
FEASIBILITY STUDY REPORT ON THE ESTABLISHMENT OF UREA FERTILIZER PLANT IN THE KINGDOM OF NEPAL (ANNEX)

SEPTEMBER 1984

JAPAN INTERNATIONAL COOPERATION AGENCY

FEASIBILITY STUDY REPORT

ON

THE ESTABLISHMENT OF UREA FERTILIZER PLANT

IN

THE KINGDOM OF NEPAL

(ANNEX)

JUEN LIBRARY

1031397(1)

SEPTEMBER 1984

JAPAN INTERNATIONAL COOPERATION AGENCY

国際協力事業団 ^養人 '85. 8 27 116 日日 684 **登録**M 11864 MPI

Contents

		Page
Annex I-1	SCOPE OF WORK FOR THE FEASIBILITY STUDY	_
	AND MINITE OF MEETING AT PRESENTATION	
	OF PROGRESS REPORT	AI-1
Annex I-2	LIST OF STUDY TEAM MEMBER AND	
	COUNTERPARTS	
Annex I-3	ACTIVITY OF JICA STUDY TEAM (1) - (2)	AI-19
Annex I-4	LIST OF OFFICES VISITED AND PERSONS MET	AI-21
Annex I-5	LIST OF DOCUMENTS RECEIVED	AI-27
Annex II-1	METHODOLOGY AND PROCEDURE OF	•
	DEMAND PROJECTION	AII-1
Annex II-2	PAST TREND AND OUTLOOK OF CROP	
	CULTIVATION AREA IN NEPAL	AII-8
Annex II-3	ESTIMATED/PROJECTED COUSUMPTION	
	NITROGEN FERTILIZER BY REGION	AII-28
Annex II-4	CONSUMPTION OF FERTILIZER IN NEPAL	
	BY TYPE AND BY REGION	AII-44
Annex II-5	FERTILIZER RESPONSE IN NEPAL	A1I-69
Annex III-1	BASIC DATA FOR CARBON DIOXIDE	
	SUPPLIABILITY CONDITIONS AT CEMENT	
	PLANTS IN NEPAL	AHI-1
Annex III-2	PRICE INFORMATION IN NEPAL FOR	
	CONSTRUCTION MATERIALS, LABORERS,	
	WORKS, AND INLAND TRANSPORT FROM	
	CALCUTTA	AHI-11
Annex III-3	B ELECTRIC POWER CONSUMPTION AND	
	OVERALL LOAD FACTOR INCREASE AT THE	
	UREA FERTILIZER PLANT	AIII-15
Annex III-	WATER ELECTROLYSIS PROCESSES	A111-19

	Page
Annex IV-1	PROJECT COST ESTIMATEAIV-1
Annex IV-2	BACK DATA FOR ESTIMATING ESCALATIONAIV-5
Annex IV-3	BREAKDOWN OF PRE-OPERATION
	EXPENSES AND INITIAL WORKING CAPITAL
Annex 1V-4	COMPARATIVE STUDY OF PRODUCTION ECONOMICS
	ON ALTERNATIVE CAPACITIES AND ALTERNATIVE
	PROCESSAIV-11
Annex IV-5	FINANCIAL PROJECTIONS (BASE ESTIMATES)AIV-34
Annex IV-6	SENSITIVITY ANALYSIS OF FINANCIAL STRUCTURE
	BY CHANGES IN EQUITY/DEBT RATIO AND INTEREST
	RATES ON LOANAIV-124
Annex IV-7	ECONOMIC POWER COSTAIV-134
Annex 1V-8	ECONOMIC RATE OF RETURNAIV-140

Annex I-1 SCOPE OF WORK FOR THE FEASIBILITY STUDY AND MINUTE OF MEETING AT PRESENTATION OF PROGRESS REPORT

With the Anna

Annex I-2 LIST OF STUDY TEAM MEMBER AND COUNTER PARTS

Annex I-3 ACTIVITY OF JICA STUDY TEAM

Annex I-4 LIST OF OFFICES VISITED AND PERSONS MET

Annex I-5 LIST OF DOCUMENTS RECEIVED

SCOPE OF WORK FOR THE FEASIBILITY STUDY AND MINUTE OF MEETING AT PRESENTATION OF PROGRESS REPORT

SCOPE OF WORK

FOR

THE FEASIBILITY STUDY

ON

THE ESTABLISHMENT OF UREA FERTILIZER PLANT

IN

THE KINGDOM OF NEPAL AGREED UPON BETWEEN

THE JAPAN INTERNATIONAL COOPERATION AGENCY

CAA

THE MINISTRY OF INDUSTRY

HIS MAJESTY'S GOVERNMENT OF NEPAL

Kathmandu, October 4, 1983

Kenji IWAGUCHI

leader of Japanese Survey Team

Ajit Narayan Singh Thapa

Joint Secretary

Ministry of Industry

I. Introduction

In response to the request of His Majesty's Government of Nepal (hereinafter referred to as "H.M.G.N."), the Government of Japan has decided to conduct a feasibility study on the establishment of urea fertilizer plant (hereinafter referred to as "the study") in accordance with the laws and regulations in force in Japan

The Japan International Cooperation Agency (hereinafter referred to as "JICA"), the official agency responsible for the implementation of the technical cooperation programs of the Government of Japan, will undertake the study, in close cooperation with the authorities of the Kingdom of Nepal

Ministry of Industry, H.M.G.N. (hereinafter referred to as "MOI") will be the executing agency and shall designate the Industrial Services Centre (ISC) as a counterpart agency to the Japanese study team (hereinafter referred to as "the Team") and MOI shall also act as coordinating body in relation with other governmental and non-governmental organizations concerned for the smooth implementation of the study

The Present Document sets forth the Scope of Work with regard to the study.

II. Cojective of the Study

The objective of the Study is to examine the technical, financial and economic feasibility of the establishment of urea fertilizer plant (hereinafter referred to as "Project") in the Kingdom of Nepal and to prepare a feasibility study report keeping in view the ammonia production process using hydrogen by water electrolysis

fil &

III. Scope of the Study

In order to achieve the above objective, the study will cover the following items:

- 1. Review on the background of the Project
 - the present situation of and policy on agriculture in Nepal
 - 2) the present situation of and policy on fertilizers in Nepal
 - (1) supply and demand of fertilizers
 - (2) trend of consumption of fertilizers
 - 3) the present situation of and policy on industrialization
 - 4) relation of the Project with the overall National Development Plan
 - 5) the present situation and future plan of demand and supply of electric power
 - 6) the present situation of and policy on manyower required for the Project such as chemical engineers, plant engineers and others
 - 7) relevant laws and regulations
- 2. Study on the detailed urea fertilizer market in Nepal
 - 1) present and past supply and consumption
 - 2) present and past situation of import and its cost
 - 3) trend and structure of price
 - 4) potential demand and constraints in the application of fertilizers

Sit de

- 5) projection of demand in the coming ten years
- 6) marketing and distribution system
- 7) cost and channel of transport and distribution from manufacturing site to major market area
- Study on the raw materials for the urea fertilizer production
 - 1) possibility of electric power supply
 - (1) present situation of electric power supply (capacity, tariff, stability, etc.)
 - (2) future demand and supply (construction projects, schedule, etc.)
 - 2) water
 - (1) quality and quantity of water
 - (2) water works necessary for the Project
 - 3) availability of Carbon Dioxide (CO₂)
 - (1) CO₂ from cement factory
 - (2) CO2 from other sources
 - 4) materials for packing
 - 5) other materials
- 4. Study on the plant location and site
 - natural conditions of the site and its sucrounding area focusing on meteorology, geology and topography
 - 2) utilities and infrastructure such as electricity, gas, water, transportation and communication
 - 3) regional development plan

Air a

- 4) selection of the plant site based on the results of the study on the availability of raw materials, utilities, infrastructure and other factors
- 5) conditions of transportation of equipment and its installation
- 5. The basic plan and conceptual design of the urea fertilizer plant
 - comparison of production processes and determination of the most suitable process
 - 2) examination and determination of production scale
 - 3) fundamentals and major preconditions of conceptual design including list of major equipment
 - 4) process flow sheet
 - 5) layout of the plant and auxiliary facilities
 - 6) implementing program of the plant construction
 - 7) transport plan of equipment and materials for plant construction
 - 8) operation plan of the plant
 - 9) organization and manpower plan for the plant construction and operation including managerial aspects
 - 10) marketing and distribution system
- 6. Study on environmental protection

At on

7. Financial analysis

- 1) capital requirements
 - fixed capital (land, plant construction, auxiliary facilities and pre-operation cost, including training cost and consultancy fees, etc.)
 - (2) working capital
 - (3) investment schedule
 - 2) procurement of capital
 - 3) operation cost
 - 4) production cost
 - 5) projected balance sheet
 - 6) projected flow sheet
 - 7) financial internal rate of return
 - 8) sensitivity analysis based on possible variations in
 - a) electricity tariff
 - b) investment cost
 - c) interest rate
 - d) inflation rate
 - e) sales price
- 8. Economic and social evaluation
- 9. Conclusion and recommendations
- IV. Steps and Schedule of the Study
 - 1. Steps
 - Step 1: Preparatory office work in Japan
 - Step 2 : Field work in Nepal
 - Step 3 : Home office work in Japan

Ma

Step 4: Presentation of and Discussion on the Draft Final Report

2. Schedule

As shown in Annex

V. Reports

JICA will prepare and submit the following reports to H.M.G.N.

- 1. Progress Reports written in English at the end of the Step 2 in the IV: 10 copies
 - 2. Draft Final Report and its summary written in English within five (5) months after commencement of the Step 3: 15 copies
 - 3. Final report and its summary written in English within two (2) months after the receipt of comments on the Draft Final Report by MOI: 30 copies

VI. Undertaking of H.M.G.N.

H.M.G.N. shall accord privileges, immunities and other benefits to the Team in accordance with the laws on Nepal and, through the authorities concerned, take following necessary measures to facilitate the smooth implementation of the Study:

- 1. Provide adequate number of full-time counterparts
- 2. Arrange the Team's visits to relevant authorities concerned and ensure that the Team has access to all relevant information required for the execution of the study

Ama

- 3. Provide the Team with office accommodation with sufficient office supplies and equipment
- 4: Provide relevant information and data available to the Team
- 5. Exempt the Team from taxes, duties and charges in the Kingdom of Nepal on materials, equipment and personal effects brought into the Kingdom of Nepal for the purpose of the Study
- 6. Exempt the Team members from income taxes and charges of any kind imposed on or in connection with the staying expenses remitted from abroad
- 7. Ensure the security of the Team members during their stay in the Kingdom of Nepal
- 8. Bear claims, if any arises, against the Team members resulting from, occuring in the course of, or otherwise connected with the discharge of their duties in the implementation of the Study, except when such claims arise from the gross negligence or wilful misconduct on the part of the Team members

VII. Undertaking of the Government of Japan

For the implementation of the Study, the Government of Japan will, through JICA, take following measures:

- 1. To dispatch, at its own expense, study teams to Repal
- 2. To pursue technology transfer to the Nepalese counterpart personnel in the course of the Study

VIII. Consultation

JICA and MOI will consult with each other in respect of any matter that may arise in the interpretation or implementation of the present arrangement.

4
45

Appex

i, i
Study
'YI
ابر
ν,
ดเ
6.1
č
- 1
*1
7
O
병
O
3
কা
ŏΙ
Ä
Sche
×
٧,
اینے
e٠
3
1
ν
ស
வ
福
- 21
ĕ
C41

Year		Ä	1983									5	1984								1985	
Month	Or es	ogt.	Nov	Nov. Dec.		Jan.	Feb.	Mar	Apr	May		June	אַנטָרָט	-gne	- 8 cp		oct.	Nov	S A	1.1	Jan. F	g
Preparatory Office Work (Step 1)		10 10 00		014 118 118	#15 90									-	-			-				-
Field Work (Step 2)									<u> </u>		- -		<u> </u>	£.,								-
Home Office Work (Step 3)						0 B	## III		- 06 66	0 A 4 B 4 B 6 B		94						<u> </u>		*		~ · · · · · · · · · · · · · · · · · · ·
Presentation of Draft Final Report (Step 4)			-				<u></u>						<u></u>									-
Submission of Final Report		-													<u></u>	· · · · · · · · · · · · · · · · · · ·		*************************************			• • • • • • • • • • • • • • • • • • • •	

TO CODOR THE TO CODOR

the in Nepal

MINUTES OF MEETING

In summarizing the local activities of survey and study carried out by the study team of Japan International Cooperation Agency (JICA) for the feasibility study of the establishment of urea fertilizer plant in the Kingdom of Nepal (hereinafter referred to as the "Project"), the study team presented the Progress Report at the Ministry of Industry of His Majesty's Government of Nepal (HNG/N), Kathmandu on January 27, 1984.

Eased upon the detailed explanation of the Progress Report, the in-depth discussion and clarification were made among the authorities of the HMCN, the study team members and the resident representative of JICA in Nepal, and parties concerned agreed as recommended in the Progress Report in principle regarding the major issues, for formulating the Feasibility Study, on the type of product, selection of location and site, method on the demand projection and the selection of production capacity, supply conditions of raw materials and utilies, scope of facilities, management and schedule for the implementation, and assumption and basis of financial and economic analysis for the Project.

Major additional issues which were discussed and proposed to be taken into consideration during the preparation of the feasibility study report are;

- Re-examination of the schedule assumed for the implementation of the Project.
- Energy saving at the Project.
- Sharing of auxiliary facilities among the other industries in Nepal.
- Industrial uses of urea in Nepal as potential.
- Possibility of utilization of by-products from the Project in the future.

In concluding the whole activities of the study team in Nepal, this Minutes of Meeting is prepared and signed hereunder:

Kathmandu, The Kingdom of Nepal January 27, 1984

Indu Shansher Thapa

Senior Engineer

Ministry of Industry, HIG,

Nepal

Masayasu SAKANASHI

Leader of Study Team

Japan International Cooperation Agency

Names of Persons present in the meeting held in the -office of the Secretary Ministry of Industry, Tripureswor, Kathmandu on the 27th January 1984.

- Mr. I.L. Shrestha, Secretary, Ministry of Industry (MOI)
- Mr. R.D. Shama, Joint Secretary, MI
- Mr. I.S. Thapa, Senior Engineer (MOI)
- Mr. B.M. Shakya, Under-Secretary, Ministry of Finance (MOF)
- Mr. S.M. Shrestha, Section Officer, MOF
- Mr. R.K. Enattarai, Act. Director General, Department of Industry
- Mr. R.K. Bajracharya, Senior Engineer, Department of Electricity
- Mr. R.N. Dhungel, General Manager, Nepal Industrial Development Corporation
- Mr. T. Hoshi, Resident Representative, Japan International Cooperation Agency

Study Team Members

- lir. M. Sakanashi, Team Leader, Techno-Economist
- Mr. K. Adachi, Team Sub-leader, Chemical Engineer
- Mr. Y. Fujiki, Plant Mechanical Engineer
- Mr. Kuwabara, Fertilizer Chemical Engineer
- Mr. T. Incoka, Fertilizer Market Expert
- Mr. S. Suzuki, Electrical Engineer
- Mr. T. Suzuki, Cement Chemical Engineer

Counterpart Venbers of ISC

- Mr. M.B. Shrestha, Civil Engineer, For Chief, Industrial Projects Division
- Mr. H.P. Khanal, Economist, For Chief, Feasibility Study Branch
- Mr. B. Shama, Chemical Engineer, For Chief, Project Engineering & Management Branch

gir.

MINUTES OF MEETING

The JICA Study Team led by Mr. M. Sakanashi visited Kathmandu from July 23 to 28, 1984 for the purpose of presentation of the Draft Final Report of the Feasibility Study on the Establishment of the Urea Fertilizer Plant in the Kingdom of Nepal to the Ministry of Industry and also for discussion with the concerned officials of HMG/N on the Project.

Accordingly, first review meeting on the Draft Pinal Report was held under the Chairmanship of Industry Secretary, Mr. I.L. Shrestha, in the Ministry of Industry on July 25, 1984 at the presence of officials and representatives of concerned ministries, departments and agencies of HMG/N, the JICA's Resident Representative in Nepal and the JICA Study Team. Likewise, second review meeting took place at the Secretariat of National Planning Commission under the Chairmanship of Hon'ble Vice-Chairman of NPC, Dr. H.M. Sainju on July 26, 1984 at the presence of NPC member, joint members and other concerned government officials. Lists of persons who were present at the meetings are attached as Appendix I and II.

1) At the review meetings, the JICA Study Team made the presentation of the Draft Final Report, summarizing the major aspects as well as the conclusion and recommendations derived from the study, and explained and made clarification on questions raised by various persons attending the meeting. The issues discussed at the meetings are attached as Appendix III and IV.

A

- At the conclusion of the review meetings, Ministry of Industry, HMG/N expressed satisfaction that the Draft Final Report is comprehensive as per the scope of the study as agreed upon by the Ministry of Industry and the JICA on October 4, 1983. It was also agreed that comments on the Draft Final Report would be transmitted to the JICA by August 15, 1984 and these comments would be taken for due consideration in incorporating in the final report. It was further agreed that the JICA Study Team could proceed for the preparation of a Final Report, keeping in view the issues raised during the review meetings.
- The Kinistry of Industry, HMG/N expresses its appreciation to the JICA for the submission and presentation of Draft Final Report of the Peasibility Study on the establishment of the Urea Pertilizer Plant in the Kingdom of Nepal.

In concluding the presentation of the Draft Final Report, this Minutes of Meeting is prepared and signed hereunder.

Kathmandu, The Kingdom of Nepal July 27, 1984.

Indu Shamsher Thapa

Senior Engineer

Ministry of Industry, HMG

Nepal.

Masayasu Sakanashi

Leader of Study Team

Japan International Cooperation Agency.

Appendix - I

Persons Present at Meeting Held at Ministry of Industry on July 25, 1984

Representative, Japan International Cooperation Agency/Nepal.

- Mr. I.L. Shrestha 1.
- 2. Mr. Shiva P. Sharma
- 3. Mr. Bihari Krishna Shrestha
- 4. Mr. R.B. Bhattarai
- 5. Mr. I.S. Thapa
- 6. Mr. Narayan Regmi
- 7. Mr. R.K. Bajracharya
- з. Mr. R.N. Dhungel
- 9. Mr. G.B. Shah
- 10. Mr. Sunder Man Shrestha
- Mr. A.M. Tamrakar 11.
- 12. Mr. M.D. Bhattarai
- 13 . Hr. T. Hoshi, Resident
- JICA Study Team Members :
 - Mr. H. Sakanashi
 - 2. Mr. M. Kuwabara
 - Mr. T. Inooka
 - Counterpart Members 1
 - Mr. Manohar B. Shrestha 1.
 - Mr. H.P. Khanal 2.
 - Kr. Bishnu Sharma З.

- Sevretary, Ministry of Industry
- Joint Secretary, Ministry of Industry
- Joint Secretary, National Planning Commission
- Acting Director General, Dept. of Indust:
- Senior Engineer, Ministry of Industry.
- Deputy Director General, Department of Agriculture
- Senior Engineer, Department of Electricity
- General Manager, NIDC
- Executive Director, I.S.C.
- Section Officer, Ministry of Finance
- Division Chief, Agriculture Inputs Corporation
- Assistant Engineer, Ministry of Industry
- Team Leader, Techno-Economist
- Fertilizer Chemical Engineer
- Fertilizer Market Expert
- Por Chief, Industrial Projects DivisionI
- For Chief, Feasibility Branch, ISC
- For Chief, Project Engg. & Mgmt. Branch, ISC.

Appendix - II

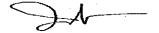
Persons Present at Meeting Held at National Planning Commission Secretariat on July 26, 1984

- 1. Dr. Hohan M. Sainju
- 2. Dr. Bijaya B. Pradhan
- 3. Mr. Shanker K. Malla
- 4. Mr. Surya P. Shrestha
- 5. Mr. Iswari L. Shrestha
- 6. Mr. Harsha M. Shrestha
- 7. Hr. Shiva P. Sharma
- 8. Hr. Rameswor B. Singh
- 9. Mr. Bihari K. Shrestha
- 10. Mr. Indu S. Thapa
- 11. Mr. Ram P. Shrestha
- 12. Mr. R.K. Bajracharya
- 13. Mr. Manchar B. Shrestha
- 14. Mr. Ramesh B. Adhikari

- Honourable Vice-Chairman, National Planning Commission
- Member, National Planning Commission
- Joint-Tember & Secretary, National Planning Commission
- Joint-Kember, National Planning Commission
- Secretary, Ministry of Industry
- Chief Engineer, Department of Electricity
- Joint-Secretary, Ministry of Industry
- Joint-Secretary, Ministry of Agriculture
- Joint-Secretary, National Planning Commission
- Senior Engineer, Ministry of Industry
- Under-Secretary, National Planning Commission
- Senior Engineer, Dept. of Electricity
- For Chief, Industrial Projects Division, ISC
- Senior Officer, ISC. (On deputition to NFC)
- 15. Mr. T. Hoshi, Resident
 Representative, Japan International Cooperation Agency/Nepal.

JICA Study Team Members 1

- 1. Mr. M. Sakanashi
- 2. Mr. M. Kuwabara
- 3. Mr. T. Inooka


- Team leader, Techno-Sconomist
- Fertilizer Chemical Engineer
- Fertilizer Market Expert

3/-

Appendix - III

Issues Discussed at Meeting After Presentation on July 25, 1984

- Clarifications on the technological aspects (such as only one or other alternative processes).
- 2. Interest rate on the external loan, whether it is possible to get the long term loan at 5% and sensitivity analysis to the project profitability by its change.
- 3. Possibility of getting energy at cheaper rate and its implications.
- 4. Water/air pollution in the process and what measures are to be taken in order to control it, if any.
- 5. Quality aspect of the urea to be produced in Nepal.
- 6. Possibility of product diversification such as producing the compound fertilizer (N:P:K:)
- 7. Rate of return to the NEC in view of the tariff reduction for this project.
- 8. Sapta Gandaki implementation to be delayed by one year (1992).
- 9. Any possibility of redeployment of plant of proposed capacity from other countries for minimizing the total project cost.
- 10. 10.5% interest on Long Term Loan charged.
- 11. Projected price (selling) is matching with the international price or not ?
- 12. Potential industrial uses of urea in Nepal.

Appendix - IV

Issues Discussed at Meeting Held at the National Planning Commission on July 26, 1984

- 1. Technology adopted in other countries in the region
- 2. New technology based on the electricity
- Possibility of establishing the mini-fertilizer plants
 (35 40 TPD) requiring about 8 9 MM of power.
- 4. There is some foreign exchange component involved in the electricity price. This could reduce the value added of the project.
- 5. 46% of the production cost in foreign exchange is more than the C.I.F. Calcutta price for fertilizer.
- 6. Use of laminted bags for the packaging of urea.
- Secondary energy can be used only during the rainy season but not during the off-peak period.
- 8. Optimum capacity of 275 TPD, some basis.
- 9. Storage of Hydrogen gas.
- 10. Alternatives for making this project financially, sound.

St.

4

LIST OF STUDY TEAM MEMBER AND COUNTERPARTS

LIST OF STUDY TEAM MEMBER AND COUNTERPARTS

Members of Study Team of JICA, Japan

Mr. Masayasu Sakanashi*	Team Leader, Techno-Economist, UNICO
Mr. Katsuo Adachi	Team Sub-leader, Chemical Engineer, JCI
Mr. Yukihiko Pujiki	Plant Mechanical Engineer, JCI
Mr. Hakoto Kuwabara*	Pertilizer Chemical Engineer, UNICO
Mr. Tetsuo Inooka*	Pertilizer Market Expert, UNICO
Mr. Saburo Suzuki	Blectrical Engineer, NIPPON KOEI
Mr. Terumitsu Suzuki	Cement Chemical Engineer, ONODA ENGG.

^{*} These members also visited Kathmandu on July 23 to 28, 1984 for the presentation and discussion of the Draft Final Report.

Members of Counterpart Team, Nepal

Mr. I	Manohar B. Shrestha	Civil Engineer For Chief, Industrial Projects Division, ISC
Mr.	Hari Prasad Khanal	Economist For Chief Peasibility Study Branch, ISC
Mr.	Bishnu Sharma	Chemical Engineer For Chief, Project Engineering & Management Branch, ISC
Mr.	Pushpa K. Karki	Mechanical Engineer Senior Engineer, Peasibility Study Branch, ISC
Mr.	Manoj Chipalu	MBA, Senior Pinancial Analyst, Peasibility Study Branch, ISC
Mr.	Jeevan Thaps	DPA, Officer, Feasibility Study Branch, ISC
Mr.	Som N. Bháttarai	Electrical Engineer Technical Officer, Peasibility Study Branch, ISC

ACTIVITY OF JICA STUDY TEAM

ACTIVITY OF JICA STUDY TEAM (1)

Date	H. SAKANASHI	K. ADACHI	Y. PWIKI	M. BUWABARA	T. 1800KA
January, 1984					-
8	- Leave TKY	- Leave TKY	- Leave TRY	- Leave TRY	- Ceave TKY
9	- Arcive in KTM	KIK el svissK -	- Arrive in RIM	- Acrive in KIM	- Arcive in KTM
10	- JiCA, Japanese Embassy, MOI, ISC	- JICA, Japanese Embassy, MOI, 190	- JICA, Japanese Embassy, MOI, 190	- JECA, Japanese Embassy, HOI ISC	- JICA, Japanese Embassy, MOI ISC
11	- National Boliday Data Summary	- Mational Holiday Data Summary	- National Holiday Data Susmary	- National Holiday Data Suznary	- National Holiday Data Summary
12	- MOI, NIEC	- NOI, NICC	- 6MG, BOC	- DMG, BCC	- MOA
13	- ISC, JICA, NEC	- Balaju Indus- trial District	- Balaju Indos- triol District, NBS	- AIC, 800, 838	- ATC, DOA
14	- Holiday, Data Summary	- Holiday, Data Sussary	- Boliday, Data Sussacy	- Boliđay, Data Svæzary	- Holiday, Data Summary
15	- NPC, MOF, DS	- NEC, NOT, DE	- 1970, 1900H, Dooas	- 930, 9009, Dooars, 800	- Dśsac/doa, Drams/doa
16	- CaS, MOI, Na- tional Insurance Co., NOC	- GW2, DÓS	- GNO2, DOX	- GMTP, DCR, WSSB at Sundarighat, SCC	- Local Survey in Lalitpur District
17	- BOC	- 800	- 800	~ BOC	 Local Survey in Bhaltapur
18	- ISC, JICA	÷ BOC	- BCC, C6C	- 800	- Local Survey in Easti District
19	- DOT (Tax), ISC	- scc	- 190, 8009, 870, 800	- 800	 Local Survey in Easti District
20	-1SC, JICA, BOC	- 190, 800	- ISC, CBC, DMG, BCC	- 800	- Tcip, Data Suaracy
21	- Holiday, Trip to Betanda	- Eoliday, Teip to Betanda	- Holiday, Trip to Betanda	- Boliday, Trip to Betassa	- goliday, Teip to getasda
55	- BCI, Trip to KTM	- 80f, Telp to	- BCI	- 80C	- total Survey in Parsa District
23	- ISC, JICA	- 190	- Border, B), 310, Trip to ITM	- Trip to Raxaul, BCI, Bizal Oxy- gen, Ghee Pacto	- Local Survey in Bara District ry
24	 ISC, Preparation of Progress Report 	- 190, Preparation of Progress Paport	- ISC, Preparation of Progress Report	- 1SC, BCC	- ISC, Preparation of Progress Report
25	- ISC, Preparation of Progress Report	- ISC, Preparation of Progress Report	 ISC, Preparation of Progress Report 	- ISC, Preparatio of Progress Report, BOC	n - ISC, Preparation of Progress Report
26	- 190, Japanese Embassy	- ISC, Japanese Embasy	- ISC, Japanese Embassy	- ISC, Japanese Embasy	- ISC, Japanese Embassy
27	- MOI, Presenta- tion of Progress Report	- 201, Presenta- tion of Progress Report	- MOI, Presenta- s tion of Progress Report	- MOI, Presenta- s tion of Progres Report	- MOI, Presenta- s tion of Progress Report
28	- Boliday	- goličay	- Holiday	- goliday	- goliday
29	kīl sresi -	- Leave SIN	- Leave BTM Arrive in CEP	- Leave SYM Accive in Cot	- Leave NIM
30	- Accive in TRY	- Accive in TIY	- Engig Picas	- Eng [†] g Picas	- Active in tay
Februaty 1			- 820	~ BSC	
2			- FAI, Railvay	- PAI, Pailvay	
3			- Haldia, ECC	- Haldia, 970	
4			- Leave CLT	- Leave CLT	
5			- Accive in TIF	- Attive to TAY	

ACTIVITY OF JICA STUDY TEAM (2)

Date	S. SUZUKI	T. SUZUKI
January, 1984		
15	- Leave TKY	- Leave TKY
16	- Arrive in KTM	- Arrive in KTM
17	- HCC	- нсс
18	- ISC, JICA	- HCC, Flue Gas Analysis
19	- ED, NEC	- HCC, Flue Gas Analysis
20	- ED, NEC	- HCC, Flue Gas Analysis
21	- Holiday, Trip to Hetauda	- Holiday, Trip to Hetauda
22	- HCI, Trip to KTM	- HCI, Trip to KTM
23	- ED, NEC	- HCC, Flue Gas Analysis
24	- ED, NEC	- HCC, Plue Gas Analysis
25	- ED, Preparation of Progress Report	 HCC, preparation of Progress Report
26	- ISC, Japanese Embassy	- ISC, Japanese Embassy
27	- MOI, Presenta- tion of Progress Report	 MOI, Presenta- tion of Progress Report
28	- Holiday	- Holiday
29	- Leave KTM	- Leave KTH
30	- Arrive in TKY	- Arrive in TKY

Annex I-4

LIST OF OFFICES VISITED AND PERSONS MET

Annex I-4

LIST OF OFFICES VISITED AND PERSONS MET

(1) Management, Financial and Economic Study Team

-Ministry of Industry Mr. Indu Shamsher Thapa Senior Engineer

> Mr. Iswari Lal Shrestha Secretary

-ISC Mr. Tej Kumar Sharma
Chief Training Division
(for Executive Director)

-NIDC Mr. R. N. Dhungel General Manager

-NEC Mr. L. M. Dixit General Manager

-National Planning Mr. Bed Bahadur Khadka Commission Co-member (Agriculture)

> Dr. Bijaya Bahadur Pradhan Member

-Ministry of Pinance Mr. Hit Singh Shrestha Additional Secretary

Mr. Bhupal Man Shakya Under-Secretary

-Department of Mr. Harsh Man Shrestha Blectricity Chief Engineer

-Central Bureau of Mr. Shyam Biharilal Srivastava Statistics Director General

-Department of Industry Mr. Ram Binod Bhattarai Director General

-National Insurance Mr. Bhoj Raj Sharma Co. Manager

-Nepal Oil Corporation Mr. Jeevan Prasad Khanal Deputy General Manager -Hetauda Cement Pactory

Mr. Rabindra Nath Rimal General Manager

-Himal Cement Co.

