
IV. DEMAND FORECAST AND SCALE OF INSTALLATION

N COLUM

IV. DEMAND FORECAST AND SCALE OF INSTALLATION
4-1 Demand Forecast

In the objective areas of the feasibility study, development of telephone service is still in the initiatory stage. Therefore, the main concern of the feasibility study is, after all, to formulate an effective plan for introducing the communication network in the necessary minimum to serve major government organizations. and public establishments. In the case like this not intended to fulfill telephone demand among the general public, demand forecast by model formula and so forth is essentially not worthwhile to make. However, since the system to be constructed, as well as the scale of installation required, should rather be determined in consideration of the demand potential, the study of prospective demand is to be made as much as necessary.

4-1-1 Telephone Subscriber Demand Forecast

(1) Macroscopic Forecast Model

For macroscopic demand forecast, several methods are available. In the objective areas of study, this time, telephone service still remains in the initiatory stage so that basic data for demand forecast cannot be obtained as much as required. The method of forecast commonly used in the case like this is to estimate the demand from the correlation between GDP per capita and main telephone density. This method is used this time.

Table 4-1 presents GDP per capita and the number of main telephones in 54 countries as of 1979. The correlation between the two elements can be obtained by the regression line that follows:

43 --

$Y = 0.0003854 X^{1.2395}$

where

Y : Number of main telephones per 100 of population

X : GDP per capita (in US dollars)

(2) Population Forecast

According to statistical data for 1964 through 1979, the average annual population growth rate of Nepal is 2.25%. His Majesty's Government of Nepal is presently promoting the population growth control plans including family planning, for the purpose of balanced economic development. However, in the feasibility study, this time, the assumption is made that the trend of population growth at a relatively high rate as above will still continue for the current feasibility study period.

Based on that assumption and from the population of 15,020,451 as of 1981 Census, the populations in the base years of 1985, 1990, 1995 and 2000 in the current feasibility study period (1985-2000) can be forecasted as under:

1985	16,420,000
1990	18,350,000
1995	20,510,000
2000	22,920,000

(3) GDP Growth Prospect

With regard to the long term economic plan of Nepal, there is no official announcement at present. Therefore, the GDP growth prospect cannot but be estimated from the past records. Statistics show that the GDP records of Nepal are subject to no small variations from year to year. (Refer to Table 4-2.) On the whole, however, the uptrend can be noticed, the average annual growth rate being 9.3% at the current market price and 2.48% at the constant market price as of 1974. The GDP growth rate per capita in real terms, when calculated by the previously mentioned average annual population growth rate of 2.25%, becomes 0.225% in the annual average. Given in Table 4-2 are the GDP forecasts as of 1985, 1990, 1995 and 2000 calculated by the above growth rate.

Meanwhile, those GDP forecasts are given as referred to 1979 as the base year. However, since the GDP at constant 1974 market price of 1979 is smaller than that of the year before, the calculated value obtained by the regression formula from the past data, i.e., the value obtained by upward revision of the real value, is used as the reference value.

(4) Number of Subscribers (Number of Main Telephones) Estimation

The result of estimation by base years in regard to the number of main telephones in the whole territories of Nepal, based on the foregoing criteria, appears below.

¥	Population (x 10 ⁶)	GDP per Capita at Constant Market Price of 1979	Main Telephone	Number of Main
<u>Year</u> 1985	<u>(x 10)</u> 16.42	(in US\$) 148.1	Density 0.189	Telephone 31,034
1990	18.35	149.8	0.192	35,232
1995	20.51	151.4	0.194	39,789
2000	22.92	153.2	0.197	45,152

- 45

(5) Number of Main Telephones at Objective Sites For the estimation of the number of main telephones at each objective site, the area by area difference in GDP, as well as the telephone demand difference between the area where telephone service is already available and the area where telephone service is not yet available, should of course be taken into consideration. This time, however, such data are scarce so that the assumption is made that the differences mentioned do not exist. On this assumption plus by the area by area population distribution ratios, the number of main telephones in the whole territories of Nepal as estimated in the preceding paragraph is to be distributed to the objective sites in proportion to the population of each objective site.

The number of main telephones, thus estimated for each objective site according to the base years of forecast, appears in Table 4-3.

In this case, the population used as the basis of distribution calculation is not the total population in the whole territories of Nepal as forecasted in Paragraph (2), but is 14% of that total population. The reason is that, out of the total population in the districts where the communication network normally operates, the resident population in subscriber telephone service areas occupies approximately 14%. (Refer to Table 4-4.)

46 -

At present, the subscriber telephone service areas in those districts are practically restricted to the administrative centers. Furthermore, the objective sites of the feasibility study, this time, where the communication network is to be newly introduced, are also limited to the administrative centers for the most part.

Therefore, when estimating the number of main telephones at the objective sites, it will be reasonable to use not the total population in the whole territories of Nepal but 14% of it as the basis of distribution calculation.

The population forecasts by objective sites, used in the distribution calculation, appear in Table 4-5.

4-1-2 Demand Forecast for Non-Voice Communication Services

(1) Service Policy

With regard to non-voice communication services in the objective areas, NTC intends to provide such services as telegraph service and document transmission service by facsimile terminals. No other new service is under contemplation.

(2) Existing Service Status and Demand Forecast

a) Telegraph Service

Telegraph service in the objective areas is now provided by HF radio system.

The number of telegraphic messages served by HF radio system from 1972 up to the present is as under:

1972	290,000
1973	270,000
1974	322,000
1975	280,000
1976	215,000
1977	271,000
(1978-1981: miss	ing)
1982	294,000

As far as the above time series data indicates, the number of telegraphic messages served varies broadly from year to year, and no constant uptrend is found. This fact may be attributable to the depression of demand due to unstable HF radio system operation and insufficient service by time sharing. Considering, however, that the number in 1982 is smaller than that in 1974, the recent peak, the limited number of telegraphic messages served cannot necessarily be attributed to the depression of demand only. Whatever the situation, the estimation of future trends from the time series data quoted above is difficult. Nor is it easy to make a successful estimate by international correlation models.

b) Document Transmission Service

Document transmission service is an entirely new service so that the estimation of future demand behaviors at the present stage is difficult. In the objective areas, the degree of dependence upon agriculture is so great that the users of document transmission service are restricted to administrative organizations and public establishments. Therefore, the demand for this new service is considered not to be especially great, compared with the demand for telegraph service.

As in the foregoing, the estimation of future demand behaviors for the two service categories is extremely difficult. However, as long as both service categories are provided by facsimile terminals, rapid demand growth can be catered for by additional facsimile terminal installation only, without exerting a serious influence on switching system and transmission system capacities.

Thus, in the feasibility study, this time, the assumption is made that the number of messages handled in both service categories will increase at annual average growth rate of 10%. This assumption serves as a guideline to determine the capacity of facilities to be newly installed. For the purpose of information, the annual changes in the number of telegraphic messages handled in both developed and developing countries are presented in Figure 4-1. This data indicates that in the developed countries, i.e., the countries where the spread of telephone service is in the diffusion or penetration stage, the demand for telegraph service is on the downgrade; however, in the countries where the spread of telephone service has not yet reached the diffusion stage, the demand for telegraph service still continues to increase, barring a few exceptions, and the annual growth rate is upwards of 10% in all cases.

(3) Number of Messages Handled per Objective Site

According to the field survey findings, this time, the average number of telegraphic messages handled per day at the objective sites where the public call offices are to be introduced is 38. These objective sites are in the areas where telegraph service is presently provided by HF radio system. The daily average of 38 telegraphic messages handled consists of outgoing and incoming messages in almost equal numbers. The average rates of traffic flow by destinations are as under:

To Kathmandu	408
To own parent exchange	40%
To other parent exchanges	20%

50 -

The future trend of demand for non-voice communication service per public call office, when shown in the average number of messages handled per day, with the above data and the previously assumed growth rate taken into consideration, is as under:

Ч.			Breakdown by Destinations				
	Forecast Base Year	Total Number of Messages Handled	<u>To Kathmandu</u>	To Own Parent Exchange	To Other Parent Exchanges		
	1985	42	17	17	9		
	1990	68	28	28	14		
	1995	110	44	44	22		
	2000	178	72	72	36		

