ネパール王国 尿素肥料工場計画調査 報告書 (付録)

1984年9月

国際協力事業団

JIMA LIBRARY 1031393[0]

ネパール王国 尿素肥料工場計画調査 報告書 (付録)

1984年9月

国際協力事業団

国際協力事業団 常 '85. 7.23 116 各録No. 11774 MP1

Contents

	Page
Annex I-1	SCOPE OF WORK FOR THE FEASIBILITY STUDY AND MINITE OF MEETING AT PRESENTATION OF PROGRESS REPORT
Annex I-2	LIST OF STUDY TEAM MEMBER AND COUNTERPARTSAI-18
Annex I-3	ACTIVITY OF JICA STUDY TEAM (1) - (2)
Annex I-4	LIST OF OFFICES VISITED AND PERSONS METAI-21
Annex I-5	LIST OF DOCUMENTS RECEIVED
Annex II-1	METHODOLOGY AND PROCEDURE OF
	DEMAND PROJECTION
Annex II-2	PAST TREND AND OUTLOOK OF CROP
	CULTIVATION AREA IN NEPALAII-8
Annex II-3	ESTIMATED/PROJECTED COUSUMPTION
milica ii o	NITROGEN FERTILIZER BY REGION
Annex II-4	CONSUMPTION OF FERTILIZER IN NEPAL BY TYPE AND BY REGION
Annex II-5	FERTILIZER RESPONSE IN NEPAL
A	BASIC DATA FOR CARBON DIOXIDE
Annex III-1	SUPPLIABILITY CONDITIONS AT CEMENT
* ************************************	PLANTS IN NEPALAIII-1
A 111.0	DDIOD INDODMADION IN NIDDAL EOD
Annex III-2	PRICE INFORMATION IN NEPAL FOR CONSTRUCTION MATERIALS, LABORERS,
9.00	WORKS, AND INLAND TRANSPORT FROM
	CALCUTTAAIII-11
Annex III-3	ELECTRIC POWER CONSUMPTION AND
Timon III U	OVERALL LOAD FACTOR INCREASE AT THE
	UREA FERTILIZER PLANT
Anney III.4	WATER ELECTROLYSIS PROCESSESAIII-19
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

Annex IV-1	PROJECT COST ESTIMATEAIV-
	en de la companya de La companya de la co
Annex IV-2	BACK DATA FOR ESTIMATING ESCALATIONAIV-
Annex IV-3	BREAKDOWN OF PRE-OPERATION
	EXPENSES AND INITIAL WORKING CAPITALAIV-
Annex IV-4	COMPARATIVE STUDY OF PRODUCTION ECONOMICS
	ON ALTERNATIVE CAPACITIES AND ALTERNATIVE
4	PROCESSAIV-1
Annex IV-5	FINANCIAL PROJECTIONS (BASE ESTIMATES)AIV-34
Annex IV-6	SENSITIVITY ANALYSIS OF FINANCIAL STRUCTURE
	BY CHANGES IN EQUITY/DEBT RATIO AND INTEREST
	RATES ON LOAN
Annex IV-7	ECONOMIC POWER COST
Annex IV-8	ECONOMIC RATE OF RETURN

	STUDY AND MINUTE OF MEETING AT
	PRESENTATION OF PROGRESS REPORT
Annex I-2	LIST OF STUDY TEAM MEMBER AND
	COUNTER PARTS
Annex I-3	ACTIVITY OF JICA STUDY TEAM
Annex I-4	LIST OF OFFICES VISITED AND PERSONS
	MET
	가게 되었다. 그리고 있는데 그런 아이는 경험 중요 한 번 모든 등 함께 보는 생생님이 되었다. 이 지구를 했다. 그리고 있는데, 그는 이곳은 나를 들고 있는데 한 제공을 했다. 그는 것이 되었다.
Annex I-5	LIST OF DOCUMENTS RECEIVED

SCOPE OF WORK FOR THE FEASIBILITY STUDY AND MINUTE OF MEETING AT PRESENTATION OF PROGRESS REPORT

SCOPE OF WORK

FOR

THE FEASIBILITY STUDY

ON

THE ESTABLISHMENT OF UREA FERTILIZER PLANT

IN

THE KINGDOM OF NEPAL AGREED UPON BETWEEN

THE JAPAN INTERNATIONAL COOPERATION AGENCY

МО

THE MINISTRY OF INDUSTRY
HIS MAJESTY'S GOVERNMENT OF NEPAL

Kathmandu, October 4, 1983

Kenji IWAGUCHI

Leader of Japanese Survey $T_{\mbox{eam}}$

Ajit Narayan Singh Thapa

Joint Secretary

Ministry of Industry

I. Introduction

In response to the request of His Majesty's Government of Nepal (hereinafter referred to as "H.M.G.N."), the Government of Japan has decided to conduct a feasibility study on the establishment of urea fertilizer plant (hereinafter referred to as "the study") in accordance with the laws and regulations in force in Japan

The Japan International Cooperation Agency (hereinafter referred to as "JICA"), the official agency responsible for the implementation of the technical cooperation programs of the Government of Japan, will undertake the study, in close cooperation with the authorities of the Kingdom of Nepal

Ministry of Industry, H.M.G.N. (hereinafter referred to as "MOI") will be the executing agency and shall designate the Industrial Services Centre (ISC) as a counterpart agency to the Japanese study team (hereinafter referred to as "the Team") and MOI shall also act as coordinating body in relation with other governmental and non-governmental organizations concerned for the smooth implementation of the study

The Present Document sets forth the Scope of Work with regard to the study.

II. Objective of the Study

The objective of the Study is to examine the technical, financial and economic feasibility of the establishment of urea fertilizer plant (hereinafter referred to as "Project") in the Kingdom of Nepal and to prepare a feasibility study report keeping in view the ammonia production process using hydrogen by water electrolysis

fil &

III. Scope of the Study

In order to achieve the above objective, the study will cover the following items:

- 1. Review on the background of the Project
 - 1) the present situation of and policy on agriculture in Nepal
 - 2) the present situation of and policy on fertilizers in Nepal
 - (1) supply and demand of fertilizers
 - (2) trend of consumption of fertilizers
 - 3) the present situation of and policy on industrialization
 - 4) relation of the Project with the overall National Development Plan
 - 5) the present situation and future plan of demand and supply of electric power
 - 6) the present situation of and policy on manpower required for the Project such as chemical engineers, plant engineers and others
 - 7) relevant laws and regulations
- 2. Study on the detailed urea fertilizer market in Nepal
 - 1) present and past supply and consumption
 - 2) present and past situation of import and its cost
 - 3) trend and structure of price
 - 4) potential demand and constraints in the application of fertilizers

AL Q

- 5) projection of demand in the coming ten years
- 6) marketing and distribution system
- 7) cost and channel of transport and distribution from manufacturing site to major market area
- 3. Study on the raw materials for the urea fertilizer production
 - 1) possibility of electric power supply
 - (1) present situation of electric power supply (capacity, tariff, stability, etc.)
 - (2) future demand and supply (construction projects, schedule, etc.)
 - 2) water
 - (1) quality and quantity of water
 - (2) water works necessary for the Project
 - 3) availability of Carbon Dioxide (CO₂)
 - (1) CO₂ from cement factory
 - (2) CO_2 from other sources
 - 4) materials for packing
 - 5) other materials
- 4. Study on the plant location and site
 - natural conditions of the site and its sucrounding area focusing on meteorology, geology and topography
 - 2) utilities and infrastructure such as electricity, gas, water, transportation and communication
 - 3) regional development plan

Air a

- 4) selection of the plant site based on the results of the study on the availability of raw materials, utilities, infrastructure and other factors
- 5) conditions of transportation of equipment and its installation
- 5. The basic plan and conceptual design of the urea fertilizer plant
 - comparison of production processes and determination of the most suitable process
 - 2) examination and determination of production scale
 - 3) fundamentals and major preconditions of conceptual design including list of major equipment
 - 4) process flow sheet
 - 5) layout of the plant and auxiliary facilities
 - 6) implementing program of the plant construction
 - 7) transport plan of equipment and materials for plant construction
 - 8) operation plan of the plant
 - 9) organization and manpower plan for the plant construction and operation including managerial aspects
 - 10) marketing and distribution system
- 6. Study on environmental protection

At or

7. Financial analysis

- 1) capital requirements
 - (1) fixed capital (land, plant construction, auxiliary facilities and pre-operation cost, including training cost and consultancy fees, etc.)
 - (2) working capital
 - (3) investment schedule
- 2) procurement of capital
- 3) operation cost
- 4) production cost
- 5) projected balance sheet
- 6) projected flow sheet
- 7) financial internal rate of return
- 8) sensitivity analysis based on possible variations in
 - a) electricity tariff
 - b) investment cost
 - c) interest rate
 - d) inflation rate
 - e) sales price
- 8. Economic and social evaluation
- 9. Conclusion and recommendations
- IV. Steps and Schedule of the Study
 - 1. Steps

Step 1: Preparatory office work in Japan

Step 2: Field work in Nepal

Step 3: Home office work in Japan

A a

Step 4: Presentation of and Discussion on the Draft Final Report

2. Schedule

As shown in Annex

v. Reports

JICA will prepare and submit the following reports to H.M.G.N.

- Progress Reports written in English at the end of the Step 2 in the IV: 10 copies
- 2. Draft Final Report and its summary written in English within five (5) months after commencement of the Step 3: 15 copies
- 3. Final report and its summary written in English within two (2) months after the receipt of comments on the Draft Final Report by MOI: 30 copies

VI. Undertaking of H.M.G.N.

H.M.G.N. shall accord privileges, immunities and other benefits to the Team in accordance with the laws on Nepal and, through the authorities concerned, take following necessary measures to facilitate the smooth implementation of the Study:

- 1. Provide adequate number of full-time counterparts
- 2. Arrange the Team's visits to relevant authorities concerned and ensure that the Team has access to all relevant information required for the execution of the study

Sha

- 3. Provide the Team with office accommodation with sufficient office supplies and equipment
- 4. Provide relevant information and data available to the Team
- 5. Exempt the Team from taxes, duties and charges in the Kingdom of Nepal on materials, equipment and personal effects brought into the Kingdom of Nepal for the purpose of the Study
- 6. Exempt the Team members from income taxes and charges of any kind imposed on or in connection with the staying expenses remitted from abroad
- 7. Ensure the security of the Team members during their stay in the Kingdom of Nepal
- 8. Bear claims, if any arises, against the Team members resulting from, occuring in the course of, or otherwise connected with the discharge of their duties in the implementation of the Study, except when such claims arise from the gross negligence or wilful misconduct on the part of the Team members

VII. Undertaking of the Government of Japan

For the implementation of the Study, the Government of Japan will, through JICA, take following measures:

- 1. To dispatch, at its own expense, study teams to Nepal
- 2. To pursue technology transfer to the Nepalese counterpart personnel in the course of the Study

VIII. Consultation

JICA and MOI will consult with each other in respect of any matter that may arise in the interpretation or implementation of the present arrangement.

AN Q

Tentative Schedule of the Study

===== in Japan

In Nepal

MINUTES OF MEETING

In summarizing the local activities of survey and study carried out by the study team of Japan International Cooperation Agency (JICA) for the feasibility study of the establishment of urea fertilizer plant in the Kingdom of Nepal (hereinafter referred to as the "Project"), the study team presented the Progress Report at the Ministry of Industry of His Majesty's Government of Nepal (HMG/N), Kathmandu on January 27, 1984.

Based upon the detailed explanation of the Progress Report, the in-depth discussion and clarification were made among the authorities of the HMCN, the study team members and the resident representative of JICA in Nepal, and parties concerned agreed as recommended in the Progress Report in principle regarding the major issues, for formulating the Feasibility Study, on the type of product, selection of location and site, method on the demand projection and the selection of production capacity, supply conditions of raw materials and utilies, scope of facilities, management and schedule for the implementation, and assumption and basis of financial and economic analysis for the Project.

Major additional issues which were discussed and proposed to be taken into consideration during the preparation of the feasibility study report are;

- Re-examination of the schedule assumed for the implementation of the Project.
- Energy saving at the Project.
- Sharing of auxiliary facilities among the other industries in Nepal.
- Industrial uses of urea in Nepal as potential.
- Possibility of utilization of by-products from the Project in the future.

In concluding the whole activities of the study team in Nepal, this Minutes of Meeting is prepared and signed hereunder;

Indu Shamsher Thapa

Senior Engineer

Ministry of Industry, HMG,

Nepal

Kathmandu, The Kingdom of Nepal January 27, 1984

Masayasu SAKANASHI

Leader of Study Team

Japan International Cooperation Agency

Names of Persons present in the meeting held in the office of the Secretary Ministry of Industry, Tripureswor, Kathmandu on the 27th January 1984.

- Mr. I.L. Shrestha, Secretary, Ministry of Industry (MOI)
- Mr. R.D. Sharma, Joint Secretary, MOI
- Mr. I.S. Thapa, Senior Engineer (MOI)
- Mr. B.M. Shakya, Under-Secretary, Ministry of Finance (MOF)
- Mr. S.M. Shrestha, Section Officer, MOF
- Mr. R.K. Bhattarai, Act. Director General, Department of Industry
- Mr. R.K. Bajracharya, Senior Engineer, Department of Electricity
- Mr. R.N. Dhungel, General Manager, Nepal Industrial Development Corporation
- Mr. T. Hoshi, Resident Representative, Japan International Cooperation Agency

Study Team Members

- Mr. M. Sakanashi, Team Leader, Techno-Economist
- Mr. K. Adachi, Team Sub-leader, Chemical Engineer
- Mr. Y. Fujiki, Plant Mechanical Engineer
- Mr. Kuwabara, Fertilizer Chemical Engineer
- Mr. T. Incoka, Fertilizer Market Expert
- Mr. S. Suzuki, Electrical Engineer
- Mr. T. Suzuki, Cement Chemical Engineer

Counterpart Members of ISC

- Mr. M.B. Shrestha, Civil Engineer, For Chief, Industrial Projects Division
- Mr. H.P. Khanal, Economist, For Chief, Feasibility Study Branch
- Mr. B. Sharma, Chemical Engineer, For Chief, Project Engineering & Management Branch

J. F

MINUTES OF MEETING

The JICA Study Team led by Mr. M. Sakanashi visited Kathmandu from July 23 to 28, 1984 for the purpose of presentation of the Draft Final Report of the Feasibility Study on the Establishment of the Urea Fertilizer Plant in the Kingdom of Nepal to the Ministry of Industry and also for discussion with the concerned officials of HMG/N on the Project.

Accordingly, first review meeting on the Draft Final Report was held under the Chairmanship of Industry Secretary, Mr. I.L. Shrestha, in the Ministry of Industry on July 25, 1984 at the presence of officials and representatives of concerned ministries, departments and agencies of HMG/N, the JICA's Resident Representative in Nepal and the JICA Study Team. Likewise, second review meeting took place at the Secretariat of National Planning Commission under the Chairmanship of Hon'ble Vice-Chairman of NPC, Dr. M.M. Sainju on July 26, 1984 at the presence of NPC member, joint members and other concerned government officials. Lists of persons who were present at the meetings are attached as Appendix I and II.

1) At the review meetings, the JICA Study Team made the presentation of the Draft Final Report, summarizing the major aspects as well as the conclusion and recommendations derived from the study, and explained and made clarification on questions raised by various persons attending the meeting. The issues discussed at the meetings are attached as Appendix III and IV.

SA

- At the conclusion of the review meetings, Ministry of Industry, HMG/N expressed satisfaction that the Draft Final Report is comprehensive as per the scope of the study as agreed upon by the Ministry of Industry and the JICA on October 4, 1983. It was also agreed that comments on the Draft Final Report would be transmitted to the JICA by August 15, 1984 and these comments would be taken for due consideration in incorporating in the final report. It was further agreed that the JICA Study Team could proceed for the preparation of a Final Report, keeping in view the issues raised during the review meetings.
- 3) The Ministry of Industry, HMG/N expresses its appreciation to the JICA for the submission and presentation of Draft Final Report of the Feasibility Study on the establishment of the Urea Fertilizer Plant in the Kingdom of Nepal.

In concluding the presentation of the Draft Final Report, this Minutes of Meeting is prepared and signed hereunder.

Kathmandu, The Kingdom of Nepal July 27, 1984.

Indu Shamsher Thapa

Senior Engineer

Ministry of Industry, HMG

Nepal.

Masayasu Sakanashi

Leader of Study Team

Japan International Cooperation Agency.

Appendix - I

Persons Present at Meeting Held at Ministry of Industry on July 25, 1984

Representative, Japan International Cooperation Agency/Nepal.

- 1. Mr. I.L. Shrestha
- 2. Mr. Shiva P. Sharma
- 3. Mr. Bihari Krishna Shrestha
- 4. Mr. R.B. Bhattarai
- 5. Mr. I.S. Thapa
- 6. Mr. Narayan Regmi
- 7. Mr. R.K. Bajracharya
- 8. Mr. R.N. Dhungel
- 9. Mr. G.B. Shah

13.

10. Mr. Sunder Man Shrestha

Mr. T. Hoshi, Resident

- 11. Mr. A.M. Tamrakar
- 12. Mr. M.D. Bhattarai
- 1. Mr. M. Sakanashi
- 2. Mr. M. Kuwabara
- 3. Mr. T. Inooka
- Counterpart Members :
- 1. Mr. Manohar B. Shrestha

JICA Study Team Members :

- 2. Mr. H.P. Khanal
- 3. Mr. Bishnu Sharma

- Secretary, Ministry of Industry
- Joint Secretary, Ministry of Industry
- Joint Secretary, National Planning Commission
- Acting Director General, Dept. of Indust:
- Senior Engineer, Ministry of Industry.
- Deputy Director General, Department of Agriculture
- Senior Engineer, Department of Electricity
- General Manager, NIDC
- Executive Director, I.S.C.
- Section Officer, Ministry of Finance
- Division Chief, Agriculture Inputs Corporation
- Assistant Engineer, Ministry of Industry
- - Team Leader, Techno-Economist
 - Fertilizer Chemical Engineer
 - Fertilizer Market Expert
 - For Chief, Industrial Projects Division,I
 - For Chief, Feasibility Branch, ISC
 - For Chief, Project Engg. & Mgmt. Branch, ISC.

26

4

Appendix - II

Persons Present at Meeting Held at National Planning Commission Secretarist on July 26, 1984

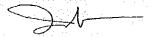
- 1. Dr. Mohan M. Sainju
- 2. Dr. Bijaya B. Pradhan
- 3. Mr. Shanker K. Malla
- 4. Mr. Surya P. Shrestha
- 5. Mr. Iswari L. Shrestha
- 6. Mr. Harsha M. Shrestha
- 7. Mr. Shiva P. Sharma
- 8. Mr. Rameswor B. Singh
- o. Mr. Bihari K. Shrestha
- 10. Mr. Indu S. Thapa
- 11. Mr. Ram P. Shrestha
- 12. Mr. R.K. Bajracharya
- 13. Mr. Manohar B. Shrestha
- 14. Mr. Ramesh B. Adhikari

- Honourable Vice-Chairman, National Planning Commission
- Member, National Planning Commission
- Joint-Member & Secretary, National Planning Commission
- Joint-Member, National Planning Commission
- Secretary, Ministry of Industry
- Chief Engineer, Department of Electricity
- Joint-Secretary, Ministry of Industry
- Joint-Secretary, Ministry of Agriculture
- Joint-Secretary, National Planning Commission
- Senior Engineer, Ministry of Industry
- Under-Secretary, National Planning Commission
- Senior Engineer, Dept. of Electricity
- For Chief, Industrial Projects Division, ISC
- Senior Officer, ISC. (On deputition to NPC)
- 15. Mr. T. Hoshi, Resident Representative, Japan International Cooperation Agency/Nepal.

