BASIC DATA FOR CARBON DIOXIDE SUPPLIABILITY CONDITIONS AT CEMENT PLANTS IN NEPAL

BASIC DATA FOR CARBON DIOXIDE SUPPLIABILITY CONDITIONS AT CEMENT PLANTS IN NEPAL

		n an	
		Hetauda Cement Industries Ltd.	Himal Cement Co. (PVT) Ltd.
1.	Outlines of Cement Plants		
	Clinker Production Process	Rotary Kiln, Dry Suspension Heater	Shaft Kiln, Black Meal
		31,25	5.25
	Clinker Production, TPH TPD TPY	750.00 222,750.00	126.00 37,422.00
	Completion of Plant	1985	1976
·	Employee	1,200	300
2.	Site Conditions		
1 - A	Location	Hetauda	Chobar, Kathmandu
	Latitude, North	27°24'	27°391
	Longitude, East	85°01' 455	85°17' 1,260
	Height, Above Seal Level, m Site Area, m ²	600,000	7,200
	Theoretical		
	Standard Pressure, mb ata	959.8 0,9472 -	870.8 0.8594
	Temperature, °C -1980		
	Maximum, Absolute Minimum, Absolute	38.8 (April 24) 3.0 (January 1)	32.3 (April 25) (-)1.0 (January 14)
	Monthly Average -Maximum	36.1 (April)	29.4 (April)
	-Minimum	5.8 (January)	1.9 (January)
	Annual Average	22.8	18.4
·· ·	Precipitation, mm -1980		
	Annual	1,948	1,341
	Monthly Maximum	46l (June) O (January)	349 (June) O (November)
	Monthly Minimum Daily Maximum	158 (June 19)	100 (June 9)
	Relative Humidity, % -1980 Annual Average	$\frac{AM \ 8:40}{74} \frac{PM \ 5:40}{68}$	$\frac{AM \; 8:40}{85} \frac{PM \; 5:40}{65} \; ,$
	Monthly Average	oo 74	05 54
	-January	83 74 43 35	95 64 65 41
	-April -June	43 35 74 76	82 74
	-September	77 79	88 79
	Atmospheric Air Condition for	Calculation 0.947	0.859
	Pressure, ata Temperature, °C	23.0	18.0
	Relative Humidity, %	70.0	75.0
	Composition, kg/kg-Dry Air	· · · · · · · · · · · · · · · · · · ·	
	-Nitrogen	0.7670	0.7670
	-Oxygen	0.2330	0.2330
	-Dry Air	1.0000	1.0000
	-Moisture	0.0133	0.0105
	-Total Air	1.0133	1.0105

3. Raw Materials for Cement Production

(a) Limestone

		(Unit	: wt%, Dry Bas	is)
	Hetauda (Industria		Himal C Co. (PVT	
	Average	Range	Average	Range
Chemical Analysis				
Ignition Loss	36.8	39.0 - 36.4	38.4	
sio ₂	13.3	12.3 - 6.5	9.2	
A1203	2.9	3.7 - 2.1	2.4	
Fe_2O_3	0.6	1.6 - 0.6	2.4	
CaO	44.7	47.6 - 42.8	45.5	
MgO	1.5	3.8 - 1.2	1.7	
so,	0.20	~	0.16	
Na ₂ O	0.14	-	0.01	
K ₂ O	0.60	-	0 55	
Cl	0.01		0.01	
P205	0.07	-	0.05	
TiO ₂	0.12	-	0.08	
Mn ₂ O ₃	0.15	-	0.34	
		······	· · ·	
Total	101.09		100.80	
Composion after Ca	A CONTRACT OF A CONTRACT. CONTRACT OF A CONTRACT. CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT. CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT. CONTRACT OF A CONTRACT. CONTRACT OF A CONTRACT. CONTRACT OF A CONTRACT. CONTRA	· ·		
co ₂	36.45		37.85	
Ash, Sulfate				
and Phosphate	63.20		61.40	
Others as Water	0.35	······	0.75	·····
Total	100.00		100.00	
			and a state of the	
Limestone	Bhainse		Chobar,	
Source	Dobhan,		Kathmandu	
	Hetauda	· · ·		
		··· .		
Data Source	HCI, ITB -1977		HCC -1983	
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · ·	

Note: Available CO_2 is calculated assuming that $CaCO_3(CO_2/CaO=0.7848)$ and $MgCO_3(CO_2/MgO=1.0915)$

(b) Clay

(Unit: wt%, Dry Basis)

		a Cement ries Ltd.	Himal (Co. (PV)		÷
	Average	Range	Average	Range	
Chemical Analysis					
Ignition Loss	8 8		7.6		
SiO ₂	59.5	58 - 62	58.9		
Al203	19.0	19 - 21	20.5		
Fe ₂ O ₃	8.1	8 - 10	8.2		
CaO	0.3	0.5 - 1.0	1.5		
MgO	0.7	0.75 - 1.25	1.0		
so ₃	0.03		0.19		
Na ₂ 0	0.08		0.18		
K ₂ O	2.20	•	3.15		
ci ci	· · · · · · · · ·		0.01		
P205	0.06		0.34	· · ·	
TiO ₂	-		0.92		
Mn ₂ 0 ₃	-		0.11	· · ·	
Total	98.77		102.60	······································	
Composion after Calc	ination				
co ₂	0.00		0.00		
Asn, Sulfate	÷.	. ·			
and Phosphate	91.20		90.80		
Others as Water	8.80	· ·	9.20	·	
Total	100.00		100.00		
	· ·				
Clay Source	Lamsure,		Kathmandu		
	Hetauda				*
·					
Data Courses	UCI ITR -197	7	HCC -1983		· · ·

Data Source

HCI, ITB -1977

HCC -1983

(c) Iron Oxide and Gypsum

(Unit: wt%, Dry Basis)

	Hetauda Industr	Cement ies Ltd.	Himal Cement Co. (PVT) Ltd.			
	Iron Ore	Gypsum	Iron Ore	Gypsum		
Chamical Analusia		· · ·				
Chemical Analysis	1.2	16.8	(Not Used	16.8		
Ignition Loss	1.2	· ·				
SiO ₂	4.6	9.3	in the Plant)	9.3		
A1203	2.8	1.8	-	1.8		
Fe2O3	89.3	1.1	-	1.1		
CaO	0.8	31.0	-	31.0		
MgO	0.7	2.0	-	2.0		
so ₃	0.04	32.5	-	32.5		
Na ₂ 0	0.10	0.19	_	0.19		
κ ₂ 0	0.92	0.24	-	0.24		
P205	. –		-	-		
Total	100.46	94.93		94.93		
composition after (Calcination	н - Полого (1996) - Полого (1996)	•			
co,	0.00	0.00	-	0.00		
Ash, Sulfate						
and Phosphate	98.80	83.20	-	83.20		
Others as Water	1.20	16.80	-	16.80		
	100.00	100.00	~	100.00		
·			. •			
aw Material	Bihar,	Bikaner,	- · ·	Bikaner,		
ource	India or	India		India		
	Phulchowki,					
	Nepal					
	•		· · · ·			
)ata Source	HCI, ITB-1977	HCI, ITB-1977	-	HCI, ITB-197		

4. Utility for Cement Production

(a) Fuel

				(Unit: v	vt%, Dry Basis)	
		tauda Cema lustries L			Himal Cèment Co. (PVT) Ltd.	
	Fuel Oil	Coal	Mixed Use	Coke Breeze	Special Low Volatile Coal	Mixed Use
Chemical Analysis						
Moisture	0.05	2.4		1.9	2.2	2.1
Ash	0.01	10.0		28.7	19.5	23.8
Volatile Matter	95.0 4.0	40.0 47.0		6.5 64.1	10.7 67.6	63.3
Fixed Carbon Carbon	85.0	70.0		63.5	71.6	66.9
Hydrogen	11.0	5.2		0.2	2.3	1.3
Sulfur	3.5	3.5		0.5	0.2	0.4
Nitrogen	0.30	1.1		0.9	0.9	0.9
Oxygen and Others	0.30	7.2	······	4.4	5.1	4.6
	100.16	99.4		100.1	101.8	100.0
Heating Value, kcal/k	a				. • •	
Gross (High)	11,152	7,100		5,510	5,417	5,464
Net (Low)	10,558	6,805		5,370	5,390	5,380
Specific Gravity						
(15/4°C)	0.96					
Chémical Analysis of A	Ash					
Ignition Loss	0.6	0.60	0.60	-	· · ·	2.42
SiO2	34.7	58.00	58.00	54.60	52.90	53.75
A1203	0.1	27.60	27.60	27.43	28.05	27.74
Fe2O3	8.7	5.90	5.90	7.72 3.82	11.85	9.79
CaO	4.2	2,60	$2.60 \\ 0.80$	3.84	5.64 1.27	4.73 2.39
MgO	$1.0 \\ 0.3$	$0.80 \\ 0.28$	0.28	5.50	1.21	2.83
SO3 Na2O	0.3	0.11	0.11			0.56
K ₂ O	0.2	1.70	1.70			2.32
TiO_2/V_2O_3	20.5		-		·	1.51
MnO/NiÔ	11.3	-	-			0.07
P205	-	1.25	1.25			0.88
Cl		-	98.84	97.07	99.71	$\tfrac{0.01}{109.00}$
	01.9	30.04	20104	57407	JJ • 7 ±	10,100
Composition after Com		or Calcina	tion			0.45 ¹ 0.0
CO ₂	318.8	256.5				245.30
H ₂ O (Including Moisture)) 108.2	49.2				11.04
Oxides, Sulfate, Silicate & Phosphate	e 0.0	10.0				30.00
Sflicate & Phosphate	427.0	$\frac{10.0}{315.7}$				286.34
Fuel Source	India	Assam,	~	Durgapur,	India	India
		India		India		
Data Source	Consul- tant	HCI-ITB -1977		HCC-1984	HCC-1984	HCC-1984
				-		·

Notes: 1) HCI will consume a 1/3 of heating value (net) as fuel oil and 2/3 as coal. 2) HCC is consuming a 1/2 of fuel weight as coke and 1/2 as coal.

(b) Raw Water

		a Cement ries Ltd	Himal Cement Co. (PVT) Ltd.				
Source		ed Well at ni River	Bagmati River Plant Well	(17.0°C, 30m ³ /Day) (22.5°C, 3m ³ /H)			
an an Artana an Artana Artana an Artana Artana an Artana an Artana	(18.0°C	, 500m ³ /D}	Quarry Well City Water	(20.5°C, 5m ³ /H) (18.0°C, 0.1m ³ /H)			
Analysis, ppm	Kukhur	eni River	Bagmati Rive				
	Record	Measured	Measured	Measured			
рH	5.85	5.8	7.2	7.8			
Electric				· ·			
Conductivity	. –	24	275	450			
Total Hardness	12.5	19	97	275			
Fe	0.07	0.08	3.1	-			
SiO ₂	-		-	~			
Cl		3.3	19	18			
so_4	2.5	4	72	16			
P	-	-	·	-			
N	30.5	-	· · · ·	and the second			
COD	-	1	10	-			
Suspend Solid	-	1.6	80	6			
Disolved Solid		38	198	274			
Total Alkalinity	-	25	-	-			
· · · · · · · · · · · · · · · · · · ·		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1					

Notes: 1) Unit of electric conductivity is micromhos/cm. Note 2) Unit of hardness is in terms of CaCO3.

•

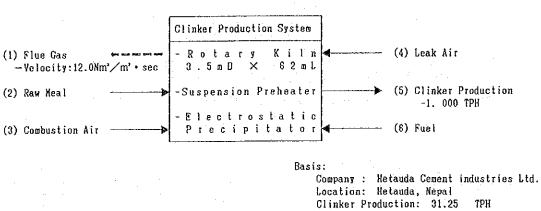
(c) Electric Power

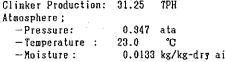
		da Cement tries Ltd	Himal Cement Co. (PVT) Ltd.
Source	Nepal Ele	ectricity Corp.	Nepal Electricity Corp.
Voltage, Volt	1	0,000	440
Frequency, Hz		50	50
Phase		3	3
Wire		3	3
Location	At Fence		At Fence

-	(Unit: Ton/Ton-Cli	nker, Dry Basis)
	Hetauda Cement Industries Ltd.	Himal Cement Co. (PVT) Ltd.
Raw Materials		
Limestone Clay Iron Ore Sub-Total	1.438 0.087 <u>0.008</u> 1.533	$ \begin{array}{r} 1.350 \\ 0.125 \\ \hline \hline 1.475 \end{array} $
Fuel		
Fuel Oil Coal, Assam Coal, Special Low Volatile	0.0628 0.0833	- 0.095
<u>Coke, Breeze</u> Sub-total	0.1101	$\frac{0.095}{0.190}$
Total	1.6430	1.665
Free Moisture		· .
Black Meal Raw Meal Fuel Sub-Total	0.081 0.002 0.083	0.249 - - 0.254 (13.0%)
Grand-Total	1.726	1.957
Fuel Consumption, 10 ³ kcal-LHV Others	850	1,033
Atmospheric Air	2.213	3.120
Gypsum Electric Power, kWh Process Water, m ³ Cooling Water Circulation	0.05 130 6.25	0.06 100 3.85
Fuel for Raw Meal Drying -Fuel Oil	0.0087	0.0117
-Coal Jute Bag, 50kg Net, Sheet	20.1	20.1
Chemicals -Alum Bloach Doudor		0.0005
-Bleach Powder Lube Oil, and Grease, kg Loss during Production	0.025 0.025	0.050 0.030

Notes: 1) Clinker production of 1.0 ton is equivalent to 1.05 to 1.06 ton of bagged cement production.

