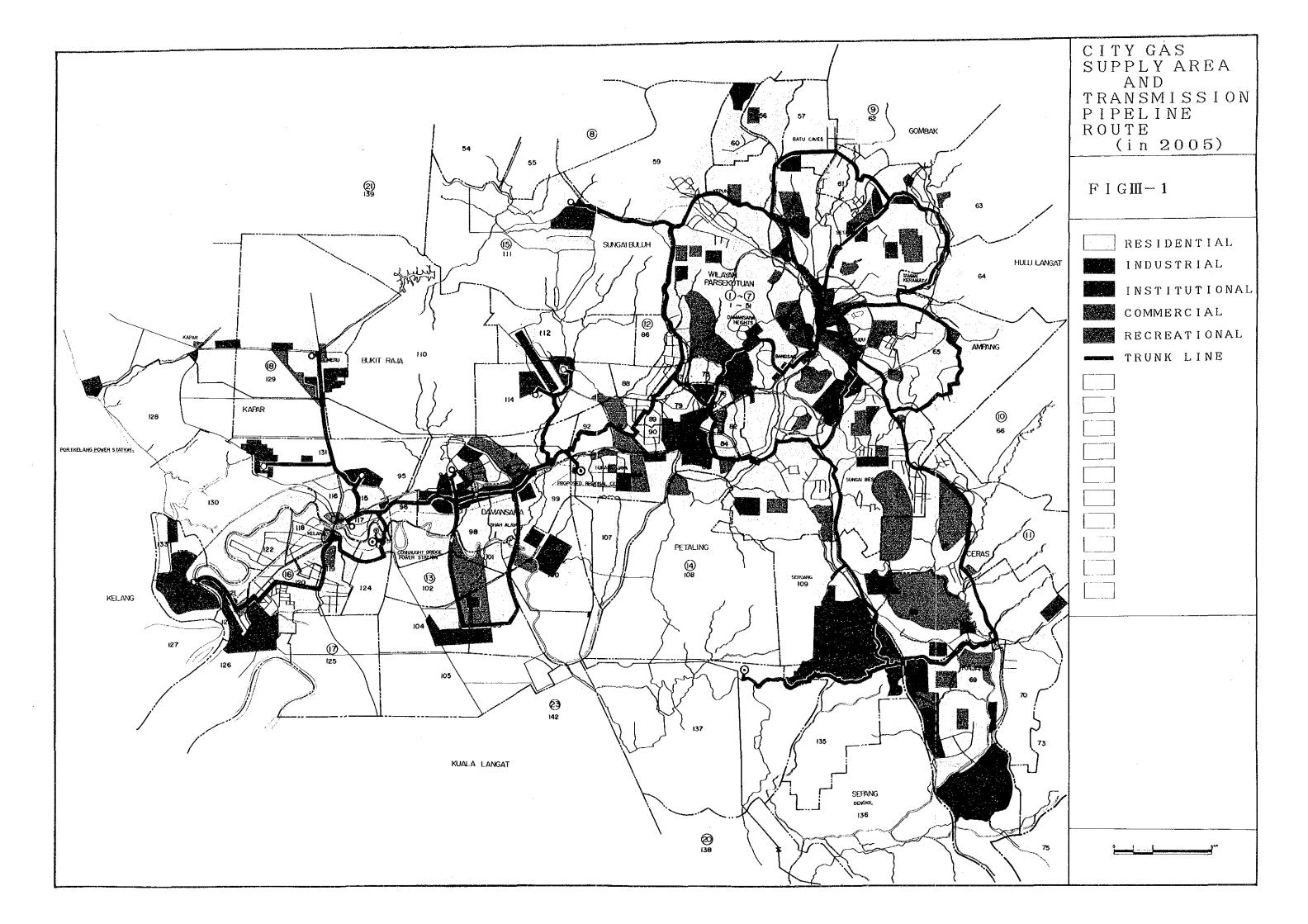
THE FEASIBILITY STUDY REPORT ON CITY GAS DISTRIBUTION SYSTEMS IN THE KLANG VALLEY AREA OF MALAYSIA

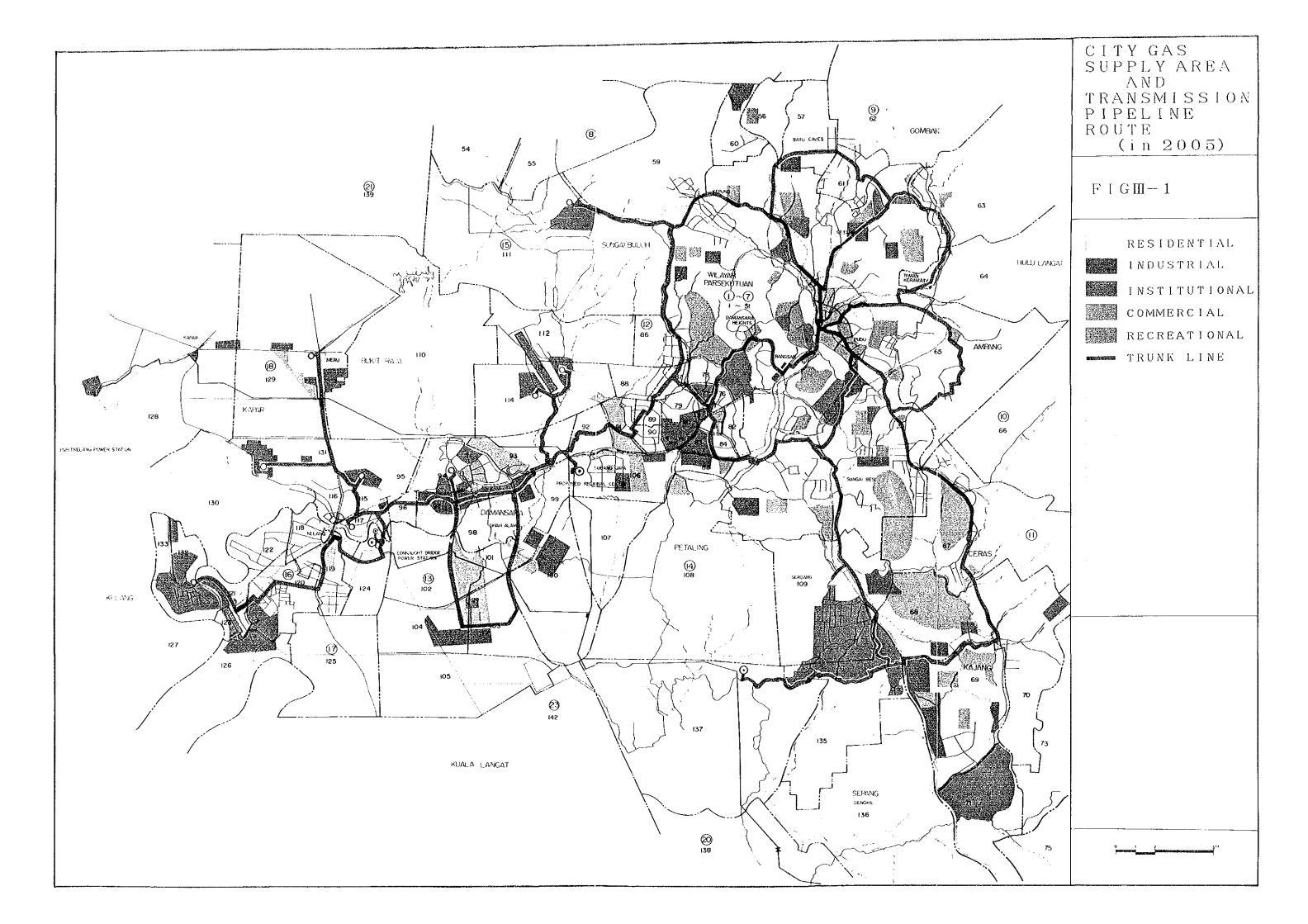
(SUMMARY)

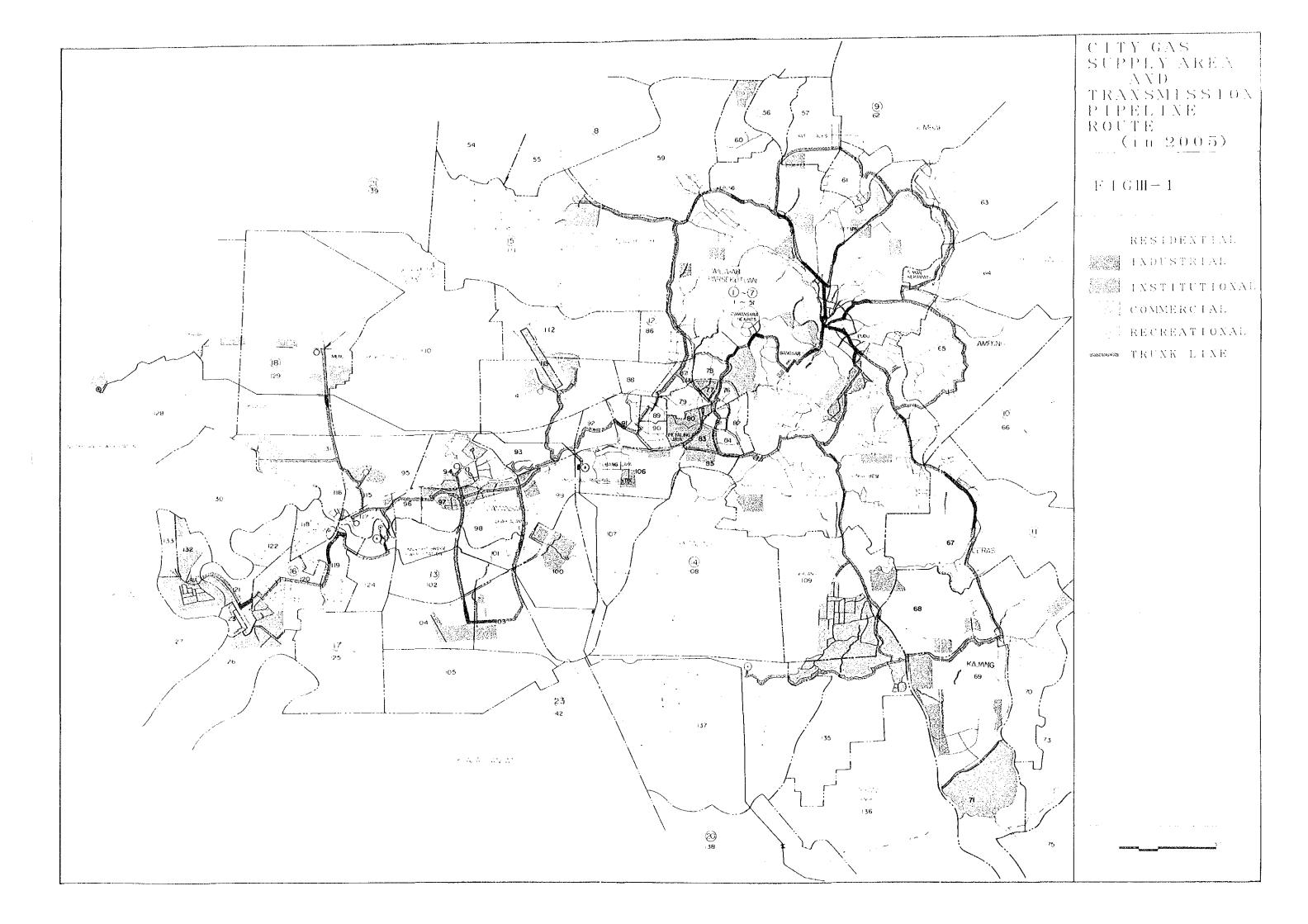
MAY, 1987

JAPAN INTERNATIONAL COOPERATION AGENCY TOKYO, JAPAN

THE FEASIBILITY STUDY REPORT ON CITY GAS DISTRIBUTION SYSTEMS IN THE KLANG VALLEY AREA OF MALAYSIA (SUMMARY)


LIBRARY


MAY, 1987


JAPAN INTERNATIONAL COOPERATION AGENCY TOKYO, JAPAN

国	条協力事	日業団
受入 月日	'87. 6. 8	113
査録 No.	16542	68.5 MP1

•

ABBREVIATION

Organization and Project

ADB	Asian Development Bank
ASEAN	Association of South East Asian Nations
BP	BP Malaysia Sdn Bhd
Consultant	Tokyo Gas Engineering, UNICO International Corporation
DID	Drainage and Irrigation Department
EPMI	Esso Production Malaysia Inc
EPU	Economic Planning Unit
EIA	Environmental Impact Assessment
ESSO	Esso Malaysia Bhd
FAO	Food and Agricultural Organization of the United Nations
FELCRA	Federal Land Consolidation and Rehabilitation Authority
FELDA	Federal Land Development Authority
F.T of K.L	Federal Territory of Kuara Lumpur
GDP	Gross Domestic Product
GDPC	Gross Domestic Originated from Commercial Sector
GDPM	Gross Domestic Originated from Manufacturing Sector
GDPR	Real Gross Domestic Products
GNP	Gross National Product
GNPR	Real Gross National Products
GRP	Gross Regional Product
GPS	Gas Pricing Study
HAM	Highway Authority Malaysia
HICOM	Heavy Industries Corporation of Malaysia
HPU	Highway Planning Unit
ICU	Implementation Coordination Unit
JACTIM	The Japan Chamber of Trade & Industry, Malaysia
JETRO	Japan External Trade Organization
JICA	Japan International Cooperation Agency
KL	Kuala Lumpur
KVPS	Klang Valley Planning Secretariate
KVRPC	Klang Valley Regional Planning Council
KV1S	Klang Valley Transportation Study

MA	Ministry of Agriculture
METP	Ministry of Energy, Telecommunication and Posts
MIDA	Malaysian Industrial development Authority
MFT	Ministry of Federal Territory
MHLG	Ministry of Housing and Local Government
MLRD	Ministry of Land and Regional Development
MPW	Ministry of Public Works and Public Utilities
MRA	Malayan Railway Administration
NEB	National Electricity Board
NUP	National Urbanization Policy
OECF	Overseas Economic Cooperation Fund, Japan
PERNAS	Perbadanan Nasional Berhad
PEIRONAS	Petroliam Nasional Berhad
PDSB	PETRONAS Dagangan Sdn Bhd
PJ	Petaling Jaya
PGSB	PETRONAS Gas Sdn Bhd
PGUP	Peninsular Gas Utilization Project
PMD	Prime Minister's Department
Project	Overall project including planning, design, construction, operation,
-	etc. related to the natural gas based city gas supply system to be
	located in the Klang Valley area of Malaysia
PWD	Public Works Department
SERU	The Social Economic Research Unit
SHELL	Shell Malaysia Berhad
SIRIM	Standards and Industrial Research Institute of Malaysia
SSB	Sarawak Shell Bhd
SSS	Selangar State Secretariate
SEPU	State Economic Planning Unit
s/W	"Scope of work" which is a written scope of feasibility study on
	the project contained in the agreement between EPU and JICA
TCD	Telecommunication Department, Malaysia
TPGPP	Trans Peninsular Gas Pipeline Project
UDA	Urban Development Authority
UNDP	United Nations Development Programme
WHO	World Health Organization

Unit	and Con	version

mm	Millimeter
em	Centimeter
m	Meter
km	Kilometer
in	Inch $(1 \text{ in } = 2.54 \text{ cm})$
ft	Foot (pl. feet)(1 ft = $0.305m$)
cm ²	Square centimeter
m2	Square meter
ha	Hectare (1 ha = $10,000m^2 = 2.471acres$)
ft2	Square foot $(1 \text{ ft}^2 = 0.0929\text{m}^2)$
m ³	Cubic meter
Nm 3	Normal cubic meter at 0°C and 760 mm Hg
MMm ³	Million cubic meters
SCF, eu ft, eft	Standard cubic foot $(1 \text{ ft}^2 = 0.0283 \text{m}^3)$
MMSCF	Million standard cubic feet
1	Liter
kl	Kiloliter
gal	Gallon (1 British gallon = 4.546litters,
	1 U.S. gallon = 3.785litters)
bb1	Barrel (1 barrel = 42 U.S. gallons)
g	Gram
kg	Kilogram
t, T, ton, Ton	Metric ton
lb	Pound (1 $lb = 0.454 kg$)
lmt	Liquid metric ton (50% aques solution of caustic soda)
sec	Second
min	Minute
h, hr, Hr	Hour
d, D	Day
m, M	Month
у, Ү	Year
°C	Degree centigrade
٥È	Degree Fahrenheit
cal	Calorie
Kcal, K cal	Kilo calorie
BTU, Btu	British thermal unit (1 BTU = 0.252 K cal)
·	

.

•

KBOE KTOE		· · ·	
KTOE	Kilo barrel Oil Eqivalent	• • • • •	s to a star
	KIlo ton Oil Equivalent		
MMBTU, MMBtu	Million British thermal units		
LHV	Low heating value		
HHV	High heating value		· · ·
PJ	Petajoule A Ampere	н 	
V	Volt		•
W	Watt		
kW	Kilowatt		
mW	Megawatt		;
kV A	Kilo-volt ampere		
mVA	Mega-volt ampere		
kWH, kWh	Kilowatt-hour	• •	
mWH, mWh	Megawatt-hour		
HP	Horsepower		
%	Percent		
ppm	Parts per million		
g/Nm ³	Gram per normal cubic meter	·	
pH, PH	Hydrogen ion concentration		
kg/cm ²	Kilogram per square centimete	r	
lb/in2	pounds per square inch		
mmAq	mm aqua (= water)		
t/d, T/D	Metric tons per day		
t/y, ton/y,			
MTA, MT/Y, T/Y	Metric tons per year		
MMSCFD, MMsefd	Million standard cubic feet pe	r day	
BPCD	Barrels per calendar day		
BPSD	Barrels per stream day		
TPCD	Tons per calendar day		
TPSD	Tons per stream day		
MD	Man days		

Technical Terms

•

ATF	Aviation Turbine Fuel
LNG	Liquefied Natural Gas
LPG	Liquefied Petroleum Gas
NG	Natural Gas
CNG	Compressed Natural Gas
BFW	Boiler Feed Water
CIW	Cooling Tower Water
FO	Fuel Oil
MFO	Medium Fuel Oil
MTBE	Methyl Tertiary Butyl Ether
E.P.C.	Engineering, Procurement and Construction
Flash Point (COC)	Flash Point (Cleveland Open Cup)
MM	Millions or Man-Months

Financial and Economic Terms

DCF	Discounted cash flow
IRR, IRROI	Internal rate of return on investment
EIRR, EIRROI	Economic internal rate of return on investment
FIRR, FIRROI	Financial internal rate of return on investment
IRROE	Internal rate of return on equity
C & F	Cost and freight
CIF	Cost, insurance and freight
FOB	Free on board
EMP	Energy Master Plan

Exchange Rate

M\$, MD	Malaysian Ringgit (1 U.S. Dollar = M\$2.65)
\$, U.S.\$	U.S. dollar
Yen	Japanese Yen (1 U.S. Dollar = 167 Yen)

Energy	Carolific Value in MMBTU	Carolific Value in kcal	Carolific Value as Natural Gas
LPG	47.23 MMBTU/Ton	11,902 kcal/kg	1 kg = 1.2051 Nm ³
Kerosene	43.97 MMBTU/Ton (S.G. 0.8)	8,864 kcal/liter	1 liter = 0.8975 Nm ³
Diesel	43.33 MMBTU/Ton (S.G. 0.85)	9,281 kcal/liter	1 liter = 0.9398 Nm^3
M.F.O.	41.03 MMBTU/Ton (S.G. 0.95)	9,823 kcal/liter	1 liter = 0.9946 Nm3
Coal Bitumunous	11,000 BTU/lb	6,111 kcal/kg	$1 \text{ kg} = 0.6188 \text{ Nm}^3$
Wood		3,000 kcal/kg	$1 \text{ kg} = 0.3038 \text{ Nm}^3$
Charcoal		7,000 kcal/kg	1 kg = 0.7088 Nm3
Electricity		860 kcal/kwh	$1 \text{ kwh} = 0.0871 \text{ Nm}^3$
Natural Ga	s 1,050 BTU/SCF	9,876 kcal/Nm ³	

ENERGY CONVERSION TABLE -

TABLE OF CONTENTS

SUMMARY	
1. THE BACKGROUND AND RELEVANT CONDITIONS	S- 1
2. PRICES OF NATURAL GAS AND CITY GAS	S- 4
3. ENERGY CONSUMPTION IN EACH SECTOR	S- 4
4. POTENTIAL CITY GAS DEMAND	S- 5
5. DESIGN OF INTEGRATED GAS DISTRUBUTION SYSTEM	. S- 6
6. CONSTRUCTION COST	. S- 8
7. FINANCIAL AND ECONOMICAL ANALYSIS	S- 9
8. CONCLUSION AND RECOMMENDATION	. S-17

Attachment

SCOPE OF WORK

Page

LIST OF TABLE (SUMMARY)

1	ECONOMIC INDICATOR IN KLANG VALLEY AREA
2	PROJECTED PURCHASING AND RETAIL PRICES OF PRODUCTS, KUALA LUMPUR
3(1)	TOTAL ENERGY DEMAND IN THE CONSUMPTION FIELD RELATED TO CITY GAS IN EQUIVALENT VOLUME OF NATURAL GAS (BASE CASE)
3(2)	TOTAL ENERGY DEMAND IN THE CONSUMPTION FIELD RELATED TO CITY GAS IN EQUIVALENT VOLUME OF NATURAL GAS (MEDIUM CASE)
3(3)	TOTAL ENERGY DEMAND IN THE CONSUMPTION FIELD RELATED TO CITY GAS IN EQUIVALENT VOLUME OF NATURAL GAS (LOW CASE)
(2)	POTENTIAL CITY GAS DEMAND (BASE CASE) POTENTIAL CITY GAS DEMAND (MEDIUM CASE) POTENTIAL CITY GAS DEMAND (LOW CASE)
(2)	NUMBER OF ACTUAL CONSUMER (BASE CASE) NUMBER OF ACTUAL CONSUMER (MEDIUM CASE) NUMBER OF ACTUAL CONSUMER (LOW CASE)
(2)	SALES VOLUME OF CITY GAS BY SECTOR BY YEAR (BASE CASE) SALES VOLUME OF CITY GAS BY SECTOR BY YEAR (MEDIUM CASE) SALES VOLUME OF CITY GAS BY SECTOR BY YEAR (LOW CASE)
(2)	CONSTRUCTION COST (BASE CASE) CONSTRUCTION COST (MEDIUM CASE) CONSTRUCTION COST (LOW CASE)
8	ADDITIONAL DEMAND STUDIES
9	RESULT OF FINANCIAL AND ECONOMIC ANALYSIS
10	ENERGY PRICE PROJECTION BY EPU
11	SENSITIVITY ANALYSIS ON RETURN ON INVESTMENT
) FOREIGN CURRENCY EARNINGS (BASE CASE)) FOREIGN CURRENCY EARNINGS (INTEREST RATE 10%)
13	FINANCIAL INTERNAL RATE OF RETURN OF RETICULATION IN FIXED PRICE BASE IN 1986
14	SCHEDULE OF PREPARATORY WORKS TOWARD THE START-UP
	2 3(1) 3(2) 3(3) 4(1) (2) (3) 5(1) (2) (3) 5(1) (2) (3) 7(1) (2) (3) 7(1) (2) (3) 8 9 10 11 12(1) 12(2) 13

LIST OF FIGURES (SUMMARY)

- Figure 1(1) EXISTING LAND USE IN URBAN AREA IN 1985 (2) EXISTING LAND USE IN URBAN AREA IN 2005
- Figure 2 CRUDE OIL PRICE FORECAST
- Figure 3 PROCEDURES OF CONCEPTIONAL DESIGN
- Figure 4 SUPPLY-SIDE CITY GAS CONVERSION MODEL FOR HOUSEHOLD AND RESTAURANT DEMAND
- Figure 5(1) BASIC IMPLEMENTATION SCHEDULE (BASE CASE) 5(2) BASIC IMPLEMENTATION SCHEDULE (MEDIUM AND LOW CASE)
- Figure 6 DEVELOPMENT PROGRAM OF TRANSMISSION AND DISTRIBUTION SYSTEM
- Figure 7 TRANSMISSION ROUTE, DIAMETERS AND CONSTRUCTION SCHEDULE
- Figure 8 SENSITIVITY ANALYSIS OF RETURN ON INVESTMENT FOR BASE CASE

1. PROJECT BACKGROUND AND RELEVANT CONDITIONS

1.1 Diversification of Energy away from Petroleum Products

Malaysia has oil and gas fields and is exporting crude oil and also gas in the form of LNG.

However, the volume of reserves of oil and gas are estimated as 2,350 million bbl and 48.5 TCFT. According to the British Petroleum, 1986 statistical review of world energy, proven oil and gas reserves in Malaysia are 19.5 years and over 100 years.

Due to this energy situation, the Malaysia Government has decided to reduce petroleum product consumption by diversification, whereby locally produced energy, like natural gas, coal and hydraulic power, would have a greater role than at present.

In keeping with this purpose, the Malaysia Government has decided to construct the Trans Peninsular Gas Pipeline to convey natural gas from East to West and South Malaysia to feed natural gas to electric power station and replace fuel oil.

Though the initial consumers to be supplied with natural gas would be the major power stations along the West Coast, gas would also be made available to industrial plants and other consumers along and in the vicinity of the pipeline route.

The construction of the pipeline is expected to be completed by 1989, therefore, natural gas for the city gas system will be available from 1990. The calorific value of natural gas is 1,050 BTU/SCF + 10%.

S-1

1.2 Necessity for City Gas in the Klang Valley Area

The Klang Valley area consisting of F.T. of K.L. and four districts of Selangor (Gombak, Petaling, Klang and Hulu Langat) is the most developed area in Malaysia, with its 2.7 million inhabitants, vigorous commercial activities and highly technological industries. The energies supporting this city area, apart from electricity, are mainly cylinder-LPG, kerosene and charcoal, which are the fuels requiring human hands in the final stage of transportation.

As a city develops to be more concentrated and high-rising, as Klang Valley now does, other forms of energies more fitted to the urban structure in distribution efficiency and public safety is called for. City gas, energy delivered through conduits, has been the answer to this in most cases of large cities in the world and it will be so in Klang Valley, too, judging by the strong demand for the so-called reticulation system now being met by PETRONAS with bulk LPG.

So, in order to efficiently utilize the natural gas to be conveyed to the west coast of the peninsular, the Malaysian Government intended to study the feasibility of establishing, in the Klang Valley area, a gas distribution system to meet the general demand as referred in the above as well as the expected demand in industrial sector, and has requested the Japanese Government of a feasibility study. The latter agreed and the scope of the study has been finalized between the both governments as defined in Scope of Work also attached.

1.3 Economic Growth in the Klang Valley Area

The Study Team has estimated the GRP, population and employment in Klang Valley area based on the Fifth Five Year Plan and the Klang Valley Perspective Plan as the base case and has estimated the GRP and employment in the same area based on the medium and low growth rates of GDP of Malaysia proposed by EPU as alternative cases in Table 1.

Economic growth of Malaysia (GDP) was 7.8% per annum during 1970-1980 and 5.8% during 1981-85. It is estimated as 5.0% during 1986-90, by Fifth Five Year Plan. However, EPU proposed medium growth rate of 3% and low case of 1%. The growth rate of GRP of F.T. of K.L. is higher than average and that of Selangor State is lower than average in Fifth Five Year Plan.

However, the economic growth rate in the four districts of the Klang Valley Area is estimated as higher than average, corresponding to the Klang Valley Perspective Plan.

GRP in Klang Valley Area was 15,511 million M\$ in 1985 and is estimated as 48,842 million M\$ in 2005 in 1978 constant prices for base case, 44,363 million M\$ for medium case and 30,141 million M\$ for the low case.

Annual rate of population growth during 1986-90 used in the Fifth Five Year Plan is expected as 2.5% for Malaysia, 3.4% for F.T. of K.L. and 3.4% for Selangor State in where growth rate is higher due to net internal migration. Population Klang Valley Area was 2,534,000 in 1985 and will be 5,450,000 in 2005.

Employment in Klang Valley Area was 950,000 in 1985 and will be 2,190,000 in 2005 for base and medium cases and 2,075,000 for the low case.

In order to achieve the best development of the Klang Valley Area, Klang Valley Secretariate and other organization, like F.T. of K.L. Selangor State, Klang, Shah Alam, Bangi and Gombak are at work and have announced several plans.

The Study Team has analyzed the above reports. The land use in the urban area in Klang Valley in 1985 and 2005, based on the above several plans by Klang Valley Transportation Study Team are shown in Figure 1 (1),(2).

The Klang Valley Area was divided into 133 zones by the Klang Valley Transportation Study Team which decided to apply the same zoning because there is the same base between both studies – Transportation and City gas – for market analysis.

Population, GRP and employment in Klang Valley Area are distributed to each zone, for estimating energy consumption in each zone. 2. PRICES OF NATURAL GAS AND CITY GAS

PETRONAS and the Study Team have agreed to use fuel oil price for a electric power station as the price of natural gas to be fed to the city gas system and price of fuels which will be replaced by city gas as city gas sales prices as LPG price in cylinder for households and restaurants and LPG price in bulk for hotel and manufacturing industries. However, the estimated economic value of natural gas by EPU is used for Economical Analysis. (Table 10)

Price of petroleum products (including fuel oil and LPG) fluctuate with the crude oil price which is forecast as mentioned in Figure 2 proposed by EPU.

FOB Singapore prices of petroleum products are estimated from the above crude oil price of the low scenario by using co-relation method and sales prices of petroleum products in Malaysia are estimated by adding the several charges to FOB Singapore prices. (Table 2) The effect of crude oil price difference on Economical Analysis will be analyzed by sensitivity analysis. However, LPG price based on FOB price of LPG at Arabian Gulf Coast estimated by EPU (Table 10) is used for economic analysis in consideration of that LPG supply will exceed than demand in Malaysia and LPG will be exported in future.

Table 2 shows the estimated sales price of petroleum product in Malaysia.

3. ENERGY CONSUMPTION IN EACH SECTOR

The team studied the actual energy consumption in the Household, Commercial and Industrial sectors by several measures including questionnaire survey, interview survey, telephone survey, and direct weight measurement of LPG cylinders besides data analysis.

The energy covered by the study was that for cooking and hot shower use in households and the energy excepting electricity in restaurants, hotels and manufacturing industries.

The estimated energy consumption in each sector in 1985 and 2005 equivalent natural gas volume is mentioned below. (See Table 3 for details)

S-4

(Unit: million Nm³/year)

	1985 (A)		2005 (4	A')	2005	/1985 (A')/(A)
		Base	Medium	Low	Base	Medium	Low
Household	125.0	279.5	277.1	268.8	2.24	2.21	2.15
Restaurant	43.4	100.0	100.0	94.7	2.31	2.31	2.18
Hotel	7.5	19.0	19.0	19.0	2.54	2.54	2.54
Industrial	242.3	779.4	707.4	478.9	3.22	2.92	1.98
Total	418.2	1,177.9	1,103.5	861.4	2.82	2.64	2.06

4. POTENTIAL CITY GAS DEMAND

Based on the results of the actual energy consumption study, the energy to be reasonablly converted to city gas is considered to be the LPG used in all sectors, a part of the kerosene used for cooking in households (up to 60% in base case) and the energy to be consumed by 50% of new installation of hot showers in households. (See Table 4 for details)

	1985(B)		2005 (B	8 ¹)	1985	2005	(B')/(A	')
		Base	Medium	Low	(B/A)	Base	Medium	Low
Household	73.0	209.0	197.1	182.3	58.4	75.0	71.1	67.8
Restaurant	33.3	76.9	76.9	72.9	76.9	76.9	76.9	76.9
Hotel	1.6	4.1	4.1	4.1	21.7	21.7	21.7	21.7
Industrial	15.0	48.2	43.7	29.6	6.2	6.2	6.2	6.2
Total	122.9	338.2	321.8	288.9	29.4	28.7	29.2	33.5

(Unit: million Nm3/year)

Furthermore, the demand for city gas by replacing fuel oil used in manufacturing industry, by using for cooling of buildings and CNG demand for automobiles were estimated for reference. The additional demands estimated for 2005 are mentioned below. (See Table 8 for details)

S-5

			(Unit: million Nm ³ /year)
Fuel oil in industry	High case	731.3	100% replaced
	Low case	365.7	50% replaced
Cooling of buildings	High case	66.2	50% of new buildings after 1996
	Low case	27.8	4 – 40% of new buildings after 1996
CNG for automobiles		154.7	PGSB estimated

5. DESIGN OF INTEGRATED GAS DISTRIBUTION SYSTEM

An integrated gas distribution system was designed based on the forecast potential city gas demand, by the following steps. The design procedures are roughly described in Figure 3.

As the basic supply facility system, a system comprising 10 kg/cm² transmission system, 3 kg/cm² distribution system for large-volume customers and 0.3 kg/cm² general distribution system were selected. This system fits a relatively sparsely distributed demand and possesses high adaptability for change in demand in future.

The boundary of the built-up area in 2005 was determined based on careful studies of the land use plans in the Klang Valley Perspective Plan and other official structure plans of the districts, with the help of detailed field surveys. This boundary was taken as the outer limit of the maximum city gas supply area.

A transmission pipeline route was designed to supply natural gas from the Trans Peninsular pipeline to as wide an area as possible within the supply area. This was done on an actual route survey basis, which means every section of the route was confirmed available for 10 kg/cm^2 pipeline installation. The designed transmission pipeline route is shown in Figure of top page with the supply area.

The potential city gas demand which can be converted to city gas and the rate of the conversion were assumed as shown in Figures 4. There, all the

population outside the built-up area and half of the population in the existing squatter area were assumed to remain intact.

The basic implementation schedule is mentioned in Figure 5. As the basic construction schedule, 5 years for the transmission pipeline and 4 years for the distribution system after the introduction of city gas to the area were assumed as mentioned in Figure 6. As for the transmission line construction schedule, there are two alternatives in the schedule of introducing city gas to the city center first then to the outer skirt of the city (Center Case) and the other is a plan with the reverse propagation direction (Circular Case).

There is no big difference between FIRR of both cases, and the latter was taken as the design base.

FIRR (Fixed Price)

	Before Tax (%)	After Tax (%)
Center Case	11.07	9.04
Circular Case	11.19	9.11

The load concentration factors necessary for design flow rate calculation was determined based on the loads survey carried out on the household demand in Klang Valley and the experience with similar demand in Japan. A 12% and 24% of concentration of the daily demand in the peak hour for household and commercial demand respectively and 1/2,000 concentration of the yearly demand on the same peak hour for industrial consumption were adopted as the design basis.

The route, diameters and construction schedule of the transmission pipeline are designed and determined based on the above conditions, and are shown in Figure 7.

For designing the distribution system, the result of the network designs for these areas were thoroughly studied and applied to all the area to obtain the construction cost of the distribution network. The number of actual consumers and the sales volume of city gas as the final result of the conceptual design of the integrated gas distribution system are shown in Tables 5 and 6.

The annual sales volumes will attain to the amounts in the following table at the end of 2005 and is assumed to keep the same amounts in 2006 and after.

Of course, it is possible to meet the additional demand after 2006 by the additional investment.

(Unit: million Nm³/year) 2006 and after (C) (C)/(B') (C)/(A')

· · · .	Base	Medium	Low	Base	Mediur	n Low	Base	Mediur	n Low
Household	165.8	153.3	141.8	79.3	77.8	77.8	59.3	55.3	52.8
Restaurant	69.3	68.5	64.9	90.2	89.1	89.1	69.4	68.6	68.5
Hotel	3.4	3.3	3.3	82.0	79.1	79.1	17.8	17.2	17.2
Industrial	33.3	28.0	17.2	69.1	64.0	58.3	4.3	4.0	3.6
Total	271.8	253.1	227.2	80.4	78.6	78.7	23.1	22.9	26.4

6. CONSTRUCTION COST

Results of the calculation of the construction cost for the designed integrated gas distribution system is shown by year and by cost item in Table 7.

The unit construction costs used in that calculation were obtained from the survey in Malaysia and the studies on the construction procedures.

7. FINANCIAL AND ECONOMICAL ANALYSIS

7.1 Outline of the Project Scheme

The project scheme is assumed as follows.

(1) Incorporation : Independent Sdn. Bhd.

(2) Organization : Self-supporting Organization

(3) Number of Employees:

				Base case	Medium/Low case
		•			· · · · · · · · · · · · · · · · · · ·
End	of	1995	:	981	389
End	of	2000	: ·	1,006	1,088
End	of	2005	:	1,133	1,090

(4) Project Life Span :

		Base case	Medium/Low case
		<u> </u>	
Start of investment	:	1990	1993
End of life	:	2025	2028
Total life span	:	36 years	36 years

(5) Implementation schedule

The project implementation schedule is assumed to consist of the following phases of investment packages,

	Base case	Medium/Low case
Phase I	1990-1995	1993-1998
Phase II	1996-2000	1999-2005
Phase III	2001-2005	

Throughout the period, successive investments to complete the ultimate city gas distribution system will be made according to the demand increase, nevertheless, further investment to expand the system to meet increasing demand for after the year of 2006, will not be taken into account.

(6) Total capital requirement

Total capital requirement for the project is estimated as follows.

	(Unit: Million US\$)				
		Phase			
	I	II	III	Total	
Land cost	0.2		-	0.2	
Construction Cost	270.8	93.8	57.0	421.6	
Preoperational Expenses	1.8	_	-	1.8	
Interest during Construction	24.6	12.8	5.6	43.0	
Working Capital	2.4	2.0	1.2	5.6	
Total	299.8	108.6	63.8	472.2	

BASE CASE

S-10

MEDIUM CASE

	(Unit: Million US\$)				
	Pł				
	1	П			
Land cost	0.2	_	0.2		
Construction Cost	301.5	130.7	432.2		
Preoperational Expenses	1.9		1.9		
Interest During Construction	27.0	27.6	54.6		
Working Capital	2.6	2.6	5.2		
Total	333.2	160.9	494.1		

LOW CASE

	(Unit: Million US\$)			
	Pł	Total		
	I	П		
Land cost	0.2	-	0.2	
Construction Cost	300.0	129.2	429.2	
Preoperational Expenses	1.9	-	1.9	
Interest During Construction	26.9	27.3	54.2	
Working Capital	2.5	2.3	4.8	
Total	331.5	158.8	490.3	

The capital requirement estimate above is on June, 1986 basis and not include price contingencies.

(7) Project cost financing plan

The total capital requirement will be financed by owner's equity (30%) and a long term foreign loan (70%) as base. For convenience, the long term foreign loan is assumed to be available at conditions as follows,

	Period	:	25 years
-	Interest	:	5% p.a.
-	Grace Period	:	7 vears

The effect of increase of interest to 10% on cash flow and foreign currency balance are studied.

(8) Infration rate

The following inflation rates are adopted by EPU suggestions.

	to 1990	1991 onwards (%)
Malaysia	1.4	3.5
Foreign	3.2	5.0

(9) Operating plan and sales volume

Commercial operation of the project will be commenced in 1992 for base case and in 1995 for medium and low case.

Sales volume of the city gas and the LPG by reticulation systems in 2005 are estimated 262.5 million Nm^3 and 5.5 million Nm^3 respectively for base case, 244.4 million Nm^3 and 5.0 million Nm^3 for medium case and 219.2 million N^3 and 4.7 million Nm^3 for low case as mentioned in Table 9.

It is assumed that the sales volume of the gases after 2006 through 2025 will be kept as the same level as at the end of 2005.

7.2 Financial and Economic Analysis

Based on the conditions and estimations mentioned above, financial and economic analysis were made.

The detailed information is attached in Annex, and financial and economic internal rate of return and net present value are as follows as mentioned in Table 9.

FIRR

						(%)
	Fixed Price		Fixed Price with Modification 1/		Current Price	
	Bfr Tax	Aft.tax	Bfr.tax	Aft.tax	Bfr.tax	Aft.tax
Base case	11.19	9.11	14.28	11.35	17.67	14.18
Medium case	10.60	8.74	14.02	11.19	16.91	13.69
Low case	9.52	7.96	12.81	10.33	15.67	12.76

EIRR

		·	(%)
	Fixed	Fixed price with	Current
	Price	Modification $1/$	Price
Base case	10.78	12.32	17.20
Medium case	10.21	11.92	16.66
Low case	9.20	10.85	15.52

 $\underline{1}$ / Fixed price excepting crude oil price which is taken from EPU estimation

				(U	nit: Milli	on US\$)
			Fixed Price with Modification 1/		Current	Price(%)
en de la serie	Bfr.Tax	Aft.tax	Bfr.tax		Bfr.tax	Aft.tax
and and an and a second se	· . · ·		and the	n Registre state st		
Base case	-57.8	-81.4	-11.6	-53.4	71.0	-19.1
Medium case	-70.2	-91.7	-16.7	-59.0	60.3	-36.4
Low case	-85.2	-100.9	-36.3	-70.5	20.3	-60.2

Financial Net Present Value (Cut off Rate 15%)

	(Unit: Million US			
	Fixed Price	Fixed price with Modification <u>1</u> /	Current Price	
Base case	20.3	58.8	334.0	
Medium case	7.5	51.1	363.1	
Low case	-16.2	23.3	290.9	

Economic Net Present Value (Cut off Rate 10%)

1/ Fixed price excepting crude oil price which is taken from EPU estimation

The internal rate of return for all cases of financial and economic analysis at the fixed price base are about 10% and are not so big difference between for base case, medium case and low case, that means, the change of economic growth rate does not effect so big on the internal rate of return.

However, the fixed price base is based on the price level in June, 1986, when the crude oil price was bottom, therefore, the fixed price with modification by using crude oil price estimated by EPU is considered as more realistic. In the case of the fixed price with modification, the internal rate of return is improved.

In the case of fixed price with modification, EIRR is worse in comparison with FIRR, because of that the increase rate of price of LPG estimated by EPU based on the FOB price of LPG in Saudi is relatively low in comparison with the price increase of crude oil as mentioned in Table 10, accordingly the price difference between LPG sales price based on LPG price and natural gas price based on fuel oil price becomes to low.

As present value, cut off rate is assumed for financial as 15% and for economic as 10%, therefore, in the case of financial present value at current price and before tax only become to plus, whereas, in the case of economic present value at fixed price of low case only becomes to minus.

The sensitivity analysis on FIRR for base case is mentioned in Table 11 and Figure 8, and the effect of each factors are as follows:

(1) The effect of crude oil price

In case of high scenario of crude oil price estimated by EPU, crude oil price is more than 20% higher than price in case of low scenario. In this case, FIRR in current term before tax becomes 18.7%.

(2) The effect of natural gas price

Even in the low price scenario, there is a possibility that natural gas price will become lower than fuel oil price calculated by crude oil price. If natural gas price is 20% lower than fuel oil price, FIRR becomes 20.15% at current price base for base case.

When natural gas price becomes lower than fuel oil price, the fuel oil and diesel oil used in manufacturing industry will be replaced by city gas. The amount replaced by town gas and the construction cost for this amount are estimated in Table 8. When natural gas price is lower than fuel oil price by 20%, the internal rate of return including the demand by replacing 50% of fuel oil used in manufacturing industry becomes to 20.64% which is higher than normal case of 20.15%.

(3) The effect of LPG price

If sales price of city gas is 20% higher or lower than LPG cylinder price, FIRR will be 15.3 - 21.0%. In the study, investment cost included whole cost including the cost of user, therefore, it is unneccessary to reduce sales price than LPG price. (4) The effect of investment cost

If investment cost is 20% higher or lower than the estimated one, FIRR becomes to 15.3 - 21.0%.

In the study, as physical contingency, 20% of total construction cost is included.

To judge the soundness of cash flow, debt service ratio (D.S.R) is calculated. The result is mentioned below.

 $D.S.R = \frac{Profit \text{ on after tax + Depreciation + Interest on L/T loan}}{Repayment on L/T loan + Interest on L/T loan}$

D.S.R (6 years after	Base Case	Medium Case	Low Case	
start of operation)	1.92	1.83	1.74	
D.S.R (mean value)	5.09	4.86	4.45	

6 years after start of operation is the first year of repayment and is the most tight year.

D.S.R even in the most tight year is over 1.5 which shows the soundness of cash flow.

If capital ratio in the investment is increased from 30% to 40% and 50%, D.S.R for base case is improved as follows.

	30%	40%	50%
D.S.R (6 years after start of operation)	1.92	2.21	2.63
D.S.R (mean value)	5.09	5.99	7.25

If annual interest rate on long term loan is increased from 5% to 10% in case of capital ratio of 30%, D.S.R for base case is decreased from 1.92 to 1.38 in the 6th year after the start of operation, after that, the cash flow keeps sound level.

In the first year of start of operation only, short term loan is necessary due to the low income against the high investment cost, however, after first year, no shortage is occured.

Even in case of the annual interest rate at 10%, the cash flow is also no poblem.

The soundness of finance was obtained by the assumption of the good finance conditions.

The other financial indicators and cost analysis are illustrated in ANNEX and which show no problems.

8. CONCLUSION AND RECOMMENDATION

8.1 Viability of the Project

The difference due to change of economic growth rate and between financial and economic analysis is not so big as mentioned in Table 9.

Due to the difference of cut off rate, in principle, the present value of economic analysis is plus and of financial analysis is minus excepting before tax at current price base.

The required foreign currency for repayment, interest and maintenance can be covered by the foreign currency earning amount by LPG export replaced by city gas in each year and from before completion of repayment, foreign currency balance is surplus, therefore, the project can contribute to the improvement of foreign currency balance. (Table 12)

Also, this project has the merit of supplying clean and convenient energy to clients in the Klang Valley area and it will contribute to reducing pollution.

As mentioned above result, this project is recommendable as a national project.

Financial internal rate of return is 17.67% before tax at current price base in case of the low price scenario of crude oil for base case. This rate can be considered as enough for a public project, however, it is not enough for private investment.

Even in case of the low price scenario of the crude oil, there is a possibility that the natural gas price will become lower than the price of fuel oil after 1995. In such a case, FIRR will be improved to be higher than 20%.

Futhermore, natural gas price will become much lower than the price of fuel oil, city gas demand will increase by replacement of diesel oil and fuel oil used by manufacturing industry.

As mentioned above, this project is profitable as a national project, however, though there is a possibility of improvement of FIRR by reestimation of crude oil and natural gas, the risk is too big for a private company.

8.2 Cash Flow

In the first year of start of operation, short term loan is necessary to cover the shortage of fund, but after that no shortage will occure. For base case, even interest rate 10%, repayment of long term credit is also no problem due to the good financial conditions.

8.3 Organization

Because of high profitability as a national project but low profitability as a private project, it is desirable for this project to be realized by public investment. In case of public investment, the long term loan with low interest could be available from a foreign government and will be useful for this project.

As the base of this study, the company is suppossed to be as a not subscribed private company of which share capital is fully owned by PETRONAS and or its subsidiaries.

Now in Malaysia, there is a policy to promote privatization and the possibility of privatization of this project is also studied.

The merit of privatization is to introduce private capital, to activate the company and to prevent the excessive enlargement of the organization.

As mentioned in the Reference information-1, most of city gas companies in the world are private, however, this project is not so profitable for the private company, therefore, without any incentive, it will be very difficult to attract private investment.

To activate and/or to prevent the enlargement of the organization, some portion of the operation of the company can be entrusted to a private company.

There are several methods of entrustment of operation, for example, counting meter and collecting fee which require many staffs can be entrusted as in Japan and part of sales promotion and maintenance can be also entrusted.

8.4 The problems to be considered when this project is executed.

This project is considered as a good project to be promoted by the nation, and the following items should be taken into account when the project is realized.

(1) The forecast of natural gas price

In this study, the economical value of natural gas was given by EPU, however, the estimated value of natural gas for FIRR was not given and was estimated as the same price with fuel oil.

This project is to utilize the natural gas which will be conveyed through the Trans-Peninsula Pipeline, therefore, the viability of this project stands on the same ground as the Trans-Peninsula Pipeline. Therefore, if the natural gas price is forecasted in relation to crude oil price, it is desirable to re-calculate of FIRR.

(2) Promotion of reticulation system by LPG before construction of city gas system

> The viability of a reticulation system (by LPG) is not so high as mentioned in Table 13 because the difference of price between LPG in bulk and in cylinders is not so big. In consideration that this project is useful as a national project, it is desirable to promote reticulation before installation of city gas system.

> At that time, it is desirable that some portion of construction cost of reticulation is borne by the land developer because the cost of reticulation system is minor in comparison with the total cost of land development.

(3) Monopoly to be granted

Due to the high public character of this project and the high investment cost, a monopoly in the service area should be given. Therefore, reticulation is also recommendable for promotion by PETRONAS.

(4) Establishment of safe measure

City gas is more safe as a project in comparison with LPG distribution if the necessary safety measures are taken as mentioned in Reference information-3. In this study, at the stage of construction, transportation and utilization, the necessary cost for safety for installation, for training and for delegation of foreign experts are included for this reason.