51

Country	GDP/Capita (US\$)	Telephone Density	Country	GDP/Capita (US\$)	Telephone Density
Canada	9,578	40.0	Yugoslavia	2,783	6.1
Dominica	987	3.8	Argentine	3,484	7.2
Jamaica	1,086	2.2	Brazil	1,755	3.4
U.S.A.	10,510	41.2	Chile	1,919	3.1
Algeria	1,638	1.4	Colombia	967	4.7
Ethiopia	114	0.2	Costa Rica	1,814	5.7
Egypt	416	1.1	Ecuador	1,174	2.7
Kenya	345	0.5	Haiti	241	0.4
Liberia	522	0.4	Honduras	5 28	1.0
Malawi	210	0.2	Mexico	1,852	3.3
South Africa	1,857	5.7	Nicaragua	600	1.5 c
Tunisia	9 79	1.6	Panama	1,539	6.7
Zambia	579	0.5	Peru	864	0.6
Austria	9,119	26.5	Venezuela	3,377	5.0
Belgium	11, 318	23.5	Australia	8,938	33.4
Denmark	12,986	42.5	New Zealand	5,725	35.0
Finland	8,627	31.8	Papua New Guinia	707	0.7
France	10,699	25.9	Philippines	629	0.7
Germany	12,483	31.3	Singapore	3,754	18.8
Greece	3,588	22.7	Thailand	607	0.7
Italy	5,697	21.3	Hong Kong	3,478	23.4
Nether lands	10,647	33.7	Japan	8,419	34.4
Norway	13,163	24.7	Korea	1,605	6.3

Table 4-1 (1/2) GDP per Capita and Telephone Density (1979) in 54 Countries

Country	GDP/Capita (US\$)	Telephone Density	Country	GDP/Capita (US\$)	Telephone Density
Portugal Spain	1,894 4,886	9.5 16.8	India Pakistan	170 225	0.3
Sweden Switzerland	12,228	52.2 43.6	Turkey	1, 277	2.5
U.K.	7,617	31.7			

Table 4-1 (2/2) GDP per Capita and Telephone Density (1979) in 54 Countries

Year	GDP at Curr Price (x 10		1974 Market Price	GDP per Capit Constant 1979	a at Market Price
	Statistic*	Calculated	* (x 10 ⁶ Rs)	RS	US\$
1964	6,274	6,220	13,323		
1965	7,738	6,803	14,268		
1966	7,180	7,440	14,036		
1967	8,034	8,138	14,135		
1968	8,943	8,900	14,765		
1969	9,820	9,734	15,146		
1970	10,010	10,646	14,964		
1971	11,613	11,644	15,428		
1972	11,165	12,735	15,361		
1973	14,345	13,928	16,339		
1974	16,571	15,233	16,571		
1975	17,394	16,660	17,300		
1976	17,280	18,221	17,822		
1977	19,732	19,928	18,211		
1978	22,215	21,796	19,708		
1979	23,351	23,838	18,110	1,739	146.1
1980					
1982				1,751	147.1
1985				1,763	148.1
1990				1,783	149.8
1995				1,803	151.4
2000				1,823	153.2

Table 4-2 Gross Domestic Product in Nepal

* : Source Central Bureau of Statistics HMG/Nepal

Area			Mair	n Telepł	one Der	nand	
No.	District Name	Site Name	1985	1990	1995	2000	Remarks
01	Bhaktapur	Nagarkot	49	55	63	71	
	Kabhre-	Panchkha1	74	84	95	107	
	planchok Sindhu-		100	114	129	147	
	palchok	Chautara	49	55			
		Helambu			63	71	
	Nuwakot	Bidur-Trisuli	176	199	225	257	
	Rasuwa	Dhunche	1.8	21	23	25	
		Zinc Mining Town	18	21	23	25	
	Dhading	Dhad ing	73	189	100	114	
02	Jhapa	Jhapa	89	100	114	1 28	
	Ilam	Ilam	139	1.58	178	202	
		Aitabare	69	78	89	102	
	Panchthar	Phidim	50	58	64	73	
	Taplejung	Taplejung	61	69	78	89	
	Terhathum	Terhathum	54	62	71	79	
	Bhojpur	Bhojpur	77	88	99	111	
	Sankhu-	Khandbar i	76	85	97	110	
	wasabha	Chainpur	69	78	89	102	
03	Udayapur	Ghaighat	96	108	1 24	140	
	Khotang	Diktel	93	105	120	135	
	Okhaldhunga	Okhaldhunga	54	62	71	79	
	n dan sebagai ana separa kuja Provinski ara da para kuja Provinski ara da provinski ara	Rumjhatar	77	88	99	111	

Table 4-3 (1/3) Telephone Demand Forecast by Objective Sites

Area			Mair	n Teleph	one Dei	nand	Remarks
No.	District Name	Site Name	1985	1990	1995	2000	Nemal K
03	Solukhumbu	Salleri	68	77	88	99	
		Namche Bazar	23	27	31	34	
04	Sindhuli	Sindhuli Madi	186	211	239	271	
	Ramechhap	Ramechhap	68	77	88	99	
	Dolakha	Char ikot	70	81	92	103	
05	Rautahat	Gaur	122	1.37	156	176	n forball Second Second Second Second
	Bara	Simra	186	211	239	271	
an di Palana Ala		Kalaiya	101	1.1.5	131	1 48	
	Makawanpur	Bhimphed i	80	90	103	116	
06	Gorkha	Gorkha	95	107	121	1 38	
	Tanahun	Damauli	194	221	250	283	
		Bandipur	122	1 37	1 56	176	
	Syangja	Syangja	57	63	72	82	en de la composition antes
	Lamjung	Besishar	77	88	99	111	
	Manang	Chame	11	12	14	16	
	Baglung	Baglung	65	74	83	94	Aller in A Hanging Marty of A
	Myagd i	Beni	78	89	100	114	
	Mustang	Jomsom	22	25	28	32	
	Parbat	Kusma	76	85	97	110	
07	Arghakhanchi	Shandhikharkha	58	66	74	85	
	Gulmi	Gulmi Tamghas	65	74	83	94	
	Nawalparasi	Parasi	77	88	99	111	
		Tribeni	46	52	53	66	

Table 4-3 (2/3) Telephone Demand Forecast by Objective Sites

Area	District Name	Cina nama	Main	1 Teleph	ione Dem	nand	Damasalan
No.	District Name	Site name	1985	1990	1995	2000	Remarks
08	Dang	Tulsipur	115	130	149	168	
		Ghorahi	147	167	190	216	
		Gadhawa	116	133	150	171	
		Koilabas	38	44	50	56	
		Rajapur	76	85	97	110	
	Pyuthan	Pyuthan	113	129	146	166	
	Salyan	Salyan	109	123	140	159	
1 1997 1997 1997	Rolpa	Libanggaon	82	93	106	120	
	Rukum	Musikot	86	99	113	127	
	Jajarkot	Jajarkot	89	100	114	1 28	
	Bardia	Gularia	136	153	175	197	
i di. Alt	Dailekh	Dailekh	74	84	95	107	
	Jumla	Jumla	47	53	61	69	
· · ·	Kalikot	Kalikot	50	58	64	73	
09	Kailali	Bhajani	155	175	199	226	
		Tikapur	20.0	226	256	290	
	Achham	Mangalsen	89	100	114	128	
	Doti	S. Doti	258	293	332	376	
	Bajura	Martadi	50	58	64	73	
	Bajhang	Chainpur	45	51	57	65	
	Dande Idhur a	Dandeldhur a	38	44	50	56	
	Baitadi	Baitadi	66	75	85	97	
	Darchula	Darchula	66	75	86	97	
· · · · ·							

Table 4-3 (3/3) Telephone Demand Forecast by Objective Sites

	Population in District (1981)	Population in Service Area (1981)
Kathmandu	422,670	235,211
Bhaktapur	160,686	50,468
Patan	183,464	73,764
Banepa	307,602	10,680
Bhadrapur	480,056	14,890
Biratnagar	534,490	93,889
Dharan	343,007	42,696
Dhankuta	128,568	13,230
Rajbiraj	381,277	16,319
Siraha	376,390	11, 223
Janakpur	432,511	35,248
Malangwa	398,397	11,228
Birgunj	283,809	45,880
Simra		12,633
Kalaiya	318,010	6,869
Hitauda	241,984	16,194
Bharatpur	257,332	35,073
Pokhara	223,486	48,456
Bhairahwa	270 071	30,084
Butwal	379,031	19,900
Tansen	215,924	12,119
Nepalgunj	205,824	33,935
Surket	165,666	13,885
Mahendranagar	166,006	35,073

Table 4-4 Total Population in District and Population in Subscriber Telephone Service Area

6,606,190 918,952 (14%)