6. Clinker Composition


Chemical Analysis		
SiO ₂	24.5	22.4
A1203	6.0	7.1
Fe2O3	2.3	4.7
CaO	63.3	62.3
MgO	2.2	2.6
so ₃	0.3	-
Na ₂ O	0.21	·
K ₂ O	1.07	
	99.88	99.1
Moduli		
НМ	1.93	1.82
SM	3.00	1.90
IM	2.60	1.50

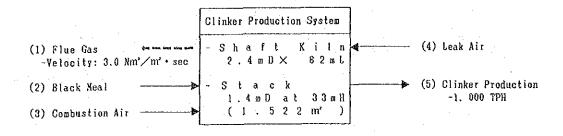

7. Carbon Dioxide in Flue Gas

	Hetauda Co Industrie		Himal Cement Co. (PVT) Ltd.		
	Base Case	Extreme Case	Base Case	Extreme Case	
Physical Conditions					
Temperature, °C	113	102/120	120	100/130	
Pressure, ata	0.947		0.859		
Velocity, Nm ³ /m ² .sec	15.0	·	5.7		
Location	Outlet of		Outlet of	Stack	
	static Pro (10)		(33.5	m)	
Analysis, Wt%-Wet Gas Basis	: 				
CO	0.10	· · ·	2.16		
N ₂	56.11		58.25		
0 ²	8.00		10.40		
co2	27.16		20.63		
H ₂ O	8.72		8.12		
NO _x , ppm	197		51		
SO _x , ppm	600		. 8		
Dust	0.07		0.31		
Carbon Dioxide Gas in Flue Gas					
Hourly, TPH	25.68		4.42		
Daily, TPD	616.40		105.98		
Annual, TPY	183,069.67		31,475.09		
[24 HPD x (365-35)DPY x 0.9]					
Flow Rate of Flue Gas, Per Ton of Clinker					
Weight, Wet, TPT	3.026		4.077		
Volume, Wet, Nm ³ PT	2,274	·	3,123		

Figure AIII-1

CARBON DIOXIDE BALANCE AT CEMENT PLANTS IN NEPAL (1)

0.0133 kg/kg-dry air


								-				
Items			Uni	t Flow	for 1.0	00 Ton	of Clin	ker Proc	luction			
Flow Point,(+) In (-) Out	(1), Flue	(-) Gas	(2) Raw		(3), Combusi		(4) Leak	, (+) : Air	(5) Clin	() ker	(6), Fue	
Temperature, °C	1	3	2 (0 0	2 3	3	2 :	3	1 (0 0	2 3	3
Pressure, ata	0.9	47	0.9	347	0.9	947	0.9	947	0.9	947	0.9	347
Material Flow Unit	Ton	Nm"	Ton	Nm*	Ton	Nm²	Ton	° Nm³	Ton	Nm*	Ton	Nm³
Metal Oxides 1) H ₂		-	0.988 0.002		- 1 1			-	1.000 0	0.333 0	0.013 0.007	-
C N ₂		. 1	0.143 -				- -	-	0	0	0.081 0.001	- -
O, (Organics)	-	-	0.400	· · ·			-		0	0	0.006	
Dry Solid Total Moisture Wet Solid Total	0.002 - 0.002	-	1.533 0.081 1.814	·		-		-	1.000 0 1.000	0.333 0 0.333	0.108 0.002 0.110	-
CO N ₂	0.002	2 1,358		·	0.000 0.899	0 719	0.000 0.799	0 839	. <u>–</u>		-	-
	0.242 0.822	189 419	- - - -	: _ 	0.273 0.000	191 0	0.242 0.000	169 0	-		-	· -
2) Dry Gas Total	2.762	1,946	_		1.172	910	1.041	808	. –		-	
3) Xoisture Wet Gas Total	0.264 3.026	328 2,274	-	-	0.016 1.188	19 929	0.014 1.055	17 825	-	-	-	
Wet Material Total	3.032	2,276	1.614		1.188	829	1.055	825	1.000	0.333	0.085	_

NOTES; 1) Netal oxides means metal oxide, sulfate, silicate, phosphate and others which form solid materials in cement production.

2) A small amount of $\mathrm{NO}_{\mathbf{g}}$ and $\mathrm{SO}_{\mathbf{y}}$ are measured separately.

3) The material balance is calculated at steady state of balanced operation of calcination and raw meal drying. The unbalanced operating condition are considered in extreme case for design purpose of carbon dioxide recovery.

Figure AIII-1 CARBON DIOXIDE BALANCE AT CEMENT PLANTS IN NEPAL (2)

Basis: Company : Himal Cement Co. (PVT) LTD. Location: Chobar, Kathmandu, Nepal Clinker Production: 5.25 TPH Atmosphere; -Pressure: 0.859 ata -Temperature : 18.0 °C 0.0105 kg/kg-dry air -Moisture :

Iteas			Ųn	it Flow	for 1.00	0 Ton of	Clinker	Product	ion	
Flow Point,(+) In (-) Out	(1), Flue			, (+) Meal	(3) Combus		(4) Leak		(5) . Cli	() nker
Temperature,°C	1 2	2.0	18	3	18	3	· 18	3	2 () ()
Pressure, ata	0.8	359	0.8	359	0.8	359	0.8	359	0.8	359
Material Flow Unit	Ton	Nm'	Ton	Nm*	Ton	Уm'	Ton	Nm*	Ton	Nm'
1) Metal Oxides H ₂	. 1	-	1.004 0.005		-	-		-	1.000	0.333 0
C N ₂	· _		0.267 0.002 0.399	· · · ·		- - -	-	-	0	0 0 0
O ₂ (Organics) Dry Solid Tota: Moisture Wet Solid Total	0.002		1,878 0.255 1.939	· · · · — ·		.	-	-	1.000 0 1.000	0.333 0 0.333
CO N ₂	0.088 2.375	71 1,916		; ; ;	0 1,162	• 0 929	0 1,331	0 985		
	0.424 0.841	297 428		- - -	0.353	247 0	374 0	262 0	. —	-
2) Dry Gas Total Noisture Wet Gas Total	$3.748 \\ 0.331 \\ 4.077$	2,711 412 3,123	·		$1.515 \\ 0.016 \\ 1.531$	1,178 20 1,196	1.805 0.017 1.622	1,247 21 1,268		
Wet Material Total	4.077	3,123	·	-	1.531	1,198	1.622	1,268	1,000	0.333

NOTES; 1) Metal oxides means metal oxide, sulfate, silicate, phosphate and others which form solid materials in cement production. 2) A small amount of NO, NO₂ and SO₂ are measured separately.

PRICE INFORMATION IN NEPAL FOR CONSTRUCTION MATERIALS, LABORERS, WORKS, AND INLAND TRANSPORT FROM CALCUTTA

PRICE INFORMATION IN NEPAL FOR CONSTRUCTION MATERIALS, LABORERS, WORKS, AND INLAND TRANSPORT FROM CALCUTTA

(1) Construction Materrials

. .

Item	Specification	<u>Unit</u>	Price Level RS
Cement	50 kg, Bagged	Ton	2,000 - 2,900
Sand		m ³	38 - 45
Gravel		т ³	55 - 69
Round Bar	Twisted (8 - 20 mmD)	Ton	8,800 - 9,000
Round Bar	Plain (8 - 20 mmD)	Ton	8,000 - 9,000
Angle	_	Ton	6,700 - 10,000
I Beam (I Type)	-	Ton	7,150 - 11,000
Cannel	~	Ton	7,800 - 10,500
Plate	4 - 12 mm thickness	Ton	10,500 - 11,500
G.I. Plate		m ²	100
Pipe	1B - 2 1/2 1.0 - 2.5 Inch	Ton	10,000 - 13,000
G.I, Pipe	12 mmD	ft	3.8 - 7.0
Asbesto Slate	· · · ·	ft ²	7.0
Timber	Square 25 x 50 x 4,000	m ³	3,500 - 3,900
Ordinary Plywood	3 x 1,200 x 2,400	m ²	30 - 100
Planed Plank	$12 \times 200 \times 4,000$	ft ³	70 - 150
Brick	Chimney made	1,000 nos.	400 - 475
Brick	Machine made	1,000 nos.	500
Acetylene	Gas	m ³	172
Acetylene	Carbide	kg	22 - 23
Oxygen	n de la construcción de la constru Construcción de la construcción de l Construcción de la construcción de	Cylinder	272 - 292
		3004	te Nonel

Notes: 1) Generally observed price level in January, 1984 in Nepal 2) Rs = Nepalese Rupees (Exchange Rate in January, 1984 is Rs 15.65/1.0 US\$)

(2) Construction Laborers

	Direc	t Daily Salary,	Rs/Day
Items	Trained	Experienced	Untrained
Ieal Coolie		18	
Coolie (Male)	· · · · ·	*=	16
Coolie (Female)	-	.	14
Coolie (Small)		***	10
lead porter		18	1 .
Porter		-	16
Mason, Carpenter, Painter, Plumber, Blacksmith	34	32	_
Electrician, Mechanics	32	30	-
Plumber Foreman	35	32	**
Driver (Light vehicle)	25	-	-
Sruck driver	30	-	-
Driver cum Junior Mechanics	27	-	°
Fruck driver cum mechanics, heavy equipment operator	32	-	→ ⁻
limber sawer	 ·	25	-
lood carver, Stone carver	32	30	-
lelder, foreman	32	30	
Security guard	25	22	—
light watchman	25	22	-
Driller	32	30	-
lelper		18	-
		1	

Notes: 1) Generally observed wage level in January 1984 in Nepal. The wage level is mostly for governmental project, the wage level is approximately 30% higher in private sector.

> Rs = Nepalese Rupees (Exchange Rate in January, 1984 is 2) Rs 15.65/1.0 US\$)

(3) Construction Works (Labor plus Materials)

Item	Specification	Unit	Price Level
	· · · ·		Rs
Earth Work - Excava- tion and Filling	0 - (-)3m (G.L.) Up to lead 100m	εm	17.25 - 18.30
Earth Work - Excava- tion and Filling	(-)3 - (-)6m (G.L.) Up to lead 100m	rm3	36.6
Sand Filling Work	Sand	Е _М	84.0
Gravel Filling Work	River Gravel	m3	140.0
Transportation of Soil	Labor only 100-500m	m3	20
·.	Labor only 100- 1,000m	m3	30
Concrete Work	(1 : 2 : 4) Plain (1 : 3 : 6) Plain	m ³ m ³	1,200 925
Reinforcement Concrete Work	(1 : 2 : 4)	m ³	1,280
Mild Steel Reinforce- ment Work		Ton	15,660
Form Work		m2	92
Asbesto Cement Sheet Roofing		m ²	160
Brick Work	Mortar (1 : 4) Chimney-made Brick	m ³	890
Brick Work	Mortar (l : 4) Machine-made Brick	m3	7 90
Course Rubble Masonry	Mortar (l : 4)	mЗ	91.0

Notes: 1) Generally observed price level in January 1984 in Nepal

2) The price level indicated above is inclusive for labor materials and a 22% of administration charges.

