社会開発協力部報告書

10, (5)

GOVERNMENT OF MALAYSIA

JB-TRANSPLAN

THE FEASIBILITY STUDY ON ROAD CON-STRUCTION AND IMPROVEMENT PROJECT IN JOHOR BAHRU AND ITS CONURBATION

FINAL REPORT

SUMMARY AND RECOMMENDATIONS

MARCH 1984

JAPAN INTERNATIONAL COOPERATION AGENCY

SDF

83-162(1/3)

	-		
•			

GOVERNMENT OF MALAYSIA

JB-TRANSPLAN

THE FEASIBILITY STUDY ON ROAD CON-STRUCTION AND IMPROVEMENT PROJECT IN JOHOR BAHRU AND ITS CONURBATION


FINAL REPORT

SUMMARY AND RECOMMENDATIONS

MARCH 1984

JAPAN INTERNATIONAL COOPERATION AGENCY

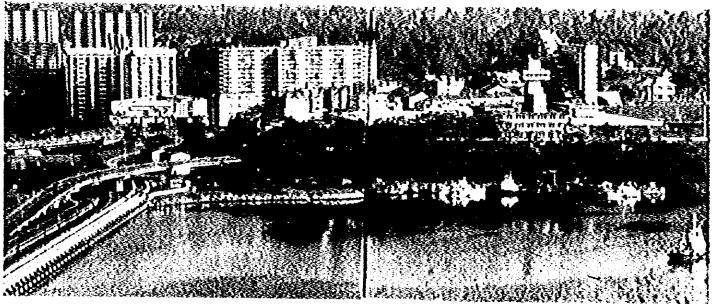
PREFACE

The Japan International Cooperation Agency (JICA) has conducted an Urban Transport Master Plan Study for Johor Bahru and its Conurbation and formulated a list of high priority transportation projects. The Government of Malaysia has agreed to that list and requested the Government of Japan to conduct a Feasibility Study on Road Construction and Improvement Project in Johor Bahru and its Conurbation.

In response, the Government of Japan has decided to conduct the feasibility study and entrusted it to JICA. JICA sent to Malaysia a joint survey team comprising Fukuyama Consultants International Co., Ltd. and Cho-dai Consultants Co., Ltd., headed by Mr. Toshio Kimura, from August 1982 to December 1983 under the guidance of the Japanese Supervisory Committee chaired by Prof. Moriyuki Hirose, Meisei University.

The team held discussions with the officials concerned of the Government of Malaysia on the Project and conducted the study in Malaysia. Subsequently, further studies were made in Japan and this report has been prepared.

I hope that this report will serve for the development of the Project and contribute to the promotion of friendly relations between our two countries.


I wish to express my deep appreciation to the officials concerned of the Government of Malaysia for their close cooperation extended to the team.

March 1984

Keisuke Arita President

Japan International Cooperation Agency

Kerisle Arth

-

CONTENTS

A)	RECOMMENDATIONS	
I.	RECOMMENDED PROJECTS	5
	i) OUTLINE	
	ii) ECONOMIC FEASIBILITY	
	iii) PROJECT PRIORITY	
	1: JOHOR BAHRU—PASIR GUDANG SOUTHERN LINK	6
	2: CAUSEWAY TRAFFIC DISPERSAL SCHEME	8
	3: TOLL EXPRESSWAY ACCESS ROAD	10
	4: INNER RING ROAD INCLUDING LORRY ROUTE	10
Ħ	. PROJECT COST	12
HI	. IMPLEMENTATION PROGRAM	13
	PHASE I. 1985 — 1990	
	PHASE II. 1991 — 1995	
	PHASE III. 1996 — 2000	
В)	SUMMARY AND MAJOR FINDINGS	
ÍN	TRODUCTION	20
i)BACKGROUND	
	STUDY OBJECTIVES	
	SSTUDY APPROACH	
iv	STUDY ORGANIZATION	
P	ART I — MASTER PLAN	23
1.	PREAMPLE	24
Z.	PRESENT CONDITIONS AND FUTURE PERSPECTIVES	20
	2-2 Development Pattern	20 28
	2-3 Projection of Traffic Demands	29
3.	RECOMMENDED TRANSPORT POLICY	30
	3-1 Policy and Strategies	36
	3-2 Road Nelwork Concept	3
	3-3 Traffic Dispersal and Circulation Concept in The Central Area	1

4.	TRANSPORT MASTER PLAN	32
	4-1 Road Construction and Improvement	32
	4-2 Public Transport Development Plan	34
	4-3 Transport Terminal Plan	36
	4-4 Traffic Management Plan	37
	4-5 Preliminary Causeway Layout Study	40
5.	PROJECT PRIORITY IN THE MASTER PLAN	41
	ART II — FEASIBILITY STUDY	43
1.	PREAMPLE	44
2.	JOHOR BAHRU—PASIR GUDANG SOUTHERN LINK	46
	2-1 Project Characteristics	46
	2-2 Alternative Roules	46
	2-3 Design Characteristics	47
	(1) Geometric Design Standards	7,
	(2) Cross-Sectional Design	
	(3) Intersection and Interchange Plan	
	(4) Bridge Design	
	2-4 Project Cost and Economic Analysis	50
3.	CAUSEWAY TRAFFIC DISPERSAL SCHEME	51
٠.	3-1 Planning Area	
	3-2 Traffic Problems	51
	(1) Existing Traffic Problems	52
	(2) Anticipated Aggravation of Traffic Problems in the Future	
	3-3 Planning Policy and Strategies	
	(1) Short-Term Action Plan	55
	(2) Long-Term Plan	
	3-4 Project Cost and Economic Analysis	58
4		
ч.	JOHOR BAHRU TOLL EXPRESSWAY ACCESS ROAD	59
	4-1 Project Characteristics	59
	4-2 Alternative Routes	59
	4-3 Design Characteristics	60
	(1) Geometric Design Standard	
	(2) Cross-Sectional Design	
	(3) Interchange Plan	
	(4) Bridge Design	
	4-4 Project Cost and Economic Analysis	62

5.	INNER	RING ROAD INCLUDING LORRY ROUTE	63
	5-1 Plan	Characteristics	63
	5-2 Alter	mative Routes	63
	(1) Ii	oner Ring Road	0.5
	(2) I.	orry Route	
	5-3 Design	gn Characteristics	66
	(1) G	eometric Design Standard	-
		ross-Sectional Design	
		ofersection and Interchange Plan	
		ridge Design	
	5-4 Proj	ect Cost and Economic Analysis	68
6.	PROJE	CT EVALUATION	69
	6-1 Fran	nework of the Evaluation	69
	6-2 Sum	mary of the Economic Analysis	70
	6-3 Sens	itivity Analysis	71
	6-4 Proj	ect Priority	73
7.	PROJE	CT IMPLEMENTATION PROGRAM	75
	7-1 Prog	ram Structure	75
	(1) P	hase I: 1985 — 1990	
		hase II. 1991 — 1995	
		hase III. 1996 — 2000	
	7-2 Inves	slment Program	77
	(1) G	Seneral Investment Program	
	(2) T	oll System for Tebrau Bridge	
	APPEN	DIX	79
	1.	LIST OF MALAYSIAN AND JAPANESE GOVERNMENT	
		OFFICIALS CONCERNED AND STUDY TEAM MEMBERS	80
	2.	WIDENING OF JALAN TEBRAU INTO SIX (6)-LANES	85
	3.	ALTERNATIVE ROUTE STUDY OF EASTERN PART OF	
		INNER RING ROAD INCLUDING LORRY ROUTE	91

LIST OF FIGURES

A) RECOMMENDATIONS

1.	Study Areas for Master Plan and Feasibility Study	2
2.	Future Land Use and Transport Network Plan — 2000	3
3.	JB-PG Corridor: Future Land Use and Network Plan - 2000	3
4.	Project Location of the Feasibility Study	5
	Design Image of the Southern Link Road.	6
	Design Image of the Tebrau Bridge	6
	Johor Bahru—Pasir Gudang Southern Link Road	7
	Short-Term Action Plan for the Causeway Traffic Dispersal Scheme	8
	Long-Term Plan for the Dispersal Scheme	9
	Johor Bahru Toll Expressway Access Road	10
	Inner Ring Road Including Lorry Route	10
	Design Image of the Causeway Traffic Dispersal Scheme	11
13.	Design Image of the Inner Ring Road and Lorry Route (Eastern Segment)	11
	Recommended Implementation Program Phase I (1985 — 1990)	15
15.	Recommended Implementation Program Phase II (1991 - 1995)	16
	Recommended Implementation Program Phase III (1996 — 2000)	17
i.		21
ii.	Study Organization	22
PA	RT I — MASTER PLAN	
I-1.	Master Plan Planning Process	25
1-2.	Gross Regional Product in Johor State	27
I-3.	Employment Needs in the Study Area	27
I-4.	Household Income Trend (Johor State)	27
I-5.	Projected Number of Cars and Motorcycles (Primary Area)	27
I-6.	Traffic Volume Pattern in 2000	29
I-7.		31
1-8.		31
I-9.	Image of Road Environment; Before and After Improvement	32
I-10	2. Recommended Road network (Study Area)	33
I-11	. Recommended Road Network (MPJB)	33
I-12	2. Recommended Bus Lane to be Introduced	34
I-13	Long-Term Public Transport Plan	35
I-14	. Proposed Location of Transport Terminals	36
I-15	. Traffic Signal Installation Plan	37
l-16	. Improvement of Pedestrian Facilities in CBD, MPJB	38
I-17	Pedestrian Facilitiy & Traffic Management (Short Term Plan)	39

LIST OF FIGURES.

PAR	TH — FEASIBILITY STUDY	
II-1.	Study Methodology for the Feasibility Study	45
II-2.	Alternative Routes of Southern Link	46
II-3.	Alternative Routes of Southern Link Extension	46
11-4.	Typical Cross Section (Ultimate Plan): Southern Link and Its Extension	47
II-5.	Interchange Plan on Southern Link and Its Extension	48
II-6.	Bridge Plan on Southern Link and Its Extension	49
II-7.	Optimum Expansion Year of Southern Link	50
II-8.	Planning Area for Causeway Traffic Dispersal Scheme	52
11-9.	Road Network for Causeway Traffic Dispersal Scheme	52
II-10.	Foreseeable Traffic Problems Around 1990	53
II-11.	Short-Term Causeway Circulation Plan	56
II-12.	Long-Term Causeway Circulation	57
II-13.	Afternative Routes of Toll Expressway Access	59
II-14.	Typical Cross Section of the Toll Expressway Access Road	60
II-15.	Recommended Interchange/Bridge Plan for the Toll Expressway Access Road	61
II-16.	Optimum Opening Year of Toll Expressway	62
II-17.	Alternative Routes of Inner Ring Road	63
II-18.	Profile of Sections 2 and 3	64
11-19.	Alternative Routes of Lorry Route	65
11-20.	Typical Cross Section (Ultimate Plan) of the Inner Ring Road	66
11-21.	Location of Bridges/Interchanges at the Inner Ring Road	67
	Procedure for Economic Symbolism	70

LIST OF TABLES

A) RE	ECOMMENDATIONS:	
1.	Summary of Project Cost	12
2.	Overall Implementation Program	13
3.	Investment Program for Phase I	15
4.	Investment Program for Phase II	16
5.	Investment Program for Phase III	17
B) SU	IMMARY AND MAJOR FINDINGS	
PART	r I — Master Plan	
I-1.	Present and Projected Population in the Study Area	26
I-2.	Future Land-Use Projection	28
I-3.	Present and Projected Traffic Volume (1981, 1990 and 2000)	29
1-4.	Timing of Implementation for Each Strategy	30
1-5.	Recommended Road Plan 2000.	32
PART	f II — FEASIBILITY STUDY	
H-1.	Geometric Design Standards	47
11-2.	Summary of the Project Cost	50
II-3.	Economic Indicators of Johor Bahru—Pasir Gudang Southern Link	50
11-4.	Existing Traffic Problems	52
11-5.	Anticipated Traffic Problems around 1990.	54
11-6.	Summary of the Project Cost	58
11-7.	Economic Indicators of Causeway Traffic Dispersal Scheme	58
11-8.	Geometric Design Standards for Toll Expressway Access.	60
11-9.	Summary of the Project Cost	62
H-10.	Economic Indicators of Toll Expressway Access	62
	Geometric Design Standards for Inner Ring Road and Lorry Route	66
	Summary of the Project Cost	68
	Economic Indicators of Inner Ring Road Including Lorry Route	68
	Economic Indicators of Inner Ring Road Including Lorry Route by Section	68
	Summary of Economic Analysis	70
	Summary of Sensitivity Analysis	71
II-17.	Economic Indicators of Long-Term Causeway Layout Plan	72
II-18.	Comparative Weighting of the Projects	73
11-19.	Summary of Economic Indicators by Project and Its Priority	74
	Recommended Implementation Program for Phase I	76
	Recommended Implementation Schedule for Phase II	76
	Recommended Implementation Schedule for Phase III	76
	Total Investment Requirements by Phase	77
II-24.	Annual Investment Requirements by Phase	78

JB-TRANSPLAN

THE FEASIBILITY STUDY ON ROAD CON-STRUCTION AND IMPROVEMENT PROJECT IN JOHOR BAHRU AND ITS CONURBATION

RECOMMENDATIONS

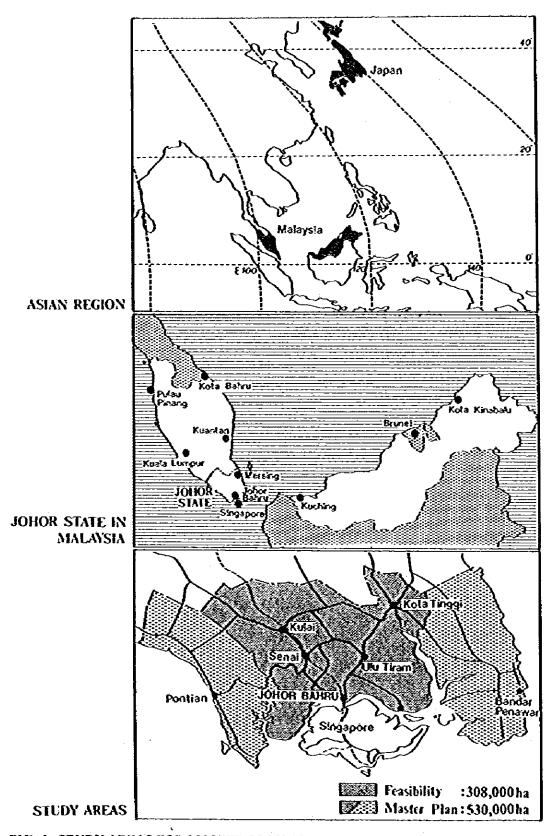


FIG. 1. STUDY AREAS FOR MASTER PLAN AND FEASIBILITY STUDY

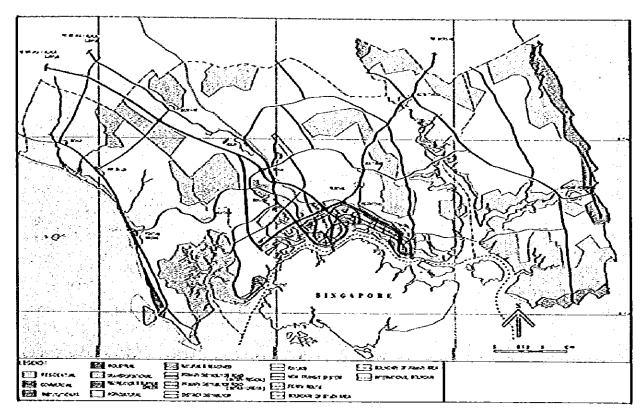


FIG. 2. FUTURE LAND USE AND TRANSPORT NETWORK PLAN - 2000

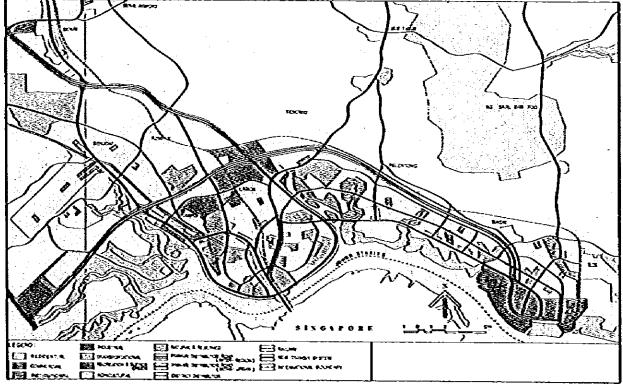


FIG. 3. JB—PG CORRIDOR: FUTURE LAND USE AND NETWORK PLAN — 2000

•		
•		•

I. RECOMMENDED PROJECTS

i) Outline

The four road packages investigated in this Feasibility Study are essential to the attainment of an efficient and comprehensive urban transport environment for the Johor Bahru Metropolitan Region (see Fig.4). The proposed Johor Bahru—Pasir Gudang Southern Link would function as the major means of communication along the southern corridor.

The Inner Ring Road and the Toll Expressway Access together with the Causeway Traffic Dispersal Plan would disperse and distribute traffic in an orderly fashion, reduce chronic traffic congestion and hence travel time and cost, and ultimately upgrade the urban transport environment.

In addition, the widening and improvement of Jalan Tebrau is also urgently required in order to upgrade this primary distributor and make it compatible with the Southern Link and to eliminate the possibility of future traffic congestion.

ii) Economic Feasibility

The projects of the original plan have been found to be highly feasible. A rigorous test was made through sensitivity analysis of alternative plans with varied project costs and/or benefits that were outlined in the original plan.

The result of this analysis shows that the Johor Bahru-Pasir Gudang Southern Link, the Long-Term Causeway Traffic Dispersal Scheme and the eastern segment of the Inner Ring Road including the Lorry Route remain economically feasible for all the alternative plans. The Toll Expressway Access Road, however, was found to be economically feasible if the opening year of the road is postponed three (3) years (by 1992).

iii) Project Priority

Economic feasibility and the impact on development, the socio-environment and traffic were weighted in rating the priority of each project package.

The Johor Bahru-Pasir Gudang Southern Link and the eastern segment of the Inner Ring Road as four (4)-lane roads, and the Short-Term Causeway Traffic Dispersal Plan are rated first-priority projects. Second-priority projects include the widening of the Southern Link and the eastern segment of the Ring Road into six (6)-lane roads, and the implementation of the Long-Term Causeway Traffic Dispersal Scheme. The western segment of the Inner Ring Road and the Toll Expressway Access are rated as third-priority projects.

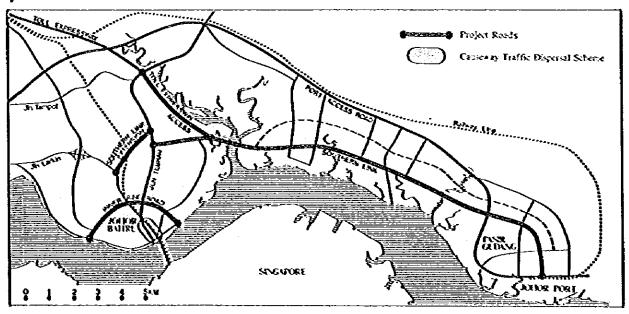


FIG. 4. PROJECT LOCATION OF THE FEASIBILITY STUDY

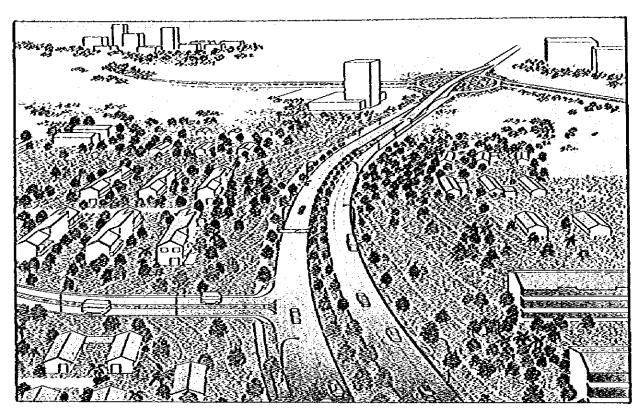


FIG. 5. DESIGN IMAGE OF THE SOUTHERN LINK ROAD

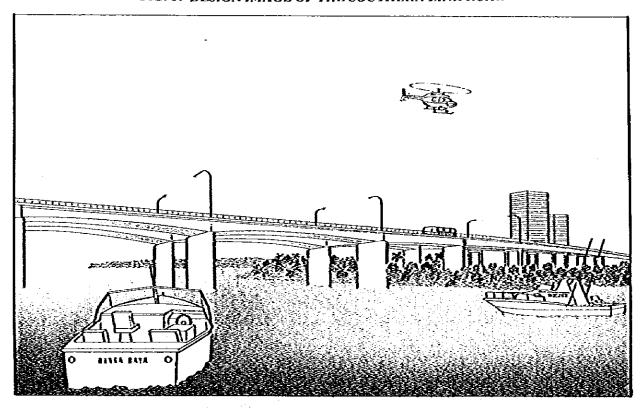


FIG. 6. DESIGN IMAGE OF THE TEBRAU BRIDGE

L RECOMMENDED PROJECTS

1. JOHOR BAHRU-PASIR GUDANG SOUTHERN LINK

- 1. The results of the economic evaluation and technical and environmental studies show that the Johor Bahru-Pasir Gudang Southern Link including the Southern Link Extension is feasible (see Fig. 7).
- 2. On the basis of the economic evaluation and the traffic study, it is recommended that the carriageway of the Southern Link, which is the section between Jalan Tebrau and Pasir Gudang Port, be constructed as a four (4)-lane road in the first stage and
- ultimately widened into a six (6)-lane road; a four (4)-lane road is recommended for the carriageway of the Southern Link Extension, encompassing the section on Jalan Kebun Teh between Jalan Larkin and Jalan Tebrau.
- Based on the technical study, the construction of a high-level bridge with a clearance height of twelve (12) meters for the Tebrau River is recommended.

