III.l Location and General Features
III.1.1 Geographical Location and Road System

1) Location

The province of Baluchistan located between latitude $25^{\circ} \mathrm{N}$ and $32^{\circ} \mathrm{N}$, and Longitude $61^{\circ} \mathrm{E}$ and $71^{\circ} \mathrm{E}$, and the project Area in included n Kachhi plain of the Baluchistan plateau lying between Latitude $28^{\circ} \mathrm{N}$ to $28^{\circ} 33^{\prime} \mathrm{N}$, and Longitude $67^{\circ} 30^{\prime} \mathrm{E}$ to $69^{\circ} 34^{\prime} \mathrm{E}$ approximately, and is located about 190 miles (300 km) far from Quetta, the capital of Baluchistan in south-east direction. The South and South-East of the Project Area faces to the commandable area of the Kirthar Branch Canal and irrigation system of the Desert Canal respectively in Sind Province.

2) Road System

There are inadequate to have the infrastructure in the project Area, and especially, the road systems are under developed at the Project Area inclusive of surrounding area. At present, the national metalled road has been constructed to connect two cities Quetta and Karachi with each other through the Project Area from north-west to south-east.

There are shingled provincial roads to connect the provincial town with each other, namely, Dera Murad Jamali, Jhatpat, Sui, Kashnor, Mi rpur Bibiwan etc.

The other hands, there is the national railway running in parallel with the natinal metalled road to connect main city in the country with each other. It is considered that the railway has higher potentiality to be utilized for the developlment of the province.

In the Project Area, there are some feeder roads and farm roads running along the existing irrigation canals, which are utilized as operation and maintenance roads for the irrigation facilities.

However, the density is low and there is absence of the crossing facilities for the Area. Especially, they are not suitable as the feeder roads during rainy day due to slippery on the surface of the roads.
II.1.2 Population and Living Condtions

1) Population
a) National and Provincial Level

According to the fourth Census in 1981, the population was estimated at 83.782 militon in the whole country of Pakistan, and it was estimated at 65.309 million in 1972 , and merely 32.500 million in 1947 at the time of independence.

The population of the national level has increased 18.4 milion over the eight and half year period between 1972 and 1981. This works out a growth rate of 28.28 percent or an average rate of around 2.98 percent per annum as following table.

Population in 1981 Census (in Thousand)

Province	1981 Census	Percentage Increase Over 1972
Baluchistan	4,305	77.23
N.W.F.P.	10,885	29.77
Punjab	46,116	25.28
Sind	18,966	33.98
Federal Capital	355	42.55
F.A.T.A.	2,175	
Total	83,782	28.28

The Baluchistan population shown an increase of 77,23 percent over the 1972 census figures, because it was for the first time that a complete physical enumeration of the people in these area was undertaken, and the scientific and correct methodology was adopted.

The density of population per square mile increased from 24 to 31 in 1972 to 1981. The ratio of male and fenale population has been estimated at 53 percent to the occupation of the male for total population.
b) Project Area

The Project covers a total cultivable comnanded are (C.C.A) of 771,300 acres $(312,000$ has. $)$ in Nasi rabad District of Baluchistan Province. Out of this 612,000 acres (248,000 has.) will be under the command of gravity flow canal (Phase-I) and the balance of 159,300 acres (64,000 has.) of upland will be later on commanded by pumping-cum-gravity canal (Phase-II). The Project Area is irrigated by a source of pat Feeder Canal initiated from the Tntake Structure of Guddu Barrage located acress the Indus River in Sind Province. Population in the Project Area is reported at 255,000 persons with a density of 273 persons per sq.mile (105 person per sq. km).
2) Living Condition
a) National Level
i) Source of Drinking Water

Fifty-two percent of the Pakistan Houscholds has been obtained the facilities of drinking water in their houses, and the remaining gets it at the outside of their houses.

Twenty-one percent for the whole population has been supplied the water by the pipeline systems, and 46 percent is used handpumps for the wells, and 21 percent utilized the ponds, and 12 percent remained has been supplied the drinking water by springs, rivers and streams. The details are shown in attached table.
ii) Source of Lighting

Thirty percent of total households have electricity for the lighting and others are utilizing kerosene oil mainly.
iii) Source of Cooking Fue 1

Seventy percent of Pakistan's households is used the woods as a main cooking fuel, and other houscholds is utilizing cow-dung (17%), gas (7%) and kerosenc oil (6%) respectively.
b) Provincial level

i) Source of Drinking Water

Fifteen percent of the population is utilizing the pipeline system for teh supplying of the drinking wter, and the user of handpump is a very few percent in the province.

On the other hands, 85 percent of the people has supplied the drinking water by the ponds, wells, spring, rivers, and stream etc.

ii) Source of Lighting

In Baluchistan Province, only 14 percent of the hous eholds have share in the favours of the electricity, and 86 percent of the remaining is utilizing kerosene oil as a lighting fuel. This electrification level is a half share for the national level.

iii) Source of Cooking Fue 1

Eighty-seven percent of Baluchistan's households use wood for cooking fuel, 8 percont use cow-dung, and 5 percent use kerosene oil. Fire wood use households in Baluchistan are much more than 17 percent to the national level.
c) Project Area

According to the results of the socio-economic survey in Nasirabad District Baluchistan in 1980 by the UNICEF, the living condition for the people has described based on sample area survey as follows.
i) Education

There are education system which is classified into three; primary education, secondary education and college in the district.

Regarding the primary education, the report informed that the school-attending population is at about 15 percent of the total schoolable children $(5-9$ years), and it maens 85 percent of popu1ation are out of schools. Especially, the facilities for primary education and secondary education for girls are very few.

Living Condition of National \& Provincial Level

2) Outside of House

a) Pipe	$791.9(7.7)$	$45.4(7.7)$
b) Handpump	$1,545.0(12.3)$	$2.2(0.4)$
c) We11	$1.577 .0(12.5)$	$213.5(36.0)$
d) Pond	$416.9(3.3)$	$64.7(10.9)$
e) Spring/River	$1,576.6(12.6)$	$223.0(37.6)$
Stream, etc.		
Sub-total	$5,907.4(48.4)$	$548.8(92.6)$

2. Source of Lighting
a) Electricity
$3,849.1(30,6)$
$82.0(13.8)$
b) Kerosene Oil
c) Other Lioghting Source

$8,463.5(67.2)$	$441.0(74.4)$
$275.0(2.2)$	$69.8(11.8)$

3. Source of Cooking Fuel
a) Wood
b) Coal
c) Kerosene Oil
d) Gas
e) Electricity
f) Cow-Dung, etc.

$8,810.1(70.0)$	$513.0(86.5)$
$86.8(0.7)$	$8.9 .(1.5)$
$780.8(6.2)$	$20.1(3.4)$
$812.9(6.5)$	$4.9(0.8)$
$10.5(0.1)$	$0.5(0.1)$
$2,086.5(16.5)$	$45.4(7.7)$

Source: "Housing Census of Pakistan, $1980^{\prime \prime}$ Census Bulletin No. 6 Population Census Organization.