3) Rs = Nepalese Rupees (Exchange Rate in January, 1984 is Rs15.65/1.0 US\$)

Road Trans- port Charge	Days	Cargo and Weight/
	Required	Length Restriction
US\$/Freight Ton	Days	
60.0	5.0	Dry Season -30 Ton -4 x 10 Meter
		Rain Season - 10 Ton - 4 x 10 Meter
250.0	25.0	Dry Season - 70 Ton - 4.5 x 12 Meter
		Rain Season - 30 Ton - 4.5 x 12 Meter
90.0	7.0	Dry Season - 15 Ton - 4 x 10 Meter
		Rain Season - 8 Ton - 4 x 10 Meter
	60.0	60.0 5.0 250.0 25.0

(4) Inland Transport from Calcutta, India

Notes:

1) Rain Season in Nepal is from April to September.

2) Transport charge is not including import tax of 1.0% of CIF value which should be paid by import contractors.

ELECTRIC POWER CONSUMPTION AND OVERALL LOAD FACTOR INCREASE AT THE UREA FERTILIZER PLANT

ELECTRIC POWER CONSUMPTION AND OVERALL LOAD FACTOR INCREASE AT THE UREA FERTILIZER PLANT

1. Electric Power Consumption Pattern

The proposed urea fertilizer plant in Nepal will utilize secondary energy electric power as a major input for the production of urea fertilizer. The unit consumption of total electric power in the plant is 6.642 MW/Ton of urea and out of this, a major portion of 5.411 MW(81.5%) will be consumed for hydrogen gas production at water electrolysis plant and the rest of 1.231 MW(18.5%) will be utilized for ammonia synthesis, carbon dioxide recovery, urea synthesis and other facilities in the urea fertilizer plant. The supply of electric power is preferable at 132 kV level at the plant.

It is desirable to operate the whole urea fertilizer plant at the design capacity (275 TPD or 11.458 TPH) continuously throughout a day and a year except during the annual scheduled shut down for maintenance purpose for approximately 30 days a year. Generally such urea fertilizer plant by electrolysis and carbon dioxide recovery schemes would be operable at 90% of capacity utilization if adequate and stable supply of electric power is obtainable.

Therefore, for such continuous operation of urea fertilizer plant, a stable supply of electric power of hourly 76.1 MW or daily 1.827 GWh (monthly 54.8 GWh ... 30 days or annual 542.6 GWh ... 297 days) is required.

However, in Nepal the electric power supply during the dry season, especially in the morning and evening, has been and would be tight and limited, therefore specific provisions in the plant are required in the proposed plant in Nepal, such as to have hydrogen storage facility to keep continuous operation of ammonia and urea plant at technically minimum operable level (50% of design capacity) while closing down the electrolysis plant during a few hours of the peak period of electric power supply shortage to take full advantage of maximum utilization of secondary energy electric power which will be supplied at special tariff.

The highest peak of electric power consumption in Nepal is observed in the evening (from 7:00 PM to 23:00 PM) for four hours and the second peak is in the morning (from 8:00 AM to 10:00 AM) for three hours, therefore the capacity of hydrogen gas storage for two hours full operation use would be adequate to keep operation of ammonia and urea plant at a half load without manufacturing hydrogen gas during such power demand peak hours.

During such half load operation of ammonia and urea plant (5.729 TPH of urea) without water electrolysis operation, the electric power consumption is reduced to 0.6155 MW/Ton of urea. Therefore, the electric power supply of 3.526 MW hourly is the minimum level to sustain such continued operation. The daily production of urea at the plant will be flexible from 275 TPD(100%) to 137.5 TPD(50%) according to the availability of secondary energy. Therefore hourly electric power requirement are from 3.526 to 76.106 MW hourly or 0.913 to 1.827 GWh daily.

Summarizing the above analysis and discussion, the electric power consumption increase for the proposed urea fertilizer plant is calculated and shown as follows;

and the second					and the second	
Season	Urea	Product	ion	Electric Power Consumption		
	Hourly	TPH		Hourl	Y, MW	······································
		Off-			Off-	
· · · · ·	Peak Hour	Peak Hour	Daily, TPD	Peak Hour	Peak Hour	Daily, GWH
	(3+4 Hours)	(17 Hours)	(24 Hours)	(3+4 Hours)	(17 Hours)	(24 Hours)
Rain Season -Normal Operation	11.458	11.458	275.0	76.106	76.106	1.826.6
Dry Season -Minimum Continuous Operation	5,729	5.729	137.5	3.526	52,272	0.913.3
-Shut Down -Annual Maintenance	$0.0 \\ 0.0$	0.0 0.0	$0.0 \\ 0.0$	0.0	$0.0 \\ 0.0$	0.0 0.0

UREA FERTILIZER PRODUCTION AND ELECTRIC POWER CONSUMPTION

The annual requirement of electric power for the urea production is, therefore calculated in accordance with the annual production schedule which is shown in Table 4-9.

> ANNUAL UREA PRODUCTION AND ELECTRIC POWER CONSUMPTION

Year	Urea Production, TPY	Electric Power Consumption, GWh
1991/92	54,500	362.0
92/93	55,340	367.6
93/94	59,320	394.0
94/95	62,480	415.0
95/96	64,610	429.1
•	•	• • • • •
2001/02	69,750	463.3
na da faran an ∎ na da s e na an		
2005/06	72,620	482.3

2. Overall Load Factor

After the completion of the urea fertilizer plant in Nepal, the additional consumption over the firm energy would be added and consequently the overall load factor will be increased. The overall load factor without urea fertilizer plant and with urea fertilizer plant is calculated and shown below;

		Consumpti	on, GWh	Load Fac	tor, %
Year	Electric Power Generating, GWh	Without Urea <u>Project</u> (Firm Energy)	With Urea Project	Without Urea Project (Firm Energy)	With Urea Project
1991/92	1,725.7	1,167.8	1,529.8	67.7	88.6
92/93	2,263.9	1,299.4	1,667.0	57.4	73.6
93/94	2,690.8	1,445.6	1,839.6	53.7	68.4
94/95	(2,690.8)	1,608.0	2,023.0	(59.8)	(75.2)
95/96	(2,690.8)	1,788.0	2,217.1	(66.4)	(78.7)
•	•	•	• • •		•
2001/02	(2,690.8)	3,345.5	3,808.8	(124.3)	(141.5)

OVERALL LOAD FACTOR OF ELECTRIC POWER CONSUMPTION

The electric power generating capability and consumption without the urea fertilizer project are shown in Table 3-5 to Table 3-7. The annual overall load factor for firm energy is 67.7, 57.4, 53.7, 59.8 and 66.4% in 1991/92, 92/93, 93/94, 94/95 and 95/96, respectively, and after the completion of the urea fertilizer plant the overall load factor will be improved up to 88.6, 73.6, 68.4, 75.2 and 78.7%, respectively.

The electric power generating capability increase in Nepal is assumed to be limited up to the completion of Sapta Gandaki plant, therefore the deficit in 2001/02, calculated above is obvious due to such consideration. The deficit would be observed even without urea fertilizer plant in dry season of 1995/96.

WATER ELECTROLYSIS PROCESSES

WATER ELECTROLYSIS PROCESSES

1. Introduction

The electrolysis of water to produce hydrogen and oxygen was first discovered by Dr. von Cavendish in 1766. The chemical reaction is shown in accordance with the Faraday's Law as follows,

 $H_{20} + 2F = H_2$ (gas) + 1/2 O_2 (gas)

where F is the Faraday's Constant,

F = 96,484.56 + 0.27 Coulomb

The theoretical electric power requirement in direct current to produce 1.0 $\text{Nm}^3 - \text{H}_2$ (gas) plus 0.5 $\text{Nm}^3 - \text{O}_2$ (gas) is calculated as 3.55 kWh/l.0 $\text{Nm}^3 - \text{H}_2$ with 1.48 Volts potential, however for industrial operations the electric power requirement is much higher according to the process and ranges between 4.00 to 5.00 kWh/l.0 $\text{Nm}^3 - \text{H}_2$ at 1.6 to 1.9 Voltage.

The theoretical reaction of the ammonia and urea production is described as follows,

 $3H_2 + 2N_2 = 2NH_3$ (Ammonia)

 $2NH_3 + CO_2 = NH_2CONH_2$ (Urea) + H₂O

Therefore the overall reaction in weight basis is summarized,

$$^{2H}_{2O}$$
 + $^{2N}_{2}$ + $^{CO}_{2}$ + 6F = $^{NH}_{2}CONH_{2}$ + $^{3}/^{2}O_{2}$

$$1.5H_2/NH_3 = (3 \times 1.00794)/(14.0067 + 3 \times 1.00794)$$

= 0.177553

 $2NH_3/NH_2CONH_2 = (2 \times 17.03052)/60.05516 = 0.5671626$

The consumption of hydrogen is generally quoted in volume as follows,

 $1,972.93 \text{ Nm}^3 - \text{H}_2 (\text{gas})/1.0 \text{ Ton of NH}_3$

1,118.97 Nm^3 - H₂ (gas)/1.0 Ton of Urea

The electric power loss at the transformer and rectifier is generally 3.0% from alternating current to direct current electric power, therefore the theoretical electric power consumption for the hydrogen production by water electrolysis is calculated as follows,

3,972 kWh/1.0 Ton of Urea (Theoretical)

5,249 kWh/1.0 Ton of Urea (Industrial)

Additional electric power of 1,231 kWh is required for industrial production of ammonia and urea.

2. Industrial Water Electrolysis

Large scale industrial production of hydrogen by electrolysis of water was first done in 1930.

Hydrogen obtained by water electrolysis is utilized at present for nitrogen fertilizer production, metallurgical processes, glass manufacturing, meteorological use, fat hardening, argon purification, chemicals, nuclear power plant and cooling of electric power generators.

Regarding nitrogen fertilizer production from hydrogen obtained by water electrolysis, the major products are nitric acid and ammonium nitrate as final product.

A list of ammonia plants using electrolysis hydrogen from either water or sodium chloride is shown in Table AIII-2-1. Although some of them are now idle or shutdown, the total production capacity is approximately one million tons of ammonia yearly. The largest ammonia plants are in Norway and in Egypt with a 100,000 TPY capacity where low cost electric power is available. It may be noted that none of them are directly producing urea as the final product.

3. Water Electrolysis Processes

Several electrolysis processes are now available as commercially proven technology; the major features of such processes are summarized in Table AIII-2-2. There are basically two types of electrolysis cell, namely Bath Type and Filter Press Type. The operating conditions differ from atmospheric pressure to pressurized up to 30 ata to produce high pressure hydrogen. The electric power consumption is the most important index for the process comparison, the requirement being from 4.22 to 5.5 kWh for the production of 1.0 Nm^3 of hydrogen gas. The reactivity of the electrode is high during the initial year of operation and gradually declines, eventually requiring reactivation treatment. The consumption of electric power similarly increases with each operating year but after the reactivation, the consumption returns to the original minimum level.

Company	Location	Compressor Type	Electrolysis	Ammonia Capacity (Name Plate Capacity x 330 days) - 1984	Final Product
West Europe - France				(N- <i>T</i> 4T)	
Rhone Poulenc Ind.	Saint Aubar	RCP	H ₂ O	16,000	
- Iceland Arburdarverskmidjan	Gufunes, Reykjavik	КCР	H ₂ 0	8,000	
- Norway Norsk Hydro S.A. Norsk Aydro S.A.	Glomf jord Rjukan	RCP RCP	н 1200 1420	100,000 95,000	Ammonia, NA Ammonia, NA, AN, CAN
- Spain Energia Ind.	Sabinaningo	RCP	H ₂ O	8,000	Ammonia, NA, AS
ALAGONESAS) S.A. (ARAGONESAS) S.A. Cros	Flix	RCP	Н2O	3,000 -Shutđown	Ammonia
- Sweden Uddeholm A.B.	Skoghall	RCP	NaCI	2,000	Ammonia
- Switzerland Emser Werke A.G.	Ems-Domat	RCP	н ₂ 0	20,000	Ammonia, Urea, Ac (reared
				252,000	20 VVAPLOLATCA
East Europe				C	