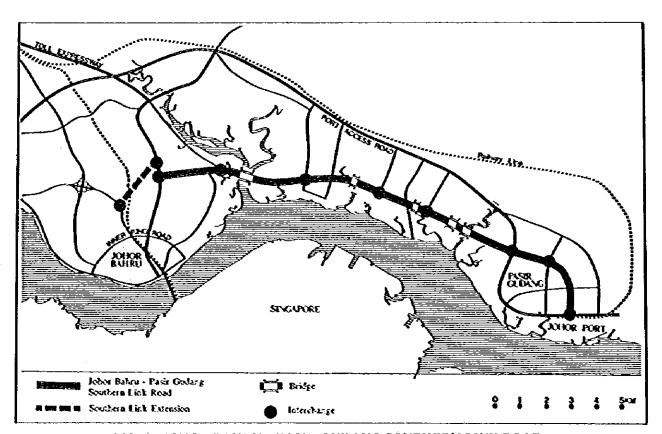


FIG. 7. JOHOR BAHRU—PASIR GUDANG SOUTHERN LINK ROAD

3. RECOMMENDED PROJECTS

2. CAUSEWAY TRAFFIC DISPER-SAL SCHEME

- 1. On the basis of the economic evaluation and traffic and environmental studies the implementation of both the short-term and the long-term plans of the Causeway Traffic Dispersal Scheme is strongly recommended in order to disperse the causeway traffic as well as traffic in the Central Area.
- 2. The following are recommended Short-Term Actions (see Fig. 8).
 - Modification of the one-way system for Jalan Wong Ah Fook and Jalan Tun Abdul Razak.

- b. Upgrading Jalan Wong Ah Fook and covering Sungai Segget (that is, the traffic mall of Jl. W.A.Fook).
- c. Construction and improvement of the roads between Jalan Wong Ah Fook and Jalan Tun Abdul Razak.
- d. Improvement of Tebrau Interchange and the modification of the Southern Interchange.
- e. Improvement and extension of pedestrian facilities such as pedestrian crossings and bridges.
- f. Introduction of an Area/Line Traffic Signal Control system.

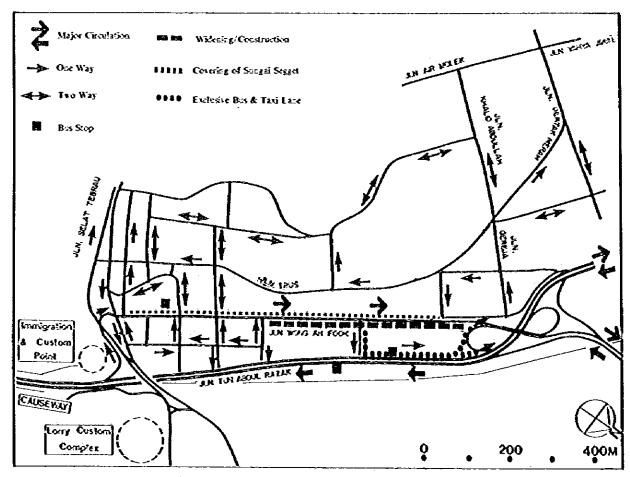


FIG. 8. SHORT-TERM ACTION PLAN FOR THE CAUSEWAY TRAFFIC DISPERSAL SCHEME

L RECOMMENDED PRÓJECTS

- 3. The following comprise the recommended Long-Term Plan (see Fig. 9).
 - a. Road construction and improvement within an area bounded by Jalan Bukit Meldrum, Jalan Selat Tebrau, Jalan Ibrahim and Jalan Ayer Molek.
 - b. Construction of the Southern Interchange.
- c. Introduction of an additional one-way system at Jalan Trus and Jalan Duke.
- d. Expansion of Area Traffic Signal Control Scheme.

Overall design image of the causeway traffic dispersal scheme is displayed in Fig. 12 at page 11.

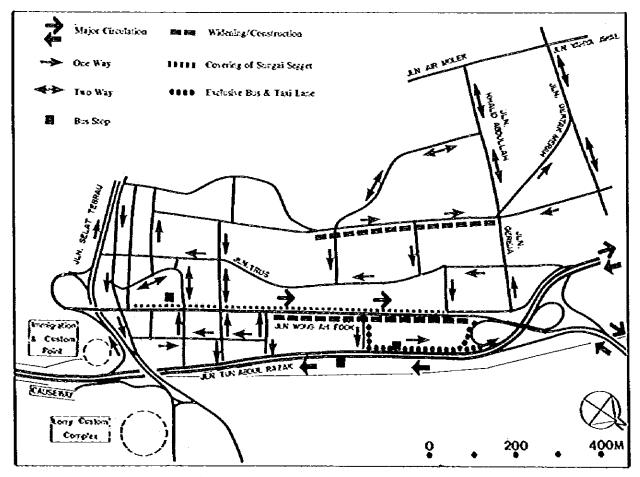


FIG. 9. LONG-TERM PLAN FOR THE DISPERSAL SCHEME

L RECOMMENDED PROJECTS

3. TOLL EXPRESS ACCESS ROAD

- 1. Judging from the economic evaluation and traffic study, the opening of the Toll Expressway Access in 1989 is premature.

 However, the opening of the access to traffic is economically feasible if it is postponed for three (3) years.
- On the basis of the economic evaluation and traffic study, it is recommended that the carriageway of the Toll Expressway Access be a four (4)-lane carriageway.

Fig. 10 illustrates the location of the toll express access road.

4. INNER RING ROAD INCLUDING LORRY ROUTE

1. Judging from the results of the economic evaluation and technical and socio-environmental studies, the Inner Ring Road is found to be feasible.

As for the Lorry Route, the most feasible plan is the one accommodating lorry traffic on the eastern segment of the Inner Ring Road (that is, the section between Jalan Tun Abdul Razak and the lorry custom complex) (see Fig. 11 and 13).

2. Based on the economic evaluation and technical and socio-environmental studies, it is recommended that the carriageway of the eastern segment of the Inner Ring Road be ultimately a six (6)-lane road with the center two (2)-lanes designated as a lorry route; a four (4)-lane road is recommended for the western segment of the Inner Ring Road (that is, the section between Jalan Tun Abu Bakar and Jalan Tun Abul Razak).

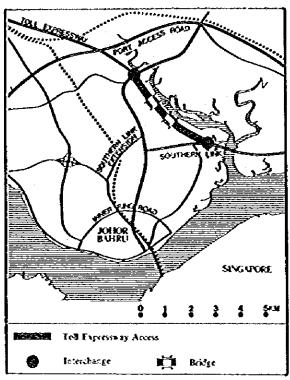


FIG. 10. JOHOR BAHRU
TOLL EXPRESSWAY ACCESS ROAD

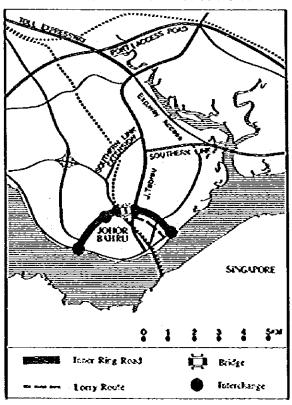


FIG. 11. INNER RING ROAD INCLUDING LORRY ROUTE

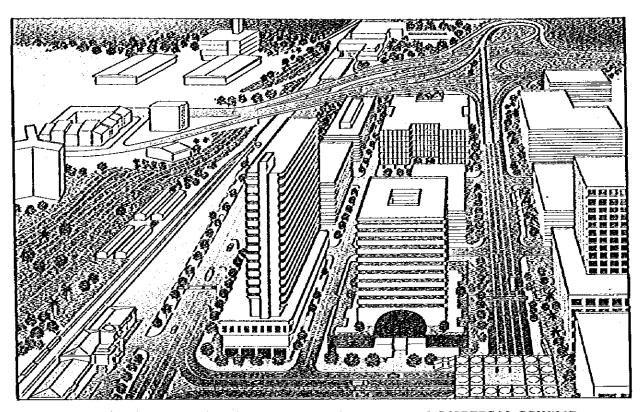


FIG. 12. DESIGN IMAGE OF THE CAUSEWAY TRAFFIC DISPERSAL SCHEME

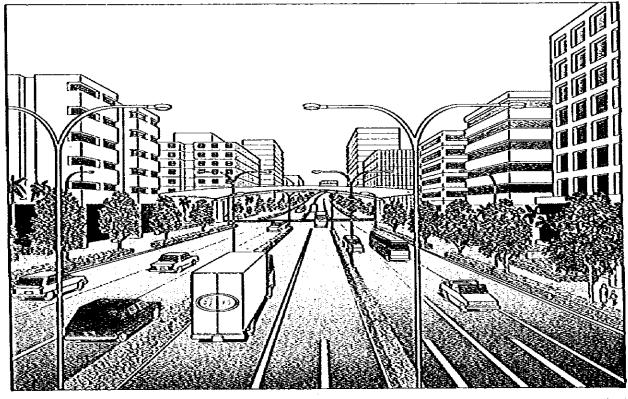


FIG. 13. DESIGN IMAGE OF THE INNER RING ROAD AND LORRY ROUTE (EASTERN SEGMENT)

II. PROJECT COST

The overall project will cost some M\$388.6 million at 1983 prices, of which 85.7% or M\$333.1 million will be needed for the construction of roadways, interchanges and bridges.

The estimated project cost for each project is shown in the table below (see Table 1).

TABLE 1. SUMMARY OF PROJECT COST

	 					(315,000)
	Length of Project Road (Km)	Land	Co			
·····		Acquisition Cost	Rozdway	Structure	Sub-Total	Total
Johor Bahru — Pasir Gudang						
Southern Linkk	20.47	12,042	78,928	107,097	185,025	198,067
Southern Link	18.30	5,931	72,337	100,203	175,546	178,477
Southern Link Extension	2.17	6,131	6,591	6,883	13,479	19,590
Causeway Traffic Dispersel Scheme	(7.45)	3,376	14,498	24,054	38,552	41,928
Short-Term	(3.09)	O	5,317	9,731	15,043	15,048
Lorg-Term	(4.37)	3,376	9,181	14,323	23,504	26,880
Iod Expressway Access	3.99	4,951	24,802	21,165	45,967	50,918
Inner Ring Road						
Including Lorry Route	5.50	35,153	23,714	38,862	62,576	97,729
East Segment with Lorry Route	3.25	24,383	14,687	28,205	42,892	67,275
West Segment	2.25	10,770	9,027	10,657	19,684	30,454
Total	29.95	55,522	141,942	191,178	333,120	388,642

Notes: 1) Project Cost is calculated based on the Ultimate Plan.

2) Figures in brackets represent partial length.

III. IMPLEMENTATION PROGRAM

Table 2 shows the overall implementation program for the four project packages in three phases. The Johor Bahru-Pasir Gudang Southern Link and its Extension the Short-Term Action Plan of the Causeway Dispersal Scheme, and part of the eastern segment of the Inner Ring Road are to be implemented in Phase 1 from 1985 to 1990. The widening of the Southern Link into a 6-lane road, the implementation of the Long-Term Causeway

Traffic Dispersal Plan and the construction of a part of the Inner Ring Road will take place in Phase 2 from 1991 to 1995. The projects to be implemented in Phase 3 from 1996 to 2000 include the construction of the Toll Expressway Access and the western segment of the Inner Ring Road (see Table 2).

The recommended Phase 1 projects should be engineered in detail as early as possible in order to complete them by 1990.

	TABLE 2. OVE	RALL IMPLEM	IENTATION PE	ROGRAM	(712,000)
Project I	Package	Phase 1 1985 – 1990	Phase 2 1991 – 1995	Phase 3 1996 2000	Total Cost
1) Johor Bahru-Pasi Gudang Southern		5			198,067
a) Southern Link Jalan Tebrau an		94,193			
b) Southern Link	Extension	13,454	_		
,	uthern Link-Section Tebrau and Pasir		44,864	4	
d) Construction of Interchanges	f 8 Grade-separated		45,556	u .	
2) Causeway Traffic Dispersal Scheme					41,928
a) Short Term Pla	n	15,048	30		
b) Long Term Pla	ก		26,880	aj	
3) Inner Ring Road Route	ljLony				97,729
a) Section betwee Jalan Bkt. Meld Complex.	en Jalan Tebrau & drum/Lorry Custom	22,281	sal .		
b) Section betwee & Jalan Tebrat	en Jalan Yahya Awal 1		38,741	3	
c) Widening of th	e Section as in a)		11,287	350	
d) Section betwee & Jalan Yahya	en Jalan Abu Bakar Awal.			25,420	4
4) Toll Expressway	y Access		•	50,918	50,918
	Cost.	144,967	167,328	76,338	388,642
Total Cost	%	37.3	43.1	19.6	100

Cost Estimate Based on 1983 Prices.

III. IMPLEMENTATION PROGRAM

PHASE I: 1985 -- 1990

Projects to be implemented are recommended as follows; (see Fig. 14 and Table 3).

- a. Johor Bahru-Pasir Gudang Southern Link:
 - Construction of the Southern Link, that is, the section between Jalan Tebrau and the planned cloverleaf interchange on the Port Access as a four (4)-lane road;
 - Construction of the Southern Link Extension as a four (4)-lane road.

- b. Implementation of the Short-Term Causeway Traffic Dispersal Scheme:
- c. Inner Ring Road including the Lorry Route;
 - Construction of the eastern segment of the Inner Ring Road with Lorry Route between Jalan Tebrau and Jalan Bukit Meldrum or Lorry Custom Complex as a four (4) lane road.

PHASE II: 1991 — 1995

Projects listed below should be implemented in Phase II (1991—1995) (see Fig. 15 and Table 4).

- a. Johor Bahru-Pasir Gudang Southern Link:
 - Widening of the Southern Link between Jalan Tebrau and Pasir Gudang Port into a six (6)-lane road;
 - Construction of Interchanges on the Southern Link and its Extension;
- Long-Term Causeway Traffic Dispersal Scheme

- c. Inner Ring Road including Lorry Route:
 - Construction of the Inner Ring Road with Lorry Route between Jalan Larkin and Jalan Tebrau as a six (6)-lane road;
 - Construction of the Inner Ring Road between Jalan Yahya Awal and Jalan Larkin as a four (4)lane road;
 - Widening of the Inner Ring Road between Jalan Tebrau and Jalan Bukit Meldrum into a six (6)-lane road.

PHASE III: 1996-2000

Phase III projects are identified as follows: (see Fig. 16 and Table 5).

- a. Construction of the Toll Expressway Access as a four (4)-lane road;
- b. Inner Ring Road including Lorry Route,
- Construction of the western segment of the Inner Ring Road between Jalan Abu Bakar and Jalan Yahya Awal as a four (4)-lane road.

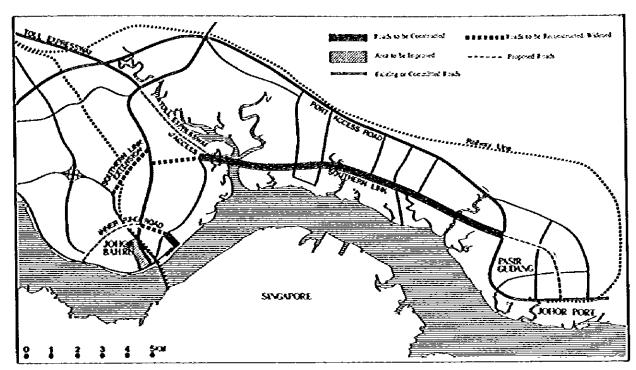


FIG. 14. RECOMMENDED IMPLEMENTATION PROGRAM PHASE I (1985 — 1990)

TABLE 3. INVESTMENT PROGRAM FOR PHASE I

		Tot				Project				
Project	of Lase	Leng (ke		1985	1986	1987	1983	1989	1990	(M2,000) Cost
 Johor Bahru – Pasir Gudang Southern Link 										
 Southern Link, section between Jalan Tebrau and Port Access 	4	14.3	53			******				94,193
b. Southern Link Extension	4	2.	17							13,454
2. Short – Term Causeway Dispersal Scheme	_	3.0	09 -			- -				15,043
 Inner Ring Road including Lony Roate section between Jalan Tebrar and Jalan Bakit McMrum/Lony Custom Complex 	4	2.	£1		,,,,				,	22,281
Investment Requirements for Phase	Annual (Cost (2,	000)	752	12,755	23,605	32,764	41,468	33,632	144,976
	Shire in	Total	(%)	0.5	\$.8	16.3	22.6	28.6	23.2	100
	Achieven	rest	(¥)	0.5	9.3	25.6	48.2	76.8	100	

Notes: ----- Detailed Engineering
Land Acquisition
Construction

III. IMPLEMENTATION PROGRAM

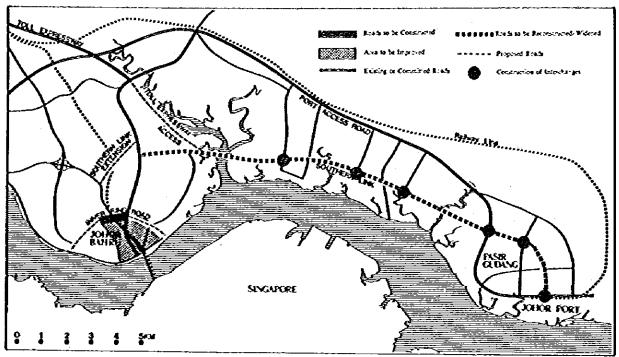


FIG. 15. RECOMMENDED IMPLEMENTATION PROGRAM PHASE II (1991 - 1995)

TABLE 4. INVESTMENT PROGRAM FOR PHASE II

	Number	Total Length		Yeas				
	Lane	(km)	1991	1992	1993	1994	1995	Cost (M\$*000)
 Johor Bahru – Pasir Gudang Southern Link 								
Widening of Southern Link, section between Jelan Tebren and Pasir Gudang Port	6	18.30		_				44,864
b) Construction of 8 Grade-Separated Interchanges				•				45,556
2. Long - Term Causeway Traffic Dispersal Scheme	_	4.37		•				26,880
3. Inser Ring Road including Lorry Route	<u></u>	-					-	
 inner Ring Road with Lorry Route section between Jalan Yahya Awal and Jalan Tebrau 	4&6	1.46						38,741
b) Widening of Inner Ring Road with Lorry Route section between Islan Tebrau and Islan Bukit MeMrumf Lorry Custom Complex	6	2.44						11,287
Investment Requirements for Phase 2	Annual or	st (\$.000) 13,105	45,447	44,515	42,154	22,107	167,328
	Share in	Total (7	7.8	27.2	26.6	25.2	13.2	100%
	Achieveme	જાત (૧	£) 7.8	35.0	61.6	86.8	100	

Notes: Same as Table 3

III. IMPLEMENTATION PROGRAM

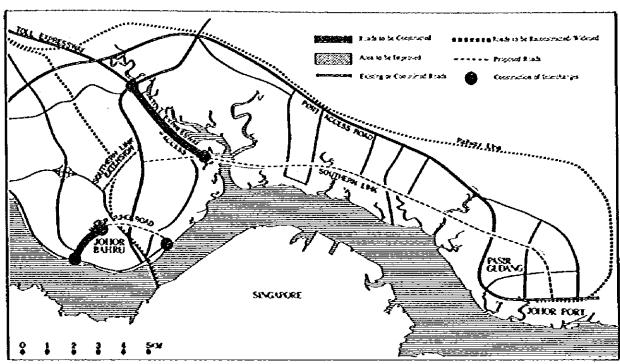


FIG. 16. RECOMMENDED IMPLEMENTATION PROGRAM PHASE III (1996 - 2000)

TABLE 5. INVESTMENT PROGRAM FOR PHASE III

	Number of Lane	Total Length (km)	Year				Project Cost	
			1996	1997	1998	1999	2000	(35,000)
1. Toll Expressway Access	4	3.99						
				•		<u>.</u>		50,918
Inner Ring Road, section between Jalan Abu Bakar and Jalan Yahya Awal	4	1.60						25,420
Investment Requirements for Phase 3	Araud	Cost (\$'000)	1,890	13,345	18,395	24,441	18,267	76,338
	Share is	Total (%)	2.5	17.5	24.1	32.0	23.9	100%
	Achieve	ment (%)	2.5	20.0	44.1	76.1	100	

Notes: Same as Table 3

•		

JB-TRANSPLAN

THE FEASIBILITY STUDY ON ROAD CONSTRUCTION AND IMPROVEMENT PROJECT IN JOHOR BAHRU AND ITS CONURBATION

SUMMARY AND MAJOR FINDINGS

INTRODUCTION

i) Background

Since gaining independence in 1957, Malaysia has achieved much, both economically and socially. The goal of urban and regional development policies has been the creation of an environment conducive to well-balanced development. To this end, a rural development program, urban restructuring and modernization are receiving equal attention.

Problems that accompany rapid urbanization are manifest in the capital city of Kuala Lumpur, and similar problems are observable in regional centres: Penang to the north and Johor Bahru to the south. There is an effort being made to develop the East Coast of Peninsular Malaysia and Penang and Johor Bahru, with their large growth potentials, ought to play a major role in promoting regional development. The rapid population increase and centralization of economic activities in Kuala Lumpur have become a matter of concern particularly to national planners. There is an urgent need to control the continuing expansion of Kuala Lumpur while channeling growth to Penang and Johor Bahru.

Johor Bahru is rapidly becoming a large urban centre that might possibly overtake Penang according to its population and economic trends. In order to guide this rapid growth and urbanization, the Johor Bahru Structure Plan was formulated to ensure the provision of adequate basic urban infrastructures and to promote systematic development control. The Johor Bahru Transport Master Plan and the Feasibility Study are intended to further the implementation of the Structure Plan.

ii) Study Objectives

The objective of this study is to suggest an effective transport system and to examine the feasibility of constructing various transport

facilities for the Johor Bahru Conurbation by the year 2000. The project packages recommended in the Johor Bahru Transport Master Plan are examined for their economic feasibility and implementation priority.

