5 kHz	±5 kHz	
Receiver				
Band Width		12 kHz	12 kHz	В
S/N Improvement		12,2 dB	12.2 dB	
Antenna				
Gain TX Site		11 dB	11 dB	5 ELE. YAGI Isotropic Gain
Feeder Loss of TX		-2.6 dB	-2.6 dB	10D-2V 0.065dB/mx40m
Gain RX Site		11 dB	11 dB	5 ELE. YAGI Isotropic Gain
Feeder Loss of RX		-2.6 dB	-2.6 dB	10D-2V 0.065dB/mx40m
Total of Ant. Gai	n	16.8 dB	16.8 dB	Ga
Propagation Loss				Measured Value
Free Span Loss		-114.9 dB	dВ	
Mountain Refracti	on Loss	dВ	dВ	
1st Fresnel Loss		dB	dB	
Surface Refraction	n Loss	dB	dB	
Corrective Value	 	-8.9 dB	dB	
Total of Propagation	on Loss	-123.8 dB	dB	Lp
Receiving Power				
Receiving Power		-63.0 dBm	d Bm	Pt + Ga + Lp = Pr
Receiving Level		50.0 dBu	dΒμ	Vi = 113 + Pr
Noise of Receiving Si	ide			
Internal Noise Fig	gure	9.5 dB	9,5 dB	; P
External Noise Fac	ctor	9.5 dB	9.5 dB	; E
Link Noise Figure		12.3 dB	12.3 dB	$NF = 10 \log (F+E-1)$
Receiver Front End	i Noise	-120.9 dBm	-120.9 dBm	Prn = -144+10 logB+NF
Quality of Link				
Threshold level		-111,9 dBm	-111.9 dBm	Prn + 9 = Pth
Drop Out Margin		48.9 dB	dB	Pr - Pth
Fading Presumed		8.9 dB	dB	0.1dB x d(Km)
S/N at Threshold L	evel	21.2 dB	21.2 dB	
Standard S/N		40 0 4B	dB	
	· · ·	60.0 dB	ab 1	
S/N at Max. Fading	5	60.0 dB	d B	

- 256 --

Table A.3 (16/16) Level Diagram VHF Link

Table N.3 (16/16)			andran anna shakara shankar shakara sh	Frequency = 150 MHz
Station	TX	TACLOBAN		Distance = 80.7 Km
Station	RX	GUIUAN RADAR		Remarks
Transmitter				
Power		44 d Bm	44 d Bm	D4 - 05
Max. Mod. Freq.		3 kHz	3 kHz	Pt ≈ 25 watt
Max. Deviation		±5 kHz	±5 kHz	
Receiver				
Band Width		12 kHz	12 kHz	В
S/N Improvement		12.2 dB	12.2 dB	
Antenna				5 ELE. YAGI
Gain TX Site		11 dB	11 dB	Isotropic Gain
Feeder Loss of T		-2.6 dB	-2.6 dB	10D-2V 0.065dB/mx40m 5 ELE. YAGI
Gain RX Site		11 dB	11 dB	Isotropic Gain
Feeder Loss of RX		-2.6 dB	-2.6 dB	10D-2V 0.065dB/mx40m
Total of Ant. Gai	n	16.8 dB	16.8 dB	Ga
Propagation Loss	 			Measured Value
Free Span Loss		-114.1 dB	dB	
Mountain Refracti	on Loss	-24.5 dB	dВ	
1st Fresnel Loss		-6 dB	dВ	
Surface Refractio	n Loss	dB	dB	
Corrective Value		-2.2 dB	dB	
Total of Propagati	on Loss	-146.8 dB	dB	Lp
Receiving Power				
Receiving Power		-86.0 dBm	d Bm	Pt + Ga + Lp = Pr
Receiving Level		27.0 dBµ	dΒμ	Vi = 113 + Pr
Noise of Receiving S	ide			-
Internal Noise Fi	gure	9.5 dB	9.5 dB	; F
External Noise Fa	ctor	9.5 dB	9.5 dB	; E
Link Noise Figure	· · · · · · · · · · · · · · · · · · ·	12.3 dB	12.3 dB	$NF = 10 \log (F+E-1)$
Receiver Front En	d Noise	-120.9 dBm	-120.9 dBm	$Prn = -144 + 10 \log B + NF$
Quality of Link				
Threshold level		~111.9 dBm	-111.9 dBm	Prn + 9 = Pth
Drop Out Margin		25.9 dB	dB	Pr - Pth
Fading Presumed		8.1 dB	d B	0.1dB x d(Km)
S/N at Threshold	Level	21.2 dB	21.2 dB	·
Standard S/N		47.1 dB	dB	
S/N at Max. Fadin	g	39 dB	d B	
Judgement				

		1.16	IMUM	123.58 ANGLE D STRI	E ∩•0	1 A G B 1 8 E ± 9 1 A G B 1	JARY LI ARAN SN' 1; REES	23.536 POWE!	E NNA G	A 183.9 0.10 AIN	ZIMUT 5 KW 10.	BER 11 HS 3.93 REO.5	MIL 5 >16	4.0 0.0	KM. 86 EB O DB	•9	
UT			MUF	DBU	.3•n	4 • 0	5.0	6.0	7.0	6.0	٥. ٥	10.0	12.0	15.0	-	FOT	HPF
01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 20 21 22 23 24			11.4 11.0 10.3 10.2 10.5 11.0 11.0 11.0 10.8 10.4 10.6 7.5 7.0 6.5 7.0 6.5 4.3 5.6 4.3 5.6 10.7	23 22 21 2 2 3 145 16 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	15 10 7 8 12 13 31 35 27 27 27 27 28 29 29 29 35 35 35 27 27 28 29 29 29 29 29 20 20 21 21 21 21 21 21 21 21 21 21 21 21 21	21 17 14 15 19 23 27 27 27 28 29 29 29 29 29 36 30 31 25	25 22 20 21 23 26 28 28 28 28 28 29 29 29 29 29 28 37 36 32 32 32 32 32 32 32 32 32 32 32 32 32	28 24 22 24 24 26 26 26 26 26 27 28 28 28 28 28 28 28 28 28 28 28 28 28	22 28 27 27 27 29 22 24 26 27 27 27 27 27 28 28 8 8 8 8 8 8 8	23 20 29 29 19 20 23 24 26 27 27 27 27 27 27 28 8 8 6	23 20 18 18 20 22 24 26 26 26 26 27 8 8 8	22 20 17 15 16 18 21 23 25 23 8 8 8 7 24				9.9 9.5 9.1 8.9 9.2 9.1 7.8 7.4 6.6 6.2 5.8 4.5 3.9 3.1 7.5 9.3	13.0 12.5 12.0 11.6 11.0 12.1 12.5 12.6 12.3 11.7 11.1 10.3 9.8 9.1 8.4 8.2 7.1 5.7
UT FREQ DBU		01 1.3 35		0.8	8.0	7.	0 7.0	07 6•0 29	0.8 5 • (3 (3.0	6.0	12 6.0 28				
UT FREQ DBU		13 6.0 28	5.(5.0	_	4.1	4.0	19 4.0 29	20 5 • 0 37	8.0	9.0	8.0	24 6•0 31				
	MAC 10.	TAN 16N INI	- 12 MUM A	3.58E NGLE STREE	0.0 T	9°.381 PEGRF	ARAN 1 - 123 ES F	OWER NIENN	1 = IA GA		K₩ 1 R• U					· · · · · · · · · · · · · · · · · · ·	
ŧΤ			MUF	Ď8U	3.0	4.0	5.0	6.0	7.0	0.8	9.0	10.C 1	5.0	15.0	-	FOT	HPF
01 02 03 04 05 06 07 08 09 16 11 12 13 14 15 16 17 18 19 20 21 22 23 24			2.7 2.1 2.2 3.7 5.0	11 13 15 16 16 16 18 19 19 19 18 18 18 18 18 17 35 36 17	17 15 16 18 22 23 33 52 29 29 29 28 28 18 33 53 53 53 53 53 54 55 56 57 57 57 57 57 57 57 57 57 57 57 57 57	20 21 23 28 29 29 29 29 29 29 19 19 19 19	25 27 29 25 28 30 29 29 29 19 19 -	30 29 28 27 21 22 21 22 23 26 28 29 29 29 19	22 18 30 30 30 16 20 23 26 27 28 29 20 20 20 20 20 20 20 20 20 20 20 20 20	4 3 11 11 11 12 21 25 26 16 16 20	13 14 15 16 17 17					1 • 5 3 • 3	9.2 8.5 8.1 8.3 9.6 9.4 9.4 9.4 7.9
FREQ DBU		01 30	02 6•0 29	03 7.0 30	30	05 6+0 28	06 5.0 27	5•0 29	4 • D 30	09 3•0 33	10 3•0 35	11 5.0 30	12 5•0 29				
FREQ DBU	4	13 •0 29	14 4•0 29	15 3•0 29	16 3.0 28	17 3•0 28	18 3•0 28	19 4.0 19	20 3 0 18	3.0 35	22 4.0 36	23 4•0 33	24 5 • 0 31				

```
O SUNSPOI NUMBER 100.00
AZIMUTHS MILES
23.53E 183.95 3.93 54.0
POWER = 0.10 KW REO.SIG. C
ANTENNA GAIN TR. 0.0 DB RE.
                                  TO TAGBILARAN
                                                                                                             KM.
         10.16N - 123.58E
                                                                                               54.0
                                                                                                              86.9
            MINIMUM ANGLE 0.0 PEGREES
                                                      POWER =
                                                                                                    0.0 08
                                                                                                      0.0 08
                  FIELD STRENGTH-
                                                    FREQUENCIES IN MHZ
  UΤ
                  MUF
                           D BU
                                  3.0
                                                        6.0
                                          4.0
                                                 5.0
                                                              7.0
                                                                       8.0
                                                                              9.0 10.0 12.0 15.0
                                                                                                                       FOT
                                                                                                                                HPF
                                                                                                                      10.3
                                                                                                                               13.3
  0.2
                11.5
                           12
                                          12
                                                 19
17
                                                        23
                                                                26
                                                                       28
27
                                                                               19
                                                                                                                      10.2
                                                                                                                               13.0
  03
                                                                               18
                                                                                                                      10.0
                                                                        27
                                                        21
                                                                Ż5
                                                                               18
                                                                                                                      10.0
                                                                                                                               12.7
  0.5
                11.4
                                                                                                                               12.9
                                                                                                                      10.1
  06
                 11.9
                                                 20
                                                                        20
                                                                               20
                                                                                                                      10.0
                                                                                      22
24
                                                                               22
                                                                                              20
                                                                                                                      10.6
                                                                               24
                                                                                              23
                                                                                                                      11.0
                                                                                                                               15.7
                          16
17
  ΩQ
                13.0
                                                        26
                                                                                                                      11.0
                                                                                                                               15.6
  10
                12.5
                                         36
27
                                                                       28
27
                                                                              27
                                                 28
                                                        28
                11.2
                                                                                                                               13.8
                                                                                      26
27
                                                                                                                              13.7
                                                        28
                                                 28
                                                                               28
                                                                28
                                                                       28
                                                                                      28
                                                                               28
                                                                                                                              13.8
                                                 29
30
                                                        29
30
                11.3
                                  28
                                                                                                                       8.9
                                                                                                                              13.3
                10.3
                                  29
                                          29
                                                                30
                                                                žŷ
 19
                                                                                                                              10.3
 20
                                  35
35
                                                 37
37
                 6.2
                                          36
                                                        37
                                                                                                                               8.6
                 6.3
                                                        37
                                                                       20
37
                                         36
                                                               3.7
                                                                               20
                                                                                                                               8 • 7
                 8.1
                          37
                                                               36
                                                        36
                                                                               20
                                                                                                                      7.0
                                                                                                                               9.0
 23
                          10
                10.6
                                         85
                                                 31
                                                        3?
                                                               33
                                                                                      26
                                                                               26
                                                                                                                       9.1
                                                                                                                              11.7
                                                                                              20
                             03
 UΤ
              0.1
                     02
                                    04
                                           05
8+£
                                                   Сó
                                                           07
                                                                  08
                                                                          09
 FREO
                    8.0
                           8. u
27
                                                  7.0
                                                         ?•0
29
                                   8.0
                                                                 6.0
30
                                                                        5.0
                                                                                4.0
36
                                                                                       3.0
 DBU
                                   16
7.0
                                                   18
                                                           19
                                                                  20
                                                                          21
                                                                                         23
                                                  5.0
                                                         3.0
                                                                        7.0
 FRED
             6,0
                    7.0
                           7.0
                                          6.0
                                                                6.0
37
                                                                                       7.0
                                                                               8.0
                                                                                              6.0
 DRU
Table A.4 (4/40)
                                          APKIL
                                                                  SUNSPOT NUMBER
                                                  AZ INUTHS NILES KM
123.53E 183.95 3.93 54.0 8
PUWER = 0.10 KW REO.SIG. 0.0 LB
ANTENNA GAIN TR. 0.0 DB RE. 0.0 DB
FREQUENCIES IN MHZ
                                 TO TAGBILARAN
        10.16N - 123.58E
                                       9.38N - 123.53E
                                                                                                             86.9
           MINIMUM ANGLE
                                 0.0 DEGREES
                 FIELD STRENGTH IN CR
ĿΤ
                MUF
                         DBU
                                 3.0
                                        4.0
                                                5.0
                                                       6.0
                                                              7.0
                                                                      8.0
                                                                             9.0 10.0 12.0 15.0
                                                                                                                      FOT
                                                                                                                               HPF
N1
02
                         10
                                 13
10
                8.0
                                         10
                 8.0
                         10
                                         17
                                                55
                                                       26
25
                                                                      13
13
                                                               28
                                                               28
กร
                8.1
                          10
                                                                                                                               9.2
06
                8 - 7
                                        20
                                                24
                                                       2.7
                                                               20
                                                                      20
                                                                                                                             10.3
07
                                        24
                                                27
                                                       23
25
                                                                      23
26
                                                               23
0.8
               10.3
                                                               26
09
               10.5
                                        3.3
                                                                                                                      9.1
 10
                                 35
               10.2
                                        29
                                                       30
29
                                                              30
29
                                                                      29
29
                                                30
                                                                                                                      7.6
                                                                              28
                                        29
                                                58
                                                       29
                                                       29
28
28
                                               29
29
                                 28
                                        28
                                                               28
                                                                                                                      5.9
                                 28
                                        28
                                                              28
15
                                                              28
                                                                               8
16
                                        29
36
                                                29
                                                                                                                      5.0
                                                                                                                              8.1
                                               29
37
                                                       27
                                                                                                                      4.6
18
                                        36
19
                4.0
                                                                                                                      5.6
20
                         35
36
                                               37
37
                3.0
                                 35
                                        3 o
36
                                                       37
37
                                                                                                                      2.0
21
                                                              37
                                                                                                                      2.3
                                                                                                                               4.8
22
23
                5 • 4
7 • 4
                                                36
                                                       36
                                                                      3.7
                                                                                                                               6.1
                         35
15
                                 28
                                                                                                                     6.4
                                                                                                                              8.4
             01
                            03
                                   n.
                                           05
                                                  06
                                                         07
                                                                 08
                                                                         09
                                  7.0
28
FREQ
                                         6.0
            6.0
                   7.0
                           7.0
                                                6.0
27
                                                        5 • 0
27
                                                                5 • 0
31
                                                                       4.0
33
                                                                              3.0
35
                                                                                      3.0
35
UĐŪ
             13
                                         17
                                                1.8
5 • 0
FREQ
                   5.0
                           5.0
                                  3.0
                                                               7.0
37
                                                                       7.0
37
                                                                              8.0
                                                        6.0
```

Table A.4 (3/40)

DRU

APRIL

SUNSPOT NUMBER 100.0

Table	A.4 (5/40 MACTAN 10.16N	- 123.5	10 1A	.38N - 1	23.53E	163.9	121MUTHS 25 3,	93 5	6.0 86	.0	
			E 0.0 LI REAGTH 10	CREES	POWER:	.# 0.10 IA GAIN	lKii in Tisi an	REO.SIG.	0.0 DB		
υĭ					6.0		3 4 4 4	0.0 12.0	15.0	FOT	ime
01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24		•0 11 •9 U •0 1 •1 2 •4 3 •6 17 •1 8 •8 8	2 1 1 1 3 1 7 1 13 1 20 2 27 3 34 3	7 22 3 19 1 17 0 17 1 18 5 20 24 4 28 32 28 27 27 28 27 27 28 28 27 27 28 28 29 28 28 27 28 28 28 28 28 28 28 28 28 28	25 22 22 22 24 27 30 25 28 27 28 27 28 28 27 28 28 27 28 28 27 28 28 27 28 28 27 28 28 28 28 28 28 28 28 28 28 28 28 28	28 30 26 28 25 28 25 27 26 28 27 29 29 21 32 23 25 25 27 27 26 27 27 27 26 27 27 26 28 8 8 8 8 8 8 8 8 8	20 29 29 17 18 20 22 25 27 27 26 8 8 8 8	18		8.6 8.5 8.5 8.5 8.5 8.7 8.8 7.8 6.7 6.5 6.7 6.5 9.3 9.3 9.4 9.7 7.4 8.4	11.3 12.7 12.7 12.7 12.7 12.9 13.4 13.7 12.9 13.4 11.5 10.6 10.3 9.9 9.8 8.8 7.7 7.7 7.7 9.7
UT FPEC DI-U		02 0 9•0 9•	(9.0 8	05 06 • U 8 • C 26 29	7.0	08 09 7.0 5.0 32 32	4.0	11 12 3.0 6.0 35 28		.·	
UT FRED DRU	13 6•0 .27	14 1 6.0 6. 27 2	0 6.0	17 18 6-1 5-0 26 29	5.40	20 21 3.0 5.0 35 37	5.0	23 24 5.0 7.0 30 30		٠.	•
Table A.	4 (6/40)						•				
		1 ANGLE	TO TAGB	REES : I	3.53E POWER = ANTEUNA	SUNSPOT AZ 183.95 0.10	IMUTHS 3.9 KW RE	MILES	. U 86.9		
uŢ	KUF		3.6 4.	_				.0 12.0	5.0 ~	F01	1 4H
01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 20 21 22 23 24	7.1 6.9 6.8 6.7 7.3 7.6 7.5 6.5 4.7 4.2 3.8 3.8 3.3 2.8 4.7 4.2	29 28 28 30 11 13 6 7 18 19 19 19 19 19 35 35 35 36 16	17 22 13 19 11 18 10 17 12 18 15 21 19 24 24 28 30 32 35 36 35 30 35 29 28 28 28 27 28 19 28 19 28 19 28 19 28 19 28 19 28 35 36 35 36 35 36 35 36 35 36 35 36 35 36 37 36 37 30 27 26	37 37 35 32 29	29 30 27 26 26 28 26 28 30 31 32 26 29 29 30 29 29 18 20	0 15 9 3.1 8 30 8 30 1 10 1 12 2 5 6 25 1 19 1 19	111 - 111 - 111 - 112 - 13 - 15 6 7 8 19 - 1			5.7 5.7 5.6 5.6 5.6 5.7 6.0 6.3 6.5 1 5.5 3.7 3.1 2.8 2.6 2.5 2.1 1.8 2.7 5.1	8.0 9.0 8.9 8.9 8.8 8.7 8.8 8.7 8.2 9.7 0.1 9.0 6.5 7.8 6.5 7.5 6.5 7.5 6.5 7.5 6.5 7.5 6.5 7.5 6.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7
EREO Deu	01 (7•0 8 30		04 0 8•0 7• 30 2	0 7.0	7.0 6	08 09 0 5.0 32 34	4.0 3	11 12 • 0 3.0 35 35			
UT FREO DBU	4.0 4	14 15 0 3.0 28 28	16 1 3•0 3• 28 2	0 3.0	4.0 6.	20 21 0 7.0 37 37		23 24 • 0 6•0 33 31			

