TABLE 5-3-18

IRRIGABLE AREA BY DIVERSION WATER FROM KURULE SITE

ON PEAK REQUIRED WATER FOR EACH MONTH

Unit: m3/sec

	Kurule	Kurule Site	Kamla	Maintenance	Usable Water for Irrigation	iter for	Peak	(103 ha) Irrigable Area	ha) Le Area
	Site Natural Flow	Discharge After Regulation by SU-3	Natural Flow	Discharge for Kamla Downstream	Withouot SU-3	With SU-3	Water Requirement	Without SU-3	With SU-3
Jan.	204.9	232.1	0 11	6.9	20,70	<u>کا دی</u>	0.278	547	843
Peb.	158.0	203.1	80	8	158.8	203.9	0.442	359	761
Mar.	136-7	183.9	9-9	7.0	136.3	183.5	1.011	134.8	182
Apr	#130°#	+177.1	7.2	7.1	*130.5	*177.2	1.160	* 113	*153
May	161.6	189.1	7.2	7-1	161.7	189.2	744	217	254
Jun	386.7	386.7	57.1	32.0	411.8	411.8	0.195	2,112	2,112
Jul.	1,424.2	7.404.1	127.1	50.0	1,501.3	1,481.8	1.252	1,201	1,184
Aug.	1,777.0	1,581.4	165.1	50.0	1,886,1	1,696.5	1.144	1,649	1,483
Sep.	1,328.5	1,328.5	1113	50.0	1,389,8	1,389.8	. 707.0	1,966	1,966
Oct.	475.2	475.2	9.44	25.8	0.464	0.464	1.179	419	419
Nov.	272.3	272.3	16.0	11.5	276.8	276-8	D_374	882	882
Dec.	225.4	247.1	13.5	10.0	228.6	250.3	0.277	825	#06 6

Note: t

^{*} minimum condition

			Evaporation on	go	Dowr	Downstream	, Ka	Kamla	
Month			Surrace (3200)	na)	Mainter	Maintenance flow	Natur	Natural Flow	4.
		EE .	H3/s	106m3	m3/s	106m3	m3/s	106m3	-
Jan.		9.	0.70	1.88	6.9	24.91	11.6	31.07	
Feb.		4.5	0.89	2.15	7.8	18.87	8.6	20.81	
Mar.		Ĺ.4	7-1	4.66	7.0	18.75	9.9	17.68	
Apr.		6.7	2.48	6.43	7-1	18.40	7.2	18.66	
May		9.9	77.0	6.55	7-1	19.02	7.2	49.82	
Jun.		5.7	2,11	5.47	32.0	82.94	57.1	148.00	
Jul.		7-4	1-74	4.66	20.0	133.92	127.1	340.42	
Aug.		± 5	1.67	97.4	50.0	133.92	165.1	442.20	•
Sep.		o. #	1.48	3.84	50-0	129.60	111.3	288.49	
Oct.		3.5	0 0 1	3-17	25.8	69.10	9° 111	119.46	
Nov.		5.6	96.0	5.50	11.5	29.81	16.0	74-14	
Dec.		2.1	0.78	2.08	10.3	27.59	13.5	36.16	a.
Total	. :			17.85		706.83		1,555.24	

WATER BALANCE OF KAMLA RESERVOIR (CASE: SK-400-BK PLAN)

					Net Ar	Area: 175,100ha)0ha	dI 3JOO4	Intake		 	Unit: 1	106m3
		Required Water	Water					Diversion Water from	Water f	rom Kurule	le Intake		
	Evaporation	Down-	Crop	Total	Kamla	70m3/s	رع	80m3/s	1/3	90m3/s	s/s	100m3/s	/3
	from Reservior	Maintenance Flow	Water Requirement 3	(Out- (t Flow)	flow	Inflow of Kamla F Dam 7-1	Water Balance	Inflow of Kamla Dam 7-2	Water Balance	Inflow of Kamal Dam 7-3	Water Balance	Inflow of Kamla 3 Dam 7-4	Water Balance
Jan.	1.88	24.91	126.56	153.35	31.07	218.56	65.21	245.34	91.99	272.13	118.78	298.91	145.56
Feb.	2.15	18.87	175.37	196.39	20.31	190.15	±2.9-	214.35	17.96	238.54	42.15	262.73	66.34
Mar.	7.66	18.75	337-67	361.08	17.68	205.17	-155.91	231.95	-129.13	258.74	-102.34	285.52	-75.56
Apr.	6.43	18.40	398.03	422.86	18,66	200-10	-222.76	226.02	-196.84	251.94	-170.92	277.86	-145.00
May	6.55	19.02	340.12	365.69	49.82	237.31	-128.38	264,09	-101-60	290.88	-74.81	317.66	-48.03
Jun.	5.47	82.94	52.65	141-06	148,00	329.44	188.38	353.36	214.30	381.28	240.25	407.20	266.14
Jul.	99.4	133.92	346.11	69. 484	340.42	527.91	¥3.22	554.69	70.00	581.48	62-96	608.26	123.57
Aug.	97.7	133.92	316.57	454.95	442.20	659.69	174.74	24.959	201.52	683.26	228-31	710.04	255.09
Sep	3.34	129.60	289.56	423.00	288.49	469-93	46.93	495.85	72.85	521.77	98.77	547.69	124.69
oet.	3.17	69.10	475.04	547.31	119.46	306.95	-240.36	333.73	-213.58	360.52	-186-79	387.30	-160.01
Nov.	2.50	29.81	79.88	112-19	74.14	222.91	110.72	248.83	136.64	274.75	162.56	300.67	138,48
Dec.	2.08	27.59	119.12	148-79	36.16	223.65	74.68	250-43	101,64	277.22	128.43	304.00	155.21
Total	47.85	706.83	3,056.68	3,811.36	1,555.24	1,555.24 3,761.77	-49.59	11.770,4 92.94-	265.75	4,392.51	581.15	581.15 4,707.84	896,48

Note: Inflow of Kamla Dam = Diversion water + Kamla Natural flow

TABLE 5-3-20 2 of 2

WATER BALANCE OF KAMLA RESERVOIR (CASE: SK-450-BK PLAN)

					Net Ar	Area: 215,200ha)Oha	450ft I	Intake			Unit:	106m3
		Required Water	Water					Diversion Water		from Kurule	e Intake		
	Evaporation		Crop	Total	Kamla	90 m3/s	3/8	100 H	п3/s	110 H	±3/s	120 m	m3/s
	from Reservior	Stream Maintenance Flow	Water Requirement		Flow	In Flow of Kamla Dam	Water Balance	In Flow of Kamla Dam	Water Balance	In Flow of Kamla Dam	Water Balance	In Flow of Kamla Dam	Water Balance
Jan	- 88	78.97	155.05	181.84	31-07	272-13	90-08	298,91	117.07	325.69	143_85	352,47	170-63
Feb.	2.15	18.87	215.53	236.55	20.81	238.54	1.99	262.73	26.18	286-91	50.36	311.11	74.56
Mar.	7 ± 66	18.75	415.00	438.47	17.68	258.74	-179-67	285.52	-152.89	312.98	-125.43	339.08	-99.33
Apr.	6.43	18.40	498.19	523.02	18.66	251.94	-271.08	277.86	-245.16	303.78	-219.24	329.70	-193.32
May	6.55	19-02	417.88	5t - 5tt	49.82	290.88	-152.57	317.66	-125-79	344.44	-99-01	371.22	-72.23
Jun.	5.47	82.94	64-70	153.11	148.00	381.28	228.17	407.20	254.09	433.12	280.01	70°657	305.93
Jul.	7-66	133.92	425-38	563.96	340.42	581.48	17.52	608.26	44.30	635.04	71.08	661.82	97.86
Aug.	94-4	133.92	389.06	527.44	442.20	683.26	155.82	710.04	182.60	736.82	209.38	763.60	236.16
Sep.	3.84	129-60	355.89	489-33	288.49	521.77	32.44	547.69	58-36	573.61	84.28	599.53	110.20
Oct.	3-17	69-10	583.88	656-15	119.46	360-52	-295.63	387.30	-268.85	114.08	-242.07	98-044	-215.29
Nov.	2.50	29.81	98_17	130-48	74.14	274.75	144.27	300-67	170-19	326.59	196-11	352.51	222.03
Dec.	2.08	27.59	146_40	176.07	36.16	277.22	101.15	304-00	127.93	330.78	154-71	357.56	181.49
Total	47.85	706.83	3,765.13	4,519.81	1,555.24	4,392.51	-127.30	4,707.84	188.03	5,023.84	504.30	5,338.50	818.69

TABLE 5-3-21

ANNUAL WATER BALANCE OF KAMLA RESERVOIR SUN KOSI MULTIPURPOSE SCHEME

						Unit	Unit: 106m3/year
		Bagmati River	- Kanro River	Jhim - River	Kanro River	Marha River	- Kanro River
		400 fr Intake 136,700	450 ft Intake 160,600	400 ft Intake 159,100	450 ft Intake 189,800	400 ft Intake 175,100	450 ft Intake 215,200
Evaporation	tion			乙廿	47.85		
Maintenance	ance Flow			70(706.83		
Crop Wat	Water Requirement	2,385.98	2,803.13	2,776.97	3,312.79	3,056.68	3,765.13
Total (Out Flow)	ut Flow)	3,140.66	3,557.81	3,531.65	74.760,4	3,811.36	4,519,81
Diversion 50	Diversion Water (m3/s) In Flow of Kamla Dam 50 Annual Water Balance	3,130.97					
9	In Flow of Kamla Dam Annual Water Balance	3,446.37	3,446.43	3,446.43			
20	In Flow of Kamla Dam Annual Water Balance	3,761-77	3,761.77	3,761.77	3,761.77	3,761.77	
80	In Flow of Kamla Dam Annual Water Balance	4,077.11	4,077.11	4,077.11	4,077.11	4,077_11	
06	In Flow of Kamla Dam Annual Water Balance		4,392.51	4,392.51	4,392.51	4,392.51	4,392.51
100	In Flow of Kamla Dam Annual Water Balance				4,707.84	4,707.4	4,707.84
110	In Flow of Kamla Dam Annual Water Balance						5,023.17
120	In Flow of Kamla Dam Annual Water Balance						5,338.57

WATER BALANCE AT KAMLA DAM RESERVOIR (CASE SK-400-KK)

	Outriew		512	51m3/a			60m3/s	3/8			70m	70m3/s			808	8003/8	
	Water (1)	Inflow (2)	Water Ad- Balance ditional (2)-(1)	1 . 1	Total	Inflow (2)	Water Ad- Balance ditional (2)-(1)	\	Total	Inflow (2)	Water Ad- Balance ditional (2)-(1)	Ad- ditional	Total	Inflow (2)	Water Ad- Belance ditional (2)-(1)	Ad- Mtional	Total
Jan.	125,28	167.67	42.39	•	-15.64	191.77	64.49	64-99	0	218.56	218.56 93.28	93.28	0	245.34	245.34 120.06	120.06	O
r eb.	157.93	144,19	144.19 -13.74	•	-29.38	165.96	8.03	8.03	0	190,15	32.22	32.22	0	214.35	56.42	56.42	0
Mar.	287,03	154.28	54.28 -132.75	,	-162.13	178.38	178.38 -108.65	,	-108.65	205.17	-8.1.86		-81,86	231.95	231.95 -55.08	•	-55.08
Apr	335,57	150.85	150.85184.72	1	-346-85	174.18	174.18 -161.39	•	-270.04	200.10	-135.46	•	217,33	226.02	226.02 -109.55	•	-164.63
X a.y	291,02	186,42	186,42 -104,50	,	-451.45	210.52	210.52 -80.50	t	-350.54	237 - 31	-53,71	1	-271.04	564.09	264.09 -26.93	•	-191.56
, m	129.51	280,19	280.19 150.68	1	-300.77	303.52	174.01	:	-176.53	329.44	199.93	•	-71,111	355.36	225.85	34.29	
in.	408,79	477.02	68,23	1	-232.54	501.12	92.33	•	-84,20	527.91	119.12	48.01	0	554.69	145.90	145,90	
Aug.	385.52	578.80	578.80 193.28	•	-39.26	602.90	217.38	133,18	0	659 629	244.16	255.17	o	24.959	270.95	270.95	:
Sep.	359.50	420.68	61.18	21.92	0	10.444	84.51	84.51	Ó	#69.93	110.43	110.43	0	495,85	136.35	136,35	Đ
Oct.	443-17	256,06	256.06 -187.11	;	-187.11	280,16	-163.01	•	-163.01	306.95	-136.22		-136,22	333.73	333.73 -109.44	,	44.601-
Nov.	94.67	173.66	78,99	•	-108.12	196.99	102.32	•	69.09	222.91	222.91 . 128.24	•	-7.98	248.83	154 16	144.72	0
Dec.	122,67	172.76	50.09	•	-58.03	196.86	74.19	13.5	0	223,65	100.98	93,00	0	250.43	127.76	127.76	• .
3	Total 3,140,66 3,162,58 21,92	3,162.58	21,92	21.92	,	3.446.37 305.71	305.71	305.71	'	3.761.77 62.11	62.11	62.11	'	4.077.11 036.45	036.45	036.45	'

Outflow = Water Requirement + Evaporation of Kamla Reservoir + Maintenance flow for down stream Inflow = Xamla Natural flow + Division Water

Additional flow means additional discharge for down stream

HATER BALANCE AT KAPEA DAM RESERVOUR (CASE SE-450-ME)

	Outflow		119	64m3/s	:		701	70m3/a			80m	80m3/s			Š	90m3/8	
-	Mater Water (1)	Inflow Water Balano (2) (2)-(1	Water Ad- Balance ditiona (2)-(1)	Ad- ditional	Total	Inflow (2)	Inflow Mater Ad- Balance ditional (2) (2)-(1)	Ad- ditional	Total	Inflow (2)	Water Ad- Balance ditional (2)-(1)	Ad- iitionsi	Total	Inflow (2)	Water Adr Balance ditional (2)-(1)	Ad- ditional	Total
Jan	142,50	202.49	202.49 60.00	13.31	•	218.56	218.56 76.06	76.06	O	245.34	245.34 102.84	102,84	0	272.13	272,13 129,63	129.63	0
eb.	181,87	175.64	175.646.23	•	-6.23	190.15	8.28	8.28	0	214.35	32.47	32.48	0	238.54	56.67	26.67	0
Mar.	333.12	189.10	189.10 -144.02	1	-150.25	205.17	205-17 -127-95	•	-127.95	231.95	231-95101-17	•	-101-17	258.74	258.74 ~74.38	•	-74.38
Apr	389,90	184.55	184.55 -205.35	•	-355.60	200+10	200-10 -189-80		317.75	226.02	226.02 -163.88	•	265,05	251.94	251.94 -137.96	t	-212.34
May	337.43	221.24	221.24 -116.19	1	27.174	237.31	237-31 -100.12	•	-417.87	264.09	264.09 -73.34	•	338,39	290.88	290.88 -46.55		-258.89
, an	136.70	313.89	313.89 177.19	•	-294.60	329.44	192.74	i	225.13	355.36	218.66	1	-119.73	381.28	244,58	•	-14.31
341	455.03	511.84	55.81	•	-238.79	15.754	71.88	•	153.25	554.69	99.86	•	-21.07	581.48	581,48 125,45	111.14	0
A U.E.	428.73	613.62	184.89	•	-53.90	629.69	200.96	47.71	0	656.47	227.74	206,67	0	683.26	254,53	254.53	0
Sep.	399,02	454.38	454.38 55.36	1.46		#69.93	70.91	70.91	O	495.85	96.83	0	521,77	122.75	122.75	0	
gt.	508.01	290-88	290-88 -217.13	•	217.13	306-95	306-95 -201.06	t		333-73	333.73 -174.28	i	-174,28	360,52	360.52 -147.49	٠	64.741-
Nov.	105,57	207.36	207.36 101.79	•	-115.3ª	222.91	222.91 117.34	0	83.72	248.83	248.83 143.26		-31,02	274.75	274.75 169.18	21.69	0
Dec	138.93	207.58	207.58 68.65	•	46.69	223.65	223.65 84.72	9.1	o	250.43	250.43 111.50	80,48	o :	277.22	277.22 138,29	188.29	0
3	Total 3.557.80 3.572.57	3,572,57	E	F. a.		3,761,77 203,96 203,96	203.96	203.96	}	4.077.11	- 4.077.11 519.30 519.30	519.30	'	- 4.392.51 834.70	834.70	824.70	,