JICA Study Team Members :

- 1. Mr. M. Sakanashi
- 2. Mr. M. Kuwabara
- 3. Mr. T. Inooka

- Team Leader, Techno-Economist
- Fertilizer Chemical Engineer
- Fertilizer Market Expert


M-

Z

Appendix - III

Issues Discussed at Meeting After Presentation on July 25, 1984

- 1. Clarifications on the technological aspects (such as only one or other alternative processes).
- 2. Interest rate on the external loan, whether it is possible to get the long term loan at 5% and sensitivity analysis to the project profitability by its change.
- 3. Possibility of getting energy at cheaper rate and its implications.
- 4. Water/air pollution in the process and what measures are to be taken in order to control it, if any.
- 5. Quality aspect of the urea to be produced in Nepal.
- 6. Possibility of product diversification such as producing the compound fertilizer (N:P:K:)
- 7. Rate of return to the NEC in view of the tariff reduction for this project.
- 8. Sapta Gandaki implementation to be delayed by one year (1992).
- 9. Any possibility of redeployment of plant of proposed capacity from other countries for minimizing the total project cost.
- 10. 10.5% interest on Long Term Loan charged.
- 11. Projected price (selling) is matching with the international price or not ?
- 12. Potential industrial uses of urea in Nepal.

4

Appendix - IV

Issues Discussed at Meeting Held at the National Planning Commission on July 26, 1984

- 1. Technology adopted in other countries in the region
- 2. New technology based on the electricity
- 3. Possibility of establishing the mini-fertilizer plants (35 40 TPD) requiring about 8 9 MW of power.
- 4. There is some foreign exchange component involved in the electricity price. This could reduce the value added of the project.
- 5. 46% of the production cost in foreign exchange is more than the C.I.F. Calcutta price for fertilizer.
- 6. Use of laminted bags for the packaging of urea.
- 7. Secondary energy can be used only during the rainy season but not during the off-peak period.
- 8. Optimum capacity of 275 TPD, some basis.
- 9. Storage of Hydrogen gas.
- 10. Alternatives for making this project financially, sound.

LIST OF STUDY TEAM MEMBER AND COUNTERPARTS

LIST OF STUDY TEAM MEMBER AND COUNTERPARTS

Members of Study Team of JICA, Japan

Mr. Masayasu Sakanashi*	Team Leader, Techno-Economist, UNICO
Mr. Katsuo Adachi	Team Sub-leader, Chemical Engineer, JCI
Mr. Yukihiko Fujiki	Plant Mechanical Engineer, JCI
Mr. Makoto Kuwabara*	Fertilizer Chemical Engineer, UNICO
Mr. Tetsuo Inooka*	Fertilizer Market Expert, UNICO
Mr. Saburo Suzuki	Electrical Engineer, NIPPON KOEI
Mr. Terumitsu Suzuki	Cement Chemical Engineer, ONODA ENGG.

^{*} These members also visited Kathmandu on July 23 to 28, 1984 for the presentation and discussion of the Draft Final Report.

Members of Counterpart Team, Nepal

Mr.	Manohar	B. Shrestha	Civil Engineer For Chief, Industrial Projects Division, ISC	3
M s∽	Hari Dr	anad Whanal	Pagnomiat	

I'I L	udtr	Plasau	Milaliai	1000	HOWTPC			
				For	Chief			*.
				Fea	sibility	Study	Branch,	ISC

Mr.	Bishnu	Sharma	Chemical E	ngineer		
			For Chief,	Project	Engineering	&
		• .	Management	Branch.	ISC	

Mr.	Pushpa	К.	Karki	Mechanical Engineer
				Senior Engineer,
				Feasibility Study Branch, ISC

Mr. Manoj Chipalu MBA, Senior Financial Analyst, Feasibility Study Branch, ISC

Mr. Jeevan Thaps DPA, Officer, Feasibility Study Branch, ISC

Mr. Som N. Bhattaraí Electrical Engineer
Technical Officer,
Feasibility Study Branch, ISC

ACTIVITY OF JICA STUDY TEAM

ACTIVITY OF JICA STUDY TEAM (1)

Date	M. SAKANASHI	K. ADACHI	Y. FUJIKI	M. KUWABARA	T. INOOKA
January, 1984			r in the second		
8	→ Leave TKY	- Leave TKY	- Leave TKY	- Leave TKY	- Leave TKY
9	- Acrive in KTM	- Arrive in KTM	- Arrive in KTM	- Arrive in KTM	- Arrive in KTM
10	- JICA, Japanese Embassy, MOI, ISC	- JICA, Japanese Embassy, MOI, ISC	- JICA, Japanese Embassy, MOI, ISC	- JICA, Japanese Embassy, MOI ISC	- JICA, Japanese Embassy, MOI ISC
11	- National Holiday Data Summary	- National Holiday Data Summary	- National Holiday Data Summary	- National Holiday Data Summary	- National Holiday Data Summary
12	- MOI, NIDC	- MOI, NIDC	- DMG, HCC	- DMG, HCC	- MOA
13	- ISC, JICA, NEC	- Balaju Indus- trial District	- Balaju Indus- trial District, NBS	- AIC, HCC, NBS	- AIC, DOA
14	- Holiday, Data Summary	- Holiday, Data Summary	- Holiday, Data Summary	- Holiday, Data Summary	- Holiday, Data Summary
15	- NPC, MOF, DE	- NPC, MOF, DE	- NTC, NCCN, Dooar	- NTC, NCCN, Dooars, HCC	- DSSAC/DOA, DFAMS/DOA
16	- CBS, MOI, Na- tional Insurance Co., NOC	- GWDP, DOR	- GWDP, DOR	- GWDP, DOR, WSSB at Sundarighat, HCC	- Local Survey in Lalitour District
17	- нсс	- HCC	- HCC	- HCC	- Local Survey in Bhaktapur
18	- ISC, JICA	- HCC	- HCC, CBC	- HCC	 Local Survey in Kaski District
19	- DOT (Tax), ISC	- HCC	- ISC, NCCN, NTC,	~ HCC	- Local Survey in Kaski District
20	-ISC, JICA, HCÇ	- ISC, HCC	- ISC, CBC, DMG, HCC	- RCC	- Trip, Data Summary
21	- Holiday, Trip to Hetauda	- Holiday, Trip to Hetauda	- Holiday, Trip to Hetauda	- Holiday, Trip to Hetauda	- Holiday, Trip to Hetauda
22	- HCI, Trip to	- HCI, Trip to KTM	- HCI	- HCC	- Local Survey in Parsa District
23	- ISC, JICA	- ISC	- Border, HO, HID, Trip to KTM	- Trip to Raxaul, HCI, Himal Oxy- gen, Ghee Factor	- Local Survey in Bara District Y
24	- ISC, Preparation of Progress Report	- ISC, Preparation of Progress Report	- ISC, Preparation of Progress Report	- ISC, HCC	- ISC, Preparation of Progress Report
25	 ISC, Preparation of Progress Report 	- ISC, Preparation of Progress Report	 ISC, Preparation of Progress Report 	- ISC, Preparation of Progress Report, HCC	- ISC, Preparation of Progress Report
26	- ISC, Japanese Embassy	- ISC, Japanese Embasy	- ISC, Japanese Embassy	- ISC, Japanese Embasy	- ISC, Japanese Embassy
27	- MOI, Presenta- tion of Progress Report	- MOI, Presenta- tion of Progress Report	- MOI, Presenta- tion of Progress Report	- MOI, Presenta- tion of Progress Report	- MOI, Presenta- tion of Progress Report
28	- Holiday	- Holiday	- Holiday	- Koliday	- Holiday
29	- Leave KTM	- Leave KTM	- Leave KTM Arrive in CLT	- Leave KTM Arrive in CLT	- Leave KTM
30	- Arrive in TKY	- Arrive in TKY	- Eng'g Firms	- Eng¹g Firms	- Arrive in TKY
Pebruary 1			- HFC	- HFC	
2			- FAI, Railway	- FAI, Railway	
3		· · · · · ·	- Haldia, HFC	- Haldia, HFC	
4			- Leave CLT	- Leave CLT	
. 5			- Arrive in TKY	- Arrive in TKY	
			10		

ACTIVITY OF JICA STUDY TEAM (2)

and the second second second			***		
Date		s.	SUZUKI	T.	SUZUKI
January, 1	984				
15	•	}	Leave TKY		Leave TKY
16	•	- ;	Arrive in KTM	-	Arrive in KTM
17	:	-]	нсс		нсс
18		;	ISC, JICA	-	HCC, Flue Gas Analysis
19		- 1	ED, NEC	-	HCC, Flue Gas Analysis
20	·. · · · · ·	→ 1	ED, NEC	-	HCC, Flue Gas Analysis
21			Holiday, Trip to Hetauda	-	Holiday, Trip to Hetauda
22			HCI, Trip to KTM	-	HCI, Trip to KTM
23		-]	ED, NEC		HCC, Flue Gas Analysis
24		- }	ED, NEC	_	HCC, Flue Gas Analysis
25		·	ED, Preparation of Progress Report	-	HCC, preparation of Progress Report
26			ISC, Japanese Embassy	-	ISC, Japanese Embassy
.27			MOI, Presenta- tion of Progress Report	-	MOI, Presenta- tion of Progress Report
28]	Holiday	 -	Holiday
29		- :	Leave KTM	-7	Leave KTM
30		- 7	Arrive in TKY	-	Arrive in TKY

LIST OF OFFICES VISITED AND PERSONS MET

LIST OF OFFICES VISITED AND PERSONS MET

(1)	Management,	Financial	and	Economic	Study	Team
-----	-------------	-----------	-----	----------	-------	------

-Ministry of Industry Mr. Indu Shamsher Thapa Senior Engineer

> Mr. Iswari Lal Shrestha Secretary

-ISC Mr. Tej Kumar Sharma Chief Training Division

(for Executive Director)

-NIDC Mr. R. N. Dhungel General Manager

-NEC Mr. L. M. Dixit General Manager

-National Planning Mr. Bed Bahadur Khadka Co-member (Agriculture)

> Dr. Bijaya Bahadur Pradhan Member

-Ministry of Finance Mr. Hit Singh Shrestha Additional Secretary

> Mr. Bhupal Man Shakya Under-Secretary

-Department of Mr. Harsh Man Shrestha Electricity Chief Engineer

-Central Bureau of Mr. Shyam Biharilal Srivastava Statistics Director General

-Department of Industry Mr. Ram Binod Bhattarai Director General

-National Insurance Mr. Bhoj Raj Sharma Co. Manager

-Nepal Oil Corporation Mr. Jeevan Prasad Khanal Deputy General Manager -Hetauda Cement Factory

Mr. Rabindra Nath Rimal General Manager

-Himal Cement Co.

Mr. Indu Bahadur Shahi General Manager

-Department of Taxes

Mr. Lalit Bahadur Khadka Deputy Director

(2) Market Study Team

-Ministry of Agriculture (MOA)

Mr. Rameshwar Bahadur Singh Joint Secretary

-Agricultural Input Corporation (AIC) Mr. P. N. Rana Chairman cum General Manager

Mr. Amrit Man Tamrakar Planning & Evaluation Div.

-Department of Agriculture (DOA)

Mr. Purushottam B. Gorkhali Director General

Mr. Narayan Regmi Deputy Director General, Planning & Coordination Div.

-Division of Soil Science and Agricultural Chemicals, DOA (DSSAC, DOA) Mr. Ranjit Shah Chief Soil Scientist

-Department of Food and Agricultural Marketing Services, MOA (DFAMS, MOA) Mr. Pushpa Ram B. Mathema Director General

-Central Regional Agricultural Directorate

Mr. S. N. Sarkar Director

Mr. P. L. Chitrakar Ag. Officer - Planning & Ag. Extension

-District Agricultural Office, Lalitpur District Mr. Yogendra B. Basnet District Agricultural Development Officer

- -Farmers interview in Thecho Panchayat and Dhepakhel Panchayat, Lalitpur District
- -Sajha Office in Thecho Panchayat, Lalitpur Disctirct
- -District Agricultural Office, Bhaktapur District
- -Interviews with farmers from Sipadoi Panchayat, Tathali Panchayat, and Town Panchayat, Bhaktapur District
- -Western Regional Agricultural Directorate

Mr. Manik L. Pradhan Director

- -District Agricultural Office, Kaskit District
- -Farmers interview in Arghaun Panchayat and Bhalam Panchayat, Kaski District
- -District Agricultural Office, Parsa District
- -Farmers interview in Sugauli Panchayat and Rengadhwa Panchayat, Parsa District
- -District Agricultural Office, Bara District
- (3) Technical Study Team
 - -Ministry of Industry (MOI)

Mr. Indu Shamsher Thapa Senior Engineer

Mr. Mukesh Dev. Bhattarai Engineer -Dept. of Mines & Geology (DOMG)

Mr. J. M. Tater Deputy Director

Mr. P. P. Gorkhali Engineer

Mr. Dwarika Shrestha Officer

-Himal Cement Co. (HCC)

Mr. Indu Bahadur Shahi General Manager

Mr. A. M. Bania Chief, Laboratory

Mr. C. D. Rajbhandari Chief, Planning

Mr. S. R. Aryal Chief, Mechanical Section

Mr. B. K. Kusle Chief, Production

-Balaju Yantra Shala (BYS)

Mr. Alex Arter Mechanical Engineer

-Structo Nepal (P) Ltd. (SN)

Ms. Yangji Sherpa Managing Director

Mr. Urgen Sherpa Accounts Chief

-NECOENCO (P) Ltd.

Mr. Diwakar Raj Paudyal

-Foundry Project (FP)

Mr. Kamal Manandhar Engineer

-Nepal Bureau of Standards (NBOS)

Mr. Dinesh Raj Bhattarai Director

-Nepal Transport Corporation (NTC) Mr. Krishna Raj Panday Chairman cum General Manager

Mr. Narendra Bahadur Neucha Director

Mr. Pramod Mani Ropeway Engineer -National Construction Mr. N. D. Sharma Co. of Nepal (NCCN) General Manager

Mr. L. P. Sharma Works Manager

-Dooars Transport (P) Mr. S. K. Manglik Ltd.

Manager

-Dept. of Roads (DOR)

Mr. Bharati Sharma D. E. Design Section

Mr. D. P. Rimal D. E. Planning Section

-Water Supply & Sewerage Board (WSSB) Officer Sundarighat

Mr. Binod Shankar Palikhe

-C.в.C. Group Control of the State of the Sta

Mr. Deepak Man Sherchan Managing Director

> Mr. S. B. Mathema Director

Mr. M. Rajbhandari Structure Engineer

-Nepal Oil Corporation (NOC)

Mr. Pradhan Deputy General Manager

-Hetauda Cement Industries Ltd. (HCI)

Mr. R. N. Rimal General Manager

Mr. Umesh Jha Deputy General Manager

Mr. T. K. Jha Erection Manager

Mr. D. P. Shrestha Construction Manager

Mr. K. R. Aryal Finance Manager

Mr. Teodoro R. Dino Consultant from ADB/M -Himal Oxygen (P) Ltd.

Mr. Indra Ranjit Manager

-Himal Iron (P) Ltd.

Mr. Indra Ranjit Manager

-Hetauda Industrial District (HID)

Mr. Gopal Sharma Officer

-Vegetable Ghee Industries Ltd. (VGI) Mr. D. Mathur Technical Incharge

-Department of Electricity (DOE)

Mr. K. M. Shrestha Manager, Finance & Economic Analysis

Mr. Manik Tuladhar Officer

Mr. R. M. Shakya Incharge, Planning & Generation Dept.

-Water Resources Commission Mr. Deepak Gyawali Officer

LIST OF DOCUMENTS RECEIVED

LIST OF DOCUMENTS RECEIVED

LIST OF DOCUMENTS RECEIVED	
Author/Title	Received from
(1) Management, Financial and Economic Study Tear	n
l) Investors' Guide to Nepal	Isc
2) Investing in Industry in Nepal	ISC
3) Industrial Enterprises Act 2038 (1982)	ISC
4) Economic Survey, Fiscal Year 1982-83 (Ministry of Finance, 1983)	ISC
5) NEPAL - INDIA, Treaty of Trade, Treaty of Transit; Agreement of Cooperation	ISC
6) Nepal Recent Developments and Selected Issues in Trade Promotion, World Bank; Oct. 14, 1983	ISC
7) Nepal: Issues and Options in the Energy Sector; UNDP/World Bank, August, 1983	ISC
8) Water - The Key to Nepal's Development (Ministry of Water Resources, 1981	ISC
9) Promotion of Export Oriented Industries in Nepal (UNIDO, July 1983)	ISC
10) ISC (Introduction)	ISC
11) List of Works Accomplished by ISC	ISC
12) Industrial Profile 1981/82, Ministry of Industry	ISC
13) Company Act, 2021 (1964)	ISC
14) NIDC (Introduction)	NIDC
15) NIDC (Guidance)	NIDC
16) NIDC (Manual for Financial Assistance)	NIDC
17) Operational Statistics of Nepal Industrial Development Corporation (F.Y. 1979/80 - 1981/82)	NIDC

18)	Act Relating to Foreign Investment and Technology 2038 (1982)	NJ	DC
19)	Industrial Policy and Act of HMGN (1982)	N J	DC
20)	Review of Performance of Public Sector Enterprises (1981) Ministry of Finance	МС	F
21)	Population in Nepal by Districts and Geography (1971, 1981) CBS	CE	S
22)	Organizational Chart of HMG/N	18	SC:
23)	Operating Cost Data at Himal Cement	Himal C	Cement
24)	Financial Data at Hetauda Cement	Hetauda	Cement
25)	Data on Financing Conditions for Hetauda Cement, MOF	MC)F
(2) Mark	et Study Team		
1)	AIC, "Basic Statistics of Agricultural Inputs in Nepal", (Jan. 1983)	A]	CC
2)	S.S. Rawal and T.M. Pradhan (AIC), "Import Management of Chemical Fertilizers in Nepal"	Al	ic
3)	A.M. Tamrakar (AIC), "A General Review on the Fertilizer Marketing System in Nepal", (Aug. 1979)	Al	C.
4)	A.M. Tamrakar (AIC), "AIC Role on Fertilizer Use Promotion"	ΙA	.c
5)	AIC, "Tender Document for Supply & Delivery of Chemical Fertilizer", (May 1983)	[A	CC C
6)	Div. of Soil Science & Agri. Chemistry, "Soil Reaction May of Nepal (Provisional)", (1983)	Div. of DOA	SSAC,
7)	Div. of Soil Science & Agri. Chemistry, "Response of N/P2O5 Fertilizer"	Div. of DOA	SSAC,

8)	Dept. of Food and Agri. Marketing Services, "Agricultural Statistics of Nepal, 1977", (1977)	DFMAS, MOA
9)	DFMAS, "Hand Book of Agricultural Statistics of Nepal", (1978)	DFMAS, MOA
10)	DSSAC, DOA, "Generalized Soil Map of Nepal (Provisional)", (1978)	DSSAC, DOA
11)	DFMAS, "Cropped Area and Production by Region and Zone 1971 - 1981"	DFMAS
12)	AIC, "Demand Projection of Fertilizer"	AIC
13)	AIC, "Data on Transportation Cost of Fertilizer"	AIC
14)	AIC, "Data on Import and Consumption, 1980 - 1982"	AIC
15)	AIC, "Data/Information on Fertilizer Marketing and Distribution"	AIC
16)	AIC, "Map of Distribution Routes of Fertilizer"	AIC
17)	AIC, "Map of Chemical Fertilizer Distributed"	AIC

(3) Technical Study Team

- 1) Monthly Bulletin, Hetauda Cement Industries Limited, Nov. 1983
 - 2) Industrial profile, Statistical Data No. 15, For Fiscal Year 1982-1983, Hetauda Industrial District, Pashupati Nagar, Hetauda
 - 3) Ribbed Torsteel, Himal Iron and Steel (P) Ltd., Kathmandu, Nepal
- 4) Feasibility Study for Replacement of Bridges on Kathmandu-Raxaul Highway, Department of Roads, June 1981, Kathmandu, Nepal
 - 5) Surface Water Records of Nepal, Supplement No. 7, 1972, No. 8 (1973), No. 9 (1974), No. 10 (1975), Department of Irrigation, Hydrology and Meteorology, Ministry of Food, Agriculture and Irrigation, June 27, 1974, Kathmandu, Nepal

- 6) Climatological Records of Nepal, 1971-75, Volume I, Department of Irrigation, Hydrology and Meteorology, Ministry of Food, Agriculture and Irrigation, June 1977, Kathmandu, Nepal
- 7) Climatological Records of Nepal, 1976-1980, Volume I, Department of Irrigation, Hydrology and Meteorology, Ministry of Water Resources, December, 1982 Kathmandu, Nepal
- 8) Techno-Economic Study on Manufacturing Nitrogeneous Fertilizers in Nepal, FGU-Kronberg, Gesellschaft fur unternehmensberatung und Projektstudiem mbH, Germany, Nepal Bureau of Mines, Ministry of Industry and Commerce, Nepal, April, 1975
- 9) Feasibility Study on a Fused Magnesium Phosphate Fertilizer Plant in Nepal, FGU-Kronberg, Gesellschaft fur unternehmensberatung und Projektstudiem mbH, Germany, Nepal Bureau of Mines, Ministry of Industry and Commerce, Nepal, March, 1975
- 10) Stromatolitic Phosphorites of Baitadi District, Department of Mines and Geology, Ministry of Industry, Nepal, 1982
- 11) Water, The key of Nepal's Development, Ministry of Water Resources, Kathmandu, Nepal, 1981
- 12) List of Works, Accomplished by Industrial Services Centre, Kathmandu, Nepal, October, 1983
- 13) Invitation to Tender for Engineering Contractor for Hetauda Cement Project, December, 1977, Hetauda Cement Industries Ltd., and Onoda Engineering and Consulting Co., Ltd.
- 14) Map of NEPAL Infrastructure, courtesy: His Majesty's Government of Nepal, Department of Electricity & IBRD
- 15) Flow Sheet of Plant, Lay-out of Plant, Topographic Map of Factory and Quarter Area Himal Cement Co.
- 16) Water Analysis Data at Sundarighat Plant and Pharping, HMG Water Supply And Sewerage Board
- 17) Ground Water Analysis Data at North of Maharajgunj and Bagmati River after Ring Road Bridge, Ground Water Development Project (Kathmandu)
- 18) Final Report on Soil Investigation Works at Chobar (Himal Cement Co. (Pvt) Ltd.)

