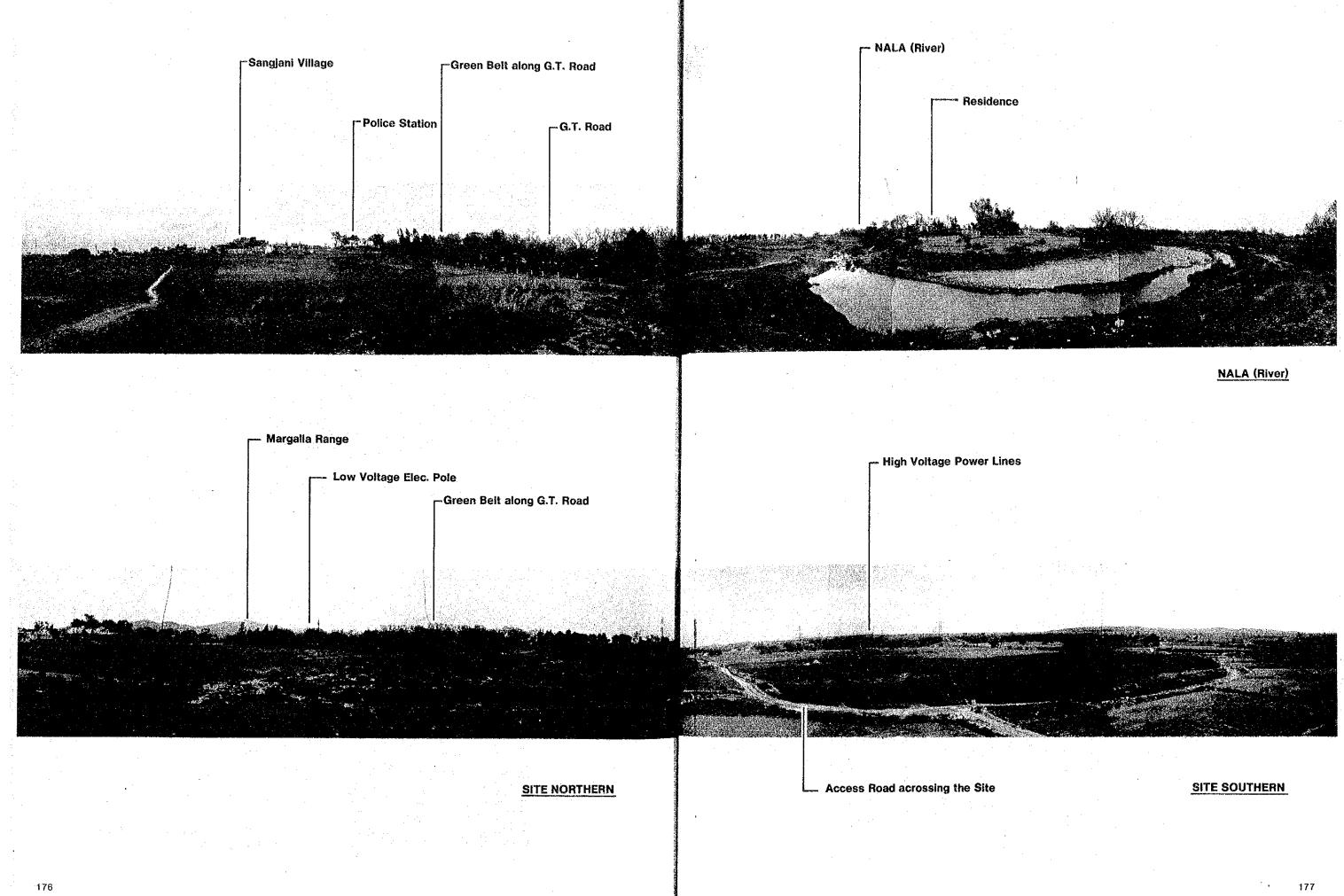
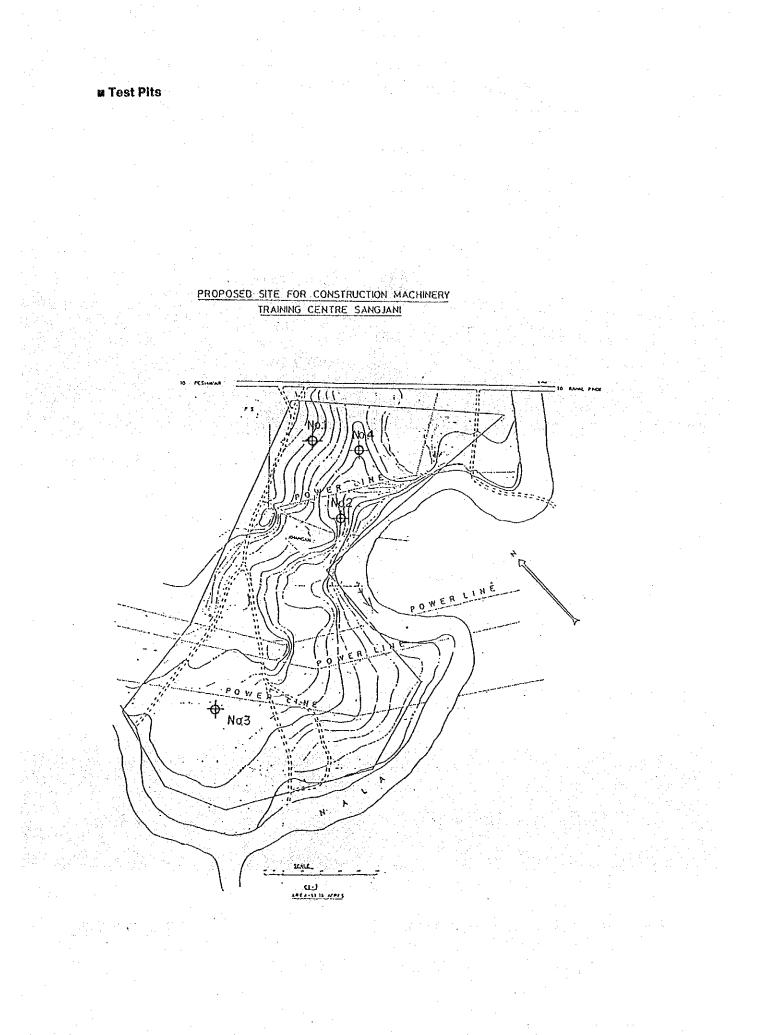
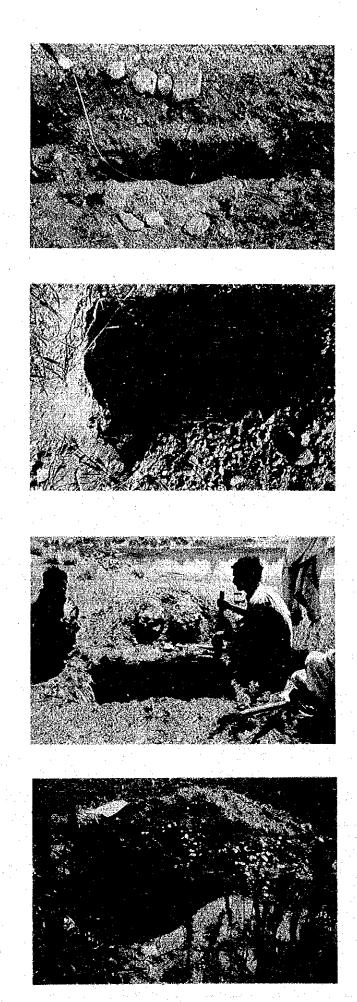