Outflow = Mater Requirement - Evaporation of Kamla Reservoir - Maintenance flow for down stream

Inflow a Kamia Natural flow a Division Water Additional flow means additional discharge for down stream

1_106

WATER BALANCE AT EASEA DAM RESERVOTR (CASE SK-400-JK)

3 *	30.450pp										80007				ž		
	Water (1)	Inflow (2)	Water Balance (2)-(1)	Water Ad- Balance ditional (2)-(1)	Total	Inflow (2)	Water Ad- Balence ditional (2)-(1)	Ad- Total ditional	al Inflow (2)	low Water Balance () (2)-(1)			Total	Inflow (2)	Water Ad- Balance ditional (2)-(1)	Ad- ditional	Total
	147.42	199.81	199-81 58-39	9.39	0	218.56	77.14	77.14	0 24.5	245.34 103.72	1	103.92	0	272,13	272.13 130.71	130.71	ا
reb.	180.37	173.22	173.227.15	t	-7.15	190.15	9.78	9.78	0. 214			33.98	0	238.54	58.17	58.17	. 0
Mari	330.23	186.42	186.42 143.81	•	-150-96	205.17 -125.06	-125.06	125.06		•			-98.28	258.74	64 7-		611.17
Apr.	386.49	181.96	181.96 . 204.53	•	-355.49	200,10 -186,39	-186-39	311,45		226.02 -160.47	47	Ş.	-258.75			•	-206.04
May	334.52	218.56	218,56 -115,96	:	-471-45	237.31 -97.21	-97.21	408.66	•••	264.09 -70.43	£#3	ř	-329,18	290,88	79.64-		-249.68
Jun.	136.25	311.30	311.30 175.05	,	-296.40	329.44	193.19	215,47		355,36 219,11	Ę	1	70,011-	381,28	245.03	. •	-4.65
Jul. 1	453.07	509.16	509.16 56.09	i	-240.31	527.91	74.84	140.63		554069 101.62	.62	,	-8.45	587,18	128,41	123.76	G
Aug. 1	#26.02	610-94	610-94 184.92	•,	-55.30	656.63	204.67	63.04	959 0	656.47 230.45		222.00	0	683.26	257,24	257.24	0
Sep.	396.54	451.79	55.25	•	-0-14	469.93	73.39	73.39	461	495.85 99.31		99.31	٥	521.77	125.23	125.23	0
Oct.	503.94	288+20	288,20 -215,74		-215.88	306.95	-196-99	196.99		333.73 -170.21	. 21	17	-170-21	360.52 -143.42	-143,42		-143.42
Nov.	104.89	204.77	99.88	•	-116.00	222,91	118.02	78.97		248.83 143.94	ao.	Ÿ	-26.27	274.75	274.75 169.86	26.44	·
•	137.91	204.90	66.99	ŧ	10.64-	223.65	85.74	6.77	0 255	250.43 112.52		86.25	Ó	277.22	139.31	139.31	0
te. 3.5	531.65	Total 3,531.65 3,541.03 9.38	9.38	9.38		3,761.77 230.12	230.12	230.12	- 4,077,41	11 545.46	Ì	545.46	"	4,392,51	860.86	860.86	ĺ

Outflow * Mater Requirement + Evaporation of Kamla Reservoir + Maintenance flow for down stream Inflow * Kamla Matural flow - Division Water

Additional flow means additional discharge for down stream

7/2018 5-3-22 VAIRR BALANCE AT KAMLA DAN RESERVOIR (CASE SK-450-7K)
1. of 6

- -103.91 - -282.33 -358.80 +6.661- -- -18.17 -97,07 . 86-001 51.62 304.00 145.21 127.04 640.37 Balance dittonal (2)-(1) AQ-100回3/5 94.51 387.30 -199.94 300.67 181.77 1,707.84 640.37 Yater 135.37 135.37 262:73 41.62 277.86 -- 178.42 317-66 -75-47 107.20 261.73 10.04 228.52 547.69 100.38 285.52 -103.91 608.26 Inflow 0 298.91 - -130.69 - -335.03 - -438.28 - -202 47 - -134.74 - -226.72 - -70.87 Total 27.43 67.00 74.46 47.56 325.04 Balance ditional (2)-(1) AQ. 90m3/s 4,392.51 325.64 * B t 0 1 238.54 27.43 201.74 108.59 108.59 277.22 118.43 258.74 -130.69 251.94 -204.34 290.88 -103.25 381.28 235.81 581.48 67.73 521.77 74.46 360.52 -226.72 274.75 155.85 683.26 Inflow 3 ---387.74 - -266,95 -43.46 --296.97 - -157.48 ---517.78 - -307-89 -92.00 #0.78r- --75-40 Total 3.24 9.6 6.40 Balance dittonal (2)-(1) 80m3/s Inflow Water 19*6 3.24 49716 8.80 46°01 174.95 18.54 231.95 -157.48 226.02 -230,26 248.83 129.93 264.09 -130.0U 355.36 209.89 333-73 -253.51 195.85 245.34 250.43 656.47 554.69 rotal 4,067.47 4,077.11 214.35 8 Outflow (Required Water 394.13 587.24 118.90 158.79 163.54 389.43 456.28 145.47 513-75 481.52 127.31 211.11 Ξ

Outflow m Water Requirement + Evaporation of Kamla Reservoir + Maintenance flow for down atream

Inflow a Kamla Natural flow + Division Water

Additional flow means additional discharge for down stream

ABLE 5-3-22

WATER BALANCE AT RAMLA DAM RESERVOIR (CASE SK-400-BK)

•	Outino		721	72m3/s		30	80m3/s			908	90m3/s			1001	100m3/s	
	Water (1)	Inflow (2)	Water Balance (2)-(1)	Water Ad- Total Balance ditional (2)-(1)	Inflow (2)	1	Water Ad- T Balance ditional (2)-(1)	Total	Inflow (2)	Water Ad- Balance ditional (2)-(1)	Ad- ditional	Total	Inflow (2)	Water Ad- Balance ditional (2)-(1)	Ad-	Total
Jan.	153.35	223.91	70.56	13.42	0 245.34	4 91.99	91.99	0	272.13	272.13 118.78	118.78	0	298.91	298.91 145.56	345.56	0
.00.	196.39	194-99	→ • •	4,11	4 214.35	5 17.96		0	238.54	238.54 42.15		0	262.73	66,34	99	
Mar.	361.08	210.52	210.52 -150.56	151,96		231.95 -129.13	-	129.13	258.74	258.74 -102.34		-102.34	285.52	_	•	-75.56
Apr.	422.86	205.28	205.28 -217.58	269.54		225.02 -196.84		-326.07	251.94	251.94 -170.92	ì	-273.26	277.86 -145.00	-145.00	i	-220.56
*	365.69	242.60	242.60 -123.03	492.57		264.09 -101.60	7	-427.67	290.88	290.88 -74.81	;	-348.08	317.66	317.66 -48.03	ì	-268.59
Jun.		334.62		i	355.36	:	2	-213.37	381.28		•	-107.85	407.20		•	-2.45
Jul.	69*181	533.26	48.57	•	554.69	9 70.0	•	143.37	581.48	581.48 96.79		-11.06	608.26 123.57	123.57	121.12	
Aug.	454.95	635.04	180.09	,	24.959	7 201.52	58.15	0	683,26	683.26 228.31	217.25		710.04 255.09	255.09	255.09	0
Sep.	423.00	475.11	52.11	ľ	495.85	5 72.85	72.85	0	521.77	98.77	98.77	0	547.69 124.69	124.69	124.69	
90 tr	547.31	312,30	312.30 -235.01	253.25		333.73 -213.58	5	-213.58	360.52	360.52 -186.79	•		387.30 -160.01	-160.01		-160.01
Nov.	112,19	228.09	228.09 115.90	137,35	5 248.83	3 136.64	•	#6 *9 2	274.75	274.75 162.56	٠	-24.23	300.67 188.48	188.48	28.47	0
Ded	148.79	229.00	80.21	57.14		250.43 101.64	24.10	ò	277.22	277.22 128.43	104.20	0	304.00 155.21	155.21	155.21	O
3	Total 4,098.83 3,824.78 13.42	3.824.78	13.42	13,42	- 4,077.11 265.65 265.65	1 265.65	265.65		4,392,51 581,15 581,15	581.15	581.15	•	4,707.4	896.48	896.48	1

Outflow * Water Requirement + Evaporation of Kamla Reservoir + Maintenance flow for down stream

Inflow - Mamia Natural flow - Division Water

Additional flow means additional disoharge for down stream

IABLE 5-3-22 6 of 6

HATER BALANCE AT KAMLA DAM RESERVOIR (CASE SK-250-BK)

	Outrlow	7	951	95m3/s			100m3/a	1837.a			110	110m3/s			120	120m3/a	
	(1)	Inflow (2)	Inflow Water Ad- Balance ditional (2) (2)-(1)	Ad-	Total	Inflow Water Ad- Balance dition (2) (2)-(1)	Water Balance (2)-(1)	7	Total	. Inflow (2)	Water Ad- Balance ditional (2)-(1)	Ad- ditional	Total	Inflow (2)	Inflow Water Ad- Balance ditional (2) (2)-(1)	Water Ad- Balance ditional (2)-(1)	Total
Jan.	181.84	285.52	285.52 103.68	16.28	0	298.91	298.91 117.07	117.07	٥	-325.69	-325.69 143.85	143,85		352.48	352.48 170.64	170.64	
Feb.	236.55	250.63	250.63 14.08	14.08	•	262.73	26.18	26.18	0	286.92	286.92 50.37	50-37	0	311.11	74.56	74.56	•
Mar	438.41		272.13 -166.28	•	166.28	285.52	285.52 -152.89	- 15	-152.89	312.30	312.30 -126.11		-126-11	339-09	339-09 -99.32		-39-32
Apr.	523.02	264.90	264.90 -258.12	•	454.40	277.86	277.86 -245.16	398.05	8.95	303.78	303.78 -219.24		345.35	329.70	329.70 -193.32	•	-292.64
May	15 T	304.27	304.27 -139.18	1	-563.58	317.66	317-66 -125-79	52	-523,84	304.44	344.44 -99.01	•	- 444.36	371,23	371.23 -72.22	3	-364.86
on c	153.11	394.24	394.24 241.13	1	-322.45	407.20	407.20 254.09	92	-269.75	433,12	433.12 280.01	•	164.35	10-651	305.93	•	-58.93
Jul.	563.96	i	594:87 30.91	•	-291.54	608.26	608.26 44.30	225.45	5.45	635.04	635.04 71.08	. :	-93.27	661,83	97.87	38.94	0
Aug.	527.24		696.65 169.21	•	-122,33	710.04	710.04 183.60	7	-42.85	736.82	209.38	116.11	0	763.61	763.61 236.17	236.17	
200	489-33	534.73	45.40	٠	-76.93	547.69	547.69 58.36	15.51	0	573.61	84.28	84.28		599.53	599.53 110.20	110,20	0
8	656.15	373.91	373.91 -282.24	•	-359-17	387.30	387.30 -268.85	268.85	8.85	414.08	-242.07	•	242.07	140.87	440.87 -215.28	t	-215.28
Nov.	130,48	287.71	287-71 157-23	•	-201.94	300.67	300.67 . 170.19	99.86	99.8	326.59	196-11	• :	45.96	352.51	352.51 222.03	6-75	0
Dec	176.07	290.61	#S.#	•	-87.40	304-00	304.00 127.93	29.27		330,78	330,78 154.71	108.75	0	357.57	357.57 181.50	181.50	•
3	Total 4,519.61 4,550.17 30.36 30.36 - 4,707.84 188.03 188.03	4,550.17	30.36	30.36		4,707.84	188.03	188.03		- 5,023.17 503.36 503.36	503.36	503.36	•	5,338,57 818,76 818,76	818.76	818.76	

Outflow = Mater Requirement + Evaporation of Kamla Reservoir + Maintenance flow for down stream

Inflow - Kamla Natural flow - Division Water Additional flow means additional discharge for down etream

AND DIVERSION WATER WITH DIVERSION POWER STATION (TOWNEL LENGTH = 16.6KM) OPTIMUM COMBINATION OF KAMLA DAM SCALE TABLE 5-3-23

	Net Command Area ha	Diversion Water m3/s	Dam Height m	Diversion Tunnel	Cost Kamla 106 US\$	Total
Marha River - Kanro River	136,700	8 7 60 8 0 0 0	4 4 4 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	88.00 0.00 0.00 0.00 0.00 0.00 0.00	500 500 500 500 500 500 500 500 500 500	44.94.8 44.95.2 4.95.2
4	160,600	79 80 80 80 80 80	0 0 	97. 1.44. 1.44.	65.00 5.00 5.00 5.00	162.3 170.1 173.8
Jhim River - Kanro River	159,100	849 849 849	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	96.0 103.8 174.1	668 645 645 645 645 645 645 645 645 645 645	159-9 164-9 169-6 173-1
	189,800	8 8 6 8 6	40.7	4 60 -	a m o	ດນໍ່ເດັດ
Bagmati River - Kanro River	175,100	358865 86865	0,440 0,400 1,400	1001 1001 1001 1001 1001 1001 1001 100	7,000 2,000	1777 1777 1777 1777 1777 1777 1777 177
	215,200	26 100 100 100 100 100 100 100 100 100 10	55.54 4.9.8 7.00 9.00	127-3 131-4 140-1	0.88 0.88 0.88 0.88 0.88	198.2 199.9 203.7 206.9

Note: Optimum Combination

TABLE 5-3-24

OPTIMAM COMBINATION OF KAMLA DAM SCALE AND DIVERSION WATER WITHOUT DIVERSION POWER STATION (TUNNEL LENGTH = 13.9KM)

					Cost	
System	Net Command Area ha	Diversion Water m3/s	Dam Height m	Diversion Tunnel	Kamla Dam 106 US\$	Total
Marha River - Kanro River	136,700	000 000	### ### ### ####	98 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	63.73.9 57.19 5.11.19	# P # P # P # P # P # P # P # P # P # P
	160,600	\$ 0 0 0 \$ 4 0 0	0.04 4 0.04 4 0.04 4		0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	
Jhim River - Kanro River	159,100	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	000000 00000 00000 00000	0.01 0.01 0.01 0.01 0.01	0.44 E E E E E E E E E E E E E E E E E E
	189,800	860	51.6 49.7	95.6	68.2 63.0 57.6	168.8 166.1 167.6
Bagmati River - Kanro River	175,100	58 8 0 6 8 8 0	0 4 4 0 0 6 0 0 0 0 0	88.001 9.001 0.001	666 566 566 566 566 566 566 566 566 566	25.75 2.75 2.00 2.00 2.4.15
	215,200	95 100 120	52.64 29.74 9.09.9	106.6 110.0 117.3 124.5	68.5 63.5 53.5	177.5 178.5 180.9

