CHAPTER 4. GUNUNG ROPIH AREA

In the Gunung Ropih Area, the possibility of Cu-Mo mineralization of the porphyry-copper type was confirmed by geological studies and a geochemical soil survey carried out during Phase II. Based on the results, geophysical surveys and exploration drilling were conducted during this phase to confirm Cu-Mo mineralization at depth and to examine the mechanism of mineralization.

4-1 Method of Investigation

4-1-1 Geophysical Survey

For the geophysical survey, the induced polarization and magnetic methods were used.

Induced Polarization Survey

Eight lines with a total length of 9.9 km, 5 lines running N32°E and 3 E-W with a line spacing of 100 m were surveyed by the IP method using the frequency domain (Fig. II-21 and 22). The dipole-dipole array with an electrode spacing of 100 m and an electrode spacing factor of n = 1-5, was employed. To reduce the current electrode contact resistence, large quantities of salt water were applied to the aluminium foil current electrodes. Copper sulphate porous pots were used as potential electrodes. A Chiba CH-T7802 IP transmitter and 2 Chiba receivers, CH-R7801 and CH-R7802, were used. The generator was powered by a Geotronics - 421 petrol-engine which can generate a maximum power of 3.0 kw.

Magnetic Survey

A magnetic survey employing a total magnetic field measurement was conducted along the same lines, simultaneously with the IP survey. Two portable Proton Magnetometers Model G-816 were used, one at the base station and the other in the field. Readings were taken along the survey lines at 50 m intervals. Readings were also recorded regularly with the other magnetometer at the base station to monitor the diurnal variations.

4-1-2 Exploration Drilling

Exploration drilling was conducted at the sites shown in Figure II—23, after systematically considering the surface geology, and the results of the geophysical and geochemical soil surveys. Three vertical holes, MJM—1, MJM—2 and MJM—3 with a total depth of 692.8 m, were drilled on the western and the southwestern slopes of Gunung Ropih.

4-2 Geology

The Gunung Ropih area is underlain by an acidic intrusive stock which had intruded into

the Bau Limestone (fig. II-24).

The stock covers an area of approximately 0.6 km² and forms Gunung Ropih with a maximum elevation of 221 m. Its contact with the limestone country rock is very irregular and many dikes diverge outwards. The original rock type of the intrusive is described as a quartz porphyry, although it is not possible to determine accurately the original mineral composition because of extensive alteration, deep weathering and the lack of outcrops.

The Bau Limestone surrounding the intrusive stock is composed mainly of a massive, grey to dark grey, relatively pure limestone. The limestone is unevenly recrystallized to marble which is mainly developed to the south of Gunung Ropih.

Silicification is extensive in the southern part of Gunung Ropih where it is observed occurring mainly as networks of quartz veinlets. Chloritization is also dominant in this part. Probable weak potassic alteration occurs as a narrower zone just SW of the center of the stock. Argillization probably mainly as kaolinite and sericite alterations is also commonly observed in the north-central part. No distinct zoning of the alteration types as yet can be distinguished but from the distribution of the major alteration minerals, overlapping of the various alterations appears likely.

Mineralization observed in the floats which are scattered abundantly in the southwestern slope of Gunung Ropih consists mainly of malachite, chalcopyrite, pyrite and molybdenite. Malachite partly stains some floats to a light green colour. The floats contain networks of quartz veinlets, commonly with a small amount of chalcopyrite and molybdenite, in the lower part of the slope. Chalcopyrite and pyrite occur as fine-grained disseminations in the quartz veinlets and in the quartz porphyry rock. Some chalcopyrite grains are oxidized to bornite. Molybdenite occurs as fine-grained disseminations or aggregates up to 5 mm across in quartz veinlets and in the quartz porphyry rock.

Analysis of 6 samples of mineralized floats carried out during Phase II gave a mean value of 0.1% Cu and 70 ppm Mo.

4-3 Geophysical Survey

4-3-1 Physical Property Measurement

In order to make a comprehensive interpretation of the geophysical prospecting results, it is first necessary to have a good background knowledge of the electrical properties of rocks found in the area. There are two ways to accomplish this purpose; in-situ determinations of geologically known materials and the measurements of the physical properties of rock samples in laboratory. In this survey, the latter method was applied due to the lack of outcrops in the survey area. Twenty-three comparatively fresh rock samples consiting of 10 limestone samples and 13 intrusive

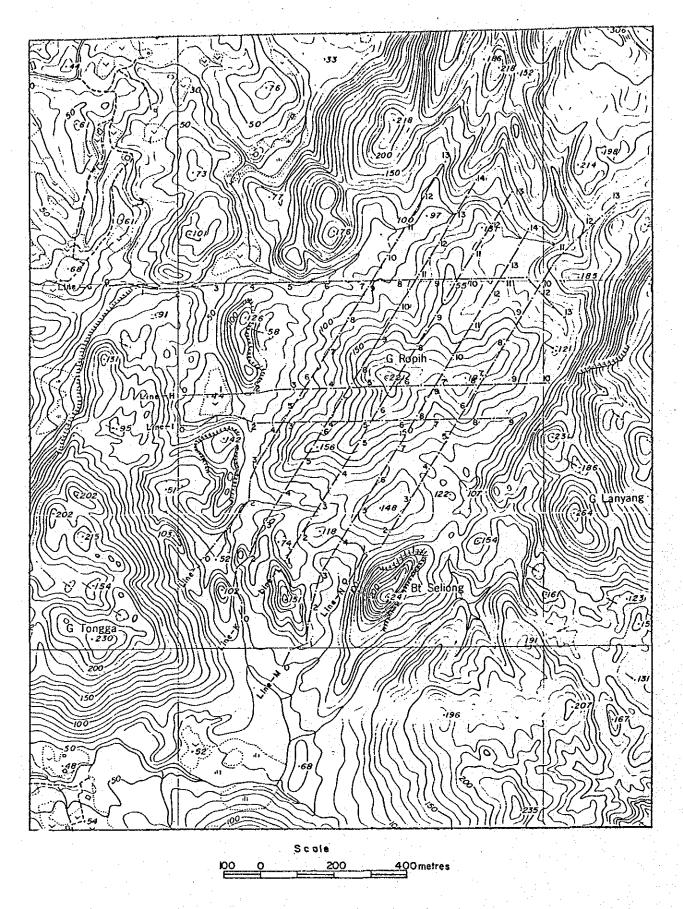


Fig. II-21 Geophysical Survey Lines, Gunung Ropih Area

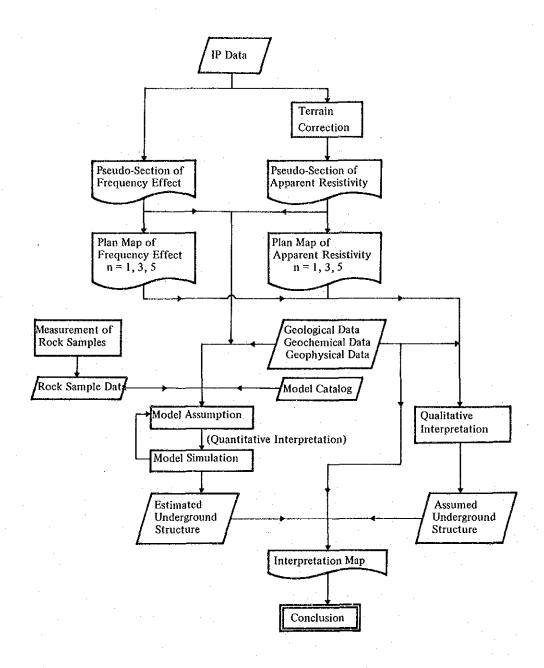
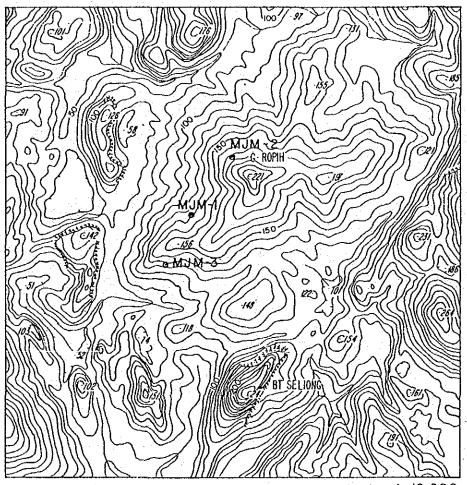



Fig. II-22 Flow Chart of I.P. Data Processing and Interpretation

Scale 1: 10,000

MJM-1 total depth: 241-3m vertical MJM-2 " 250.5m vertical MJM-3 " 200.8m vertical

Fig. II-23 Location of Drill Holes, Gunung Ropih Area

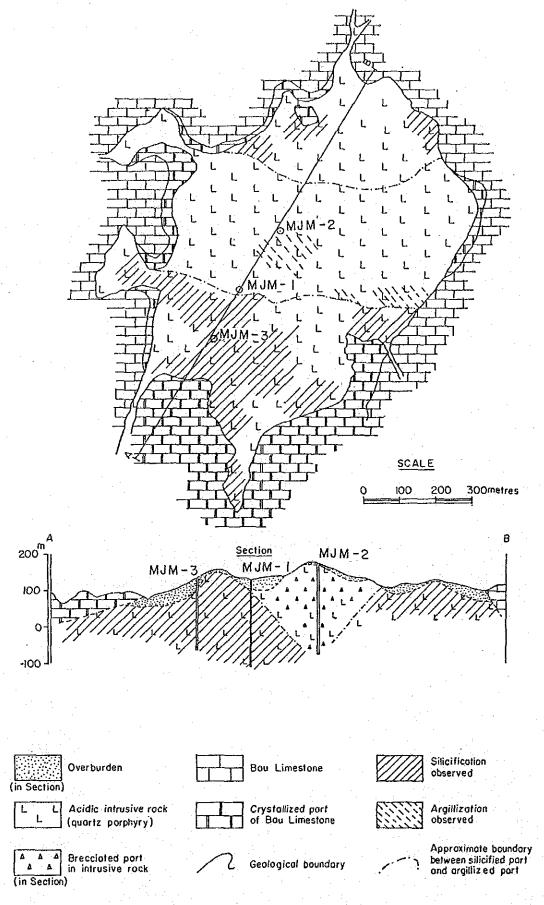


Fig. II-24 Geology of Gunung Ropih Area

en francisco de la proposición de la companya de l La companya de la co

rock samples were collected for the resistivity, percentage frequency effect (P.F.E.), specific gravity and magnetic susceptibility measurements.

Figure II-25 was constructed based on the results of the physical property measurements of

the 23 samples collected in the field as shown in Table II-3.

From the table and figure, the following could be deduced:

i) Generally, limestone has high resistivity and specific gravity with low magnetic susceptibi-

lity and average P.F.E. values. The intrusive rock has low resistivity and specific gravity with high

magnetic susceptibility and P.F.E. values.

ii) The resistivity values of the limestone range from 2523 to 150818 ohm-m and its speci-

fic gravity has a mean value of 2.7. The resistivity values for the intrusive rocks are about 1000

ohm-m with an exception of the rock sample WR522 which attained a maximum of 4686 ohm-m

was attained. The specific gravity of the intrusive rock varies widely from 2.12 to 2.73.

iii) The mean values of the magnetic susceptibility and percentage frequency effect of the

limestone are 40.0 x 10⁻⁶ e.m.u. per cm³ and 2.0% respectively. However, those of the intrusive

rock are generally variable, ranging from 33.0 x 10⁻⁶ to 726.0 x 10⁻⁶ e.m.u. per cm³ in magnetic

susceptibility and 1.2 to 5.0% in P.F.E.

4-3-2 **Model Simulation**

In analyzing the contour pattern of PFE and AR, IP model simulation is frequently used as

skillful means. For the calculation, the section was divided into 2,750 elements and the assumed

PFE and AR values were assigned to each element. A super computer CRAY-1 was used in the

calculation by means of the finite element method (Fig. II-26).

4-3-3 Results of IP Survey

4-3-3-1 Section Analysis

The results are shown in Figures II-27 to II-34. Apparent frequency effect values range

from -3.0% to 9.8%. Judging from the distribution pattern, FE values more than 4.0% were

roughly defined as high FE anomalies. The apparent resistivity values range from 44 to 24,800

ohm-m are classified roughly into three group:

Low resistivity: less than 250 ohm-m

Moderate resistivity: 250 to 1,000 ohm-m

High resistivity: more than 1,000 ohm-m

Line G

A roof-shaped FE anomaly is detected in depth between stations 3 and 8 with a maximum of 6.0%. This anomaly is caused by a deep-seated body of considerable width. There is another anomaly in depth between station 8 and 10 with a maximum of 5.5% which is probably caused by a localized body.

Resistivity highs are observed to the west of station 3 and in depths between stations 3 and 5, and to the east of station 9. Otherwise, the resistivity values are generally less than 1000 ohmm. The resistivity high to the west of station 3 corresponds to the limestone distribution on the surface. However, other resistivity highs are assumed to be due to the silicified parts of the intrusive rock.

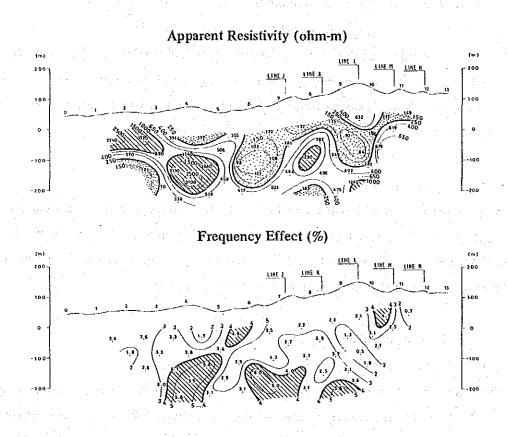
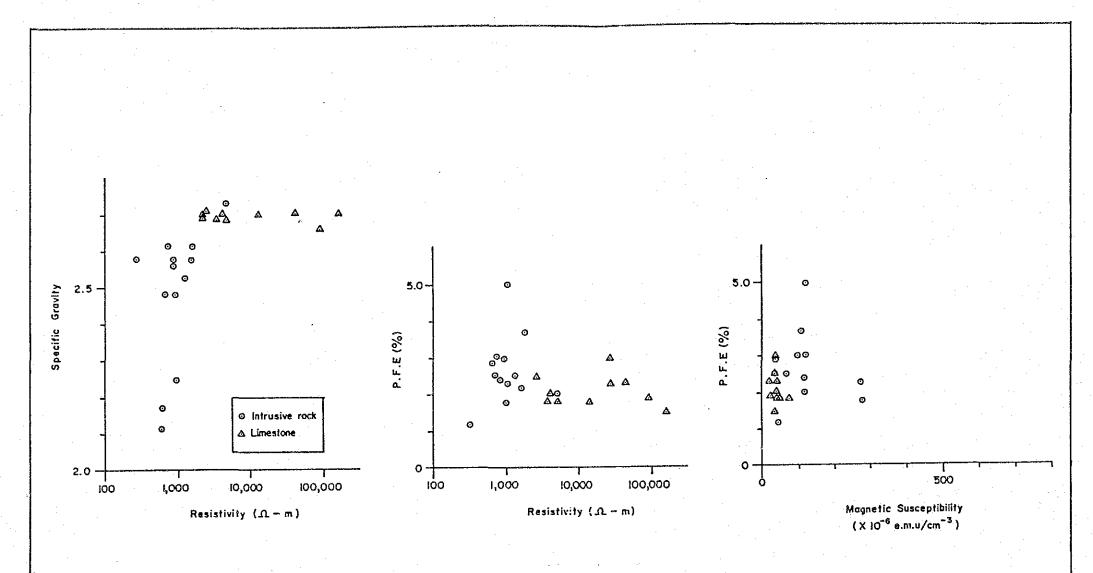
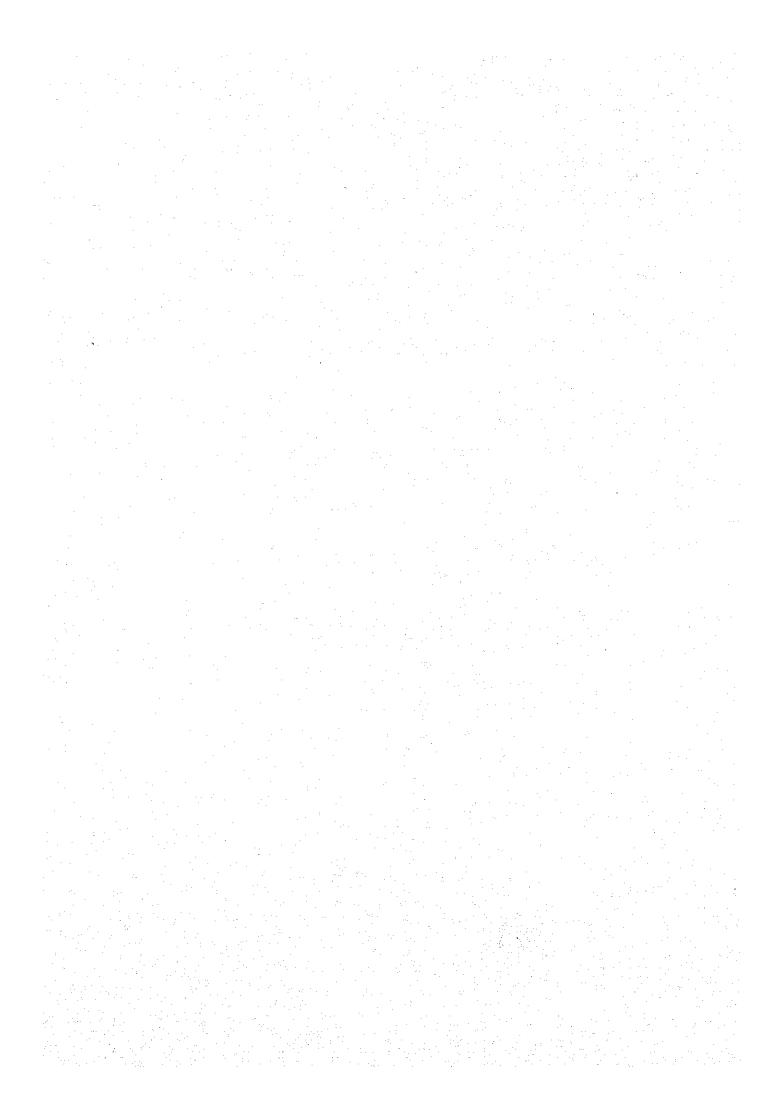
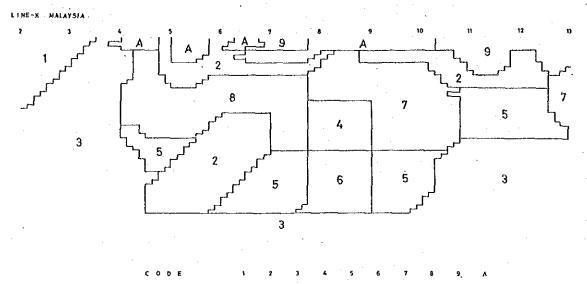
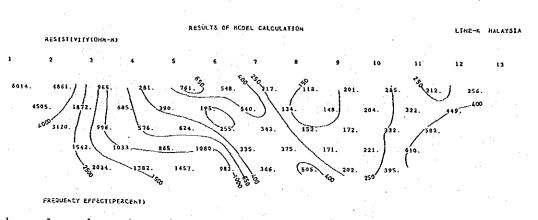


Fig. II-27 Pseudo-Section of Line G

Table II-3 Physical Properties of Rock Samples, Gunung Ropih Area

Sample Number	Location	Percent Frequency Effect (PFE)	Resistivity e ohm-m	Specific Gravity σ	Magnetic Susceptibility K(x10 ⁻⁶) e.m.u/cm ³	Description
WR501	Line G2.0	2.0	4457	2.70	41.0	Limestone
WR502	Line G5.5	2.5	2 523	2.69	36.0	Limestone
WR503	Line G10.0	1.8	3701	2.69	52.0	Limestone
WR504	Line IO.0	1.8	4869	2.69	79.0	Limestone
WR505	Line II.5	1.8	13633	2.70	47.0	Limestone
WR506	Line JO.0	1.9	91090	2.67	26.0	Limestone
WR507	Line J11.0	1.5	150818	2.70	35.0	Limestone
WR508	Line J13.0	2.3	41583	2.70	36.0	Limestone
WR509	Line K0.0	2.3	2716	2.71	22.0	Limestone
WR510	Line K3.5	3.0	2579	2.70	34.0	Limestone
WR511	Line G1.2	1.2	306	2.58	44.0	Pyritized Quartz Porphyry
WR512	Line G6.5	3.0	697	2.48	96.0	Pyritized Quartz Porphyry
WR513	Line G4.5	2.9	637	2.12	24.0	Altered Quartz
WR514	Line M2.5	2.5	682	2.17	33.0	Porphyry . Altered Quartz
						Porphyry Pyritized Quartz
WR515	Line 19.0	5.0	956	2.48	118.0	Porphyry
WR516	Line M6.0	2.2	1539	2.58	726.0	Pyritized Quartz Porphyry
WR517	Line G5.0	3.0	912	2.56	114.0	Quartz Porphyry
WR518	Line G10.5	2.5	1335	2.53	64.0	Quartz Porphyry
WR519	Line J4.5	2.4	791	2.62	116.0	Quartz Porphyry
WR520	Line IS.5	2.3	1018	2.25	272.0	Quartz Porphyry
WR521	Line K10.5	1.8	939	2.58	280.0	Quartz Porphyry
WR522	Line L9.5	2.0	4686	2.73	118.0	Quartz Porphyry
WR523	Line M10.0	3.7	1701	2.61	104.0	Quartz Porphyry


Fig. II-25 Relationships of Physical Properties of Rock Samples, Gunung Ropih Area

23113/12/84

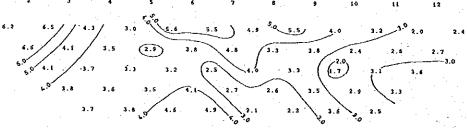


Fig. II-26 Result of I.P. Simulation

Line H

FE anomalies are detected at the surface around stations 4 to 8, at n = 3 around station 5 to 6.5 and in depth between 3 and 6. Judging from the pattern of the anomalies, a west dipping source from the surface at station 8 to depth below 3 and flat sources at n = 3 around station 5 to 6.5 and in depth between stations 5 to 6 are assumed.