0

"Table AIII-4-1 LIST OF AMMONIA PLANTS USING ELECTROLYSIS HYDROGEN AS RAW MATERIAL

North America -USA Dow Chemical Co. PWC Corp. South Georgia Pacific Uppiter Chemical Tarke Charleston Georgia Pacific Uppiter Chemical Tarke Charles RCP RCP Tarke Charles RCP RCP RCP RCP RCP RCP PPG Ind. Inc. PPG Ind. Inc. PPG Ind. Inc. New New New New New New RCP RCP RCP RCP RCP RCP RCP RCP			Capacity x 330 days) - 1984	Product
al Co. Freeport South Charleston Charleston Plaquemine Lake Charles Taft Taft Portland New Martinsville cerials Co. Wichita Dr Buenos Aires Machinayo Cuzco I Cachinayo Cuzco I Cachinayo Cuzco I Cachinayo Cuzco I Cachinayo Cuzco				
cific Charleston Charleston Charleston Charleston Lake Charles Taft Taft Tacoma Portland New Martinsville cerials Co. Wichita Buenos Aires I Cachinayo Cuzco I Cachinayo Cuzco New Kwe		NaCL	86,000	Ammonia
cific Charleston lemical Lake Charles Agri. Taft Tacoma chemicals Portland Inc. New Martinsville icrials Co. Wichita Aires Dr Buenos Aires nical Ind. Kwe Kwe		NaCl	8,000	Anmonia
Agri. Taft Lake Charles Agri. Taft Taft Chemicals Portland Chemicals Portland Enc. New Martinsville Martinsville Dr Buenos Aires Dr Cuzco Cuzco Mical Ind. Kwe Kwe			Closed in 1981	
Agri. Taft Charles Agri. Taft Tacoma Chemicals Portland New Martinsville cerials Co. Wichita Aires Dr. Buenos Aires nical Ind. Kwe Kwe		NaCL	146,000	Ammonia, (Urea)
Agri. Taft Tacoma Chemicals Portland Inc. Tacoma Portland Martinsville		NACL	000,000	Annonla
Tacoma Chemicals Portland Inc. Portland Inc. New Martinsville Martinsville Michita Dr Buenos Aires Dr Cachinayo Cuzco I Cachinayo Cuzco Nical Ind. Kwe Kwe		NaCl	67,000	Ammonia
chemicals Portland Inc. New Martinsville Martinsville Michita Buenos Aires or Buenos Aires I Cachinayo Cuzco nical Ind. Kwe Kwe		NaCl	:e 1981 000	Anmonia
rnc. New Martinsville eerials Co. Wichita Dr Buenos Aires l Cachinayo Cuzco nical Ind. Kwe Kwe		NaCl	Shutdown in 1980 6,000	
a martinsville rerials Co. Wichita Dr Buenos Aires l Cachinayo Cuzco nical Ind. Kwe Kwe		l Jev	30.000	Aqua Ammonia Ammonia
erials Co. Wichita a Buenos Aires br Cachinayo Cuzco nical Ind. Kwe Kwe	4)	1	Shutdown in 1980	5 T 7 1 / 11/1/172
a Dr Buenos Aires 1 Cachinayo Cuzco nical Ind. Kwe Kwe	RCP	NaCl	000 10 19 000	Amnonia
or Buenos Aires 1 Cachinayo Cuzco nical Ind. Kwe Kwe	·			
l Cachinayo Cuzco nical Ind. Kwe Kwe	RCP	NaCl	3,000	Ammonia
nical Ind. Kwe Kwe		Н20	13,000 16,000	Ammonia, NA, AN
nical Ind. Kwe Kwe	·			
Middle East	RCP	Н20	80,000 80,000	Ammonia, NA, AN
Bgyptian Chem. Ind. Aswan	RCP	Н2O	100,000	Ammonia, NA, AN Can
(KIMA)	·		100°000	

	- - - - -			· · · · · · · · · · · · · · · · · · ·	
Company	Location	Compressor Type	Electrolysis	Ammonia Capacity (Name Plate Capacity x 330 days) - 1984	Final Product
Asia -Japan Tokuyama Soda Co., Itd.	Токиуата	RCP	NaCl	54,000*2)	Ammonia, AC
-India Fertilizer Corp. of India Ltd.	Naya Nangal		1	90,000-Closed 144,000	Ammonia, NA, CAN
Oceania -Australia Electrolytic Zinc Co., Australaria Ltd.	Risdon, Tasmania	RCP	1 - ⁵⁶ - 5	12,000 12,000	Ammonia, AS
WORLD TOTAL				1,067,000	
Notes: AN; Ammonium Nitrate NA; Nitric Acid CAN; Calcium Ammonium Nitrate AC; Ammonium Chloride RCP; Reciprocating *1); Ammonial is sold to othe *2); Raw material has been sw	Nitrate e to othe been sw	r company to produe urea. itched from fuel oil to c	hlorine cell	hydrogen in 1982.	

Table AIII-4-2 PROCESS COMPARISON OF WATER ELECTROLYSIS

Hydrogen Purity	æ	1.66	8.99	ი ი ი
Electric Power Consumption	bc-kwh/Nm ³ -H ₂ *	5.5/6.0	4.22/4.88	4.3/4.6
onditions Pressure	a t a	1.02	1.03	30.00
Operating Conditions Temperature Pressure	ູ	75	0 Ø	0
Electrolyte Solution Circulation	ပိ	Natural	Forced	Forced
Electr	e e e e e e e e e e e e e e e e e e e	иаОН - 20	КОН - 25	КОН - 25
Electrode	Material	Ni- Plated	Ni- Plated	Ni- Plated
	Type	Uni- Polar	Bi- Polar	Bi- Polar
Electrolyzer ell	Number	0	235	139
Ele Cell	Type	Bath	Filter Press	Filter Press
Process		Process A	Process B	Process Process

* Nm^3 (Dry gas at 20°C and 1.0 ata)

Annex IV

Annex IV-1	PROJECT COST ESTIMATE
Annex IV-2	BACK DATA FOR ESTIMATING
	ESCALATION

- Annex IV-3 BREAKDOWN OF PRE-OPERATION EXPENSES AND INITIAL WORKING CAPITAL
- Annex IV-4 COMPARATIVE STUDY OF ALTERNATIVE PLANT CAPACITIES AND MANUFACTURING PROCESS
- Annex IV-5 FINANCIAL PROJECTIONS (BASE ESTIMATES)
- Annex IV-6 SENSITIVITY ANALYSIS OF FINANCIAL STRUCTURE BY CHANGES IN EQUITY/DEBT RATIO AND INTEREST RATES ON LOAN
 - Annex IV-7 ECONOMIC POWER COST
 - Annex IV-8 ECONOMIC RATE OF RETURN

Annex IV-1

PROJECT COST ESTIMATE

			US\$5.00/m ²	· · · · ·					•					· .	·	:				3 4 D 5 1)	р р н г						•			
IMADE	l Production; July, 1991 conomic Life; July, 2006 (15 years	Unit: US\$,Million N o t e	Lot $(500 \times 200 = 100,000 m^2)$ @ U: (100 x 180 = 18,000 m ²)	Moving 230,000			13,300 Nm ³ PH 4,380 Nm ³ PH 4,440 Nm ³ PH 160 TPD	75		•			•			For two years uses One spare set and two years uses	Мап-Молсћ Мап-Мопсћ Мап-Мопсћ	· · · ·	Net 8,500 Ton, Freight 25,400 Ton	אר שיש מיד גד	ransport mode 860 km		· · · · · · · · · · · · · · · · · · ·		480 Man-Month 430 Man-Month	.E (\$9,000 x 150M/M) x 1	\$50 x 75M/M x 30 000 x 150M/M) x 1, \$50 x 150M/M x 30			5% of 9.1 and 9.2
CT COST EST	- Commercia - Project B	Tota1	0.59	1.50	v m 1 m	(40.22)	(((22.27)) ((2.50)) ((2.02)) ((6.63))	(6.80) 10.70)	9 T)	((1.54)) ((0.36)) ((0.22))	(4.2 (2.4 (0.2	((0.22)) ((1.59)) ((0.52))	((0.43)) ((0.40)) ((0.03))	(4.01)	((2.22)) ((1.79))	0.85 1.48		7.82	<u>4.59</u> 2.00		1.48 L	D.82	<u>10.16</u>	•	5.43 3.39	2.78 1.56	1.22	- - -	0.39	0.23 1.54 0.03
1 PROJE	Jan., 1984 Jan., 1988 Jan., 1991	stment Cost Local Currency Component	0.59	0.15	σ.	(1.81)	((0.69)) ((0.21)) ((0.02)) ((0.47))	(0.42) (0.53)	0.14)	((0.01)) ((0.01))	0.05) 0.16) 0.03)	(0.59) ((0.12)) ((0.30))	((0.23)) ((0.21)) ((0.02))	(2.31)	(((1.28)))(((1.03))	1 1	3.44 (2.47) (0.97)	1	2.59 -		1.48 1.48	0.49	0.85		1 0.85	0.33	0.22		1.7U	- 1.54 0.02
Annex IV-	te tion :	Foreign Currency		1.35	64.42	(38.41)	((21.58)) ((2.29)) ((2.00)) ((6.16))	(6.38) 10.17)	1.55)	((1.42)) ((0.35)) ((0.20))	4.17) 2.26) 0.22)	$\begin{array}{c} (1.74) \\ ((0.10)) \\ ((1.42)) \\ ((0.22)) \end{array}$	((0.20)) ((0.19)) ((0.01))	(02.1)	((0.94)) ((0.76))	0.85 1.48		3 7.82	2.00 2.00	ĺ	i • I	0.33	9.31	•	5.43	2.45 1.45	1.00	ć	0.05	0.23 - 0.01
	Project : Urea Ferti- Schedule: Location: Hetauda, Nepal -Contract Award Product : Urea, Bagged -Mechanical Comp Capacity: 275 TPD		1.0 Land Acquisition	2.0 Site Preparation	.0 Plant Direct Cost	3.1 Plant Equipment and Material 3.1.1 Process Plant	 Hydrogen Gas Carbon Dioxide Gas Nitrogen Gas Ammonia 	- Urea 3.1.2 Utility Plant	4 • •	COULING WALEY TOWEY - WASLE WALEY Treatment - Electric Power Generation - Electric Power Receiving	- Steam Generation - Inert Gas Generation - Instrument and Plant Air	3.1.3 Material Handling Facility - Bulk Urea Storage - Urea Bagging and Loading - Bagged Urea Storage	 3.1.4 Auxiliary Facility Maintenance Shop Spare Parts and Others Storage 	X	 Administration Building and Others Township 	3.2 Spare Parts 3.3 Catalyst and Chemicals	 4 Construction and Ere 4.1 Foreign Technician 4.2 Local Labor 	4.0 Construction and Erection Equipments	5.0 Transportation and Insurance 5.1 Ocean Transport and Insurance	.2 Custom Clearance, Import Duty and may	ang, tancé	6.0 Indirect Field Expenses	7.0 Engineering Services Fee	.1 Know-How and Basic Er	7.2 Ungineering at Home Office 7.3 Supervisor and Service man	8.0 Project Management Services 8.1 Technical Managerment Advisor	8.2 Operation and Maintenance Advisor		р т	 9.2 Training Expenses 9.3 Losses during Start-up 9.4 Miscellaneous

-

9.4 Miscellaneous 5% of 9.1 and 9.2 10.0 Base Project Cost, BPC - at Cost Estimate Date 87.97 15.81 103.78	6.79 29.02 0.00 5.21	4.41. 17.81	12.0 Initial Working Capital 0.40 2.28 2.68	13.0 Interest during Construction <u>9.28</u> - <u>9.28</u> Interest Rate; Foreign 5%/Year Local 15%/Year	14.0 Total financing Required for <u>119.87</u> 24.92 <u>144.79</u> Equity/Debt = 30/70	
Miscellaneous Base Project C - at Cost Es	Contingency Co Physical Conti	11.2 Price Escalation	Initial Workin	Interest durin	Total Financin Completion of	
ы ы ы ы	ទីខ្ល	ч <u>С</u>	н	н	нö	

								:		· · · ·			- - - - - - -		· · ·										
						• • •				•		· · ·	на 1 1			÷			•						
												•	· .	5 YEAR	59.19	0.0	89.19	4.46	12-16	0.30	4.76	4.76			
				•									•	4 YEAR	42.57	0.0	42.57	2.13	46.62	1.17	3,30	3.30			•
IV-1]						•		•	•	• • • •			• • •	3 YEAR	3.04	0,0	3.04	0.15	39.53	66.0	1.14	1.14			
to Annex	NO		•		ц			- 		· .		 		2 YEAR	ດ ດ	0.0	0,0	0.0	3.04	0.08	D. D8	0.08		0.00 0.108 0.148 0.128	4.76
[Attachment (1)	INTEREST DURING CONSTRUCTION	•	101.35 43.44	144.79	5.00% PER YEAR	DISBURSEMENT	0.0	3.04	39.53	46.62	12.16	101.35	END OF YEAR:	1 YEAR	0.0	0.0	0.0		0.0	0.0	0.0	0.0		A YEAR 7 YEAR 7 YEAR 7 YEAR	S YEAK
[Atta	DI SBURSEMENT AND INTEREST DU) REQUIRED: (70.00%) Y (30.00%)	TOTAL	•	~	JR 0.0	JR 3.00	JR 39-08	NR 46.00	NR 12.00		CONSTRUCTION: AT THE		DRAWN	B. PREVIOUS YEARS INTEREST	OPENING DEBT (A+B)	INTEREST ON OPENING DEBT	DRAWN DURING YEAR	INTEREST ON CURRENT DRAW G	TOTAL INTEREST FOR YEAR(D+F)	INTEREST PAYMENT	S CONSTRUCTION:		
•	D158U		TOTAL FINANCING REQUIRED: DEBT (70.00%) EQUITY (30.00%)		INTEREST RATE:	DISBURSEMENT: YEAR	1 YEAR	2 YEAR	3 YEAR	4 YEAR	5 YEAR		INTEREST DURING CONSTRUCTI		A. ALREADY DRAWN	B. PREVIOUS	C. OPENING	D. INTEREST	E. DRAWN DU	F. INTEREST	G. TOTAL IN	H. INTEREST	INTEREST DURING CONSTRUCTL		

9.28

TOTAL

[Attachment (2) to Annex IV-1]

CONTINGENCY SCHEDULE BY COST GROUP

NEPAL UREA PROJECT (275 TPD) (UNIT: US\$MIL.)