Hence this study will:

- re-examine and ascertain the continued existence of relevant planning conditions as suggested in the Transport Master Plan;
- draw up preliminary technical plans for the projects in accordance with project priorities;
- propose an implementation program based on the results of the economic analysis and socio-environmental studies of the projects.

iii) Study Approach

There are two parts to the overall study: a Comprehensive Transport Master Plan Study and a follow-up Feasibility Study (see Fig. i).

The Master Plan Study includes;

- data collection and surveys of existing conditions:
- analysis of existing conditions and future projections;
- identification of transport and environmental problems;
- 4) development and planning proposals.

The follow-up Feasibility Study includes:

- reexamination of planning conditions as suggested in the Master Plan;
- additional surveys and investigations necessary for detailed planning;
- technical and planning studies for each project package;
- project cost/benefit analysis and project evaluation for implementation.

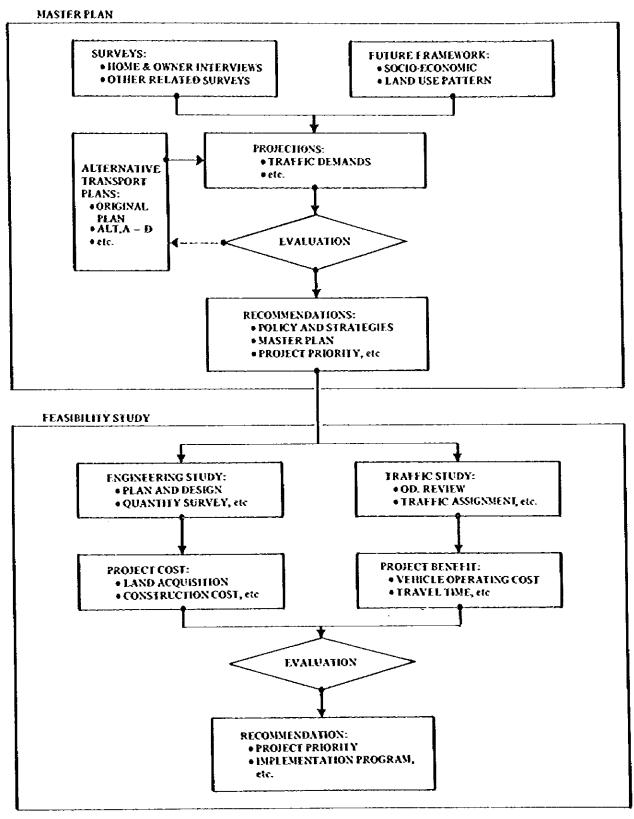


FIG. 1 GENERAL PLANNING PROCESS

INTRODUCTION

iv) STUDY ORGANIZATION

The project was carried out jointly by the Government of Malaysia and JICA in coordination with other agencies. The organizations involved in the project are shown in the chart below (see Fig. ii).

A list of Malaysian and Japanese Government officials concerned and Study Team members is attached in Appendix 1.

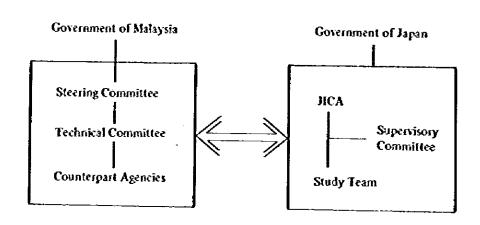


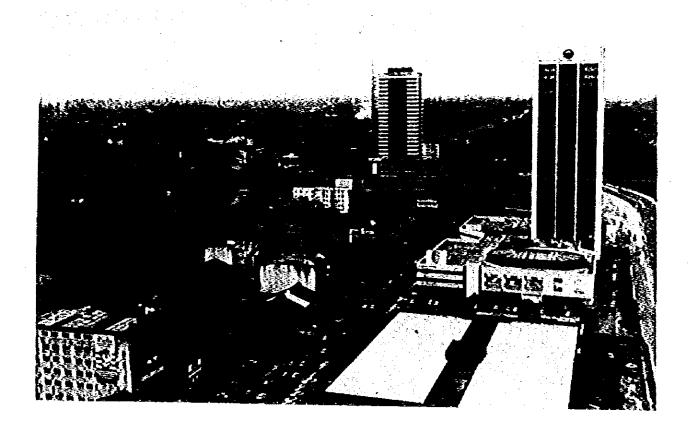
FIG. ii. STUDY ORGANIZATION

PART I MASTER PLAN

1. PREAMBLE

There were two stages in the Urban Transport Master Plan Study process (see Fig. I-1).

Stage I involved the formulation of the future development framework — fore-casting among other things socio-economic requirements, future land use patterns and future traffic demand.


Stage 2 involved the formulation of the future transport master plan and recommendations — a transport policy and strategy for the year 2000, a network concept and plan, a public transport plan and other transport plans, and a phasing and implementation program.

The Master Plan study included 4 major surveys:

- 1. a vehicle owner interview survey:
- 2. a home interview survey;
- 3. a cordonline interview survey;
- 4. a screenline traffic count survey.

The findings and recommendations of the master plan study point to three basic requirements that must be met:

- 1. a need to develop a comprehensive transport system between Johor Bahru Town and the new urban area of Pasir Gudang in order to promote the future formation of an urban corridor there:
- a need to develop new transport facilities and other infrastructures that will control and guide the urbanization pattern of the region;
- a need to modernize central urban activities in the CBD and to redevelop the transport network system in order to promote the building of a new urban center for the future.

1. PREAMBLE

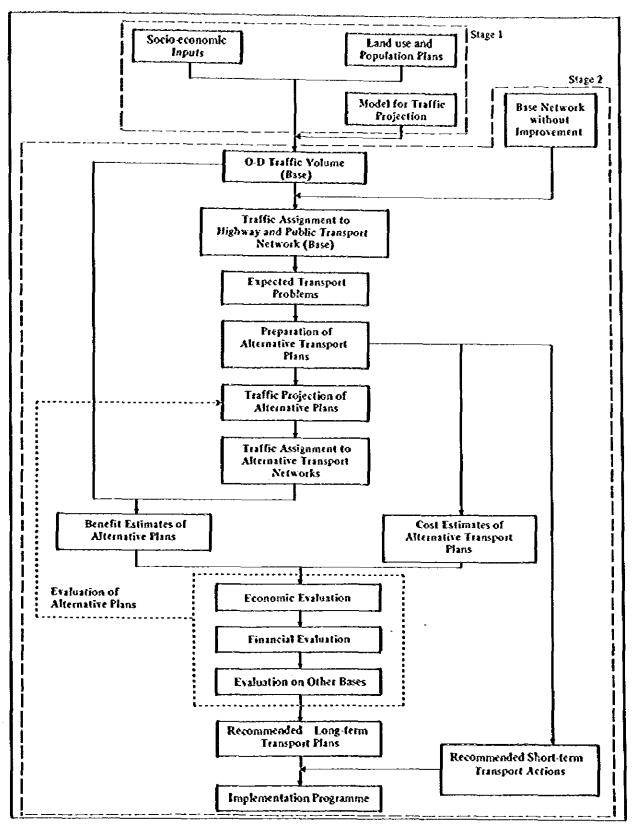


FIG. 1-1. MASTER PLAN PLANNING PROCESS

2. PRESENT CONDITION AND FUTURE PERSPECTIVES

2-1 Socio-economic Framework

This study is based on the expectation that Johor Bahru and its conurbation will be the most developed urban center and nucleus of growth in southern Peninsular Malaysia.

 By the 1990's Johor Bahru with its conurbation is expected to become the second largest metropolis in Malaysia.
 By the year 2000, the size of the population in the Johor Bahru region will almost equal that of Kuala Lumpur in 1980.

Within the Study Area, the projected annual population growth rate is 4.0 per cent from 1980 to the year 2000, which means that the population is expected to increase from 0.62 million in 1980 to 1.35 million in the year 2000 (see Table 1-1).

2) The Gross Regional Product in Johor State to grow at an annual rate of 8.0 per cent from 1980 to the year 2000. In terms of value, it is estimated that the Gross Regional Product will thereby expand from M\$2,941 million in 1980 to M\$6,469 million in 1990 and M\$13,687 million in the year 2000 (see Fig. I-2).

- 3) The projected annual growth rate of employment in the Study Area is 4.6 per cent from 1980 to the year 2000, with employment expected to increase from 219,000 to 533,000 in that interval (see Fig. I-3).
- 4) The average monthly household income in Johor State is expected to increase from M\$766 in 1980 to M\$1,876 in the year 2000, and hence, based on 1981 prices, the average annual growth rate of real income will be 4.6 per cent (see Fig. I-4).
- 5) Based on the projection of household income, the number of vehicles in the primary area is expected to increase from 88,000 in 1980 to 273,000 in the year 2000 (see Fig. 1-5).

TABLE 1-1. PRESENT AND PROJECTED POPULATION IN THE STUDY AREA

Area		Year ————	1980 ⁽¹⁾ (x 1000)	1990 (x 1000)	²⁰⁰⁰ (x 1000)	
	-	Johor Bahru	417	655	1,000 ⁽²⁾	
	Primary Area	Kota Tinggi	42	53	67	
		Total	459	708	1,067	
	Secondary Are	a	161	221	283	
· · · · · · · · · · · · · · · · · · ·	Study Area — 7	Fotal	620	929	1,350	

Source: Study Team Estimates

- (1) 1980 Population Census
- (2) Target Population made in the Structure Plan Study

2. PRESENT CONDITIONS AND FUTURE PERSPECTIVES

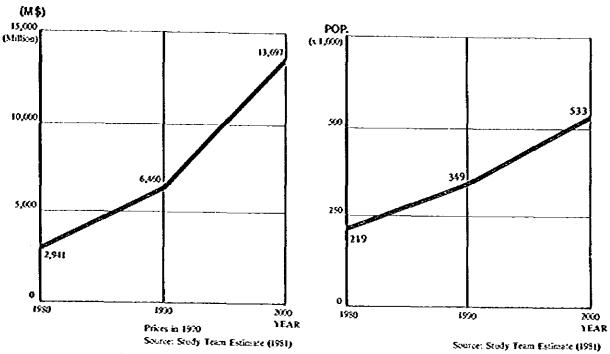


FIG. I-2. GRÖSS REGIONAL PRODUCT IN JOHOR STATE

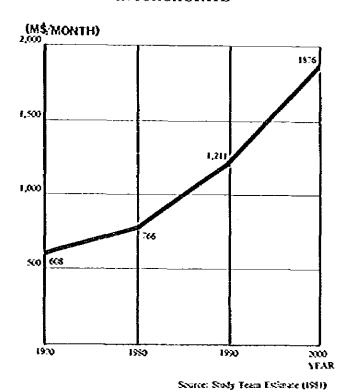
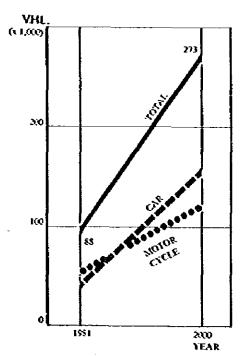



FIG. 1-4. HOUSEHOLD INCOME TREND (JOHOR STATE)

FIG. I-3. EMPLOYMENT NEEDS IN THE STUDY AREA

Specce: Study Team Estimate (1981)

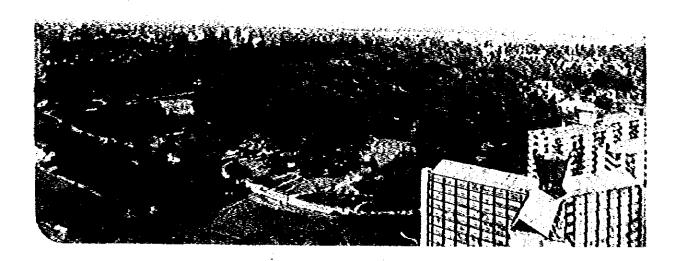
FIG. 1-5. PROJECTED NUMBER OF CARS AND MOTORCYCLES (PRIMARY AREA)

2. PRESENT CONDITIONS AND FUTURE PERSPECTIVES

2-2 Development Pattern

A simultaneous and balanced development of the whole Johor Bahru Metropolitan area appears to be the most likely future development pattern. This is in keeping with the government policy of promoting not only urban growth but rural development as well, especially in the eastern region (see Table I-2).

Metropolitan Johor Bahru is expected to be a major nucleus of growth in the southern part of Peninsular Malaysia, functioning both as a state capital and a dynamic regional, commercial and business center. This implies that a regional network should be established radiating from Johor Bahru to Batu Pahat, Melaka, Kuala Lumpur, Kota Tinggi and the nearby eastern region where the Desaru Recreational Resort is under development.


TABLE 14. FUTURE LAND-USE PROJECTION

Land Use	Year	1980(1)	1990	2000
Urban Land (K	M¹)	155.7	211.1	265.9
Agricultural La	nd (KM²)	2,802.7	2,838.5	2,874.1
Other Land Use	e(KM²)	1,749.2	1,658.0	1,567.6
Total Area ⁽²⁾ ((KWr.)	4,707.6	4,707.6	4,707.6

Source: Study Team Estimates

(1) Existing Land Use Adjusted by the Study Team

(2) Study Area including Primary and Secondary areas

2-3 Projection of Traffic Demand

With the anticipated rapid growth of population, economic activities and car ownership, the number of trips is expected to increase very rapidly from 462,000 pcu in 1981 to 775,000 pcu in 1990 and 1,425,000 pcu in the year 2000 (see Table 1-3).

Future traffic demand is expected to be concentrated in the Johor Metropolitan center and along certain growth corridors, in particular the Johor Bahru-Pasir Gudang corridor (see Fig. I-6).

TABLE 1-3. PRESENT AND PROJECTED TRAFFIC VOLUME (1981, 1990 AND 2000)

	1981(1)	1990 ⁽²⁾	2000(2)	Average Annual Growth Rate (%)
Motor Car				
To Work	67,300	104,700	171,200	5.0
Business	26,600	49,600	99,200	7.2
Private	48,900	90,700	180,200	7.1
To Home	89,400	166,600	332,800	7.2
Sub-Total	232,200	411,600	783,400	6.6
Lony	103,590	197,400	383,900	6.9
Motorcycle	112,000	166,100	257,400	4.5
Total	462,000	775,100	1,424,700	6.1

Note: *1 Excluding Schedule Buses

Source: (1) Origin and Destination Survey in 1981

(2) Study Team Estimate

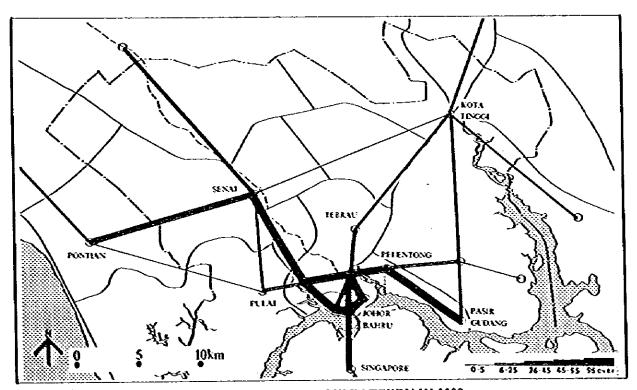


FIG. 1-6. TRAFFIC VOLUME PATTERN IN 2000

3 RECOMMENDED TRANSPORT POLICY

3-1 Policy and Strategies

In planning a better urban transport system, the following set of objectives must be kept in mind:

- 1. maximizing benefits to the urban economy;
- 2. ensuring the mobility of residents;
- 3. minimizing resource consumption;
- 4. providing a safer means of transport;
- 5. creating and maintaining a high quality of urban environment;
- maintaining social equity by providing transportation for the urban poor.

The major difficulty hindering the attainment of these objectives in Johor Bahru and its conurbation is the inability of the present transport system to cope with the rapid increase in transport demand resulting from the intensive economic development of the area and the inevitably great alteration of traffic conditions to be brought on by the completion of the Toll Expressway.

The following package of transport strategies is recommended:

- 1. effective use of existing transport facilities;
- 2. improvement and expansion of the bus transport system;
- 3. introduction of innovational bus/public transport system;
- 4. traffic restraints;
- 5. traffic engineering and management;
- 6. road improvement and construction;
- 7. expansion of monitoring system.

These strategies differ not only in their priority but also in their implementation periods — while some are long-term plans, others are short-term actions. The recommended timing of these transport strategies is shown in Table 1-4.

TABLE 1-4. TIMING OF IMPLEMENTATION FOR EACH STRATEGY

-	Short-term Actions	Long-term Plan
1. Effective use of existing transport facilities		•
2 Improvement and expansion of bus transport system		
Introduction of innovational bus/public transport system	•	•
4 Traffic restraint measures	•	•
Traffic engineering and management	•	•
Construction and Improvement of roads	•	•
Monitoring system		•

- High priority
- Medium priority
- Low priority

3. RECOMMENDED TRANSPORT POLICY

3-2 Road Network Concept

To be effective, the future road network must achieve the identified objectives within the framework of future land-use structure, traffic demand and economic growth. The

network planned for the Johor Bahru-Pasir Gudang corridor is in essence a combined radial and grid pattern with an East-West spine along the urban corridor (see Fig. I-7).

3-3 Traffic Dispersal and Circulation Concept in The Central Area

Peninsular Malaysia. There is a large volume of regional through traffic in addition to the subregional and intra-urban traffic. Lorries and passenger cars bound for Singapore inevitably have to pass through Johor Bahru for custome and immigration clearance. To

avoid disturbing the traffic flow in the CBD of Johor Bahru, a traffic dispersal scheme is deemed necessary (see Fig. I-8). This would involve the introduction of an exclusive bus lane system, parking control and the design of a traffic circulation system.

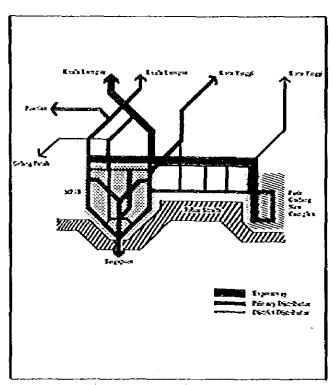


FIG. 1-7. ROAD NETWORK CONCEPT IN JOHOR BAHRU—PASIR GUDANG URBAN CORRIDOR

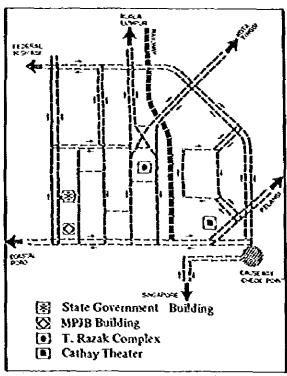


FIG. 1-8. TRAFFIC CIRCULATION SYSTEM
IN CBD

4 TRANSPORT MASTER PLAN

4-1 Road Construction and Improvement

The recommended plan seeks to make full use of the existing road system to form an adequate road system capable of serving the predicted traffic demands. This is to be accomplished by:

- 1. construction of new roads;
- 2. improvement of existing road; (see Fig. I-9)
- 3. development of grade-separated interchanges and improvement of intersections.

Table I-5, and Figs. I-10, 11 show the roads to be improved or constructed by the year 2000 to meet future traffic demands.

TABLE I-5. RECOMMENDED ROAD PLAN 2000

	Number of Project	Total Length of Project (km)
I Improvement of Existing Roads	<u> </u>	210.2
2 Construction of New Roads	30 -	136.4
3 Grade-separated Interchanges	19	_
4 Improvement of Intersections	4	

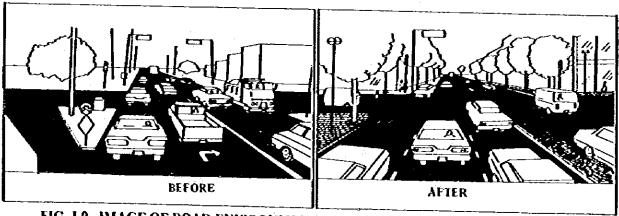


FIG. 1-9. IMAGE OF ROAD ENVIRONMENT; BEFORE AND AFTER IMPROVEMENT

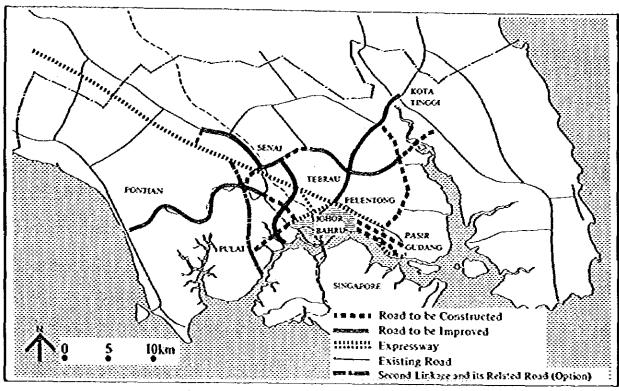


FIG. 1-10. RECOMMENDED ROAD NETWORK (STUDY AREA)

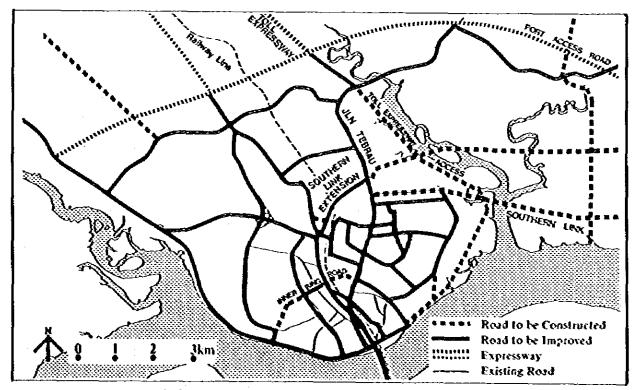


FIG. 1-11. RECOMMENDED ROAD NETWORK (MPJB)

4. TRANSPORT MASTER PLAN

4-2 Public Transport Development Plan

The public transport system should be improved and developed in line with the overall transport strategies.