APPENDIX 3. Conditions of the Site


GRAND TRUNK ROAD (G.T. Road)

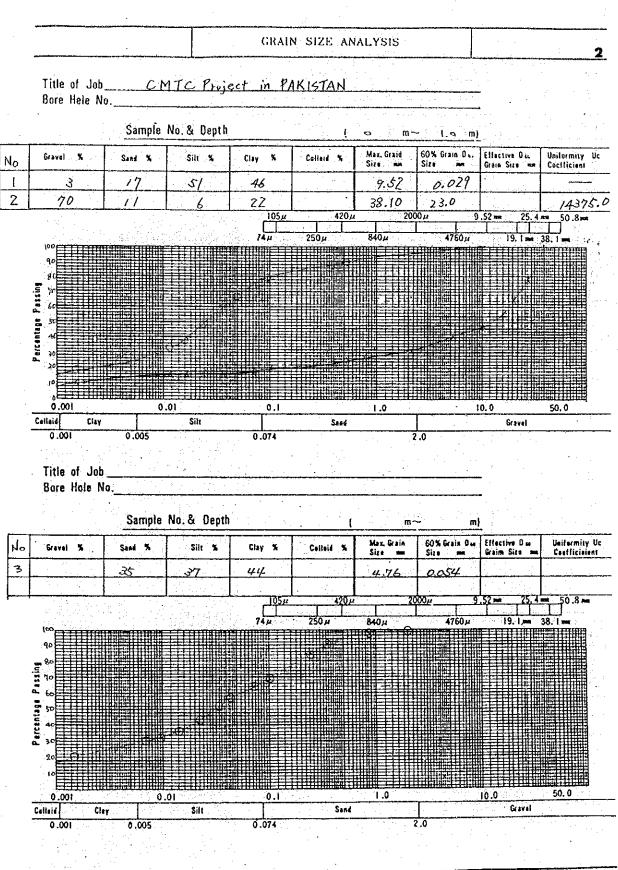



High voltage power line acrossing the site (3)