Mr. Indu Bahadur Shahi General Manager

-Department of Taxes

Mr. Lalit Bahadur Khadka Deputy Director

(2) Market Study Team

-Ministry of Agriculture (MOA)

Mr. Rameshwar Bahadur Singh Joint Secretary

-Agricultural Input Corporation (AIC)

Mr. P. N. Rana Chairman cum General Manager

Mr. Amrit Man Tamrakar Planning & Byaluation Div.

-Department of Agriculture (DOA)

Mr. Purushottam B. Gorkhali Director General

Mr. Narayan Regmi Deputy Director General, Planning & Coordination Div.

-Division of Soil Science and Agricultural Chemicals, DOA (DSSAC, DOA) Mr. Ranjit Shah Chief Soil Scientist

-Department of Food and Agricultural Marketing Services, KOA (DFAMS, MOA) Mr. Pushpa Ram B. Mathema Director General

-Central Regional Agricultural Directorate Mr. S. N. Sarkar Director

Mr. P. L. Chitrakar Ag. Officer - Planning & Ag. Extension

-District Agricultural Office, Lalitpur District Mr. Yogendra B. Basnet District Agricultural Development Officer

- -Parmers interview in Thecho Panchayat and Dhepakhel Panchayat, Lalitpur District
- -Sajha Office in Thecho Panchayat, Lalitpur Disctirct
- -District Agricultural
 Office, Bhaktapur
 District
- -Interviews with farmers from Sipadoi Panchayat, Tathali Panchayat, and Town Panchayat, Bhaktapur District
- -Western Regional Agricultural Directorate
- Mr. Manik L. Pradhan Director
- -District Agricultural Office, Kaskit District
- -Parmers interview in Arghaun Panchayat and Bhalam Panchayat, Kaski District
- -District Agricultural Office, Parsa District
- -Parmers interview in Sugauli Panchayat and Rengadhwa Panchayat, Parsa District
- -District Agricultural Office, Bara District
- (3) Technical Study Team
 - -Ministry of Industry (MOI)

Mr. Indu Shamsher Thapa Senior Engineer

Mr. Mukesh Dev. Bhattarai Engineer

Mr. J. M. Tater -Dept. of Mines & Geology (DOMG) Deputy Director Mr. P. P. Gorkhali **Engineer** Mr. Dwarika Shrestha Officer -Himal Cement Co. Mr. Indu Bahadur Shahi General Manager (HCC) Mr. A. M. Bania Chief, Laboratory Mr. C. D. Rajbhandari Chief, Planning Mr. S. R. Aryal Chief, Mechanical Section Mr. B. K. Kusle Chief, Production Mr. Alex Arter -Balaju Yantra Shala (BYS) Mechanical Engineer Ms. Yangji Sherpa -Structo Nepal (P) Ltd. (SN) Managing Director Mr. Urgen Sherpa Accounts Chief Mr. Diwakar Raj Paudyal -NECOENCO (P) Ltd. -Poundry Project (PP) Mr. Kamal Manandhar Engineer -Nepal Bureau of Mr. Dinesh Raj Bhattarai Standards (NBOS) Director -depai Transport

Mr. Krishna Raj Panday Chairman cum General Manager

Mr. Narendra Bahadur Neucha Director

Mr. Pramod Mani Ropeway Engineer

Corporation (NTC)

-National Construction Co. of Nepal (NCCN) Mr. N. D. Sharma General Manager

Mr. L. P. Sharma Works Manager

-Dooars Transport (P) Ltd.

Mr. S. K. Manglik Månåger

-Dept. of Roads (DOR)

Mr. Bharati Sharma D. E. Design Section

Mr. D. P. Rimal
D. B. Planning Section

-Water Supply & Sewerage Board (WSSB) Sundarighat

Mr. Binod Shankar Palikhe Officer

-C.s.C. Group

Mr. Deepak Man Sherchan Managing Director

Mr. S. B. Mathema Director

Mr. M. Rajbhandari Structure Engineer

-Nepal Oil Corporation (NOC)

Mr. Pradhan Deputy General Manager

-Hetauda Cement Industries Ltd. (HCI) Mr. R. N. Rimal General Manager

Mr. Umesh Jha Deputy General Manager

Mr. T. K. Jha Erection Manager

Mr. D. P. Shrestha Construction Manager

Mr. K. R. Aryal Pinance Manager

Mr. Teodoro R. Dino Consultant from ADB/M -Himal Oxygen (P) Ltd. Mr. Indra Ranjit Manager

-Himal Iron (P) Ltd. Mr. Indra Ranjit Manager

-Hetauda Industrial Mr. Gopal Sharma District (HID) Officer

-Vegetable Ghee Indus- Mr. D. Mathur tries Ltd. (VGI) Technical Incharge

-Department of Mr. K. M. Shrestha Blectricity (DOB) Manager, Finance & Economic Analysis

> Mr. Manik Tuladhar Officer

Mr. R. M. Shakya Incharge, Planning & Generation Dept.

-Water Resources Hr. Deepak Gyawali Commission Officer

Annex I-5

LIST OF DOCUMENTS RECEIVED

Annex I-5

LIST OF DOCUMENTS RECEIVED

Autho	r/Title	Received from
(1)	Management, Pinancial and Economic Study Tea	TA .
	l) Investors' Guide to Nepal	ısc
	2) Investing in Industry in Nepal	ISC
	3) Industrial Enterprises Act 2038 (1982)	ISC
	4) Boonomic Survey, Piscal Year 1982-83 (Ministry of Pinance, 1983)	ISC
	5) NEPAL - INDIA, Treaty of Trade, Treaty of Transit; Agreement of Cooperation	ISC
	6) Nepal Recent Developments and Selected Issues in Trade Promotion, World Bank; Oct. 14, 1983	ISC
	 Nepal: Issues and Options in the Energy Sector; UNDP/World Bank, August, 1983 	18C
	8) Water - The Key to Nepal's Development (Ministry of Water Resources, 1981	ısc
	 Promotion of Export Oriented Industries in Nepal (UNIDO, July 1983) 	isc
]	0) ISC (Introduction)	isc
]	1) List of Works Accomplished by ISC	ISC
ļ	2) Industrial Profile 1981/82, Ministry of Industry	ISC
	3) Company Act, 2021 (1964)	ISC
j	4) NIDC (Introduction)	NIDC
. 1. :	5) NIDC (Guidance)	NIOC
-	6) NIDC (Manual for Pinancial Assistance)	NIDC
	7) Operational Statistics of Nepal Industrial Development Corporation (P.Y. 1979/80 - 1981/82)	NIOC

18)	Act Relating to Foreign Investment and Technology 2038 (1982)	NIDC
19)	Industrial Policy and Act of HMGN (1982)	NIDC
20)	Review of Performance of Public Sector Enterprises (1981) Ministry of Pinance	MOP
21}	Population in Hepal by Districts and Geography (1971, 1981) CBS	CBS
22)	Organizational Chart of HMG/N	ISC
23)	Operating Cost Data at Himal Cement	Himal Cement
24)	Pinancial Data at Hetauda Cement	Hetauda Cement
25)	Data on Pinancing Conditions for Hetauda Cement, MOP	МОЪ
(2) Mark	et Study Team	
1)	AIC, "Basic Statistics of Agricultural Inputs in Nepal", (Jan. 1983)	AIC
2)	S.S. Rawal and T.M. Pradhan (AIC), "Import Management of Chemical Pertilizers in Repal"	AIC
3).	A.M. Tamrakar (AIC), "A General Review on the Fertilizer Marketing System in Nepal", (Aug. 1979)	AIC
- 4)	A.M. Tamrakar (AIC), "AIC Role on Fertilizer Use Promotion"	i e e e Aic e e e
5)	AIC, "Tender Document for Supply & Delivery of Chemical Pertilizer", (May 1983)	AIC STORES
6)	Div. of Soil Science & Agri. Chemistry, "Soil Reaction May of Nepal (Provisional)", (1983)	Div. of SSAC, DOA
7)	Div. of Soil Science & Agri. Chemistry, "Response of N/P2O5 Fertilizer"	Div. of SSAC, DOA

8)	Dept. of Food and Agri. Marketing Services, "Agricultural Statistics of Nepal, 1977", (1977)	DPMAS, MOA
9)	DPMAS, "Hand Book of Agricultural Statistics of Nepal", (1978)	DPMAS, MOA
10)	DSSAC, DOA, "Generalized Soil Map of Nepal (Provisional)", (1978)	DSSAC, DOA
11)	DPMAS, "Cropped Area and Production by Region and Zone 1971 - 1981"	DPMAS
12)	AIC, "Demand Projection of Pertilizer"	AIC
13)	AIC, "Data on Transportation Cost of Pertilizer"	AIC
14)	AIC, *Data on Import and Consumption, 1980 - 1982*	AIC
15)	AIC, "Data/Information on Pertilizer Marketing and Distribution"	AIC
16)	AIC, "Map of Distribution Routes of Pertilizer"	AIC
17)	AIC, "Map of Chemical Pertilizer Distributed"	AIC

(3) Technical Study Team

- Montnly Bulletin, Hetauda Cement Industries Limited, Nov. 1983
- 2) Industrial profile, Statistical Data No. 15, For Piscal Year 1982-1983, Hetauda Industrial District, Pashupati Nagar, Hetauda
- Ribbed Torsteel, Himal Iron and Steel (P) Ltd., Kathmandu, Nepal
- 4) Peasibility Study for Replacement of Bridges on Kathmandu-Raxaul Highway, Department of Roads, June 1981, Kathmandu, Nepal
 - 5) Surface Water Records of Nepal, Supplement No. 7, 1972, No. 8 (1973), No. 9 (1974), No. 10 (1975), Department of Irrigation, Hydrology and Meteorology, Ministry of Food, Agriculture and Irrigation, June 27, 1974, Kathmandu, Repal

- 19) Labor Wages for Kathmandu District Fixed by His Majesty's Government of Nepal (F.Y. 1982/83), ISC
- 20) Micro Seismicity Epicenter Map (Jan. 1982 Dec. 1982), HMG/Seismological Laboratory, DMG Epicenter Map (1911-1982), HMG/Department of Mines and Geology
- 21) Industrial Profile For Fiscal Year 1982-1983, Hetauda Industrial District
- 22) Report of Soil Investigation for Hetauda Cement Plant at Hetauda Nepal (December 1980), Development Consultants Private Limited
- 23) List of Transport Pacilities, Nepal Transport Corporation
- 24) Information on the questionnaire submitted to Hetauda Cement Industries, and Hetauda Industrial District (CIVIL)
- 25) Plant Lay-out Hetauda Cement Project, Hetauda, Nepal
- 26) Contract Documents (CIVIL) of Hetauda Cement Industries Ltd.
- 27) Information on the Questionnaire Submitted by the Urea Pertilizer Peasibility Study Mission to the Himal Cement Co. Chobar, Kathmandu, Nepal
- 28) Sapta Gandaki Hydroelectric Project Proposal for Development Blectricity Department
- 29) Budhi Gandaki Hydroelectric Project Power Simulation Studies and Evaluation of Alternative Project, Electricity Department
- 30) Blectricity Load Porecast for Period 1983 2001, (1983) Blectricity Department
- 31) Tariff Rates (1976 1983) NEC
- 32) Report on Tariff Study, Blectricity Department
- 33) Rate Analysis of Civil Work, CBC Group
- 34) NCCN, a brief history

Annex II

Annex II-1	METHODOLOGY AND PROCEDURE OF DEMAND PROJECTION
Annex II-2	PAST TREND AND OUTLOOK OF CROP CULTIVATION AREA IN NEPAL
Annex II-3	ESTIMATED/PROJECTED CONSUMPTION NITROGEN FERTILIZER BY REGION
Annex II-4	CONSUMPTION OF FERTILIZER IN NEPAL BY TYPE AND BY REGION
Annex II-5	FERTILIZER RESPONSE IN NEPAL

1 2/21111

AGREE METHODOLOGY AND PROCEDURY OF DESIGNATION

Annos B.2. EVST TREVD AND OUTLOOK OF CROP.
CULTIVATION AREA IN VEINE

Annex II 3 RETENT PRODUCTED CONSUMPTON

Annex II-I CONSUMERION OF FERTILIZER IN MICHAE

Annow has previous response by Michael

Annex II-1

METHODOLOGY AND PROCEDURE OF DEMAND PROJECTION

Annex II-1

METHODOLOGY AND PROCEDURE OF DEMAND PROJECTION

(1) General

The demand for fertilizer was projected through the following process.

- 1. Projection of cultivated area of major crops by region
- 2. Projection of demand for fertilizer
- 3. Projection of type-wise demand for fertilizer

Details are described in the following sections.

- (2) Projection of cultivated area of major crops
 - i) Method of projection

The future cultivated area (trend) of major crops was projected by region at each projection level shown below on the basis of past trend of change in the cultivation area.

- Level 1: Change in the area devided into the following groups, namely, agricultural area, pasture land, forest, and other area including industrial area and urban area. (Note: Level 1 projection was omitted in this Study due to the lack of data.)
- Level 2: Change in the area devided into the following groups out of agricultural area, namely, short term crops (multi-cropping crops), long term

crops (less than one cropping annually), and perennial crops.

Level 3: Change in the cultivated area of individual crops.

The total of each projected area in Level 2 in the region in question are adjusted to be equal to the agricultural area in Level 1. Further, the total of cultivated areas of each crop projected in Level 3 in each group shown in Level 2 are adjusted to be equal to the adjusted area projected in Level 2. Here, the total of cultivated area of short-term crops means the total of cultivated area multiplied by multi-cropping ratio of each crops.

The areas of each component (for example, agricultrual area and pasture land, etc. in Level 1) included in each Level either increase or decrease affected by economic and/or social If the agricultural area has been expanded, then the expansion will be limited in the future because of approaching the limit of available land. In other words, the urban area may also be expanded at the same time, and the expansion of agricultural area may be depressed by the expansion of urban area. These pressures for expansion by each component and the adjustment function among these components have been reflected on the past trend of changes in the area of individual These trends shown in the past are expected to continue in the future if there is no significant change in the economy, policy or technology, etc. The projection procedure described above represents the adjustment of discrepancies between the projected result of total of individual factors and aggregated factor with calculating the expanding (or shrinking) pressure of each factor by time series analysis.

The cultivated area by region and by crop described above were projected by the following regions, and the result is shown in tables of Annex II-2.

- Eastern Development Region: 1. High Hill 2. Hill

3. Terai

- Central Development Region: 1. High Hill 2. Hill

3. Terai

- Kathmandu Valley:

- Western Development Region: 1. High Hill 2. Hill

3. Terai

- Mid-western Development Region: 1. High Hill 2. Hill

3. Terai

- Far-western Development Region: 1. High Hill 2. Hill

3. Terai

ii) Data and data Sources

The projection of cultivation area was based on the past 12 years data of 1971 through 1982 provided by Pood and Agricultural Marketing Service Department, Marketing Services Division, Ministry of Agriculture (FAMSD).

(3) Projection of fertilizer demand

i) Methodology of projection

*Physically optimum dosage level of fertilizer may be calculated for each crop. The level varies depending on the soil condition, climatic condition of the area as well as fertilizer response of the crop, and represents the dosage level at which maximum additional output per unit input in terms of volume is expected. However, this level does not necessarily represent the economic optimum dosage level. When the application of fertilizer is increased gradually in the same manner as described above, then there will be the dosage

level at which maximum output in terms of value is expected by input of unit value of fertilizer. This level is called "Economic optimum dosage level of fertilizer". Every farmer nas the possibility to increase the application level up to this level. However, due to the following factors which adversely affect the use of fertilizer, the actual application level is usually lower than the economic optimum dosage level.

- 1. Natural disasters such as drought and flood.
- Delay in the supply of irrigation water or inadequate drainage.
- Insufficient purchasing ability of farmers to buy fertilizer, or lack of an adequate credit system for fertilizer purchase.
- 4. Unstable yield of crops.
- 5. Lack of sufficient knowledge on fertilization technic or effects of fertilization on crop yield.
- 6. Snortage or delay in supply of fertilizer.
- Other factors which discourage farmers from fertilization.

When the "economic optimum dosage level" multiplied by "cultivation area" is defined as "potential demand", then the difference between the "potential demand" and actual consumption is understood to have been caused by the factors described above. The ratio of actual consumption to the potential damand is called the "realization rate" of the potential demand. The past trend of improvement of restricting factors of fertilization may be applicable to the future, as long as there is no significant change in the policies on agriculture and fertilizer distribution. in other words, the past trend of realization rate can be applicable to the future. However, it should be noted that if there will be significant changes in the factors, which affect influences on the fertilizer use, then the past trend of the realization rate can not be applied to the future. If such is the case, the

future realization rate should be examined year by year taking into account the change in the factors. These factors include the following.

- 1. Construction or improvement projects of irrigation/drainage facilities.
- Large scale intervention by the government on price formation of either agricultural products or fertilizers, including introduction of a subsidy system and/or price support system.
- 3. Development or introduction of crop varieties which have high fertilizer response.
- 4. Improvement of the agricultural extension system.
- 5. Improvement of the fertilizer distribution system.
- 6. Other changes in the factors which stimulate the farmers to increase the fertilizer application.

The "potential demand" was defined in the above as "optimum dosage per unit cultivation area" mutiplied by "cultivation area*. If appropriate data are avaslable, then the better estimate may be obtained regarding the "potential demand" using "per hectare economic optimum dosage" multiplied by "fertilized area" in replace of "cultivation area". In this case, the "cropped" area will be divided into two, namely, "fertilized area" and "non-fertilized area", and the trend of rate of fertilized area to total cropped area will be first projected with examination made of the probability that the upper limit of the rate will be attained. This projection process is better than that explained above, in that maximum potential rate of fertilized area is sometimes less than 100% because of natural conditions, lack of irrigation facilities, and other reasons, and therefore, the area of which fertilization is impossible, should be deducted from the objective area for calculation of fertilization in the future.

ii) Process of demand projection

The procedure for projection of future demand was as follows.

- 1. Comparison of the potential demand with actual demand in the past analyzing factors affecting fertilizer consumption and extent of their effects.
- 2. Projection of potential demand on the basis of projected cultivated area and the potential dosage by crop.
- Projection of future realization rate of potential demand.
- 4. Calculation of projected demand multiplying the potential demand with realization rate.
- iii) Data sources are as follows, and the details of the data on projection are included in Annex II-3.

1. Potential dosage:

The economic optimum dosage level was firstly calculated using the fertilizer response data— provided by the Division of Soil Science and Agricultural Chemistry, Department of Agriculture (Div. of SSAC), and the result is shown in Table 2-20 (Chapter 3, Part II). The calculation results thus obtained were found to meet the recommended dosages provided by Div. of SSAC, and therefore, the recommended dosages were regarded as the economic optimum dosage level is this Study. (Note: */ data are included in Annex II-5.)

2. Actual consumption:

Regional consumption data provided by AIC, which are included in Annex II-4.

(4) Projection of type-wise demand for fertilizer

Based on the result of total demand projection, type-wise demand was projected as follows.

- 1. Examination of crops (or regions) on which the type of fertilizer in question is applicable.
- Calculation of potential demand from the above crops (or regions).
- Projection of type-wise fertilizer demand taking into account the future supply ability and past trend of type-wise fertilizer consumption.

Annex II-2

PAST TREND AND OUTLOOK OF CROP CULTIVATION AREA IN NEPAL

PAST TREND AND OUTLOOK OF CROP CULTIVATION AREA IN NEPAL - BASTBRN HIGH HILL rable II-2(1)

	1973	1973 1974	1975	1978	1977	1978	1979	1980	1981	1982	1983	1984	1985	1930	1995	2000
PADDY MAIZE WHEAT OTHER CEREALS BARLEY POTATOES OTHER OIL CROPS TOBACCO JUTE SUGAR CANE	888418 8888418 6000	24448 600448 6400500000	904444 91895-000	ын со днд ынг ана 4 сос	111 110 110 110 110 110 110 110 110 110	444 4000 4000 4000	44 48 6485404000	нц 00044 4 1-044004000	44 64 60 64 60 64 60 64 60 64	44 85558 85558 85558	NF F F 8 0 0 0 0 0	4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	44 600 400 400 400 400 400 400 400 400 4	40 4 N 4000000	88.0 8 0 4 0 10 0 0 0	01-040-100-00-0
TOTAL	407	407	407	407	407	407	407	407	407	407	407	207	207	407	407	407

NOTE 1973-1982:ACTUAL 1983-2000:PROJECTED

Table II-2(2) PAST TREND AND OUTLOOK OF CROP CULTIVATION AREA IN NEPAL

- CILL NACTORY -

	1973	1973 1974	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1990	1995	2000
PADDY MAIZE WHEAT OTBER CEREALS BARLEY POTATOES OTHER OIL CROPS TOBACCO JUTE SUGAR CANE	24.00 26.00	48 1 1 888 1 1 888 1 1 88 2 1 81 88 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	40 1 1 600 1 1 600 4 1 6 7 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	40 H H 400 H H 500 0 C K 500 0 C K 500 0 C K	800011 11 000 11 00 00 11 00 00 11 0	8000 HT 8000 BT 8000 B	4044 44 8089 44 8099 80 8099 80	509 719 1177 127 127 1 27 1 4	272 814 130 129 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	86 25 25 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	000 10 44 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	00 00 00 00 00 00 00 00 00 00 00 00 00	20100000000000000000000000000000000000	0811 19 08400 00 08400000000	2882 8882 8880 8880 8880 8880 8880 8880	822 8242 108 1121 80 00
TOTAL	1695	1695	1695	1695	1695	1695	1695	1695	1695	1695	1695	1695	1695	1695	1695	1695

NOTE 1973-1982: ACTUAL 1983-2000: PROJECTED

PAST TREND AND OUTLOOK OF CROP CULTIVATION AREA IN NEPAL Table II-2(3)

EASTERN TERAL

609 609 613 6413 84 84 84 84 84 388 589 589 1135 128 37 37 2586 517 517 181 181 2444 56 30 30 30 30 30 30 280 280 44 46 56 56 31 31 210 336 54 191 370 56 282744 186 456 61 261 261 261 261 261 128 172 172 173 174 132 372 41 OTHER OIL CROPS OTHER CEREALS SUGAR CANE POTATOES TOBACCO. BARLEY MAIZE WHEAT PADDY

TE 1973-1982:ACTUAL 1983-2000:PROJECTED

PAST TREND AND OUTLOOK OF CROP CULTIVATION AREA IN NEPAL - CENTRAL HIGH HILL Table II-2(4)

POTATOES OTHER OIL CROPS OTHER CEREALS SUGAR CANE TOBACCO BARLEY WHEAT

1973-1982:ACTUAL 1983-2000:PROJECTED

PAST TREND AND OUTLOOK OF CROP CULTIVATION AREA IN NEPAL Table II-2(5)

CENTRAL HILL

1001 1017 1017 1000 1000 6080 88 4 6680 86 4 4046 6000000000 0.4404 0.0400 0. CO C 4400 04 90409 18 88.88 88.88 88.88 88.88 521 90 110 521 121 121 80 4 1 80 40 70 70 4100 POTATOES OTHER OIL CROPS OTHER CEREALS SUGAR CANE TOBACCO BARLEY MAIZE THEAT

E 1973-1982:ACTUAL 1983-2000:PROJECTED

PAST TREND AND OUTLOOK OF CROP CULTIVATION AREA IN NEPAL - CENTRAL TERAI -Table II-2(6)

	1973	1973 1974	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1990	1995	2000
PADDY MAIZE WHEAT OTHER CEREALS BARLEY OTHER OIL CROPS TOBACCO	8. 48.80 8.90 8.40 8.40 8.40 8.40 8.40 8.40 8.40 8.4	2000 4000 4000 4000 4000 4000 4000 4000	8440 8000 80000 11400 754	24401 24401 24404	8840 8840 8844 8844 8644 864 64	844 0004 0004 0004 0004 0004	8480 8880 8880 8180 164 164 174	8 4 4 4 8 4 8 4 8 8 8 8 8 8 8 8 8 8 8 8	8,000 8,000 8,000 1,000	8 1 1 8 1 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1	88 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	84 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	3327 1310 1310 182 38 182 44 0	3292 406 1459 119 119 46	3258 380 380 42 42 57 57	324 334 33 33 33 33 33 33 33 33 33 33 33 3
jute Sugar cane	250	- 89 - 489		83	119	114	117	119	131	123	140	147	154	38	223	236
TOTAL	3439	3439	3439	3439	3439	3439	3439	3439	3439	3439	3439	3439	3439	3439	3439	3439

NOTE 1973-1982:ACTUAL 1983-2000:PROJECTED

PAST TREND AND OUTLOOK OF CROP CULTIVATION AREA IN NEPAL - VESTERN HIGH HILL -Table II-2(7)

	1973	1973 1974	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1990	1995	2000
	2													۱	ſ	١ (
PADDY	္	~	-	က်	رب د	7	٦.	⇔ ¢	- 0	0	o v	□ 6	⇔ ∾ౖ	ട ഗ്	> \(\text{\tin}\text{\tett{\text{\tetx{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\texi}\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\texi}\text{\texi}\text{\text{\text{\text{\text{\texi}\text{\texi}\text{\text{\texi}\text{\text{\text{\text{\texi}\text{\texi}\text{\texit{\texit{\texi}\text{\texi}\tex	ာ ကေ
MAISE	8	₹:	% A ⊓	22.	7 u	, v	₹ (C	96	n	n (5)	ခွဲထ	ရှိ ဖာ	ုတ်	ស	*	က
FREAT	→ :	⊋ (o (o <u>:</u>	> <u>-</u>	· -	> <u>-</u>	-) t	-	12	12	12		H	Ö
OTHER CEREALS	12	2:	200	<u></u> •	-t ¢	- ¢	-4 (C) -4 (F)	4 E.	4 LC 4 P	4 IS	91	9	18		œ	60 r-1
BARLEY	≓'	<u></u>	7	7	2 C	4 6	30	-1 C	1 1	2 6	00	00	60	~	ယ	ဖ
POTATOES	00	•	.	xo «	0 (n e	ก ⊂	- c	- ← :	- c) =	· =	=	0	¢	0
OTHER OIL CROPS	~ ∙	- € (⊷t (⇒•	⇒ c	> C	> c	э с	>	· c	• c =	• =	6	0	0	တ
TOBACCO	-	D ,	⇒ •	æ,¢	> c	> ¢	o c	э с	> C	, (=	~	•	· e	€	0	c>
JC78	-	>	→ '	⇒ ,•	-> •	> (>	> C	, c	~	• =	~	~	_	es	0
SUGAR CANE	¢	0	0	>	⇒	>	>	>	>	>	,	`	·			
10.00	79	62	79	79	<u>ئ</u>	62	7.9	79	62	79	73	79	73	52	.73	73
オピインオ																

NOTE 1973-1982:ACTUAL 1983-2000:PROJECTED

PAST TREND AND OUTLOOK OF CROP CULTIVATION AREA IN NEPAL Table II-2(8)

- WESTERN HILL -

	1973	1974	1975	1976	1977	1978	1979	1980	1861	1982	1983	1984	1985	1990	1995	2000
PADDY MAIZE WHEAT OTHER CERBALS BARLEY POTATOES OTHER OIL CROPS JUTE SUGAR CANE	225 285 286 286 286 286 286 286 286 286 286 286	287 18 282 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 2	05 48 02 48 02 48 03 48 04 64 04 04 64 0	87-44 1980 1988 889 1888 889 1888 889 1888	2000 2000 2000 2000 2000 2000 4	8888 68888 808888 808888	01-90 51-400 040000 040000	8888 8888 8888 8888 8888 8888 8888 8888 8888	85 48 88 88 88 88 88 88 88 88 88 88 88 88	22088 20088 20088 20088 2008 2008 2008	00000 00000 00000 00000 00000 00000	88888 88844 88848 88448 8846 88448 88448 88448 88448 88448 88448 88448 88448 88448 88448 8846 86448 8646 86448 86448 86448 86448 86448 86448 86448 86448 86448 86448 864	08888 0888 0884 0884 0644 064	28 88 88 88 88 88 88 88 88 88 88 88 88 8	7842 4844 8845 884 884 884 884 884 884 884 8	28888888888888888888888888888888888888
TOTAL	2260	2260	2260	2260:	2260	2260	2260	2260	2260	2260	2260	2260	2260	2260	2260	2260