,	more	P.A	(7/40				rcios						ER 10		_			
		10.	TAN TON INIM	- 12	3.58E NGLE		AGBIL 9,38N regre	~ 12 E5	3.53E POWER	#	83.95 0.10	K₩	5 •93 REQ•5 •0 D8		.0 0.0	KM. 86.9 DB DB		
			F	IELD	STRE	NGTH	IN DA		EQUEN				•0 00			, , ,		
	υť		М	JF	ភូមិព	3.0	4.0	5 • 0	6.0	7 • f:			10.0		15.0	- ,	FOT	
	01 02 03 03 06 06 07 08 08 01 11 11 11 11 11 11 11 11 11 11 11 11		7 5 5	9 5 4 8 7 4 2 5 9 3 0 9 1 1 1 8	14332345677717999999888	13 7 4 4 6 0 10 123 0 5 7 7 7 7 2 2 3 3 0 9 5 3 5 4	19 14 12 13 12 12 12 27 27 27 27 27 27 28 29 30 30 30 29 53 55	23 20 18 19 22 25 27 28 27 28 27 28 29 30 30 30 36 36 36	27 223 223 228 227 228 227 228 229 330 28 36	29 27 26 26 26 27 27 27 28 29 30 30 88 88	22 29 28 29 22 25 26 27 27 28 29 30 29 99 97 27	23 21 19 20 22 24 25 27 27 28 29 29 27 29 27 8	23 20 18 20 22 25 26 26 27 27 28 29 28 9	20 43333023377999999999999999999999999999999	5 15 16 17 17		10.5 10.6 10.2 10.1 10.5 10.7 11.3 11.3 11.5 9.5 9.1 8.8 8.8 8.8 8.5 6.2 4.9 3.8 9.9	
	23 24 UT		10 12					32 27 06		26 24 08	27 25			8 23	-	-	9.3	
	FREO ORU		7.0 29	0•8 ?5	0.8 85	0.8 35	8 • 0 2 9	7.0 28		20 2. ()	4.0 32	3.0 35		6.0 27				
	UT FRED		13	.14	15	16	17 ยั . ก	18	19	20 3•0	21 5.0	22 6.0		24 6•0				
	ngu able /		&•0 Z8 (8/40)	6.0 28		30	30	30	30	35 ε	37	36	33	30				
	บยบ	N.4 MAC 10,	28 (8/40) TAR 168	- 12	29 3.58£	10 1	30 ^C]Jn ^GE]L	30 ER FRAN - 12 ES 1	30 0 3.53E POWER	35 8 50 1	37 NSPUT AZ 83.95 0.10	36 BUMB IKUTH 3 KW	33 ER 11 5 •93 RE0•5	30 0.0 MILE: 54	0.0			
	บยบ	N.4 MAC 10,	28 (8/40) TAR 168 INIM	28 - 12: JM AI	29 3.58E NGLE	10 1	30 ^Clun ^6E1L °.38N	30 FRAN - 12 ES 1	30 0 3•53E	35 SU 1 E GA	37 NSPOT AZ 83.95 0.10 IN T	#UMB IMUTH 3 KW R. 0	33 ER 1: 5 •93	30 0.0 MILE: 54	0.0	86.9		
T:	ngu able /	N.4 MAC 10,	28 (8/40) TAR 168 INIM F	28 - 12 JM AI JELD	29 3.58f NGLE STREE UEU	30 TO T 0.0 3.0	30 COLUM COLIL CO.38N CEGRE IN DB	30 FRI - 12 ES I	30 3.53E 90WER ANTENI EQUENI 6.0	35 SU 1 NA GA CIES	37 NSPUI AZ E3.95 0.10 IN II NH	36 MUMB 1MUTH 3 KW R. 0 Z	33 ER 11 5 .93 REQ.S .0 DB	30 MILE: 54, IG. RE.	0.0 0.0	86.9 Lb	FOT	
T:	ngu able /	N.4 MAC 10,	28 (8/40) TAR 16N INIM F M 8 8 8 8	28 JM AI JELD F 8 6 4 3 7	29 3.58f NGLE 512 11 11	30.0 0.0 3.0	COLUMN CELL C.38N CEGRE IN DB	30 FRAN 12 - 12 ES 1	0 3.53E POWER ANTENI EQUENI	35 SU 1 NA GA CIES	37 NSPUT 83.95 0.10 IN T 1N MH 8.0 22 19	#UMB INUTH 3 KW R. 0 Z	33 ER 11 5 •93 REQ•5 •0 DB	30 MILE: 54, IG. RE.	0.0 0.0	86.9 Lb	For 7.667.57.447.838.8	
1 73	n8U able / UT 01 02 03 04 05 06	N.4 MAC 10,	28 (8/40) TAR 16N IN	28 - 12: IELD F - 8 - 6 - 4 - 7 - 6 - 3 - 3	29 3.58f NGLE 578F 12 11 11 11	30 TO T 0.0 NOTE 3.0 19 15 12 13 16 27 32 35 29	30 CCIUM	30 FRIAN FRI 5.0 27 25 23 23 24 26	30 0 3.53E POWER ARTENI 6.0 29 28 27 26 27 28	δ SU 1 SA GA CIES 7 • C 22 30 29 22 25 28 29 29 29 29 29	37 NSPUI AZ E3.95 0.10 IN HH 8.0 22 19 17 27 25 26 28 29 28 28	36 NUMB I MUTH 3 KW R. 0 2 9.0 4 12 11 11 12 22 24 27 27 27 27 28 8	33 ER 11 5 .93 .5 .0 DB 10.0 5 13 - 13 4 23 24 8 8 8	30 30 MILE: 54 IG. RE.	0.0 0.0	86.9 Lb DB	7.6 7.6 7.5 7.4 7.8 8.3	
Tr.	NBU UT 01 02 03 06 07 08 09 10 11 11 11 11 11 11 11 12 12 12 12	N.4 MAC 10,	28 (8/40) TAR 16N IN IM 88 88 99 100 100 199 88 87 66 52 42	28 	29 3.58E 5.78F 0.50 5.12 1.1 1.1 1.3 5.6 7.8 8.8 8.8 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9	30 TO T 0.0 NOTE 3.0 19 15 12 13 16 27 32 35 29 29 29 29 29 29 29 30 30 17	30 CCIUM ACEIL G.38N CEGRE IN DB 4.0 24 21 19 20 22 23 34 29 29 29 30 30 30 30 30 31 81 81	30 ER RAN - 12 ES FRI 5.0 27 25 23 24 26 28 29 29 29 29 29 30 30 29	3.53E POWER ANTENIE EQUENT 6.0 29 28 27 26 27 28 24 28 29 29 29 29	8 SU 1 GA C 1 E S 2 9 2 9 2 2 2 2 2 6 2 8 2 9 2 9 2 9 2 9 2 9 2 9 2 9 2 9 2 9	37 NSPUI AZ E3.95 0.10 IN IN HH 8.0 22 19 17 17 20 23 26 28 29 28	36 MUMB MUTH 3 KW 0 2 9.0 4 12 11 11 12 22 24 27 27 8	33 ER 16 5 .93 REQ.5 .0 D5 10.0 5 13 - 13 - 23 24 24 8 8	30 0.0 MILE: 54. IG. RE.	0.0	86.9 Lb DB	7.66 7.65 7.48 8.97 7.88 8.97 7.69 6.53 6.53 6.55 7.9	
Tr.	NBU UT 01 02 03 06 00 07 08 00 11 11 11 11 11 11 11 11 11 11 11 11	N.4 MAC 10,	28 (8/40) TAN 16N INTINI 88 88 99 100 100 100 99 88 88 76 66 55 42 33 88	28 	29 3.58E 5.78F 5.72 111 113 5.67 5.88 8.88 1.99 1.99 1.89 1.89 1.89 1.89 1	30 TO T 0.0 NOTE 3.0 19 15 12 13 16 27 33 29 29 29 29 29 29 29 29 29 29 27 28 28 28 28 28 28 28 29 29 29 29 29 29 29 29 29 29 29 29 29	30 CCLUM 6.38 N CEGR IN DB 4.0 24 21 19 20 225 30 329 29 29 29 29 29 29 29 28 18 18 28 28 28	30 ERAN 121 ES FRI 5.0 27 23 24 26 27 28 29 29 29 29 29 29 29 29 29 29	30 0 3.53ER POWEEN 6.0 28 27 28 27 28 29 29 29 29 19 19 19 27 25	8 SU 1 GA GA CIES 7 • C 2230 229 229 229 229 229 229 229 229 229 22	37 NSPUI Z 83.95 0.10 IN II 1N MH 8.0 22 19 17 27 25 26 28 28 27 19 19 17 25	36 MUMBH 3 WR. 0 9.0 12 11 12 22 4 22 7 27 8 8 19 - - - - - - - - - - - - -	33 ER 1/5 •93 REQ • 5 •0 DB 10 • 0 13 - - 13 - - 23 24 8 8 8 - - - - 17	30 0.0 MILE: 54 IG. 77 7	0.0	86.9 Lb DB	7.66 7.54 7.88 8.89 7.88 8.89 6.53 6.53 4.55 4.55 4.55 7.76	
T	NBU OT O1 O2 O5 O6 O7 O8 O8	3.4 MAC 10, M	28 (8/40) TAR 168 INIM 8 8 8 8 9 10 10 9 9 8 8 8 7 6 6 6 5 4 2 3 5 8 8	28 - JAM AI IELD - 8 - 6 - 3 - 7 - 6 - 6 - 3 - 7 - 6 - 6 - 3 - 7 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6	29 3.58E 5.78F 12 11 11 13 56 7.88 8.88 1.99 1.99 1.78 1.78 1.89 1.89	30 TO T 0.0 NOTE 3.0 19 15 12 13 16 20 27 29 29 29 29 29 29 29 29 29 29 29 29 29	30 CCIUM ACETI 9.38N PEGRE IN DB 4.0 24 21 19 22 25 33 4 29 29 29 30 30 28 18 29 32 28 30 30 30 30 30 30 30 30 30 30 30 30 30	30 ERAN - 12 ES FRI 27 25 23 24 26 28 29 29 29 29 29 30 30 29 27 30 30 30 30 30 30 30 30 30 30	30 0 3.53E POWERN 6.0 29 28 27 28 22 27 28 22 29 29 29 29 29 29 29 29 29 29 29 29	δ SU 1 GA CLIES 7 • C 22 30 29 22 22 22 22 22 22 22 22 22 22 22 22	37 NSPUI AZE 3.95 0.10 IN I	36 MUMB I MUTH 3 KW 0 2 9.0 4 121 111 112 224 227 27 27 27 27 27 27 27 27 2	33 ER 11 5 .93 .5 .0 DB 10.0 5 13 - 13 4 23 24 8 8 8 8 8 7 - - 17	30 0.0 MILE: 54 IG. RE.	0.0000000000000000000000000000000000000	86.9 Lo	7.665 7.654 7.654 8.897 7.88.88 8.97 7.695 6.531 5.957 1.93 5.957 1.93 5.957	

```
0 SUNSPOT NUMBER 100.0
AZIMUTHS MILES KN
122.33E 281.60 101.37 66.8 130
POWER = 0.10 KW REQ.SIG. 0.0 LR
ANTERNA SAIN TR. 0.0 DP RE. 0.0 DB
FREQUENCIES IN MHZ
Table A,4 (9/40)
                                          JANUARY
                                   10.417 - 15
                                                                                                                 139.6
            MINIMUM ANGLE 0.0 DEGREES
                  FIELD STRENGTH IN DE
                                                   5.0 8.0 7.0 8.0 9.0 10.0 12.0 15.0
                  MUF
                           DOU
                                   3.0
                                         4.0
 UΤ
                                           14
                                                           24
22
                                                                   55
85
                                                                          21
27
                                                                                          20
                                                                                                  12
                                                                                                                            9.7
                                                                                                                                    12.7
                                                   20
                                                                                  21
                                                    18
                                                                                          18
                                                                                                                                    1241
                 10.7
                            10
 Ďβ
                                                                                                                                    11.8
 04
                 10.4
                            - 5
                                                                   25
27
                                                                          28
21
                                                                                                                            8÷9
9.0
                 10.3
                                                   18
                                                                                  18
                                                                                                                                    11.7
                                                           24
27
                                                                                                                                    12.2
                                                                                  20
 06
                 10.6
                            ~ 1
                                                   21
                                           20
                                                                   55
 0.7
                 11.0
                                    15
 90
                                                           28
28
                                                                   26
28
 69
                 10.9
                                                                                                                                    12.5
                                                                                                                            8.2
                                           35
27
                                                                                                                                    13:0
  10
                 10.5
                                                   28
                                                                   27
                                                                          27
                                                   28
                                                           2.8
                 10.2
                                                          2.8
2.8
                                                                   28
                                                                                  26
                                   27
                                                                   28
                  8•7
8•2
                                           28
                            14
                                                   28
                                                   28
                                                                   28
                                    28
                  7.0
                                                                   26
                                                           28
  18
                  6.5
                            24
                                                                   24
                           35
35
                                                                                                                                     5.8
5.4
                                                                                                                            3.0
                  4.3
                                    34
                                           35
                                                   36
                                                           36
                                                                   36
                                                                          37
                  5 . 8
                                           35
                                                   35
                                                                           36
                            36
                                    34
                                                           36
                                                                   36
                 10.8
                                                                                                                                    12.3
                                            0.5
0.8
35
                     7.0
26
                                                    7.0
                                                                                           3.0
                                                             6.0
27
                             8.0
                                     8.0
27
                                                                    5.0
                                                                            4.0
32
                                                                                   4 • 0
35
 EREA
              6.0
 սցո
               26
                                                  1.6
4.0
                                                                                           23
9.0
               13
                                                              10
                                                                     20
                                                                           9.0 10.0
37 37
                             5.0
                                            5.0
                                                            4.0
                                                                    6.0
                                                                                                   7.0
 FREO
                                     5.0
              6.0
                     6.0
 DBU
                                                     2
0 5UNSPOT NUMBER 10.0
AZIMUTHS MILES KM.
122-33E 281.60 101.37 86.8 139
POMER = 0.10 KK RE0.SIG. 0.0 UB
ANTENNA GAIN IR. 0.0 UB RE. 0.0 DB
FREQUENCIES IN MHZ
Table A.4 (10/40)
                                  JANUFRY 0
TO ILCILO
10.41N - 122.33E
         MACTAN
         10.16N - 123.58E
                                                                                                                 139.6
            MINIMUM ANGLE C.O PEGREES
                  FIELD STRENGTE IN D8
 UT
                  MUF
                           ยัยป
                                   3.0
                                           4.0
                                                   5.0
                                                          6.0
                                                                  7 . T
                                                                          8.0 9.0 10.0 12.0 15.0
                                                                                                                                     HPF
 01
                  7.5
7.2
7.1
                            10
                                                           27
                                                                                                                                     8.6
                                                           2 č
2 S
                                                                                                                           6.2
                           28
28
                                                   23
                                                                   28
28
 C3
                                           18
                                                                          10
                                                                                                                                     8.3
                                                   55
                                                                  20
23
 06
07
                                                                                                                           6.7
7.2
                            1:1
                                           21
                                                   25
                                                                                                                                     8.8
                                   26
                                                   28
                  8 4 7 9
 09
                                                                   28
 10
                                                                          14
 13
14
                                                                   14
                                          13
13
                  3.4
                                                                                                                            2.4
                  8 • 5
 20
                  2•1
2•1
                                   13
                                   34
                  3.6
                  5.9
7.5
                                    29
                                           31
                                                   26
                                                                   13
                                                                                                                                     7.0
                                                           25
                                                                          12
                                                                                                                                     8.9
                                                                  24
                                            6. °.
 UΤ
               01
                       0.2
                              0.3
                                      04
                                                      60
                                                             0.7
                                                                     80
                                                                             09
                                                                                    .10
                     7.0
                                     7.0
                                                    6.0
                                                                                                   5.0
 FREO
              6.0
                             7.0
                                                            5.0
                                                                    4.0
                                                                           3.0
                                                                                   3.0
                                              26
 DBU
                                                              19
                                                                     20
                                                      18
 FREQ
              5.0
                     4.0
                             3.0
                                     3.0
                                            3.0
                                                    3.0
                                                            4.0
                                                                   3.0
                                                                           3.0
                                                                                   4.0
                                                                                          4.0
                                                                                                  5.0
```