- 19) Labor Wages for Kathmandu District Fixed by His Majesty's Government of Nepal (F.Y. 1982/83), ISC
- 20) Micro Seismicity Epicenter Map (Jan. 1982 Dec. 1982), HMG/Seismological Laboratory, DMG Epicenter Map (1911-1982), HMG/Department of Mines and Geology
- 21) Industrial Profile For Fiscal Year 1982-1983, Hetauda Industrial District
- 22) Report of Soil Investigation for Hetauda Cement Plant at Hetauda Nepal (December 1980), Development Consultants Private Limited
- 23) List of Transport Facilities, Nepal Transport Corporation
- 24) Information on the questionnaire submitted to Hetauda Cement Industries, and Hetauda Industrial District (CIVIL)
- 25) Plant Lay-out Hetauda Cement Project, Hetauda, Nepal
- 26) Contract Documents (CIVIL) of Hetauda Cement Industries Ltd.
- 27) Information on the Questionnaire Submitted by the Urea Fertilizer Feasibility Study Mission to the Himal Cement Co. Chobar, Kathmandu, Nepal
- 28) Sapta Gandaki Hydroelectric Project Proposal for Development Electricity Department
- 29) Budhi Gandaki Hydroelectric Project Power Simulation Studies and Evaluation of Alternative Project, Electricity Department
- 30) Electricity Load Forecast for Period 1983 2001, (1983) Electricity Department
- 31) Tariff Rates (1976 1983) NEC
- 32) Report on Tariff Study, Electricity Department
- 33) Rate Analysis of Civil Work, CBC Group
- 34) NCCN, a brief history

Annex II

Annex II-1	METHODOLOGY AND PROCEDURE OF
	DEMAND PROJECTION
Approv II-9	PAST TREND AND OUTLOOK OF CROP
Autex II-2	CULTIVATION AREA IN NEPAL
Annex II-3	ESTIMATED/PROJECTED CONSUMPTION NITROGEN FERTILIZER BY REGION
	NII RUGEN PERTILIZER DI REGION
Annex II-4	CONSUMPTION OF FERTILIZER IN NEPAI
	BY TYPE AND BY REGION
	TANDOUT FORM DESCRIPTION AND ALL
Annex II-5	FERTILIZER RESPONSE IN NEPAL

METHODOLOGY AND PROCEDURE OF DEMAND PROJECTION

Annex II-l

METHODOLOGY AND PROCEDURE OF DEMAND PROJECTION

(1) General

The demand for fertilizer was projected through the following process.

- 1. Projection of cultivated area of major crops by region
- 2. Projection of demand for fertilizer
- 3. Projection of type-wise demand for fertilizer

Details are described in the following sections.

- (2) Projection of cultivated area of major crops
- i) Method of projection

The future cultivated area (trend) of major crops was projected by region at each projection level shown below on the basis of past trend of change in the cultivation area.

- Level 1: Change in the area devided into the following groups, namely, agricultural area, pasture land, forest, and other area including industrial area and urban area. (Note: Level 1 projection was omitted in this Study due to the lack of data.)
- Level 2: Change in the area devided into the following groups out of agricultural area, namely, short term crops (multi-cropping crops), long term

crops (less than one cropping annually), and perennial crops.

Level 3: Change in the cultivated area of individual crops.

The total of each projected area in Level 2 in the region in question are adjusted to be equal to the agricultural area in Level 1. Further, the total of cultivated areas of each crop projected in Level 3 in each group shown in Level 2 are adjusted to be equal to the adjusted area projected in Level 2. Here, the total of cultivated area of short-term crops means the total of cultivated area multiplied by multi-cropping ratio of each crops.

The areas of each component (for example, agricultrual area and pasture land, etc. in Level 1) included in each Level either increase or decrease affected by economic and/or social factors. If the agricultural area has been expanded, then the expansion will be limited in the future because of approaching the limit of available land. In other words, the urban area may also be expanded at the same time, and the expansion of agricultural area may be depressed by the expansion of urban area. These pressures for expansion by each component and the adjustment function among these components have been reflected on the past trend of changes in the area of individual factors. These trends shown in the past are expected to continue in the future if there is no significant change in the economy, policy or technology, etc. The projection procedure described above represents the adjustment of discrepancies between the projected result of total of individual factors and aggregated factor with calculating the expanding (or shrinking) pressure of each factor by time series analysis.

The cultivated area by region and by crop described above were projected by the following regions, and the result is shown in tables of Annex II-2.

- Eastern Development Region: 1. High Hill 2. Hill

3. Terai

- Central Development Region: 1. High Hill 2. Hill

3. Terai

- Kathmandu Valley:

- Western Development Region: 1. High Hill 2. Hill

3. Terai

- Mid-western Development Region: 1. High Hill 2. Hill

3. Terai

- Far-western Development Region: 1. High Hill 2. Hill

3. Terai

ii) Data and data Sources

The projection of cultivation area was based on the past 12 years data of 1971 through 1982 provided by Food and Agricultural Marketing Service Department, Marketing Services Division, Ministry of Agriculture (FAMSD).

(3) Projection of fertilizer demand

i) Methodology of projection

"Physically optimum dosage level of fertilizer" may be calculated for each crop. The level varies depending on the soil condition, climatic condition of the area as well as fertilizer response of the crop, and represents the dosage level at which maximum additional output per unit input in terms of volume is expected. However, this level does not necessarily represent the economic optimum dosage level. When the application of fertilizer is increased gradually in the same manner as described above, then there will be the dosage

level at which maximum output in terms of value is expected by input of unit value of fertilizer. This level is called "Economic optimum dosage level of fertilizer". Every farmer nas the possibility to increase the application level up to this level. However, due to the following factors which adversely affect the use of fertilizer, the actual application level is usually lower than the economic optimum dosage level.

- 1. Natural disasters such as drought and flood.
- 2. Delay in the supply of irrigation water or inadequate drainage.
- 3. Insufficient purchasing ability of farmers to buy fertilizer, or lack of an adequate credit system for fertilizer purchase.
- 4. Unstable yield of crops.
- 5. Lack of sufficient knowledge on fertilization technic or effects of fertilization on crop yield.
- 6. Shortage or delay in supply of fertilizer.
- 7. Other factors which discourage farmers from fertilization.

When the "economic optimum dosage level" multiplied by "cultivation area" is defined as "potential demand", then the difference between the "potential demand" and actual consumption is understood to have been caused by the factors described above. The ratio of actual consumption to the potential damand is called the "realization rate" of the potential demand. The past trend of improvement of restricting factors of fertilization may be applicable to the future, as long as there is no significant change in the policies on agriculture and fertilizer distribution. In other words, the past trend of realization rate can be applicable to the future. However, it should be noted that if there will be significant changes in the factors, which affect influences on the fertilizer use, then the past trend of the realization rate can not be applied to the future. If such is the case, the

future realization rate should be examined year by year taking into account the change in the factors. These factors include the following.

- Construction or improvement projects of irrigation/ drainage facilities.
- Large scale intervention by the government on price formation of either agricultural products or fertilizers, including introduction of a subsidy system and/or price support system.
- Development or introduction of crop varieties which have high fertilizer response.
- 4. Improvement of the agricultural extension system.
- 5. Improvement of the fertilizer distribution system.
- 6. Other changes in the factors which stimulate the farmers to increase the fertilizer application.

The "potential demand" was defined in the above as "optimum dosage per unit cultivation area" mutiplied by "cultivation area". If appropriate data are avaslable, then the better estimate may be obtained regarding the "potential demand" using "per hectare economic optimum dosage" multiplied by "fertilized area" in replace of "cultivation area". In this case, the "cropped" area will be divided into two, namely, "fertilized area" and "non-fertilized area", and the trend of rate of fertilized area to total cropped area will be first projected with examination made of the probability that the upper limit of the rate will be attained. This projection process is better than that explained above, in that maximum potential rate of fertilized area is sometimes less than 100% because of natural conditions, lack of irrigation facilities, and other reasons, and therefore, the area of which fertilization is impossible, should be deducted from the objective area for calculation of fertilization in the future.

ii) Process of demand projection

The procedure for projection of future demand was as follows.

- 1. Comparison of the potential demand with actual demand in the past analyzing factors affecting fertilizer consumption and extent of their effects.
- Projection of potential demand on the basis of projected cultivated area and the potential dosage by crop.
- 3. Projection of future realization rate of potential demand.
- 4. Calculation of projected demand multiplying the potential demand with realization rate.
- iii) Data sources are as follows, and the details of the data on projection are included in Annex II-3.

1. Potential dosage:

The economic optimum dosage level was firstly calculated using the fertilizer response data—/ provided by the Division of Soil Science and Agricultural Chemistry, Department of Agriculture (Div. of SSAC), and the result is shown in Table 2-20 (Chapter 3, Part II). The calculation results thus obtained were found to meet the recommended dosages provided by Div. of SSAC, and therefore, the recommended dosages were regarded as the economic optimum dosage level is this Study. (Note: */ data are included in Annex II-5.)

2. Actual consumption:

Regional consumption data provided by AIC, which are included in Annex II-4.

(4) Projection of type-wise demand for fertilizer

Based on the result of total demand projection, type-wise demand was projected as follows.

- Examination of crops (or regions) on which the type of fertilizer in question is applicable.
- Calculation of potential demand from the above crops (or regions).
- 3. Projection of type-wise fertilizer demand taking into account the future supply ability and past trend of type-wise fertilizer consumption.

PAST TREND AND OUTLOOK OF CROP CULTIVATION AREA IN NEPAL

PAST TREND AND OUTLOOK OF CROP CULTIVATION AREA IN NEPAL Table II-2(1)

- EASTERN HIGH HILL -

	1973	1973 1974	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1990	1995	2000
PADDY MAIZE WHEAT OTHER CEREALS BARLEY POTATOES OTHER OIL CROPS TOBACCO JUTE SUGAR CANE	165 165 174 178 177 10	30 101 144 174 39 00 00 00	16.1 1.3 1.3 1.7 7 0 0 0	103 161 111 111 00 0 0	1110 1551 1488 111 0000	111 160 88 111 111 00 0	0 1 2 4 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1007 180 14 44 44 49 00	701 170 180 44 40 40 00 00	011 001 001 000 000 000 000	125 167 167 20 20 00 00	129 166 77 77 100 100	25. 16. 16. 16. 10. 10. 10. 10. 10. 10.	1444 1622 1624 222 113 100 000	88 4 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	60 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
TOTAL	407	407	407	407	407	407	407	407	407	407	407	407	407	407	407	407
			_													

NOTE 1973-1982:ACTUAL 1983-2000:PROJECTED

Table II-2(2) PAST TREND AND OUTLOOK OF CROP CULTIVATION AREA IN NEPAL

- EASTERN HILL -

	1973	1973 1974	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1990	1995	2000
PADDY	424	432	437	440	438	463	459	509	572	488	505	587	508	516	520	522
MAIZE	652	629	629	660	706	718	662	719	814	787	764	771	778	818	860	877
WHEAT	94	99	. 65	98	100	100	102	117	130	151	144	151	159	194	229	242
OTHER CEREALS	170	174	174	165	177	192	190	183	189	203	191	191	191	190	190	198
BARLEY	12	13	<u>-</u>	5	10	တ	တ	<u>; -</u>	53	∞	9	ιΩ	'n	21	-	0
POTATOES	126	133	137	136	136	138	138	127	129	129	130	129	129	125	122	121
OTHER OIL CROPS	73	<u>-1</u>	7	92	110	111	107	80	7.0	88	96	86	90	90	96	06
TOBACCO	2	2	2	2	, 1	7	63	 4	-		+	, (, 4	0	œ	0
JUTE	16	တ	တ			. •					0	=		-	0	0
SUGAR CANE	2	82	∾.	~7	∾	<>>	~	4		, 1	∾	<>>	7	2	 -(—
TOTAL	1695	1695	1695	1695	1695	1695	1695	1695	1695	1695	1695	1695	1695	1695	1695	1695

NOTE 1973-1982: ACTUAL 1983-2000: PROJECTED

PAST TREND AND OUTLOOK OF CROP CULTIVATION AREA IN NEPAL Table II-2(3)

- EASTERN TERAI -

	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1990	1995	2000
PADDY	3392	3443	3640	3585	3605	3543	3556	3567	3601	3295	3581	3587	3593	3611	3617	3616
M412E	124 200	132	127	153	162	186 456	167	191 270	210	280 838 838	244	255 7.17	268	358 258 268		4 8 9 9
OTHER CEREALS	25	. ₹	46	ο	51	91	434 62	25.0) 20 24	49	56	57.2		629	99	65
BARLEY	00	∞	9	ເດ	ഹ	4	4	4	*	က	ഹ	က	67		C	Ċ
POTATOES	39	40	34	33	35	31	35	37	42	46	33	33	33	41	42	43
OTHER OIL CROPS	86	103	93	101	138	157	139	157	125	56	126	127	128	132	135	136
TOBACCO	18	8.7	18	21	24	23	23	23	22	27	24	24	24	22	92	27
JULE	303	332	261	261	261	261	261	261	261	261	193	181	169	8 1 8	78	64
SUGAR CANE	20	17	19	56	27	56	27	22	31	31	38	31	32	35	37	38
TOTAL	2821	2821	2821	2821	2821	2821	2821	2821	2821	2821	2821	2821	2821	2821	2821	2821

NOTE 1973-1982: ACTUAL 1983-2000: PROJECTED

PAST TREND AND OUTLOOK OF CROP CULTIVATION AREA IN NEPAL - CENTRAL HIGH HILL -Table II-2(4)

	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1990	1995	2000
PADDY	63	61	61	61	63	19	61		61	64	62	62	62	63	64	64
MAIZE	146	146	146	146	146	149	149		145	135	140	140	139	137	135	133
WHEAT	34	34	24	27	27	27	27	39	39	36	34	34	35	37	33	48
OTHER CEREALS	41	. 41	41	4.0	33	43	43		r-1 V	40	41	41	42	42	43	43
BARLEY	တ	တ	თ	∞	∞	∞	∞		∞	10	∞	∞	∞	∞	∞	∞
POTATOES	34	34	34	37	36	41	7		35	44	39	39	40	4.	42	43
OTHER OIL CROPS	က	က	က	က	က	က	က		4	2	က	က	က	က	2	8
TOBACCO	8		0	<u></u>	සා	=	0		C	_ 	0		8	0	-	0
JUTE	C	0	6	G	_	0	\Box		-	_	0		c	0	=	_
SUGAR CANE	0	0	0	_ 	Ω _,		₩.		0		യ	0	⇔	C	င	c
TOTAL	333	333	333	333	333	333	333	333	333	333	333	333	333	333	333	333

NOTE 1973-1982:ACTUAL 1983-2000:PROJECTED

PAST TREND AND OUTLOOK OF CROP CULTIVATION AREA IN NEPAL Table II-2(5)

- CENTRAL HILL -

	1973	1973 1974	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1990	1995	2000
PADDY	317	317	319	340	348	349	364	376	403	532	446	460	474	520	25.7	562
MAIZE	530	521	521	521	513	513	489	505	505	479	505	506	507	485	457	446
WHEAT	77	77	8	90	108	104	108	126	158	219	175	186	197	239	272	284
OTHER CEREALS	122	121	121	110	105	106	109	108	116	108	108	108	107	100	26	88
BARLEY	Ŋ	ľΩ	ເດ	[~ -	ιĊ	9	[~	တ	ග	∞	G	တ	ഠാ	#*** #***	2	12
POTATOES	44	44	52	22	51	21	S S	56	57	57	23	200	9	.09	02	(C)
OTHER OIL CROPS	101	92	98	74	98	48	45	34	9	62	30	34	29	. 2) (=) CC
TOBACCO	2	2		; (,—(· ,1	- pa-4	,—	1	; +	t	, ,	į æ	· ==	(
JULE	0	<u></u>	C=	_	÷	0	C	G		œ	c	<u> </u>	=	· c=	· ==	<u> </u>
SUGAR CANE	ග	න	o,	∞	ത	თ	∞	∞	∞ ′	13	12	12	12	· 62	14	12
TOTAL	1350	1350	1350	1350	1350	1350	1350	1350	1350	1350	1350	1350	1350	1350	1350	1350
												.				

NOTE 1973-1982: ACTUAL 1983-2000: PROJECTED

PAST TREND AND OUTLOOK OF CROP CULTIVATION AREA IN NEPAL

- CENTRAL TERAI -

	1973	1973 1974	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1990	1995	2000
PADDY	3496	3524	0.5	3427	3385	3430	3435	3415	3413	3149	3342	3334	3327	3292	3258	3245
MAIZE	529	549		470	432	430	381	436	450	572	436	431	426	406	390	384
WHEAT	299	652		1034	1048	977	993	1092	1020	1316	1240	1276	1310	1459	1581	1626
OTHER CEREALS	78	₩ 8		75	73	72	70	75	7.	113	84	χ Σ	98	91	96	80
BARLEY	47	48		56	44	50	49	49	20	32	43	4	43	42	42	42
POTATOES	53	51		39	30	31	31	30	34	16	33	33	38	37	36	33
OTHER OIL CROPS	342	330		237	327	368	277	245	125	234	206	194	182	119	57	31
TOBACCO	21	တ္တ		32	46	43	42	3	36	26	43	2	44	46	48	48
JUID	نئ	₩.	` -t								⇔	, c	0	¢	=	Ċ
SUGAR CANE	71	98	7.0	85	119	114	117	119	131	123	140	147	154	188	223	236
TOTAL	3439	3439	3439	3439	3439	3439	3439	3439	3439	3439	3439	3439	3439	3439	3439	3439
									-		-					

NOTE 1973-1982:ACTUAL 1983-2000:PROJECTED

PAST TREND AND OUTLOOK OF CROP CULTIVATION AREA IN NEPAL - WESTERN HIGH HILL -Table II-2(7)

	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1990	1995	2000
PADDY	∞	1	۲	്ന	က	, ⊸∢	÷⊶	0	6	0	ū	-	0	5	0	_ co
MAIZE	24	24	24	24	24	24	24	23	တ	တ	1.5	13	12	9	0	=
WHEAT	10	=	വ	ĸЭ	വ	9	ယ	!	10	တ	ဖ	Ġ	တ	Ŋ	4	ഗ
OTHER CEREALS	12	12	12	11	T.	Ħ	11	11	F4 F4	11	12	12	12	j4 +4	H	<u> </u>
BARLEY	금		12	12	12	12	12	12	72	15	18	16	91	17	18	28
POTATOES	∞	∞	<u>φ</u>	∞	∞.	တ	ආ	~	<u> </u>	<u>-</u>	∞	∞	∞	L ~~	φ	ß
OTHER OIL CROPS	, , 1	,	Н	0	0	C	0	ر د	-	ల	.	Φ.	_	0	⇔	
TOBACCO	0	-	0	c)	0	0		0	₽	-	0	æ	_	C	0	æ
JUTE	0	C	⇔	<u>=</u>	0	0	0	-	0	0	0	Ξ,	=	0	.	⇔
SUGAR CANE	a	0		=	\C	-	Ö	-	0	0	O	-	₩.	· c	=	⇔.
TOTAL	79	79	79	79	79	79	79	79	79	7.9	79	79	79	79	7.9	.79

PAST TREND AND OUTLOOK OF CROP CULTIVATION AREA IN NEPAL

- WESTERN HILL -

	1973	1973 1974	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1990	1995	2000
PADDY MATZE	520	521	520	519	587 790	579	570	575 819	708	726	670	683 255	969	738	772	785
WHEAT	142	144	147	66 7	224	246	248	263	279	297	303	324	933	388	449	468
OTHER CEREALS	391	.391	390	410	391	382	382	354	343	384	354	348	343	303	278	566
BARLEY	25	23	24	23	22	22	22	21	22	21	20	13	<u>ရ</u>	16	14	13
POTATOES	51	52	55	28	62	28	228	52	20	58	56	56	26	54	52	51
OTHER OIL CROPS	28	82	34	33	32	36	36	24	25	21	25	24	24	20	16	ក
TOBACCO	, — — — — — — — — — — — — — — — — — — —				\Rightarrow		<u>-</u> -	, 4	_	~		C	=	Ġ	<u>.</u>	
JULE	<u>පා</u>	0	<u>.</u>	0	င်္	С	0	0	⇔	_	\Box	ė	0	⇔		⇔
SUGAR CANE	7	L -	ဖ	7	4	4	4	က	നാ	က	7	1		=	⇔	8
TOTAL	2260	2260	2260	2260	2260	2260	2260	2260	2260	2260	2260	2260	2260	2260	2260	2260
										-						-

NOTE 1973-1982: ACTUAL 1983-2000: PROJECTED

PAST TREND AND OUTLOOK OF CROP CULTIVATION AREA IN NEPAL Table II-2(9)

- WESTERN TERAI -

	1973	1973 1974	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1990	1995	2000
PADDY MAIZE	1613	1631	7	1763	1739	1752	1739	1823	1771	1758	1833	1851	1869	1952 62	2028	2055
WHEAT CROPALS	384	425	- 2	448	506	502	519 25	594	592	655	659	688	716	864	1017	1078
BARLEY	202	20 20 20 20 20 20 20 20 20 20 20 20 20 2		7 0) O 44	3 F-) [-	J [→	3 4	# m	7 0	3 ⇔) 1	- ED	ੂ ⇔ -	1 □
POTATOES	22	20		∞	_	<u></u>	-	<u>-</u>	12	12	ယ	ĸ	ŗŲ	2	c	
OTHER OIL CROPS	86	တ္တ	98	116	147	191	138	158	128	95	149	153	156	172	186	191
TOBACCO JUTE	O1 O1	Ø ⊖	04 D	63 .	2	က်	က -	က	2	∾ ়.	ကဗာ	ကေ	ကဗ	ကင္ဘာ	က ငာ	က္ေ
SUGAR CANE	43	39	37	50	62	28	23	75	99	7.0	74	77	80	96	111	118
TOTAL	1625	1625 1625	1625	1625	1625	1625	1625	1625	1625	1625	1625	1625	1625	1625	1625	1625

NOTE 1973-1982:ACTUAL 1983-2000:PROJECTED

PAST TREND AND OUTLOOK OF CROP CULTIVATION AREA IN NEPAL - MID-WESTERN HIGH HILL -

	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1990	1995	2000
PADDY	25	24	24	24	24	23	22	22	22	21	21	21	20	18	16	15
MAIZE	50	52	52	က်	52	20	48	46	44	37	43	42	42	36	31	<u>28</u>
WHEAT	94	75	43	40	38	36	34	32	53	59	14	10	9	c		(2)
OTHER CEREALS	37	39	88	39	တ္တ	33	33	33	<u>ල</u>	36	₩	42	42	43	44	44
BARLEY	37	37	40	36	35	35	34	34	33	3	33	32	32	29	58	24
POTATOES	22	22	22	22	21	20	19	87	17	16	11	17	16	13	18	တ
OTHER OIL CROPS	က	က	4	63	8	<i>~</i> i	~	2	<i>⇔</i>	~ 1	2	2	r÷4	₩	C	c
TOBACCO	ب ــــار	 1	1	1		4	 (, -4	<u></u>	,0	0	=	C	<u></u>	=	ငာ
JULE	-	0		0	င်ာ	යා	_	⇔	0	c	106	112	118	138	152	157
SUGAR CANE	=	=	.	0	-	C	€.	⇔ ,	0	0		D ·	සා ්.	©	0	⇔
TOTAL	278	278	278	278	278	278	278	278	278	278	278	278	278	278	278	278

NOTE 1973-1982:ACTUAL 1983-2000:PROJECTED

Table II-2(11) PAST TREND AND OUTLOOK OF CROP CULTIVATION AREA IN NEPAL

- MID-WESTERN HILL -

																i
	1973	1973 1974	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1990	1995	2000
PADDY MAIZE WHEAT OTHER CEREALS BARLEY POTATOES OTHER OIL CROPS TOBACCO JUTE SUGAR CANE	229 367 173 86 86 20 30 1	236 236 374 30 30 30 1	236 374 166 86 41 20 35 1	222 1365 1855 222 222 10	233 233 244 324 34 34 34 34 1101	2383 2383 3357 100 100 100 100 100 100 100 100 100 10	233 392 106 106 106 10 10 10 10 10 10 10 10 10 10 10 10 10	234 204 204 112 50 50 50 11	237 412 325 120 51 53 56 1	242 242 252 253 253 253 253 253 253 253 253 25	2232 12232 2223 22232 10	1 0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	28 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	221 383 383 131 131 131 131 131 131 131 13	2111 374 139 139 577 69 69	202841 20441 202241 2022741
TOTAL	1154	1154	1154	1154	1154	1154	1154	1154	1154	1154	1154	1154	1154	1154	1154	1154

NOTE 1973-1982: ACTUAL 1983-2000: PROJECTED

Table II-2(12) PAST TREND AND OUTLOOK OF CROP CULTIVATION AREA IN NEPAL - MID-WESTERN TERAI -

	1973	1974	1975	1976	1977	1978	1979	1980	1881	1982	1983	1984	1985	1990	1995	2000
PADDY MA12F	997	1012	1012	959	953	939	926	912	891	1001	923	917	910	878	846	833
WHEAT	193	199	223	229	248	267	286	306	324	348	353	370	386	466	546	577
OTHER CEREALS	56	92	26	21	21	20	20	20	19	18		77	16	12	∞	ţ~~
BARLEY	4	₹,	က	က	7	4	rυ	ശ	ω.	ന	ഹ	ιΩ	ເດ	വ	Ś	ဏ
POTATOES	L	17	17	16	12	15	14	හ ප	112	극		10	10	<u>-</u>	7	8
OTHER OIL CROPS	234	239	228	227	245	251	259	265	262	271	272	277	281	302	322	330
TOBACCO	***	7	က	ന	က	က	က	က	က	∾	~	~	87	, 1	c	_
JUTE		0	ದ								_	0	co		0	(
SUGAR CANE			÷∺⊀	⊷ 1·	2	က	₹7	വ	ထ်	67	വ	ιΩ	ശ	t~	o o	10
TOTAL	1221	1221	1221	1221	1221	1221	1221	1221	1221	1221	1221	1221	1221	1221	1221	1221

NOTE 1973-1982:ACTUAL 1983-2000:PROJECTED

PAST TREND AND OUTLOOK OF CROP CULTIVATION AREA IN NEPAL Table II-2(13)

- FAR-WESTERN HIGH HILL -

	1973 1974	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1998	1995	2000
PADDY	69	67	67	19	89	89	. 89	89	89	63	99	99	99	65	65	65
MAIZE	41	36	36	36	37	39	Ţ	42	44	43	41	42	42	43	45	45
WHEAT	103	35	72	58	9	62	64	99	69	69	55	53	51	42	က္သ	33
OTHER CEREALS	27	27	27	56	25	24	23	22	21	24	22	22	22	20	13	8
BARLEY	20	13	21	53	30	30	30	30	31	22	31	32	32	35	37	38
POTATOES	∞	[~	! ~	10	တ	රා	œ	∞	Ļ-	!~	œ	∞	∞	! ~	!~ ~	F
OTHER OIL CROPS	ഹ	မှ	-1	9	9	ဗ	9	ယ	ဖ	4	ယ	ဖ	9	<u>(</u> ဝ	ţ	1
TOBACCO	.—	 4		F	₽₩		 4		₽	0	, —	, 4		⇔	co	C
JUTE	0	0	0	0	0	0	0	=	0	6	0	⇔	(<u>,</u>	c	-
SUGAR CANE	-	က	2	87	α.	Tan	jed	0	-	6	 4	} 4	-	=	€	Ċ
TOTAL	273	273	273	273	273	273	273	273	273	273	273	273	273	273	273	273
NOTE 1973-1982:ACTUAL	'	983-2000	PROJECTED	CTED												

PAST TREND AND OUTLOOK OF CROP CULTIVATION AREA IN NEPAL Table II-2(14)

- FAR-WESTERN HILL -

	1973	1974	1975	1976	1877	1978	1979	1980	1981	1982	1983	1984	1985	1990	1995	2000
PADDY MAIZE WHEAT OTHER CEREALS BARLEY POTATOES OTHER OIL CROPS TOBACCO JUTE SUGAR CANE	0.4480 0.4480 0.4480	781 192 100 100 100 100 100	137 159 159 22 21 21 10 10	1330 160 160 160 160 160 160 160 160 160	1133 100 100 100 100 100 100 100 100 100	138 172 172 172 171 171 171	2487 2487 2487 2487 2487 2487 2487 2487	122 122 123 123 123 1	041 1821 1821 1821 1831 1831 1831 1831 183	2555 2555 1286 1286 100 100 100	202 202 204 202 122 122 122 122 123	161 123 207 20 11 11 11 11	164 211 211 20 67 67 113 113 113	179 229 229 24 20 14 14 0	188 1242 124 126 126 126 126 126 126 126 126 126 126	2451 2451 119 119 119 119 119
TOTAL	605	605	605	605	605	605	605	605	605	605	605	605	605	605	605	605

NOTE 1973-1982:ACTUAL 1983-2000:PROJECTED

PAST TREND AND OUTLOOK OF CROP CULTIVATION AREA IN NEPAL Table II-2(15)

- FAR-WESTERN TERAI -

								i								
	1973	1973 1974	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1990	1995	2000
PADDY	620	630	099	680	899	664	629	655	658	703	703	712	721	765	809	827
MAIZE	151	162	162	172	169	165	160	156	152	201	180	183	187	202	224	232
WHEAT	91	93	151	166	177	187	197	207	219	232	243	253	264	310	353	369
OTHER CEREALS	19	13	19	13	13	13	19	20	20	13	20	20	20	22	23	23
BARLEY		0	rt	Т	 1	,	2	83	2	Ħ	83	2	2	ന	က	ഹ
POTATOES	ത	6	œ	<u>r-</u>	!~	9	Ó	ĸ	S	r	ιO	кo	ιĊ	4	₩.	ഹ
OTHER OIL CROPS	92	95	118	128	142	152	161	174	174	197	204	215	227	588	355	383
TOBACCO		0	-		 1		~	,t	rl	H	 (,t	1		r4	
JUTE	⊶	C	-									_	-	=	0	=
SUGAR CANE	H	,~ 4 .		-	,	-	 4		-	82	, .		ابسا	2	67	~
TOTAL	826	826	826	826	826	826	826	826	928	826	826	826	826	826	826	828

NOTE 1973-1982: ACTUAL 1983-2000: PROJECTED

PAST TREND AND OUTLOOK OF CROP CULTIVATION AREA IN NEPAL

- CENTRAL KATHMANDU VALLEY -

	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1990	1995	2000
PADDY	321	322	312	287	311	298	282	296	307	324	298	297			284	
MAIZ	276	277	277	276	244	249	246	249	385	426	335	342			414	
WHEAT	280	279	282	291	306	292	291	280	271	270	285	285	285	586	283	282
OTHER CEREALS	63	63	63	28	53	49	46	48	49	34	33 33	37			급	
BARLEY	-	→		2	2	2	-		 1			+-4			ښ	
POTATOES	38	31	31	81 13	19	50	21	17	28	34	22	21			₩	
OTHER OIL CROPS	23	24	23	22	20	2.1	တ္	ත	თ	9	<u>თ</u>	œ				
TOBACCO	-	-	.	0	0	-	\hookrightarrow	0	0	_	0	(÷	
JULE	0		0		,						=	0			Ċ	
SUGAR CANE	က	က	2		2	2 2	2	2 3	2	~	t	 (c	
TOTAL	842	842	842	842	842	842	842	842	842	842	842	842	842	842	842	842

NOTE 1973-1982:ACTUAL 1983-2000:PROJECTED

PAST TREND AND OUTLOOK OF CROP CULTIVATION AREA IN NEPAL Table II-2(17)

- HIGH HILL TOTAL -

	1973	1973 1974	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1990	1995	2000
PADDY	203	196	251	258	268	264	262	256	258	250	274	278	280	290	298	300
MAIZE	426	419	419	420	414	422	413	419	412	394	406	403	400	384	370	363
WHEAT	266	236	157	137	138	139	139	158	165	153	116	110	104	98	78	76
OTHER CEREALS	165	168	168	164	162	164	163	157	156	161	163	164	164	161	160	158
BARLEY	94	69	99	96	96	96	95	96	96	90	96	ຜ	94	91	83	88
POTATOES	III	110	111	126	123	126	126	115	112	123	122	122	122	119	-116	116
OTHER OIL CROPS	19	21	22	15	14	15	15	14	16	10	13	13		IO	တ	တ
TOBACCO	N	83	ç1	2	8	2	8	2	1	<u>.</u>	 4	 1	₹ €	0	c	-
JUTE	0	=	0	0	_	0	c	C	<u>_</u>	0	106	112	118	138	152	157
SUGAR CANE	⊕	က	2	7	8	2	23	0	0	0		τ4	~~1	0	0	C
TOTAL	1370	1370 1370	1370	1370	1370	1370	1370	1370	1370	1370	1370	1370	1370	1370	1370	1370

NOTE 1973-1982:ACTUAL 1983-2000:PROJECTED

PAST TREND AND OUTLOOK OF CROP CULTIVATION AREA IN NEPAL

- HILL TOTAL -

	1973	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1990	1995	2008
PADDY MAIZE WHEAT OTHER CEREALS BARLEY POTATOES OTHER OIL CROPS TOBACCO JUTE SUGAR CANE	1950 2749 917 886 183 281 269 7	24 24 24 24 24 24 24 24 24 24 24 24 24 2	1961 2764 900 888 106 305 277 277 277	1945 2747 1011 1011 100 295 250 250 18	2048 2764 1115 1115 108 298 301 4	2203 1122 2303 1032 1032 100 100 100 100	2654 2694 1191 1091 266 266 6	2136 2822 1260 1260 109 292 209 209 19	23.46 30.375 1.345.7 2.306 4.4 1.1	2494 32230 1528 1109 318 239 239 25	2316 2980 1440 1440 108 307 229 3	2344 2996 1486 1486 107 306 222 3	2372 3011 1534 107 309 216 318 18	2465 3044 1733 1733 105 303 1 1 1 1	2527 3067 1901 108 108 108 1182 117 171	2550 3077 1963 773 102 296 1 182 1 182 1 18
TOTAL	7906	7906	7906	7906	7906	7906.	7906	7906	7906	7906	29062	7906	7906	7906	7906	7906

NOTE 1973-1982: ACTUAL 1983-2000: PROJECTED

Table II-2(19) PAST TREND AND OUTLOOK OF CROP CULTIVATION AREA IN NEPAL

- TERAI TOTAL -

									į		İ					
	1973	1973 1974	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1990	1995	2000
PADDY	10118		10348	10414	10350		10315	10372	10334	9806	10382	10401	10420	10498	10558	10576
MAIZE	1359	1410	1355	1289	1252	1263	1180	1271	1306	1485	1303	1303	1304	1312	1322	1327
WHEAT	1557		2229	2335	2430		2489	2569	2491	3157	3002	3104	3203	3667	4096	4259
OTHER CEREALS	202		200	175	192		196	193	189	213	198	199	200	204	207	208
BARLEY	79		62	45	58		67	67	99	45	533	53	52	51	21	21
POTATOES	140		117	103	91		06	85	105	152	100	86	97	91	88	ဆ
OTHER OIL CROPS	852		832	808	999	,	974	666	814	853	957	996	974	1014	1055	1871
TOBACCO	46		58	62	76		72	67	64	88	-1 -	73	74	- 10	78	 13
JULE	316		262	261	261		261	261	261	261	193	181	169	118	20	. 64
SUGAR CANE	136	126	128	160	211		208	222	235	228	250	261	272	328	382	404
TOTAL	9932	9932	9932	9932	9932	9932	9932	9932	9932	9932	9932	9932	9932	9932	9932	9932

NOTE 1973-1982: ACTUAL 1983-2000: PROJECTED

PAST TREND AND OUTLOOK OF CROP CULTIVATION AREA IN NEPAL Table II-2(20)

- GRAND TOTAL -

	1973	1973 1974	1975	1976	1977	1978	6261	1980	1981	1982	1983	1984	1985	1990	1995	2000
PADDY	12271	12401		12617	12666	12651		12764	12968	12650	12972	13023	13072	13253	13383	13426
MAIZE	4534	4583		4456	4430	4487		4512	4755	5189	4689	4702	4715	4740	4759	4767
MHEAT	2740	2740 2908	3286	3483	3683	3680	3819	3987	4001	4838	4558	4700	4841	5486	6075	6298
OTHER CEREALS	1253	1252		1218	1225	1244		1215	1223	1292	1237	1233	1229	1192	1156	1139
BARLEY	276	274		250	262	270		272	270	244	257	255	253	247	243	241
POTATOES	532	537		524	512	519		499	523	593	529	526	528	513	500	495
OTHER OIL CROPS	1140	1132		1074	1314	1398		1222	1057	1102	1199	1201	1201	1208	1246	1262
TOBACCO	55	99		7.0	85	80		74	69	91	7-1	7.	78	77	73	8
JUTE	332	342		261	261	261		261	261	261	299	293	287	256	230	221
SUGAR CANE	159	152		180	232	223		241	252	253	270	280	291	345	399	422
TOTAL	19208	19208 19208	19208	19208	19208	19208	19208	19208	19208	19208	19208	19208	19208	19208	19208	19208