(5) Preparation of law concerning city gas business

City gas business should be fitted to the existing various laws as mentioned in the reference information-2, however, as executed in Japan and other countries, one law such as the gas utility industry law of Japan attached in ANNEX can be considered as one of measure. 8.5 Preparatory works for the Project Implementation

For the implementation of this project, when it is approved to be proceeded, various preparatory works including those to settle the problems mentioned in the previous paragraphs are foreseen. They are categorized as follows.

(1) Setting-up of a project promoting body

(2) Establishment of the project scheme for implementation

(3) Preparations for authorization and control of city gas business in general

(4) Incorporation of operating companies

(5) Basic engineering for constructing facilities and operation systems

(6) Construction of facilities and operation systems

The details of each item of these preparatory works and the program for actualizing them are proposed in Table 14.

		н		11 - 1 1	-49	1 fe ve	:**	•			n an	
	lanas e		ta ser			e Para Antonio	•		. 34.143 	en staller en taller		
ECONOMIC INDICATOR IN KLANG VALLEY AREA	1980 1985 1990 1995 2005 Growth Rate (%) 1985/95 1995/2005		II,099 I5,5I1 20,564 28,274 48,842 6.2 5.6 249 307 330 341 348 1.0 0.2 4,372 5,467 6,955 9,262 15,463 5.4 5.3 6,478 9,737 13,279 18,671 33,031 6.7 5.9	2,020 2,534 3,283 3,940 5,450 4.5 3.2 760 950 1,245 1,514 2,190 4.7 3.8		11,099 15,511 18,686 25,682 44,363 5.2 5.6	760 950 1,245 1,514 2,190 4.7 3.8		11,099 15,511 16,941 21,149 30,141 3.1 3.6	760 950 1,172 1,449 2,075 4.3 3.7		
Table 1 ECO		Base Case	GRP (M\$ Million in 1978 prices) Primary Secondary Tertiary	Population ('000) Employment ('000)	Medium Case	GRP (M\$ Million in 1978 prices)	Employment ('000)	Low Case	GRP (M\$ Million in 1978 price)	Employment (*000)	Source: Klang Valley Transportation St	

	(1)	US\$/MMBTU			(Unit:	US\$/MMBtu)
	Fuel (Dil	LPG/Cylinder	LPG/Bulk	Kerosene	Diesel Oil
Year	Excl. Duty	Incl. Duty				<u></u>
1986*1	1.81	1.97	8.71	5.80	5.48	4.72
1990	4,30	4.46	12.76	9.64	7.57	6.96
1991	4.67	4.85	13.50	10.26	8.14	7.50
1992	5.10	5,28	14.31	10.96	8.78	8.10
1993	5.56	5.74	15.17	11.71	9.46	8.74
1994	6.05	6.24	16.09	12.50	10.20	9.43
	6.60	6.80	17.10	13.39	11.01	10.19
1995		7.24	17.96	14.12	11.68	10.82
1996	7.04		18.87	14.90	12.39	11.48
1997	7.50	7.72			13.14	12.19
1998	8.00	8.22	19.83	15.72		
1999	8.56	8.79	20.89	16.63	13.98	12.91
2000	9.13	9.36	21.96	17.56	14.83	13.77
2001	9.76	10.00	23.14	18.58	15.77	14.65
2002	10.40	10.65	24,34	19.62	16.72	15.58
2003	11.11	11.37	25.66	20.77	17.78	16.55
2004	11.87	12.14	27.05	22.00	18.91	17.61
2005	12.68	12.96	28.53	23.29	20.10	18.73
2006	13.54	13.83	30.09	24.67	21.38	19.92
2007	14.46	14.76	31.74	26.13	22.72	21.19
2008	15.48	15.79	33.55	27.74	24.22	22.60
2009	16.51	16.84	35.40	29.39	25.74	24.03
2010	17.64	17.98	37.39	31.17	27.39	25.58
2011	18.84	19.19	39.50	33.06	29.14	27.23
2012	20.15	20.51	41.77	35.11	31.04	29.02
2013	21.54	21.91	44.18	37.28	33.05	30.92
2014	23.02	23.40	46.72	39.59	35,19	32.94
2015	24.59	24.99	49.42	42.04	37.47	35.08
2016	26.33	26.74	52.37	44.73	39.97	37.45
2017	28.11	28.54	55.40	47.49	42.54	39.87
2018	30.08	30.52	58.72	50.53	45.37	42.54
2018	32.18	32.63	62.23	53.76	48.38	45.38
2019	34.41	34.88	65.96	57.19	51.58	48.40
2020 2021	34.41 36.78	34.80	69.91	60.83	54.98	51.61
	39.31	39.81	74.10	64.70	58.59	55.02
2022	42.00		78.54	68.81	62.42	58.64
2023		42.52	83.38	73.32	66.63	62.62
2024	44.96	45.50	88.52	78.11	71.11	66.85
2025	48.11	48.67		83.19	75.87	71.35
2026	51.46	52.04	93.98	83.19 88.60		76.13
2027	55.03	55.63	99.76		80.93	81.22
2028	58.82	59.44	105.90	94.35	86.31	01.64

Table 2 PROJECTED PURCHASING AND RETAIL PRICES OF PETRO-PRODUCTS, KUALA LUMPUR (1) US\$/MMBTU

Source: Table 1.91

Table 2	PROJECTED PURCHASING AND RETAIL PRICES OF PETRO-PRODUCTS	•
	KUALA LUNPUR	
	(9) AC MATHINAL CAC DOULTHALDING	

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		<u>i surtant</u>		(UNIL: US\$7NOT	rmai cudic me	eter of Mu e	guivalent)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		Fuel (Dil	LPG/Cylinder	LPG/Bulk	Kerosene	Diesel Oil
1986+1 0.071 0.077 0.341 0.227 0.215 0.185 1990 0.169 0.175 0.500 0.378 0.297 0.275 1991 0.183 0.190 0.529 0.402 0.319 0.294 1992 0.200 0.207 0.561 0.430 0.344 0.311 1993 0.213 0.225 0.594 0.459 0.371 0.343 1994 0.237 0.245 0.631 0.490 0.400 0.371 1995 0.259 0.266 0.670 0.525 0.431 0.392 1996 0.276 0.284 0.704 0.553 0.486 0.4450 1998 0.314 0.322 0.777 0.616 0.515 0.476 1999 0.335 0.367 0.861 0.688 0.581 0.540 2001 0.382 0.392 0.907 0.728 0.618 0.574 2002 0.408 0.417 0.554 0.769 0.655 0.602 2003 0.435 0.446 1.006 0.814 0.697 0.648 2004 0.465 0.476 1.060 0.862 0.741 0.690 2005 0.497 0.567 0.578 1.244 1.024 0.949 0.830 2006 0.531 0.542 1.779 0.967 0.838 0.734 2010 0.691 0.752 1.465 1.221 1.073 1.002 2010	Year	Excl.	Incl.				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Duty	Duty			·	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1986*1	0.071	0.077	0.341	0.227	0.215	0.185
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1990				0.378	0.297	0.273
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1991				0.402	0.319	0.294
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1992	0.200	0.207	0.561	0,430	0.344	0.317
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1993	0.218	0.225	0.594	0.459	0.371	0.343
$\begin{array}{llllllllllllllllllllllllllllllllllll$	1994		0.245				
$\begin{array}{llllllllllllllllllllllllllllllllllll$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{llllllllllllllllllllllllllllllllllll$							
$\begin{array}{llllllllllllllllllllllllllllllllllll$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2008	0.607	0.619	1.315	1.087	0.949	0.886
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2009	0.647	0.660	1.387	1.152	1.009	0.942
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2010	0.691	0.705	1.465	1.221	1.073	1.002
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2011	0.738	0.752	1.548	1.296		1.067
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2012						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
20211.4411.4612.7402.3842.1552.02220221.5401.5602.9042.5352.2962.15620231.6461.6663.0782.6972.4462.29820241.7621.7833.2672.8732.6112.45420251.8851.9073.4693.0612.7872.62020262.0172.0393.6833.2602.9732.79620272.1572.1803.9093.4723.1712.983							
20221.5401.5602.9042.5352.2962.15620231.6461.6663.0782.6972.4462.29820241.7621.7833.2672.8732.6112.45420251.8851.9073.4693.0612.7872.62020262.0172.0393.6833.2602.9732.79620272.1572.1803.9093.4723.1712.983							
20231.6461.6663.0782.6972.4462.29820241.7621.7833.2672.8732.6112.45420251.8851.9073.4693.0612.7872.62020262.0172.0393.6833.2602.9732.79620272.1572.1803.9093.4723.1712.983							
20241.7621.7833.2672.8732.6112.45420251.8851.9073.4693.0612.7872.62020262.0172.0393.6833.2602.9732.79620272.1572.1803.9093.4723.1712.983							
20251.8851.9073.4693.0612.7872.62020262.0172.0393.6833.2602.9732.79620272.1572.1803.9093.4723.1712.983							
2026 2.017 2.039 3.683 3.260 2.973 2.796 2027 2.157 2.180 3.909 3.472 3.171 2.983							
2027 2.157 2.180 3.909 3.472 3.171 2.983							
	2026						2.796
2028 2.305 2.329 4.150 3.697 3.382 3.183	2027						2.983
······································	2028	2.305	2.329	4.150	3.697	3.382	3.183

(2) AS NATURAL GAS EQUIVALENT

(Unit: US\$/normal cubic meter of NG equivalent)

Note: Converted from Table 2 (1).

Heat value of natural gas: 9,876 kcal/normal cubic meter

Table 3(1) TOTAL ENERGY DEMAND IN THE CONSUMPTION FIELD RELATED TO CIGY GAS IN EQUIVALENT VOLUME OF NATURAL GAS (BASE CASE)

Nm ³ /Year)	
000	ļ
(1,	

Sector	Sub-sector	Use of Energy	Kind of Energy used at present	1985	066T	1995	2000	2005	Growth Rate 2005/1985
Household	All	Cooking	LPG, Kerosene Charcoal	109,723	142,155	170,603	206,109	235,983	2.15
		Hot shower	Electric power	15,268	21,366	27,448	35,703	43,531	2.85
Commercial	Restaurant	Cooking	LPG, Kerosene Charcoal	43,366	56,832	69,112	84,631	079,970	2.31
	Hotel	All heating	LPG, Fuel oil	7,470	9,516	12,675	15,828	18,988	2.54
Industrial	Manufacturing Industry	g All heating	LPG, Fuel oil Kerosene Fuel Oil	242,349	327,189	448,898	614,185	779,471	3.22
Total				418,175	418,175 557,057	728,736	956,456	956,456 1,177,946	2.82

S-25

Table 3(2) TOTAL ENERGY DEMAND IN THE CONSUMPTION FIELD RELATED TO CIGY GAS IN EQUIVALENT VOLUME OF NATURAL GAS (MEDIUM CASE)

2.64	I,1 03,471	897,582	685,564	524,563	418,176			Total	
2.92	707,455	557,723	407,992	295,664	242,349	LPG, Fuel oil Kerosene Fuel Oil	All heating	Manufacturing Industry	Industrial
2.54	18,988	15,825	12,675	9,516	7,470	LPG, Fuel oil	All heating	Hotel	
2.31	026,99	84,631	69,112	56,832	43,366	LPG, Kerosene Charcoal	Cooking	Restaurant	Commercial
2.69	41,072	33,294	25,182	20,396	15,268	Electric power	Hot shower		
2.15	235,986	206,109	170,603	142,155	109,723	LPG, Kerosene Charcoal	Cooking	LIA	Household
Growth Rate 2005/1985	2005	5000	1995	1990	1985	Kind of Energy used at present	Use of Energy	Sub-sector	Sector
(1,000 Nm ³ /Year)	(1,0								

(1,000 Nm ³ /Year)	Growth Rate 2005 2005/1985	235,986 2.15	32,837 2.15	94,720 2.18	I8,989 2.54	478,880 1.98
۳ _{۱۰} ۳ ۱	2000	206,109	28,679	81,071	15,825	407,695
RELATED	1995	170,603	23, 739	66,144	12,675	336,451
NN FIELD I VATURAL G?	1990	142,155	19,780	53,500	9,516	266, 334
CONSUMPTIC	1985	109,723	15,268	43,366	7,470	242,349
TOTAL ENERGY DEMAND IN THE CONSUMPTION FIELD RELATED TO CIGY GAS IN EQUIVALENT VOLUME OF NATURAL GAS (LOW CASE)	Kind of Energy used at present	LPG, Kerosene Charcoal	Electric power	LPG, Kerosene Charcoal	LPG, Fuel oil	LFG, Fuel oil Kerosene Fuel Oil
(3) TOTAL ENER TO CIGY GA	Use of Energy	Cocking	Hot shower	Cooking	All heating	All heating
Table 3(3)	Sub-sector C	IIA		Restaurant	Hotel	Industrial Manufacturing Industry
	Sector	Household		Commercial		Industrial

2.06

861,412

418,176 491,285 609,612 739,379

Total

Table	4(1)	POTENTIAL CITY GAS DEMAND	
		(BASE CASE)	

	· ·			(1,000 N	m ³ /Year)
Ŭŝe	1985	1990	1995	2000	2005
Household cooking	65,330	86,658	111,866	149,462	187,236
Household hot shower	7,634	10,683	13,724	17,852	21,766
Sub-total	(72,964)	(97,341)	(125,590)	(167,314)	(209,002)
Restaurant	33,360	43,718	53,165	65,102	76,902
Hotel	1,621	2,065	2,751	3,435	4,121
Manufacturing Industry	14,997	20,221	27,742	37,957	48,171
Total	122,942	163,345	209,248	273,808	338,196

S-28

.

		-		(1,000 Nm	³ /Year)
Ūse	1985	1990	1995	2000	2005
Household cooking	65,330	85,419	103,410	139,749	176,529
Household hot shower	7,634	10,198	12,590	16,647	20,537
Sub-total	72,964	95,617	116,000	156,396	197,066
Restaurant	33,360	43,718	53,165	65,102	76 , 902
Hotel	1,621	2,065	2,751	3,435	4,121
Manufacturing Industry	14,997	18,272	25,214	34,467	43,721
Total	122,942	159,672	197,130	259,400	321,810

Table 4(2) POTENTIAL CITY GAS DEMAND (MEDIUM CASE)

				(1,000 N	lm ³ /Year)
Use	1985	1990	1995	2000	2005
Household cooking	65,330	84,640	101,578	133,790	165,861
Household hot shower	7,634	9,891	11,870	14,339	16,419
Sub-total	72,964	94,531	113,448	148,129	182,280
Restaurant	33,360	41,154	50,882	62,364	72,863
Hotel	1,621	2,065	2,751	3,435	4,121
Manufacturing Industry	14,977	16,460	20,793	25,196	29,595
Total	122,922	155,210	187,874	239,124	288,859

Table 4(3) POTENTIAL CITY GAS DEMAND (LOW CASE)