											٠				•			
						.*			• • •						·	•		
	Table A	MAC1	AN 16N - INIMUM	123.581 ANGLE LD STRI	U • D	UU LOILOJ AAA JEGRI HO NI	- 12 ES	POWER ANTENI	PA GA	AZ 81.60 0.10 IN T	R. 0	S • 3.7	MILE 86	8 0 • 0	1	δ.		
	LiT.		MUF	DRA	3.0	4.0	5.0	6.0	7.0	0.8	9.0	10.0	12.0	15.0	-	FOT	HPF	
	01 02 03 04 05 06 67 18 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24		10.2 9.9 10.0 10.0 10.2 10.5 10.8 10.9 10.7 10.2 9.5 8.9 8.5 8.2 7.4 6.9 6.2 5.5 6.7 8.7	29 -3 -3 -2 -1 0 1 13 14 14 14 14 14 20 26	6 D 3 - 4 2 2 9 7 2 5 3 3 4 7 2 6 6 7 7 2 7 2 8 8 4 3 3 0 2 2 1 4	14 10 7 8 11 16 22 28 34 28 27 27 27 27 27 28 28 28 28 28 28 28 28 28 28 28 28 28	20 16 14 15 17 21 230 35 28 27 27 27 28 28 28 28 28 28 28 28 28 28 28 28 28	23 21 19 20 22 25 28 27 27 27 27 28 28 28 28 28 28 27 27 27 27 28 28 28 27 27 27 27 27 27 27 27 27 27 27 27 27	26 24 23 23 25 27 27 27 27 27 27 27 27 28 16 16 16 14 25 29	28 27 26 25 27 27 27 27 27 27 27 27 26 16 16 16 16	30 28 28 28 29 20 22 25 26 27 26 27 21 4 4 14 14 16 16	18 17 -3 12 15 19 21 25 25 14 14 14 17 	18 11 2 11 2 14 14 14			8.5 8.4 8.5 8.5 8.5 8.7 8.8 7.9 7.3 6.5 8.7 6.5 8.7 6.5 8.7 6.5 8.7 6.5 8.7 6.5 8.7 6.5 8.7 6.5 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7	12.7 12.6 12.8 12.8 13.0 13.4 13.9 13.1 12.5 10.8 10.7 10.4 9.9 9.9 9.9 7.9 7.8 7.5 9.7	
	OT FREQ DPU UT FREQ DBU	6 4 (1- МАСТ 10.1	2.0 9.30 13 1.0 6.27 6.4/40)	02 0: 0 9. 28 21 14 15 0 6. 27 2	70.1	9.0 28 17 6.0 28	29 18 5.0 28 LY	8.0 20 19 5.0 28	7, C 30 20 3, 0 3, 4 5 5 5 2	32 21 5.0 36 ASPUT AZ 81.60	5.0 35 22 5.0 33 NUMB IMUTH 101	3.0 34 23 6.0 30 ER 1	6.0 27 24 8.0 30 0.0 MILE 86	5 • ε	KM. 139.	ć		
				D STRI	матн	IN DE	FRI	ANTENI EQUENI	NA GA	IN T	R. Ü							
•	UT					6 45	5 0							100				
	0.1		MUF							0.8	9.0	10.0	12.0	15•0	-	FOT		
	01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24		MUF 7.1 6.9 6.8 6.7 6.9 7.3 7.7 8.0 2.1 7.6 6.5 5.5 4.8 4.8 3.5 3.3 2.4 2.9 4.6	29 27 26 26 28 30 10 11 13 13 12 15 15 15 15 15 15	1.4	20 17 15 14 15 18 21 26 30 35 35 29 29	24 20 20 20 22 25 28 32 32 29 28 16 - - - 36 36 34 31	27 22 24 23 24 23 24 26 30 33 29 29 21 3 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	29 27 26 26 27 28 30 32 26 29 29 13	8 • 0 29 28 28 29 7 8 10 22 27	9.0 8 7 7 8 8 9 10 12 13 13	10.0	12.0	15.0		FUT 5.77 5.77 5.66 5.77 6.33 6.66 5.33 4.55 3.85 3.85 2.51 1.82 2.51 1.82 2.51 7.51 7.51	8.0 9.0 8.8 8.8 8.8 9.7 10.2 9.7 10.2 9.7 10.2 9.7 10.2 9.7 10.2 9.7 10.2 9.7 10.2 9.7 10.2 9.3 10.2 10.2 10.2 10.2 10.2 10.2 10.2 10.2	
	02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	8	MUF 7.1 6.9 6.8 6.7 6.9 7.7 8.0 2.1 7.6 6.6 5.5 4.8 3.5 3.8 2.4 2.9 4.6 7.2	29 27 26 26 28 30 10 11 13 13 12 15 15 15 15 15 15 15 15 15 15 15 15 15	14 10 7 6 8 11 16 21 23 34 28 27 34 34 32 34 34 34 34 34 34 36 36 36 36 36 36 36 36 36 36 36 36 36	20 17 15 14 15 18 21 26 30 35 35 29 28 27 15 15 15 35 35 29 28 27 15 35 35 35 35 35 35 35 35 35 35 35 35 35	24 20 20 20 22 25 28 32 35 30 29 28 15 16 - - - - 06 34 31 27	27 24 23 24 26 28 30 33 29 29 29 13 	29 27 26 26 27 28 30 32 26 29 29 13 	8 • 0 30 29 28 28 29 7 8 10 22 27 13 13 - - - 10 6 • 0 33	8 7 7 8 9 10 12 13 13 13 	11 12 13 13 14 0 35				5.7 5.7 5.6 5.6 5.6 6.0 6.3 6.6 5.3 3.1 2.8 2.5 2.1 1.8 2.2 3.7 5.1	8.0 9.0 9.8 8.8 8.8 9.7 10.2 9.1 7.9 6.6 7 7.9 6.6 7 4.5 4.2 5 4.2 5 3.9 4.0 1 7.1	
	02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	8	MUF 7.1 6.9 6.8 6.8 6.7 6.9 7.3 7.7 8.0 8.1 7.6 6.5 5.5 4.8 4.2 9 4.6 7.2 01 01 08 330 13 11	29 27 26 26 28 30 10 11 13 13 12 12 15 15 15 15 15 34 34 34 34 34 36 30 10 10 10 11 11 12 12 15 15 15 15 15 16 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18	140 768 11 161 28 344 348 287 344 287 344 287 344 348 348 348 348 348 348 348 348 348	20 17 15 14 15 14 15 14 15 14 15 16 30 33 29 29 29 29 27 15 15 15 15 15 15 15 16 17 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18	24 20 20 20 22 25 28 32 29 28 35 36 36 36 37 06 7.0 28 18	27 24 23 24 26 33 32 20 20 21 3 3 3 3 5 3 6 3 5 3 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	29 27 26 26 27 28 30 32 29 29 13 	8 • 0 30 29 28 28 29 7 8 10 22 27 13 1- - - 10 6 • 0 33 21	8 7 7 8 8 9 10 13 13 13 	11 12 13 11 14.0	123.0 34.0 34.24			5.7 5.7 5.6 5.6 5.6 6.0 6.3 6.6 5.3 3.1 2.8 2.5 2.1 1.8 2.2 3.7 5.1	8.0 9.0 9.8 8.8 8.8 9.7 10.2 9.1 7.9 6.6 7 7.9 6.6 7 4.5 4.2 5 4.2 5 3.9 4.0 1 7.1	

4.0

14

3.0

28

7.0

- 29

3.0

4.0

6.0

5.0

FREO

5.0

5 0

5.0

4.0

4.0

Table	A.4 (18	3/40)						2		100		11				
			: 1		JANUA		n.			NUMB		0.0				
	MACTA	N - 12	7 595		UYOTO				AZ 77.92	IMUTH 07	5 . 46	MILE:		КМ. 282.6		
		HIMUM A					POWER				REQ.5		0.0			
		1		4.0	D.C. GILL		ANTEN				.0 DE					
		FIELD	STRE	METH	IN DE		EQUEN									
υŢ		MUF	OBU	3.0	4.0	5.0	6.0	7 . C	8 -0	9.0	10.0	12.0	15.0		FCT	HPF
01		8.0	2.7	7	16	20	2.3	25	27	14		-	- .	-	7.0	9.4
02		7.6	2.5	. 1	13	17	2.0	23	25	27		-	-	-	0.6	8.8
03		7.3	23	- 3	11	15	19	.22	.24	26	27	-	-		6.2	8.3
04		7.2	22	- 4,	.11	15	1:0	2.2	24	26		-	-	-	6.2	8.2
0.5		7.4	23	~ 3	12	16	1.9	2.2	24	26	•	-:	-	- '	6.3	8.5
. 06		7.8	25	5	14	18	21	24	26	2	· ·	-	-	~	6.8	8.9
0.7		8.4	3.	9	1.8	21	24	26	5.5	3	-	-	-	-	7.3	9.0
80	7 - 1	8.7	12	19	2.2	25	27	25	25.	15	15	-	-	-	7.0	9.9
0.9		8.6	16	26	28	30	27	2.7	27	16	16	-	-	- .	7.5	9.8
10		8.2		30	31	. 29	2.9	28	28	.16	16	- '		-	6.5	9.8
1.1		7.6	16	36	31	29	29	8.5	16	16	-	~	- '	-	6.0	9'+2
12		7.0	10	30	28	28	29	28	16	~	-	-	-	-	5.5	8 • 4
13	100	6.3	1.5	.30	28	28	28	16	-	•	-	-	-	-	5.0	7.6
14		5.6	1.0	30	28	28	16	16	- ,	-	-	•	-	. ~	4 • 0	7.1
15		4.8	15	30	28	16	1.6	-		-	-	-	-		3.4	6.0
- 16		4.0	15	30	27	16	. 	m	-	-	-	-		· .=	2.8	5.1
17		3.6	15	30	15		•	÷ .		•		-	-	•	2.6	4.6
18		3.4		27	15	16	-	: "	-		•	-		-	2.4	4.7
. 19		2.9	14	14	15		-		-	•		-	-	-	2.1	4.1
20		2.2		14	-		-			₹ '	•			-	1.5	3.0
21		2.2	.29	30	31	32		-5 <u>-</u>	-	-	-	-	-		1.5	3,0
2.2		3.7	31	30	31	32	37	33			~		• .	- .	3.3	4.4
- 23		6.0	30	24	27	28	30	15	-	4	•	•		•	5-3	7.1
24		7.46	13	17	21	24	5.6	28	14.	14		•	-	-	6.7	9.0
										4.0						
υĭ		1 07		0.4							.11	3.5				
FREC				9.0								3.0				
DEU	2	7 27	27	26	26	2.6	26	27	- 30	31	31	30				
UT	. 1	3 14	15	16	17	18	10	20	21	22	23	24				
FREC								3.0		7.0		7.0	5.0			**
080		0 30					15						-			
	~															

KM.

Table A.4 (19/40)

		FIELD						2.00					1919		4 To 1	
UT .		HUF			4 27	5.0		. 1 Hee		9.0	10.0	12.0	15.0	-	FOT	HPF
02 03 04 05 06 07 08 09 10 11 12	1 1 1 1 1 1 1	10.3 10.0 9.9 10.0 10.1 10.2 0.6 1.0 0.9 0.5 9.8	23 23	-20 -25 -26 -24 -17 -8 4 17 28 30	-5 +9 -10 -8 -3 4 15 22 29 31 31	10 8 7 8 11 14 18 25 31 32 27	14 12 13 15 17 22 27 31 27 27	17 15 15 17 20 24 28 27 27 27	18 19 21 23 26 29 27 27 27	28 24 26 27 26	24 25 26 7	27 26 26 26 27 -6 4	-		8.5 8.4 8.5 8.6 8.3 8.6 8.8 8.9 8.4	13.9 14.1 13.3
14 15 16 17 18 19 20 21 22 23 24		9.1 8.7 8.5 8.2 7.7 7.2 6.5 5.7 6.9 8.9 0.1	7 6 6 19 20 20 19 33 31 17 28	30 30 30 30 30 27 27 30 30 25		27 27 27 27 27 28 28 32 32 32 29 23 17	2.5	27 27 27 27 27 27 20 20 33 31 27 23	26 26 27 27 20 20 20 20 20 32 28 25	26 7 7 7 20 20 20 20 20	7 7 7 7 20 20 20 20				6.9 6.7 6.5	11.0 11.0 10.7 10.3 9.7 10.4 9.4 8.3 8.1 7.7 9.8 11.2
UT FREQ DBU	01 12.0 28	12.0	03 12.0 26	:12.0	12.0	06 12.0 27	10.0	10.0	8 0	10 6.0 31	5.0	4.0				
UT FREQ DBU	13 3•0 30	14 3•0 30	3.0	3.0	3.0	18 6.0 28	19 5.0 28	5.0	7.0	8.0	23 8 • 0 28	10.0				
Table #	A.4 (22/4 MACTAN 10.16N	0)	3.53E	τυ c 1	JU 11Y0T0 N 50.0	ES F	1.02E	= 1	AZ 77.92 0.10	IMUTH 97 KW	• 4 6 REO - S	MILE: 175. 16.	6	Da.	6	
Table !	A.4 (22/4 MACTAN 10.16N MININ	0) - 12: MUM AM FIELD	3.53E IGLE STREI	TO C 1 0.0 NGTH	JU UYOTO O.SON PEGRE IN DR	– 1 <u>2</u> E5 F	1.02E POVER ANTENI EQUEN	SUI 2 = (NA GA CIES	AZ 77.92 0.10 IN T IN MH	IMUTH 97 KW R. O Z	S •46 REQ•S •0 DE	MILE: 175 IG. RE.	0.0 C.0	282. Db DB		нрғ
UT 01 02 03 04 05 06 07 08 09 10 11 12 13 14	A.4 (22/4 MACTAN 10.16H MININ F 66 67 77 78 88 88 87	- 123 - 123 - 124 - 16LD - 10 -	3.53E NGLE STREI DBU 24 19 19 19 22 23 31 66 66 55	TO C 0.0 NGTH 3.0 1-6-10 -11 -9 -4 312 21 29 30 30 30 30 30	JUYOTO C50N PEGRE IN DR 4.0 13 10 8 7 8 11 14 19 25 31 31 31 27 31	- 12 ES FRI 5.0 17 14 12 13 15 18 22 27	1.02E POWER ANTENIE COUENC 6.0 20 16 16 16 16 12 25 29 29 28	SUI 2 2 1 20 19 20 22 24 27 30 33 29 26 6	AZ 77.92 77.92 77.92 1N T 1N MH 8.0 25 23 22 23 24 26 28 31 27 28 6	TMUTH 97 KW 97 R. 0 2 27 25 24 25 26 27 29	5 •46 REO•5 •0 DB	MILE: 175 IG. RE.	0.0 C.0	282. Db DB	FOT 5.8 5.8 5.7 5.7 5.6 5.7 6.0 6.4 6.7	HPF 8 • 1 9 • 1 8 • 9 8 • 9 8 • 6 9 • 9 10 • 4 10 • 0 9 • 6 8 • 4 7 • 0 6 • 0 5 • 3
01 02 03 04 05 06 07 08 09 10 11 12 13	A.4 (22/4 MACTAN 10.16N MININ F 66 66 67 77 78 88 88 77 95 94 43 43 43	0) - 123 - 121 - 1	3.53E NGLE STREI DBU 24 19 19 22 23 31 66 65 53 31 31 30 30 30 30	TO C 0.0 NGTH 3.0 1-6-10 -11 -9 -4 31 21 29 30 30 30 30 30 30 30 30 30 30 30 30 30	JUYOTO C. 50M PEGRE IN DR 4.0 13 10 8 7 8 11 14 19 23 1 31 31 31 31 31 31 31 32 29 23	- 12 FRI 5.0 17 14: 12: 13 15: 18 22 27 32 32 32 32 32 32 32 32 32 32 32 32 32	1.02E ONTENI 6.0 20 13 16 16 16 12 27 29 29 29 29 29 29 29 27 33 33 33 33 31 27	SUI 2 2 1 20 19 20 22 24 27 30 33 33 33 33 32 29	AZ 7.92 7.10 IN TIN MH 8.0 25 22 22 23 24 26 28 31 27 28 6	IMUTH 97 KW 0 Z 27 25 24 25 26 27 29 6 6	5 . 46 . 5 . 6	MILE: 175 IG. RE.	0.0 C.0	282. Db DB	FOT 5.8 5.8 5.7 5.7 5.7 6.0 6.4 6.7 5.8 5.5 4.8 4.0 3.7	8.1 9.1 8.9 8.6 8.9 9.9 10.4 10.0 9.6 8.4 7.0 6.0
UT 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21	A.4 (22/4 MACTAN 10.16H MININ 6 6 6 7 7 8 8 8 8 7 5 4 4 4 3 3 3 6 7	0) - 121 - 10M AN - 1ELD - 1UF - 7-2 - 7-0 - 5-8 - 8-4 - 0 - 7-4 - 8-2 - 8-4 - 0 - 7-5 - 5 - 0 - 7-5 - 7	3.58E STREI DBU 24 19 19 22 25 23 31 31 31 31 30 30 30 30 30 30 31 26	TO C 0.0 NGTH 3.0 1 -6 -10 -11 -4 3 12 21 29 30 30 30 30 30 30 30 30 30 30 30 30 30	JU (1) OTO (1) SON PEGRE IN DR 4.0 13 10 13 11 14 19 25 31 31 31 31 31 31 31 31 31 31	- 12 FRI 5.0 17 14: 12 13 15 18: 22 27 32 28 28 27 5 5 32 32 32 32 32 32 32 32 32 32 32 32 32	1.02E OVER OVER ANUTEN 6.0 20 13 16 16 16 16 21 22 22 22 28 6 6 7	SUI 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	7. 92 7. 10 7. 10	IMUTH 97. KW 0 Z 9.0 27 25 24 25 6 6 34 333 31 29	5 . 46 . 5 . 6 . 0 . 0 . 28 . 27 . 26 . 26 . 27 . 28 . 4 . 5 . 6	MILE: 17.5 IG. RE.	0.0 C.0	282. Db DB	FOT 5.8 5.8 5.7 5.7 5.6 6.0 6.4 6.7 5.8 4.8 4.8 4.8 4.8 4.8 4.8 4.8 4	8.1 9.1 9.9 8.9 8.6 8.6 9.9 10.4 10.4 10.6 8.4 7.0 6.3 4.7 4.6 4.1 3.5 4.1 3.5 4.1 7.3

7.0 28

20

5.0

21

4 0. 31

4.0

.22

5.0

4.0 31

23

6.0

3.0

24

8.0

8.0 27

30

18

3.0

9.0 10.0 10.0 28 27 27

3.0

30

3.0

30

3.0

FREO

Deu .

FRFO

DBU

.9.0 25

3.0

10.0

16

3.0

Table	μ	1ACTA	N			_ TG	BUST	NUARY JANGA	RAF	0 AR	1,	5	. 47	THEFT	IBER HS		i i i C c		k M			
		MIN IO.IO	i i MUI	M AN	GLE	E O•(ENGTI	DEC	I3N ~ IRFES	·" F	NTE	R =	O. GAIN	10 T	KW R	S.97 REO 0.0	,51G.	, .	0.0		3.2		
ijŢ			MUF	_	DBU			0 5		6.0		5 IN 0 8			10.0	1 12.	.n 1	5_ń			FOT	HPF
01			12.6		3	-25	-10	1.		16	18			- 21	22	24	٠.	-	_		10.9	14.3
02 03 04			17.1	3	50	-38 -46	-59 -50	,	9 7	13 11	16 14	1	7	18	20 19	22 21		- 24	-	٠.	9.7	13.6 12.8
05 06			10.8	3	19 19 21	-48 -45 -35	-28 -25 -18	-1	1	11: 11	14	1	7	18	18	20 21	- "	24	-	11.	9.4	12.3
02. 08			11.6	5	24 16	-22	-18 -8 15	1.		13 16 20	16 19 22	2	0, ,	20 21	20	22 24		-	. .		9.4	12.7 13.3
09 10			11.8	3		19	21 26	2.	\$	24 24 28	25 25	2	6	23 27 26	24 25 26	16 17 13		- -	-		10.1	13.7
11 12			11.3	3	13 13	25 25	26	.27		28 26	5.6	2	6.;	26. 26.	26. 26.	13 13	1000	13	-		9.1 8.8 8.6	14.3
13 14			10.5		13 13	25 25	26 25	26	>	95	26	20	5	59	26 25	13		- -	-		8.2	13.5 13.0 12.2
15 16			8.7	,	13 13	25 25	26 26	26		26 26	. 26 27	. 20		26 13	13 13			-	-		7.3	11.4
17 18 19			8 • 1 7 • 6		13 13	25 25	26 26	50	,	27 27	27 27	2 d	5 .	13 13	13 13	-		•	-	14	6.3	9.8
20 21			5.3 4.9		12 28 27	25 25 25	26 26 26			25 28	13 29	29)	30	30	-		•			4 · 6 3 · 6	8.3
22			5.5		2 9 2 7	25	26 20	27		28 28 23	29 29 24	29 29 29	•	30 30 26	30 30 27	30 30 28	-	30 30	Î		3.4 5.7	7.4
24			11.9	' -	26	-8	13	17		9	21	22		23	24	26		?9 -	-		8.3	10.9
UT		0		02	0.3	0	i. (05	06	ų 7	, (18	09	10) 1	1	12					
FRE DRU		12.) 1 2	22	24	1 15.0		.0 12 21	• 0 2 2	2.5		0 9	75 75	7 • 0 29			0				•	
UT FRE		1. 4.		14 •0	15 7•0		-		18 •0	41.0		0 15	2.1	2.2 15.0	2	3 0 12	24					
DBU		2	5 .	50	26	2	7	27 .	27	26	3	0		. 30			26					
Table	A.4	(26/4	10)								2			÷								
		ACTA				TC (JANE. AUPUE	JARY NGA	RADA) NR	2	UnSF		NUME NU TH		0.0	E S		KM.		,	
	10	161. MIN	NUR				12 • 13 DE GR	REES	Pί	WER	=	296.	75	115		30	16.5	•0	493			
			FIE	LO S	TRE	NGTE	TN E	ję į			NA G	AIN	TR MHZ		l∓0 pi	3 RE		0.0	២ 8			
UT			MUF	Đ	ŖÜ	3.0	4.0	5.	0 6	•0	7.0	8.	0	9.0	10+0	12.0	15	• 0	-		FGT	HPF
01 02			8.7 8.2			-11 -21	12	16 13		9 7	21 19	22 19		22	23	- 24	-		-		7.6	10.2
03 - 04			7.7 7.6	1	5	-27 -29	-11 -13	12 11	1	5	17	16 15	. :	18 18	20	23	-		-		7.0 6.7 6.9	9.4 8.9 8.8
05 06			7.9 8.4	1	9	-26 -19	-11 -6	12 14	1	5 7	18 19	16 20		19 20	21 22	23	· -	1.	-		6.9 7.3	9.0 9.6
07 08 09	٠.		9.6	1	1,	-9 4	13 18	1.7	1	2	21 23	22 24	ā	22 24	10 11	-	-		-	٠.	7.9 8.3	10.4
10 11			9 • 6 9 • 2 8 • 7	1 1 1:	3	21 25 25	23 26	27	. 5		27	26 27	i	26	12 13	-	-		•		8 • 4	11.0 11.1
12			8 • 1 7 • 3	1	3	25 25	26 26	27 27 27	2 2 2	7	27 27	27	1	3	13 13	-			-		6.4	10.4 9.7
14 15			6 • 5 5 • 5	1	2	25	26 26	26 26	2	7	27 13 13	13		3	<u>.</u>	-	-		-		5.8 4.6	8 • 8 8 • 2
16 17			4°6 4°1	1	2	25 25	26 26	12 12	i		- -	-	-		-	-	-		-		3.3	6 • 9 5 • 8
18 19			4 • 0 3 • 4	2 (25	26 12	12 12	-		-	-	- 1		-	-	<u>-</u>		-	4	2.9 2.8 2.4	5.3 5.5 4.7
20 21			2.6	24		25 25	- 26	27	2		. 29 ·	29	-		- -	-	-		-		1.8	3.5
22 23 24			4.1 6.6	21	5	25 20	26	27	2		29 26	29 27	5	7	30 28		-		<u>-</u>	1.1	3 • 6 5 • 8	4 · 8 7 · 8
24		- '	8 • 4	24		2	17	20	2	2	23	23	2	5	11		-		•		7.4	9.9
FREO	• • •	01 10-0	12.	2 0 12	63 • 0	04 12.0	12.0	5 0 9 10.	6 0	07	08 9 . 0	7.		10 6.0	11 5.0	- 1 <i>i</i> 5 • (:			
DBU	ş.	23	2	4	23	23	2 :	3 2	2	2.2	24	2		28	27	2						-
UT		13.			15	16. 4.0	17			19	20			22	23	24						
FREO DBU		7.0	2		26	26	26		6	25	3 • 0 25			30	10.0	9.0)					

22.

27

7.0 6.0

23

-58

FREO

FREO

13 14 6.0 5.0 28 27

5.0

5.0 27

DBU

9.0

21

8.0 10.0 12.0 12.0 15.0 12.0 29 30 30 30 29 26

7.0 29

6•0 28

8.0

Table I	A.4 (30/40)		· .			· 6							
•		ANGLE	T3 8050 12.1 0.0 PEG NGTU IN	31. + 1 RLE5	19.53! POWE ANTE	E ; R = NNA GÙ	AZ 296.75 0.10	LINUTI 11: Kw	BER 1 HS 5.97 REO.S 0.0 DB	71LE 306			
υŢ	MUF	DPU	3.0 4.	บ _ี 5∓0	6.0	7. :	8.0	9.0	10.0	12.0	15.0	 FOT	HPF
01 02 03 04 05 06 07 08 09 11 12 13 14 15 16 17 18 19 20 21 22 23 24	7.5 7.2 7.0 7.0 7.1 7.3 8.2 6.8 9.3 8.0 6.6 5.6 4.9 4.4 4.1 4.0 3.5 3.0 3.5 5.4 7.2 7.8	12 9 11 13 17 26 29 17 17 17 28 27 27 27 26 25 26 25 26 25 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 27 27 27 27 27 27 27 27 27 27 27	-22 -8 -32 -14 -36 -18 -40 -19 -37 -18 -30 -13 -6 14 17 20 24 25 25 26 25 26 27 26 28 26 29 26 20 27 27 27 27 27 27 27 27 27 27 27 27 27	10 9 8 9 11 14 18	16 14 13 12 15 14 17 20 23 27 28 26 27 28 28 28 28 28 28 28 28 28 28 28 28 28	18 15 13 12 13 16 19 21 24 28 27 17 	17 15 13 13 15 18 21 25 29 27 17 	20 17 16 16 16 18 20 23 27 17 	21 20 18 18 19 20 22 24 27 29 18 - - - 30 30 30 32 26 24	24 23 22 22 23 24 26 28 	26 25 25 25 25 27 2 2 2 2 2 2 2 2 2 2 2 2	6.3 6.6 6.7 6.6 6.7 6.6 6.8 7.6 6.3 7.6 6.3 7.6 6.3 7.6 6.3 7.6 6.3 7.6 6.3 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6	8.4 9.3 9.1 9.2 9.3 9.8 10.5 11.2 10.9 6.7 5.3 5.0 5.3 5.0 5.5 4.1 4.7 6.1 8.1 8.7
UT FREO DBU	01 0 15.0 15. 26 2	03 0 15.0 5 25	04 0 15.0 15. 25 2	0 15.0	12.0	08 12.0 26	09 12•0 28	10 10•0 29	11 8.0 29	12 6.0 28			
UT FREO DBU			6.0 6.		6.0	20 10.0 30	21 12•0 30	22 12•0 29	23 12.0 28	24 12.0 26			
				1.		- 27	2—		:				114
\$			1.					era in		5 - 1		. 5	

Table A.4 (31/40)

26

27

			AN 6N - 1 Nimum	143434	E	DEGR	N - I FES	18.45 POWE	R =	262+5	66 . 8 1 KW	86•18 - 860 -	00.0 Hil 35 SIG.	2.6	f- to			
			FIEL	D STR	ENGTH	IN D	n F	REQUE	NCIES	S IN H	HZ.	0.0 0	B RE	• 0•	O DB			
	UT		MUF		3.0				7.0	8 • 0	9.0	10.0	12.0	15.0	3	FOT	HPF	
	01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24		12.4 11.8 11.1 10.5 10.6 10.9 11.7 11.7 11.7 11.6 10.8 10.4 10.8 6.9 5.7 5.2 6.8 11.9	22 197 15 16 18 21 24 27 11 10 10 10 10 10 10 10 27 26 27 25 24	-33 -487 -50 -50 -431 -128 23 23 24 24 24 24 24 24 24 24 24 24 24 24 24	-37 -34 -27 -10 13 19 25 25 25 25 25 25 25 25 25 25 25 25 25	-14 -15 -13 -9 11 16 21 26 25 25 25 25 26 26 26 26 26 26 26 26 26 26 26 26 26	11 9 9 11 15 19 23 27 27 27 25 25	20 23 28 28 25 25 26 26	17 15 15 16 17 19 21 28 25 26 26 26 26 26 26 26 27 28 28 28 28 28 28 28 28 28 28 28 28 28	20 18 17 17 17 19 20 22 25 28 25 26 26 10 10 10 10 28 28 28 22 28 22 28 28 28 28 28 28 28	20 18 17 17 19 21	22 20 18 19 20 22 24 27 11 11 11 11 11 11 11	24 23 22 22 23 24 		10.1 9.5 9.0 9.1 9.3 9.7 10.0 9.9 8.9 8.7 8.4	11.9 12.0 12.6 13.2 13.5 13.4 14.1 13.7 13.3 12.8 12.1 11.5 10.8 10.1 9.9	
	UT FREQ DBU UT FREG	15. 2		15.0 3 23	2 2 2 2 2	15.0 22 17	15.0	0 15.0 3 2 5 19) 12.0 4 2.0 9 20	4 : 21 0 : 21	0 9.0 7 28 1 23	7.0						
	UBO	. 2				26	2 (2 (5 2	9. 29					·		\$ I *	• •
	Table A.	4- (34,	/40)						2				* * *			e e e e e e e e e e e e e e e e e e e		
,			N - 12 IMUH A FIFLE	3.58E INGLE 5.5TRE	TO P 0.0 NGTH	UERTO 9.46N PEGRE IN DU	PRIM - 1: ES	18.45E POWEF ANTEN REQUEN	SI	UNSPOT AZ 262.56 0.10 VIN T IN MH	? IMUTH 5 81 KW FR• 0	IS • 68 REQ • S • 0 DB	MILE 352 IG. RE.	0.0 0.0	KM. 567. DB DB			
	01		MUF 8.7		3.0 -17			6.0°	7. r 19	8.0 21			12:0	15.0	-	FCT	44	
	02 03 04 05 06 07 08 09		8.1 7.5 7.7 7.7 8.2 9.0 9.6 9.7 9.5	15 11 12 16	-29 -36 -38	-9 -13 -14 -13 -8 -2 16	11 10	15 14 13 14	1.7	18	20 17 16 15 16 18 21 23 26 26	21 19 18 18 18 20 22 24 10	24 22 21 21 21 22 24	25 24 24 24 24		7.7 7.1 7.5 7.7 7.7 7.3 7.8 8.3 8.5 7.5	10.3 9.3 8.7 8.5 8.8 9.4 10.3 10.9	
	11 12 13 14 15 16 17 18		5.9 5.0 4.4 4.2 3.7	25 25 24	24 24 24 24 24 24 24 24 24	25 25 25 25 25	26 26 26 26 26 10	27 27 26 26 10 10	28 26 26 10 10	26 26 10 10 - -		11				7.2 6.8 6.1 4.9 4.2 3.5 3.2 3.0 2.6	11.4 10.9 10.3 9.3 8.7 7.5 6.3 5.6 5.8	
	20 21 22 23 24		2.8 2.7 4.4 7.0 8.6	23 22 25 24 22		25 25 21		27 27 27 24 20	28 28 28 24 22	28 28 25 23	28 28 26 23	29 29 27 24	29 27 25	- - -	• • •	1.9 1.9 3.8 6.1 7.6	3.8 3.7 5.2 8.2 10.1	
	UT FREO OBU	01 12.0 24	02 15.0 25	03 15.0 24	04 15.0 24	05 15.0 24	12.0	07 12.0 24	08 10.0 24	9 • 0 9 • 0	10 8•0 28	11 7.0 28	12 6.0 27					
	UT FREO DBU		6.0 26	15 5 • 0 26	16 5.0 26	17 5.0 26	18 4.0 25	4 • 0 2 5	28	10.0 29	22 12•0 29	23 12.0 27	24 12.0 25	- 1. -# . - 1.			+ *4 + 1	
							- 1 		- 274	1—								
											1.5					•		٠.

22 . 23

15.0 28

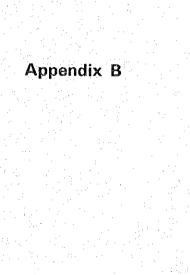
15.0

01 02 03 04 05 06 07 08 09 10 11 15.0 15.0 15.0 15.0 12.0 12.0 12.0 10.0 10.0 8.0 25 24 23 23 23 24 22 25 26 29 26

15 16 17 18 19 20 21 22 7.0 10.0 12.0 15.0 15.0 15.0 15.0 28 29 29 29 29 29 29 29 29

FREQ

FREQ


DBU -

13

5.0

				٠.				·	
dP-E-N	A 4 17714	n)							
tapte		- 123.586	TO PUERTO	ILY 0 PRINCESA 1 - 118,45E ES POWER	AZ	81.68	MILES 352.6	KH. 567.5 DB	
	F	IELD STRE	NSTH IN U	ANTEN	INA GAIN T ICIES IN MH	R. 0.0 08	RE . 0 . 0	80	
មា	М	UF DBU	3.0 4.0		7 • 0 8 • 0		and the second	- F0	
01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18	10 10 10 10 10 11 11 11 11 11 10 9 9 9 8 7	.5 15 .3 12 .3 12 .4 13 .5 15 .9 18 .4 22 .7 28 .5 10 .0 10 .3 10 .3 10 .3 10 .6 25 .7 19 .5 10 .1 10 .6 27 .6 27 .6 27 .6 27 .6 27 .6 27	-47 -27 -45 -48 +71 -45 -25 -25 -27 -2 16 21 22 24 25 23 25 24 25 25 24 25 24 25 25 25 25 25 25 25 25 25 25 25 25 25	7 11 -10 8 -20 6 -21 5 -19 6 -15 8 13 16 18 20 24 24 26 27 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 25 26 27 27 28 28 27 29 28 27 20 20 20 20 20 20 20 20 20 20 20 20 20 2	14 17 12 15 10 14 10 13 10 14 12 15 15 17 18 20 22 23 25 26 25 25 25 25 25 25 26 26 26 26 26 26 26 26 26 26 27 28 28 28 28 28 28 28 28 28 28 28 28 28 28 29 26 26 20 27 28 28 28 28 28 28 28 28 28 28 28 28 28 2	19 20 17 17 16 16 15 15 16 16 17 17 19 19 21 21 23 24 27 27 28 26 25 25 25 25 25 10 26 10 26 10 10 10 10 10 28 29 26 27 23 23 24 27 25 25 25 25 25 25 26 27 27 27 27 28 26 27 27 27 28 26 28 29 26 27 27 23 23 23 21 22	20 23 18 22 16 21 16 21 17 21 18 22 20 23 23 25 25 27 28 10 10 10 10 10 10 10 10 10 10 10 10 10	9. 8. 8. 8. 8. 9. 9. 9. 7. 7. 7. 7. 4. 4. 4.	9 13.52 8 13.22 8 13.35 13.35 13.35 14.00 14.39 14.00 14.39 14.00 14.39 14.00 12.55 11.55
UT FREQ	01	02 03	3 04 05	5 06 07		10 11	12 6•0	· ·	
DAU	. 23	22 21	21 21	22 23	25 27	28 28	2.7		
UT FREO DRU	13 5•0 26	14 15 5•0 5•0 26 26	5.0 5.0	8.0 7.0	9.0 12.0	12.0 12.0	24 15•0 25	.*	**
Table	A.4 (38/40 MACTAN 10.16N)) - 123.588	TO PUERTO)LY 0 PRINCESA 1 - 118.45E		INUTHS	0.0 MILES 352.6	KM. 567.5	
· ·		- F	0.0 DEGRE NGTH IN DE	ANTEN	= 0.10 NA GAIN T CIES IN MH	R. 0.0 DB			
· UT			3.6 4.0		7.0 8.0	•	12.0 15.0	- F0	T HPF
01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23	7 7 7 7 7 8 8 9 8 9 8 7 6 5 4 4 4 3 3 3 3 3 5	3 20 •9 24 •5 28 •6 28 •6 9 •2 9 •1 27 •4 26	-28 -9 -15 -47 -19 -49 -20 -46 -19 -38 -14 -26 -8 -11 13 52 24 25 25 24 25 25 24 25 25 24 25 25 24 25 25 25 24 25 25 25 25 25 25 25 25 25 25 25 25 25	12 15 9 13 7 12 7 11 7 12 9 13 12 16 16 19 21 22 25 26 27 26 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 28 27 28 28 27 28 2	28 28 26 29	17 19 15 17 13 16 13 16 14 16 15 18 18 20 21 22 24 25 28 28 10 10 10 	22 25 21 24 20 23 19 23 20 23 21 24 22 25 24 26 27 - 29 - - - 29 29 29 29 29 29 28 29 26 27	- 6. - 7. - 7. - 7. - 7. - 6. - 6. - 6. - 6. - 3. - 4. - 3. - 2. - 2. - 2. - 6.	2 9.63 9.43 4 9.33 9.99 9.99 11.33 11.33 11.43 11.
24 Ut FREO	01	•1 19 02 03 15•0 15•0	-13 12 04 05 15.0 15.0	15 18 06 07 115•0 15•0	08 09 15.0 12.0	21 22 10 11	24 26	- 6.	
UBO UT	25 13	100		24 25 18 19	26 27 20 21	to the second of	28		
FREQ DBU		6.0 6.0	0.0 6.0	8.0 12.0	15.0 15.0 29 29	15.0 15.0			
					-276 -				

											٠.						
1 +					10.				•			٠					
	Table		N N - 1		E	OCTO PUERT 9•46: PEGRI	0 PRI		· -				MILI 35	ES 2.6 0.0	KM. 567.5 DB		
•			FIEL) STR	engyh	IN DI	a É	ARTE! REQUE!		AIN MI		0.0 Di		0.0			
	UT		MUF	DBU	3.0	4.0	5.0	6.0	7 . Ր	8.0	9.0	10.0	12.0	15.0		FOT	нрЕ
	01 02 03 04 05 06 07 08 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24		13.3 12.6 112.6 112.7 113.3 114.1 113.5 113.6 112.5 112.9 113.6 112.5 113.6 113.6 113.6 113.6	17 16 18 21 23 25 0 10 11 11 11	-39 -55 -68 -537 -17 -13 -23 -23 -24 -24 -24 -24 -24 -24 -24 -24 -24 -24	-21 -33 -41 -43 -43 -14 -11 -18 -25 -25 -25 -25 -25 -25 -25 -25 -25 -25	9 -13 -17 -18 -17 -12 -10 15 20 26 26 26 26 26 26 26 26 26 26 26 26 26	13 9 7 7 10 13 18 22 27 27 27 27 27 27 27 27 27 27 27 27	16 13 11 11 11 13 16 19 28 25 25 26 27 27 27 27 28 27 27 27 27 28 27 27 27 27 27 27 27 27 27 27 27 27 27	18 16 14 14 16 18 21 22 25 26 27 27 27 27 28 28 27 27 27 28 28 28 24 28 24 28 24 26 27 27 27 27 28 28 28 28 28 28 28 28 28 28 28 28 28	19 18 17 16 17 18 20 22 24 25 25 26 26 27 27 27 26 11 28 23 24 28 27 27 26 27 27 28 27 27 28 27 27 28 27 27 27 27 27 27 27 27 27 27 27 27 27	21 19 18 18 18 19 21 23 25 25 26 27 27 27 11 129 28 25	22 20 17 17 18 21 22 24 24 25 26 27 27 11 11 29 26	24 22 21 21 22 24 -1 11 11 11 11 11 11 11		11.4 11.6 10.6 10.4 10.9 11.1 11.8 11.8 11.4 10.0 9.8 9.9 10.5 10.5 10.5 10.5 10.5 10.8 10.8	14.7 14.2 13.5 13.3 13.8 16.9 16.9 16.9 15.4 15.0 15.2 15.6 15.4 14.7 12.7 9.8 9.7
	24		13.6	23	-20	-4	14	17	19	21	5.5	23	24	25	-	11.7	15.1
	UT FREQ DBU		1 02 0 15•0 4 22	15.0	0-15-0	15.0	15.0	15.0	08 12•0 24	10.0	9.0	6.0	5.0				
	UT FRED D8U	1. 5.0 26	5.0	6.0	6.0	5 17 0 10•0	18 9•0	19 6•0	20 3.8	21 12•0	22 15•0	23 15•0	24 15.0	٠			
	Table A.	.4 (40/4	0)	-			٠		8								
		MACTAN 10.161 MIN]	i - 12 IMUM A	NGLE	0.0	OCTOB PUERTO PLAGN PEGRE IN DP	PRIN - 11 E5	8,45E POWER ANTEN	5U 2 = NA GA		KW R. O			0.0		i i	
	UT		MUF	080	3.0	4.0	5.0		7 . 0	0.8		10.0	12.0	15.0	_	FOT	HPF
	01 02 03		9.7	[17]	-22 -34	-6 -12	13 10	16	19 17	20 18	21 19	20	21	25 24	<u>.</u>	8.3	11.0
	04 05 06 07 08 09 10 11 12 13 14 15 16 17 18	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.3 0.9 0.4	22 25	-42 -41 -33 -20 -3 18 24 24 24 24 24 24 24 24 24	-16 -18 -16 -11 -5 15 25 25 25 25 25 25 25 25 25 25 25 25 25	26 26 26 26 26 26 26 26	12 12 14 17 20 24 27 26 26 26 26 26 26 27 27	17 19 22 24 28 26 26 26 26 27 27 27 26 9	17 17 18 19 21 23 25 28 26 26 26 27 27 26 9 9	15 14 20 22 23 26 26 26 26 26 26 26 27 26 27 27 28 28 28 28 28 28 28 28 28 28 28 28 28	17 17 17 21 22 24 26 26 26 26 26 26 26 26 27 27 27 27 27 27 27 27 27 27 27 27 27	20 20 20 22 23 25 9 10 10 10 10	23 23 24 24 24		7.9 7.8 8.9 9.7 9.8 8.5 7.6 7.6 6.0 4.8 3.7 2.8	10.0 9.9 10.5 12.3 13.4 13.7 13.6 13.1 12.6 12.0 11.7 12.2 11.4 10.3 9.7 10.2 7.9 5.6
· · ·	21 22 23 24	. :	7.0 9.6 0.2	27 26 23	24 9 -7	25 20 14	26 22 17	27 23 20	28 24 21	25 22	25 23	26 23	25	-	-	6.0 8.3 8.8	7.9 10.9 11.5
	22 23	1 01	9.6 0.2 0.2 0.2	26 23 03 15•0	9 -7 04 15•0	20 14 05 15•0	22 17 06 15.0	23 20 .07 12.0	24 21 08 12•0	25 22 09 10•0	25 23 10 8•0	23 11 6•0	1.2	-	-	6.0 8.3	7.9 10.9
	22 23 24 UT FPE0	01 15•0	9.6 0.2 02 15.0 24	26 23	9 -7 04 15.0 23	20 14 05 15.0 24	22 17	23 20 07 12.0 23	24 21	25 22	25 23 10 8•0 28	23	12 8.0 26	-	•	6.0 8.3	7.9 10.9

Appendix B プロジェクトの予備設計

Appendix B (※ 1) テレタイプ、ファクシミリ及び通信システム (※ 1) 1. テレタイプとファクシミリの比較

# A L L	テレタイプ・	ファクシミリ
1. 運用面		
適するデータの形態	デジタル(文字など)	アナログ(線画など)
伝送の速度	100文字で22秒	Λ 4 1枚 6分
	(11 bit/文字・50 bps)	(C Hファインモード)
耐雑音性	ARQ付とすることで耐雑音性	雑音のため、部分的に判別でき
	は改善される	なくなるが、概要は把握できる
2. 経 質(早=103)	早 2 2 7 /台	早76/台
3. 保 守	容 易	割合復雜

(×1)2. 2周波無線方式の比較 (Dual RF System)

	·		
	2周波方式	単一チャンネル	2チャンネル (多重)
1. 運用面			
データ伝送の面	独立してできる	電話と切換	電話と同時に可能だが
			1周とのみ
故障時の対応	独立した2チャンネ	回復迄は全く対応不	チャンネルフィルター
	ルであるから非常に	ធ្យ	以後の故障にのみ対応
	容易		できる。
運用の総合評価	良	悪	やや良い
2. 周波数割当	単一チャンネルの倍	標準	帯域幅か広く 150 M
Prince and the second se	の割当を要す		Hz では不許可
3. アンテナ	2系統ほしい	1系統	1系統
4. 装置の複雑性	分波器(共用器)が	標 準	標準品の人手は難しい
	複雑になる		
5. 冗長性	高い	標準	やや高い
6. 経費	高い	標準	高しい
7. 保 守	単一チャンネルとあ	標準	多重化しただけ保守が
	まり変らない		面倒

Appendix B (×2) 幹線における通信機器及び付帯設備

(+ 2) 1. 通信機器

幹線通信システムに関する各局の機器構成及び主な機器の仕様、外観図について以下に述べる。

(※ 2) 1.1 各局機器構成

- (1) 多重通信装置、端局/レピーター/FSリンガー/コンバーター装置、 PABXは、標準のスペアパーツ(ランプ、ヒューズ等の消耗予備品)、標 準アクセサリー(保守用コード、取扱説明書等)及び標準工事材料を含める。
- (2) spare unit を代表局に設置する。
- (3) TANAY, NAGAの既設無線通信機器は改造する。
- (4) TANAY と NAGA の GAPAS向け空中線は、一次放射器を新規製作 し、他は既設を有効利用する。
- (5) 保守に必要と思われる測定器を配置する。記入したModel名は代表的なものであり、実際は記入したModel名と同等以上のものであれば問題はない。
- (6) BALODの 6.7 GHz Band 4.0 m Ø Plate Parabolic Antenna に 対する風圧を軽減する目的でレドーム付とする。

(+ 2) 1.2 主な機器の仕様

幹線通信システムで使用する主な機器の仕様を次に示す。

- (1) 800 MHz Band SS-PM multiplex radio equipment FD/SD system (PM 6/12/24-800-70 FD/SD)
- (i) General

Radio Frequency Band Channel Capacity

T-R Separation
Type of Modulation
Relay System
Diversity System

Baseband Frequency

Service Channel Frequency Power Supply 770 - 960 MHz 6/12/24 channels + 1 service channel 30 - 60 MHz SS-PM Baseband Relay Frequency or Space Diversity

6 chs: 12 - 36 kHz 12 chs: 12 - 60 kHz 24 chs: 12 - 108 kHz 0.3 - 8.0 kHz

AC 220V±10% or -24V±10% (Positive-grounded)

(ii) Transmission characteristics

Overall S/N

50 dB or better at modulation index of 2 rad peak and baseband width of 12 to 108 kHz and at receiver input level of -71 dBm

(iii) Transmitter

RF Power Output Frequency Tolerance Modulation Index 70W within $\pm 20 \times 10^{-6}$ 6 chs: 0.8 rad rms/ch 12 chs: 0.4 rad rms/ch 24 chs: 0.2 rad rms/ch

(iv) Receiver

Receiving System

Noise Figure Local Frequency Tolerance Intermediate Frequency IF Bandwidth Crystal-Controlled Double Super-heterodyne 3 dB or less within ±20 x 10⁻⁶

70 MHz/10.7 MHz Approx. 460 kHz at 3dB point

(v) Duplexer loss

Transmitter Side Receiver Side 1.5 dB 1.5 dB

(vi) Layout

See Fig. B.1

770 - 960 MHz

vice channel

(2) 800 MHz Band SS-PM multiplex radio equipment (PM 6/12-800-5)

(i) General

Radio Frequency Band Channel Capacity

T-R Separation
Type of Modulation
Relay System
Stand-by System
Baseband Frequency

30 - 60 MHz SS-PM Baseband Relay Set stand-by 6 chs: 12 - 36 kHz 12 chs: 12 - 60 kHz

6/12/24 channels + 1 ser-

Service Channel Frequency Power Supply

0.3 - 8.0 kHz

AC. 220V±10% or -24V±10% (Positive-grounded)

(ii) Transmission Characteristics

Overall S/N

50 dB or better at modulation index of 2 rad peak and baseband width of 12 to 108 kHz and at receiver input level of -67 dBm

(iii) Transmitter

RF Power Output Frequency Tolerance Modulation Index

within ±20x10⁻⁶
6 chs: 0.8 rad rms/ch
12 chs: 0.4 rad rms/ch

(iv) Receiver

Receiving System

Noise Figure
Local Frequency
Tolerance
Intermediate Frequency
If Bandwidth

Crystal-controlled Double Super-heterodyne 7 dB or less within ±20x10⁻⁶

70 MHz/10.7 MHz Approx. 460 kHz at 3 dB point

(v) Duplexer loss

Transmitter Side Receiver Side 2.5 dB (including coaxial) relay loss)
5.5 dB (including HYB loss)

(vi) Layout

See Fig. B.2.

(3) 800 MHz Band SS-FM multiplex radio equipment (FM 60-800-5)

(i) General

Radio Frequency Band Channel Capacity

T-R Separation
Type of Modulation
Relay System
Stand-by System
Baseband Frequency

Service Channel Frequency Power Supply 770 - 960 MHz
60 channels + 1 service
channel
30 - 60 MHz
SS-FM
Baseband Relay
Set Stand-by
60 - 300 kHz or 12 - 252
kHz
0.3 - 8.0 kHz

AC 220V±10% or -24V±10% (Positive-grounded)

(ii) Transmission characteristics

Basic/Intermodulation Noise Power

Less than 300 pW on the worst channel (weighted)

(iii) Transmitter

RF Power Output Frequency Tolerance Frequency Deviation 5W within ±30x10⁻⁶
50 kHz rms/ch or 100 kHz rms/ch

(iv) Receiver

Receiving System

Noise Figure
Local Frequency
Tolerance
Intermediate Frequency
If Bandwidth

Crystal-Controlled Sigle Super-heterodyne 6.5 dB or less within ±10x10

70 MHz

Approx. 3.5/4.6 MHz at dB point

(v) Duplexer loss

Transmitter Side

Receiver Side

2.5 dB (including coaxial relay loss)5.5 dB (including HYB loss)

(vi) Layout

See Fig. B.2.

(4) 6700 MHz Band SS-FM multiplex radio equipment (FM 60-6700-1)

(i) General

Radio Frequency Band Channel Capacity

T-R Separation
Type of Modulation
Relay System
Stand-by System
Baseband Frequency
Service Channel
Frequency
Power Supply

6.57 - 6.87 GHz
60 channels + 1 service
channel
160 MHz
SS-FM
Baseband Relay
Set Stand-by
60 - 300 kHz
0.3 - 3.4 kHz

AC 220V±10% or -24V±10% (Positive-grounded)

(ii) Transmission characteristics

Overall S/N

More than 70 dB (weighted Value) at saturation input level in noise loading test

(iii) Transmitter

RF Power Output Frequency Tolerance Frequency Deviation

1W within ±30x10⁻⁶ 100 kHz rms/ch or 200 kHz rms/ch

(iv) Receiver

Receiving System

Noise Figure Local Frequency Tolerance Intermediate Frequency If Bandwidth Crystal-Controlled Single Superheterodyne 4 dB or less within ±20x10⁻⁶

70 MHz
Approx. 4.5/6.0 kHz at 3 dB
point

(v) Duplex loss

Transmitter Side Receiver Side

2 dB 4.5 dB (including HYB loss)

(vi) Lavout

See Fig. B.2.

(5) Antenna

Table B.1 shows a standard specification.

(6) Feeder

Table B.2 shows a standard specification.

- (7) Dehydrator
- (i) General

The dehydrator is used to charge dry air into the RF feeder of SF type and waveguide.

(ii) Specifications

Dry Air Output Pressure to operate Humidity of Output Air Motor

Compressor

3± litters/Min $150 \text{ g/cm}^2 - 250 \text{ g/cm}^2$ Less than 5% RH (20°C) A split phase start, 1 ϕ , induction motor, four poles continuous duty. A centrifugal pump with four directly vanes, driven.

- (8) FDM multiplex terminal equipment
- (i) General

Channel Capacity in channels Baseband Transmission System

Voice FRequency Frequency Allocation Attenuation Distortion Group Delay Distortion

24 chs

60 chs

12 - 108 kHz 60 - 300 kHz Carrier Suppressed Single Side Band System $300 - 3400 \,\mathrm{Hz}$ Conform to the CCITT Rec. do

do

(ii) Specification

Overall Noise/ch Linearity

Input/Output Impedance

Voice Side Baseband Side 63 dBm OP ±3 dB or better

600Ω Balanced 75Ω alanced

Input/Output Level Voice Side

2-wire
Input O dBr/-8 dBr
Output -8 dBr/-4 dBr
4-wire
Input -8 dBr/-16 dBr
Output o dBr/+4 dBr
Transmission: -25 dBr

Baseband Side

Carrier Supply
Master Oscillator
Accuracy
Producing Method

Synchronization Power Supply

: -15 dBr

- (9) Remote supervisory and control equipment
- (i) General

Transmission Frequency
Band
Number of Supervisory
item
Number of Control item
Capacity of Remote
Station
Route
Encording
Synchronization
Transmission Rate
Modulation Method

2.58 - 3.3 kHz

Reception

12 Items/Station

6 Items/Station
10 Stations (7 station for one Route)
3 Routes
RZ long-short Code
Word Synchronization
50 Baud
Frequency-shift Modulation

(ii) Specifications

Input/Output Impedance Signal Level Control Contact Condition

Supervisory Contact Condition Frequency Deviation

Error Detection

Operation S/N Ratio Power Supply 600 Ohms Balanced
-24 dBmo/carrier
Action: Make contact at
ground potential during 200
m sec Capacity 100 mA
50V DC
Action: Continuous grounding Capacity 15 mA 50V DC
Mean Carrier Frequency
±30 Hz
Double Transmission Parity
Check
Unweighted 25 dB or more
AC 220V±10% or DC -24V±10%
(Positive ground)

(iii) Layout

See Fig. B.3.

- (10) FS Ringer/Compander equipment
- (i) General

Compander consists of the compressor and the expander.

(ii) Specifications

FS Ringer Unit
Modulation System
Signal Frequency
Frequency Shift width
Signal Level

Frequency Shift Modulation 3.2 kHz ±100 kHz -15 dBmo

Compressor Unit Compressor Ratio Input/Output Level

2±20%
Input Level Output Level
-4 dBm -6±0.5 dBr
-8 -8±0.1
-28 -18±1.0
-48 -28±2.0

Expander

Expansion Ratio Input/Output Level

2±20%
Input Level Output Level
+2 dBm +4±0.5 dBr
0 0±0.1
-10 -20±1.0
-20 -40±2.0

(11) Telephone exchange (Digital switching equipment)

(i) General

Type of Telephone
Switching Equipment

Time Division Multiplex (TDM)
Type of electronic system controlled by stored program technique

Line Current Numbering Plan

36 lines 3 digits

(ii) Interface conditions

Dial Speed Make Ratio Minimum Pause Dial Tone

Busy Tone

Ringing Tone

Minimum Loop Resistance of Local Extension Minimum Insulation Resistance of Local Cable

4 Wire Interface Circuit 10±1 PPS
33%±3%
600 m sec or more
400±4 Hz (0.25 sec ON 0.25 sec OFF)
400±4 Hz (0.5 sec ON - 0.5
sec OFF)
400±4 Hz/18 - 24 Hz
modulation 1 sec ON, 2 sec
OFF, interval
200 ohms or less (including
Telephone set)
100 kilo-ohms minimum

Dialling signal is receiv ed/Transmitted by SR/SS wire Speech wire interface: 4 wire 6000±10% balanced

(X 2) 2. 通信施設

(※ 2) 2.1 既設施設

TANAY, NAGAについては、局舎、鉄塔ともに既設施設を使用する。

(× 2) 2.2 新設施設

(1) 新設局舎については経済性を考慮して7局共に同一仕様とする。(<u>Fig.</u> B· 4を参照)

無人局ではあるが、メンテナンス時に必要となる休憩室、トイレ、簡易台 所等のスペースを最小限設ける。

通信機器室には装置保護のために空調装置を設置する。

なお、本施設へ安易に人が出入りするのを防ぐために、施設周囲にフェンスを設置する。

- (2) 予備電源としての発電機は、局舎とは別に発電機室を設け収納する。 燃料の予備タンクは容量により、屋内設置か屋外設置のいずれかとする。
- (3) 無線鉄塔

7地点に合計12基を新設する。設計条件はTable B・3に示す。 アンテナ地上高により3種にわけ、40m、22m、15mについて概略 設計を行った。

(Fig. B · 5)

(4) アクセス道路

CAPACUAN以外の新設局については、幅3mの砂利を敷いた道路を建設することが計画された。これらの道路には、車のすれちがいに必要な道幅を持った場所を、何か所か設けるべきである。

CAPACUANは highway からあまりにも遠く離れているので、無線局へ行く道路は、砂利を敷いた道路の代りに人が通行できる小道を作るべきである。

アクセス道路の大体の長さは、次のとおりである。

O GAPAS

1, 3 5 0 m

O MALABOG

3 0 0 m

• BALOD

3 0 0 m

° CAPACUAN

2,000m

• TINAMBACAN

1, 3 5.0 m

O DANAO

4 0 0 m

O MALASAG

4 0 0 m

(+ 2) 3. 電源設備

(×2)3.1 電源設備の基本的構成

気象通信網整備計画を進めるに当り、各気象データを収集配信する通信路及び端末装置のシステムアップを検討することは勿論のこと、これら各種装置に電源を供給する電源設備のシステムアップの検討も非常に重要な要素である。そして、各種装置に供給される電源の品質は、電源設備の構成で決定される。幹線通信システムの電源設備は、上記の基本的考えを踏まえ、本通信網の運用形態を考慮しつつ、Fig B・6 幹線通信システムの電源設備系統図とすることが最適と考える。

- (1) 通信路の基幹をなす、多重無線通信装置、端局装置(レピータ、FSリンガー、Compandor 装置も含む)については、Charger-rectifier 及びBattery による無瞬断供給の直流電源設備が考えられるが、本通信網の運用形態から経済性及び保守性を優先にするべきと考え、AVRによる交流電源設備とする。
- (2) TANAY, NAGA の既設局舎には商用電源があるので、この電源設備を使用する。

その他の新設局舎については、商用電源を引込む時のルートはアクセス道 路に沿って新設する。

それら局舎までの引込み距離の概略を以下に示す。

• GAPAS

9 0 0 m

O MALABOG

5 0 m.

o BALOD

1 6 0 m

° TINAMBACAN

7 0 0 m

o DANAO

9 0 0 m

O MALASAG

2 0 0 m

引込み方法は、既設配電線より変圧器を介して分岐を行ない、約25m間隔で電柱を設けて行なう。

また途中での電圧低下を防ぐために、低電圧への変換変圧器は局舎近くに 設備するものとし、局舎内の分電盤より各機器へ分電する。

- (3) 商用電源の停電に備え、予備電源を設置する。予備電源としては、小・中電力容量を比較的安易にそして安定に供給することができるDiesel Engine Generator を使用する。又運用に大きく影響を与える幹線で、無人のうえ、アプローチに時間が多少かかる局に対してはDiesel Engine Generator の Dual Standby 方式を採用し、予備電源装置の運転時間の拡張を持たせるとともに、予備電源装置の信頼性を計るものとする。
- (4) 落雷や誘電によるシステムダウンを防ぐため、各種避雷設備や避雷方法が施されるべきである。商用電源ラインからの落雷や誘電を防ぐため、耐雷トランスを商用電源ラインに設置することが効果的と考える。避雷針の設置、接地工事その他避雷方法は実施段階で詳細に検討されるものとする。

航空障害灯の電源供給は、航空障害灯のラインからの誘電が室内装置に及ばないよう系統図の通りとする。

(+ 2) 3.2 電源機器設計条件

幹線通信システムの電源設備系統図に基づき各電源機器の設計をするに当り、 次の設計条件を定める。

- (1) 各機器の消費電力はTable B・4とする。
- (2) Automatic Voltage Regulator の効率及び力率は次のとおりとする。 効率:85%

力率:75%

- (3) Diesel Engine Generator
 - (I) Diesel Engine の冷却方法には、空冷と水冷の2方法がある。しかし、本システムの予備電源装置の冷却方法は、水冷方式に比較して修理・保守の面で有利な特色をもつ空冷方式が適当と考える。
 - (ii) Diesel Engine Generator の Dual Standby 方式を採用するのは、GAPAS・MALABOG・BALOD・TINAMBACANの4局とする。いづれも幹線の重要な中断所でアプローブに多少時間のかかる山上の局である。
 - (III) Diesel Engineの無保守運転時間を次のとおりとする。無保守運転時

間は、主にEngine オイルの交換時間により決定される。

Single Standby System: 120時間

Dual Standby System : 1 2 0 時間× 2

Single Standby System の場合、商用電源の停電回数と停電時間の平均を4回/1ヶ月、4時間/1日と想定し、無保守期間を6ヶ月以上として無保守運転時間を決定する。Dual Standby System は、商用電源の停電回数と停電時間の平均をそれぞれ6回/1ヶ月、6時間/1日と想定する。

- (V) Bulk Tank は、無保守運転時間の2倍の運転が可能な容量のものとする。
- (4) 室内灯の条件

通常の室内灯として 320W(40W×8)Emergency 用室内灯として160W(40W×4)

(5) Outlet の条件

測定器用Outlet として 500 V A その他雑電源用Outlet として 2000 V A

(6) Air-Conditioner の容量

必要とするAir-Conditionerの熱容量は、建物の構造、日射の状態、必要温度差、機器の発熱量等により決定する。建物の構造等未確定の要素の多い段階なので、Air-Conditioner の容量を決定することは非常に困難だが、各局当り必要熱量 4,500kcal / h (入力電力 4.5 KVA)を想定し、電源設計を行う。

(米2)3.3 各局の機器構成

電源設備に対する各局機器構成は、<u>Table B·5</u>を参照されたい。<u>Table B·5</u>は各局電源設備の容量計算書 <u>Table B·6</u>に基づき作成している。

(× 2) 3.4 機器概略仕様

(1) Automatic Voltage Regulator

AC電圧の変動を安定化して負荷に供給するために、AVRを使用する。 主な仕様は以下のとおりとする。

- (i) Input/output voltage: 220V AC, 60 Hz, single phase
- (ii)Output voltage stability: Witin ±2% (Input from +10 to -15%)
- (iii) Input frequency range: ±2 Hz
- (iv) Efficiency: Higher than 84%
- (v) Power factor: Higher than 75%
- Output capacity: 3 kVA/5 kVA/10 kVA (vi)
- Diesel engine generator (Single stand-by or dual (2)stand-by system)
 - Output voltage: 220 V AC, 60 Hz, single phase Output voltage regulator: Within ±2.5% (i)
 - (ii)
 - Frequency regulation: Within 4.5% under con-(iii) stant condition
 - (iv) Power factor: 0.8 (lagging)
 - (v) Waveform distortion: Less than 10% at no load
 - (vi) Changeover condition from AC main power to generator: More than ±10%
 - (vii) Diesel engine: Air-cooled, 4 cycles
 - (viii) Revolution speed: 1800 rpm
 - Generator output capacity: 15 kVA/25 kVA/35 (ix) kVA
- (3) Lightning Transformer

商用電源ラインからの落雷や誘雷を防ぐ為、商用電源ラインに耐雷トラン スを設置する。その主な仕様は以下の通りとする。

- (i) Input/output voltage: 220V AC, 60 Hz, single phase
- (ii)Cooling system: Air-cooled
- (iii) Discharge capacity: 15 kVA x 2 element Voltage resistance: 2 kV AC
- (iv)
- (v) Capacity: 20 kVA/30 kVA/40 kVA

Appendix B (*3) VHF・HF回線における通信機器及び付帯設備

(× 3) 1. 通信機器

(* 3) 1.1 機器構成

各局の機器構成は、次に示す。

(1) P F C

機器系統をFig.B・7に示す。

- (2) DCC及びSCIENCE GARDEN 機器系統をFig. B・8 に示す。
- (3) LEGASPI 機器系統をFig.B・9 に示す。
- (4) CARMEN ROSALES 及び TANAY 機器系統をFig.B・10に示す。
- (5) DILIMAN 機器系統をFig. B・11に示す。
- (6) 観測所

機器系統をFig.B・12に示す。

(× 3) 1.2 機器仕様

主要機器(OH通信機器を除く)の仕様の大要を示す。

(1) VHF無線電話装置

周波数レンジ : 142~174MHz

通信方式 :全二重

変調方式 : FM

周波数偏移 :最大±5 KHz

高周波入出力インピーダンス:50オーム

送信出力 : 25 W

受信方式 :二重スーパーヘテロダイン

受信感度 : 20 dB 雑音抑圧に対する受信入力 1 μV 以下

周波数安定度 : ±1×10⁻⁵以内

電源 : AC220V 50/60Hz/φ

又は、DC24V(負接地)

送信……5A (DC 24V)

受信…… 0.3 A (DC 24 V)

温度及び湿度 :-10℃~+50℃、35℃で95%

重量 : 15 Kg

外観図をFig. B. 13 に示す。

(2) HF.SSB無線電話装置

周波数レンジ : 1.6~29.9999MHz

無線チャンネル数:100Hz ステップで284,000チャンネル

(シンセサイザー方式)

プリセット40チャンネル

: J3E-USB, J3E-LSB, H3E, A3E, A1A及び 変調方式

F 2 B

通信方式 :単信又は半二重

高周波インピーダンス:50オーム

送信出力 : J 3 E, A 3 E, A 1 A, F 2 B ····· 1 5 0 W PEP

H3A……40W搬送波

受信方式 : 二重スーパーヘテロダイン

受信感度 : J 3 E, A 3 E, A 1 A, F 2 B ····· 1. 5 μ V 以下

H3E……5 µV以下

周波数安定度 :±1×10⁻⁶ 以内

電源 : DC 24V (負接地)

送信…… 23A

受信…… 2.5 A

交流電源部 :入力 AC 220V

出力 DC 24V 30A

温度及び湿度 :-10℃~+50℃, 35℃で95%

重量 :約34 Kg(含交流電源部)

外観図をFig.B.14, B.15 に示す。

(3) MF, HF全波受信機

周波数レンシ : 90KHz~2999999MHz

10Hz ステップ

受信方式 : フェーズロック周波数シンセサイザー方式による二重

スーパーヘテロダイン方式

受信モード : A1A, A2A, H2A, A3E, R3E, H3E, J3E,

F1B, F3C

周波数表示 : LED表示 7 桁

プリセット : 62チャンネル(含む500KHz及び2182KHz)

受信感度

	A 1 A	A 3 E	J 3 E
90-200KHz	20 µV以下	60世以以下	
200-1600KHz	10 µV以下	30世V以下	
1.6-2 9.9 9 9 9 9 KHz	2 // 以下	6 #V以下	3 世V 以下

条件 S/N: 20 dB 受信出力: 100 mW

バンド幅: 3KHz 及び 1KHz (A3E)

30%変調

周波数安定度 : ±5×10⁻¹ 以内

BFO変化範囲 : ±2KHz 10Hz ステップにて

クラリファイヤー変化範囲:±120Hz 1Hz ステップにて

電源 : AC220V 50/60Hz 1 Ø 70VA

DC 24V(負接地)50W

温度及び湿度 :-10℃~+50℃, 35℃で95%

重量 :約17Kg

外観図をFig.B.16に示す。

(4) DCC用におけるデータ処理装置

DCC におけるデータ処理装置は次の諸元により、機器の外観図を \underline{Fig} . $\underline{B\cdot 17}$ に示す。

(i) 通信制御装置

マイクロ・コンピュータによる制御を行う。

A. 中央処理ユニット

プロセッサ:16ビットプロセッサ

メモリ

RAMエリア: 128KB

ROMエリア: 64KB

B. 回線接続部

オペレータの指令により、観測所を呼び出し、データを収集する(ポーリング方式)。入力データは、メモリに記憶されると共に、PFCに転送する。

また、PFCからのデータを観測所に送信する。

伝送路 : OH, VHFの各回線

通信方式:半二重

伝送速度:200BPS

同期方式:フレーム同期方式

C. ARQ入力部

ARQ装置からのデータを自動入力する。入力データは、メモリに記憶されると共に、PFCに転送される。

接続条件: RS 233C

伝送速度:50BPS

=-F : CCITT 165

同期方式:調歩同期方式

(ii) CRTディスプレイ

A. 性 能

表示文字数:80文字×24行(1920文字)

表示色 : 緑色黒バック

表示文字 : JIS 128種

伝送速度 : 1200 BPS

B. 設置条件

電源 : AC 220V±10%, 50/60Hz

動作温度: 0~+40℃

動作湿度:+35~80%

(前) シリアルプリンタ

A. 性 能

行印字数:80文字

符号 :JIS 8単位

印字方式:インパクト, 9×7ドットマトリクス

B. 設置条件

電源 : AC220V±10%, 50/60Hz

動作温度: +5~+40℃

動作湿度:90%以下

(5) DCC及び観測所(HF)におけるARQ装置

ARQ装置は、次の諸元より成り、外観図をFig.B.18に示す。

(i) ARQ==y F

動作モード : ARQ(Automatic Request for Repetition)

及びFEC(Forward Error Correction)

電信コード :ローカル側…… 7レベル ASC!

線路側 …… 7 レベル コンスタント B/Y比

変調レート :ローカル側…… 300 ボー

線路側 ……100 ボー

変調方式 : 1700Hz ±85Hz CCIR勧告 476-2による

選択呼出 :キーボード入力による

ベッファーメモリー:2000字

CRTディスプレイ、インターフェイス: EIA RS-232C

温度及び湿度:0℃~55℃, 35℃で90%

重量 : 約10 Kg

(II) CRT ディスプレイ ユニット

コード

:7单位 ASCI

表示

: 9 × 7 × v +

表示文字

:80字×25行(2000文字)

記憶容量

:8画面(13,000文字)

線路インターフェイス: EIA RS-232C

プリンタインターフェイス:並列

電源

: AC 220V, 50/60Hz 1 ø, 100VA

温度及び湿度 :0℃-40℃,35℃で90%

重量

:約3.6 Kg

プリンタ (iii)

3 - F

:7单位 ASCI

印字方式

:インパクト 9×7ドットマトリクス

行印字数

:69文字

電源

: AC 220V 50/60Hz 80VA(印字中)

温度及び湿度 :5℃~40℃,35℃で90%

重量

:約11Kg

(6) 観測所 (VHF, OH) 用データ端末装置

観測所におけるデータ処理装置は次の諸元により、機器の外観図は、

Fig.B.19 に示す。

(i) データ入力装置

入力データを DCC, または、 PFC に送信する。

A. 性 能

プロセッサ

: 16ビットプロセッサ

通信回線

: VHF, OH

通信方式

:半二重

呼出方式 :ポーリング方式

伝送速度

: 200BPS

同期方式

:フレーム同期方式

B. 設置条件

電源

: $AC220V\pm10\%$, 50/60Hz

動作温度

: +5~+35°C

動作湿度

: +10~80%

(ii) CRTディスプレイ

DCC用と同様とする。

(前) シリアルプリンタ

DCCと同様とする。

(7) 通信制御卓(PFC用)

本機は、音声及びFAX通信回線の制御卓である。

本機には、PFCより直接交信する、TANAY, CARMEN ROSALES, LEGASPIの3系の他、DCC, SCIENCE GARDENと通信を行うため多重回線7回線を収容し、オペレータのスイッチ操作により、一斉指令、個別通話を可能とする。

外観図をFig.B.20 に示す。

収容回線数

最大10回線

通話方式

単信及び複信

接続条件

入力インピーダンス

6002平衡

入力レベル(音声)

 $0 dBm \pm 3 dB$

出力レベル(音声)

-8 dBm±3 dB

電源

AC220V 1 0

(8) 通信制御卓(DCC用)

本機は、音声及びFAX通信回線の制御卓である。

本機はDCCに設置し、PFCからの音声通信用多重回線及び観測所 VHF回線を収容し、オペレータの操作より、PFC及び観測所との通信及 びFAX通信を可能とするとともに、PFCと観測所の接続を行なり。

外観図をFig.B・21に示す。

収容回線数

多重回線 最大3回線

端末回数 最大3回線

通話方式 単信及び複信

接続条件

入力インピーダンス 6002平衡

入力レベル(音声) $0 \text{ dBm} \pm 3 \text{ dB}$

出力レベル(音声) -8 dBm±3 dB

電源 AC220V 1 Ø

(9)ファクシミリ

> G-IG - II

用紙幅 252mm(B4) 252mm(B4)

走查線密度 4 3.5 3 ℓ/mm 3.8 5 L/mm

読取方式 CCD固体走查 CCD固体走查

記錄方式 感熱方式 感熱方式

変調方式 FS AM - PM - VSB

 $1900 \, \text{Hz} \pm 400 \, \text{Hz}$ 般送波2100Hz

電送時間(B4サイズ) 約10分 約3分

電源 AC 220 V AC - 220V

待受 30 VA 待受 30 V A

> 送信 250 VA 送信170 VA

> > $0 \sim 40 \, \mathrm{C}$

受信300VA 受信 300 VA

温度

0~40°C

湿度 40~90% $40 \sim 90\%$

外観図をFig. B·22に示す。

(+ 3) 2. 通信施設

ルソン地域の観測所の通信機器は、既設の局舎に収容して使用する。

但し、局によっては予備発電設備を備えていない所があり、今回設置する場 合には新たに発電機室を設置する必要がある。

発電機室を新設する場合は、観測所はすべて有人であることから、騒音等を

考慮して別棟とする。

また、予備燃料はドラム缶貯蔵とする。

(* 3) 3. 電源設備

(+ 3) 3.1 基本的構成

(1) 観測所の商用電源は必ずしも安定ではないので、VHF受信機及びMF/ HF全波受信機は充電器と蓄電池とから成る浮動充電電源から電源を供給する。

それ以外の機器は商用電源から電源を供給する。

商用電源回路には雷による障害を防ぐため、耐雷トランスを設ける。

予備電源としてガソリンエンシン発電機を備え、商用電源の障害時には、 とれから電源を供給する。

電源の機器系統をFig.B・23に示す。

観測所の消費電力をTable B·7に示す。

(2) 中継所のROMBLON(M1)は、商用電源がないので太陽電源を備え、中継所のAMPUCAOは、予備電源として太陽電源を備える。

太陽電源の容量は、現地の日照時間を考慮したものとする。 太陽電源の機器系統をFig.B・24に示す。

(+ 3) 3.2 機器概略仕様

(1) 充 電 器

(i) 入力電圧

AC 220V 60Hz 1 ø

(ii) 出力電圧・電流

DC 24V 4A.

(11) 冷却方式

自然空冷

W 温度

-10°C~50°C

(V) 湿度

95%

(v) 重量

約35 Kg

(2) ガソリンエンジン発電機

Appendix B (×4) PFCの通信制御システム

(× 4) 1. システムの基本的機能

気象情報の利用者の要望に対し、それらに応えるべくシステムを作り上げる 必要があり、ことではシステムの基本的な機能について述べる。

(× 4) 1.1 収集機能

各地の観測所で観測した気象データを、DCC又はDRS経由でOH回線に 収容し、コンピュータへ直接収集する。

(※ 4) 1.2 加工機能

入手した気象データに、利用目的に応じて、中継,編集,データ変換,解析などの加工をする。

(× 4) 1.3 蓄積機能

再送要求や問合せに応じたり、統計処理などを行なうために必要な気象データを磁気ディスク、磁気テーブに蓄積する。

(×4)1.4 提供(配信)機能

利用目的に応じて、各種の気象情報をリアルタイムに提供する。

(* 4) 2. データ回線

PFC に収容する回線数及び回線ごとの通信量について述べる。

(* 4) 2.1 収容回線

- (1) 国内回線(〇H回線)
 - (i) DCCとの回線

MACTAN RADAR, CAGAYAN DE ORO 及びTUGUEGARAO との間の回線で、3回線。

(ii) DRSとの回線

CARMEN ROSALES, LEGASPI及びTANAYとの間の回線で、 3 回線。

(ii) その他の回線

SCIENCE GARDENとの回線で、1回線。

(V) =- F

CCITTOM5.

(V) 伝送速度

200b/sとする。

但し、HF回線は50b/sとする。

(2) GTS回線

GTS 回線で使用しているコードは、CCITTのM5である。

- Tokyoとの回線
 200b/sの1回線。
- (ii) Singaporeとの回線75b/sの1回線。
- (3) 運用のための回線
 - (j) システムコンソール回線とシステムの監視を行なう。1回線。
 - (ii) スーパーバイザーシステム全体の運用命令の入出力を行なう。1回線。
 - (III) データ運用マン・マシーンによる各種データの入出力を行なう。3 回線。
- (4) 予備回線 将来の業務の増大に対処できるよう、予備回線をもつ。
- (5) 回線数 (1)~(4)を考慮し、合計 3 0 回線とする。

(× 4) 2.2 回線の想定データ通信量

(1) 国内回線

各観測所ごとの観測種別及び観測回数をもとに、1日のデータ通信量を推 定した。

1日当り、54,760字となる。

その推定結果を、Table B・8に示す。

(2) Tokyoとの回線

1984年7月25日の Tokyo からの送信量の実績として(但し、この 時点では回線スピードは75 b/s)、581,978字/日。

1984年10月1日より、回線スピードは200b/s となるので、データ 量増加を見込んで、1日当り1,000,000字とする。

(3) 他の回線

他の回線より入手する情報は、 Tokyo から送信されてくるデータに含す れるものとし、ことではデータ量の想定はしない。

(4) 1日のデータ通信量

国内データ

約60,000
$$^{\circ}$$
=60,000 $^{\circ,(1)}$ =0.06 MB

外国データ

$$1.000.000^{2} = 1.000.000^{11} = 1$$
 MB

以上より、PFCに送信される1日のデータ通信量は、合計 1.06^{MB} と推 定される。

(× 4) 3. システムの構成

(* 4) 3.1 データ処理装置

データ処理システム構成図をFig.B·25に、システム全体の外観図をFig. $B \cdot 26$ に示す。

(1) 中央処理装置

(i) 制御方式

:マイクロプログラム制御

(ii) 演算制御部

演算方式

: 3 2 ビット, 2 進並列

データ語長 : 1, 8, 16, 32, 64ビット

基本命令数 : 148

外部割込み方式: 4レベル

演算速度(固定小数点)

加/減算

 $10.45 \,\mu s$

乗/除算

: $7.85 \times 10.25 \mu_{S}$

演算速度(浮動小数点)

加ノ減算

: 1.25 µs

乗ノ除算

: $1.85 / 3.85 \mu_s$

(前) 主記憶部

サイクルタイム

: 500 ns

記憶容量

: 1 MB

誤りチェック

ECC

W 入出力制御

転送速度

プログラム制御

: max 387 KB/S

DMA制御

: 8.0 MB/s (read)

5.71 MB/s (write)

(2) 磁気ディスク

性 能

容量

: 40 MB

1 セクタ当りのバイト数: 256B

平均回転時間

: 8.3 ms

平均ヘッドアクセス時間: 35ms

記録方式

:MFM方式

転送速度

: 806KB/s

(3) 磁気テープ

性 能

テープ駆動方式

・シングルキュブスタン

テープ緩衡方式

: テンションアーム

記錄密度

: 1600BPI

テープ速度

: 7 5 IPS

テープ長

: 2400 ft

記錄方式。

: PE方式

転送速度

: 120KB/s

性能

表示文字数 : 80字×24行(1920文字)。

表示色

: 緑

表示文字 : JIS 128種

データ転送速度 ; max 1,000字/秒

(5) カラーCRTディスプレイ

外観図をFig. B·27に示す。

性能

表示文字数 : 90字×45行(4,050文字)

表示色

:7色

表示文字

:JIS 128種, 画素 64種, 特殊文字 64種

データ転送速度

: max 1,200字/秒

(6) ラインプリンター

外観図をFig.B.28 に示す。

性能

印字速度

:600行/分

行印字数

:136文字/行

印字種

: 64種(ASCII)

印字間隔

: 10字/インチ

行間隔

: 6行/インチ, 8行/インチ

(7) シリアルプリンター

外観図をFig.B.29 に示す。

性能

印字速度

:160字/秒

行印字数

:132文字

印字種

:JIS 128種

印字間隔

: 10字/インチ

行間隔

: 6行/インチ, 8行/インチ

(8) フロッピディスク装置

性能

記憶容量 : 1 MB ::

最大回転待ち時間:167ms

データ転送速度

読出し速度 ; max 2MB/s

書込み速度 : max 667KB/s

使用メディア : 両面倍密度

(9) バス切換スイッチ

各周辺装置を現用機 (稼動中システム)と予備機 (待機システム)で共有 (切換えて使用)する為の装置である。

スイッチ切換時間:max 5μs

伝搬遅延時間

ボード間遅延 : max 500 ns (往復)

ケーブル遅延 : 12 n s/m

切換モード :手動/自動

(10) プロセッサ結合装置

現用機と予備機で、データ転送を行なりもので、2重化するものとする。

転送方式 : 8 ビット並列

転送速度 : max 167KB/秒

エラーチェック :水平パリティチェック,転送バイト数チェック

(× 4) 3.2 通信制御装置

観測所(VHF)、DCCおよびGTS回線からのデータを受信し、データ 処理装置に転送する。

また、データ処理装置からの指令によりデータを観測所(VHF)、DCC およびGTS回線に送信する。

(1) OH回線インタフェース

通信回線 : 〇 H 回線

通信方式 : 半二重方式

伝送速度 : 200 b/s

同期方式

(2) OTS回線インタフェース

通信回線

: 専用回線

通信方式

: 半二重方式

伝送速度

: 200 b/s

周期方式

:調歩同期方式

(3)システムコンソール

外観図をFig.B.30 に示す。

システム状態、回線使用状態等の表示を行なう。

(4) CRTディスプレイ

表示文字数

:80字×24行(1920文字)

表示色

:緑色黒バック

表示文字 : JIS 128 種

伝送速度

 $12.00 \, \text{b/s}$

(× 4) 3.3 設置条件

電源

: AC 100V±10%, 50/60Hz

動作温度

: 10~35℃

動作湿度

: 35~80%

(結露なし)

(× 4) 4. データ処理

観測所から送られてきたデータを処理する場合の、システムにおける処理機 能について述べる。

(* 4) 4.1 コード変換

内部データ処理用コード体系を設定し、各回線から入力される外部コードを すべて内部コードに変換して処理を行なう。

(X 4) 4.2 中継処理

各気象データの冒頭符(データ種類、地域、観測時刻)を識別し、決められ た回線に出力する。

出力のタイミングは、受信の都度出力する場合と、タイマーによる出力の場 合がある。

(× 4) 4.3 編集処理

(1) 地点强积

気象データの中から指定された地点のデータを抽出する。

(2) ブロック構成 複数地点を1つのブロックにまとめる。

(3) 要素セレクト

気象データを分解して、あらかじめ設定してある要素のみを抽出する。

(× 4) 5. システムの運用

とのシステムは、通常マスターモードおよびスレープモードの2系列の形で 運用し、スタンバイ方式とする。

マスターモードのCPUにシステム監視機能があり、常に各機器の状態を監視して、システムコンソールに状態を表示する。

このシステムが有効に機能するためには、次のオペレーションが必要となる。

- システムを構成する機器の監視
- オンライン業務のための入出力機器の操作
- 回線状態の監視
- 通信状態の監視
- 電源・空調の監視

(🗙 4) 6. システム関連の施設

(メ 4) 6.1 計算機室の設備

(1) 室の広さ

業務および保守に必要な広さとして約35㎡とする。

- (2) 室の床
 - (i) 床荷重

床荷重として、約300kg/m²必要とする。

(ii) 床構造

床はフリーアクセスとし、上下床間でケーブルを自由に配線ができると ととする。

(3) 室の窓

各機器に直射日光が当らないようにする。

(×4)6.2 電源設備

PFCにおける業務の性質上、瞬時でもシステムを停止させない為に、電源として無停電電源装置(CVCF+電池)が必要である。

電源設備系統図をFig.B.6 に示す。

(1) 電源設備容量

20KVAとする。

(* 4) 6.3 空調設備

計算機室の温・湿度の最適値は、

温度

 $20 \sim 27 \text{ C}$

湿度

50~70%

であることを考慮すれば、空調設備は必要である。

(1) 空調設備容量

10馬力のパッケージ1台とする。

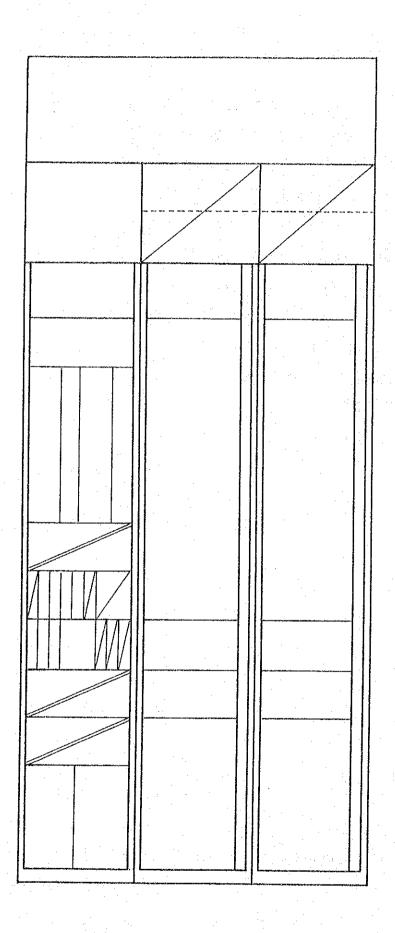


Fig. B. 1 Typical Layout of Driver/Receiver,700w PA Equipment -312-

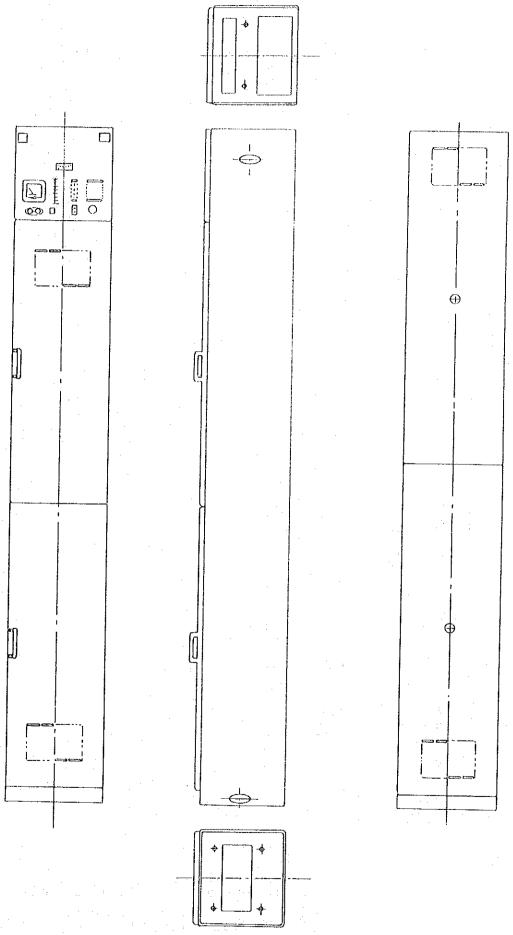


Fig. B. 2 Typical Outline Drawing

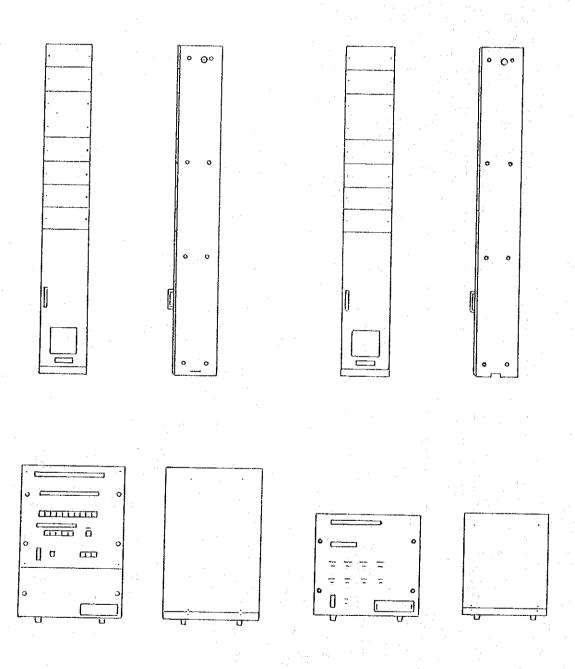


Fig.B.3 Remote Supervisory and Control Equipment
Typical Outline Drawing

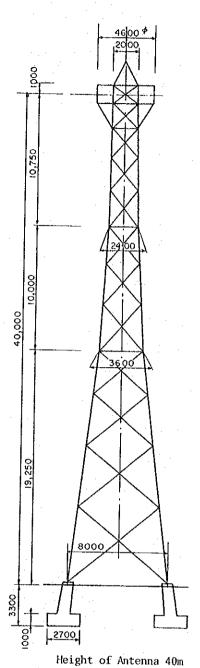
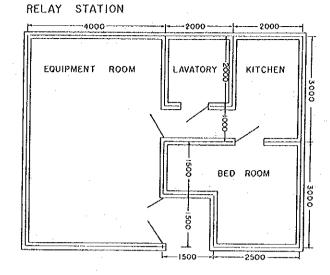
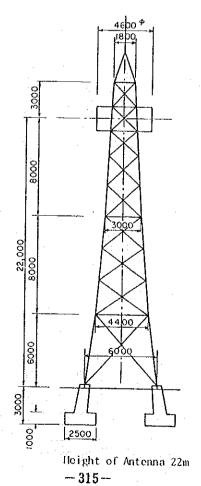
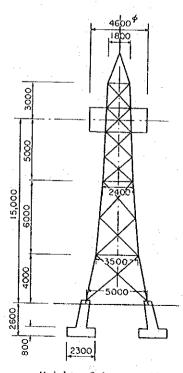
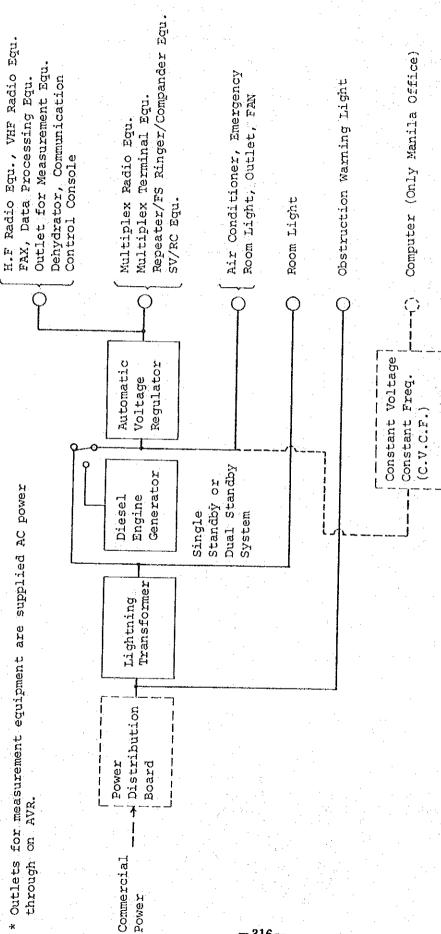


Fig. B.5 General View of Antenna Tower


Fig. B.4 Layout of Relay Station

Height of Antenna 15m

316

Block Diagram for Power Supply System

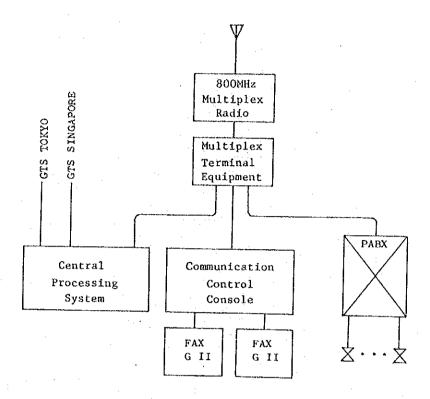


Fig. B.7 Block Diagram of the PFC

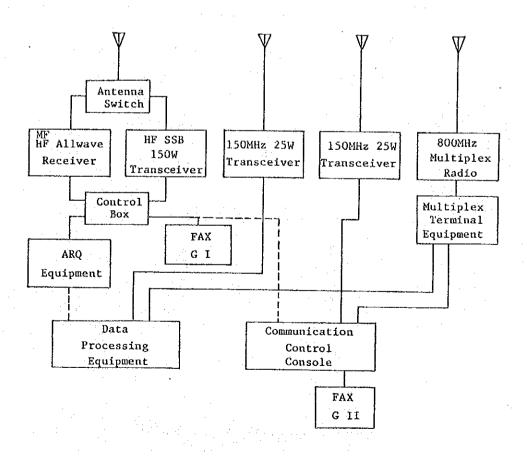


Fig. B.8 Block Diagram of DCC

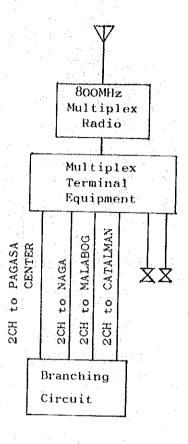


Fig. B.9 Block Diagram of LEGASPI

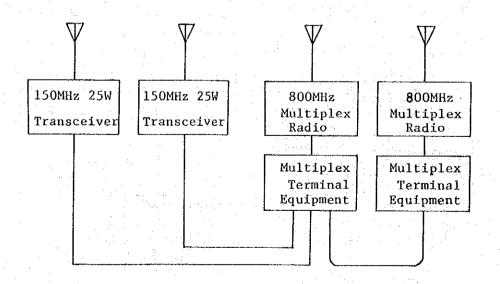


Fig. B.10 Block Diagram of CARMEN ROSARES and TANAY

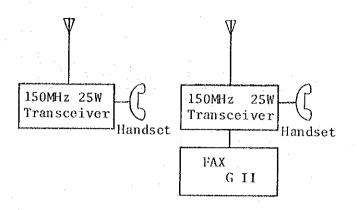
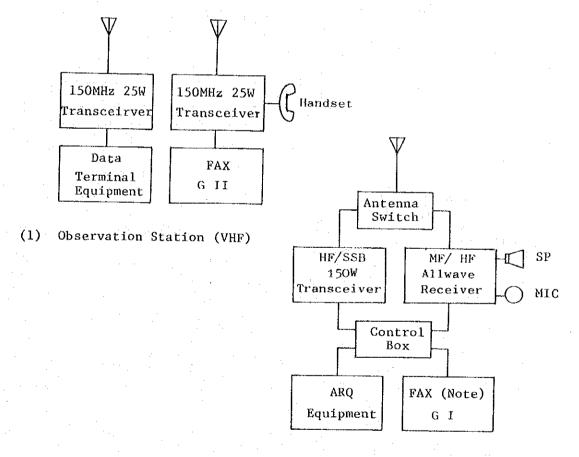



Fig. B.11 Block Diagram of DILIMAN

Note, For radar station only

(2) Observation Station (HF)

Fig. B.12 Block Diagram of Observation Station

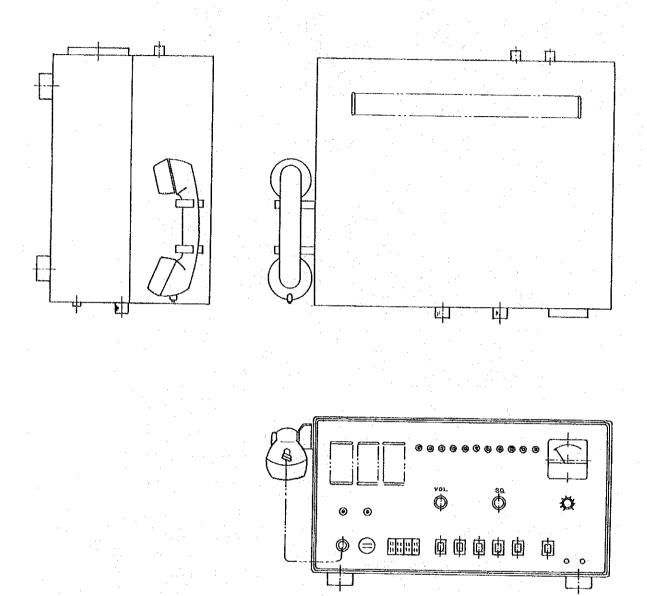
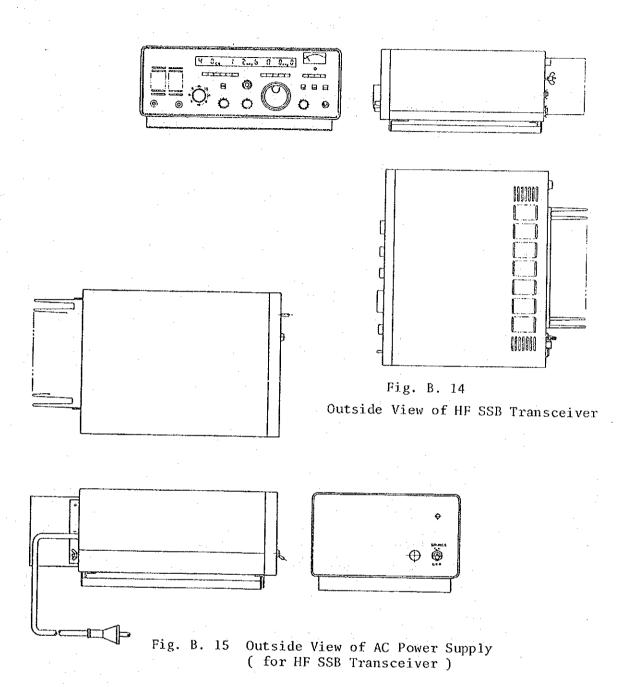



Fig. B. 13 Outside View of VHF Transceiver

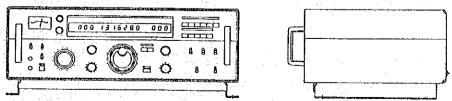


Fig. B. 16 Outside View of MF/HF Allwave Receiver

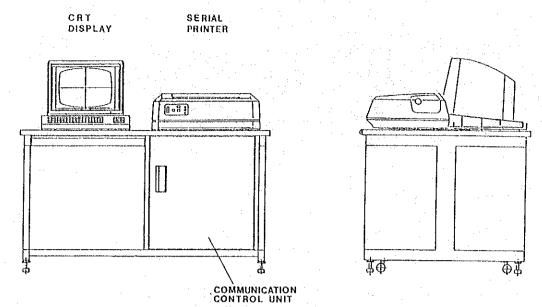


Fig. B. 17 Outside View of Terminal Equipment (for DCC)

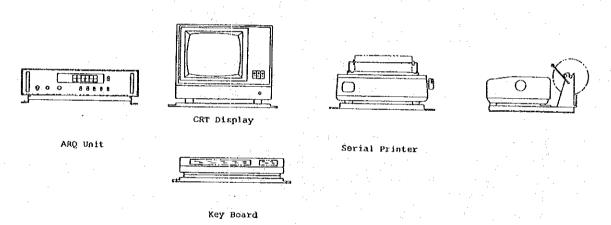


Fig. B. 18 Outside View of ARQ Equipment

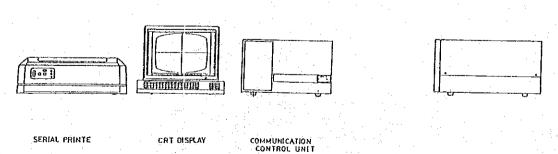


Fig. B. 19 VHF/Cable Link Station

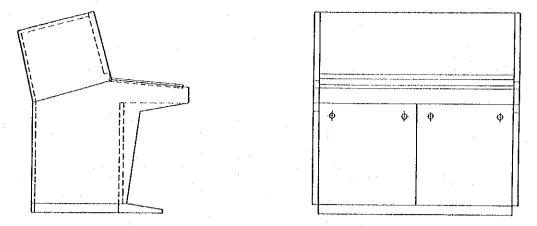


Fig. B. 20 Outside View of Communication Control Console (for PFC)

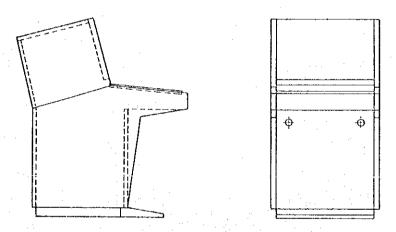


Fig. B. 21 Outside View of Communication Control Console (for DCC)

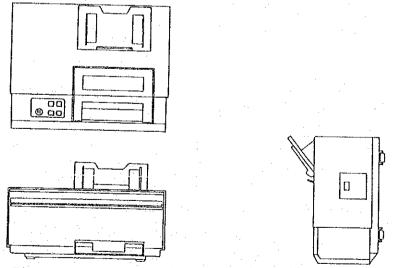


Fig. B. 22 Outside View of Facsimile

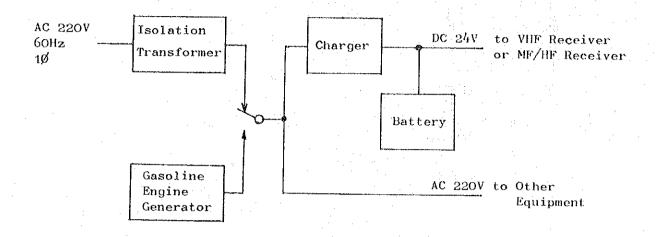


Fig. B. 23 Block Diagram of Power in Observation Station

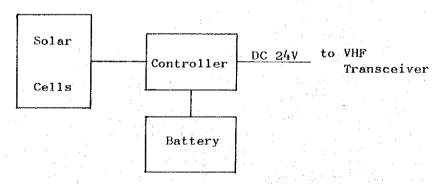
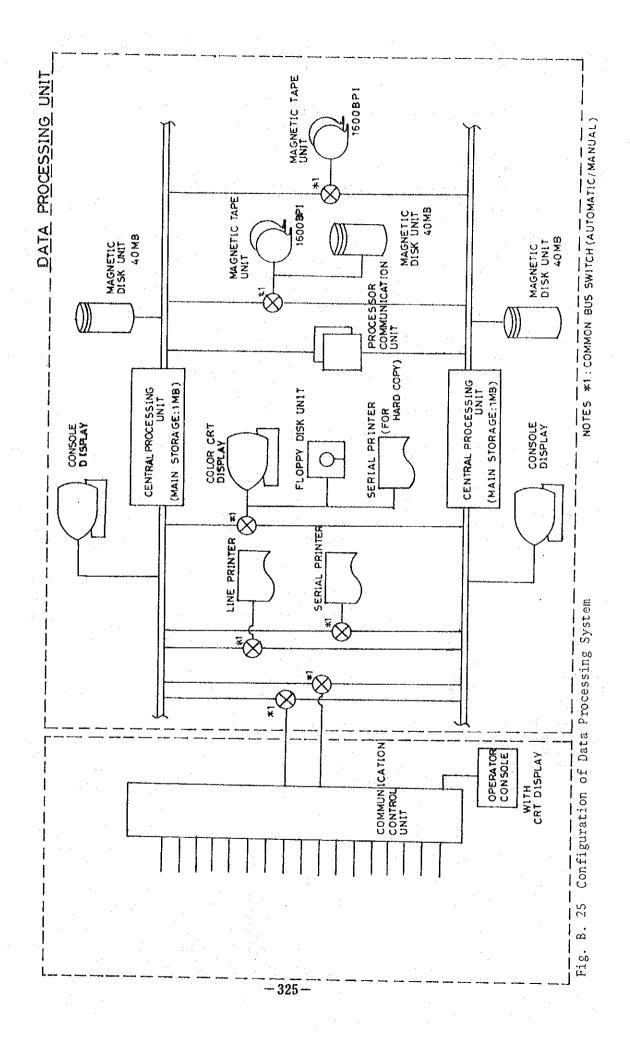
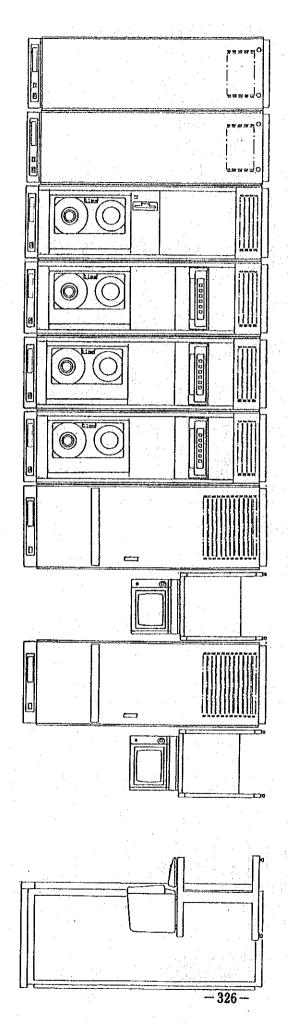




Fig. B. 24 Block Diagram of Solar Cell Power Supply

CONSOLE CENTRAL
DISPLAY PROCESSING UNIT

MAGNETIC TAPE UNIT

COMMUNICATION CONTROL UNIT

Fig. B. 26 Outside View of Computer System (for PFC)

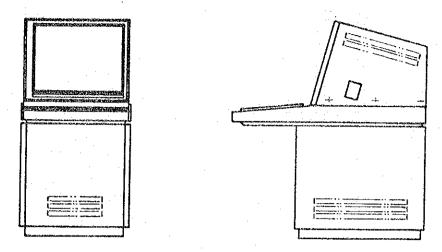
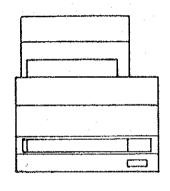
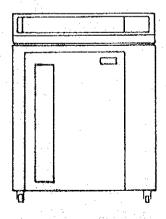




Fig. B. 27 Outside View of Color CRT Display

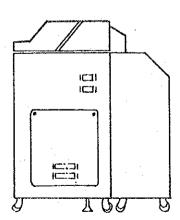


Fig. B. 28 Outside View of Line Printer

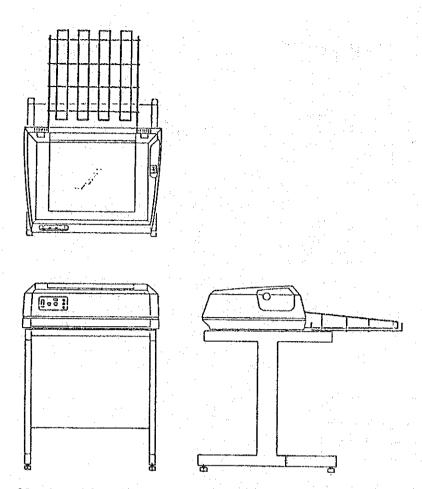


Fig. B. 29 Outside View of Serial Printer

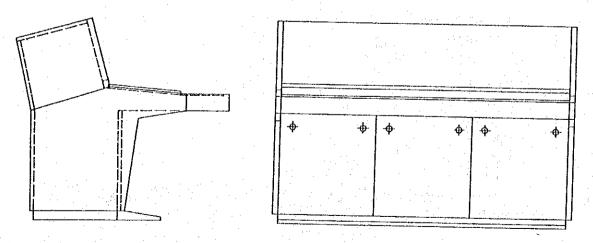
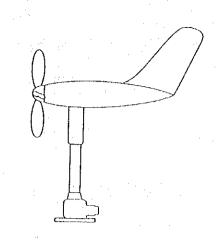
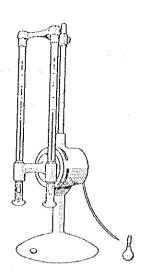
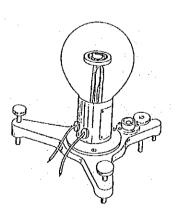




Fig. B. 30 Outside View of Operation Console (for PFC)


Propeller Type Wind Sensor

Psychrometer

Fortin Barometer

Pyranometer

Fig.B 31 Exter

Exterior View of Observation Instruments

Antenna Type	Frequency Band	T-R Spacing	Isotropic Gain	F/B Ratio	Weight	Apparent Area	Wind Pressure Load at 60m/s	
800MHz Band 12 ele, YAGI Antenna	620-960 мнг	Less than 10% of center freq.	More than 13.0 dB at 800 MHz	More than 20.0 dB		Less than 0,12 m ²	Less than 33 kg	
800 MHz Band 1.8mg Grid Parabolic Ant.	620-960 MHz	Less than 10% of center freq.	More than 20.0 dB at 800 MHz	More than 22.0 dB			Less than 483 kg	Pole mount
" 3.0mø "	н	я	More than 25.0 dB at 800 MHz	25.0 dB	Less than 140 kg		Less than 1,003 kg	ij
n 4,2mø n	13	D.	More than 28.0 dB at 800 MHz	More than 25.0 dB	Less than 300 kg	Less than 4.7 m ²	Less than 1,745 kg	. II
6.0mø ч	ч	tt j	More than 31.5 dB at 800 MHz	More than 25.0 dB	Less than 615 kg	_ 1	Less than 3,491 kg	11
10.0mø "	ti .	21	More than 35.5 dB at 800 MHz	More than 25.0 dB	Less than 1,950 kg			Bolt mount
6700 MHz Band 4.0mg Plate Parabolic Ant. (Value marked * is with radom)	6.5-6.9 GHz		More than 46.0 dB *45.0 dB at 6.7 GHz		Less than 415 kg *535 kg	Less than 13.3 m ²	less than 4,949 kg 3,450 kg	nt'

Table B.2 Specificati

Specification for Feeder

Feeder Type	Impedance	Attenuation	V.S.W.R.	Inner Conductor	Insulation	Outer Conductor	Jacket
Coaxial Cable (Typical Model AFZE50-7)	50 ohms	Typical 0.06 dB/m at 800 MHz	Less than 1.2	Copper Tube	Highly Formed Polyethylene	Aluminum Tube	Polyethylene Coloured Black
Coaxial Cable (Typical Model SFZE50-13W)	50 ohms	Typical 0.03 dB/m at 800 MHz	Less than 1.2	Copper Tube	Air & Poly- ethylene Tape	Aluminum Tube	Polyethylene Coloured Black
Rectangular Flexible Wave; je (Typical Model FR-6U)	-	Less than 0.05 dB/m at 6.4 GHz	Less than 1.17	-	-	Corrugated Copper Tube	Polyethylene Coloured Black

Table B.3

Setting Condition of Antenna Tower

Station	Number of tower	Number of antenna	Antenna height (m)	Antenna size
GAPAS	1	2	22	4.2 mp G.P 6.0 mp G.P
MALABOG	2	2	22	3.0 mф G.P 10.0 mф G.P
		1	15	10.0 тф G.Р
BALOD	2	1	22	10.0 тф G.Р
		2	40	10.0 mф G.P 4.0 mф P.P
CAPACUAN	1	2	15	4.0 mφ P.P x 2
I'INAMBACAN	2	2	10	4.0 mφ P.P 10.0 mφ G.P
		1	10	10.0 mφ G.P
DANAO	2	4	15	10.0 mφ G.P x 2 6.0 mφ G.P x 2
MALASAG	2	2	10	6.0 mφ G.P x 2

Notes

G.P: GRID PARABOLA ANTENNA

P.P: PLATE PARABOLA ANTENNA

Table B.4 Power Consumption of Communication Facilities

Reconstruction of the second s	<u>naman</u> ing kalunggan dalam panggan banggan ba	
Facilities	Specification	Power Consumption (at AC 200V)
Multiplex Radio Equipment	800MHz Band SS-PM 70W FD System	1200 VA
u u	800MHz Band SS-PM 70W SD System	700 VA
9	800MHz Band SS-PM 5W System	120 VA
II (4.7)	800MHz Band SS-FM 5W System	160 VA
11	6.7GHz Band SS-FM 1W	200 VA
Multiplex Terminal Equipment	29 ch (SGI), (GA, GB)	70 VA
11	12 ch (GA)	60 VA
Baseband Dis. Subrack		60 VA
HYB & CB/FXC Rep.	Subrack 12 ch	30 VA
11	" 6 ch	15 VA
H.	Rack type 24 ch	60 VA
n,	" 12 ch	50 VA
SV/RC Equipment	Master Station	30 VA
it	Remote Station	15 VA
FS/COMP Equipment	24 ch	200 VA
n.	12 ch	160 VA
HF Radio Equipment		2000 VA
VHF Radio Equipment		150 VA
ARQ Equipment		250 VA
Facsimile		300 VA
Data Processing Equipment	for DCC, DRS	1000 VA
12	for	900 VA
Communication Control	for MANILA	300 VA
lander of the second	for DCC, DRS	200 VA
C.V.C.F. for MANILA		60000 VA
Dehydrator		300 VA
Room Light		400 VA
, in the second	for emergency	200 VA
Outlet	for measurement equip.	500 VA
81		2000 VA

Table B.5

List of Power Facilities

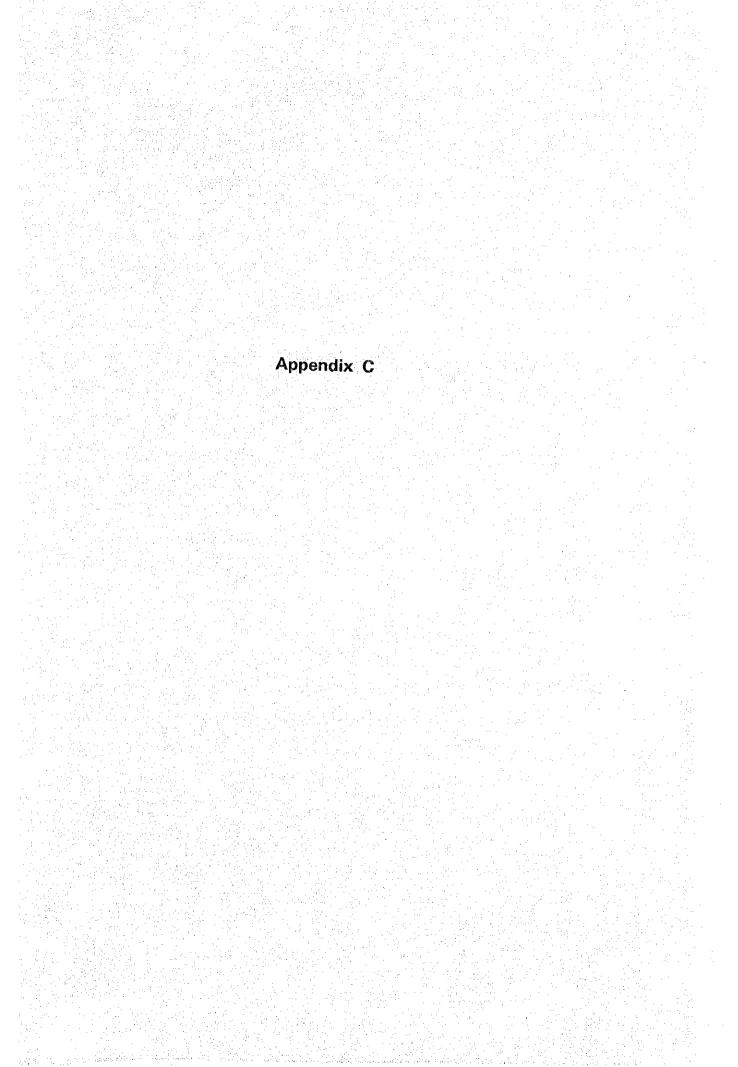
	rmer			18				1	- 1	1 '	- 1	1	,
	ans fo			60Hz,	1 57	60Hz,		60Hz,		60Hz,	60Hz,		
	lon Tr	1		220V,	220V,	220V,	220V,	220V,	220V,	220V,	220V,	220V,	
	Isolation Transformer			30kva,	30kVA,		20kva,	_ I	20kva,	30kva,	- [1	
	Bulk Tank (litre)	ı	1	6,000	6,000	4,000	4,000	2,000	2,000	2,000	1,000	4,000	0
	Day Tank (litre)	1		300	300	200	200	200	200	200	200	300	000
				, 18	, 18	, 18	18	1.1%	, 1ø	1,	1,	1,	7
				60Hz, 1¢	60Hz,	60Hz, 1¢	60Hz,	60Hz,	60Hz,	60HZ,	60Hz,	60Hz,	50 U.A
	ator			220V,	220V,	220V,	220V,	220V,	220V,	200V,	220V,	220V,	22.057
	Engine Generator							System	System	System 200V,	System	System	0 1 U
	gine	1	i	System	System	System	System		ı	í		1	ı
				Stand-by	Stand-by	Stand-by	Stand-by	Stand-by	Stand-by	Stand-by	Stand-by	Stand-by	14 Pun 4 Pu
	Diesel	-		1 .				Single S	Single S	Single S	Single S	Single S	Single
				/A Dual	A Dual	7A Dual	7A Dual		i		1	1	ſ
-				25kVA	25kVA	15kVA	15kVA	25kVA	15kVA	25kVA	15kVA	35kVA	35kVA
)r	z, 1ø	, 1¢	, 1ø	, 1ø	1,	1, 10	, 16	1,0	1.00	, 18	13	10
	atic gulat(, 60н	. 60Hz	60Hz	60Hz	60Hz	60Hz	60Hz	60Hz	60Hz	60Hz	60Hz,	60Hz
	Automatic ge Regula	220V,	220V,	220V,	220V,	220V,	220V,	220V,	220V,	220V,	220V,	220V,	220V,
	Automatic Voltage Regulator	10.0kVA, 220V, 60Hz, 1ø	5.0kVA, 220V, 60Hz, 1¢	5.0kVA, 220V, 60Hz, 1¢	5.0kVA, 220V, 60Hz, 1ø	3.0kVA, 220V, 60Hz, 1¢	3.0kVA, 220V, 60Hz, 1¢	5.0kVa, 220V, 60Hz,	3.0kVA, 220V, 60Hz, 1¢	5.0kVA, 220V, 60HZ,	3.0kVA, 220V, 60Hz, 1¢	10.0kVA, 220V,	10.0kVA, 220V, 60Hz, 10
-		10.	٦,	υ,	5. (3. (3.0	5.0	3.0	5.0	3.0	10.0	
				 4			z					JAR	ORO
	Site			S	BOG	Q	TINAMBACAN	0	SAG	EPI	RMAIN	MACTAN RADAR	CAGAYAN DE ORO
		PFC	NAGA	GAPAS	MALABOG	BALOD	TIMA	DANAO	MALASAG	LEGASPI	CATARMAN	MACTA	CAGAY

Table B.7

Table B.8

	Battery	Output	:	VilF Transmitter (25W)	HF Transmitter (150W)	Data Terminal Equipment	ARQ Equipment	Fecsimile	Measuring Equipment	Total Power Consumption	Isolation Transformer	Gasoline Engine Generator
Observation Station (VHF 1)	24V 20MI	24V 4A	O.2kVA	0.4kVA (2.Sets)	1	O.9kVA		O.3kVA	O.1kVA	1.9kVA	3kVA	3kVA
Observation Station (VHF 2)	24V 20AH	24V 4A	O.2kVA	0.8kvA (4 Sets		O.9kVA		O.3kVA	O.1kVA	2.3kVA	3kVA	ЗКУА
Observation Station (HF)	24 V 20 A H	24V 4A	O.2kVA		1.Okva		0.25kVA	O.3kVA	O.1kVA	1.85kva	3kVA	3kVA

Note. The station (VHF 1) is a observating station.


The station (VHF 2) is a observating and repeating station.

(VIGAN, BAGUIO RADAR, MUNOS, BALER RADAR, MASBATI and TACLOBAN)

Observing Data (Number of Figure) in each Observing Time

		· · · · · · · · · · · · · · · · · · ·									
Observing Time Region	00Z	032	062	092	122	152	18Z	21%.	Total	Emer- gency Time	Total
Mindanao	2760	600	1230	600	1530	600	1230	600	9150	1250	10400
Visayas	4390	550	1360	550	3460	550	1360	550	12770	1600	14370
Southern Luzon	3660	590	1490	590	3390	590	1490	590	12390	2000	14390
Northern Luzon	4870	540	1440	540	3940	540	1440	540	13850	1750	15600
Total	15680	2280	5520	2280	12320	2280	5520	2280	48160	6600	54760

Basis of	Estimation		•
SM	(Synop)	90 figure/l report	4 times/day
\$I	(Synop)	u	n .
บร	(Temp.)	930 figure/l report	1 time/day
UP	(Pilot)	300 figure/l repott	2 times/day
RA	(Radar)	400 figure/l report	н
SE	(Seismic)	50 figure/l day	Emergency case
BE	(Business)	100 figure/1 day	· · · · · ·
Mari	ine	90 figure/1 report	3 times/day