- 58 -

Area	District	0.1	Population (x 10 ³)					
No.	Name	Site Name	1981	1985	1990	1995	2000	Remarks
01	Bhaktapur	Nagarkot	3.3	3.6	4.0	4.5	5.0	
· · ·	Kabhre - planchok	Panchkhal	5.0	5.5	6.1	6.8	7.6	
	Sindhu- palchok	Chautara	6.8	7.4	8.3	9.3	10.4	
· 1		Helambu	(3.3)	(3.6)	(4.0)	(4.5)	(5.0)	*
	Nuwakot	Bidur-Trisuli	11.9	13.0	14.5	16.2	18.2	
	Rasuwa	Dhunche	1.2	1.3	1.5	1.6	1.8	
		Zinc Mining Town	(1.2)	(1.3)	(1.5)	(1.6)	(1.8)	*
	Dhading	Dhading	5.3	5.8	6.5	7.2	8.1	
02	Jhapa	Jhapa	6.0	6.6	7.3	8.2	9.1	
	Ilam	Ilam	9.4	10.3	11.5	12.8	14.3	
		Aitabare	(4.7)	(5.1)	(5.7)	(6.4)	(7.2)	*
	Panchthar	Phidim	3.4	3.7	4.2	4.6	5.2	
· .	Taplejung	Taplejung	4.1	4.5	5.0	5.6	6.3	
	Terhathum	Terhathum	3.7	4.0	4.5	5.1	5.6	
	Bhojpur	Bhojpur	5.2	5.7	6.4	7.1	7.9	
	Sankhu- wasabha	Khandbar i	5.1	5.6	6.2	7.0	7.8	
	παραιλιά	Chainpur	4.7	5.1	5.7	6.4	7.2	
03	Udayapur	Ghaighat	6.5	7.1	7.9	8.9	9.9	
	Khotang	Diktel	6.3	6.9	7.7	8.6	9.6	
	Okha ldhunga	Okha 1dhunga	3.7	4.0	4.5	5.1	5.6	
		Rumjhatar	5.2	5.7	6.4	7.1	7.9	

Table 4-5 (1/3) Population Forecast by Objective Sites

Area	District	ct Site Name		Population (x 10 ³)					
No.	Name	Ditte Manie	1981	1985	1990	1995	2000	Rei	
03	Solukhumbu	Salleri	4.6	5.0	5.6	6.3	7.0		
		Namche Bazar	1.6	1.7	2.0	2.2	2.4		
04	Sindhuli	Sindhuli Madi	12.6	13.8	15.4	17.2	19.2		
	Ramechhap	Ramechhap	4.6	5.0	5.6	6.3	7.0		
	Dolakha	Charikot	4.8	5.2	5.9	6.6	7.3		
05	Rautahat	Gaur	8.2	9.0	10.0	11.2	12.5		
	Bara	Simra	12.6	13.8	15.4	17.2	19.2		
		Kalaiya	6.9	7.5	8.4	9.4	10.5		
	Makawanpur	Bhimphedi	5.4	5.9	6.6	7.4	8.2		
06	Gorkha	Gorkha	6.4	7.0	7.8	8.7	9.8		
	Tanahun	Damauli	13.2	14.4	16.1	18.0	20.1		
		Bandipur	8.2	9.0	10.0	11.2	12.5		
	Syangja	Syangja	3.8	4.2	4.6	5.2	5.8		
	Lamjung	Besishar	5.2	5.7	6,4	7.1	7.9		
	Manang	Chame	0.7	0.8	0.9	1.0	1.1		
n Service Service	Baglung	Baglung	4.4	4.8	5.4	6.0	6.7		
di National National	Myagđi	Beni	5.3	5.8	6.5	7.2	8.1		
	Mustang	Jomson	1.5	1.6	1.8	2.0	2.3		
	Parbat	Kusma	5,1	5.6	6.2	7.0	7.8		
07	Arghakhanchi	Shandhikharkha	3.9	4.3	4.8	5.3	6.0		
	Gulmi	Gulmi Tamghas	4.4	4.8	5.4	6.0	6.7		
	Nawalparasi	Parasi	5.2	5.7	6.4	7.1	7.9		
		Tribeni	3.1	3.4	3.8	4.2	4.7		

Table 4-5 (2/3) Population Forecast by Objective Sites

- 60 -

Area	District Name	Site name	Population (x 10 ³)					
No.			1981	1985	1990	1995	2000	Remarks
08	Dang	Tulsipur	7.8	8.5	9.5	10.7	11.9	
		Ghorahi	10.0	10.9	12.2	13.7	15.3	
		Gadhawa	7.9	8.6	9.7	10.8	12.1	
		Koilabas	2.6	2.8	3.2	3.6	4.0	
		Rajapur	5.1	5.6	6.2	7.0	7.8	
	Pyuthan	Pyuthan	7.7	8.4	9.4	10.5	11.8	
	Salyan	Salyan	7.4	8.1	9.0	10.1	11.3	
	Rolpa	Libanggaon	5.6	6.1	6.8	7.6	8.5	
	Rukum	Musikot	5.9	6.4	7.2	8.1	9.0	
	Jajarkot	Jajarkot	6.0	6.6	7.3	8.2	9.1	
	Bardia	Gularia	9.2	10.1	11.2	12.6	14.0	
	Dailekh	Dailekh	5.0	5.5	6.1	6.8	7.6	
	Jumla	Jumla	3.2	3.5	3.9	4.4	4.9	
	Kalikot	Kalikot	3.4	3.7	4.2	4.6	5.2	
09	Kailali	Bhajani	10.5	11.5	12.8	14.3	16.0	
		Tikapur	13.5	14.8	16.5	18.4	20.6	
	Achham	Mangalsen	6.0	6.6	7.3	8.2	9.1	
	Doti	S. Doti	17.5	19.1	21.4	23.9	26.7	
	Bajura	Martadi	3.4	3.7	4.2	4.6	5.2	
	Bajhang	Chainpur	3.0	3.3	3.7	4.1	4.6	
	Dandeldhura	Dandeldhura	2.6	2.8	3.2	3.6	4.0	
	Baitadi	Baitadi	4.5	4.9	5.5	6.1	6.9	
	Darchula	Darchula	4.5	4.9	5.5	6.2	6.9	
				434.3	485.7	542.8	607.2	

Table 4-5 (3/3) Population Forecast by Objective Sites

* : Estimated due to the lack of statistics

108 Philippines 3.4 •••••• Ċł. 22 4. 107 Indonesia ÷Ľ. Germany 副構造 7 ᇤ 1 المعجبة. 1993 - يوني į, 13 . t. . . |----| -1-5 108 li. 7 lan. Malaysia U. X. 11 i. 1.41 h. 14.77 l H t l MI (K **H B** 172 1 111. 1 -----2 1975 1980 1970 4 Year . . . -, 1 12 World Ederical Trend of Telegraphic Messages Figure 4-1 . 16

--;

- 62 -

4-2 Scale of Installation

4-2-1 NTC's Basic Concept

In the basic concept formulated by NTC with regard to the rural telecommunication network improvement plan, this time, items having directly to do with the capacity of facilities to be installed are as under.

(1) Public Call Office

NTC considers that the equipment mentioned below will have to be introduced in the public call office.

- a) One telephone set with call meter, to be used for public telephone calls, and one telephone set to be exclusively used for telegram service.
- b) A minimum of four telephone sets for toll calls to administrative offices, as well as public establishments, such as police, banks and medical institutes.
- c) Transmission route is to have capacity of at least 30 channels to cater for future demand growth.

(2) Telephone Exchange Site

(Hereafter referred to as Independent Exchange) At the initial stage, independent exchange is to be introduced at Tulsipur and Ghorahi (08 area), S. Doti (09 area) and Kalaiya (05 area). Capacities are as under:

a) Tulsipur and Ghorahi: 250 line units, each

b) S. Doti: 350 line units

- c) Kalaiya: To be determined separately. Switching facilities are to be prepared by NTC in a separate plan. Hence, this time, transmission system only is taken up for study.
- d) Exchange building is to be transportable. Container length is to be 4 m at a maximum.
- (3) Parent Exchange
 - a) A total of 11 parent exchanges, one in each area, in principle, are to be established.
 They are:

Area	Parent	Exchange Name
01	가 있는 것은 바람 것 같은. 바람이 가 있는 것 같은 것	Kathmandu
02		Biratnagar
02		*Bhadrapur
03		Rajbiraj
04		Janakpur
05		Birganj
05		*Hitauda
06		Pokhara
07		Bhairahwa
08		Nepalgunj
09		Dangadhi
		말했는 것은 책임 것

Note: Exchange marked with * is not the highest ranking exchange in the area as far as the telephone office hierarchy goes, but is exceptionally classified as parent exchange as the transmission network formation requires.

- b) Switching facilities of parent exchanges are to be prepared by NTC separately from the current plan.
- (4) Service Policy for Non-Voice Services by Facsimile Terminal

Telegraph service and document transmission service by facsimile terminals may be introduced in the parent exchanges and independent exchanges (except Kalaiya) only at the initial stage,

With the experience thus gained at the initial stage and the development of other infrastructures, this service may be introduced to all the public call offices in the future.

4-2-2 Scale of Installation

Capacity of facilities to be installed is basically to be determined in accordance with NTC's basic concept described in the preceding paragraph and in consideration of the demand forecast result in Paragraph 4-1-1. However, in order that the capacity of facilities determined will be optimum, considering the status quo of Nepal, further study is to be made in both technical and economic aspects, based on the field survey findings and the result of consultation with NTC.

The scale of facilities installation for each objective site, determined from the above viewpoint, is as under.