- Exclusive bus fanes should be introduced on the following roads:
 - Jalan Tebrau
 - Johor Bahru Pasir Gudang Southern Link (see Fig. 1-12).
- 2. Bus transport services should be improved in the following ways:
 - a. reorganization of routes and schedules;
 - b. provision of appropriate bus stops and stands;

- e. renovation of and additions to existing bus fleets.
- 3. An innovative transit system should be introduced between the CBD in Johor Bahru and Pasir Gudang.
- 4. From the point of view of quality of service and transport economy, a long distance line-haul system should be provided by a scheduled bus system while the mini-bus should be introduced to the routes between regional towns and low-density area; i.e. Kulai, Kota Tinggi and Ulu Tiram based routes.

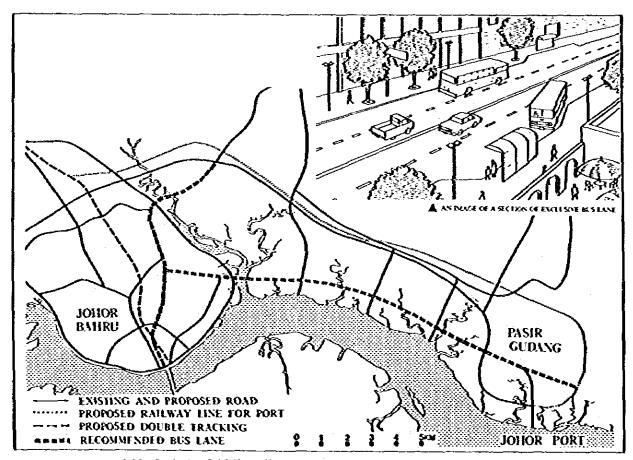


FIG. 1-12. RECOMMENDED BUS LANE TO BE INTRODUCED

- 5. The future demand for railway commuter services will not be sufficient to make double tracking financially viable. However, if the Malayan Railway is to undertake double tracking as a part of a system of nationwide double tracking, commuter services between Johor Bahru and Senai/Kulai should be introduced.
- 6. Passenger and freight demands for a railway extension to Senai Airport is expected to increase in the future. Therefore, a railway extension from Senai to Senai Airport should be considered within the framework of national development strategies.

The results of careful economic and financial analysis show that the introduction of a new transit system between Johor Bahru and Pasir Gudang is viable. However, this system will be needed after 1995 when the Johor Bahru-Pasir Gudang Corridor will have become highly developed. Therefore, this issue should be re-examined through the monitoring of the increasing traffic volume on roads and the increasing number of residents to be settled in the Johor Bahru-Pasir Gudang Corridor. It is also suggested that land be reserved in this corridor for the eventual introduction of this system (see Fig. I-13).

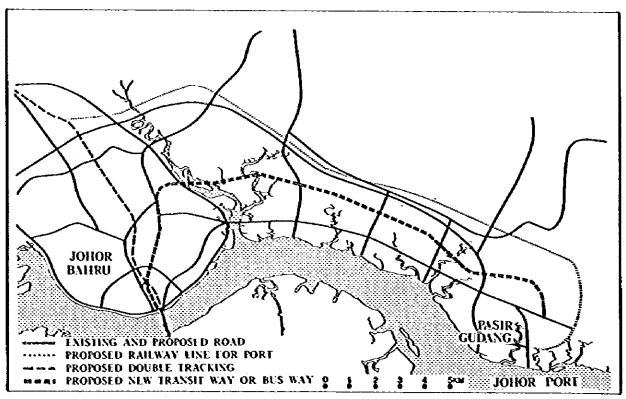


FIG. 1-13. LONG-TERM PUBLIC TRANSPORT PLAN

4. TRANSPORT MASTER PLAN

4-3 Transport Terminal Plan

Two types of transport terminals are proposed in the Terminal Plan. Their locations are shown in Fig. I-14.

A. FREIGHT TERMINAL

The major function of a freight terminal is to effect the transfer of goods from one transport mode to another, for example from railway to roadway or from inter-city lorry to intra-city lorry, so as to improve transport efficiency.

The location of the proposed terminal is the Kempas Site, which has an easy access to MPJB and Pasir Gudang via either the trunk roads such as the Toll Expressway and the Port Access or the railway lines.

B. PASSENGER TERMINAL

The main purpose of a passenger terminal is to connect various transport modes in various directions for the passengers' convenience.

The Tebrau Site which is located on the outskirts of MPJB is recommended for a bus terminal, and the Central Market Area, preferably the existing taxi area in the CBD, is recommended for a passenger terminal complex.

The Study Team reviewed the MPJB urban reconstruction project in the Central Market Area and ascertained that this terminal complex plan is compatible with the MPJB proposal.

The proposed passenger terminal complex can function as a transfer center for intermodal passengers using buses, taxis and railway and also as a shopping complex.

The bus terminal at Tebrau will serve mainly inter-regional and intra-regional buses.

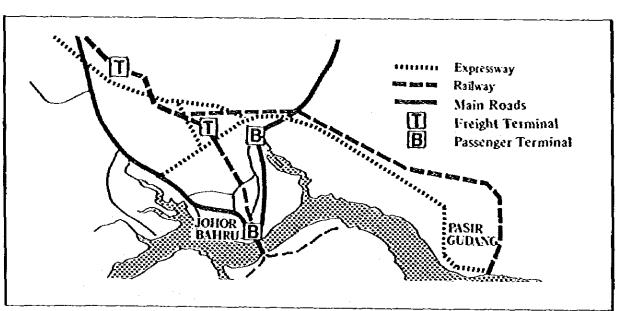


FIG. 1-14. PROPOSED LOCATION OF TRANSPORT TERMINALS

4-4 Traffic Management Plan

- 1. The interim traffic control scheme in the Central Business District (CBD) of MPJB should be implemented at the earliest possible time. The implementation of this control scheme will ensure on effective and smooth traffic flow.
- 2. In order to ensure an effective and smooth traffic flow, the interim circulation road system in some areas should be established as soon as possible. Based on the circulation plan, the following measures should be implemented:
 - parking prohibition on primary distributors:
 - b. channelization at key intersections;
 - institution of a one-way system in congested areas.

- In order to improve the present disorderly traffic caused by mixed traffic, the following measures should be undertaken:
 - a. marking of road lane demarcation lines;
 - separation of lanes by vehicle type,
 e.g. one for high-speed vehicles and others for motorcycles and bicycles.
- 4. A traffic signal system is recommended as the most suitable measure for achieving higher traffic capacity on primary distributor roads in peripheral and suburban areas as well as in the CBD (see Fig. I-15).

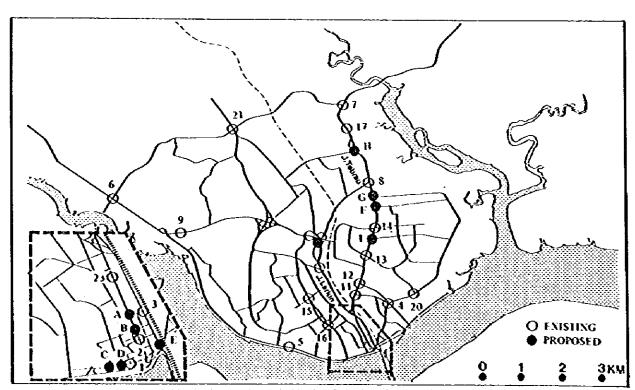


FIG. 1-15. TRAFFIC SIGNAL INSTALLATION PLAN

4. TRANSPORT MASIER PLAN

- 5. In order to improve pedestrian facilities, the following should be installed:
 - a. sidewalks;
 - b. pedestrian crossings, especially in front of the causeway;
 - c. shopping mall;
 - d. pedestrian signal lights.

It is suggested that Jalan Wong Ah Fook be opened exclusively to pedestrians as a pedestrian mall even if on a part-time basis (see Fig. I-16).

- 6. The following traffic facilities should be installed, based on standards.
 - a. traffic signs;
 - b. lane markings;
 - traffic signals with improved visibility; the existing traffic signal system should be reviewed.
- 7. In order to improve the present and future traffic situation in congested as well as newly developed areas, implementation of the following traffic regulatory measures is recommended:
 - a. parking prohibition on primary distri-

- butor and district distributor roads;
- b. one-way system in congested areas;
- c. adequate traffic signs and marking;
- d. provision of pedestrian facilities.
- Information boards for roads related to the causeway should be installed at strategic point to improve the information system for causeway traffic which is at present inadequate.
- In line with the beautification program and implementation of the circulation plan in the CBD, Sungai Segget should be covered in order to accommodate roadway and pedestrian facilities.
- 10. In order to achieve traffic safety and smooth traffic flow, the following modifications of road facilities should be undertaken:
 - a. removal of obstructions on roads in the CBD; i.e. electric poles on Jalan Wong Ah Fook and Jalan Segget;
 - widening of the roadway at the point where Jalan Tun Abdul Razak and Jalan Tebrau merge.

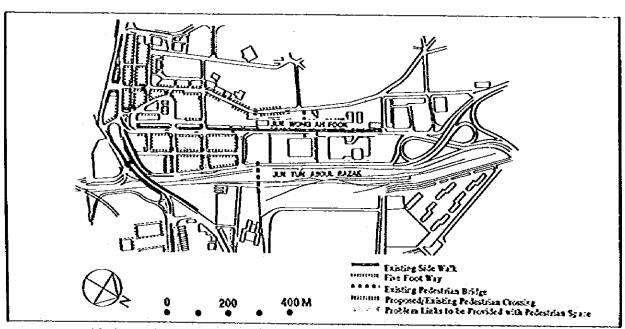


FIG. 1-16. IMPROVEMENT OF PEDESTRIAN FACILITIES IN CBD, MPJB

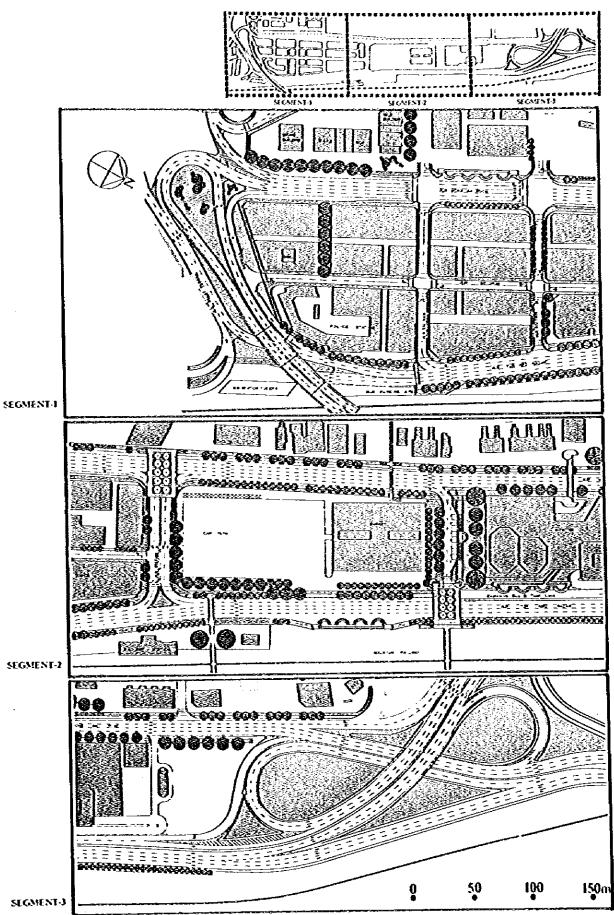


FIG. 1-17. PEDESTRIAN FACILITY & TRAFFIC MANAGEMENT (SHORT TERM PLAN)

4. TRANSPORT MASTER PLAN

4-5 Preliminary Causeway Layout Study

The Causeway Renovation Project, which is aimed at reducing traffic congestion at the Johor Entry and Exit Point (JEEP), was formulated by the JEEP Committee and was implemented in October 1983. However, this Renovation Project is expected to meet the traffic demand only until around the year 1987.

The Study Team, therefore, conducted the preliminary causeway layout study on a long-term basis. There are four (4) concepts in the proposed causeway layout plans:

- a) Concept A: horizontal expansion.
- b) Concept B: second-deck.
- c) Concept C: site relocation.
- d) Concept D: second linkage.

As the result of a preliminary study of these alternative concepts from the traffic engineer-

ing and transport economy points of view; Concept C (site relocation) is found to be better than Concepts A or B. This is because with Concept C the causeway traffic can be dispersed away from the central area of Johor Bahru; the plan based on Concept C is also flexible in its phasing and provides wider spaces for the entry and exit points.

Alternative concept D is to construct a second linkage between Johor Bahru and Singapore at some other point. This too is feasible in terms of traffic engineering and transport economy points of view, but further investigation of its socio-economic, political and environmental implications should be carried out.

On request of the Malaysian Government, the Steering Committee has however finalized that Concept A (horizontal expansion) is to be employed in the Master Plan and Feasibility Study.

5. PROJECT PRIORITY IN THE MASTER PLAN

Based on economic, land-use, traffic and environmental studies, implementation priority should be given to the following plans and projects.

(1) Road Construction and Improvement

- a) Widening of Jalan Tebrau into a six
 (6)-lane road.
- b) Construction of Johor Bahru-Pasir Gudang Southern Link, including the widening of Jalan Bakar Batu.
- c) Construction of the eastern segment of the Inner Ring Road including the Lorry Route.
- d) Construction of the Toll Expressway Access with the East Coastal Road of MPJB.
- e) Construction of Senai-Ulu Tiram Road.
- Upgrading of the East Coast Pederal Road between Port Access and Kota Tinggi.
- g) Upgrading of Federal Road between Senai and Pontian.

(2) Public Transport Improvement

- a) Improvement of bus services.
- b) Improvement of bus/taxi transport facility.

- c) Fleet improvement.
- d) Improvement of fare and pricing policy.
- e) Improvement of management and operations.

(3) Urban Transport Terminal

- a) Construction of bus terminal and/or integrated passenger terminal.
- b) Construction of Lorry Terminal and/or consolidated freight terminal.

(4) Traffic Engineering and Management.

- a) Implementation of the Causeway Traffic Dispersal Scheme in the central area of MPJB.
- b) Implementation of Circulation Plan in the central area of MPJB.
- c) Improvement of pedestrian facility.
- d) Improvement of traffic signal system.
- e) Construction of off-street parking facilities.
- Improvement of other traffic management measures.

(5) Causeway Traffic Improvement.

a) Establishment of Long-Term Causeway Plan.

	·		
-			

PART II FEASIBILITY STUDY

1. PREAMBLE

As mentioned in Part I, the Study Team has established a list of high priority transportation projects, namely road construction and improvement, public transport improvement, traffic engineering and management, urban transport terminal and Causeway improvement.

As the Government of Malaysia has agreed with the list, the Study Team has conducted a feasibility study for a package of four (4) listed projects, namely the road construction and improvement projects in Johor Bahru and its conurbation.

The selected projects (hereinafter referred to as "the Project") include the following packages:

- a) Johor Bahru Pasir Gudang Southern Link,
- b) Causeway Traffic Dispersal Scheme,
- Johor Bahru Toll Expressway Access Road.
- d) Inner Ring Road including Lorry Route.

The widening of Jalan Tebrau was identified in the Master Plan Study as the most urgent project. Jalan Tebrau was originally proposed as a four (4)-lane dual carriageway by the Public Works Department. However, taking into consideration the large volume of future traffic predicted and the need to improve the quality of the environment along this primary distributor, a six (6)-lane dual carriageway for the section between Tebrau Interchange (Kp 0 km 000 m) and Pandan Bridge (Kp 6 km 770 m) was proposed in the Master Plan Study. The method applied in the feasibility study is illustrated in Fig. 11-1.

Subsequent to Steering Committee discussions, it was decided to base the feasibility study on the following premises.

1) Widening of Jalan Tebrau.

The widening of Jalan Tebrau into a six (6) lane road recommended in the Master Plan Study, is the most urgent and indispensable Johor Bahru project. Consequently, this widening project is expected to be implemented within a few years.

2) Causeway Renovation Plan.

The Causeway Renovation Plan, which is intended to reduce traffic congestion at the entry and exit points, was completed in October, 1983. The Short-Term Causeway Dispersal Scheme will be formulated on the basis of this renovation plan.

3) Long-Term Causeway Plan.

The Long-Term Causeway Layout Plan, formulated by the Study Team, includes four (4) alternative concepts.

- a. Concept 'A' horizontal expansion
- b. Concept 'B' second deck
- c. Concept 'C' site relocation.
- d. Concept 'D' second linkage.

Based on traffic and transport engineering and transport economic studies, Concept 'D' and Concept 'C' were judged superior to the other alternatives. However, the Steering Committee decided to employ Concept 'A' as a premise in the Feasibility Study.

4) Toll Expressway.

The Toll Expressway which connects Johor Bahru and Ayer Hitam is expected to be completed in 1986. It will be a four (4)-lane road with provisions made for expansion to six (6)-lanes.

5) Port Access.

The Port Access is expected to be completed by the year 1984.

1. PREAMPLE

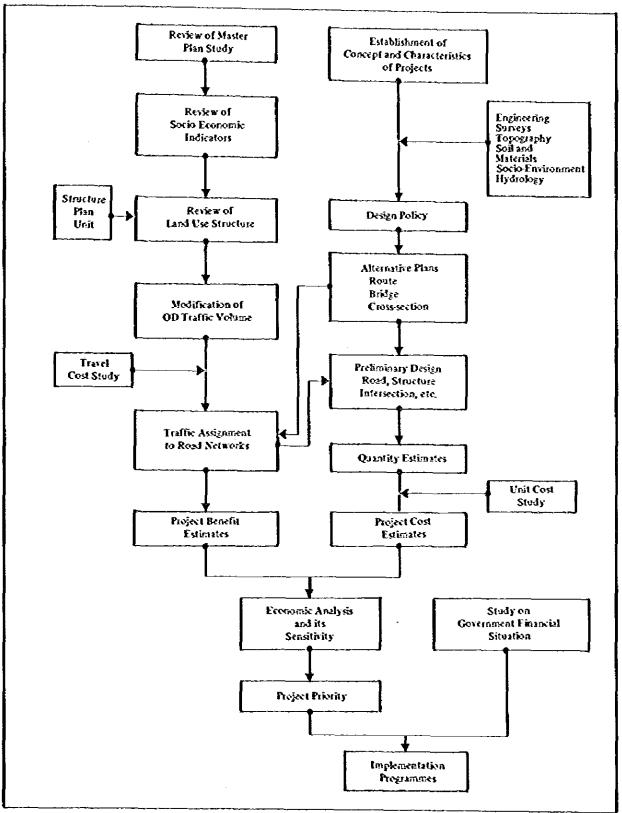


FIG. 11-1. STUDY METHODOLOGY FOR THE FEASIBILITY STUDY

2. THE JOHOR BAHRU-PASIR GUDANG SOUTHERN LINK

2-1 Project Characteristics

The Johor Bahru—Pasir Gudang Southern Link as planned in the Master Plan Study is expected to promote on-going and planned development projects alongside the Southern Link, to provide an appropriate communication means between Johor Bahru and Pasir Gudang and to meet present and future traffic demands.

Taking into account the above-mentioned concept, the Southern Link is thus, characterised as an Intra-Urban Primary Distributor.

The Southern Link will be characterized by:

- a. partial controlled access:
- b. prohibition in principle of at-grade intersections;
- c. provision of service roads;
- d. prohibition in principle of U-turns;
- e. beautiful landscaping.

However, the extension of the Southern Link of Jalan Larkin-Jalan Kebun Teh can be defined as a District Distributor.

2-2 Alternative Routes

Based on field investigations, topographic and water depth sounding surveys and the socio-environmental survey made along the Project Road, four (4) alternative routes for Section '2' and two (2) alternative routes for Section '3' have been established in this Study.

The alternatives have been evaluated by a comparative analysis of the following factors:

- a. topographic condition
- b. hydrological condition
- c. construction cost
- d. impact on housing development
- e. flow of traffic

For the Southern Link, it is concluded that Route 'B' for Section'2' and Route 'B' for Section '3' are the most feasible and acceptable (see Fig. 11-2).

For the Southern Link Extension, Route 'A' is considered more acceptable and feasible than Route 'B' even though staggered junctions remain at the intersection of Route 'A' with Jalan Tebrau (see Fig. II-3).

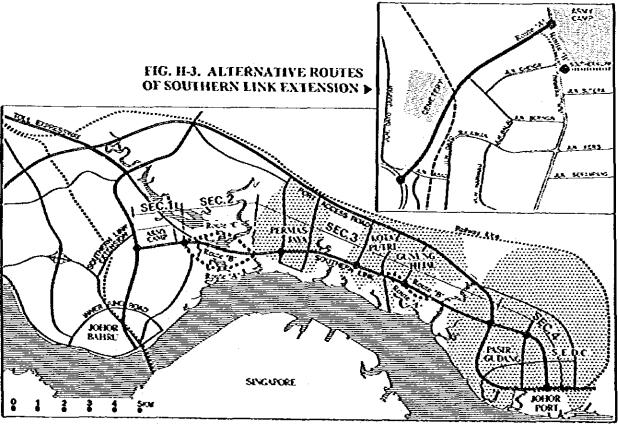


FIG. 11-2. ALTERNATIVE ROUTES OF SOUTHERN LINK

2-3 Design Characteristics

(1) Geometele Design Standards

The Malaysian Design Standard, ASSHTO and the Japanese Design Standard are the basis for the design of the Project. The design standards adopted are shown in Table 11-1.

(2) Cross-Sectional Design

From the traffic and technical studies undertaken, it is concluded that the carriageway for the Southern Link should be ultimately constructed as a six (6)-lane road with four (4) lanes constructed in the first stage; the carriageway for the Southern Link Extension should be a four (4)-lane road (see Fig. II-4).

II-1. GEOMETRIC DESIGN STANDARDS

	Unit	 Johor Bahru Pasir Gudang Southern Link 	• Southern Link Extension
Design Speed	Km/hr	80	60
Carriage way width	m	3.65	3.25
Median width	m	3.00 - 10.00	2.00
Shoulder width			-
Right Shoulder	ra	0.50	0.50
Left Shoulder	m	2.00 2.50	2.00
Maximum Gradient	%	4	6

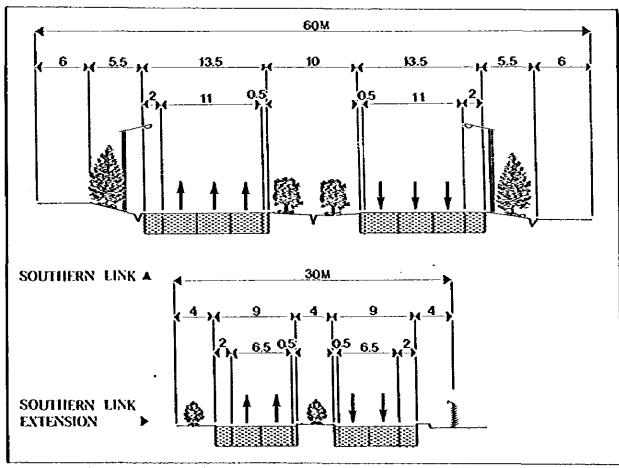


FIG. 11-4. TYPICAL CROSS SECTION (ULTIMATE PLAN): SOUTHERN LINK AND ITS EXTENSION

2. JOHOR BAHRU-PASIR GUDANG SOUTHERN LINK

(3) Intersection and Interchange Plan

From the traffic and engineering studies undertaken, it is concluded that eight (8) gradeseparated interchanges should be constructed ultimately for the Southern Link and its Extension (see Fig. 11-5).

In order to relieve traffic congestion at the intersections of Jalan Kebun Teh with Jalan Larkin and Jalan Datuk Jaafar/Jalan Abad, it is recommended that the intersection improvement plan be implemented as soon as possible.

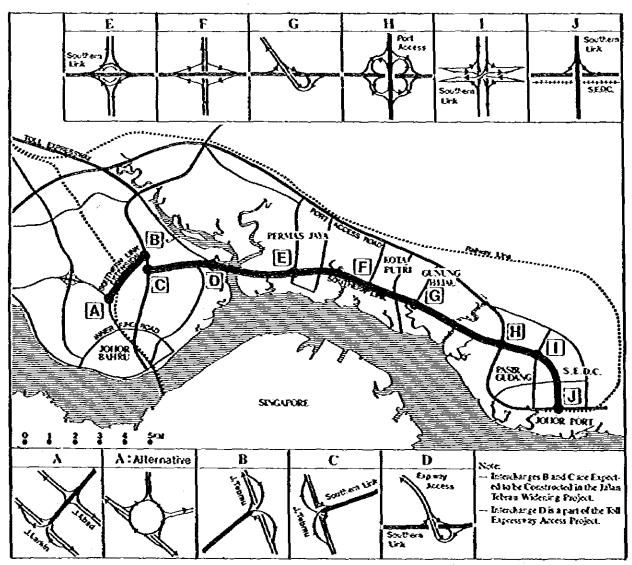


FIG. 11-5. INTERCHANGE PLAN ON SOUTHERN LINK AND ITS EXTENSION

(4) Bridge Design

The results of a study of an alternative bridge for Tebrau River show that a precast 3-span continuous box girder bridge with a clearance height of twelve (12) meters is preferable to a low level bridge, due mainly to consideration of navigation for dock repair. The total length of the recommended bridge is 680 meters, of which 60 meters represent the length of the main span.

In addition, the construction of four (4) minor bridges and one (1) minor bridge for

the Southern Link and its Extension respectively is recommended (see Fig. 11-6).

The standard specifications for bridges and other structures of the Malaysian Design Standard, together with the British Standard and the Japanese Design Standard, are used as the principal guidelines for structural design.

The design live load to be adopted for the design of bridges is used for either the design HA loading or design HA loading combined with the design HB loading of forty-five (45) units.

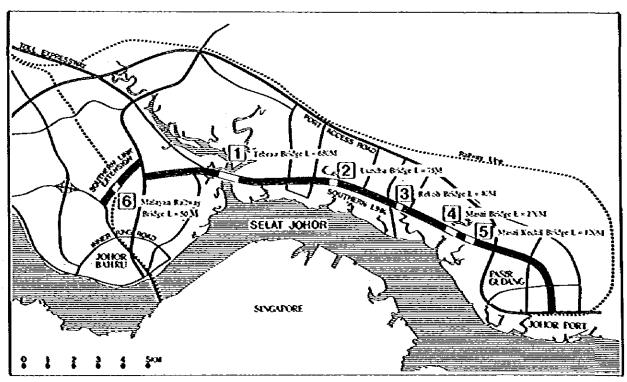


FIG. II-6. BRIDGE PLAN ON SOUTHERN LINK AND ITS EXTENSION

2. JOHOR BAHRU-PASIR GUDANG SOUTHERN LINK

2-4 Project Cost and Economic Analysis

(1) Project Cost

The project cost for the Southern Link as a six (6)-lane road is estimated to be M\$178.5 million; as a four (4)-lane road it will cost an estimated M\$94.2 million. The project cost for the Southern Link Extension will total MS19.6 million (Table II-2).

(2) Economic Analysis

The economic analysis of the alternative cross-sectional plans is shown in Table H-3.

The economic indicators show that the Pour (4)-Lane Plan is economically more feasible than the Six (6)-Lane Plan if this road is opened to traffic in 1989. However, if the opening to traffic is postponed for five (5) years, the economic feasibility of the Six (6)-Lane Plan is greater than the Four (4)-Lane one. Consequently, it is recommended that the Southern Link be constructed as a four (4)lane road by 1989. The optimum year for expanding the Southern Link from four (4)lanes to six (6)-lanes is 1994 (see Fig. 11-7).

TABLE 11-2. SUMMARY OF THE PROJECT COST

									O48 600)
	721	િલ્ફારો લીડિસ્ટો	Lead		Construction Con	ıt.		Ŀ	£2.
	*21	(k=) (k=)	Asquisica Cost	Rodusy	Souther	Sob-Treat	Tetal	Feré ga Caze≃y	Local Cracesy
bba kila - his Getag Sosten List	4 & 6 - Lane	29 47	12,542 (6.1)	76,926 (37.8)	197,097 (54.1)	156,825 (315)	135,667	76,659 (34.7)	\$21,437 (61.3)
Southern Link (extinute plan)	6-le-c	(3.5)	5,531	72,337	139,269	172,546	174477	71 206	167 271
Scotters Link (schief plan)	4~l≥	c [65]	5,531	56,543	31,333	58.252	54,153	34,652	57.591
kerken liektrasia	t-lr	e 2:17	\$,151	6,531	6,135	13,479	19570	5,444	14,145

Notes:

- 1) Total Project Costs are Calculifed Based on the Ultimate Plan.
- Figures in Brackets are Percentage to the total Project Cost.
- Figures with * represent partial length.

TABLE 11-3. ECONOMIC INDICATORS OF JOHOR BAHRU-PASIR GUDANG **SOUTHERN LINK**

	Pian 1 4-lane	Plan 2 6-lane
B/C Ratio	3.24	3.08
Net Present Value (MS'000)	187,319	287,185
Internal Rate of Return (%)	32.9	28.2

- Notes: 1) Project Life: 20 years
 - 2) Discount Rate: 12%
 - 3) Opening Year: 1989
 - 4) The Southern Link Extension is classified under the Four(4) - Lane Plan.

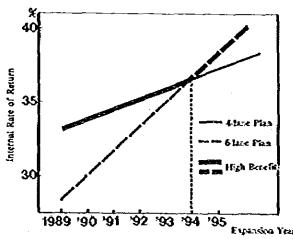


FIG. 11-7 OPTIMUM EXPANSION YEAR OF SOUTHERN LINK

3. CAUSEWAY TRAFFIC DISPERSAL SCHEME

3-1 Planning Area

The traffic dispersal scheme proposed here is intended to disperse the Causeway traffic and the central area traffic and to modernize the traffic facilities in the central area of Johor Bahru. The road network considered includes primary and district distributors and major circulating roads within the defined central area — an area flanked by the Inner Ring Road, Jalan Yahya Awal and Jalan Ayer Molek (see Fig. 11-8. 11-9).

This scheme proposes a Short-Term Action Plan until 1990 and a Long-Term Plan until the year 2000.

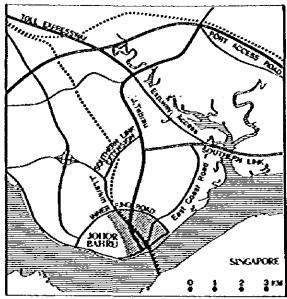


FIG. II-8. PLANNING AREA FOR CAUSEWAY TRAFFIC DISPERSAL SCHEME

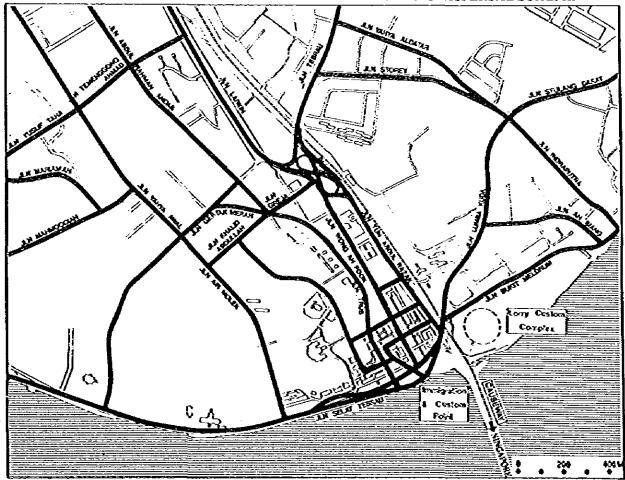


FIG. 11-9. ROAD NETWORK FOR CAUSEWAY TRAFFIC DISPERSAL SCHEME

3. CAUSEWAY TRAFFIC DISPERSAL SCHEME

3-2 Traffic Problems

(1) Existing Traffic Problems

The existing traffic problems such as traffic congestion on roads and at intersections, weaving and merging problems and others have been identified in the defined planning area (see Table II-4).

TABLE II-4. EXISTING TRAFFIC PROBLEMS

Categories of Problem	Problem Sections/Intersections
1 Traffic Congestion on Roads	 Jalan Wong Ah Fook, between Jalan Station and Tebrau Interchange with a congestion degree of 1.27
	b. Jalan Tebrau between Jalan Yahya Aldatar and Jalan Storey with a congestion degree of 1.38
2 Traffic Congestion at Intersections	a. Intersection of Jalan Tun Abdul Razak with Jalan Station
	b. Intersection of Jalan Wong Ah Fook with Jalan Station with a congestion degree of 1.08
	 Intersection of Jalan Wong Ah Fook with Jalan Segget
3 Weaving Problems	Jalan Selat Tebrau between Causeway Entry Point and Jalan T. Duke.
	 b. Jalan Ibrahim between Jalan T. Duke and Jalan Wong Ah Fook
	c. Jalan Sawmill, around the roundabout
	d. Jalan Wong Ah Fook near Tebrau Interchange
	e. Jalan Tebrau between Tebrau Interchange and Jalan Storey
4 Merging Problems	a. Jalan Tun Abdul Razak from Jalan Larkin and Jalan Tebrau.
5 Specific Problems	 a. Awaiting vehicles to exit point on Jalan Tun Abdul Razak
	 b. Awaiting vehicles to Lorry Custom on Jalan Bukit Meldrum
	 Adverse effects on Jalan Lumba Kuba and Jalan Ah Siang along the Lorry Route

Notes:

- 1) Congestion Degree on Roads = Traffic Volume/Road Capacity
- 2) Congestion Degree on Intersections = Turning Movement of Traffic Volume/Intersection Capacity

(2) Anticipated Aggravation of Traffic Problems in the Future

If specific traffic improvement schemes are not implemented and traffic demand continues to rise, the existing traffic problems that have been identified are certain to become even worse by 1990. The congestion rate on Jalan Wong Ah Fook for example, will reach as high as 1.5 while Jalan Storey, Jalan Lumba Kuda, Jalan Ah Siang and Jalan Trus will have a congestion degree above 1.0. Weaving and merging problems and long queues of vehicles waiting for custom clearance will increase.

These anticipated problems are summarized in Table II-5 and illustrated in Fig. II-10.

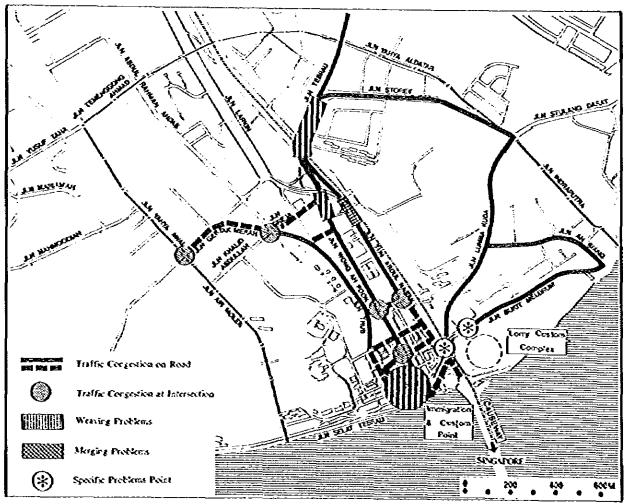


FIG. 11-10. FORESEEABLE TRAFFIC PROBLEMS AROUND 1990

3. CAUSEWAY TRAFFIC DISPERSAL SCHEME

TABLE II-5. ANTICIPATED TRAFFIC PROBLEMS AROUND 1990

Items of Problems	Problem Sections/Intersections
1 Traffic Congestion on Roads	Jalan Wong Ah Fook between Jalan Ibrahim and Tebrau Interchange with a congestion degree of 1.47
	 b. Jalan Tun Abdul Razak between Jalan Station and Tebrau Interchange with a congestion degree of 1.18
	c. Jalan Storey with a congestion degree of 1.10
	d. Jalan Lumba Kuda with a congestion degree of 1.36
	e. Jalan Ah Siang with a congestion degree of 1.10
_	f. Jalan Trus between Jalan Md. Noor and Jalan Ungku Puan with a congestion degree of 1.10
2 Traffic Congestion at Intersections	a. Intersection of Jalan Wong Ah Fook with Jalan Station with a congestion degree of 1.36
	b. Intersection of Jalan Md. Noor with Jalan Trus with a congestion degree of 1.16
	 c. Intersection of Jalan Ayer Molek with Jalan Gertak Merah with a congestion degree of 1.03
	d. Intersection of Jalan Lumba Kuda with Jalan Storey with a congestion degree of 1,50
3 Weaving Problems	Jalan Selat Tebrau between Causeway Entry Point and Jalan T. Duke.
	 Jalan Ibrahim between Jalan T. Duke and Jalan Wong Ah Fook.
	e. Jalan Sawmill, around the roundabout
	d. Jalan Wong Ah Fook near Tebrau Interchange.
	e. Jalan Tebrau between Tebrau Interchange Jalan Storey.
4 Merging Problems	 Jafan Tun Abdul Razak from Jalan Larkin and Jalan Tebrau.
5 Specific Problems	Awaiting vehicles to exit point on Jalan Tun Abdul Razak.
	 Awaiting forries to Lorry Custom on Jalan Bukit Meldrum.
	c. Greater adverse effects on Jalan Lumba Kuda and Jalan Ah Siang along the Lorry Route

Notes: 1) As for Traffic Congestion, same Definitions as Mentioned in Table II-4
2) Traffic Situations are Expected to be the without the Short-Term Actions

3-3 Planning Policy and Strategies

The Causeway Traffic Dispersal Scheme has the following objectives:

- a. the provision of a better, safer and more scenic transport environment in the central area of Johor Bahru that will contribute to the creation of a capital in which people can take pride;
- the improvement of existing road and traffic conditions and operational system for an effective road space usage by the Causeway traffic as well as the Central Area's traffic more effective;
- the construction of roads and intersections/interchanges to provide the most effective road network.

Traffic engineering and management measures as well as measures for providing infrastructure must be adopted and carried out, bearing in mind these objectives.

The planning policy for the Short-Term Action Plan is to make the maximum use of the existing roads and facilities with the minimum capital investment in dispersing traffic.

For the Long-Term Plan, however, traffic capacity must be increased by the construction of new roads, interchanges and improvements of existing facilities.

To achieve these objectives, the following planning strategies for the Short-Term and Long-Term Plans are formulated.

(1) Short-Term Action Plan

The short-term plan is intended to deal with the traffic situation until 1990, when the widening of Jalan Tebrau will have been completed.

1. Modification of one-way system

 Convert Jalan Tun Abdul Razak into a four (4)-lane one-way southbound carriageway with contra exclusive bus and taxi lane.

Jalan Tun Abdul Razak and Jalan Wong Ah Fook will then form a paired one-way system.

2. Upgrading of Jalan Wong Ah Fook

- Upgrade Jalan Wong Ah Fook to five (5)-lane and four (4)-lane carriageways for the southern section and northern section respectively.
- 3. Improvement and construction of the connecting roads
 - Improve Jalan Station to a four (4)lane dual contra flow carriageway.
 - Construct a road connecting Jalan Wong Ah Fook and the contra lane along Jalan Tun Abdul Razak between the Tun Abdul Razak Complex and the Pasar Besar.

J. CAUSEWAY TRAFFIC DISPERSAL SCHEME

- 4. Improvement of Tebrau Interchange and modification of Southern Interchange.
- 5. Covering of Sungai Segget.
- 6. Introduction of Area Traffic Signal Control System.
- 7. Other traffic engineering and management measures.
 - Modification of bus stops along Jalan Wong Ah Fook.

- Control of on-street parking and construction of off-street parking spaces.
- Improvement and construction of a section of the Inner Ring Road/Lorry Route

 the section between Jalan Tebrau and Jalan Bukit Meldrum/Lorry Custom Complex.

These strategies are schematically illustrated in Fig. II-11.

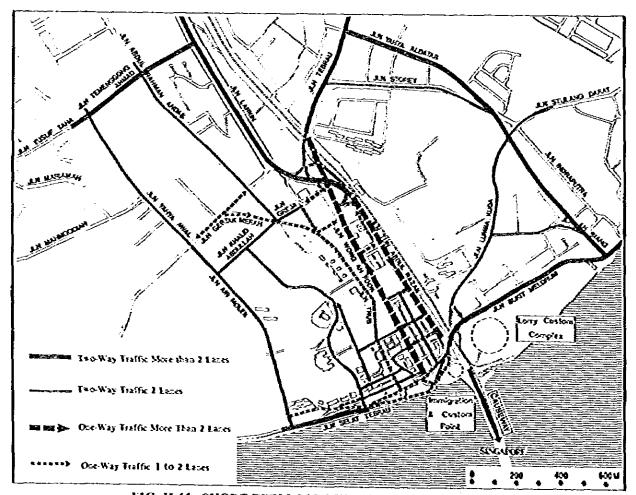


FIG. II-II. SHORT-TERM CAUSEWAY CIRCULATION PLAN

3. CAUSEWAY TRAFFIC DISPERSAL SCHEME

(2) The Long-Term Plan

The Long-Term Plan has been formulated to cope with traffic situations after the year 1990. The Long-Term Plan comprises of road construction and improvement, interchange construction and the implementation of traffic engineering and management measures, as a follow-up of the improvement of the Short-Term Plan.

1. Road Construction and Improvement

- Eastern Segment of the Inner Ring Road including Lorry Route.
- Jalan Ayer Molek.
- Jalan Bukit Meldrum/Jalan Selat Tebrau/Jalan Ibrahim.
- Extension of Jalan Duke.

2. Interchange Construction

- Southern Interchange

3. Traffic Engineering and Management

- Introduction of a one-way system, resulting in the conversion of Jalan Duke and Jalan Trus into a paired one-way system (see Fig. II-12).
- Control of on-street parking and construction of off-street parking spaces.
- Expansion of the area traffic signal control system.

The long-term dispersal plan in the central area is illustrated (see Fig. 9) in page 9.

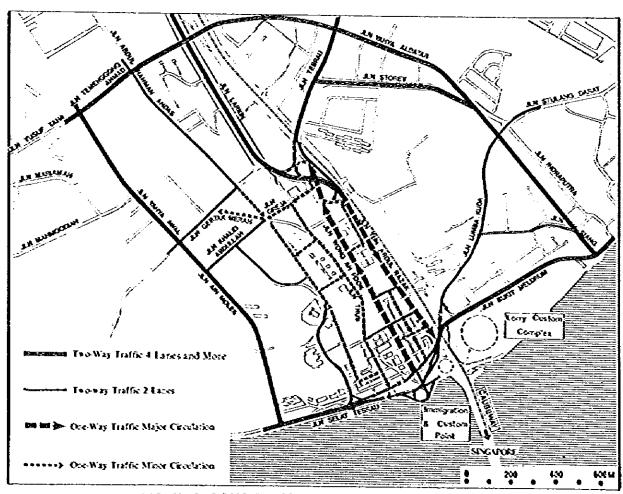


FIG. II-12. LONG-TERM CAUSEWAY CIRCULATION

3. CAUSEWAY TRAFFIC DISPERSAL SCHEME

3-4 Project Cost and Economic Analysis

(I) Project Cost

The project costs for the Short-Term and Long-Term Plans are estimated to be M\$15.0 million and M\$26.9 million respectively (see Table II-6).

(2) Economic Analysis

The economic indicators, as tabulated in Table 11-7, show that both the Short-Term Actions and the Long-Term Plan are economically feasible, although, the Short-Term Actions are relatively more feasible.

TABLE II-6. SUMMARY OF THE PROJECT COST

							_	(in M3 0000)
	Length of Rosi (km)	Land Application		Construction Co	st	Total	la Fereixa	(s Local
		Cost	Resirry	Stroctere	Sab-Total	10123	Сынсосу	Свпевсу
Crossay Indic Dispersal Scheme	7.45	3,376 (\$.0)	14,433 (34.6)	24,654 (57.4)	38,552 (92.0)	41,928 (100.0)	16,44 3 (39.2)	25,459 (60.8)
Seet - Tesa	3.09	0	5,317	9,731	15,043	15,645	6,474	8,574
Long - Term	4.37	3,376	9,151	14,323	23,504	26,889	9,976	16,906

- 1) Total Project Costs are Calculated based on the Ultimate Plan.
- 2) Figures in Brackets are Percentage of the Total Project Cost.
- 3) Figures with * represent partial length.

TABLE 11-7. ECONOMIC INDICATORS OF CAUSEWAY TRAFFIC DISPERSAL SCHEME

	Short-Term Actions	Long-Term Plan
B/C Ratio	4.58	t.65
Net Present Value (MS'000)	34,792	41,627
Internal Rate of Return (%)	43.5	19.0

Notes: 1) Project Life: 20 years

2) Discount rate: 12%

3) Opening Year: 1989

4. JOHOR BAHRU TOLL EXPRESSWAY ACCESS ROAD

4-1 Project Characteristics

The Toll Expressway Access as planned in the Master Plan Study is expected to disperse the traffic coming from and going to the Toll Expressway.

The Toll Expressway Access is therefore defined as an Intra-Urban Primary Distributor.
This road will be characterized by:

a. partial controlled access;

b. limited number of at-grade and/or grade-separated intersections;

 prohibition of U-turns except at limited median openings;

d. beautiful landscaping.

4-2 Alternative Routes

Alternative routes for sections 2 and 3 of the proposed access road, based on the results of related field investigations, land-use survey and traffic study are presented. These alternative routes are evaluated on their technical,

socio-environmental and economic performances. The results of this analysis show that Route 'B' of section 2 and Route 'A' of section 3 perform best (see Fig. II-13).

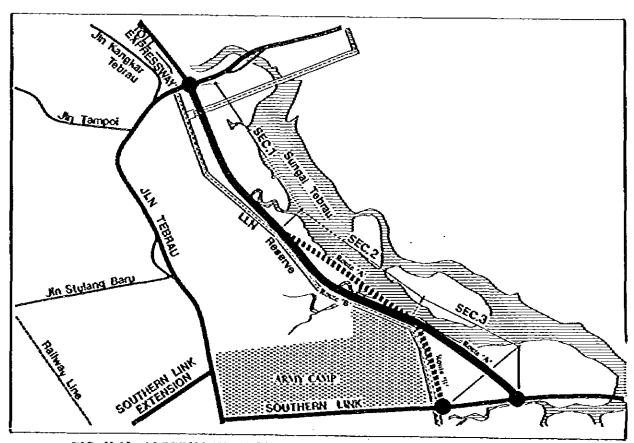


FIG. II-13. ALTERNATIVE ROUTES OF TOLL EXPRESSWAY ACCESS ROAD

4. JOHOR BAHRU TOLL EXPRESSWAY ACCESS ROAD

4-3 Design Characteristics

(1) Geometric Design Standards

TABLE II-8. GEOMETRIC DESIGN STANDARDS FOR TOLL EXPRESSWAY ACCESS

Design Speed	km/t	80
Carriageway Width	M	3.5
Median Width	M	
Shoulder Width		
Right Shoulder	M	0.50
Left Shoulder	M	2.00 2.50
Maximum Građient	%	4

(2) Cross-Sectional Design

The carriageway of this Expressway Access Road is to be a four (4)-lane carriageway and its typical cross section, shown in Fig. II-14, is designed taking into account site conditions and the projected traffic volume.

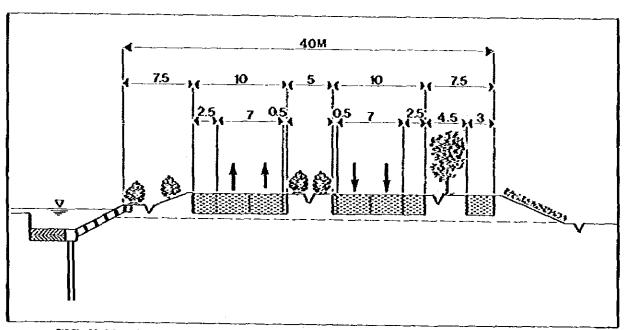


FIG. II-14. TYPICAL CROSS SECTION OF THE TOLL EXPRESSWAY ACCESS ROAD

(3) Interchange Plan

The construction of two (2) grade-separated interchanges for the Access Road is recommended; the one located where the Toll Expressway Access and the Toll Expressway intersect with Jalan Pandan is to be a partial service interchange (see Fig. 11-15).

At this interchange, the first stage, which includes the construction of rampways between the Toll Expressway and Jalan Pandan, is expected to be implemented by the Highway Authority of Malaysia in line with the Toll Expressway Project.

The other interchange which intersects the Toll Expressway Access with the proposed Southern Link is to be a three (3)-leg interchange to be so constructed as to make possible its future modification into a four (4)-leg type.

(4) Bridge Design

The Toll Expressway Access has two (2) small bridges with a total length of 30 meters over Sg. Selubong and Sg. Tampoi. A prestressed concrete bridge is recommended.

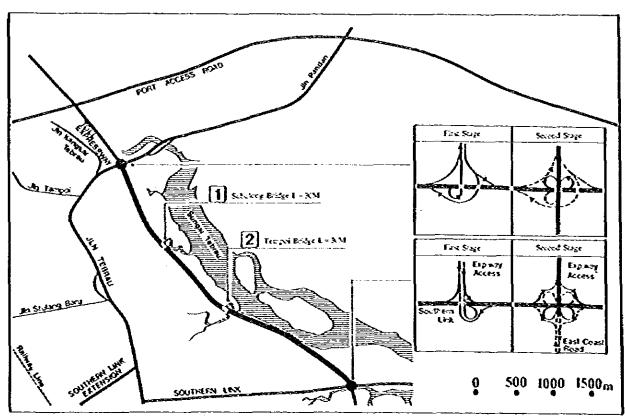


FIG. H-15. RECOMMENDED INTERCHANGE/BRIDGE PLAN FOR THE TOLL EXPRESSWAY ACCESS ROAD

4. JOHOR BAHRU TOLL EXPRESSWAY ACCESS ROAD

4-4 Project Cost and Economic Analysis

(I) Project Cost

The project cost for the Toll Expressway Access is estimated to be M\$50.9 million although the total length of this road is only 3.99 kilometers. This is due to the high cost of constructing an intersection (see Table 11-9).

(2) Economic Analysis

The economic indicators show that it will be economically premature to open the Toll Expressway Access to traffic in 1989 (see Table II-10).

However, it will be economically feasible if the opening to traffic is postponed until 1992 (see Fig. 11-16).

TABLE H-9. SUMMARY OF THE PROJECT COST

									(in MS (003)
	ľæ.	હિંદુનો લીદારો (ks)	Led Axistica		Constanting Con		T##	la Suri	£n .
				Renfun	Structure	Seb Total	1.7.6	Feeriga Cuttesty	Local Crossey
Tob Express sy Ances	4 – Lase	393	4 351 (9.7)	24 \$52 (43 7)	21,165 (41.6)	45,957 (90 3)	50 518 (150 9)	1\$,727 (35 \$)	32,131 (63.2)

Notes:

- 1) Total project costs are calculated based on the ultimate plan.
- 2) Figures in brackets are percentage to the total project cost.
- 3) Figures with * represent partial length.
- 4) () = % to the total Cost

TABLE II-10. ECONOMIC INDICATORS OF TOLL EXPRESSWAY ACCESS

	Opening to Traffic in 1989	Opening to Traffic in 1992
B/C Ratio	0.90	1.02
Net Present Value (MS'000)	-2,983	361
Internal Rate of Return (%)	10.6	12.2

Notes: 1) Project Life: 20 years 2) Discount Rate: 12%

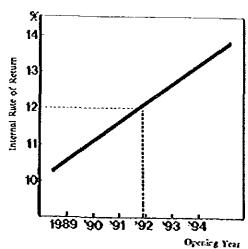


FIG. 11-16. OPTIMUM OPENING YEAR OF TOLL EXPRESSWAY

5. INNER RING ROAD INCLUDING LORRY ROUTE

5-1 Plan Characteristics

The Inner Ring Road is planned as a District Distributor in order to collect and distribute the traffic entering and leaving the central area of Johor Bahru as well as to carry causeway traffic.

The road will be characterized by:

 a. uncontrolled access, but with restricted ed traffic crossing at minor intersections; provision for access to and from the Inner Ring Road;

- b. provision of grade-separated intersections with major radial roads;
- c. prohibition of U-turns except at limited median openings.

In order to reduce adverse lorry traffic impacts in Johor Bahru, particularly its central area, an exclusive lorry route or lane is planned.

5-2 Alternative Routes

(1) Inner Ring Road

The results of field investigations, topographic surveys and traffic and socioenvironmental studies have led to the proposal of four (4) alternative horizontal alignments for section '1'; two (2) alternative vertical alignments for section'2'; three (3) alternative horizontal and two (2) alternative vertical alignments for section '3' of the Inner Ring Road (see Figs. II-17, II-18).

These alternatives are evaluated on their technical, socio-environmental and economic performances. The results of this evaluation indicate that Route 'C' for section '1', vertical alignment Plan 'B' for section '2', Route 'B' and vertical alignment Plan B for section '3' are the most feasible and acceptable alternatives.

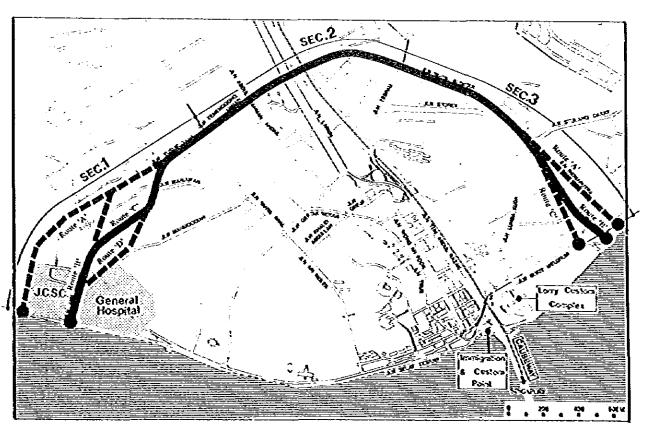


FIG. 11-17. ALTERNATIVE ROUTES OF INNER RING ROAD

5. INNER RING ROAD INCLUDING LORRY ROUTE

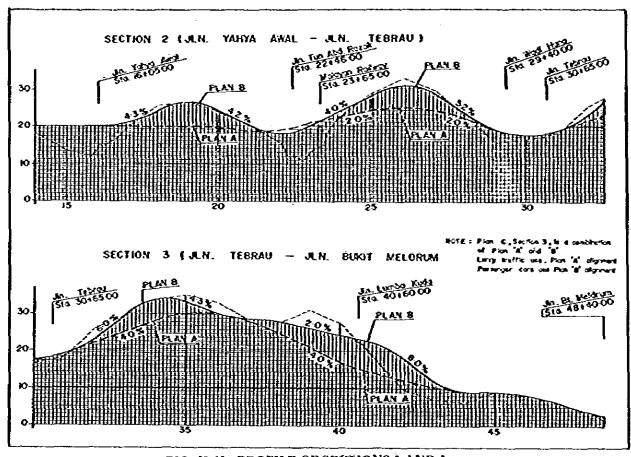


FIG. 11-18. PROFILE OF SECTIONS 2 AND 3

(2) Lorry Route

For the Lorry Route, four (4) alternative alignments are proposed for evaluation (see Fig. II-19). A comparative analysis of the technical, socio-environmental and economic performances of these alternatives show that Route 'D' which would accommodate the lorry traffic in the section between Jalan Tun Abdul Razak and Jalan Bukit Meldrum on the Inner Ring Road is superior to the other alignments.

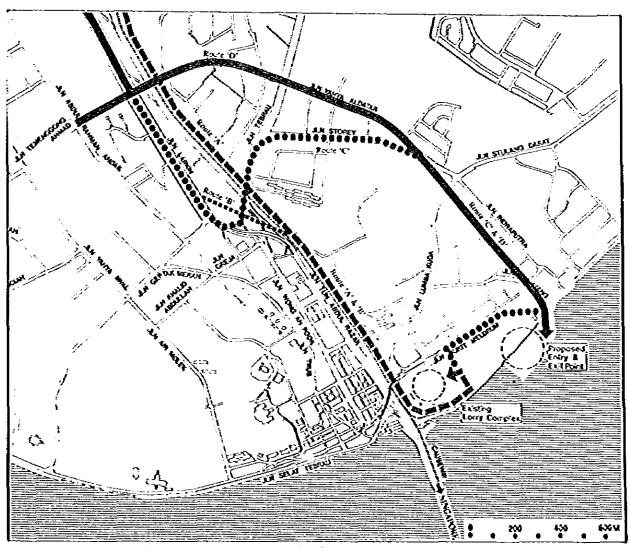


FIG. H-19. ALTERNATIVE ROUTES OF LORRY ROUTE

5. INNER RING ROAD INCLUDING LORRY ROUTE

5-3 Design Characteristics

(1) Geometric Design Standards

TABLE II-11. GEOMETRIC DESIGN STANDARDS FOR INNER RING ROAD AND LORRY ROUTE

	Unit	• Inner Ring Road	Lorry Route
Design Speed	Km/b	60	40
Caniageway width	m	3.25	3.75
Median Width	m	2.00	
Shoulder Width			
Right Shoulder	m	0.50	_
Left Shoulder	m	2.00	0.75
Maximum Gradient	%	6	6

(2) Cross-Sectional Design

Several alternative cross sections of the Inner Ring Road including the Lorry Route have been proposed based on the projected traffic volume, the elements of cross-sectional components and socio-environmental aspects (see Fig. 11-20). The results of the studies show that the carriageway of the eastern segment of the Inner Ring Road (that is, the section between Jalan Tun Abdul Razak and Jalan Bukit Meldrum/Lorry Custom Complex) should be ultimately a six (6)-lane road with the center two (2) lanes designated as the Lorry Route while the carriageway of the western segment of the Inner Ring Road (the section between Jalan Abu Bakar and Jalan Tun Abdul Razak) should be a four (4)-lane carriageway (see Fig. 11-20).

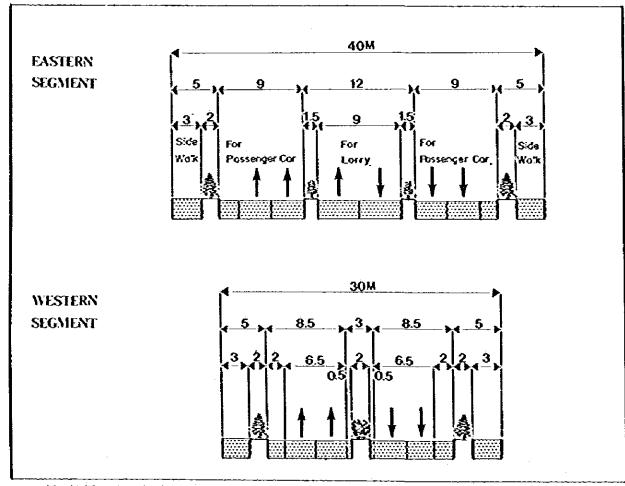


FIG. 11-20. TYPICAL CROSS SECTION (ULTIMATE PLAN) OF THE INNER RING ROAD

(3) Intersection and Interchange Plan

Five (5) grade-separated interchanges are to be constructed ultimately for the Inner Ring Road/Lorry Route (see Fig. 11-21). The interchange at the junction of the Inner Ring Road with Jalan Tebrau is expected to be constructed as a part of the Jalan Tebrau Reconstruction Project.

(4) Bridge Design

The Inner Ring Road including the Lorry Route has two (2) bridges, one 135 meters long over Jalan WadiHana. The most economical pre-stressed concrete bridge type is recommended.

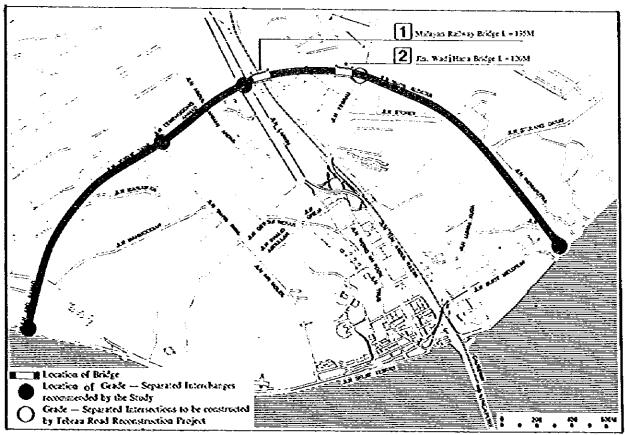


FIG. 11-21. LOCATION OF BRIDGES/INTERCHANGES AT THE INNER RING ROAD

5. INNER RING ROAD INCLUDING LORRY ROUTE

5.4 Project Cost and Economic Analysis

(1) Project Cost

The project cost for the Inner Ring Road including the Lorry Route is estimated to be M\$97.7 million, of which M\$67.3 million is allocated for the eastern segment of the Inner Ring Road with the Lorry Route, and M\$30.5 million for the western segment (without the Lorry Route) (see Table II-12).

(2) Economic Analysis

The economic indicators of two (2) alternative cross-section plans - a four (4)-lane situation and a six (6)-lane situation in which two (2) lanes are exclusively for long traffic

— are shown in Table II-13. The economic indicators show that plans are economically feasible.

The economic analysis by section also shows that eastern segment of the Inner Ring Road including the Lorry Route, for both four (4)-lane and six (6)-lane situations, is more feasible than the western segment. For the eastern segment, the four (4)-lane plan has a higher economic indicator than the six (6)lane plan (see Table II-14).

These results suggest that the eastern segment should be constructed as a four (4)-lane road at the first stage and expanded to a six (6)-lane at a second stage.

TABLE II-12. SUMMARY OF THE PROJECT COST BY SECTION

									(a 25 500)
	7as	Leigh ef Risd	land Aspiščios		Construction Cost		— I&I	ia Foreira	L
	1 323	(8:5)	Cca	Resissy	Stratists	ध्यारव	_ 10.2	Crocory	Local Custory
inser Ring Road installing Loop Roam	116-le-e	5 50	35,153 (36 9)	23,714 (24.3)	38,862 (39.7)	\$2,576 (54.6)	91,129 (150.9)	25,197 (25 \$)	72,542 (74.2)
सिर्देश हैंद्राच्या (संक्रिय होत्र)	6 – Leze	3 25	24,383	[4,637	28,205	42,372	67,275	\$7,452	43,513
East Ring Pin Feltons — I B. Modinum (nitial plan)	4 - Le-e	244.	14,978	1,303	9	1,373	22,251	2549	19,432
Western Segment	4 1256	2 25	19,779	9,921	19,657	19,654	30.454	3,725	22,729

Notes:

- Total Project Costs are Calculated based on the Ultimate Plan.
- Figures in brackets are Percentage to the total Project Cost.
- 3) Figures with * represent partial length.

TABLE II-13. ECONOMIC INDICATORS OF INNER RING ROAD INCLUDING LORRY ROUTE

	Plan I (4 – lane)	Plan 2 (4 & 6 – lane)
B/C Ratio	1.87	1.73
Net Present Value (MS'000)	37,236	43,363
Internal Rate of Return (%)	21.6	19.0

- Notes: 1) Project Life: 20 years
 - 2) Discount Rate: 12%
 - 3) Opening Year: 1989
 - 4) Plan 1: entirely 4 lane

Plan 2: Eastern Segment 6 - lane; Western Segment 4 - lane

TABLE II-14. ECONOMIC INDICATORS OF INNER RING ROAD INCLUDING LORRY ROUTE

	Western Segment	Eastern Segment			
	4 - lane	4 – lane	6 – Jane		
B/C Ratio	1.16	2.47	2.04		
Net Present Value (MS'000)	2,932	35,546	42,352		
Internal Rate of Return (%)	14.0	26.8	22.5		

Notes: 1) Project Life: 20 years 2) Discount Rate: 12% 3) Opening Year: 1989

6. PROJECT EVALUATION

6-1 Framework of the Evaluation

The economic evaluation analysis employs the following three economic indicators:

- a) Internal Rate of Return (IRR)
- b) Net Present Value (NPV)
- c) Benefit Cost Ratio (B/C Ratio)

The evaluation is made on the assumption that the project roads will open to traffic in 1989 and that the project fife will

be 20 years at a discount rate of 12%. In computing the cost of the projects, tax components, the cost of unskilled labour, the foreign exchange rate and market value of Government land are taken into account. Study process applied in the economic evaluation is illustrated in Fig. 11-22.

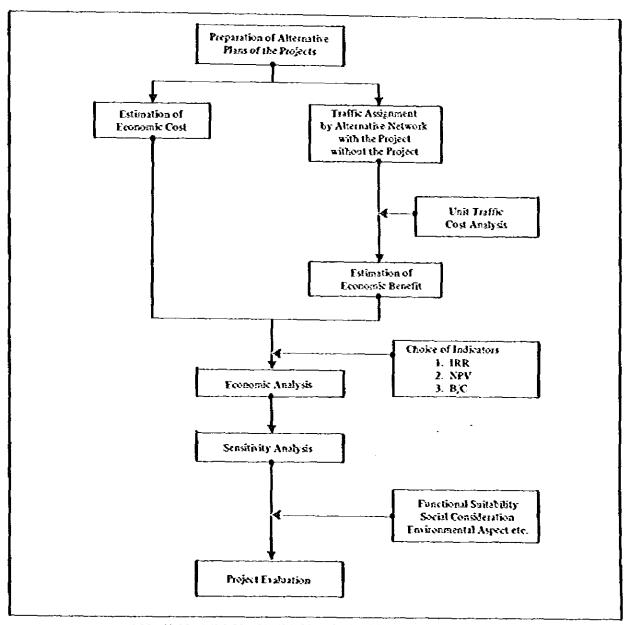


FIG. 11-22. PROCEDURE FOR ECONOMIC EVALUATION

6. PROJECT EVALUATION

6-2 Summary of Economic Analysis

The results of the economic analysis are summarised in Table II-15. Both the 4-lane and 6-lane plans proposed for the Southern Link are feasible, although the former is more feasible than the latter. However, if the opening to traffic is delayed for about 5 years to 1994, the 6-lane plan is superior (see section 2-4).

Similar results are found for the Causeway Traffic Dispersal Scheme, with the short-term plan more feasible than long-term plan. On the other hand, the Toll Expressway Access Road is not feasible, because it would be premature to open it to traffic by 1989. The Inner Ring Road shows favorable economic indicators for both alternative plans. Further analysis for the eastern and western segments shows that a 4-lane or 6-lane road for the eastern segment is more feasible than the western 4-lane road (see section 5-4).

TABLE II-15. SUMMARY OF ECONOMIC ANALYSIS

Projec	c t	B/C Ratio	Net Present Value (MS'000)	Internal Rate of Return (%)
Johor Bahru — Pasir Gudang	Plan I 4 — lane	3.24	187.319	32.9
Southern Link	Plan 2 6 – lane	3.03	287,185	28.2
Causeway Traffic	Short Term Plan	4.58	34,792	43.5
Dispersal Scheme	Long Term Pian	1.65	41,627	19.0
Toll Expressway Access	Plan I	0.90	-2,983	10.6
Ti . L	Pian I (4 — Iane)	1.87	37,236	21.6
The Inner Ring Road	Pian 2 (4 & 6 lane)	1.73	43,363	19.0

- Notes: 1) Project Life: 20 years
 - 2) Discount Rate: 12%
 - 3) Opening Year: 1989
 - 4) Eastern Segment 6 lanes, Western Segment 4 lanes

6-3 Sensitivity Analysis

A sensitivity analysis is undertaken to see how the economic feasibility of the Project is affected by changes in socio-economic indicators, project costs and project benefits.

As mentioned in Part I, the economic growth target set in the Fourth Malaysia Plan may not be attained due to the recent worldwide economic recession. Therefore, the sensitivity analysis assumes the bleakest economic framework projected, by which the original economic target is attained about (7) years after the year 2000. This means that other socio-economic targets such as population, employment and household income will also be delayed for seven (7) years.

The various benefit and cost factors used in the sensitivity analysis include a 20% increase of the total project cost and/or a 20% decrease of the project benefit.

The results of the analysis are shown in Table II-16. It is found that both the four (4)-lane and six (6)-lane plans for the Johor Bahru-Pasir Gudang Southern Link, the Long-Term Causeway Traffic Dispersal Scheme and the Eastern segment of the Inner Ring Road including the Lorry Route remain economically feasible in all the cases examined. However, the Toll Expressway Access can be economically justified when the opening year of the road is set at after 1992.

TABLE 11-16. SUMMARY OF SENSITIVITY ANALYSIS

Project Package Case	Johor Bahru — Pasir Guđang Southern Link		Causeway Traffic	Toll Expressway	Inner Ring Road including Lorry Route		
	Plan 1 4 — Lane	Plan 2 6 — Lane	Dispersal Scheme (Long-Term)	Access	Western Ring 4 – Lane	Eastern Ring 6 – Lane	
1. Original Plan	3.24	2.87	1.65	0.90	1.16	2.04	
2. 7 years delay in Socio Economic tar- get Attainment	2.66	1.98	1.41	0.72	0.93	1.71	
3. 20 percent Increase of Project Cost	2.70	2.57	1.34	0.75	0.97	1.70	
4. 20 percent decrease of Project Benefit	2.59	2.47	1.32	0.72	0.93	1.64	
5. 20 percent increase of the Project Cost and 20 percent decrease of the Project Benefit	2.16	2.06	1.10	0.60	0.77	1.36	
6. 20 percent increase of the Project Cost and 7 years delay in Target Attainment	2.21	1.65	1.17	0.63	0.78	1.43	

Notes: 1. Project Life: 20 years 2. Discount Rate: 12%

6. PROJECT EVALUATION

Sensitivity Analysis for Long-Term Causeway Relocation Plan

Another brief sensitivity analysis for the Long-Term Causeway Traffic Dispersal Scheme and the eastern segment of the Inner Ring Road including the Lorry Route is made assuming that the Causeway Site Relocation Concept, proposed in the Preliminary Causeway Layout Plan*, is implemented.

The results of the economic analysis are shown in Table II-17, which indicates that even if the Site Relocation Concept is adopted, the Long-Term Dispersal Scheme and both plans for the eastern segment of the Inner Ring Road including the Lorry Route are still economically feasible.

TABLE 11-17. ECONOMIC INDICATORS OF LONG-TERM CAUSEWAY LAYOUT PLAN

	Long-Term Causeway Traffic		nt of the Inner Ring ling Lorry Route
	Dispersol Scheme	4 – lane	6 – lane
B/C Ratio	1.72	2.97	2.05
Net Present Value (MS'000)	49,810	47,779	48,164
Internal Rate of Return (%)	19.0	30.8	22.6

Notes: 1) Project Life: 20 years

2) Discount Rate: 12%

^{*} The Preliminary Causeway Layout Plan was formulated by the Study Team in February, 1983.

6.4 Project Priority

The projects were screened out by comparative weighting in terms of development, traffic and socio-environmental factors as well as the results of the economic evaluation, and given priority into three ranks in the following order (see Tables II-18, II-19).

(I) First Priority

- Construction of the Johor Bahru-Pasir Gudang Southern Link as a four (4)-lane road,
- b. Construction of the eastern segment of the Inner Ring Road with the Lorry Route as a four (4)-lane road,
- c. Implementation of the Short-Term Causeway Traffic Dispersal Scheme.

(2) Second Priority

- a. Widening of the Southern Link into a six (6)-lane road,
- b. Widening of the eastern segment of the Inner Ring Road with the Lorry Route into a six (6)-lane road,
- Implementation of the Long-Term Causeway Traffic Dispersal Scheme,

(3) Third Priority

- a. Construction of the western segment of the Inner Ring Road
- b. Construction of the Toll Expressway Access

TABLE II-18. COMPARATIVE WEIGHTING OF THE PROJECTS

	1	2	3	4	5
	Economie Analysis	Development Consideration	Socio- Environmental Consideration	Traffic Aspect	Summation
1. Johor Bahru — Pasir Gudang Southern Link				,.*	
— 4 — Lane Plan	3	3	0	1	7
– 6 – Lane Plan	2	3	0	0	5
2. Causeway Traffic Dispersal Schem	æ				
- Short-Term Action	3	2	1	2	8
– Long-Term Plan	2	1	ŧ	1	5
3. Toll Expressway Access	0	1	0	0	1
4. Inner Ring Road including Lorry Route Eastern Segment					
4 Lane Plan	3	2	0	2	7
6 Lane Plan	2	2	0	1	5
Western Segment	t	1	-1	0	1
Notes: The Rating of each Aspe- a. Economic Analysis	ct is as Follows: 3: Highly feasil 2: Feasible 1: Fairly feasib 0: Least feasibl	ile le	Consideration	0 -1	Net benefit Balance Net disbenefit
b. Development Consideration	3 Significantly 2 Moderately 1 Lowly effect	effective	Traffic Aspect	1	Urgently required Fairly urgent Not urgent

6. PROJECT EVALUATION

TABLE II-19. SUMMARY OF ECONOMIC INDICATORS BY PROJECT AND ITS PRIORITY

		Econo	s		
Project	Plan	Net Present Value (MS million)	B/C Ratio	IRR %	Priority of Project
Johor Bahru – Pasir Gudang Southern Link				<u>. </u>	
Southern Link and its Extension	4 – Lane	187,319	3.24	32.9	1
Southern Link and its Extension	6 – Lane	287,185	3.08	28.2	2
Causeway Traffic Dispersal Scheme					
Short — Term Action		34,792	4.58	43.5	1
Long — Term Plan		41,627	1.65	19.0	2
Toll Expressway Access	4 – Lane	-2,983	0.90	10.6	4
Inner Ring Road including Lorry Route					
Eastern Segment with Lorry Route	4 Lane	35,546	2.47	26.8	1
Eastern Segment with Lorry Route	6 – Lane	42,352	2.04	22.5	2
Western Segment	4 – Lane	2,932	1.16	14.0	3

- Notes: 1) Opening to traffic is assumed to be in 1989.
 2) Discount rate is 12%
 3) Project life is 20 years

7-1 Program Structure

Judging from the priority of the Project and the financial standing of the Government, the Project should be implemented according

to the following schedule. The details by phase are illustrated in Tables II-20 to II-22.

(1) Phase I: 1985 - 1990

- 1. Johor Bahru-Pasir Gudang Southern Link
 - a. Construction of the Southern Link, encompassing the section between Jalan Tebrau and the planned cloverleaf interchange on the Port Access as a four (4)-lane road.
 - b. Construction of the Southern Link Extension (Jalan Kebun Teh) as a four (4)-lane road.

- 2. Implementation of the Short-Term Traffic Dispersal Scheme
- 3. Construction of the Inner Ring Road with the Lorry Route, encompassing the section between Jalan Tebrau and Jalan Bukit Meldrum or the Lorry Custom Complex as a four (4)-lane road.

(2) Phase II: 1991 - 1995

- 1. Johor Bahru-Pasir Gudang Southern Link
 - a. Widening of the Southern Link, encompassing the section between Jalan Tebrau and the Pasir Gudang Port, into a six (6)-lane road.
 - b. Construction of eight (8) gradeseparated interchanges
- 2. The Long-Term Causeway Traffic Dispersal Scheme.

- 3. The Inner Ring Road including the Lorry Route.
 - a. Construction of the Inner Ring Road with the Lorry Route (i.e. the section between Jalan Tun Abdul Razak and Jalan Tebrau) as a six (6)-lane road.
 - b. Construction of the Inner Ring Road (i.e. the section between Jalan Yahya Awal and Jalan Tun Abdul Razak) as a four (4)-lane road.
 - Widening of the Inner Ring Road with the Lorry Route (i.e. the section between Jalan Tebrau and Jalan Bukit Meldrum or Lorry Custom Complex).

- (3) Phase III: 1996 2000
- Construction of the Toll Expressway Access.
- Construction of the section of the Inner Ring Road between Jalan Abu Bakar and Jalan Yahya Awal.

TABLE II-20. RECOMMENDED IMPLEMENTATION PROGRAM FOR PHASE I

Project	Number of	Total	_		Y	161		•
	Lane	Length (km)	1985	1986	1987	1988	1989	1990
Johor Bahra – Pasir Gudang Southern Link	· · · · · · · · · · · · · · · · · · ·							
a. Southern Link, section between Jahn Tebrau and Port Access	4	14.53			******	• •		
b. Southern Link Extension	4	2.17				******		
Short — Term Couseway Dispersal scheme	*	3.09		-				
3. Inner Ring Road including Lorry Route section between Jalan Tebrau and Jalan Bukit Mekfrum/Lorry Custom Complex	4	2.44		****				•

TABLE II-21. RECOMMENDED IMPLEMENTATION SCHEDULE FOR PHASE II

	Number of	Total Length		Y	551	_	
	Lane	(ka)	1991	1992	1993	1934	1995
Johor Bahru - Pasir Godang Southern Link							
 a) Widening of Southern Link, section between Jalan Tebrau and Pasir Gudang Port 	6	18.30		-			
b) Construction of 8 Grade- Separated Interchanges	-			-			
2. Long – Term Causeway Traffic Dispersal Scheme		4.37	******	-			
3. Inner Ring Road including Lorry Route				·			
a) Inner Ring Road with Lorry Route section between Jalan Yahya Awal and Jalan Tebrau	4 & 6	1.46	*		· · · · · · · · · · · · · · · · · · ·	·	
b) Widening of Inner Ring Road with Lorry Route section between Jalan Tebrau and Jalan Bukit MeMrum/Lorry Custom Complex	6	2.44	4444431				

TABLE 11-22. RECOMMENDED IMPLEMENTATION SCHEDULE FOR PHASE III

	Number of	Total Leogth			Yesi		
	Lane	(km)	1936	1997	1998	1999	2000
1. Toll Expressway Access	4	3.99			•		
2. Inner Ring Road, section between Jalan Abu Bakar and Jalan Yahya Awal	4	1.60		******	•		

Notes: ----- Detailed Engineering ------ Land Acquisition ------ Construction

7-2 Investment Program

(1) General Investment Program

Based on the implementation schedule, the investments requirements for the Projects are estimated for detailed engineering service, land acquisition and compensation, and construction of roadway and structure. They are divided into foreign and local currency and are presented in 1983 prices. Overall investment cost of all the projects requires \$388,642,000, of which \$144,976,000, \$167,328,000 and \$76,338,000 are allocated to phase I, phase II and phase III respectively (see Table II-23). Annual investment costs by phase in detail is illustrated in Table II-24.

(2) Toll System for the Tebrau Bridge

Since the Johor Bahru-Pasir Gudang Southern Link is to be an Intra-Urban Primary Distributor, the road, which is to be principally constructed by the Government's Development Fund, should be toll-free for traffic. The economic evaluation recommends that the Southern Link should be implemented as soon as possible. After it has been implemented, development along the Johor Bahru-Pasir Gudang Corridor will almost certainly be promoted.

However, because of the Government's financial situation, the early implementation of the Southern Link appears difficult.

In this Study, therefore, toll application on the Tebrau Bridge of the Johor Bahru-Pasir Gudang Southern Link is examined to determine whether or not the capital cost of the Tebrau Bridge can be reimbursed and how long reimbursement may take.

According to a preliminary financial analysis on toll application on the Tebrau Bridge, the capital cost is expected to be reimbursed within (10) years of the opening of the Bridge to traffic.

The Study Team suggests that the possibility of toll application on the Tebrau Bridge be further examined as one source of capital when this road project is implemented.

TABLE II-23. TOTAL INVESTMENT REQUIREMENTS BY PHASE

	Detailed	Land	Co	nstruction C	ost	T . 1
Phase	Engineering Service	Acquisition and Compensation Cost	Roadway	Structure	Sub-Total	Total
Phase I 1985 – 1990	3,929	27,019	73,674	40,354	114,028	144,976
Phase 11 1991 — 1995	4,475	15,157	33,580	114,116	147,696	167,328
Phase III 1996 – 2000	1,890	13,345	30,236	30,867	61,103	76,338
Total	10,294	55,521	137,490	185,337	322,827	388,642

(In Thousand \$ at 1983 Prices)

V	Detailed	Land	C	onstruction Co	st	20 . 5
Year	Enginéering Service	Acquisition and Compensation Cost	Roadway	Structure	Sub-Total	Total
1985	752					752
1986	2,130	4,993	1,010	4,622	5,632	12,755
1987	1,047	15,916	2,020	4,622	6,642	23,605
1988		4,073	16,539	12,152	28,691	32,764
1989		2,937	26,841	12,590	39,431	41,468
1990			27,208	6,368	33,576	33,576
Total	3,929	27,019	73,674	40,354	114,028	144,976
1991	4,172	3,376	···	5,557	5,557	13,105
1992	303	11,781	5,947	27,416	33,363	45,447
1993			8,933	35,582	44,515	44,515
1994			9,350	32,804	42,154	42,154
1995			9,350	12,757	22,107	22,107
Total	4,475	15,157	33,580	114,116	147,696	167,328
1996	1,890					1,890
1997		13,345				13,345
1998			6,048	12,347	18,395	18,395
1999			12,094	12,347	24,441	24,441
2000			12,094	6,173	18,267	18,267

Note: The Construction Cost Includes the Cost of Construction Supervision.

APPENDIX

LIST OF MALAYSIAN AND JAPANESE GOVERNMENT OFFI-CIALS CONCERNED AND STUDY TEAM MEMBERS

APPENDIX

2

WIDENING OF JALAN TEBRAU INTO SIX (6)-LANES

APPENDIX

3

ALTERNATIVE ROUTE STUDY OF EASTERN PART OF INNER RING ROAD INCLUDING LORRY ROUTE

APPENDIX 1. LIST OF MALAYSIAN AND JAPANESE GOVERNMENT OFFICIALS CONCERNED AND STUDY TEAM MEMBERS

1-1 LIST OF MALAYSIAN MEMBERS OF THE STEERING AND THE TECHNICAL COMMITTEE

(1) STEERING COMMITTEE

MASTER PLAN

Chairman

Y.B. Tan Sri Ishak bin Pateh Akhir

Economic Planning Unit, Prime Minister's
Department

Mr. Ali Abdul Hassan

Economic Planning Unit, Prime Minister's
Department

Mr. Ismail bin Mohamed

Economic Planning Unit, Prime Minister's
Department

Secretary

Mr. Annuar bin Khabar

Economic Planning Unit, Prime Minister's
Department

Mr. Annuar bin Khabar Economic Planning Unit, Prime Minister's Department

Mrs. Faridah Mohd. Ali
Economic Planning Unit, Prime Minister's
Department

Mr. Elaguppillai Balasubramaniam
High Planning Unit, Ministry of Works and Utilities

Mr. Ghazali bin Bujang
Highway Planning Unit, Ministry of Works and
Utilities

Mr. Shigeru Komae (Colombo Plan Expert) Highway Planning Unit, Ministry of Works and

Utilities

Mr. Yoon Shee Leng Public Works Department
Mr. Shamsuddin bin Che Mat Ministry of Transport
Mr. Megat Amir Nordin Road Transport Department

Mrs. Teh Zawahir Town and Country Planning, (Federal)
Dr. Shahir bin Nasir State Planning Unit (Johor State)

Mr. Zainnudin bin Mohamad Town and Country Planning (Johor State)

FEASIBILITY STUDY

Economic Planning Unit (EPU)

Y.B. Tan Sri Dato' Sallehuddin bin Mohamed

Mr. Ali Abul Hassan bin Sulaiman

Miss Siti Hadzar bte Mohd. Ismail

Mr. Lim Boon Kang Mr. Ismail bin Mohamed

Mr. Annuar bin Khabar

Mrs. Farida bte Hj. Mohd. Ali

- Director General

Senior Director, Infrastructure and Public Utilities Section

Deputy Director, Infrastructure and Public Utilities Section

Director, Technical Section

 Principal Assistant Director Infrastructure and Public

Utilities Section

Assistant Director,
 Infrastructure and Public

Utilities Section

 Assistant Director, Infrastructure and Public Utilities Section

Ministry of Transport Mr. Shamsuddin bin Che Mamat Assistant Secretary, Land Transport Division Road Transport Department (Headquarters) Mr. Megat Amir bin Nordin Director, Public Service Vehicles Division Ministry of Works Mr. Lamka bin Sawiyo Assistant Secretary, Development Division Ministry of Foreign Affairs Mr. Hassanuddeen bin Abd. Aziz **Assistant Secretary** Highway Planning Unit (HPU) Mr. Elaguppillai Balasubramaniam Director Mr. Ong Eng Poe Deputy Director Mr. Shigeru Komae Colombo Plan Expert Public Works Department (Headquarters) Mr. Chew Swee Hock Senior Engineer, Design Section Mr. Han Joke Kwang Senior Engineer, Design Section Implementation and Coordination Unit (ICU) Mr. Lim Wen See Director, Infrastructure Divisien Mr. Annies bin Mohd. Ariff Senior Engineer, Infrastructure Division Town and Country Planning Department (Headquarters) Director, Urban Division Mrs. Teh Zawahir Mr. P. Gunasilan Senior Assistant Director, Urban Division Directorate of National Mapping Mr. Abdul Majid bin Abdul Hamid Deputy Director, Topographical Survey Division State Economic Planning Unit, Johor Dr. Shahir bin Nasir Deputy State Secretary/ Director **Assistant Director** Mr. Abdul Latif bin Yusof Public Works Department, Johor Director Mr. Edward Cheah Bian Siew Town and Country Planning Department, Johor

Director

Engineer

Mr. Zaiauddin bin Mohammed

Minicipal Council, Johor Bahru Mr. Mohd. Noh bin Ibrahim

(2) TECHNICAL COMMITTEE

MASTER PLAN

Technical Committee, Government of Malaysia

Chairman

Y.B. Dato Sulaiman bin Mohd Noh

State Secretary, (Johor State)

Chairman

Dr. Shahir bin Nasir

Deputy State Secretary, (Johor State)

Secretary

Mr. Hamsan bin Saringat

State Planning Unit, (Johor State)

Y.B. Dato Hj. Abd. Kadir bin Hj. Samon

State Land and Mines, (Johor State)

Y.B. Dato Haji Nasir bin Mohd. Diah
Police Department, MPJB
Y.B. Dato Abdul Razak bin Abdullah
Town Council; MPJB

Mr. Annuar bin Khabar Economic Planning Unit, Kuala Lumpur Mr. Edward Cheah Bian Siew Public Works Department, (Johor State) Mr. Yoon Shee Leng Public Works Department, (Federal)

Mr. Zainuddin bin Mohamad Town and Country Planning, (Johor State)

Mr. Ghazali bin Bujang Highway Planning Unit

Ministry of Works and Utilities
Mr. Hiroshi Nakajima Highway Planning UNit
(Colombo Plan Expert)

Ministry of Works and Utilities

Mr. Ghazali bin Hj. Rasid

Mr. Harun bin Baba

Ministry of Works and Utilities

Road Transport Department, (Johor State)

FEASIBILITY STUDY

Technical Committee, Government of Malaysia

State Secretary Office, Johor

Y.B. Dato' Suleiman bin Mohd. Noor

State Economic Planning Unit, John

Dr. Shahir bin Nasir

Mr. Abdul Latif bin Yusof

State Development Office

Mr. Harun bin Baba

Municipal Council, Johor Bahru Y.B. Dato' Ishak bin Mohd, Yusof

Mr. Mohd. Noh bin Ibrahim

Land and Mines Department, Johor

Y.B. Datin Paduka Fatimah bte Abdullah

Police Department, Johor Y.B. Dato' Jaafar bin Abdul

Mr. A. Savapathy

State Secretary

 Deputy State Secretary/ Director

- Assistant Director

State Development Officer

- Deputy Chairman

Engineer

Director

Chief Police Officer

- Chief of Traffic Division

Economic Planning Unit (EPU)

Mr. Annuar bin Khabar - Assistant Director

Highway Planning Unit (HPU)

Mr. Elaguppillai Balasubramaniam — Director

Mr. Ong Eng Poe – Deputy Director

Mr. Shigeru Komae - Colombo Plan Expert

Public Works Department (Headquarters)

Mr. Han Joke Kwang -- Senior Engineer

Public Works Department, Johor

Mr. Edward Cheah Bian Siew - Director

Town and Country Planning Department, Johor

Mr. Zainuddin bin Mohamad - Director

Road Transport Department, Johor

Mr. Abdul Rahman bin Ismail - Director

Structure Plan Unit, Johor

Mr. Lee Kee Teck – Project Manager

1-2 MEMBERS OF JAPANESE SUPERVISORY COMMITTEE

MASPTER PLAN

Supervisory Committee, JICA, Government of Japan

Professor Professor Moriyuki Hirose Meisei University

Mr. Takeshi Shiina Ministry of Construction

Mr. Hiroshi Yamano Urban Development Public Corporation

Mr. Yasutake Inoue Ministry of Construction
Mr. Taro Kaji Ministry of Construction

• FEASIBILITY STUDY

Supervisory Committee, JICA, Government of Japan

Chairman Professor Moriyuki Hirose Meisei University

Mr. Takeshi Shiina Ministry of Construction

Mr. Tsuyoshi Hayakawa Urban Development Public Corporation

Mr. Tetsuo Matsumura Ministry of Construction
Mr. Yasuyuki Tanaka Ministry of Construction

Coordinator Mr. Nobuyoshi Iwasaki Japan International Cooperation Agency

1-3 MEMBERS OF STUDY TEAM

MASTER PLAN

Japanesé Expert

Team Leader Project Coordinator Mr. Kokuro Hanawa

Mr. Toshio Kimura Mr. Hideaki Hoshina

Mr. Toshisada Katsurada Mr. Koji Saito

Mr. Hiroitsu Yamakawa

Mr. Seiichiro Yamazaki Mr. Susumu Nigo Mr. Tadashi Heida Mr. Masato Ohno

Malaysian Counterpart

Mrs. Aishah bte Othman

Mr. Noharuddin bin Nordin

Traffic Engineering and Management

Transport Economy Land Use Planning

Transport Planning Road Planning

Public Transport Planning

System Analysis Traffic Engineering Commodity Flow

Environmental Analysis

Transport Planning, Highway Planning Unit

Transport Planning. Road Transport

Department

FEASIBILITY STUDY

Team Leader

Mr. Toshio Kimura

Mr. Hideaki Hoshina Mr. Toshisada Katsurada

Mr. Koji Saito

Mr. Kokuro Hanawa

Mr. Mikio Higai Mr. Michimasa Takagi Mr. Hikaro Nishimura

Mr. Hiroshi Nakamura Mr. Junji Yasui Mr. Katsumi Ichikawa

Transport Economy

Landuse Planning Transport Planning

Highway Planning

Traffic Engineering and Management

Bridge Engineering Highway Design Traffic Engineering Traffic Engineering

System Engineering

Geotechnical Engineering

APPENDIX 2. WIDENING OF JALAN TEBRAU INTO SIX (6)-LANES

1. Introduction

The widening of Jalan Tebrau into a four (4)-lane dual carriageway proposed by JKR comprises the following three (3) packages:

Package 1: Pandan Bridge and its approaches section

Kp: 6 K 770 — 7 K 040 Length: 0.280 km Package 2: Pandan Bridge to the intersection with Jalan Masai

Kp: 7 K 040 — 9 K 420 Length: 2.380 km Package 3: Tebrau Interchange to Pandan Bridge

Kp: o K 000 -- 6 K 770 Length: 6.770 km

Package 1 has already been constructed and as for both Package 2 and Package 3, the detailed engineering design has been completed recently. However, in the understanding that the projected future traffic demands, as indicated in the Masterplan and Feasibility studies following the construction of the Toll Expressway and the development of the Johor Bahru - Pasir Gudang Corridor, will surpass the capacity of the proposed four(4)-lane Jalan Tebrau, a six(6)-lane carriageway was recommended in the Master Plan Study. As interest in the widening of the Package 3 section into a six(6)-lane carriageway was shown by the Government agencies concerned, the possibility of widening Jalan Tebrau was examined in the Progress Report (1) (November, 1982). In the Report, it was concluded that the widening of Jalan Tebrau into a six(6)-lane carriageway is technically and socially possible within the reserved fourty(40) meters right-of-way.

The Draft Final Report of the Feasibility Study on Road Construction and Improvement Project in Johor Bahru and its Conurbation has already been submitted to the Government in November, 1983. The Study stressed that it is necessary to upgrade the road system in the Central Area of Johor Bahru simultaneously with the widening of Jalan Tebrau into a six(6)-lane carriageway.

This report, therefore, deals with the preparation of the implementation programme of the Jalan Tebrau reconstruction project with the traffic dispersal project in the Central Area of Johor Bahru.

2. Traffic and Social Requirements

- The roads in Johor Bahru are not sufficiently developed in contrast with the urbanization and the growth of town.
- 2. Jalan Tebrau in particular is over-loaded by heavy traffic volume which is due to the high density housing developments along the road. (See Fig. 1)

3. Plan and Design of Jalan Tebrau

- Jalan Tebrau is planned as an Intra-Urban Primary Distributor. This road will have the following traffic functions:
 - Collecting and distributing traffic which originates and terminates in the surrounding developed areas.
 - b. Dispersing in-coming traffic from the existing and planned major roads.
 - c. Carrying through traffic to the CBD from the East and North.
- 2. The typical cross-section adopted for Jalan Tebrau as a six(6)-lane road is illustrated in Fig. 2

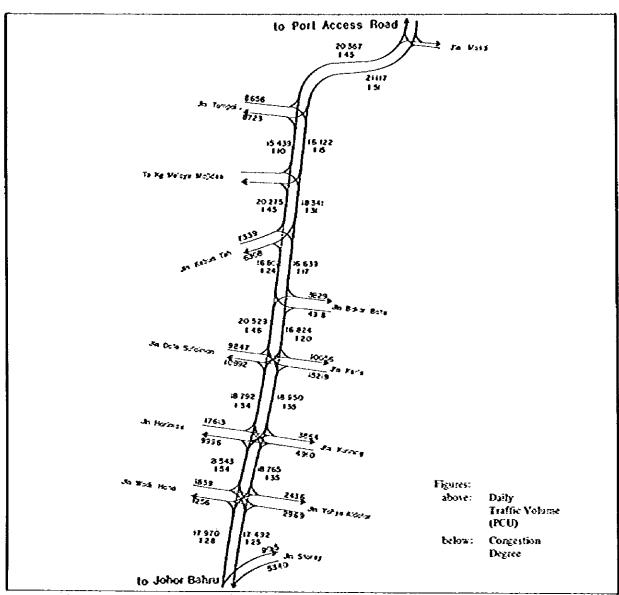


FIG. 1 TRAFFIC CONGESTION DEGREE AND TRAFFIC VOLUME ON JALAN TABRAU

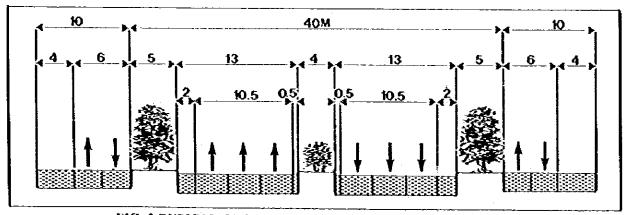


FIG. 2 TYPICAL CROSS-SECTION OF JLN TEBRAU (6-LANE)

- 3. Planting will be provided at the median and along the carriageway.
- An overbridge for pedestrian crossing will be provided on Jalan Tebrau around the developed area.
- Only left turning egress and ingress are allowed at intersections with minor roads. Median openings provided for U-turns are
- meant for traffic entering from such minor roads.
- 6. Public utilities will be provided beneath service roads or sidewalks.
- Six(6) grade-separated interchanges including the Toll Expressway interchange and five(5) signalized intersections are recommended to be constructed. (See Fig. 3)

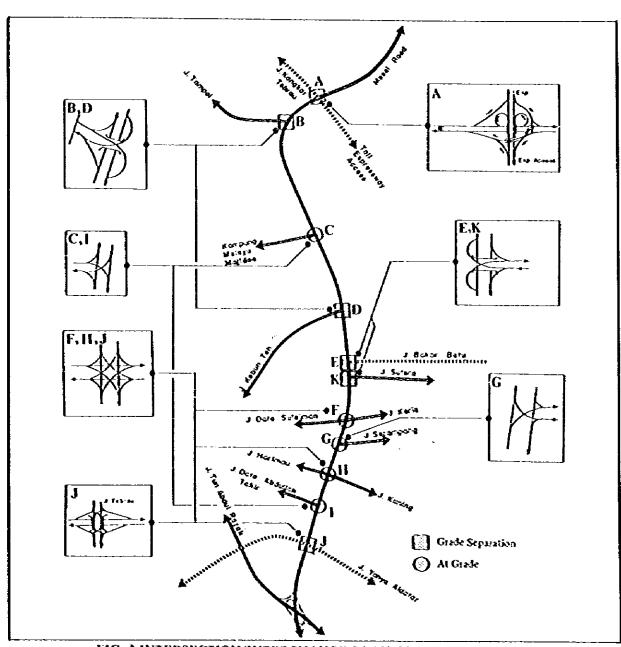


FIG. 3 INTERSECTION/INTERCHANGE PLAN ON JALAN TEBRAU

- 8. The coordinated traffic signal system is to be introduced in order to minimize travel time as well as vehicle operating cost on Jalan Tebrau.
- Service roads should be provided alongside of Jalan Tebrau. Bus exclusive lanes should be constructed for bus stops in order to avoid disturbance of through traffics. (See Fig. 4)

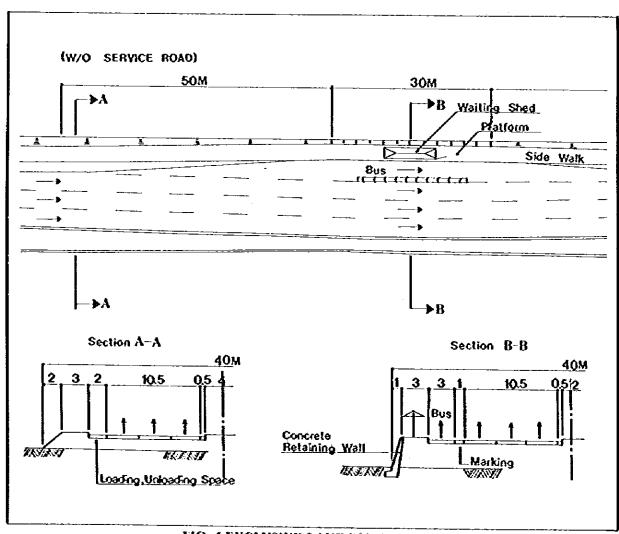


FIG. 4 EXCLUSIVE LANE FOR BUS STOP

4. Project Cost Estimates

The project cost comprises the following:

- a. Land Acquisition and Compensation
- b. Construction of Road, Bridge and Interchange
- c. Transfer of Public Utilities

These components are quoted in:

- a. Foreign Currency
- b. Local Currency
- c. Tax

The project cost for the reconstruction project of Jalan Tebrau into a six(6)-lane road including the short-term traffic dispersal scheme is shown in Table 1.

The total project cost is estimated at M\$108 million, while the construction cost is estimated to be M\$97.7 million and the land acquisition and compensation cost estimate is M\$10.3 million.

TABLE 1 CONSTRUCTION COST ESTIMATES (In thousand MS at 1983 prices)

										± M\$ 000
	Length	Lead		Ces	stratice (Cost			i s	la Local Cemescy
	(a)	Acqui- sitica	Read	Inter Charge	Bödge	U:Zxy	Ioh	Total	Foreign Currency	
Fin Tebras									-	
Parkege 2 Pandan Bridge – Ha Massi	3,100	2,450	12,450	1,200	1,300	3,660	17,950	29,360	7,430	12,960
Package 3 Tebras IC - Jia Marimas	1,600	4,200	8,850	7,800	0	1,550	18,150	22,350	7,491	14 553
Jin Marimen – Jin Sakar Satu	1,750	0	1,450	6,350	0	1,730	15,430	15,430	6 35\$	9,672
Jin Bahar Baha — Yod Expressiy	3,450	3,700	13,530	11,350	2,600	3,429	31,129	34,820	12,822	21 938
Sub-Total	6,800	1,900	30,000	25,400	2,533	6,73)	64,739	72,633	26,671	45,953
Total	9,900	10,300	42,450	26,630	3,930	9,790	82,693	92,953	34,071	55,919
Short-Term Treific						·				
Dispersal Pier	3,690	0	5,317	9	9,733	0	15,643	15,043	6,474	8,574
Grand Total	12,930	10,300	47,717	26,650	13,631	9,793	97,735	168,038	49,545	67,493

Notes:

(I) Construction cost includes detailed engineering cost.

(2) Plan and design of the about term dispensal plan are exceptioned in chapter I in this report.

5. Economic Indicators

Judging from the results of the economic analysis, the reconstruction project of Jalan Tebrau is economically highly feasible.

The sensitivity analysis shows that the project is still highly feasible even with a 20 per cent increase of the project cost and/or a 20 per cent decrease of the project benefit.

TABLE 2 ECONOMIC INDICATORS

DISCOUNTED BENEFIT (MS '000)	319,913
DISCOUNTED COST (MS '000)	91,929
B/C RATIO	3.48
NET PRESENT VALUE (MS '000)	227,984
INTERNAL RATE OF RETURN (%)	38.5

Notes: 1) Opening year is assumed to be 1988

2) Discount rate adopted is 12%

TABLE 3 RESULT OF THE SENSITIVITY ANALYSIS

	B/C Ratio	Net Present Value (MS'000)	Internal Rate of Return (%)
ORIGINAL PLAN	3.48	227,984	38.5
20% INCREASE OF PROJECT COST	2.90	209,598	32.0
20% DECREASE OF PROJECT BENEFIT	2,78	164,001	30.8
20% INCREASE OF PROJECT COST and 20% DECREASE OF PROJECT BENEFIT	2.32	145,616	25.9

Notes: 1) Opening year is assumed to be 1988

2) Discount rate adopted is 12%

6. Implementation Programme

The implementation programme is established as follows:

TABLE 4 RECOMMENDED IMPLEMENTATION PROGRAMME

	1984	1985	1986	1987
1. DETAILED ENGINEERING	· · · · · · · · · · · · · · · · · · ·			
2. LAND ACQUISITION AND COMPENSATION COST	piese (a a de la companyo d	•	
3. TRANSFER OF PUBLIC UTILITIES				
4. ROAD CONSTRUCTION		The said of	<u>ಎ. ಆರ್ಥಕ್ಕೆ ಅಂದರಿಗೆ ಸ</u>	<u> </u>

Based on the above-mentioned schedule, the annual funding requirements are established as follows:

TABLE 5 ANNUAL FUNDING REQUIREMENTS (In thousand MS at 1983 prices)

	T 4	D. A. H. B	Trasfer	_	Construc	tion			In	fa
	Land Acquisition	Detailed Engineering	of Utilities	Road	Intendunça	Bridge	Total	Total	Foreign Currency	Local Corrency
1984	1,717	586						2,393	243	2,060
1985	8,583	2,346	6,330	9,257	10,321	6,611	26,189	43,448	14,463	28,935
1986		_	3,166	18,514	10,321	6,612	35,447	38,613	16,018	22,595
1937				18,514	5,160	·	23,674	23,674	9,821	13,853
Total	10,300	2,932	9,496	55,781	25,802	13,224	85,310	168,038		

APPENDIX 3. ALTERNATIVE ROUTE STUDY OF EASTERN PART OF INNER RING ROAD INCLUDING LORRY ROUTE

Based on the filed investigation and the land use and traffic studies conducted, five (5) alternative routes for the Inner Ring Road or the Lorry Route have been established and presented in Fig. 5.

These alternative routes are evaluated by a comparative analysis of the technical, socio-environmental and construction cost standpoints.

The results of the comparative analysis are shown in Table 6. Consequently, the following conclusions can be arrived at:

- a. Routes 'A' and 'B' are not recommended as they accommodate only for lorry traffic and interfere with the development plan of the Malayan Railway as well as the urban development plan of the eastern part of the Central Area formulated by the Structure Plan.
- b. Route 'C' is the cheapest plan among the alternatives. However, the implementation of 'C' will involve a duplicate investment when the construction of the Inner Ring Road is completed. In addition, route 'C' presents weaving problems at the section between Tebrau Interchange and Storey Intersection.
- c. Route 'E' is also not recommended as this interferes with the development plan of the Malayan Railway as well as the urban development plan of the eastern part of the Central Area.
- d. Route 'D' is the most preferable route among the alternatives even though this has social problems of dislocating people on this route and the construction cost is comparatively expensive.

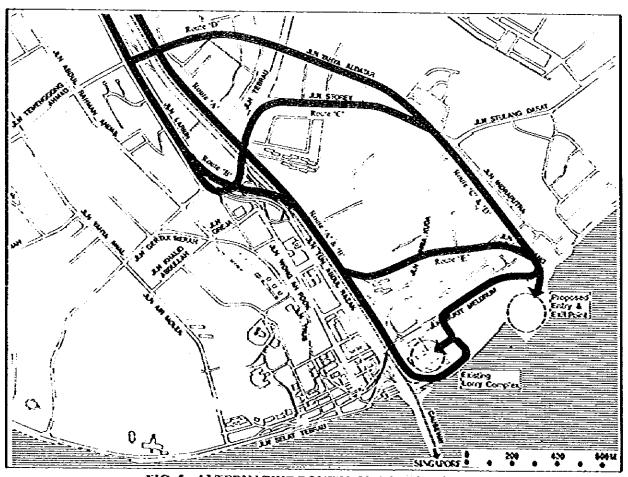


FIG. 5 ALTERNATIVE ROUTES OF LORRY ROUTE

TABLE 6 COMPARISON OF ALTERNATIVE ROUTES OF EASTERN PART OF INNER RING ROAD INCLUDING LORRY ROUTE

		'A'	.8.		
	Leogth	2,870 m	2,670 m		
Outline	Pag	Construction of Exclusive Long Way from Kempas to Long Complex utilizing KTM'S reserve	Construction of Road from Tebras Interchange to Jalan Bukit Meldrum		
<u> </u>	Major Structure	Construction of New Interchange on Port Access Road	Construction of Vin-duct over Tebreu Interchange		
		Reconstruction of 5 existing roadway bridges across Malayan Railway	• Reconstruction of one (1) roadway bridge		
apect	Traffic Problem	No specific problem	No specific problem		
Technical Aspect	Network Configuration	This route will not form part of the lands Ring Road.	This coute will not form part of the laner Ring Road.		
	Impacts on Existing Urban/Transport	•Two (2) water - pipelines are affected	•One (1) water – pipeline is affected		
	Facility	• Five (5) roadway bridges are affected	•One (1) roadway bridge is affected		
-	Flexibility	Not flexible (Served mainly for Lorry Traffic)	Not flexible (Second missly for Lony Traffic)		
	Number of Housing Units affected	522 ucits (Mostly squatter Houses)	18 units		
Aspect	Impacts on Urban Environment	• Environmentally more preferable than the others	• Environmentally more preferable than the others		
, לשוחשנתה		 Reduction of Triffic Congestion on the existing Lorry Route 	• Reduction of traffic congestion on the existing Loary Route		
Socio-Environmental Aspest	Impacts on Urban Development Plan in Eastern Part of Central Area	Disruption of orban expansion toward eastern part of Central Area	Disruption of urban expension toward eastern part of Central Area		
	Impacts on KTM Development Pan	•Interfere with KIM'S Development Pin	• Interfere with KTM'S Development Plan		
Construction	Construction Cost Land Acquisition and Companyation cost Total Cost	MS 14,500,000 26,000,000 49,500,000	10,169,009 6,360,000 16,400,000		
	Recommendation	Not Reconnected	Not Reconstrated		

·C'	.Ф.	'Ε'			
3,380 m	2,980 m	2,680 m			
Widening of Jln Storey into 4 – Lane .	Construction of Linkage Between IIn Larkin and IIn Tebrau and widening of Jalan Yahya Aldatar	Construction of new road from Tebras Interchange to Pin Ah Siang			
 An overpassing bridge on Jin. Tebrau Improvement of Tebrau interchange 	◆Construction of 2 major interchanges	Construction of via-duct over Tebrau Interchange Widening of Jalan Ah Siang			
Weaving problem between Tebrau interchange and J. Storey	No specific problem	No specific problem			
This route would be formed as Inner Ring Road	This route is the most preferable as part of the Inner Ring Road	This route is able to form part of the Inner Ring Road but rather inap- propriate			
●Some houses affected	Some houses affected I water-pipeline is affected	●One (1) pipeline is affected			
Flexible	A little flexible between Jalan Lackin and Jalan Yahya Awal	Peoble			
24 units	58 units	29 units			
Environmentally some problems, but can be mitigated	Environmentally some problems, but can be mitigated Socially some problems such as people's dislocation	•Environmentally not preferable			
None	None	Disruption of existing community and urban expansion			
None	None	•Interfere with KTM'S Development Plan partially			
M\$ 9,200,000 6,350,000 15,550,000	M5 20,300,000 §5,550,000 35,850,000	315 11,960,000 9,600,000 21,560,000			
Not Recommended	Recommended	Not Recommended			

		-			
:					
:					

		e.		
			,	
	. ·			
	•			