NOTE 1973-1982:ACTUAL 1983-2000:PROJECTED

PAST TREND AND OUTLOOK OF CROP CULTIVATION AREA IN NEPAL Table II-2(9)

- Western Teral -

	1973	1973 1974	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1990	1995	2000
PADDY MAIZE WHEAT OTHER CEREALS BARLEY POTATOES OTHER OIL CROPS JUTE	2000 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0.04 0.04 0.05 0.05 0.05 0.05 0.05 0.05	00.24 00.02 10.02 10.02 10.02 10.03	25.4 25.4 25.4 25.4 25.4 25.4 25.4 25.4	0000 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	170 000 000 000 000 000 000 000 000 000	173 82.28 83.28 83.47 88.47 88.47	182 80 80 80 80 80 70 80 80 80 80 80 80 80 80 80 80 80 80 80	1200 1200 1200 1200 1200 1200 1200 1200	60 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	283 659 122 142 143 669 104 143 143 143 143 143 143 143 143 143 14	185 888 158 158 158	1869 7165 20 1566 1566 156	862 862 172 172 0	2028 117 1017 118 136 136	2055 0 0 1078 13 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SUGAR CANE	<u>පු</u> .්	စ္တ	37	50	62	28	S9	75	99	7.0	74	77	င္တ	96	111	318
roral	1625	1625	1625	1625	1625	1625	1625	1625	1625	1625	1625	1625	1625	1625	1625	1625

NOTE 1973-1982:ACTUAL 1983-2000:PROJECTED

PAST TREND AND OUTLOOK OF CROP CULTIVATION AREA IN NEPAL - MID-WESTERN HIGH HILL rable II-2(10)

	1973 1974	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1990	1995	2000
PADDY MAIZE WHEAT OTHER CEREALS BARLEY POTATOES OTHER OIL CROPS TOBACCO JUTE SUGAR CANE	No 4 E E CO	2000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	40000004400	4858888	4000000 4000000	8888888 88888888888888888888888888888	848889 884889 8848488	448884 488469	742881 740881 74088⊬4000	4690040000 46000000	24 14 8 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	24.48.1 H	24 484 H 2464464080	### ### ### ### ######################	4 8 4 8 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	242 8044 9000 1000
TOTAL	278	278	278	278	278	278	278	278	278	278	278	278	278	278	278	278
NOTE 1973-1982: ACTUAL		1983-2000	:PROJECTED	crep	: .	-		, i					-	,		•

PAST TREND AND OUTLOOK OF CROP CULTIVATION AREA IN NEPAL MHD-WESTERN KILL -Table II-2(11)

1154 1154 1154 1154 248.4 428.6 87.6 87.6 88.8 88.8 1154 1154 13.54 85 40 428 46 45 68 4 8888 8888 8888 8888 1154 1154 86488 86488 86488 POTATOES OTHER OIL CROPS TOBACCO SUGAR CANE BARLEY

: 1973-1982:ACTUAL 1983-2000:PROJECTED

PAST TREND AND OUTLOOK OF CROP CULTIVATION AREA IN NEPAL rable II-2(12)

MID-WESTERN TERAI

888 8484 8484 8484 8484 888 48 888 48 888 888 22.22 22.22 22.22 23.22 24.22 25.22 280 280 284 74 234 234 POTATOES OTHER OIL CROPS OTHER CEREALS. BARLEY SUGAR CANE TOBACCO

TE 1973-1982:ACTUAL 1983-2000:PROJECTED

PAST TREND AND OUTLOOK OF CROP CULTIVATION AREA IN NEPAL - FAR-WESTERN HIGH HILL -Table II-2(13)

						1	1	900	100	600	200-	1987	1985	1990	1995	2000
	1973	1973 1974	1975	1976	1977	13.8	n / n T	7320	7067	7061	2007	5007				
PADDY MAIZE WHEAT OTHER CEREALS BARLEY POTATOES OTHER OIL CROPS TOBACCO JUTE SUGAR CANE	@4500 @4650	68994 69964	70077777000 7007777700	201020884 1008884	845000000000000000000000000000000000000	000000 0004000101	84888 84480888494	@4@00 @00000000000000000000000000000000	04000 04000 04000	84898 88848 88848	@4000 @4000 @4004	@4000 @4000 @4000	@4888 @8488	04498 04498 04498 04499	88888844000	8488866699
#O##1	273	273	273	273	273	273	273	273	273	273	273	273	273	273	273	273

NOTE 1973-1982:ACTUAL 1983-2000:PROJECTED

PAST TREND AND OUTLOOK OF CROP CULTIVATION AREA IN NEPAL - FAR-WESTERN HILL rable II-2(14)

-	H	1973 1974	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1990	1995	2000
PADDY MAIZE WHEAT OTHER CERE BARLEY POTATOES OTHER OIL TOBACCO JUTE SUGAR CANE	ADDY AIZE HEAT THER CEREALS ARLEY OTATOES OTATOES UTE UTE	8488894401	2400044 6400446	240000000 540000000 540000000		88688999494 886889494	8428244 8428244 8428244	2484 2467 2467 2467 2467 2467 2467 2467 246	448 448 640 640 640 640 640 640 640 640 640 640	444 488 0484680004	HHQ 6480 848 848 848 848 848 848 848 848 848	84440%%0004	H0000000000000000000000000000000000000	2448 2448 2448 2448 2448 2448 2448 2448	448 648684 648684	8112 8614 8614 8614 8614 8614 8614 8614 8614	20 8 4 8 1 H 6 6 6 6 H
TOTAL		605	605	605	605	605	605	6.05	605	605	605	605	905	605	605	605	808
NOTE	1973-1982:ACTUAL	198,	1983-2000:	. PROJECTED	crep		<i>*</i> .			-			. * ;			. :	

PAST TREND AND OUTLOOK OF CROP CULTIVATION AREA IN NEPAL - FAR-WESTERN TERAI -Table II-2(15)

	1973	1973 1974	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1990	1995	2000
PADDY MAIZE WHEAT OTHER CEREALS BARLEY POTATOES OTHER OIL CROPS TOBACCO JUTE SUGAR CANE	881 881 881 881 881 881 881 881 881 881	04 04 04 04 04 04 04 04 04 04 04 04 04 0		1 18719	8987 8987 897 897 897 897 897 897 897 89	8811 H 8881 S 801 B 801 B	8000 H H B B B B B B B B B B B B B B B B	810 880 880 880 880 880 880 880 880 880	658 219 219 20 20 20 174 1	2302 1937 1937 1947 1957 1957	512 5842 8842 8684 8684 864	202 203 203 10 10 10 10	22 28 28 28 28 28 10 10 11	28 28 28 28 28 28 28 28 28 28 28 28 28 2	8588 8588 84888 84888 8488	88 8888
TOTAL	828	826	826	928	826	\$26	928	826	928	928	826	826	828	828	928	88

NOTE 1973-1982:ACTUAL 1983-2000:PROJECTED

PAST TREND AND OUTLOOK OF CROP CULTIVATION AREA IN NEPAL - CENTRAL KATHMANDU VALLEY rable II-2(16)

		1973 1974	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1990	1995	2000
PADDY MAIZ WHEAT OTHER CERE BARLEY POTATOES OTHER OIL TOBACCO JUTE SUGAR CANE	PADDY MAIZ WHEAT OTHER CEREALS BARLEY POTATOES OTHER OIL CROPS JUTE SUGAR CANE	282 283 283 283 283 283 283 283 283 283	822 825 825 825 825 825 825 825 825 825	86 88 88 88 88 88 88 88 88 88 88 88 88 8	200 200 200 200 200 200 200 200 200 200	200 1400 1400 1400 100 100 100 100 100 10	808 804 808 808 808 808 808 808 808 808	8484 811 86484 811 86181499 8	8484 8484 860845 800845	288 288 275 24 25 26 26 26 26 26 26 26 26 26 26 26 26 26	848 886 886 886 886 886 886 886 886 886	22 22 22 22 22 22 22 22 22 22 22 22 22	28.2 0.48.8 52.2 74.0001	2002 00488 00488 00004 11000H	2882 2882 4488 4486 4486 4486 4486 4486	242 848 448 448 448 666 66	24.8 28.8 28.8 28.8 28.8 28.8 28.8 28.8
TOTAL		842	842	842	842	842	842	842	842	842	842	842	842	842	842	842	842
NOTE	1973-1982: ACTUAL		1983-2000:	PROJECTED	CTED			•			٠.			-		٠.,	-

PAST TREND AND OUTLOOK OF CROP CULTIVATION AREA IN NEPAL _ rable II-2(17)

- HIGH HILL TOTAL -

PADDY 203 AAIZE 426	200	>	18.0	P)))	ח ה א	o 0 1	1881	1982	1955	#00T	3	255	222	2002
	4404 4 9486940 9088894898	2444 1 24889 149 297-891890	80444 80288 8054884 805488	8434 1 848884 8488884 8488884	64111 11 6628.008.1 4604.008.009.00	9444 1 948,0084 980,000,000,000	24 11 11 22 23 24 25 25 25 25 25 25 25 25 25 25 25 25 25	2244 1428 1428 1428 1428 1438 1438 1438 1438 1438 1438 1438 143	28244 4 28254 4 282694 6 600000	274 274 284 286 113 105 105 105	2411 1 1 2010 201 1 800 40 001 1	224 H H H H H H H H H H H H H H H H H H	888 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	825 825 835 835 835 835 835 835 835 835 835 83	333 333 171 182 183 183 183 183 183 183 183 183 183 183
TOTAL 1370 I	1370	1370	1370	1370	1370	1370	1370	1370	1370	1370	1370	1370	1370	1370	1370

NOTE 1973-1982: ACTUAL 1983-2000: PROJECTED

PAST TREND AND OUTLOOK OF CROP CULTIVATION AREA IN NEPAL Table II-2(18)

- HILL TOTAL -

	1973	1973 1974	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1990	1995	2000
PADDY MAIZE WHEAT OTHER CEREALS BARLEY POTATOES OTHER OIL CROPS TOBACCO JUTE SUGAR CANE	24 24 24 26 26 26 26 26 26 26 26 26 26 26 26 26	20010010000000000000000000000000000000	12 07 08 08 08 08 08 08 08 08 08 08 08 08 08	44460000 1	2201 2000 2010 2000 1000 1000 1000 1000	00000000000000000000000000000000000000	84409000 1	1 000000000000000000000000000000000000	28 4 80 48 48 4 7 8 4 7 0 0 2 4 8 7 4 8 8 8 7 4 0 7	25424 3230 1528 1528 2318 332 601 25 601 25 25 25 25 25 25 25 25 25 25 25 25 25	23316 23316 1440 203 203 204 109	2344 2996 1486 107 222 3 0 18	22372 23372	2265 42024 2224 2223 2223 2234 244 244 244 244 2	2527 2527 1901 1901 103 103 10 10 10 10 10 10 10 10 10 10 10 10 10	2555 1 2967 1 29
TOTAL	7906	7906	7906	7906	7906	7906	7906	7906	3062	7906	7906	7906	9062	7906	7906	7906

NOTE 1973-1982:ACTUAL 1983-2000:PROJECTED

PAST TREND AND OUTLOOK OF CROP CULTIVATION AREA IN NEPAL Table II-2(19)

- TERAI TOTAL -

	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1990	1995	2000
PADDY MAIZE WHEAT OTHER CEREALS BARLEY POTATOES OTHER OIL CROPS TOBACCO JUTE SUGAR CANE	011 10011 10000 10000 10000 10000 10000 10000 10000	01 22 24 24 24 24 24 25 25 25 25 25 25 25 25 25 25 25 25 25	10355 10355 10355 10355 1055 1055 1055 1	48881 48881 48881 48881 48881 48881 68881 68881 68881	01 884 885 888 888 888 896 868 868 868 868 868 868	10328 12883 2389 1997 1111 261 261	10315 1180 1289 196 974 201 201 208	10372 10372 10372 10372 992 673 873 873 873 873 873 873 873 873 873 8	010 010 010 000 000 000 000 000 000 000	228 228 228 228 228 228 228 238 238 238	10382 80382 1008 1009 1009 1009 1009 1009	101 818 1020 1000 1000 1000 1000 1000 10	10420 13304 3203 200 520 974 272	10498 3667 3667 504 1014 1118 328	10558 4096 207 207 851 1058 3778 382 382	10574 2059 208 208 51 83 1071 408 408
TOTAL	9932	9932	9932	9932	9932	9932	9932	9932	9932	9932	9932	9932	3932	3932	9932	9932

AII-26

NOTE 1973-1982:ACTUAL 1983-2000:PROJECTED

PAST TREND AND OUTLOOK OF CROP CULTIVATION AREA IN NEPAL Table II-2(20)

- GRAND TOTAL -

	1973	1973 1974	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1990	1995	2000
PADDY MAIZE WREAT OTHER CEREALS BARLEY POTATOES OTHER OIL CROPS TOBACCO JUTE SUGAR CANE	1224 1224 12534 1253 1253 140 150 150 150 150 150 150 150 150 150 15	22 22 24 25 25 25 25 25 25 25 25 25 25 25 25 25	125560 32886 12586 12586 1311 1511 151	22 24 24 25 25 25 25 25 25 25 25 25 25 25 25 25	12866 3683 12883 13883 1314 1314 2312 2312 2314 2314	12651 4487 3680 1244 270 519 1398 1398 261 261	12630 4287 3819 1249 1251 261 261 228	12764 4512 3987 12115 1222 1222 144 241	2552 2523 270 270 270 270 2523 2523 2523 2523 2523	2650 2838 1292 1292 1192 261 261 261 263	12972 4689 4588 1237 529 11999 270	13023 4702 1233 255 526 1201 77 283	13072 4715 4841 1229 253 528 528 1201 187 291	13253 4740 5486 1192 247 513 1208 77 77 256 345	13383 4759 1156 1248 1248 1248 1248 1380 1380 1380	13426 4767 6298 1139 241 241 221 221 221 221
TOTAL	19208	19208 19208	19208	19208	19208	19208	19208	19208	19208	19208	19208	19208	19208	19208	19208	19208

NOTE 1973-1982: ACTUAL 1983-2000: PROJECTED

Annex II-3

ESTIMATED/PROJECTED CONSUMPTION NITROGEN FERTILIZER BY REGION

Table II-3(1) ESTIMATED/PROJECTED CONSUMPTION OF NITROGEN FERTILIZER BY REGION

- EASTERN HIGH HILL -

-	POTENTIAL				CROPPED	AREA			
CROP	DOSAGE (N Kg/ha)	1981	1982	1983	1984	1985	1990	1995	2000
PADOY	30	10700	10200	12500	12900	13200	14400	15300	15600
MAIZE	08	17000	17000	16700	16600	2 C C C C C C C C C C C C C C C C C C C	2000 2010 2011))) (3
工艺田田	90 00 00 00 00 00 00 00 00 00 00 00 00 0	1800	1000) (C	100) () () ()	2 C	4400	4300
OTHER CEREALS		4400	0000	4 0 0 0 0	1007	6.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	2002) 7	Ö
BARLEY	± 60 € 60 € 60 € 60 € 60 € 60 € 60 € 60 €)))) () () () () ()	900	00.05 00.05	20:00	2100	2100	5100
POTATOES	7 7))) () ()	0 C		200	100	Ö	⇔	=
OTHER OIL CROPS	450	⇒ € ⇒ ₹	o ←	○	⇔	0	ċ	0	0
TOBACCO	2 60	.		ေ		6	0	0	00
SUGAR CANE	72	0	Ö	o ,	G	0	=	>	→
DEMAND	(A) CONSUMPTION (B)	1327	1288 55	1339 40 3	1345 545 445	1341 54 4	1347 67 5	1352 81 6	1353 95 7-
/ e · a/E /		,	. !						

ESTIMATED/PROJECTED CONSUMPTION OF NITROGEN PERTILIZER BY REGION Table II-3(2)

- EASTERN HILL

; ;	POTENTIAL				CROPPED AREA	AREA			
GROP	DOSAGE (N Kg/ha)	1981	1982	1983	1984	1985	1990	1895	2000
PADDY	80	57200	48800	50500	50700	50800	51600	52000	52200
HAIZE	. 00	81400	79700	76400	77100	77800	81800	86000	87700
\$200 AT	99	13000	15100	14400	15100	15900	19400	22900	24200
OTHER CEREALS		18900	20300	19100	19100	19100	19000	18000	19000
BARLEY	8	500	800	909	200	500	200	⇔	0
POTATOES	72	12900	12900	13000	12900	12900	12500	12200	12100
OTHER OIL CROPS	75	7000	.0098	0006	9000	9006	9006	9006	9000
TOBACCO	22	100	100	100	100	100	⇔	c	o (
JUTE	34	.0	0	⇔	c	=	=	⇔ ;	-
SUGAR CANE	72	200	100	200	200	200	200	100	100
POTENTIAL DEMAND (ACTUAL/PROJECTED CA/B: %)	(A) CONSUMPTION (B)	14902 224 2	14258 354 2	14031 281 2	14148 283 2	14274 285 2	14907 447 8	15535 466 3	15791 474 3

rable ii-3(3) ESTIMATED/PROJECTED CONSUMPTION OF NITROGEN FERTILIZER BY REGION

- EASTERN TERAI -

	POTENTIAL				CROPPED	AREA			
CROP	DOSAGE (N Kg/ha)	1981	1982	1983	1984	1985	1881	1995	2000
Panny	ÜÜ	360100	329500	358100	358700		361100	361700	361600
1000 H	202	21000	28000	24400	25600		32800	38600	40900
1 to	0	33600	60600	50700	51700		56800	29900	60900
OTHER CEREALS		5400	4900	5600	5700	5800	6200	6600	6700
RAPLEV	08	400	300	300	300		100	⇔	=
POTATIONS	7.5	4200	4600	3900	3900		4100	4200	4300
ACRES CONTRACTOR	78	12500	5600	12600	12700		13200	13500	13600
	20	2200	2700	2400	2400		2500	2600	2700
000 C	2 ec	26.100	26100	19300	18100		11800	7800	6400
SUGAR CANE	72.	3100	3100	3000	3100		3500	3700	3800
DEMAND	(A) CONSUMPTION (B)	43848 1287 3	44124 963	45513 1365	45788 1374	46060 1382 3	47249 1890	48215 1929 4	48554 1942
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		•	•	•					

rable ii-3(4) ESTIMATED/PROJECTED CONSUMPTION OF NITROGEN FERTILIZER BY REGION

- CENTRAL HIGH HILL -

	POTENTI	AL		,	CROPPED AREA	AREA			
crop	DOSAGE (N Kg/ha)	1981 (6	1982	1983	1984	1985	1990	1995	2000
PADDX	30	6100	'	6200	6200	0200	6300	6400	0.029
MAIZE	000	14500	13500	14000	2400.0	3500	3700	00000 00000 00000	4000
PREAT OFFICE OFF	ો - •	0000 0000		4100	4100	4200	4200	4300	4300
OLDERA BASIES	160 100	008		8008	800	808	800	800	800
POTATOES	72	3200		3900	3900	4000	4100	4200	4300
OTHER OIL CROPS	34	400		300	300	300	000	200	200
TOBACCO	22		⇔.	o (~		;	⇒ •	⇒ €
STOP STOP	3.8	6) 6	c	-		= 6	- -	3 (3	⇒ ⇔
SUGER CRINE	3			•	•				
POTENTIAL DEMAND ((A)		1103	1068	1068	1076	1087	1094 963	1099
ACTUAL/PROJECTED C	CS NOTIFIED ON	99 90		88	8	98	88	88	88

Table II-3(5) ESTIMATED/PROJECTED CONSUMPTION OF NITROGEN FERTILIZER BY REGION

- CENTRAL HILL -

	POTENTIAL				CROPPED	AREA			
CROP	DOSAGE (N Kg/ha)	1981	1982	1983	1984	1985	1990	1995	2000
PADDY	8.6	40300	53200	44600	46000	47400	52000	55100	56200
0 t- c) C	15800	21900	17500	18600	19700	23900	27200	28400
OTHER CEREALS	:=	11600	10800	10800	10800	10700	10000	9200	8800
EARLEY	30	006	008	006	006	006	1100	1200	1200
POTATOES	72	5700	5700	2800	2900	6000	6000	5900	5800
OTHER OIL CROPS	34	6100	6200	3900	3400	2900	200	6	6
TOBACCO	22	100	100	100	100	100	~	6	0
JUTE SUGAR CANE	46	800	1900	1200	1200	1200	1300	1400	1500
POTENTIAL DEMAND (ACTUAL/PROJECTED CO (A/E : %)	(A) CONSUMPTION (B)	10054 1557 15	11263 1987 18	10453 1882 18	10631 2020 19	10808 2162 20	11119 2446 22	11273 2593 23	11318 2603 23

rable II-3(6) ESTIMATED/PROJECTED CONSUMPTION OF NITROGEN FERTILIZER BY REGION

- CENTRAL TERAI -

	POTENTIAL				CROPPED	AREA			
CROP	DOSAGE (N Kg/ha)	1981	1982	1983	1984	1985	1990	1995	2000
Vanna	O C	341300	314900	334200	333400	332700	329200	325800	324500
144 X	20	45000	57200	43600	43100	42600	40600	38000	20400
1	88	102000	131600	124000	127600	131000	145900	158100	10291
OTHER PERMIS	11	7100	11300	8400	8200	8600	9100	2000 2000 2000	300
-		2000	3500	4300	4300	4300	4200	4200	4200
547157 547157	36	3400	7600	3900	3900	3800	3700	3600	3500
0	2 ~	19500	28400	20600	19400	18200	11900	5700	3100
OTHER OIL CROPS	900	3600	5600	4300	4300	4400	4600	4800	4800
つうながらい	9 P			0	0	⇔	0	0	2 6 6 6
SUGAR CANE	72	13100	12300	14000	14700	15400	18800	22300	nnesz
244	(9)	51850	İ	53357	53588	53804	54734	55466	55714
ACTUAL /PROJECTED	CONSUMPTION (B)	5209	6617	6403	9969	8998 9	8757	9429	9471
(A/B : %)		10		12	23	13	2	<u> </u>	7

Table II-3(7) ESTIMATED/PROJECTED CONSUMPTION OF

- WESTERN HIGH HILL -

RECHON	!
⊁ ¤	
NITROGEN FERTILIZER BY REGION	
NHTROGEN	

	POTENTIAL				CROPPED AREA	AREA		:	•
CROP	DOSAGE (N Kg/ha)	1981	1982	1983	1984	1985	1990	1995	2000
PADDY MAIZE WHEAT OTHER CEREALS BARLEY POTATOES OTHER OIL CROPS TOBACCO JUTE SUGAR CANE	999182888 889188	10000000000000000000000000000000000000	44 40000000000000000000000000000000000	0000000 000000 00000000000000000000000	4 44 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	00000000000000000000000000000000000000	111 171 171 171 171 171 171 171 171 171	4 H H H H H H H H H H H H H H H H H H H	18888 18888 88888 88888 88888 88888 88888 88888
DEMAND JECTED	(A) CONSUMPTION (B)	201 188 9	197 16 8	233 128 128	221 31 14	215 30 14	169 24 14	125 18 14	120

ESTIMATED/PROJECTED CONSUMPTION OF NITROGEN FERTILIZER BY REGION Table II-3(8)

- WESTERN HILL

	POTENTIAL				CROPPED	AREA	:		
CROP	DOSACE (N Kg/ha)	1981	1982	1983	1984	1985	1990	1995	2000
PADDY	80	70800	72600	67000	68300	00969	73800	77200	78500
34 12E	00	79700	97600	85000	85500	86000	861.00	22000	2000
FREAT	ထိ	27900	29700	30900	32400	33800	20000	300 300 300 400 400 400 400 400 400 400	20004
OTHER CEREALS	t	34300	38400	35400	34800	34300	2000	0007	10007
\A_10.40	<u>0</u>	2200	2100	2000	1900	1900	1600	1400	
いたのはないのの	72	5000	5800	2600	2600	5600	5400	5200	21.5
OTHER OIL CROPS	9 ₩	2200	2100	2500	2400	2400	2000	1600	1500
TOBACCO	22	100	0	Ģ	O	-	-	⇒ •	⇒ (
	Š	~	-	0	-	-	⇒ •	,	⇒ ¢
SUGAR CANE	72	300	300	200	100	100	-	>	>
POTENTIAL DEMAND (ACTUAL/PROJECTED C (A/E : %)	(A) CONSUMPTION (B)	16768 651 4	18940 888 5	17284 864 5	17538 877 5	17806 890 5	18543 1113 6	19135 1339 7	19354 1548 8

rable II-3(9) ESTIMATED/PROJECTED CONSUMPTION OF NITROGEN FERTILIZER BY REGION

- WESTERN TERAL -

	POTENTIAL				CROPPED	AREA			
CROP	DOSAGE (N Kg/ha)	1981	1982	1983	1984	1985	1990	1995	2000
PADDY	.00	177100	_	1 ~	185100		195200	202800	205500
MAIZE	000	17300			11300		86400	101700	107800
WHEAT OTHER CEREALS	2 ਜੇ 30 ਜ	2500			2000		1700	1490	1300
BARLEY	386 386	400. 1200.			200 200		\$00 200	-	Ö
OTHER OIL CROPS		12800			15300° 300		300	18600 300	3008
TOBACCO JUTE SUGAR CANE	386	0099	7000	7400	7700	8000	.0096 .0	11100	11800
TAL DEMAND //PROJECTED	(A) CONSUMPTION (B)	25217 1884 7	24492 1883 8	25934 2075 8	26283 2103 8	26639 2131 8	28368 2837 10	30040 3304 11	30694 3376 11

Table II-3(10) ESTIMATED/PROJECTED CONSUMPTION OF NITROGEN FERTILIZER BY REGION

- MID-WESTERN HIGH HILL -

	POTENTIAL			•	CROPPED	AREA			
CROP	DOSAGE (N Kg/ha)	1981	1982	1983	1984	1985	1990	1995	2000
PANNY.	40	2200	21.00	21.00	2100	2000	1800	1600	1500
12 EX	20	44.00	3700	4300	4200	4200	3600	3100	2800
1 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	40	2900	2900	1400	1000	909	6	⇔	-
ATARARO GREEC	-	3900	3600	4100	4200	4200	4300	4400	4400
BASTEV	i es	3300	3100	3300	3200	3200	2900	2600	2400
POTATORS	72	1700	1600	1700	1700	1600	1300	1000	006
OTHER OIL CROPS	34	200	200	200	2002	001	00 1	c	c > c
TOBACCO	22	c	0	0	0	~	. ;	-	→ 1
June	34	Ö	⇔	10600	11200	11800	13800	15200	15700
SUGAR CANE	72	-	0	0	C	0	3	5	⇒
I کے	ī	739	219	1032	1028	1018	886	965	\$47
ACTUAL/PROJECTED CONS (A/B:%)	CONSUMPTION (B)	9 C ,	η - τ	. •	90	3 ←4	⇒ ⊢1	}	> ⊷

rable II-3(11) ESTIMATED/PROJECTED CONSUMPTION OF NITROGEN FERTILIZER BY REGION

- HILL MESTERN HILL -

	POTENTIAL				CROPPED AREA	AREA			
CROP	DOSAGE (N Kg/ha)	1981	1982	1983	1984	1985	1990	1995	2000
yanny	. 00	23700	24900	23900	23600	23400	22100	21100	20700
20100	00	41200	42700	40200	30800	39600	38300	37400	2000
	080	32500	33200	32300	33300	34300	20,00	2000	0000 0000 0000 0000
OTHER CEREALS		12000	12300	12003	12100	12300) () () () () () () () () () (3000 1000 1000 1000 1000 1000 1000 1000	1970
BARLEY	08	5100	5300	5200	0000	2000	2000) ¢	3 6
POTATOES	72	3000	2800	2900	2300	2000	3 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0000	96
OTHER OIL CROPS	34	2600	3500	5400	10000 10000 10000	2200	200) C) C) C) C) C
	25	100	199	B≧°	ם ממנ	⊃ € ⊃ ~))) (⊃ ← ⊃ -1	3
JUTE SUGAR CANE	7.82	100	100	100	100	100	100	100	100
POTENTIAL DEMAND (A) ACTUAL/PROJECTED CON	(A) CONSUMPTION (B)	9317 49	9610 115	9206 92 1	9239 92 1	9286 93 1	9450 189 289	9649 193	9735 195

rable ii-3(12) ESTIMATED/PROJECTED CONSUMPTION OF NITROGEN FERTILIZER BY REGION

- MID-WESTERN TERAL -

	POTENTIAL				CROPPED	AREA	•		
CROP	DOSAGE (N Kg/ba)	1981	1982	1983	1984	1985	1990	1995	2000
	ŋŋ	89100	100100	92300	91700	00016	87800	84600	83300
70 C C C C C C C C C C C C C C C C C C C	00	32100	35900	32100	32000	31800	31100	30200	30200
SERVE	8	32400	34800	35300	37000	38600	46600	54600	20.7
OTRER CEREALS		1900	1800	1700	1700	1800	1200		307
2421.EV	30	600	300	200	200	200	200	200	223
50T4105	72	1200	1100	1100	1000	1000	2007	400	007
OTHER OIL CROPS	34	26200	27100	27200	27700	28100	30200	32200	33000
TOBACCO	55	300	200	200	200	200	66 T	c > c	⇔ €
JUL	34	0	0		0		= c	⊃ 6	⇒ ¢
SUGAR CANE	72	009	200	200	200	ng l	an,	20.00	דחמחד
POTENTIAL DEMAND (A)		15778	17432	16342	16418	16468	16776	17093	17200
Ω	CONSUMPTION (B)	344	657	490	40 00 00 00 00	4 4 4 4 6	-1 S	0 0 0 0	3 V
(A/B : %)		23	7	.D	o	? 	#		