Transformer distributing electricity to Sangjani village

Test Pit No.1

Test Pit No.2


Test Pit No.3

Test Pit No.4

Grain - Size Grain - Size Analysis Clay - S Max. Gra- Silt-Siz Max. Gra- Silt-Siz Max. Gra- Silt-Siz Max. Gra- Maternal Cooffice Liquid L Plastic Spacific Gravity of Seif Par Natural Natural Maternal Dagree Uncanfined Compression Sensitiv Test	m) Size Fraction { 2 ze Fraction { 74 e Fraction { 5- ize Fraction { is Size ty Coefficent ty Coefficent in Size ty Coefficent init imit imit imit init y Index ticle Maisture Content usity Yeid Ratie	2000u < 1 1-2000u 1 -74µ1) (5µ>) U c U c U c U c U c U c U c U c	* * * * * * * * * * *	1 3 17 51 29 9.52 	2 ~~1.0 70 11 6 13 38.10 143750 88.0 34.1 13.7 20.2 (GC) GF 2.697 13.0	3 		
Depth of Sample Gravel- Sand-S Sand-S Sand-S Silt-Size Analysis Clay -S Sand-S Silt-Size Analysis Clay -S Sand-S Clay -S Sand-S Sand-S Sand-S Clay -S Sand-S Sand-S Sand-S Clay -S Sand-S Clay -S Sand-S Clay -S Sand-S Clay -S Sand-S	Size Fraction { 2 ze Fraction { 74 e Fraction { 74 e Fraction { is Size ty Coefficent nt of Curvature imit limit limit y Index ticle Maistwis Content usity Yoid Ratie	1-2000ω) -74μ) (5μ>) U. U. U. U. U. U. U. U. U. U. U. U. U.	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0~1.0 3 3 	~~1.0 70 11 6 13 38.10 14.3750 88.0 34.1 13.9 20.2 (GC) GF 2.697	0~1.0 35 37 28 4.76 		
Gravel- Sand-S Sand-S Sand-S Silt-Size Analysis Clay -S Max. Gravity Coolfice Consistancy Plastic Plastic Plastic Plastic Plastic Plastic Plastic Plastic Plastic Plastic Plastic Plastic Plastic Plastic Degree Matural Degree Inconfined Comprossion Sensitiv Tost Medulas	Size Fraction { 2 ze Fraction { 74 e Fraction { 74 e Fraction { is Size ty Coefficent nt of Curvature imit limit limit y Index ticle Maistwis Content usity Yoid Ratie	1-2000ω) -74μ) (5μ>) U. U. U. U. U. U. U. U. U. U. U. U. U.	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	3 .17 .51 .29 .52 	70 11 6 13 38.10 143750 88.0 34.1 13.9 20.2 (GC) GF 2.697	35 37 28 <u>4.76</u> 28,5 15.7 12.8 (ML) F 2.709		
Grain - Siza Anatyzis Anatyzis Clay - S Jáaz. Gra Uaifarm Cooffice Liquid L Plastic Plastic Plastic Plastic Plastic Plastic Plastic Plastic Plastic Plastic Plastic Spacific Gravity of Soil Par Natural Natural Natural Dogree Inconfined Comprossion Sensitiv Test Medulas	ze Fraction {74 e Fraction { ize Fraction { is Size ty Coefficent at of Curvature imit Limit y Index Liele Maistwie Content usity Yoid Ratie	1-2000ω) -74μ) (5μ>) U. U. U. U. U. U. U. U. U. U. U. U. U.	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		11 <u>13</u> <u>38.10</u> <u>143750</u> <u>88.0</u> <u>34.1</u> <u>13.7</u> <u>20.2</u> (GC) <u>GF</u> <u>2.697</u>	37 28 4.76 28,5 15.7 12.8 (ML) F 2.709		
Grain - Size Analysis Analysis Clay - Size Clay - Size Clay - Size Clay - Size Cooline Uailerm Cooline Liquid L Plastic Plastic Plastic Plastic Plastic Plastic Plastic Plastic Plastic Plastic Plastic Plastic Plastic Plastic Plastic Plastic Cooline Natural Specific Gravity of Seil Par Natural Natural Sensitiv Test Medules Fiaxial X T	e Fraction (5- ize Fraction (in Size ty Coefficent nt of Curvature imit Limit y Index ticle Maistwie Content usity Yoid Ratie	- 74µ) (5µ>) Ue Ue We We Ie Ie Is Is 7 i	* ferm * *	\$1 29 9.52 31.3 14.8 14.5 (CL)g F 2.683	6 	37 28 4.76 28,5 15.7 12.8 (ML) F 2.709		
Grain - Size Analysis Analysis Clay - S Max. Grz Uaiferm Cooffice Liquid L Plastic Plastic Plastici Plastici Plastic Plastic Plastic Plastic Plastic Plastic Degree Matural Matural Degree Medulus Test Medulus Medulus Met T	ize Fraction { in Size ty Coefficient at of Curvature imit timit y Index ticle Maistwie Content tisty Yeid Ratie	(5µ>) Uc Uc Wp IP IP G 4 Y Ti	5 Trum 5 5 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	29 9.52 	1.3 38.10 143750 88.0 34.1 13.7 20.2 (GC) GF 2.697	28 4.76 28,5 15.7 12.8 (ML) F 2.709		
Adax. Ges Uniferm Constitute Consistancy Plastic Plast	ia Siza ty Coafficant at of Curvature imit Limit y Index Licla Maistwis Contant usity Void Ratia	U c U c W c W p I	τιπ * %	9.52 	38.10 143750 88.0 34.1 13.9 20.2 (GC) GF 2.697	4.76 		
Consistancy Consistancy Consistancy Plassic Pl	ty Coefficent nt of Eurvature imit Limit y Index ticle Maistwis Content tsity Yoid Ratie	Uc Wr W p I P G A 10 T 1	* * * *	31.3 14.8 14.5 (CL)g F Z.683	38.10 143750 88.0 34.1 13.9 20.2 (GC) GF 2.697	4.76 		
Consistency Consistency Consistency Plastic Pl	nt of Curvature imit Limit y Index Licle Maistwie Content usity Void Ratie	Uc Wr W p I P G A 10 T 1	¥ 2/cm²	31.3 14.8 14.5 (CL)g F Z.683	<u>143750</u> 88.0 34.1 13.9 20.2 (GC) GF 2.697			
Consistancy Liquid L Plastic Plastic Plastic Plastic Plastic Specific Gravity of Soil Par Netwal Bulk De Netwal Bulk De Natwel Degree Econfired Compression Test Medulas Tiaxiel	imit Limit y Index ticle Maistwis Contont usity Yoid Ratie		¥ 2/cm²	31.3 14.8 16.5 (CL)g F Z.683	88.P 34.1 13.9 20.2 (GC) GF 2.697	15.7 12.8 (ML) F 2.709		
Consistancy Plastic Plasticit Plasticit Plasticit Specific Gravity of Soil Par Natural Natural Natural Degree mecanfined Compression Test Medicias	Limit y. Index ticlo Maistwro Contont siity Void Ratio	ψ _p I _p G 10 T ₁	¥ 2/cm²	. 14.8 .14.5 (CL)g F Z.683	<u>13.9</u> 20.2 (GC) GF 2.697	15.7 12.8 (ML) F 2.709		
Plasticit Plastic Plasti	y Index ticle Maistwis Content tsity Yeid Ratie	. [> 	8/cm*	14.5 (CL)g F Z.683	20.2 (GC) GF 2.697	12.8 (ML) F 2.709		
assification Specific Gravity of Soil Por Instant Instant Matural Natural Natural Natural Dogroe Mcanfined Comprossion Test Medulus riaxial X T	ticle Maistwis Content tsity Void Ratie	G . 10 7 i	*	(CL)g F Z.683	(GC) GF Z.697	(ML) F 2.709		
Spacific Gravity of Soil Por Natural Natural Natural Dogroe Inconfined Compression Test Medulus riaxial X T	Maisture Content Isity Veid Ratie	W Ťi	*	F 2.683	<u>GF</u> 2.697	F 2.709		
Spacific Gravity of Soil Por Natural Natural Natural Dogroe Inconfined Compression Test Medulus riaxial X T	Maisture Content Isity Veid Ratie	W Ťi	*	F 2.683	<u>GF</u> 2.697	F 2.709		
Natural Natural Natural Degree Inconfined Compression Test Medules riaxial X T	Maisture Content Isity Veid Ratie	W Ťi	*	2.683	2.697	2.709		
latural Bulk De Natural Degree Inconfined Uncon, C Compression Sensitiv Test Medulus riaxial X T	uity Void Ratie	<u>τ</u> ι	• • • • • • • •					
iatural Natural Dogroe Inconfined Comprossion Tost Medulus riaxial Medulus	Void Ratio		1/tm*	70.2	1 12.0.1			
Naturai Dogroe Inconfixed Uncos, C Compression Sensitiv Test Medulus riaxial X: T		е.	******			<u>9: /</u>		-+
Incentined Uncent Compression Sensitiv Test Medulus riaxial X T								
Compression Sensitiv Text Medulus riaxial X T	S SALIN ALIAN	8,	%	35	20	35		
Test Medulus riâxial X T	ump, Strangth	q .	kg/tm*					
riaxial 🗮 T	ity Ratie	81	·					
·····	of Elasticity	E so	kg/cm*					
	sting Method	Ċ	kg/cm*					
	Internal Friction	ø	44.			*		
	sting Mathad							
Test	فتجيم بسمعتم متعار المع	C	kę/cm²					
	Internal Friction		199. !					
Precomp	ression Intensity	· · · · · · · · · · · · · · · · · · ·	kg/tm²					
	sion Index	C c						
Test	nt of Conselidation	с,	sm 7min				<i></i>	
Ceefficie	nt of Permaability	k	¢m/min					
								1
								1
• • • • • • • • • • • • • • • • • • •			.			<u> </u>		+

Consolidation - Orained Shear Test CD

.