Resistivity highs are observed to the west of station 2.5 and in depth between 4 and 6. The resistivity high to the west of station 2.5 has a maximum value of 3700 ohm-m which is caused by limestone distribution on the surface. However, another resistivity high observed at the centre of the line is located just below n = 2, with a maximum value of 2090 ohm-m. This resistivity high is caused by the west-dipping silicified part of the intrusive rock.

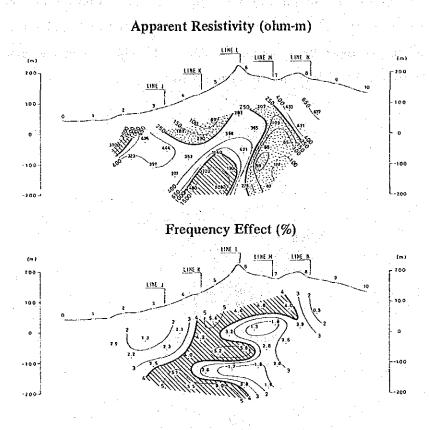


Fig. II-28 Pseudo-Section of Line H

Line I

FE anomalies are observed around the surface between stations 2 and 4.5, at n = 3 below 4 to 6 and in depth below 3 to 5. The surface anomaly attains a maximum value of 7.6%. The FE anomaly observed at n = 3 around stations 4 to 6 is caused by the same source as the one detected at n = 3 on Line H. The FE anomaly in depth between stations 3 and 5 seems to be the continuation of the one on Line H and both are observed to show resistivity highs. The body causing this anomaly is dipping east.

Resistivity highs are detected west of station 2 and in depth between 4 and 5.5. The contact between the resistivity highs and lows is distinctly detected from the surface at station 2 to depth below 5.5, dipping to the east. The resistivity in the eastern side of this contact is in the range of 46 to 520 ohm-m whereas that of the western side is in the range of 456 to 24,800 ohm-m. The resistivity high in depth below station 4 to 5.5 seems to be the continuation of that on Line H which is assumed to be caused by the silicified part of the intrusive rock. In both cases, the resistivity highs seems to be capped by FE highs. In other words, sulphide minerals causing IP effects appear to form a cap for the silicified part of high resistivity.

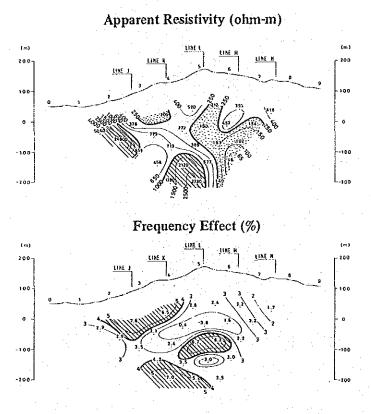


Fig. II-29 Pseudo-Section of Line I

Line J

A roof-shaped FE anomaly is detected at the surface around stations 5 to 10. Other anomalies observed are located to the south of 3.5 and in depth below 4 to 9. The surface roof-shaped anomaly is caused by a small and shallow body and at the southern end of the line it attains a maximum of 8.4%. However there is no attempt to elaborate on this anomaly as there is a lack of geophysical data to determine the cause of it. The deep FE anomaly is apparently caused by a north dipping source, judging from the pattern of the anomaly.

The resistivity values of more than 1000 ohm-m are observed around the surface to the south of station 3 and in depth below 3 to 6. The resistivity high to the south of 3 obviously corresponds to the limestone distribution. The deep resistivity high in this part is probably due to the silicified part in the intrusive rock. On the other hand, the resistivity in the northern side is generally low. The boundary between the resistivity high and low is observed from the surface at station 3 to depth below 6. It appears to be connected with the one on Line H. Judging from the pattern of the boundaries, the contact plane is estimated to be striking northwest and dipping to the northeast.

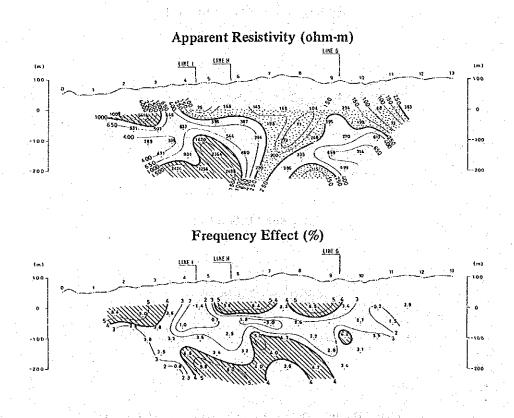


Fig. II-30 Pseudo-Section of Line J

Line K

A broad FE anomaly with a maximum value of 7.0% is detected south of station 4 and appears to extend to depth. It is the continuation of that at the southern end of Line J. The anomaly source is unknown for the same reason as that on Line J. A roof-shaped FE anomaly is also detected around stations 5 to 9 with maximum value of 5.6%. Since the northern half of the roof-shaped anomaly appears to extend in depth until n = 3 whereas the other half is observed only near the surface, the body causing the anomaly is inferred to be dipping to the north. Anomalies caused by horizontal sources are observed at n = 3 below station 7 on the northern side of the line. Other FE anomalies are detected in depths around stations 5 to 10 and they are assumed to be caused by localized bodies.

Generally, the results indicate resistivity highs in the south and resistivity lows in the north. The boundary is observed at the surface at station 4 extending to depth below 8. A localized resistivity high exists at the surface around station 5 to 6.5. At the surface south of station 4, the resistivity high is probably caused by limestone whereas in the intrusive rocks, they correspond to the silicified parts of the intrusive rock.

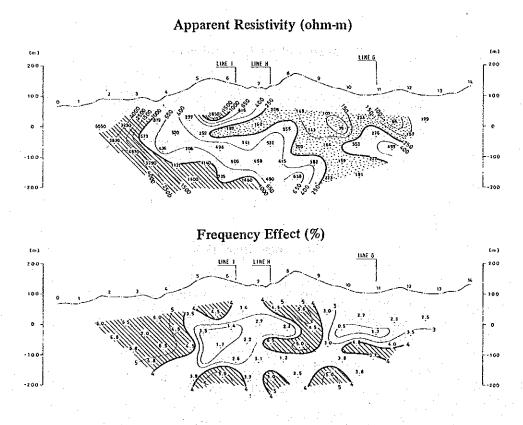


Fig. II-31 Pseudo-Section of Line K

Line L

Roof-shaped FE anomalies are detected at the surface between stations 4 and 9 and in depth between 7 and 10. The surface anomaly is caused by the same source as that detected on Line K, but is more intense, attaining a maximum value of 9.8%. The deep anomaly is assumed to be caused by a north-dipping source as it is observed to be more extensive in the northern half of the line. Two other anomalies are observed at n = 3 below stations 3 to 5 and 7 and are caused by small and localized bodies.

Generally the resistivity of this line is low, in the range of 44 to 679 ohm-m.

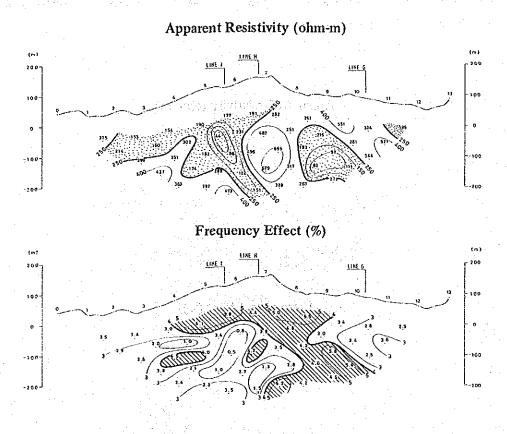


Fig. II-32 Pseudo-Section of Line L

Line M

A strong but small FE anomaly is observed at the surface between stations 8 and 10 with a maximum value of 7.7%. It is the continuation of that on Line L except that its width has decreased. A roof-shaped FE anoamly is detected in depth below station 9 and 11.5 and it is probably the continuation of that on Line L except that it is smaller. A localized FE anoamly is also observed in depth below 6 to 7. Except for the above mentioned, FE values along this line are generally very low.

Resistivity values range from 49 to 5270 ohm-m with highs observed at the surface around stations 10 to 11 and in depth below 3 to 6. The resistivity highs at the surface and in depth are dipping south and north respectively. Other than these resistivity highs, the resistivity along the line is generally low, in the range of 49 to 995 ohm-m.

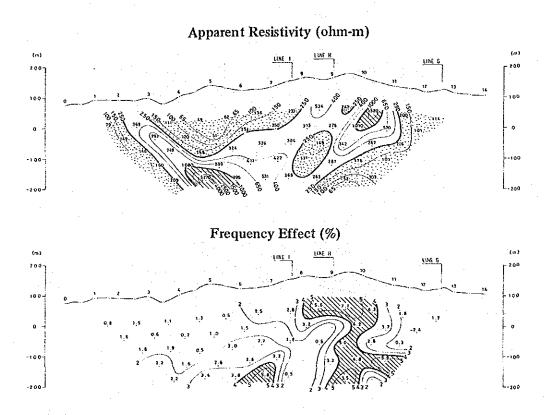


Fig. II-33 Pseudo-Section of Line M

Line N

No high FE anomaly is observed along this line except for weak localized anomalies at depths below stations 3 to 4, 5 to 7 and near the surface at 8.

The resistivity values range from 126 to 4870 ohm-m with an extensive area of high resistivity. Resistivity highs are observed in depth below stations 7 to 11, near the surface between 3 to 7 and at the surface south of 2. The latter is caused by limestone whereas the others are due to the silicified parts of the intrusive rock.

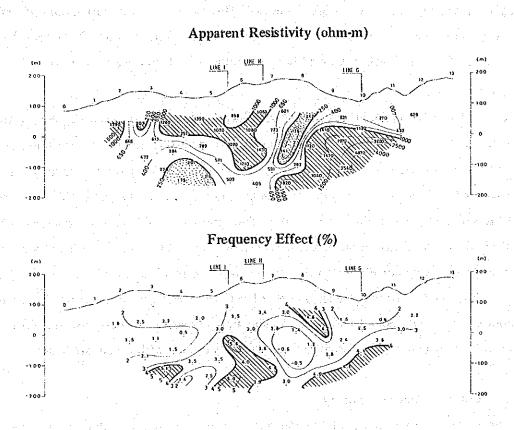


Fig. II-34 Pseudo-Section of Line N

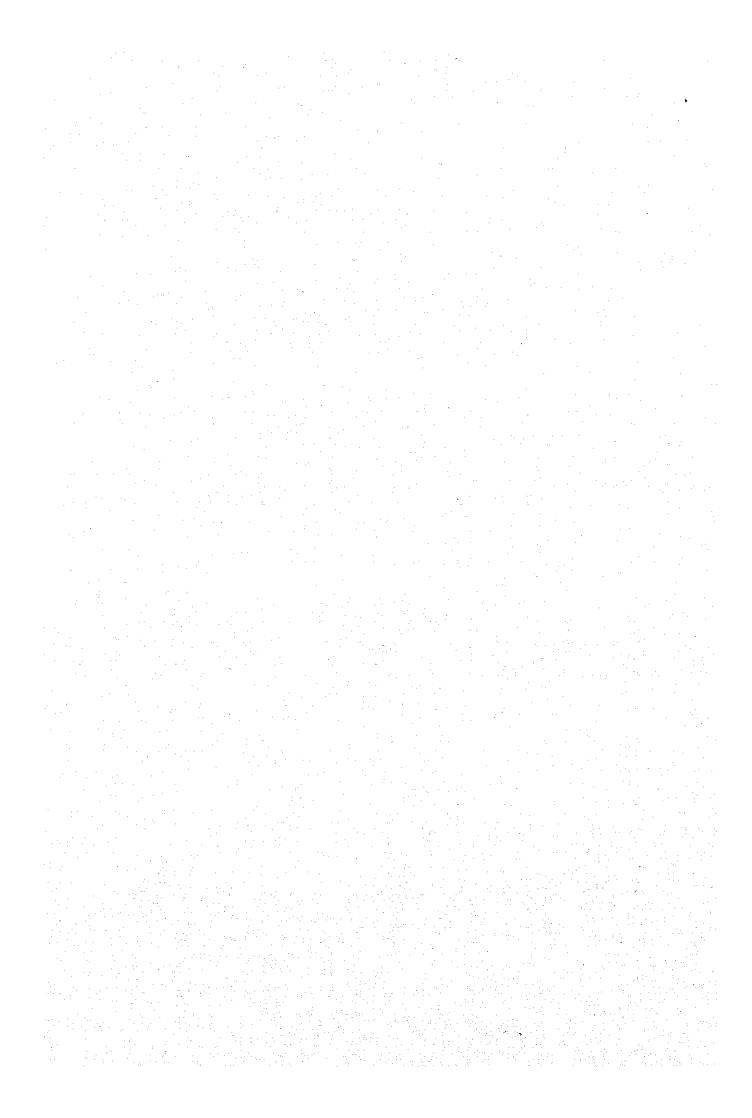
4-3-3-2 Plane Analysis

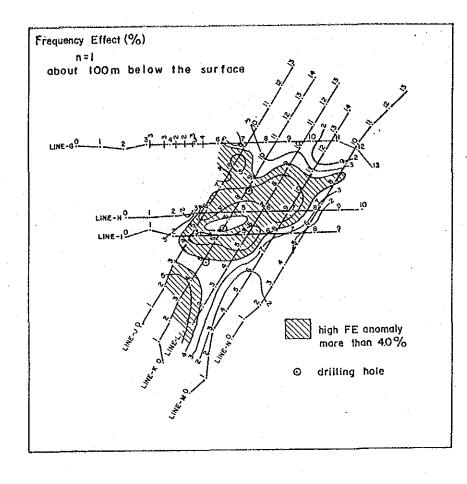
Three types of plane maps as shown in Figure II-35, were constructed using the frequency effect and apparent resistivity values for the electrode spacing factors n = 1, 3 and 5. The maps for n = 1, 3 and 5 express the distributions of the FE and apparent resistivity corresponding to levels of approximately 100 m, 200 m and 300 m below the surface. The aim of the analysis is to delineate the horizontal extent of the IP anomalies and to evaluate approximately their vertical configurations.

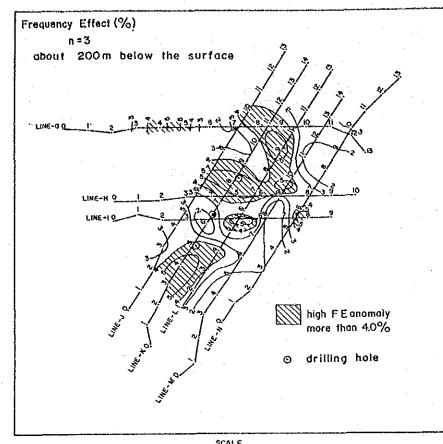
Percentage Frequency Effect

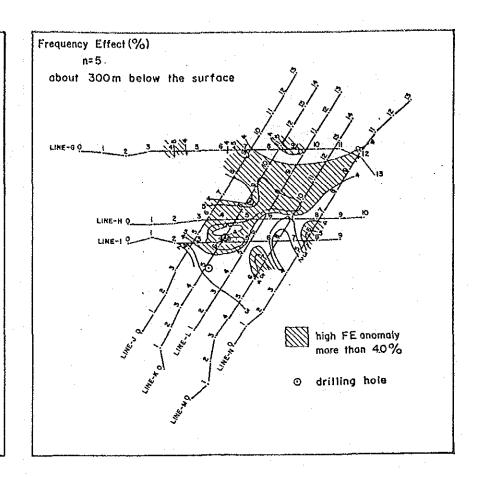
The main FE anomalous zone obtained covers a wide area northwest of the line joining station 8.5 on Line N to station 1 on Line L. This anomalous zone is actually made up of two anomalies which is separated by a narrow FE low area. The anomaly located at the southwestern part is observed on the n = 1 plot and extends to n = 3, but because of insufficient data, its further extension with depth is not known. The other anomaly covers a wide area in the central part of the area. On the FE plan map for n = 1, it is observed to consist mainly of a pair of ENE trending FE highs separated by FE low 'window'. This anomaly is the horizontal expression of the surface roof-shaped anomalies detected in the sections of Line J, K and L. For n = 3 and n = 5, the northern FE high is well-developed but the southern FE high decreases in size.

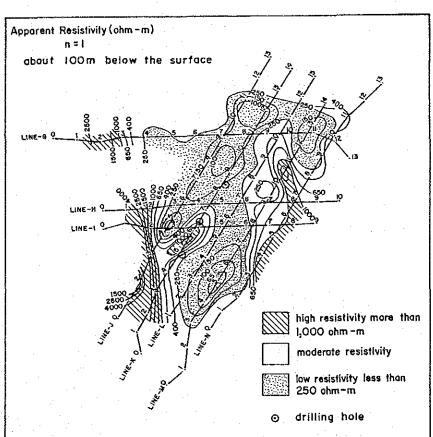
Apparent Resistivity

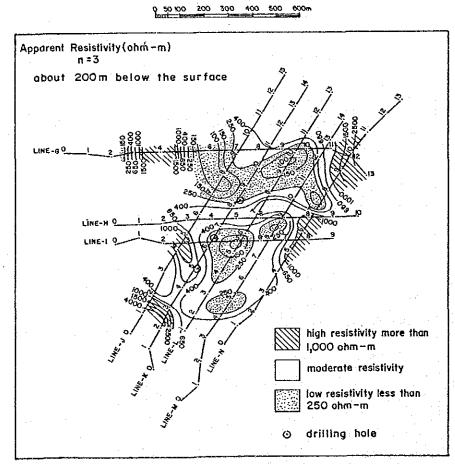

The results of the apparent resistivity area show in general a low resistivity area surrounded by high resistivity, in the same manner as the intrusive rock is surrounded by limestone. There are however some small resistivity highs within the intrusive area. The plots of the apparent resistivity maps for n = 1, 3 and 5 all show some small apparent resistivity highs which are probably due to the silicified parts of the intrusive rock. The extensive resistivity low areas for n = 1, most probably indicate the distribution of the overburden. Those obtained for n = 3 and 5 cover smaller areas and most likely correspond to the altered clayey or brecciated parts of the intrusive rock. Resistivity lows show different trends at every level. The resistivity lows for n = 3 are separated by a moderate resistivity zone trending E-W. The more extensive resistivity low for n = 1 forms a broad NNE zone whereas the resistivity lows for n = 3 are small with no apparent trend.