Table II-3(13) ESTIMATED/PROCECTED CONSUMPTION OF NITROGEN FERTILIZER BY REGION

REGION	- HILL		
NITROGEN FERTILIZER BY	- PAR-WESTERN HIGH		

	POTENTIAL				CROPPED	AREA			
CROP	N Kg/ha)	1981	1982	1983	1984	1985	1990	1995	2000
PADDY	40	6800	6300	.0:0:99	0099	0.039	6500	6500	6500
MAIZE	9	4400	4300	4100	4200	420.0	4300	4500	4500
SHEAT.	40	6900	0069	5500	5300	5100	4200	3500	3300
OTHER CEREALS	i ped	2100	2400	2200	2200	2200	2000	1800	1800
BARLEY	300	3100	2500	3100	3200	3200	3500	3700	3800
POTATOES	72	700	700	800	800	008	400	700	700
OTHER OIL CROPS	34	600	400	900	900	009	009	700	700
TOBACCO	22	100	0	100	100	100	⇔	Φ.	φ.
JULE	35	ဓ	Ċ	~	0	c	⇔	-	
SUGAR CANE	72	0	O	100	100	100	Ö	o l	~
2	(A)	1001	136	935	936	928	88	875	870
	CONSUMPTION (8)	₹ ⊂	र्यु ०	. co	n -	Ð ⊷	Ď r⊣	3 0	÷ ~
\ 2 · 4/4 /		•	3	•	ť				

rable II-3(14) ESTIMATED/PROJECTED CONSUMPTION OF NITROGEN FERTILIZER BY REGION

- FAR-WESTERN HILL -

	POTENTIAL				CROPPED	AREA			
CROP	DOSAGE (N Kg/ba)	1981	1982	1983	1984	1985	1990	1995	2000
PADDY	086	14900	17500	15800	16100	16400	17900	18900	19300
		18200	25900	20400	20700	21100	22900	24100	24500
OTHER CEREALS	라. 다.	6100 2000	6600 1800	6400 2000	6500 2000	6700 2000	7400 2000	1990	1900
POTATOES.	200	1200	1200	1200	1200	1300	1400	1400	1500
OTHER OIL CROPS	34	006	900	1200	1100	1130	2 8 8) C () C () C	⊋ c ⊇ A
TOBACCO	55	= -	-	>	→)	.	⇒ ←)
JULE SUGAR CANE	7°	100	100	100	100	100	100	100	100
POTENTIAL DEMAND (A) ACTUAL/PROJECTED CONSUM (A/B : %)	(A) CONSUMPTION (B)	4139 58 1	4973 18	4401 44 1	4436	4482 45 1	4674	4746	4766 48 1

rable ii-3(15) ESTIMATED/PROJECTED CONSUMPTION OF NITROGEN FERTILIZER BY REGION

- PAR-WESTERN TERAL -

	POTENTIAL				CROPPED	AREA			
CROP	DOSAGE (N Kg/ha)	1981	1982	1983	1984	1985	1990	1995	2000
Vanny	00	65800	7030.0	70300	71200	72100	.76500	00608	82700
なっていた。		15200	20100	18000	18300	18700	20500	22400	23200
16000	88	21900	23200	24300	25300	26400	31000	35300	36900
A LANDON OF WHICH	3=	2000	1900	2000	2000	2000	2200	2300	2300
0 table 0 tabl	(e)	200	100	200	200	200	300	300	300
いないまでき	36	200	200	200	200	500	400	400	300
いならない。これのこのながら	7 6	17400	19700	20400	21500	22700	28900	35500	38300
TOBACCO	22	100	100	100	100	100	100	100	100
JULE	34	0	0	=	0	0	0	ے د	=
SUGAR CANE	72	100	200	100	100	100	200	200	33,7
DEMAND	(A) CONSUMPTION (B)	10517	11657	11541	11778	12037	13241 265	14441 453	14917 448
(% : g/v)		₹	4	-1	1	3	3	>)

rable 11-3(16) ESTIMATED/PROJECTED CONSUMPTION OF NITROGEN FERTILIZER BY REGION

- CENTRAL KATHMANDU VALLEY -

	POTENTIAL				CROPPED	AREA			
CROP	DOSAGE (N Kg/ha)	1981	1982	1983	1984	1985	1990	1995	2000
PADDY	00	30700	32400	29800	29700	29600	29100	28400	28100
MA I CH	200	38500 27100	27000	28500	28500	28500	28600	28300	28200
OTHER CEREALS	3 = 4	4900	3400	3900	3700	3400	2300	1100	000
BARLEY	30	100	100	001	100	100	200	200	201
POTATOES	72	2800	3400	2200	2100	2100	1900	1802	nn) T
OTHER OIL CROPS	34	006	909	006	00 00 00 00 00 00 00 00 00 00 00 00 00	909	-	⇒ (:> c
TOBACCO	23	⇔ •	0	c	c , 6	D C	ခင်	⇒ ¢	ာင
JUTE SUGAR CANE	4.02	200		300 T	100	100	0	> 🗢	9
POTENTIAL DEMAND (ACTUAL/PROJECTED O	(a) CONSUMPTION (B)	10703 5816 54	11358 6234 55	10092 6358 63	10153 6599 65	10217 6743 66	10543 7591 72	10783 8303 77	10874 8808 81

Annex II-4

CONSUMPTION OF FERTILIZER IN NEPAL BY TYPE AND BY REGION

CONSUMPTION OF PERTILIZER IN NEPAL BY TYPE AND BY REGION ralbe II-4(1)

- DASTERN HIGH HILL -

	1975	1976	1977	1978	1979	1980	1981	1982
1304A	e	60	1.0	∺	23	29	27	45
AMMONTHM MILIDHATE (1)	· 64		~	2	0	•	ŧ	1
	1 1		•	٠		•	•	ì
PROSPHATE							•	• ;
•	¥	175	30	35	8	ထ	≅	173
(C) X8((X) (X) (X) (X) (X) (X) (X) (X) (X) (X	:				10.	ഗ	4	•
(CONT. 18)		•	ı	1	•	•	•	
(V) X010200	•	•	3	•	•	*		•
U		•	•	•	•	•	ŧ	•
MINITAL OF POTASH	6	₹	ທ	4	7	1	s~-K	r-4
SULPHATE OF POTASH	•	٠	i	•	•	1		•
OTHER NITROGEN FERTILIZER		•	1					
TOTAL (IN PRODUCT TONS)	ဖ	13	47	51	97	117	103	219
N TOTAL (IN N TONS) P205 TOTAL (IN P205 TONS) K20 TOTAL (IN K20 TONS)		សសម	== ಹಣ	27 00	25 14 2	1881	89H	သင္လ

NOTE: ASI-21% AS2-26% CXI-20:20:0 CX2-23:23:0 CX3-15:15:15 CX4-5:8:7

CONSUMPTION OF FERTILIZER IN NEPAL BY TYPE AND BY REGION Table II-4(2)

- EASTERN HILL -

	1975	1976	1977	1978	1979	1980	1981	1982
บลอล	84	115	180	181	234	202	246	350
NIUM SULPHATE	32	83	တ္ထ	မွ် မ	8	52	8	X
	•	ı	•	•	1	•	' i	1 -
AMMONIUM PHOSPHATE	253	307	375	398	463	545	454	727 67 727 727 727
COMPLEX (2)		•	C	r c	က် လ လ	က် ကို င		77
	— €	⊸ r	3 '	79	3 1	> 4	0	6
ب ز			e er		4	r ⊸₹	• ⊷•	ഗ
ANATHUR COTON FACOFINED STRUCTURED STRUCTURED OF POTASH	24	8		79	99	52	30	တ္တ
-		*	•	•	•			•
806	:	1	1					
TOTAL (IN PRODUCT TONS)	425	586	751	779	857	858	835	1374
N TOTAL (IN N TONS)	96	132	182	185	224	222	224	354
5 TOTAL (IN P205	ស្ល	89	⇔ ¢	ე ზდ	112	122	S 2	2 KS
K20 TOTAL (IN K20 TONS)	55	90	9	3	3	}	2	

NOTE: ASI-21% AS2-26% CX1-20:20:0 CX2-23:23:0 CX3-15:15:15 CX4-5:8:7

CONSUMPTION OF FERTILIZER IN NEPAL BY TYPE AND BY REGION rable II-4(3)

- EASTERN TERAI -

	1975	1976	1977	1978	1979	1980	1981	1982
UREA AMMONIUM SULPHATE (1)	618 509	943	1198	1332 271	1510	1498	1810 270	2821
SULPHATE PHOSPHATE	1296	1 (1) 13 14 15	1792	1085	1832	2052	1702 1703 1704	4073 4073
COMPLEX (2)	စိုင်	352	390	1831	274 350	დ გი :	4 K) C	9 * N
COMPLEX (4) TRIPLE SUPER PHOSPHATE	1 22 0	212	. 8. 6. . 8. 6.	4 ଫ 1 ଉଷ	25 211 211	16 202 303	9 6 8 6 8 8 8	4 4 10 10
MURIATE OF POTASH SULPHATE OF POTASH OTHER NITROGEN PERTILIZER	900 4	ğ 1 +	; • • • •	82.2	2	•		
TOTAL (IN PRODUCT TONS)	2689	3410	3967	4276	4373	4053	4381	8041
N TOTAL (IN N TONS) P205 TOTAL (IN P205 TONS) K20 TOTAL (IN K20 TONS)	656 273 132	854 337 220	1022 435 231	1087 437 326	1212 493 180	1160 433 122	1287 463 178	963 910 265

NOTE: AS1-21% AS2-26% CX1-20:20:0 CX2-28:23:0 CX3-15:15:15 CX4-5:6:7

CONSUMPTION OF FERTILIZER IN NEPAL BY TYPE AND BY REGION rable II-4(4)

- CENTRAL HIGH HILL -

			:					
	1975	1976	1977	3261	1979	1980	1981	1982
A9011	102	236	649	607	800	606	1078	1417
NIUM SULPHATE		125	253	196	281	358	326	208
			1	,		•	•	•
PHOSPHATE		78	6	 60 11	342	629		845 1
	<u>*</u>	7) (•	1	ത	1	•
(S) KETAKOU	t	6	t	70	93	20	'60	•
-	c 3	Ö	•	Ö	\$	1	•	J
v		·	တ	0	•	1	•	•
OF PO	60	€ 1	₹	₹	£~	Ó	ഗ	₹
SULPHATE OF POTASH	1	•	•	\$.1	•		
OTHER NITROGEN PERTILIZER	•	•		h .			•	
TOTAL (IN PRODUCT TONS)	588	447	1099	1015	1493	1963	1983	2473
N TOTAL (IN N TONS) P205 TOTAL (IN P205 TONS) K20 TOTAL (IN K20 TONS)	မ္တက္ဆမ	152	ဓတ္တလ တွေတ	080 080 080	505 78 14	629 135	679 115	864 170 2
								-

NOTE: ASI-21% AS2-26% CXI+20:20:0 CX2-23:23:0 CX3-15:15:15 CX4-5:6:7

CONSUMPTION OF FERTILIZER IN NEPAL BY TYPE AND BY REGION - CENTRAL HILL rable II-4(5)

M SULPHATE (1) M SULPHATE (2) M PHOSPHATE (1)								
SULPHATE (1) SULPHATE (2) PHOSPHATE (1)	1975	1976	1977	1978	1979	1980	1981	1982
SULPHATE (2) PHOSPHATE (1)	470 500	748 504	1406 587	1497	2212 435	1288	2462 651	3372
PROSPHATE (1)	: :		•	1	•		0	-
	326	371	646	573	9 6 6 7	759	1303	1612
COMPLEX (2)	46	000	169 189	354	243	489 1	9 60 K	ε ξ~ - ἀς
COMPLEX (4) TRIPLE SUPER PROSPHATE MIDIAGE OF BOTANS	1 44	. i. 1. 7. 4	יט יט	. S. O. I		∶н⊀	A 무슨 00	8,00
SULPHATE OF POTASH OTHER NITROGEN PERTILIZER	3 1 1.	† † F	- 1 2		•	5 1	0	•
TOTAL (IN PRODUCT TONS) 14	1415	1761	2951	3149	3747	1722	4620	5548
N TOTAL (IN N TONS) 8 P205 TOTAL (IN P205 TONS) K20 TOTAL (IN K20 TONS)	398 73 50 50	888 8	941 155 60	1004 168 68	1318 210 44	786 163 13	1557 300 44	1987 343 13

NOTE: ASI-21% AS2-26% CX1-20:20:0 CX2-23:23:0 CX3-15:15:15 CX4-5:6:7

CONSUMPTION OF FERTILIZER IN NEPAL BY TYPE AND BY REGION Table II-4(6)

- CENTRAL TERAI -

	1975	1976	1977	1978	1979	1980	1981	1982
UREA AMMONIUM SULPHATE (1)	2336 1666	4124	4493	5305	5838 751	9108	7839	9054
·_ ·	1 (\$ 88 80 80 80 80 80 80 80 80 80 80 80 80 8	ı ç	. I G	1 to	9	391	100
	202	97.02	5 64	0.75	1116	, we	200 200 200 200 200 200 200 200 200 200	828
COMPLEX (3)	დ გ- დ 4	1930 163	1295	1277	1813	217	Σ Σ Σ	သူ (၄)
TRIPLE SUPER PHOSPHATE	ត	8	42	გე მე	က္က	5 5	1 00	i c
MURIATE OF POTASH SULPHATE OF POTASH	372 117	012	82.58 83.88	250	2 2 3 3 6 7	ກ ເກ <u>ດ</u>	0	7 2 7 0
OTHER MITROGEN FERTILIZER	o	•	1	•			•	
TOTAL (IN PRODUCT TONS)	8494	9464	11695	11584	13213	18157	16322	21686
N TOTAL (IN N TONS) P205 TOTAL (IN P205 TONS) K20 TOTAL (IN K20 TONS)	2162 779 415	2808 727 427	3395 968 353	3509 1006 365	4059 1231 405	5940 1596 166	5209 1604 238	8617 2326 310

NOTE: AS1-21% AS2-26% CX1-20:20:0 CX2-23:23:0 CX3-15:15:15 CX4-5:6:7

Table II-4(7) CONSUMPTION OF FERTILIZER IN NEPAL BY TYPE AND BY REGION

- WESTERN HIGH HILL -

	1975	1976	1977	1978	1979	1980	1361	1982
UREA						11	22	14
AMMONIUM SULPHATE (1)								1
AMONIUM SULPHATE (2)				÷		•	•	. (
AMMONIUM PHOSPHATE						9	⇔ ç	za ń
						2 1	3 '	; :
00 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5) 4	1	,
(タ) 大切ないこの	-						•	1
-						•	•	•
MURIATE OF POTASH						•	0	€4
SULPHATE OF POTASH						•	•	
OTHER NITROGEN FERTILIZER							•	
TOTAL (IN PRODUCT TONS)						28	61	83
N TOTAL (IN N TONS) P205 TOTAL (IN P205 TONS) K20: TOTAL (IN K20 TONS)						തന 🗢	₩ ₩ ₩	90H

NOTE: ASI-21% AS2*26% CX1-20:20:0 CX2*23:23:0 CX3*15:15:15 CX4*5:6:7

CONSUMPTION OF FERTILIZER IN NEPAL BY TYPE AND BY REGION rable II-4(8)

- WESTERN HILL -

	1975	1976	1977	1978	1979	1980	1981	1982
UREA	66	173	306	362	549	552	615	768
CIUM SULPHATE	147	141	147	65	8	5 8	41	20
1	15	14	• .	• ,	•	1	1 6	ć
AMBONIUM PHOSPHATE COMPLEX (1)	588	358	1340	617	884	1430	1237	2437
COMPLEX (2) COMPLEX (3)	952	1140	349	1074	174	246 246	25.25 25 25.25 25 25 25 25 25 25 25 25 25 25 25 25 2	မှာ မှာ မှာ မှာ
	63	ထ	0	•	•		0	ដ
S	(°)	· 63	 4	Ġ	⇔	1	0	₹
	27	ത	22	49	Š	4	8	43
SCUPHATE OF POTASH	0	1	ı	•	•	•	ረሳ	
OTHER NITROGEN FERTILIZER	ı	•	•	•			ı	
TOTAL (IN PRODUCT TONS)	1516	1844	2165	2173	2727	2340	2507	3477
CEN N E	280	356	492	465	637	593	651	888
P205 TOTAL (IN P205 TONS) K20 TOTAL (IN K20 TONS)	202 150	244		287 191	378 170	88.0	378 SS	242 27

NOTE: AS1-21% AS2-26% CX1-20:20:0 CX2-23:23:0 CX3-15:15:15 CX4-5:6:7

CONSUMPTION OF FERTILIZER IN NEPAL BY TYPE AND BY REGION - WESTERN TERAI -Table II-4(9)

								-
	1975	1976	1977	1978	1979	1980	1981	1982
URBA	985	1295	1523	1613	2150	2296	2632	2325
YI UM	œ F	174		(*) (*)	က்	ក ទ	ý ∈ Э	Ģ
SULPRATE	•	t '	ŧ	•	1	•	2 2 4 2	99
かはおのいまして、 下立しのでかましたののではなりので、 (1)	630	1398	2458	1768	1694	1626	3031	3709
CONFLEX (2)	•	3	67.7	0	104	301 353	3D (X) ⊢4 (X)	787
COMPLEX (8)	1408		7 T	D 1	9 I	3 1) r~	ı
COMPLEX (4)	' =	• •		· 7	240	Š	88	H
MENTALE CONFORMATION MENTALE MENTALE OF POOPENSH	101	115	139	20	74	102	204	250
Sulfated of Potator	1	•	•	1	•	1	• •	
OTHER NITROGEN FERTILIZER		•	•	TE .				
TOTAL (IN PRODUCT TONS)	3253	3793	4732	4627	4945	4654	6303	6613
TOTAL (IN	815	1033	1294	1279	1451	1501	1884	1883
P2O5 TOTAL (IN P2O5 TONS) K20 TOTAL (IN K20 TONS)	272	00 t	150	861	152	88	138	150

NOTE: ASI-21% AS2-26% CXI-20:20:0 CX2-23:23:0 CX3-15:15:15 CX4-5:6:7

CONSUMPTION OF FERTILIZER IN NEPAL BY TYPE AND BY REGION - MID-WESTERN HIGH HILL -Table II-4(10)

	1975	1976	1977	1978	1979	1980	1881	1982
URBA		0	23	-	- 7	တ	က	ဖ
AMMONIUM SULPHATE (1)	~	; ,— €		. •	t	0		1
	•	•	•	3		•		
AMMONIUM PHOSPHATE							•	
COMPLEX (1)	с •>	~		CV3		ഗ	~	ထ
COMPLEX (2)						•	:	ı
_	Ć3	- -(•	1	63	έ'n	ഗ	ω.
_	•	•	•	•	•	•		
Ġ	1	•	•	•	1	0		•
(r)	0	p4	~	•	•	=	0	- ₹
SULPHATE OF POTASH	•	•	\$		⊷*	•		
OTHER NITROGEN FERTILIZER	1	1	•	•	0			
TOTAL (IN PRODUCT TONS)	0	ഗ	4	4	Þ	6	10	61
N TOTAL (IN N TONS)	2				a ⊸€ (⇔ ,	တ .	ν, (
S. TOTAL (IN: P205	a—t •	 € :	ö (•	۰.	r~€ #	r-t s	%
K20 TOTAL (IN K20 TONS)	0	 t	-	D	ĭ	-⊀	⊣ ∎	7

NOTE: AS1=21% AS2=26% CX1=20:20:0 CX2=23:23:0 CX3=15:15:15 CX4=5:6:7

CONSUMPTION OF FERTILIZER IN NEPAL BY TYPE AND BY REGION rable II-4(11)

- MID-WESTERN HILL -

	1975	1976	1977	1978	1979	1980	1981	1982
\$00 E	· 6	21	64	15	97	8	88	127
AMMONIUM SULPHAIR (1)	22.0		2	22	83	₹.	ഗ	1
SULPHATE	0	က		1 .	1	•	•	. с
AMMONIUM PHOSPHATE COMPLEX (1)	4	104	139	145	130	6	400 7	199
COMPLEX (2)	Ó	c	a—i r—i	13	1 4	⊃ 6 5	202	9 12
	1 1.	1	•	•	•	•	=	•
	•	*	•	; →•	0	 -∢ ¶	t	→ *
MURIATE OF POTASH	∞	20	<u> </u>	20	17	ഗ	 -	7
9	•	t	•	•	•	•		
OTHER NITROGEN FERTILIZER	•		•	•				
TOTAL (IN PRODUCT TONS)	84	193	262	271	320	236	178	406
N TOTAL (IN N TONS) P205 TOTAL (IN P205 TONS) K20 TOTAL (IN K20 TONS)	ထ္ဆက	750 132 133 133 133 133 133 133 133 133 133	30 17	8887	33.84	85 10	212	1 H W W C A

NOTE: ASI-21% AS2-26% CXI-20:20:0 CX2-23:23:0 CX3-15:15:15 CX4-5:6:7

CONSUMPTION OF FERTILIZER IN NEPAL BY TYPE AND BY REGION Table II-4(12)

- MID-WESTERN TERAI -

	1975	1976	1977	1978	1979	1980	1881	1982
A881	124	236	276	263	375	264	322	658
VIUM SULPHATE	က်	143	139	103	4	£	42	117
- 1	1	•	1.	• ,	•	K .		٠
PANDVIUM PHOSPHATE			•					1
COMPLEX (1)	202 203	544	476	530	646	423	283 283	1367
					က က	98	208	230
COMPLEX (3)	128	22	150	<u> 2</u>	72	35	160	24
	•	1	•	ŧ	•	•		
$\overline{\omega}$	ന	න	10	13	≓	 4		;-1
MURIATE OF POTASH	<u></u>	106	85 85	ည်	ડ	SA SA	53	7 T T
SULPHATE OF POTASH	Þ	•	1	•	•	t		
OTHER NITROGEN FERTILIZER	ı	•	1	•				
TOTAL (IN PRODUCT TONS)	-288	1063	1133	1901	1269	1000	1363	2508
N TOTAL (IN N TONS)	136	251	274	260	330	257	344	657
S TOTAL CIN	61	211	122	126	₹ CO T	121		සි සි
CI	42	67	72	47	8	46	26	70

NOTE: ASI-21% AS2-26% CXI-20:0 CX2-23:23:0 CX3-15:15:15 CX4-5:6:7

CONSUMPTION OF FERTILIZER IN NEPAL BY TYPE AND BY REGION - FAR-WESTERN HIGH HILL Table II-4(13)

1982 တ္ဆ 1981 엄으 1980 2 1979 --1978 ഗ 1977 1976 0 1975 00 TOTAL (IN P205 TONS)
TOTAL (IN P205 TONS) SULPHATE OF POTASH OTHER NITROGEN FERTILIZER TOTAL (IN PRODUCT TONS) TRIPLE SUPER PHOSPHATE AMMONIUM SULPHATE (1)
AMMONIUM SULPHATE (2) AMMONIUM PHOSPHATE MURIATE OF POTASH COMPLEX (1) COMPLEX COMPLEX COMPLEX

NOTE: ASI-21% AS2-26% CXI-20:20:0 CX2-23:28:0 CX3-15:15:15 CX4-5:6:7

Table II-4(14) CONSUMPTION OF FERTILIZER IN NEPAL BY TYPE AND BY REGION

- FAR-WESTERN HILL -

	1975	1976	1977	1978	1979	1980	1381	1982
1984	14	23	24	38	27	15	38	€
STANGLUS MUIN	-	<u>න</u>	: ⊗ : ≓	ထ		0	Ø	!~
	:		•	•	•			
5 2	တ္	44	15	29	140	92.0	89 C	S F
COMPLEX (2)	38	90	112	57	4 8	°¤	32	ရှိ ခေ
	•	•	•	1	•	•		
V	ì	•	•	•	•	1		•
9 40 B	ഗ	ဖ	ഗ	ம்	₹'	Ó	ഗ	ć٦
SULPHATE OF POTASH	t	•	,	•	•	•		
OTHER NITROGEN FERTILIZER	1		•	1				
TOTAL (IN PRODUCT TONS)	95	146	202	165	218	112	246	82
N TOTAL (IN N TONS) P205 TOTAL (IN P205 TONS) K20 TOTAL (IN K20 TONS)	000 000		4 62 52 17 50 17 50	33 123 143 153 153 153 153 153 153 153 153 153 15	ထုတ္ထစ	20 20 20 20 20 20 20 20 20 20 20 20 20 2	დ 4 დ 6 გ	M 4 0

NOTE: ASI-21% AS2-26% CXI-20:20:0 CX2-23:23:0 CX3-15:15:15 CX4-5:6:7

CONSUMPTION OF FERTILIZER IN NEPAL BY TYPE AND BY REGION Table II-4(15)

- FAR-WESTERN TERAL -

	1975	1976	1311	1978	1979	1980	1861	1982
480	85	126	125	145	112	75	125	386
NIUM SULPHATE	ဗ္ဗ	တ်	22	ଷ	~*	-4	ĊΊ	ŀ
	•	•		•	•		c	
ANYONIUM PHONPHATE COMPLEX (I)	88	103	151	138	177	150	200 200 200 200 200 200 200 200 200 200	
COMPLEX (2)	104	342	212	260	39	ကက်	တွင် လူ လူ	10.0
COMPLEX (4)	1 5	ı t-	1 -	i C			12	1-
MURIATE OF POTASE	2.5	- က က	1 1 - 1 -	- ∞	24	74	14	32
SULPHATE OF POTASH	•	a (k 6	i i		•		
OTHER NITHOREN PERILLISEN	•							
TOTAL (IN PRODUCT TONS)	082	269	528	581	373	256	468	957
N TOTAL (IN N TONS) P205 TOTAL (IN P205 TONS) K20 TOTAL (IN K20 TONS)	%83 %83 %83	147 75 17	124 63 42	138 67 50	96 84 23	67 33 10	121 68 16	253 146 22

NOTE: ASI-21% AS2-26% CX1-20:20:0 CX2-23:23:0 CX3-15:15:15 CX4-5:6:7

CONSUMPTION OF FERTILIZER IN NEPAL BY TYPE AND BY REGION CENTRAL KATHMANDU VALLEY Table II-4(16)

1256 7 1602 951 12 1548 29 2343 921 69 160 284 3284 134 4705 21 530 123 577 15 6787 5106 107 667 151 636 233 3291 19 o 83 N TONS) P205 TONS) K20 TONS) OTHER NITROGEN FERTILIZER TOTAL (IN PRODUCT TONS) TRIPLE SUPER PROSPHATE AMMONIUM SULPHATE (1) AMMONIUM SULPHATE (2) SULPHATE OF POTASH STANOSPHANDING PROSPHATE MURIATE OF POTASH TOTAL TOTAL COMPLEX COMPLEX COMPLEX COMPLEX

NOTE: ASI-21% AS2-26% CXI-20:20:0 CX2-23:23:0 CX3-15:15:15 CX4-5:6:7

CONSUMPTION OF FERTILIZER IN NEPAL BY TYPE AND BY REGION - MICH MILL TOTAL rable II-4(17)

	1975	1976	197.7	1978	1979	1980	1981	1982
UREA. AMMONIUM SULPHATE (1) AMMONIUM SULPHATE (2) AMMONIUM PROSPHATE COMPLEX (1) COMPLEX (2) COMPLEX (3) COMPLEX (4) TRIPLE SUPER PHOSPHATE MURIATE OF POTASH OTHER NITROGEN FERTILIZER		04 40 00000000000000000000000000000000	080 8 080 8 1800 840 90 90 90 90	84 8 0 8 0 9 0 4 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9	82 82 82 83 83 84 84 84 84 84 84 84 84 84 84 84 84 84	0 8 6 6 6 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6	48.8 8.0 8.0 8.0 8.0 8.0 8.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9	11 248 00 00 00 00 00 00 00 00 00 00 00 00 00
TOTAL (IN PRODUCT TONS)	283	471	1155	101	1605	2127	2179	2833
N TOTAL (IN N TONS) P205 TOTAL (IN P205 TONS) K20 TOTAL (IN K20 TONS)	85 H 8 K	158 20 3	403 46 5	373 48 10	534 94 18	675 158 13	733 142 6	955 225 7

NOTE: ASI-21% AS2-26% CXI-20:20:0 CX2-23:23:0 CX3-15:15:15 CX4-5:6:7

CONSUMPTION OF FERTILIZER IN NEPAL BY TYPE AND BY REGION rable II-4(18)

不能行用的 医克克氏氏病 经有关证明 经工程工程 数据的法律的证明 有我们会的家庭的人们的

- HILL TOTAL -

	1975	1976	1977	1978	1979	1980	1881	1982
UREA AMMONIUM SULPHATE (1) AMMONIUM PHOSPHATE COMPLEX (1) COMPLEX (2) COMPLEX (3) COMPLEX (4) TRIPLE SUPER PHOSPHATE MURIATE OF POTASH SULPHATE OF POTASH OTHER NITROGEN FERTILIZER	888 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	000 6 0 000 6 4 4 0000 6 04 6 4040400000000	04 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1051 550 572 127 128 192 192 00	11 38 134 137 172 1132 132 000 000	1 2000 2000 2000 2000 1000 2000 2000 200	12810 3751 3751 350 350 346 143 0	2124 2124 31248 3248 1248 139 139 0
TOTAL (IN PRODUCT TONS)	15575	18943	22082	22399	27372	23910	25188	28808
N TOTAL (IN N TONS) P205 TOTAL (IN P205 TONS) K20 TOTAL (IN K20 TONS)	4513 983 479	5445 1101 444	6500 1190 226	7103 1124 460	7816 1689 337	7375 2213 131	8355 1813 141	9596 2404 88