(1) Public Call Office

a) Number of Telephone Sets

NTC's basic concept in favor of providing one telephone set for public toll calls, one telephone set for telegram message service and four telephone sets for toll calls to four out of key government organizations and public establishments corresponds with the basic principle of the feasibility study, this time, intended for introducing facilities in the necessary minimum and is considered to be justifiable.

b) Transmission Capacity

Subscriber demand at 63 public call offices, estimated in Paragraph 4-1-1, averages 81 per call office in the initial forecast year of 1985 and 118 in the final forecast year of 2000, (refer to Table 4-3). Since the feasibility study, this time, is not aimed at thorough fulfillment of such subscriber demand, NTC's proposal of 30 channels (corresponding to the basic primary group of 2.048 M-bit/s, the lowest unit of multiplexing in the digital multiplex system) as public call office capacity can be considered to be reasonable. When the small capacity line concentrator of low cost is introduced in the future, it becomes possible to satisfy the 200 subscribers or thereabouts demand by 30 channels. This fact also allows the judgment that the public call office capacity of 30 channels is appropriate.

However, according to the forecast, the final stage subscriber demand at the undermentioned public call office sites exceeds 200, so that, at these sites, the introduction of independent exchanges during the effective period of the plan is worth consideration. Therefore, at these public call office sites, the transmission capacity is exceptionally set at 60 channels.

- 66 -

	inal Stag Subscriber	A. A
Bidur-Trisuli	257	
Ilam	202	
Sindhuli Madi	271	
Simra	271	
Damau1i	283	
Gularia	197	(≑ 200)
Bhajani	226	
Tikapur	290	

(2) Independent Exchange

a) Sites and Number of Line Units

NTC's plan to introduce independent exchanges at three sites, i.e., Tulsipur, Ghorahi and S. Doti, by the current project is considered to be justifiable. The reasons are:

Tulsipur and Ghorahi are the administrative centers of Rapti Zone and Dang District, respectively. Both are designated by His Majesty's Government of Nepal as the agricultural development bases of top importance and are located in the Dang basin where the improvement and expansion of infrastructures, as well as the associated undertakings of various kinds, are being promoted with financial assistance mainly from the World Bank. Thus, at Tulsipur and Ghorahi, economic activities are sure to be stepped up with the rapid growth of telephone demand to follow. - S. Doti, along with the adjoining Dipayal, constitutes the administrative center of the Far Western Development Region. This development region is of utmost importance to His Majesty's Government of Nepal, and improvement/expansion works of many kinds are now being carried out. In this connection, an early introduction of communication facilities at S. Doti (Dipayal), the center of the development region, is keenly desired.

At the three telephone exchanges, the final stage capacity of switching facilities is to be 500 line units each, whereas the initial year capacity is to be 250 line units each at Tulsipur and Ghorahi and 350 line units at S. Doti. The initial year capacities are as proposed by NTC. The reasons for such capacity decision are:

According to the forecast, the final stage subscriber demand is 168 at Tulsipur, 216 at Ghorahi and 376 at S. Doti. This conservative forecast is on the assumption that no difference exists from area to area in the structures of economy and industry, nor are there fluctuations in the area by area population distribution.

As stated previously, all three telephone exchanges occupy the strategic position in regional development, so that the actual subscriber demand is considered to exceed the forecast.

NTC specifies the length of transportable exchange building to be not more than 4 m so as not to inconvenience transportation. Accommodation capacity of such exchange building is about 500 to 700 line units.

The initial year subscriber demand is forecasted to be 115 at Tulsipur, 147 at Ghorahi and 258 at S. Doti. All these are smaller than the numbers proposed by NTC. However, the difference to this extent exerts no much influence on installation cost. Furthermore, to cope with demand upswing successfully, surplus exchange capacity to a certain degree is desirable.

b) Transmission Capacity

All three exchanges - Tulsipur, Ghorahi and S. Doti - are to be newly established. Hence no traffic data of the past. Therefore, using as reference the data available at the time of planning of the World Bank financed project now being implemented, decision is made to set transmission capacity of the three exchanges at 60 channels (4 M-bit/s) each. More precisely:

- By means of originating and terminating toll calling rate in rural areas at the time of planning of the World Bank financed project plus 20% as coefficient to cater for traffic fluctuations, the originating and terminating toll calling rate is estimated as under:

Originating toll calling rate:

0.0331 Er1/Sub.

Terminating toll calling rate:

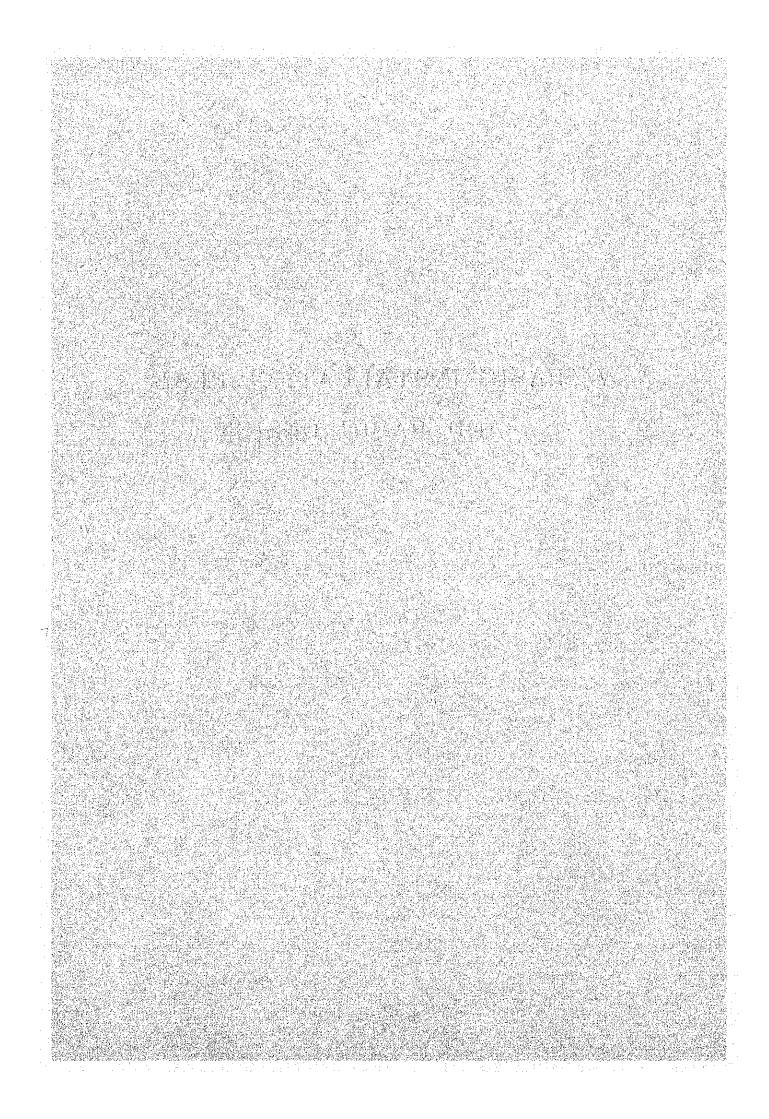
0.0255 Er1/Sub.

When calculated from the above calling rate, the toll transmission capacity required of the telephone exchange equipped with 250 to 600 line units becomes 33 to 60 channels.

As for Kalaiya telephone exchange where NTC is scheduled to introduce switching facilities separately from the current plan, the transmission capacity is to be 60 channels. This is because the final stage subscriber demand at Kalaiya, forecasted in Paragraph 4-1-1, is conservative at 148; however, according to NTC's independent exchange installation standard, the minimum capacity at initial stage is 250.

(3) Parent Exchange

- All switching facilities are to be prepared by NTC so that they are not taken up for consideration in the feasibility study, this time.
- b) As regards the transmission capacity, decision is to be made according to the transmission route to be selected by the degree of toll circuit concentration from public call offices and independent exchanges. A detailed study is made in the next Capter.
- (4) Facsimile Terminal Equipment


NEC's basic concept for non-voice services by facsimile terminal equipment described in the preceeding paragraph corresponds with the basic principle of the feasibility study intending to introduce facilities in the necessary minimum and is considered to be justifiable. In view of the above and the results of consultation with NTC, number of facsimile terminals of CCITT G-II type to be provided at the initial stage are determined as under:

Independent Exchanges (except Kalaiya)
 : 3 sets (one per exchange)
Parent Exchanges (except Kathmandu)
 : 20 sets (two per exchange)
Kathmandu

: 4 sets

For the purpose of reference at the time of introducing the facsimile terminals to all public call offices in the future, the findings in studies regarding the selection of equipment and number of equipments required at each objective site in the future are summarized in APPENDIX B.

V. BASIC INSTALLATION PLAN AND BASIC DESIGN

V. BASIC INSTALLATION PLAN AND BASIC DESIGN

The rural telecommunications network to be introduced by the current project is to be composed of the following main categories of facilities:

(1) Transmission facilities

- (2) Telephone switching facilities
- (3) Cable and outside plant facilities
- (4) Power supply facilities
- (5) Terminal (telephone and facsimile) facilities
- (6) Building facilities

This Chapter presents the basic plan for each category of facilities mentioned above and studies the basic designs of those facilities.