4-3-4 Results of Magnetic Survey


8 lines with a total length of 9.9 km were surveyed using a portable magnetometer. The magnetic data of the area is shown in Figure II—36.


Magnetic values range from 334 to 827 gammas. Generally, the area can be divided into a magnetic high zone, in the south and magnetic low zone in the north. The small variations in magnetic values in the two zones are due to small local disturbances of the earth's magnetic field which arises from small local changes in magnetization or magnetization contrast. The general magnetization contrast, though small, between the northern and southern zones suggests that the intrusive rock may be composed of two different units.


The magnetic high observed in the southern part of the survey area probably corresponds to the contact between limestone and intrusive rock. There is no similar remarkable change in the



SM1468/12/84

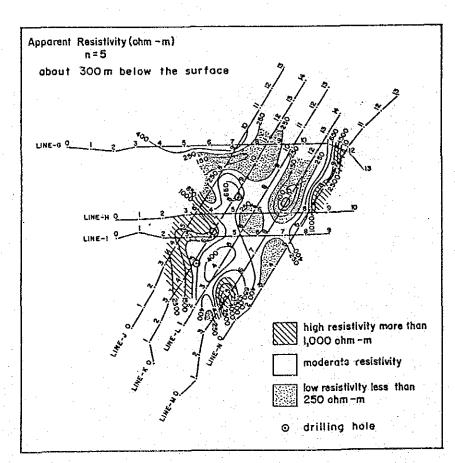


Fig. ∏-35 Contour Maps of Frequency Effect and Apparent Resistivity,
Induced Polarization Survey, Gunung Ropih Area

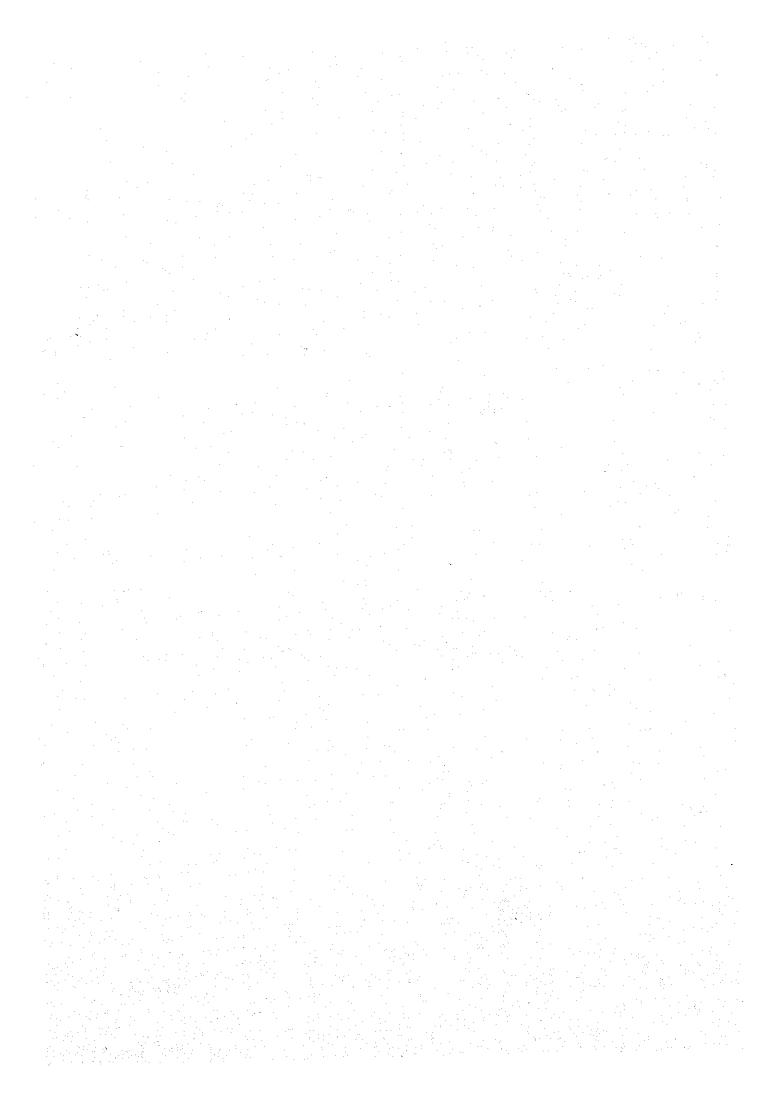


Fig. II-36 Magnetic Survey, Gunung Ropih Area

magnetic values in the northern magnetic low zone. A possible explanation is that the volumetric magnetic susceptibility of limestone and intrusive rock in the northern part is probably in the same range or the distribution of magnetic materials is almost the same in both rock types.

A localized magnetic high occurs at the central part of the survey area and has its centre at station 7.5 on Line K, with a maximum value of 747 gammas. The asymmetrical nature of the total field suggests that the magnetic body dips south. The asymmetry is primarily a resultant of the direction of the field lines of the local source and the earth's field-component of the total field. Based on slope techniques, the depth to the top of the magnetic source at the station is between 20 m to 75 m with a width of about 250 m.

4-3-5 Summary and Recommendations for Exploration Drilling

The results of the geophysical survey are summarized as follows:

- 1) There are three types of FE anomalies;
 - (i) the surface roof-shaped anomaly slightly elongated along a ENE direction with a maximum FE value of 9.8% which is widely distributed above a depth of about 100 m in the central part of the area.
 - (ii) the deep anomaly with an E-W trend and a maximum FE value of 8.0% which is observed around a depth of 200 m or more in the north-central part of the area, and
 - (iii) the shallow the deep anomaly with a maximum FE value of 8.4% which is observed in the southwestern part of the area.
- 2) There are two types of resistivity highs:
 - (i) the resistivity high surrounding a low resistivity area corresponding to the limestone distribution, and
 - (ii) the smaller resistivity highs observed in the intrusive rock which are probably due to the silicified parts of the intrusive rock.
- 3) The area may be generally divided into magnetic high zone in the south and a magnetic low zone in the north. Though the contrast is small, it suggests that the intrusive rock may be composed of two different units. The localized magnetic high which occurs at the central part of the survey area with its centre at station 7.5 on Line K is probably caused by a body with a width of about 250 m dipping south.

Based on the results, the following locations were recommended for exploration drilling:

- (i) Between stations 6 and 7 on Line K at the centre of the shallow roof-shaped FE anomaly to investigate this anomaly and a region of low FE and moderate resistivity below.
- (ii) Around station 8 on Line K to intersect the northern extension of the shallow, roof-shaped FE anomaly with low resistivity and a horizontal deeper anomalous FE source.

- (iii) Between station 8 and 9 on Line L to a depth of at least 250 m to investigate the down dip extension of the roof-shaped fe anomaly in the NE direction.
- (iv) At station 6 on Line N to a depth of at least 250 m to investigate the deep FE anomaly with moderate resistivity.
- (v) Between station 1 and 2 on Line J to investigate the SW FE anomaly and its continuation with depth.

4-4 Exploration Drilling

Based on the geophysical results and taking into account the results of geochemical soil survey and geological observations including alteration studies, three vertical holes, MJM-1, MJM-2 and MJM-3 with a total depth of 692.8 m, were drilled in the western and south western slopes of the Gunung Ropih (Fig. II-23). Details of the drilling equipment, operation and drill logs are shown in Appendices 11-20. The geology and mineralization of each hole are described below and also summarized in Table II-4 and Figure II-37.

Drill Hole MJM-1 (Depth Drilled: 241.3 m)

Drill hole MJM-1 intersected acidic intrusive rock, probably quartz porphyry, which is highly silicified, brecciated and contains abundant quartz veinlets. The original texture of the intrusive rock has been obliterated by intense silicification in the form of quartz veinlets which appear to occur independent of the cracks produced as a result of brecciation. Silicification is the predominant form of alteration but chloritization and sericitization are also common except for the shallower part, above a depth of 31 m, which is intensely kaolinised and forms the overburden soil.

Quartz veinlets occur abundantly at depths of about 40 m to 110 m and 140 m to 200 m. Below 200 m, however, they gradually decrease in abundance and no quartz veinlets are observed near the bottom of the drill hole.

These quartz veinlets are informally classified into two types, namely micro-veinlets which are thinner than 1 mm and veinlets which are thicker than 1 mm. The former is earlier than the latter.

Veinlets of skarn composed mainly of andradite, chlorite, epidote, wollastonite, quartz and calcite, are also found as irregular streaks throughout the entire core section. They were produced later than the quartz veinlets as they are found filling cracks which cut the quartz veinlets.

Ore minerals observed in this hole are composed mainly of chalcopyrite and pyrite, a small amount of pyrrhotite and rare bornite, chalcocite(?), molybdenite and sphalerite(?). Most of these minerals are very fine-grained, less than 1 mm across, particularly chalcopyrite and molybdenite which are mostly about 0.1 mm across. In general, chalcopyrite associated with pyrite occurs dominantly where quartz veinlets are intensely developed. Microscopically, however, chalcopyrite is disseminated more in micro-cracks than in the quartz veinlets themselves. The larger chalcopyrite grains especially are associated more with andradite filling the cracks.

Pyrrhotite is disseminated in micro-cracks below the depth of 150 m and is frequently accompanied by pyrite and chalcopyrite.

Rare spots of bornite in the intrusive itself is observed at about the 50 m depth. The boundaries of some bornite grains are probably oxidized to dull black chalcocite.

Rare sphalerite is observed at a depth of about 70 m, together with veinlets containing andradite.

Analytical results of core sections where higher Cu grades are expected are as follows:-

(i) Silicified and brecciated intrusive rock accompanied by a small amount of bornite.

Depth (m) Au (g/t) Cu (g/t) Mo (ppm)
$$43.4 - 45.0$$
 tr. 0.15 27

(ii) Intrusive rock accompanied by patches of skarn minerals with chalcopyrite and pyrite.

Depth (m)	Au (g/t)	Cu (g/t)	Mo (ppm)	
65.0 - 73.0	tr.	0.15		

(iii) Intrusive rock with dissemination of chalcopyrite and pyrite and accompanied by rare quartz veinlets.

(iv) Intrusive rock accompanied by quartz veinlets with chalcopyrite and pyrite.

Depth (m) Au (g/t) Cu (g/t) Mo (ppm)
$$137.0 - 145.0$$
 tr. 0.17 59

(v) Intrusive rock accompanied by quartz veinlets with pyrrhotite, chalcopyrite and pyrite.

(vi) Silicified and brecciated intrusive rock with disseminations of chalcopyrite, pyrrhotite and pyrite and accompanied by rare quartz veinlets.

Depth (m) Au (g/t) Cu (g/t) Mo (ppm)
$$228.0 - 230.0$$
 tr. 0.13 55

The average grades of the main mineralized parts are as follows:

Depth (m)	Au (g/t)	Cu (g/t)	Mo (ppm)	
139.0 - 190.0	tr.	0.18	15	

Drill Hole MJM-2 (Depth Drilled: 250.5 m)

The section intersected by MJM-2 is also composed of quartz porphyry, which is mostly brecciated. However, this hole differs greatly from MJM-1 even though it is only 200 m away. It is characterized by argillization, mostly kaolinitization, rather weak silicification and the absence of quartz veinlets.

The cracks are generally filled by calcite in place of quartz. However, the distribution of calcite veinlets are rather patchy and discontinuous.

Ore minerals observed consist of abundant pyrrhotite and pyrite, a small amount of galena, sphalerite and malachite and rare chalcopyrite. Pyrrhotite, of about 1 mm across, is equally disseminated in the rock and along the cracks accompanied by calcite. Most of the pyrite occurs with calcite in the cracks and some are also disseminated in the rock itself. It is observed commonly at a depth of about 100 m, rarely around the 150 m depth and commonly near the bottom of the drill hole. Galena and sphalerite grains are about 1 to 5 mm across and are closely associated with calcite in the shallow part to about the 70 m depth and below 200 m. Malachite stains rock fragments which are sub-rounded and fringed with fine-grained pyrrhotite. Such fragments are not so abundant but they are observed in many places.

Rare chalcopyrite occurs as disseminations of very fine grains only around the 40 m and 90 m depths accompanied by pyrite.

The analytical results of the core in which in little chalcopyrite is observed are as follows:

Depth (m)	Au (g/t)	Cu (g/t)	Mo (ppm)
35.0 - 45.0	tr.	tr.	7
85.0 - 95.0	tr.	tr.	10

MJM-3 (Depth Drilled: 201,0 m)

The section of drill hole MJM-3 is composed of a similar acidic intrusive rock, intensely silicified with a considerable amount of quartz veinlets. It is similar to drill hole MJM-1 though brecciation of the rock is not extensive.

Besides intense silicification, sericitization and chloritization are commonly observed. Sericite mainly replaces feldspar phenocrysts. Most of the chlorite occurs as replacement of horn-blende phenocrysts though some occur as veinlets filling cracks. Quartz veinlets are dominantly developed above the 130 m depth. They are roughly classified into two types in the same way as those of drill hole MJM-1. Skarn veinlets consisting of andradite, chlorite, epidote, wollastonite, quartz and calcite are also observed filling cracks.

Ore minerals are composed predominantly of chalcopyrite and pyrite, a small amount of pyrrhotite and hematite and rare bornite and malachite. Chalcopyrite and pyrite occur as disseminations of very fine grains in quartz veinlets and in cracks. Chalcopyrite also occurs as rare, irregular streaks of 5 mm width, associated with chlorite filling cracks at a depth of 107.5 m. Pyrrhotite is disseminated along cracks around a depth of 70 m to 90 m and 160 m to 180 m. Hematite forms a banded structure with quartz and chlorite.

Rare bornite occurs as disseminations of very fine grains in the country rock about a depth of 160 m and rare malachite is observed in argillized rock at a depth of 90 m to 95 m.

The average grades of the main mineralized part containing quartz veinlets are as follows:

Depth (m)	Au (g/t)	Cu (g/t)	Mo (ppm)	
50.0 - 114.0	tr.	0.23	31	

Table II-4 Summary of Drill Logs

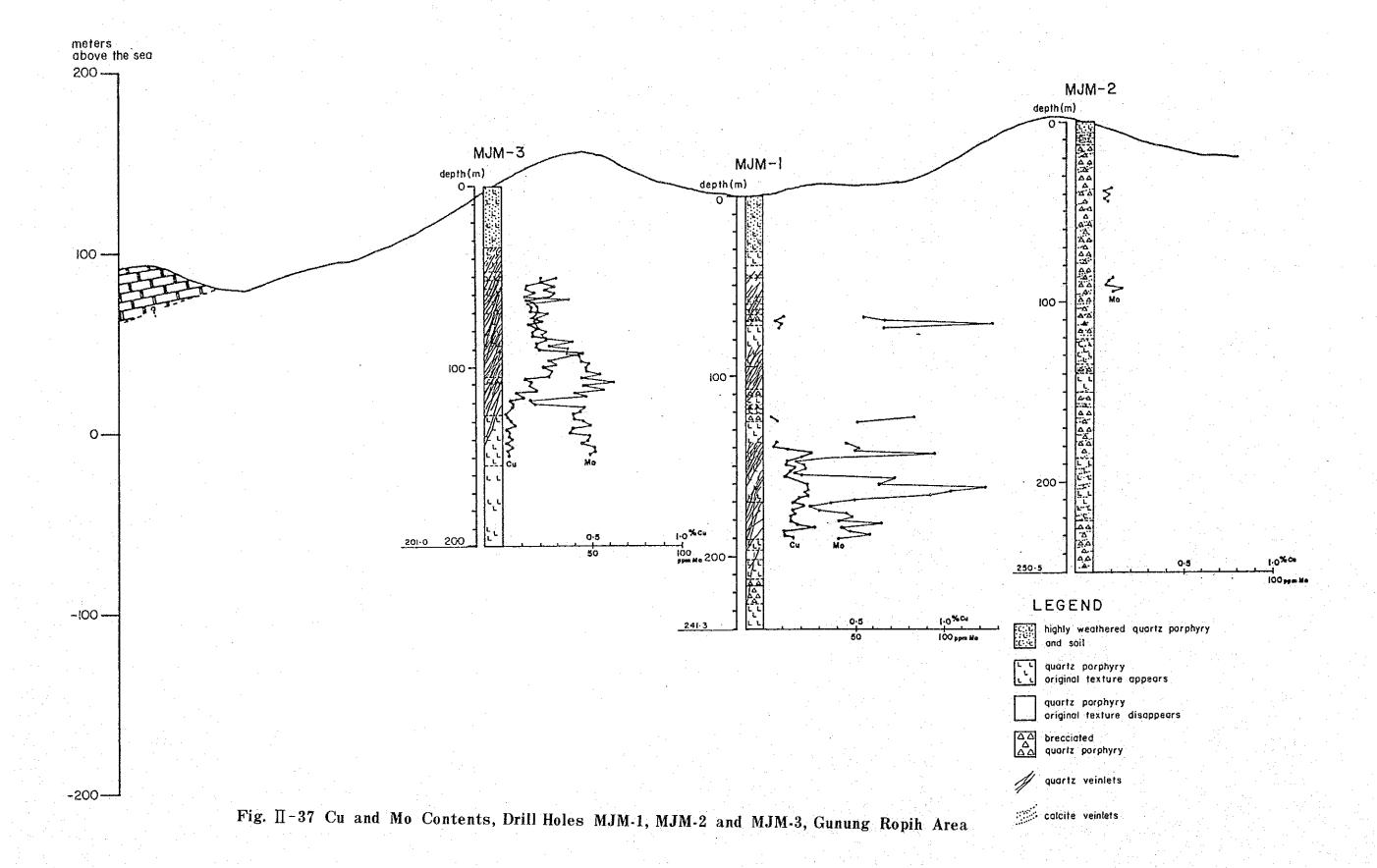
· · · · · ·		Drill Hole MJM-1 (6.5 of Line K)	Drill Hole MJM-2 (8.3 of Line K)	Drill Hole MJM-3 (5.0 of Line K)
Rock Type		acidic intrusive rock partly brecciated	acidic intrusive rock mostly brecciated	acidic intrusive rock rarely brecciated
Alteration		silicification, sericitization, chloritization	argillization (kaolinitization)	silicification, sericitization chloritization
Minerals forming	Мајог	quartz	calcite	quartz
	Minor	andradite, wollastonite, chlorite, epidote, calcite	-	andradite, wollastonite, chlorite, epidote, calcite
Ore minerals	Major	Chalcopyrite, pyrite	pyrrhotite, pyrite	Chalcopyrite, pyrite
	Minor	pyrrhotite, bornite, chalcocite (?) molybdenite, sphalerite (?)	galena, sphalerite, malachite, chalcopyrite	pyrrhotite, hematite, bornite, malachite
Main Cu-mineralized Sections		139 mm — 190 m (0.18% Cu)		50 m — 114 m (0.23% Cu)
Sections with relatively high total sulphide content		60 m - 120 m and 150 m - 190 m	above 100 m and below 230 m	50 m — 110 m

4-5 Discussion

4-5-1 Lateral Zoning of Metal Distribution

From the results of the geochemical soil survey conducted during Phase II, a zonation of metal distributions is distinguishable. The zone in the southern and eastern parts of Gunung Ropih, where Cu and Mo are enriched, surrounded and overlapped marginally, especially in the east, by a zone of Pb enrichment. Figure II—38 shows the distributions of Cu, Pb, Zn, Mo, Au and Ag in soil of the Gunung Ropih Area. Cu—Mo and Pb show clear zonation. The zone of Cu—Mo enrichment is also observed to coincide largely with the area of silicification mainly in the form of networks of quartz veinlets (Fig. II—24).