NOTE: AS1-21% AS2-26% CX1-20:20:0 CX2-23:23:0 CX3-15:15:15 CX4-5:6:7

CONSUMPTION OF FERTILIZER IN NEPAL BY TYPE AND BY REGION Table II-4(19)

- TERAI TOTAL -

	1.975	1976	1977	1978	1979	1980	1981	1982
IPEA	4102	6724	7615	8658	9985	13241	12728	15124
STARGUS MUIN	2421	1743	2396	1594	967	1175	1141	1228
AMMONIUM SULPHATE (2)	=	34	6	0	0	⇔	0	co :
PHOSPHATE	-	0	Ċ	Ċ	0	0	768	263
(で) ※は、(の) ※は、(5241	5492	8641	6721	7784	11833	11828	20151
(6) XE:10XOU	; C		0	Ö	1,40	499	556	1610
COMPLEX (3)	2557	3456	2489	4065	3012	773	779	53
COMPLEX (4)	₹	183	23 23	€3	ьŧ	⇔	ខ្ម	め
STARGONG SEGUN STOLET	122	87	გ თ	445	309	ន		6 7
MIRIATE OF POTASE	740	743	737	592	392	541	841	1346
SULPHATE OF POTASH	117	6	61	40	25	ഗ	0	~
OTHER NITROGEN FERTILIZER	6	0	c	2	0	O	۲.	•
TOTAL (IN PRODUCT TONS)	15304	18422	22055	22119	24173	28120	28837	39805
TOTAL (IN	3827	5093	6109	6273	7148	8934	8845	10373
P205 TOTAL (IN P205 TONS) K20 TOTAL (IN K20 TONS)	1488 88.7	1659 975	22 04 64 64 85	2128 986 986	248 823 823	2622 443	5048 624	81.4 81.4

NOTE: AS1-21% AS2-25% CX1-20:20:0 CX2-23:23:0 CX3-15:15:15 CX4-5:6:7

CONSUMPTION OF FERTILIZER IN NEPAL BY TYPE AND BY REGION ı - EASTERN TOTAL Table II-4(20)

,我们是这个人,我们就是一个人,我们就是我们的人,我们就是一个人,我们就有一个人,我们就是我们的人,我们是这种人,我们也会会会会会会会会会会会会会会会会会会会会 一个人,我们就是这个人,我们就是我们的人,我们就是我们的人,我们就是我们的人,我们就是我们的人,我们就是我们的人,我们就是我们的人,我们就是我们的人,我们也是我

	1975	9261	1977	1978	1979	1980	1981	1982
UREA	7.02	1064	1388	1523	1767	1734	2083	3216
NIUM SULPHATE	543	527	356	359	189	243	300	395
AMMONIUM SULPHATE (2)	6	0	Ċ	0	0	0	0	ന
PHOSPHATE	0	Ġ	0	0	Ċ	Ö	297	88
COMPLEX (1)	1553	1690	2197	1518	2355	2680	2239	5158
COMPLEX (2)	0	Ó	-	0	839	124	6	260
COMPLEX (3)	40	333	415	1358	385	က	15	\Leftrightarrow
COMPLEX (4)	0	o	0	0	0	c	⇔	4
TRIPLE SUPER PHOSPHATE		21	22	ស	<u>6</u> 2	17	~	2
O	264	360	359	282	254	227	323	500
SULPHATE OF POTASH	g4	6	∞	ლ -	0	0	Ö	⇔
	⇔	0	0	8	ð	0	Ç.	0
TOTAL (IN PRODUCT TONS)	3120	4015	4765	2106	5327	5028	5325	9634
	753	166	1215	1284	1461	1413	1540	1372
TOTAL (IN	325	401	521	531	619	573	604	1137
K20 TOTAL (IN K20 TONS)	165	569	282 282	330 330	210	137	197	301

NOTE: ASI-21% AS2-26% CX1-20:20:0 CX2-23:23:0 CX3-15:15:15 CX4-5:6:7

CONSUMPTION OF FERTILIZER IN NEPAL BY TYPE AND BY REGION Table II-4(21)

- CENTRAL TOTAL -

	1975	1976	1877	8261	1979	1980	1981	1982
Vac.	8087	10722	12605	15774	17243	19231	20772	23997
STANGILLS MITH	5542	6636	9515	6728	4751	3676	4722	2989
	0	141	0	21	134	0	~	0
വ		0	0	0	o	0	735	192
	5486	5181	7439	5870	8667	16648	12196	18979
COMPLEX (2)	a	Ö	0	0	1428	45	223	878
COMPLEX (3)	2388	2917	1514	2435	2403	572	280 280 280 280 280 280 280 280 280 280	∞ (
COMPLEX (4)	83	172	22	€3	673	හි		[
TRIPLE SUPER PROSPHATE	101	30	%	443	37	27	13	00
MURIATE OF POTASH	474	286	292	310	260	211	346	547
0 F PO	117	⇔	55 53	22	30	က်	⇔	~
OTHER NITROGEN FERTILIZER	0	0	0	0 2	5	0	0	C
TOTAL (IN PRODUCT TONS)	22218	28085	31493	31610	34956	40484	39727	47628
	6341	7846	9512	10215	11387	13047	13261	15702
P205 TOTAL (IN P205 TONS)	1503	1499	1739	1744	2440	3442	2970	4095
TOTAL (IN	703	621	430	264	232	220	20 20 20 20 20 20 20 20 20 20 20 20 20 2	233

NOTE: AS1-21% AS2-26% CXI-20:20:0 CX2-23:23:0 CX3-15:15:15 CX4-5:6:7

CONSUMPTION OF FERTILIZER IN NEPAL BY TYPE AND BY REGION rable II-4(22)

- WESTERN TOTAL -

	1975	1976	1977	1978	1979	1980	1981	1982
UREA	1.084	1468	1829	1975	2699	2859	3269	3105
NIUM SULPHATE	265	315	315	138	က	တ်	144	50
	75	ĭ	0	0	6	0	0	0
PHOSPHATE	C		0	6	0	0	214	8
\sim	910	1756	3428	2385	2581	3072	4307	6191
	6	0	0	0	238	346	311	388
COMPLEX (3)	2360	1947	791	2193	1790	200	310	Ġ
	8	ശ	0	Ö	~	0	•	10
~,	7	خبح	ĊÒ	<u></u>	240	10	88	Ŋ
MURIATE OF POTASH	113	124	161	တ္တ	8	142	238	295
SULPHATE OF POTASH	0	0	0	0	0	.	က	0
OTHER NITROGEN PERTILIZER	0	0	0	0	6	0		0
TOTAL (IN PRODUCT TONS)	4769	5637	6897	0089	7672	7022	8871	10153
TOTAL (IN	1095	1389	1786	1744	2088	2103	2553	2787
P205 TOTAL (IN P205 TONS)	244	647	88	8 8 8 8	920	276	0111	1378
S	422	367	218	688 889	322	188	191	178

NOTE: ASI-21% AS2-26% CX1-20:20:0 CX2-23:23:0 CX3-15:15:15 CX4-5:6:7

CONSUMPTION OF FERTILIZER IN NEPAL BY TYPE AND BY REGION Table II-4(23)

- MID-WESTERN TOTAL -

	1975.	1976	1377	1978	1979	1980	1861	1982
	45.00 45.00	528 282 1828 1838 1838 1838 1838 1838 183	318 887 997	334 125 0	ప్రభాదం	845 748 940 940	383 47 0	791
ABRONIUM PROSPRATE COMPLEX (1) COMPLEX (2)	0 4 5 0 0 0	မှ လို့ လို့	10 -	67.00	376 587 87		855° 280° 185°	1566 299
COMPLEX (4). COMPLEX (4). TRIPLE SUPER PHOSPHATE MURIATE OF POTASH SULPHATE OF POTASH OTHER-NITROGEN FERTILIZER		300500	100k00	300000	4 HO	, , , , , , , , , , , , ,) -	н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н
TOTAL (IN PRODUCT TONS)	672	1261	1399	1326	1593	1245	1551	2933
N TOTAL (IN N TONS) P205 TOTAL (IN P205 TONS) K20 TOTAL (IN K20 TONS)	156 71 47	292 140 81	333 152 89	329 159 61	415 187 81	325 149 57	396 209 64	777 389 76

NOTE: ASI-21% AS2-26% CXI-20:20:0 CX2-23:23:0 CX3-15:15:15 CX4-5:6:7

CONSUMPTION OF FERTILIZER IN NEPAL BY TYPE AND BY REGION rable II-4(24)

- PAR-WESTERN TOTAL -

	1975	1976	1977	1978	1979	1980	1981	1982
UREA AMMONIUM SULPHATE (1) AMMONIUM SULPHATE (2) AMMONIUM PHOSPHATE COMPLEX (1) COMPLEX (2) COMPLEX (3) COMPLEX (4) TRIPLE SUPER PHOSPHATE MURIATE OF POTASH SULPHATE OF POTASH OTHER NITROGEN FERTILIZER	88.40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	400 4 00 00 00 00 00 00 00 00 00 00 00 0	0 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	83 81 8 81 98 81 98 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	4800001100800	81200 81200 8000	88.008894448600 88.008894486000	20 20 20 20 20 20 20 20 20 20 20 20 20 2
1 3	383	838	738	747	602	378	730	1098
N TOTAL (IN N TONS) P205 TOTAL (IN P205 TONS) K20 TOTAL (IN K20 TONS)	0 4 8 0 70 F	178 933 84	186 91 82	177 87 62	33.27	98 53 53	822	288 1588 25

NOTE: ASI#21% AS2#26% CXI#20:20:0 CX2#28:28:0 CX8#15:15:15 CX4#5:6:7

CONSUMPTION OF FERTILIZER IN NEPAL BY TYPE AND BY REGION Table II-4(25)

- GRAND TOTAL -

	1975	1976	1977	1978	1979	1980	1981	1982
	000 8 00 00 00 00 00 00 00 00 00 00 00 0	86 86 86 86 86 86 86 86 86 86 86 86 86 8	16289 10410 10410 3200 104 104 104	01 01 04 01 00 00 00 00 00 00 00 00 00 00 00 00	2 22 20 20 20 20 20 20 20 20 20 20 20 20	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	260 101 201 201 201 200 200 200 200 200 20	31398 3558 3224 1922 31 31 1495
OTHER NITROGEN FERTILIZER TOTAL (IN PRODUCT TONS)	31162	37836	45292	47185	50150	54157	56204	71446
N TOTAL (IN N TONS) P205 TOTAL (IN P205 TONS) K20 TOTAL (IN K20 TONS)	8424 2488 1374	10696 2780 1422	13013 3383 1079	14115 3692 1456	14480 4277 1178	16984 4993 587	16799 5003 771	19373 7167 912

NOTE: ASI-21% AS2-26% CX1-20:20:0 CX2-23:23:0 CX3-15:15:15 CX4-5:6:7

Annex II-5

FERTILIZER RESPONSE IN NEPAL

Table II-5(1) FERTILIZER RESPONSE OF MAJOR CEREAL CROPS IN NEPAL - Nitrogen Fertilizer on Improved Paddy -

\$ () () () () () () () () () () () () ()			Applicat	Application Level (Nkg/ha)	(Nkg/ha)	:
Agronnum cro Variation	Location	0	30	09	O Ø	120
러 더 너 답	Khumal	3,737.4	4,616.1	5,236.8	8,596.8	5,695.2
.ત હ ધ ઇ દ	Parwanipur	2,578.0	3,070.0	3,454.0	3,730.0	3,898.0
Toner Teret	Rampur	3,093.6	3,720.9	4,204.2	4543.5	4738.8

Source: Division of Soil Science and Agricultural Chemicals, DOA. Note: At the fixed level of 60kg P₂O₅ and 30kg K₂O per ha.

Table II-5(2) FERTILIZER RESPONSE OF MAJOR CEREAL CROPS IN NEPAL - Phosphate Fertilizer on Improved Paddy -

					(Yield: kg/ha	kg/ha)
Acroelimetic			Applicati	Application Level (P20 kg/ha)	o kg/ha)	
Variation	Location	0	4.	9.68	134.4	179.2
다. 다. 다.	Khumal	4,435.5	45,25.5	4,580.9	4,605.4	4,597.9
ម ម ម	Harwanted	3,584.8	3,600.9	3,609.0	3,609.1	3,601.2
Inner Terai	Rampur	4,941.3	4.080.8	5,185.4	5,229.2	5,220.9
					:	

Source: Division of Soil Science and Agricultural Chemicals, DOA. Note: At the fixed level of 60kg P205 and 30kg K20 per ha.

FERTILIZER RESPONSE OF MAJOR CEREAL CROPS IN NEPAL - Nitrogen Fertilizer on Local Paddy -Table II-5(3)

			Applac	Application Level (N kg/ha)	(N kg/ha)	
Variation	Location	0	20	4 O	09	80
Inner Terai	Rampuz	2,740.0	3,113.8	3,363.6	3,489.4	3,491.2
E. Terai	Birathagar	2,403.6	2,490.4	2,517.2	2,484.0	2,390.3
%. #@#@# .ie#@#	Nepalgunj	7,546.8	1,705.0	1,714.6	3,560.6	1,250.0

Source: Division of Soil Science, and Agricultural Chemicals, DOA. Note: At the fixed level of 60kg P_2O_5 and 30kg K_2O per ha.

FERTILIZER RESPONSE OF MAJOR CEREAL CROPS IN NEPAL rable II-5(4)

- Nitrogen Fertilizer on Improved Wheat -

groclimatic			Applicat	Application Level (N kg/ha)	kg/ha)	
Variation	Location	0	0 m	09	0	120
LLEM	Khumal	1,665.6	2,308.2	2,884.2	3,396.6	3,836
Terai	Indrusmied	1,527.8	2,186.3	2,691.8	8.098.3	3,387.8
Inner Terai	Rampur	2,523.6	8,343,8	3,876.0	4,120.2	4,076,4

Source: Division of Soil Science and Agricultural Chemicals, DOA. Note: At the fixed level of $60 \text{kg P}_2 \text{O}_5$ and $30 \text{kg K}_2 \text{O}$ per ha.

FERTILIZER RESPONSE OF MAJOR CEREAL CROPS IN NEPAL - Phosphate Fertilizer on Improved Wheat -Table II+5(5)

Agroolimatio			Application	ion Level (P	Level (P20 kg/ha)	
Variation	Locatron	0	4.4	9.68	134.4	179.2
これでは	Khuma1	9,889,8	4,089.2	4,152.4	4,079.1	3,869.3
Inner Terai	Rampur	2,527.2	3,244.8	3,669.5	1.408,5	3,639.7
Tarar	Bhairahawa	3,361.1	3,512.0	6.089,8	3,725.7	3,796.4

Source: Division of Soil Science and Agricultural Chemicals, DOA. Note: At the fixed level of 60kg P₂O₅ and 30kg K₂O per ha.

FERTILIZER RESPONSE OF MAJOR CEREAL CROPS IN NEPAL - Nitrogen Fertilizer on Improved Maize rable II-5(6)

Acroclimatic	- - - - - - -		Application Level (N kg/ha)	n Level	(N kg/ha)	
Variation	Location	0	09	120	780	240
Inner Terai	Rampur	965.8	1,587.4	1,985.8	2,161.0	2,113.0
ITTE	Khumal	1,830.8	8,397.8	5,309.6	6,066.2	6,167.6
M. Hill	Xakani	1,821.0	2,003.4	2,121.0	2,173.8	2,161.8

Source: Division of Soil Science and Agricultural Chemicals, DOA. Note: At the fixed level of 60kg P₂O₅ and 30kg K₂O per ha.

FERTILIZER RESPONSE OF MAJOR CEREAL CROPS IN NEPAL - Phosphate Fertilizer on Improved Maize rable II-5(7)

Agroclinetic	- - - - - - - - - - - - - - - - - - -		Applicat	Application Level (P20 kg/ha)	20 kg/ha)	i
Variation	Location	0	40	08	120	160
Kill	Khumal	4,393.2	4,562.4	4,686.8	4,766.4	4,801.2
Inner Terai	Rampur	2,033.2	2,332.0	2,502.8	2,545.6	2,400.4
M. Hill	XaXanı	2,328.0	2,206.0	2,556.0	2,646.0	2,720.0

Source: Division of Soil Science and Agricultural Chemicals, DOA. Note: At the fixed level of 60kg P_2O_5 and 30kg K_2O per ha.

Figure 11-1(1) FERTILIZER RESPONSE OF MAJOR CEREAL CROPS IN NEPAL

- Nitrogen Fertilizer on Paddy -

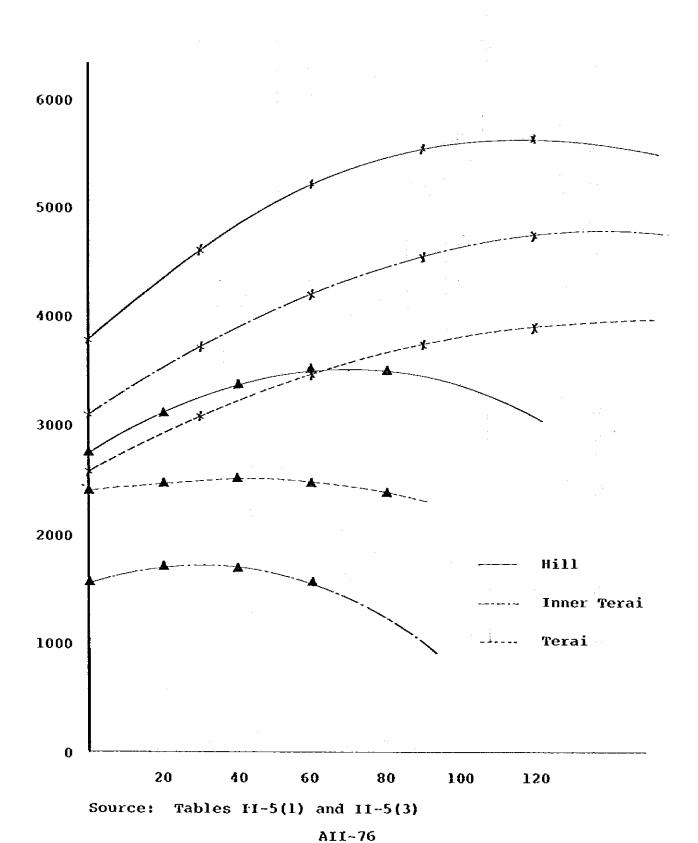



Figure II-1(2) FERTILIZER RESPONSE OF MAJOR CEREAL CROPS IN NEPAL

- Phosphate Fertilizer on Paddy -

Source: Table II-5(2)
AII-77

Figure II-1(3) FERTILIZER RESPONSE OF MAJOR CEREAL CROPS IN NEPAL

- Nitrogen Fertilizer on Wheat -

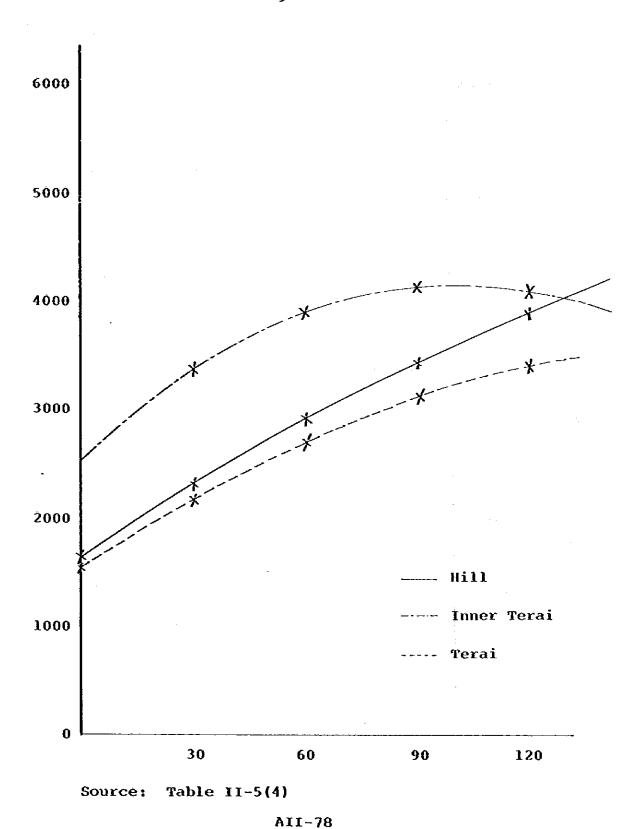
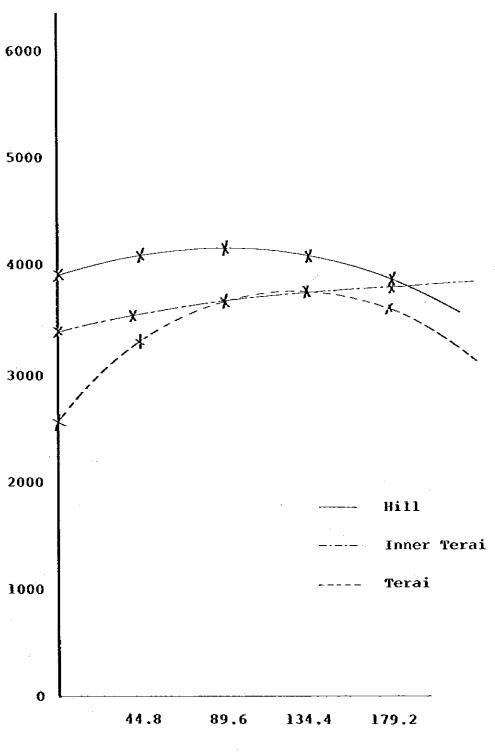
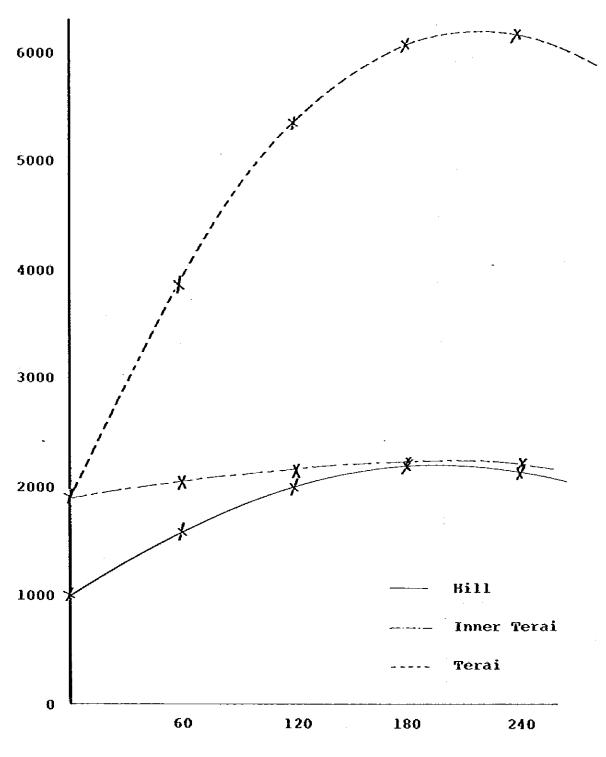



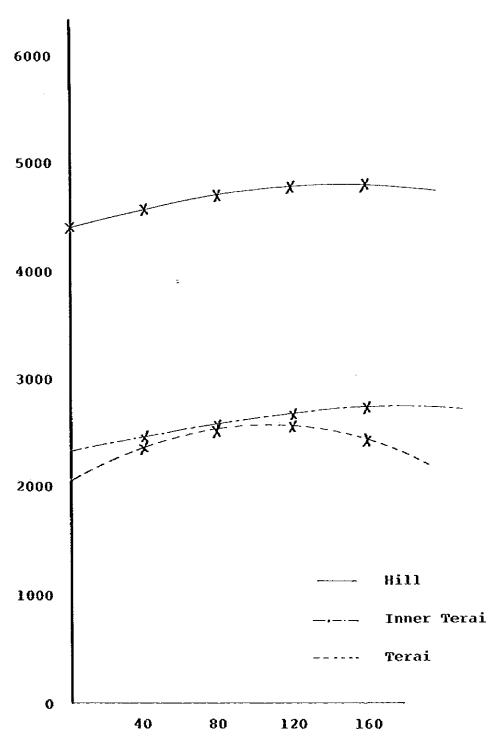
Figure II-1(4) FERTILIZER RESPONSE OF MAJOR CEREAL CROPS IN NEPAL


- Phosphate Fertilizer on Wheat -

Source: Table II-5(5)
AII-79

Figure II-1(5) FERTILIZER RESPONSE OF MAJOR CEREAL CROPS IN NEPAL

- Nitrogen Fertilizer on Maize -



Source: Table II-5(6)

AII-80

Figure II-1(6) FERTILIZER RESPONSE OF MAJOR CEREAL CROPS IN NEPAL

- Phosphate Fertilizer on Maize -

Source: Table II-5(7)
AII-81

- Annex III-1 BASIC DATA FOR CARBON DIOXIDE SUPPLIABILITY CONDITIONS AT CEMENT PLANTS IN NEPAL
- Annex III-2 PRICE INFORMATION IN NEPAL FOR CONSTRUCTION MATERIALS, LABORERS, WORKS, AND INLAND TRANSPORT FROM CALCUTTA
- Annex III-3 ELECTRIC POWER CONSUMPTION AND OVERALL LOAD FACTOR INCREASE AT THE UREA FERTILIZER PLANT
- Annex III-4 WATER ELECTROLYSIS PROCESSES

BASIC DATA FOR CARBON DIOXIDE SUPPLIABILITY CONDITIONS AT CEMENT PLANTS IN NEPAL

BASIC DATA FOR CARBON DIOXIDE SUPPLIABILITY CONDITIONS AT CEMENT PLANTS IN NEPAL

				Cement ies Ltd.	Himal Co. (PV	Cezent T) Ltd.
1.	Outlines of Cement	Plants				
	Clinker Production	Process		Giln, Dry On Heater	Shaft Kil Black Mea	-
	Clinker Production,	TPH TPD TPY		31.25 250.00 250.00		5.25 26.00 22.00
	Completion of Plant		19	185	197	6
	Employee		1,	200		300
2.	Site Conditions					
	Location Latitude, North Longitude, East Height, Above Sea Site Area, m ²	l Level, m	85	224 ° 201 ° 455 ,000	85° 1,	(athmandu 39
	Theoretical	_				
	Standard Pressure,	eb ata	959.8 0.947	2	870.8 0.859	:
	Temperature, °C -19 Xaximum, Absolute Minimum, Absolute Monthly Average -Maximum -Minimum Annual Average		3.0 (a	April 24) January l) April) January)	(-)1.0 (i 29.4 (i	April 25) January 14) April) January)
	Precipitation, so - Annual Monthly Maximum Monthly Minisum Daily Maximum	1980	O	(June) (January) (June 19)		June) November) June 9)
	Relative Homidity, Annual Average Honthly Average -January -April -June -September	€ -1980	83 43 74 77	PH 5:40 68 74 35 76 79	85 95 65 82 88	PH 5:40 65 64 41 74 79
	Atmospheric Air Cor Pressure, ata Temperature, °C Relative Humidity Composition, kg/k -Nitrogen -Oxygen -Dry Air -Noisture -Total Air	/, &	0 23 76 0 0 1	.0 .0 .7670 .2330 .0000 .0133	18 75 0 0 1 0	.859 .0 .0 .7670 .2330 .0000 .0105

3. Raw Materials for Cement Production

(a) Limestone

(Unit: wt%, Dry Basis)

		Hetauda Cement Industries Ltd.		Cement () Ltd.
	Average	Range	Average	Range
Chemical Analysis				
Ignition Loss	36.3	39.0 - 36.4	38.4	
sio,	13.3	12.3 - 6.5	9.2	
A1203	2.9	3.7 - 2.1	2.4	
7e203	0.6	1.6 - 0.6	2.4	
CaO	44.7	47.6 - 42.8	45.5	
2g0	1.5	3.8 - 1.2	1.7	
so ₃	0.20	-	0.16	
Na ₂ O	0.14	-	0.01	
K ₂ o	0.60	-	0.55	
ci	0.01	-	0.01	
P205	0.07	-	0.05	
Tio,	0.12	-	0.03	
₩ი ₂ 0 ₃	0.15	-	0.34	
Total	101.09		100.80	
Composion after Ca	leination			
co,	36.45		37.35	
Z Ash, Sulfate			2004	
and Phosphate	63.20		61.40	
Others as Water	0.35		0.75	
Total	100.00		100.00	
Limestone	Bhainse		Chobar,	
Source	Dobhan,		Kathmandu	
	Hetauda			
Data Source	HCI, IT8 -1977		HCC -1983	

Note: Available CO $_2$ is calculated assuming that CaCO $_3$ (CO $_2$ /CaO=0.7848) and MgCO $_3$ (CO $_2$ /MgO=1.0915)

(b) Clay

(Unit: wt%, Dry Basis)

	Hetauda Cement Industries Ltd.		Himal Cement Co. (PVT) Etd.	
•	Average	Range	Average	Range
Chemical Analysis			-	
Ignition Loss	8.8		7.6	
ŝiò,	59.5	58 - 62	58.9	
A1203	19.0	19 - 21	20.5	
re ₂ 03	8.1	8 - 10	8.2	
CaO CaO	0.3	0.5 - 1.0	1.5	
HgO	0.7	0.75 - 1.25	1.0	
so,	0.03		0.19	
Na ₂ O	0.08		0.18	
κ _ρ ο	2.20		3.15	
ci	-		0.01	
₽ ₂ 0 ₅	0.06		0.34	
ŤiO ₂			0.92	
Mn203			0.11	
Total	98.77		102.60	
Composion after Cal	cination			
co ₂	0.00		0.00	
Ash, Sulfate		-		
and Phosphate	91.20		90.80	
Others as Water	8.80		9.20	
Total	100.00		100.00	
Clay Source	Lamsure,		Kathmandu	
	Hetauda			
Data Source	HCI, ITB -1977		нсс -1983	

(c) Iron Oxide and Gypsum

(Unit: wt%, Dry Basis)

	Hetauda Cement Industries Ltd.		Himal Cement Co. (PVT) Ltd.	
	Iron Ore	Gypsum	Iron Ore	- Gypsum
Chemical Analysis				
Ignition Loss	1.2	16.8	(Not Used	16.8
sio ₂	4.6	9.3	in the Plant)	9.3
Al ₂ 0 ₃	2.8	1.8	-	1.8
۲e ₂ O ₃	89.3	1.1	-	1.1
CaO	0.8	31.0	-	31.0
Х9О	0.7	2.0	-	2.0
so ₃	0.04	32.5	_	32.5
Na ₂ O	ò.10	0.19	-	0.19
κ ₂ ο	0.92	0.24	-	0.24
P205	-	-	-	-
Total	100.46	94.93	-	94.93
Composition after (Calcination			
co ₂	0.00	0.00	-	0.00
Ash, Sulfate				
and Phosphate	98.80	83.20	-	83.20
Others as Water	1.20	16.80	<u> </u>	16.80
	100.00	100.00	-	100.00
Raw Material	Bihac,	Bikaner,	- -	Bikanec,
Source	India or	India		India
•	Phulchowki,			
	Nepal			
Data Source	HCI, IT8-1977	HCI, ITB-1977	-	HCI, IT8-197

4. Utility for Cement Production

(a) Fuel

(Unit: wt%, Dry Basis)

	Hetauda Cemant Industries Ltd.		Himal Cement Co. (PVT) Ltd.			
	Fuel Oil	Coal	Mixed Use	Coke Breeze	Special Low Volatile Coal	Mixed Use
Chemical Analysis						
Koisture	0.05	2.4		1.9	2.2	2.3
Ash	0.03	10.0		28.7	19.5	2.1
Volatile Matter	95.0	40.0		6.5	10.7	23.8
Fixed Carbon	4.0	47.0		64.1	67.6	63.3
Carbon	85.0	70.0		63.5	71.6	66.9
Hydrogen	11.0	5.2		0.2	2.3	1.3
Sulfur	3.5	3.5		0.5	0.2	0.4
Nitrogen	0.30	1.1		0.9	0.9	0.9
Oxygen and Others	0.30	7.2		4.4	5.1	4.6
onggen and others	100.16	39.4		100.1	101.8	100.0
Heating Value, kcal/k	ξŒ			•		
Gross (High)	11,152	7,100		5,510	5,417	5,464
Net (Low)	10,558	6,805		5,370	5,390	5,380
Specific Gravity						
(15/4°C)	0.96					
Chemical Analysis of	Ash					
Ignition Loss	0.6	0.60	0.60	_	-	2.42
SíO ₂	34.7	58.00	58.00	54.60	52.90	53.75
AloÕz	0.1	27.60	27.60	27.43	28.05	27.74
FeyO3	8.7	5.90	5.90	7.72	11.85	9.79
CaÕ ´	4.2	2.60	2.60	3.82	5-64	4.73
жgÒ	1.0	0.80	0.80	3.50	1.27	2.39
SO3	0.3	0.28	0.28			2.83
Na20	0.3	0.11	0.11			0.56
K ₂ Õ	0.2	1.70	1.70			2.32
TiO ₂ /V ₂ O ₃	20.5		-			1.51
ΧηΟ/ΝίΟ	11.3	-	-			0.07
P205	-	1.25	1.25			0.88
C1	81.9	98.84	38.84	97.07	99.71	$\frac{0.01}{109.00}$
				31.01	73.71	107.00
Composition after Com			tion			•
CO ₂	318.8	256.5				245.30
H ₂ O (Including Moisture Oxides, Sulfate,	e) 108.2	49.2				11.04
Silicate & Phospha	te 0.0	10.0				30.00
orreact a knooping	427.0	315.7		-		$\frac{36.36}{286.34}$
Fuel Source	India	Assam, India	-	Durgapur, India	India	India
Data Source	Consul- tant	HCI-ITB -1977		HCC-1984	HCC-1984	HCC-1984

Notes: 1) HCI will consume a 1/3 of heating value (net) as fuel oil and 2/3 as coal.
2) HCC is consuming a 1/2 of fuel weight as coke and 1/2 as coal.