Note: * Optimum Combination

TABLE 5-3-25 USABLE TRIJUGA NATURAL FLOW AND REQUIRED DIVERSION WATER FOR SAPT KOSI WEST IRRIGATION SCHEME

					<u> </u>	Unit: 10 ⁶ m ³
•	Trijuga	River		i-Trijuga gation 100ha)		si Intake 900ha)
	Natural Flow	Usable Discharge for Irrigation	Required Diversion Water		Required Diversion	
Jan.	12.51	12.20	0.12	12.32	2.86	15.06
Feb.	8.37	8.37	8.76	17.13	12.56	20.93
Mar.	7.12	7.12	25.86	32.98	33.18	40.30
Apr.	7.52	7.52	31.35	38.87	39.99	47.51
May	7.52	7.52	25.69	33.21	33.06	40.58
Jun.	59.59	5.14	-	5.14	1.14	6.28
Jul.	137.05	33.80		33.80	7.51	41.31
Aug.	178.03	30.92	· ·	30.92	6.87	37.79
Sep.	116.15	28.28	-	28.28	6.28	34.56
Oct.	48.10	43.56	2.84	46.40	13.15	56.71
Nov.	16.69	7.80	-	7.80	1.73	9.53
Dec.	14.54	11.63		11.63	2.59	14.22
Total	613.19	203.86	94.62	298.48	160.92	364.78

TABLE 5-3-26 REQUIRED DIVERSION WATER OF
EACH MONTH FOR SAPT KOSI WEST IRRIGATION SCHEME

					Unit: m3/sec
		Sunkosi Irrig	-Trijuga ation	Sapt Kos	
·····	Trijuga River Natural Flow	Water Requirement for Irrigation (17,100 ha)	Required Diversion Water (17,100 ha)	Water Requirement for Irrigation (3,800 ha)	Required Diversion Water (20,900 ha)
Jan.	4.67	4.75	80.0	1.06	1.14
Feb.	3.46	7.56	4.10	1,68	5.78
Mar.	2.66	17.29	14.63	3.84	18.47
Apr.	2.90	19.34	16.44	4.41	20.85
May	2.90	12.71	9.82	2.83	12.65
Jun.	22.99	3.34	· · · ·	0.74	0.74
Jul.	51.17	15.42		3.43	3.43
Aug.	66.47	19.56	-	4.35	4.35
Sep.	44.81	12.09	-	2.69	2.69
Oct.	17.96	20.16	2.20	4.48	6.68
Nov.	6.44	5.37	. -	1.19	1.19
Dec.	5.43	4.74	-	1.05	1.05

Note: Figures show peak discharge of each month.

TABLE 5-3-27 PEAK WATER I

PEAK WATER REQUIREMENT OF THE SAPT KOSI EASTERN ZONE (COMPONENT AREA SR1 & SR2)

	1,												
Crops	(T/C)	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.
Summer Paddy	(52)			0.690	0.458	0.533	0.158					:	
Rainy Paddy (Medium duration)	(83)						·	0.689	0.423	0.581	0.581 0.938	0.224	
Rainy Paddy (Short duration)	(14)							0.146	0.146 0.053	0.092	0.077		
Winter Pulses	8)	0.047	0.064	0.017									0.027
Maize	(15)		0.018	0.108	241.0	0.122							
Wheat	(32)	0-193	0.263	0.179									0.109
Summer Pulses	(11)			0.019	0.107	0.136				t			
Oilseed	(15)	0.071	0.056									0-041	0.056
Jute	(2)	•		0.028	0.038	0.042					•		
Potato	(1)	900.0	0.003									0.003	400.0
Sugar Cane	3	0.005	0.007	0-010	0.008	0.008					0.001	0.002	0-003
Total		0.321	0.411	1.056	0.758	0.842	0.158	0.835	0.476	0.673	1.016	0.270	0.199

PEAK WATER REQUIREMENT OF THE SAPT KOSI EASTERN ZONE (COMPONENT AREA SR3) TABLE 5-3-27

Crops	(I/C)	Jan.	Feb.	Mar.	Apr.	Мау	Jun.	Jul.	Aug.	Sep.	0ct.	Nov.	Dec.
Summer Paddy	(25)			0.950	0.930	0.983	0.548						
Rainy Paddy (Medium duration)	(83)							1.262	1.228	1.527	2.034	0.548	
Rainy Paddy (Short duration)	(17)							0.293	0.207	0.242	0.169		
Winter Pulses	8)	0.058	0.079	0.022	÷								0.034
Maize	(15)		0.023	0.135	0.183	0.152						·	
Wheat	(32)	0.242	0.326	0.224		;							0.133
Summer Pulses	(11)			0.024	0.134	0.168							
Oilseed	(15)	0.087	690-0	-								050-0	690.0
Jute	(6)			0-035	240.0	0.052							
Potato	£	900-0	0.004		!							700-0	900.0
Sugar Cane	Ê	900-0	600-0	0.012	0.010 0.009	600.0	· .				0.001	0.003	400.0
Total		0.399	0.510	1.402	1.304	1.364	0.548	1.555	1.435	1-769	2.204	0.605	0.245
فنادات فكأورب فالأروا والمساول													

TABLE 5-3-28 1 of 6

CONSTRUCTION COST OF SUN KOSI MULTIPURPOSE SCHEME (CASE, SK-400-MK)

	Discription	Unit	106 US\$
1.	Kurule Intake Dam		51.19
•	- Dam Height	48.9 m	
	- Dam Crest Length	316 m	
	- Max. Flood Discharge	19,000 m ³ /s	
2.	Diversion Tunnel		82.50
	- Length	16.6 km	
	- Max. Discharge	51 ṁ3∕s	
	- Diameter	4.3 m	
3.	Diversion Power Station		24.30
	- Effective Head	102.5 m	
	- Design Discharge	51 m ³ /s	
	- Installation Capacity	43.5 MW	•
4.	Kamla Dam		63.9
	- Dam Height	50.0 m	
5.	Kamla Dam Power Station	·	21.83
	- Effective Head	31.5 m	
	- Design Discharge	100 m ³ /s	
	- Installation Capacity	26.24 MW	
6.	Transmission Line		6.23
	- Length	32 km (132 kV)	
7.	Irrigation Facilities		154.32
	- Main Canal	116.5 km	
	- Siphon	25 Nos.	
	- Others	1 L.P.S	
	- Net Command Area	136,700 ha	
8.	Chisapani Barrage		19.64
9.	Access Road		31.39
	- Chisapani Barrage - Kamla Dam		
	- Kamla Dam - Diversion Station	27 km	
	- Diversion Station		
	- Kurule Dam Site	40 km	
	1		-

TABLE 5-3-28 2 of 6

CONSTRUCTION COST OF SUN KOSI MULTIPURPOSE SCHEME (CASE, SK-450-MK)

·	Discription	Unit	10 ⁶ US\$
1.	Kurule Intake Dam		51.19
	("Marha River - Khanro River")		
2.	Diversion Tunnel		97.10
	- Length	16.6 km	
	- Max. Discharge	64 m ³ /s	
	- Diameter	5.05 m	
3.	Diversion Power Station		29.19
	- Effective Head	102.5 m	
	- Design Discharge	64 m ³	
	- Installation Capacity	54.6 MW	
4.	Kamla Dam		65.20
	- Dam Height	50.5 m	
5.	Kamla Dam Power Station	•	21.89
	- Effective Head	31.9 m	
	- Design Discharge	110 m ³ /s	
	- Installation Capacity	29.23 MW	
6.	Transmission Line		7.02
	- Length	32 km (132kV)	
7.	Irrigation Facilities		262.65
	- Main Canal	116.8 km	
	- Siphon	27 Nos.	
	- Others	L.P.S	
	- Net Command Area	160,600 ha	
8.	Access Road		31.93
	(Refer to "Marha River - Khanro	River")	er ee
otal			566.17

TABLE 5-3-28 3 of 6

CONSTRUCTION COST OF SUN KOSI MULTIPURPOSE SCHEME (CASE, SK-400-JK)

	Discription	Unit	10 ⁶ US\$
1.	Kurule Intake Dam		51.19
	("Marha River - Khanro River")		
2.	Diversion Tunnel		96.00
	- Length	16.6 km	
	- Max. Discharge	63 m ³ /s	
	- Diameter	5.0 m	
3.	Diversion Power Station		28.42
	- Effective Head	102.5 m	*
	- Design Discharge	63 m ³ /s	
	- Installation Capacity	53.7 MW	
4.	Kamla Dam		63.90
	- Dam Height	51.6 m	
	- Dam Height	50.0 m	
5.	Kamla Dam Power Station		21.89
	- Effective Head	31.9 m	
	- Design Discharge	110 m ³ /s	
	- Installation Capacity	29.23 MW	
6.	Transmission Line Length	326 m	7.75
7.	Irrigation Facilities		187.19
	- Main Canal	136.5 km	-
	- Siphon	30 Nos.	
	- Others	L.P.S	
	- Net Command Area	159,100 ha	:
8.	Access Road		31.93
	(Refer to "Marha River - Khanro	o River")	
ota	1		507.18

CONSTRUCTION COST OF SUN KOSI MULTIPURPOSE SCHEME (CASE, SK-450-JK)

	Discription	Unit	10 ⁶ US\$
1.	Kurule Intake Dam		51.19
	("Marha River - Khanro River")		
ż.	Diversion Tunnel		114.10
	- Length	16.6 km	
	- Max. Discharge	$80 \text{ m}^3/\text{s}$	•
	- Diameter	5.45 m	* 4
3.	Diversion Power Station		35.17
	- Effective Head	102.5 m	
	- Design Discharge	80 m ³ /s	•
	- Installation Capacity	68.2 MW	
ц.	Kamla Dam		
	- Dam Height	51.6 m	68.20
5.	Kamla Dam Power Station		7.75
	- Effective Head	32.1 m	•
	- Design Discharge	130 m ³ /s	
	- Installation Capacity	34.76 MW	
6.	Transmission Line Length	326 m	7.02
7.	Irrigation Facilities		314.56
	- Main Canal	135.8 km	
	- Siphon	32 Nos.	
	- Others	1 L.P.S	
	- Net Command Area	189,800 ha	•
8.	Chisapani Barrage		· •
9.	Access Road		31.93
	(Refer to "Marha River - Khanro	River")	
ota	1		648.38

TABLE 5-3-28 5 of 6

CONSTRUCTION COST OF SUN KOSI MULTIPURPOSE SCHEME (CASE, SK-400-BK)

	Discription	Unit	10 ⁶ US\$
1.	Kurule Intake Dam		51.19
	("Marha River - Khanro River")		
2.	Diversion Tunnel		105.80
	- Length	16.6 km	
	- Max. Discharge	72 m ³ /s	
	- Diameter	5.25 m	
3.	Diversion Power Station		31.96
	- Effective Head	102.5 m	
	- Design Discharge	72 m ³	
	- Installation Capacity	61.4 MW	
4.	Kamla Dam		66.60
÷	- Dam Height	51.0 m	
5.	Kamla Dam Power Station	•	23.36
	- Effective Head	32.0 m	
	- Design Discharge	120 m ³ /s	·
	- Installation Capacity	31.99 MW	
6.	Transmission Line		7.32
	- Length	32 km (132 kV)	
7.	Irrigation Facilities		212.90
	- Main Canal	152.5 km	
	- Siphon	33 Nos.	
	- Others	L.P.S	
	- Net Command Area	175,100 ha	
8.	Chisapani Barrage		19.64
9.	Access Road		31.93
	(Refer to "Marha River - Khanro	River")	
Tota	11		550.70

CONSTRUCTION COST OF SUN KOSI MULTIPURPOSE SCHEME (CASE, SK-450-BK)

	Discription	Unit	106 US\$
ł .	Kurule Intake Dam		51.19
	("Marha River - Khanro River")		
≥,	Diversion Tunnel		127.30
	- Length	16.6 km	
	- Max. Discharge	95 m3/s	
	- Diameter	5.7 m	
	Diversion Power Station		39.93
	- Effective Head	102.5 m	
	- Design Discharge	95 m ³ /s	· ·
	- Installation Capacity	81.0 MW	
	Kamla Dam		70.90
	- Dam Height	52.6 m	
	Kamla Dam Power Station		26.82
	- Effective Head	32.5 m	
	- Design Discharge	140 m ³ /s	
	- Installation Capacity	37.90 MW	
٠.	Transmission Line		8.48
	- Length	32 km (132kV)
	Irrigation Facilities		391.80
	- Main Canal	155.3 km	
	- Siphon	35 Nos.	•
	- Others	L.P.S	
	- Net Command Area	215,200 ha	
	Access Road		31.93
	(Refer to "Marha River - Khanro	River")	

TABLE 5-3-29 1 of 3

CONSTRUCTION COST OF SAPT KOSI WEST IRRIGATION SCHEME (SUN KOSI - TRIJUGA DIVERSION PLAN)

	Discription	Unit	10 ⁶ US\$
1.	Intake Facilities		1.43
2.	Diversion Tunnel		11.67
	- Length	5 km	
	- Max. Discharge	$16.5 \text{ m}^3/\text{s}$	
	- Diameter	3.0 m	
3.	Barrage		13.29
4.	Irrigation Facilities		20.87
	- main Canal	30.9 km	
	- Siphon	5 Nos.	
	- Others	1 L.P.S	•
	- Net Command Area	17,100 ha	
5.	Access Road	. · · · ·	13.09
	- Barrage - Outlet of Tunnel	15 km	_
	- Outlet of Tunnel - Intake Site	12.5 km	
Tota	1		60.35

TABLE 5-3-29 2 of 3

CONSTRUCTION COST OF SAPT KOSI WEST IRRIGATION SCHEME

(SAPT KOSI INTAKE PLAN - DAM HEIGHT: 39M)

	Discription	Unit	10 ⁶ US\$
1.	Intake Dam		20.55
	- Dam Height	39 m	
	- Crest Length	310 m	
2.	Diversion Tunnel		19.04
	- Length	6.5 km	
	- Max. Discharge	21 m ³ /s	
	- Diameter	3.25 m	•
3.	River Training		8,35
	- Length	27.8 km	
	- Embankment Height	3.0 m	
ц	Barrage	en e	13.29
5.	Irrigation Facilities		40.84
	- Main Canal	68 km	
	- Siphon	13 Nos.	
	- Others	L.P.S	
	- Net Command Area	20,900 ha	
6.	Access Road		9.11
	- Outlet of Tunnel - Dam Site	16 km	
ľota	12	yd nguyy 1988 allyn sp ^{ar} if hy ghyddi gyr 1988 allyn 1988 allyn 2014 allyn 2	111.18

TABLE 5-3-29 CONSTRUCTION CO. 3 3 of 3 SAPT KOSI WEST IRRIGATION SCHEME VOGT INTAKE PLAN - DAM HEIGHT: 7

(SAPT KOSI INTAKE PLAN - DAM HEIGHT: 77M)