5-1 Transmission Facilities

For the planning of transmission facilities, the transmission route selection and the transmission system selection are the two prerequisites. Following are the studies of these two prerequisites, and the transmission facilities planning, as well as the basic designing, based on such study findings.

5-1-1 Transmission Route Selection and Circuit Grouping

(1) Transmission Route Selection

For the transmission route selection, the following basic items are to be considered:

- a) As stated in Chapter III, circuits between each two objective sites are to be established between the parent exchange and the public call office or independent exchange that belongs to the parent exchange. Therefore, the transmission network is to be constructed as an independent network centering upon each parent exchange.
 - The selected transmission system (the system selection is described in the next Paragraph 5-1-2) is to be compatible with the technical requirements, including the radio propagation requirement, on the transmission route.

b)

c)

- The transmission route length is to be as short as technically possible. The number of radio repeaters is also to be reduced to the necessary minimum.
- d) The repeater site is to be in the village environs as much as possible and such site is to be easy of access.
- e) The public call office and independent exchange sites are to be selected at the centers of their respective service areas, in principle.
- f) The parent exchange is to be established in the existing exchange building. For the parent exchanges yet to be established, the buildings to be constructed by NTC in the separate plan are to be utilized.

The transmission route plan selected in due consideration of the foregoing basic items appears in Figure 5-1-1. The profile map of each hop of the transmission route is given in APPENDIX A.

- 76 -

This transmission route plan is based on the desk design using maps of a scale of 1:50,000. Therefore, at the time of project implementation, the route plan must of course be modified where necessary, based on findings in more detailed investigation and studies including field survey. Especially for newly selected sites, in-depth survey and study are required in regard to land availability, land formation facility or difficulty, and site accessibility.

For Dangadhi, Bhajani, Chame and Bhadrapur sites and their surroundings, maps of 1:50,000 scale were not available so that the transmission routes covering these areas are schematic routes selected by study with rougher scale maps and associated data obtained in the field survey. Thus, for decision of final transmission route, especially minute survey and study are required.

(2) Circuit Grouping

Circuits between one public call office/independent exchange and the parent exchange in the final stage of the plan number 30 or 60 as stated in Chapter IV. When the total number of circuits is distributed on the transmission route selected in the preceding paragraph, the hop by hop ciruit groupings consist of 30 circuits at a minimum and 330 circuits at a maximum.

5-1-2 Transmission System Selection

As stated in Chapter III, the transmission system to be used in the current plan is the digital, line-of-sight UHF or SHF system (hereafter to be referred to as the digital radio system). For the digital radio system, several types, one differing from another in frequency band and transmission capacity, have already been developed and are being operated on utility basis. After the comparative study of these different system types, selection is made, this time, for the one whose frequency band is from 1.5 GHz to 2.5 GHz (hereafter to be collectively called the 2 GHz band) and whose transmission capacity is for 480 channels (34 M-bit/s) or less.

The reasons for this selection are as under:

- (1) As previsouly stated, the hop by hop circuit groupings on the transmission route at the final stage of the plan consist of 330 circuits even at a maximum whereas the minimum is 30 circuits. The frequency band of the transmission system developed and operated as an optimum system for such small/medium capacity hop is from 800 MHz to 2 GHz.
- (2) The frequency band ranging from 610 to 960 MHz is allocated to India and Pakistan for broadcasting service (Refer to Radio Reguration, Article 5, No. 339). Therefore, the allocation of this frequency band to Nepal should be avoided.

Presently, NTC holds the main transmission route west of Kathmandu composed of the 2 GHz band (center frequency: 1,903 MHz) analog radio system. The digital radio system scheduled to be constructed in the near future is also the 2 GHz band type. Hence, the 2 GHz band frequency allocation to the current plan requires utmost circumspection because of possible frequency interference with the said two radio systems.

5-1-3 Basic Design

The basic design parameters of the selected transmission system are as under.

(1) System Performance Objective

Transmission performance of digital radio system is expressed in terms of bit error ratio (BER). With regard to allowable BER of the hypothetical reference digital path (HRDP) for radio-relay systems for telephony, CCIR recommends the following provisional objective (Rec. 594):

a) Low BER Objective

BER should not exceed 1 x 10 for more than 1% of any month.

(As for the BER measuring time duration, no recommendation has yet been made. However, there is a proposal that supports one minute as being appropriate for BER measuring duration.)

b) High BER objective

BER should not exceed 1×10 for more than 0.05% of any month (BER measuring time duration: 1 second).

For the path of different composition and length from the HRDP, CCIR proposes that the real path objective as under can apply (Rep. 930):

 a) For high BER objective, the allowable percent of time given in a) above for the HRDP is to be proportionally divided by circuit length. For low BER objective, statistical analysis of bit error probability should also be made besides the proportional division of the available percent of time given in b) above (hereafter called the time factor) by route length.

b)

(2)

The digital radio transmission route planned, this time, differs in both length and configuration from HRDP defined by CCIR. Thus, for the system performance objective, decision is made to apply the above real path objective correspondingly. Decision is also made to carry out the time factor division by distance only in case where the transmission route length exceeds 280 km, and this is in accordance with CCIR Rep. 930. When the transmission route length is less than 280 km, the time factor allowable for the distance of 280 km is to be applied instead of the time factor division by distance.

Transmission Bit Rate and System Configuration Transmission bit rate of transmission system is to be determined at a level commensurate with the circuit demand at the final stage of the plan in each hop of the transmission route. Thus, for the transmission bit rate, either of 2, 4, 8, 17 and 34 M-bit/s is to be chosen.

Transmission bit rate of transmission system applied for the transmission route is shown in Figure 5-1-2.

For transmission system configuration, the spare equipment system is to be adopted in all cases. This is for the effective use of frequency spectrum, free from restrictions in the way of RF channel allocation. Also, to reduce power consumption by equipment and to economize operating cost of power supply facilities, the power supply to spare equipment is to be made only when the operation is changed over to spare equipment. This is the so-called "cold stand-by" system.

Figure 5-1-3 illustrates the typical system configurations of terminal station and repeater station.

Remote Supervisory and Control System

(3)

In order to do with the minimum number of maintenance personnel after the introduction of transmission facilities, the remote supervisory and control function is to be provided to transmission facilities.

By this remote supervisory and control system, all the radio terminals and radio repeaters other than parent exchanges are made unattended. They are to be supervised and controlled from the radio terminal of parent exchange concerned.

Items to be supervised/controlled are as under:

 Supervision of transmitting and receiving equipment alarm system

Discrimination of transmitting and receiving equipment in operation (working or stand-by equipment) Supervision of system operation and detection of trouble when it takes place

- Supervision of power supply system and detection of abnormality, if any
- Supervision of building alarms (door open, fire, etc.)
- Control of working to/from stand-by transmitting and receiving equipment changeover

- Engine generator start/stop control

- (4) Antenna and Tower
 - 1) Antenna

For antenna, the grid type parabolic antenna is to be adopted.

To determine the required antenna height, the prerequisite is to know the atmosphere refraction index inclination that exerts a great influence on radio propagation characteristic. However, in the field survey, this time, detailed data could not be obtained. Therefore, the following requirements are to be considered for determining the antenna height:

- a) With K = 4/3, U is to be 0.6 or more, and with K = 2/3, U is to be 0.3 or more.
 Out of antenna heights that can be obtained under such conditions, whichever higher is to be adopted.
 - K: Effective earth radius factorU: Path clearance factor

b) In consideration of arboreal growth on the propagation path and buildings in the neighborhood of the proposed site, the antenna height is to be at least higher than given below.

- In the case of site located in city area:

In the case of site located in town/village and on flat land: 15 m

30 m

- In the case of site located on hill or mountain top: 10 m

2) Tower

c)

- 7

For tower, the top requirement is to endure the maximum wind load of 160 km/hour. Furthermore, to facilitate the erection work and to reduce the erection work cost, the tower of lightest possible weight and lowest possible price is to be introduced. The principles of tower planning are as under:

 a) In case the number of antenna to be mounted is one and the tower height is 22 m or less, the steal tubular pole is to be adopted.

b) In case the number of antenna to be mounted is two or more and the tower height is 32 m or less, the self-supporting type triangle tower is to be adopted.

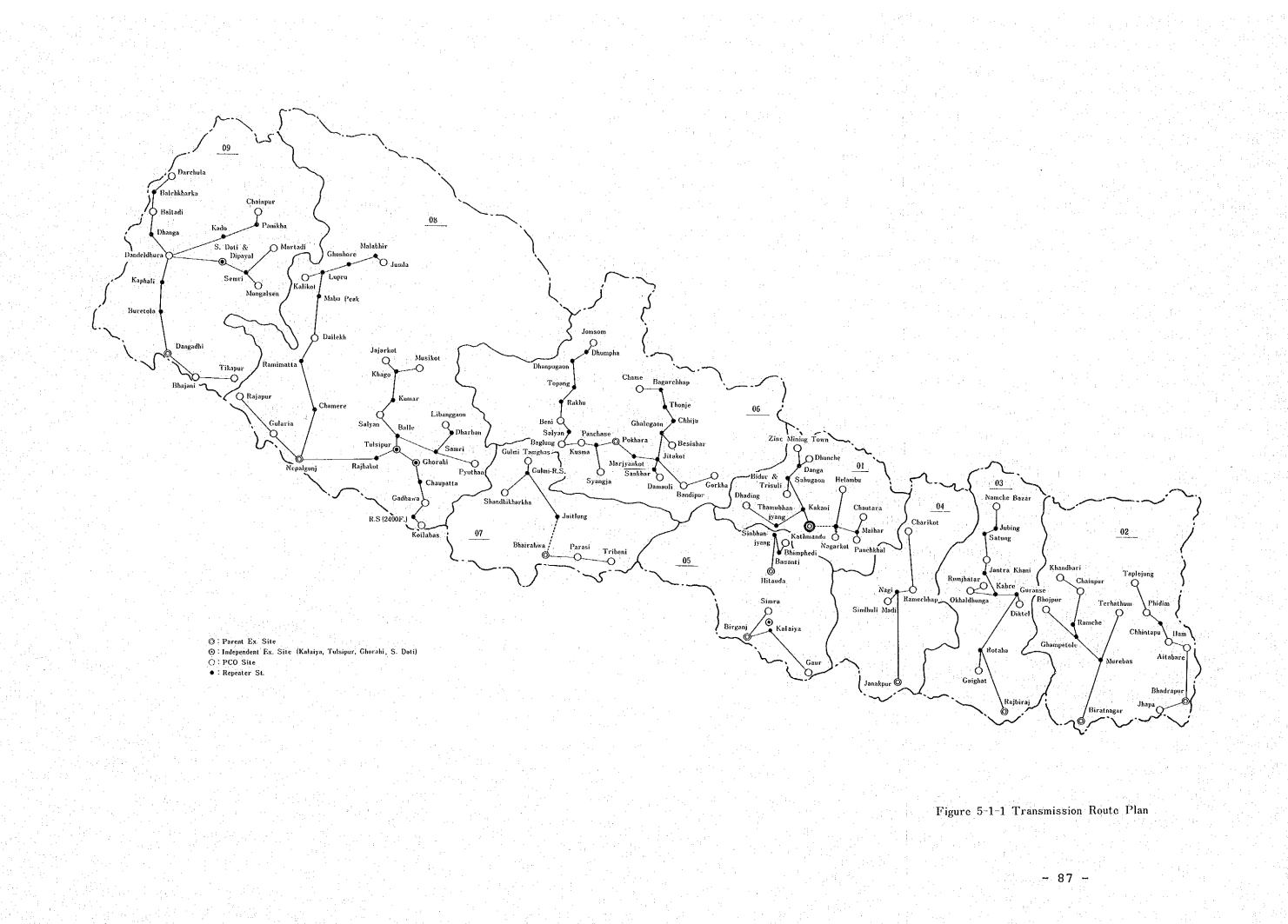
In case the tower height is more than 32 m, the guyed tower is to be adopted. The antenna height and tower height, as well as the type of tower, at each site, determined according to the foregoing basic design, appear in Table 5-1-1.

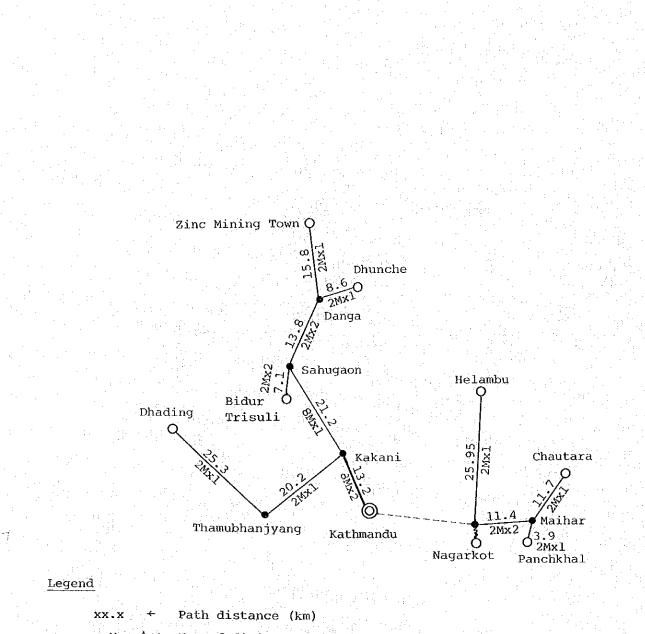
5-1-4 Initial Stage Facilities Planning

Transmission facilities planning at the initial stage is shown in Figure 5-1-4. This initial stage facilities planning complies with the undermentioned requirements.

- (1) The number of circuits at public call offices and independent exchanges in the initial stage is as under:
 - a) Public Call Offices
 - Bidur : 9 telephone circuits; l telegram message circuit
 - Simra: 16 telephone circuits; 1 telegram message circuit
 - Others: (Each) 5 telephone circuits; l telegram message circuit
 - b) Independent Exchanges

Tulsipur, Ghorahi and S. Doti are respectively to be equipped with 60 circuits including one facsimile circuit.


- (2) Interface between transmission facilities and switching facilities at independent exchanges is to be made on 2 M-bit/s digital primary group base.
- (3) Switching facilities of parent exchanges are to be prepared separately by NTC. Interface of those switching facilities with transmission facilities is to be made on circuit by circuit base.


At the radio terminal and/or branching station to be established in the middle of transmission route, interface between carrier multiplex equipment and radio equipment is to be made on digital base of as high order group as possible, so as to minimize the transmission performance deterioration and to reduce the installation cost.

(4)

The initial stage facilities planning is to be implemented in four phases. (For details, see Chapter VII). Scheduled in Phase I is the establishment of circuits at S. Doti, Dandeldhura, Bhajani and Tikapur sites (all in area 09), and these circuits temporarily concentrate at Nepalgunj, the parent exchange of area 08. And, at the time the switching facilities are introduced by NTC at Dangadhi, the parent exchange of area 09, those circuits are to be re-accommodated at Dangadhi. (This period is expected to be in Phase III.) Thus, at S. Doti, the independent exchange is to be constructed in Phase III while in Phase I the public call office is to be established temporarily at S. Doti as at other sites.

Figure 5-1-4 shows the channel accommodation plan by such temporary plan also.

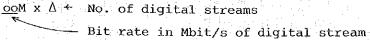


Figure 5-1-2 (1/9) Bit Rate on Transmission Route (01 Area)

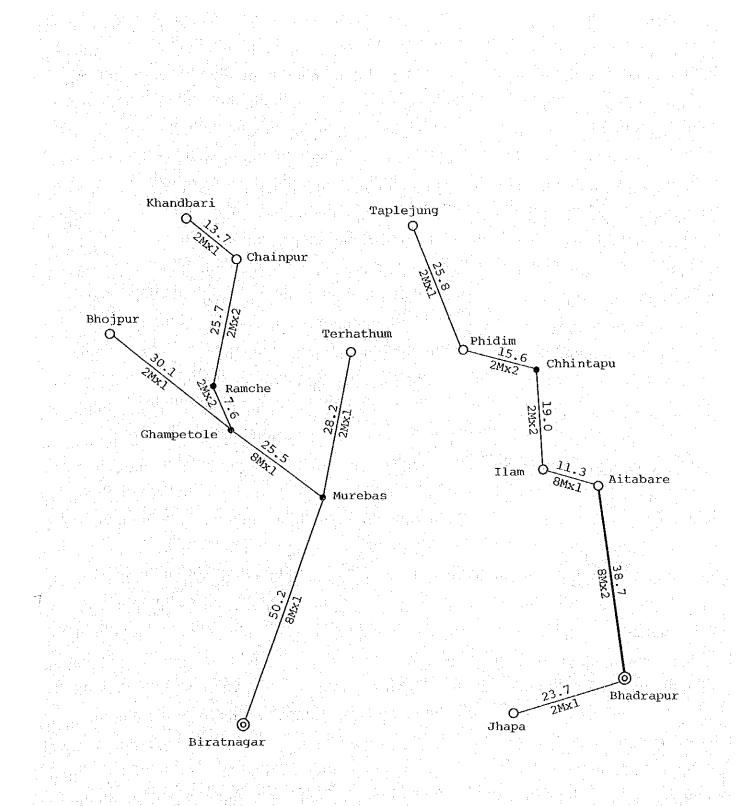
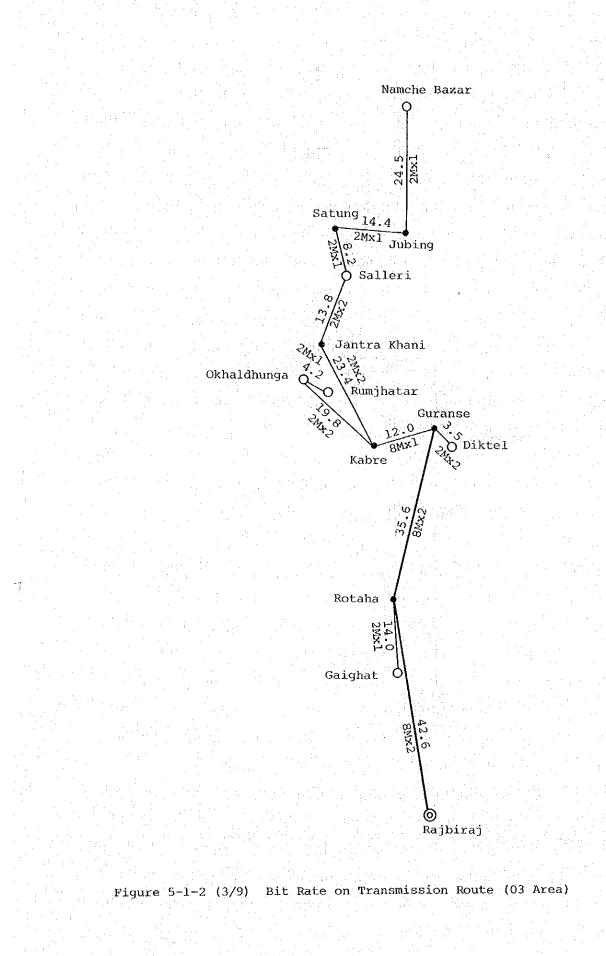
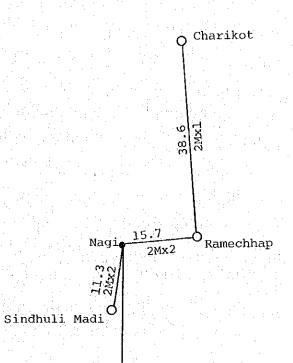
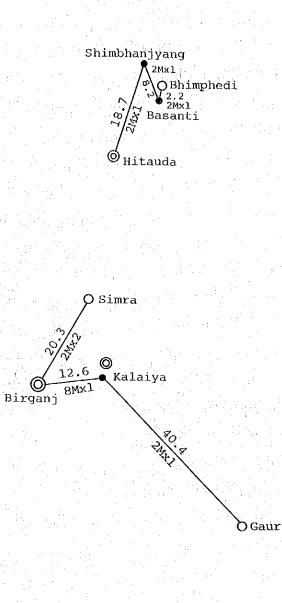
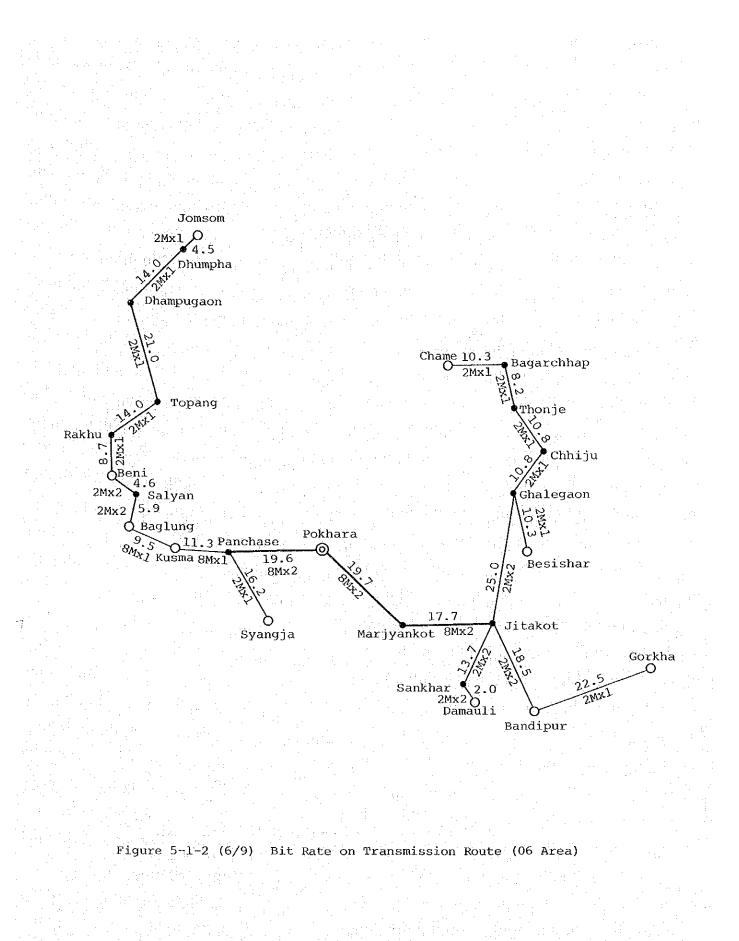
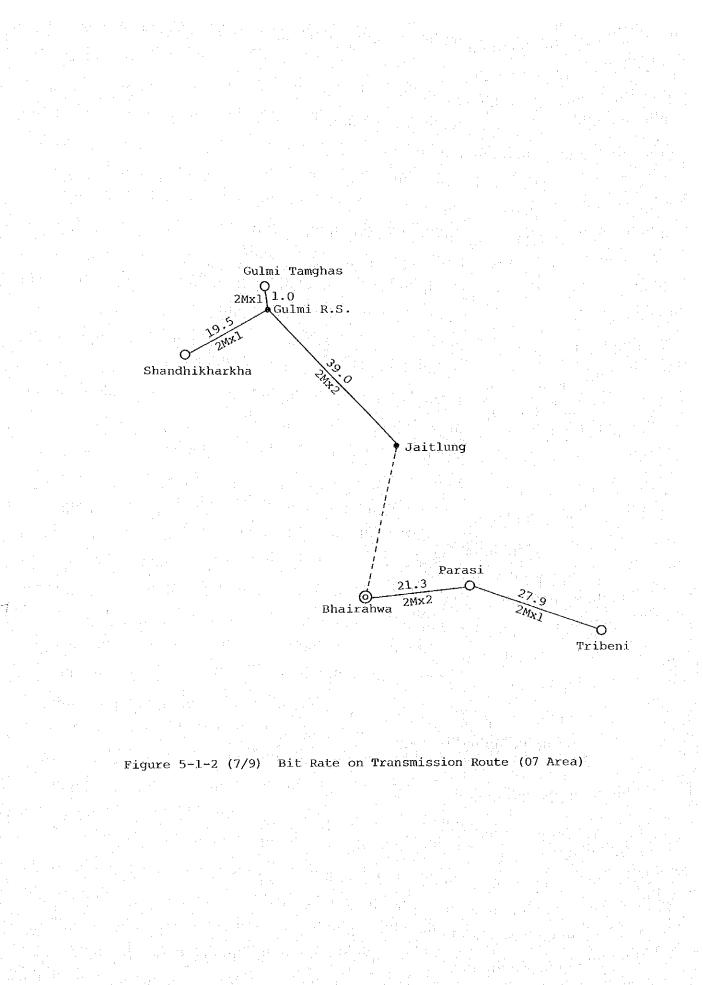



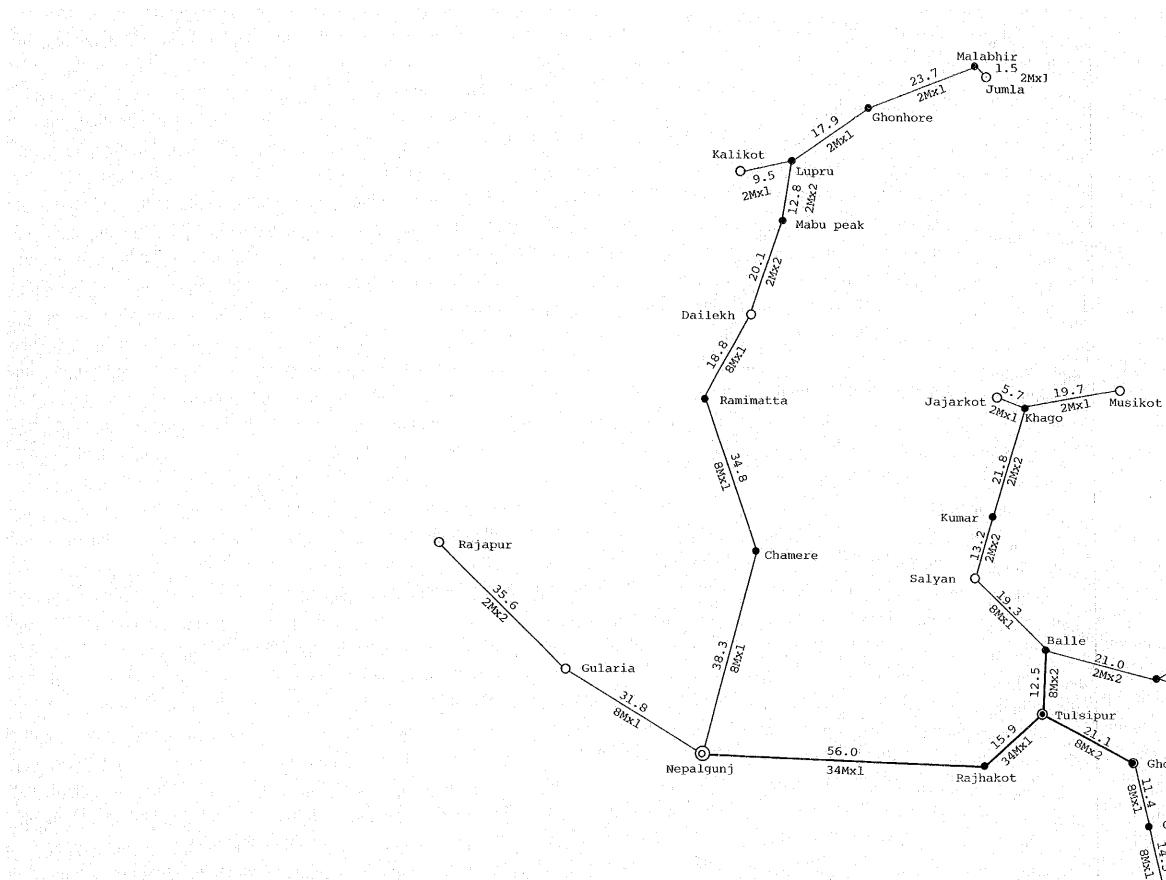
Figure 5-1-2 (2/9) Bit Rate on Transmission Route (02 Area)

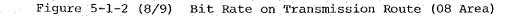
91 -

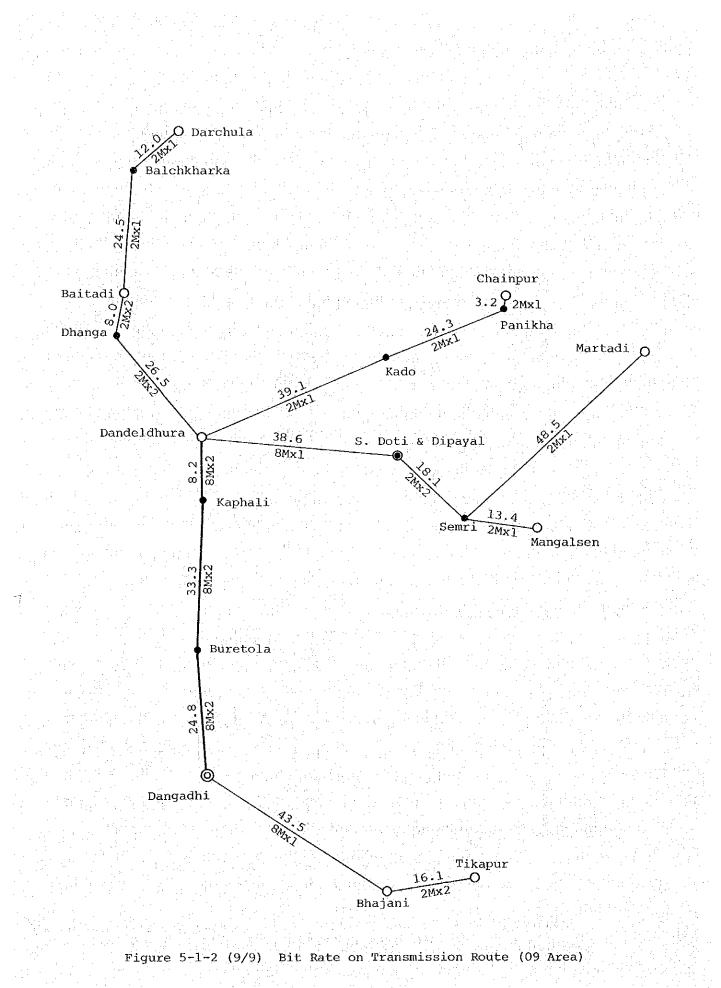



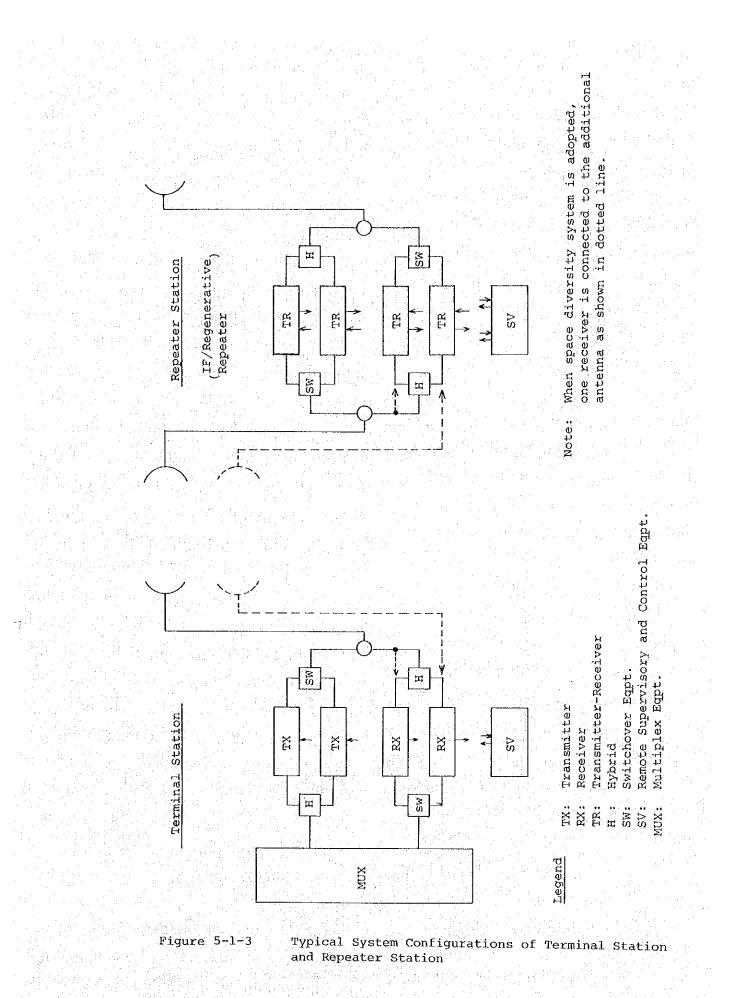



Figure 5-1-2 (4/9) Bit Rate on Transmission Route (04 Area)


- ;


Figure 5-1-2 (5/9) Bit Rate on Transmission Route (05 Area)


- 95 -



4.10 ^{2Mx1} Koilabas

Libanggaon 2Mx1 Dhar 16:51 🕽 Dharban Samri 39.8 2MXI Ghorahi Chaupatta [2] [0] Gadhawa R.S. (2400F.) - 97 -

- 100 -

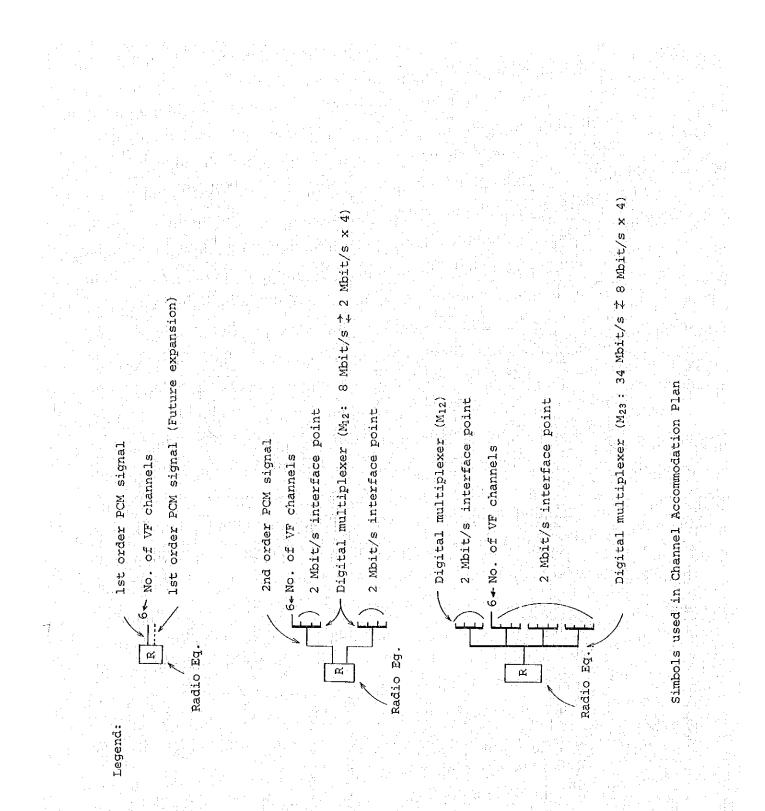


Figure 5-1-4 (1/11) Channel Accommodation Plan at Initial Stage