(b) Raw Water

	Hetauda Cement Industries Ltd.		Himal Cement Co. (PVT) Ltd.	
Source	River Bed Well at Kukhuçeni River		8agmati River (17 21ant Well (22	7.0°C, 30m ³ /0ay) 2.5°C, 3m ³ /H)
		, 500m ³ /0}		_
	(10.0°C	, 500m /U)).5°C, 5m ³ /H)
			City Water (18	3.0°C, 0.1m ³ /H)
Analysis, ppa	Kukhur	eni River	Bagmati River	Plant Well
	Record	Keasured	Measured	Measured
₽Ħ	5.85	5.8	7.2	Ž.8
Electric				
Conductivity	-	24	275	450
Total Hardness	12.5	19	97	275
Pe	0.07	80.0	3.1	- · · · -
sio ₂	-	-	-	-
cı -	-	3.3	19	18
so ₄	2.5	4	72	16
P	-	-	-	-
Я	30.5	-	-	-
COD	-	l	10	-
Suspend Solid	-	1.6	80	6
Disolved Solid	-	38	198	274
Total Alkalinity	-	25	-	-

Notes: 1) Unit of electric conductivity is micromhos/cm.

2) Unit of hardness is in terms of CaCO₃.

(c) Electric Power

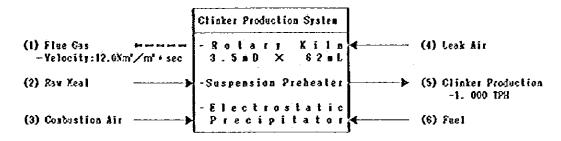
	Hetauda Cement Industries Ltd.	Himal Cement Co. (PVT) Etd.
Source	Nepal Electricity Corp.	Nepal Blectricity Corp.
Voltage, Volt	10,000	440
Frequency, Hz	50	50
Phase	3	3
Wire	3	.
Location	At Fence	At Fence

5. Raw Materials and Utilities Consumption

(Unit: Ton/Ton-Clinker, Dry Basis)

	Hetauda Cement Industries Ltd.	Himal Cement Co. (PVT) Ltd.
Raw Materials		
Limestone Clay Iron Ore Sub-Total	1.438 0.087 0.008 1.533	1.350 0.125 - 1.475
Fuel		
Puel Oil Coal, Assam Coal, Special Low Volatile Coke, Breeze Sub-total	0.0628 0.0833 - 0.1101	0.095 0.095 0.190
Total	1.6430	1.665
Free Moisture		
Black Meal Raw Meal Fuel Sub-Total Grand-Total	0.081 0.002 0.083	0.249
Fuel Consumption, 10 ³ kcal-LHV	850	1,033
Others		
Atmospheric Air Gypsum Electric Power, kWh Process Water, m ³	2.213 0.05 130	3.120 0.06 100
Cooling Water Circulation	6.25	3.85
Puel for Raw Meal Drying -Puel Oil -Coal	0.0087	0.0117
Jute Bag, 50kg Net, Shee	t 20.1	20.1
Chemicals -Alum -Bleach Powder	<u>.</u> -	0.0005
Lube Oil, and Grease, kg Loss during Production	0.025 0.025	0.050 0.030

Notes: 1) Clinker production of 1.0 ton is equivalent to 1.05 to 1.06 ton of bagged cement production.


6. Clinker Composition

Chemical Analysis		
SiO ₂	24.5	22.4
Al ₂ Õ ₃	6.0	7.1
Fe ₂ O ₃	2.3	4.7
CaÕ	63.3	62.3
ждо	2.2	2.6
so ₃	0.3	-
ม ล20	0.21	-
ĸ ₂ ŏ	1.07	
	99.88	99.1
Moduli		-
8M	1.93	1.82
SM	3.00	1.90
IM	2.60	1.50

7. Carbon Dioxide in Plue Gas

	Hetauda Cement		Himal Cement Co. (PVT) Ltd.		
	Industrio Base	Extreme	Base		
	Case	Case	Case	Extreme Case	
Physical Conditions					
Temperature, °C	113	102/120	120	100/130	
Pressure, ata	0.947		0.859		
Velocity, Na ³ /m ² .sec	15.0		5.7		
Location		f Electro- recipitator	Outlet o	f Stack	
		0a)	(33.	5 9 }	
Analysis, Wt%-Wet Gas Basis		*			
со	0.10		2.16		
พ ₂	56.11		58.25		
. 02	8.00		10.40		
co_2	27.16		20.63		
н ₂ о	8.72		8.12		
NO _x , ppm	197		51		
SO _x , ppm	600		8		
Dust	0.07		0.31		
Carbon Dioxide Gas in Plue Gas					
Hourly, TPH	25.68		4.42		
Daily, TPD	616.40		105.98		
Annual, TPY	183,069.67		31,475.09		
{24 HPD x (365-35)DPY x 0.9}					
Flow Rate of Flue Gas, Per Ton of Clinker					
Weight, Wet, TPF	3.026		4.077		
Volume, Wet, Na ³ PT	2,274		3,123		

Figure ATTI-1 CARBON DIOXIDE BALANCE AT CEMENT PLANTS IN NEPAL (1)

Cospany : Metauda Cesent industries ttd.

Location: Ketauda, Nepal

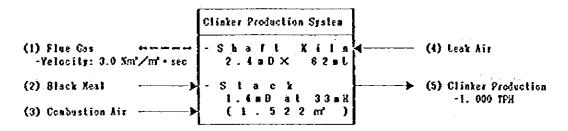
Clinker Production: 31.25 IPR

Atmosphere;

-Pressure: 0.947 ata -Temperature: 23.0 °C

-Xoislare:

0.0133 kg/kg-dry air


Iteas		Unit Flow for 1.000 top of Clinker Production										
Flev Point,(+) In (-) Out	(1) . Flee		(2) . Sav)		(3), Condensie		(4) , Leak		(5) , Clia		(6) . Fue	
Temperature, C	1 1	3	. 20	0	23		2 3	•	1 0	0	2 3	;
Pressure, ata	0.9	47	0.9	47	0.9	47	0.9	47	0.9	4.7	0.9	47
Katerial Flow Cait	Ťca) Yan	Ton	Xm²	Ton	Xan'	Ten	Nas*	Tea	Xm²	fon	Nm³
Xelal Grides H ₂		_	0.938 0.002	_		 -	- -	- -	1.000	0.333 0	0.013 0.007	 -
C N ₂	_ _	 -	0.143 —	- 	- 	-	- -	- -	0	0	0.031 100.0	- -
O, (Organics)	-	_	0.400	_	-		-	_	e	0	0.008	-
Dry Solid Total Xoistare Yet Solid Total	0.992 - 0.992	- -	1.533 0.681 1.614	- - -	1	- - -	- - -	-	1.000 0 1.000	0.333 0 0.333	0.168 9.092 0.110	- - -
х ⁵ co	0.002 1.838	2 1,358	1	-	0.000 0.839	719	0.000 0.793	0 639	1	+ -	1 1	-
o ₂ co ₂	0.242 0.322	189 413		-	0.273 0.650	191 0	0.242 0.000	163 0	-	-	-	_ _
2) Bry Gas fotal 3)	2.782	1,916	-	-	1.172	910	1.641	803	_		-	_
3; Xoisture Yet Gas Total	0.264 3.026	323 2,271	-		0.016 1.153	19 929	0.01¢ 1.655	17 825	- -	-	-	
Yet Material Total	3.032	2,276	1.614	-	1.183	323	1.655	825	1.000	0.333	0.055	-

NifeS; 1) Actal oxides means metal oxide, sulfate, silicate, phosphate and others which form solid materials in cenent production.

²⁾ A small amount of M_g and M_g are measured separately.

³⁾ the exterial balance is calculated at steady state of balanced operation of calcination and ray weal deging. The unbalanced operating condition are considered in entrese case for design purpose of carbon dioxide recorety.

Figure AIII-1 CARBON DIOXIDE BALANCE AT CEMENT PLANTS IN NEPAL (2)

Basis:

Company: Missl Comest Co. (PWI) L10. Location: Chobar, Kathmandu, Kepal Clinker Production: 5.25 1P8

: sredgeoath

-Pressare: 0.859 ata 18.9 ℃ -Temperature :

-Xoistare: 0.0105 kg/kg-dry air

Ileas		Unit Flow for 1.000 ton of Clinker Production								
Flor Point,(+) In (-) Öat	(1), Fice		(2) , Slack		(3) , Coabas		(4) . Leak		(5) , Cli	
Temperature, C	1 2	0	18		18		18		2 0	0
Pressure, ala	0.8	5 9	0 - 8	5 9	0.8	5 9	0.8	5 9	0.8	5 9
Xaterial Flow Unit	Ton	Xm,	Ton	Xm'	Ton	Xai	foa	Xm²	Ten	Xm'
1) Xetal Oxides H ₂ C N ₂ O ₂ (Organics) Orr Solid Total Noisture Yet Solid Total	0.002		1.004 9.905 0.287 0.002 0.333 1,578 0.255 1.339		1 1 1 1 1	111111	11 11 111		1.000 0 0 0 0 1.000	0.333 0 0 0 0 0.333 0
co ×2 o2 co2	0.033 2.375 0.124 0.841	71 1,316 297 428			0 1,162 0.353	0 923 247	0 1,331 374 0	0 335 262 0	1 1 1	- - -
Dry Gas Total Noistare Wet Gas Total	3.743 0.331 4.077	2.711 412 3.123	- - -	- - -	1.515 9.018 1.531	1,176 20 1,188	1.895 0.017 1.822	1,247 21 1,268		- - -
Vet Material Total	4.077	3,123	-	-	1.531	1,155	1.622	1,268	1.000	0,333

NOTES; 1) Metal oxides seems selat oxide, sulfate, silicate, phosphate and others which form solid saterials in cereal projection.

2) A small amount of M. Mog and Mog are measured separately.

PRICE INFORMATION IN NEPAL FOR CONSTRUCTION MATERIALS, LABORERS, WORKS, AND INLAND TRANSPORT FROM CALCUTTA

Annex III-2

PRICE INFORMATION IN NEPAL FOR CONSTRUCTION MATERIALS, LABORERS, WORKS, AND INLAND TRANSPORT PROM CALCUTTA

(1) Construction Materrials

Item	Specification	Unit	Price Level RS
Cement	50 kg, Bagged	Ton	2,000 - 2,900
Sand	-	₁₈ 3	38 - 45
Gravel	-	14 <u>7</u> 3	55 - 69
Round Bar	Twisted (8 - 20 mmD)	Ton	8,800 - 9,000
Round Bar	Plain (8 - 20 mm)	Ton	8,000 - 9,000
Angle	-	Ton	6,700 - 10,000
I Beam (I Type)	-	Ton	7,150 - 11,000
Cannel	-	Ton	7,800 - 10,500
Plate	4 - 12 mm thickness	Ton	10,500 - 11,500
G.I. Plate	-	_m 2	100
Pipe	1B - 2 1/2 1.0 - 2.5 Inch	Ton	10,000 - 13,000
G.I. Pipe	12 msD	ft	3.8 - 7.0
Asbesto Slate		ft2	7.0
Timber	Square 25 x 50 x 4,000	_{Fi} 3	3,500 - 3,900
Ordinary Plywood	3 x 1,200 x 2,400	w _S	30 - 100
Planed Plank	12 × 200 × 4,000	ft ³	70 - 150
Brick	Chinney made	1,000 nos.	400 - 475
- Brick	Machine made	1,000 nos.	500
Acetylene	Gas	₽3	172
Acétylene	Carbide	kg	22 - 23
Oxygen		Cylinder	272 - 292

Notes: 1) Generally observed price level in January, 1984 in Nepal

2) Rs = Nepalese Rupees (Exchange Rate in January, 1984 is Rs 15.65/1.0 US\$)

(2) Construction Laborers

	Direct Daily Salary, Rs/Day					
Items	Trained	Experienced	Untrained			
Heal Coolie		18	**			
Coolie (Male)	-	-	16			
Coolie (Pemale)		-	14			
Coolie (Small)		-	10			
Head porter	-	18	•			
Porter	-	-	16			
Mason, Carpenter, Painter, Plumber, Blacksmith	34	32	-			
Blectrician, Mechanics	32	30	-			
Plumber Foreman	35	32	 '			
Driver (Light vehicle)	25	-	→ 11.			
Truck driver	-30	~	-			
Oriver cum Junior Mechanics	27		-			
Truck driver cum mechanics, heavy equipment operator	32	-	-			
Timber sawer	-	25	· -			
Wood carver, Stone carver	32	30	-			
Welder, foreman	32	30	<u>-</u>			
Security guard	25	22	<u>.</u>			
Night watchman	25	22	-			
Driller	32	30	<u>-</u>			
Helper	-	18	_			

Notes: 1) Generally observed wage level in January 1984 in Nepal.

The wage level is mostly for governmental project, the wage level is approximately 30% higher in private sector.

²⁾ Rs = Nepalese Rupees (Exchange Rate in January, 1984 is Rs 15.65/1.0 US\$)

(3) Construction Works (Labor plus Materials)

Item	Specification	<u>Unit</u>	Price Level
			Rs
Earth Work - Excava- tion and Filling	0 - (-)3m (Ġ.Ĺ.) Up to lead 100m	₁₃ 3	17.25 - 18.30
Earth Work - Excava- tion and Filling	(-)3 - (-)6m (G.L.) Up to lead 100m	_E 3	36.6
Sand Filling Work	Sand	823	84.0
Gravel Filling Work	River Gravel	_m 3	140.0
Transportation of Soil	Labor only 100-500m Labor only 100-	_m 3	20
1,000m	EA.3	30	
Concrete Work	(1 : 2 : 4) Plain (1 : 3 : 6) Plain	н3 123	1,200 925
Reinforcement Concrete Work	(1 : 2 : 4)	£ _m	1,289
Mild Steel Reinforce- ment Work		Ton	15,660
Form Work		_m 2	92
Asbesto Cement Sheet Roofing		m2	160
Brick Work	Mortar (1 : 4) Chimney-made Brick	E ₁₃	890
Brick Work	Mortar (1 : 4) Machine-made Brick	^{EF} 3	790
Course Rubble Masonry	Hortar (1 : 4)	<u>m</u> 3	910

Notes: 1) Generally observed price level in January 1984 in Repal

²⁾ The price level indicated above is inclusive for labor materials and a 22% of administration charges.

³⁾ Rs = Nepalese Rupees (Exchange Rate in January, 1984 is Rs15.65/1.0 US\$)

(4) Inland Transport from Calcutta, India

Transport Route	Road Trans- port Charge US\$/Preight Ton	Days Required Days	Cargo and Weight/ Length Restriction
Calcutta, Raxául, India /Birganj, Hetauda, Nepal (860 km)	60.0	5.0	Dry Season -30 Ton -4 x 10 Meter
			Rain Season - 10 Tón - 4 x 10 Meter
Calcutta, Nautunwa, India/Bhairawa, Hetauda, Nepal (1,500 km)	250.0	25.0	Ory Season - 70 Ton - 4.5 x 12 Meter
			Rain Season - 30 Ton - 4.5 x 12 Meter
Calcutta, Raxaul, India /Birganj, Kathmandu, Nepal (990 km)	90.0	7.0	Dry Season - 15 Ton - 4 x 10 Meter
			Rain Season - 8 Ton - 4 x 10 Meter

- Notes: 1) Rain Season in Nepal is from April to September.
 - 2) Transport charge is not including import tax of 1.0% of CIF value which should be paid by import contractors.

ELECTRIC POWER CONSUMPTION AND OVERALL LOAD FACTOR INCREASE AT THE UREA FERTILIZER PLANT

BLECTRIC POWER CONSUMPTION AND OVERALL LOAD PACTOR INCREASE AT THE UREA PERTILIZER PLANT

1. Blectric Power Consumption Pattern

The proposed urea fertilizer plant in Nepal will utilize secondary energy electric power as a major input for the production of urea fertilizer. The unit consumption of total electric power in the plant is 6.642 MW/Ton of urea and out of this, a major portion of 5.411 MW(81.5%) will be consumed for hydrogen gas production at water electrolysis plant and the rest of 1.231 MW(18.5%) will be utilized for ammonia synthesis, carbon dioxide recovery, urea synthesis and other facilities in the urea fertilizer plant. The supply of electric power is preferable at 132 kV level at the plant.

It is desirable to operate the whole urea fertilizer plant at the design capacity (275 TPD or 11.458 TPH) continuously throughout a day and a year except during the annual scheduled shut down for maintenance purpose for approximately 30 days a year. Generally such urea fertilizer plant by electrolysis and carbon dioxide recovery schemes would be operable at 90% of capacity utilization if adequate and stable supply of electric power is obtainable.

Therefore, for such continuous operation of urea fertilizer plant, a stable supply of electric power of hourly 76.1 MW or daily 1.827 GWh (monthly 54.8 GWh ... 30 days or annual 542.6 GWh ... 297 days) is required.

However, in Nepal the electric power supply during the dry season, especially in the morning and evening, has been and would be tight and limited, therefore specific provisions in the plant are required in the proposed plant in Nepal, such as to have hydrogen storage facility to keep continuous operation of ammonia and urea plant at technically minimum operable level (50% of design capacity) while closing down the electrolysis plant during a few hours of the peak period of electric power supply shortage to take full advantage of maximum utilization of secondary energy electric power which will be supplied at special tariff.

The highest peak of electric power consumption in Nepal is observed in the evening (from 7:00 PM to 23:00 PM) for four hours and the second peak is in the morning (from 8:00 AM to 10:00 AM) for three hours, therefore the capacity of hydrogen gas storage for two hours full operation use would be adequate to keep operation of ammonia and urea plant at a half load without manufacturing hydrogen gas during such power demand peak hours.

During such half load operation of ammonia and urea plant (5.729 TPH of urea) without water electrolysis operation, the electric power consumption is reduced to 0.6155 MW/Ton of urea. Therefore, the electric power supply of 3.526 MW hourly is the minimum level to sustain such continued operation. The daily production of urea at the plant will be flexible from 275 TPD(100%) to 137.5 TPD(50%) according to the availability of secondary energy. Therefore hourly electric power requirement are from 3.526 to 76.106 MW hourly or 0.913 to 1.827 GWh daily.

Summarizing the above analysis and discussion, the electric power consumption increase for the proposed urea fertilizer plant is calculated and shown as follows;

UREA PERTILIZER PRODUCTION AND ELECTRIC POWER CONSUMPTION

Season	Urea	Urea Production			Electric Power Consumption		
	Hourly			Hourly, MW			
Rain Season -Normal	Peak Hour (3+4 Hours)	Off- Peak Hour (17 Hours)	Daily, TPD (24 Hours)	Peak Hour (3+4 Hours)	Off- Peak Hour (17 Hours)	Daily, GWH (24 Hours) 1.826.6	
Operation Dry Season -Minimum	5.729	5.729	137.5	3.526	52.272	0.913.3	
Continuous Operation -Shut Down -Annual Maintenance	0.0	0.0	0.0	0.0	0.0 0.0	0.0 0.0	

The annual requirement of electric power for the urea production is, therefore calculated in accordance with the annual production schedule which is shown in Table 4-9.

ANNUAL URBA PRODUCTION AND BLECTRIC POWER CONSUMPTION

Year	Urea Production, TPY	Electric Power Consumption, GWh
1991/92	54,500	362.0
92/93	55,340	367.6
93/94	59,320	394.0
94/95	62,480	415.0
95/96	64,610	429.1
:	:	:
2001/02	69,750	463.3
:	•	:
2005/06	72,620	482.3

2. Overall Load Factor

After the completion of the urea fertilizer plant in Nepal, the additional consumption over the firm energy would be added and consequently the overall load factor will be increased. The overall load factor without urea fertilizer plant and with urea fertilizer plant is calculated and shown below;

OVERALL LOAD PACTOR OF BLECTRIC POWER CONSUMPTION

		Consumpti	on, GWh	Load Factor, %		
Year	Electric Power Generating, GWh	Without Urea Project (Firm Energy)	With Urea Project	Without Urea Project (Firm Bnergy)	With Urea Project	
1991/92	1,725.7	1,167.8	1,529.8	67.7	88.6	
92/93	2,263.9	1,299.4	1,667.0	57.4	73.6	
93/94	2,690.8	1,445.6	1,839.6	53.7	68.4	
94/95	(2,690.8)	1,608.0	2,023.0	(59.8)	(75.2)	
95/96	(2,690.8)	1,788.0	2,217.1	(66.4)	(78.7)	
•	:	:	:	:	4 •	
2001/02	(2,690.8)	3,345.5	3,808.8	(124.3)	(141.5)	

The electric power generating capability and consumption without the urea fertilizer project are shown in Table 3-5 to Table 3-7. The annual overall load factor for firm energy is 67.7, 57.4, 53.7, 59.8 and 66.4% in 1991/92, 92/93, 93/94, 94/95 and 95/96, respectively, and after the completion of the urea fertilizer plant the overall load factor will be improved up to 88.6, 73.6, 68.4, 75.2 and 78.7%, respectively.

The electric power generating capability increase in Nepal is assumed to be limited up to the completion of Sapta Gandaki plant, therefore the deficit in 2001/02, calculated above is obvious due to such consideration. The deficit would be observed even without urea fertilizer plant in dry season of 1995/96.

WATER ELECTROLYSIS PROCESSES

WATER ELECTROLYSIS PROCESSES

1. Introduction

The electrolysis of water to produce hydrogen and oxygen was first discovered by Dr. von Cavendish in 1766. The chemical reaction is shown in accordance with the Paraday's Law as follows,

$$H_{2}O + 2P = H_{2} \text{ (gas)} + 1/2 O_{2} \text{ (gas)}$$

where P is the Paraday's Constant,

$$P = 96,484.56 \pm 0.27$$
 Coulomb

The theoretical electric power requirement in direct current to produce 1.0 $\rm Nm^3$ - $\rm H_2$ (gas) plus 0.5 $\rm Nm^3$ - $\rm O_2$ (gas) is calculated as 3.55 kWh/l.0 $\rm Nm^3$ - $\rm H_2$ with 1.48 Volts potential, however for industrial operations the electric power requirement is much higher according to the process and ranges between 4.00 to 5.00 kWh/l.0 $\rm Nm^3$ - $\rm H_2$ at 1.6 to 1.9 Voltage.

The theoretical reaction of the ammonia and urea production is described as follows,

$$3H_2 + 2N_2 = 2NH_3$$
 (Ammonia)

$$2NH_3 + CO_2 = NH_2CONH_2$$
 (Urea) + H_2O

Therefore the overall reaction in weight basis is summarized,

$$2H_2O + 2N_2 + CO_2 + 6P = NH_2CONH_2 + 3/2 O_2$$

$$1.5H_2/NH_3 = (3 \times 1.00794)/(14.0067 + 3 \times 1.00794)$$

= 0.177553

$$2NH_3/NH_2CONH_2 = (2 \times 17.03052)/60.05516 = 0.5671626$$

The consumption of hydrogen is generally quoted in volume as follows,

1,972.93
$$\mathrm{Nm}^3$$
 - H_2 (gas)/1.0 Ton of NH_3

$$1,118.97 \text{ Nm}^3 - \text{H}_2 \text{ (gas)/1.0 Ton of Urea}$$

The electric power loss at the transformer and rectifier is generally 3.0% from alternating current to direct current electric power, therefore the theoretical electric power consumption for the hydrogen production by water electrolysis is calculated as follows,

3,972 kWh/1.0 Ton of Urea (Theoretical)

Additional electric power of 1,231 kWh is required for industrial production of ammonia and urea.

2. Industrial Water Electrolysis

Large scale industrial production of hydrogen by electrolysis of water was first done in 1930.

Hydrogen obtained by water electrolysis is utilized at present for nitrogen fertilizer production, metallurgical processes, glass manufacturing, meteorological use, fat hardening, argon purification, chemicals, nuclear power plant and cooling of electric power generators.

Regarding nitrogen fertilizer production from hydrogen obtained by water electrolysis, the major products are nitric acid and ammonium nitrate as final product.

A list of ammonia plants using electrolysis hydrogen from either water or sodium chloride is shown in Table AIII-2-1. Although some of them are now idle or shutdown, the total production capacity is approximately one million tons of ammonia yearly. The largest ammonia plants are in Norway and in Egypt with a 100,000 TPY capacity where low cost electric power is available. It may be noted that none of them are directly producing urea as the final product.

3. Water Electrolysis Processes

Several electrolysis processes are now available as commercially proven technology; the major features of such processes are summarized in Table AIII-2-2. There are basically two types of electrolysis cell, namely Bath Type and Filter Press Type. The operating conditions differ from atmospheric pressure to pressurized up to 30 ata to produce high pressure hydrogen. The electric power consumption is the most important index for the process comparison, the requirement being from 4.22 to 5.5 kWh for the production of 1.0 Nm^3 of hydrogen gas. The reactivity of the electrode is high during the initial year of operation and gradually declines, eventually requiring reactivation treatment. The consumption of electric power similarly increases with each operating year but after the reactivation, the consumption returns to the original minimum level.