Bor Sam, Ne, 1 2 3 4 5 8	of Job <u>CMTC Projec</u> Hole No. = No. 4. Depth No. / Liquid Limit Test Number of Blowe Moistur Contents & <u>49</u> <u>29.6</u> <u>37</u> <u>30.1</u> <u>30</u> <u>30.7</u> <u>21</u> <u>31.7</u>	UID LIMIT AND PLAS t_{in} PAKISTAN $l = m - l_{10} m$ Plastic Limit Test No. Meistur Contents X $1 - \frac{15.4}{13.9}$		Numader et Blow Cou 9 10 15 20 22	3 Ints 5 30 40 50	
Bor Sam, Ne, 1 2 3 4 5 8	of Job <u>CMTC Projec</u> Hole No. = No. 4. Depth No. / Liquid Limit Test Number of Blowe Moistur Contents & <u>49</u> <u>29.6</u> <u>37</u> <u>30.1</u> <u>30</u> <u>30.7</u> <u>21</u> <u>31.7</u>	t in PAKISTAN 1 a m~ 1,0 m) Plastic Limit Test No. Meistur Contants % 1	3 ⁵ 6 7 8			
Bor Sam, Ne, 1 2 3 4 5 8	of Job <u>CMTC Projec</u> Hole No. = No. 4. Depth No. / Liquid Limit Test Number of Blowe Moistur Contents & <u>49</u> <u>29.6</u> <u>37</u> <u>30.1</u> <u>30</u> <u>30.7</u> <u>21</u> <u>31.7</u>	t in PAKISTAN 1 a m~ 1,0 m) Plastic Limit Test No. Meistur Contants % 1	3 ⁵ 6 7 8			
Bor Sam, Ne, 1 2 3 4 5 8	of Job <u>CMTC Projec</u> Hole No. = No. 4. Depth No. / Liquid Limit Test Number of Blowe Moistur Contents & <u>49</u> <u>29.6</u> <u>37</u> <u>30.1</u> <u>30</u> <u>30.7</u> <u>21</u> <u>31.7</u>	t in PAKISTAN 1 a m~ 1,0 m) Plastic Limit Test No. Meistur Contants % 1	3 ⁵ 6 7 8			
Bor Sam, Ne, 1 2 3 4 5 8	of Job <u>CMTC Projec</u> Hole No. = No. 4. Depth No. / Liquid Limit Test Number of Blowe Moistur Contents & <u>49</u> <u>29.6</u> <u>37</u> <u>30.1</u> <u>30</u> <u>30.7</u> <u>21</u> <u>31.7</u>	t in PAKISTAN 1 a m~ 1,0 m) Plastic Limit Test No. Meistur Contants % 1	3 ⁵ 6 7 8			
Bor Sam, Ne, 1 2 3 4 5 8	of Job <u>CMTC Projec</u> Hole No. = No. 4. Depth No. / Liquid Limit Test Number of Blowe Moistur Contents & <u>49</u> <u>29.6</u> <u>37</u> <u>30.1</u> <u>30</u> <u>30.7</u> <u>21</u> <u>31.7</u>	t in PAKISTAN 1 a m~ 1,0 m) Plastic Limit Test No. Meistur Contants % 1	3 ⁵ 6 7 8			
Bor Sam, Ne, 1 2 3 4 5 8	Hole No. = No. & Depth No. / Liquid Llmit Test Number of Blows Moistur Contents & 49 29.6 37 30.1 30 30.7 21 31.7	(0 m~ (₀ m) Plastic Limit Test No. Meistur Contents % 1	5 6 7 8 38			
Sam Ne. 1 2 3 4 5 8	e No. 3. Depth No. / Liquid Llmit Test Number of Blows Maistur Contents % <u>49</u> <u>29.6</u> <u>37</u> <u>30.1</u> <u>30</u> <u>39.7</u> <u>21</u> <u>31.7</u>	Plastic Limit Test No. Meistur Contents % 1 1.5.4 2 13.9	5 6 7 8 38			
Ne. 1 2 3 4 5 8	Liquid Llmit Tast Number of Blows Maistur Contents & 	Plastic Limit Test No. Meistur Contents % 1 1.5.4 2 13.9	5 6 7 8 38			
1 2 3 4 5 8	Number of Blows Maistur Contents % 49 29.6 37 30.1 30 30.7 21 31.7	No. Meissur Contents % 1 15.4 2 13.9	38	Blow C	जाना जम्मारग	
2 3 4 5 8	<u>49</u> <u>29.6</u> <u>37</u> <u>30.1</u> <u>30</u> <u>30.7</u> <u>21</u> <u>31.7</u>	1 15.4 2 13.9		哪門 日日日日 1000	Cauats Curve E	
3 -4 -5 -8	37 30.1 30 30.7 21 31.7	2 13.9	111111111111111111111111111111111111111		HIII	
4 5 8	21 31.7		34			•
8		3 15.0	57			
8						
Liqu	<u>13</u> <u>33.2</u> 1 <u>3</u> 5.2	Average	30			
		tadax Ip				
	31.3 * 14.8 * 16	.5				
•						
			38			
Samp	n No. & Dopth No. 2.	(m ~ m)				
	Liquid Limit Test	Plastic Limit Test				
Na.	Number of Blows Moistur Contents %	No. Moistur Contante S	34			
2	<u>49</u> <u>32.2</u>	1 13.3				
	42 32.6 32 33.6	2 <u>13.8</u> 3 <u>14.5</u>	×			
4	20 34.9		30			
5	16 35.4					
5	-8 37.5	Average				
Liqui	Limit soz Plastic Limit cop Plasticity					
	24.1 × 13.9 × 20	.2				
Sarny	Ne.a Depth No. 3	4 m 1 -	34			
Ne	Liquid Limit Tast Number of Blows Meistur Contants %	Plastic Limit Test No. Moistur Contonts %				
1	43 26.9	1 15.9				
2	34 27.4	2 16.6	30			
3	2628.4.	3 14.7				
		· · · · · · · · · · · · · · · · · · ·				
5 (24			
 Lievia	8 3/.8 Limit W1 Plastic Limit 2019 Plasticity	Average Index fy				
	8.5 × 15:7 × 12					
	<u> </u>					
e La tractica			5 6 7 8 9		5 30 40 50	