	Discription	Unit	10 ⁶ US\$
1.	Intake Dam		44.29
	- Dam Height	77 m	
	- Crest Length	480 m	
2.	Diversion Tunnel		19.04
	- Length	6.5 km -	
	- Max. Discharge	21 m ³ /s	
	- Diameter	3.25 m	
3.	River Training	÷ .	8.35
	- Length	27.8 km	
	- Embankment Height	3.0 m	1
4.	Barrage		13.29
5.	Irrigation Facilities		40.84
	- Main Canal	68 km	
	- Siphon	13 Nos.	
	- Others	L.P.S	
	- Net Command Area	20,900 ha	
6.	Access Road		9.11
	- Outlet of Tunnel - Dam Site	16 km	
Tota	al		134.92

TABLE 5-3-30

CONSTRUCTION COST OF

1 of 3 SAPT KOSI BAST IRRIGATION SCHEME (SAPT KOSI INTAKE PLAN - DAM HEIGHT: 39N)

	Discription	Unit	106 US\$
1.	Intake Dam		47.70
	- Dam Height	39 m	
	- Crest Length	310 m	
2.	Diversion Tunnel		38.80
	- Length	6.5 km	
	- Max. Discharge	57 m ³ /s	
	- Diameter	4.8 m	
3.	Irrigation Facilities		76.31
	- Main Canal	62.3 km	
	- Siphon	18 Nos.	
	- Others	L.P.S	
	- Net Command Area	47,950 ha	
4.	Access Road		1.19
	- Chatra Village - Intake Dam Site	4.8 km	
5.	Pumping Facilities		56.93
ota	1	·	221.65

TABLE 5-3-30 2 of 3

CONSTRUCTION COST OF SAPT KOSI BAST IRRIGATION SCHEME (SAPT KOSI INTAKE PLAN - DAM HEIGHT: 77M)

	Discription	Unit	10 ⁶ US\$
1.	Intake Dam		101.98
	- Dam Height	77 m	
	- Crest Length	480 m	
2.	Diversion Tunnel		38.80
	- Length	6.5 km	
	- Max. Discharge	57 m ³ /s	
	- Diameter	4.8 m	
3.	Irrigation Facilities		76.31
	- Main Canal	62.3 km	
	- Siphon	18 Nos.	
	- Others	L.P.S	
	- Net Command Area	47,950 ha	
6.	Access Road		1.19
	- Chatra Village - Intake Dam		
Tota	·1		219.00

TABLE 5-3-30 3 of 3

CONSTRUCTION COST OF SAPT KOSI BAST IRRIGATION SCHEME (TAHUR - BAST TERAI DIVERSION PLAN)

	Discription	Unit	106 US\$
1.	Intake Dam		65.52
	- Dam Height	68 m	
	- Crest Length	260 m	
2.	Diversion Tunnel		81.00
	- Length	18 km	
	- Max. Discharge	59 m ³ /s	
	- Diameter	4.9 m	
3.	Barrage		5.50
4.	Irrigation Facilities		74.09
	- Main Canal	57 km	
	- Siphon	15 Nos.	•
	- Others	L.P.S	
	- Net Command Area	49,350 ha	
6.	Access Road		6.38
	- E-W High Way - Outlet of Tunne	1 13.5 km	
	- (Dharan - Dhankuta Road) (Intake Dam Site)	2.5 km	
 Fotal			232.49

TABLE 5-3-31 CONSTRUCTION COST OF EACH PLAN AND ALLOCATED COST

SUN KOSI MULTIPURPOSE SCHEME

Unit: 106 US\$

	Diseription	Marha -	Kanro 160,600	Jhim - 159,100	Kanro 189,800	Bagmati 175,100	- Kanro 215,200
		51 m3/s	64 m3/s	63 m3/s	80 m3/s	72 m3/s	95 m ³ /s
	Kurule Intake Dam	51.19	51-19	51.19	51-19	51.19	51-19
7	Diversion Tunnel	82.50	97.10	00.96	114.10	105.80	127.30
κ'n	Diversion Power Station	24.30	29.19	28.42	35.17	31.96	39-93
. ≠	Kamla Dam	63.90	65.20	63.90	68.20	66.60	70.90
'n	Kamla Dam Power Station	21.83	21.89	21.89	25.48	23.36	26.82
9	Transmission Line	6.23	7.02	7.02	7.75	7.32	87.8
-	Irrigation Facilities	154.32	262.65	187-19	314.56	212.90	391.80
ω,	Chisapari Barrage	19.64	1	19-64	•	19.64	
o,	Access Road	31.93	31.93	31.93	31.93	31.93	31.93
	Grand Total	455-84	566.17	507.18	648.75	550.70	748.35
	Irrigation (allocated)	343,54	432.05	382.80	45-594	79 -717	572.07
	Hydro Power (allocated)	111.30	134-12	124.38	154.84	136.06	176.28

TABLE 5-3-32 1 of 2

BENEFIT COST ANALYSIS

SUN KOSI MULTIPURPOSE SCHEME

Unit: 106 US\$

	Scheme		Construction Cost	Cost1/	Benefit ¹ /	B/C	О- <u>й</u>
Sun Kosi Marha B	Sun Kosi Multipurpose Scheme Marha R Kanro R. (Chisapani Barrage Intake Plan) Net Command Area 136,700 ha	Irrigation Hydropower Total	344.54 111.30 455.84	538.4 176.2 714.5	765.9 253.6 1019.5	0 # 6 # #	227.6 77.4 305.0
N N	" (Kamla Dam Intake Plan) Net Command Area 160,600 ha	Irrigation Hydropower Total	432.05 134.12 566.17	675.1 212.3 887.4	8999-8 311-6 4-1151	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	224.7 99.3 324.0
Jhim R. Ne	Jhim R Kanro R. (Chisapani Barrage Intake Plan) Net Command Area 159,100 ha	Irrigation Hydropower Total	382.80 124.38 507.18	598-1 196.9 795.0	891.4 307.3 1198.7	25.50	293.3 110.4 403.7
N.	" (Kamla Dam Intake Plan) Net Command Area 189,800 ha	Irrigation Hydropower Total	\$6. \$6. \$6. \$6. \$6. \$6. \$6. \$6. \$6. \$6.	771.2 245.1 1016.3	1063.4 384.5 1447.9	1.57	292.2 139.4 431.6
Bagmati	Bagmati R Kanro R. (Chisapani Barrage Intake Plan) Net Command Area 175,100 ha	Irrigation Hydropower Total	414.64 136.06 550.70	647.9 215.4 863.2	981.1 348.2 1329.2	1.62	333 866 866 866 866 866 866 866 866 866
×	" (Kamla Dam Intake Plan) Net Command Area 215,200 ha	Irrigation Hydropower Total	572.07 176.28 748.35	893.9 279.0 1172.9	1205.7 451.7 1657.5	200 200 200 200 200 200 200 200 200 200	311.8 172.7 484.6

1/ Discounted

TABLE 5-3-32 2 of 2

SAPT KOSI WEST AND EAST IRRIGATION SCHEME)

		÷
	U	2
•	9	2
	+ 1	- 3 TTTO

Sapt Kosi West Irrigation Scheme Sunkosi - Trijuga Diversion Plan Sapt Kosi Intake Plan (Dam Height H = 39 m) Sapt Kosi East Irrigation Scheme Sapt Kosi East Irrigation Plan Tamur - East Terai Diversion Plan Tamur - East Terai Diversion Plan Tamur - East Terai Diversion Plan Sapt Kosi West Irrigation Scheme Sapt Kosi East Irrigation Scheme Sapt Kosi East Terai Diversion Plan Tamur - East Terai Diversion Plan Sapt Kosi West Irrigation Scheme Sapt Kosi Intake Plan (Dam Height H = 77 m) Sapt Kosi East Terai Diversion Plan Tamur - East Terai Diversion Plan Sapt Kosi West Irrigation Scheme Sapt Kosi Intake Plan (Dam Height H = 77 m) Sapt Kosi East Terai Diversion Plan Tamur - East Terai Diversion Plan		Scheme		Construction Cost	Cost	Benefit B/C	B/C	ပ- မ
am Height H = 39 m) (Dam Height H = 77 m) 134.92 198.12 117.10 0.74 134.92 198.12 117.10 0.79 134.92 221.65 367.78 255.42 0.69 219.00 232.25 255.42 0.79 219.00 232.49 346.65 265.04 0.76	Sapt Kos	il West Irrigation Scheme unkosi - Trijuga Diversion Plan	. :	60,35	86.92	95.81	1-10	8.89
Sapt Kosi East Irrigation Scheme Sapt Kosi Intake Plan (Dam Height H = 39 m) (Dam Height H = 77 m) Tamur - East Terai Diversion Plan Sapt Kosi Irrigation Scheme (Dam Height H = 77 m) 221.65 367.78 255.42 0.69 219.00 322.25 255.42 0.76		apt Kosi Intake Plan (Dam Height H = 39 m) (Dam Height H = 77 m)		111.18 134.92	159.19	117.10	0.74	-42.09 -81.02
232.49 346.65 265.04 0.76	Sapt K	am Height H = 39 (Dam Height		221.65 219.00	367-78 322-25	255 . 42 255 . 42	0-69	-112.36 -66.84
	Ĥ	amur - East Terai Diversion Plan		232,49	346_65	265.04	0.76	-81.61

1/ Dicounted

POSSIBLE COMBINATION OF SAPT KOSI WEST AND SAPT KOSI EAST IRRIGATION SCHEME TABLE 5-3-33

•	Sapt Kosi West	irrigation scheme	eme	Sap	Sapt Kosi East Irrigation Scheme	irrigatio	п эспеше
X + 2 × 2	E	Sapt Ko	Sapt Kosi Intake	Sapt	Sapt Kosi Intake	4)	Tamur
Number	Sunkost-irijuga Diversion	Dam Hight H = 39 m	Dam Hight H = 77 m	Dam Hight H = 39 m	ot Dam Hight n H = 77 m	r B B	- East Terai Diversion
W.B.	0						٥
W.E 2		o		٥			
W.B 3			0		· ·		
	. *						
				٠.	7.		.
		Construct Cost	Construction Discounted		Discounted	B/C	D~8
*	. L − '3*M	292.84		433.57	360.85	0.83	-72.72
. . . .	W.E 2	332.84		526.97	372.52	0.71	-154-45
	¥.E. 1 3	353-92		520.37	372.52	0.72	-147.85

TABLE 5-3-34 OUTLINE OF SUN KOSI MULTIPURPOSE SCHEME
1 of 2 (DIMENSIONS AND COSTS FOR MAIN STRUCTURES)

(With Diversion Power Station) Sun Kosi Diversion & Irrigation (175,100ha) Dimension

Item	Dimension		Cost 106US\$
1. Kurule Diversion Dam Dam Type: Concrete Gravity	Dam height Dam Crest length Concrete volume Flood Discharge	48.9m 316m 230x103m3 19,000m3/s	51.19
2. Diversion Tunnel	Total length Design Discharge Tunnel Diameter	16.6km 72m ³ /s 5.2m	105.80
3. Diversion Power Station	Effective head Design discharge installation Capcity	1,025m 72m ³ /s 61MW	31.96
4. Kamla Dam & Reservoir Dam Type: Sand Gravel Fill H.W.L. 178.5m L.W.L. 163m Vg 713x10 ⁶ m ³ Ve 493x10 ⁶ m ³	Dam height Dam Crest length Dam volume Flood discharge	51.5m 697m 3,280×103m3 5,000m3	66.60
5. Kamla Dam Power Station	Effective head Design Discharge Installation Capacity	32.5m 120m ³ /s 32.5MW	23.36
6. Transmission Line	Length	32km (132kV)	
7. Irrigation Facilities	Main Canal length Right Bank Left Bank	78.4km 74.1km	
Net Area (R) 107,900ha (L) 67,200ha	Main Canal (Qmax.) Right Bank Left Bank	135m ³ /s 84m ³ /s	
	* Including all Irriga	ation Facilities	212.90
8. Chisapani Barrage All Gate Type	Barrage height Barrage Crest length Flood Discharge	3m 300m 5,000m ³ /s	19.64

OUTLINE OF SUN KOSI MULTIPURPOSE SCHEME (DIMENSIONS AND COSTS FOR MAIN STRUCTURES)

(With	Diversion	Po	wer Station)	
Sun	Kosi	Diversion	&	Irrigation	(175	100ha)

Item	Dimension	Cost 10 ⁶ US\$
). Access Road	Chisapani - Kamla Dam 8km Kamla Dam - Diversion Power Station 27km	
	Diversion Power Station - SU-1 Intake Dam 40km	31.93
Grand Total	$B/C = 1.54$ $B-C = 466.0 \times 10^6 US$	550.70

TABLE 5-3-37 BENEFIT COST ANALYSIS IN CASE-A AND CASE-B (SUN KOSI MULTIPURPOSE SCHEME)

		Un	it: 106 US\$
Item		Case-A	Case-B
Irrigation Area Installation Capacity of Hydropower	Diversion Power Kamla Dam Power	55,500 ha 61,400 kW 0	45,900 ha 0 0
Construction Cost	Irrigation	162.48	171.82
	Hydropower	138.51	0
	Total	300.99	171.32
Discounted Benefit	Irrigation	310.96	257.17
	Hydropower	280.35	0
	Total	591.31	257.17
Discounted Cost	Irrigation	253.40	268.27
	Hydropower	218.81	0
	Total	472.21	268.27
в/с	Irrigation Hydropower Total	1.23 1.28 1.25	0.96 0.96
В-С	Irrigation	57.56	-11.10
	Hydropower	61.54	-
	Total	119.10	-11.10

Construction Items are as bellow:

Case-A (only SK Diversion)

Case-B (only Kamla Dam)

Access Road

Access Road

Kurule Intake Dam

Kamla Dam

Diversion Tunnel

Irrigation facilities between

Diversion Power Station

Kamla Riber and Bhati Balon

Transmission Line

River

Irrigation facilities between

Kamla River and Bhati Balon River

BENEFIT COST ANALYSIS FOR EACH COMPONENT (SUN KOSI MULTIPURPOSE SCHEME)

		Θ	@	6		(©	.	9
Net Irrigation Area (ha) Hydropower	.a (ha) (кw)	25,000	32,000	30,500	30,500	24,200	66,200	66,200	29,200
Construction Cost	Irrigation Hydropower Total	73.87 154.33 228.20	47.46 42.50 89.96	72.79	53.15 53.15	24.55 0 24.55	90-36	110.00	#8 ## #8 ##
Discounted Benefit Irrigation Hydropower Total	Irrigation Hydropower Total	140.07 280.35 420.42	18.73 48.73	170.89	170.89	135.59 0 135.59	370-91	370.91 0 370.91	163.60
Discounted Cost	Irrigation Hydropower Total	115.03 243.44 358.47	141-43 141-43	113.74	83.05	38-36 38-36	141.19	171.88	70.06
B/C	Irrigation Hydropower Total	1.15	0 8 8 4 0 0 0	1.50	2.06	ო ო ი ო	2.63	2.16	न । त ल ० ०
U-8	Irrigation Eydropower Total	25.04 36.91 61.95	0 -73.59 -73.59	57.15 0 57.15	87.84 0 87.84	97.23 0 97.23	229.72	199-03	#5-£6 #5-£6

Including Chisapani Barrage Excluding " "

Excluding Chisapant Barrage Including

ABLE 5-3-39

STAGE DEVELOPMENT FOR SUN KOSI MULTIPURPOSE SCHEME

(Case - a)