Table AIII-4-1 LIST OF AMMONIA PLANTS USING ELECTROLYSIS HYDROGEN AS RAW MATERIAL

Company	Location	Compressor Type	Blectrolysis	Ammonia Capacity (Name Plate Capacity x 330 days) - 1984	Final
West Burope - France Rhone Poulenc Ind.	Saint Aubar	4 0 8	ж О	(TPX-N)	
- Iceland Arburdarverskmidjan	Gurunes Reyktavik	a a o a	H20	8,000	
Norway Norsk Hydro S.A. Norsk Hydro S.A.	Glomatord	& & UU & &	н 22 00	000,000	Ammonia, NA Ammonia, NA, AN, CAN
Special and a sp	Sabinaningo	RCP	H20	000018	Ammonia, NA, AS
S.A. CROS	X '	a S S	H 20	3,000 -Shurdown	Ammonia
- Sweden Uddebolm A.B.	Skoghall	d D &	TU S N	2,000	Ammonia
- Oringentage Esser Werke A.G.	Ema-Domat	S C	0° E	20,000	Ammonia, Urea, AS (Caprolactam)
			·	252,000	
East Burope		· 1	:	O	
	:			0	

Co. Streeport RCP Naci Charles ACP Naci Naci Tacoma RCP Naci Naci Naci Martinaville RCP Naci Naci Aswan RCP RCP Naci Maci Naci Martinaville RCP Naci Naci Martinaville RCP Naci Naci Martinaville RCP Naci Naci Martinaville RCP Naci Naci Martinaville RCP RCP Naci Naci Martinaville RCP RCP Naci Maci Martinaville RCP RCP Naci Maci Martinaville RCP RCP Naci Naci Maci Martinaville RCP RCP Naci Maci Martinaville RCP	Company	Location	Compressor	Slectrolysis	Ammonia Capacity (Name Plate Capacity x 330 days) = 1984	Sinal Produce
CO. Freeport RCP Nac1 10000 Ammonia Ammonia 10,000	1					
### ### ### ### ### ### ### ### ### ##	; ; ;	•	<u>و</u> د	U SZ	000,08	Ammonia
### Closed in 1981 Ammonia, (Ure talk in 1981) ###################################	4604E6CU		0 0 0 0	1 d 0 s 2	000'81	Ammonia
### And Page and Page		Coanloation			Closed in 1981	
	Georgia Pacific	Plaguemine	RCP	Na Ch	146,000	
### ##################################	Chemica	take Charles	R 02	TO SZ	58,000	Ammonia
Tacoma RCP NaC1 1982 Ammonia Ammonia Chomicals Portland RCP NaC1 Shutdown in 1980 Ammonia NA, 120 12,000 Ammonia, NA, 80,000	Serre Cocidental Acri.	វ ស ភ	ROP	NaCl		Ammonia
micals Fortland RCP NaCl Shutdown in 1980 Ammonia NA, at Ind. Kwe Kwe RCP RCP H20 15,000 Ammonia, NA, at Ind. Kwe Kwe RCP H20 100,000 Ammonia, NA, and ind. Aswan RCP H20 100,000 Ammonia, NA, and ind.					Œ2	1
Nacl		Tacoma	80.8 8	1 U o Z		Ammonia
New Martinsville RCP NaCl Shutdown in 1980 Ammonia		Portland	A CP	Nach	000'9	Ammonia,
Ammonia Shutdown in 1980 Wichita Store St	**************************************	3 9 Z	84 00 87	NO CL	30,000	Ammonia
ials Co. Wichita RCP Nacl Shutdown in 1981 463,000 Ammonia Ammonia, NA, at ind. Kwe Kwe RcP RCP H20 100,000 Ammonia, NA, n. ind. Aswan RCP H20 100,000 Ammonia, NA, 100,000 Ammonia, NA, 100,000	3	11 11 11	! !		Shundown in 1980	
achinayo Cuzco Afres RCP NaCl 3,000 Ammonia, NA, 15,000 Ammonia, NA, 16,000 Ammonia, NA, 100,000	Vulcan Materials Co.	W. Chica	8 9 9	T U % N	32,000 Shutdown in 1981	Ammonia
achinayo Cuzco RCP NaCl 3,000 Ammonia, NA, al Ind. Kwe Kwe RCP RCP H20 80,000 Ammonia, NA, m. Ind. Aswan RCP H20 100,000 Ammonia, NA, 100,000 Ammonia, NA, 100,000))) F	
Lal Cachinayo Cuzco RCP H20 13,000 Ammonia, NA, 16,000 Ammonia, NA, 16,000 Ammonia, NA, 100,000 Ammonia, NA, 100,000 Ammonia, NA, 100,000 CAN 100,000	tatin America -Argentine Electrochor		R G	Nacl	3,000	Ammonia
Le Cachinayo Cuzco RCP H20 13,000 Ammonia, NA, 16,000 Ammonia, NA, 16,000 Ammonia, NA, 100,000	36					
Bemical Ind. Kwe Kwe RCP B20 80,000 Ammonia, NA, E 100,000 Ammonia, NA, A Chem. Ind. Aswan RCP H20 100,000 CAN	usertal	Cuzco	GON.	H20	0000,61	d Z
nemical Ind. RCP RCP B20 80,000 Ammonia, NA, c 100,000 Ammonia, NA, n Chem. Ind. Aswan RCP H20 100,000 CAN						
East Sast Stian Chem. Ind. Aswan RCP H20 100,000 CAN 100,000		\$ 33 \$ 33 \$ 2	<u>а</u> . О	O c H	000,08	z Z
East Aswan RCP H2O 100,000 Ammonia, NA, cian Chem. Ind. Aswan RCP H2O 100,000 CAN 100,000) :: ::	•) 1	80,000	
tian Chem. Ind. Aswan RCP H2O 100,000 Ammonia, NA, CAN LDO,000 CAN LDO,000						
000'001	tian Chem. Ind	Aswan	ch U	H 20	100,000	NA.
	(KIMA)				000,001	

Company	Location	Compressor	Electrolysis	Ammonia Capacity (Name Plate Capacity x 330	Final
Asia Japan Tokuyama Soda Co., Ltd.	токиуама	a o a	T U S N	\$4,000*2)	Ammonia, AC
India Fertilizer Corp. of India Ltd.	naya nangal		ı	90,000-Closed	Ammonia, NA, CAN
Oceania -Australia Electrolytic Zinc Co., Australaria Ltd.	24 00 00 00 00 00 00 00 00 00 00 00 00 00	а. О Ж	r ·	12,000	Ammonia, AS
WORLD TOTAL				1,067,000	

Notes: AN; Ammonium Nitrate
NA; Nitric Acid
CAN; Calcium Ammonium Nitrate
AC; Ammonium Chloride
RCP; Reciprocating
*1); Ammonial is sold to other company to produe urea.
*2); Raw material has been switched from fuel oil to chlorine cell hydrogen in 1982.

AIII-24

Table AIII-4-2 PROCESS COMPARISON OF WATER ELECTROLYSIS

Nm3 (Dry gas at 20°C and 1.0 ata)

\$3300 P. 1280

Annex IV-1	
Annex IV-2	BACK DATA FOR ESTIMATING ESCALATION
Annex IV-3	BREAKDOWN OF PRE-OPERATION EXPENSES AND INITIAL WORKING CAPITAL
Annex IV-4	COMPARATIVE STUDY OF ALTERNATIVE PLANT CAPACITIES AND MANUFACTURING PROCESS
Annex IV-5	FINANCIAL PROJECTIONS (BASE ESTIMATES)
Annex IV-6	SENSITIVITY ANALYSIS OF FINANCIAL STRUCTURE BY CHANGES IN EQUITY/DEBT RATIO AND INTEREST RATES ON LOAN
Annex IV-7	ECONOMIC POWER COST
Annex IV-8	ECONOMIC RATE OF RETURN

PROJECT COST ESTIMATE

-Commercial Production, July, 1991 -Project Economic Life; July, 2006 (18

[Attachment (1) to Annex IV-1]

DISBURSEMENT AND INTEREST DURING CONSTRUCTION

L FINANCING REQUIRED: DESTITY (73.00%) TOTAL 144.79 144.79 146.79 15.00 2 YEAR 3 YEAR 4 YEAR 4 YEAR 5 YEAR 5 YEAR 5 YEAR 5 YEAR 6 YEAR 6 YEAR 7 YEAR											4 YEAR	42.57	0.0	42.57	2.13	46.62	1.17	0x.0	a.ua		
101.35 43.44.79 144.79 5.00x PER VEAR 0.0 3.04 37.53 46.62 12.16 10.0 1 VEAR 1 VEAR 2 VEAR 1 VEAR 3 VEAR 3 VEAR 5 VEAR 7 VEAR 8 VEAR 8 VEAR 7 VEAR 8 VEAR 8 VEAR 8 VEAR 7 VEAR 8 VEAR											3 YEAR	3.0%	0	3.0%	0.13	39.53	66.0	1.14	1.14		
101.35 43.44 144.79 5.002 PER Y 5.002 PER Y 0.0 3.04 35.53 46.62 12.16 1			EAR						. *		2 YEAR	o ō	0.0	0	0.0	3.0,	ØO	90.0	0.08		
+ & * ~	101.35	144.79	3.00% PER Y	DISBURSEMENT	0	3.04	39.53	46.62	12.16	END OF YEAR:		0.0	0.0	0.0	0.0	0	0.0	0.0	0.0	**************************************	TOTAL
	TOTAL FINANCING REQUIRED: DEST (70.00%) EQUITY (30.00%)	707AL	INTEREST RATE:							INTEREST DURING CONSTRUCTION: AT THE		A. ALREADY DRAWN	B. PREVIOUS YEARS INTEREST	C. OPENING DEBT (A+B)	b. INTEREST ON OPENING DEST	E. DRAWN DURING YEAR	F. INTEREST ON CURRENT DRAW G	G. TOTAL INTEREST FOR YEAR(D+F)	H. INTEREST PAVMENT	INTEREST DURING CONSTRUCTION:	

S YEAR

0.0

4.46 12.16 0.30 4.76 4.76

[Attachment (2) to Annex IV-1]

CONTINGENCY SCHEDULE BY COST GROUP

NEPAL UREA PROJECT (275 TPD) (UNIT: USAMIL.)

	MONTHS TO EXPEND DATE (MONTHS)	EXPEND THIS >	PHYSICAL CONTINGENCY (PCT	CY(PCT)	PRICE CONTINGENCY (PCT)	CY (PCT)	COMBINED CONTINGENCY (PCT)	CY (PCT)
	FOREIGN	LOCAL	FOREIGN	רסכשר	HORELGA	רספשר	FOREIGN	LOCAL
. CAND ACQUISITION . SITE PREPARATION	30.00	30.00	0 6	សូស ខ្លួន សូស	9.00	15.73	9.00 18.45	21.52
C-1 PROCESS UNITS	62.00 50.00	62.00	95 85	3 10	19.48	35.24	22.75	42.00
3.5	60.00	60.00	18	ម្ចា ខ្លួ	8	36.00	2, 7,	7.0 6. 5.0 6.7
A ONTOLIO FACILITI	789 100 100 100 100 100 100 100 100 100 10	84 k 8 k 0 c	W.A.	y c	76-17	\$0.75 70.44	32.53 30.22	70.77
CONST. & BRECTION LABOR	68. 000-000	68.00 00.00) () () ()	8	21.55	39.22	27.63	46.18
COONST. MOUNTAINS OF STATES OF STATE	5	44 000 000 000	ა. 8€	o 4.	16.76	30.0% 34.0%	32.5	44.32
. INDIAGOT FIRED EXPENDED	68.00	68.00	គ្រ មា	- - - - -	វា	39.22	27.63	16.18
BNGINEERING SERVICES	69.69 00.00	6	មាម	y Se	16.46 18.80	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	24. 24	40.63
* TYCOLOC TENENTIES OF SERVICES OF THE PROPERTY OF THE PROPERT	700.00	75.00 00.00	, v 55 55 55	88 8	28.08	46.11	21.33	53.41
INITIAL WORKING CAPITAL INTEREST DURING CONSTRUCTION	00	១០	0 0 0	0 0 0 0	00	e e c e	90	90

[Attachment (3) to Annex IV-1]

ESCALATED CAPITAL COST ESTIMATE
NEPAL UREA PROJECT (275 TPD) (UNIT: USBMIL.)

	BASE PROJECT	ECT COST	PHYSICAL	> 0× 0×	PRICE CONTINGENCY	ENCY.	TOTAL (AS CO	TOTAL PROJECT CO	COST
	FOREIGN	רסכער	FOREIGN	LOCAL	FOREIGN	רסכער	FORFIGN	LOCAL	TOTAL
A. LAND ACQUISITION B. SITE PREPARATION C. O' ANT RIGHT COST	20.0 30.4	00 84 84	00.0	00 00 00	00 04 04	0.10	0.0	0.72	1.80
- 7°	38.41	ម ១៣ ១៣	1.92 183	000	2.08	0.67	48.19	2.57	50.76
AUXICIARY OFFSITE F	1.94	0 K	0.10 0.03	0.00	00 00 00	0.29	22.5	## 100	, w , w , w
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	22.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	om o v	00:	000	0 W	0 + 1 0 4 0 4	12.52 20.52 20.52	000	3.04
G. TRANSPORT, INSURANCE & DUTY	2 - 20	500 600	0 D	00: 04:0	4 D	000 000	6.04 6.04 6.04	200 100 100 100 100 100 100 100 100 100	6.16
n. INDIREC! FIELD EXFENCES I. ENGINEERING SERVICES J. PROJECT MANAGEMENT SERVICES K. PRE-OPERATION EXPENSES	0000 1246 2466	, 0004 946 946 946	0000 0440 0440	9000	0400 0640	0000 0000	หลุกถ หลุดคล	2020 2020 2020 2020 2020 2020 2020 202	44.44 44.44 64.44
L. BASE PROJECT COST	67.97	10.00	4.41	0.80	17.81	5.99	110.19	22.64	132.83
M. INITIAL WORKING CAPITAL N. INTEREST DURING CONSTRUCTION	90	00	00	90 90	99	00 00	9.78	0.20 0.20	2.68
O. TOTAL FINANCING REQUIRED	67.97	15.63	4.41	0.80	17.81	66.8	119.67	24.92	144.79

BACK DATA FOR ESTIMATING ESCALATION

Annex IV-2 (1) PLANT COST INDEX

(Unit: 1980=100)

	C.E. PLANT	SRI	PLANT COS	ST INDEX
Year	COST INDEX (U.S.A.)	U.S.A.	JAPAN	W.GERMANY
1980	100	100	100	100
1981	113.7	116.1	104.7	105.2
1982	120.3	120.7	107.4	112.4
1983	122.0	122.4	114.4	113.8
1984	122.9	N.A.	И.А.	Ń.A.
Av. Ann. (1980-1984) Escalation	5.3%	5.2%	3.4%	3.3%

Source: Chemical Engineering, U.S.A. SRI, U.S.A.

Annex IV-2 (2) PRICE INDEX IN NEPAL

		National	National Consumer Price	Index for	Index for Urban Areas		Kathmandu C	Kathmandu Consumer Price Index	ce Index
K	Average F.B. Rate (Rs. Per US ()	Rupee Terms	Changes to previous year (%)	US Dollar Terms	Changes to previous year (%)	Rupoe Terms	Changes to previous year (%)	US Dollar Terms	Changes to previous year (%)
1974/75	10.56	138.0		132.4		134.0		128.54	
1975/76		137.0	- 0.72	115.9	- 12.46	141.1	0 m m	119.41	11.7 -
1976/77		140.7	4 2.70	114.0	1.64	141.5	0.78	114.67	3.97
81/1/61		156.4	૭ત - ત ત +	128.2	+ 12.46	155.9	+ 10.18	127.77	+ 11.42
1978/79	12.00	161.8	+ 3.45	136.6	+ 6.55	161.1	4 3.34	136.00	4 6.44
1979/80		177.6	+ 9.77	149.9	+ 9.74	180.8	+ 12.23	152.63	+ 12.23
18/0861		201.4	+ 13.40	170.0	+ 13.41	207.2	+ 14.60	174.91	+ 14.60
1981/82	12.96	222.4	+ 10.43	173.8	+ 2.24	229.2	+ 10.62	179.15	+ 2.42
1982/83		250.7	+ 12.72	189.5	60.03 +	252.4	+ 13.35	196.40	ტ. ტ.
verage 1977/7	Average Increase Rate (1977/78 - 1982/83)	ate) 10.67%		8.89%		10.75%	ď	8,98%	

Source: Nopal Rastra Bank

BREAKDOWN OF PRE-OPERATION EXPENSES AND INITIAL WORKING CAPITAL

Annex IV-3(1)

ESTIMATE OF PRE-OPERATIONAL EXPENSES (1984 Prices)

1. Personnel Expenses and Overhead

1.1 Initial 3 Years

- General Mana	ger (1 x Rs.	34,200/yr x 3 yrs)	Rs. 102,600
- Managers	(3 x Rs.	20,520/yr x 3 yrs)	Rs. 184,680
- Senior Engin	eers, and		
Senior Offic	ers (6 x Rs.	15,960/yc x 3 ycs)	Rs. 287,280
- Supervisors,	and	•	
Officers	(10 x Rs.	13,680/yc x 3 ycs)	Rs. 410,400
- Secretary, a	nđ		
Horkers	-	10,680/yr x 3 yrs)	Rs. 320,400
- General Work	ers (5 x Rs.	7,320/yc x 3 ycs)	Rs. 109,800
To	tal	•	Rs. 1,415,160

1.2 Last Half Year

50% of full personnel cost	
(Rs. 3,637,320 $\frac{1}{2}$ x 0.5)	Rs. 1,818,660

1.3 Total Personnel Cost (1.1 + 1.2) Rs. 3,233,820

1.4 Overhead (1.3 x 70%) Rs. 2,263,674

Total: (1.3 + 1.4) <u>Rs. 5,497,494</u> (US\$343,600)

1.5 Overseas Trip Expenses

(@US\$5,000/trip x 10 trips) <u>US\$50,000</u>

1.6 Personnel Expenses and Overhead: Grand Total <u>US\$393,600</u>

Note: 1/ See Table 2-5, Part IV

2.	Training Expenses (Trainings in foreign countries)	
	2.1 20 persons (2 months training) - Living expenses (@US\$80/diem x 20 persons x 60 days) - Trip expenses (@US\$1,500/trip x 20 trips)	US\$96,000 US\$30,000
	Total	US\$126,000
	2.2 30 persons (2 months training in India)	
	- Living expenses (@US\$50/diem x 30 persons x 60 days) - Trip expenses (@US\$500/trip x 30 trips)	US\$90,000 US\$15,000
	Total	US\$105,000
	2.3 Total expenses: (2.1 + 2.2)	<u>US\$231,000</u>
3.	Loss during Start-up	
	3.1 Utility and supply costs for production of urea	
	1) Blectric power (@US&3.56/kwh x 6.642 kwh/ton) 2) Coal (@US\$40.63/ton x 0.256 tons) 3) Chemicals and catalysts	US\$236.45 US\$10.40 US\$2.72
	Total	US\$249.57
	3.2 Loss (Assuming 50% operation for 3 months and losses for 50% of the production)	
	US\$249.57/ton x 275 tons/day x 0.5 x 90 days	US\$1,544,214

Annex IV-3(2)

INITIAL WORKING CAPITAL (1991 Price)

	Estimat	ed Cost (US	\$1000)
Items	F.E. Portion	L.C. Portion	Total
. Product Inventory (Ann. Direct Operating Cost x 20/330)			
- Foreign Exchange Component (\$4,496 x 10 ³) x 20/330	272	-	272
- Local Currency Component (\$35,814 x 10 ³) x 20/330	-	2,171	2,171
. Account Receivable (Ann. Direct Operating Cost x 0.5/12)			
- Poreign Exchange Component			
(\$4,496 x 10 ³) x 0.5/12 - Local Currency Components	187	-	187
$(\$35,814 \times 10^3) \times 0.5/12$	-	1,492	1,492
. Account Payable (15 days usance for electric power, coal, and bags)			
- Coal (\$1,416 x 10^3 x 0.5/12)	-)59	_	-) 59
- Blectric power and bags (\$33,259 x 10 ³ x 0.5/12)	-	-)1,386	-)1,386
Total	400	2,277	2,677

Annex IV-3(3)

DIRECT OPERATING COST (1991 Price)

		Estimate	ed Cost (U	\$\$ '000)
Cost Items	Calculation Basis	P.B. Portion	L.C. Portion	Total
l. Blectric Power	@\$0.0356 x 1.5 x 6,642 kwh x 275 t/d x 330 days	-	32,187	32,187
2. Coal	0\$40.63 x 1.5 x 0.256 t x 275 t/d x 330 days	1,416	- .	1,416
3. Catalyst & Chemicals	02.72 x 1.5 x 275 t/d x 330 days	370	_	370
4. Bags	@\$0.375 x 1.5 x 21 bags x 275 t/d x 330 days	-	1,072	1,072
5. Personnel Cost	\$227,333 x 1.407	_	320	320
6. Insurance				
l) Personnel	2% of Item 5	-	6	6
2) Plants	US\$117.95 x 10 ⁶ x 1.175%	-	1,327	1,327
	-	(80%)	(20%)	
7. Maintenance	US\$117.95 × 10 ⁶ × 3%	2,710	678	3,388
8. Overhead	70% of Item 5		224	224
Total		4,496	35,814	40,310

COMPARATIVE STUDY OF ALTERNATIVE PLANT CAPACITIES AND MANUFACTURING PROCESS

COMPARATIVE STUDY OF ALTERNATIVE PLANT CAPACITIES AND MANUFACTURING PROCESSES

I. Introduction

This Annex IV presents the results of a comparative study of urea fertilizer production economics, based on alternative plant capacities and alternative manufacturing processes. The objective of this study is to determine the optimum capacity of the proposed urea fertilizer plant, as well as an appropriate manufacturing process to be adopted for the plant. The study is made in the following two steps.

- Step 1: Comparison of the production economics of water-electrolysis-based urea fertilizer plants of different size
- Step 2: Comparison the production economics of the water-electrolysis-based urea fertilizer plant, with those of alternative manufacturing processes.
- 2. Production Economics of Water-Electrolysis-Based Urea Pertilizer Plants

The primary objective of this project is to produce urea fertilizer by efficient utilization of indigenous resources -- water and hydropower. In this context analysis of the production economics of urea fertilizer is first made on water-electrolysis-based urea fertilizer plants of different sizes. In view of the future demand for urea fertilizer in Nepal [Part II -- Market Study], the following five cases have

been selected for the comparative studies:

Case 1: 100 TPD
Case 2: 200 TPD
Case 3: 250 TPD
Case 4: 275 TPD
Case 5: 300 TPD

Table IV-4(1) tabulates the project costs estimated for these five cases, and Table IV-4(3) tabulates the production costs of urea fertilizer (bagged) estimated for each case. estimates use the same assumptions as used for the base estimate [Part IV -- Pinancial Analysis]. Presented in Table IV-4(3) are the production costs in current prices estimated for the year of 1997, the mean year of the 15-years project economic life span, so the given costs show a representative cost structure. They are the production costs estimated by assuming 90% capacity utilization. Figure IV-4(1) illustrates the correlation of the production costs vs. plant capacity which has been derived from the costs estimated for the 90% capacity utilization (Table IV-4(3)). Figure IV-4(2) illustrates sensitivity of the production costs to changes in capacity utilization. These estimates indicate the characteristics of the production economics as summarized below.

- (1) A large size plant can produce urea fertilizer at lower production costs per ton (unit production costs), since capital related costs and other fixed costs per ton of the product are lower for a larger size plant due to scale economy. Hence, the production costs for Case 5 (300 TPD) are lowest among the five alternatives, as far as all cases assume operation at the same capacity utilization rate.
- (2) Assuming operation at the same capacity utilization rate, differences in the unit production costs which accrue from differences in plant capacity would be smaller for plants

having larger capacity; assuming operation at 90% capacity utilization rate, the cost differences are US\$175.39 per ton between Case 1 (100 TPD) and Case 2 (200 TPD), and US\$63.53 per ton between Case 2 (200 TPD) and Case 5 (300 TPD).

- (3) The unit production costs will increase if operation in done at lower capacity utilization rates [Figure IV-4(2)]. Even at lower capacity utilization rates, however, there is no change in the relative position of the unit costs due to differences in plant capacity, as far as operation at the same capacity utilization rate is assumed for all cases.
- (4) Contrary to the mechanisum of production costs as mentioned in (3) above, the relative position of the unit production costs due to differences in plant capacity would change if the different capacity utilization rates are applied for each case.

Because of the characteristics of the production economics as summarized above, selection of an optimum plant capacity must be made by giving attention to the unit production costs likely to be attained for producing a projected quantity of urea fertilizer.

3. Selection of Optimum Capacity of Water-Electrolysis-Based Urea Pertilizer Plant

Table IV-4(6) tabulates the annual production of urea fertilizer projected for this project, and annual capacity utilization rates for operation which have to be achieved in order to realize the projected production. It is common practice to assume a maximum capacity utilization rate for operation of urea fertilizer plants as 90% of annual production

capacity based on 330 on-stream days a year. In addition to that, there is a limited supply of electricity which is another factor limiting the capacity utilization rates [See Part III]. By taking those factors into consideration, the maximum capacity utilization rate for each case is assumed as follows:

	Daily Capacity	Annual Capacity	Max. Capa- city Utili- zation Rate	Maximum Production (tons)
Case 1	100 TPD	33,000 TPA	90%	29,700
Case 2	200 TPD	66,000 TPA	85%	56,100
Case 3	250 TPD	82,500 TPA	83%	68,475
Case 4	275 TPD	90,750 TPA	83%	75,322
Case 5	300 TPD	99,000 TPA	80%	79,200

As in evident from the figures given in Table IV-4(6), Case 1 (100 TPD) and Case 2 (200 TPD) would be too small, while Case 5 (300 TPD) would be too large. Thus Case 3 (250 TPD) or Case 4 (275 TPD) should be an appropriate plant capacity for the project. The unit production costs which are incurred in producing the quantity projected for 1977/78 are as follows [Table IV-4(3) and Figure IV-4(2)]:

	Capacity Utiliza- tion Rate	Annual Production (ton)	Daily Costs (US\$'000)	Unit Cost per Ton (US\$/t)
Case 1	90.00%	29,700	20,960	705.71
Case 2	85.00%	56,100	30,854	549.98
Case 3	80.92%	66,760	35,117	526.02
Case 4	73.56%	66,760	36,165	541.72
Case 5	67.43%	66,760	37,210	557.37

[These figures are indicated with (x) mark in Figure IV-4(2)]

The given figures can use an economic parameter for judging an economic advantage of each case, because they are deemed as those representing the production cost position of each case. These cost figures imply that Case 3 (250 TPD) and Case 4 (275 TPD) are more economical than other cases, due to the following reasons.

- (1) The production costs of Case 1 and Case 2, although a least cost level attained by maximum capacity utilization (i.e., 90% for Case 1 and 85% for Case 2), are still higher than those for Case 3, Case 4, and Case 5 due to the former's disadvantage in scale economy compared to others.
- (2) The production cost of Case 5 in higher than those for Case 3 and Case 4, because in this case a lower capacity utilization results in cost increases more than offsetting cost advantage compared to Case 3 and Case 4.

Hence, the selection of Case 3 or Case 4 can also be justified from the viewpoint of production economics. Now, further scrutiny is made to select Case 3 or Case 4 specifically. Table IV-4(8) tabulates the unit production costs of Case 3 (250 TPD) and Case 4 (275 TPD) estimated for every year of 1991/92 - 2005/06. These costs have been estimated on the following assumption:

- a. Electricity Price: 40% of the present tariff level
- b. Equity/Debt Ratio: 30:70
- c. Interest on Long-Term Loan : 5% p.a.

The estimates indicate that for the initial ten years (1991/92 - 2000/01) the unit production cost of Case 3 (250 TPD) will be slightly lower than than of Case 4 (275 TPD), although the position will reverse after the 12th year (2002/03).

Nevertheless the cost differences of Case 4 will not exceed 3.4% of the cost of Case 3. If the production of Case 4 increases to 80% capacity utilization due to increased demand, its production cost would become lower than that of Case 3. Hence it can be judged that they are close to each other in regard to production costs. The financial returns of those two cases are estimated as follows:

		IRR for 15 years
		(After Tax)
Case	3	3.79 %
Case	4	3.36 %

These figures reveal that their financial returns would be close in the order of magnitude. If Case 3 is selected, after 1999/2000 annual demand will exceed the domestic production and shortage in the supply therefore would have to be met by imports. On the other hand, if Case 4 is selected, the domestic production would fully satisfy the demand more than 15 years. From these points of view, it is judged that 275 TPD would be the optimum capacity for the project.

4. Comparison with Alternative Manufacutring Processes

Alternative processes for manufacutring urea fertilizer are based on the use of alternative feedstock — hydrocarbon such as natural gas, naphtha, fuel oil and coal. Table IV-4(8) gives the manufacturing processes based on a variety of hydrocarbons and the consumption of those feedstock materials for manufacutring urea fertilizer, and Figure IV-4(3) illustrates a schematic flow of these processes. Natural gas is transported only through pipeline, and the use of this material therefore is possible in an area where there exist natural gas reserves available of commercial scale. In Nepal there is so far no possibility to establish a natural-gas-based

urea fertilizer plant, since a commercially viable natural gas reserves have not been indentified yet. Peedstock materials usable in the country may be naphtha, fuel oil, or coal, although these materials also must be imported from India. India has no surplus of naphtha for supply to other countries, so it seems unrealistic to assume the use of naphtha for this project. In general the production cost of urea fertilizer based on coal is higher than that based on naphtha or fuel oil, because capital related costs required for a coal based urea fertilizer plant are substantially higher than those for a urea fertilizer plant using naphtha or fuel oil. Hence there is no economic advantage for establishing a coal based urea fertilizer plant unless coal is locally available.