NOTE 1973-1982: ACTUAL 1983-2010: PROJECTED

Annex II-3

ESTIMATED/PROJECTED CONSUMPTION NITROGEN FERTILIZER BY REGION

ESTIMATED/PROJECTED CONSUMPTION OF NITROGEN FERTILIZER BY REGION Table II-3(1)

- EASTERN HIGH HILL -

,	POTENTIAL				CROPPED AREA	AREA			
טאטר	N Kg/ha)	1981	1982	1983	1984	1985	1990	1995	2000
PADDY	30	10700	10200	12500	12900	13200	14400	15300	15600
THE TOTAL	ე დ დ	1800 1800	0001	10.00	1000	.009 009	200	00001)) (1
OTHER CEREALS		4400	5000	4700	4700	4600	4500	4400	4300
BARLEI POTATOES	30 72	900	300 4900	5000	5000	5000	5100	5100	5100
OTHER OIL CROPS	34	400	200	200	200	100	C	_	
TOBACCO	22	0	C	0	-	.0	⇔.	0	=
JUTE	34	0	<u>-</u>	=	0	⇔	0	6	c
SUGAR CANE	72	0	0	0	0	0	0	0	=
0.5	A)	1327	1288	1339	1345	1341	1347	1352	1353
(A/B:%)		27	2 4	က	7 7) 1 4	ည်	်	-1

Table II-3(2)

ESTIMATED/PROJECTED CONSUMPTION OF NITROGEN FERTILIZER BY REGION

- EASTERN HILL -

(POTENTIAL				CROPPED	AREA			
ראכר	DUSAGE (N Kg/ha)	1981	1982	1983	1984	1985	1990	1995	2000
PADDY	80	57200	48800	50500	50700	50800	51600	52000	52200
MAIZE	00	81400	79700	76400	77100	77800	81800	86000	87700
WHEAT	09	13000	15100	14400	15100	15900	19400	22900	24200
OTHER CEREALS		18900	20300	19100	19100	19100	19000	19000	19000
BARLEY	30	500	800	009	500	200	200	~	(C)
POTATOES	72	12900	12900	13000	12900	12900	12500	12200	12100
OTHER OIL CROPS	34	7000	8600	0006	0006	9000	9006	.0006	9006
TOBACCO	22	100	100	100	100	100	=	C	0
JUTE	34		<u></u>	0		0	_		⇔
SUGAR CANE	72	200	100	200	200	200	200	100	100
POTENTIAL DEMAND	(A)	14902	14258	14031	14148	14274	14907	15535	15791
CTED	CONSUMPTION (B)	224	354	281	283	285	447	466	474
(4/8:%)		2	۷2	~ 1	2	2	က	ന	ണ

Table II-3(3) ESTIMATED/PROJECTED CONSUMPTION OF NITROGEN FERTILIZER BY REGION

- EASTERN TERAI -

מאני	POTENTIAL				CROPPED	AREA		ļ	
פאטר	DOSAGE (N Kg/ha)	1981	1982	1983	1984	1985	1990	1995	2000
PADDY	00	360100	329500	358100	358700	359300	361100	361700	361600
MAIZE	20	21000	28000	24400	25600	26800	32800	38600	40900
WHEAT	0.0	33600	00909	50700	51700	52700	56800	59900	60900
OTHER CEREALS	11	5400	4900	5600	5700	5800	6200	0099	6700
BARLEY	30	400	300	300	300	200	100	Ċ	ဗော်
POTATOES	72	4200	4600	3900	3900	3900	4100	4200	4300
OTHER OIL CROPS	34	12500	2600	12600.	12700	12800	13200	13500	13600
TOBACCO	22	2200	2700	2400	2400	2400	2500	2600	2700
JULE	34	26100	26100	19300	18100	16900	11800	7800	6400
SUGAR CANE	72	3100	3100	3000	3100	3200	3500	3700	3800
POTENTIAL DEMAND (A)	(A)	43848	44124	45513	45788	46060	47249	48215	48554
<u>ا</u>	IF 110N (5)	, 707 3	306 208	1.000 3	1. 2. 2.	1502	1030 4	1363	1346 4
		:				-			

lable II-3(4) ESTIMATED/PROJECTED CONSUMPTION OF NITROGEN FERTILIZER BY REGION

6400 13300 4000 4300 800 800 200 1995 3900 1990 1985 4200 800 4000 300 CROPPED AREA CENTRAL HIGH HILL 1068 897 84 1984 1068 865 81 1983 3400 4100 800 3900 300 1103 864 78 1982 3600 4000 1000 4400 200 1048 679 65 6100 (4500 3900 4100 800 3200 400 1981 POTENTIAL DOSAGE (N Kg/ha) ACTUAL/PROJECTED CONSUMPTION (B) POTENTIAL DEMAND (A) OTHER CEREALS
BARLEY
POTATOES
OTHER OIL CROPS
TOBACCO (A/B: %) SUGAR CANE MAIZE WHEAT PADDY

ESTIMATED/PROJECTED CONSUMPTION OF NITROGEN FERTILIZER BY REGION Table II-3(5)

- CENTRAL HILL -

			İ				į	į	
0000	POTENTIAL	! !			CROPPED AREA	AREA			āi
נאסר	N Kg/ha)	1981	1982	1983	1984	1985	1990	1995	2000
PADDY	80	40300	53200	44600	46000	47400	52000	55100	56200
MAIZE	00	50500	47900	50500	50600	50700	48500	45700	44600
WHEAT	9	15800	21900	17500	18600	19700	23900	27200	28400
OTHER CEREALS	H	11600	10800	10800	10801	10700	10000	9200	8800
BARLEY	30	906	800	900	006	006	1100	1200	1200
POTATOES	72	5700	5700	5800	5900	0009	0009	5900	5800
OTHER OIL CROPS	34	6110	6200	3900	3400	2900	200	, ⇔ 	(
TOBACCO	22	100	100	100	100	100	((C)	(
JULE	34	c	උ	<u>ح</u>	~	~	_	c	6
SUGAR CANE	72	800	1900	1200	1200	1200	1300	1400	1500
ļ		10054	11263	10453	10631	10808	11119	11273	11318
ACTUAL/FROJECTED (CONSUMPTION (B)	1557 15	1987	1882 18	2620 19	$\begin{array}{c} 2162 \\ 20 \end{array}$	2446 22	2593 23	2683
				:				-	

ESTIMATED/PROJECTED CONSUMPTION OF NITROGEN FERTILIZER BY REGION Table II-3(6)

Ţ
TERAI
7
NTRAL
CEN
ı

noac	POTENTIAL				CROPPED	AREA			-
סיגטר	DOSAGE (N Kg/ha)	1981	1982	1983	1984	1985	1990	1995	2000
PADDY	0.0	341300	314900	334200	333400	332700	329200	325800	324500
MALZE	20	45000	57200	43600	43100	42600	40600	39000	38400
WHEAT	00	102000	131600	124000	127600	131000	145900	158100	162600
OTHER CEREALS	11	7100	11300	8400	8500	8600	9100	0096	9800
BARLEY	303	2000	3500	4300	4300	4300	4200	4200	4200
POTATOES	72	3400	7600	3900	3900	3800	3700	3600	3500
OTHER OIL CROPS	34	12500	23400	20600	19400	18200	11900	5700	3100
TOBACCO	22	3600	5600	4300	4300	4400	4600	4800	4800
JULE	34	0	0	0	-	0	0	(c
SUGAR CANE	72	13100	12300	14000	14700	15400	18800	22300	23600
		51650	54095	53357	53588	53804	54734	55466	55714
(E)	CONSUMPTION (B)	5209	6617	6403	9969	6995	8757	9429	9471
(4/8 : %)		10	73	12		13	97	17	1.1

ESTIMATED/PROJECTED CONSUMPTION OF NITROGEN FERTILIZER BY REGION Table II-3(7)

- WESTERN HIGH HILL -

2000	POTENTIAL				CROPPED AREA	AREA		:	
CROF	N Kg/ha)	1981	1982	1983	1984	1985	1990	1995	2000
PADDY	40	0	0	0	0	0			0
MAIZE	09	900	006	1500	1300	1200	600	0	=
WHEAT	40	1000	006	009	009	009	200	400	300
OTHER CEREALS	· T	1100	1100	1200	1200	1200	1100	1100	1000
BARLEY	30	1500	1500	1600	1600	1600	1700	1800	1800
POTATOES	72	700	700	800	800	008	700	600	900
OTHER OIL CROPS	34	<u></u>	·, •	0	` C	c	0	C	=
TOBACCO	22	O	0	0	œ	0	-	C	C
JUTE	34	C	0	=	=	c	=		0
SUGAR CANE	72	-	.	0	0	6	©	=	=
POTENTIAL DEMAND (A)		201	197	233	221	215	169	125	120
$\stackrel{\cdot}{\Box}$	CONSUMPTION (B)	18	. 16	82	31	30	54	<u>8</u> 1	17
(A/B:%)		တ	ω:	12	14	14	4	77	14

ESTIMATED/PROJECTED CONSUMPTION OF NITROGEN FERTILIZER BY REGION Table II-3(8)

- WESTERN HILL -

, , , , , , , , , , , , , , , , , , ,	POTENTIAL	: :			CROPPED	AREA			
C X O Y	DUSAGE (N Kg/ha)	1981	1982	1983	1984	1985	1990	1995	2000
PADDY	080	70800	72600	67000	68300	00969	73800	77200	78500
MAIZE	00	79700	97600	85000	85500	86000	86100	85900	85800
WBEAT	80	27900	29700	30900	32400	33900	39800	44900	46800
OTHER CEREALS	,	34300	38400	35400	34800	34300	30900	27800	26600
BARLEY	30	2200	2100	2000	1900	1900	1600	1400	1300
POTATOES	72	5000	5800	5600	5600	5600	5400	5200	5100
OTHER OIL CROPS	34	2200	2100	2500	2400	2400	2000	1600	1500
TOBACCO	22	100		C	-	-	C	0	C
JUTE	34	0	0	0	C	-	-	6	0
SUGAR CANE	72	300	30.0	200	100	100	=	0	-
POTENTIAL DEMAND (A ACTUAL/PROJECTED CC (A/B : %)	(A) CONSUMPTION (B)	16768 651	18940 888 5	17284 864 5	17538 877 5	17806 890 5	18543 1113 6	19135 1339	19354 1548 8

ESTIMATED/PROJECTED CONSUMPTION OF NITROGEN FERTILIZER BY REGION Table II-3(9)

- WESTERN TERAI -

	POTENTIAL				CROPPED	AREA			
caor	DOSHUE (N Kg/ha)	1981	1982	1983	1984	1985	1998	1995	2000
PADDY MAI7E	0.0	177100	175800	183300	185100	186900	195200	202800	205500
WHEAT	8	59200	65500	65900	00889	71600	86400	101700	107800
OTHER CEREALS	Ħ	2500	1400	2100	2000	2000	1700	1400	1300
BARLEY	30	400	300	-	-	~	0	-	⇔
POTATOES	72	1200	1200	909	500	200	200	=	⇔
OTHER OIL CROPS	34	12800	9200	14900	15300	15600	17200	18600	19100
TOBACCO	22	200	200	300	300	300	300	300	300
JUTE	34	0	-	co	0	_	<u> </u>	0	c
SUGAR CANE	72	0099	7000	7400	7700	8000	0096	11100	11800
POTENTIAL DEMAND (A) ACTUAL/PROJECTED CON (A/B : %)	(A) CONSUMPTION (B)	25217 1884 7	24492 1883 8	25934 2075 8	26283 2103 8	26639 2131 8	28368 2837 10	30040 3304 11	30694 3376 11

ESTIMATED/PROJECTED CONSUMPTION OF NITROGEN FERTILIZER BY REGION Table II-3(10)

- MID-WESTERN HIGH HILL -

avav	POTENTIAL				CROPPED	AREA			
rono.	N Kg/ha)	1981	1982	1983	1984	1985	1990	1995	2000
PADDY	40	2200	2100	2100	2100	2000	1800	1600	1500
MAIZE	09	4400	3700	4300	4200	4200	3600	3100	2800
WHEAT	40	2900	2900	1400	1000	600	-	=	
OTHER CEREALS		3900	3600	4100	4200	4200	4300	4400	4400
BARLEY	30	3300	3100	3300	3200	3200	2900	2600	2400
POTATOES	7.2	1700	1600	1700	1700	1600	1390	1000	900
OTHER OIL CROPS	34	200	200	200	200	100	100	=	=
TOBACCO	22	0	0	C	0	-	=		C
JUTE	34	0		10600	11200	11800	13800	15200	15700
SUGAR CANE	72	0	ට .	ပ	6	۵.	6	æ	(C)
POTENTIAL DEMAND (A) ACTUAL/PROJECTED CON	(A) CONSUMPTION (B)	739 3	677	1032	1028	1018	988	965	947
(A/B:%)		0	, , , , ,	=	Φ.			∓⊶t '	₩

Table II-3(11)

ESTIMATED/PROJECTED CONSUMPTION OF NITROGEN FERTILIZER BY REGION

- MID-WESTERN HILL -

a cac	POTENTIAL	٠.		•	CROPPED	AREA		٠	•
CKUF	UOSHGE (N Kg/ha)	1981	1982	1983	1984	1985	1990	1995	2000
PADDY	8	23700	24900	23900	23600	23400	22100	21100	20700
MAIZE	00	41200	42700	40200	39900	39600	38300	37400	37200
WHEAT	80	32500	33200	32300	33300	34300	38700	42700	44200
OTHER CEREALS		12000	12300	12000	12100	12300	13100	13900	14200
BARLEY	30	5100	5300	5200	. 5300	5300	5500	5700	5700
POTATOES	72	3000	2800	2900	2900	3000	3100	3300	3400
OTHER OIL CROPS	34	5600	2200	5400	5500	2600	6300	0069	7100
TOBACCO	22	100	100	100	100	100	100	100	100
JUTE	34	0	-	0	0	0	-	 	<u>.</u>
SUGAR CANE	72	100	100	100	100	100	100	100	100
POTENTIAL DEMAND (A) ACTUAL/PROJECTED CON	(A) CONSUMPTION (B)	9317	9610 115	9206	9239 92	9286	9450 189	9649 193	9735
/ w · g/#)		-	→	⊣	-1	1	7	9	7

able II-3(12) ESTIMATED/PROJECTED CONSUMPTION OF NITROGEN FERTILIZER BY REGION

- MID-WESTERN TERAI -

a co	POTENTIAL				CROPPED	AREA			
CRUP	NOSHGE (N Kg/ha)	1981	1982	1983	1984	1985	1998	1995	2008
PADDY	0.0	89100	100100	92300	91700	91000	87800	84600	83300
MAIZE	00	32100	35900	32100	32000	31800	31160	30500	30200
WHEAT	80	32400	34800	35300	37000	38600	46600	54600	57700
OTHER CEREALS	11	1900	1800	1700	1700	1600	1200	800	700
BARLEY	30	600	300	500	200	500	200	909	009
POTATOES	72	1200	1100	1100	1600	1000	700	400	200
OTHER OIL CROPS	34	26200	27100	27200	27700	28100	30200	32200	33000
TOBACCO	22	300	200	200	200	200	100	=	=
JUTE	34	=	0	-	_	6	(~	0
SUGAR CANE	7.5	009	200	200	200	500	708	900	1000
POTENTIAL DEMAND (A) ACTUAL/PROJECTED CONSUI	(A) CONSUMPTION (B)	15778	17432	16342	16418 493	16468	16776 671	17093	17200 860
(A/B:%)		7	₹'	က	ഹ	က	4	4	ഹ

ESTIMATED/PROJECTED CONSUMPTION OF NITROGEN FERTILIZER BY REGION Table II-3(13)

- FAR-WESTERN HIGH HILL -

2000	POTENTIAL				CROPPED AREA	REA			
כאטר	N Kg/ha)	1981	1982	1983	1984	1985	1990	1995	2000
PADOY	40	0089	6300	6600	0099	0099	6500	6500	6500
MAIZE	90	4400	4300	4100	4200	4200	4300	4500	4500
WHEAT	40	6900	.0069	5500	5300	5100	4200	3500	3300
OTHER CEREALS	- 	2100	2400	2200	2200	2200	2000	1800	1800
BARLEY	30	3100	2500	3100	3200	3200	3500	3700	3880
POTATOES	72	700	700	800	800	800	700	700	700
OTHER OIL CROPS	34	009	400	900	009	900	909	700	700
TOBACCO	22	100	0	100	100	100	0	خت	_
JUTE	34	B	-	_		—	Ö	<u> </u>	=
SUGAR CANE	12	6	0	100	100	100	: : ::	0	(
POTENTIAL DEMAND (A)		1001	951	935	936	928	884	875	870
ACTUAL/PROJECTED CONSUM	MPTION (B)	ザ	12	တ	တ	တ	් ග	18	17
(A/B:%)		0	ċ3			स्ले		87	7

ESTIMATED/PROJECTED CONSUMPTION OF NITROGEN FERTILIZER BY REGION Table II-3(14)

- FAR-WESTERN HILL -

4040	POTENTIAL	-			CROPPED	AREA			
CKOP	DUSAGE (N Kg/ha)	1981	1982	1983	1984	1985	1990	1995	2000
PADDY	80	14900	17500	15800	16100	16400	17900	18900	19300
MAIZE	. 00	12400	12500	12400	12300	12100	11300	10300	9800
WHEAT	08	18200	25900	20400	20700	21100	22900	24100	24500
OTHER CEREALS	=	6100	0099	6400	6500	0019	7400	1900	8100
BARLEY	30	2000	1800	2000	2000	2000	2000	1900	1900
POTATOES	72	1200	1200	1200	1200	1300	1400	1408	1500
OTHER OIL CROPS	34	006	900	1200	1100	1100	006	700	600
TOBACCO	22	C	0	-	G	:	=	=	(2)
JUTE	34	=	-	-	8	-	c	c	0
SUGAR CANE	72	100	100	1.00	100	100	100	100	100
POTENTIAL DEMAND (A)		4139	4973	4401	4436	4482	4674	4746	4766
rected	CONSUMPTION (B)	28	18	44	44	45	47	47	48
(A/B:%)			0		, .	 -1	,	-	
									- 1

ESTIMATED/PROJECTED CONSUMPTION OF NITROGEN FERTILIZER BY REGION Table II-3(15)

- FAR-WESTERN TERAI -

	POTENTIAL				CROPPED	AREA	÷		
C N O	DOSHGE (N Kg/ha)	1981	1982	1983	1984	1985	1990	1995	2000
PADDY	00	65800	70300	70300	71200	72100	76500	00608	82700
MAIZE	00	15200	20100	18000	18300	18700	20500	22400	23200
WHEAT	80	21900	23200	24300	25300	26400	31000	35300	36900
OTHER CEREALS		2000	1900	2000	2000	2000	2200	. 2300	2300
BARLEY	30.	200	100	200	200	200	300	300	300
POTATOES	72	500	700	500	500	500	400	400	300
OTHER OIL CROPS	34	17400	19700	20400	21500	22700	28900	35500	38300
TOBACCO	22	1.00	100	100	100	100	100	100	100
JULE	34	ထ	_	0	0	c	C	<u></u>	
SUGAR CANE	72	100	200	100	100	100	200	200	200
POTENTIAL DEMAND (A)	(A)	10517	11657	11541	11778	12037	13241	14441	14917
ACTUAL/PROJECTED (CONSUMPTION (B)	121	253	115	236	241	265	433	448
(A/B:%)			~3		2	2	~	က	က

Table II-3(16) ESTIMATED/PROJECTED CONSUMPTION OF NITROGEN FERTILIZER BY REGION

			CENTR	CENTRAL KATHMANDU VALLEY	IMANDU	VALLEY	1		
0000	POTENTIAL				CROPPED AREA	АКЕА			
VAU'S	N Kg/ha)	1981	1982	1983	1984	1985	1990	1995	2000
PADDY	0.0	30700	32400	29800	29700	29600	29100	28400	28100
MAIZE	20	38500	42600	33500	34200	34900	38400	41400	42600
WHEAT	0.0	27100	27000	28500	28500	28500	28600	28300	28200
OTHER CEREALS	11	4900	3400	3900	3700	3400	2300	1100	600
BARLEY	30	100	100	100	100	100	100	100	100
POTATOES	72	2800	3400	2200	2100	2100	1900	1800	1700
OTHER OIL CROPS	34	900	009	006	800	608	0	6	ප
TOBACCO	22	0	c	0	0	=	=	8	0
June	34	0	0	0	⇔	G	~	-	
SUGAR CANE	72	200	0	100	100	100	C	င္	සා
POTENTIAL DEMAND (A) ACTUAL/PROJECTED CONSUM (A/B : %)	(A) CONSUMPTION (B)	10703 5816 54	11358 6234 55	10092 6358 63	10153 6599 65	10217 6743 66	10543 7591 72	10783 8303 77	10874 8808 81

Annex II-4

CONSUMPTION OF FERTILIZER IN NEPAL BY TYPE AND BY REGION

CONSUMPTION OF FERTILIZER IN NEPAL BY TYPE AND BY REGION Talbe II-4(1)

- EASTERN HIGH HILL -

	1975 19	1976 19	1977	1978	1979	1980	1981	1982
BREA.	0	9	10	0.	23	29	27	45
AMMONIUM SULPHATE (1)	0 00	. =	· 63	2	_ 	· ·	.	1
	: 1	ć <u>i</u>	,	. 1	1	ı	i	1
PHOSPHATE							ı	1
$\overline{}$	7	12	30	35	60	83	81	173
COMPLEX (2)					13	ഹ	t	1
COMPLEX (3)	1	1	,	1	Ί	1	ı	
COMPLEX (4)	s.	,	1	ı	, t	ı	,	i
TRIPLE SUPER PHOSPHATE	1.	1	1	.1	ı	ı	ı	1
MURIATE OF POTASH	0		ശ	4	7	1	, 4	
SULPHATE OF POTASH	1	1	. 1	ı	ï	i		.1
OTHER NITROGEN FERTILIZER	ı	1	ı	ı				
TOTAL (IN PRODUCT TONS)	9	19	47	51	97	117	109	219
N TOTAL (IN N TONS)	, —4	വ	11	12	25	31	29	55
TOTAL (IN P205	_F -4 (23	9	 (21	81°	16	35
K20 TOTAL (IN K20 TONS)		 (က	⊘ I	2	=>		(

NOTE: AS1=21% AS2=26% CX1=20:20:0 CX2=23:23:0 CX3=15:15:15 CX4=5:6:7

CONSUMPTION OF FERTILIZER IN NEPAL BY TYPE AND BY REGION Table II-4(2)

- EASTERN HILL -

	1975	1976	1977	1978	1979	1980	1981	1982
URBA	84	115	180	181	234	207	246	350
NIUM SULPHATE	32	83	92	98	30	22	30	58
AMMONIUM SULPHATE (2)	E	1	1		1.	ı	1	t
AMMONIUM PHOSPHATE	-						74	
COMPLEX (1)	253	307	375	398	463	545	454	915
					55	22	•	12
	,—	,4	25	27	32	-	1	
4.3	ļ		1		ı	1	⇔	c
~,		,	ന	∞	4	, 1	 1	රා
MURIATE OF POTASH	54	80	73	13	33	22	30	38
SULPHATE OF POTASH	F -4	:		1	ŧ	ı	٠.	ı
OTHER NITROGEN FERTILIZER	I		•	1		٠		
TOTAL (IN PROBUCT TONS)	425	586	751	779	857	828	835	1374
N TOTAL (IN N TONS)	96	132	182	185	224	222	224	354
NI)	21	62	80	87	112	122	125	192
K20 TOTAL (IN K20 TONS)	33	48	48	52	58	15	∞	35
					İ			ı

NOTE: AS1=21% AS2=26% CX1=20:20:0 CX2=23:23:0 CX3=15:15:15 CX4=5:6:7

CONSUMPTION OF FERTILIZER IN NEPAL BY TYPE AND BY REGION Table II-4(3)

- EASTERN TERAI -

	1975	1976	1977	1978	1979	1980	1981	1982
UREA	618	943	1198	1332	1510	1498	1810	2821
MIN	503	444	259	271	169	218	270	367
AMMONIUM SULPHATE (2)	I	1	. 1	.1	. 1	ı		က
							223	 33
	1296	1371	1792	1085	1832	2052	1704	4073
	-			"	274	64	61	248
COMPLEX (3)	39	352	390	1331	350	ന	S	
	ı.	ı	1	. 1	1	1	<u></u>	♥
· 0)	<u>-</u>	21	33	43	22	16	G	თ
MURIATE OF POTASH	210	279	281	199	211	202	292	441
SULPHATE OF POTASH	⇔	1	∞	13	∾	1		
OTHER NITROGEN FERTILIZER	0	ı	0	5				
TOTAL (IN PRODUCT TONS)	5683	3410	3967	4276	4373	4053	4381	8041
S	929	854	1022	1087	1212	1160	1287	963
5 TOTAL (273	337	435	437	493	433	463	910
CIN	132	220	231	326	180	122	178	265

NOTE: AS1=21% AS2=26% CX1=20:20:0 CX2=23:23:0 CX3=15:15:15 CX4=5:6:7

Table II-4(4) CONSUMPTION OF PERTILIZER IN NEPAL BY TYPE AND BY REGION

- CENTRAL HIGH HILL -

							-	
	1975	1976	1977	1978	1979	1980	1981	1982
UNEA	102	236	649	607	800	606	1078	1417
AMMONIUM SULPHATE (1)	85	125	253	196	281	358	326	206
AMMONIEM SULPHATE (2)	1	1	i)	ı		
PHOSPHATE					٠		2	(:
	74	83	193	168	342	629	564	845
COMPLEX (2)	٠		٠.		ı	တ	1	1
	į	0	` 1	40	23	50	∞	. 1
	င	=	1	C	• 1	-1	ı	1
TRIPLE SUPER PHOSPHATE	1	•	0	~	1		1	1
MURIATE OF POTASH	∞	2	7	₹*	<u>-</u>	တ	ഗ	4
SULPHATE OF POTASH	ı	•	1			I		l
OTHER NITROGEN RERTILIZER	- B		t	1			١.	
TOTAL (IN PRODUCT TONS)	269	447	1099	1015	1493	1963	1983	2473
N TOTAL (IN N TONS) P205 TOTAL (IN P205 TONS)	80	152	391 39	360 40	505 78	629 135	679 115	864 170
K20 TOTAL (IN K20 TONS)	ın	. सम्ब	2	∞	14	12	4	2

NOTE: ASI=21% AS2=26% CXI=20:20:0 CX2=23:23:0 CX3=15:15:15 CX4=5:6:7

CONSUMPTION OF FERTILIZER IN NEPAL BY TYPE AND BY REGION Table II-4(5)

- CENTRAL HILL -

UREA AMMONIUM SULPHATE (1) AMMONIUM SULPHATE (2)			1107) - 1	ה ה	0067	1001	7227
SULPHATE SULPHATE	470	748	1406	1497	2212	1288	2462	3372
SULPHATE	500	504	667	700	435	150	651	467
	·		1.	1				
AMMONIUM PHOSPHATE			•				48	14
COMPLEX (1)	326	371	646	573	691	759	1303	1612
					152		16	51
COMPLEX (3)	46	99	169	354	243	98	98	7
COMPLEX (4)	•	1	ഗ	ì	I	1	2	හ
	-	r⊷1		0	- 4	, t	 -1	8
MURIATE OF POTASH	72	47	21	52	بر	₹†	ទ	20
SULPHATE OF POTASH	. !	1	. 1	ı	1	1.		1
OTHER NITROGEN FERTILIZER	1	r	1 _.	i			ප	
TOTAL (IN PRODUCT TONS)	1415	1761	2951	3149	3747	2271	4620	5548
N TOTAL (IN N TONS)	393	538	941	1004	1318	786	1557	1987
P205 TOTAL (IN P205 TONS)	73	88	155	.168	210	163	300	343
K20 TOTAL (IN K20 TONS)	20	42	ນ9	: 86 69	ታ ታ	82 	44	13

NOTE: AS1=21% AS2=26% CX1=20:20:0 CX2=23:23:0 CX3=15:15:15 CX4=5:6:7

CONSUMPTION OF FERTILIZER IN NEPAL BY TYPE AND BY REGION Table II-4(6)

- CENTRAL TERAI -

	1975	1976	1977	1978	1979	1980	1981	1982
UREA AMMONIUM SULPHATE (1)	2336 1666	4124	4493 1808	5305 1127	5838 751	9108	7839	9054
S S	1 6	34	1 6	1 6	\$ 1	(t	391	e i
COMPLEX (1)	3028	2076	3764	3200	3435 1116	7582 35	6304 205	10479 828
COMPLEX (3) COMPLEX (4)	878	1930 163	1295 22	1277 2	1813 1	412	481 8	0.17 10
TRIPLE SUPER PHOSPHATE	91	38	42	379	33	21	92	, —₹
MURIATE OF POTASH	374	210	218	267	196	169	275	512
SULPHATE OF POTASH OTHER NITROGEN PERTILIZER	117	⇔ 1	တ ၊ 	27	0 0 0	ശ		67
TOTAL (IN PRODUCT TONS)	8494	9464	11695	11584	13213	18157	16322	21686
N TOTAL (IN N TONS) P205 TOTAL (IN P205 TONS) K20 TOTAL (IN K20 TONS)	2162 779 415	2808 727 427	3395 968 353	3509 1006 365	4059 1231 405	5949 1596 166	5209 1604 238	6617 2326 310

NOTE: AS1=21% AS2=26% CX1=20:20:0 CX2=23:23:0 CX3=15:15:15 CX4=5:6:7

CONSUMPTION OF FERTILIZER IN NEPAL BY TYPE AND BY REGION Table II-4(7)

- WESTERN HIGH HILL -

	1975	1976	1977	1978	1979	1980	1981	1982
UREA						11	22	14
AMMONIUM SULPHATE (1)	٠,					I		ŀ
SULPHATE					**	ı		
PHOSPHATE							0	2
COMPLEX (1)						16	36	45
COMPLEX (2)						ŧ	ı	ŧ
COMPLEX (3)						, (i	1
COMPLEX (4)						i	1	ì
TRIPLE SUPER PHOSPHATE						1	, t	•
MURIATE OF POTASH						ř		۶2
SULPHATE OF POTASH						1		
OTHER NITROGEN FERTILIZER	;							
TOTAL (IN PRODUCT TONS)						28	19	63
N TOTAL (IN N TONS) P205 TOTAL (IN P205 TONS) K20 TOTAL (IN K20 TONS)		· .				တကဝ	18 8 0	16 10 1

NOTE: ASI=21% AS2=26% CX1=20:20:0 CX2=23:23:0 CX3=15:15:15 CX4=5:6:7

CONSUMPTION OF FERTILIZER IN NEPAL BY TYPE AND BY REGION Table II-4(8)

- WESTERN HILL -

	1975	1976	1977	1978	1979	1980	1981	1982
UREA	66	173	306	362	549	552	615	766
AMMONIUM SULPHATE (1)	147	141	147	65	30	56	41	20
AMMONIUM SULPHATE (2)	12	14	i	3	•	ι	1	
PHOSPHATE		-				-	. 60	30
\sim	289	358	1340	617	887	1430	1237	2437
					7-7	45	295	164
COMPLEX (3)	952	1140	349	1074	1072	246	222	က
COMPLEX (4)	2	ထ	0	ŧ	i	ı	C	10
ം	ന	က	, 4	9	&	.⊷	-	ゼ
MURIATE OF POTASH	12	ග	22	49	72	40	34	4
SULPHATE OF POTASH	Ç	1	•	1	1	ŀ	က	
OTHER NITROGEN FERTILIZER	t	1		1			ι .	
TOTAL (IN PRODUCT TONS)	1516	1844	2165	2173	2727	2340	2507	3477
	280	356	492	465	637	593	651	888
(IN P205	202	244	321	287	378	334	376	542
TOTAL (IN	150	7-7-7	99	191	170	91	35	27

NOTE: AS1=21% AS2=26% CX1=20:20:0 CX2=23:23:0 CX3=15:15:15 CX4=5:6:7

CONSUMPTION OF PERTILIZER IN NEPAL BY TYPE AND BY REGION Table II-4(9)

- WESTERN TERAI -

	1975	1976	1977	1978	1979	1980	1981	1982
URBA	985	1295	1523	1613	2150	2296	2632	2325
AMMONIUM SULPHATE (1)	118	174	168	-73	·ro	9	103	30
	1	ı	1'	,	ŗ	ť	~	
AMMONIUM PHOSPHATE	-	•		: :		,	154	99
COMPLEX (1)	630	1398	2458	1768	1694	1626	3031	3709
COMPLEX (2)					64	301	97	232
COMPLEX (3)	1408	807	442	1119	718	253	88	•
COMPLEX (4)	·	ı	1		1	i d	<u> </u>	•
TRIPLE SUPER PHOSPHATE	=======================================	₹%	2	ゼ	240	15	89	Fr4
MURIATE OF POTASH	101	115	139	50	74	102	204	250
SULPHATE OF POTASH	. 4	- 1	•	t	1	1	- •	."
OTHER NITROGEN FERTILIZER	`I	1	ı	sI			-1	
TOTAL (IN PRODUCT TONS)	3253	3793	4732	4627	4945	4654	6383	6613
TOTAL (IN	815	1033	1294	1279	1451	1501	1884	1883
	342	403	559	523	572	439	126	828
TOTAL (IN	272	190	150	198	152	66	136	150

NOTE: ASI=21% AS2=26% CX1=20:20:0 CX2=23:23:0 CX3=15:15:15 CX4=5:6:7

Table II-4(10) CONSUMPTION OF FERTILIZER IN NEPAL BY TYPE AND BY REGION

- MID-WESTERN HIGH HILL -

	1975	1976	1977	1978	1979	1980	1881	1982
UREA		5	23	, , , , , , , , , , , , , , , , , , ,	F-4	m	က	9
AMMONIUM SULPHATE (1)	<>1		1		: 1	0		
AMMONIUM SULPHATE (2)		·		1		1		
AMMONIUM PHOSPHATE	:							I
COMPLEX (1)	က	<>3	, , , , , , , , , , , , , , , , , , , 	2	J	ന	2	യ
COMPLEX (2)						į		
COMPLEX (3)	2	; ;	1		2	က	ശ	9
COMPLEX (4)		. 1	1		: ! :	1		
TRIPLE SUPER PHOSPHATE	ı	1		•	1	_		1
MURIATE OF POTASH	0		0	H.	1	-	æ	1 4
SULPHATE OF POTASH	•	. 1	. 1	, 1	- -	i i	•	
OTHER NITROGEN FERTILIZER	1.	ı	ı	1	6		i.	
TOTAL (IN PRODUCT TONS)	0	22	*	7	4	6	10	19
TOTAL (2	r-4		,4 ,	g	ന	က	יט
P205 T0TAL (IN P205 T0NS) K20 T0TAL (IN K20 T0NS)	T 0	-4	a =	0	□ ⊷	- 4 (-4	हर्भ सूचे. 	धंग <i>था</i>

NOTE: ASI=21% AS2=26% CX1=20:20:0 CX2=23:23:0 CX3=15:15:15 CX4=5:6:7

CONSUMPTION OF FERTILIZER IN NEPAL BY TYPE AND BY REGION Table II-4(11)

- MID-WESTERN HILL -

	1975	1976	1977	1978	1979	1980	1981	1982
E A B B B B B B B B B B B B B B B B B B	б	21	40	7.0	97	81	58	127
AMMONIUM SULPHATE (1)	22	38	47	22	32	₽'	S	i.
SULPHATE	0	က	1	1				
PHOSPHATE								0
COMPLEX (1)	43	104	139	145	130	97	73	193
COMPLEX (2)			٠		ι	0	14	69
	2	<u></u>	I	13	44	48	50	ب
COMPLEX (4)	ı	ı		. 1	ı·	1		
TRIPLE SUPER PHOSPHATE		,	1		0	, !		ల
MURIATE OF POTASH	∞	20	25	20	13	ហ	!~	4
SULPHATE OF POTASH	1	1	1		1	1		•
OTHER NITROGEN FERTILIZER	!	i	i	1				
TOTAL (IN PRODUCT TONS)	84	193	262	271	320	236	178	406
N TOTAL (IN N TONS)	18	40	58	89	84	65	49	115
P205 TOTAL (IN P205 TONS)	တ	22	30	32	က္လ	27	21	57
K20 TOTAL (IN K20 TONS)	വ	13	r-d	14	17	10	- -	₹*
	The second second second							

NOTE: ASI=21% AS2=26% CX1=20:20:0 CX2=23:23:0 CX3=15:15:15 CX4=5:6:7

CONSUMPTION OF FERTILIZER IN NEPAL BY TYPE AND BY REGION Table II-4(12)

- MID-WESTERN TERAI -

ADNIUM SULPHATE (SNIUM SULPHATE (SNIUM PHOSPHATE (SLEX (2) PLEX (3) PLEX (3) PLEX (4) PLES (4) PLE OF POTASH PHATE OF POTASH SH NITROGEN FERT TOTAL (IN PRODUCT T TOTAL (IN PEO55	1311	Ö B	1878	1980	1981	1982
PHATE (1) - PHATE (2)	276	263	375	264	322	658
PHATE (2)	139	103	41	7.0	42	117
202 544 128 25 128 25 2014 2014 2015 2015 2015 2015 2016 2016 2017	1	•	i.	ľ		- •
202 544 128 25 2014 25 2014 25 2014 25 2014 25 2015 25 2016 25 2017 2018 2018 2018 2018 2018 2018 2018 2018 2018						. 1
128 25	476	530	646	423	280	1367
128 25			37	96	206	230
PHOSPHATE 3 9 POTASH 38 106 POTASH	150	-18	72	92	160	24
E SUPER PHOSPHATE 38 106 ATE OF POTASH	١	•	1	, t		٠
TE OF POTASH 38 106	10	61		r-4		 4
INTROGEN FERTILIZER	82	28	83	54	53	111
(IN PRODUCT TONS) 588 1063 TOTAL (IN N TONS) 136 251 TOTAL (IN P205 TONS) 61 117	1	ı	1	t		
(IN PRODUCT TONS) 588 1063 TOTAL (IN N TONS) 136 251 TOTAL (IN P205 TONS) 61 117		1				
TOTAL (IN N TONS) 136 251 TOTAL (IN P205 TONS) 61 117	1133	1051	1269	1000	1363	2508
() () () () () () () () () ()	274	260 126	330 154	257 . 121	344	657 330
KZO TONS) 42 67	72	47	63	46	26	7.0

NOTE: ASI=21% AS2=26% CXI=20:20:0 CX2=23:23:0 CX3=15:15:15 CX4=5:6:7

CONSUMPTION OF FERTILIZER IN NEPAL BY TYPE AND BY REGION Table II-4(13)

- FAR-WESTERN HIGH HILL -

UREA AMMONIUM SULPHATE (1) AMMONIUM SULPHATE (2) AMMONIUM PHOSPHATE COMPLEX (1) COMPLEX (2) COMPLEX (3) COMPLEX (3) COMPLEX (3) COMPLEX (3) COMPLEX (3) COMPLEX (3) COMPLEX (3) COMPLEX (3) COMPLEX (3) COMPLEX (3) COMPLEX (3) COMPLEX (4) COMPLEX (3) COMPLEX (4) COMPLEX (3) COMPLEX (4) COMPLEX (3) COMPLEX (4) COMPLEX (4) COMPLEX (5) COMPLEX (6) COMPLEX (6) COMPLEX (7) COMPLEX (7) COMPLEX (1) COMPLEX (1) COMPLEX (1) COMPLEX (1) COMPLEX (1) COMPLEX (2) COMPLEX (3) COMPLEX (4) COMPLEX (1) COMPLEX (1) COMPLEX (1) COMPLEX (1) COMPLEX (1) COMPLEX (2) COMPLEX (3) COMPLEX (1			;						
NIUM SULPHATE (1) 0 0 0 0 0 0 0 0 0 0 0 0 0		1975	1976	1977	1978	1979	1980	1881	1982
NIUM SULPHATE (1) NIUM SULPHATE (2) NIUM SULPHATE (2) NIUM PHOSPHATE LEX (3) LEX (3) LEX (3) LEX (3) LEX (3) LEX (4) LEX (3) LEX (4) LEX (5) LEX (5) LEX (6) LEX (7) LEX (7) LEX (7) LEX (8) LEX (9) LEX (1) LEX (1) LEX (1) LEX (1) LEX (2) LEX (2) LEX (3) LEX (4) LEX (5) LEX (6) LEX (7) LEX (1) LEX (2) LEX (3) LEX (1) LEX (3) LEX (3) LEX (4) LEX (3) LEX (4) LEX (3) LEX (4) LEX (5) LEX (6) LEX (6) LEX (7) LEX (7) LEX (1) LE	UREA	2	0	0	0	8	4	. \$7	15
SULPHATE (2) PHOSPHATE (1) PHOSPHATE (2) (2) (2) (3) (4) (4) PER PHOSPHATE (5) POTASH (6) POTASH (6) POTASH (6) POTASH (7) PROGEN FERTILIZER (7) PROGEN FERTILIZER (8) PAL (IN N TONS) (1) PAL (IN P205 TONS) (2) 1 0 1 0 2 1 2 1 12 1 12 1 12 1 12 1 0 0 0 1 10 0 0 1 10 0 0 1 10 0 0 1 10 0 0 1 10 0 0 1 10 0 0 1 10 0 0 1 10 0 0 1 1	MILUM		0	63	۱ ۱	.	တ		0
2ER - 0 1 3 6 12 - 0 1 2 6 12 6 6 0 0 0 0 0 0 0 0 0 6	SULPHATE				. 1	ł	1		
2ER - 0 1 3 6 12 0 0 0 0 0 0 0 0 0 0 0 6 0 0 8 0 0 5 1 11 10 16 VS) 0 0 0 1 0 2 1 2	4			က					
ER 0 0 0 0 0 0 0 0 0 0 0 0	COMPLEX (1)	ı	0		,—4	က	9	12	40
EER 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	\sim	ij	-	ı		ı	1	=	+{
EER	· -		1	ι	1	တ	<u>ဗာ</u>		gurd.
JER		,	1	ı	1	1	i		
TER	TRIPLE SUPER PHOSPHATE	1	1	ı	1	Ì	i		1
SER	MURIATE OF POTASH	0	0	0	0	0	=	c	2
JER	SULPHATE OF POTASH	မ	1	1		1	•		
1 8 0 5 1 11 10 16 16 (S) 1 0 2 1 2 1 2 1 5 1 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0	NITROGEN FERTI	ı	J	1	i				
TOTAL (IN TOTAL (IN TOTAL (IN	TOTAL (IN PRODUCT TONS)	∞	0	ស	77	11	1.0	16	59
TOTAL (IN TOTAL (IN	`	-	0	1	0	က	က	7	15
TOTAL (IN K20	TOTAL (IN	- -	-			~ 3	⊷ 1.	2	∞
	TOTAL (IN K20	က ့	-	0	0	- 1	0	_	y4

NOTE: AS1=21% AS2=26% CX1=20:20:0 CX2=23:23:0 CX3=15:15:15 CX4=5:6:7

CONSUMPTION OF FERTILIZER IN NEPAL BY TYPE AND BY REGION Table II-4(14)

- FAR-WESTERN HILL -

	1975	1976	1977	1978	1979	1980	1981	1982
UREA	14	23	24	38	27	15	36	9
AMMONIUM SULPHATE (1)	r -	13	23	9	10 4	ස	فئ	<u></u>
AMMONIUM SULPHATE (2)	;		·	1	· t	ì		
AMMONIUM PHOSPHATE		-						1
COMPLEX (1)	35	44	51	28	140	16	168	51
COMPLEX (2)					•	∞	53	E S
COMPLEX (3)	34	09	112	57	46		10	co
COMPLEX (4)	1	\$	1	,	١	ı		
TRIPLE SUPER PHOSPHATE	i	i	1	ì	,1	ŧ		ł
MURIATE OF POTASH	ഹ	မ	гo	ιco	"	2	ယ	ന
SULPHATE OF POTASH	1	ì	1	1	i	1		
OTHER NITROGEN FERTILIZER	I,		1	ı				
TOTAL (IN PRODUCT TONS)	95	146	202	165	218	112	246	82
N TOTAL (IN N TONS)	20	IS.	41	တ ွ ် တွင်	48	58	28	82
P205 TOTAL (IN P205 TONS)	12	18	. 12	20	င် လိ	13	40	77
K20 TOTAL (IN K20 TONS)	∞	13	50	12	6	ന	сu	64

NOTE: ASI=21% AS2=26% CXI=20:20:0 CX2=23:23:0 CX3=15:15:15 CX4=5:6:7

CONSUMPTION OF FERTILIZER IN NEPAL BY TYPE AND BY REGION Table II-4(15)

- FAR-WESTERN TERAI -

						-		
	1975.	1976	1977	1978	1979:	1980	1981	1982
UREA	39	126	125	145	1.12	75	125	266
AMMONIUM SULPHATE (1)	35	81	22	20	 (c-1	i
AMMONIUM SULPHATE (2)	í	ı		ı	ì	. 1		ē
AMMONIUM PHOSPHATE							0	41
COMPLEX (1)	82	103	151	138	177	150	209	523
COMPLEX (2)					ı	က	99	72
COMPLEX (3)	104	342	212	260	29	13	35	16
COMPLEX (4)	ī	1	ì	ı	ı	1		
7 6	0	<u>-</u>	-	=	1	t	12	<u></u>
MURIATE OF POTASH	17	33	[18	24	14	£	32
SULPHATE OF POTASH	1	1	1	ı	ĺ	1		
OTHER NITROGEN FERTILIZER	ı	ı	4	v i ,				
TOTAL (IN PRODUCT TONS)	280	692	528	581	373	256	468	957
TOTAL (IN	28.	147	124	138	96	2.9	121	253
ī	58 38 38	C.E.	42	20 20	44 23	82 FT	10 10 10	146 22

NOTE: AS1=21% AS2=26% CX1=20:20:0 CX2=23:23:0 CX3=15:15:15 CX4=5:6:7

Table II-4(16) CONSUMPTION OF FERTILIZER IN NEPAL BY TYPE AND BY REGION

- CENTRAL KATHMANDU VALLEY -

	1975	1976	1977	1978	1979	1980	1981	1982
UREA	5179	5614	6057	8365	8393	7926	9393	10154
AMMONIUM SULPHATE (1)	3291	5106	8787	4705	3284	2343	3021	1602
AMMONIUM SULPHATE (2)		107		21	134			
AMMONIUM PHOSPHATE							294	96
COMPLEX (1)	2058	2650	2836	1929	4199	7678	4025	6043
COMPLEX (2)					160	ŧ	2	. *
COMPLEX (3)	1464	897	20	764	284	42	∞.	 -t
COMPLEX (4)	61	ග	<u></u>	-	~ 2	99	21	ග
TRIPLE SUPER PHOSPHATE	න `	ഗ	വ	.49	က	ĸ	<u>r</u>	က
MURIATE OF POTASH	. 20	27	13	77	44	30	E E	
SULPHATE OF POTASH	•	ı	1	f	ι	•		1 7 .
OTHER NITROGEN FERTILIZER	ŧ	1	•	1			1	
TOTAL (IN PROBUCT TONS)	12040	14413	15748	15862	16503	18093	16802	17921
N TOTAL (IN N TONS) P205 TOTAL (IN P205 TONS)	3706 636	4348	4786	5342	5505	5683 1548	5816	6234 1256
TOTAL (IN	233	151	<u> </u>	123	69	29	12	2 - 1

NOTE: AS1=21% AS2=26% CX1=20:20:0 CX2=23:23:0 CX3=15:15:15 CX4=5:6:7

Table II-4(17) CONSUMPTION OF FERTILIZER IN NEPAL BY TYPE AND BY REGION

- HIGH HILL TOTAL -

	1975	1976	1977	1978	1979	1980	1981	1982
UREA	105	242	661	618	826	956	1134	1497
AMMONIUM SULPHATE (1)	88	126	258	198	281	358	326	206
AMMONIUM SULPHATE (2)		a	0	0	0		©	=
AMMONIUM PHOSPHATE	0		ന	0	ധ	0	2	က
COMPLEX (1)	81	86	224	206	405	737	869	1109
COMPLEX (2)	0	0	0	_	10	14	©	
COMPLEX (3)	2		-	41	-1	54	က	I
COMPLEX (4)	C	.	-	-	_	(-	C
TRIPLE SUPER PHOSPHATE	0	0	0	0	⇔	.	c	
MURIATE OF POTASE	∞.	4	თ	∞	(<u></u>	φ	130
SULPHATE OF POTASH	Q	0	⇔	0	- •	(C	
OTHER NITROGEN FERTILIZER	0	පා	C	0	0	6	<u>සා</u>	=
TOTAL (IN PRODUCT TONS)	283	471	1155	1011	1605	2127	2179	2833
N TOTAL (IN N TONS)	84	158	403	373	534	675	733	955
5 TOTAL	17	20	46	48	94	158	142	225
K20 TOTAL (IN K20 TONS)	∞	က	i)	10	18	13	တ	

NOTE: AS1=21% AS2=26% CX1=20:20:0 CX2=23:23:0 CX3=15:15:15 CX4=5:6:7

Table II-4(18) CONSUMPTION OF FERTILIZER IN NEPAL BY TYPE AND BY REGION

- HILL TOTAL -

	1975	1976	1977	1978	1979	1980	1981	1982
at vno ino	5855	6694	8013	10513	11512	10069	12810	14775
AMMONIUM SULPHATE (2)	. 23.3 1.2	3003 124	00.7	3304 21	134	0.70 0.00 0.00 0.00 0.00 0.00 0.00 0.00	1010 ⊕	0 7717
AMMONIUM PHOSPHATE	9884	3834	5387	9721	6518 0	1 0 8 8	477	151
COMPLEX (2)	0	C	- C		541	109	350	311
COMPLEX (3)	2499	2195	716	2289	1721	415	346	24
COMPLEX (4)	21	Ę	സ	0	63	69	58.	22
TRIPLE SUPER PHOSPHATE	13	!~	10	79	∞	တ	19	14
MURIATE OF POTASH	171	189	195	192	132	907	143	139
SULPHATE OF POTASH	, 1	0	-	0		-	က	<u></u>
OTHER NITROGEN FERTILIZER	0	0	0.	0	0	0	O .	0
TOTAL (IN PRODUCT TONS)	15575	18943	28022	22399	24372	23910	25188	28808
N TOTAL (IN N TONS) P205 TOTAL (IN P205 TONS) K20 TOTAL (IN K20 TONS)	4513 983 479	5445 1101 444	6500 1190 226	7103 1124 460	7816 1689 337	7375 2213 131	8355. 1813. 141	9596 2404 88

NOTE: ASI=21% AS2=26% CX1=20:20:0 CX2=23:23:0 CX3=15:15:15 CX4=5:6:7

CONSUMPTION OF FERTILIZER IN NEPAL BY TYPE AND BY REGION Table II-4(19)

- TERAI TOTAL -

	1975	1976	1977	1978	1979	1980	1981	1982
UREA	4102	6724	7615	8658	9985	13241	12728	15124
AMMONIUM SULPHATE (1)	2421	1743	2396	1594	196	1175	1141	1228
AMMONIUM SULPHATE (2)	· 👝	34	;	0		<u>,</u>	0	ണ
AMMONIUM PHOSPHATE	: C	-	8	6	0	0	768	263
COMPLEX (1)	5241	5492	8641	6721	7784	11833	11828	20151
COMPLEX (2)	9	0	0	<u> </u>	1491	499	556	1610
COMPLEX (3)	2557	3456	2489	4065	3012	773	779	20
COMPLEX (4)	7	163	22	2			15	တ
TRIPLE SUPER PHOSPHATE	122	29	94	445	303	53	181	13
MURIATE OF POTASH	740	743	737	592	592	541	841	1346
SULPHATE OF POTASH	117	ော	91	40	32	ın	~	Ņ
OTHER NITROGEN FERTILIZER	5	<u>ක</u>	C) ',	7	0	0	гч	0
TOTAL (IN PRODUCT TONS)	15304	18422	22055	22119	24173	28120	28837	39805
N TOTAL (IN N TONS) P205 TOTAL (IN P205 TONS)	3827 1488	5093 1659	6109	6273 2159	7148	8934 2622	8845 3048	10373
TOTAL	887	975	848	986	823	443	624	817

NOTE: ASI=21% AS2=26% CX1=20:20:0 CX2=23:23:0 CX3=15:15:15 CX4=5:6:7

CONSUMPTION OF FERTILIZER IN NEPAL BY TYPE AND BY REGION Table II-4(20)

- EASTERN TOTAL -

	1975	1976	1977	1978	1979	1980	1981	1982
IREA	70.9	1064	1388	1593	1767	1734	2883	2216
NIUM SULPHATE	543	527	356	0000	661	243	308	395
	; -	0	0	0	C)))	(1) (1)
	ب	-	0	0	0	=	297	86
COMPLEX (1)	1553	1690	2197	1518	2355	2680	2239	5158
COMPLEX (2)	-	0	0	0	339	124	61	260
COMPLEX (3)	4.0	353	415	1358	385	(CY)	ដ	8
COMPLEX (4)	_	0	_	-	0	င်	0	*1
TRIPLE SUPER PHOSPHATE	17	21	42	53	53	17	[12
MURIATE OF POTASH	264	360	359	282	254	227	323	500
SULPHATE OF POTASH	;~		∞	13	2			
OTHER NITROGEN FERTILIZER	Ģ	0	0	2	=	C	0	0
TOTAL (IN PRODUCT TONS)	3120	4015	4765	5106	5327	5028	5325	9634
NI)	753	166	1215	1284	1461	1413	1540	1372
P205 TOTAL (IN P205 TONS)	325	401	521	531	619	573	604	1137
TOTAL	165	569	282	380	210	137	197	301

NOTE: ASI=21% AS2=26% CX1=20:20:0 CX2=23:23:0 CX3=15:15:15 CX4=5:6:7

Table II-4(21) CONSUMPTION OF FERTILIZER IN NEPAL BY TYPE AND BY REGION

- CENTRAL TOTAL -

	1975	1976	1977	1978	1979	1980	1981	1982
UREA	8087	10722	12605	15774	17243	19231	20772	23997
NIUM SULPHATE	5542	6636	9515	6728	4751	3676	4722	2989
AMMONIUM SULPHATE (2)	0	141	0	21	134		-	:
PHOSPHATE	(_	-	0	<u>_</u>	=	735	192
COMPLEX (1)	2486	5181	7439	5870	2998	16648	12196	18979
COMPLEX (2)	-	0	O	0	1428	45	223	879
COMPLEX (3)	2388	2917	1514	2435	2403	572	583	18
COMPLEX (4)	23	172	27	€23	က	69	37	point.
TRIPLE SUPER PHOSPHATE	101	33	48	443	37	27	113	œ
MURIATE OF POTASH	474	286	292	310	260	211	346	547
	117	(53	27	30	ഹ	=	~>
OTHER NITROGEN FERTILIZER	0	0	o *.	0	0	G _	0	0
TOTAL (IN PRODUCT TONS)	22218	26085	31493	31610	34956	40484	39727	47628
, -	6341	7846	9512	10215	11387	13047	13261	15702
P205 TOTAL (IN P205 TONS)	1503	1499	1739	1744	2440	3442	2970	4095
(IN K20 T	703	621	430	564	532	220	298	332
								-

NOTE: ASI=21% AS2=26% CX1=20:20:0 CX2=23:23:0 CX3=15:15:15 CX4=5:6:7

CONSUMPTION OF FERTILIZER IN NEPAL BY TYPE AND BY REGION Table II-4(22)

- WESTERN TOTAL -

	1975	1976	1977	1978	1979	1980	1981	1982
UREA	1084	1468	1829	1975	2699	2859	3269	3105
VIUM SULPHATE	265	315	315	138	33	87	144	50
AMMONIUM SULPHATE (2)	12	14	-	=	0	0	(ت
		. 🗢	0	-	⇔	-	214	86
COMPLEX (1)	919	1756	3798	2385	2581	3072	4307	6191
COMPLEX (2)	9	-	₽	-	238	346	313	396
COMPLEX (3)	2360	1947	791	2193	1790	500	310	m
COMPLEX (4)	~	ب	0	-	0	=	<u>~</u>	13
TRIPLE SUPER PHOSPHATE	PΤ	7	်သ	10	240	16	89	ໝ
MURIATE OF POTASH	113	124	191	99	83	142	238	295
SULPHATE OF POTASH	_	-	<u></u>	—	C	<u>.</u>	က	(
OTHER NITROGEN FERTILIZER	0	0	Ö	0,7	©	C		8
TOTAL (IN PRODUCT TONS)	4769	5637	6897	6800	7672	7022	8871	10153
(IN	1095	1389	1786	1744	2088	2103	2553	2787
P205 TOTAL (IN P205 TONS)	544	647	880	810	920	776	1110	1378
TOTAL (IN	422	367	216	380	322	160	191	178

NOTE: AS1=21% AS2=26% CX1=20:20:0 CX2=23:23:0 CX3=15:15:15 CX4=5:6:7

Table II-4(23) CONSUMPTION OF FERTILIZER IN NEPAL BY TYPE AND BY REGION

- MID-WESTERN TOTAL -

	1975	1976	1977	1978	1979	1980	1981	1982
URBA	134	257	318	334	473	348	383	191
AMMONIUM SULPHATE (1)	117	182	187	125	73	7	47	117
AMMONIUM SULPHATE (2)	-	က	.0	-	C	\Box	C	0
AMMONIUM PHOSPHATE	~	0	0	0	-	c		0
COMPLEX (1)	248	650	616	677	116	523	655	1566
COMPLEX (2)	&	0	ප	⇔		96	220	299
COMPLEX (3)	132	33	161	95	118	143	185	43
COMPLEX (4)	ö		0	(C)	<u></u>	=	<u></u>	Ö
TRIPLE SUPER PHOSPHATE	က	රා	10	20		2	<u></u>	
MURIATE OF POTASH	46	127	107	78	104	29	ີ ຍອ	116
SULPHATE OF POTASH	Ċ	0	· 😅	0	 -(=	6
OTHER NITROGEN FERTILIZER	0	C	=	C	0	C	c	ದ
TOTAL (IN PRODUCT TONS)	672	1261	1399	1326	1593	1245	1551	2933
N TOTAL (IN N TONS)	156	292	333	329	415	325	396	777
5 TOTAL (IN P205		140	152	159	187	149	209	389
K20 TOTAL (IN K20 TONS)	<u>7</u> -7	8	6 8 8	61		57	64	92