•

Table 5(1) KUMBER OF ACTUAL CONSUMER (BASE CASE) Table 5(1) KUMBER OF ACTUAL CONSUMER (BASE CASE) 1 #1990 0							•							1				· .																	
Table 5(1) NUMBER OF ACTUAL CONSUMER (BASE CASE) 1 #1999 0		. 	8 11 11	-		06	56	027	256	675	860	- - - - - - - - - - - - - - - - - - -	122	410	0 0 0 7 0 7	4 C 2 X 2 X 2 X	0 v v v v	4 N 7 t	,	+ 		0	77	6	11	ст ст	7	10	12	15	17	19	22	14	2
Table 5(1) NUMBER OF ACTUAL CONSUMER (BASE CASE) Table 5(1) NUMBER OF ACTUAL CONSUMER (BASE CASE) # 1990 ====== === === === ==== === === === === === === === === === === === === === === === === === === == ==		, 1	11 11 11	0	0	06	66	70	2.9	5 1 2 8	8	м і Ю і	5 1	1 A 0 00	γ	α α α	V N 0 0	0 0 0 0	5	• 1 1		0	73	50	48	35	7	17	28	38 38	4 00	59	0	0 1 0	2
Table 5(1) NUMBER OF ACTUAL CONSUMER (BASF CASE) Table 5(1) NUMBER OF ACTUAL CONSUMER (BASF CASE) 		14		0		4	\sim	ر ما	60	85	5 N	м і 80 і	30	1 n 0 0	$ \sum_{i=1}^{n} $	4 r 20 c	4 V 0 0	ο α			066	66	99	66	66	6 6	6 6	66	66	6 6 6	20		200		2
Table 5(1) NUMBER OF ACTUAL CONSUMER (BASE CASE) 1		13	11 11 11	0		40	03	8 8 8	20	М	0	0 (5	0 0	с (с с	> c	> c	0										0	0,	(2	<u>,</u> .	÷ ư	h
Table 5(1) NUMBER OF ACTUAL CONSUMER (BASE CASE) 8 9 10 11 #1990 0 <td></td> <td>12</td> <td>11 (14 14 14</td> <td>0</td> <td></td> <td>2</td> <td>\sim</td> <td>69</td> <td>96</td> <td>69</td> <td>54</td> <td>01001001</td> <td>0 5 5 1 5 5</td> <td></td> <td>00 04 01-0</td> <td>1 K 2 L 2 K</td> <td>く マ へ マ く マ</td> <td>0 00 7 1 10 1 10</td> <td></td>		12	11 (14 14 14	0		2	\sim	69	96	69	54	01001001	0 5 5 1 5 5		00 04 01-0	1 K 2 L 2 K	く マ へ マ く マ	0 00 7 1 10 1 10																	
Table 5(1) NUMBER OF ACTUAL CONSUMER (BASE CASE) 1 #1990 0		ਜ ਜ	8 4 8 8 8	0		\sim	34	77	26	m	ŝ	1 t 1 N	γ) Λι	1 0 1 0	< л (л і	NI	ດ - ດ ມ	ა დ ი ს																	
Table 5(1) NUMBER OF ACTUAL CONSUMER (BASE CASE) 1 2 3 4 5 6 7 8 8 9 1 1 2 3 4 5 6 7 8 8 9 1 1 2 3 4 5 6 7 7 8 8 10 0		10	 	0				ω	4	ŝ	S I	ທ ເ	ΛI	ກ ເ	ΛI	Λl	Λu	n v																	
Table 5(1) NUMBER OF ACTUAL CONSUMER (BASE CASE) 1 2 5 6 7 8 1 2 5 6 7 8 7 8 1 1 2 5 6 7 7 8 7 75		0	н (11) П (11)			m	\sim	8 2	71	ω	0	0	э (0 0	2 0	о с	э с	> c																	
Table 5(1) NUMBER OF ACTUAL CONSUMER (BASE CA 1 2 3 4 5 6 7 1 2 3 4 5 6 7 75 1 #1990 0 <td></td> <td>co</td> <td>11 0 11 11 11</td> <td>0</td> <td></td> <td></td> <td>М</td> <td>H</td> <td>\sim</td> <td>0</td> <td>\sim</td> <td>ના</td> <td>Λ</td> <td>ς δ</td> <td>v</td> <td>00</td> <td>እ (እ (</td> <td>2 V 2 C</td> <td></td>		co	11 0 11 11 11	0			М	H	\sim	0	\sim	ના	Λ	ς δ	v	00	እ (እ (2 V 2 C																	
Table 5(1) NUMBER OF ACTUAL CONSUMER (B) 1 2 3 4 5 6 1 2 3 4 5 6 7 1 1 2 3 4 5 6 7 1 1 2 3 4 5 6 7 1 1 2 3 4 5 5 6 7 1 1 2 2 3 4 5	E CA	~	11 (11 11	0			S	ω	ŝ	÷,																									
Table 5(1) NUMBER OF ACTUAL CONSUM 1 2 3 4 5 1 11 2 3 4 5 1 11990 0 0 0 0 0 2 11991 0 0 0 0 0 0 0 2 11992 229 28 257 257 68 141 141 2 11992 735 108 843 1911 162 68 114 162 68 114 162 161 114 162 161 114 124 <td< td=""><td>R (B</td><td>Ŷ</td><td>11 (11 11</td><td>0</td><td>0</td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	R (B	Ŷ	11 (11 11	0	0	1																													
Table 5(1) NUMBER OF ACTUAL 1 #1990 0 0 0 0 2 #1991 0 0 0 0 0 0 2 #1992 0 0 0 0 0 0 0 3 #1992 0 0 0 0 0 0 0 3 #1992 0 0 0 0 0 0 0 3 #1992 229 28 257 257 257 257 5 #1999 735 108 843 1911 1067 7 #1999 78 149 199 3847 7 #1999 364 149 199 3847 7 #1999 364 149 199 3847 7 #1999 364 149 199 3847 7 #199 124 124 4467 8 #2003 0 124 124 4467 8 #2003 <t< td=""><td>MO</td><td>S .</td><td>н н : е н</td><td>0</td><td>0</td><td></td><td>4</td><td>Ŷ</td><td>М</td><td></td><td></td><td></td><td><u>ν</u></td><td>0 0</td><td>2 0</td><td>00</td><td><u>э</u>с</td><td>> c</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	MO	S .	н н : е н	0	0		4	Ŷ	М				<u>ν</u>	0 0	2 0	00	<u>э</u> с	> c																	
Table 5(1) NUMBER OF 1 #1990 = 1 = = = = = = = = = = = = = = = = =		4	 	0	0	S	90	91	5.1	02	м М	N i N	6 6 6	1 1	~ (50,0	י ע ייר	7 t 7 t					ATE				LATE				LATE			ר ר ר	
Table 5(1) Table 5(1) 1 #1990 2 #1991 5 #1992 5 #1992 6 #1992 6 #1993 7 #1998 7 #1998 7 #1998 7 #1998 7 #1998 7 #1998 7 #1998 7 #1999 7 #199	0 E	м	1 1 . 1 . 1	0		S	4	4	0	e d	Ó I	οı	\sim	4 (V (N C	ጉս	nΛ		\sim	ະພ	+	CCU	s X	ш	z +	ссим	\times	ເມ	2 +	CCUM	\times 1	Ξ ω	2 2 + (
Table 5(1) Table	NUMBE	N		0	0			0	~ 1	4	ŝ	ر ا ا	Ω.	1 1	ν¢	N C	እካ	n n	<i>u</i>	1															
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	\sim	4		0		N	~ 1	М	ω	Ś	so -			0 0) (o c) (o c	T I AR	TON) I			۸V	SEAT							ΥI	Σ		
- 4004000000000000000000000000000000000	abl			199	199	199	199	199	199	199	199	199	199	2002	2001-	002		200	ш Ц		1,000			ESTAU	1,000			ΟTE	ROOM			NDUST	1,00		
		0										<u>с</u>	о ·	- (N I	γı,	է հ	n ivo	Σ			м	4			~	ω	\$	0	77	ŝ	m ·	4	ы 	

										-									•																			
	16	Ħ.	С	0	0	¢¢	» с	с С		0810	65	20	20	ы М	02	68	34	00		4 I 1	H H	5 0	5	00	0	o'		r~1 .	01 -11	л , - 1 ,		5	10	18	21	23	25	
	15	11 11 - 4 11 - 4	D.	Ö	Ö	C		052	830	Ч	842 1	372 1	678 1	658 2	668 2	658.2	663 2	653 2	1	י - ד	11 -	50	2 (0	5 (5		ر بر م	67	5 1	Ω Ω	r c	48	ۍ ۲۵	20	81	61	102	
	14	11 (11 (ວິ	Ö	0	0) C	000	, 76		281	64	678	658	668	658	663	653			0	<u> </u>	~ (2221	እ (እ (» с > с	እ (እ (እ (እ (<u>እ</u> (እ (እ (እ i እ i	8	00	00	00	00	00	
	1 17	в.))	0	Ö	0	o c	79	, м	2010	561	209							C N		. 7	* [*]	2 7	н т О ~	2 1	1: 7	= 1	R: 7	1: 7	* 7 > 0	н С •	4E -	te V	₩. M	t #	5	6 #	
	12	18 11 11	С	0	0	0		~	. 20	7724	60	985	041	260	152	07	263	318					•							·								
	F		c	0	0	0	o c	\sim	· O	65	\sim	60	2 Q	24	2 2 2	ເກ ເກ	54	ю С	• .			•																
	10	11 0	c	0	0	0	o c			00	4		S	ഹ	S	S	S	۱n																				
~	0		c	0	0	0		M) N	6164	M	0	0	0	Ö	0	0	0																				
M CASE	00		S	0	0	0	• c) vo	468	4	\sim	Ś	~1	S	98	Ч	Ω0.																		÷		
(MEDIUM		11 (11 11 11 11 11	ç	0	0	0			ο	205	2	M															-			÷								
CONSUMER	# 	11 - 0 11 11 11 11 11	>	0	σ	<i>'</i> 0	o c	οœ	21,0	26	30	34	34	34	34	33	34	34																				
		8 0 8 8 8 8 8	0	0	0	0	o c		· in	179	4				7	0	0	0																			-	
F ACTUAL	:	0 	S	0	0	0	o c	00	00 (→ (2126	80	80 M	71	90	05	14	53	42					L F S	СГА – ГС С								ULAIEU				ULATE	ULATED	ULATE
NUMBER O	· ·	11 (14 14 14 14 15	C	0	0	0	• C	00)))	576	$\mathbf{\omega}$	^_	М	ω	s	o,	S			\sim	t u	ן ≵ ר	C C	ט כ ג'כ	< L	≧ - ມ	¢	כ גע גע	< u	8 .4 U	F (~	З Ш	+	CCU	ACCUM	CCU
(2) NC		11 11 11 11	Þ	0	0	0	o c				\sim		4	\sim	N	δ	Ŋ		v L	1 1																	NO	z
able 5(11 11 11 11	Þ	0	0		• C	ſ	1 (-1	832	ഗ	N	ø			0	0	0	τN) + - ~			N V O		110	÷		۰.			(L Y Y Y	Σ Z			PULATI	STAUR
ц Ц		(551	199	199	199	00	199	199	#1997	199	199	200	200	200	200	200	200	ע ע ע			>		С Т Л Г Л Т Л				L L C		2002		(* SUUNT	00,			RET PO	ЕT R
	- 0 N	•		N	М	1	۰u	<u>،</u> د	~	60	δ	10							N M H I U	; '	10	ЧV) ~	4 V	N V	1 0	- 0	0 0									17	

		16		0	0	0	0	0	60	07	8021	78	261	38	415	492	569	647	724				0	0	0	0										22		
		15		0	0	0	0	0	60	98	1948	76	82	9	\sim	Ś	ò	~	\sim			0	0	0	0	0										91		
		14		0	0	0	0	0	δ	2	313	Ś	ഗ	6	\sim	Ś	Q	\sim	\sim			199	199	199	199	199	199	199	199	199	199	200	200	200	200	#2004	200	
		ч Ч		0	0	0	0	0	80	76	1635	20	06	Ö	0	0	0	0	0	. ON										0	0	•ન	\sim	ы	t,	15	\$	
		12		0	0	0	0	0	~	07	7724	60	Ω Ω	041	260	152	207	63	318																			
		11		0	0	0	0	0	\sim	6	65	~	7.6	S	ഗ	ഹ	ഹ	ŝ	S																			
		10		0	0	0	0	0	48	70	СÜ	す	ហ	556	цU	S	ທ	ທ	Ś																			
		6		0	0	0	0	0	ю	\sim	6164	М	0	0	0	0	0	0	0																			
ר ה ני גי			811488	0	0	0	0	0	80	Ś	448	4	4	ŝ	7	\circ	M	$^{\circ}$	<u>с</u>																			
C LOIM	~	•		0	0	0	0	0		\sim	196	\sim	N	ω																								
ONCIMED		Ŷ		0	0	0	0	0	80		50																											÷
עריייער	ر	Ŋ		0	0	0	0	0	72	S	171	4	92	50	14	9	0	0	0																			
	ų			0	0	0	0	0	ω	1 00	2126	80	80	71	90	50	14	20	7 7					ULATED				ULATED				ULATED				LATE	ULATED	ц - н - н
UTMBPD		5	11 11 11	0	0	0	0	0	ω	0	543	ω	\sim	М	ω	ហ	٥,		2		\times	ш		CCUM	\times	ш	4	ссим	\times	ш	4	ссим	\times	ш	+	ccum	ACCUM	5000
5 2 2 2	()	N		0	0	0	0	0	29	81	111	N	ŝ	149	N	N	o	152	ŝ,	ELS																		
1 0 4 6 4	ม 	-		0	0	0	0	0	5	1	832	ഗ	N	80			0	0	0	۱					⊦- z								RIAL	Σ.			PULATI	
ŕ				199	199	199	199	19.9	199	199	#1997	199	199	200	200	200	200	200	200	L EME	POPULA	1,000			RESTAU	1,00			HOTEL	ROO			ISNGNI	,00			RET P0	ב ד ח
		- ON									80		Q		2	м	ţ,	n.	9	COLUMN			м	4			2	ထ		0	11	12	₩ 1	14	15	16	► 0 ₹1 7	0
																		S-	-33																			

-

TABLE 6(1) SALES VOLUME OF CITY GAS BY SECTOR BY YEAR (BASE CASE)

SALES VOLUME BASE (1000MM3)

00
0000 M M
1090
10833 35907
4900 7565
185 185
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
3475 18330 42082
##1000 #1000 #1000 #1000 #1000 #
4 M M 4 M

-	HOUSEHOLD	RESTAURANT	HOTEL	INDUSTRY	SUB-TOTAL	HOUSEHOLD	RESTAURANT	SUB-TOTAL	
N ELEMENT LABELS	CITY GAS					RETICULATION			TOTAL
- NWN -	-	N	М	4	S	Ś	~	α).	σ

TABLE 6(2) SALES VOLUME OF CITY GAS BY SECTOR BY YEAR (MEDIUM CASE)

SALES VOLUME MEDIUM (1000NM3)

									• .																			
6 	0	0	0	0	0	30	42128	481	2555	5930	8340	066	1395	2551	3712	0767	5305											
00 11 11 11 11 11 11 11	0	0	0	0	0	44	2999	40	76	80	17	71	27	85	43	40	31											
	0	0	0	0	0		702	ω	0	82	∽	N	07	22	ω	ы М	61											
11 11 11 11	0	0	0	0	0	0	2291	60	76	97	40	79	20	62	05	50	20											
	0	0	0	0	0	16	39129	132	2178	5650	8123	794	1067	2166	3268	4435	4774											
	0	0	0	0	0	0	7882	081	6 5	802	970	135	302	468	634	800	800											
	0	0	0	0	0	84	-	08		34	0 0	64	77	51	05	$\frac{1}{8}$	2		ЮH	AURANT		45	0 T A	ЕНОГО	URA	0 T A		
	0	0	0	0	0	Ś	102	327	5 7	524	213	641	923	157	371	585	692	S	ous	E S T	ΟTE	NDN	U B I	HOUS	ES T	- 8 N		
	0	0	0	0	0	Ó	000	615	60	088	0689	753	2563	3248	3957	4731	4955	T LABEL						LATION				
	199	199	199	199	199	#1995	199	199	199	199	200	200	200	200	200	200	200	E M L	Ģ	•				RETICUI			TOTAL	
- ON	. ,	N	C1	t-	Ś	¢	2	Ø	¢			12							÷	N	м	4	ഗ	9	~	ω	6	

TABLE 6(3) SALES VOLUME OF CITY GAS BY SECTOR BY YEAR (LOW CASE)

SALES VOLUME LOW (1000NM3)

6		O	0	0	0	0	188	39303	946	1733	4783	6942	8431	9527	0459	392	2387	2722	· · · · · · · · · · · · · · · · · · ·								
ω		0	0	0	0	0	41	2952	39	64	70	60	50	10	62	16	20	95	· .								
~ ~	 	0	0	0	0	0	9	727	ω	0	N	ò	0	70	18	\sim	46	5							÷		
9	1) 1) 1) 1) 1) 1) 1)	0	0	0	0	0	00	2225	ភូ	94	8 8 8	Ы	68	0.6	77	80	24	42									
۰. ۲		0	0	0	0	0	047	36351	606	1369	4512	6732	8171	9216	0096	976	1916	2226									
4	 	0	0	0	0	0	60	6073	0 2	78	261	338	415	492	569	47	724	724									
М		0	0	0	0	0		216	08		34	50	64	77	91	SO	1^{8}	22		ICH	AURANT		ЧВ	OTA	HOL		ΟTΑ
ŝ	11 11 11 11 11 11	0	0	0	0	0	54	10556	227	76	334	766	395	651	861	051	241	336	c.	SHOH	REST	016	NDN	U B –	ous	₽S∃	- 8 U
۴	1) 1) 1) 1) 1) 1) 1]	0	0	0	0	0	75	19505	468	88	682	0150	1096	1795	2374	973	3632	3840	TABFI						ULATION		
·		199	199	199	199	199	199	#1996	199	199	199	200	200	200	200	200	200	200)				RETIC		
- 0N		(~1	~	М	4	ŝ	\$	7	80	6						5 7 0			COLUM			М	7	S	6	2	80