	Y (PUI)	LOCAL	21-52 28.81	42.00	41.32	39.27	44.04	46.18	30.04	41.32	46.18	39.95	40.63	53 41	0 0	0.0
COMBINED	CONTINGENC	FOREIGN	9.00 18.45	25.46	25.10	24.03	30.22	27.63	22.60	25 10	27 63	24.39	24.74	31 33	0	0.0
	Y (PCI)	LOCAL	15.73 22.67	35-24	34.59 33.94	32.64	44.04	39.22	30:04	34.59	39.22	33.29	33.94	46.11	с. С	0.0
PRICE	CONTINGENC	FOREIGN	9.00 12.81	19.48	19.14 18.80	18.12	24.02	21.55	16.76	19.14	21.55	18.46	18.80	25.08	0.0	0
	Y.(PUE)	LOCAL	ۍ 00 00	ۍ ۵۰	200 00	5.00	о, О	5.00	0.0	5,00	ۍ. 00	500	5,00	5-00	0	
PHYSICAL		FOREIGN	0.00	2,00	200 00	5.00	5.00	5.00	5,00	5.00	5.0	5 00 00	5.00	5.00	0.0	0.0
EXPEND		LOCAL	30.00	62.00	61.00 60.00	58.00	75,00	68.00	54.00	61.00	68.00	59.00	60.00	78.00	0.0	0.0
MONTHS TO	DATE (MON	FOREIGN	30.00	62.00	61.00 60.00	58.00	75.00	68.00	54.00	61.00	68.00	59.00	60.00	78.00	0.0	0.0

A. LAND ACQUISITION B. SITE PREPARATION C. PLANT DIRECT COST C-1 PROCESS UNITS C-2 UTILITY FACILITIES C-2 UTILITY FACILITIES C-3 AUXILIARY FACILITIES C-4 OFFSITE FACILITIES C-3 ONST. & ERECTION LABOR F. CONST. & ERECTION LABOR

[Attachment (3) to Annex IV-1]

ESCALATED CAPITAL COST ESTIMATE

NEPAL UREA PROJECT (275 TPD). (UNIT: US#MIL.)

	BASE PROJECT	VOLECT COST	PHYSICAL CONTINGENCY	NCY	PRICE CONTINGENCY	ENCY	TOTAL F	TOTAL PROJECT COST (AS COMPLETED)	F-	
	FOREIGN	I LOCAL	FOREIGN	LOCAL	FOREIGN	LOCAL	FOREIGN	LOCAL	TOTAL	
	0.0	0.59	0.0	0.03	0.0	0,10 0,04	1.60	0.72 0.20	0.72 1.80	
ហ	38.41 10.17 1.94	2004 20053 2223	1.92 0.51 0.10		7.86 0.38 0.38	0.67 0.19 0.29	48.19 12.72 2.42	2.57 0.75 1.15	50.76 13.47 3.57	
HEM.	2.873				2.23		12.04 12.04 50.04 50.04	,000 ,000	17.62 17.62	
DUTY ES	2 33 33 4 0 5 5 6		0.02	0.02	0.40	0,30	11.58	3.66	6.16	
RVICES	2,45		0.12 0.01	0.02	0.48	0,13 0,92	3.05 0.38	0.52 2.92	3.57	
	87.97	15.85	4.41	0.80	17.81	5,99	110.19	22.64	132.83	
AL RUCTION	00	0.0	0.0	00	0.0	00.0	0.40 9.28	2.28	2.48 9.28	·.
RED	87.97	15.85	4.41	0.80	17.81	5,99	119.87	24.92	144.79	

A. LAND ACQUISITION
B. SITE PREPARATION
C. PLANT DIRECT COST
C-1 PROCESS UNITS
C-2 UTILITY FACILITIES
C-3 AUXILIARY FACILITIES
C-4 OFFSITE FACILITIES
C-5 AUXILIARY FACILITIES
C-4 OFFSITE FACILITIES
C-4 OFFSITE FACILITIES
C-5 AUXILIARY FACILITIES
C-4 OFFSITE FACILITIES
C-4 OFFSITE FACILITIES
C-4 OFFSITE FACILITIES
C-5 AUXILIARY FACILITIES
C-6-5 OFFSITE FACILITIES
C-4 OFFSITE FACILITIES
C-7 ONST. & ERECTION LABOR
FRONST. & ERECTI

Annex IV-2

BACK DATA FOR ESTIMATING ESCALATION

Annex IV-2 (1)

PLANT COST INDEX

(Unit: 1980=100)

	C.E. PLANT	SRI	PLANT COS	ST INDEX
Year	COST INDEX (U,S.A.)	<u>U.S.A.</u>	JAPAN	W.GERMANY
1980	100	100	100	100
1981	113.7	116.1	104.7	105.2
1982	120.3	120.7	107.4	112.4
1983	122.0	122.4	114.4	113.8
1984	122.9	N.A.	N.A.	N.A.
Av. Ann. (1980-1984) Escalation	5.3%	5.2%	3.4%	3.3%
<u>`</u>				

Source: Chemical Engineering, U.S.A. SRI, U.S.A.

Annex IV-2 (2) PRICE INDEX IN NEPAL

.

	AVENAGE							1111 10000000	
х. Н	F.E. Rate (Rs. per US \$)	Rupée Terms	Changes to previous year (%)	US Dollar Terns	Changes to previous year (%)	Rupee Terms	Changes to previous Year (%)	US Dollar Terms	Changes to previous Year (%)
1974/75	10.56	138.0		132.4		134.0		128-54	
1975,776	11.97	137.0	- 0.72	115.9	- 12.46	141.1	+ 5.30	119.41	- 7.11
1976/77	12,50	140.7	+ 2.70	114 0	- 1.64	141.5	+ 0.28	114.67	- 3.97
1977/78	12,36	156.4	+ 11.16	128.2	+ 12.46	155.9	+ 10.18	127.77	+ 11.42
97/8791	12,00	161.8	+ ω	136.6	+ 6.55	761 l	+ 3.34	136.00	+ 6.44
1979/80	12.00	177.6	+ 9.77	149.9	+ 9.74	180.8	+ 12.23	152.63	+ 12.23
1980/81	12.00	201.4	+ 13.40	170.0	+ 13.41	207.2	+ 14.60	174.91	+ 14.60
1981/82	12.96	222.4	+ 10.43	173.8	+ 2.24	229.2	+ 10.62	179.15	+ 2.42
1982/83	13,40	250.7	+ 12.72	189.5	+ 9.03	252.4	+ 13.35	196.40	+ 9.63
Average (1977/78	Average Increase Rate (1977/78 - 1982/83) 10.67%	ate 10.67%		8. 89 8,80	·	10.75%	-20	8.98%	

Source: Nepal Rastra Bank

Annex IV-3

BREAKDOWN OF PRE-OPERATION EXPENSES AND INITIAL WORKING CAPITAL

Annex IV-3(1)

ESTIMATE OF PRE-OPERATIONAL EXPENSES (1984 Prices)

1. Personnel Expenses and Overhead

1.1 Initial 3 Years

	D	100 600
- General Manager (1 x Rs. 34,200/yr x 3 yrs)	Rs.	
- Managers (3 x Rs. 20,520/yr x 3 yrs)	Rs.	184,680
- Senior Engineers, and		
Senior Officers (6 x Rs. 15,960/yr x 3 yrs)	Rs.	287,280
- Supervisors, and		
Officers (10 x Rs. 13,680/yr x 3 yrs)	Rs.	410,400
- Secretary, and		
Workers (10 x Rs. 10,680/yr x 3 yrs)	Rs.	320,400
- General Workers (5 x Rs. 7,320/yr x 3 yrs)	Rs.	109,800

Rs. 1,415,160

Total

1.2 Last Half Year

	50% of full personnel cost (Rs. 3,637,320⊥⁄ × 0.5)	Rs. 1,818,660
1.3	Total Personnel Cost (1.1 + 1.2)	Rs. 3,233,820
1.4	Overhead (1.3 x 70%)	Rs. 2,263,674
	Total: (1.3 + 1.4)	<u>Rs. 5,497,494</u> (US\$343,600)
1.5	Overseas Trip Expenses (@US\$5,000/trip x 10 trips)	<u>US\$50,000</u>
1.6	Personnel Expenses and Overhead: Grand Total	<u>US\$393,600</u>

Note: 1/ See Table 2-5, Part IV

2. Training Expenses (Trainings in foreign countries)

2.1 20	persons (2 months training) iving expenses (@US\$80/diem x 20 persons	
	x 60 days) rip expenses (@US\$1,500/trip x 20 trips)	US\$96,000 US\$30,000

Total

2.2 30 persons (2 months training in India)

- Living expenses (@US\$50/diem x 30 persons x 60 days) US\$90,000 - Trip expenses (@US\$500/trip x 30 trips) US\$15,000

Total

2.3 Total expenses: (2.1 + 2.2)

3. Loss during Start-up

3.1 Utility and supply costs for production of urea

 Electric power (@US¢3.56/kwh x 6,642 kwh/ton) Coal (@US\$40.63/ton x 0.256 tons) Chemicals and catalysts 	US\$236.45 US\$10.40 US\$2.72
Total	US\$249.57

3.2 Loss (Assuming 50% operation for 3 months and losses for 50% of the production)

US\$249.57/ton x 275 tons/day x 0.5 x 90 days

<u>US\$1,544,214</u>

US\$126,000

US\$105,000

US\$231,000

Annex IV-3(2)

INITIAL WORKING CAPITAL (1991 Price)

	Estima	ted Cost (U	IS\$'000)
Items	F.E. Portion	L.C. Portion	Total
Product Inventory (Ann. Direct Operating Cost x 20/330)	· .		
 Foreign Exchange Component (\$4,496 x 10³) x 20/330 Local Currency Component 	272	· _	272
$($35,814 \times 10^3) \times 20/330$	-	2,171	2,171
Account Receivable (Ann. Direct Operating Cost x 0.5/12)			· · ·
- Foreign Exchange Component			
(\$4,496 x 10 ³) x 0.5/12 - Local Currency Components	187	* -	187
$($35,814 \times 10^3) \times 0.5/12$		1,492	1,492
Account Payable (15 days usance for electric power, coal, and bags)			
- Coal (\$1,416 x 10^3 x 0.5/12)	-)59	_	-)59
- Electric power and bags (\$33,259 x 10 ³ x 0.5/12)	· · -	-)1,386	-)1,386
Total	400	2,277	2,677

Annex IV-3(3)

DIRECT OPERATING COST (1991 Price)

	· · · · · · · · · · · · · · · · · · ·			
		Estimat	ed Cost (U	s\$'000)
Cost Items	Calculation Basis	F.E. Portion	L.C. Portion	Total
l. Electric Power	@\$0.0356 x l.5 x 6,642 kwh x 275 t/d x 330 days	-	32,187	32,187
2. Coal	@\$40.63 x l.5 x 0.256 t x 275 t/d x 330 days	1,416		1,416
3. Catalyst & Chemicals	02.72 x 1.5 x 275 t/d x 330 days	370	-	370
4. Bags	@\$0.375 x 1.5 x 21 bags x 275 t/d x 330 days	·	1,072	1,072
. Personnel Cost	\$227,333 x 1.407	-	320	320
. Insurance				
l) Personnel	2% of Item 5	-	6	6
2) Plants	US\$117.95 x 10 ⁶ x 1.175%		1,327	1,327
		(80%)	(20%)	
. Maintenance	US\$117.95 x 10 ⁶ x 3%	2,710	678	3,388
. Overhead	70% of Item 5	. <u> </u>	224	224
Total		4,496	35,814	40,310

Annex IV-4

COMPARATIVE STUDY OF ALTERNATIVE PLANT CAPACITIES AND MANUFACTURING PROCESS

Annex IV-4

COMPARATIVE STUDY OF ALTERNATIVE PLANT CAPACITIES AND MANUFACTURING PROCESSES

1. Introduction

This Annex IV presents the results of a comparative study of urea fertilizer production economics, based on alternative plant capacities and alternative manufacturing processes. The objective of this study is to determine the optimum capacity of the proposed urea fertilizer plant, as well as an appropriate manufacturing process to be adopted for the plant. The study is made in the following two steps.