Final Draft of Actual Machine for the CMTC Project

	ĸ	rd-soil/rock§ . Scraper 16m	t Pakistan		p-truck 20 ton	Operator course	1			compared with other Machinery	ı Pakistan	total number	compared with other Machinery	nusning bullaozer 410 number							
	Remark	Ripper working on hard-soll/rocks and maching with the Scraper l6m as a pushing dozer	Much popular type in		Maching with the Dump-truck 20	Articulate-type for	Torque-Control type			Quite big compared w	Much popular type in Pakistan	Adjastment of total	Quite big compared w	and necessary of a pushing Adjastment of total number							seems that a strate of means of a
	Total	r-4	H H O	14	~	2		7	4	0 +	,	$1 \rightarrow 2$	0 *	1 + 2	2	-	2			•	•
	Q'ty for Mech.										i	1					-			+	
•	Q'ty for Ope.	 -ŧ				гн			44	0 +		0 + 1	, 0 + 1 1 + 0	1 + 2	2	-1		1	1		
	Specification	320. ps	220 ps 160 ps + 150 ps ▼140 ps + 110 ps	160 ps 110 ps			↑	10 t (nignway)	10 E	▼ 1.2 ^{±3}	0.9 H	<u> </u>	▼23 B	△16 m ³	8 t	15 t	2.5 m ³ /min.	9.5 kw			
	Description	Bull Dozer		Dozer Shovel	Wheel Loader	Motor Grader	Dumpt Truck	Door Stahiliaor	Truck Crane	Hydraulic Excavator			Motor Scraper		Vibratory Roller	Pneumatic Roller	Compressor W/ Attachment	Diesel Generator	Asphalt Distributor		

•

APPENDIX 4.

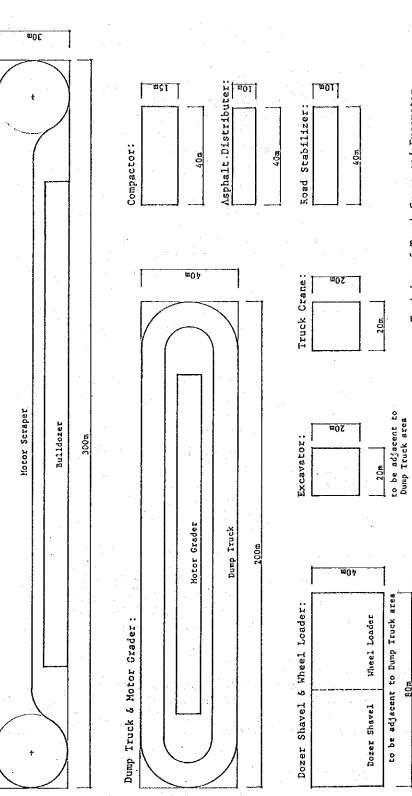
Related Information for the CMTC

∆ Grade up

V Grade down

Operator Training and Construction Equipment

								ľ											
		BULI	BULLDOZER		DOZER	ĸ	MHEEL		MOTOR	~	DUME	·	STABI	HYDR	RYDRAULIC	SCRAPER		ROLLER CENI	CEN
			1 2 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1		SHC	SHOVEL	LOADER		GRADER	DER	TRUCK	X	- :	EXCI	EXCAVATOR		VIR	VIB VIG TON	Ĩ
	320	220	320 220 150	110	160 110 280 100 145 110 20 (18	51	280	0 F	145	E	8	87	360 -	6.0	0.5	0.9 0.5 16 CU M			
	PS	PS		PS	PS	PS	S ^L	<u></u>	PS S	NOI NOI SA SA	Ng	TON	PS	CU.M CU.M	м СЛ		TON		
DOZE AND DIG WORK	•	٠		٠			-						1						
RIPPING WORK	•																		
SLOPE CUT WORK	•	٠	•	•						•									
EMBANKMENT & REFILL	•			•					T	1									
LEVELLING (ROUGH)	•	•	•	•					1										
DITCH EXCAVATION		н ^н .		۲				 		•				•	•				
GROUND EXCAVATION					- 1.,					ŀ		+						T	


	OTHERS	2													1		FINISHER		CULTER	
AIR-	CUMPRESSOR	CU.M/MIN															E4		8	
	_	X.M.																		
ROLLER (10 10 101 01	1.											e	•			•		•	
	-1-					-					-							0	9	
SCRAPER	16 CU.M												н 194			•				
RYDRAULIC EVCAUATOD	0.5	ся Ю						•	•	•										
ICXR	6.0	CU.M						•		•		1								
STABI	360	PS																		
, x	8															•	•			
DUMP	-									·.						•				
STOR GRADER	Ê				•			•				•						•	•	
MOTOR		PS		•	9		_	•				•	. ·					٠	.•	
WHEEL LOADER	280 100	PS							25.0								<u></u>			
	+	PS													-			:		
DOZER	.09T	PS												· · . :			 			
	110	PS	٠		•	•	•												<u></u>	- <u>-</u>
BULLDOZER	150						•					:								
BULL	220	PS	•		•	۲	•		:								 			
	320	PS	٠	•		•	•				·				. : i .					8
			DOZE AND DIG WORK	RIPPING WORK	SLOPE CUT WORK	EMBANKMENT & REFILL	LEVELLING (ROUGH)	DITCH EXCAVATION	GROUND EXCAVATION	LOADING (AND DIG)	LOAD AND CARRY	SPREAD AND GRADING	SOIL COMPACTION	ASPHALT COMPACTION	OPERATION	HAULING	ROAD PAVEMENT	GRAVEL ROAD MAINTE	ROAD REHABILITE	MOTOR SCRAPER WORK

* mainly use for lighting or small electric tools.

** mainly use for concrete breaker or painting

Basic Area for Operator Training

Bulldozer & Motor Scraper:

Training of Truck Crane and Excavator should be avoided under the power lines.

APPENDIX 5. Equipment List

E-1 ACTUAL MACHINES

A. ACTUAL MACHINE FOR OPERATOR COURSE

Description

Q'ty

1

1

1

1

1

1

BULLDOZER With Straight Tilt Dozer, Multi-Shank Ripper, Pusher Plate and Canvas Canopy Max. Horse, Power: Approx.320 PS Drive System: Torque Convertor Drive Dozer Size: Approx 4.0 x 1.6 M

> BULLDOZER With Straight Tilt Dozer, Fixed Drawbar & Canvas Canopy Max. Horse Power: Approx. 220 PS Drive System: Torque Convertor Drive Dozer Size: Approx. 3.7 x 1.3 M

A-3

Item

A-1

A--2

BULLDOZER With Straight Tilt Dozer, Fixed Drawbar & Canvas Canopy Max. Horse Power: Approx. 160 PS Drive System: Torque Convertor Drive Dozer Size: Approx. 4.0 x 1.0 M