The popualtion enroled in middle-schools and high-schools students population is 23 percent of the population by the relovent age-group (10,14 years old). There is one college with enrolment of 170 students at Usta Mohammad.
ii) Health and Social Welfare

The hospital providing 50 beds are availabel in the whole district. The bed population ratio was estimated at $1: 4,500$. In spite of limited number of the beds in hospital, the bed occupancy for 1979 was nearly 70 percent on 1 . The reason of less utilization of the beds might be poor staffing, and lack of equipments and drugs.

The total sanctioned posts of the doctor are nine in the whole district while one is appointed for the urban and two for the rural area. Against nine sanctioned posts of doctors, only 4 doctors are in position, and the doctor-population ratio was estimated at $1: 56,000$.

iii) Drinking Water

In rural areas of Nasirabad, the main sources of drinking water are canals, ponds and wells. In urban of Jhatpat, Usta Mohamad and Dera Murad, Jamali, piped water supply is available to a limited ipopulation. Water roservior of 24,000 and 10,000 gallons are operating at Jhat tpat and Usta Mohammad respectively.

iv) Electricity

Threc Tehsil and towns have facility of electricity. The total electric connections in urban are 1,460 , out of which 45 percent are comercia1. The break down of electric connections in towns is given below:

$\frac{\text { Housectric Connection }}{\text { Commerci }}$			
Urban Locality	Connections	Connections	Total
Jhatpat	227	96	323
Dera Murad Jamali	113	159	272
Usta Mohammad	465	400	865
Total	805	655	1,460

In the rural area, 57 population clusters (villages) are electrified in the whole district, of which 28 villages in Shatpat Tehsil, 24 village in Usta MOhanuna Tehsil and 5 village in Dera Murad Jamali Tehsil are provided electrified facilities respectively.

III.2.1 Topography

1) Outline of the Province

Physically, Baluchistan Province is divided into the highland and extensive plains approximately. The upper highland known locally as "Khorasan" rise to nearly $12,000 \mathrm{ft} .(3,658 \mathrm{~m})$ with the valley floor about $5,000 \mathrm{ft}$. $(1,524 \mathrm{~m})$ above mean sea level, and the lower highiands include the Mekran, Kharan nad Chaghai ranges in the west and Sulaiman, Pab and Kirthar ranges in the east.

The extensive plain is divided into three plains; the Kachhi plain, the plain of Las Bela and the plain of the river Dasht. The northwestern section known as the Chaghai basin, is desert with an area of inland drainage dissipating into "Hamus" - lakes that are "generally dry.

On the whole the plateau of Baluchistan presents a scene of rugged, barren and arid land with isolated pathes of green on the plains.

2) Project Area

The Project Area occupes a part of the Kachhi plain, and the north of the area is separated with the Pat Feeder Canal between the Project Area and the desent area, and the western boundary is fixed by the Nari river. The south and the east of the Area is divided with the provincial boundary line between Baluchistan and Sind province near Jhatpat, and with Desert Canal Project of Sind Province and the commandable area of Kirthar Canal.

The Project Araa is of rectangle like shape with the length of about $60 \mathrm{miles}(96 \mathrm{~km})$ east to west and 15 to 20 miles (24 to 32 km) north to south.

The land slope varies with gradient in 1 to 2,000 or 1 to 3,000 from north to south gradually, and the area in higher elevation is located along the Pat Feeder Canal at about 200 ft . to 230 ft . (61 - 70 meter), and the lower arca extends at about 160 ft . to 180 ft . ($49-56$ meter) in the south of the Project Area.

III. 2.2 Climate

1) General

According to the classification of climate by the World Meteorological Organization, that of the Baluchistan province belongs to the arid zone type.

There are four meteorological observation stations, in which three stations, Quetta, Usta Mohamad and Sibi are in Baluchistan province and one station, Jacobabad, is in Sind province. As for representative observation station, Usta Mohammad has selected as the most available observation station among three station for the project Area, and this station has been operated and maintained by the Surface Water Hydrology Project WAPDA Lahore since December 1965. The location of the station is Latitude $28^{\circ} 1^{\prime}$, Longitude $68^{\circ} 04^{\prime}$, in Agricultural Seed Farm as shown at location map in Fig. III.2-1.

Main items measured at the station are maximum and minimum Air Temperature, Precipitation, Relative Humidity, Evaporaiton (Pan), Wind Movement and Solar Radiation, and they have been recorded at 0800 . Generally, the year has two season, winter (November to April) and summer (May to October) in Baluchistan. However, in case of the Project Area, winter lasts shorter than the aforesaid period (November to March), and the summer scems to begin from April. Based on daily observation data collected for ten years (1966-1975) at Usta Mohamad, these data have been rearraged to mean monthly value and evaluated them as following.

a) Precipitation

The Project Area belong to arid zonc as mentioned in general discription. However, there are measurable the rainfall in a year because of being affected by the monsoon, and annual amount of rainfall has been observed at 3.43 inches (87.1 mm) as shown in Fig. III.2-2. Through the year, 70 percent of the total amount has occurred in summer season, and it occurred in August and July concentratively. Concerning the daily observation data at Usta Mohamad, the maximum daily rainfall has been recorded about 3.9 inches $(99.1 \mathrm{~mm})$ during 10 years ($1966-1975$).

The heavy spot rainfalls have brought the local flood to the project Area sometimes, and it has given the damage for existing irrigation facilities along Pat Feeeder Caanl. However, it is inadequate as a effective rainfall for the irrigation in the Project Area.
b) Temperature

As mentioned in Fig, III. 2-2, the mean nonthly temperature in Junc is the highest through the year, and it stands at $96.9^{\circ} \mathrm{F}\left(36.1^{\circ} \mathrm{C}\right)$, and the lowest one is occurred in January at $55.7^{\circ} \mathrm{F}\left(13.2^{\circ} \mathrm{C}\right)$ respectively. On data recorded at observation station, there are two kind of measurement value as for the mean monthly maximum air temperature and mean monthly minimum aix temperature. The mean monthly maximum air temperature has been recorded at $111^{\circ} \mathrm{F}\left(43.9^{\circ} \mathrm{C}\right)$ in June whereas the minimuin one is at $40^{\circ} \mathrm{F}\left(4.4^{\circ} \mathrm{C}\right)$ in January. According to the detail information in data collected, the highest air temperature has measured about $122^{\circ} \mathrm{F}$ $\left(50^{\circ} \mathrm{C}\right)$ in June 1981 at Jacobabad station. On the other hands, the 10 w est one recorded at about $30^{\circ} \mathrm{F}\left(-0.9^{\circ} \mathrm{C}\right)$ in January 1974 at Usta Mohammad station.
c) Relative Humidity

Generally, the high humidity has occurred in July to February and the low one has been recorded in March to June as mentioned in Fig. III.2-2. At the observation station, Relative Humidities has been measured two times in a day, namely, morning (8.0 AM) and evening (5.0 PM) In case of comparison with both value observed, there are much difference, and its difference is about 10-20 percent in each month.

According to the data observed from 1968 to 1975, the highest mean monthly relative humidity occurred in September and the lowest in April, and the former was recorded by 87 percrit in 1974 and latter by 16 percent in 1971 .
d) Evaporation

According to the measuroment data with Pan-A Method at Usta Mohammad,
mean amual evaporation amount has estimated at 11.65 inches $(2,966,5)$ mm) as shown attached Table III.2-7... In fluctuation of mean monthly evaporation observed in ten years, it has recorded at 18.94 inch (473.5 mm) in May as the highest value and 16,84 inch (421.0 mm) has ranked secondarily in June as mentioned in Fig. III. $2-2$. Whereas the lowest records has measured at 3.19 inch (79.8 mim) in December. Concerning the monthly amount on evaporation in ten years observation periods, the highest amount has recorded at 23.92 inch (607.6 mm) in May 1973. Meanwhile, the lowest monthly anount has measured at 2.71 inch (68.8 mm) in January 1971. The evaporation value would refer closely to the condition of air temperature and relative humdity, and the relation of said two element (T \& H) to humidity is shown clearly by the Fig. III.2-2 attached.
e) Wind Velocity

Mean monthly wind velocities in ten years observation period has indicated in Fig. III.2-2 in the Project Area. However, no there were available data to show the wind direction, maximum and minimum iwnd velocities.

The mean maximum wind velocity have been occurred in the sumper and in March as a rare case. There are being sandstorm and occurring in summer season in the Project Area.
f) Sunshine Intensity

The sunshine intensity has been observed at Jacobabad staiton as shown in Table III, 2-15. Through the observation period for ten years, the highest intensity has occurred at 82.4 percent in October, and the lowest one in July because of affection of the monsoon.
2) Particular Meteorology
a) Storm

In the province, the most of the rainfall have occurred in association with storms, which are of two types usually as following:

- Tropical storms or summer storms which are responsible for summer or monsoon rainfall.
- Extra-tropical cold weather storms, known in this sub-continent as "Western disturbances", which produce winter precipitation.
i) Sumner Storms (Monsoon)

The advance of the monsoon is usually associated with the westward moving depressions from the Bay of Bengal.

These depressions of ten begin to weaken during their westward march and generally lose much of their activity by the the they reach central India.

Sometimes they recurve northeast or northward from Rajputana and break over the western Himalayas or the Kashmir hills.

On a few occations; they continue to be active and travel into Tran area through Baluchistan. On such occations the province experiences fairly prolonged unsettled weather and rainfall occurs more or less continuously for one or two days.

Otherwise, the precipitation over the area in the summer season is usually in the nature of thundershowers and occurs in the afternoon or early evening.

Occasionally, monsoon depressions cross into Baluchistan from the Arabian Sea and, moving north or northeast, enter the Punjab and then break up over the Punjab hill

According to the old data observed, the monthly distribution of monsoon depressions in the 88 years period was as follows:

May	1
June	1
July	5
August	4
September	1
Yeax	2

That shows June is the stormiest month in summer. Monsoon depressions in this month cross the province from the Arabian Sea.

The other hands, the speed of movement of monsoon depression varies with the scason. They move slowly in teh beginning of the season with an average speeed of 6-10 miles per hour in July and to $12-15$ miles per hour in August and September.

ii) Winter Storms

In winter, the province is affected by disturbance of extratropical origin which move form west to east, especially during the months of November to April. These disturbances are known as cold weather storm or more popularly as "Western disturbances". Some of these disturbances induce lows either at sea level or in upper air, which also travel west to east. These lows sometimes induce strong wind currents form the Aravian Sca and become very active.

Although isolated or scattered heavy rainfall may occur over and near the hills, the phenomenon of locally heavy precipitaiton is rare. Winter precipitaitons are more uniform than in summer and the intensities are much lower.

Ocassionally, a winter storm is associated with active warm and cold fronts. Then, severe thundershowers occur with its passage followed by biting cold and strong north-westerly to northerly winds.

iii) Heavy Daily Rainfall

Through observation period at Usta Mohammad, the maximum daily rainfall has been measured at 3.9 inch (99.1 mmi) in 1975. Regarding the daily rainfall intensity, (frequency) it has analyzed with the Gumbel Chow formula based on data observed for ten years.

The results of analysis are shown in Table III.2-2, and said value observed (3.9 inch) is equivalent of 25 years return frequency approximately.

iv) Air Temperature

As for the air temperature, the Project Area has been evaluated as the hottest zone in Pakistan and also in the world, and this fact could be approved wi th the scientific yearbook published in 1978.
Remarks

$\begin{array}{cccc}7 & \stackrel{\infty}{0} & 0 \\ \stackrel{0}{-} & \stackrel{n}{\square} & \stackrel{0}{\square} & 0\end{array}$
$\begin{array}{lllll}\text { d } & \underset{\sim}{0} & 0 & 0 & \infty \\ 0 & \text { m } & 0 & - & m\end{array}$
$\begin{array}{lll}\infty & \infty \\ \dot{m} & \underset{\sim}{\underset{\sim}{u}}\end{array}$

Rainfall of Annual and Monthly Amount (Inches)
Station ; USTA MOHIAMAD Lat 28° II' Long $68^{\circ} 04^{\prime}$
Table IIt.2-1
Mar.
Jul.
Déc.
$\begin{array}{llll}\text { Oct. Nov. Dec. } \\ 0.00 & 0.00 & 0.00\end{array}$
2.33
(2.15)
$\begin{array}{lllll}0.00 & 0.00 & 0.00 & 0.00 & 0.00\end{array}$
$\begin{array}{lllllll}0.00 & 0.00 & 0.00 & 0.00 & 0.00\end{array}$
$\begin{array}{lll}8 & 8 & 8 \\ 0 & 0 & 0\end{array}$
$\begin{array}{lll}0.00 & 0.00 & 0.00 \\ \mathrm{NA} & 0.00 & \mathrm{~N} . \mathrm{A} .\end{array}$
$\begin{array}{lll}4 & 8 & 8 \\ 0 & 0 & 0\end{array}$

8
8
8
0
0
0
0
0
0
0
0
2

$\begin{array}{llll}\text { Oct. } & \text { Nov. } & \text { Dec. } \\ 0.00 & 0.00 & 0.00\end{array}$

8
0

88
08
$0.00 \quad 0.00$
$0.00 \quad 0.00 \quad 0.00$
N.A $\quad 0.00 \quad \mathrm{~N} . \mathrm{A}$.

4
0
0
0
0
8
0

$\begin{array}{ll}8 & 8 \\ 0 & 0 \\ 8 & 8 \\ 0 & 0\end{array}$
$\begin{array}{lll}\circ & 0 & 8 \\ 0 & 0 & 0\end{array}$
$\begin{array}{llll}\text { Oct. } & \text { Nov. Dec. } \\ 0.00 & 0.00 & 0.00\end{array}$
∞
0
0

8	8
0	0
	0
0	0
8	8
0	0

$0.00 \quad 0.00$

8	8	8
	0	0
0	0	

Long $68^{\circ} 04^{\prime}$
Aug. Sep.
$0.00 \quad 0.00$
2.48
(1.03)
0.00
0.060
0.00 $\quad 0.00$
1
0
0
80
-0
$\begin{array}{lll}8 & \boxed{1} & 8 \\ 0 & z & 0 \\ 0 & 8 & \infty \\ 0 & 8 & \stackrel{0}{0} \\ 0 & 0 & 0\end{array}$

1.06
(0.60)
0.09
0.00
0.48

0.00
9.27
(3.90)
Apr. May Jun. Jul.
0
$0 \rightarrow 0$
$0-0$
$\stackrel{0}{0}$
m nin
$\dot{8} \quad 0$
$\begin{array}{ll}\text { N } \\ \\ 0 & 0\end{array}$
no
$\stackrel{\circ}{0}$
$\stackrel{0}{0}$

8
8
0
0

n	n	
	0	
0	0	

0.060 .000 .00
8
0
0
8
0
0
0
0
0
0
8 Nin
8
8
8
8
8
0
8
8
8
0
8
0
0
8
0
0.320 .000 .00

Table III.2-2 Probabilities Calculation on the daily Rainfall at Usta Mohamad and Sibi

Station; Usta Mohammad Formula ; Gumbel-Chow Formula
Observation Period; $1966-1975 \quad(X=\sigma K+\bar{X})$
Unit ; inches

Average Daily Rainfall $\bar{X}=1.20$

$$
\sigma=\frac{15.70}{10}=1.253
$$

Station ; Usta Mohammad Station ; Sibi

bability	$\frac{X}{\text { (inch) }}$	Probability	$\frac{\mathrm{X}}{(\text { inch })}$
1/5	$2.155(54.7 \mathrm{~mm})$	1/5	2.040 (51.8 mm)
$1 / 10$	2.887 (73.3)	1/10	2.470 (62.7 ${ }^{11}$
1/20	3.592 (91.2	$1 / 20$	2.884 (73.3
1/25	3.813 (96.9 11)	1/25	3.014 (76.6)
1/50	$4.501(114.314)$	1/50	$3.418\left(86.8{ }^{11}\right)$
1/100	$5.184(141.7$!)	1/100	3.819 (97.0\%

Table III.2-3 Monthly Mean Air - Temperature ${ }^{\circ} \mathrm{F}$

 $\begin{array}{llllllll}n & n & 0 & 0 & 0 & 0 & 0 & n \\ 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}$

0	n	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0

n
u
a
a
a

Table III.2-4 Monthly Mean Maximum Air - Temperature (F°)

w
$\stackrel{n}{4}$
0
0
0
0

Table II T2-5 Monthly Mean Minimum Air - Temperature (F°)

$\begin{array}{llllllllll}\infty \\ \text { 号 } & \infty \\ \infty & \infty & \infty\end{array}$

 께NNNNN NNN N N

$\frac{\text { Appendix } 111.2-2}{\text { Page } 13}$

$$
\begin{aligned}
& \begin{array}{l}
\frac{\text { Remarks }}{} \\
\text { N.D.; No Observe- } \\
\text { N.A.; Not Data Available }
\end{array}
\end{aligned}
$$

$$
\begin{align*}
& \text { (Langley's) } \tag{f}
\end{align*}
$$

> Table III. 2-8 Monthly Mean Solar Radiation Station ; USTA MOHAMMAD

$$
\begin{aligned}
& \begin{array}{l}
\text { Remarks } \\
\text { (179) Jul. } \\
\text { (115) Jul. } \\
\text { (117) Mar. } \\
\text { (98) Apr. } \\
\text { (115) Jun. } \\
\text { (103) Jun. } \\
\text { (90) Jum. } \\
\text { (212) Mar. } \\
\text { (129) Jun. } \\
\text { (114) Jul. }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { Monthly Mean Wind Velocities (miles/day) } \\
\text { Station ; USTA MAHAMAD }
\end{array} \\
& 6-2 \text { ITF ӨTqeI }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\frac{\text { Month }}{\text { Year }} \\
1966 \text {, } \\
1967 \\
1968 \\
1969 \\
1970 \\
1971 \\
1972 \\
1973 \\
1974 \\
1975 \\
\text { Average }
\end{array}
\end{aligned}
$$

 Remarks
 Dec. $8 \quad 8888$
$0 \quad$ N
0
0 8
0.10
$\begin{array}{lll}- & 8 & 8 \\ 0 & 0 & 0\end{array}$

\sim	
m	0
0	

Rainfall of Annual and Monthly Amount (Inches) Station; JACOBABAD
Table 1II.2-10

4	8	0	8	0	0	8	8	0	8	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	0	0	8	8
0	0	0	0								
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0								

$\begin{array}{ccccccccc}\dot{0} & 0 & \text { N } & 8 & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & \infty & 0 \\ 0 & 0 & 0 & 0 & -0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1\end{array}$
 5
8
May
8
O.
8
$8 \quad 8$
0.
$\stackrel{8}{8}$
8
8
0
0
0
1
0
0
0 0
$\begin{array}{ll}8 & 8 \\ 0 & 8 \\ 8 & 8 \\ 0 & \end{array}$

$\stackrel{2}{2}$	0
	0
	8
0	0

0
0
0
0
8
8
0
0
$\begin{array}{ll}\text { y } \\ \stackrel{0}{0} \\ 0 & 0\end{array}$
$\begin{array}{ll}4 & 0 \\ n & 0 \\ 8 & 0 \\ 0 & 0\end{array}$
88
$\begin{array}{ll}0 & 1 \\ 0 & 0 \\ 0 & 0 \\ 0 & 8 \\ 0 & 0\end{array}$
8.

8	8
0	0
0	8
0	0
0	0

4 14
$\begin{array}{llll}0 & 8 & 8 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0\end{array}$
8
∞
0
0
0
0
0
8
0
0
0

\circ
0
0
-
-8

* The Value In Braket () Shows the Heighest-rainfall with in 24 Hours.
Table III.2-11 Monthly Mean Ais Temperature $\quad{ }^{\circ} \mathrm{F}$
Remarks 0
0
0
0

5	0
0	

$\infty \quad m$
$\stackrel{m}{\circ}$
$a+0$
-1
$a n N 1$
$M N 1$
0
Mr
0Ω
$6 \underset{\sim}{0} \quad-\sqrt{N}$

$\stackrel{0}{0}$
0

M
∞
~
∞
∞
∞
$\underset{\infty}{+}$
$\begin{array}{cccc}\infty & 0 & 0 \\ \infty & -1 & \infty & \infty \\ \infty & \infty & \end{array}$
m
N
n
$\stackrel{+}{\infty}$

$\dot{\circ}$	0
∞	∞
S	∞

	∞	∞
∞	∞	∞
∞	∞	

∞
∞
∞
∞
$\begin{array}{ll}M & -1 \\ \infty & \infty \\ 0 & 0 \\ 0\end{array}$
No
∞
$\begin{array}{cc}m \text { m } \\ \infty m & \infty \\ \infty\end{array}$
Aug.
a
a
a
n
n
~
a
\cdots
+
-
00
0

$0 \quad$

No

1
3

n
n
0
$\dot{\sigma} \quad 0$
0
0
0
䫆

- \quad No/

06
20
$-1 \rightarrow$
0
0
$\circ \stackrel{\infty}{0}$

oo
$n m$
$n i n$
$\stackrel{\infty}{\sigma}$
Apr.
0
in
9
\square
$+\infty$
0
∞
$\underset{\infty}{\infty}$

$\stackrel{n}{\infty}$
$\stackrel{\text { in }}{\text { i }}$
m
∞
∞
non
∞
0

Mar.

N
N
N
N
n

no
-
N
Ni

\therefore	0	1	N	0	0	0
0	0	0	0	0	0	0
0	0	0				

0 n
03
3Ω

∞	∞	0	0	0
0	0	0	0	0
0	0	0		

59.0
(15.0)
57.2
(14.0)
$\stackrel{\infty}{\infty}$
Month
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
Average

\square	0∞
\times	∞
∞	-0

08
N

01
00
-0
0
N
N
0
0
0
08
-i
-1
0.8 LI
$\stackrel{\infty}{\infty}$
121.0
(49.4)
$(8 \circ \angle t)$
$0.8 I T$
0
0
-
2
N

0 N
$-\underset{y}{n}$
N
$\underset{\sim}{4}$
$\stackrel{8}{\otimes}$
8
8
8
$\left\lvert\, \begin{array}{cc}\infty & + \\ \infty & \infty\end{array}\right.$
$\begin{array}{lllll}\cdots & + & \infty & \infty & 0 \\ \infty & \infty & \infty & \infty & \infty \\ \infty & \infty & \infty\end{array}$
ه

®

n
n
n
$\cdots \stackrel{n}{n}$
0 - $\quad 0$
$\begin{array}{llll}0 & - & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & n \\ 0 & 0 & n\end{array}$
in

$\stackrel{\rightharpoonup}{2}$

08
N

on in
${ }^{\circ} \mathrm{F}$ \& $\left({ }^{\circ} \mathrm{C}\right)$
Sep. \quad Oct.
Table III. 2-12 Monthly Mean Maximum Air Temperature.

Aug.
 Jul.-
 Jul.-

101.5

100.0
100.4
100.8
97.8
100.1
99.6
99.8
100.4
9
$\stackrel{\infty}{2}$
$\pi \pi$
π
2
m
0%
No
-0
$\stackrel{\circ}{\infty}$
N
-1∞
0
∞
0
0
0
104.5
102.2
103.7
103.1
90.7
102.6
100.3
6∞
$\cdots \underbrace{\infty}$
$\infty \underbrace{0}$
$\stackrel{M}{2}$
$\infty \quad \infty$

$\therefore 0$	∞	∞
0	∞	

पू
08
0

ทั
$\stackrel{\circ}{\infty}$
Jun.
+
$\underset{-}{8}$
111.0

$\begin{array}{cc}0 & 0 \\ \square & \text { n } \\ \text { - } \\ 0 & \text { n } \\ 0 & 0 \\ 0 & 0\end{array}$

∞
N

${ }^{\infty}$
$\begin{array}{ll}\infty \\ \rightarrow \sim \\ \sim & -8 \\ \sim\end{array}$

-8
-8
-8

MO
N
B
B
ri
Apr,
1
110.3
$\begin{array}{r}+ \\ \hline-\end{array}$
112.1
109.2
108.9
0.01 L
$- \pm$
NO
0 NO
Яल
$+10$
Mar.
$\begin{array}{ll}\infty & \text { a } \\ \infty & \infty\end{array}$
0
0
8
8
-
$\begin{array}{lll}0 & \text { n } & \infty \\ \infty & \infty & \infty\end{array}$
Mf
$\square \%$
0
0

\circ
0
∞

0	5	
0	0	∞
∞	∞	∞

N

no
in

6
5

人
N
-
$\frac{8}{4}$
ס

N
N

0
0

凹 N in N N N

 Station; JACOBABAD Apr.

 o

 $0 \begin{array}{llllllll}0 \\ 0 & \infty & \infty & 0 & \infty & \infty & n & 0 \\ 0 & n & n\end{array}$

Table IIT.2-16 Annual Rainfall and Monthly Mean Rainfall (Inches)
Annual Rainfall and Monthl, Mean Rainfall (Inches)
Station; SIBI Lat. $29^{\circ} 03^{\prime}$, Long $67^{\circ} 53^{\prime}$ Elevation 440 ft (M.S.L.)

$\begin{array}{cccccccccc}8 & 0 & 0 & 8 & 0 & 8 & 8 & 8 & 0 & 8 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array} 0$

4	8	8	0	8	8	8	0	0	0	8
0	0	0	0	0	0	0	0	0	0	0

0	8	0	8	4	8	8	8	8	0
0	0								
0	0	0	0	0	0	0	0	0	0
0	0	0	0						

50	0	0	8	8	0	0	0
0	0	0	n				
00	0	0	0	0	0	0	0

0	8	8	0	8	70_{1}	8	8	0
	0	0	0	0	0	-18	0	0
	0	0						

Month
$1 \begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \\ & >\end{aligned}$
$\begin{array}{llll}0 & \text { n } & \infty & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}$

0	0	0	0	0	0	0	0	0	0	n
0	0	∞	\dot{n}	$\dot{\infty}$	∞	0	\dot{N}	N	n	N

$\begin{array}{cccccccccc}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & \infty & i & \infty & \infty & - & \dot{0} & 0 & \infty & \infty \\ \vdots & \infty \\ \infty\end{array}$

$\stackrel{3}{3}$
窎
\circ
N
M
0
0
-
0
-
-
-
0
$\underset{\sim}{7}$

$\stackrel{\stackrel{9}{-}}{\substack{-1 \\ \underset{-1}{2}}}$
\circ
$\stackrel{\rightharpoonup}{9}$
-
0
0
-
$\stackrel{0}{\dot{-}}$
$\begin{array}{lll}0 & \infty \\ \stackrel{n}{r} & \stackrel{m}{c} \\ \underset{\sim}{r} & \cdots\end{array}$
2
$\frac{m}{2}$
$\begin{array}{ll}0 & 0 \\ \vec{~} & \underset{\sim}{\dot{~}}\end{array}$

$\begin{array}{lll}0 & 0 & 0 \\ 0 & \ddot{0} & 0 \\ -1 & \ddots & -1\end{array}$

\circ
0
0

$\begin{array}{ll}0 & 0 \\ \text { in } & 0 \\ 9 & 0\end{array}$
0
$\underset{\sim}{-}$
-1
0
∞
0
0
4
8 0
i
n
n ∞ 0
∞
0
0

0	0
\dot{O}	0

∞
$\stackrel{\square}{\dot{G}}$
0
$\stackrel{O}{\mathrm{Q}}$
-1
0
2̈
-1
2
2
9

$\begin{array}{lllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & j \\ 0 & \therefore & - & j & 0 & 0 & 0 & 0 & - & j & N\end{array}$
$\begin{array}{cccccccccc}\dot{\pi} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \sim & 0 & 0 & N & N & N & N & 0 & N & N \\ & 0 & N & N & N\end{array}$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	i	i	i	∞	$\tilde{0}$	$\dot{0}$
0	0	0							

0	0	0	0	0	0	0	0	0	∞	
0	0	0	∞	$\dot{0}$	∞	N	N	$\dot{\infty}$	$\dot{0}$	$\dot{8}$
∞	∞	n	∞	N						

\vec{j}	0	0	0	0	0	0	0	0	0	0	N
$\dot{\infty}$	∞	$-\dot{\infty}$	$\dot{\infty}$	$\dot{\infty}$	$\dot{\infty}$	∞	$\dot{\infty}$	$\dot{\infty}$	$\underset{\sim}{\infty}$	∞	

j	0	0	0	0	0	0	0	0	0	0	9
\dot{b}	∞	∞	∞	∞	∞	$\dot{0}$	$\dot{\infty}$	$\dot{\infty}$	$\dot{\infty}$	∞	
∞	∞	∞	∞	∞		∞	∞				

Remarks

Annual and Monthly Evaporation (Inches).
Table III.2-20

Month
1966
1967
1968
1969
1970

Fig III. 2-1

LOCATION MAP OF CLIMATOLOGICAL OBSERVATION STATION

Fig III.2-2

CLIMATIC CONDITION OF THE PROJECT AREA(A)

(inch)

$\frac{\text { Appendix III. } 2-2}{\text { Page } 30}$
Fig III. 2-2

CLIMATIC CONDITION OF THE PROJECT AREA (B)

III.2.3 Hydrology

1) Water Resources
a) Discharge of Indus River

The catchment area of the Indus River has been estimated at about 367,000 square miles $(950,000$ square kin), and its length at 1,800 miles $(2,900 \mathrm{~km})$ approximate y , and it has ranked in 15 th as for the length of the river in the world.

There are six main tributary in the Indus River Basin namely, Kabul R, Jhe lum R, Chenab R, Ravi R, Sutleg R, and Beas R.

The Kabul River belong to AFGIIANISTAN on the origin of the stream, and other tributary's origin located in INDIA. According to the general information published in the report of (Indus Waters Troaty", the mean annual runoff in the Indus River Basin has been estimated at about 168 million acre feet ($207,400 \mathrm{M} . \mathrm{C} . \mathrm{M}$.$) ; and$ tributaries have occupied 47 percent for total runoff in the river basin.

However, the runoff pattern of the basin has been changed with the basin development program at downstream since 1967, and particularly, after the construction of the Tarbela Dam, the flow pattern has varied in winter (Jan. to Mar.) since 1979 as shown in Figure III. 2-4.

As mentioned in previous chapter, the Indus River is the most important water resources for the project Area, and the runoff has been controled artificially with the dam group at upstream of the basin due to the demands of the irrigation and the power sources.

Fortunately, dajly discharge observed at Guddu Barrage have collected for eleven years (1971-1981) with cooperation of the provincial government of Sind Province.

From these data collected, the most available data has selected, and revised based on the purpose of imigation, and it is tabulated as shown in Table III. 2-22.

According to the Table IIT, 2-23, total runoff would be expected to have at about 84 million acre feet (103,614 M.C.M.) at Guddu Barrage, and mothly fluctuation of the runoff shown in attached Figure III.2-3.
b) Intake Discharge at Guddu Barrage

There are three intake structures at Guddu Barrage, one facility constructed at the left bank, and other two facilities have been constructed at the right bank. Namely, Desert Pat Feeder Canal intake and Begari Sind Feeder Canal intake. From data collected at project site, there are provided mean monthly intake discharge amount at each project as shown in Table III. 2-22, III. $2-23$, and III. $2-24$ respectively.

At present, there are estimated 10 million acre feet as mean yearly total amount intaked from Guddu Barrage, and 3 million A.F. to the Desert Pat Feeder Canal, and 1.05 million A.F. to the Pat Feeder Canal respectively. As for the variation of mean monthly intaked discharge, it has prepared in Figure TII.2-3.
c) Consideration of Water Balance at Guddu Barrage after the project

The water demands has been estimated after the project in the project Area based on proposed cropping pattern and crop's water requirement which are calculated with the meteorological data. In this case, there are provided three kinds of case study to have the most available development plan for the project Area in view points of economics and water resources at the Indus River Basin.

The other hands, there are being two existing barrage at downstream of Guddu Barrage, and they were constructed near Sukkur and Hyderabed in 1930, 1956 respectvely. As to the estimation of water
demands of Sukkur Barrage scheme, it has been evaluated with the water balance study between Guddu Barrage and Sehwan observation station as shown in Table III, $2-25$. Furthermore, the water requirement of Hyderabed Barrage estimated with the ratio of acreage of irrigable area for the Pat Foeder Canal Project.

The results of the water balance study have tabulated in Table III. 2-26, III, 2-27 and III.2-28 respectively. According to the results, Case Study 1 has the highest lack of water supply in Rabi crops from December to February, and Case Study 3 is the most stable in connection with the water supply from the basin. However, there are no consideration to have the maintenance water at downsrream of the Indus River on the water balance study.

Regarding above, the study have included various unknown factor to be cleared in future, and particularly, the operation rules of Tarbela and Mangla Dams should be rivised to be utilized the water resources more effectively in the river basin based on the future development $p l a n$, and the arrangement of distribution plan will be carried out by the Indus River Treatment Comittee.
2) Sedimentation
a) Data Collection and Analysis

In the Indus River Basin, the Surface Water Hydrology Project WAPDA has carried out to have the observation station and analysis of data observed refer to the sediment since 1960 .

According to the information collected, main observation station of sediment are eleven stations in the river basin, ard there were seven stations along the Indus River, and four stations have installed at Tributary of the Indus River as mentioned in figure III.2-5. However, the observation stations have been installed concentratively into the upstream of the basin except Sehwan because of application for the development plan on dam project. WAPDA has republished the
report in May 1980 as for the results of analysis on data observed at each station, and they have rearranged more clearly and its tabulated as shown in Table III.2-29 and IIT.2-30.