Step 1:	Comparison of the production economics of
	water-electrolysis-based urea fertilizer
	plants of different size

Step 2: Comparison the production economics of the water-electrolysis-based urea fertilizer plant, with those of alternative manufacturing processes.

2. Production Economics of Water-Électrolysis-Based Urea Fertilizer Plants

The primary objective of this project is to produce urea fertilizer by efficient utilization of indigenous resources -water and hydropower. In this context analysis of the production economics of urea fertilizer is first made on water-electrolysis-based urea fertilizer plants of different sizes. In view of the future demand for urea fertilizer in Nepal [Part II -- Market Study], the following five cases have been selected for the comparative studies:

Case	1:	100	TPD
Case	2:	200	TPD
Case	3:	250	TPD
Case	4:	275	TPD
Case	5:	300	ДЪD

Table IV-4(1) tabulates the project costs estimated for these five cases, and Table IV-4(3) tabulates the production costs of urea fertilizer (bagged) estimated for each case. The estimates use the same assumptions as used for the base estimate [Part IV -- Financial Analysis]. Presented in Table IV-4(3) are the production costs in current prices estimated for the year of 1997, the mean year of the 15-years project economic life span, so the given costs show a representative cost structure. They are the production costs estimated by assuming 90% capacity utilization. Figure IV-4(1) illustrates the correlation of the production costs vs. plant capacity which has been derived from the costs estimated for the 90% capacity utilization [Table IV-4(3)]. Figure IV-4(2) illustrates sensitivity of the production costs to changes in capacity utilization. These estimates indicate the characteristics of the production economics as summarized below.

- (1) A large size plant can produce urea fertilizer at lower production costs per ton (unit production costs), since capital related costs and other fixed costs per ton of the product are lower for a larger size plant due to scale economy. Hence, the production costs for Case 5 (300 TPD) are lowest among the five alternatives, as far as all cases assume operation at the same capacity utilization rate.
- (2) Assuming operation at the same capacity utilization rate, differences in the unit production costs which accrue from differences in plant capacity would be smaller for plants

having larger capacity; assuming operation at 90% capacity utilization rate, the cost differences are US\$175.39 per ton between Case 1 (100 TPD) and Case 2 (200 TPD), and US\$63.53 per ton between Case 2 (200 TPD) and Case 5 (300 TPD).

- (3) The unit production costs will increase if operation in done at lower capacity utilization rates [Figure IV-4(2)]. Even at lower capacity utilization rates, however, there is no change in the relative position of the unit costs due to differences in plant capacity, as far as operation at the same capacity utilization rate is assumed for all cases.
- (4) Contrary to the mechanisum of production costs as mentioned in (3) above, the relative position of the unit production costs due to differences in plant capacity would change if the different capacity utilization rates are applied for each case.

Because of the characteristics of the production economics as summarized above, selection of an optimum plant capacity must be made by giving attention to the unit production costs likely to be attained for producing a projected quantity of urea fertilizer.

 Selection of Optimum Capacity of Water-Electrolysis-Based Urea Fertilizer Plant

Table IV-4(6) tabulates the annual production of urea fertilizer projected for this project, and annual capacity utilization rates for operation which have to be achieved in order to realize the projected production. It is common practice to assume a maximum capacity utilization rate for operation of urea fertilizer plants as 90% of annual production

capacity based on 330 on-stream days a year. In addition to that, there is a limited supply of electricity which is another factor limiting the capacity utilization rates [See Part III]. By taking those factors into consideration, the maximum capacity utilization rate for each case is assumed as follows:

		Daily Capacity	Annual Capacity	Max. Capa- city Utili- zation Rate	Maximum Production (tons)
Case	1	100 TPD	33,000 TPA	90%	29,700
Case	2	200 TPD	66,000 TPA	85%	56,100
Case	3	250 TPD	82,500 TPA	83%	68,475
Case	4	275 TPD	90,750 TPA	83%	75,322
Case	5	300 TPD	99,000 TPA	80%	79,200

As in evident from the figures given in Table IV-4(6), Case 1 (100 TPD) and Case 2 (200 TPD) would be too small, while Case 5 (300 TPD) would be too large. Thus Case 3 (250 TPD) or Case 4 (275 TPD) should be an appropriate plant capacity for the project. The unit production costs which are incurred in producing the quantity projected for 1977/78 are as follows [Table IV-4(3) and Figure IV-4(2)]:

			Capacity Utiliza- tion Rate	Annual Production (ton)	Daily Costs (US\$'000)	Unit Cost per Ton (US\$/t)
Case	e 1		90.00%	29,700	20,960	705.71
Case	2		85.00%	56,100	30,854	549.98
Case	s 3		80.92%	66,760	35,117	526.02
Case	2 4		73.56%	66,760	36,165	541.72
Case	2 5		67.43%	66,760	37,210	557.37
ſ	The	se	figures are	indicated with	(x) mark in	Figure $IV-4(2)$

[These figures are indicated with (x) mark in Figure IV-4(2)]

The given figures can use an economic parameter for judging an economic advantage of each case, because they are deemed as those representing the production cost position of each case. These cost figures imply that Case 3 (250 TPD) and Case 4 (275 TPD) are more economical than other cases, due to the following reasons.

- (1) The production costs of Case 1 and Case 2, although a least cost level attained by maximum capacity utilization (i.e., 90% for Case 1 and 85% for Case 2), are still higher than those for Case 3, Case 4, and Case 5 due to the former's disadvantage in scale economy compared to others.
- (2) The production cost of Case 5 in higher than those for Case 3 and Case 4, because in this case a lower capacity utilization results in cost increases more than offsetting cost advantage compared to Case 3 and Case 4.

Hence, the selection of Case 3 or Case 4 can also be justified from the viewpoint of production economics. Now, further scrutiny is made to select Case 3 or Case 4 specifically. Table IV-4(8) tabulates the unit production costs of Case 3 (250 TPD) and Case 4 (275 TPD) estimated for every year of 1991/92 - 2005/06. These costs have been estimated on the following assumption:

- a. Electricity Price: 40% of the present tariff level
- b. Equity/Debt Ratio: 30:70
- c. Interest on Long-Term Loan : 5% p.a.

The estimates indicate that for the initial ten years (1991/92 - 2000/01) the unit production cost of Case 3 (250 TPD) will be slightly lower than than of Case 4 (275 TPD), although the position will reverse after the 12th year (2002/03).

Nevertheless the cost differences of Case 4 will not exceed 3.4% of the cost of Case 3. If the production of Case 4 increases to 80% capacity utilization due to increased demand, its production cost would become lower than that of Case 3. Hence it can be judged that they are close to each other in regard to production costs. The financial returns of those two cases are estimated as follows:

		IRR for 15 years
	•	(After Tax)
Case 3	:	3.79 %
Case 4		3.36 %

These figures reveal that their financial returns would be close in the order of magnitude. If Case 3 is selected, after 1999/2000 annual demand will exceed the domestic production and shortage in the supply therefore would have to be met by imports. On the other hand, if Case 4 is selected, the domestic production would fully satisfy the demand more than 15 years. From these points of view, it is judged that 275 TPD would be the optimum capacity for the project.

4. Comparison with Alternative Manufacutring Processes

Alternative processes for manufacutring urea fertilizer are based on the use of alternative feedstock -- hydrocarbon such as natural gas, naphtha, fuel oil and coal. Table IV-4(8) gives the manufacturing processes based on a variety of hydrocarbons and the consumption of those feedstock materials for manufacutring urea fertilizer, and Figure IV-4(3) illustrates a schematic flow of these processes. Natural gas is transported only through pipeline, and the use of this material therefore is possible in an area where there exist natural gas reserves available of commerical scale. In Nepal there is so far no possibility to establish a natural-gas-based

urea fertilizer plant, since a commercially viable natural gas reserves have not been indentified yet. Feedstock materials usable in the country may be naphtha, fuel oil, or coal, although these materials also must be imported from India. India has no surplus of naphtha for supply to other countries, so it seems unrealistic to assume the use of naphtha for this project. In general the production cost of urea fertilizer based on coal is higher than that based on naphtha or fuel oil, pecause capital related costs required for a coal based urea fertilizer plant are substantially higher than those for a urea fertilizer plant using naphtha or fuel oil. Hence there is no economic advantage for establishing a coal based urea

Under these circumstances, the manufacutre of urea fertilizer from fuel oil is the only alternative process which can be compared with the water-electrolysis-based urea fertilizer manufacturing process. A urea fertilizer plant based on fuel oil can be operated at 90% capacity utilization, because its electricity consumption is comparatively small compared to that for a water-electrolysis-based plant so that limited supply of electricity will not limit annual operation. Thus a 250 TPD fuel-oil-based urea fertilizer plant would be comparable to a 275 TPD water-electrolysis-based plant. Table IV-4(9) gives capital cost estimates of a 250 TPD fuel-oil-based urea fertilizer plant, and Table IV-4(10) gives the production cost of urea fertilizer estimated for that plant. Comparison of the production cost for a 275 TPD water-electrolysis-based urea fertilizer plant with a 250 TPD fuel-oil-based urea fertilizer plant is summarized below.

ESTIMATED PRODUCTION COST PER TON [1997: Current Price]

(Unit: US\$/ton) 275 TPD Water-Electrol-250 TPD Fuel-Oil ysis-Based Plant 1/Based Plant 2/ (90% (90% (80%) (70% 808) C.U.) C.U.) C.U.) C.U.) C.U.) 1. Variable Cost 196.08 196.08 433.84 433.84 196.08 2. Direct Fixed 102.73 79.90 89.89 75.10 84.48 Cost 3. Depreciation/ 149.60 168.30 Amortization 161.82 182.05 208.06 4. General Admn. 3.67 4.13 4.72 4.04 4.55 Expenses 5. Interest on 41.76 47.73 35.85 Long-Term Loan - 37.12 40.33 478.59 513.91 559.32 698.43 731.50 Total

Notes: 1/ Assuming the electricity price as 30% of the present tariff rate. [See Table IV-4(3)]

2/ Assuming the fuel oil price as US\$240/ton in 1984 and US\$578.36/ton in 1997 escalated at 7% p.a. [See Table IV-4(10)]

In the variable costs as given above, the feedstock cost for the water-electrolysis-based plant (i.e., electricity cost) is US\$151.30 per ton of urea, while that for the fuel-oil-based plant (i.e., fuel oil) is US\$390.39 per ton of urea. The cost of a 250 TPD water-electrolysis-based plant at 70% capacity utilization is comparative to that of a 275 TPD fuel-oil-based plant. When these costs are compared, it is found that the former is lower by US\$172.18 per ton of urea as compared to the

latter. This reveals that the cost of a fuel-oil-based plant is equivalent to the cost of water-electrolysis-based plant for which the electricity price be $US \not\in 4.87/kWh$ is 1997 or $US \not\in 2.28/kWh$ in 1984 ($US \not\in 4.87$ 1.06¹³), as calculated in the following manner.

		Cost Per Ton Urea (US\$/t)
1 \	Disstrictly Cook of Usbor	
1)	Electricity Cost of Water- Electrolysis-Based Plant	
	assuming 30% of the	
	present tariff rate:	151.30
2)	Cost Difference between	
	Water-Electrolysis-Based	
	Plant and Fuel-Oil-Based	
	Plant:	172.18

Total

3) Electricity Price
Equipment: 1997
(US\$323.48/t 6,642kWh/t)

Electricity Price Equivalent: 1984 (US¢4.87 1.0613)

US¢2.28/kWh

US¢4.87/kWh

323.48

of

This electricity price is equivalent to about 64% of the present tariff rate.

In view of these cost differences, it is judged that the water-electrolysis-based plant can produce urea fertilizer at lower cost than that of a fuel-oil-based plant, as far as electricity can be supplied at a price lower than 64% of the present tariff rate. Further, the urea fertilizer production based on fuel oil requires a foreign exchange outlay of US\$390.39 per ton of urea for importation of fuel oil, in addition to foreign exchange outlay for imports of catalyst, chemicals and spare parts, as well as repayment and interest payment for a foreign loan. Thus it is concluded that a water-electrolysis-based process would be appropriate for the project. Table IV-4(1) CAPITAL COST ESTIMATES

(Urea Fertilizer Plant Based on water Electrolysis)

(Unit: US\$ Million)

	 	. •								. *											
· · · · · · · · · · · · · · · · · · ·	300 TPD	0.72	1.80	8.2	(54.70)	4.4	۲.	ო •	3.30	17.62	9.59	6.53	1.13	12.86	3.57	3.40	138.78	2.86	9.70	151.34	
	275 TPD	0.72	1.80	3.1	(50.76)	З.4	3°2	с. •	3.04	17.62	9.59	6.16	1.13	12.77	3.57	3.30	132.83	2.68	9.28	144.79	
	250 TPD	0.72	1.80	7.9	(46.77)	2.4	m.	с •	2.78	17.62	9.59	5.78	1.13	12.67	3.57	3.19	126.77	2.49	8.86	138.12	
• .	200 TPD	0.72	1.80	7.2	(38.60)	0.4	ω.	÷.	2.26	17.62	9.59	4.98	1.13	12.45	3.57	2.95	114.30	2.10	7.99°	124.39	
	100 TPD	0.72	1.80	4.3	(21.27)	0.0	۲.	с. •	1.19	17.62	9.59	3.13	1.13	11.78	3.57	2.32	87.21	1.24	60.0	94.54	
		A. LAND ACQUISITION	B. SITE PREPARATION	C. PLANT DIRECT COST	PROCESS UNITS	FACILITI	AUXILI	FACILITI	D. SPAREPARTS, CATL. & CHEM.	E. CONST. & ERECTION LABOR	F. CONST. EQUIPMENT	G. TRANSPORT, INSURANCE & DUTY	H. INDIRECT FIELD EXPENSES	I. ENGINEERING SERVICES	J. PROJECT MANAGEMENT SERVICES	K. PRE-OPERATION EXPENSES	L. BASE PROJECT COST	M. INITIAL WORKING CAPITAL	N. INTEREST DURING CONST.	O. TOTAL FINANCING REQUIRED	

Table IV-4(2) BREAKDOWN OF FIXED ASSETS FOR DEPRECIATION (Buildings and Plant Facilities)

3.30 9.59 Plants 54.70 I3.30 36.85 118.85 1.11 Facilitγ TPD 131-73 (Unit: US\$ Million) 300 12.88 3.73 2.68 **I.1**4 5.33 Buildings 1 ī I Plants Facil-1.05 9.59 113.29 3.04 50.76 12.41 36.44 ity ı TPD 125.89 275 2.52 3.69 12.60 1.06 5.33 Buildings ı I I 0.98 2.78 9.59 107.61 46.77 11.50 35.99 Plants Facilitγ ı 250 TPD 119.93 12:32 3,65 0.98 2.36 5.33 Buildings ł 95.98 Plants Facil-9.59 38.60 9.62 0.84 2.26 35.07 ity ŧ 107.70 200 TPD 11:72 2.02 5.33 3.55 0.82 Buildings ţ ţ t 0.52 I.19 32.78 70.88 21.27 5.53. 9.59 Plants Facil. ity I 81.24 IOO: TPD 10.36 L.24 3.32 0.47 5.33 Buildings 1 I Duty; Engineering Service Transport, Insurance, & Management Service Construction Equipment Spareparts, Catalysis - Auxiliary Facilities Construction Labor; - Utility Facilities Offsite Facilities & Chemicals - Process Units Total ι ł

	Process: Water Electrolysis Capacity Utilization: 908
	Process: Capacity
(BAGGED)	
COST OF UREA	
Table IV-4(3) ESTIMATED PRODUCTION COST OF UREA (BAGGED) (1997; Current Price)	· ·
Table IV-4(3)	

		ម ខ្	0	80	0	000	01	Ţ	38	56	ហ្គ	. *	39	23	31 T8	. 58	32	37	<u>79</u>	
300 TPD 89,100 TPA	00 TPA	Cost Fer Ton (US\$/ton)	151.3	22.1	2.0	106.30		4	64.8	6.6	76.35		133-		Ϋ́•	10-12	155.32	35-67	466.79	
) ['68	Ann. Cost (US\$'000)	13,481	1,976	517	L,497	7/ 8/ 17	429	5,78L	593	6,803	·	11,885	644	340	970	13,839	3,178	41,591	
TPD 75 TPA		Cost Per Ton (US\$/ton)	151.30	22.18	5.80	16.80 196 00	00-027	5.25	67.68	6.97	79-90		138.7L	7.71	4.04	11.36	161.82	3.67	478.59	
275	81,675	81,675	Ann. Cost (US\$'000)	12,357	1,812	474	1,372	CTOT	429	5,528	569	6,526		11,329	630	330	928	13,217	3,032	39,090
red	0 TPA	Cost Per Ton (US\$/ton)	151.30	22.18	5.80	16.80	00-061	5.78	70.07	7.34	84.09		L44.93	8.30	4.29	11.93	169.45	4.04 39.07	492.73	
250 TPD	74,250	Ann. Cost (US\$1000)	JI,234	1,647	431	1,247	ACC 174	429	5,270	545	6,244		10,761	616	319	886	12,582	<u>300</u> 2,901	36,586	
	о тра	Cost Per Ton (US\$/ton)	151.30	22.18	5.80	16.80	00.041	7.22	79.78	8.35	95,35		161.58	9.87	4.97	l3.45	189.87	5.05	530:32	
007	59,400	Ann. Cost (US\$'000)	8,987	1,317	345	966 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 10 1 77	429	4,739	496	5,664		9,598	. 586	295	. 662	<u>11,278</u>	300	31,501	
1 £ U	AGT (AgT 0	Cost Per Ton (US\$/ton)	151.30	22.18	5.80	16.80 195 00	00-027	14.44	120.78	13.06	148.28		238-65	17.44	7.8L	20.51	284.41	10.10	705.71
100 TPD 29,700 TPA	29,70	Ann. Cost (US\$'000)	4,494	659	172	п 604 604	17010	429	3,587	388	4,404	•	7,088	518	232	609	8,447	, <u>300</u> 1, <u>985</u>	20,960	
Capacitey	Annual Production (90% Capacity Utilization)		<pre>1. Variable Cost 1.1 Blectric Powerl/</pre>	oal2/	1.3 Catalysis and Chemicals ^{3/}	lags4	Sub-total	2. Direct Fixed Cost 2.1 Personnel Cost <u>5</u> /	2.2 Maintenance Cost6/	2.3 Insurance7/	Sub-total	Depreciation and Amort.8/	.1 Plants and Facilities ^{9/}	3.2 Buildings <u>10</u> /	.3 Preoperation Expenses 11/	Interest during Const.12/	Sub-total	. General Admn. Expenses $\frac{13}{14}$. Interest on Long Term Loan $\frac{14}{14}$	Total Cost	
Plant Capacity	Annual P (90% Cap		l. Varia l.1 Elec	1.2 Coal2/	1.3 Cata	1.4 Bags4/	กั	2.1 Pers	2.2 Mair	2.3 Insi	ື້ນ	3. Depre	3.1 Plar	3.2 Buil	3.3 Prec	3.4 Inte	ญั	4. Gener 5. Inter	1	

[EXPLANATORY NOTES TO TABLE IV-4(3)]

<u>1</u> /		US¢3.56/kWh x 0.3 = US¢1.068/kWh US¢2.278/kWh (US¢1.068/kWh x 1.06 ¹³) US¢2.278/kWh x 6,642 kWh/t = US\$151.30/t - urea
2/	1984:	US\$40.63/ton - coal
	1997:	US\$86.66/ton - coal (US\$40.63 x 1.06 ¹³)
		US\$86.66/ton x 0.256 ton/t = US\$22.18/t - urea
3/	1984:	US\$2.72/t - urea
	1977:	US\$5.80/t - urea (US\$2.72 x 1.06 ¹³)
Δ/	1984:	US¢37.5/bag
<u> </u>		$Us \neq 80.0/pag (US \neq 37.5 \times 1.06^{13})$
		$US \neq 80.0/bag \times 21 bags/t = US \$16.8/t - urea$
<u>5</u> /	1984:	US\$227,333/year
	1997:	US\$428,670/year (227,333 x 1.05 ¹³)
<u>6</u> /	1991:	3% of Plant Cost (Base Project Cost less: Land
	алан (т. 1997) Салан (т. 1997)	Acquisition Cost, Site Preparation Cost, and Part
		of Indirect Field Expenses - US\$0.41 million)
	1997:	Maintenance Cost (1984) x 1.06 ⁶
. · ·		Plant Capacity Plant Cost (US\$'000)
		100 TPD 84,280
н. 1		200 TPD 111,370 250 TPD 123,840
		275 TPD 129,900
		300 TPD 135,850
<u>7</u> /	1.175%	of outstanding depreciable asset value
	[Table	IV-4(4)]
8/	Exclud	ing amortization of indirect field expenses because
	of tho	se expenses amortized out within the initial five
	years	
9/	10% of	the Plant Facilities Value [Table IV-4(2)]
10/	5% of	the Buildings Value [Table IV-4(2)]
<u>11</u> /	10% of	the Pre-operation Expenses [Table IV-4(1)]
<u>12</u> /	10% of	the Interest During Construction [Table IV-4(1)]
<u>13/</u>	70% of	the Personnel Cost
14/	(Total	Financing Required) x 0.7 x 9/15 x 0.05

Table IV-4(4) VALUE OF ASSETS FOR INSURANCE (1997)

97,586 6,790 9,700 83,195 713 2,380 50 477 2,520 713 3,400 48,063 4,508 720 1,800 45,543 300 TPD 12,880 118,850 (Unit: US\$'000) 2,310 6,496 79,303 4,410 713 93,232 48,471 713 3,300 9,280 39,183 141,703 1,800 2,520 275 TPD 720 113,290 L2,600 250 TPD 6,202 88,787 46,426 713 3,190 8,860 4,312 2,233 720 1,800 2,520 107,610 713 7 135,213 32,693 75,327 12,320 67,186 5,593 42,214 2,065 79,659 4,102 713 95,980 11,720 713 7,990 1,800 2,520 2,950 121,873 200 TPD 720 119,353 l,624 4,263 59,842 33,041 70,880 10,360 .713 6,090 90,363 92,883 49,616 3,626 713 720 1,800 2,520 2,320 100 TPD 2. Accumulated Depreciation (up to 1996) 3. Total Assets less Acc. Depreciation 1.2.5 Interest During Construction 2.1 Plant Facilities (Value x 7/10) 2.5 Interest During Construction
 (Value x 7/10) 1.2.3 Indirect Field Expenses 1.2.4 Pre-operation Expenses 2.2 Buildings (Value x 7/20) 2.3 Indirect Field Expenses
 (value x 5/5) 2.4 Pre-operation Expenses (Value x 7/10) 1.1 Non-depreciable Assets 1.1.2 Site Preparation 1.2.1 Plant Facilities 1.2 Depreciable Assets 1.3 TOtal (1.1 + 1.2) 1.2.2 Buildings Sub-total Sub-total l. Total Assets 1.1.1 Land 2.6 Total

Table IV-4(5) ESTIMATED PRODUCTION COST OF UREA (BAGGED) BY CHANGES IN CAPACITY UTILIZATION (1997: Current Price) (Unit: US\$ Per Ton)

	300 TPD	439.72	466.79	500.63	544.13	602.14	683.35	
	275 TPD	450.35	478.59	513.92	559.32	619.86	704.62	
	250 TPD	463.07	492.73	529.82	577.50	641.07	730.07	
	200 TPD	496.90	530.32	572.10	625.82	697.44	797.72	
	100 TPD	654.75	705.71	769.41	851.32	960.52	1,113.41	-
Capacity	Utilization Rate	100%	806	80%	70%	60%	50%	

Table IV-4(6) CAPACITY UTILIZATION RATE BY DIFFERENT PLANT CAPACITY

| | |

1

1

OG TPD
•
• 1
з . 8
* *
*
*
*
*
* *
*
*
*
*
*
*
*
;

Capacity Utilization Rate; Projected Production over Annual Capacity (Daily Capacity x 330 on-stream days) Notes:

Т

* Over the maximum capacity utilization rate of 90%; maximum production being 56,700 TPA ** Over the maximum capacity utilization rate of 85%; maximum production being 56,100 TPA