		Stage-1	Stage-2	Stage-3	Stage-4	Stage-5
Combination of Divided	ed Construction Scope	Ð	3	(†) + (©)	©	9
Net Irrigation Area (ha) hydropower (kW)	(ha) кw)	25,000 61,400	30,500	24,200 32,000	66,200	29,200
Construction Cost	Irrigation Hydropower Total	73.87 154.33 228.20	72.79	72.01 42.50 114.51	90.36	78. HT
Discounted Benefit	Irrigation Hydropower Total	140.07 280.35 420.42	170.89	135.59 67.84 203.43	370.91 0 370.91	163.60 0 163.60
Discounted Cost	Irrigation Hydropower Total	115.03 243.44 358.47	113.74 0 113.74	62.40 179.79	141-19 0 141-19	70.06
B/C	Inrigation Hydropower Total	27	1.50	60. 60. 60.	2.63	2.3 4.5 34
ပ ္	Irrigation Hydropower Total	25.04 36.91 61.95	57.15	18.20 5.44 23.64	229.72 0 229.72	93.54 0 93.54

TABLE 5-3-39

2 of 3

STAGE DEVELOPMENT FOR SUN KOSI MULTIPURPOSE SCHEME

(A) (A) (B) (B) 92,400 2.53 323,26 Stage-3 135,20 135.20 2.53 534.51 211.25 534.51 211.25 Stage-2 72.01 42.50 114.51 24,200 32,000 62.40 62.40 135.59 67.84 203.43 1.09 (4) (4) (4) Stage-1 55,500 57.56 61.54 119.10 162.48 138.51 300.99 310.96 280.35 591.31 (O) (-) 253.40 218.81 472.21 22.23 (Case - b) 95,400 135.20 534.51 211.25 211.25 323.26 135.20 2.53 2-53 323.26 Stage-3 (a) (b) (c) 534.51 (b) + (0) + (0) Stage-2 54,700 32,000 238.96 54.57 293.53 34.46 34.46 187.30 37.52 13.27 80.79 306.48 67.84 374.32 .78 1.24 73.87 154.33 228.20 115.03 243.44 358.47 54,400 61,400 140.07 280.35 420.42 25.04 36.91 61.95 22.1 Θ Irrigation Hydropower Total Net Irrigation Area (ha) Hydropower (kW) Discounted Benefit Construction Cost Constuction Scope Discounted Cost Hydropower 0<u>-</u>0

TABLE 5-3-39 3 of 3

STAGE DEVELOPMENT FOR SUN KOSI MULTIPURPOSE SCHEME (Case - c)

Stage-2 83,900 122.54 470.08 2.46 278.61 122.54 470.08 191.47 2.46 278.61 191.47 Stage-1 91,200 78.03 78.03 187.39 257.32 170.84 428.16 510.98 348.20 859.18 401.66 270.12 671.78 7.23 9+9+4 Stage-2 159.75 159.75 670.10 450.49 420.49 119,600 249-61 2.68 2.68 670.10 249.61 (m) + (m) + (m) Stage-1 55,500 185.71 205.24 390.95 310.96 348.19 659.15 289.52 324.12 613.64 21.44 24.07 45.51 1.07 1.07 Hydro Power Total Irrigation Hydropower Total Irrigation Hydropower Total Hydropower Total Irrigation Hydropower Total Irrigation Irrigation Net Irrigation Area (ha) Hydropower (kW) Discounted Benefit Construction Cost Discounted Cost Hydropower 3/C ပ<u>ု</u>ရ

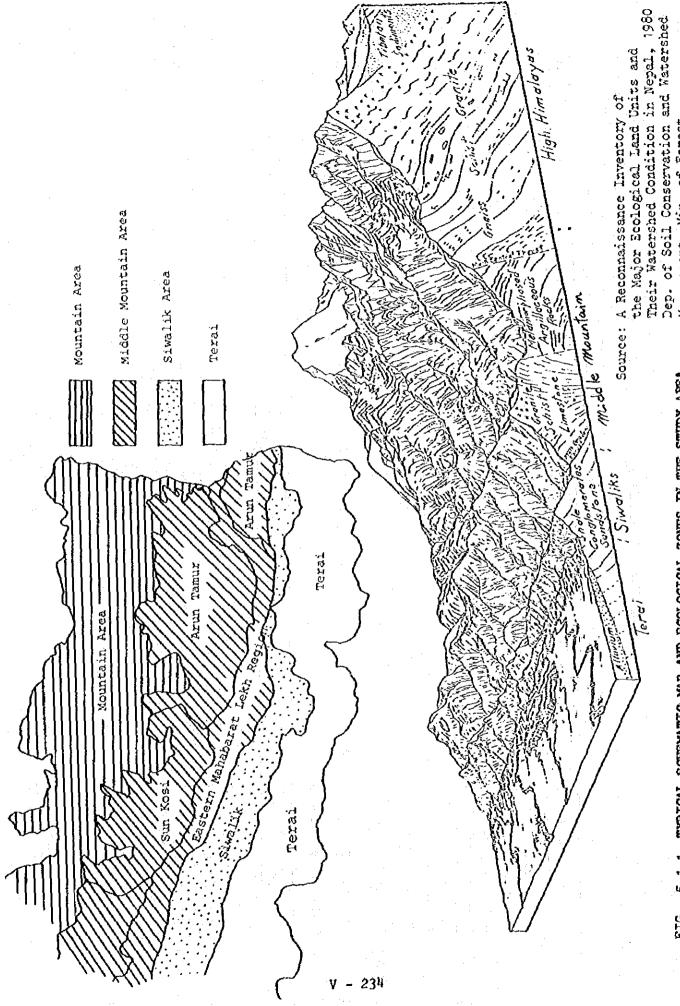
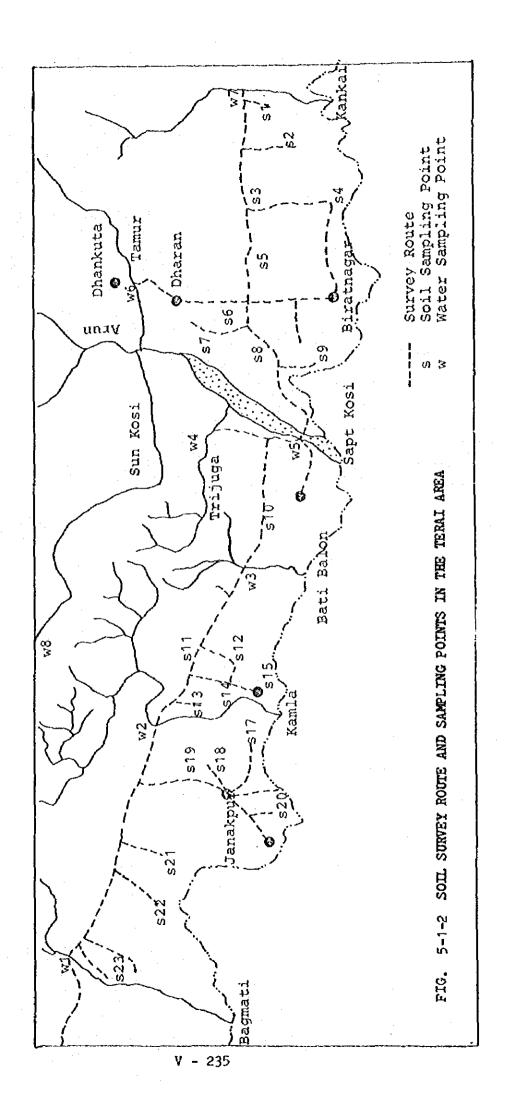
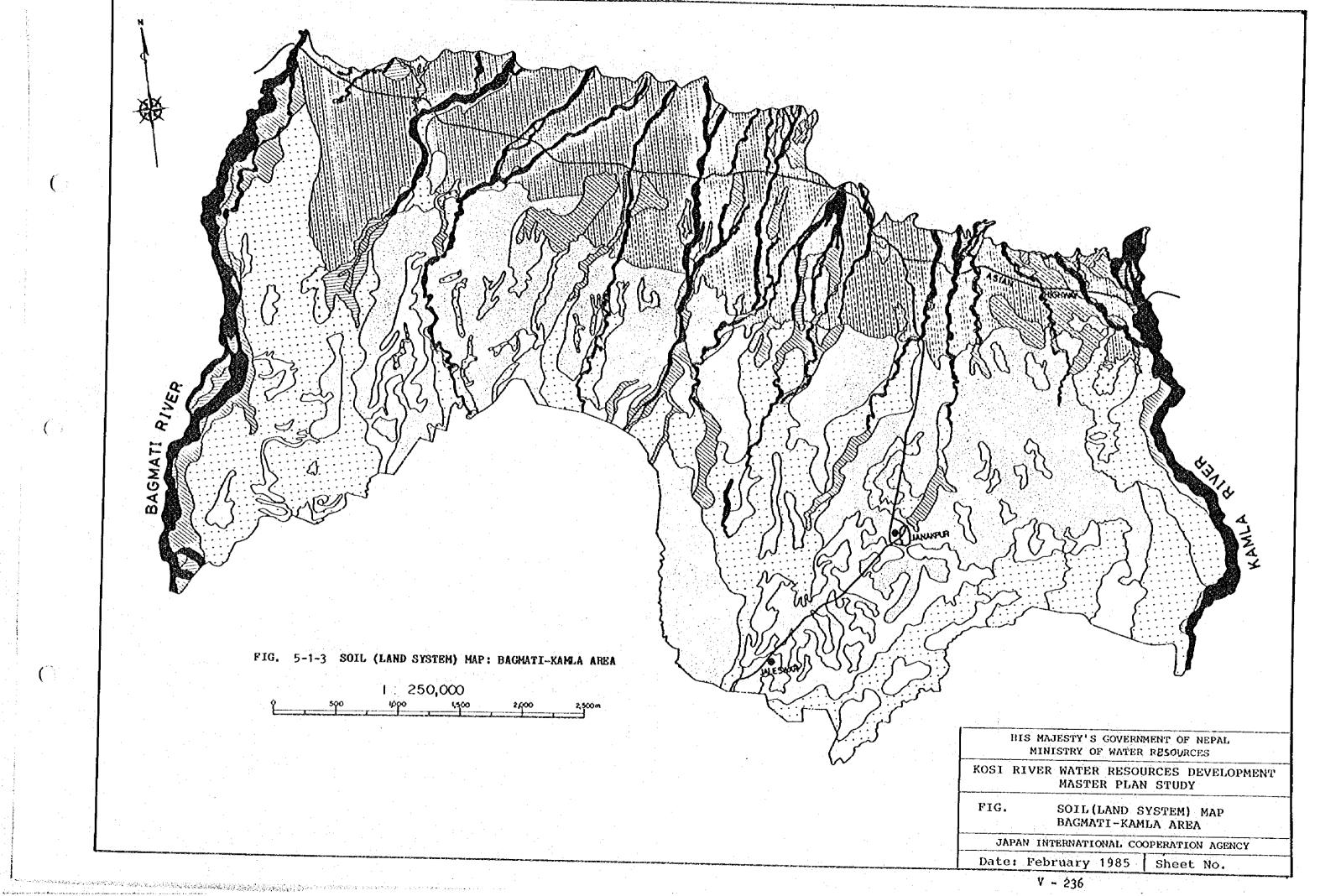
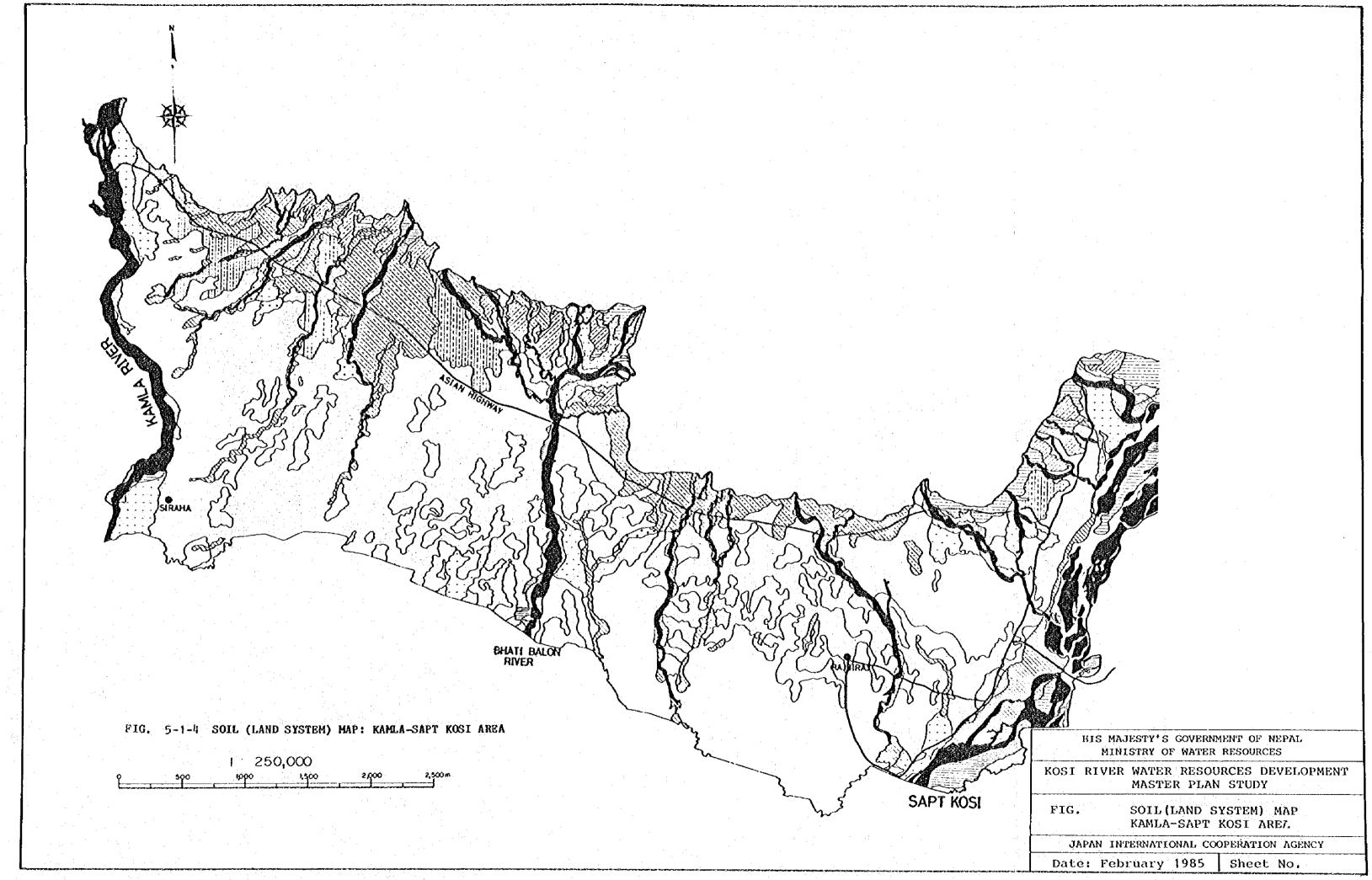
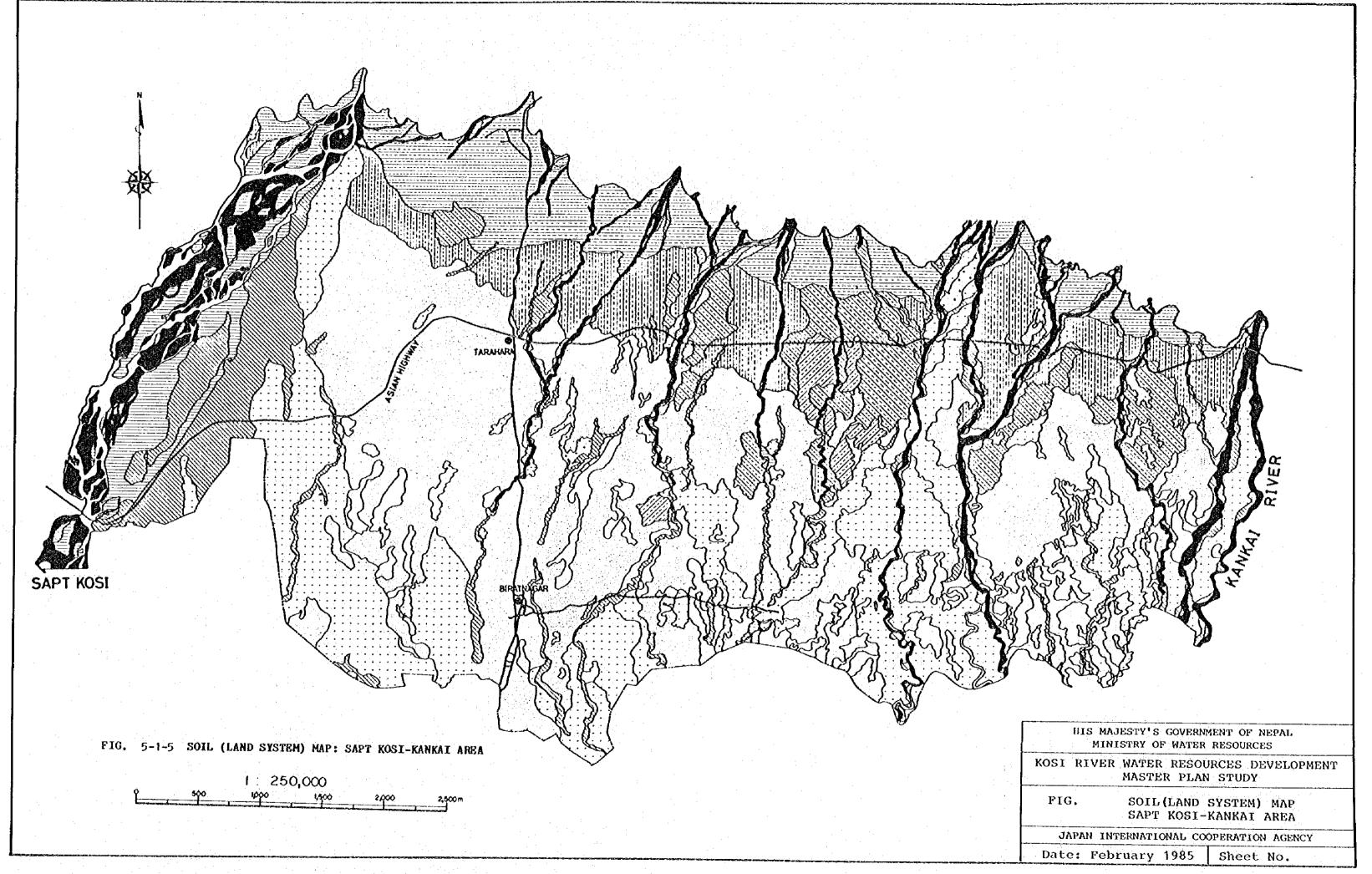
TABLE 5-3-40	ANNUAL D		ISBERSEMENT SCHEDULE OF CONSTRUCTION COST (TEREE STAGES)	NT SCI (TERE	IT SCHEDULE OF (THREE STAGES)	ු දුව වූ	KSTRUC	LION	rsc					
												Unit	Unit: 106 US\$	US\$
Item	Total	1988	68	8	91	35	66	#6	95	96	97	86	66	2000
1. Civil Work													*	
Temporary Work	69.2	ı	3	•	6.5	6.5	6	7.0	9.81	23.3	ŧ	en en		1
Kurule Intake Dam	35.9	1	1		1	. 1	1	8.0	0	0	0-6	1	•	1
Diversion Tunnel	74.2	1	,	1	:	ı	14.8	14.8	17.8	14.9	14.9	ı	ı	1
Kamla Dam	46.7	ı	1	3		. 1	1	·	. 1	11.6	11.7	11 7	11.7	ł
Hydropower	43.9	ŧ	1	ľ		ı	. 1	t		<u>ω</u>	ω Ω		10.9	
Irrigation	170.2	i	i	ı	5.6	9.0	 ∞	15.3	31.8	24.6	24.6	19.0	19.1	16.5
Access Road	23.4	ţ	•	i	∞ -∕	7	φ. ,	ı			1		•	1
2. O/M Facilities	14.0	1	2.	2.6	0 #	7.	1.7	1.7	.	<u>.</u> 1	ı	ŧ		1
3. Administration & Engineering	32.4	<u>τ</u>	8	₹.	5,		e e	ы. Э.	ლ ლ	3-3	ω 	φ	9.1	6.0
4. Physical Contengency	8.04	0.1	0	70	<i>(</i>)	2.0	w w	7.	ιν 8	80	6.3	ტ	ი გ.	**
TOTAL	550.7	1.9	1.9 4.6	5.4	28.5	26.7	47.1	56.1	78.6	78.6 108.5	83.5	2 th	46.8	18.8

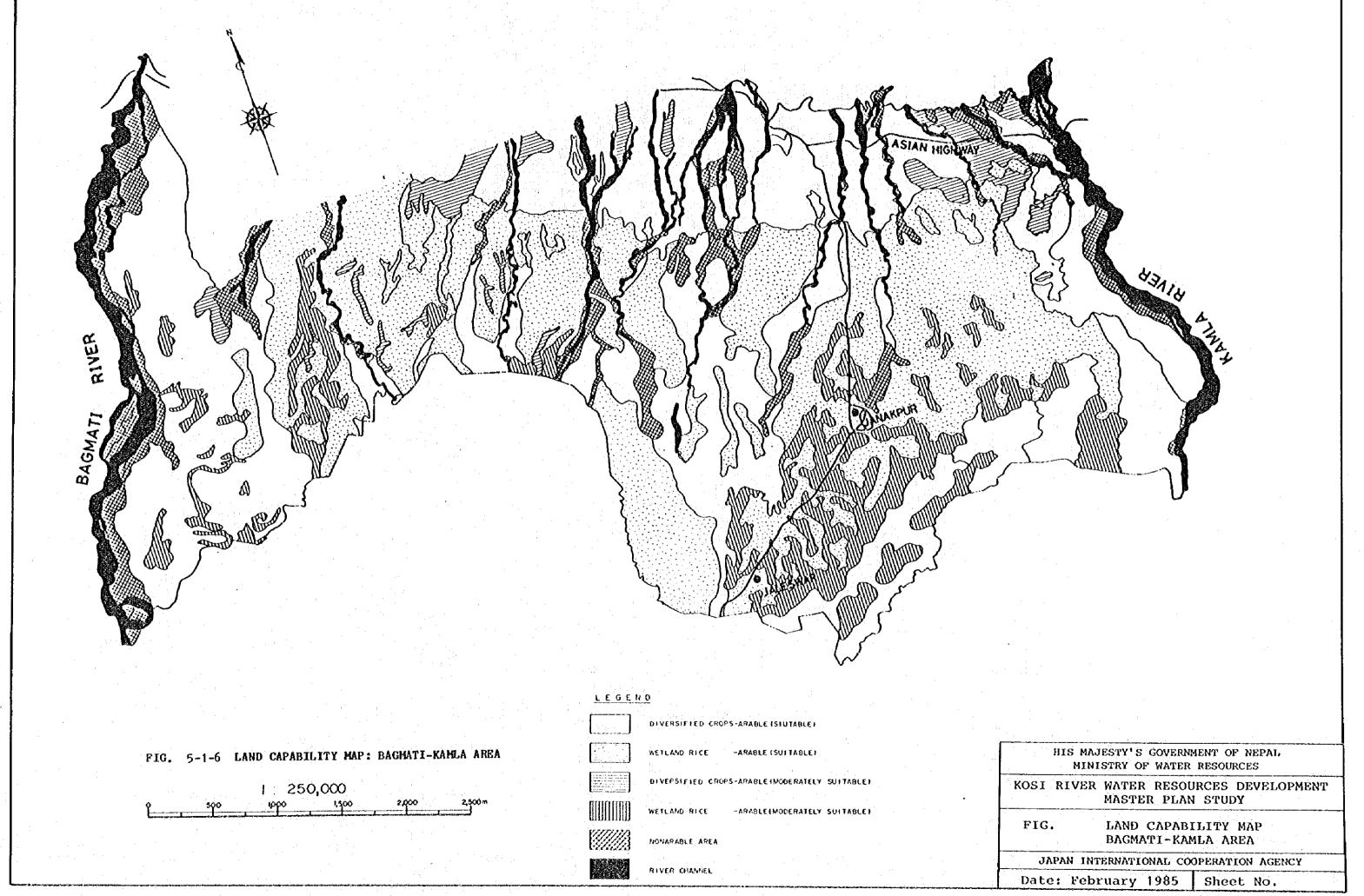
TABLE 5-3-40 2 of 4	ANNU	ANNUAL DISBERSEMENT SCHEDULE OF CONSTRUCTION COST (STAGES - 1)	BERSEM	ent sc (STA	SCHEDULE OF	ය <u>උ</u> ග	NSTRUC	TION C	CST	٠				
												Unit	Unit: 106 US\$	US\$
Item	Total	1988	89	90	16	92	93	75 76	95	96	97	98	66	2000
1. Civil Work	-		٠											
Temporary Work	39.0	:	1	1	יני ער	L V	u v	u u	υ (u	ļ			
Kurule Intake Dam	33		1	ŧ) i))) c	0	0	α	! !	1	•
Diversion Tunnel	74.2	•	ŀ		1	t	6.4	0 4	00 2±	0 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 2	1 1	1 1	! !
Kamla Dam	•	ı	1	1	ı		1) 1 -		-	. 1	1	! !
Hydropower	27.6	ı	ı	1	•		ı	•	•	00 64	φ (γ	t 1	l I	1 1
Irrigation	53.3	1	,	!	2.6	5,6	9,0	0,0	30.00	ម្	វ	: I	: I	۱ ۱
Access Road	23.4	. 1	ı	ı	2.8	4.8	00	}	1	1	ļ	•	1	1
2. O/M Facilities	7.6	ı	2.5	2.5	2.6	ı	ı	ı	,	1	1	1	1	i
3. Administration & Engineering	17.7	ω.	€		₩	80	6	ω.	1-7	1.7	1.7	ł	1	
4. Physical Contengency	22.3	0.1	7 0	# . 0	0,	1.7	0 m	ω 	3.6	ਦੂ ਜ	3.6	•	1	
SUB-TOTAL	301.0	1-9	4.7	4.7	26.2	23.4	39.6	48.6	7.87	55.3	48.2	1	'	

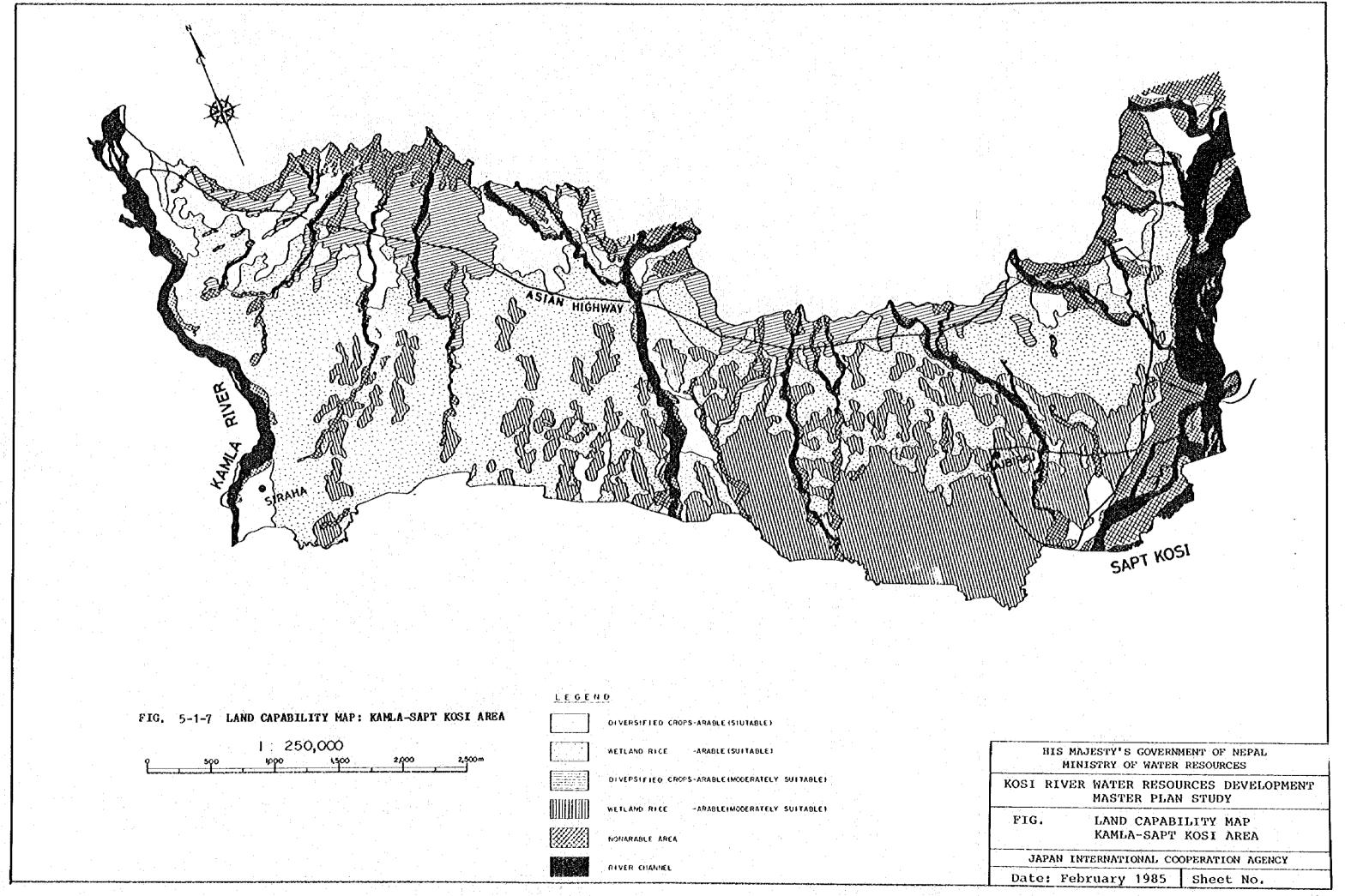
				- }			i				9		Unit	Unit: 106 US\$	US\$
	Item	Total	1988	89	06	9.1	92	93	₹6	95	96	26	98	66	2000
•	1. Civil Work														
	Temporary Work	15.3	į	ı	1	•	•	1. w	٠ <u>.</u>	1	7.0	ŧ	3-3		i
	Kurule Intake Dam	1	1	•	t	1	\$,	ı	•	•	ŧ	i	•	•	1
	Diversion Tunnel	1	1	1	i	•			ı	ı		ı	1	ŧ	1
	Kamla Dam	46.7	1	ŀ	•	1	,	•	1	ı	11.7	11.7	11.7	11.6	1
	Hydropower	16.4	1	1	•	•	1	ŧ	. 1	1	1	l	r.	10.9	ł
	Irrigation	18,0	1	t	1	•	ľ	5-6	5.6	2.6	2.6	5.6	2.5	, 1	•
	Access Road		1	ı	•	•	ı	i	ŧ	•	•	t	1	•	•
~	2. O/M Facilities	2.9	1	.	1	1.4	ر رن	t	t,	*	1	1	*	J	
'n	3. Administration & Engineering	6.7	1	*	7-0	7-0	0.7	0-7	0.7	0.7	7.0	9.0	0.0	9-0	1
⇒	4. Physical Contengency	ω 	1		0.1	0.2	0.2	₹ . 0	7.0	0.2	9.	2.	0.	20	* 4
	SUB-TOTAL	114.5	,	'	8.0	2.3	2.4	5.0	2.0	3.5	26.3 16.1	16.1	25.5	29.6	ı
1															

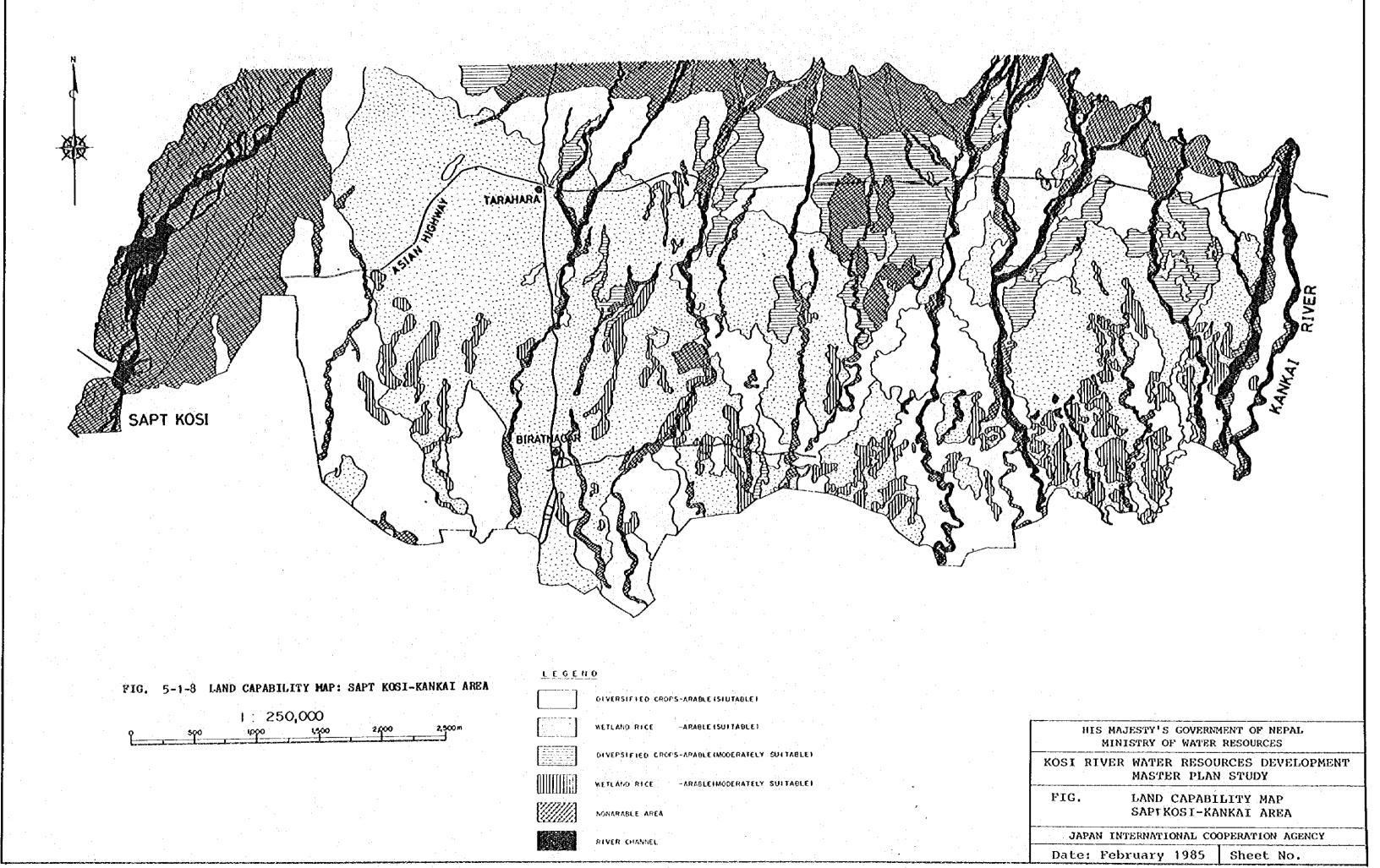
ANNUAL DISBERSEMENT SCHEDULE OF CONSTRUCTION COST (STAGES - 2)

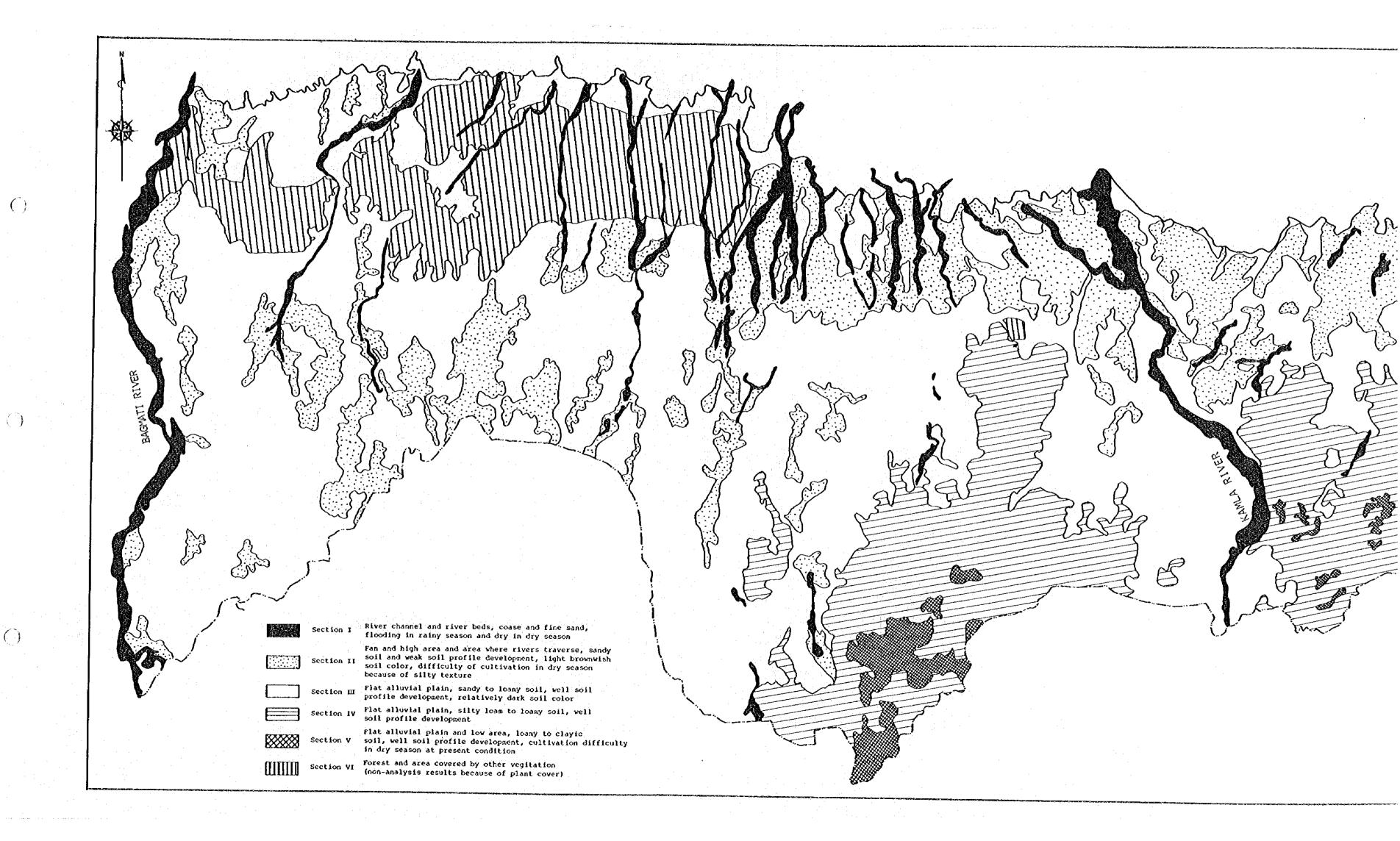
TABLE 5-3-40 4 of 4	ANNU	ANNUAL DISBERSEMENT SCHEDULE OF CONSTRUCTION COST (STAGES - 3)	ERSEME	NT SCB (STA)	(STAGES - 3)	3. CS	KSTRUCI	TON C	rsc	٠				
			· .				·					Unit	Unit: 106 US\$	38
Item	Total	1988	89	96	91	92	93	ħ6	95	96	26	98	66	2000
. Civil Work				·		:				1		. •		
Temporary Work	8. 7.	ι	ļ	. ,	•			. •	7.4	7.4	ı		1	
Kurule Intake Dam		1	ı	ı	1	ŧ		1	1	\$	ļ	1	•	ł
Diversion Tunnel	•	ŧ	ı	\$	1	ı	ı	ŧ	•	•		4	1	ı
Kamla Dam	1	ŧ	,	1	1	•	•	1	1	1	1	ı	ŧ	
Hydropower	•		•	:	•	•	1	٠	1	ŀ	ŧ	1	ı	ı
Irrigation	0.66	ı	1	•	*	•	1	•	16.5	16.5	16.5	16.5 5	16.5	16.5
Access Road	1	ŧ	1	•	1	1	•	1	1	i	1	ŧ		ı
2. O/M Facilities	π- ε	i	ı	1	1		1-7	7.	ŧ	I			ŧ	ŀ
3. Administration & Engineering	80	ŧ	, I	. 1	ì	0	6-0	0.0	6.0	6-0	6.0	6-0	6.0	6.0
. Physical Contengency	10.0	ï	ı	•	1	0	0	0.5	60	0	1.4	7.	₹	1.
SUB-IOIAL	135.2	1		1	1	6.0	2.8	2.8	26.7	26.8	18.8	18.8	18.8	18.8

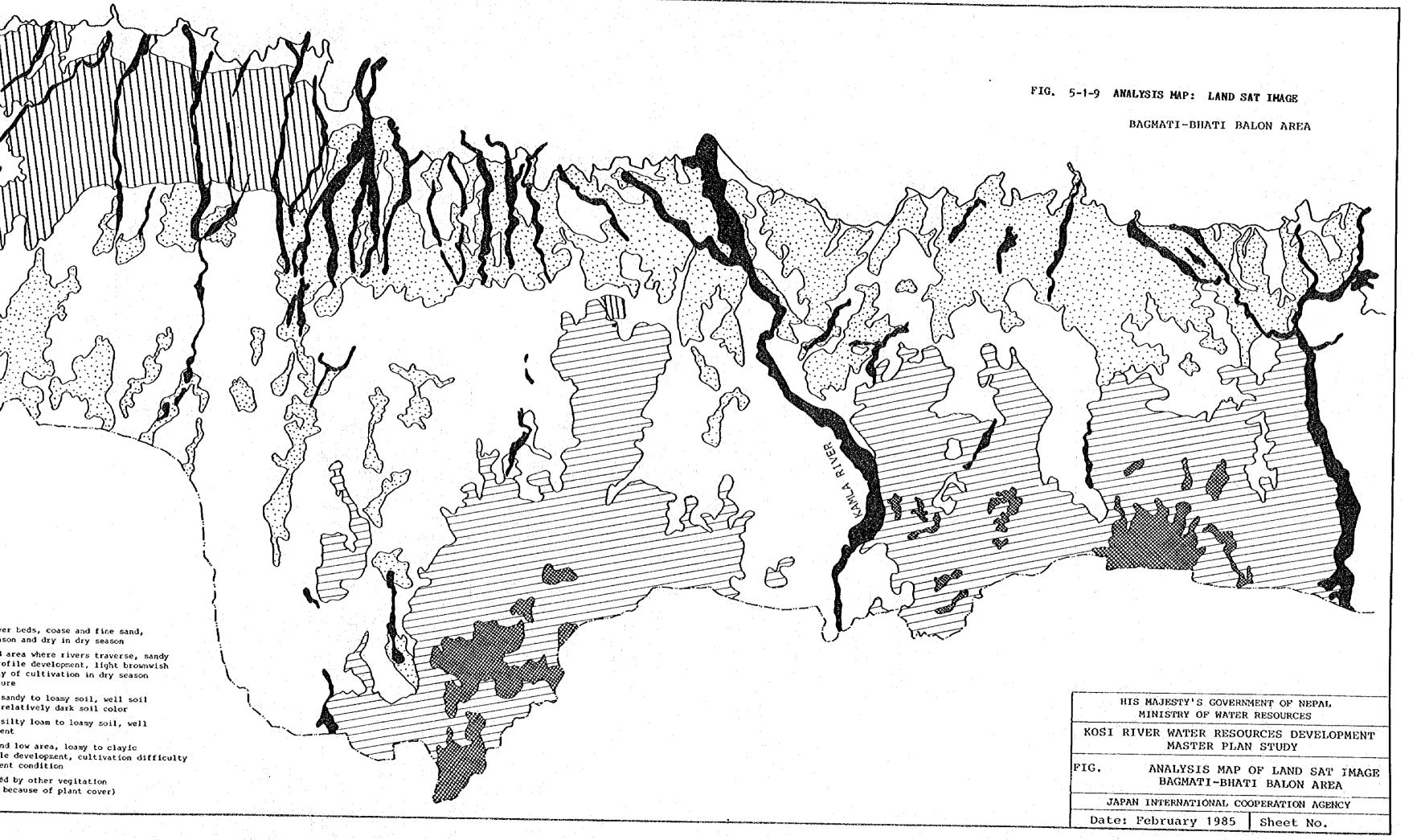






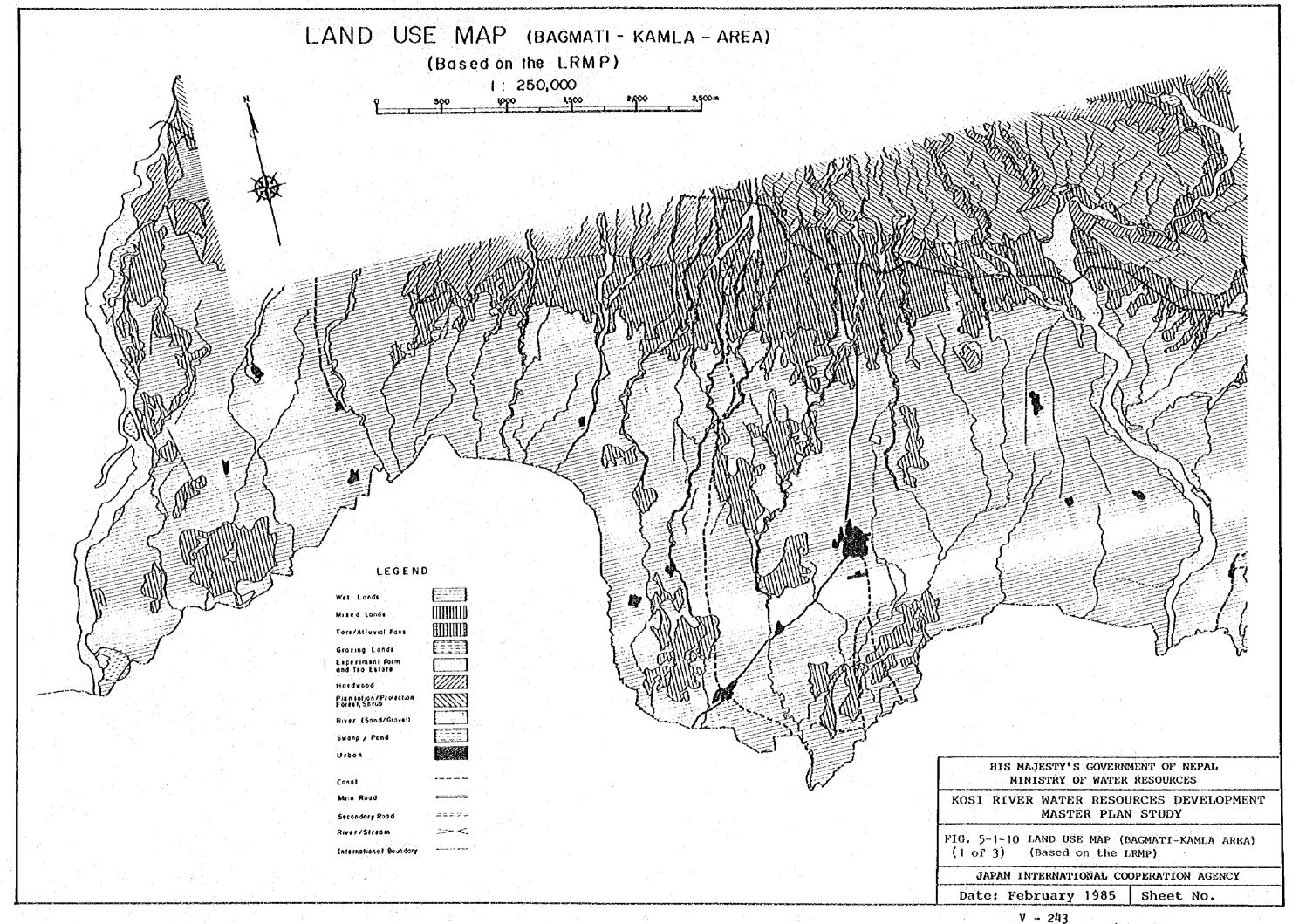

FIG. 5-1-1 TYPICAL SCHEMATIC MAP AND ECOLOGICAL ZONES IN THE STUDY AREA

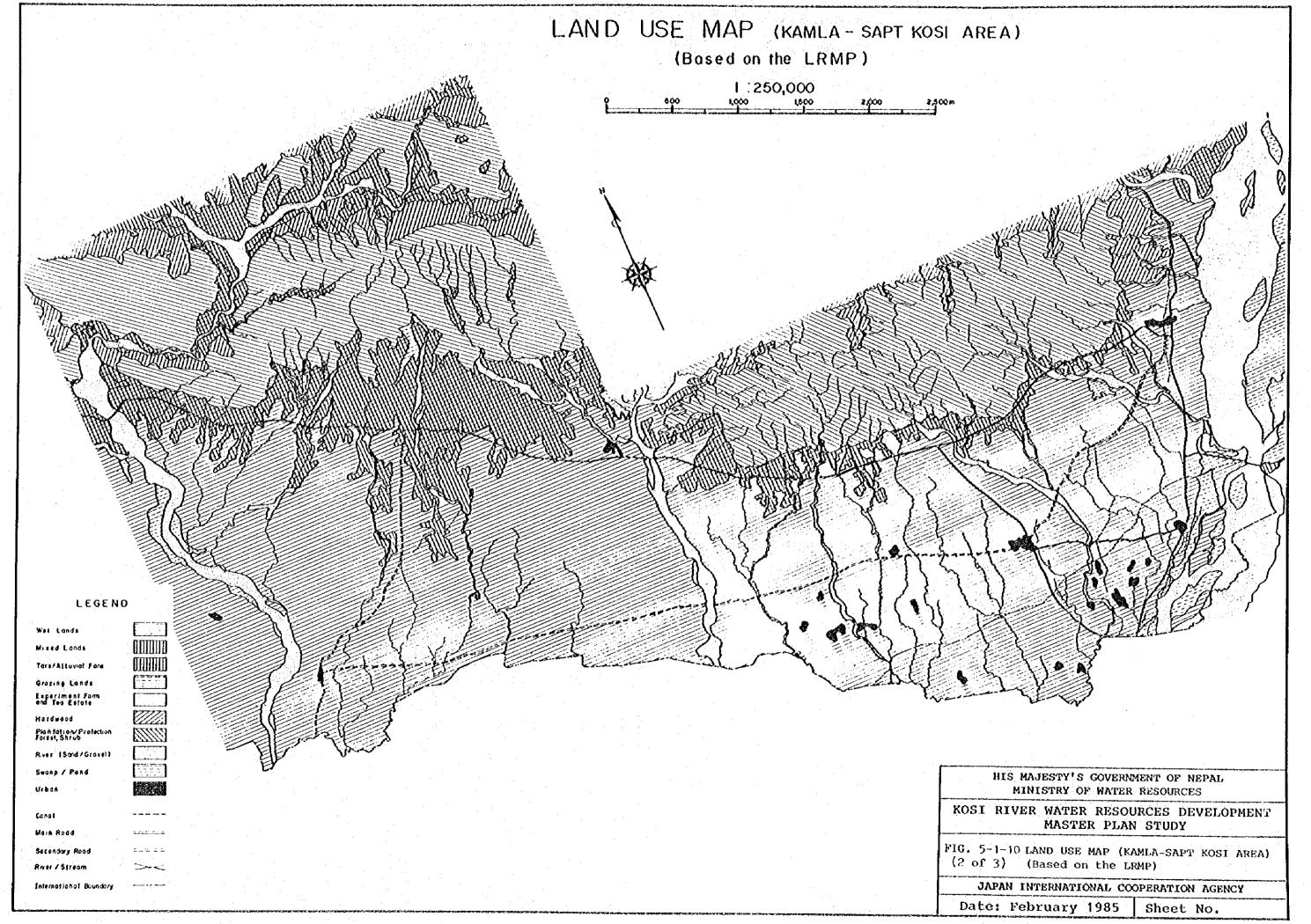


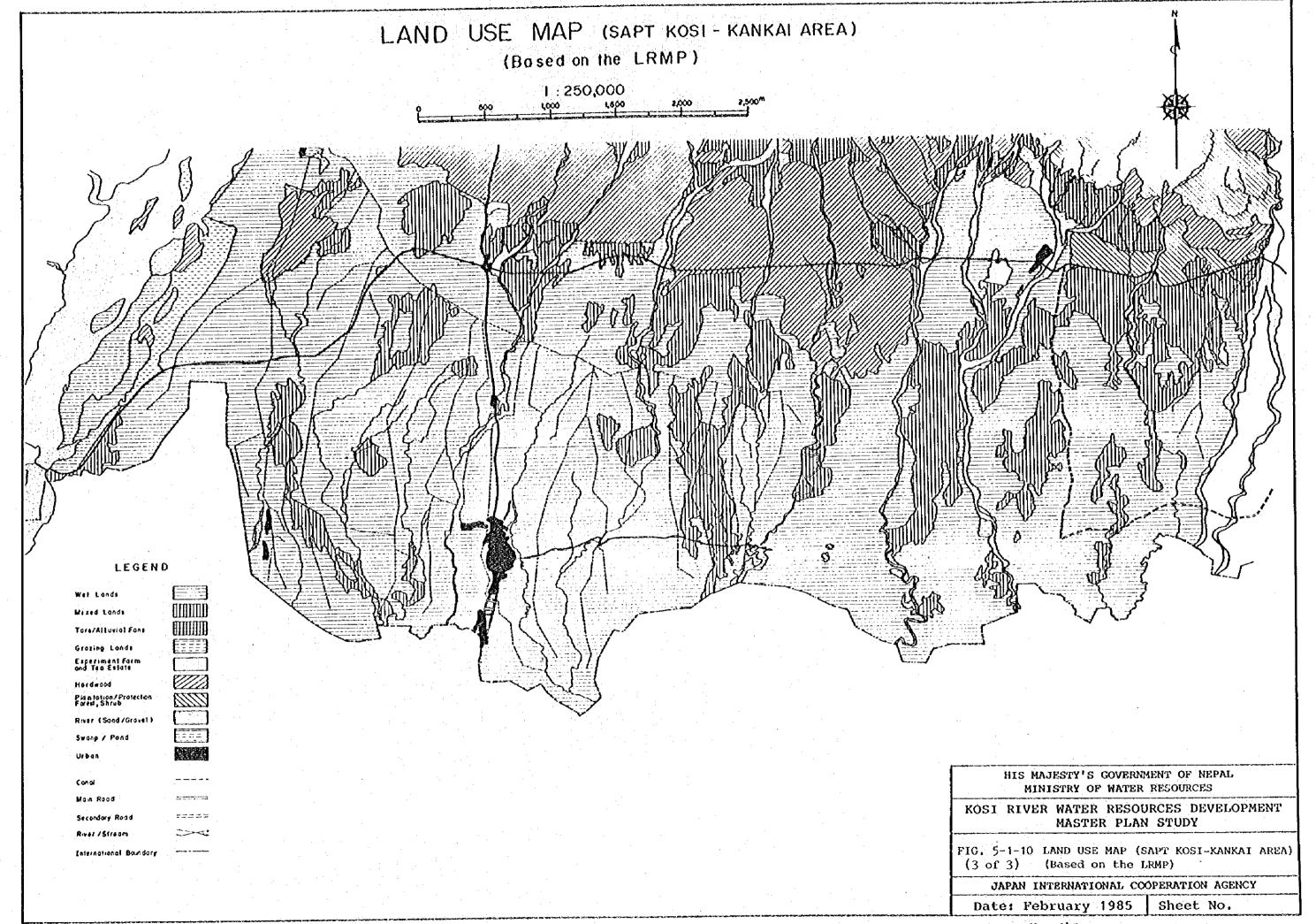




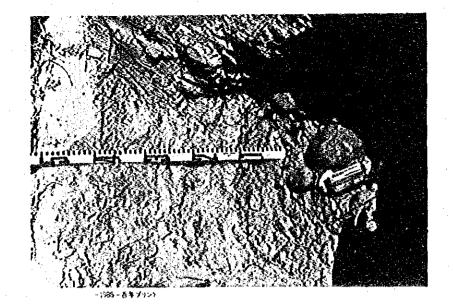


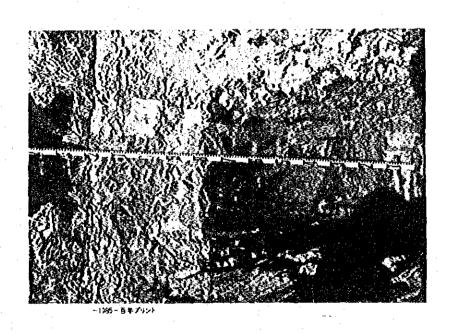





they is not succeeded the succeeding the succeeding the succeeding the succeeding the succeeding to the contract of the contra

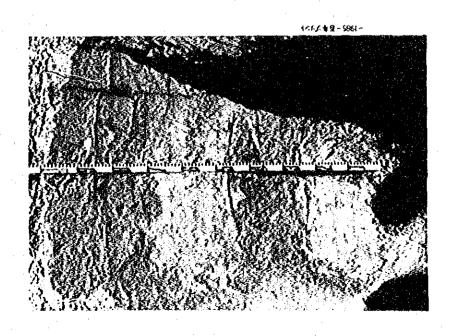
commence of the commence of th

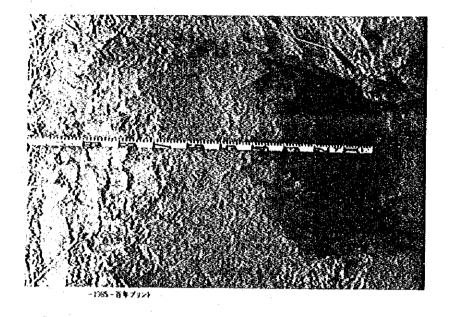

The first of the contract of the assessment of the contract of the second of the second of the second of the contract of the c



and the state of t

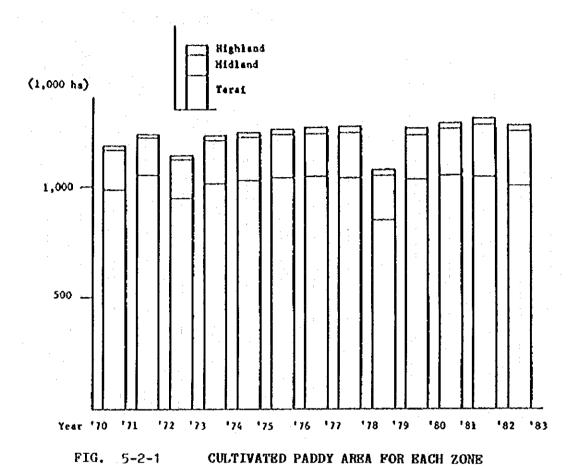
· 1985年 - 1986年 - 198

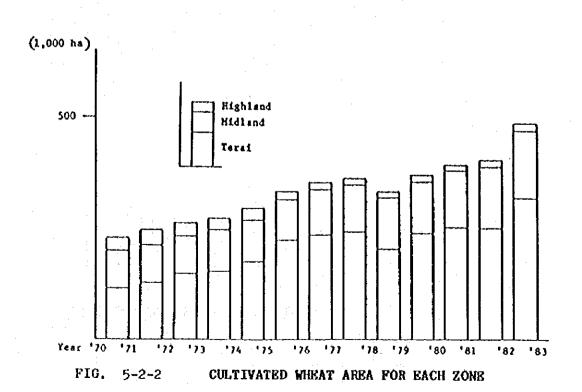


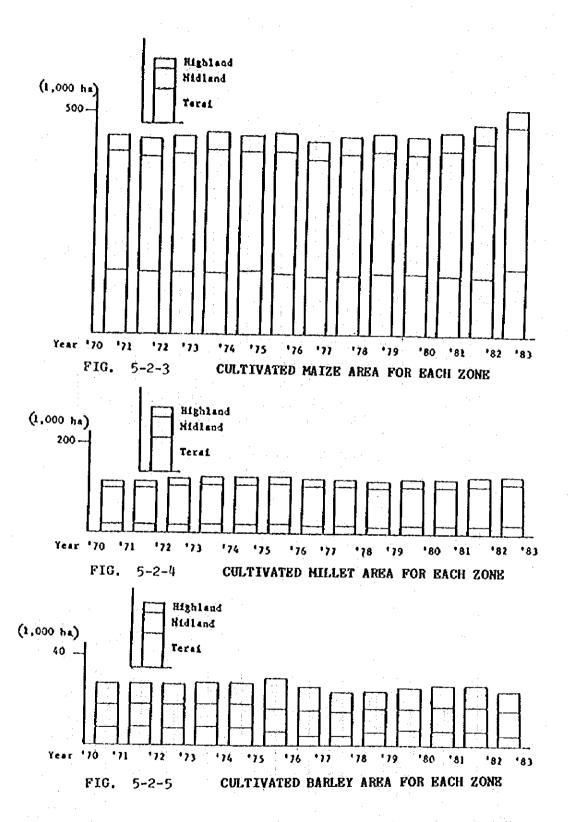

Location:Birdipur Sample No.:13

Location:Hathmura Sample No.:9

Location:Gauradah Sample No.:2 PHOTO 5-1-1 SOLL PROFILE (1 of 2)






Location:Banauli Sample No.:20

Location:Hathler Sample No.:21

PHOTO 5-1-1 SOIL PROPILE (2 of 2)