Under these circumstances, the manufacutre of urea fertilizer from fuel oil is the only alternative process which can be compared with the water-electrolysis-based urea fertilizer manufacturing process. A urea fertilizer plant based on fuel oil can be operated at 90% capacity utilization, because its electricity consumption is comparatively small compared to that for a water-electrolysis-based plant so that limited supply of electricity will not limit annual operation. Thus a 250 TPD fuel-oil-based urea fertilizer plant would be comparable to a 275 TPD water-electrolysis-based plant. Table IV-4(9) gives capital cost estimates of a 250 TPD fuel-oil-based urea fertilizer plant, and Table IV-4(10) gives the production cost of urea fertilizer estimated for that plant. Comparison of the production cost for a 275 TPD water-electrolysis-based urea fertilizer plant with a 250 TPD fuel-oil-based urea fertilizer plant is summarized below.

ESTIMATED PRODUCTION COST PER TON [1997: Current Price]

					(Unit: U	S\$/ton)
				later-Electrol- 250 TPD Puels sed Plant 1/ Based Plant		
	·	(90% C.U.)	(80% C.U.)	(70% C.U.)	(90% C.U.)	(80% C.U.)
1.	Variable Cost	196.08	196.08	196.08	433.84	433.84
2.	Direct Fixed Cost	79.90	89.89	102.73	75.10	84.48
3.	Depreciation/ Amortization	161.82	182.05	208.06	149.60	168.30
4.	General Adam. Expenses	3.67	4.13	4.72	4.04	4.55
5.	Interest on Long-Term Loan	37.12	41.76	47.73	35.85	40.33
	Total	478.59	513.91	559.32	698.43	731.50

- Notes: 1/ Assuming the electricity price as 30% of the present tariff rate. [See Table IV-4(3)]
 - 2/ Assuming the fuel oil price as US\$240/ton in 1984 and US\$578.36/ton in 1997 escalated at 7% p.a. [See Table IV-4(10)]

In the variable costs as given above, the feedstock cost for the water-electrolysis-based plant (i.e., electricity cost) is US\$151.30 per ton of urea, while that for the fuel-oil-based plant (i.e., fuel oil) is US\$390.39 per ton of urea. The cost of a 250 TPD water-electrolysis-based plant at 70% capacity utilization is comparative to that of a 275 TPD fuel-oil-based plant. When these costs are compared, it is found that the former is lower by US\$172.18 per ton of urea as compared to the

latter. This reveals that the cost of a fuel-oil-based plant is equivalent to the cost of water-electrolysis-based plant for which the electricity price be $US \not\in 4.87/kWh$ is 1997 or $US \not\in 2.28/kWh$ in 1984 $(US \not\in 4.87 \cdot 1.06^{13})$, as calculated in the following manner.

	Cost Per Ton of Urea (US\$/t)
 Blectricity Cost of Water- Blectrolysis-Based Plant assuming 30% of the present tariff rate: 	151.30
2) Cost Difference between Water-Electrolysis-Based Plant and Puel-Oil-Based Plant:	172.18
Total	323.48
3) Electricity Price Equipment: 1997 (US\$323.48/t 6,642kWn/t)	US¢4.87/k₩h
Electricity Price Equivalent: 1984 (US\$4.87 1.0613)	US¢2.28∕kWh

This electricity price is equivalent to about 64% of the present tariff rate.

In view of these cost differences, it is judged that the water-electrolysis-based plant can produce urea fertilizer at lower cost than that of a fuel-oil-based plant, as far as electricity can be supplied at a price lower than 64% of the present tariff rate. Further, the urea fertilizer production based on fuel oil requires a foreign exchange outlay of US\$390.39 per ton of urea for importation of fuel oil, in addition to foreign exchange outlay for imports of catalyst, chemicals and spare parts, as well as repayment and interest payment for a foreign loan. Thus it is concluded that a water-electrolysis-based process would be appropriate for the project.

Table IV-4(1) CAPITAL COST ESTIMATES

(Urea Fertilizer Plant Based on water Electrolysis)

(unit: USS Million)

		100 TPD	200 TPD	250 TPD	275 TPD	300 TED
ď	LAND ACQUISITION	0.72	0.72	0.72	0.72	0.72
oj •	SITE PREPARATION	1.80	1.80	1.80	7.80	- 80 - 4
ť	TROOP HUBBIT TINK LA	4	7.2	9	3.4	8
; ប	THE PROCESS COURS	(21.27)	(38.60)	(46.77)	(90.76)	(54.70)
Ū	HHE	9	4.0	2.4	3.4	4-4
Ü	H 11	1.7	တ္	0	N)	Ç
Ú	C-4 OPPSITE PACIFITIES	e.j	ب	ტ ტ	M.	د :
Ω	SPAREPARTS, CATE. & CHEM.	61.1	2.26	2.78	3.04	3.30
ω	CONST. & ERECTION LABOR	17.62	17.62	17.62	17.62	17.62
ČL,	CONST. EQUIPMENT	9.59	9.5.9	69.6	69.6	69 ° 6
Ö	TRANSPORT, INSURANCE & DUTY	e T • e	96.4	5.78	6.16	6.53
ĸ	SESNEAS CLEIF TOERIONI	8T-T	1.13	1.13	er-1	1.13
3€	ENGINEERING SERVICES	11.78	12.45	12.67	12.77	12.86
٠,	PROJECT MANAGEMENT SERVICES	3.57	3.57	3.57	3.57	3.57
34	PRE-OPERATION EXPENSES	2.32	2.95	9.19	3.30	3.40
-3	BASE PROJECT COST	87.21	114.30	126.77	132.83	138.78
Σ	INITIAL WORKING CAPITAL	1.24	2.10	2.49	2.68	2.86
Z	INTEREST DURING CONST.	60.9	7.99	8.86	9.28	9.70
ö	TOTAL FINANCING REQUIRED	94.54	124.39	138.12	144.79	151.34

Table IV-4(2) BREAKDOWN OF FIXED ASSETS FOR DEPRECIATION (Buildings and Plant Facilities)

	i	i						(Unit: 1	US\$ Million)	(uc
	100 TRD	TRD	200 TPD	TPO	250	250 TPD	275 TPD	Car	300	300 TPD
	Bulld-	Plents Penil	Build-	Plants Facil-	Build-	Plants Facil-	Build-	Plants Facile	Build-	Plants Facil-
	ings	1ty	3 but	1 50	ings	\$ £ X	ings	ity	ings	ity
· Process Units	•	21.27	•	38.60	ı	46.77	ı	50.76	•	54.70
· Utility Facilities	0.47	5. 5.	0.82	9.62	0.98	11.50	1.06	12-41	1-14	13.30
- Auxiliary Facilities	1.24	0.52	2.02	0.84	2.36	86.0	2.52	1.05	2.68	דה-ד דה-ד
· Offsite Facilities	e e e	•	5.33	•	5-33		5.33	ı	5.33	3
· Spareparts, Catalysis s Chemicals	ı	1.19	1	2.26	ı	2.78	1	3.04	1	3.30
· Construction Equipment	ì	65.6	,	65.6		65-6	ı	65°6	1	9.59
. Construction Labor; Transport, Insurance, Duty; Engineering Service & Management Service	3.32	32.78	ε. φ.	35.07	3.65	35.99	დ ა.	36.44	3.73	36.85
Total	10.36	70.88	11.72	95.98	12.32	107.61	12.60	113.29	12.88	118.85
	6	81.24	707	107.70	र्वा	119.93	12.	125.89	£4.	131.73

Table IV-4(3) ESTIMATED PRODUCTION COST OF UREA (BAGGED) (1997: Current Price)

								Process: Capacity u	Water Dicetrolysis Utilization: 90% on Loaned: 5% p.a.	rolysis 908 9-4-6
Plant Capacity	100	100 TPO	200 TPD	ፗዎው	250 TPD	TPD	275	TPO	300 TPD	TPD
Annual Production (90% Capacity Utilization)	29,70	A4T 007.92	39,40	59,400 TPA	74,25	74,250 TPA	81,67	81,675 TPA	89,10	89,100 TPA
	Ann. Cost (US\$'000)	Cost Per Ton (US\$/ton)	Ann. Gost (US\$'000)	Cost Par Ton (USS/ton)	Ann. Cost (US\$'000)	Cost Per Ton (US\$/ton)	Ann. Cost (US\$1000)	Cost Per Ton (USS/ton)	Ann. Cost (US\$*000)	Cost Per Ton (US\$/ton)
1. Variable Cost	4.4.94	143.30	8.987	151.30	11,234	151.30	12,357	151.30	13,481	151,30
2.2.00012/	689	22.18	1,317	22.18	1,647	22.18	1,812	22.18	1,976	22.18
1.3 Catalyais and Chemicals/	172	3.80	20.00	5.80	431	5.80	474	5.80	517	5.80
1.4 Bags4/	499	16.80	866	16.80	1,247	16.80	1,372	16.80	1,497	16.80
Sub-total	5,824	196.08	11,647	196.08	14,559	196.08	16,015	196.08	17,471	196.08
2. Direct Fixed Cost	•	;	ć	6	•	1	9	5	967	8.4
2.1 Personnel Cost2/	429	74.44	57 4	27.7	4 6	9 6	N 00 00 00 00 00 00 00 00 00 00 00 00 00	9	4 4 4	88 7Y
2.2 Maintenance Cost2/	. a	120.78	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	* * * * * * * * * * * * * * * * * * *	0 / X / V	, w	0 4 4 0 4 0 4 0 4	6.9	1000	99.9
Sub-total	404	148.28	5,664	95.35	6,244	84.09	6,526	79.90	6,803	76.35
3. Depreciation and Amort. 8/		;				;	4	\$ 60 C	0	96 666
Got Whents and Machinthes (7,088	236.65	865,0	161 80.40 18.40	797,0T	7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7000 7000	47.02	000111	7.23
5.2 Bunichings (1)	0 4 6	10.7	8 6	70.4	9 T E	4,29	330	40.4	940	3.81
3.4 Totalenst during Const. 27	909	20.51	799	13.45	988	11.93	926	11.36	970	10-89
Sub-total	8,447	284.41	11,278	189.87	12,582	169.45	13,217	161.82	13,839	155.32
4. Ceneral Admn. Expenseally 5. Interest on Long Term Loanla	1,985	10.10	300	43.97	300	39.07	3,032	37.12	3,178	35.67
Total Cost	20,260	705-71	13.501	530-32	35,586	492.73	38.032	478.59	41,591	466.79

[EXPLANATORY NOTES TO TABLE IV-4(3)]

- 1/ 1984: $US£3.56/kWh \times 0.3 = US£1.068/kWh$ 1997: $US£2.278/kWh (US£1.068/kWh \times 1.06^{13})$ $US£2.278/kWh \times 6,642 kWh/t = US$151.30/t - urea$
- 2/ 1984: US\$40.63/ton coal 1997: US\$86.66/ton - coal (US\$40.63 x 1.06¹³) US\$86.66/ton x 0.256 ton/t = US\$22.18/t - urea
- 3/ 1984: US\$2.72/t urea 1977: US\$5.80/t - urea (US\$2.72 x 1.0613)
- 4/ 1984: US\$37.5/bag
 US\$80.0/bag (US\$37.5 x 1.06¹³)
 US\$80.0/bag x 21 bags/t = US\$16.8/t urea
- 5/ 1984: US\$227,333/year 1997: US\$428,670/year (227,333 x 1.05¹³)
- 6/ 1991: 3% of Plant Cost (Base Project Cost less: Land Acquisition Cost, Site Preparation Cost, and Part of Indirect Field Expenses US\$0.41 million)
 - 1997: Maintenance Cost (1984) x 1.066

Plant Capacity	Plant Cost (US\$'000)
100 TPD	84,280
200 TPD	111,370
250 TPD	123,840
275 TPD	129,900
300 TPD	135.850

- 1.175% of outstanding depreciable asset value
 [Table IV-4(4)]
- 8/ Excluding amortization of indirect field expenses because of those expenses amortized out within the initial five years
- 9/ 10% of the Plant Pacilities Value [Table IV-4(2)]
- 10/ 5% of the Buildings Value [Table IV-4(2)]
- 11/ 10% of the Pre-operation Expenses [Table IV-4(1)]
- 12/ 10% of the Interest During Construction (Table IV-4(1))
- 13/ 70% of the Personnel Cost
- 14/ (Total Financing Required) $\times 0.7 \times 9/15 \times 0.05$

Table IV-4(1) VALUE OF ASSETS FOR INSURANCE (1997)

			5)	(Unit: US\$'000)	ô
	100 TPD	200 TPD	250 TPD	275 720	300 TPD
1. Tonal Assens				_	
1.1 Non-depressable Assets					
1.1.1 Eand	720	720	720	720	720
1.1.2 Site Preparation	1,800	1,800	1,800	1,800	1,800
Sub-total	2,520	2,520	2,520	2,520	2,520
1.2 Depreciable Assets					
1.2.1 Plant Facilities	70,880	95,980	107,610	113,290	118,850
1.2.2 Buildings	10,360	11,720	12,320	12,600	12,880
1.2.3 Indirect Field Expenses	713	713	713	713	713
1.2.4 Pre-operation Expenses	2,320	2,950	3,190	3,300	3,400
1.2.5 Interest During Construction	6,090	7,990	8,860	9,280	9,700
Sub-total	90,363	119,353	132,693	139,183	145,543
1.3 Total (1.1 + 1.2)	92,883	121,873	135,213	141,703	148,063
2. Accumulated Depreciation (up to 1996)					
2.1 Plant Pacilities (Value x 7/10)	979,64	67,186	75,327	79,303	83,195
2.2 Buildings (Value x 7/20)	3,626	4,102	4,312	4,410	4,508
2.3 Indirect Field Expenses (Value x 5/5)	713	713	713	713	713
2.4 Pre-operation Expenses (Value x 7/10)	1,624	2,065	2,233	2,310	2,380
2.5 Interest During Construction (Value x 7/10)	4,263	5,593	6,202	6,496	6,790
2.6 Total	59,845	79,659	88,787	93,232	9-7,586
3. Total Assets less Acc. Depreciation	33,041	42,214	46,426	48,471	50,477

ESTIMATED PRODUCTION COST OF UREA (BAGGED) BY CHANGES IN CAPACITY UTILIZATION (1997: Current Price)	(Unit: US\$ Per Ton)		275 TPD 300 TPD	07 450.35 439.72	73 478.59 466.79	82 513.92 500.63	50 559.32 544.13	07 619.86 602.14	07 704.62 683.35
PRODUCTION COSH IN CAPACITY UT			200 TPD 250 TPD	496.90 463.07	530.32 492.73	572.10 529.82	625.82 5.77.50	697.44 641.07	797.72 730.07
			100 TPD 20	654.75 4	705.71 5	769.41 5	851.32 6	960.52 6	7,113.41 7
Table IV-4(5)		Capacity	Utilization Rate	1008	80.6	80.8	70%	% 0.9	808

Table IV-4(6) CAPACITY UTILIZATION RATE BY DIFFERENT PLANT CAPACITY

2000/02 200		!			
000000000000000000000000000000000000		Q4T 002 Q	i Qi		300 TPD
0000 0000		2.5		0	0
00000000000000000000000000000000000000		 	0.	6	9
00000000000000000000000000000000000000		*	o,	5.3	9
9995/999 9999/999 9999/999 909/999 909/000 909/001 909/999 909/99		* *	5.7	တ	رب م
9996/99 9999/99 9999/99 909/99 909/00 909/00 909/00 909/00 909/00 909/00 909/00		* *	φ •	4,7	5.2
9997998 99987998 99997999 9097999 909799 909799 909799		* *	Q Q	2.3	e) G
9999/999 0000/000 000/000 000/000 000/000 000/000 000/000		* *	9	3.	7.4
999/2000 000/2000 001/02 0001/02 1717		* *	2:2	4.7	φ γ
000/01 001/02 002/03 11/17		* *	×	50	Ġ
001/02 70,5 002/03 71,17 7,17		* *		ω (Θ	4
002/03		* *	* * *	7.7	
7,17		* *	***	00	00
	0	* *	***	9	2.4
004/05 72.2		**	***	79.59	72.96
005/06 72,6	*	* +	* * *	0.0	(i)
Notes: Capacity Ut Capacity (D	ilization R Saily Capaci	ate, brojee ty x 330 on	ted Product Stream day	ction over	
: 1	maximum e	apacity ut	122t	rate of 9	080
ր 3 10	product maximu	being 56, apacity ut	6 년 8 년 1 년 년	rate of 8	r &
######################################	n production se maximumm n production	જિંદુ હ	00 HPA 1128tion 75 HPA	rate of 8	1. de 16.

TABLE IV-4(7) ESTIMATED PRODUCTION COST OF UREA FERTILIZER (BAGGED) [CURRENT PRICE]

Unit Cost per Ton (US\$/t)

Year	(A) 250 TPD	(B) 275 TPD	(C) B-A	C/A
1991/92	602.3	620.7	+18.4	+3.1
1992/93	605.3	624.8	+19.5	+3.2
1993/94	581.7	601.2	+19.5	+3.4
1994/95	570.8	586.4	+15.6	+2.7
1995/96	568.5	583.4	+14.9	+2.6
1996/97	570.3	586.1	+15.8	+2.8
1997/98	576.6	592.0	+15.4	+2.7
1998/99	584.3	599.4	+15.1	+2.6
1999/2000	595.7	608.7	+13.0	+2.2
2000/01	611.2	619.9	+8.7	+1.4
2001/02	455.4	456.7	+1.3	+0.3
2002/03	475.8	475.9	+0.1	0
2003/04	497.6	496.5	-1.1	-0.2
2004/05	521.1	518.8	-2.3	-0.4
2005/06	546.2	543.1	-3.1	-0.6

COMPARISON OF PROCESS AND FEEDSTOCK CONSUMPTION FOR UREA FERTILIZER PRODUCTION TABLE IV-4(8)

Electricity Mater Electrolysis Air Fractionation Carbon Dioxide Recovery Ammonia Synthesis Urea Synthesis Urea Synthesis Urea Synthesis Urea Synthesis Steam Reforming Synthesis Gas Preparation Air Fractionation Synthesis Gas Preparation Air Fractionation Synthesis Gas Preparation Annonia Synthesis Urea Synthesis Synthesis Synthesis Urea Synthesis	1 !	Feedstock	rocess Scheme	Feedstock Consumptio
Electricity Water Electrolysis Air Fractionation Carbon Dioxide Recovery Ammonia Synthesis Urea Synthesis Gas Preparation Waphtha Steam Reforming Synthesis Gas Preparation The Synthesis Gas Preparation The Synthesis Gas Preparation Fuel Oil Air Fractionation Synthesis Gas Preparation Ammonia Synthesis Urea Synthesis Gas Preparation Synthesis Gas Preparation Synthesis Gas Preparation Air Fractionation Synthesis Gas Preparation Air Fractionation Synthesis Gas Preparation Annonia Synthesis Urea Synthesis Gas Preparation Annonia Synthesis Urea Synthesis Gas Preparation Annonia Synthesis Urea Synthesis Gas Preparation Annonia Synthesis Urea Synthesis Urea Synthesis Gas Preparation Annonia Synthesis Urea Synthesis Gas Preparation Urea Synthesis Ga	# #	 	8 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Ton of Urea Fertil
Natural Gas Steam Reforming Synthesis Gas Preparation Ammonia Synthesis Fuel Oil Air Fractionation Synthesis Gas Preparation Ammonia Synthesis Coal Ammonia Synthesis Urea Synthesis Gas Preparation Synthesis Gas Preparation Air Fractionation Synthesis Gas Preparation Air Fractionation Synthesis Gas Preparation Coal Ammonia Synthesis Urea Synthesis Urea Synthesis Orea Synthesis	5	5) e ctr ctr	ectroly tionati noxide Synthes thesis	
Naphtha Steam Reforming Synthesis Gas Preparation (10,600 kg. Gas Preparation (10,600 kg. Urea Synthesis Gas Preparation (10,300 kg. Ammonia Synthesis Gas Preparation (10,300 kg. Ammonia Synthesis Gas Preparation (Gasification) (G,300 kg. Synthesis Gas Preparation (G,300 kg. Ammonia Synthesis Gas Preparation (G,300 kg. Ammonia Synthesis Gas Preparation Gasification) (G,300 kg. Synthesis Gas Preparation refers generally to secondary carbon dioxide removal, methanation and shift reaction, carbon dioxide removal, methanation and shift reaction.	(5)	Natural	& & & & & & & & & & & & & & & & & & &	23.5 MMBTU-LHV
Fuel Oil Air Fractionation Synthesis Gas Preparation Ammonia Synthesis Urea Synthesis Air Fractionation Anmonia Synthesis Coal Anmonia Synthesis Urea Synthesis Urea Synthesis Synthesis Gas Preparation (6,300 kc) Ammonia Synthesis Urea Synthesis Urea Synthesis Synthesis gas preparation refers generally to secondary shift reaction, carbon dioxide removal, methanation and sinthesis shift reaction.	$\widehat{\mathfrak{S}}$	Napht T	crming Gas Prepara Vnthesis hesis	•
Coal Partial Oxydation (Gasification) Synthesis Gas Preparation Ammonia Synthesis Urea Synthesis Urea Syntesis Sinthesis gas preparation refers generally to secondary shift reaction, carbon dioxide removal, methanation and	4	ក ខេ ក	Air Fractionation Partial Oxydation Synthesis Gas Preparation Ammonia Synthesis Urea Synthesis	0
es: Synthesis gas preparation refers generally to secondary shift reaction, carbon dioxide removal, methanation and	<u>(v)</u>		Air Fractionation Partial Oxydation (Gasificati Synthesis Gas Preparation Ammonia Synthesis Urea Syntesis	1.25 Ton (6,300 kcal-LHV/
かけい ひばい ココナナナー ひばり パナツ	Z : 0	es: Synthe shift	oreparation refers general carbon dioxide removal, ourification process.	to secondary thanation and

Table IV-4(9) CAPITAL COST ESTIMATE

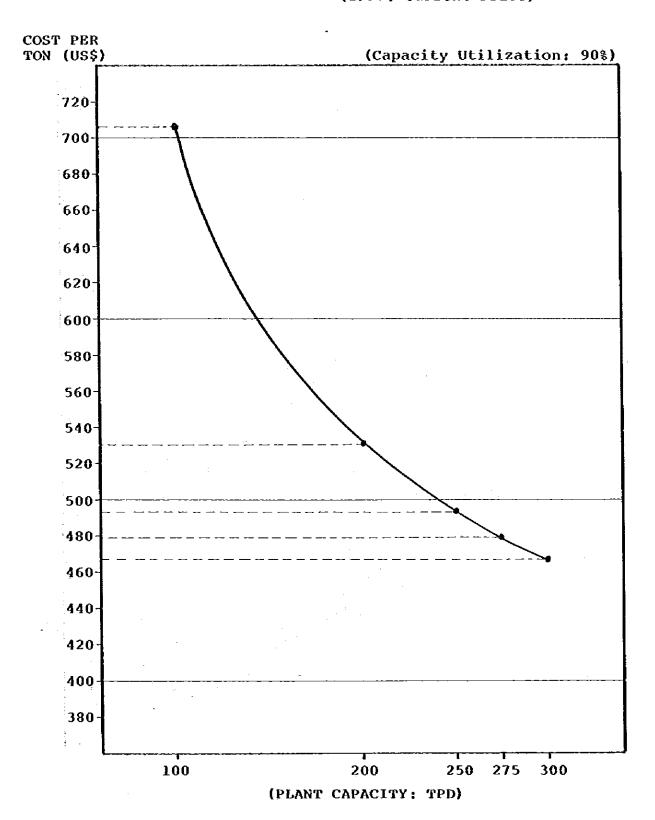
(Urea Pertilizer Plant Based on Partial Oxydation of Puel Oil)

Capacity: 250 TPD

(Unit: US\$ Million)

ITEMS	ESTIMATED COST
A. LAND ACQUISITION	0.72
B. SITE PREPARATION	1.80
C. PLANT DIRECT COST	54.37
C-1 PROCESS UNITS	(33.22)
-AMMONIA PLANT	[25.31]
-UREA PLANT	[7.91]
C-2 UTILITY PACILITIES	(12.48)
C-3 AUXILIARY FACILITIES	(3.34)
C-4 OPFSITE PACILITIES	(5.33)
D. SPAREPARTS, CATL. & CHEM.	2.17
E. CONST. & ERECTION LABOR	17.62
F. CONST. EQUIPMENT	9.59
G. TRANSPORT, INSURANCE & DUTY	5.29
H. INDIRECT FIELD EXPENSES	1.13
I. ENGINEERING SERVICES	12.67
J. PROJECT MANAGEMENT SERVICES	3.57
K. PRE-OPERATION EXPENSES	4.04
L. BASE PROJECT COST	112.97
M. INITIAL WORKING CAPITAL	5.89
N. INTEREST DURING CONST.*	7.90
O. TOTAL FIANACING REQUIRED	126.76

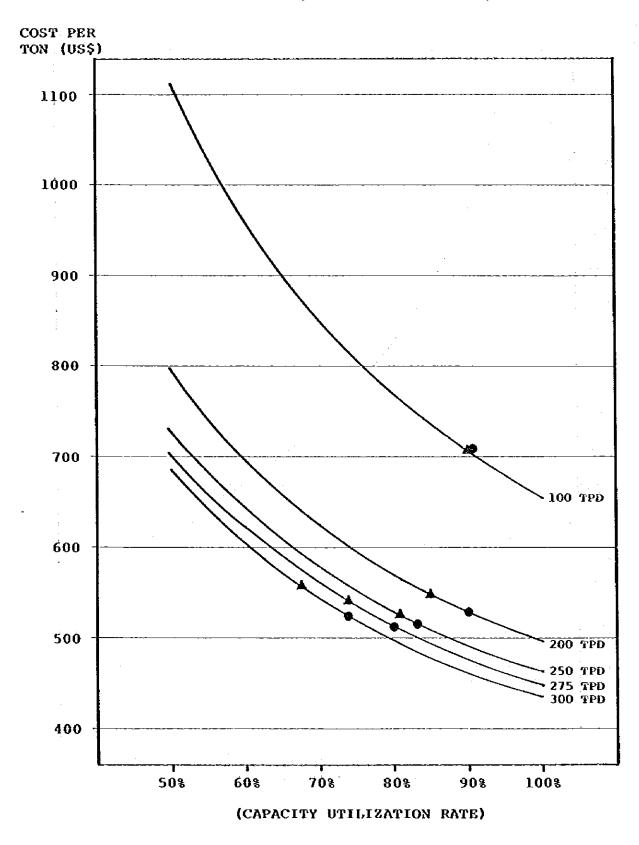
Note: * Assuming equity/debt ratio of 30:70 and 5% p.a. loan interest


Table IV-4(10) · ESTIMATED PRODUCTION COST OF URBA (BAGGED) (1997: Current Price)

Process: Partial Oxydation of Fuel Oil Capacity: 250 TPD

Cost Per Ton (US\$/ton)	390-39	24.05	2.60	16.80	433.84		5.78	63.07	6.25	75.10		125.25	8.27	5.44	10.64	149.60	4.04	35.85	698.43
Annual Costs (USS*000)	28,986	1,786	E 6 T	1,247	32,212		429	4,683	464	5,5,76		9,300	614	404	790	11,108	300	2,662	51,858
Particulars	@US\$240/ton ² / x 1.07 ¹³ x 0.675ton/t	બુંગ	Lrea X J.	00S#37.5/bag4/ x 1.06 x 21bags/t		•	US\$227,333/Year x 1.05 ^{1.3}		(USS118,350 - USS78,886)× 10 × 0.01175			US\$93.00 million x 1/10	US\$12.28 million x 1/20	USSA.OA MILLION X 1/10	USS7.90 million x 1/10			US\$126,760 x 10 ³ x 0.7 x 9/15 x 0.05	
เตอาไ	1. Variable Cost	1.2 Blectric Power	1.3 Catalysis & Chemicals	1.4 Bags	Sub-total	2. Direct Fixed Cost	2.1 Personnel Cost	2,2 Maintenance Cost	2.3 Inaurance	Sub-total	3. Depreciation and Amortization	3.1 Plant and Facilities	3.2 Buildings	3.3 Preoperation Expenses	3.4 Interest during Const.	Sub-total	4. General Admn. Expenses	5. Interest on Long Term Loan	Total Coat

1/ Assuming 90% capacity utilization (i.e., 250 TPD x 300 days x 0.9 = 74,250 TPA) 2/ 1984 prices None a :


Figure IV-4(1) ESTIMATED PRODUCTION COST OF UREA (BAGGED)
(1997: Current Price)

Process: Water Electrolysis Loan Interest: 5% p.a.

Figure IV-4(2) ESTIMATED PRODUCTION COST OF URBA (BAGGED)
BY CHANGES IN CAPACITY UTILIZATION

(1977: Current Price)

Figure IV-4(3) PROCESS SCHEME AND FEEDSTOCK FOR UREA FERTILIZER PRODUCTION

Feedstock Process Scheme Product (1) Electricity Н2 Water Electricity Electrolysis _ Urea Ammonia Urea Fractionation Synthesis Synthesis Fertilizer 02 arbon Dioxde Flue Gas * Recovery (2) Natural Gas Steas Syn. Gas Assonia Urea Urea Natural Gas -Reforming Preparation Synthesis Synthesis Fertilizer Air -(3) Naphtha Syn. Gas Steam Amonia Urea Urea Naphtha -Preparation Synthesis Synthesis Fertilizer Air -(4) Fuel Oil Urea Armonia Urea Fertilizer Steaa Syn. Gas Fuel Oil -Reforaing Preparation Synthesis Synthesis 0 co2 Air Air -Fractionation (5) Coal Armonia **.** Urea Coal Syn. Gas Urea Coal

Synthesis

co,

Fertilizer

Synthesis

Preparation

N_2

Gasification

Air Fractionation

Air -

02

: