Project Cost Comparison

(Unit: Rs. Million)

		Alternative	
ltem	1-C	II-C	III
Civil Works	1,742.6	1,792.2	1,569.2
Others	341.7	322.8	281.3
Contingencies	1,745.7	1,795.0	1,599.5
Total	3,830.0	3,910.0	3,450.0

4.3.2. Operation and Maintenance Cost

The running expenses for operation and maintenance of the proposed water supply systems include electric power cost, labour wage, material supply, repairs of equipment and construction works, and administration. Electric power costs are estimated in accordance with WAPDA Tariff B-3, and labour wage and material for water treatment are calculated on the basis of quantity and unit prices. For repairs of equipment and construction works and administration, 1% of the construction costs including procurement costs is assumed. Yearly operation and maintenance costs at the target year are given below (refer to Table B.IV-16);

	the state of the s				
	Construction	Costs	O & M Cost/Year		
Alternative	(Rs. Million)	Ratio	(Rs. Million)	Ratio	
I-A	2,055	1.19	71.75	1.53	
I-B	1,977	1.15	69,49	1.48	
I-C	1,917	1.11	67.61	1.44	
11-A	2,070	1.20	73,82	1.58	
II-B	2,021	1.17	70.15	1.50	
II-C	1,971	1.14	63.16	1.35	
II-D	2,012	1.17	62.81	1.34	
III	1,726	1,00	46.83	1.00	

CONSTRUCTION COST BY WORKS TABLE B.IV-8

-Unit : Rs. Million-

			Alternative	1t 1 v @				
Item	I-A	I-B	I-C	II-A	II-B	II-C	Q-II	III
1. Raw water reservoir	95.0	95.0	0.56	109.9	57.7	i		
2. Feeder facilities	27.4	27.4	27.4	28.1	4.6	34.4	12.5	44.5
3. Tunnel	Ē		1	52.8	134.2	119.0	111.9	320.7
4. Water treatment plant	442.2	442.2	442.2	541,4	541.4	541.4	541.4	397.7
5. Pumping Station	218.1	263.5	263.0	266.4	267.4	239 9	287.9	146.3
6. Pipeline	791.6	723.4	697.1	589.3	534.1	564.3	582.6	402.9
7. Service reservoir	232.5	182.3	157.4	232.5	232.5	232.5	232.5	189.4
8. Electric works	61.3	64.0	9.09	61.6	60.4	60.6	60.2	67.8
Sub-total	1,868.1	1,797.7	1,742.6	1,882.1	1,837.0	1,792.2	1,829.2	1,569.2
9. Physical contingencies	186.8	179.7	174.2	188.2	183.7	179.2	182.9	156.9
 Total	2,054.9	1,977.4	1,916.8	2,070.3	2,020.7 1.	971.4	2,012.1	1,726.1
						1		

Note: Differences in colum Sub-total are due to rounding.

TABLE B.IV+9	COST OF RAW WAIER RESERVOIR	ובא אבטבאיסוא		Unit : Rs 1,000
Name of reservoir	Earth Work	Structures	Overhead	Total
Sang Jani (1.1. MCM)	41,789	24,611	28,552	94,952
Khuram Paracha (1.1 MCM)	57,652	15,880	36,399	109,931
Julian (0.55 MCM)	28,826	9,752	19,097	57,675

Note: Sang Jani reservoir for Alt. I-A, -B and -C. Khuram Paracha reservoir for Alt. II-A, Julian reservoir for Alt. II-B.

TABLE	COST OF FEEDER FACILITIES	1	Unit :	Rs. 1,000
Feeder Feeder Conduit Tunnel	Intake Division Syphon Tower Dam	hon Pipe Work	others*	Total
000'6	1	1	9,421	27,363
000'6	i i	ī	9,421	27,363
000'6 -	1		9,421	27,363
- 11,070	i	t	10,019	28,106
1,880	I I	F	4,275	058'6
5,400	8,340 8,400	400-	12,245	34,385
	8,340	1	4,170	12,510
i			5,805 30,142	44,480

Cost of others includes some miscellaneous works, temporary works and overhead charges. * Note : 1)

Cost of others for III (Rs. 30,142,000) includes the cost of Rs. 16,318,00 and civil works for pressure break basin. for valves (dia.1,000 mm) 5)

TABLE B. IV-11 COST OF TUNNEL

Total Remark	Dia 52,844 2100 ^{mm}	Dia 134,180 2100mm	Dia 119,013 2100 ^{mm}	111,897 2100 mm	Dia 2100 mm 320,732 2400 m	•
Others 7	16,456 52	41,541 134	36,867 119	36,742 111	110,513 320	
Shaft		2,610 4	2,610 3	2,610 3	13,672 11	
-C		25,331	24,309	24,309	65,881	
Type-C	502m	1,140	1,094	1,094	2,734	
Type-B		31,988	24,868	20,483	72,628	
TYE		1,860	1,446	1,191	3,906	
Type-A		32,710	30,359	27,753	58,038	
Lengt		-B 3,200	-c 2,970	-D 2,715	111 5,060	
Alt.	II-A	II-B	11-C	U-II	Į.	

Cost of othersincludes temporary works and overhead charges. * Note:

000	Total	442,280	541,403	397,693
Unit : Rs 1000	Others	82,108	127,891	101,547
MENT PLANT	Pipe & Equipment	147,556	147,556	147,556
COST OF WATER TREATMENT PLANT	Concrete Work	166,320 2/	134,081	117,138
TABLE B.IV-12	Earth Work	46,296	131,875 1/	31,452
TA	Name of Plant	Sang Janı	Shah Allahditta	Golra

Feeder pipe cost of 2.0 km long between raw water reservoir and plant High cost of earth works due to mostly rock excavation, is included into this estimation. 77 Note: 1/

			·			I	(I	
Total	218,096	263,495	262,985	266,420	267,372	239,929	287,944	146,260
Discharge Pool	20,479	18,963	22,591	27,257	26,227	35,930	24,009	t
Pump Plant	179,819	226,021	216,028	193,247	187,657	176,217	205,753	135,001
Pump Station	17,798	18,511	24,366	45,916	53,488	27,782	58,182	11,259
Alternative	I-A	<u>а</u> ! Н	I - C	II-A	II - EB	II-C	II-D	III

<u> </u>	
r	
,1	
11	
α	
Ĺ	
ď	
α	

COST OF PIPELINE

Rs 1000	Total	791,574	723,366	697,095	589,261	534,108	564,326	582,640	402,861
Unit.		:							
	Distribution	406,321	199,057	206,327	406,303	406,303	406,303	406,303	273,094
	Gravity	99,556	112,102	124,244	147,107	90,455	115,353	148,879	92,307
	Rising Main	285,697	412,207	366,524	35,851	37,350	42,670	27,458	37,460
÷									
	Alternative	I-A	H H	I - C	II-A	II-B	II-C	Q-II	III

TABLE B.IV-15 COST OF SERVICE RESERVOIR

) > 11 51 1) 111	Name	Civil Work	Service Reservoir	Total
		- 1	- 11	1
	Shah Allah.	3,432	55,272	58,704
	D-13	153	13,464	13,617
т - A	G-13	290	159,936	160,226
	Total	3,875	228,672	232,547
	E - 14	5.1	38,514	38,565
	Shah Allah.	3,432	55,272	58,704
н п	Tomar	4,081	80,960	85,041
	Total	7,564	174,746	182,310
	Shah Allah	3,432	55,272	58,704
	D-13	H 55	13,464	13,617
U I	Tomar	4,081	80,960	85,041
	Total	7,666	149,696	157,362
- The second	Golra (1)	33,017	48,804	81,821
	" (2)	12,687	13,464	26,151
нян	н - 11	423	096'08	81,383
	30 30 ta 1	46,127	143.228	1. 90 1. 1. 1. 1. 1.

Note: Total Costs for Alt. II-A,B,C and D are same as Alt. 1-A

TABLE B.IV-16 OPERATION AND MAINTENANCE COST

Unit: Rs. 1,000/year

Alterantive	Pumping Station	Treatment Plant 1/	Others2/	Total
I-A	35,785	19,090	16,876	71,751
I-B	34,081	19,090	16,322	69,493
I-C	32,543	19,090	15,977	67,610
1 I - A	37,099	19,090	17,627	73,816
II-B	34,007	19,090	17,048	70,145
II-C	27,455	19,090	16,617	63,162
II-D	26,817	19,090	16,899	62,806
III	13,194	19,090	14,543	46,827

- Note: 1/ Chemical and other material of about
 12.8 million rupees is included in the
 cost of water treatment plant.
 - Others mean maintenance and repair cost of overall water supply systems and administration cost served by the Khanpur Water
 - 3/ Rs. 98,477,000/year of expenses to purchase raw water from Khanpur porject are not included.

4.4. Selective Comparison of Alternatives

4.4.1. Preliminary Comparison of Sub-alternative

A. Economic Consideration

Economic internal rate of return (EIRR) as one of the index of economic evaluation is computed below.

Alternative	EIRR (%)
I-A	6.88
I-B	6.97
1-C	7.05
II-A	6.69
II-B	6.83
II-C	7.02
II-D	6.98
III	7.56

Note: In computing EIRR the costs of distribution networks were not incorporated in the project costs.

B. Engineering Consideration

Alternative I

Alternative I-C is proposed to provide separate distribution systems of treated water to both cities, in contrast to common use systems for Alternative I-A and I-B. Separate systems may permit easier operation and maintenance than the systems of Alternative I-A and I-B. Hence, Alternative I-C is recommendable among three alternatives.

Alternative II

The construction of main pumping station in Khanpur reservoir for Alternative II-D will need somewhat skillful engineering works compared to the construction of other pumping stations for Alternative II-A, II-B, and II-C.

- Operation and maintenance of vertical shaft type pumps proposed in Alternative II-D is relatively difficult when compared to horizontal shaft type pumps proposed in Alternative II-A, II-B and II-C.
- Alternative II-A, II-B and II-C rank same from a viewpoint of engineering. However, Alternative II-C is recommendable in consideration of EIRR, though difference of EIRR is slight.

4.4.2. Comparison of Alternative I, II and III.

Alternative I is represented by I-C, and Alternative II by II-C, respectively as mentioned above. The construction costs and EIRR are again summarized as below;

Construction Co	st
-----------------	----

Alternative	(Rs. Million)	Ratio	EIRR (%)
I	1,917	1.11	7.05
II	1,971	1.14	7.02
III	1,726	1.00	7.56

The followings are summary of comparison of Alternative I, II and III in respect to engineering advantage and disadvantage:

A. Alternative I

(1) Advantage

- i. The existing Left Bank Canal would be effectively utilized as originally designed.
- ii. It is technically possible to shorten the construction times, when necessity arises, by starting the construction works from the several job sites at the same time.
- iii. Distribution of treated water to both cities would be easy because of separate distribution systems.

(2) Disadvantage

- i. The existing Left Bank Canal needs careful maintenance of canals that are mostly composed of open conduits, and operation of water distribution to different sectors of urban water, irrigation and industry.
- ii. It involves constructing three railway crossings including two tunnels and one aqueduct. In driving tunnels beneath the railway, skillful workmanship is required, as well as reinforcement of the railway to be crossed.
- iii. The length of pressure pipelines, especially high pressure pipelines is longest among alternatives.
 - iv. The Left Bank Canal would be rehabilitated and improved with the Project, however, careful maintenance would still be needed against slope erosion, silting in canals and cross drainage conduits, piping and so on.

B. Alternative II.

(1) Advantage

- i. Diversion works and conduction mains would be constructed for exclusive use of urban water supply.
- ii. The length of conduction mains is shortest among three alternatives which might bring about easy maintenance of conduction mains.

(2) Disadvantage

i. The Left Bank Canal that was constructed for the multipurpose uses would not be utilized for urban water supply scheme. Operation and maintenance of the Left Bank Canal might be a burden to the remaining sectors of irrigation and industry.

- ii. Two tunnels with the length of two km and three km respectively would be constructed, for which more sillful workmanship than that for Alternative I would be required.
- iii. In addition to Khanpur dam, proposed Tarmakki diversion dam needs stationing staffs for operation and maintenance of facilities.
 - iv. Regulating capacities of discharge flowing into the main pumping station is less than that of Alternative I, because no raw water reservoir is constructed.
 - v. There exists possibility that flow discharge from springs around Shah Allah Ditta might be reduced during the period of tunnel construction.

C. Alternative III

(1) Advantage

- i. Diversion works and conduction mains would be constructed for exclusive use of urban water supply.
- ii. About 53% of water could be distributed by gravity to the service area.
- iii. Skillful civil engineering technology is required for construction of tunnels; however, the construction of tunnels shall contribute to transfer of such technology.

(2) Disadvantage

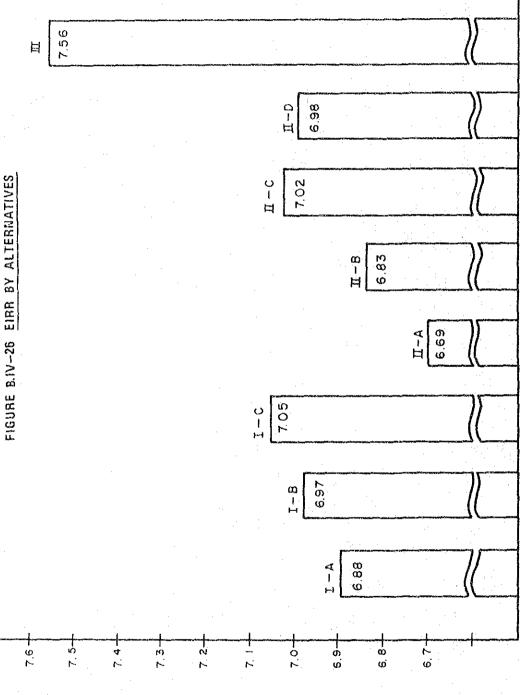
- i. The construction of tunnel shall not be completed by the end of phase I period.
- ii. Skillful civil engineering technology shall be required for construction of conduction mains such as intake tower to be constructed in the reservoir, pressure break basin, especially.
- necessary with regard to engineering such as the properties of rock, faults, fracture zone, groundwater table, permeability, unconsolidated layers, and so on, together with a detailed construction plan for the proposed intake tower.
- iv. It is hardly possible to shorten the construction times for tunnel and feeder facilities, even if sufficient disbursement of budget is made.
- v. There is possibility of accident in construction of tunnels, when compared to other construction works, Alternative III involves providing high vertical shaft and it needs a construction period of more than four years to complete tunnel works. Once the ground water flows into the tunnel, special countermeasures should be taken, resulting in delay of construction works.

D. Conclusions

 From technical point of view, all of Alternatives I, II and III are feasible.

- 2) It will take five years under Alternative I and II to complete the first phase in which fifty percent utilization of Khanpur urban water is envisaged. Whereas, in case of Alternative III, it will take six years. However, this one year delay will not bring a serious problem for the staging plan of water supply.
- 3) Operations of the Left Bank Canal under Alternative I may raise technical problems for urban water supply, arising from the control of water diversion to irrigation and industry. In contrast, in Alternatives II and III, water is directly taken from the reservoir and, therefore, diversion operations for urban water supply will be easy.
- 4) In Alternative III, out of the total amount of the water to be distributed to Rawalpindi area, about 78% would be served by gravity. It puts this alternative in an economically advantageous position in an indisputable manner.
- 5) The table below shows a summary picture of the three alternatives:

(Unit: Rs. Million)


		Construction	
Alternatives	EIRR (%)	Cost	O/M Cost/Year
1	7.05	1,917	68
II	7.02	1,971	63
III	7.56	1,726	47

A clear grasp can be had of the situation where Alternative III is recommendable as the most optimum plan.

It might be emphasized that annual recurring costs are the least under this alternative, which will lessen and relieve burdens on water supply organizations and on the users as well for the project life of half a century.

Note: Distribution network costs are not incorporated.

ALTERNATIVES

E 188

TABLE B.IV-17 EIRR BY ALTERNATIVES (1)

1) Input : Construction Costs (Rs. million) CC : Number of Replacement Years MM : Replacement Year RY : Replacement Costs (Rs. million) RC : Operation & Maintenance Costs (Rs. million) OMC 2) IRR Computation : Discount Rate(=Discount Factor) DC.RT : Present Worth (Present Value) of PW.BF Benefit (Rs. million) : Present Worth (=Present Value) of PW CS Cost (Rs. million) : Net Present Worth (= Net Present Value) NPW (Rs. million)

| Benefit Cost Ratio (%)

Note: Distribution network costs are not incorporated.

ALT. (I - A)

BC.RT

< INPUT >	<pre>< IRR COMPUTATION ></pre>	
¢¢ 1= 0	DC.RT PW.BF PW.CS NPW BC.F	₹Ŧ
CC 2= 113.308 CC 3= 396.578 CC 4= 396.578 CC 5= 226.616 CC 6= 0 CC 7= 43.373 CC 8= 151.803 CC 9= 151.804 CC 10= 86.745 CC 11= 0 CC 12= 12.08 CC 13= 42.279 CC 14= 42.278 CC 15= 24.16 MM= 5 RY 1= 21 RC 1= 2.366 RY 2= 26 RC 2= 0.584 FY 3= 31 RC 3= 42.397 RY 4= 36 RC 4= 23.956	0.051 4211 3038 1173 13 0.052 4102 3015 1087 13 0.053 3996 2993 1004 13 0.054 3894 2971 923 13 0.055 3795 2949 845 13 0.056 3698 2928 770 13 0.057 3605 2908 698 13 0.058 3515 2887 627 13 0.059 3427 2868 559 13 0.060 3342 2848 494 1 0.061 3260 2830 430 1 0.062 3180 2811 369 1 0.063 3103 2793 310 1 0.064 3028 2775 252 10 0.065 2955 2758 196 10 0.066 2884 2741 143 15 0.067 2815 2725 91 10	41 39 36 31 32 32 32 32 32 32 32 32 32 32 32 32 32
RY 5= 41 RC 5= 13.224 6MC= 71.751	0.069 2684 2692 -8 1	

ALT. (I - B >

< IMPUT >	< IRR	COMPUTE	TIOH >		
				tati.	
CC 1= 0	OC.RT	FW.BF	PW.CS	HPW	BC.RT
CC 2≈ 114.329	2 050	Janai	0007	4017	
CC 3= 400.15	0.050	4324	3007	1317	144
CC 4= 400.15	0.051	4211	2984	1227	141
CC 5≈ 228.656	0.052	4102	2962	1140	139
CC 6= 0	ი. 053	3996	2940	1056	136
CC 7= 39.531	0.054	3894	2919	975	133
CC 8= 138.36	0.055	3795	2898	897	131
CC 9= 138.36	0.056	3698	2878	821	129
CC 10= 79.063	0.057	3605	2858	747	126
CC 11= 0	0.058	3515	2839	676	124
CC 12= 9.356	0.059	3427	2820	608	122
CC 13= 32.744	0.060	3342	2801	541	119
CC 14= 32.744	0.061	3260		477	
CC 15= 18.711	0.062	3180	2765	415	
	0.063	3103	2748	355	113
M1= 5	0.064	3028	2731	297	111
RV 1= 21 RC 1= 2.366		2955	2714	241	109
RY 2= 26 RC 2= 0.584	0.066	2884	2698	186	107
EY 3= 31 RC 3= 46.041	0.067	2815	2682	133	105
RY 4= 36 RC 4= 24.867	0.068	2749	2666		103
RY 5= 41 RC 5= 17.252	0.069	2684	2651	33	101
	0.070		2636	-15	99
ЮМС= 69.493	9.010	C-J4-1	2300	10	

ALT. CT - C)

·					
CC 5= 225.631 CC 6= 0 CC 7= 37.65 CC 8= 131.776 CC 9= 131.776 CC 10= 75.301 CC 11= 0 CC 12= 9.304 CC 13= 32.564 CC 14= 32.565 CC 15= 18.608 MM= 5 RY 1= 21 RC 1= 2.366 RY 2= 26 RC 2= 0.584	150 151 152 153 154 155 156 157 161 163 164 165 166 166 166 166	4324 4211 4102 3996 3894 3795 3605 3605 3427 3260 3103 3028 2955 2884 2815 2749	2936 2915 2893 2873 2853 2814 2795 2776 2776 2774 2707 2690 2674 2658	NPW 1366 1275 1188 1103 1021 942 865 791 720 651 584 519 456 396 231 226 173 121 71 23 -23	8C.RT 146 143 141 138 136 133 131 128 126 123 121 119 117 115 113 108 107 105 103 101

TABLE B, IV-17 EIRR BY ALTERNATIVES (3)

$ALT_0 < II - C >$

< IHPUT >	< IRR COMPUTATION >				
CC 1= 0 CC 2= 121.918	DC.RT	PW.BF	PW.CS	NPW	BC.RT
CC 3= 426.713	0.050	4324	2958	1366	146
CC 4= 426.713	0.051	4211	2937	1274	143
CC 5= 243.836	0.052	4102	2917	1186	141
CC 6= 0	0.053	3996	2896	1100	138
CC 7= 30.646	0.054	3894	2877	1017	135
CC 8= 107.26	0.055	3795	2857	937	133
CC 9= 107.26	0.056	3698	2838	860	130
	0.057	3605	2830	785	128
	0.058	3515	2802	713	125
CC 12= 13.61	0.059	3427	2784	643	123
CC 13= 47.636	0.060	3342	2767	575	121
CC 14= 47.636	0.061	3260	2750	510	119
CC 15= 27.221	0.062	3180	2733	447	116
	ນ.063	3103	2717	385	114
MM= 5	0.064	3028	2701	326	112
RY 1= 21 RC 1= 2.366	0.065	2955	5686	269	110
	ე.065	2884	2671	213	108
	0.067	2815	~2656	160	106
RY 4= 36 RC 4= 23.485	0.063	2749	2641	108	104
RY 5= 41 RC 5= 12.753	0.069	2684	2527	57	102
	0.070	2621	2613	ò	100
©MC= 63.162	0.071	2560	2599	-39	99

ALT. < II - D >

< INPUT >	< IRR	СФИРИТА	TION >		
CC 1= 0 CC 2= 123.12	DC.RT	FW.BF	PW.CS	HFU	BC.RT
CC 3= 430.919	0.050	4324	2977	1348	145
CC 4= 430.919	0.051	4211	2955	1256	142
CC 5= 246.239	0.052	4102	2935	1168	140
CC 6= 0	0.053	3996	2914	1082	137
CC 7= 32.076	0.054	3894	2895	999	135
CC 8= 112.266	0.055	3795	2875	919	132
CC 9= 112.266	0.056	2698	2856	842	129
CC 10= 64.152	0.057	3605	2838	768	127
CC 11= 0	0.058	3515	2819	695	125
CC 12= 13.794	0.059	3427	2802	626	122
CC 13= 48.279	0.060	3342	2784	558	120
CC 14= 48.279	0.061	3260	2767	493	118
CC 15= 27.588	0.062	3180	2751	430	116
	0.063	3103	2734	368	113
M11= 5	0.064	3028	2718	309	111
RY 1= 21 RC 1= 2.366	0.065	2955	2703	252	109
RY 2= 26 RC 2≈ 0.584	0.066	2884	2687	197	107
RY 3= 31 RC 3= 46.499	0.067	2815	2672	143	105
RV 4= 35 RC 4= 25.155	0.068	2749	2658	91	103.
RY 5= 41 RC 5= 14.423	0.069	2684	2643	41	102
	ე.070	2621	2629	-8	100
0MC= 62.806					

TABLE B.IV-17 EIRR BY ALTERNATIVES (4)

ALT. (IX - A >

(INPUT >	√ IRR	COMPUTA	TICH >	:	
CC 1= 0 CC 2= 130.268 CC 3= 455.936 CC 4= 455.936 CC 5= 260.535 CC 6= 0 CC 7= 32.275 CC 8= 112.963 CC 9= 112.963 CC 10= 64.55 CC 11= 0 CC 12= 13.732 CC 13= 48.061 CC 14= 48.061 CC 14= 48.061 CC 15= 27.463 MM= 5 RY 1= 21 RC 1= 2.366 RY 2= 26 RC 2= 0.584 RY 3= 31 RC 3= 44.234 RY 4= 36 RC 4= 24.588	0.050 0.051 0.052 0.053 0.055 0.055 0.056 0.059 0.060 0.061 0.062 0.063 0.064 0.065	PW.BF 4324 4211 4102 3996 3894 3795 3698 3605 3515 3427 33260 3180 3103 3028 2955 2684	FW. CS 3164 3140 3116 3093 3071 3049 3027 3006 2986 2986 2946 2927 2908 2908 2908 2927 2908 2871 2854 2836	NPW 1160 1071 986 903 823 746 671 599 529 462 396 333 272 213 156 101 48 -4	BC.RT 137 134 132 129 127 124 122 120 118 116 113 111 109 107 105 104 102
RY 5= 41 RC 5= 13.856 OMC= 73.816				e e	

.

ALT. < II - B >

K IRR	COMPUTA	TION >		
DC.RT	PW.BF	PW.CS	HPW	BC.RT
0.050	4324	3078	1246	140
0.051	4211	3055	1156	138
0.052	4102	3033	1069	135
0.053	3996	3011	985	133
				130
0.055	3795		826	128
				125
		2928		123
				121
				119
•				116 114
				112
				110
				108
				106
0.066				104
0.067	2815	2750	65	102
0.068	2749	2734	14	101
0.069	2684	2719	~35	93
			•	
	0.050 0.051 0.052 0.053 0.054 0.055 0.056 0.057 0.059 0.063 0.063 0.064 0.065 0.066 0.067	DC.RT PW.BF 0.050 4324 0.051 4211 0.052 4102 0.053 3996 0.054 3894 0.055 3795 0.056 3698 0.057 3605 0.058 3515 0.059 3427 0.060 3342 0.061 3260 0.062 3180 0.063 3103 0.064 3028 0.065 2955 0.066 2884 0.067 2815 0.068 2749	0.050 4324 3078 0.051 4211 3055 0.052 4102 3033 0.053 3996 3011 0.054 3894 2990 0.055 3795 2969 0.056 3698 2948 0.057 3605 2928 0.058 3515 2908 0.059 3427 2889 0.059 3427 2889 0.060 3342 2871 0.061 3260 2852 0.062 3180 2834 0.063 3103 2817 0.064 3028 2800 0.065 2955 2783 0.066 2984 2766 0.067 2815 2750 0.068 2749 2734	DC.RT PW.BF PW.CS NPW 0.050 4324 3078 1246 0.051 4211 3055 1156 0.052 4102 3033 1069 0.053 3996 3011 985 0.054 3894 2990 904 0.055 3795 2969 826 0.056 3698 2948 750 0.057 3605 2928 677 0.058 3515 2908 606 0.059 3427 2889 538 0.060 3342 2871 472 0.061 3260 2852 408 0.062 3180 2834 346 0.063 3103 2817 286 0.064 3028 2800 228 0.065 2955 2783 172 0.066 2884 2766 118 0.067 2815 2750 65 <tr< td=""></tr<>

TABLE B.IV-17 EIRR BY ALTERNATIVES (5)

< ECGNOMIC EVALUATION >

ALT.	<	rır	>				·
< INPUT >							
CC 1= 0 CC 2= 109 CC 3= 349 CC 4= 349 CC 5= 229 CC 6= 54.	.1 .123 .123 .112		< IRR	СФИРИТЯ	TICH >		
00 7= 24.3	321		DC.RT	PW.BF	PW.CS	HPW	BC.RT
CC 8= 85. CC 9= 85. CC 10= 48 CC 11= 0 CC 12= 12 CC 13= 42 CC 14= 42 CC 15= 24 MM= 5 RY 1= 21	122 122 .642 .005 .016 .016 .008 RC 1= RC 2= RC 3= RC 5=	2.366 0.584 21.871 18.824 16.644	0.050 0.051 0.052 0.053 0.054 0.055 0.056 0.059 0.060 0.061 0.063 0.064 0.065 0.068 0.068 0.069	4277 4165 4056 3950 3848 3749 3653 3560 3388 3298 3216 3059 2984 2912 2841 2776 2642 2579	2585 2569 2569 25637 25637 25637 2493 2479 2465 2465 2412 2412 2364 2364 2364 2364 2364 2364 2364 236	1693 1596 1503 1413 1326 1242 1160 1082 1082 1082 1082 1082 1082 1082 108	162 159 156 153 150 147 144 141 135 130 127 125 123 116 116 113
			0.071 0.072 0.073 0.074 0.075 0.076	2519 2460 2403 2347 2293 2240	2308 2298 2288 2278 2268 2258	210 162 115 69 25 -18	109 107 105 103 101

FIGURE 8.IV-27 SCHEMATIC MAP OF KHANPUR WATER CONDUCTION SYSTEM

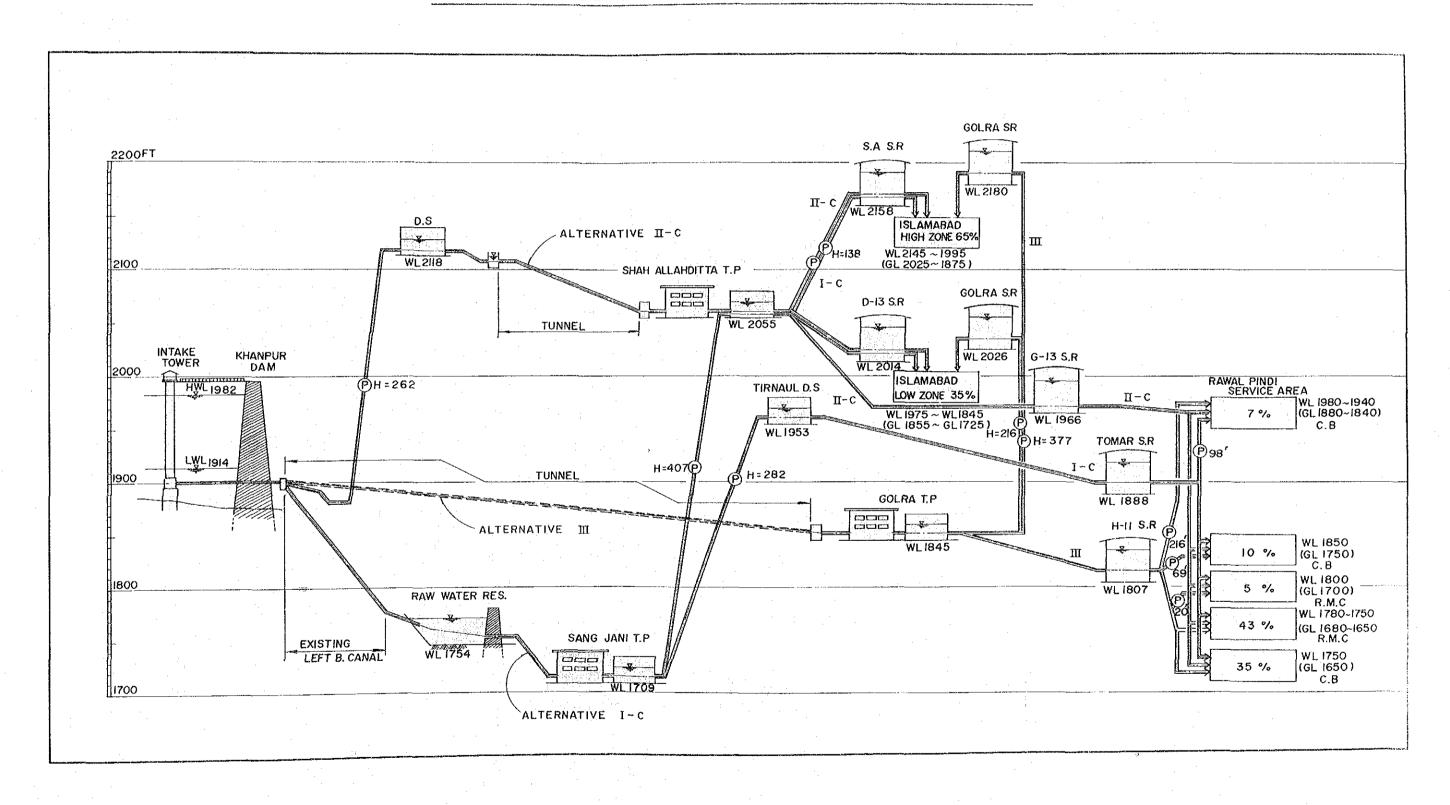


TABLE B.IV-18 PROJECT COST OF ALTERNATIVE I-C

(Unit: Rs.Million)

Item	Local	Foreign	Total
1. Raw Water Reservoir	52.3	42.7	95.0
2. Feeder Facilities	15.9	11.5	27.4
3. Tunnel		± x ,3	27.4
4. Water Treatment Plant	225.5	216.7	442.2
5. Pumping Station	128.9	134.1	263.0
6. Pipeline	348.6	348.5	697.1
7. Service Reservoir	92.9	64.5	157.4
8. Electric Works	22.4	38.1	60.5
<u>Sub-total (1 - 8)</u>	886.5	856.1	1,742.6
9. Project Office	12.0	-	12.0
10. Land Acquisition	71.2		71.2
11. Office Equipment	2.2	6.3	8.5
12. Engineering	42.3	159.1	201.4
13. Administration	48.6		48.6
Sub-total (9 - 13)	176.3	165.4	341.7
Base Cost (1 - 13)	1,062.8	1,021.5	2,084.3
14. Physical Contingencies	106.3	102.2	208.5
15. Price Escalation	1,027.9	509.3	1,537.2
<u>Sub-total (14 - 15)</u>	1,134.2	611.5	1,745.7
Total Cost	2,197.0	1,633.0	3,830.0

TABLE B.IV-19 PROJECT COST OF ALTERNATIVE II-C

(Unit: Rs.Million)

	Item	Local	Foreign	Total
1.	Raw Water Reservoir	· · · · · · · · · · · · · · · · · · ·		
2.	Feeder Facilities	20.0	14.4	34.4
3.	Tunnel	71.4	47.6	119.0
4.	Water Treatment Plant	276.1	265.3	541.4
5 .	Pumping Station	117.5	122.4	239.9
6.	Pipeline	282.2	282.1	564.3
7.	Service Reservoir	137.1	95.4	232.5
8.	Electric Works	22.5	38.2	60.7
	Sub-total (1 - 8)	926.8	865.4	1,792.2
9.	Project Office	12.0	-	12.0
10.	Land Acquisition	45.1	-	45.1
11.	Office Equipment	2.2	6.3	8.5
12.	Engineering	43.5	163.7	207.2
13.	Administration	50.0		50.0
	Sub-total (9 - 13)	152.8	170.0	322.8
	Base Cost (1 - 13)	1,079.6	1,035.4	2,115.0
	Physical Contingencies	108.0	103.5	211.5
15.	Price Escalation	1,067.0	516.5	1,583.5
	Sub-total (14 - 15)	1,175.0	620.0	1,795.0
	Total Cost	2,254.6	1,655.4	3,910.0

TABLE B.IV-20 PROJECT COST OF ALTERNATIVE III

(Unit: Rs.Million)

Item	Local	Foreign	<u>Total</u>
1. Raw Water Reservoir	-		-
2. Feeder Facilities	25.8	18.7	44.5
3. Tunnel	192.4	128.3	320.7
4. Water Treatment Plant	202.8	194.9	397.7
5. Pumping Station	71.7	74.6	146.3
6. Pipeline	201.5	201.4	402.9
7. Service Reservoir	111.7	77.7	189.4
8. Electric Works	25.0	42.7	67.7
<u>Sub-total (1 - 8)</u>	830.9	738.3	1,569.2
9. Project Office	12.0	.	12.0
10. Land Acquisition	35.6	-	35.6
11. Office Equipment	2.2	6.3	8.5
12. Engineering	38.1	143.3	181.4
13. Administration	43.8		43.8
Sub-total (9 - 13)	131.7	149.6	<u>281.3</u>
Base Cost (1 - 13)	962.6	887.9	1,850.5
			205.2
14. Physical Contingencies	96.3	88.8	185.1
15. Price Escalation	957.3	457.1	1,414.4
Sub-total (14 - 15)	1,053.6	545.9	1,599.5
Total Cost	2,016.2	1,433.8	3,450.0

CHAPTER V. PROPOSED FACILITIES

CHAPTER V. PROPOSED FACILITIES

5.1. Major Revision of Facility Design Concept

Through series of discussion meeting on the alternative study and review of design criteria for final preliminary design, the following design concepts are revised from original one which was described in Chapter III of this Appendix B.

A. Water Losses of Water Treatment Plant

Initial proposed water losses at water treatment plant was assumed about 10 percent of daily raw water inflow in receiving well of the plant. During course of field study in Pakistan, detailed discussion has been made between the team and CDA staff concerned. Finally the value of water losses was revised to 5% from original one. (Please refer to discussion materials item-10 in Chapter V of Appendix C)

Revised distribution discharges for each sector in Islamabad and Rawalpindi are indicated in Table B.V-1 and B.V-2, respectively.

B. Cross Section of Pressure Tunnel

Cross section of pressure tunnel just downstream of intake tower is changed to 2,400 mm diameter from 2,100 mm original one taking into consideration distribution of hydraulic gradient, water losses of jet flow valve and efficient utilization of concrete placing steel form etc.

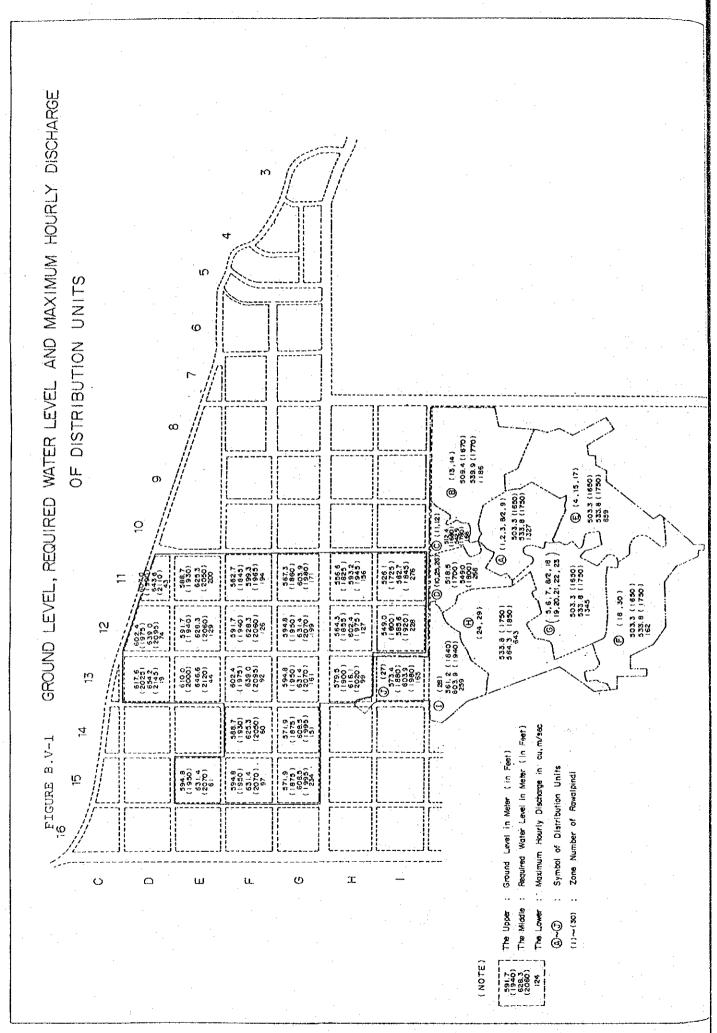


TABLE B.V-1 ISLAMABAD WATER SUPPLY IN THE YEAR OF AD2000 (DISTRIBUTION OF KHANPUR DAM WATER)

Sector	(1) Max. Daily Demand cu.m/D	(2) %	(3) Max. Daily Discharge cu.m/D	(4) Max. Hourly Discharge l/s
D-11	2,095	1.45	2,456	43
E-11	9,819	6.81	11,535	200
F-11	9,539	6.61	11,196	194
G-11	8,376	5.81	9,841	171
н-11	7,641	5.30	8,978	156
1-11	13,538	9.39	15,905	276
D-12	3,625	2.51	4,252	74
E-12	6,350	4.40	7,453	129
F-12	6,185	4.29	7,267	126
G-12	9,758	6.77	11,468	199
H-12	6,235	4.32	7,318	127
I-12	11,175	7,75	13,128	228
D-13	906	0.63	1,067	19
E-13	2,139	1.48	2,507	44
F-13	4,489	3.11	5,268	92
G-13	7,912	5.49	9,299	161
H-13	4,830	3,35	5,674	99
F-14	2,925	2.03	3,439	60
G-14	7,419	5.14	8,707	151
E-15	3,017	2.09	3,540	61
F-15	4,781	3.31	5,607	97
G-15	11,482	7.96	13,483	234
Total	144,236	100.00	169,388	2,941

Notes: (2) = $\frac{(1)}{\text{Total (1)}} \times 100$ (3) = 33 MGD x $\frac{4.55}{1000} \times 0.95 \times 0.95 \times 1.25 \times \frac{(2)}{100} = 1693.88 \times (2)$ (4) = (3) x 1.5/86,400

TABLE B.V.-2 RAWALPINDI WATER SUPPLY IN THE YEAR OF AD2000 (Distribution of Khanpur Dam Water)

			(1		(2)	(3)	(4)
				ly Demand		Max.Daily	Max.Hourly
r .		Claration	M.D.D.	Total	Q	Discharge	Discharge
20	me	Sector	(<u>cu.m/D</u>)	$(\underline{cu.m/D})$	%	(cu.m/D)	(cu.m/D)
		1	31,799				:
		2	32,565				
	A	3.	22,495	104,719	45.0	76,438	1.327
		8/2	7,340				
R		9	10,520				
М	В	13	81,376	93,639	40.2	68,285	1.186
•		14	12,263	93,039	30.2	00,203	T.100
С	С	11	5,336	13,189	5.7	9,682	0.168
		12	7,853	19,109		J,002	
		10	18,191			•	
	, D	25	776	21,064	9.1	15,457	0.268
		26	2,097				
	Sub	-total	232,611	232,611	100.0	169,862	2.949
		4	9,646				
	E	15	16,161	51,958	20.4	37,989	0.659
		17	26,151				
	F	16	974	12,785	5.0	9,311	0.162
		30	11,811				
		5	11,945				
		6	2,435				
		7	9,545				
C		8/2	7,340	1.0			
В	G	18	1,624	105,934	41.6	77,468	1.345
	20 21 22	19	62,436		-		
		3,774					
		440				4	
		5,255			4		
		23	1,140				
	Н	24	45,659.	50,617	19.9	37,058	0.643
		29	4,958				
	I	28	20,495	20,495	8.0	14,898	0.259
	J	27	12,999	12,999	5.1	.9,497	0,165
	Sub	-total	254,788	254,788	100.0	186,221	3.233
G	cand	Total	487,399	487,399		356,083	6.182
						MGD = 3.653	
Notes		v. Dischar		1 4		$\times 1.25 = 4.5$	
			Discharge				= 4.121cu.m/s
			x. D. Dis			$\times 0.477* = 1$	
						$\times 0.477 = 1$ $\times 0.523 = 2$	
						the Year of	
Max. D. D(2000) RMC; 232,611 C.B; 254,788 (Ratio) (0.477) (0.523)							
						100	
	(2	/ =	$\frac{1}{\cot al(1)}$ x	100 (3)			400x(2)/100
	:	Sup 3	.ocar(I)		(C.B.)	= 2.155x86	5,400x(2)/100
	(4	$4) = (3) \times$	1.5/86,4	00			

5.2. Hydraulic Computation of the Facility

5.2.1. Conduction Main

Conduction main has a total length of 13.06 km (8.11 miles) to be constructed between the intake tower at the Khanpur reservoir and Golra treatment plant with the design discharge of 6.74 cu.m/sec (238 cusecs). Connected with the intake tower, which is installed within the reservoir area, a pressure tunnel of 770 m long and an energy dissipator facility of 54 m in length are planned to be constructed. Waters released from the reservoir are conveyed to the treatment plant through a conduit of 106 m, free-flow tunnel of 11,480 m and pipeline of 650 m long.

Double pipeline system with a couple of energy dissipator valves are proposed taking the future repair works into consideration, while a single line of tunnel is constructed based on an economic reason as well as on the actual achievements, as reported in many countries, showing no serious damages and accidents during operation & maintenance works. The lowest intake gate of the intake tower is located at the first-stage dead water level. However, the minimum reservoir level to pass the design discharge through outlet facility as required for municipal water supply is estimated at 583.62 m (1,913.5 ft) in case of single dissipator valve and at 582.57 m (1,910 ft) in case of double valves. As a consequence in the study, the design headwater level is determined at 582.57 m.

Effective storage between elevations 582.57 and 580.11 m (1,902 ft) is estimated as 6.15 MCM (5,000 acre-ft), corresponding to about six days capacity for municipal water supply. In such an unusual case when the reservoir level falls around the elevation 1,910 ft, it is thought that the full amount of design discharge is rarely released because saving water practice is commonly accompanied. As falls the reservoir level to 1,910 ft or lower, amount of water to

be released decreases gradually. Structure of the energy dissipator, however, allows 3.37 cu.m/sec or 50% of design discharge to pass through outlet facility.

Hydraulic calculations for the conduction main for the section from the inlet of conduit up to Golra treatment plant are presented in Tables B.V-3 and B.V-4. Delivery water level at the receiving well of the treatment plant is determined at 572.67 m (1,877.6 ft).

5.2.2. Water Treatment Plant

Detailed hydraulic calculations prepared for water treatment plant, from the receiving well up to the clear water reservoir, are briefly discussed as below:

Water Level of Receiving Well + 572.67 m (1,877.6 ft)

A. Receiving Well

$$Q = CBH^{3/2}$$

$$hw = (Q/CB)^{2/3}$$

where Q: flow rate 3.20 m³/sec

C: weir discharge coefficient 1.89

B: width of weir 3.85 m

hw: weir overflow depth

 $hw = (3.20/1.89 \times 3.85)^{2/3} = 0.58 m$

allowance, ha = 0.08 m

B. Head Loss of Interconnecting Pipe (Receiving Well - Mixing Well)

a) Friction loss

b) Minor loss

Water Level of Mixing Well

$$+572.01 - (0.08 + 0.27) = +571.66 m$$

C. Mixing Well

Hw =
$$(1.60/1.88 \times 18.00)^{2/3} = 0.13 \text{ m}$$

No allowance is considered.

D. Head Loss by Baffled Channels in Flocculation Basin lower bend hb = fb x $v^2/2g$, fb = 4.5 overflow ho = fo x $v^2/2g$, fo = 2.5

Stage	Height baffle		Width of channel(m)	Velocity (m/sec)	v ² /2g (m/sec)	No. o baffl		
1	1.80		1.50	0.30	4.59	L -		
2	1.80) .	2.00	0.22	2.47	L -	-	
3	1.80) ·	2.90	0.15	1.15	L -		
hb	ho	Total	Capacity	Qf Reten	ition G	value		
(m)	(m)	(m)	channel (sec) (sec)	GT value	
0.083	0.046	0.26	336	42	:0	72.5	30,000	
0.044	0.25	0.14	448	56	50	45.9	26,000	
0.021	0.0115	0.06	659	81		26.1	21,000	
Total		0.46	1,434	1,79	3		77,000	

Water Level of Sedimentation Basin

+ 571.66 - (0.13 + 0.46) = + 571.07 m

E. Head Loss by Effluent Trough of Sedimentation Basin

$$q = 0.80^3 / sec \times 1/9 = 0.089 \text{ m}^3 / sec$$

$$hc = (aq^2/gb^2)^{1/3}$$

where q: flow rate per trough

hc: critical depth

a: coefficient 1.10

b: width of trough

hc = 0.177 m

 $ho = 3^{1/2} \times hc$

where ho: water depth of upper end

ho = 0.307 m

weir overflow depth

 $hw = (0.044/1.89 \times 5.00)^{2/3} = 0.03 \text{ m}$

Water Level at Effluent of Sedimentation Basin

+571.07 - (0.03 + 0.40 + 0.10) = +570.54 m

- F. Head Loss of Interconnecting Pipe (Sedimentation Basin Filter)
- a) Friction loss

hf =
$$10.666 \times 130^{-1.85} \times 1.65^{-4.87} \times 3.20^{1.85} \times 50$$

= 0.05 m

b) Minor loss

$$h m = hi + ho = 0.17 m$$

where hi : influent, he : effluent

Water Level of Filter

$$+ 570.54 - (0.05 + 0.17) = + 570.32 m$$

G. Head Loss for Filter

Total Head loss of filter is determined at 2.50 m.

- H. Head Loss of Interconnecting Pipe (Filter Clear Water Reservoir)
- 1) Friction loss $hf1 = 10.666 \times 130^{-1.85} \times 1.65^{-4.87} \times 3.20^{1.85} \times 85 = 0.08 \text{ m}$ $hf2 = 10.666 \times 130^{-.185} \times 1.20^{-4.87} \times 1.60^{1.85} \times 30 = 0.04 \text{ m}$ hf1 + hf2 = 0.12 m
- 2) Minor loss hm = 0.27 m
- I. Clear Water Reservoir

hw =
$$(1.60/1.86 \times 11.30)^{2/3} = 0.18 \text{ m}$$

allowance, ha = 0.03 m

High Water Level of Clear Water Reservoir

$$+570.32 - (2.50 + 0.12 + 0.27 + 0.18 + 0.03) = +567.22 \text{ m}$$
 effective depth : 4.00 m

Low Water Level of Clear Water Reservoir

$$+ 567.22 - 4.00 = + 563.22 \text{ m} (1.846.6 \text{ ft})$$

5.2.3. Distribution System

A. Water Level of Service Reservoir

Based on the flow diagram as illustrated in Figure B.V-2, required water levels of service reservoirs are determined so as to satisfy necessary water head and discharge at the delivery point of each distribution unit. Required water head at each distribution

unit is taken as + 120 ft and + 100 ft above ground level respectively for Islamabad and Rawalpindi, and computations are based on the maximum hourly discharge. Hydraulic calculations are summarized in Tables B.V-5 to V.B-8. In this connection, water levels of service reservoir as calculated are given in terms of the lowest water levels (LWL), and at LWL the design maximum hourly discharge is to be deliverable to each distribution unit.

Although distribution system is desirable to be proposed by means of gravity flow system, which would need less costs for construction as well as operation and maintenance, service areas of Islamabad are not deliverable by gravity since the required water head at each distribution unit is much higher than the available water head of 563.2 m (1,846.6 ft) at the clear water reservoir of Golra treatment plant as obtained from Khanpur reservoir level. the other hand in Rawalpindi, most part of service area is deliverable by a gravity system. Accordingly for Islamabad, as previously discussed in Chapter III, service area is divided into two zones, namely High zone and Low zone. Golra-1 service reservoir and Golra-2 service reservoir are proposed for High and Low zones, respectively, and waters are pumped up from the treatment plant. For Rawalpindi, water conveyed from treatment by gravity are delivered to the service reservoir to be constructed in the sector H-11, and then distributed to the most part of serve area by gravity. For distribution units D, H, I and J where insufficient water heads are only available, waters are further lifted by booster pumps. Water levels and service reservoirs are summarized as under:

Islamabad			I	MI
High Zone:	Golra-l Service	Reservoir	663.0 m	(2,174 ft)
Low Zone :	Golra-2 Service	Reservoir	614.5 m	(2,015 ft)
Rawalpindi				
H-11 Service	e Reservoir		551.0 m	(1,807 ft)

5.2.4. Hydraulic Distribution of the Proposed System

Hydraulic distribution of the proposed system based on the hydraulic computations is summarized and illustrated as in Figure B.V-3.

5.2.5. Hydraulic Consideration on the Existing Division Works

The Left Bank Canal of the Khanpur Dam (L.B.C) has been constructed so as to convey combined water supply for municipal, industrial and irrigation. Hydraulic profile of L.B.C will be influenced and water surface elevation will considerably fall due to the change of design discharge, if the municipal water is excluded from the design discharge of L.B.C. Accordingly the crest elevation of the existing division works should be lowered to divert required amount of water through facilities. Sample computation is given as under for the selected division work located at RD9358 of L.B.C.

Hydraulic Dimension of L.B.C at RD9358

Design Discharge Q = 12.326 cu.m/sec (434 cusecs)

Bottom Width of Canal b = 1.754 m (5.75 ft)

Water Depth d = 1.754 m (5.75 ft)

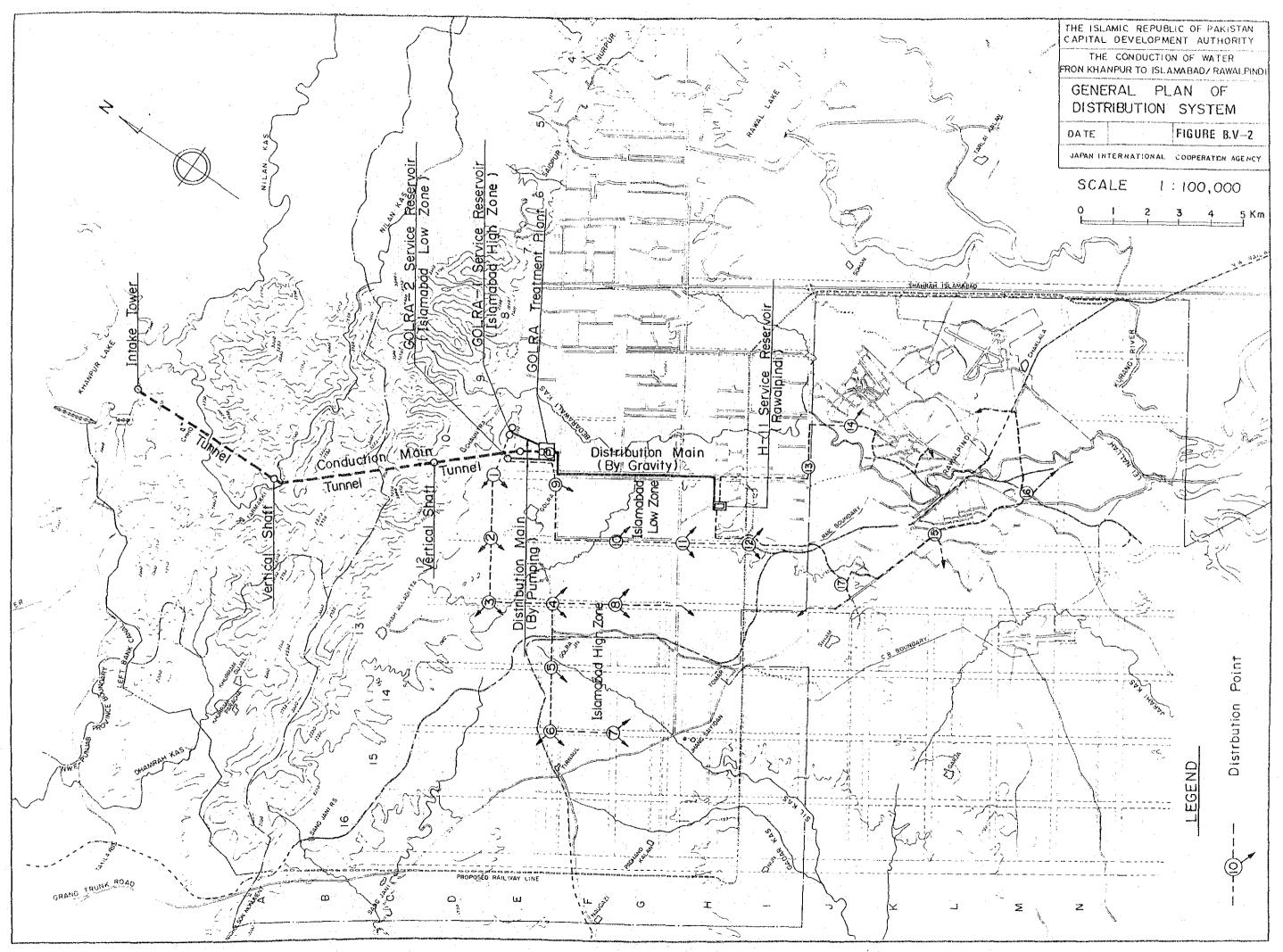
Side Slope of Canal m = 1.5:1Longitudinal Slope S = 1/1,650

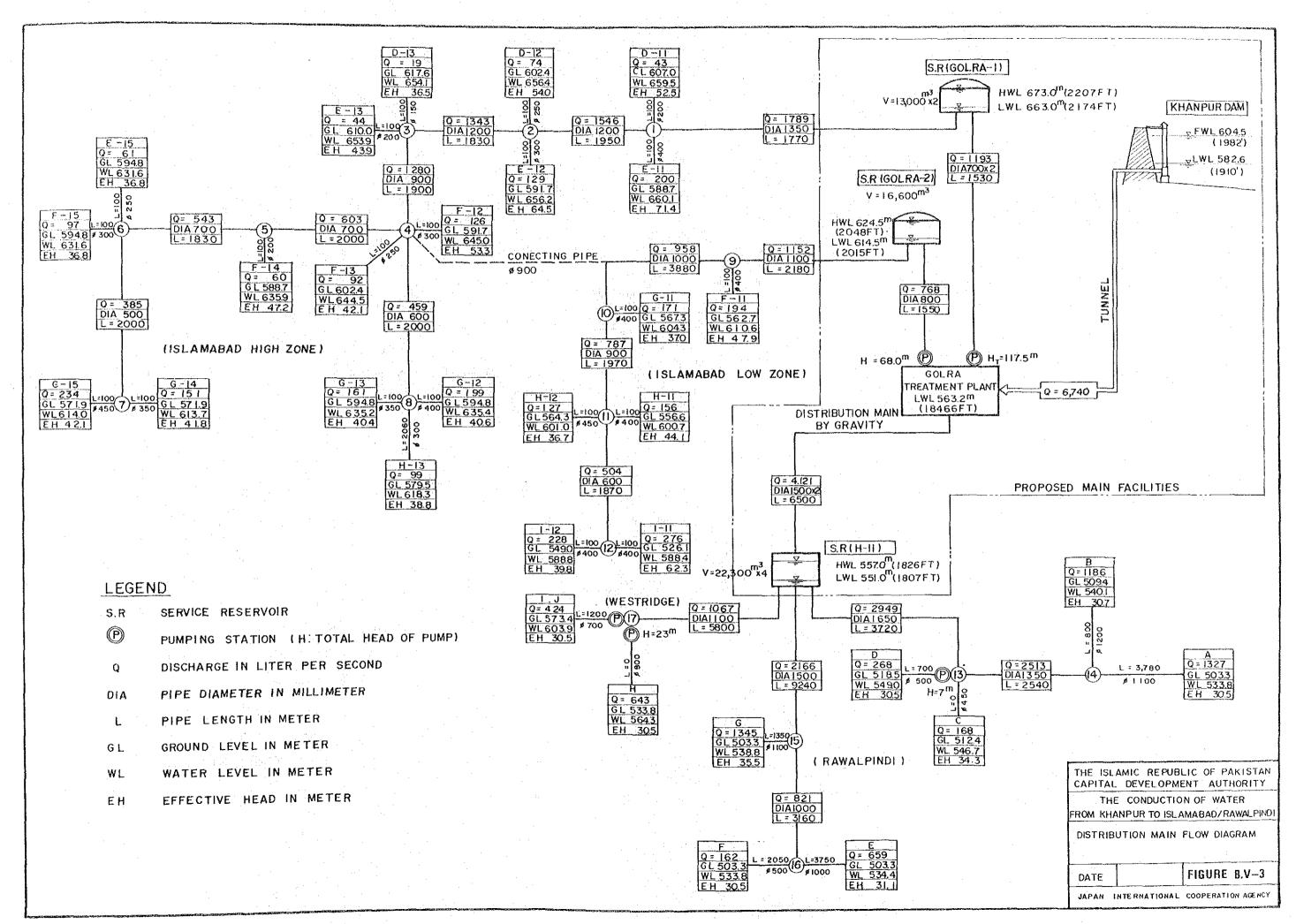
Roughness Coefficient n = 0.015

When municipal water is excluded, the design discharge will be revised as;

 $Q' = 12.326 - 6.74 \times 1.1 = 4.912 \text{ cu.m/sec}$

d' = 1.13 m (3.70 ft)


v = 1.25 m/sec : flow velocity


A = 3.897 sq.m: flow area

R = 0.668 m: Hydraulic radius

Water surface elevation will, therefore, fall as; $\Delta \ d = 1.754 \ m - 1.130 \ m = 0.624 \ m \ (2.05 \ ft)$

Accordingly, structure of the existing division work should necessarily be modified.

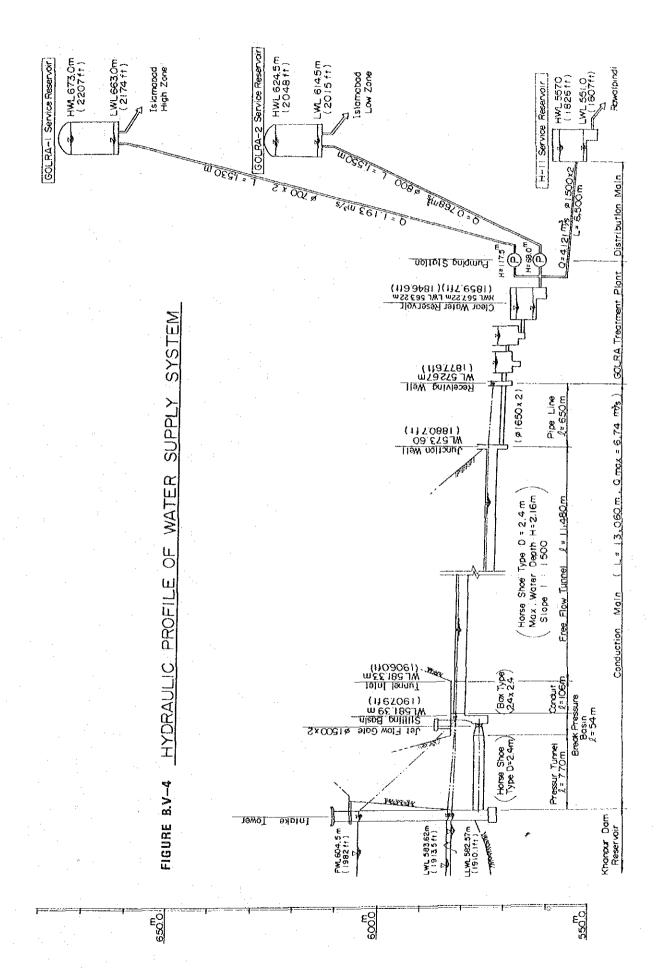


TABLE B.V-3 LOSS HEAD COMPUTATION OF CONDUCTION MAIN

Water Level (El.) 583.62 m	(1,913.5 ft) [582.57] m (1,910.1 ft)	583.45 [582.40]	582.84		581.39 (1,907.0 ft)	581.33	573.60	572.67 (1,877.6 ft)
Total Loss (m)		H W	· } } ·	1,45		0.06	6.0	
Other Losses (m)				o. c.		ι α 	0.17	
Friction Loss (m)		α υ	}	0.06	N	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.76	
Energy Gradient		000				1:1,850	1: 860	
Length (m)		022		<i>გ</i>		106	059	
Description	Khanpur Reservoir	בורמאט ביינים אלוים א		Valve & Brake Pressure Basin		Conduit Free Flow Tinnel	pipeline	Receiving Well at Treatment Plant

Figures in square brackets are provided for the case that two jet-flow valves are fully opened. Note:

TABLE B.V-4 HYDRAULIC CALCULATION OF CONDUCTION MAIN

Coefficient of Roughness "n"	0.014	0.014	0.015	0.012
Energy Gradient	1:1,320	1:1,500	1:1,850	1: 860
Velocity (m/sec)	1.41	1.48	1.30	1.58
Water Depth	Full	2.16 m	2.16 m	<i>P</i> 011
Shape & Size	Horseshoe D = 2.40 m	Horseshoe D = 2.40 m	2.40 m x 2.40 m	φ1,650 mm x 2
Description	Pressure Tunnel	Free Flow Tunnel	Conduit	Pipeline

Note: Design Discharge Q = 6.75 cu.m/sec (238 cusecs)

TABLE B.V-5 HYDRAULIC CALCULATION (T.P - S.R)

	(GENERAL)					;					
	POINT G.LEVEL	H.LENGTH (M)	HE 10H H	HEIGHT P.LENGTH	, ,	METER DISCHARGE CMM) (L/S)	VELOCITY CM/S)	DIAMETER DISCHARGE VELOCITY HYDR GRAD. (MM) (L/S) (M/1000M)	: :	WATER LEVEL	H.LOSS WATER LEVEL BFFEC. HEAD (M) (M)
SR-TP CEP)	563.20	1530.00	109.80	1533.93	700.	596.50	7	3.897	2.977	563.200	0.0 -115.777 (Ht=117.5M)
000 000 000 000 000 000 000 000 000 00	563.20	1550.00	61.30	1551.21	800.	768.00	1.535	3.246	5.035	563.200 558.165	0.0 -66.335 (HT= 580.M)
SR-H (EP)	553.20	00.0059	-6.20	00.0059	1500.	2060.50	1.171	276.0	6.132	563.200	0.0

													:								
EAD									٠												
EFFEC. MEAD	0.0	62.845	57.086	28,434	10	45.099	54.686 54.788 38.7.88	66.050 52.500	71.361	62.845	62,845	52.926 36.51:	52.926	57.686	57.686	28.434	34.643	34.641	41.795	56.718 40.628	56.718 40.396
WATER LEVEL	663,000	657.645	646.385	638.434	505.219	613.999	6166,3818	659,850	660.850 660.061	657.645	657.645	655.326	655.326	646.385	646,385	678.434 635.895	632.442	632.443	612.593	636.218	635.236
H.LOSS (A)	2,49	2.505	10	7.95	7 8.0	0.593	17,932	1.351	0.789	2. 2. 3.	1,421	14 22 +	1.403	361	1,864	2.539	0.864	0.839	248.0	0.789	3.022
HYDR GRAD. CH/1000M)	1.213	1.646	402	3.975	0 0	76615	5.084	13.407	7.876	22.346	14.205	12.010	13.989	13.600	18.470	24.832	8.636	282.3	8.07	7,803	501.04
VELDC1TY (M/S)	1,255	1.373	2.02	575	1 972	1.480	1.632	:.379	109	1.518	758.4	1.084	1.431	1.794	1.887	7.854	1.252	1.38%	1.579	1.593	1,684
CL/S>	1789.00	1546.00	1280.00	00.00	185.00	234.00	00.46	43.00	200,00	24.00	129.00	00.6;	00.77	124.00	92.00	60.09	61.00	97,00	252.00	199.00	161.00
0148410K	1350.	1200	000	. 60	200.	720.	300.	200.	7007	250.	, 000 100		2.00.5	300.	250.	200.	250.	9	350.	400.	м 00 0
P.LENGTH CMO	1771.31	1950.00	50.006	2000.11	2000.15	100.03	2000.02	100.74	300.39.	100.29	100.05	101.15	106.29	100.04	n 6.00 t	72-201	100.00	100.001	100.01	101.16	01
KE16HT CM)	-68.20	0	-13.70	22.30	-24.40	-1.50	0.0	12.20	16,10	7.60	0 11 11	02.21	7.00	3.00	07.54	-21.30	00 ·	-3.00	-1.50	15.30	15.30
H.LENGTH CMD				2000.00			2060.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	00 00 0	100,00	100.00
G-LEVEL (H)	20.299		4.				578.70 579.50	594.80	594.80 588.70	594.80	594.80	002.70	602.40	501,70	588.70	588.70	594.80	597.80	873.40	576.50	576.50
POINT	œ et	ri s	3 -4	w` ₄		G-15 (EP)	# # 13 B A CEP >	4 1 1 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	# > A # C # A # A	0-12 (EP)	E+12 (E9)	0-13 0-13 0-13 0-13	8 (4)	F-12 (EP)	7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 -	F-14 (EP)	1 (1) (1) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	2 Kg (4 g)	6-14 6-14 6-14	80 (1 / 1 dd 1 dd 1 dd () d	6 4 4 4 4 4 4 4 4 7 7 8 8 8 7 8 7 8 7 8 7

POLOG	G.LEVEL	HILLENGTH I		PLENGTH	DIAMETER	DISCHARGE	VELOCITY	HYDR. GRAD.	H.LOSS	WATER LEVEL	EFFEC. HEAD
	(E)	(W)	(£)	(B)	(MM)	(F/S)	(M/S)	(M/1000M)	(E)		3
ď	614.30			٠,						614.500	0.200
0	567.30	2180.00	-47,00	2180.51	11001	1152.00	1.218	1.457	3-178	611.322	44.022
10	564.30	3880.00	00.5	3880.00	1000	958.00	1.226	1.648	6.394	604,928	40.628
ei Fi	564.30	1970.00	0,0	1970,00	006	787.00	1.243	1.913	3.769	601.158	36.858
12	530.70	1870.00	-33,60	1870.30	,009	504.00	1.792	770.9	11.304	589.854	757-65
1-12 (EP)	249.00	100.00	18.30	101.66	700	228.00	1,825	10.036	1-020	588.834	39:834
o	7 47									411 422	200 77
F 1 1 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	562.70	100.00	09*7-	1001	7007	194.00	1,553	777-2	0.745	610.577	77.877
70	5.64.30	1	·		:					807.09	40.628
の 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	267.30	100.00	00°F	100.04	7007	171.00	1.369	768.5	0.590	604.338	37.038
ĘĘ.	564.30			٠.						601.158	36.858
H-11 (EP)	556.60	100.00	-7:70	100,30	7007	156.00	1,249	7.6.7	667.0	600.659	650.77
ር	564.30	:			•				. •	601.158	36.858
H-12 (EP)	564.30	100.00	0	100,00	450.	127.00	0.804	1.936	0.192	600.967	36.667
2 T C	530.70	100.00	-4.60	100,11	7007	276.00	2,209	14.291	1,431	589,854 588,424	59.154

(S.R(H-11)--RAWALPINDI)

5.3. Preliminary Design of Intake Tower and Conduction Main

5.3.1. Tunnel Design

Cutting line of tunnel section to ensure the designed thickness of lining (A-line), pay line of excavation and lining concrete, and dimension of steel support are determined following guidelines and design standards prepared by United States Bureau of Reclamation as well as by Japanese Ministry of Agriculture, Forestry and Fisheries.

Three types of standard cross section of tunnel are established. For three fractured zones, which are geologically considered to be tectonic faults and through which the tunnel is proposed to pass, special reinforcement works preceded excavation are carried in execution. In the case that steel supports deforms after excavation work due to increase of earth pressure at the places of fault and fractured zone, lining work is to be made by using centre forms.

A. A-line

Standards for A-lines are as under:

DESIGN THICKNESS OF LINING (A-LINE)

Tunnel	No	.1 Tunnel		No	o.2 Tunnel	<u> </u>
Туре	Arch Side	Invert	Concrete	Arch Side	Invert	Concrete
Туре А	$\frac{\mathrm{Di}}{20} \stackrel{>}{=} 20$	$\frac{\mathrm{Di}}{20} \geq 20$	Reinforced Concrete	$\frac{\text{Di}}{20} \ge 15$	$\frac{\text{Di}}{20} \stackrel{>}{=} 15$	Plain Concrete
	20 cm	20 cm	$\sigma 28 = 210$	15 cm	15 cm	$\sigma 28 = 180$
Туре В	$\frac{Di}{20} \ge 20$	$\frac{\text{Di}}{20} \ge 25$	- do -	$\frac{\text{Di}}{20} \ge 20$	$\frac{\text{Di}}{20} \ge 15$	- do -
	20 cm	25 cm	· · · · · · · · · · · · · · · · · · ·	:. 20 cm	15 cm	
Туре С	•••		-	$\frac{\text{Di}}{15} \stackrel{>}{=} 20$	$\frac{\text{Di}}{15} \ge 20$	- do -
handler her her hand and the second				20 cm	20 cm	

Note: Di denotes inner diameter of tunnel

In this connection, nothing except steel ribs or a part of original hard foundation should not be remained. In addition, nothing except concrete itself should not be remained within the distance of 10 cm from inner face of lined concrete.

B. Excavation Pay Line and Concrete Pay Line (B-line)

In consideration of rock classification of the foundation, construction method and etc., tunnel pay lines for excavation and concrete, as required for estimation of construction cost, are determined as presented in Table B.V-9.

Foundation Geology at Proposed Intake Tower Site

At and around the proposed site of intake tower, rocks are outcropped and foundations are composed of alternating beds of hard limestone, in which fissures are to some extent developed, and massive marl. Bearing capacity of foundation is estimated to be sufficient to support the intake tower. There is, however, some possibility of leakage of the reservoir water during the course of foundation excavation and it is recommended that careful investigation is executed as advance to check permeability of soil layer.

Geology along Tunnel Routes

Geological profiles along tunnel routes are compiled in the separate volume "Drawings". Length of tunnel, as classified by rock types, is given as below:

ROCK TYPES ENCOUNTERED ALONG TUNNELS

(Unit: meter)

Tunnel	Rock Type I	Type II	Type III	Type IV	Total
Tunnel l	0.	770	0	0	770
Tunnel 2-1	940	2,590	370	50	3,950
Tunnel 2-2	2,140	2,100	950	0	5,190
Tunnel 2-3	0	320	1,310	710	2,340
Total	3,080	5,780	2,630	<u>760</u>	12,250

As concerns geological survey, a detailed investigation is recommended to be progressed preceding to detailed design works. General condition of geology and groundwater is described also in Chapter III, 3.2 of this appendix. In review of at present available data, special attention on the planning of tunnel excavation is to be paid, firstly to taking measure to cope with spring water (groundwater) and secondly to treatment of faults. In addition, it is estimated that little swelling rock is distributed along the tunnel route.

5.3.2. Construction Planning

A. Intake Tower

Since the proposed site of intake tower is presented in a shape of a small bay, water levels in the reservoir are desirable to be kept as low as possible during construction works, by means of releasing excess water through the spillway gates. Coffer dam is proposed with double sheet-piles filled up with sand. The crest elevation of the coffer dam is set at 1.5 m above the crest of the spillway.

B. Tunnel

Pressure tunnel is excavated from its outlet side, while No.2 tunnel is excavated at six faces in total, inclusive of inlet, outlet and both faces of two vertical shafts.

Tunnel excavation is executed with 3 units of 40 kg-class legdrills and prefabricated footholds. Blasted tunnel muckings are placed in steel muck cars of 3 m³ capacity by rocker shovels of 0.23 m³ bucket capacity and 7.5 kw-class trainloader. About 24 m³ of mucks produced by one blasting is hauled by 8 units of muck cars pulled by a 8 ton locomotive. Locomotive and carriers are switched at expanded sections of 1.0 m wide and 10 m long placed with 500 m interval. Concrete is transported from batcher plant to each tunnel face with agitator trucks of 3 m³ capacity, and lined by a 3 m³ presscrete. Steel forms are of 12 m long and running cycle is determined at one cycle per day. After completion of arch side wall lining works, invert concrete is placed from the inner side of tunnel. Back-filling grouting is constructed about 2 weeks to a month after placing concrete, and after completion of back-filling grouting, weep holes are drilled.

Prior to tunnel excavation through 3 fractured zones, chemical grouting is executed for the purpose of reinforcement. In the case where increase of earth pressure after excavation is remarkable, lining work is to be made immediately after excavation, by use of centre metal forms.

Regarding a batcher plant, one unit of 1.0 m 3 compelling mixer is installed at the suitable site of both Khanpur side and Golra side. Kneaded concrete is transported by agitator trucks of 3 m 3 capacity to each construction site.

A vertical shaft is the lifeline for tunnel construction, and therefore, 2 sets of facilities or equipments such as skip elevator for mucking, drainage pump, drainage pipe and other are to be prepared. Major machinery and equipments are listed as under;

Machine & Equipment	Specification	No.	Remarks
Compressor	75 kw	4	
- do -	55 kw	4	
Legdrill	40 kg class	28	
Rocker Shovel	0.23 m ³ (RS55)	6	
Train Loader	7.5 kw, $\ell = 30 \text{ m}$	6	
Steel Muck Car	3 m ³	50	
Battery Car	8 ton	6	
- do -	6 ton	1.7	14 (1.1.) 11 (1.1.)
Presscrete	3 m	5	
Steel Form	$D = 2.4 \text{ m}, \ell = 12 \text{ m}$	3	•
Centre Form	1.5 m	5	
Batcher Plant	1.0 m ³ Mixer	2	
Agitator Truck	3 m	5	
Dump Truck	8 - 10 ton	5	
Truck	6 - 8 ton	3	
Jeep		5 Fo:	r Supervision
Elevator (For Shaft)	22 kw	4 For	r Muck
- do -	5.5 kw	2 Fo:	r Materials
- do -	5.5 kw	2 Fo	r Personnel
Drainage Pump	$4.5 \text{ m}^3/\text{min}, 125 \text{ kw}$	4	
- ao -	3.7 kw	15	
Water Supply Pump	3.7 kw	4	
Blower	22 kw	12	
Bulldzoer	8 ton	2	: '
Generator	200 KVA	3 Fo.	r Power Stoppage
Truck Crane	10 ton	1 1 1	

FIGURE B.V-5 CONSTRUCTION SCHEDULE OF CONDUCTION MAIN

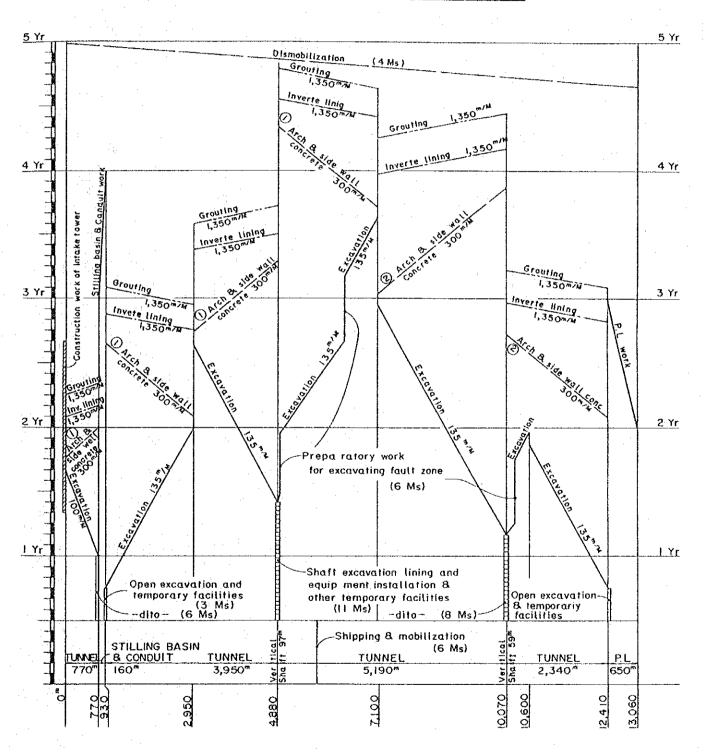


TABLE B.V-9 TUNNEL PAY LINE (B-LINE)

Concrete Pay Line	Invert	=15 + 5 =20	tå + 5 #15 + 5	td+5 =20+5 =25
Conc	Arch tc + 10	=15 + 10	td + 10 =20 + 10 =30	td+tr+10 td+5 =20+10+10 =20+5 =40 =25
o No.4 Tunnel Excavation Pay Line	Invert	=15 + 5 =	td + 5 = 15 + 5 = = 20 = =	
No.2 to No.4 Tunnel Excavation Pay Line	Arch td + 20	=15 + 20	td + 20 =20 + 20 =40	td+tr+20 td+5 =20+10+20 =20+5 = 50 =25
No Design Thickness (td)	Invert	15.	15	20
Des	Arch	15	20	20
์ เดินที่เค	Type	Type A	Type B	Type C
Concrete Pay Line	Invert td + 5	=20 + 5 =25	# # td. + 5	ı
Conc	Arch td + 10	=20 + 10 =30	td + 15 =20 + 15 =35	•
. l Tunnel Excavation Pay Line	Invert	=20 + 5 :	td + 5 =25 + 5 :	
No. 1 Tunnel Excavation Pay Line	Arch td + 20	=20 + 20 =40	td + 25 =20 + 25 =45	ı
Design Thickness (td)	Invert	50	255	
Des	Arch	20	20	ı

1. Figures show lining thickness in cm. measured from the inner face of lined concrete. Notes:

. Pay line is expressed in average thickness.

td denotes designed thickness (A-line).

. tr denotes the height of steel support rib (tr = 10 cm).

5.4. Water Treatment Plant

5.4.1. major Facilities of Treatment Plant

Based on the design criteria, preliminary design of the treatment plant was conducted. General layout of the treatment plant and its hydraulic profile are presented in the separate volume Appendix D "Drawings". Dimensions and specifications of major facilities of the plant are presented as below:

Receiving Well

Number of wells

Dimensions

 $W8.0 \text{ m} \times L15.0 \text{ m} \times D5.0 \text{ m} \text{ (R.C)}$

Effective volume

about 600 m³

Appurtenances

overflow weir L = 7.7 m

flow meter and shut-off valve (two sets)

Mixing Well

Number of wells

Dimensions

W6.0 m x L6.0 m x D5.0 m (R.C)

Flush Mixer

vertical mixer

22 kw motor

Flocculation Basin

Number of basins

8

Number of channels

Dimensions

1st stage W1.5 m x L32.5 m x D3.5 m x 2

channels

2nd stage W2.0 m x L32.5 m x D3.5 m x 2

channels

3rd stage W2.9 m x L32.5 m x D3.5 m x 2

channels

Effective volume

 $1,430 \text{ m}^3 \text{ (R.C)}$

Sedimentation Basin

Number of basins : 8

Dimensions : W32.0 m x L90.0 x D4.0m (R.C)

Effective volume : 11,500 m³

Sludge Scraper : Bridge type traveling girder with suspended

retractable sweeper

Desluding pipes : desluding main \$400 mm

and valves : desluding values $\emptyset 200 \text{ mm x 6 sets/basin}$

Effluent trough : W0.4 m x H0.4 m x L5.0 m x 24 nos/basin

Rapid Sand Filter

Number of filter beds: 40 (including 4 spare)

Surface area : W4.0 m x L16.0 m x 2 beds = 128 m^2

Filter media : thickness 70 cm

effective size 0.65 mm

uniformity coefficient 1.5

Supporting gravel : thickness 25 cm

grading 4 - 40 mm

Underdrain : perforated plate

Backwash : backwash rate $0.6 \text{ m}^3/\text{m}^2$.min

from elevated tank

Surfacewash : surfacewash rate 0.2 m/m min

by pump $6450 \times 6300 \times 25 \text{ m}^3/\text{min} \times 20 \text{ m} \times 10^{-3}$

4 units (including 2 standby)

Clear Water Reservoir

Number of reservoirs: 4

Dimensions : W40.0 m x L40.0 m x D4.0 m (R.C)

Appurtenances : inlet weir L = 11.3 m

valves inlet \(\phi 1,200 \text{ mm x 1 no./basin} \)

outlet \$1,350 mm x 2 nos/basin

 \emptyset 1,500 mm x 2 nos/basin

Elevated Tank

Number of tanks : 2

Dimensions : Dia. 19.5 m x D 2.5 m (R.C)

Effective volume : 700 m³

Lifting pump

for backwashing: $0.0450 \text{ mm} \times 0.0400 \text{ mm} \times 23.3 \text{ m}^3/\text{min} \times 15 \text{ m} \times 1000 \text{ mm}$

3 units (including 1 stand-by)

Waste Water Basin

Number of basins : 2

Dimensions : W15.0 m x L27.0 m x D2.5 m (R.C)

Effective volume : 1,000 m³

Buildings

Administration bldg : Bl2.0 m x L63.0 m x 2 stories composing of

control room, electric room, laboratory, chief room, office, meeting room and etc.

Chemical building : B18.0 m x L24.0 m x 2 stories composing of

(Alum) alum dilution tank room, air blower and

alum transfer pump room, alum feeding room,

alum storage room, etc.

Chlorination building: B18.0 m x L30.0 m x 1 story composing of

chlorine container storage room,

chlorinator room, neutralization room, etc.

Chemical Feeding Facilities

Alum feeding facilities: alum dilution tank $15 \text{ m}^3 \times 4 \text{ units}$

alum solution storage tank $300 \text{ m}^3 \times 4 \text{ units}$

alum transfer pump 500 1/min x 4 units

(including 2 stand-by)

alum feed pump 500 1/min x 4 units

(including 2 stand-by)

elevated tank 15 m³ x 4 units

head tank 100 1 x 2 units

Chlorination facilities: evaporator 200 kg/hr x 2 units for pre-cl₂
(including 1 stand-by)

chlorinator 150 kg/hr x 2 units for pre-cl₂
(including 1 stand-by)

50 kg/hr x 2 units for post-cl₂
(including 1 stand-by)

According to above preliminary design of the facilities and hydraulic analyses, plans and typical section of sedimentation basin, rapid sand filter and clear water reservoir are shown in Appendix D "Drawings" together with chemical feeding system diagram and instrumentation diagram.

5.4.2. Consideration of Reusing Waste Water

Water available from the Khanpur Reservoir is planned at 37,400 million gallons or 102.4 MGD on the average. Analysis of water balance of the Haro River indicates that the above quantity of water may not be taken during drought year. Water supply system is charged for raw water at the rate of Rs. 2.77/000 gal. Reusing of waste water might have an advantage from the view points of economy and full utilization of limited raw water.

Water loss during treatment process is estimated at about 5% of water production when all waste water is drained. As for the recirculation operation for reusing of waste water, the following processes are available according to the extent of the treatment of waste water.

Case - 1: All waste water from sedimentation basin and filter is reused. Waste water from sedimentation basin is treated and supernatant water is returned to receiving well. On the other hand, all waste water from filter is returned without treatment. Water loss will be reduced to 1%.

Case - 2: Only waste water from filter is reused. Waste water is once stored in waste water basin and supernatant water is returned to receiving well. Water loss is estimated at 3%.

Case - 3: Only waste water from filter is returned. But water is returned directly to receiving well without any treatment.

The flow diagram and required major facilities of each case are presented in the attached Figure B.V-6.

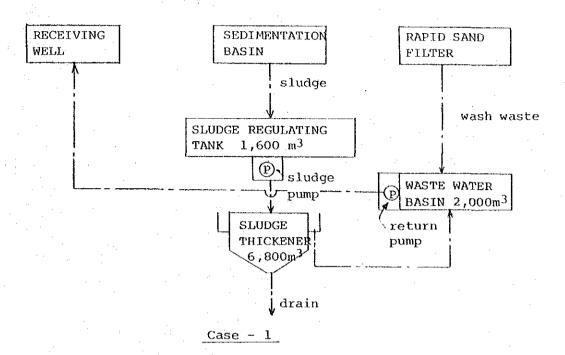
The benefit of the reusing of waste water is calculated as the saving cost of raw water charge. The benefit of each case is obtained multiplying saving raw water amount by raw water rate as Rs. 2.77/000 gals. According to the tentative cost estimate, cost and benefit analysis was made as shown in the below table.

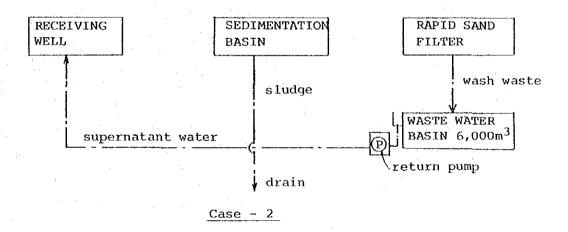
Case	Water Loss (%)	Benefit (000 Rs)	Initial Cost (000 Rs)	0 & M Cost (000 Rs/y)	Annual Cost (000 Rs/year)
1.	1	5,000	26,000	1,530	4,400
2	3	2,500	9,000	440	1,400
3	2	3,600	5,,500	1,530	2,100

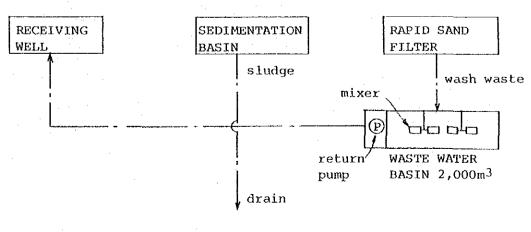
Note: O & M cost includes electric and chemical cost only.

Annual cost is estimated on condition of interest rate

of 10% per annum and amortization period of 30 years with six


years grace period.


The effect on environment caused by the drain of highly concentrated waste water to stream is to be carefully examined. As for the case 1, the final treatment of sludge is not included and the cost for that will be considerably high and needs large space for treatment. In general, detailed analysis of waste water quality and some test using test plant are required to decide the proper treatment process and necessary facilities with adequate size. The process and size of facilities are much different according to the quality of waste water.


From the above study, the reusing of waste water is, at moment, not employed in the preliminary design and cost estimate. It will be worthy to examine on the reusing of waste water in detail during design stage from the viewpoints of economy, importance of saving limited raw water available and environmental effects.

5.4.3. Foundation Geology at Treatment Plant Site

As discussed previously in Chapter III, 3.2 of this Appendix, foundation geology at the proposed site of treatment plant is mainly composed of silty clay of Alluvium accompanied with some layers of sand and gravel. With exception of surface layers, silty clay has sufficient bearing capacities with "N" valves ranging from 20 to 30 and subsidence is also considered to be less. Silty clay at the site appears massive and uniform faces with little possibility of differential settlement. It is, however, recommendable to investigate in detail during the course of detail design.

Case - 3

B.V-37

- 5.5. Preliminary Design of Distribution Main Including Pumping Station and Service Reservoir
- 5.5.1. Service Reservoir
- A. Golra-1 Service Reservoir to Islamabad High Zone

The lowest water level (LWL) of the service reservoir is, based on hydraulic calculations, determined at 663.0 m (2,174 ft). In review of location, length of pipeline to be installed, elevation to be required and geological features, the proposed site of service reservoir is selected at a hill situated to the north of treatment plant with the maximum elevation of 674 m (2,210 ft) above mean sea level.

a. Service Reservoir Capacity

Capacity of service reservoir is taken as six hours capacity of the maximum daily discharge, that is prescribed by the design criteria. Therefore,

V = 1.193 cu.m/sec x 6 hours
= 25,769 cu.m
= 26,000 cu.m = 13,000 cu.m x 2 units
(2.86 MG x 2 units)

b. Structure

In consideration of the required capacity, structures of service reservoir acceptable for the Project are as under;

- Flat Slab Type of Reinforced Concrete
- Ground Type of Prestressed Concrete (PC Tank)

A ground type of prestressed concrete (PC Tank) was selected for Golra-1 service reservoir in review of the followings:

- Since the proposed site is situated on the top of a hill,
 large lot is not available.
- A flat slab type needs relatively large space because that a tall wall is not preferable from structural point of view, while a PC tank needs relatively narrow space with high walls.
- Geology of the site is composed of rocks and high costs for excavation are needed to secure a large space.
- A PC tank is superior to present a fine spectacle.

Taking into account the topography of the Site, two units of tanks are suitable to be constructed, and thus, ground elevation after grading is determined at 663.4 m (2,175 ft).

c. Effective Depth of Water

In case of PC tank, a ratio (D/H) of diameter (D) to water depth (h) is, in general, economically acceptable between 3 and 5. Values of H and D against the unit capacity of the service reservoir of 13,000 cu.m are given as follows;

On the other hand, as the effective depth of water increase, fluctuation of dynamic pressures also increases giving undesired effects upon the terminal units of distribution. Considering economy, available space for construction as well as effective

range of dynamic pressures, the effective depth of water is determined at 10.0 m. Consequently the high water level (HWL) is worked out as 663.0 + 10.0 = 673.0 (2,207 ft). Thus, required diameter of the tank comes to about 40.7 m producing the ratio of D/H of about 4.1.

B. Golra-2 Service Reservoir to Islamabad Low Zone

LWL is produced from hydraulic calculations as LWL = 614.5 m (2,015 ft). As is similar to the Golra-1 service reservoir, the Golra-2 service reservoir is proposed at the top of a hill, which is located adjacent north to the treatment plant, for the sake of not only minimizing quantity of each work but also operation and maintenance.

a. Service Reservoir Capacity

V = 0.768 cu.m/sec x 6 hours

= 16,589 cu.m

= 16,600 cu.m = 3.65 MG x 1 unit

b. Structure

Based on LWL, grading level is determined at 614.6 m (2,015 ft). One unit of PC tank is constructed at the site taking into account the following conditions;

- To cope with an emergency or an accident, the reservoir can be connected with the Golra-1 service reservoir, that is in charge of distribution of water to High zone of Islamabad.
- A pipeline is presumed to be constructed in parallel with the force main resulting that direct pumping distribution become possible by means of constructing connection pipes.

c. Effective Depth

Effective depth of water is taken at 10.0 m as is similar to Golra-1 service reservoir. In this case, the required diameter of tank comes to about 46.0 m resulting in a value D/H of about 4.6, that is still within an economical range. Accordingly HWL of the service reservoir is 624.5 m (2,048 ft).

C. H-11 Service Reservoir to Rawalpindi

According to hydraulic calculations LWL of the H-11 service reservoir is given at 551.0 m (1,807 ft). The site is proposed at the sector H-11, where is situated near from service areas, an apron of 2,010 ft contour line exists and therefore required water head is available.

a. Service Reservoir Capacity

b. Structure

The proposed site has a sufficient space and the ground elevation hydraulically requested is also secured. On the other hand, there is little margin in an available water head under the condition that water is conducted from the treatment plant and then further conveyed to each distribution unit by gravity. Under these conditions, only a little allowance is available for the effective depth of water and, therefore, a flat slab type is selected as the most suitable after economic consideration.

The service reservoir is of a large scale and is suitable to be divided into four units, taking the phasing plan of the Project into consideration.

c. Effective Depth

In consideration of the following conditions, the effective depth of water is taken at 6.0 m.

- Effective depth is restricted hydraulically within the available water head, because gravity flow system is introduced.
- In review of structure and dimension of the existing reservoirs, a deep reservoir constructed with high retaining walls would result in structural and engineering problems of less waterproof and less quakeproof.
- Since the service reservoirs are of gravity flow type and it is difficult for dynamic water pressures in pipes to be kept within a certain acceptable range, and in general a proper range of effective depth is considered to be 3 to 6 m.

Taking the effective depth at 6.0 m, HWL is produced as 557.0 m (1,826 ft).

D. Specification of Service Reservoir

Dimensions and specifications of service reservoirs are summarized as below.

Name	Golra-1	Golra-2	H-11
Service Area	Islamabad High Zone	Islamabad Low Zone	Rawalpindi
Capacity of Unit (cu.m)	13,000	16,600	22,300
Number of Units	2	1	4
Effective Depth (m)	10.0	10.0	6.0
HWL (m) HWL (ft)	673.0 (2,207)	624.5 (2,048)	557.0 (1,826)
LWL (m) (ft)	663.0 (2,174)	614.5 (2,015)	551.0 (1,807)
Structure	PC Tank	PC Tank	RC Flat Slab

E. Foundation Geology at Service Reservoir Sites

Service reservoirs, Golra-1 and Golra-2, are both constructed on the top of small hills situated on the northeast of Golra. Geology of the sites is mainly composed of limestone with alternating beds of marl, which is belonging to Chor Gali Formation of Eocene age. Distributed rocks are, as a whole, poor in beddings but have well-developed relatively fine cracks. Inclination of the layer around the sites is about 70° to the south. As a whole surface soil and softened weathered zone have not well developed. Rocks are hardly deformable and so strong with sufficient bearing capacities as to be foundation of the service reservoirs.

Foundation geology at the site of the proposed H-11 service reservoir is mainly composed of silty clay of Alluvium, which may contain some gravel layers. This area is located on the marginal line of the outcropping rock zone with a relatively thin layers of alluvium. It is estimated however that no rock would appear at the depth of the reservoir foundation. Judging from the existing data investigated elsewhere near the proposed site, silty clay is

expected to have, except surface layers, a "N" value of more than 20, and so considered to have a sufficient bearing capacity. As concerns differential settlement of the structure, no severe problem is presumed since subsidence is not a type of consolidated subsidence and existing layers of clay are not too thick. However, further investigation is recommendable.

5.5.2. Distribution Main

Fumping pressure pipelines are constructed to connect the clear water reservoir of the treatment plant with service reservoirs to serve the High and Low zones of Islamabad, while a gravity flow pipeline is constructed to serve Rawalpindi.

A. Number of Pipeline

Two lines of pressure pipes in parallel are proposed to link Golra-1 service reservoir for Islamabad High zone with pumping station, to cope with either emergency or operation & maintenance. Two lines of free-flow pipes are also proposed to connect H-ll service reservoir for Rawalpindi service area with pumping station. A pressure pipeline between Golra-2 service reservoir for Islamabad Low zone with pumping station is proposed economically with single line since the water of Golra-1 service reservoir is hydraulically convertible in case of emergency, and since the water can be directly pumped up into distribution systems when distribution pipes are constructed in parallel with the distribution main in future.

B. Diameter of Pipe

The most suitable diameter for pressure pipelines are investigated economically and hydraulically involving running and construction costs of pumps, and it is found that the most economic velocity of flow exists somewhere around 1.5 m/sec. Accordingly

distribution main for Golra-1 service reservoir is proposed as \emptyset 700 mm x 2 lines while the one for Golra-2 is \emptyset 800 mm x 1 line. Gravity flow pipeline for H-11 service reservoir is proposed hydraulically as \emptyset 1,500 mm x 2 lines.

C. Pipe Material

Distribution main pipeline of Golra-1 service reservoir, which is a pumping pressure pipe, sustains hydro-static pressure of about 12 kg/sq.cm and design pressure of about 18 kg/sq.cm inclusive of impact pressure. As for pipeline of Golra-2 service reservoir, about 7 kg/sq.cm of hydro-static pressure and 11 kg/sq.cm of design pressure are also estimated. Considering that the pipe is pressured, and from economic reason ductile cast iron pipe is selected.

On the contrary a gravity flow pipe of H-ll service reservoir receives about 5 kg/sq.cm of hydro-static pressure, as the maximum at the limited local portion, and about 8 kg/sq.cm of design pressure. PRCC with steel core is therefore selected mainly from economic point of view.

D. Laying a Pipe Underground

As shown in design criteria, the minimum earth covering is proposed at 1.2 m. For the section where a pressure pipe runs across steep slopes, pipes are lined with concrete in consideration of the followings;

- Sites are all covered with rocks. From economical viewpoint, it is needed to minimize excavation works.
- Site refilled with earth will be easily eroded by rain water running along a pipe.

- It is needed to prevent pipes from sliding especially where the construction site is inclined steeply.
- Exposed pipe of aqueduct style needs skillful construction works and higher costs for construction as well as for operation & maintenance.

Some parts of gravity flow pipes for Rawalpindi are laid deep underground at the places where the pipeline runs across rivers, and therefore such parts as required are lined with reinforced concrete to cope with earth pressures or erosion.

E. Appurtenant Structure

To expect safe and easy operation & maintenance works of pipelines, the following appurtenant structures are proposed to be equipped.

- Air Valve
- Stop Valve
- Blow-off
- Manhole
- Connecting Pipe

5.5.3. Pumping Station

Waters conveyed to the service reservoirs of Islamabad are pressured by pumps. Pumping station is built within the compound of Golra Treatment Plant. In the pumping station, three units of lifting pump for back washing and four units of surface wash pump in addition to lifting pumps, which pressures waters to Islamabad, are installed. Clear water reservoir with LWL of 563.2 m (1,846.6 ft) functions as a suction sump.

A. Total Pump Head

The total water head of lifting pumps $(H_{\underline{T}})$ is given as an aggregate of an actual pumps head, which is shown as the difference between HWL of the service reservoir and LWL of the clear water reservoir, and friction and other loss heads of pipeline (Hf) and loss heads in the pumping station (H ℓ).

Item	Islamabad High Zone	Low Zone
Suction Head	563.20 m	563.20 m
(Clear Water Res.LWL)		•
Discharge Head	673.00 m	624.50 m
(Service Res. HWL)	(Golra-1)	(Golra-2)
Actual Pump Head (Ha)	109.80 m	61.30 m
Conveyance Loss (Hf)	5.98 m	5.04 m
Losses in P. Station (H1)	1.72 m	1.66 m
Total Pump Head (H _m)	117.50 m	m 00.86

B. Number of Pumps and Capacity

As previously mentioned in design criteria, five pumps of equal capacities with one spare unit are installed for both High and Low zones of Islamabad. Design discharges and diameters are given as under.

Dimensions	Islamabad High Zone	Low Zone
Total Discharge (cu.m/min)	71.58	46.08
No. of Unit	5	5
Spare Unit	1	1
Total Units	6	6
Discharge/Unit (cu.m/min)	14.32	9.22
Bore (Suction x Discharge)	ø300 mm x ø200 mm	ø300 x ø200

C. Selection of Pump Type

Judging from the required dimensions of discharges and total pump heads, Horizontal Shaft Double Suction Volute Pump is selected as the most economic and suitable for the Project.

Motor Capacity D.

Output of motor is given in the following equation;

$$P = 0.163 \times \frac{\gamma \times Q \times H}{\eta} \times (1 + \alpha)$$

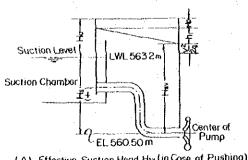
where, P: Output (kw)

Unit weight of water = 1.0 kg/l Ϋ́

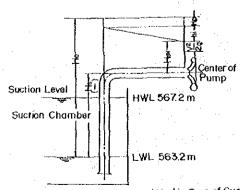
Discharge (cu.m/min)

Total pump head (m)

Pump efficiency


coefficient

Computations are shown as below;


Pump Dimension	Islamabad High Zone	Low Zone
Q (cu.m/min)	14.3	9.22
H (m)	117.50	68.00
n	0.79	0.79
α	0.15	0.15
P (kw)	400	150

Cavitation

Clear water reservoir to be used as suction sump of pumps is constructed underground with a wide-range fluctuation of water levels. Moreover many pumps are installed. When aggregate pipe system is considered, pushing method, as illustrated in the following figures, is proposed;

(A) Effective Suction Head Hsv (in Case of Pushing)

(B) Effective Suction Head Hsy (in Case of Suction)

When cavitation is occurred in the pump, pumping discharge is extremely reduced because of the vibrations and noises, and as a result, the material of the affected parts eroded to a regrettable extent. Growth of cavitation depends upon the degree of pressure drop within the pump. For pump to be operated without cavitation growth, it is essentially needed that the effective suction head be upwards of a certain definite valve. This effective usable suction head is termed "Available NPSH (Net Positive Suction Head)."

$$Hsv = Ha - Hp + Hs - hl$$

where,

Hsv: available NFSH (m)

Ha: atmospheric pressure as expressed in head (m) = 10.33 m

Hp: steam pressure at the particular water temperature as expressed in head $(m) = 0.33 \text{ m} (25^{\circ}\text{C})$

Hs: actual suction head (m)
in case of suckup (-)
in case of push-in (+) = 2.70 m

hl: head loss in suction pipe (m) = 0.50 m

:. Hsv = 10.33 m - 0.33 m + 2.70 m - 0.50 m = 12.20 m

In addition to the above, there is a critical point for effective suction head required in operation according to the variations in the total head, delivery and rotational number of the pump, which has been called "Required NPSH". This is the smallest of the required head as needed for the water to be sucked into the impeller, which is proper to each type of the pump, and generally, expressed by the formula.

 $hsv = \alpha xH$

in here,

hsv: NPSH as needed by the pump (m)

a: Thoma's cavitation coefficient

H: total head of pump (m)

The critical value in cavitation coefficient is, in general, expressed in terms of the function Ns (= specific speed) of the pump.

When rotation speed of pump is assumed to be 1,460 rpm (50 Hz, 4P), specific speed of pump is 109.5 and 132.4 respectively for Islamabad High and Low zones. Thomas' cavitation coefficients are also given as 0.041 and 0.055, respectively. Accordingly, NPSH as needed by pump is given as follows;

Pumps for High zone hsv = $0.041 \times 117.5 = 4.82 \text{ m}$ Pumps for Low zone hsv = $0.055 \times 68.0 = 3.74 \text{ m}$

To be safe from cavitation, effective suction head available must be larger than that required for pumps. That means;

Hsv > hsv

In general, Hsv - hsv > 1.0 m is recommended. As a consequence, pumps for both High and Low zones of Islamabad are thoroughly safe against cavitation and thus rotational speed of pump is determined at 1,460 rpm (50 Hz, 4P).

F. Water Hammer

When the supply of power to the pump in operation is suddenly cut because of power suspension and the like, there may come a sudden change in pressure on the delivery side of the pump. As it is an important thing to prevent or reduce such a water hammering

action, from the viewpoint of planning pumping equipment, surveys in advance on hammering action in the pumping system are right in order.

As shown in Figure B.V-7 and B.V-8, no countermeasure is needed by pumps for Islamabad High zone. For Low zone, pumps are safe from injurious negative pressures if they are equipped with fly wheels of about 20 kg.sqm (GD²) per a unit of pump.

G. Specification of Pumps

No. Pump (To Islamabad High Zone)

Horizontal Shaft Double Suction Volute Pump

Bore Suction \$300 Discharge \$200 (6 units)

Capacity 14.232 m³/min

Total Head 117.5 m

Revolution 1,460 rpm

Motor 400 kw 50 Hz 4P

No.2 Pump (Low Zone)

Horizontal Shaft Double Suction Volute Pump

Bore Suction \(\phi 300 \) Discharge \(\phi 200 \) (6 units)

Capacity 9.22 m³/min

Total Head 68 m

Revolution 1,460 rpm

Motor 150 kw 50 Hz 4P

No.3 Pump (for Surface Wash)

Horizontal Shaft Double Suction Volute Pump

Bore Suction Ø450 Discharge Ø350 (4 units)

Capacity 25 m³/min

Total Head 20 m

Revolution 990 rpm

Motor 132 kw 50 Hz 6F

B.V-51

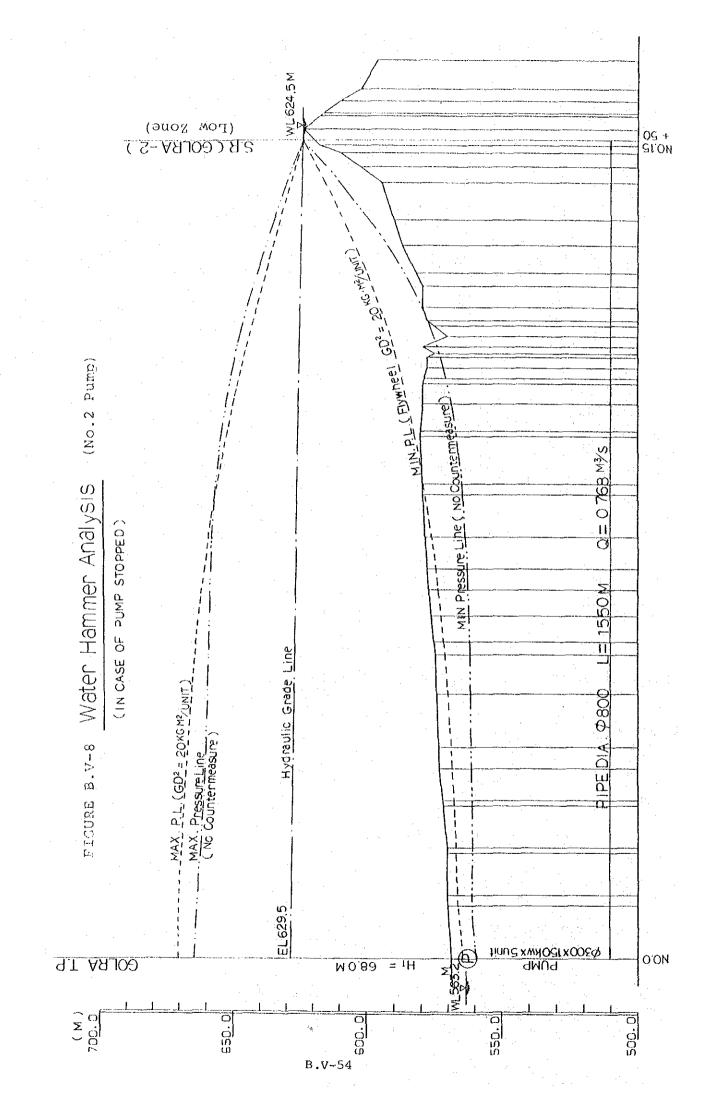
No.4 Pump (for Back Washing)

Horizontal Shaft Double Suction Volute Pump

Bore Suction \$450 Discharge \$400 (3 units)

Capacity 23.3 m³/min

Total Head 15 m


Revolution 990 rpm

Motor 90 kw 50 Hz 6P

H. Foundation Geology at Pumping Station

Since pumping station is constructed in the compound of the treatment plant, the same condition as mentioned for the treatment plant is expected. Foundation of the pumping station is excavated as deep as 9 m below ground surface and there is some possibility that the foundation reaches below groundwater table. This would, however, produce no severe problem because drainage facilities are also proposed to be accompanied. Special attention should be paid that the workability is quite inferior in silty clay below groundwater table.

B.V-53

CHAPTER VI. CHANGEABILITY OF WATER RESOURCES IN ISLAMABAD

6.1. General Description

According to the results of water balance study of the Simly reservoir made by the JICA study team, the availability of water resources of the reservoir after installation of spillway control gates and emergency spillway is prospected about 1.90 cu.m/sec (36 MGD) when critical drought is occurred once in five years.

CDA has been constructed No.1 and No.2 conduction main with capacity about 1.26 cu.m/sec (24 MGD) from Simly filtration plant upto service reservoir existed in Islamabad. Third conduction main will also be constructed with 0.63 cu.m/sec (12 MGD) capacity to convey clear water to developing sectors.

On the other hand, the Khanpur water will be supplied directly from Khanpur reservoir to commandable area of 11 to 15 sectors through Margala tunnel, water treatment plant and pumping station.

Receiving water level of existing service reservoir, which is situated nearby F-5 sector and receives the water from Simly filtration plant, is approximately 620 m (2,010 - 2,045 ft). Besides, the water level of proposed service reservoir which will be constructed near E-10 sector as additional programme is also approximately 600 m (1,960 - 1,980 ft). Whereas, the water level of clear water at Golra water treatment plant is about 563 m (1,946 ft), when the raw water conveyed from Khanpur.

The ground elevation of commandable water supply area by both the Simly and Khanpur dam ranges from 520 m to 640 m (1,700 - 2,000 ft) with rather complicated topographic conditions.

In this connection, the study on most suitable water resources distribution manner shall be made taking into consideration available changeability of water resources, technical and economical viewpoints as well as operation and maintenance aspects.

6.2. Comparative Study

6.2.1. Plan Description

Existing and proposed water supply systems in Islamabad are rather complicate due to water resources and topographic conditions. In order to simplify the comparative study, the service area to be studied are shown in Figure B.VI-1, -2 and -3.

- The Original Plan:

The Simly water as a main water resources for developed area will be supplied up to 10 sector from northern part of city with stream and groundwater, while Khanpur water will be served in new developing area from 11 to 15 sector.

- The Alternative Plan:

The Simly water will mainly be supplied in rather high zone of developed and or developing area, whereas, Khanpur water will be supplied to low zone of commandable area.

6.2.2. Distribution Main and Hydraulic Computation of Both Flan

A. Distribution Main

Proposed distribution mains, which are indicated in Figure B.VI-1 and B.VI-2, are aligned taking into consideration most economic routes, topographic conditions and convenience of operation and maintenance works.

B. Hydraulic Computation

The computation of both plans was made based on the design discharge, representative elevation of each sectors, pipe length and pipe diameter assumed etc. The results of computation are shown in Table B.VI-1 to -7, respectively.

6.2.3. Major Construction Cost and Operation and Maintenance Cost

A. Construction Cost

The summary of specification of proposed facilities for both plans and its construction cost required are indicated in Table B.VI-8.

B. Operation and Maintenance Cost

a. Electricity Charge

<u>Plan</u>	Motor Output (kw)	Annual Operation Hour (H)	Fixed Rate 924 Rs/kw/Yr	Charge (Rs.1,000) Operating Rate 0.35 Rs/KWH	<u>Total</u>
Origin	na 1			•	
SHZ	270	7,008	249	662	911
KHZ	1,400	7,008	1,294	3,434	4,728
KLZ	435	7,008	402	1,067	1,469
Total	2,105		1,945	5,163	7,108
Alteri	native				
SWZ	525	7,008	485	1,288	1,773
SEZ	270	7,008	249	662	911
KWZ	1,200	7,008	1,109	2,943	4,052
KEZ	380	7,008	351	932	1,283
Total	2,375		2,194	5,825	8,019

b. Labour Wages

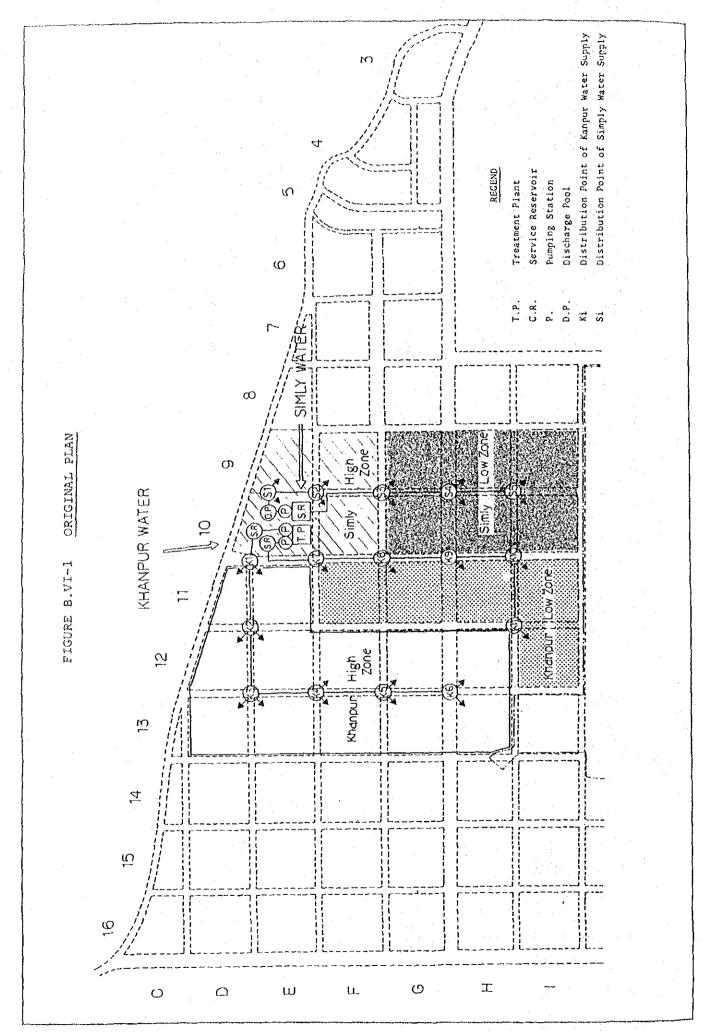
Plan	Pump Operator	Technician	Total
Original	6x12x2,000 = 144,000	6x12x1,500 = 108,000	Rs.252,000
Alternative	8x12x2,000 = 192,000	$8 \times 12 \times 1,500 = 144,000$	Rs.336,000

c. Repairing and Maintenance Cost

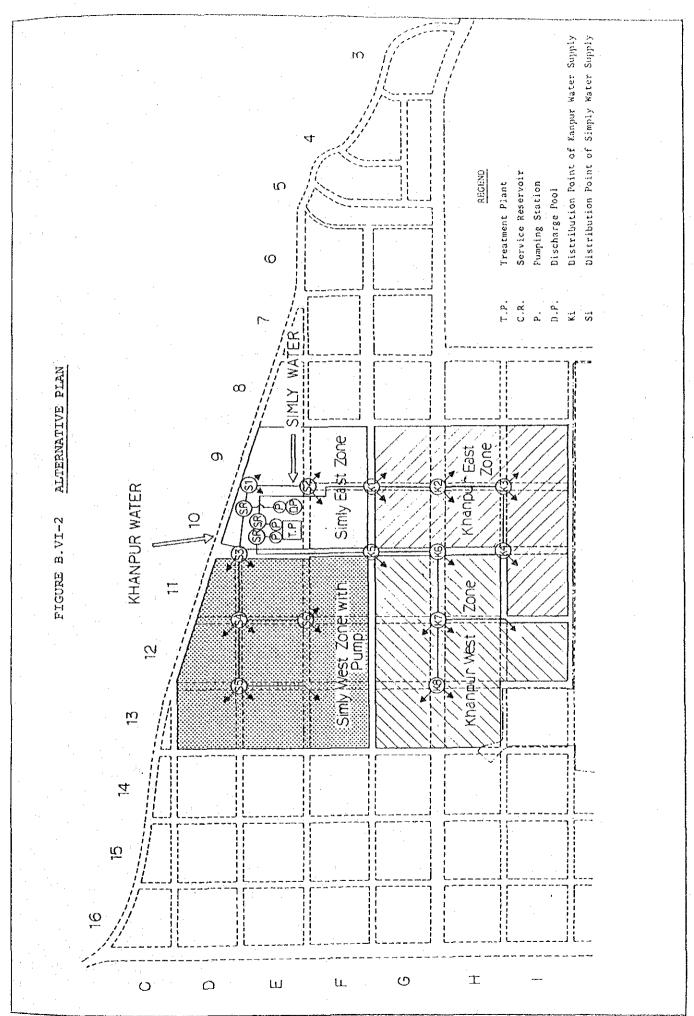
The cost assumes about 2 percent of pumping plant cost.

6.2.4. Comparative Study

A. economic Comparison


The summary of required initial and OM cost including electric charge is as under.

	ltem	Original (Rs.1,000)	Alternative (Rs.1,000)
1.	Initial Cost Pumping plant Pipe work Service reservoir	96,120 106,600 79,260	116,800 140,200 91,340
	Total	281,980	348,340
	(Ratio)	(100)	(124)
Il.	Operation/Maintenanc Electric charge	e Cost 7,108	8,019
	Labour cost Maintenance cost	252 1,922	336 2,336
	Total	9,282	10,691
	(Ratio)	(100)	(115)


B. Conclusion

The result of comparison for both initial and operation/maintenance cost show that original plan is more economical than that of alternative. Major reason for this are

mainly pumping up cost related to H-9, H-10, I-9, I-10 sectors of alternative plan against gravity flow of original plan. Therefore, original plan should be recommendable for water supply system of the Project.

B.VI-6

RIBUTION UNITS			5 6 5	м		REGEND	GL: Ground Level in Meter (in Feet) Q: Discharge in liter/sec.	
LEVEL AND MAX, HOURLY DISCHARGE OF DISTRIBUTION UNITS		o ///	(2,000) (2,000) (4,500) (1,900) (4,900) (4,900)	GL S64.3 (1,850) (1,850) (2 = 188 (2 = 45	GL 549.0 GL 546.0 (1,800) (1,790) Q = 78 Q = 158		GL 524.6 GL 518.5 (1,720) (1,700) Q = 220 Q = 154	
B.VI-3 GROUND LEVEL AN	51	6 C 602.4 C 607.0 C 60	(1,940) (1,940)	(1,940) (1,845) (1,845) (1,946) (1,845)	CL 594.8 CL 567.3 (1,950) (1,950) (2 = 146	GL 565.8 GL 5 (1,855) (1,8 Q 108 Q 4	GL 549.0 IGL 556.6 (1,806) (1,825) Q = 194 Q = 236	
FIGURE 1	14 13	(2,025)	(2, 610, 00)	(1,975) Q = 78	CL 594.8 (1,950) Q = 138	2. 67. 3. 3. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.		
	9 // 15							

ABLE B.VI-I HYDRAHLIC CALCHATTON

ORIGINAL PLANCSIMLY HIGH ZONE)

C C	₩ 									
EFF CMC M M		52.544	65.415	60.856	52.544	65.823	52.544	36.760	65.415	690.79
H.LOSS WATER LEVEL	648.500	772.279	632,715	631.256	647.344	645.323	772.277	092-979		631.369
H_LOSS (M)	 	1.156	14.629	1.459		2-022		0.584		1.346
HYDR.GRAD. CM/1000M)	f 1 1 1 1 1 1 1	2.294	10.447	14.583		19.983		5.775		13.459
VELOCITY (M/S)	r k l l l	1.170	1.865	1.443		1.969		1.245		1.966
DISCHARGE (L/S)	 1 1 1 1 1 1 1	448.00	233.00	75.00		96.00		119.00		188.00
DIAMETER (MM)	; ; ; ; ; ; ; ;	700.	.007	200.		250.	-	350.		350.
P.LENGTH	1 	503.71	1400-27	100.05		101.16		101.15		100.04
HEIGH (SC)	1 	-61.00	-27.50	3.10		-15.30	٠	15.20	•	-3.00
	*	200.00	1400.00	100.00		100.00		100.00		100.00
LEVE	08,559	594.80	567.30	570.40	594.80	579.50	594.80	610.00	567.30	564.30
0 N H	9.0	S1	\$5	о (о о о о о о о о о о о о о о о о о о	\$1	።) የ ር ። የ ር	S1	011 0110 0110 0110 0110 0110 0110 0110	S 22	7-10 (EP)

TABLE B.VI-2 HYDRAULIC CALCULATION

Ω	k 1	¥ ¥								В.	ZI.	-10				
RIGINA	1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		ဟ		s S		S	э ш у с	ກ ຜ	G-10 (EP)	75	т ш , с	2.5	H-10	S S 5	(EP)
P L A S	່ ເບ	97.8	47.5	30.7	521.60	18.5	547.50	4 0		4	30.7	527.70	530.70	33. 8.	521.60	- 1
CSIMLY LOW ZON	H.LENGTH		500.0	0.000	2000.00	100.0	(00.001		100.00		100.00		00.001	100,00	
(i)	上 C S C C C C C C C C C C C C C C C C C		20	ά	-9.10	·===	•	0		50	· .	- N - 00		3.10	3.00	÷
; ; ; ; ;	P. L. R. N. G. T. H. A.		5007	0.0	200002	0.0		•		100.00f		700-001		100,000	100.04	
; ; ; ; ;	DIAMETER (MM)		.006	7007	500.	300.		· •		, 0 0		250.		7007	7007	
1 ; ; ; ; ; ; ;	DISCHARGE (L/S)		0.70	71.0	354.00	34-0	α)))	,	00.87		102.00	,	215,00	220.00	
 	VELOCITY CM/S)		7	٠ ب	1.813	06.	4 4 7) ,	,	1.600		2.092		1.721	1.761	
 	HYDR GRAD.		87.	70	7.640	. 24	0 0 0			15.609		22.355	,	9.003	9.394	
) ; ; ; ;	H LOSS		22	9.68	15.280	ι Ω		•	ì	1.361		2.236		0.901	07670	
 	WATER LEVEL	93.10	86.87	41.19	561.909	60.38	586.879)	586.879	× × × × × × × × × × × × × × × × × × ×	577.190	74.95	577.190	76.28	561,909	
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	(E # # E # E # E # E # E # E # E # E #	7.07	9.37	6.49	40.309	α 	39.379	1 • • •	39.379	ed 17. *	067.97	7.25	067.97	2.48	402.04	

CALCULATION	
HYDRAULIC	
B.VI-3	
TABLE	

CM) CM)		006	27.70	97.20 2000.00	94.80 2000	10.00	597.80 588.70 :00.00	597.80 607.00 100.00	597.20 591.70 100.00	597.20 602.40 100.00	614.00	614.00 617.60 100.00	597.20 591.70 100.00	597.20 602.40 100.00	594.80 100.00	594.80 100.00
HEIGHT P.LENGTH <m><m><m><m><m><m><m><m><m><m><m><m><m><</m></m></m></m></m></m></m></m></m></m></m></m></m>	 	2.20 1900.0	6.80 2000.0	6.80 2000.0	-2,40 2000.00	2.00 102.3	-9.10 100.41	9.20 100.42	-5.50 100.15	5.20 100.14	-4.00 100.08	3.60 100.06	-8.50 100.15	5.20 100.14	0.0 100.00	00.001 0.0
OIAMETER		61	800	800	700		350	150.	250.	500	150.	100.	250.	. 200.	300.	350.
DISCHARGE <pre></pre>	; ; ; b t	n 1	VI O	. •	\cap r	00.48	171-00	36.00	110.00	63.00	38.00	15.00	108.00	78.00	138.00	170.00
VELOCITY (M/S)	1	76	7 6	3,	1.306	10	1.788	2.053	2.256	2.020	2.167	1.926	2.215	2.500	1.965	1.778
HYDR GRAD.	1 1 1 1 1 1 1 1 1	99:	4 0	63	2.811		11.294	39.176	25.706	27.176	43.297	55.872	24,848	775.07	16.092	11.172
H.LOSS	1 1 1 1 1	76.	20	28	5.622	, 6 , 10	1.134	3.934	2.574	2.721	4 . 33	5.591	5.489	070"7	1.609	7.11.7
WATER LEVEL	1 0	678.028	66.95	61.68	56.06	47.27	678.028 676.894	678.028 674.094	673,001 670,427	673.001 670.280	666.956	666.956 661.365	661.688 659.199	661.688 657.648	656.065 654.456	656.065
EPPEC.HEA CMD	! C	80.238	V V V V V V	7.78	2.26	y V 0 -1 0 V	80.228	80.228	75.801	75.801	52.956	52.956	64.488	55.248	61.265 59.656	61.265 60.148

ORIGINAL PLAN (KHANPUR LOW ZONE)

ි ය ය ස	¥ } !												
		> \documents	+	2.31	6.92	7.67	. 0	41.619	54.815	27.9		6.36	62.34 5.508 5.508
WATER LEVEL (M)	10 1	7 4 7 0	03.22	02.21	00.72	00.65	6.30	4.33	603.815	03.77	603.117	02.9	602,216 602,108
H LOSS		i i i i i	0.698	90	, 00	.07		0.055		0.045		0.149	0.108
HYDR.GRAD. CM/1000M)	† ™	س	3.490	'n	4	4		5.517		7.400		14.822	10.697
VELOCITY CM/S>	1, L	, 7	1.468	.52	, S	ν. ·		1.32 52		1.169	:	7.880 8.0	1.889
DISCHARGE (L/S)	, ,	0 0	562.00	30.0	0.76	0.76		165.00		146.00		132.00	236.00
OIAMETER CMM>) C	700.	O	O	0		.007		7007	;	, 000 M	.007
P.CENGTH		000	2000.000	0.000	0.000	₩.		100.01		101.66		100.29	101.38
HEIGHT (M)	, h	0.00	0	-9.10	6	٧.		09·t-		18.30		7.60	16.70
H. LENGTH AND			2000.000	0.000	0.000	100.0		100.00		100.00		100.00	100.00
G.LEVEL (M)	1 0	40 40 40	. 0	39.9	33.8	0.67	64.3	562.70	0.65	567.30	0.67	556.60	539.90
-		√ α ⊻ ≽) o	· •1		11 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	X 7	币) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		6-11 (93)	6 *	H-11 (EP)	н х г н д г н д г н с

TABLE B.VI-5 HYDRAULIC CALCULATION

n.	f						.VI-13					
TNIO	S S S	10	S 2 2 2 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	A	S C C C C C C C C C C C C C C C C C C C	0 - 1 3 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	М S 4 (E Р) .	# > N N N N N N N N N N N N N N N N N N	SE 128	S 4 (E P)	m	0 0 0 0 0 0 0 0 0
G.LEVEL (M)	0.0	97.2	614.00	0 n 1	597.80	597.80	597.20 591.70	597.20 577.40 562.70	577.40	597.20	614.00	614.00
H.LENGTH (M)	00%	0.000	2000.00		100.00	100.00	100.00	2000.00	100.00	100.00	100.00	100.00
HEIGHT (S)	7	101	16.80	0 ⊶	-9.10	9.20	-5.50	-19.80	14.30	5.20	00.4-	3.80
P. LENGTH	, 00R	0.000	2000-07		100-41	100.42	100.15	2000,10	101.02	100.14	100.08	100.07
DIAMETER	. 0	0	9000	n	350.	0	300.	450.	300.	500	1000	100.
DISCHARGE (L/S)	. O	0.7	131.00	•	171.00	36.00	110.00	273.00	108.00	63.00	38.00	15.00
VELOCITY (M/S)	n A	000	1.370	0	1.788	2.053	1.567	1.727	1.538	2.020	2.167	1.926
HYDR.GRAD. KM/1000M)		99	6.899	0	11.294	39.176	10.578	7.892	10.225	27.176	73.297	55.872
H LOSS	r.	, N	1.380	· ·	0.113	0.393	0.106	1.578	0.103	0.272	0.43	655.0
WATER LEVEL (M)	57.00	55.76	654.381	n 0 - 4 n	656,494	656.494	655.761	655.761 654.182 654.075	654.182	655.761 655.489	654,381	654.381
E CEC	7 00 0	8 50	40 W. 03 0.03 0.03	, k	58.694	58.694	58 53.95 53.95 53.55	58.5 76.782 92.3782	76.782 62.379	58.561 53.089	40,381 43,948	40.381

HYDRAULIC CALCULATION TABLE V.BI-6

1	1	1	1					1 1 1 1 1 1	11 11 11 11 11 11 11 11 11 11 11 11 11			
LO. E	 	G.LEVE	H. LENGTH	1		1 2 4 1 2 4	OISCHARGE CL/S)	LOCI (M/S	HYDR.GRAD. (M/1000M)	172		
		30.0									33.00	3.00
	v.	249,00	300.0	-81.00	300.7	0	72.0	53	83	٠. د	670.838	121,838
		49.0	2000.00	0.0	2000.00	800.	826.00	1.651	3.714	7.4	63.42	4.41
		79.5	0.000	0.5	000.2	0	0.76	.33	69.	, w	58.02	78.52
		02.4	0.000	22.90	000.1	W	22.0	07.	, w	.76	47.26	4.86
T U	1-13 (mp)	0	100.0	7.6	00.2	0	4	61	. 43	79.0	76-61	6.6
$\sigma \sim$	1 m X 4 g X 4 y	549.00	100.00	18.30	101.66	200	146.00	2.079	17.861	1,816	669.022	121.838 101.722
±ν	1 W H W W W W W W W W W W W W W W W W W	556.60	100.00	7.60	100.29	300.	132.00	1.880	14.822	2.48	663.411 661.925	114.411
0 0	3-12 CEP>	579.50	100.00	15.30	101.16	350.	170.00	1.778	11.172	1,130	658.029 656.898	78.529 62.098
ΙV	7 T U U V V	87.9 8.80 8.80	100.00	-13.70	100.93	300.	108.00	1.538	10.225	1.032	658.029	78,529 91,196
ΗC	K7 [-12 (EP)	579.50	2000.00	-30.50	2000.23	350.	194.00	2.029	14.264	28.532	658.029 629.497	78.529
σ υ	81 X X X X X X X X X X X X X X X X X X X	602.40	100.00	-7.60	100.29	300.	138.00	4. 6. 7.	16.092	1.614	647.261	44.862
		•										