This pattern is supported by the results of the core logs of the 3 drill holes (Fig. II-39). In drill holes MJM-1 and MJM-3 located in the southwestern part, chalcopyrite and intense silicification are commonly observed but gelana is rare whereas in drill hole MJM-2 situated just north of Gunung Ropih in the Pb anomalous area, chalcopyrite and quartz veinlets are rare but galena is common.


4-5-2 Vertical Zoning of Metal Distribution

From Figure II-37 which shows the distribution of Cu and Mo contents in the drill holes, Mo in MJM-3 is seen to be increasing gradually with depth but not in MJM-1. On the other hand, Cu content below a depth of 100 m in MJM-3 is observed to decrease with depth but in MJM-1 is quite constant throughout the hole. In MJM-2, zoning of ore minerals is not observed as can be seen from Figure II-39.

Combining both the lateral and vertical zonations discussed, a three dimensional zonation for Cu and Pb with a centre located just south of MJM-3 may be approximated. It is estimated that the northern boundary between the Cu and Pb enriched zones apparently dips north at a high angle.

4-5-3 Occurrence of Pyrrhotite

Though pyrrhotite occurrence is quite unique in mineralization of the porphyry copper type, it is common in the drill holes of the Gunung Ropih area especially in hole MJM-2. Pyrrhotite is observed below 130 m in the MJM-1, throughout MJM-2 and below 160 m in MJM-3. Connecting the 3 upper limits of the pyrrhotite occurrence, this surface apparently dips south. Though

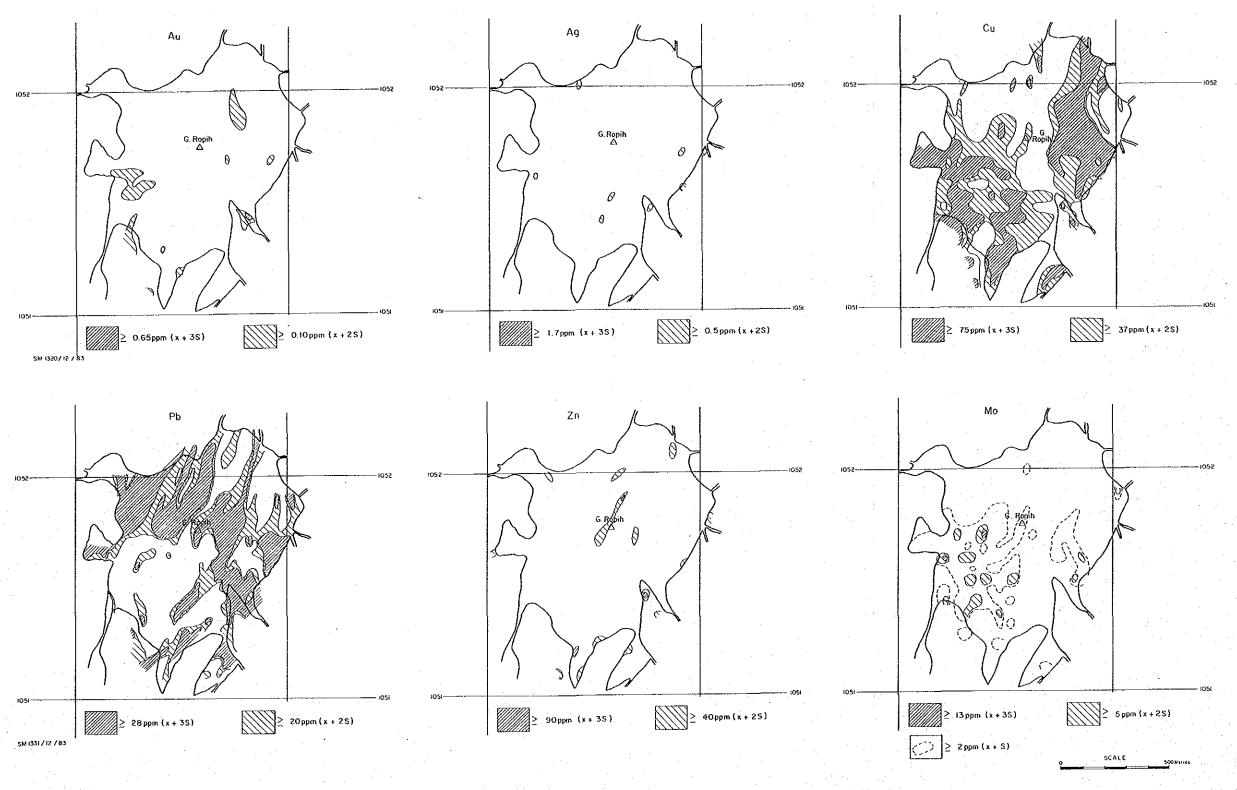
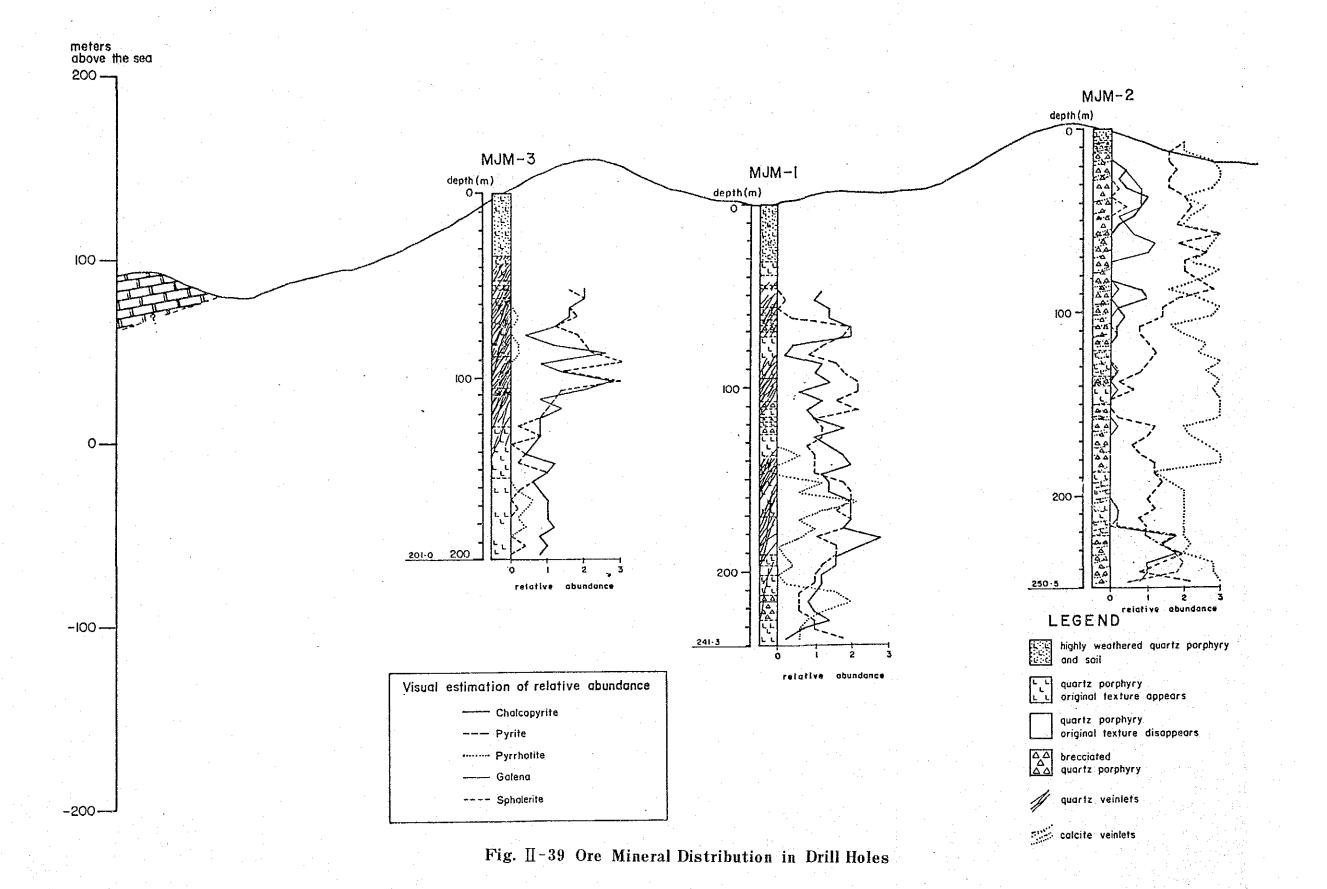
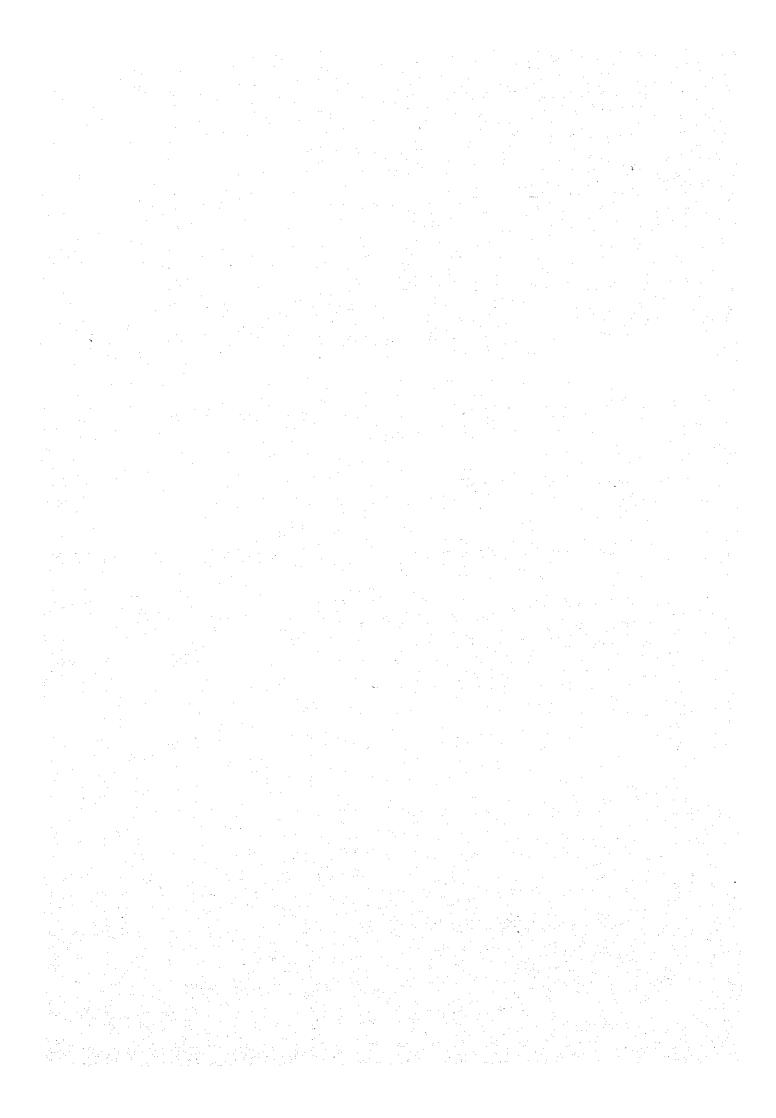




Fig. II-38 Results of Geochemical Soil Survey, Gunung Ropih Area

this direction of dip does not fit the zonation of Cu and Pb discussed earlier, it however agrees with the results of the magnetic survey which shows a localized magnetic high, with a width of about 250 m dipping south at MJM-2. It seems therefore pyrrhotite is not directly related to chalcopyrite mineralization which further complicates the interpretation of high PFE anomalies.

Fortunately, as observed in MJM-2 abundant pyrrhotite accompanies quartz porphyry which is mostly argillized and brecciated and gives low resistivity whereas chalcopyrite as in MJM-1 and 3, is associated mainly with silicified quartz porphyry containing quartz veinlets which gives moderate to high resistivity. It may be said therefore that a resistivity low in an FE high area where positive magnetic contrast occurs and silicification is not dominant may be understood to be possibly due to pyrrhotite but not chalcopyrite dissemination.

4-5-4 Relationship among Chalcopyrite, Apparent Resistivity and PFE

As mentioned earlier, chalcopyrite occurs mainly in cracks which cut quartz veinlets, though as a whole it occurs dominantly where quartz veinlets are abundantly developed, the PFE is moderate to high and there is little or negative magnetic contrast. In general, areas with abundant quartz veinlets also give resistivity highs. Where abundant fractures occur in such areas, they should be detected as a lower resistivity area in a high resistivity area. Consequently, a partial lower resistivity area in a wider resistivity high area, if it is accompanied by a FE high anomaly, no magnetic contrast and silicification, is most significant for future exploration for Cu in the area. In general however, low-high resistivity area showing silicification, a moderate to high FE and no magnetic contrast has potential for Cu mineralization (Fig. II—40).

4-5-5 Grade and Extent of Copper Mineralization

As provened by the drilling results, copper mineralization is associated with the highly silicified part of the intrusive in the southwestern part of G. Ropih. The main mineralized sections intersected give an average of 0.18% Cu between a depth of 139 m and 190 m in drill hole MJM-1 and 0.23% Cu between a depth of 50 m and 114 m in drill hole MJM-3. However, the overall grade is subeconomical.

In drill hole MJM-3, Cu content and abundance of quartz veinlets decrease with depth whereas Mo content gradually increases below a depth of 100 m. Under such conditions, the possibility of Cu mineralization is indicated to be very low below 201.0 m, the bottom of the hole though Mo-mineralization may increase. Taking into consideration that common pyrrhotite is observed below the 160 m depth, FE highs detected at depth in this hole are possibly caused by pyrrhotite disseminations. As the boundary between the Cu and Pb enriched zones is estimated

to dip at a high angle, the possibility of Cu-Mo mineralization at depth below the bottom of drill hole MJM-2 is poor. If any, it would be at considerable depth. In hole MJM-1, Cu and Mo contents remains generally constant to a depth of about 200 m. Chalcopyrite disseminations is still observed at a depth of 241.3 m, the bottom of the hole but has decreased noticeably. This indicates that below this depth, Cu content would depreciate. Laterally however, the areas just east and southwest at MJM-3, where low to high resistivity occur overlapped by a moderate to high FE and accompanied by intense silification and little or negative magnetic contrast, still hold possibilities for finding disseminated Cu mineralization.

4-5-6 Summary and Recommendation

The drilling results prove that subeconominal disseminated Cu mineralization of the porphyry copper type exists in the southwestern part of the area. Two of the three holes drilled intersected disseminated copper mineralization with an average grade of about 0.18% Cu between a depth of 139 m and 190 m in one hole and 0.23% Cu between a depth of 50 m and 114 m in the other hole. This main mineralized area coincide with the copper-enriched zone detected by the geochemical soil survey and the area of intense silicification in the form of networks of quartz veinlets. By correlating these results with the IP and magnetic surveys, it may inferred that areas with a moderate to high FE and accompanied by silicification and little or negative magnetic contrast, have potential for disseminated copper mineralization. The best area is thought to be an area showing lower resistivity in a wider high resistivity zone, if it is accompanied by high FE, no magnetic contrast and intense silicification. As such, further exploration drilling is recommended in the southern and eastern parts of the intrusive, particularly around stations 5 and 6 on Line L and stations 3 and 4 on Line K.

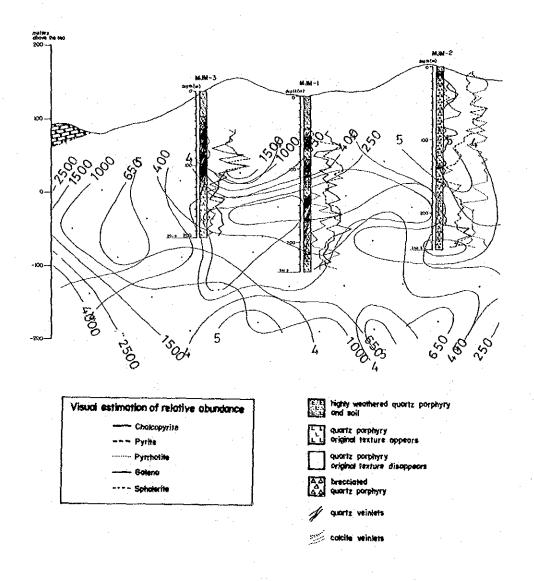


Fig. II-40 Relationship between I.P.Results and Drill Holes

CONCLUSION AND RECOMMENDATION

CHAPTER 1. CONCLUSION

The following conclusions may be drawn from the results of the work undertaken during Phase III:

- i) The lithogeochemical survey in the Seromah North area indicate two anomalous zones of metal enrichment, a NE zone in the northwestern part of the area and a minor NW zone just north of the central part. These zones are fault related and holds possibility for Au and Sb mineralizations. In the Gunung Batu area, a ENE trending Zone on the northwestern side of a major ENE fault just north of Gunung Batu is also indicated to have some potentials for Au and Sb mineralizations.
- ii) Detailed mapping and sampling in the Arong Bakit Area show that the gold ore vein of the Old Working No. 2 extends along strike for a distance of about 71 m with an average thickness of 4.3 m. The average grade of the ore is calculated to be 6.3 g/t Au and 10.2 g/t Ag. Assuming a down dip extension of equal to and half the strike length, ore reserves available are 55,800 and 27,000 tonnes respectively. Assuming a cut off mineable grade of 10 g/t Au, the high grade section of the vein with a strike length of 26.4 m and an average thickness of 5.1 m may be calculated to contain an average ore grade of 14.7 g/t Au and 21.4 g/t Ag. Based on similar downdip assumptions, the corresponding reserves are 9,200 and 4,600 tonnes.
- iii) In the Sungai Sinyi area, the probable primary source of the placer gold occurring in stream sediments has been traced by panned concentrate and geochemical soil surveys to an anomalous area in the upper reaches of Sungai Sinyi. Similar work in addition to trenching in the Sungai Matung area, indicated that the primary source of the placer gold found in the area may be located in the upper reaches of river. The source however, is indicated to be of very small extent.
- iv) Drilling results in the Gunung Ropih area prove that subeconomical disseminated Cu mineralization of the porphyry copper type exists in the southwestern part. Two of the holes drilled intersected disseminated Cu mineralization with an average grade of about 0.18% Cu between a depth of 139 m and 190 m in one hole and 0.23% Cu between a depth of 50 m and 114 m in the other hole. By correlation of the results of the various work undertaken in the area including geological mapping, geochemical soil survey and IP and magnetic surveys, it may be inferred that areas with moderate to high FE, accompanied by silicification and little or negative magnetic contrast, have potential for disseminated Cu mineralization. Areas of low resistivity within a wider high resistivity zone in the intrusive and showing the above characteristics is indicated to be the best areas.

CHAPTER 2. RECOMMENDATION

Further follow-up recommended is as follows:

- i) The northwestern part of the Seromah North area should be followed up by very detailed mapping and channel sampling of the extensions of the thick calcite vein found in this area to explore for Au and Sb mineralizations.
- ii) The areas underlain by marble immediately west and north of the Gunung Juala intrusive should be further followed up by very detailed mapping and rock sampling in order to explore for gold ore veins similar to that of the Old Working No. 2 of the Gunung Arong Bakit Area.
- iii) The anomalous area for Au and As in the upper reaches of Sungai Sinyi should be followed up initially by detailed geochemical soil survey to delineate the extent of the open-ended anomaly. Trenching and exploration drilling should follow to confirm bedrock Au mineralization.
- iv) Further exploration drilling is recommended in the southern and eastern parts of the Gunung Ropih area to examine the extent and grade of Cu mineralization.

REFERENCES

REFERENCES

Davis, J.D. (1973): Statistics and Data Analysis in Geology, Willey International Edition. DeGeofroy, D. Wu, S.M. and Heins, R.W. (1968): Selection of Drilling Targets from Geochemical Data in the Southwest Wisconsin Zinc Area, Econ. Geol. vol. 63, pp. 787-795.

Ishihara, S. (1970): Introduction to porphyry copper deposit, Part II; Rateis. (in Japanese).