From these tables, an average sediment concentration by weight were estimated at about $2,500 \mathrm{PPM}$ to 3,600 PPM in main stream of the Indus River and there were measured at about $1,100 \mathrm{PPM}$ to 2,100 PPM in the tributary of the Indus River, but these value have not been included the affection of Tarbela Dam in main stream of Indus River. As mentioned attached Table III.2-29 and III.2-30, the contents of suspended materials have been analyzed at sand, silt, and clay respectively, and the contents of sand is being reducing gradually from upstream to downstream, while the contents of silt and clay are increased in downstream.

The other hand, the collection of sample materials along the Desert Pat Feeder Canals has been carried out and analyzed the contents of the materials as shown in Table III.2-31, and the distribution of contents has indicated that upstream of the canal covered with sandy materials and the silt or clayey materials have deposited at downstream of canals.
b) Evaluation of Sedimentation at Desert Pat Feeder Canal
i) Water Balance of the River Basin

According to the data which were published in May 1980 by WAPDA, tne mean annual runoff of the Indus River at Massan for 4 years of record (1972 - 1975) were 89.3 milion A.F. The other hands, the mean annual runoff at Guddu Barrage in same period were taken at about 90.5 Million A.F. From this, the tributary of the Indus River has taken at about 1.2 Million A.F. as the mean annual runoff, and its value seems to be smaller in comparison with the catchment area.

In this connection, it could be considered that there were prepared the link canals to connect existing tributaries for the ob-
taining of stable irrigation systems, and the runoff is utilizing more effectively to existing irrigation systems.
ii) Estimation of Average Sediment Yield at Guddu Barage

Concerning the Sediment Yicld at Massan in the Indus River, it has measured at about 304 million ton in mean annual yields. However, after the construction of Tarbela Dam, this value could be assumed to reduced to 10 percent approximately by the example of the investigation of similar project. And also the yield of tributary could be estimated at about 2.96 milion ton (1, 480.2 M.C.M. x 0.002) so that, total mean annual yield at Guddu Barrage should be at 33. 36 million ton. Form this value, average Sediment Concentration at Guddu Barrage could be evailuated at about 320 PPM (0.032% by weight) by the mean annual runoff at the Barrage.

iii) Average Sediment Yield of Desert Pat Feeder Canal

From the case study at previous chapter, Case 3 would be applied as a final development plan for the project, and Case 3 should be required to have 5.70 Mi 11 i on A.F. (7,031 M.C.M.) in both project at the Desert Canal.

In case of above, the mean annual sediment yield has been estimated at about 2.25 million ton from intake structures to distribution point at both project. As mentioned Table $3-30$, the contents of suspended sodiment (percent) could be divided into 3 class due to grain size, and the sandy materials would be the most suitable one which is silted in the canal. The contents of sandy materials have been measured at about 30 percent for the total value based on observation data in the Indus Basin.

As a results of said evaluation, the sandy materials is 0.675 million ton $(675,000 / 2.60 \div 260,000 \mathrm{CM})$ as total sediment yield in the Desert Pat Fecder Canal.
3) Water Quality

During the investigation at the project site; there were collected the water sample from the Desert Pat Feeder Canal, and analyzed it at Water and Soil Laboratory of Hydrogeology Directorate WAPDA, Quetta. The results of analysis has been tabulated in the Table III. 2-32, and there were no problems for the irrigation, in the Project Area.
Table III.2-22

Mar.		
1		3
5,234	5,467	4,996
3,973	4,023	2,713
3,422	2,775	1,977
4,210	4,088	3,229
Jun.		
1	2	3
20,762	26,338	34,673
19,372	28,952	35,566
23,955	30,132	29,792
21,363	28,474	33,344
Sept.		
1	2	3
25,040	28,706	26,195
28,883	27,243	25,452
28,857	26,872	24,692
27,593	27,607	25,446
Dec.		
1.	2	3
4,016	2,726	3,764
4,755	4,071	2,897
3,351	2,566	2,320
4,041	3,121	2,994

	Feb.	
$\frac{1}{4,290}$	$\frac{1}{2}$	$\frac{3}{2,718}$
1,504	556	1,713
2,859	1,846	2,111
2,878	$\underline{2,373}$	$\underline{2,235}$

	May	
$\frac{1}{2}$	$\frac{3}{2}$	$\frac{3}{2}$
3,353	5,540	10,622
4,499	7,594	12,589
1,058	4,300	14,518
2,970	$\underline{5,811}$	$\underline{12,576}$

Mean Yearly Total Intake Amount is 10 milition A.F.

$\frac{\text { Month }}{}$
1979
1980
1981
Average

$\frac{\text { Month }}{\frac{\text { Year }}{1979}}$
1980
1981
Average

	Jul.	
-1	$\frac{2}{3}$	$\frac{3}{1}$
40,919	39,827	40,201
37,641	40,171	36,743
37,923	37,963	22,032
38,828	39,320	32,992

1	$\frac{\text { Oct. }}{2}$	$\frac{3}{2}$
22,635	12,831	8,828
21,596	14,525	10,314
19,240	10,562	7,411
21,157	12,639	8,851

	Apr.	
1	$\frac{2}{2}$	$\frac{3}{1,370}$
-60	165	600
-	-	-
20	$\underline{55}$	657

 $\frac{\text { Month }}{\text { Year }}$ Year
1979
1980
1981
Average Note :
Table III.2-24 Monthly Mean Discharge of Pat Feeder at R.D 109 (1972 - 1982)

										(Uni	Cusec)	
Year \qquad	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug:	Sep.	Oct.	Nov.	Dec.
1972	-	-	-	-	-	1,108	2,245	2,650	2,857	-	-	
1973	-	-	-	-	-	917	2,048	2,200	2,616	-	-	-
1974	-	-	-	-	-	889	380	2,196	2,152	-	-	-
1975	-	-	-	-	-	1,593	2,884	1,830	2,121.			-
1976	-	-	-	-	-	1,670	2,641	2,043	1,672	2,008		-
1977	984		319	-	-	918	2,626	2,056	2,389	2,982		-
1978	1,909	780	-	-	814	1,4:88	1,631	1,860	2,867	2,920	1,846	841
1979	1,996	514	158	-	-	1,257	2,974	2,513	2,713	2,406	2,087	971
1980	589	760	-	70	227	1,500	2,951	3,051	3,135	2,550	1,313	1,279
1981	1,265	1,464	559	-	305	1,643	2,486	1,821	2,410	2,321	1,743	1,393
1982	1,256	792	316	-	-	-	-	-	-	-	-	-
Average (1978~ ~1981)	1,440	880	179	18	337 \vdots	1,472	2,511	2,311	2,781	2,549	1,747	1,121
	Note	1) Tot 2) Mea	Anou	of In Total	ke Disc ount (1	78	72 - 19 I) is	I) is 05 Mil	$\begin{aligned} & 4 \mathrm{Mill} \\ & \text { on } \mathrm{A} F \end{aligned}$	in A.F.		

Table 14I.2-25 WNER BALAVCR OF DOWN-STRI:AN OR LNOUS RIWER (1979)

Page 11

Table III. $2-26$ WATER BAIANCE OF GUDDU BARRAGE OF INDUS RIVER in CASE 1 ($\mathrm{Qmax}=8,200$ cusec, $K=60, R=95$)
(Unit : cusec)

Remarks ; 1) $\left.\frac{890}{900}=0.99,2\right) 5$ estimated with the measurement discharge data at Sehwan in 1979.
Note: * Supplies is inadequate. Total volume inadequate is 0.12 M.A.F.

Table 111:2.27

WATER BALANCE OF GUDDU BARRAGE OF INDUS RIVER in CASE 2 (Qmax $=6,700$ cusec, $K=50, \mathrm{~K}=80$)
(Unit : cusec)

Total $104,604 \frac{353,147}{\text { (Million AF) }} \frac{185,501}{(3.68)} \frac{643,252}{(12.76)} \frac{1,253,400}{183,647} \frac{2,080,239}{(3.64)} \frac{(41.26)}{(84.17)}$
Remarks : 1) $\frac{890}{900}=0.99$,
2) 5 estimatod with the measurement discharge data at Sehwan in 1979.

Note : *Supplies, is inadequatc. Total volume inadequate is 0.040 M.A.F.

Table III, 2-23 WATER BALANCE OF GUDDU BARRAGE OF INDUS RIVER in CASE $3 \cdots($ Qmax $=8,200$ cusec, $K=60, R=60)$

$\frac{\text { Total }}{\text { (Million AF) }} \frac{104,604}{(3,62)} \frac{35,147}{(12.70)} \frac{182,484}{(340,235} \frac{1,253,400}{180,661} \frac{2,074,296}{(3.58)} \frac{4,243,422}{(41.14)}$
Reamrks : 1) $\frac{890}{900}=0.99$
2) 5 estimated with the measurement discharge data at Sehwan in 1979.
Table III 2-29 ANALYSIS OF SUSPENDED SEDIMENT IN INDUS RIVER Average
Sediment
Concentration
by Weight
$\%($ PPM $)$
0.287
$(2,870)$
0.291
$(2,910)$
0.303
0.368
$(3,680)$
0.255
$(2,550)$
0.264
$(2,640)$
0.311
$(3,110)$
Appendix IIT.2-3

Sediment	Contents of
Concentration	Suspended
by Weight	$\frac{\text { Sediment (percent) }}{\text { Sand }}$Silt

ষ
in \ddagger
∞
$\xrightarrow{-}$
0
n
4
n
Page 1 d
Table III.2-30 ANALYSIS OF SUSPENDED SEDIMENT IN TRIBUTARY OF INDUS RIVER

	Drainage Area Sq.Miles	Mileage Milesl/	Observation Periods	Mean Annual Run-off 10^{3} A.F	Average Sediment Yield for the Year of Record Jan.to Dec. Jan.to Sept	Average Sediment Concentration by Weight	Cont Sus Sedimen	nts ende t (pe	cent)
$\frac{\text { Items }}{\text { Stations }}$	$\begin{aligned} & \text { Sq. Miles } \\ & \left(10^{3} \mathrm{KM}^{2}\right) \end{aligned}$	$\begin{aligned} & \text { Miles } \\ & \text { (KM) } \end{aligned}$	(years)	(M.C.M)	m.t. m.t.	\% (PPM)	Sand	Silt	Clay
(1) Gilgit R. at Gilgit	$\begin{array}{r} 4,670 \\ (12.1) \end{array}$	$\begin{gathered} 20.0 \\ (32.2) \end{gathered}$	$\begin{gathered} 1963 \sim 1972 \\ (10) \end{gathered}$	$\begin{gathered} 7,330 \\ (9,042) \end{gathered}$	$\begin{array}{ll} 13.6 \\ (100 \%) & (97 \%) \end{array}$	$\begin{aligned} & 0.148 \\ & (1,480) \end{aligned}$	34	45	21
(17) Kabul R. at Nowshera	$\begin{aligned} & 34,200 \\ & (88.6) \end{aligned}$	$\begin{gathered} 20.0 \\ (32.2) \end{gathered}$	$\begin{gathered} 1961 \sim 1975 \\ (15) \end{gathered}$	$\begin{gathered} 23,000 \\ (28,371) \end{gathered}$	$\begin{array}{cc} 34.8 \\ (100 \%) & 33.7 \\ \hline 97 \%) \end{array}$	$\begin{gathered} 0.114 \\ (1,140) \end{gathered}$	16	53	31
(13) Soan R. at Dhok Pathan	$\begin{aligned} & 2,500 \\ & (6.5) \end{aligned}$	$\begin{aligned} & 40.0 \\ & (64.4) \end{aligned}$	$\begin{gathered} 1964 \sim 1975 \\ (12) \end{gathered}$	$\begin{gathered} 999 \\ (1,232) \end{gathered}$	$\begin{array}{ll} 17.6 & 15.8 \\ (100 \%) & (90 \%) \end{array}$	$\begin{gathered} 0.144 \\ (1,440) \end{gathered}$	14	45	41
(1. Chenab R. at Alexandria Bridge	$\begin{array}{r} 12,600 \\ (32.6) \end{array}$	$\begin{gathered} 360.0 \\ (579.3) \end{gathered}$	$\begin{gathered} 1961 \sim 1968 \\ (8) \end{gathered}$	$\begin{gathered} 15,600 \\ (19,243) \end{gathered}$	$\begin{array}{ll} 42.7 & 33.1 \\ (100 \%) & (77.5 \%) \end{array}$	$\begin{gathered} 0.212 \\ (2,120) \end{gathered}$	28	59	13

Table III.2-31 Results of Sieved Analysis on Bed Material of the Main Canals

Table IIT.2-32 ANALYS IS OF WATER QUALITY AT GUDDU BARRAGE (Mar., 1982)

$\mathrm{Ca} \quad \mathrm{Mg}$. Na	MILLIEQUIVALENTS Total K Cations CO_{3}	ERR LI	ER	SO_{4}	F	Total Anions	Fe	B	$\begin{aligned} & \text { Million } \\ & \text { (by Evap) } \end{aligned}$	pH
$1.90 \quad 1.45 \quad 2.18$	5.53	2.77	1.62	1.14	-	5.53	-	-	387	7.6

[^0]FigII.2-3 Mean 10 Days Discharge of Indus River (As average in 1979 to 1981) Mean 10 Days Intake Discharge at Desert Pat Feeder Canal

Fig III.2-4 HYDROGRAPH FOR INDUS RIVER AT SEHWAN IN 1969, 1972, 1974, AND 1979

Fig III. 2-5
Page 20 LOCATION OF SEDIMENT OBSERVATION STATION

[^0]: Note : Water sample has been analyzed by WATER and SOIL LABORATORY of Hydrogeology Directorate WAPDA, QUETTA.
 D.S., Dissolved Salts