TABLE B.VI-7 HYDRAULIC CALCULATION

S.R 600.00	≪.	RNA	IVE PLAN	HANPUR EA	Z 0 N E	1 1 1	 	. (
K1 500.00 4600.00 11.3.00 11.43.00 1.462 2.285 1.051 585.429 37.94 K2 527.70 4600.00 1.000 1000 11.43.00 1.462 2.285 1.051 585.429 37.94 K3 520.70 2000.00 -9.10 2000.00) •	. ト フ	N	100	I II E	L B N B T	I AMETE CMM >	ISCHARG (L/S)	ELOCIT (M/S)	HYDR.GRA	LOS	ATER LEVE	H
S.R. \$600.00 K. \$27.70 K. \$27.7	l I]	1	i	ŧ	!	1 1 1 1 1 1 1		} ! ! ! !	ļ : 1			į
K 1 547.50 4.600.00 -25.50 6.600.30 1000.0 1.462 2.285 1.051 5854.49 54.295 K 3 520.00 -9.00 2000.00 -9.00 2000.00 -9.00 2000.00 -9.00 2000.00 -9.00 2000.00 -9.00 2000.00 -9.00 2000.00 -9.00 2000.00 -9.00 2000.00 -9.00 2000.00 -9.00 2000.00 -9.00 2000.00 1.889 10.697 2.159 584.187 62.58		R.	0.00									86.50	13.50
K2 550.76 2000.00 -16.80 2000.07 700. 907.00 1.643 2.488 0.498 364.951 62.25 K4 516.60 2000.00 -9.10 2000.00 700. 256.00 1.541 5.418 0.498 364.951 62.25 K4 516.50 2000.00 -9.10 2000.00 7.60 1.889 10.697 0.107 582.04 62.58 K4 516.50 2000.00 -1.50 100.02 K4 526.10 100.00 -1.50 100.01 200. 256.00 1.889 10.697 0.107 581.940 55.25 K5 526.00 100.00 -1.50 100.01 200. 256.00 1.265 5.092 0.051 585.398 39.39 K7 54.00 100.00 -1.50 100.01 200. 256.00 1.111 5.600 0.056 585.295 26.25 K7 550.70 100.00 -3.00 100.01 200. 215.00 1.453 9.199 0.092 584.951 54.25 K7 550.70 100.00 -3.10 100.05 4.00 215.00 1.721 9.003 0.090 584.861 57.06 K7 550.70 100.00 -3.10 100.05 4.00 215.00 1.721 9.003 0.090 584.861 57.06 K7 550.70 100.00 -3.10 100.05 20.00 1.721 9.003 0.090 584.861 57.06 K8 521.60 100.00 -3.10 100.05 220.00 1.761 9.594 0.094 584.187 62.587 K8 521.60 100.00 3.00 100.04 4.00 220.00 1.761 9.594 0.094 584.187 62.587 K8 521.60 100.00 5.094 584.187 62.587 K8 521.60 100.00 5.094 584.187 62.587 K9 521.60 100.00 5.094 584.187 K9 521.60 100.00 5.094 584.187 K9 521.60 100.00 5.094 584.187 K9 521.60		Υ ۲	47.5	0.009	52.5	600.3	0	143.0	97	.28	.05	35.44	76 /
K3 52.60 2000.00 -9.10 2000.00 7.00. 250.00 1.541 0.754 5.818 0.754 58.137 62.58		λ Vi	30.7	0.000	16.8	0.000	00	0.70	7.3	2.48	67	84.95	4.25
K4 518.50 2000.00 -3.10 2000.00 400. 236.00 1.889 10.697 2.159 582.048 63.54 EP)		M	21.6	0.000	6	0.000	00	0.06	24	3.84	76	84.18	2.58
\$26.10 100.00 7.60 100.29 400. 236.00 1.889 10.697 0.107 581.940 55.84 \$1.750 100.00 -1.50 100.01 400. 158.00 1.265 5.092 0.051 585.398 39.399 \$1.750 100.00 -1.50 100.01 300. 78.00 1.111 5.600 0.056 585.393 37.94 \$2.750 100.00 -3.00 100.04 300. 102.00 1.453 9.199 0.092 584.951 54.255 \$2.770 100.00 -3.10 100.05 400. 215.00 1.721 9.003 0.090 584.861 51.056 \$2.750 100.00 -3.10 100.05 400. 215.00 1.721 9.003 0.090 584.861 51.056 \$2.750 100.00 -3.10 100.05 300. 134.00 1.721 9.003 0.090 584.861 51.056 \$2.750 100.00 3.00 100.04 400. 220.00 1.761 9.394 0.094 584.187 62.587 \$2.750 100.00 3.00 100.04 400. 220.00 1.761 9.394 0.094 584.094 59.495 \$2.750 100.00 3.00 100.04 400. 220.00 1.761 9.394 0.094 584.094 59.495 \$2.750 100.00 3.00 100.04 400. 220.00 1.761 9.394 0.094 584.094 59.495 \$2.750 100.00 3.00 100.04 400. 220.00 1.761 9.394 0.094 584.094 59.495 \$2.750 100.00 3.00 100.04 400. 220.00 1.761 9.394 0.094 584.094 59.495 \$2.750 100.00 3.00 100.04 400. 220.00 1.761 9.394 0.094 584.094 59.495 \$2.750 100.00 3.00 100.04 400. 220.00 1.761 9.394 0.094 584.094 59.495 \$2.750 100.00 3.00 100.04 400. 220.00 1.761 9.394 0.094 584.094 59.495 \$2.750 100.00 3.00 100.04 584.084 59.495 59.495 59.495 \$2.750 100.00 3.00 100.04 584.084 59.495 59.495 \$2.750 100.00 3.00 100.04 584.084 59.495 59.495 \$2.750 100.00 3.00 100.04 584.084 59.495 59.495 \$2.750 100.00 3.00 100.04 584.084 59.495 59.495 \$2.750 100.00 3.00 100.04 584.084 59.495 59.495 \$2.750 50.084 50.084 50.084 50.084 50.084 50.084 \$2.750 50.084 50.084 50.084 50.084 50.084 50.084		7.Y	18.5	0.000	3.1	0.000	0	36.0	80	69.0	ψ.,	82.04	3.54
K1 547.50		1 m 4 T	26.1	100.0	\$	2 00	0	36.0	80	69.0	0	81.94	δ. 24
K1 547.50	- - - - - - -	а И 1 Б	47.5	0.00	ς. Ω	0.00	0	58.0	. 26	60	.05	85.44 85.39	94.00
K1 547.50 -10 549.00 100.00 1.50 100.01 300. 78.00 1.111 5.600 0.056 585.393 57.395 K2 530.70 100.00 -3.00 100.04 300. 102.00 1.453 9.199 0.092 584.859 57.155 EP) K2 530.70 100.00 3.10 100.05 4.00. 215.00 1.721 9.003 0.090 584.861 57.055 EP) K3 521.60 100.00 -3.10 100.05 300. 134.00 1.908 15.240 0.152 584.035 65.533 EP) K3 521.60 100.00 -3.10 100.05 300. 134.00 1.761 9.394 0.094 584.087 62.587 EP) K3 521.60 524.60 100.00 3.00 100.04 400. 220.00 1.761 9.394 0.094 584.094 59.493		:										·	
K2 530.70 100.00 -3.00 100.04 300. 102.00 1.453 9.199 0.092 584.859 57.15 EP) K2 530.70 100.00 3.10 100.05 4.00. 215.00 1.721 9.003 0.090 584.861 51.06 51.06 EP) K3 521.60 100.00 -3.10 100.05 300. 134.00 1.708 15.240 0.152 584.187 62.58	⊕ ∨	IШ Х ст 0°	7 4 7 0 . 0	0.00	ς,	0.00	0	80	∓		0.	857.74 85.34	65.9
K2 530.70	I-15	x = x = x = x + x = x = x = x = x = x =	30.7	0.00	•	0.00	0	05.0	. 4.	٠ 4	60.	864.98 84.85	4 + 2
K3 521.60 1-9 518.50 100.00 -3.10 100.05 300. 134.00 1.908 15.240 0.152 584.035 65.53 EP) K3 521.60 100.00 3.00 100.04 400. 220.00 1.761 9.394 0.094 584.094 59.49 EP)	ΞV	$\times \leftarrow \sigma$	30.7	0.00	. 1	0.00	0	15.0	. 72	00	60.	84.86	1.06
K3 521.60 -10 524.60 100.00 3.00 100.04 400. 220.00 1.761 9.394 0.094 584.094 59.49 EP)		\times 1 σ	21.6	0.00	₩1 	0.00	0	34.0	. 90	5.24	.15	84.18 84.03	0 10 10 10 10 10
		$\times 4 \sigma$	24.6	0.00	٠.	0.00	0	20.05	.76	95.	60.	84.18 84.09	2.58

TABLE B.VI-8 FACILITIES SPECIFICATION AND COST

	Original Plan		Alternative Dlan	
Facility		Cost	Specification	Cost
J. Pump	Simly High Zone	(Rs.1,000)	Simly West Zone	
	300 mm x 135 KW x 3 units		$300 \text{ mm} \times 175 \text{ KW} \times 4 \text{ units}$	
	Khanpur High Zone		Simly East Zone	
	300 mm \times 350 KW \times 5 units	96,120	300 mm x 135 KW x 3 units	116,800
	Khanpur Low Zone		Khanpur West Zone	
	300 mm x 145 KW x 4 units		300 mm x 300 KW x 5 units	
			Khanpur East Zone	
			$300 \text{ mm} \times 95 \text{ KW} \times 5 \text{ units}$	
·				
2. Pipe Work	PRCC, 900 - 500 mm, 25.6 km	106.600	PRCC, 1,000 - 700 mm, 20.9 km	140,200
	FC, 800 - 100 mm, 11.1 km	: 	FC, 800 - 100 mm, 19.9 km	
		•		
3. Service	Simly, Flat slab type, 13,600 m ³		Simly, Flat slab type, 1,500 m ³	
Reservoir	Simly, PC tank type, 6,500 m ³	() ()	Simly, PC tank type, 11,300 m ³	() (
	Khanpur, " 16,200 m ³	79,260	Simly, " 6,500 m ³	91,340
	Khanpur, " 12,600 m ³		Khanpur, " 16,500 m ³	
:			Khanpur, " 14,000 m ³	
Total		281,980		348,340

APPENDIX - C

APPENDIX - C

		Page
CHAPTER I,	PROJECT IMPLEMENTATION	C.I-1
1.1.	Implementation Schedule	C.I-1
1.2.	Organization for Project Implementation	C.I-1
CHAPTER II	. PROJECT COST ESTIMATE	C.II-1
2.1.	Cost Estimate	C.II-1
2.2.	Procurement	C.II-2
2.3.	Operation and Maintenance Costs	C.II-2
CHAPTER II	I. OPERATION AND MAINTENANCE	C.III-1
3.1.	Proposed Organization	C.III-1
3.2.	Functions and Responsibilities	C.III-1
3,2	.1. Boards	C.III-1
3.2	.2. Committees	C.III-2
3.2	.3. Operation and Maintenance Offices	C.III-3
CHAPTER IV	. PROJECT JUSTIFICATION	C.IV-l
4.1.	Evaluation of Socio-Economic Survey	C.1V-1
4.2.	Economic Analysis	C.IV-7
4.3.	Water Tariff	C.IV-15
4.4.	Financial Analysis	C.IV-19
4.4	.1. Cash Flow Analysis	C.IV-19
4.4	.2. Financial Analysis	C.1V-21
4.5.	Sensitivity Analysis	C.IV-33
4.5	.1. Sensitivity Analysis in Economic Evaluation	C.IV-33
4.5	.2. Sensitivity Analysis in Financial Evaluation	C.IV-34

	•		•		· · · · ·
		·			
	*.	·			
					Page
	CHAPTER V. R	ECOMMENDATIONS			c.v-1
	5.1. Su	rvey and Invest	igation		c.v-1
•	5,1,1,	Topographic Su	rvey and Mapping		C.V-1
	5.1.2.	Geological Inv	estigation		c.v-1
	CHAPTER VI.	MAJOR RECORDS O	F MEETING AND CO	ONFIRMATIONS	C.VI-1
				:	
	6.1. Ge				C.VI-1
					•
	6.2. Re	cords	* * * * * * * * * * * * * * * * * * * *		0.47 2
	ANNEX QUESTI	ONNAIRES ON WAT	ER AND TARIFF		
	~				
	~ -				÷
	Annex-1	Questionnaire		Jsers	C.A-1
	Annex-1	:	s for Domestic U	Jsers	
		:	s for Domestic U	Jsers L/Industrial Users	
	Annex-1	:	s for Domestic U	• '	
	Annex-1	:	s for Domestic U	• '	
	Annex-1	:	s for Domestic U	• '	
	Annex-1	:	s for Domestic U	• '	
	Annex-1	:	s for Domestic C	l/Industrial Users	. C.A-4
	Annex-1 Annex-2	Questionnaire	s for Domestic Us for Commercia	• '	. C.A-4
	Annex-1 Annex-2	Questionnaire	s for Domestic Us for Commercia	l/Industrial Users	. C.A-4
	Annex-1 Annex-2	:	s for Domestic Us for Commercia	l/Industrial Users	. C.A-4
	Annex-1 Annex-2	Questionnaire	s for Domestic Us for Commercia	l/Industrial Users	. C.A-4
	Annex-1 Annex-2	Questionnaire	s for Domestic Us for Commercia.	l/Industrial Users	. C.A-4
	Annex-1 Annex-2	Questionnaire	s for Domestic Us for Commercia.	l/Industrial Users	. C.A-4
	Annex-1 Annex-2	Questionnaire	s for Domestic Us for Commercia.	l/Industrial Users	. C.A-4
	Annex-1 Annex-2	Questionnaire	s for Domestic Us for Commercia.	l/Industrial Users	. C.A-4
	Annex-1 Annex-2	Questionnaire	s for Domestic C	l/Industrial Users	. C.A-4

LIST OF TABLE

			Page
Table	C.I-1	Implementation Schedule	C.I-4
	C.II-1	Cost Summary (1)	C.II-4
1 1	C.II-2	Cost Summary (2)	C.II-5
•	C.II-3	Cost Summary -Local Cost	C.II-6
	C.II-4	Cost Summary -Foreign Cost	C.II-7
	C.II-5	Cost Summary -Phase I	C.II-8
•	C.II-6	Cost Summary -Phase II	C.II-9
•	C.II-7	Cost Summary -Phase III	C.II-10
	C.II-8	Schedule of Expenditure -Phase I	C.II-11
	C.II-9	Schedule of Expenditure -Phase I/Local Cost	C.11-12
	C.II-10	Schedule of Expenditure -Phase I/Foreign Cost	C.11-13
	C.II-11	Schedule of Expenditure -Phase II	C.II-14
	C.II-12	Schedule of Expenditure -Phase II/Local Cost	C.II-15
	C.II-13	Schedule of Expenditure -Phase II/Foreign Cost	C.II-16
	C.II-14	Schedule of Expenditure -Phase III	C.II-17
	C.II-15	Schedule of Expenditure -Phase III/Local Cost	C.II-18
	C.II-16	Schedule of Expenditure -Phase III/Foreign Cost	C.II-19
•	C.II-17	Cost Estimate Summary	C.II-20
	C.II-18	Operation and Maintenance	C.II-23
	C.II-19	Replacement Cost	C.II-24
	C.II-20	Summary of Cost Allocation	C.II-25
	C.11-21	Cost Allocation of Phase I Project	C.II-26
	C.II-22	Cost Allocation of Phase II Project	C.II-27
	C.II-23	Cost Allocation of Phase III Project	C.II-38

		Page
Table C.IV-1	Outcome of House Visit Investigations on	•.
	Willingness to Pay for Water Consumption	C.1V-3
C.1V-2	Economic Cost of Khanpur Dam Construction	C.IV-9
C.IV-3	Abbreviation Table (Economic Cost)	C.1A-10
C.IV-4	Economic Evaluation	C.1V-11
C.IV-5	Economic Evaluation (Excl. Distribution)	C.IV-13
C.IV-6	Proposed Water Tariff Structure (Average	
	Rate : Rs. 9.0/000gal)	C.IV-17
C.1V-7	Proposed Water Tariff Structure (Average	
•	Rate : Rs. 6.49/000gal)	C.IV-18
C.1V-8	Unitary Charge of Khanpur Dam Water (Urban)	
C.1V-9	Abbreviation Table (Financial Evaluation)	C.IV-25
C.1V-10	Financial Evaluation	C.IV-27
C.1V-11	Financial Evaluation (Excl. Distribution)	C.IV-30
C.1V-12	Disbursement Schedule for Distribution System	C.1V-36
C.IV-13	Sensitivity Analysis -Economic Evaluation	c.1V-37
C.IV-14	Sensitivity Analysis -Financial Evaluation	C.IV-39
		* * *,

LIST OF FIGURES

	•		Page
Figure	C.I-1	Organizational Structure of Project	
	•	Implementation	C.I-3
			•
	c.III-1	Proposed Organization Chart of Water Supply	
	:	System Operation and Maintenance (1)	C.III-10
	C.III-2	Proposed Organization Chart of Water Supply	
		System Operation and Maintenance (2)	c.111-11
	C.111-3	Proposed Organization Chart of Water Supply	
		System Operation and Maintenance (3)	C.III-12
	C.III-4	Proposed Organization Chart of Water Supply	
		System Operation and Maintenance (4)	C.III-13
	C.V-1	Location Map of Geological Survey of Proposed	
	•	Tunnel Route	C.V-6

CHAPTER I. PROJECT IMPLEMENTATION

CHAPTER I. PROJECT IMPLEMENTATION

1.1. Implementation Schedule

The whole project would be constructed over a 14 year period (refer to Table C.I-1). Phase I project would start in 1987 with construction of intake tower and No.2 tunnels (11,480 m long) that need a construction period of five years, and complete in early 1992. At the same time all construction works of Phase I should be completed, so that Phase I water supply would start in the both cities of Islamabad and Rawalpindi. Construction works of Phase II and III would be started in 1992 and 1998 respectively so as to meet the water demand prospected in 1996 and 2001, respectively.

1.2. Organization for Project Implementation

The Capital Development Authority (CDA), being the principal implementing agency, would be responsible for overall planning and coordination. Because of the involvement of many Government agencies in the implementation of the Project, special provision should be made for the coordination of their activities. A Project Coordination Committee, comprising representative from CDA, WAPDA, PHED, MES, RMC, CB, ID, POF and PIDC, would be established to coordinate their activities related to the Project.

The committee will concentrate in the planning and coordination of the construction programmes to be carried out by different agencies; in securing Government funds for financing these programmes; and in periodically reviewing their progress. Later the role of the committee will be expanded to include formation of plans for joint activities and adequate operation and maintenance of project works.

Responsibility for the construction of the project will be shared between CDA and PHED of Punjab, both of which have had considerable experience of constructing works of a similar nature. CDA would establish a Project Unit, headed by a qualified and experienced Director General under the Member of CDA to carry out the works described above. The organization structure of the Project is shown in Figure C.I-1.

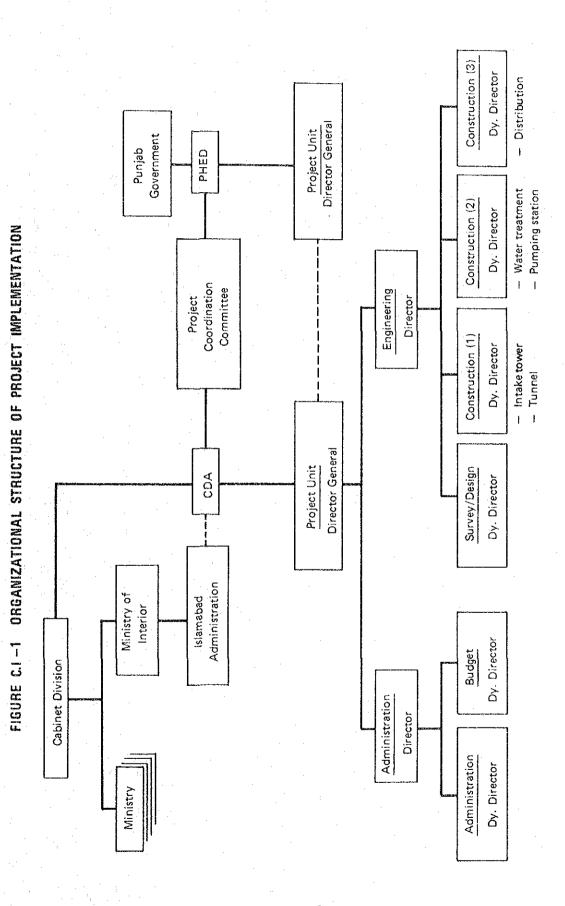


TABLE C.1-1 IMPLEMENTATION SCHEDULE

•				<u> </u>				1										
	ltem	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000
***********	Feasibility study																	
***************************************	Detail design																	
	Tendering							11						"				
	Construction	··			,			,,										
***************************************	1. Conduction main			·						Ŋ								
	2. Water treat, plant	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		:		.												
	3. Pumping station	,								Ŋ								
trees and	4. Distribution main		_		.													
	5. Service reservoir									Ŋ								
	6. Electric works						11			Ŋ			Ŋ					
	7. Office building																	
	Land acquisition																	
-	Office equipment																	
**************************************	Engineering																	
The state of	Administration																	
	Phasing		¥							1		=	À			=		A
						:												

CHAPTER II. PROJECT COST ESTIMATE

CHAPTER II. PROJECT COST ESTIMATE

2.1. Cost Estimate

The total project cost in August 1984 prices, including physical contingencies and price escalation, is estimated at Rs. 2,900 million, of which Rs. 1,925 million is for Phase I project, Rs. 558 million for Phase II project and Rs. 417 million for Phase III project. The foreign exchange component for the total Project is Rs. 1,171.5 million, or 40% of the total cost (refer to Table C.II-1 - 16). Construction costs of civil works are based on detailed quantities and unit price estimate making reference to the schedule of rates, 1982 prepared by Public Works Department, and the following prevailing rate in CDA and WAPDA; (a) building and (b) electric power transmission lines.

The total project cost includes about Rs. 154 million of import duties and taxes to be levied on such equipment as large sized steel pipes and ductile iron pipes, water treatment plants, pumps and electric motors, sub-station, etc. Estimates were made in accordance with Pakistan Customs Tariff and Import Trade Guide. Electric power can be obtained at distribution voltage from the existing system. Costs for electric works are composed of transmission lines from K.T.M. Grid and sub-station and distribution system at the Golra water treatment plant including requirement for pumping station. Details of the major construction work items are shown Table C.II-17.

Engineering and administration costs amount to Rs. 183.2 million for detailed topographic surveys and geological investigation of construction sites including tunnel routes, detailed design, tendering, supervision and administration of the