A-4

A-5

A-7

BULLDOZER With Angle Dozer, Fixed Drawbar & Canvas Canopy Max.Horse Power: Approx. 110 PS Drive System: Direct Drive Dozer Size: Approx. 3.7 x 0.9M

DOZER SHOVEL With Standard Bucket & Canvas Canopy Max. Horse Power: Approx. 165 PS Drive System: Torque Convertor Drive Bucket Size: Approx. 1.8 M³

A--6 DOZ Wit Max

DOZER SHOVEL With Standard Bucket & Canvas Canopy Max. Horse Power: Approx. 110 PS Drive System: Direct Drive

Bucket Size: Approx. 1.4 M³

WHEEL LOADER With Standard Bucket & Canvas Canopy Max. Horse Power: Approx. 235 PS Drive System; Torque Convertor Drive Bucket Size: Approx. 3.5 M³ A--8

Description

WHEEL LOADER With Standard Bucket & Canvas Canopy Max. Horse Power: Approx. 107 PS Drive System: Torque Convertor Drive Bucket Size: Approx. 1.7 M³

A-9

MOTOR GRADER With Scarifier, Rear Mounted Ripper & Canvas Canopy Max. Horse Power: Approx. 145 PS Drive System: Hydraulic Transmission Blade Size: Approx. 3.7 x 0.5 M

A-10 MOTOR GRADER With Scarifier & Canvas Canopy Max. Horse Power: Approx. 115 PS Drive System: Hydraulic Transmission Blade Size: Approx. 3.1 x 0.5 M

- A-11 DUMP TRUCK Max. Horse Power: Approx. 280 PS Drive System: Torque Convertor Drive Max. Carrying Capacity: 20,000 Kg
- A-12 DUMP TRUCK Max. Horse Power: Approx. 300 PS Drive System; Direct Drive Max. Carrying Capacity: Approx. 10,000 Kg
- A-13 ROAD STABILIZER Max. Horse Power: Approx. 360 PS Drive System: Max. Mixing Capacity: Approx. 2.0 x 0.37 M

A-14 TRACK CRANE Max. Horse Power: Approx. 260 PS Drive System: Direct Drive Max. Crane Capacity 10,000 Kg Boom: 3 Stages Boom Max. Length: Approx. 10.0 M

A-15 EXCAVATOR Max. Horse Power: Approx. 108 PS Drive System: Hydraulic Drive Bucket Capacity: Approx. 0.7 M³

Q'ty

1

1

1

1

1

1

1

1

A-16

- EXCAVATOR Max. Horse Power: Approx. 90 PS Drive System: Hydraulic Drive Bucket Capacity: Approx. 0.5 M³
- A-17

MOTOR SCRAPER With Rops Canopy Single Engine Max. Horse Power: Approx. 364 PS Drive System: Torque Convertor Drive Capacity (Heaped): Approx. 16 M³ Q' ty

1

2

2

1

1

3

1

1

A-18 VIERATORY ROLLER Max. Horse Power: Approx. 86 PS Vibrating Force: 6.0 - 10 TONS Vibrating Speed: Approx. 2,500 - 3,000 rpm

A-19 PNEUMATIC ROLLER Max. Horse Power: Approx. 100 PS Type: Mechanical Compacting Width: Approx.2 M

- A-20 AIR COMPRESSOR Max. Horse Power: Approx. 2.5 PS Capacity: 215 M³/ MIN Pressure: 7.0 Kg/cm²
- A-21 ATTACHMENTS (Concrete Breaker)

A-22 GENERATOR Max. Horse Power: Approx. 17 PS Capacity: Approx. 9.5 KW

A-23 ASFHALT DISTRIBUTOR Max. Horse Power: Approx. 26 PS Tank Capacity: Approx. 3,000 S.T.D. Spreading Width: Approx. 2.0 M

Item	Description		Q'ty
	Kalikata kuto sing takat fan data sana		
· ·			-
B-1	BULLDOZER		1
	With Straight Tilt Dozer, Fixed Drawbar & Canvas Canopy		
	Max. Horse Power: Approx. 160 PS		
-	Drive System: Torque Convertor Drive		
	Dozer Size: Approx. 4.0 x 1.0 M		
2	••		
B2	DOZER SHOVEL		1
	With Standard Bucket & Canvas Canopy		
	Max. Horse Power: Approx. 110 PS		
	Drive System: Direct Drive		
	Bucket Size: Approx. 1.4 M ³		
3-3	WHEEL LOADER		1
<u> </u>	With Standard Bucket & Canvas Canopy		
	Max. Horse Power: Approx. 107 PS		
	Drive System: Torque Convertor Drive		
	Bucket Size: Approx. 1.7 M ³		
B-4	MOTOR GRADFR		1
D-4	With Scarifier & Canvas Canopy		*
	Max. Horse Power: Approx. 115 PS		
	Drive System: Hydraulic Transmission		
	Blade Size: Approx. 3.1 x 0.5 M		
		t	
_ · _		· .	•
B-5	DUMP TRUCK		1
	Max. Horse Power: Approx. 300 PS		
	Drive System: Direct Drive Max. Carrying Capacity: Approx. 10,000	Ка	
	Tax. Our ying ochartoy. Approx. 10,000	- ō	

Max. Horse Power: Approx. 90 PS Drive System: Hydraulic Drive Bucket Capacity Approx. 0.5 M³

B-7

AIR COMPRESSOR Max. Horse Power; Approx. 25 PS Capacity: 2.5 M³/MIN Pressure: 7.0 Kg/cm² 1

1

189

B--8

GENERATOR Max. Horse Power: Approx. 17 PS Capacity: Approx. 9.5 KW

E-1-C. COMPONENT

	E-1-C. COMPONENT	
Item	Description	<u>Q'ty</u>
	1. Engine	
1.	Engine assembly	2
2.	Engine assembly with turbo and main clutch	4
3.	Gasoline engine assembly	2
en e	2. Torque Converter and Transmission	
1.	Torque converter assembly	4
2.	Torqflow transmission	4
3.	Transmission for loader	2
4.	Transmission	4
	3. Fuel Pump	
1.	Fuel injection pump assembly for small engine	5
2.	Fuel injection pump assembly for big engine	5
3.	Fuel pump	10
	4. Hydraulic	
1.	Hydraulic pump assembly	10
2.	Pump assembly for transmission	4
3.	Hydraulic control valve	4
4.	Steering control valve ass'y	4
5.	Hydraulic pump and regulator for excavator	2
6.	Hydraulic motor for excavator	2
7.	Hydraulic cylinder assembly	б

	Item	Description		<u>Q'ty</u>
		5. System Board		
- • • •	1.	Electric system board for bulldozer		1
	2.	Electric system board for truck		1
	3.	Hydraulic system board	- 1-	1
•	4.	Brake system		1
		6. Differential		
	1.	Differential ass'y with banjyo housing		.4
	2.	Dump transmission		2
		7. <u>Electrical</u>		
	1.	Starter motor		4
	2.	Alternator	. · · · ·	4
	3.	Generator		4
	4.	Regulator		10
		a de la companya de l La companya de la comp La companya de la comp	•	
*				
•				
	н 1. н. н. н.			
		E-2. SPARE PARTS		
				· .
	an a			
	A. 5	SPARE PARTS FOR OPERATOR COURSE	1 SET	

SPARE PARTS FOR MECHANIC COURSE 1 SET

Β. .

E-3. SERVICE WORKSHOP FACILITIES

Α.	EQUIPMENT	&	TOOLS

Item	Description	<u>Q'ty</u>
A-1	CHASSIS BAY	1 SET
A-2	ENGINE REPAIR SHOP	1 SET
АЗ	ENGINE DYNAMOMETER ROOM	1 SET
A4	HYDRAULIC COMPONENT TEST ROOM	1 SET
A5	FUEL INJECTION PUMP, ELECTRICAL COMPONENT & BATTERY ROOM	
A5-1	FUEL INJECTION PUMP ROOM	1 SET
A5-2	ELECTRICAL COMPONENT ROOM	1 SET
A-5-3	BATTERY ROOM	1 SET
A-6	POWER LINE HYDRAULIC & TIRE SERVICE REPAIR SHOP	1 SET
A-6-1	POWER LINE REPAIR BAY	1 SET
A-6-2	TIRE SERVICE BAY	1 SET
A-7	MACHINE SHOP	1 SET
A8	WELDING & UNDERCARRIAGE REBUILDING SHOP	
A-8-1	WELDING & FABRICATION BAY	1 SET
A-8-2	UNDERCARRIAGE SHOP	1 SET
A-9	COMPRESSOR ROOM	1 SET
A-10	CLEANING & PAINTING EQUIPMENT	1 SET
A-11	PARTS WAREHOUSE	1 SET
A-12	TOOL ROOM	1 SET

MAJOR SHOP EQUIPMENT ARE AS FOLLOWS:

A-1 Chassis Bay

Item	Description	Q' ty
A-11	Overhead Crane, Double Beam Type with Direction Board	1
	Rail less travel wheel Capacity : 5 ton	
A12	Mobile Work Bench (Wood Cover) With Vise	l set
A-1-3	Parts Rack	l set
A-1-4	Parts Wagon	l set
	with casters and 4 shelves	
A-1-5	Mechanic Tool Set For Construction Equipment	4
A-1-6	Tool Cabinet	4
A-1-7	Parts Cleaner	l
	Tank : 100 lit.	
A-1-8	Hydraulic Garrage Jack	2
	Capacity : 10 ton	
A-1-9	Transmission Jack	l
	Capacity : 1,800 kg	
A-1-10	Fork Lift, 2.5 ton Capacity	1

				· · ·
	A-2 Engine Repair Shop			· · ·
			. *	
Item	Description		Q' ty	
A-2-1	Over Head Crane Double Beam Type with Direction Board		1	
	Rail less travel wheel Capacity : 3 ton	۰.		
A22	JIB Crane, Wall Type with Chain Block, 4 Button Type		2	•
	Capacity : 1 ton	:	·	
A-2-3	Mobile Floor Crane		1	:
	Capacity : Max. 2 ton			
A24	Hydraulic Press	• •	· 1	
· · · . ·	Capacity: 35 ton			
A-2-5	Work Bench with Cabinet and Locker		l set	
A-2-6	Bench Electric Grinder		1 .	
A-2-7	Bench Drill Press		1	
	Capacity : 13 mm		⊥ ,	
A-2-8	Engine Stand		4	
	Service cap. : 3,000 kg		4	
A-2-9	Parts Rack		l set	
A2-10			· · · ·	
<i>N~2~</i> 10	Parts Wagon with casters and 4 shelves	. .	l set	· · ·
A-2-11	Cylinder Head Work Bench		1	•
A-2-12	Parts Cleaner		1	
A-2-13	Valve Refacer		1	• • • •
A-2-14	Valve Spring Tester	· ·	1	ч. - -
A-2-15	Piston Heater (Bearing Heater)		1	
A-2-16	Connecting Rod Aligner		1	
A-2-17	Tool Cabinet		4	
A-2-18	Mechanic Tool Set for Construction Equipment		4	
A-2-19	Cylinder Head Hydraulic Stand	·	1	
A220	Steam Cleaner		1	· .
A-2-21	Mobile Work Bench (Lift Type)		l set	
A-2-22	Tool Locker		l set	

· .		
<u>Item</u>	Description	Q'ty
A223	Parts Cleaner with One Busket	1
A-2-24	Connecting Rod Boring Machine	l
A225	Surface Grinder	1
A226	Cylinder Boring Machine	 1
A-2-27	Main Line Boring Machine	1
A228	Honing Machine	1
A-2-29	Crankshaft Grinder	1
A2-30	Crankshaft Rebuilding Machine	1
A-2-31	Valve Seat Grinder	1
A-2-32	Machinists Vise	9 .:

A-3 Engine Dynamometer Room

Item	Description	Q'ty
A-3-1	Engine Dynamometer with Panel Stand	1
A-3-2	Engine Stand & Bed	1
A3-3	Fuel Tank with Stand	1
A-3-4	Cooling Water Tank For Engine with Stand	1
A-3-5	Water Supply Pump	2
A3-6	Fuel Consumption Meter	1
A-3-7	Work Bench with Cabinet and Locker	1
A38	Parts Rack	1
A-3-9	Tool Locker & Cabinet	1

•

	n an			
2		A-4 Hydraulic Componet Test Roc	m	
	Item	Description		Q'ty
	A4]	Hydraulic Component Universal Tester		1
	A4-2	Parts Rack		l set
	A-4-3	Mechanic Tool Set		6
	A44	Electric Chain Block with Gear Trolly		ĺ
	A45	Mobile Work Bench	and the	1 .
				÷
			. ·	