9 TOTAL

Table 7(1) CONSTRUCTION COST (BASE CASE)

BASE CONSTRUCTION COST

12	0	34	990	240	353	50	075	872	073	8696	20	ŝ	5	20	4	28	53
ст г	0	0	22	0	S	o,	~ -	2	ŝ	524	М	ŝ	ഗ	ഗ	ഗ	ഹ	37
10	0	0	5	9	~ +i	\sim	80	S	Ś	259	Ŷ	\sim	\sim	~	~	\sim	1
0	0	0	6	~	0	0	Ś	N	N	220	ŝ	М	m	М	М	М	4
8	0	0	169	62	38	24	31	∩ *	46	45	46	49	49	48	49	4 9	750
2	0	34	667	927	277	ሪ ተ	038	820	020	8172	20	20	0 00	ы С	8.6	570	73
9	0	0	Ч	16	Ļ	818	0	ഗ	81	33	0	0	0	0	0	0	
ŝ	0	0	26	191	40	ΜM	С	78	13	2682	ы М	98	97	63	6 ,4	98	м 4
4	0	0	86	17	98	69	77	99	01	1747	ເກ ເ	34	ММ	Ч	30	34	71
M	0	0		ዮ	13	1435	02	-	0	122			54				8441
2	0		233	989	279	0.0	642	52	77	3589	75	25	31	50	81	20	M M
7	0	M4	60	ب ۲,	5607	10	0	0	0	0	0	•	0	0	0	0	31308
	199	199	199	199	199	199	199	199	199	9999 Y.1	200	200	200	200	200	200	OT O
. ON										0		N	m	4	ഗ	Ś	~
															S	-3	7

COLUMN ELEMENT LABELS

	TRANSMISSION	DISTRIBUTION	SERVICE PIPE	GAS METER	INSTALLATION	CONVERSION	SUB-TOTAL	PRODUCTION	DISTRIBUTION	CUSTOMER	SUB-TOTAL	
ILUMN ELEMENI LABELS	1 CITY GAS	2 (1,000 US\$)	Ю	4	5	\$	2	8 RETICULATION	(1,000 US	10	11 .	12 TOTAL

Table 7(2) CONSTRUCTION COST (MEDIUM CASE)

CONSTRUCTION COST

MEDIUM

. ON	€~ 4	S	м	4	ιΛ	9	2	Ø	6	10	11	12	
	14 14 11 11 11 11	11 11 11 11 11	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	H 11 11 11 11		11 12 14 14 14 17	11 11 11 11 11						
Y199	0	0	0	0	0	0	0	0	0	0	0	0	
Y199	0	0	0	0	0	0	0	0	0	0	0	0	
Y199	0	Q	0	0	0	0	0	0	0	0	0	Ö	
Y199	0	0	0	0	0	0	0	0	0	0	0	0	
7199	Ч4 М	0	0	0	0	0	₹ 1	0	0	0	0	М4 М	
6 Y1995	5947	38		~ 1	\sim		28930	170		ω	<u>_</u>	32176	
Y199	04	33695	∾ 0	7975	325	31	52	145	998	1372	2515	0.3	
Y199	67	646	80 M	80	46	Ś	920	ć,	N	0	83	103	
Y199	10	657	δ	31	031	\sim	982	92	Ś	ŝ	40	123	
0 Y199	0	809	14	19	50	~ 1	340	4 S	2	ŝ	52	392	
1 Y200	0	102	Ч	26	29	0	670	46	N	Ś	M	102	
2 Y200	0	76	N	8 8 8	2 6		90	49	\sim	~	ŝ	045	
3 7200	0	40	м	56	6 E		54	49	М	\sim	ŝ	809	
4 Y200	0	25		29	63	0	5 M	4 8	Μ	~	ŝ	08	
15 Y200	0	81		5	40	0	84	64	'M	~	ŝ	40	
Y200	0	32		32	98	0	68	49	m	~	ŝ	54	
17 TOTA	31111	22		-	96	5234	23	855	ŝ	£	\sim	05	
LEMEN	LABELS		·		•								
CITY		TRANS	MISSIM			÷			•••		•		

	TRANSMISSION	DISTRIBUTION	SERVICE PIPE	GAS METER	INSTALLATION	CONVERSION	SUB-TOTAL	PRODUCTION	DISTRIBUTION	CUSTOMER	SUB-TOTAL		
N ELEMENT LABELS	1 CITY GAS	(1,000 US\$)						RETICULATION				TOTAL	
Ē		N	γN	4	Ś	Ŷ	~	Ø	ዮ	10		₽ 7	

CONSTRUCTION COST (LOW CASE) Table 7(3)

MOT . CONSTRUCTION COST

						834	0 0 0 0 834 52 3194	0 0 0 0 834 52 3194 12 6783	0 0 0 0 834 12 6783 30 7063	0 0 0 0 834 122 834 6783 306 5085 5085	0 0 0 0 834 52 3194 5783 22 5783 22 3367 3367 3367	0 0 0 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0 0 0 0 0 0 0 0 0 1 0 2 2 2 0 8 3 1 0 3 1 0 3 1 0 3 1 0 3 1 0 3 1 0 3 1 0 3 1 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	¢	2	00	000	0000	00000	80 80 80 80 80 80 80 80 80 80 80 80 80 8	25 20 25 25 25 25 25 25 25 25 25 25 25 25 25	0 0 808 370 25 25 25 25 25 25 25 25 25 25 25 25 25	0 0 0 808 370 752 14 18	2559 2529 2529 2529 2529 2529 2529 2559 2559 2559 2559 2559 2559 2559 2559 2559 2559 2559 2559 2559 2550 2550	2 2 2 2 2 2 2 2 2 2 2 2 2 2	22230 1223 1223 1223 1223 1223 1223 1223 1223 1223 1223 1223 1223 1223 1223 1223 1223 1223 1223 1233	2222 1722 1722 222 222 222 222 22	22223 19222 1922 19222 1	2222 2222 2222 222 222 222 222	2222222 522222 522222 522222 522222 52222 52222 52222 522 5222 522 5222		00 10 10 10 10 10 10 10 10 10
	¢		- - -	000	0000	0000	∧	207	202	2000	20100	N 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0 N 0	N 0 N 0 N 0 N N N N N N N N N N N N N N	222252442	00000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 8 8 8 8 8 8 8 4 8 4 8 8 8 8 8 8 8 4 8 8 4 8 8 8 8	10000000000000000000000000000000000000	N N N N N N N N N N N N N N N N N N N
н и и и и	0		0	00	000	0000	· · · · · · · · · · · · · · · · · · ·	► √		らてヤン	ちらし ヤン	ヤヤらてヤン	ケヤカらでカン	ヤヤヤクモヤン	ヤヤヤヤクモヤノ	ちちちちちょう しょう	ヤヤヤヤヤカシー	いちちちちちちゅう	いちちちちちゃんしょく
	0		0	00	000	34	834 869	8334 5354 531	8834 8334 8339	883 883 880 880 880 880 880 880 880 880	883 883 945 883 745 883 883 883 883 883 883 883 883 883 88	N 4 5 0 9 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4	00100100 0010000 00100000	4901450194 4901450194 401450194	14001400144 424014000 54001400	014001400104 4424014000 0140014000	50590000000000000000000000000000000000	8876574902588 957458760 267458760	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 H 11 11 11 11	0		0	00	000	0000	. ທ	3 th 1 th 1 th	. Ω ← Ω	4 M M A 2 M M M A 2 M M A 3 M M A 3 M M A 3 M M A 3 M M M A 3 M M A 3 M M M A 3 M M M M M M M M M M M M M M M M M M M	4 M M A A A A A A A A A A A A A A A A A	200000 200000	4 M M Ø M M M M M M M M Ø M M Ø M Ø M Ø	4 M M A M M A M M M M M M M M M M M M M	4 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	4 M M Ø M M	4 M M O H O O A A M M O H O O A A M M O H O A M O A A M O A A M O A A A A A A A A	4000040 0101000400004000040000400000400000000	1 8496040 1 60000 1 60000 1 0
	0		0	0 0	000	0000	71	471 320	101 427 427	6101 7701	8041 80420 8041 8041	716101 882637 8866437	1 1 1 6 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	イエノエクエ O H と Ø N N N N A N A N N N N N N N N N N N N N	1 / 1 / 1 0 1 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0	8171716101 8171716101 218076101	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		ヤの8モノモノヒタモのモクトシャのともとめろろろかちょく
 	0	¢	>	00	000	0000	20	07	287	N N N O	20422	101/201	0 8 7 0 0 8 7 7 7 7 7 8 7 7 7 7	1 0 0 0 7 1 0 0 7 1 0 0 7 1 0 0 7 1 0 0 0 7 1 0 0 0 7 1 0 0 0 7 1 0 0 0 0	114800411	8114850444	M 8 F 7 9 8 5 0 F 7 7 7 F 7 F 7 F 0 7 7 8 0	4 4 4 4 4 4 4 4 4 4 4 4 4 4	8085798970770 1077779007380 1077779007380
ון וו וו וו וו	0	С	>	0	000	0000	00	23	4 N 8 M N 4	8 2 7 8	00 N N 00 M	0 M B A N B 0 M B A A B	20000000000000000000000000000000000000	00000000000000000000000000000000000000	100000100000000000000000000000000000000	5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	50000000000000000000000000000000000000		NNNNNNNNNN NNNNNNNNNNNNNNNNNNNNNNNNNNN
	0	C	>) O	000	000	375	375 363	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	40 M M 4 M M M M	375 363 8647 8647 8037	004 M Q 0 4 M Q J	9097000 1000000 10000000	0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0	80800000000000000000000000000000000000	АМФМФМАФМУ АЛМАФОФМО ЛЛМФОВФФММ	8 1 M O M O M I O M O 10 1 M M 10 0 C M O M A 10 M M 10 0 8 0 0 M M	1 13753 33650 365360 265360 265360 186470 26536 186470 2656 2776 27766 22289 15 22289	084202000000000000000000000000000000000
-† 1 1 1 1 1 1	0	C	,) O	000	34	9 0 9 0	90 A C	8 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	88340 7068 7068 7068 7068	4 2 0 0 0 4 7 0 0 0 4 7 0 0 0 4	4 2 2 4 2 8 5 2 4 5 4 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	8 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	000 000 000 000 000 000 000 000 00 000 0000	0000 0000 0000	8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 8 8 8 8 8 8 8 8 8 8 8 8 8	8334 590 5566 556 40 88 88 88 88 88 88 88 88 88 80 80 80 80
	199	•	199	199 199	199 199 199	199 199 199	1999 1999 1999	00000000000000000000000000000000000000	00000000000000000000000000000000000000	10000000000000000000000000000000000000	119992 19992 19995 19995 19996 19996 19996 19996 19996 19996 19996 19996 1997 1997	212922 212922 213925 213925 213925 213925 213925 213925 2035 2035 2035 2035 2035 2035 2035 20	2009 2009 2009 2009 2009 2009 2009 2009	2000 2000 2000 2000 2000 2000 2000 200	20000 2000 2000 2000 2000 2000 2000 20	20000 2000 2000 2000 2000 2000 2000 20	00000000000000000000000000000000000000	L L L L L L L L L L L L L L	E L L L L L L L L L L L L L L L L L L L
	>-		≻	≻ ≻	\succ \succ \succ	***	~ ~ ~ ~ ~ ~	~ ~ ~ ~ ~ ~ ~	****	****	ンちょううちょう	てのるのくのちょくん	こてのるのろうできろく	ころようらうのののつちょうろ	トントイトイトイト・トート	ころよろろろのののようちょう	くちゃをさてのるのくらくやくイトト	144444444444444444444444444444444444444	NW4NOVOONANWANAN Z Z AOMAWNOOOO

		-Potentia -Sales vo -Construc		1990-20	05 total	
·		oil in ustry	Cooli build	ing of lings	CNG for auto-	Maximum case
	High (I)	(II) Low	High (III)	Low (IV)	mobile (V)	(I+III+V)
Potential Dem	and (1,00	0 Nm ³ /yea	r)			
1985 1990 1995 2000 2005	227,372 306,969 421,156 576,228 731,330	113,686 153,484 210,578 288,113 365,650	0 0 31,429 66,206	0 0 6,971 27,810	0 0 19,621 93,446 154,661	227,372 306,969 440,777 701,103 952,197
<u>Sales volume</u>	(1,000 Nm	³ /year)				
1990 1995 2000 2005 2006-	0 190,799 366,359 505,500 505,500	0 95,400 183,179 252,750 252,750	0 0 31,429 66,206 69,707	0 0 6,971 27,810 30,610	0 19,621 93,446 154,661 61,437	0 210,420 491,234 726,367 736,643
Construction	cost (US\$	1,000)		- 79, gayan		
Transmission Distribution Service Pipe Gas meter Internal pipe Conversion	7,303 6,706 22 4,385 593 4,106	4,244 3,354 13 2,192 296 2,052	3,048 47,708 - -	1,298 20,949 - - -	3,701	13,239 54,414 22 4,385 593 4,106
Total	23,115	12,151	50,756	22,247	3,701	76,759

ADDITIONAL DEMAND STUDIES

Table 8

Note: The Potential demand, sales volume and construction cost in the above are the amounts to be added to those in Base Case. RESULTS OF FINANCIAL AND ECONOMIC ANALYSIS م Table

62,411 3,189 17,244 (219,168) 4,703 136,325 Current Price 2005 666,150 2,324 11,097 83,953 763,524 15.52 290.9 15.67 12.76 20.3-60.2 49,940 2,503 13,381 (167,328) 2,094 101,504 LOW. Case 2000 9.20(10.85) -16.2 (23.3) Fixed Price 9.52(12.81) 7.96(10.33) 84,091 4,091 (10,471) (~ 1,418 -85.2(-36.3) -100.9(-70.5) 429,433 1,889 4,798 54,233 490,353 3,752 2,544 1995 65,856 3,189 28,002 (244,357) 5,044 147,310 Current Price 2005 671,145 2,324 12,222 84,696 770,387 16.91 13.69 16.66 363.1 60.3 -36.4 Medium Case 52,131 2,503 19,702 (181,230) 2,179 106,894 2000 10.21(11.92) 7.5 (51.1) 10.60(14.02) 8.74(11.19) Fixed Price -70.2(-16.7) -91.7(-59.0) 432,399 1,889 5,265 54,626 494,179 2,648 84 5,053 (11,606) 1,418 3,821 1995 66,421 3,312 33,298 (262,537) 5,503 159,506 Current Price 2005 597,435 1,986 13,082 59,615 672,118 17.20 334.0 17.67 14.18 71.0 -19.1 55,702 2,627 24,133 (205,661) 2,523 Base Case 123,200 2000 10.78(12.32) 20.3 (58.8) II.19(14.28)
9.11(11.35) Fixed Price -57.8(-11.6) -81.4(-53.4) 421,819 1,790 5,630 43,023 472,262 31,566 1,810 12,568 (109,998) 2,027 64,054 1995 ENPV (at 10% discount, 10⁶US\$) FNPV before tax(@15%, 10⁶US\$) FNPV after tax (@15%, 10⁶US\$) Interest Drg. Construction Pre-operating Expense Initial Working Capital (10^{3Nm3}/y) R Construction Cost $\frac{1}{2}$ FIRR (Before Tax, %) FIRR (After Tax, %) Economic Analysis 2/ (2) Investment (10³US\$) (3) Financial Analysis (1) Sales Volume Restaurant Reticulation Commercial (Total) Household (Total) EIRR (%) Industry Hotel (4)

S-41

Including land, engineering service and computer Fixed price adjusted by crude oil price in a parethesis Note: 1/ 3 Table 10 ENERGY PRICE PROJECTION BY EPU

10.00

10 C

(1) LIGHT ARABIAN CRUDE FOB MIDDLE EAST

	·.		(US\$/T	'onne ir	1985	Constant	Price)
	1985	1986	1990	1995	2000	2015	2010
Low Scenario	28	15	20	25	27.6	30.5	33.65
High Scenario	28	15	25	30	35.35	5 41.0	47.50

(2) LPG PRICES FOB MIDDLE EAST

.

			(US\$/T	onne in	1985 Co	onstant	Price)
	1985	1986	1990	1995	2000	2015	2010
LPG	213	127	136	1.50	166	186	207

(3) ECONOMIC VALUE OF NATURAL GAS AT WEST COAST

		(<u>M\$/M</u>)	ABTU in	<u>1985 c</u>	onstant	price)
	1990	1995	2000	2005	2010	2015
Low Fuel Scenario	3.5	3.9	4.4	5.2	6.4	7.2
High Fuel Scenario	3.6	4.1	4.8	5,8	7.4	8.6

- Base Case -

			Curren	t Price	Fixed	Price
Variables			Before Tax(%)	After Tax(%)	Before Tax(%)	After Tax(%)
N.G. Price	20%	down	20.15	16.02	11.99	9.67
	10%	down	18.94	15.13	11.59	9.39
	0%		17.67	14.18	11.19	9.11
	10%	up	16.33	13.16	10.79	8.81
	20%	up	14.88	12.06	10.38	8.52
LPG Price	20%	down	10,86	9.00	7.29	6.16
	10%	down	14.54	11.84	9.31	7.72
· . · · ·	08		17.67	14.18	11.19	9.11
	10%	up	20.51	16.24	12.98	10.37
	20%	up	23.17	18.13	14.69	11.57
Crude Oil Price	20%	down	16.63	13.39	8.20	6.87
	10%	down	17.16	13.79	9.73	8.04
	0%		17.67	14.18	* 11.19	9.11
	10%	up	18.19	14.57	12.59	10.10
. · · ·	20%	up	18.67	14.93	13.95	11.05
Investment	20%	down	20.97	16.56	14.02	11.11
	10%	down	19.18	15.27	12.49	10.02
	0%		17.67	14.18	11.19	9.11
	10%	up	16.39	13.24	10.09	8.30
	20%	up	15.27	12.41	9.12	7.59

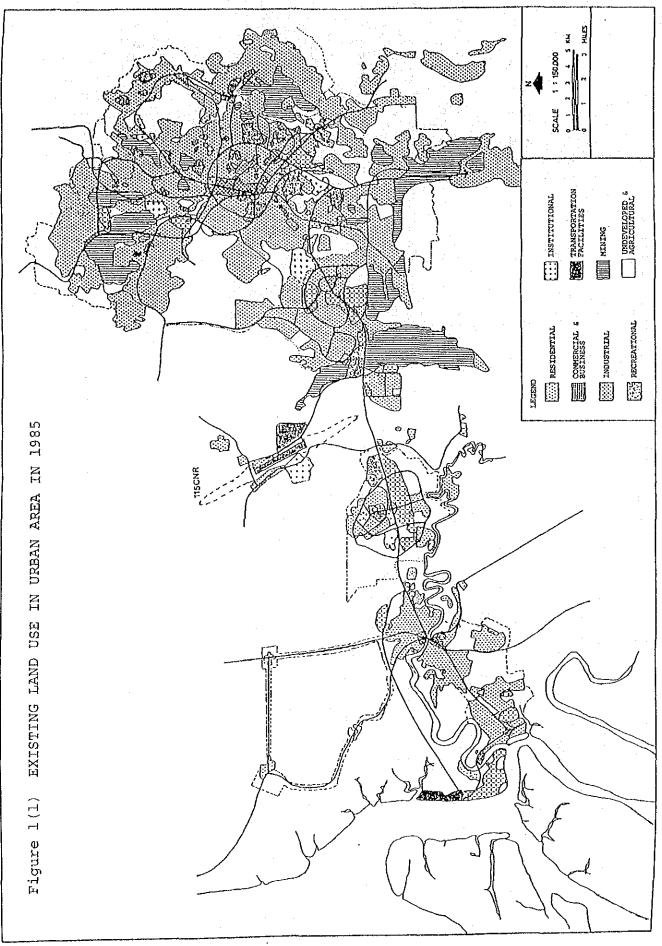
Note: * Assemed to be changed by natural gas price and LPG price at the same time

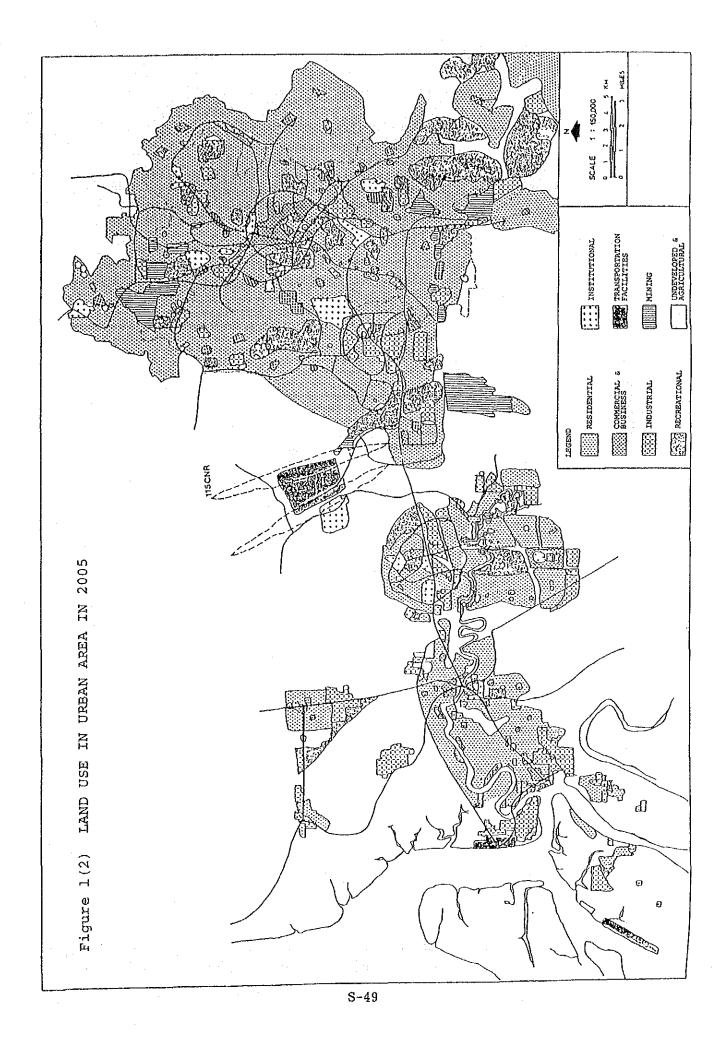
	ACC.NET IN-FLOW	+1333947484445080050734406478777777777777777777777777777777777	76737 1
	IN-FLOW (1)-(2)	10++70+00000000000000000000000000000000	7360.4
YSIA F PRICE) (US\$ MILLION)	ACC. (3) OUT-FLOW	111110 11100 11000 1000 1000000	17959 9
IECT IN MALAYSIA I (IN CURRENT PR (US	(2) TOTAL OUT-FLOW	のなななななななななななななななななななななななななない。 してしししししななななななななななななない。 しつししししななななななななななない。 しつししししなるなななななない。 しつししししなるなななななない。 しつししししなるななななない。 しつししししなるなななななない。 しつししししなるななななない。 しつししし、 なるなななない。 しつししし、 なるなななない。 しつししし、 なるなななない。 しつししし、 なるななない。 しつしし、 なるななない。 しつしし、 なるななない。 しつしし、 なるななない。 しつしし、 なるななない。 しつしつ	1193.5
SUPPLY PROJE NCY EARNING BASE CASE	REPAYMENT ON L./T	000000000000000000000000000000000000000	455.6
 (1) CITY GAS SUPF FOREIGN CURRENCY BASE 	INTEREST R ON L/T		249.4
Table 12(MAINTENACE COST	00000000000000000000000000000000000000	488.5
	ACC. IN-FLOW	00000000000000000000000000000000000000	946
) IN-FLOW FROM SALES	60000444000000000000000000000000000000	8553
	(1) YEAR	22222222222222222222222222222222222222	

ACC NET IN-FLOW 2000 200 2000 2 4.00 69470.1 ичо че во ч IN-FLOW (1)-(2) 5992.2 (003\$ 1000) 9 25227.0 561.8 ACC. Table 12(2) CITY GAS SUPPLY PROJECT IN MALAYSIA FOREIGN CURRENCY EARNING (IN CURRENT PRICE) - INTEREST RATE; 10.0% - (UG TOTAL 1561.8 OUT-FLOW (2) 512.1 REPAYMENT ON L/T 561.2 6 N 10 M 6 INTEREST ON L/T MAINTENACE COST 488.5 94697.0 IN-FLOW ACC. 8553.9 (1) IN-FLOW FROM SALES YEAR

Table 13 FINANCIAL INTERNAL RATE OF RETURN OF

RETICULATION IN FIXED PRICE BASE IN 1986


Conditions


Number of Household	8,000
Construction per Household	230.4 US\$
Table Construction Cost	1,843,200 US\$
Construction Period	l year
Sales volume per Household	160Nm ³ /year
Raw Material (LPG Bulk) Cost	5.80 US\$/MMBTU
Sales Price (LPG Cylinder Price)	8.71 US\$/MMBTU
Total Raw Material Cost per Year	290,944 US\$
Total Sales Amount per Year	436,864 US\$
Labour Cost per Year	10,465 US\$
The Project Life	35 years
Maintenance Cost	1% of Construction Cost
FIRR	
For Total Construction Cost	4.94%
For 70% $\frac{1}{2}$ of Construction Cost	7.82%
For 50% $\frac{1}{2}$ of Construction Cost	11.16%
For 30% $1/$ of Construction Cost	17.92%

Note: $\underline{1}$ / The balance of construction cost is considered to be born by land developer

Tal	Table 13 SCHEDULE OF PREPARATORY WORKS	WORKS TOWARD THE START-UP	* * *	Its purpose is (1) to establish the project scheme, (2) to promote larislative encourance (3) to set up converting converting and (4) to
- 6 months	Project evaluation and setting-up of project promoting body	ject promoting body *1		
	Establishment for project _{*2} scheme for implementation	Preparation for	• ~ *	To be defined are (1) purchase gas price, (2) target demand, (3) sales price, (4) time table and (5) way of operation. (1) is critical and to be fixed first.
			* *	Main items are (1) legislation to establish city gas company, (2) approval to install piping under road and (3) technical standard for safety.
	*5 *6 *6 *6 *6 *6 *6	Ď* 	**	Operation by public sector is primarily expected. But private sector is possible if certain measures are taken to improve the profitability.
	TransmissionDistributionSystemandsysteminternal piping	ticorpota- tion of operating companies	ۍ *	Internationally established engineering procedures for pipeline construction will be followed.
	Contractor *8 *11 *13 *13 *13 selection Construction Preparation of selection preparation operation system	E	* *	Main items are (1) design/material standards, (2) qualification and approval system and (3) organization and training program.
	*9 Detail engineering and designing	Authorization and control of city gas business in general	· \ *	Main systems to be designed are for (1) construction/operation/ maintenance, (2) billing/bill collection, (3) customer connection and (4) emergency handling.
	*10 *12 Construction Construction		∞ + *	To be prepared with assistance by a consultant.
			* * *10.	Mainly by contractor. To be done by contractors selected by international bidding and under the construction management by consultant.
			* 11 *	Work forces are to be organized and trained under the management of the operating company.

*13. Expert aided preparation is recommended.

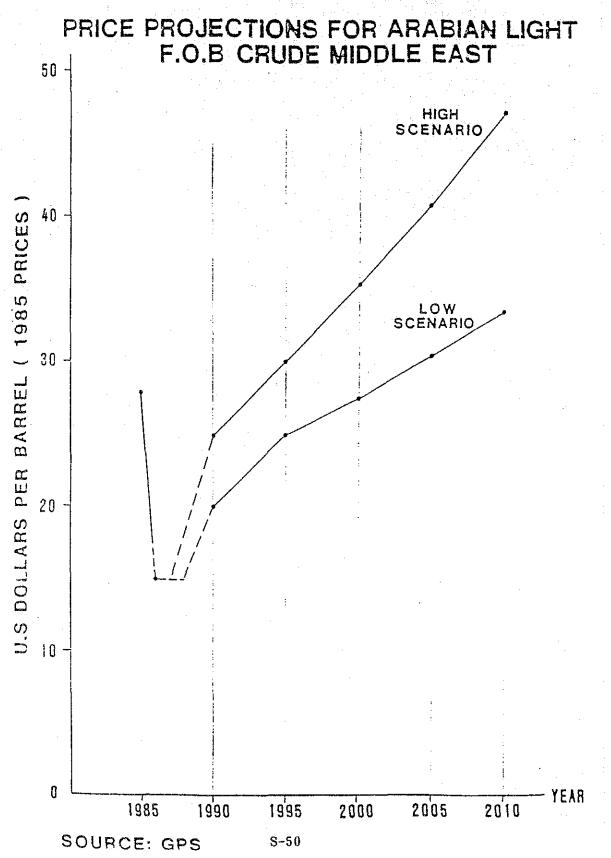


Figure 2 CRUDE OIL PRICE FORECAST

. . .

Figure 3 PROCEDURES OF CONCEPTIONAL DESIGN

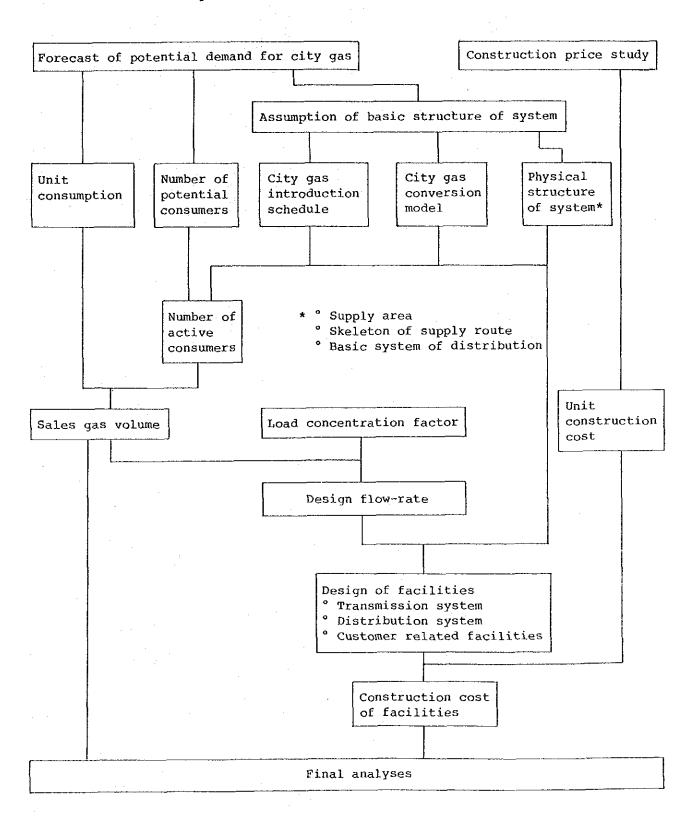
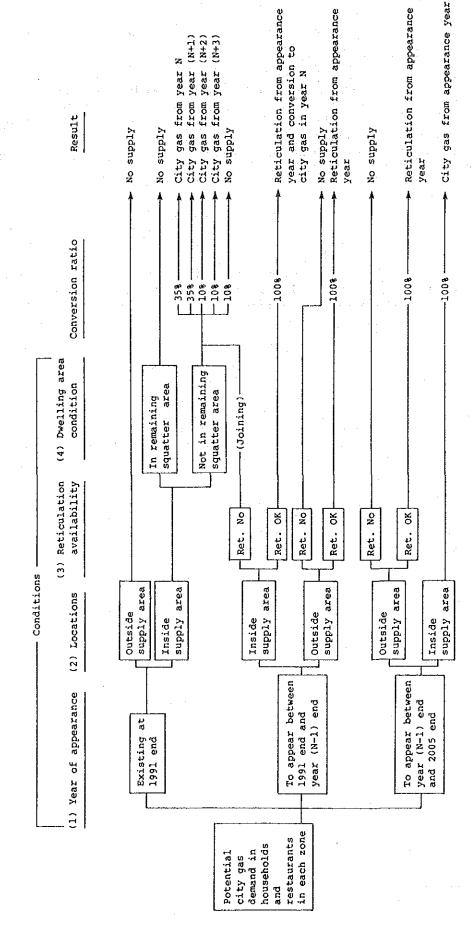



Figure 4 SUPPLY-SIDE CITY GAS CONVERSION MODEL FOR HOUSEHOLD AND RESTAURANT DEMANDS

Note: Year N is the year of beginning city gas supply to the zone. Transmission system is to be completed as far as to that zone just before year N.