NOTE: AS1=21% AS2=26% CX1=20:20:0 CX2=23:23:0 CX3=15:15:15 CX4=5:6:7

Table II-4(24) CONSUMPTION OF FERTILIZER IN NEPAL BY TYPE AND BY REGION

- FAR-WESTERN TOTAL -

					-			
	1975	1976	1977	1978	1979	1980	1981	1982
URBA	55	149	149	183	141	94	165	287
AMMONIUM SULPHATE (1)	42	94	37	26	2		ິນດ	L
AMMONIUM SULPHATE (2)	0	င္ဘ	0	د ې	:	. =	· 	<u></u>
AMMONIUM PHOSPHATE	0	C	ന	0	_	c ::	<u> </u>	41
COMPLEX (1)	120	14.7	202	198	320	232	389	614
COMPLEX (2)	~ .	~	0	=	~	<u></u>	6	88
COMPLEX (3)	138	402	324	317	-	24	25	1.1
COMPLEX (4)	Ö	0	C	.0	ထ	C	c	_
TRIPLE SUPER PHOSPHATE	0		, ,,,,,4	Ċ	⇔		12	· t-
MURIATE OF POTASH	22	36	22	23	78	1.6	23	37
SULPHATE OF POTASH	ιφ	0			<u> </u>		- C	, c==
OTHER NITROGEN FERTILIZER	c	0	.	<u>, </u>	-	6	E	· 👄
TOTAL (IN PRODUCT TONS)	383	838	738	747	602	378	730	1098
TOTAL (IN N TON	79	178	166	177	147	96	183	286
5 TOTAL (IN P205	45	89	16	87	8	51 51	011	168
KZU TOTAL (IN KZU TONS)	'n	84	29	29	33	නු [:]	21	52

NOTE: AS1=21% AS2=26% CX1=20:20:0 CX2=23:23:0 CX3=15:15:15 CX4=5:6:7

Table II-4(25) CONSUMPTION OF FERTILIZER IN NEPAL BY TYPE AND BY REGION

- GRAND TOTAL -

UREA AMMONTIM SII PHATE (1)			1311) }	E CT	2	1001	7061
SIII PHATE	10062	13660	16289	19789	22323	24266	25672	31396
2 1 1 10 0	6203	7754	10410	7403	5060	4081	5218	3558
SULPHATE	12	158	0	21	134	C	(က
PHOSPHATE		e	က	-	-	C	1247	417
COMPLEX (1)	8326	9424	14252	10648	14699	23155	19786	32508
COMPLEX (2)	60	င်	0	1569	2042	622	906	1922
COMPLEX (3)	5058	5652	3205	6395	4804	1242	1138	81
COMPLEX (4)	22	178	27	2	က	69	44	3
TRIPLE SUPER PHOSPHATE	135	7	104	524	317	62	200	33
MURIATE OF POTASH	919	936	941	792	735	655	066	1495
SULPHATE OF POTASH	124	⇔	61	40	33	വ	ಉ	2
OTHER NITROGEN FERTILIZER	0	0	0	2	0	0		C
TOTAL (IN PRODUCT TONS)	31162	37836	45292	47185	50150	54157	56204	71446
TOTAL (IN	8424	10696	13013	14115	14480	16984	16799	19373
_	1374	1422	1079	1456.	1178	587	771	912

NOTE: AS1=21% AS2=26% CX1=20:20:0 CX2=23:23:0 CX3=15:15:15 CX4=5:6:7

Annex II-5

FERTILIZER RESPONSE IN NEPAL

Table II-5(1) FERTILIZER RESPONSE OF MAJOR CEREAL CROPS IN NEPAL - Nitrogen Fertilizer on Improved Paddy -

					(Yield: kg/ha)	kg/ha)
Agroclimatic	; ; ; ; ;		Applicat	Application Level (Nkg/ha)	Nkg/ha)	*
Variation	ביס מיס	0	30	9	.06	120
Hill	Khumal	3,737.4	4,616.1	5,236.8	5,596.8	5,695.2
Terai	Parwanipur	2,578.0	3,070.0	3,454.0	3,730.0	3,898.0
Inner Terai	Rampur	3,093.6	3,720.9	4,204.2	4543.5	4738.8
3					:	-

Source: Division of Soil Science and Agricultural Chemicals, DOA. Note: At the fixed level of 60kg $\mathbb{P}_2 \mathbb{O}_5$ and 30kg $\mathbb{K}_2 \mathbb{O}$ per ha.

FERTILIZER RESPONSE OF MAJOR CEREAL CROPS IN NEPAL

- Phosphate Fertilizer on Improved Paddy -

					(Yield: kg/ha	kg/ha)
Agroclimatic	} () 		Applicati	Application Level (P_2 0 kg/ha)	o kg/ha)	
Variation	FOCALLOI	0	44.8	9.68	134.4	179.2
	Khumal	4,435.5	45,25.5	4,580.9	4,605.4	4,597.9
Terai	Parwanipur	3,584.8	3,600.9	3,609.0	3,609.1	3,601.2
Inner Terai	Rampur	4,941.3	5,089.4	5,185.4	5,229.2	5,220.9
				1.		

Source: Division of Soil Science and Agricultural Chemicals, DOA Note: At the fixed level of 60kg P_2O_5 and 30kg K_2O per ha.

FERTILIZER RESPONSE OF MAJOR CEREAL CROPS IN NEPAL - Nitrogen Fertilizer on Local Paddy -

ין אמנין ירטאטא ניין מפירי			Applica	Application Level (N kg/ha)	(N kg/ha)	
Variation	Location	0	20	40	09	08
E		1 1		0 000		
Inner Teral	Kampur	0.04/ 7	3,113.8	3,303.0	4.004.0	7.424.0
E. Terai	Birathagar	2,403.6	2,490.4	2,517.2	2,484.0	2,390.3
W. Terai	Nepalgunj	1,546.8	1,705.0	1,714.6	1,560.6	1,250.0

Note: At the fixed level of 60kg $\mathrm{P}_2\mathrm{O}_5$ and 30kg $\mathrm{K}_2\mathrm{O}$ per ha.

Source: Division of Soil Science, and Agricultural Chemicals, DOA.

FERTILIZER RESPONSE OF MAJOR CEREAL CROPS IN NEPAL

- Nitrogen Fertilizer on Improved Wheat -

					(Yield: kg/ha)	kg/ha)
Agroclimatic			Applicati	Application Level (N kg/ha)	kg/ha)	
Variation	Location	0	30	60	06	120
Hill	Khumal	1,665.6	2,308.2	2,884.2	3,396.6	3,836
Terai	Parwanipur	1,527.8	2,186.3	2,691.8	3,098.3	3,387.8
Inner Terai	Rampur	2,523.6	3,343.8	3,876.0	4,120.2	4,076.4

and Agricultural Chemicals, DOA. Note: At the fixed level of 60kg $\mathrm{P_2O_5}$ and 30kg $\mathrm{K_2O}$ per ha. Source: Division of Soil Science

FERTILIZER RESPONSE OF MAJOR CEREAL CROPS IN NEPAL Table II-5(5)

3,869.3 3,796.4 3,639.7 kg/ha) (Yield: 134.4 3,725.7 3,801.1 4,079.1 Application Level (P20 kg/ha) - Phosphate Fertilizer on Improved Wheat 89.6 3,669.5 3,630.9 4,152.4 44.8 3,244.8 3,512.0 4,089.2 3,889.6 2,527.2 3,361.1 Ö Bhairahawa Location Rampur Khumal Agroclimatic Variation Inner Terai Tarai H111

Division of Soil Science and Agricultural Chemicals, DOA Note: At the fixed level of 60kg $\mathrm{R}_2\mathrm{O}_5$ and 30kg $\mathrm{K}_2\mathrm{O}$ per ha. Source:

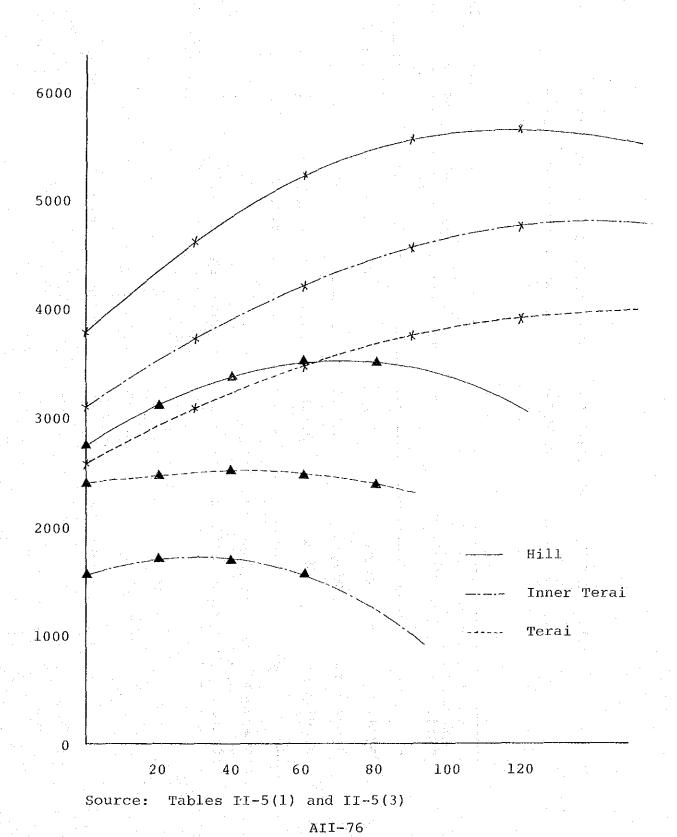
FERTILIZER RESPONSE OF MAJOR CEREAL CROPS IN NEPAL Table II-5(6)

- Nitrogen Fertilizer on Improved Maize -

					(Yield: kg/na)	kg/na)
Agroclimatic	\$ () () () () () () () () () (Applicat	Application Level (N kg/ha)	kg/ha)	
Variation	ביסכם בידסיוו	0	9	120	180	240
Inner Terai	Rampur	965.8	1,587.4	1,985.8	2,161.0	2,113.0
Hill	Khumal	1,830.8	8,397.8	5,309.6	6,066.2	6,167.6
M. H111	Kakanı	1,821.0	2,003.4	2,121.0	2,173.8	2,161.8
					A second of the	

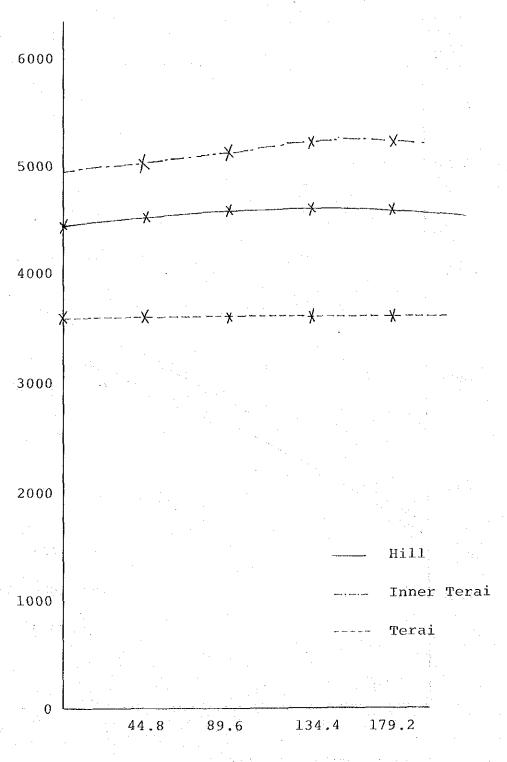
Note: At the fixed level of 60kg $\mathbb{P}_2\mathsf{O}_5$ and 30kg $\mathbb{K}_2\mathsf{O}$ per ha.

Table II-5(7) FERTILIZER RESPONSE OF MAJOR CEREAL CROPS IN NEPAL


- Phosphate Fertilizer on Improved Maize -

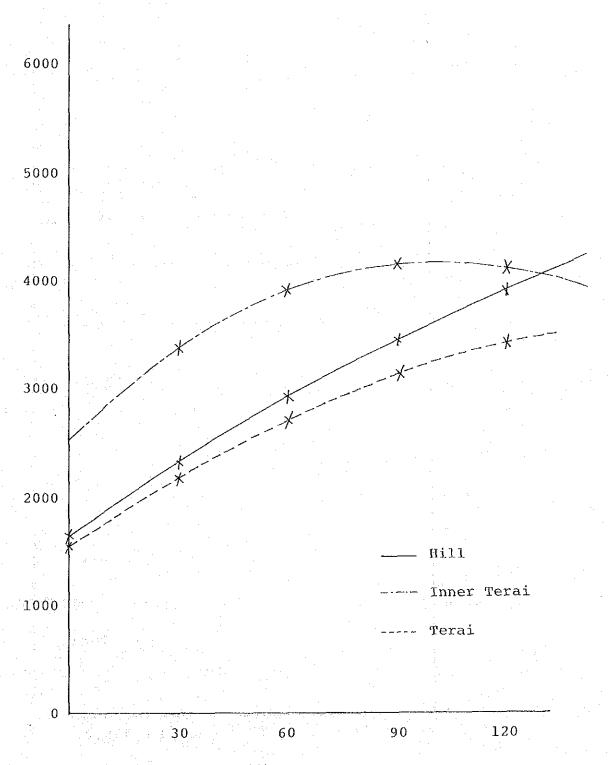
					(ITETO: KG/UG)	kg/na/
Agroclimatic	; ; ; ; ; ;		Applicati	Application Level (P20 kg/ha)	20 kg/ha)	
Variation	LOCACLOI	D	40	80	120	160
H111	Khumal	4,393.2	4,562.4	4,686.8	4,766.4	4,801.2
Inner Terai	Rampur	2,033.2	2,332.0	2,502.8	2,545.6	2,400.4
M. Hill	Kakani	2,328.0	2,206.0	2,556.0	2,646.0	2,720.0

Note: At the fixed level of 60kg ${\rm P_2O_5}$ and 30kg ${\rm K_2O}$ per ha. Source: Division of Soil Science and Agricultural Chemicals, DOA.


Figure II-1(1) FERTILIZER RESPONSE OF MAJOR CEREAL CROPS IN NEPAL

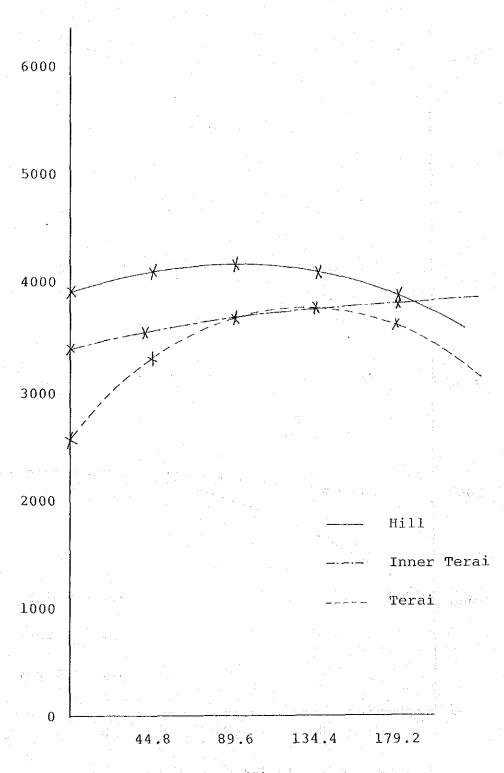
- Nitrogen Fertilizer on Paddy -

Figure II-1(2) FERTILIZER RESPONSE OF MAJOR CEREAL CROPS IN NEPAL


- Phosphate Fertilizer on Paddy -

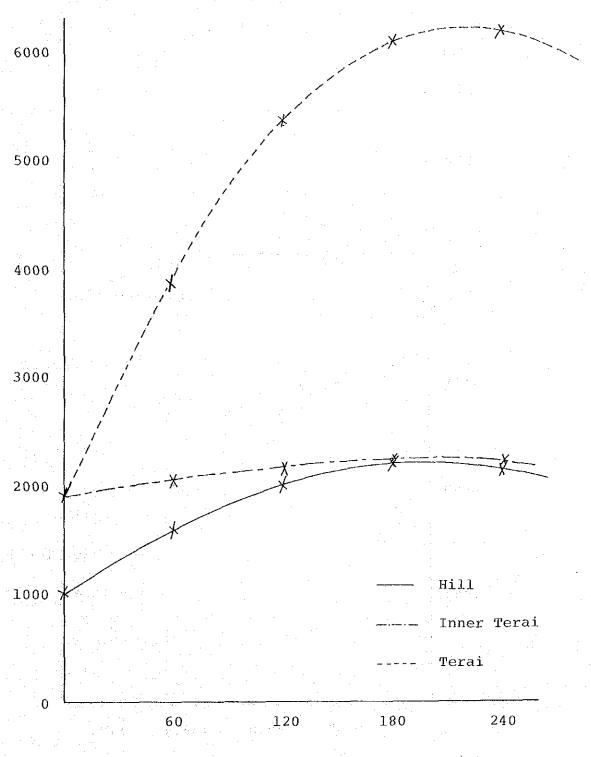
Source: Table II-5(2)
AII-77

Figure II-1(3) FERTILIZER RESPONSE OF MAJOR CEREAL CROPS IN NEPAL


- Nitrogen Fertilizer on Wheat -

Source: Table II-5(4)

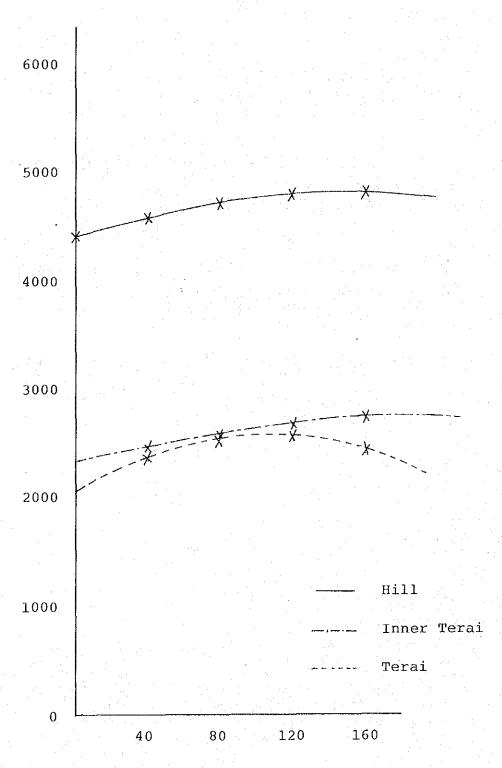
Figure II-1(4) FERTILIZER RESPONSE OF MAJOR CEREAL CROPS IN NEPAL


- Phosphate Fertilizer on Wheat -

Source: Table II-5(5)
AII-79

Figure II-1(5) FERTILIZER RESPONSE OF MAJOR CEREAL CROPS IN NEPAL

- Nitrogen Fertilizer on Maize -



Source: Table II-5(6)

08-IIA

Figure II-1(6) FERTILIZER RESPONSE OF MAJOR CEREAL CROPS IN NEPAL

- Phosphate Fertilizer on Maize -

Source: Table II-5(7)

AII-81

Annex III

Annex III-1 BASIC DATA FOR CARBON DIOXIDE SUPPLIABILITY CONDITIONS AT CEMENT PLANTS IN NEPAL

Annex III-2 PRICE INFORMATION IN NEPAL FOR CONSTRUCTION MATERIALS, LABORERS, WORKS, AND INLAND TRANSPORT FROM CALCUTTA

Annex III-3 ELECTRIC POWER CONSUMPTION AND OVERALL LOAD FACTOR INCREASE AT THE UREA FERTILIZER PLANT

Annex III-4 WATER ELECTROLYSIS PROCESSES