*** Over the maximumm capacity uilization rate of 83%; maximum production being 68,475 TPA

TABLE IV-4(7) ESTIMATED PRODUCTION COST OF UREA FERTILIZER (BAGGED) [CURRENT PRICE]

Unit Cost per Ton (US\$/t)													
(A) 250 TPD	(B) 275 TPD	(C) B-A	C/A										
602.3	620.7	+18.4	+3.1										
605.3	624.8	+19.5	+3.2										
581.7	601.2	+19,5	+3.4										
570.8	586.4	+15.6	+2.7										
568.5	583.4	+14.9	+2.6										
570.3	586.1	+15.8	+2.8										
576.6	592.0	+15.4	+2.7										
584.3	599.4	+15.1	+2.6										
595.7	608.7	+13.0	+2.2										
611.2	619.9	+8.7	+1.4										
455.4	456,7	+1.3	+0.3										
475.8	475.9	+0.1	0										
497.6	496.5	-1.1	-0.2										
521.1	518.8	-2.3	-0.4										
546.2	543.1	-3.1	-0.6										
	602.3 605.3 581.7 570.8 568.5 570.3 576.6 584.3 595.7 611.2 455.4 475.8 497.6 521.1	(A) 250 TPD (B) 275 TPD 602.3 620.7 605.3 624.8 581.7 601.2 570.8 586.4 568.5 583.4 570.3 586.1 576.6 592.0 584.3 599.4 595.7 608.7 611.2 619.9 455.4 456.7 475.8 475.9 497.6 496.5 521.1 518.8	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										

S AND FEEDSTOCK CONSUMPTION PRODUCTION	edstock Consumptio	Per Ton of Urea Fertilizer	6,642.0 kWh	23.5 MMBTU-LHV	0.55 Ton (10,600 kcal-LHV/kg)	0.67 Ton (10,300 kcal-LHV/kg)	ion) 1.25 Ton (6,300 kcal-LHV/kg)	
COMPARISON OF PROCES FOR UREA FERTILIZER	Process Scheme		Water Electrolysis Air Fractionation Carbon Dioxide Recovery Ammonia Synthesis Urea Synthesis	Steam Reforming Synthesis Gas Preparation Ammonia Synthesis Urea Synthesis	Steam Reforming Synthesis Gas Preparation Ammonia Synthesis Urea Synthesis	Air Fractionation Partial Oxydation Synthesis Gas Preparation Ammonia Synthesis Urea Synthesis	Fractionation ial Oxydation hesis Gas Pre- nia Synthesis Syntesis	gas preparation refers generally tion, carbon dioxide removal, me gas purification process.
TABLE IV-4(8)	Feedstock	1 1 1 1 1 1 1 1 1 1 1 1 1 1	(1) Electricity	(2) Natural Gas	(3) Naphtha	(4) Fuel Oil		Notes: Synthesis shift reac synthesis

Table IV-4(9) CAPITAL COST ESTIMATE

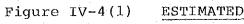
(Urea Fertilizer Plant Based on Partial Oxydation of Fuel Oil)

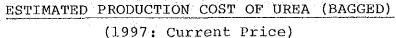
Capacity: 250 TPD

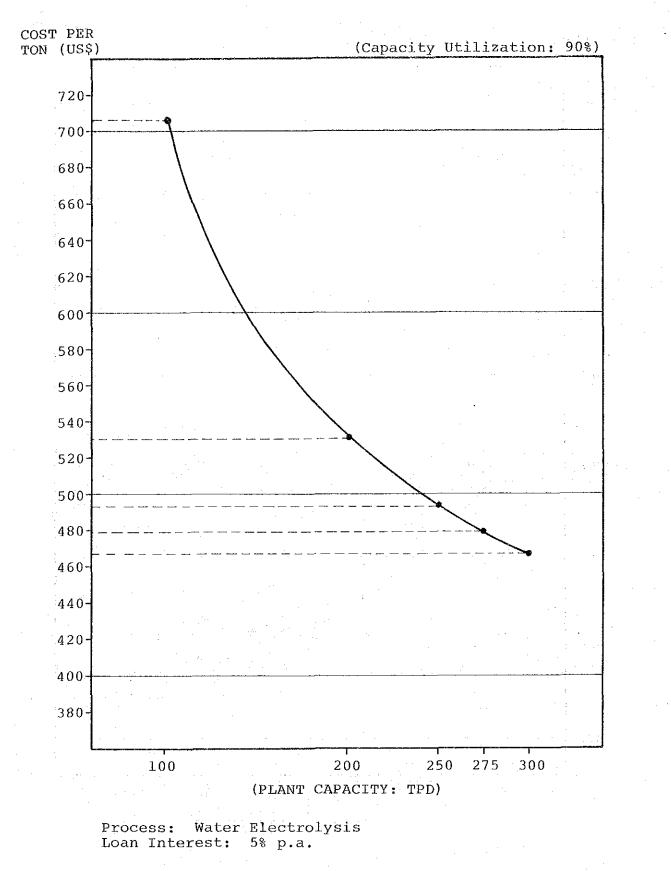
(Unit: US\$ Million)

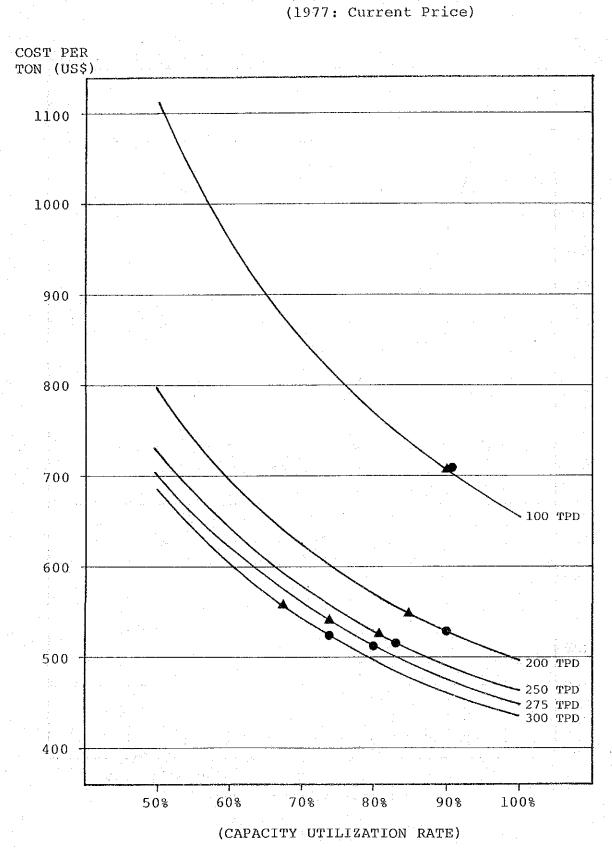
ITEMS	ESTIMATED COST					
A. LAND ACQUISITION	0.72					
B. SITE PREPARATION	1.80					
C. PLANT DIRECT COST	54.37					
C-1 PROCESS UNITS	(33.22)					
-AMMONIA PLANT	[25.31]					
-UREA PLANT	[7.91]					
C-2 UTILITY FACILITIES	(12.48)					
C-3 AUXILIARY FACILITIES	(3.34)					
C-4 OFFSITE FACILITIES	(5.33)					
D. SPAREPARTS, CATL. & CHEM.	2.17					
E. CONST. & ERECTION LABOR	17.62					
F. CONST. EQUIPMENT	9.59					
G. TRANSPORT, INSURANCE & DUTY	5.29					
H. INDIRECT FIELD EXPENSES	1.13					
I. ENGINEERING SERVICES	12.67					
J. PROJECT MANAGEMENT SERVICES	3.57					
K. PRE-OPERATION EXPENSES	4.04					
L. BASE PROJECT COST	112.97					
M. INITIAL WORKING CAPITAL	5.89					
N. INTEREST DURING CONST.*	7.90					
O. TOTAL FIANACING REQUIRED	126.76					

Note: * Assuming equity/debt ratio of 30:70 and


5% p.a. loan interest


ESTIMATED PRODUCTION COST OF UREA (BAGGED) (1997: Current Price) Table IV-4(10)


Process: Partial Oxydation of Fuel Oil Capacity: 250 TPD


	t Ton (ton)		3.9	05	2.60	80	84		5.78	07	6.25	75.10	:	. 25	8.27	5.44	10.64	.60	4.04	5.85	43	
÷.,	Cost Per T (US\$/t		390.3	24.05	2.	16.80	433.84		ۍ ب	63.07	9.	75.		125.25	ŝ	ŝ	10	149.60	~	5 1 2 1 2	698.43	
	Annual Costs (US\$'000)		28,986	1,786	193	1,247	32,212		429	4,683	464	5,576	÷ .	9,300	614	404	790	11,108	300	2,662	51,858	
Capacity: 250 TFD	Particulars		@US\$240/ton ^{2/} x l.07 ¹³ x 0.675ton/t	2/ x 1.061	urea x	₃ 2/ × 1.06 ¹			US\$227,333/Year x 1.05 ¹³	US\$110.04 million x 0.03 x 1.06 ⁶	(US\$118,350 - US\$78,886)× 10 ³ × 0.01175			US\$93.00 million x 1/10	US\$12.28 million x 1/20	US\$4.04 million x 1/10	US\$7.90 million x 1/10		US\$429,000 × 0.7	US\$126,760 x 10 ³ x 0.7 x 9/15 x 0.05		
	Items	1. Variable Cost	1.1 Fuel Oil	1.2 Electric Power	1.3 Catalysis & Chemicals	1.4 Bags	Sub-total	2. Direct Fixed Cost	2.1 Personnel Cost	2.2 Maintenance Cost	2.3 Insurance	Sub-total	3. Depreciation and Amortization	3.1 Plant and Facilities	3.2 Buildings	3.3 Preoperation Expenses	3.4 Interest during Const.	Sub-total	4. General Admu. Expenses	5. Interest on Long Term Loan	Total Cost	

<u>1</u>/ Assuming 90% capacity utilization (i.e., 250 TPD x 300 days x 0.9 = 74,250 TPA) $\underline{2}/$ 1984 prices Notes:

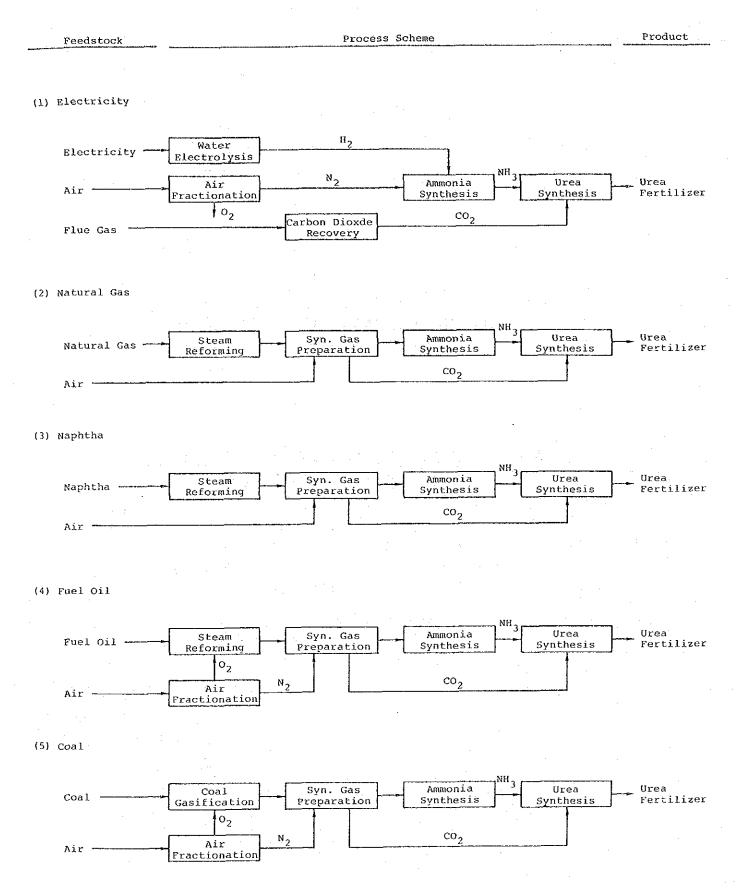

AIV-32

Figure IV-4(2) ESTI

ESTIMATED PRODUCTION COST OF UREA (BAGGED) BY CHANGES IN CAPACITY UTILIZATION

Figure IV-4(3)

PROCESS SCHEME AND FEEDSTOCK FOR UREA FERTILIZER PRODUCTION