1997

Figure 5(1) BASIC IMPLEMENTATION SCHEDULE (BASE CASE)

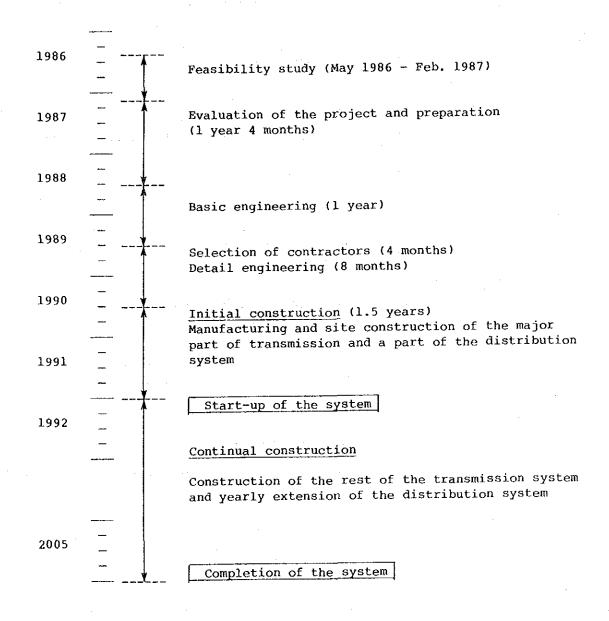
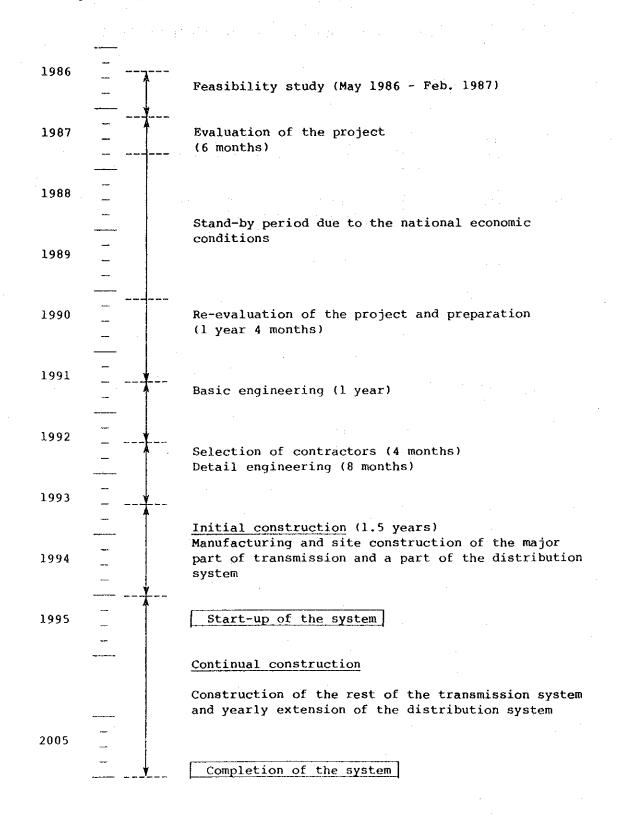



Figure 5(2) BASIC

BASIC IMPLEMENTATION SCHEDULE (MEDIUM AND LOW CASES)

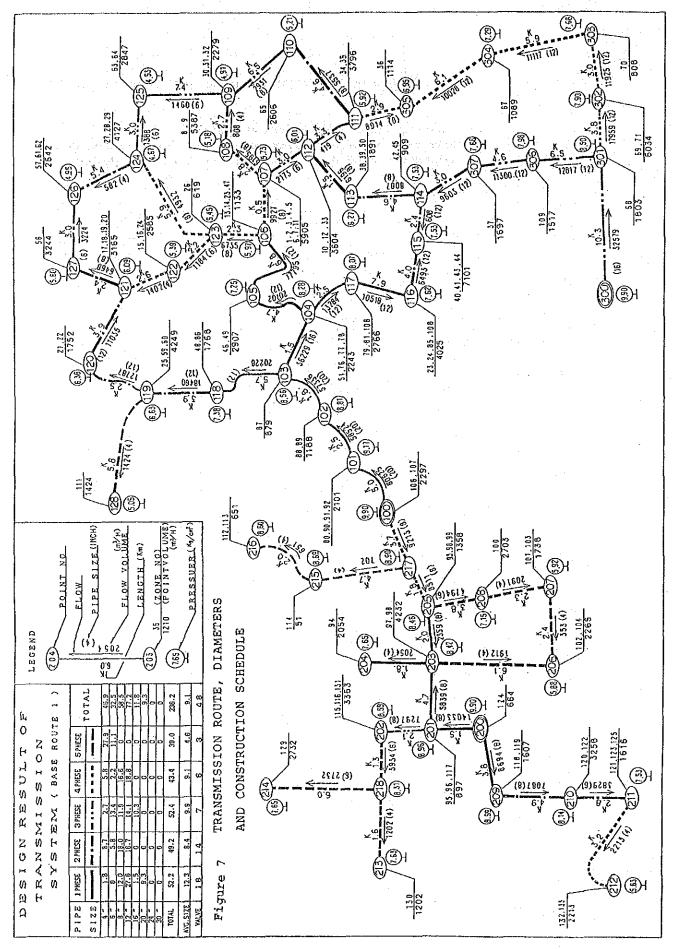
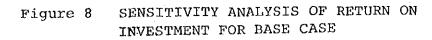
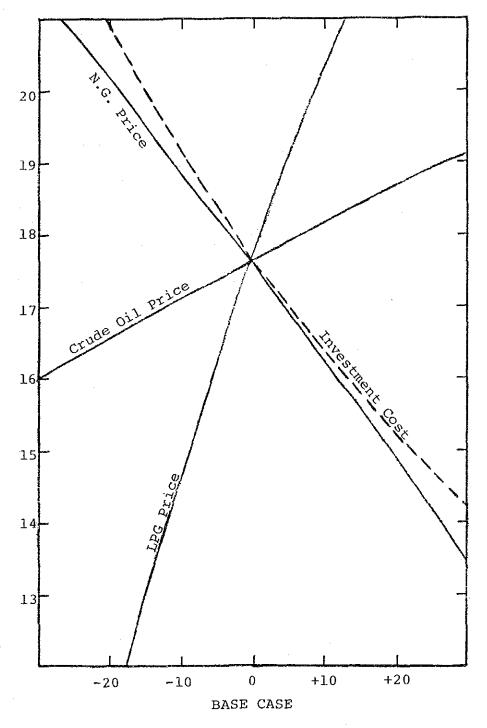

S-54

Figure 6


T: Construction of transmission system D-1,2,3,4: Construction of distribution network for existing demand d: Construction of distribution network for new demand

· .		age 1	:			
1990		- ·				
1991		T St	tage 2			·
1992		D-1/d	T Si	tage 3		
1993		D-2/d	D-1/d	T Sta	age 4	
1994		D-3/d	D~2/d	D-1/d	T Sta	age 5
1995		D-4/d	D-3/d	D-2/d	D-1/d	Т
1996		đ	D-4/d	D-3/d	D-2/d	D-1/d
1997		d	d	D-4/d	D-3/d	– – D–2/d
1998		d	d	d	D-4/d	 D-3/d
1999		d 	d	d	d	D-4/d
2000		d	d	d	d 	d
2001		d	d	d	d	d
2002		d .	d	d 	d	d
2003		d 	d 	d 	d 	d
2004		d 	d 	d 	d 	d
2005		d 	d 	d 	d	d
				1	I	1


S-55

S-56

- CURRENT TERM (BEFORE TAX) -

Variant from Base Case, %

SCOPE OF WORK

SCOPE OF WORK

FOR

THE FEASIBILITY STUDY ON CITY GAS DISTRIBUTION SYSTEMS IN THE KLANG VALLEY AREA OF MALAYSIA

AGREED UPON BETWEEN THE ECONOMIC PLANNING UNIT OF THE PRIME MINISTER'S DEPARTMENT ON BEHALF OF

THE GOVERNMENT OF MALAYSIA

AND

THE JAPAN INTERNATIONAL COOPERATION AGENCY

KUALA LUMPUR,

JANUARY 1986

(DATO SERI RADIN SOENARNO AL-HAJ) DIRECTOR GENERAL ECONOMIC PLANNING UNIT PRIME MINISTER'S DEPARTMENT ON BEHALF OF THE GOVERNMENT OF MALAYSIA

(DR. KENJI TOMITA) LEADER OF THE PRELIMINARY SURVEY TEAM ON BEHALF OF THE JAPAN INTERNATIONAL COOPERATION AGENCY

I. INTRODUCTION

In response to the request of the Government of Malaysia, the Government of Japan has decided to conduct a Feasibility Study on City Gas Distribution Systems in the Klang Valley Area (hereinafter referred to as "the Study"), and in accordance with the relevant laws and regulations in force in Japan, the Japan International Cooperation Agency (hereinafter referred to as "JICA"), the official agency implementation of the technical responsible for the cooperation programmes of the Government of Japan, will undertake the Study in close cooperation with the authorities of Malaysia.

The present document sets forth the Scope of Work with regard to the Study.

II. OBJECTIVE OF THE STUDY

The objective of the Study is to examine the technical, economic and financial feasibility of city gas distribution systems utilizing the natural gas to be introduced into the Klang Valley Area by 1990. The Study shall cover the period of 5 years from 1990.

- 2 -

The Study area covers the Federal Territory of Kuala Lumpur and the other growth centres of Petaling Jaya, Shah Alam, Klang, Bandar Baru Selayang, Bangi and other conurbation areas in the Klang Valley.

III. SCOPE OF THE STUDY

In order to achieve the above objective, the Study shall cover the following items:

- 1. The background and relevant conditions
 - (1) General economic situation of Malaysia.
 - (2) Present situation and policies on the Peninsular Gas Utilization Project.
 - (3) Relevant laws and regulations.
 - 2. Demand forecast for city gas
 - (1) Survey of the current energy consumption.
 - (2) Forecast of the growth in energy consumption.

- (3) Estimation of the share of city gas in the total energy consumption.
 (4) Revision of the demand for city gas based on the effect of introducing city gas.
- Conceptional design of the basic structure of the integrated gas distribution system
 - Design of the basic route and the gas transmission system.
 - (2) Selection of gas distribution system.
 - (3) Study on other facilities of gas supply system.
- Study of the construction schedule of the city gas distribution system.
 - Preparation of the outlined schedule of introducing the city gas system.
 - (2) Preparation of the outlined schedule of constructing the transmission pipeline and its major auxiliary facilities.

. •

- 4 -

- (3) Introduction of distribution system using LPG and other forms of gas as an initial step towards final conversion to natural gas.
- 5. Estimation of the construction cost
 - (1) Number of facilities to be constructed.
 - (2) Unit cost of construction items.
 - (3) Total construction cost.

6. Financial analysis

- (1) Overall investment costs (local and foreign).
- (2) Expenditure schedule of investment costs.
- (3) Financing scheme.
- (4) Production cost.
- (5) Estimation of capital contribution and gas price structure.
- (6) Projected balance sheet.
- (7) Projected income statement.
- (8) Projected cash flow statement.
- (9) Financial internal rate of return.
- (10) Sensitivity analysis.

- 7. Organization and management aspects
- 8. Environment and safety
- 9. Economic and social evaluation

10. Conclusion and recommendation

IV. STUDY SCHEDULE

The whole work will be conducted in accordance with the attached tentative schedule.

V. REPORTS

JICA shall prepare and submit the following reports in English to the Government of Malaysia.

1. Inception Report

30 copies

At the beginning of the Study in Malaysia

2. Progress Report

30 copies

At the end of field work

3. Interim Report

30 copies

Within 7 (seven) months after the commencement of the Study

4. Draft Final Report

30 copies

Within 10 (ten) months after the commencement of the Study

The Government of Malaysia will provide JICA with its comments within 1 (one) month after the receipt of the Draft Final Report

5. Final Report

50 copies

Within 2.5 (two and half) months after the receipt of the Government of Malaysia's comments on the Draft Final Report

The Study team should ensure that all data, information, maps, materials and findings connected with the Study are kept confidential and not disposed of or revealed to any third party except with the prior written consent of the Government of Malaysia. Such maps and aerial photographs are to be returned to the Government of Malaysia immediately upon completion of the Study. All reports when finalized and submitted to the Government of Malaysia shall remain the property of the Government of Malaysia.

VI. UNDERTAKINGS OF THE GOVERNMENT OF MALAYSIA

To facilitate the smooth conduct of the Study, the Government of Malaysia shall take the following necessary measures:

- To inform the members of the Study team of any existing risk in the Study area and to take any measures deemed necessary to secure the safety of the Study team.
- To secure the necessary entry permits for the Study team to conduct field surveys in Malaysia and exempt them from consular fees.
- 3. To exempt the members of the Study team from taxes and duties, as normally accorded under the provision of Malaysian General Circular No. 1 of 1979, on equipment, machinery and other materials brought into and out of Malaysia for the conduct of the Study.

- 8 -

- To exempt the members of the Study team 4. Malaysian income tax on their from official emoluments in respect of their period of assignment in Malaysia in connection with the conduct of the Study but the Government of Malaysia shall retain the right to take such emoluments into account for the purpose of assessing the amount to be applied to income from other sources.
- 5. To provide the necessary facilities to the Study team for remittance as well as utilization of funds introduced into Malaysia from Japan in connection with the conduct of the Study.
- To secure permission for entry into private properties or restricted areas for the conduct of the Study.
- 7. To provide the Study team with medical services when needed but the expenses will be chargeable to the members of the Study team.

- 8. To make arrangements for the Study team to take back to Japan the data, maps and materials connected with the Study, subject to the approval of the Government of Malaysia, in order to prepare the reports.
- To provide the Study team with available data, maps and information necessary for the execution of the Study.
- 10. To appoint counterpart personnel to the Study team during the Study period.
- 11. To provide the Study team with suitable office space with clerical service and necessary office equipment in Kuala Lumpur.
- 12. To provide the Study team with adequate means of local transport for official travel only.
- 13. To indemnify any member of the Study team in respect of damages arising from any legal action against him in relation to

10

any act performed or omissions made in undertaking the Study except when the two Governments agree that such a member is guilty of gross negligence or wilful misconduct.

14. To nominate PETRONAS Dagangan Sdn. Bhd. to act as counterpart agency for the Study and the Economic Planning Unit as the main coordinating body in relation to other relevant Governmental and non-Governmental organizations.

VII. UNDERTAKINGS OF JICA

In order to conduct the Study, JICA shall take the following measures:-

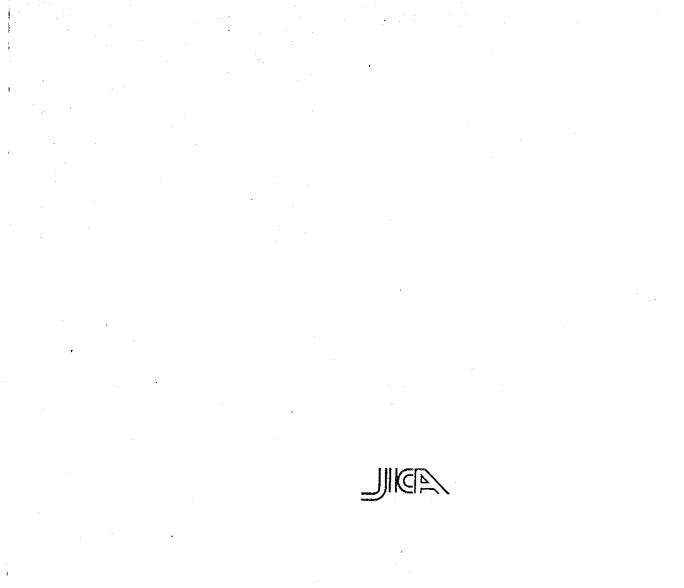
- To despatch, at its own expense, the Study team to Malaysia.
- To pursue technology transfer to the Malaysian counterpart personnel in the course of the Study.

VIII. CONSULTATION

JICA and the Government of Malaysia shall consult each other in respect of any matter that is not agreed upon in this document and which may arise from or in connection with the Study.

APPENDIX

TENTATIVE SCHEDULE OF THE STUDY


Ľ <u></u>	Year & Month					198	3 6							987	
		1	2	3	4	2 C	9	7	8	6	10	11	12	13	14
	I t em	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May
L	Preparatory Office Work														
<u> </u>	Inception Report		\bigtriangledown												
<u>L</u> , J	Field Work														
L	Progress Report				4										
	Home Office Work														
<u></u>	Interim Report							4							
╺	Supplementary Field Work							22							
	Home Office Work														``
لــــــــــــــــــــــــــــــــــــــ	Draft Final Report										4				
ـــــــــــــــــــــــــــــــــــــ	Discussion of the Results											2222			
	Supplementary Office Nork														
	Final Report												-		4

.

in Japan

in Malaysia 12122

,

· · ·