A-5 Fuel Injection Pump Room

Item	Description		Q'ty
A51	Diesel Fuel Injection Pump		1
A-5-2	Pump Test Stand	на. Н	1 :
A-5-3	injector Flow Comparator		l
A54	Nozzle Tester		1
A5-5	Work Bench		6
A5-6	Engineers Vise		10
A-5-7	Mechanic Tool Set with English Size Tool		10
A-5-8	Tool Cabinet		2
A-5-9	Parts Cleaner	· · · · ·	1
A-5-10	Parts Rack		l set
	Electric Component Room		
A-5-11	Starter Generator Test Bench		1
A-5-12	Motor Puller Set		1
A-5-13	Work Bench		1
A-5-14	Engineers Vise		1
A-5-15	Tool Cabinet		1
	Battery Room		
A-5-16	Silicon Quick Charger with Normal Charge		1
A-5-17	Parts Rack		l set
A-5-18	Water Purifier		1

. 197

	A-6 Power Line Hydraulic repair Bay	
Item	Description	Q'ty
A61	Unit Repair Stand	4
A62	Mechanic Tool Set For Construction Equipment	4
A63	Tool Cabinet	4
A-6-4	Mobile Work Bench (Lift Type) with Vise	l set
A6-5	Parts Rack	l set
A66	Parts Wagon with Caster and 4 Shelves	l set
A-6-7	Hydraulic Cylinder Service Stand	. 1
A-6-8	Jib Crane, Wall type	l
	<u>Tire Service Bay</u>	
A-6-9	Hydraulic Tire Removing Tool	1
	Tire size:OR tire 12.00-26.00 Ram Capacity: 10 ton	
A-6-10	Tire Spotter Set	1
A-6-11	Work Bench with 1 Drawer and Shelves	1
A-6-12	Tool Cabinet	1

A-7 Machine Shop

Item	Description	Q' ty
A-7-1	Precision Lathe	З
	Swing over bed: not less than 500 mm Distance between center: 1,500 mm	
A-7-2	Upright Drilling Machine	1
	Drilling capacity: not less than 50 mm dia.	
A-7-3	Bench Drill Press	1
	Capacity: notless than 23 mm	
A-7-4	Universal Milling Machine	1
A-7-5	Shaping Machine with Standard Accessories	
A-7-6	Hack Sawing machine	l
A-7-7	Bench Electric Grinder	1
A78	Work Bench with 1 Drawer and 1 Shelf	2
A-7-9	Parts Locker	l set
A-7-10	Parts Rack	l set
A-7-11	Mobile Floor Crane	1
A-7-12	Bar Rack	1
A-7-13	Tool Locker and Cabinet	l set

A-8 Welding & Fabrication Bay

Item	Description	Q' ty
A-8-1	A. C Arc Welder	2
A82	Electrode Drier	2
A-8-3	CO ₂ -Gas Shield Arc Welder	1
A-8-4	Gas Welder Set	4
A85	Iron Anvil, Cast Iron, 70 kg	1
A-8-6	Cast Iron Swage Block	1
A87	High-speed Abrasive Cut-Off Machine	1
A88	Partition for Welding	l set
A-8-9	Hand Lever Shear Undercarriage Shop	1
A-8-10	Roller Idler Press	1
A-8-11	Conveyor Stand for Roller Line	l
A812	Track Press with Hydraulic Winch	1
A-8 -13	Shoe Bolt Impact Wrench	1
A-8-14	4 Conveyors and Shoot	1
A-8-15	Track Link Rebuilding Machine Kit] .
A-8-16	Track Link Welding Bed	1
A-8-17	Roller Idler Attachment	. 1
A-8-18	Electric Grinder with Stand & Glass	1
A8-19	Parts Wagon with Casters and 4 Shelves	l set
A-8-20	Track Link Hanger	1
A8-21	Tool Cabinet	1
A-8-22	Hydraulic Press (100 ton)	. 1

A-9 Compressor Room

ItemDescriptionQ'tyA-9-1Air Compressor11,600 1/min.1

A-10 Cleaning & Painting Equipment

Item	Description	<u>Q'ty</u>
A-10-1	Hot Water High Pressure Washer	1
A102	Steam Cleaner	1
A-10-3	Air Compressor with Water Separator	1
	Approx. 350 liter/min.	

A-11 Parts Warehouse

Item_	Description	Q' ty
A-11-1	Parts Racks	l set
A-11-2	Parts Truck	l set
A-11-3	Power Lifter Max. Capacity: 600 kg	1

A-12 Tool Room

Torque Multipler Torque Wrench General Tools

l set

E-3-B. Special Tool

Item	Description	Q'ty
B-1	Special tools for engine	l set
В-2	Special tools for bulldozer, dozer shovel, wheel loader, dump truck, motor grader	l set

E-3-D-1. CUTAWAY MODELS

Item	Description	Q'ty
	1. Cutaway Models	
	a. Engine	
1.	Engine assembly	l
2.	Fuel injection pump	1
3.	Fuel pump	l
4.	Injector	1
5.	Water pump	l
6.	Full flow oil filter	1
7.	Turbocharger	1
	b. 'Iorqflow system	
1.	Torque converter	ı
2.	Torqflow transmission	1
3.	Transmission control valve	1
		-
	C. Steering clutch	
1.	Steering clutch	l
	d. Undercarriage	
1.	Track roller	1
2.	Track link	1
	e. Electrical system	
1.	Starting motor	1
2.	Alternator	
	f. Hydraulic system	
1.	Hydraulic pump	1
2.	Hydraulic control valve	1
	- · · ·	

Des	cription
	. *
g.	Brake system

Brake booster

Item

1.

Plastic Model E-3-D-2.

<u>Q'ty</u>

1

Item	Description	<u>Q'ty</u>
1.	Mini-Plastic model of planetary gears	1
2.	Plastic model of torque converter	1
3.	Plastic model of planetary gears	i
4.	Automobile chassis model	1.
5.	2 cycle engine principal	1
6.	4 cycle engine principal	1
7.	Transmission model	1
8.	Differential model	1
9.	Front alignment model	1
10.	Turning radius model	1
11.	Wheel balance model	l

E-4-B. SLIDES

a.	General	l set
b.	Operation and Maintenance	l set
с.	Structure and Function	l set
d.	Disassembly and Assembly	l set

E-4-C. OVERHEAD TRANSPARENCIES

a.	General	l set
b.	Diesel Engine	l set
с.	Torque Convertor	l set
d.	Electrical System	l set
e.	Hydraulic System	l set
f.	Others	l set

E-5. OTHERS

Α.	SERVICE VAN With Service Tools Drive: 4 x 4	1	UNIT
в.	MICRO BUS FOR FIELD TRAINING 29 PASSENGERS	1	UNIT
с.	FUEL DIESEL STATION & 2 - 9.6 KL TANK	1	SET