Lowel, J.D. and Guilbert, J.M. (1970): Lateral and Vertical Alteration — Mineralization

Zoning in Porphyry Ore Deposits, Econ. Geol. V. 65, No. 4, pp. 373—408.

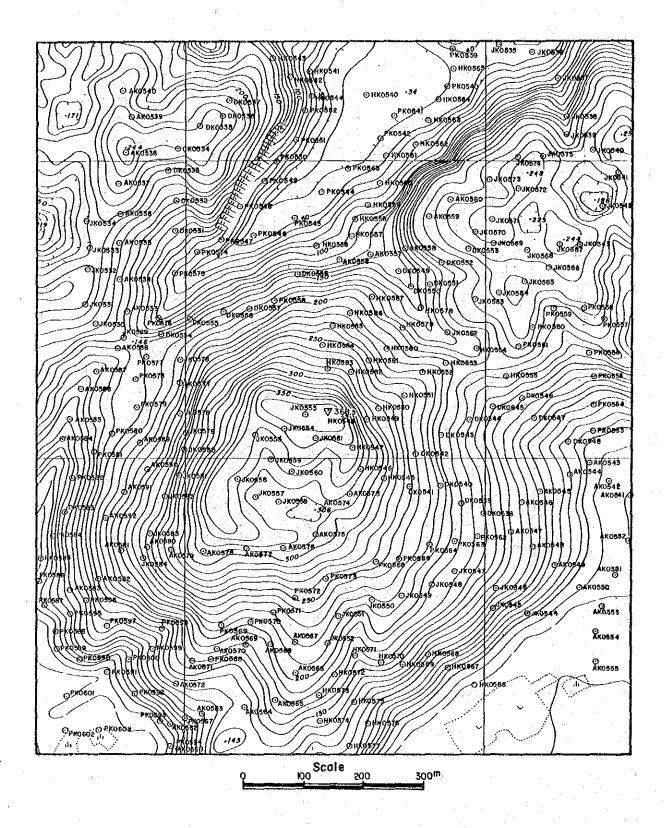
Pimm, A.C. (1967): The Bau Mining District (Krokong), West Sarawak, Malaysia, Geol. Surv. Borneo Region, Malaysia Bull. 7, Pt. II.

Report on the Collaborative Mineral Exploration in the Bau Area, West Sarawak, Phase I; Unpubl.

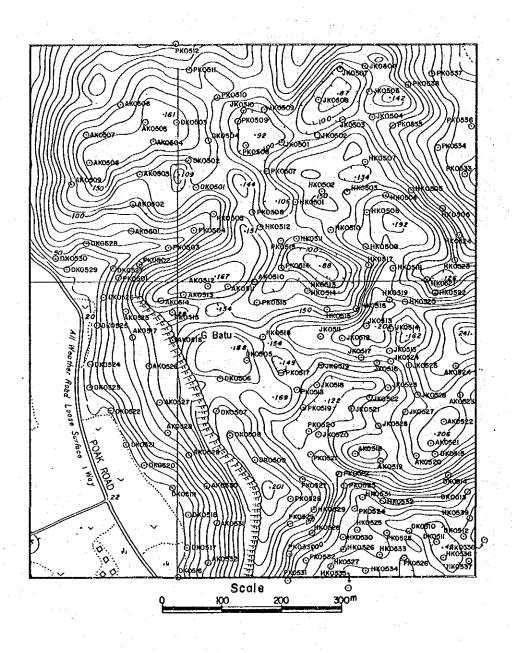
Report on the Collaborative Mineral Exploration in the Bau Area, West Sarawak, Phase II; Unpubl.

Rose, A.W., Hawkee, H.E. & Webb, J.S. (1979): Geochemistry in Mineral Exploration, 2nd Ed., Academic Press.

Sillitoe, R.H' (1973): Geology of the Los Palembres Copper Deposit, Chile; Econ. Geol. V. 68, No. 1, pp. 1-10.


(1973). The Tops and Bottoms of Porphyry Copper Deposits; Econ. Geol., V. 68, No. 6, pp. 799-815.

Sinclair, A.J. (1974): Selection of Threshold Values in Geochemical Data using Probability Graphs; Jour. Geochemical Explo., V. 3, No. 2, pp. 129-149.


Wolfenden, E.B. (1965): The BAu Mining District (Bau), West Sarawak, Malaysia, Geol. Surv. Borneo Region, Malaysia, Bull. 7, Pt. I.

Wilford, G.E. (1955): The Geology and Mineral Resources of the Kuching-Lundu Area, West Sarawak, including the Bau Mining District: Geol. Surv. DEpt., British Territories in Borneo, Mem. 3.

APPENDICES

Appendix 1 Lithogeochemical Sample Locations, Seromah North Area

Appendix 2 Lithogeochemical Sample Locations, Gunung Batu Area

Appendix 3 Analytical Results of Lithogeochemical Samples, Seromah North Area

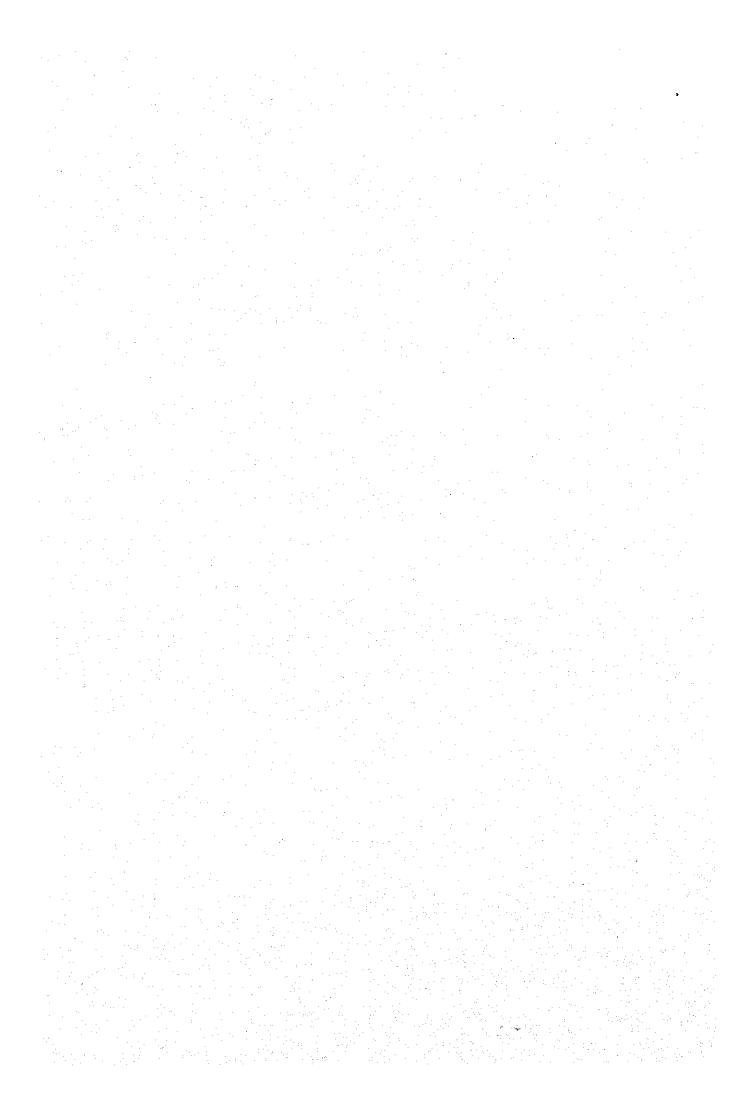
Ser No	Sample No.	Au (ppn)	Ag (ppm)	As (ppm)	Sb (pps)	Hg (ppb)	Ħn (pp∰)	Ser No	Sample No.	Au (ppm)	Ag (ppm)	As (ppm)	Sb (pps)	Kg (ppb)	(ppm)
1	AK0533	tr.	ţ۲۰	tr.	.tr	40	19	41	AK0573	0.1	tr.	4.5	0.9	tr.	78
2	AK0534	tr.	tr.	tr.	tr.	44	16	42	AK0574	tr.	tr.	8.1	1.1	185	86
3	AK0535	tr.	ţr.	tr.	tr.	32	19	43	AK0575	0.1	tr.	13.0	1.6	73	41
4	AK0536	tr.	tr.	tr.	tr-	6B	19	44	AK0576	tr.	22.8	27.7	ţr.	76	40
5	AK0537	tr.	tr.	tr.	tr.	tr.	Ь	45	AK0577	0.1	tr.	11.9	0.5	194	86
6	AK0538	tr.	tr.	tr.	tr.	45	65	46	AK0578	tr.	tr.	13.0	2.4	123	20
7	AK0539	tr.	tr.	tr.	tr.	149	54	47	AK0579	tr.	tr.	23.1	tr.	161	21
8	AK0540	ţr.	tr.	tr.	tr.	31	6	48	AK0580	tr.	tr.	12.6	tr.	130	33
9	AK0541	tr.	tr.	tr.	tr.	196	30	49	AK0581	tr.	tr.	4.9	1.6	212	119
10	AK0542	tr.	tr.	tr.	tr.	57	31	50	AK0582	· tr.	0.2	3.5	1.8	84	320
11	AK0543	0.1	0.1	tr.	tr.	221	38	51	AK0583	tr.	0.2	tr.	3.6	tr.	430
.12	AK0544	0.1	0.1	tr.	tr.	146	40	52	AK0584	0.2	tr.	16.0	1.0	245	151
13	AX0545	tr.	tr.	tr.	tr.	74	21	53	AK0585	0.1	tr.	12.6	1.2	161	36
14	AX0546	tr.	tr.	. tr	tr.	55	22	54	AK05B6	0.2	tr.	3.7	0.7	75	22
15	AK0547	0.1	tr.	tr.	tr.	212	68	55	AK0587	0.2	tr.	5.8	1.2	138	21
16	AK0548	tr.	tr.	4.0	tr.	66	21	56	AK0588	. 0, 1	tr.	14.6	20.7	297	102
17	AK0549	0.1	tr.	0.9	tr.	75	17	57	AK0589	tr.	tr.	4.4	4.0	31	66
18	AK0550	0.1	tr.	11.1	tr.	160	83	58	AX0590	0.2	tr.	21.8	2.0	338	190
18	AK0551	0.1	tr.	3.7	0.9	75	75	59	AK0591	0.1	tr.	19.1	1.3	312	160
20	AK0552	tr.	tr.	3.1	tr.	tr.	23	60	AK0592	tr.	tr.	13.6	1.7	307	129
21	AK0553	tr.	tr.	0.6	tr.	73	58	61	DK0531	0.1	tr,	12.9	tr.	356	48
22	AK0554	0.1	0.2	1.5	tr.	43	76	62	DK0532	0.1	tr.	6.5	tr.	161	29
23	AK0555	te.	0,3	1.5	ţŗ.	33	72	63	DK0533	0.1	tr.	31.7	6.1	369	135
24	AK0556	0.1	tr.	2.8	tr.	75	87	64	DK0534	0.1	tr	28.6	13.1	171	71
25	AK0557	tr.	tr.	4.3	tr.	49	108	65	DK0535	tr.	tr.	4.8	3.7	. 40	12
26	AK0558	tr.	tr.	0.6	tr.	87	34	66	DK0536	0.1	tr.	4.8	1.9	109	31
27	AK0559	tr.	tr.	3.4	tr.	203	34	67	DK0537	0.1	tr.	2.7	1.5	138	16
28	AK0560	0.1	0,4	2.5	tr.	207	42	68	DX0538	0.1	tr.	tr.	4.9	180	15
29	AK0561	0.1	tr.	10.4	tr.	184	51	69	DK0539	0.1	0.2	1.0	4.6	47	9
30	AK0562	0.1	tr.	18.2	tr.	178	137	70	DK0540	0.1	0.4	3.7	tr.	81	46
31	AK0563	0.1	tr.	21.2	tr.	530	111	71	DK0541	tr.	tr.	10.9	tr.	212	43
32	AK0564	0.1	tr.	3.9	tr.	139	33	72	DK0542	0.1	tr.	1.7	2,2	10B	47
33	AK0565	0.1	tr.	5.7	tr.	136	38	73	DK0544	0.1	tr.	2.7	10.0	112	14
34	AX0566	tr.	tr.	6.8	tr.	137	27	74	DK0545	0.1	tr.	3.4	3.5	63	12
35	AK0567	0.1	tr.	2.4	tr.	104	22	75	DK0546	tr.	tr.	5.1	0.9	26	18
36	AK0568	tr.	tri	5.7	tr.	132	38	76	DK0547	tr.	tr.	8.2	2.2	82	21
37	AK0569	tr.	tr.	tr.	1.5	70	13	77	DX0548	tr.	tr.	12.6	4.8	316	34
38	AK0570	tr.	tr.	2.1	2.0	202	23	78	DK0549	0.1	0.5	5.4	1.9	101	50
39	AK0571	0.1	tr.	3.6	4.5	172	21	79	DX0550	0.1	0.5	9.2	3.4	140	29
40	AK0572	tr.	0.1	4.5	1.6	82	21	80	DK0551	tr.	0.4	4.8	tr.	194	15

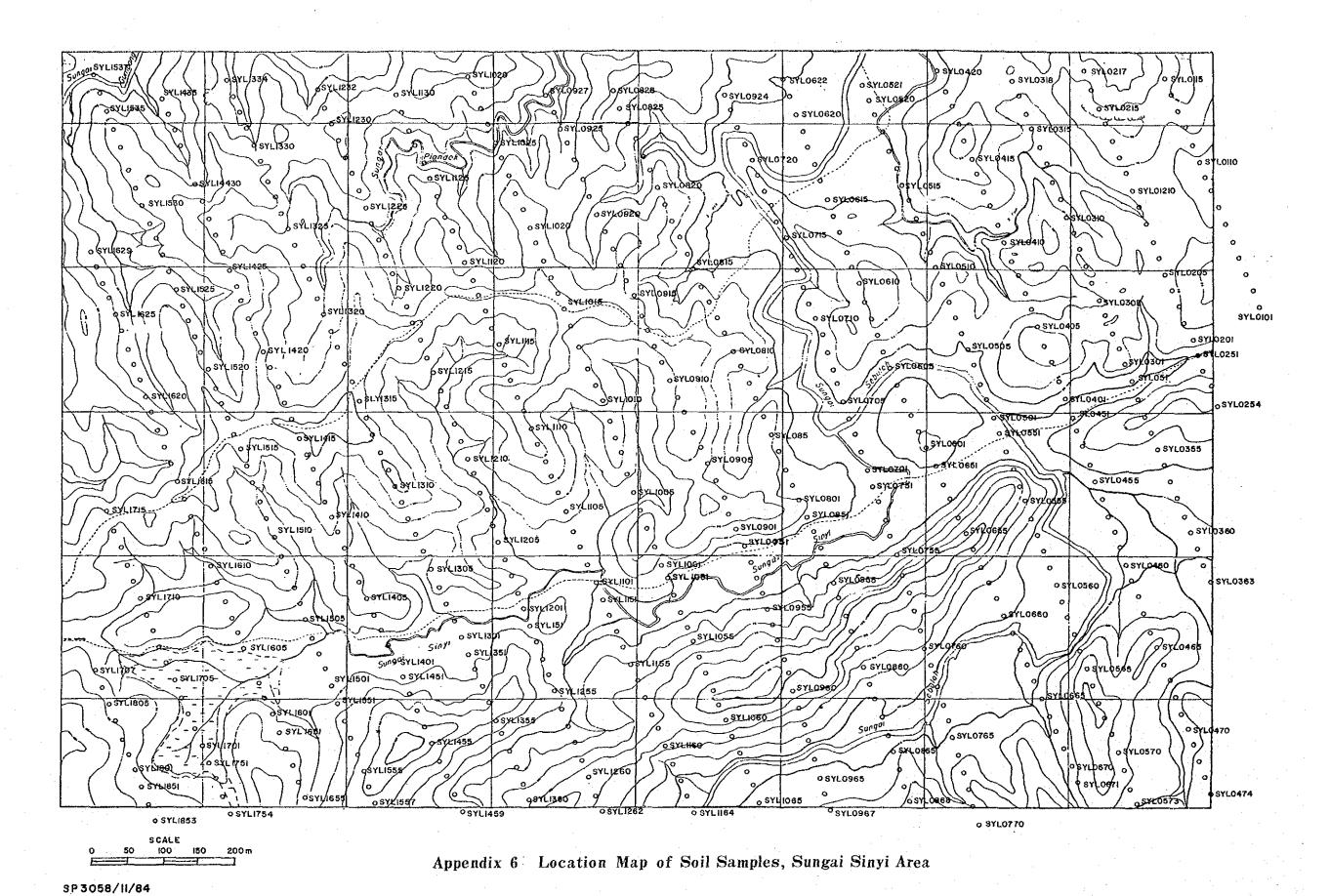
Ser-	Sample No.	Au (ppn)	Ag (ppm)	As (ppm)	St (ppn)	Hg (ppb)	fin (#94)	Ser- No	Sample No.	Âu (pps:)	Ag (ppm)	As (ppm)	Sb (ppm)	Hg (ppb)	Mn (ppm)
81	DK0552	tr.	tr.	3.1	tr.	200	16	121	HK0572	tr.	tr.	10.2	2.2	82	49
82	DK0553	tr.	tr.	6.5	tr.	197	15	122	HK0573	tr.	tr.	0.7	1.4	65	43
82	DK0554	0.1	tr.	7.5	1.5	167	93	123	HK0574	tr.	tr.	26.6	6.5	97	74
64	DK0555	tr.	tr.	2.0	2.8	101	64	124	HK0575	tr.	tr.	3.5	2,7	tr.	36
85	DK0556	tr.	tr.	8.5	tr.	134	272	125	HK0576	tr.	tr.	11.0	6.5	212	. 54
Be	DK0557	tr.	tr.	0.3	tr.	197	63	126	HK0577	tr,	tr.	13.7	9.9	142	28
67	DK0558	tr.	tr.	4.8	1.8	208	108	127	HK0578	tr.	tr.	11.9	7.2	129	27
88	DK0559	tr.	tr.	48.7	tr.	382	120	12B	HKQ579	tr.	tr.	23.5	4.2	237	33
89	HX0540	0.1	tr.	9.5	5.6	263	52	129	HK0580	tr.	tr.	19.6	6.3	43	11
90	HK0541	0.1	tr.	tr.	5.9	76	21	130	HK0581	tr.	tr.	13.0	3.8	94	34
91	HK0542	0.1	tr.	12.1	tr.	76	96	131	HK0582	tr.	tr.	0.7	- 3.1	127	29
92	HK0543	0.1	tr.	14.7	7.9	94	801	132	HK0583	tr.	tr.	5.6	4.2	63	16
93	HK0544	0.1	tr.	14.7	1.9	173	64	133	HX0584	tr.	tr.	tr.	5.8	133	25
94	HK0545	tr.	tr.	22.7	4.3	178	67	134	HK0585	tr,	tr.	tr.	19.7	136	23
95	HK0546	tr.	tr.	tr.	1.0	27	53	135	HK0586	,tr.	. tr.	14.4	4.2	295	28
96	HK0547	tr.	tr.	9.9	4.3	116	55	136	HK0587	tr.	tr.	6.0	30.2	.66	26
97	HK:0548	0.1	tr.	8.4	1.2	424	bi	137	JK0529	0.2	tr.	20.1	tr.	156	50
98	HK0549	tr.	0.4	3.7	1.9	78	47	138	JK0530	tr.	tr.	28.6	tr.	tr.	5
99	HK0550	tr.	tr.	5.5	2.2	215	14	139	JK0531	0.1	0.8	39.5	tr.	142	18
100	HK0551	0.1	tr.	5.5	4.1	89	12	140	JK0532	0.1	tr.	3.4	tr.	- 73	9
101	HK0552	tr.	Ů. 1	3.3	1.0	85	11	141	JK0533	0.1	tr.	tr.	tr.	79	13
102	HK0553	tr.	tr.	10.3	9.0	334	39	142	JK0534	0.1	tr.	2.4	tr.	62	- 11
103	HK0554	tr.	tr.	17.6	2.8	61	14	143	JK0535	0.1	tr.	8.2	1.0	92	13
104	HK0555	tr.	1.5	9.2	tr.	38	17	144	JK0536	0.1	tr.	4.5	tr.	111	51
105	HK0556	tr.	tr.	9.2	1.0	593	79	145	JK0537	0.1	tri	21.2	tr.	45	23
106	HK0557	tr.	tr.	8.8	6.6	140	148	146	JK0538	0.1	tr.	5.4	0.7	52	13
107	HK0558	tr.	tr.	8.1	tr.	143	124	147	JK0539	0.1	tr.	9.9	tr.	115	33
301	HK0559	tr.	tr.	5.9	2.9	58	99	148	JK0540	tr.	tr.	2.0	tr.	104	29
109	HK0560	tr.	tr.	10.6	1.2	87	229	149	JK0541	0.1	tr.	tr.	tr.	75	32
110	HK0561	0.1	tr.	12.1	26.1	tr.	214	150	JK0542	0.1	tr.	5.8	tr.	61	19
111	HK0562	tr.	0.3	53.9	7.5	380	194	151	JK0543	tr.	tr.	tr.	tr.	101	33
112	HK0563	0.1	tr.	49.5	1.5	237	312	152	JK0544	tr.	tr.	tr.	tr.	43	41
113	HX0564	tr.	tr.	5.5	tr.	89	43	153	JK0545	0.1	tr.	tr.	tr.	81	31
114	HX0565	tr.	tr.	4.0	tr,	78	18	154	JKQ546	0.1	tr.	tr.	tr.	48	55
115	HK0566	tr.	tr.	2.8	3.2	38	62	155	JK0547	0.1	tr.	tr.	tr.	103	13
116	HK0567	tr.	tr.	tr.	tr.	66	15	156	JK0548	tr.	tr.	1.7	tr.	52	17
117	HK0568	tr.	tr.	tr.	1.1	132	48	ļ	JK0549	0.1	tr.	tr.	tr.	76	16
118	HK0569	tr.	tr.	9.1	6.5	. 85	47	158	JK0550	tr.	tr.	tr.	0.5	67	11
	HK0570	tr.	tr.	16.8	0.9	73	13	159	JK0551	tr.	tr.	3.7	tr.	120	18
120	HK0571	tr.	tr.	10.2	tr.	124	.48	160	JK0552	0.1	tr.	tr.	tr.	135	20

Ser No	Sample No.	Аи (ррл)	Ag (ppm)	As (ppm)	Sb (ppn)	Hg (PPb)	in (ppm)	Ser No	Sample No.	Au (ppm)	Ag (ppm)	As (ppm)	Sh (ppm)	Hg (ppb)	Й0 (ррв)
161	JK0553	0.1	tr.	tr.	tr.	70	36	201	PK0547	tr.	tr.	8.7	1.6	130	29
162	JK0554	0,1	tr.	tr.	tr.	76	74	202	PK0548	tr.	tr.	12.3	tr.	176	• • •
163	JK0555	0.1	tr.	tr.	8.2	79	12	203	PK0549	0.1	tr.	3.3	16.0	101	55
164	JK0556	0.1	0.3	tr.	tr.	63	63	204	PK0550	0.2	0.2	21.3	12.1	361	128
145	JK0557	tr.	tr.	tr.	tr.	106	31	205	PK0551	0.1	0.2	17.3	tr.	220	105
166	JK0558	0.1	tr.	tr.	tr.	88	49	206	PK0552	0.1	0.1	8.7	10.9	35	30
167	JK0559	tr.	tr,	1.8	tr.	tr.	40	207	PK0553	0.1	0.3	8.0	2,1	؟ 7	35
168	JK0560	tr.	tr.	6.2	tr.	78	78	208	PK0554	tr.	tr.	9.7	1.2	41	17
169	JK0561	0.1	tr.	4.4	1.2	56	41	209	PK0555	tr.	tr.	4.0	9.0	26	22
170	JK0562	0.1	tr.	5.1	1.7	122	19	210	PK0556	0.1	tr.	7.7	4.2	51	16
171	JK0563	0.1	tr.	4.8	tr.	116	23	211	PK0557	tr.	tr.	6.0	13.7	59	56
172	JK0564	0.1	tr.	5.5	tr.	88	23	212	PK0558	tr.	tr.	7.0	tr.	50	11
173	JK0565	0.1	tr.	7.3	tr.	180	42	213	PK0559	tr.	tr.	15.6	2.0	118	40
174	JK0566	0.2	tr.	16.8	tr.	239	- 51	214	PK0560	0.1	0.1	7.7	17.9	80	20
175	JK0567	0.2	tr.	14.7	tr.	165	. 45	215	PK0561	tr.	tr.	16.2	2.4	195	34
176	JK0568	0.1	tr.	8.4	7.0	97	30	216	PK0562	0.1	0.2	12.0	6.9	56	15
177	JK0569	tŗ.	tr.	5.9	tr.	115	24	217	PK0563	0.1	tr.	6.0	27.6	40	14
178	JK0570	0.2	tr.	2.2	0.7	188	30	218	PK0564	0.1	tr.	1.3	- 17.4	tr.	8
179	JK0571	0.1	tr.	tr.	3.8	199	27	219	PK0565	0.1	tr.	3.0	12.5	26	41
180	JK0572	0.1	tr.	3.3	8.5	71	33	220	PK0566	0.1	tr.	3.0	10.0	tr.	85
181	JK0573	0.1	tr.	tr.	23.8	78	27	221	PK0567	tr.	tr.	46.1	4.3	282	344
182	JK0574	0.1	tr.	tr.	tr.	49	23	222	PK0568	tr.	tr.	18.4	3.6	131	97
183	JK0575	tr.	tr.	5.5	tr.	147	33	223	PK0569	tr.	tr.	6.0	27.5	100	12
184	JK0576	0.2	tr.	1.5	tr.	141	91	224	PK 0 570	tr.	tr.	20.0	0.9	. 114	25
185	JK0577	0.2	tr.	1.8	10.9	113	57	225	PK0571	tr.	tr.	15.9	tr.	50	10
186	JK0578	0.1	tr.	10.6	6.3	634	150	226	PK0572	0.1	tr.	22.3	tr.	78	21
187	JK0579	0.3	tr.	19.1	tr.	465	84	227	PK0573	tr.	tr.	8.8	tr.	53	18
188	JK0580	0.1	tr.	21.6	tr.	272	145	228	PK0574	0.1	. tr.	42.0	3.7	2026	53
189	JK0581	0.1	tr.	4.4	5.8	103	51	229	PK0575	0.1	tr.	13.7	1.4	122	27
190	JK0582	0.2	tr.	2.9	0.5	328	3.9	230	PK0576	tr.	tr.	22.9	tr.	83	96
191	JK0583	0.1	0.3	0.7	tr.	200	54	231	PK0577	0.1	tr.	1.7	3.0	66	114
192	JK0584	0.2	tr.	tr.	ŧr.	198	46	232	PK0578	tr.	tr.	8.3	tr.	77	143
193	PK0539	0.2	0.9	10.3	14.6	302	34	233	PK0579	tr.	tr.	8.3	8,9	187	125
194	PK0540	0.2	0.5	tr.	13.9	274	7	234	PK0580	0.1	tr.	19.4	12.1	56	121
195	PK0541	0.1	0.4	6.3	9.5	95	320	235	PK0581	0.1	tr.	20.0	8.3	tr.	93
196	PK0542	0.1	0.1	4.0	9.5	74	176	236	PK0582	tr.	tr.	15,6	14.B	tr.	94
197	PK0543	0.2	tr.	7.7	21.8	34	144	237	PK0583	0.1	tr.	14.3	6.7	69	81
198	PK0544	0.2	0.2	7.0	9.3	110	208	238	PK0584	tr.	tr.	19.1	13.6	47	161
199	PK0545	0.3	0.1	16.3	19.0	91	295	239	PK0585	tr.	tr.	24.5	11.6	tr.	267
200	PK0546	0.1	tr.	3.7	16.7	tr.	160	240	PK0586	tr.	tr.	15.3	7.8	tr.	137

Ser No	Sample No.	Au (ppa)	Ag (ppm)	As (pps)	5b (899)	Hg (ppb)	Mn (ppm)
241	PK0587	tr.	tr.	30.2	5.9	34.	136
242	PK0588	tr.	tr.	3.2	20.1	itr.	479
243	PK0589	tr.	tr.	15.9	10.5	tr.	234
244	PKQ590	0.1	tr.	14.0	9.2	. tr.	265
245	PK0591	tr.	tr.	12.7	tr.	37	263
246	PK0592	0.1	tr.	5.4	2.0	37	380
247	PK0593	0.1	tr.	32.7	0.5	133	279
248	PK0594	0.1	tr.	17.2	tr.	524	179
249	PK0595	0.1	tr.	9.3	8.3	tri	468
250	PK0596	0.1	tr.	5.7	tr.	48	273
251	PK0597	0.2	0.1	16.0	10.4	745	151
252	PK059B	0.1	tr.	5.3	6.3	246	46
253	PK0599	0.1	0.1	93.0	4.4	1863	211
254	FK0900	0.1	tr.	79.0	31.1	343	372
255	PK0501	0.2	0.1	7.7	28.5	28	301
256	PK0802	0.2	0.2	14.3	6.3	26	322
257	LK0902	0.1	tr.	14.0	14.8	69	372

Appendix 4 Analytical Results of Lithogeochemical Samples, Gunung Batu Area


	٠.٠.		•			٠.							1. 1.	4.1	
Ser No	Sample No.	Au (ppa)	Ag (ppm)	As (ppm)	Sb (ppm)	Hg (ppb)	Nn (pp⊪)	Ser No	Sample No.	Au (ppn)	Aq (ppm)	As (pps)	Sb (ppn)	Ha (ppb)	Ma (ppm)
i	AK0501	19, 1	119.5	165.5	7.7	tr.	507	41	DK0509	0.1	0.6	2.7	tr.	tr.	5
. 2	AK0502	0.1	tr.	49 1	tr.	tr.	48	42	DK0510	tr.	tr.	9.2	1.9	37	34
3	AK0503	tr.	tr.	98.3	tr.	tr.	55	43	DK0511	tr.	tr.	3.7	3.7	37	11
4	AK0504	0.1	tr.	40.5	tr.	tr.	35	44	DK0512	tr.	tr.	2.4	1.5	55	
5	AK0505	· tr.	tr.	24.1	tr.	tr.	41	45	DK0513	tr.	tr.	4.4	tr.	tr.:	
6	AK0506	0.1	tr,	tr.	tr.	tr.	48	46	DK0514	tr.	tr.	4.1	2.0	29	10
7	AK0507	1.0	0.1	tr.	3, 1	tr.	47	47	DK0515	tr.	2.8	2.4	1.5	tr.	l
В	AK0508	0.1	tr.	6.9	11.6	tr.	33	48	DK0516	tr.	tr.	8.2	tr.	324	21
ç	AK0509	0.1	tr.	2.6	1.3	tr.	50	49	DK0517	tr.	tr.	5.8	tr.	88	4
10	AK0510	0.1	tr.	2.6	3.6	tr.	15	50	DK0518	tr.	tr.	tr.	1.4	50	
11	AK0511	tr.	0.1	tr.	tr.	25	122	51	DK0519	tr.	4.0	2.0	6.9	132	12
12	AK0512	tr.	tr.	tr.	tr.	tr:	14	52	DK0520	tr.	tr.	3.4	2.0	29	
13	AK0513	tr.	tr.	94.0	6.1	tr.	. 27	53	DK0521	tr.	tr.	1.0	3.9	tr.	·
14	AK0514	1.0	tr.	14.4	tr.	tr.	10	54	DK0522	0.1	tr.	1.0	3.9	tr.	10
15	AK0515	tr.	tr.	46.3	tr.	tr.	14	55	DK0523	0.1	tr.	1.0	1.7	tr.	14
16	AK0516	tr.	tr.	tr.	3.9	tr.	9	56	DK0524	tr.	tr.	tr.	1.5	tr.	
17	AK0517	tr.	tr.	tr.	tr.	tr.	6	57	DK0525	0.1	tr.	4.1	tr.	tr.	1
18	AK0518	tr.	tre	tr.	tr.	tr.	5	58	DK0526	tr.	tr.	3.7	tr.	tr.	2(
19	AK0519	tr.	tr.	tr.	4.7	tr.	9	59	DK0527	tr.	tr.	10.2	8.9	89	39
20	AK0520	0.1	tr.	tr.	tr.	tr.	10	60	DK0528	0.1	tr.	5.B	tr.	64	3(
21	AK0521	tr.	tr.	tr.	tr.	35	10	61	DK0529	0.1	tr.	4.1	tr.	65	22
22	AK0522	tr.	0.1	tr.	tr.	tr.	6	62	DK0530	0.1	tr.	4.1	0.7	46	23
23	AK0523	0.1	tr.	tr.	tr.	tr.	4	63	HK0501	tr.	tr.	4.8	tr.	45	11
24	AK0524	tr.	tr.	tr.	3.7	30	12	64	HK0502	tr.	tr.	3.1	2.5	31	14
25	AK0525	tr.	tr.	tr.	tr.	76	17	65	HK0203	tr.	tr.	5.4	5.0	36	- []
26	AK0526	0.1	tr.	tr.	tr.	187	32	66	HK0504	tr.	tr.	5.8	3.8	73	11
27	AK0527	tr.	tr.	tr.	tr.	tr.	9	67	HK0505	tr.	tr.	tr.	2.4	61	£
28	AK0528	tr.	tr.	tr.	tr.	58	11	98	HX0506	tr.	tr.	10.9	1.6	32	
29	AK0529	tr.	tr.	tr.	tr.	ŧr.	4	69	HK0507	tr.	tr.	2.4	112	41	10
.30	AK0530	tr.	tr.	tr.	tr.	tr.	5	.70	HK0508	0.1	tr.	0.7	tr.	45	1(
31	AK0531	tr.	tr.	tr.	tr.	tr.	5	71	HK0507	tr.	tr.	4.4	tr.	tr.	ç
32	AK0532	tr.	tr.	tr.	6.4	tr.	5	72	HK0510	tr.	tr.	5.1	4.1	tr.	
33	DK0501	tr	tr.	2.4	4.0	tr.	32	73	HK0511	tr.	tr.	1.7	tr.	63	12
34	DK0502	0.1	tr.	1.0	tr.	tr.	33	74	HK0512	tr.	tr.	4.1	2.4	40	17
35	DK0503	tr.	o tr.	2.0	1.9	tr.	: 31	75	HK0513	0.i	tr	0.7	tr.	tr,	166
36	DK0504	tr.	tr.	0.7	3.2	tr.	48	76	HK0514	tr.	tr.	2.7	1.3	200	E
37	DK0505	tr.	tr.	i.0	tr.	27	6	77	HK0515	tr.	tr.	4.4	1.3	tr.	6
38	DK0504	0.1	tr.	tr.	tr.	tr.	5	78	HK0516	0.1	tr.	1.4	tr.	tr.	5
39	DK0507	0.1	tr.	5.1	tr.	tr.	5	79	HK0517	0.1	tr.	1.7	tr.	tr.	7
40	DK0508	tr.	tr.	1.7	tr.	tr.	5	80	HK0518	0.1	tr.	5.4	tr.	tr.	. 7


						,									
Ser No	Saaple No.	Au (ppm)	Ag (ppm)	As (ppm)	Sb (ppm)	Hg (PPb)	Mn (ppm)	Ser No	Sample No.	Au (ppm)	(ppm)	As (ppm)	Sh (ppm)	Hg (ppb)	Mn (ppm)
81	HK0519	tr.	tr.	3,1	3.7	tr.	7	121	JK0520	0.1	tr.	tr.	4.8	tr.	4
82	HK0520	tr.	tr.	4.1	tr.	tr.	9	122	3K0521	tr.	tr.	tr.	5.6	tr.	5
- 83	HK0521	0.1	tr.	5.9	tri	49	30	123	JK0522	0.1	· ξr.	tr.	5.8	tr.	2
84	RK0522	ţr.	tr.	4.8	12.0	tr.	10	124	JK0523	tr.	tr.	tr.	tr.	37	5
85	HK0523	0.1	tr.	1.4	tr.	25	10	125	JK0524	tr.	tr.	tr.	4.0	131	7
	HK0524	tri	tr.	11.9	tr.	92	4		JK0525	0.1	0.9	tr.	tr.	28	9
	HK0525	tr	tr.	3.4	tr.	tr.	5	 	JK0526	tr.	tr.	3.7	11.5		7
	HK0526	tr.	tr.	2.0	tr.	tr.	7	 	JK0527	tr.	tr.	9.2	tr	tr.	4
	HK0527	tr.	tr.	9.5	tr.	58	6		JK0528	0.1	tr.	7.5	tr.	tr.	
	HK0528	0.1	tr.	4.8	3.2	tr.	5	 	PK0501	tr.	tr.	tr.	tr.	66	21
	HK0529 HK0530	tr.	tr. tr.	4.4 2.3	tr.	tr. 25	<u>ь</u>		PK0502 PK0503	tr. tr.	tr. 0.9	tr.	14.1	tr. tr.	17 16
_	HK0531	0.1	tr.	3.7	tr.	tr.	101		PK0504	0.1	tr.	tr.	2.1	tr.	26
	HK0532	tr.	tr.	1.7	2.2	312		 	PK0505	tr.	tr.	tr.	tr.	32	16
	HK0533	0.1	tr.	tr.	tr.	tr.	5	}	PK0506	tr.	0.4	B.3	64.9	134	20
	HK0534	tr.	tr.	12.3	8.8	74	13	}	PK0507	tr.	tr.	3.3	11.8	33	17
	HK0535	tr.	tr.	4.4	7.5	119	34	 	PK0508	tr.	tr.	12.7	8.6	tr.	20
	HK0536	0.1	tr.	4.8	0.7	35	5	138	PK0509	tr.	tr.	1.7	2.1	tr.	36
99	HK0537	0.1	tr.	7.5	tr.	84	8	139	PK0510	tr.	tr	1.3	0.7	tr.	32
100	HK0538	tr	tr.	tr.	tr.	2ა	5	140	PK0511	tr.	tr.	12.0	tr.	tr.	50
101	HK0539	tr.	tr.	2.2	0.6	83	23	141	PK0512	tr.	tr.	tr.	5.6	tr.	33
102	JK0501	0.1	tr.	5.8	tr.	tr.	23	142	PK0513	tr.	tr.	1.0	11.4	58	27
103	JK0502	0.1	tr.	9.2	5.3	37	21	143	PK0514	0.3	tr.	tr,	5.6	62	18
104	JK0503	0.1	tr.	3.4	1.0	tr,	11	144	PK0515	tr.	0.5	tr.	7.4	tr.	8
	JK0504	0.1	tr.	12.3	2.2	54	7		PK0516	tr.	tr.	tr.	tr.	tr.	
	JK0505		tr.	8.5	1.7	85			PK0517	tr.	tr.	tr.	tr.	tr.	4
	JK0506	0.1	tr.	13.3	0.8	tr.	——·		PK0518	0.1	tr.	tr.	tr.	tr.	4
	JK0507	0.1	tr.	3.1	3.0	153			PK0519	tr.	tr.	1.3	8.6	tr,	3
<u> </u>	JK0508	0.1	tr.	8.2 1.7	8.0 7.3	34			PK0520 PK0521	tr.	1.2	1.7	3,2	tr. 57:	
-	JK0509 JK0510	0.1	tr. tr.		tr.	tr.		 	PK0522	tr. 0.1	1.4	tr. 1.0	tr. 1.6	tr.	5
	JK0511	0.1	tr.	tr. 2.0	tr.	tr. tr.		ļ	PK0523	0.1	1.1	5.3	tr,	tr.	
-	JK0512		tr.	1.7	tr.	tr.		 	PK0524	tr.	0.2	tr.	3.5	tr.	2 42
h	JK0513		tr.	10.2	8.0	231			PK0525	0.1	0.5	1.7	B. 1	tr.	
	JK0514	tr.	tr.	1.7	0.8	tr.			PK0526	0.1	0.5	tr.	tr.	69	7
	JK0515	0.1	tr.	1.4	0.5			<u> </u>	PK0527	tr.	0.7	2.7	3.7	110	11
117	JK0516	tr.	tr.	2.4	tr.	45			PK0528	tr.	0.3	10.3	1.6	tr.	4
118	JK0517	0.1	tr.	2.7	0.7	tr.	17	ļ——	PK0529	0.1	0,3	tir.	5.3	tr.	7
119	JK0518	0.1	tr.	2.7	0.7	49	1.6	159	PK0530	tr.	0,1	2.3	10.4	tr.	7
120	JK0519	tr.	ŧr.	1.7	5.3	tr.	4	160	PK0531	tr.	0.4	92.3	7.2	tr.	£ 1
									s						
											• • .				

						•	
Ser	Sample No.	Au (ppm)	Ag (ppm)	As (ppm)	St (ppg)	Hg (ppb)	Ип (рры)
161	PK0532	0.1	0.3	tr.	4.4	73	34
162	PK0533	tr.	tr.	tr.	13.9	tr.	4
163	PX0534	0.1	tr.	tr.	6.7	tr.	4
164	PK0536	0.1	0.2	tr.	0.9	tr.	6
165	PK0537	0.1	0.1	1.7	12.8	tr.	Ā
166	PK0538	0.1	0.2	tr.	12.3	tr.	7


Appendix 5 Analytical Results of Lithogeochemical Samples
(Analysed in Japan)

Ser. No.	Sample No	Au(ppm)	Ag(ppm)	Ser. No.	Sample No.	Au(ppm)	Ag(ppm)
1	AK0502	0.00	0.2	46	PK0503	0.00	0.1
2	AK0503	0.00	0.1	47	PK0514	0.00	0.1
3	AK0504	0.00	0.0	48	PK0539	0.00	0.0
4	AK0505	0.00	0.0	49	PK0540	0.00	0.1
5	AK0512	0.00	0.1	50	PK0541	0.00	0.1
6	AK0514	0,00	0.1	51	PK0542	0.00	0.1
7	AK0515	0.00	0.1	52	PK0543	0.00	0.1
8	AK0579	0.00	.0.1	53	PK0544	0.00	0.1
9	AK0580	0.00	.0.1	54	PK0545	0.00	0.1
10	AK0581	0.00	0.2	55	PK0546	0.00	0.1
11	AK0582	0.00	0.1	56	PK0547	0.00	0.1
12	AK0583	0.00	0.1	57	PK0548	0.00	0.1
13	AK0584	0.00	0.1	58	PK0549	0.00	0.1
14	AK0585	0.00	0.1	59	PK0550	0.00	0.0
15	AK0586	0.00	0.1	60	PK0551	0.00	0.1
16	AK0587	0.00	0.1	61	PK0552	0.00	0.0
17	AK0588	0.00	0.1	62	PK0569	0.00	0.1
18	AK0589	0.00	0.0	63	PK0574	0.00	0.1
19	AK0590	0.00	0.1	64	PK0575	0.00	0.0
20	AK0591	0.00	0.1	65	PK0576	0.00	0.1
21	AK0592	0.00	0.1	66	PK0577	0.00	0.1
22	DK0515	0.00	0.1	67	PK0578	0.00	0.2
23	DK0519	0.00	0.0	68	PK0579	0.00	0.1
24	DK0527	0.00	0.0	69	PK0580	0.00	0.1
25	DK0554	0.00	0.1	70	PK0581	0.00	0.1
26	HK0540	0.00	0.1	71	PK0582	0.00	0.1
27	HK0544	0.00	0.1	72	PK0583	0.00	0.1
28	HK0556	0.00	0.1	73	PK0584	0.00	0.1
29	HK0560	0.00	0.1	74	PK0585	0.00	0.1
30	HK0561	0.00	0.1	75	PK0586	0100	0.1
31	HK0562	0.00	0.0	76	PK0587	0.00	0.1
32	HK0563	0.00	0.1	77	PK0588	0.00	0.2
33	HK0564	0.00	0.0	78	PK0589	0.00	0.1
34	HK0565	0.00	0.1	79	PK0590	-0.00	0.1
35	JK0518	0.00	0.1	80	PK0591	0.00	0.1
36	JK0529	0.00	0.1	81	PK0595	0.00	0.1
37	JK0576	0.00	0.1	82	PK0596	0.00	0.1
38	JK0577	0.00	0.1	83	PK0597	0.00	0.1
39	JK0578	0.00	0.0	84	PK0598	0.00	1.0
40	JK0579	0.00	0.1	85	PK0599	0.00	0.1
41	JK0580	0.00	0.00	86	PK0600	0.00	0.1
42	JK0582	0.00	0.1	87	PK0601	0.00	0.1
43	JK0583	0,00	0.2	88	PK0602	0.00	0.1
44	JK0584	0.00	0,1	89	PK0603	0.00	0.1
45	PK0502	0.00	0.1				
					L		<u></u>

A-11

9 CALE 0 50 100 150 200 m

Appendix 7 Location Map of Soil Samples, Sungai Matung Area

Appendix 8 Analytical Results of Soil Samples, Sungai Sinyi Area

	. :			. ,				-		. *					
Ser No	Sample No.	As (ppm)	Ag (ppn)	iin (ppm)	Hg (ppb)	Au (ppm)	86 (ppm)	Ser No	Saaple No.	As (ppm)	Ag (ppm)	Kn (ppn)	Hg (ppb)	Au (ppn)	Sb (ppm)
1	SYL0101	13.7	1.0	6.0	73	0.1	tr.	41	SYL0305	35.1	0.1	16	473	0.1	tri
2	SYL0102	6.5	0.4	7	40	0.1	tr.	42	SYL0306	39.7	0,3	12	503	0.1	tr.
3	SYL0103	7.0	0.2	11	161	0.1	tr.	43	SYL0307	31.9	0.1	5	248	0.1	tr.
4	SYL0104	10.7	0.5	11	246	0.6	tr.	44	SYL0308	34.8	0.4	7	368	0.1	0.5
5	SYL0105	15.0	0.1	27	143	tr.	tr.	45	SYL0309	27.0	0.2	5	273	0.1	0.5
6	SYL0106	8.1	0.5	29	117	tr.	tr,	46	5YL0310	8.1	0.4	5	212	0.1	tri
7	SYL0107	18.5	0.2	8	209	tr.	tr.	47	SYL0311	۶.8	0.3	3	183	0.1	2.3
8	SYL0108	13.7	0.5	5	140	0.1	2.1	48	SYL0312	۶.4	0.6	6	104	0.1	2.3
9	SYL0109	3.3	0.5	8	129	0.1	1.1	49	SYL0313	2.9	0.5	38	77	0.1	2.4
10	SYL0110	2.6	0.9	8	105	0.1	3.8	50	SYL0314	4.9	0.7	7	51	0.1	tr.
11	SYL0111	2.3	0.4	8	92	tr.	0.8	51	SYL0315	2.0	0.8	В	44	0.1	5.4
12	SYLÖ112	3.9	0.7	9	105	0.1	0.2	52	SYL0316	3.3	0.7	- 24	41	0.1	tr.
13	SYL0113	2,9	0.6	5	106	0.1	2.6	53	SYL0317	6.2	0.6	φ	58	0.2	tr.
14	5YL0114	7.8	0.9	. 6	80	0.1	tr.	54	SYL0318	10.4	0.6	В	52	0.1	tr.
15	SYL0115	3.3	0.7	16	91	0.1	tr.	55	SYL0351	12.0	0.9	176	91	0.1	tr,
16	SYL0201	13.7	1.3	٩	161	0.1	1:4	56	SYL0352	42.8	0.4	17	139	0.1	tr.
17	SYL0202	9.4	0.6	В	103	0.1	tr.	57	SYL0353	4.6	1.0	- 7	63	0.1	tr.
18	SYL0203	7.5	0.6	17	119	tr.	0.9	58	SYL0354	13.5	1.5	5	46	0.1	tr.
19	SYL0204	16.3	0.2	5	138	0.1	2.0	59	SYL0355	tr.	0.6	5	377	0.1	tr.
20	SYL0205	37. i	0.3	8	315	0.1	0.9	60	SYL0356	.7.7	0.9	50	. 72	0.1	tr.
21	SYL0206	15.6	0.2	34	246	0.1	tr.	61	SYL0357	tr.	0.7	21	52	0.1	0.2
22	5YL0207	3.3	0.2	25	297	0.1	4.2	62	5YL0358	6.6	0.7	7	52	0.1	tr.
23	SYL0208	4.8	0.4	3	165	0,1	b.2	93	SYL0359	tr.	0,7	4	37	0.2	8.5
24	SYL0209	7,5	1,1	5	135	0.1	tr.	64	SYL0360	tr.	0.5	5	53	0.1	5.7
25	SYL0210	6.2	0.9	14	97	0.2	3.2	42	SYL0361	tr.	0.5	4	42	0.1	3.6
26	SYL0211	3,9	0.6	5	82	0.1	0.5	66	SYL0362	8.5	0.6	4	30	0.1	3.8
27	SYL0212	6.2	1.1	6	121	0.2	4.8	67	SYL0363	10.0	0.6	7	86	0.2	2.4
28	SYL0213	6.5	0.6	4	78	0.1	1.7	86	SYL0401	15.0	0.5	10	310	0.1	1.1
29	SYL0214	6.5	0.9	8	86	0.1	16.8	49	SYL0402	16.2	0.8	6	449	0.1	3.5
30	SYL0215	3.3	0.9	29	59	0.1	5.3	70	SYL0403	17.7	1.6	6	316	0.1	2.6
31	SYL0216	tr.	0.7	12	46	0.1	2.4	71	SYL0404	23.9	0.1	4	254	tr.	3.5
32	SYL0217	9.8	0.4	20	64	0.2	3.5	72	SYL0405	20.4	0.5	4	382	0.1	3.8
	SYL0251	12.0	0.6	37	114	0.1	0.9	73	SYL0406	25.1	1.0	ь	470	0.1	2.1
	SYL0252	4.6	1.7	70	322	0.1	14.4	74	SYL0407	14.7	0.5	5	360	0.1	3.9
ļi	SYL0253	7.5			38	0.1	0.8	75	SYL0408	20.8	0.2	6	248	0.1	3.2
	SYL0254	11.4	1.1		57	0.1	0.9	76	SYL0409	22.4	0.2	5	158	tr.	4,4
ļ	SYL0301	27.6	1.0	39	250	0.1	'tr.	77	SYL0410	10,8	0.5	4	110	0.1	2,3
ļ	SYL0302	3.9	0.9		205	0.1	tr.	78	SYL0411	4.6	0.4	2	55	tr.	2.4
ļ	SYL0303	15.3	1.2		247	0.1	0.8	79	SYL0412	tr.	0.8	4	57	0.1	0.5
ļ	SYL0304	28.9			322		tr.	80	SYL0413	5,4	0.7	5	88	tr.	tr.

No. (ppm) (Sb tppm 4 2 2		l lig (ppb)		Ag				l Sb	Δn	Ho	l Ma	l ba	Δc i	Cascle	Francisco.
82 SYL0415 1.5 0.5 5 61 0.1 2.1 122 SYL0511 10.8 0.5 2 85 tr. 83 SYL0416 tr. 0.8 7 159 0.1 tr. 123 SYL0512 8.7 0.2 2 61 tr. 84 SYL0417 6.2 0.5 5 57 0.1 1.4 124 SYL0513 5.9 0.2 7 41 tr. 85 SYL0418 0.8 1.2 9 50 tr. 2.1 125 SYL0514 5.6 0.5 6 56 0.1 86 SYL0419 5.8 1.0 13 55 0.2 2.1 126 SYL0515 5.9 0.2 10 55 0.1	2				1. (hh8)	(PPM)	No.	No			(ppb)		(ppæ)			
83 SYL0416 tr. 0.8 7 159 0.1 tr. 123 SYL0512 8.7 0.2 2 61 tr. 84 SYL0417 6.2 0.5 5 57 0.1 1.4 124 SYL0513 5.9 0.2 7 41 tr. 85 SYL0418 0.8 1.2 9 50 tr. 2.1 125 SYL0514 5.6 0.5 6 56 0.1 86 SYL0419 5.8 1.0 13 55 0.2 2.1 126 SYL0515 5.9 0.2 10 55 0.1	2	tri	118	٩	tr.	17.7	SYL0510	121	1.7	tr.	88	7	1,1	1.5	SYL0414	81
84 SYL0417 6.2 0.5 5 57 0.1 1.4 124 SYL0513 5.9 0.2 7 41 tr. 85 SYL0418 0.8 1.2 9 50 tr. 2.1 125 SYL0514 5.6 0.5 6 56 0.1 86 SYL0419 5.8 1.0 13 55 0.2 2.1 126 SYL0515 5.9 0.2 10 55 0.1		tr.	85	?	0.5	10.8	SYL0511	122	2,1	0.1	61	5	0.5	1.5	SYLO415	62
85 SYL0418 0.8 1.2 9 50 tr. 2.1 125 SYL0514 5.6 0.5 6 56 0.1 86 SYL0419 5.8 1.0 13 55 0.2 2.1 126 SYL0515 5.9 0.2 10 55 0.1	2	tri	61	2	0.2	8.7	SYL0512	123	tr.	0.1	159	7	0.8	tr.	SYL0416	83
88 SYL0419 5.8 1.0 13 55 0.2 2.1 126 SYL0515 5.9 0.2 10 55 0.1		tr.	41	7	0,2	5.8	SYL0513	124	1,4	0.1	57	5	0.5	6.2	SYL0417	84
	5	0.1	56	Ь	0.5	5.6	SYL0514	125	2.1	tra	50	٩	1.2	0.8	SYL0418	85
87 SY(0420 7.3 1.0 68 175 0.1 0.8 127 SYLO516 9.4 0.1 14 100 1- 1	4	0.1	55	10	0,2	5.9	SYL0515	126	2.1	0.2	55	13	1.0	5.8	SYLOAIR	86
	10	tr.	100	14	0.1	7.4	SYL0516	127	0.8	0.1	175	86	1.0	7.3	SYL0420	87
88 SYL0451 11.6 0.3 30 222 0.1 3.5 128 SYL0517 8.3 1.9 15 86 0.1	5	0,1	96	15	1.9	6.3	SYL0517	128	3.5	0.1	222	30	0.3	11.6	SYL0451	88
89 SYL0452 61.3 0.3 19 10189 tr. 2.7 129 SYL0518 7.0 1.4 32 129 0.1	4.	0.1	129	32	1.4	7.0	SYL0518	129	2,7	tr.	10189	19	0.3	61.3	5YL0452	89
90 SYL0453 44.7 0.7 12 982 tr. 6.7 130 SYL0519 4.2 1.2 5 44 0.1	1	0.1	44	5	1.2	4.2	SYL0519	130	6.7	tr.	982	12	0.7	44.7	SYL0453	90
91 SYL0454 37.0 0.1 78 699 tr. 4.7 131 SYL0520 5.9 1.0 6 45 0.1	5.	0.1	45	- 6	1.0	5.9	SYL0520	131	4.7	tr.	699	78	0.1	37.0	SYL0454	91
92 SYL0455 20.0 0.6 30 423 tr. 1.5 132 SYL0521 2.4 1.0 4 41 0.1	2.	0.1	41	4	1.0	2.4	SYL0521	132	1.5	tr.	423	30	0.6	20.0	SYL0455	92
93 SYL0456 5.0 0.6 17 61 tr. 3.5 133 SYL0551 6.7 1.2 122 38 0.1 te	tr.	0.1	38	122	1.2	6.7	SYL0551	133	3.5	tr.	61	17	0,6	5.0	SYL0456	93
94 SYL0457 6.2 0.2 11 64 tr. 1.7 134 SYL0552 38.2 0.6 37 118 0.1	5.	0.1	118	37	0.6	38.2	SYL0552	134	1.7	tr.	64	11	0.2	6.2	SYL0457	94
95 SYL0458 7.7 0.1 51 69 tr. 3.5 135 SYL0553 105.2 tr. 212 260 tr. t	tr	tr.	260	212	tr.	105.2	SYL0553	135	3.5	tr.	69	51	0.1	7.7	SYL0458	95
96 SYL0459 B.9 0.6 B 60 tr. 2.3 136 SYL0554 42.9 0.4 29 232 0.1	2.	0.1	232	29	0.4	42.9	SYL0554	136	2.3	tr.	90	- 8	0.6	E. 9	SYL0459	96
97 SYL0460 8.1 0.3 5 113 tr. 6.0 137 SYL0555 28.0 0.5 9 155 tr. t	tr	tr.	155	Ŷ	0.5	28.0	SYL0555	137	6.0	tr.	113	5	0.3	8.1	SYL0460	97
98 SYL0461 7.3 1.7 5 161 0.1 4.7 138 SYL0556 7.9 0.4 13 335 0.1 t	tr	0.1	335	13	0.4	7.የ	SYL0556	138	4.7	0.1	161	5	1.7	7.3	SYL0461	98
99 SYL0462 4.6 0.6 8 253 tr. 4.2 139 SYL0557 35.5 0.7 179 301 tr.	0.	tr.	301	179	0.7	35.5	SYL0557	139	4.2	tr.	253	8	0.5	4.6	SYL0462	99
100 SYL0463 5.0 0.9 7 130 tr. 3.0 140 SYL0558 11.0 0.9 130 80 tr. t	tr.	tr:	80	130	0.9	11.0	SYL0558	140	3.0	tr.	130	7	0.9	5.0	SYL0463	100
101 5YL0464 4.6 1.1 8 126 0.1 3.3 141 SYL0559 9.5 0.8 330 87 tr. t	tr	tr.	87	230	0.8	9.5	SYL0559	141	3.3	0,1	126	8	1.1	4.6	5YL0464	101
102 SYL0465 1.9 0.8 7 130 0.1 8.8 142 SYL0560 9.1 0.5 106 59 tr. t	tr	tr.	59	106	0,5	9.1	SYL0540	142	8.8	0.1	130	. 7	0.8	1.9	SYL0465	102
103 SYL0466 1.5 0.8 6 102 0.1 4.8 143 SYL0561 3.2 0.7 201 65 tr. ti	tr.	tr.	65	201	0.7	3.2	SYL0541	143	4.8	0.1	102	ь	0.8	1.5	SYL0466	103
104 SYL0467 tc. 0.8 7 102 tr. 4.2 144 SYL0562 4.3 0.4 224 75 tr.	1.	tr.	75	224	0.4	4.3	SYL0562	144	4.2	tr.	102	7	0.8	tr.	SYL0467	104
105 SYL0468 4.2 0.7 13 48 0.1 0.3 145 SYL0563 3.5 0.8 31 77 0.1 to	tr.	0.1	77	31	0.8	3.5	SYL0563	145	0.3	0.1	48	- 13	0.7	4.2	SYL0468	105
106 SYL0469 B.O 0.4 B 56 0.1 0.9 146 SYL0564 41.4 0.9 4 74 0.1	0.	0.1	74	4	0.9	41,4	SYL0564	146	0.9	0.1	56	8	0.4	8.0	SYL0469	106
107 SYL0470 14.6 0.5 6 45 tr. 5.6 147 SYL0565 8.7 1.6 11 77 tr. tr	tr.	tr.	77	11	1.6	8.7	SYL0545	147	5.6	tr.	45	Ь	0.5	14.6	SYL0470	107
108 SYL0471 4.2 0.2 7 28 tr. 1.7 148 SYL0566 9.8 1.3 8 71 0.1 tr	tr.	0.1	71	8	1.3	9.8	SYL0566	145	1.7	tr.	28	7	0.2	4.2	SYL0471	108
109 SYL0472 3.5 0.2 6 37 tr. 5.1 149 SYL0567 12.2 1.3 14 70 0.1 tr	tr,	0,1	70	14	1.3	12.2	SYL0547	149	5.1	tr.	37	6	0.2	3.5	SYL0472	109
110 SYL0473 3.5 0.6 3 54 tr. 3.5 150 SYL0568 8.3 1.3 7 69 0.1 tr	tr.	0.1	69	. 7	1.3	8.3	SYL0568	150	3.5	tr.	54	3	0.6	3.5	SYL0473	110
111 SYL0474 7.7 0.5 5 72 tr. 2.7 151 SYL0569 6.7 0.6 5 61 0.1 tr	tr.	0,1	61	5	0.6	6.7	SYLO569	151	2.7	tr.	72	5	0.5	7.7	SYL0474	111
112 SYL0501 3.8 0.4 239 59 tr. 5.6 152 SYL0570 8.7 0.8 4 51 0.1 te	tr.	0.1	51	4	0.8	8.7	SYL0570	152	5.6	tro	59	239	0.4	3.8	SYL0501	112
113 SYL0502 6.3 1.7 150 66 tr. 5.0 153 SYL0571 7.1 1.0 6 70 0.1 tr	tr.	0,1	70	Ь	1.0	7.1	SYL0571	153	5.0	tr.	66	150	1.7	6.3	SYL0502	113
114 SYL0503 5.2 1.0 151 97 tr. 10.0 154 SYL0572 9.8 0.8 6 69 0.1 te	tr.	0.1	69	6	0.8	۲.8	SYL0572	154	10.0	tr.	97	151	1.0	5.2	SYL0503	114
115 SYL0504 11.5 0.2 3 760 tr. 3.0 155 SYL0573 7.9 0.9 39 49 0.1 tr	tr.	0.1	49	39	0.9	7.9	SYL0573	155	3.0	tr.	760	3	0.2	11.5	SYL0504	115
116 SYLOSOS 18.8 0.5 3 325 tr. 4.5 156 SYLO601 9.5 1.9 8 337 0.1 tr	tr.	0,1	337	8	1.9	5.5	SYL0601	158	4.5	tr.	325	3	0.5	18.8	SYL0505	116
117 SYL0506 8.3 0.3 2 151 tr. 2.4 157 SYL0602 2.8 1.0 4 201 0.1 tr	tr.	0.1	201	4	1.0	2.8	SYL0602	157	2.4	tr.	151	2	0.3	8.3	SYL0506	117
118 SYL0507 9.7 0.4 5 160 tr. 4.8 158 SYL0603 22.5 1.3 4 112 tr. 4	4,	tr.	112	4	1.3	22.5	SYL0603	158	4.8	tr.	160	5	0.4	9.7	SYL0507	118
<u> </u>	٥.	0.1	116	7	0.5	tr.			المستنف	tr.	113	2	0.2	8.3	SYL0508	117
120 SYL0509 24.3 0.1 4 146 tr. 0.9 160 SYL0605 3.2 0.9 28 86 tr. 7	7.	tr.	48	28	0.9	3.2	SYL0605	160	0.8	tr.	146	4	0.1	24.3	SYL0509	120

Ser No	Sample No.	As (ppm)	Ag (ppm)	Mn (ppm)	Hg (pph)	Au (ppm)	Sb (ppm)	Ser No	Sample No.	As (ppm)	Ag (ppm)	Mn (ppm)	Hg (ppb)	Au (ppn)	Sb (ppm)
161	SYL0606	6.7	0.8	11	232	tr.	tr.	201	SYL0702	7.7	0.6	73	89	0.1	tr.
162	SYL0607	3.2	0.9	Ŗ	166	0.1	4.1	202	SYL0703	5,1	0.7	16	170	0.1	tr.
163	SYL0608	1.2	1.2	5	169	0.1	0.9	203	SYL0704	4.7	0.7	44	90	tr.	tr.
164	SYL0609	9.8	1.0	5	185	0.1	tr.	204	SYL0705	1.5	1.2	141	44	tr.	trı
165	SYL0610	tr.	0.9	6	157	tr,	tr	205	SYL0706	5.5	0. ዓ	15	92	tr.	3,1
166	SYL0611	6.7	1.0	5	131	tr.	tr.	206	SYL0707	5.1	0.5	9	150	tr.	1.7
167	SYL0612	3.0	0.6	5	88	tr.	tr.	207	SYL0708	6.4	0.6	7	139	tr.	tr.
168	SYL0613	8.0	0.8	5	53	0.1	0.7	208	SYL0709	1.1	1.4	6	142	tr.	tr.
169	SYLO614	7.3	0.5	. 4	38	tr.	4.2	209	SYLOTIO	tr,	1.3	4	78	tr.	7.0
170	SYL0615	3.7	2.0	δ	35	tr.	2.7	210	SYL0711	2.9	0.8	5	71	tr	0.7
171	SYL0616	9.7	1.3	4	tr.	tr.	4.2	211	SYL0712	5.5	0.5	250	71	tr.	tri
172	SYL0617	6.7	0.9	5	34	0.1	tr.	212	SYL0713	5.5	0.2	70	71	tr.	3,4
173	81907AS	2.0	0.5	11	71	0.1	7.6	213	SYL0714	11.0	0.3	206	113	tr.	tr.
174	SYL0619	5.0	0.6	15	74	tr.	tr.	214	SYL0715	6.9	0.7	8	60	0.1	tr.
175	SYL0620	5.3	0.5	8	86	tr.	tr	215	SYL0716	4.0	0.5	5	45	tr.	4.9
176	SYL0621	3.0	0.6	b	94	tr.	tr.	216	SYL0717	6.9	0.5	7	56	0.1	7.2
177	SYL0622	1.0	0.6	ь	59	0.1	3, γ	217	SYL0718	4.0	0.7	ę.	53	0.1	3,1
178	SYL0623	2.3	0.9	1	82	0.1	0.9	218	SYL0719	4.0	0.4	7	72	tr.	tr.
179	SYL0651	tr.	0.5	3	255	tr.	3.0	219	SYL0720	5.8	0.6	41	47	tr.	2.3
180	SYL0652	18.3	0.9	11	593	0.1	12.7	220	SYL0721	7,7	0.6	36	58	tr.	3.3
181	SYL0653	72.0	0.5	32	424	tr.	tr.	221	SYL0722	5.5	0.6	14	111	ŧr.	1.3
182	SYL0654	85.0	0.6	199	268	tr.	tr.	222	SYL0723	8.4	0.4	- 11	83	tr.	1.8
183	SYL0655	109.0	0.6	69	598	0.1	1.4	223	SYLO724	1.8	0.8	В	101	0.1	12.1
184	SYL0656	56.0	0.8	25	903	0.1	tr.	224	SYL0751	3.7	0.4	50	106	0.1	4.0
185	SYL0657	42.3	0.4	33	390	tr.	tr	225	SYL0752	4.0	0.5	150	138	tr.	tr.
186	5YL0658	29.7	0.7	12	235	tr.	tr.	226	SYL0753	tr,	1,6	244	B3	tr.	tr.
187	SYL0659	25.3	0,4	3	261	tr.	tr	227	SYL0754	2.6	0.7	58	407	tr.	tr.
188	SYLOGGO	22.3	0.3	7	467	tr.	tr.		SYL0755	142.5	0.6	18	550	0.1	2.9
189	SYL0661	7.7	0.6	218	49	tr.	tr.	229		8.0	0.9	21	344	0.1	5,1
190	SYL0662	4.3	1.5	295	42	tr.	tr		SYL0757		1.2	В	692	tr.	5.4
191	SYL0663	tr.	1.1	248	25	tr.	tr.		SYL0758	15.3	0.5	6	259	tr.	4.9
192	SYL0664	tr.	0.6	14	54	tr.	tr		SYL0759	50.4	0.8	11	304	0.1	2,7
193	SYL0665	4.3	0.9	21	81	0,1	tr.	233	SYL0760	76.4	0.5	21	215	0.1	10.7
194	SYL0666	9.3	1.6	10	63	0.1	tr.		SYL0761	٩.5	1.0	184	114	tr.	2.0
195	SYL0667	2.7	0.6	б	48	tr.			SYL0762	5.5	1.1	3B0	56	tr.	5.8
196	SYL066B	tr.	0.9	14	55	tr.	1.8		SYL0763	2.6	1.2	12	55	tr.	3.6
197	SYL0669	2.3	0.8	9	55	tr.	tr		SYL0764	6.2	1.0	16	78	tr.	tr.
178	SYL0670	3.3	0.6	9	55	tr.	tr	 -	5YL0765	2.9	0.9	6	53	tr.	2.7
199	SYL0671	4.4	0.7	22	48	tr.	trij	\vdash	SYL0766	0.7	0.6	4	39	tr.	7.4
200	SYL0701	8.8	0.6	126	156	tr.'	tr.	240	SYL0767	6.9	0.8	6	75	tr.	10.8

													÷		
ber Nû	Sample No.	As (ppm)	Ag (ppb)	Mn (ppm)	Hg (ppb)	Au (ppm)	Sb (ppm)	Ser No		As (ppm)	Aq (ppm)	Mn (ppm)	Hg (ppb)	Au (ppm)	Sb (ppm)
	SYL0768	6.6	1.8	6	99	tr.	0.9	281	SYL0862	6.2	0.3	3	61	tr.	5.2
242	SYL0769	6.5	1.5	6	75	tr.	tr.	282	2AF0892	4.9	0.9	14	65	tr.	4.9
243	SYL0770	6.2	1.2	7	46	tr.	tr.	283	SYL0864	13.6	0.5	196	66	tr.	17.9
244	5YL0801	tr.	1.4	15	65	tr.	3,6	284	SYLOBAS	tr.	1.0	245	50	tr.	15.2
245	SYLOBO2	tr.	1.3	4	473	tr.	2.7	285	5YL0866	1.3	0.5	11	56	tr,	5.4
246	SYL0803	tr.	1.1	4	122	tr.	2.3	286	SYLOS67	5.5	0.9	6	64	tr.	2,5
247	SYL0804	0.7	0.7	4	108	tr.	tr.	287	SYL0868	tr.	0.8	5	88	tr.	2.9
248	SYL0805	1.1	0.9	5	131	tr.	tr.	288	SYLOPOI	1.6	1.6	27	. 67	tr.	የ. 1
249	SYL0806	7.1	1.1	5	160	0.1	tr.	289	SYL0702	8.2	1.1	- 11	100	tr.	3,3
250	SYL0807	4.5	1.1	В	122	tr.	5,8	290	SYL0903	6.1	1.1	10	124	tr.	5.2
251	SYL0808	3.2	0.9	11	76	0,1	0.7	291	5YL0904	۶.8	0.7	11	115	tr.	2.6
252	5YL0809	3.6	1.0	8	86	: Etr.	1.8	292	SYL0705	7.4	0.8	6	101	tr.	0.7
253	SYL0810	3.9	0.7	8	98	tr.	2.0	293	\$YL0906	10.2	1.0	5	180	tr.	4.8
254	SYL0811	2.3	0.7	5	76	0.1	tr.	294	5YL0707	0.8	0.6	5	322	tr.	7.7
255	SYL0812	1.3	1.0	10	99	tr.	1.3	295	SYL0908	4.1	0.5	4	136	tr.	2.5
256	SYL0813	tr.	2.0	12	53	tr.	tr.	296	SYL0909	5.4	0.7	8	90	tr.	0.6
257	SYL0814	tr.	1.4	16	90	0.1	0.4	297	SYLOGIO	3.3	0.7	8	130	tr.	0.6
258	SYL0815	1.0	1.0	. 13	34	tr.	3.4	298	SYL0911	4.1	0.8	12	99	tr.	tr.
25°	SYL0816	1.6	1.1	71	88	tr.	3.1	299	SYLOPIZ	۶.8	0.6	10	87	tr.	tr,
260	SYLOB17	B.4	0.7	14	89	tr.	0.5	300	SYL0913	tr.	0.8	· B	149	tr.	4.2
261	SYL0818	8.4	0.6	9	- 77	tr.	0.9	301	5YL0914	10.6	0.8	8	35	tr.	12.7
262	SYL0819	٩.1	0.5	7	88	0.1	tr.	302	SYL0915	11.0	0.5	Ģ.	73	tr.	tr.
263	SYL0820	4.9	0.6	5	66	tr.	tr.	303	SYL0916	11.0	1.2	8	71	tr.	1.7
264	SYL0821	4.2	0.4	8	63	tr.	4.2	304	SYL0917	11.5	0.8	В	61	tr.	5.9
265	SYLOB22	8.4	0.2	11	45	tr.	tr.	305	SYL0918	9.4	0.9	7	61	tr.	3.5
266	SYL0823	5.8	0.5	5	69	0.1	tr.	306	SYLOTIT	5.3	0.7	5	59	tr.	3,8
267	SYL0824	6.5	0.8	Ь	56	0.1	tr.	307	SYL0920	14.7	1.0	15	40	0.1	6.8
268	SYL0825	5.8	0.8	8	102	tr.	tr.	308	5YL0921	10.2	0.8	7	82	tr.	4.3
269	SYL0826	4.9	0.7	9	100	tr.	tr.	309	SYL0922	11.5	0.7	7	66	, tr.	4.6
270	SYL0851	2.6	1.1	26	73	0.1	tr.	310	SYL0923	11.0	0.8	6	66	tr.	. 11.7
271	SYL0852	10.1	0.5	78	97	tr.	1.1	311	SYL0924	3.7	0.7	15	62	tr.	5.6
272	SYL0853	tri	0.7	201	128	tr.	tr.	312	SYL0925	1.6	0.6	8	70	iii tr	16.2
273	SYL0854	3.2	0.6	22	91	tr.	tr.	313	SYL0926	4.1	0.6	17	93	tr.	4.9
274	SYL0855	11.0	1.3	15	55	tr.	tr.	314	SYL0927	3.3	9.0	7	129	tr.	0.7
275	SYL0856	6.2	1.6	26	203	tr.	tr.	315	SYL0951	3.7	1.5	23	48	tr.	1.4
276	SYLOB57	tr.	0.8	35	268	tr.	tr.	316	SYL0952	0.8	1.3	15	71	tr.	1,6
277	SYL0858	19.2	0.7	7	416	tr.	4.2	317	SYL0953	5.3	0.5	57	75	tr.	2.3
278	SYL0859	2.9	0.6	12	229	tr.	4.9	318	SYL0954	15.8	0.9	16	389	tr.	1.0
279	SYLUB60	14.0	0.5	19	152	tr.	6.9	319	5YL(1955	13.5	0.8	13	247	tr.	tr.
	SYLOB61	9.1	0.7	13	194	tr.	12.5	320	SYL0956	20.3	0.5	20	494	tr.	4.6

Ser	Sasple No.	As (ppm)	Ag (ppm)	Йп (ppm)	Hg (ppb)	Au (ppm)	Sb (ppm)	Ser No	Sample No.	As (ppm)	Ag (ppa)	Ma (ppm)	Hg (ppb)	Au (ppm)	Sb (pps)
<u></u>	SYL0957	21.8	0,6	74	276	tr.	5.6	361	SYL1051	6.6	0.4	18	tr.	tr.	1.4
	SYLO958	28.1	0.7	22	187	tr	12.3	362	SYL1052	14,9	0.5	372	85	tri	1.7
	SYL0959	tr.	0.5	112	96	tr.	4.6	363	SYL1053	24.0	0.7	282	99	tri	1.3
324	5YL0960	3.8	0.5	8	217	tr.	4.0	364	SYL1054	16.5	0,5	268	336	tri	1.3
325	SYL0961	tr.	0.6	16	133	tr.	3.9	365	SYL1055	53.7	0.8	10	463	tr.	2.3
326	SYL0962	3.B	0.5	7	111	tr.	2.5	366	SYL1056	25.2	0,9	20	408	tr.	8.1
327	SYL0963	tr.	0.5	12	73	, tr.	1.2	367	SYL1057	3.7	0.8	В	279	tr.	13.1
328	SYL0964	12.0	0.9	372	54	tr.	tr.	368	SYL1058	2.1	0.5	7	152	tri	0.9
329	SYL0965	7,9	0.6	18	72	tr.	tr.	369	SYL1059	1.2	0.6	32	160	tr	3.9
330	SYL0966	7.4	0.6	7	60	tr.	0.7	370	SYL1040	1.7	0.9	6	145	tr.	tr.
331	SYL0967	12.4	0.2	5	54	tr.	tr.	371	SYL1051	3.3	0.2	16	139	tr.	5.3
332	5YL1001	17.8	0.4	5	39	tr.	1.4	372	SYL1062	-9.7	0.4	20	96	-tr	tr.
333	5YL1002	11.2	0.5	4	47	0.1	1.2	373	SYL1063	14.6	1.4	300	57	tr.	1.3
334	SYL1003	21.9	0.9	4	129	tr.	tr.	374	SYL1064	2.9	0.7	14	44	tr.	2.3
335	SYL1004	6.2	0.6	5	125	- 0.1	tr.	375	SYL 1065	12.6	0.8	8	. 67	0.1	tr.
336	SYL1005	7.4	0.6	7	. 9B	tr.	10.8	376	SYL1101	44.0	0.6	4	44	0.1	73.6
337	5YL1006	12.0	1.1	7	92	tr.:	4.8	377	SYL1102	7.8	0.7	179	63	tr.	1.0
338	SYL1007	9.5	0.8	5	110	tr.	0.7	378	SYL1103	tr.	0.8	511	90	tr.	7.1
339	SYL1008	۶.1	0.7	3	84	tr.	1.4	379	SYL1104	tr.	0.6	21	113	tr.	5.3
340	SYL1009	4.5	1.0	6	92	tr.	tr.	380	SYL1105	tr.	0.3	4	67	tr.	11.9
341	5YL1010	1.7	0.6	8	83	tr.	0.6	381	SYL1106	tr.	0,4	3	79	tr.	16.0
342	SYL1011	14.1	0.8	10	79	tri	3.3	382	SYL1107	1.5	0.4	5	138	tr.	tr.
343	5YL1012	1.1	1.1	12	79	tr.	0.7	383	SYL1108	13.6	0.8	9	141	tr۰	tr.
344	SYL1013	5,4	1.3	30	85	tr.	0.9	384	SYL1109	7.8	1.3	7	162	tr.	1.9
345	5YL1014	3.7	0.4	15	:: 78	tr.	5.2	385	SYL1110	12.1	1.1	6	108	tr.	7.1
346	SYL1015	8.7	0.6	9	75	tr.	2.0	286	SYL1111	5.3	1.1	7	88	tr.	tr.
347	SYL1016	8.7	0.8	7	73	tr/	2.0	387	SYL1112	8.3	0.9	11	84	tr.	tr.
348	SYL1017	7.9	0.9	12	70	tr.	4.5	388	5YL1113	9.7	1.4	q	79	tr.	tr.
349	SYL1018	10.3	0.7	6	62	tr.	12.7	} -	SYL1114	7.3	1.2	10	67	tr.	tr.
350	SYL1019	12.4	0.9	6	42	tr.	1.0	390	SYL1115	10.2	1,4	14	53	tr.	tr.
351	SYL1020	2.1	1.1	3	38	tr.	0.9	391	SYLI116	9.2	1.0	7	61	tr.	2.3
352	SYL1021	tr.	.0.9	7	79	tr.			SYL1117	7.8	1.0	7	69	tr.	tr.
353	5YL1022	tr.	0.9	8	95	tr.	6, 9	393	SYL1118	7.8	0.6	7	64	tr.	tr.
354	SYL1023	1.2	1.0	٩	84	tr.	0.9	394	SYL1119	6.3	1.6	12	65	tra	tr.
355	SYL1024	9,9	1.0	8	66	tr.	tr.	395	SYL1120	tr.	1.3	9	46	tr.	0.9
356	SYL1025	12.0	0.9	13	61	ţr.		<u></u>	SYL1121	tr.	1.4	38	73	tr.	2.4
357	SYL1026	15.3	0.8	3	86	tr.	1.3	397	SYL1122	1.0	1.2	12	49	tr.	0.6
358	5YL1027	12.0	0.7	4	90	tr.	0.9	398	SYL1123	tr.	1.2	19	49	tr.	1.4
359	SYL1028	3.3	0.8	4	106	tr.	1.2	399	SYL1124	tr.	1.5	12	75	tr.	2.3
360	SYL1029	7.4	0.8	. v . 4	132	tr.	0.7	400	SYL 1125	16.5	1.2	12	57	tr.	tr.

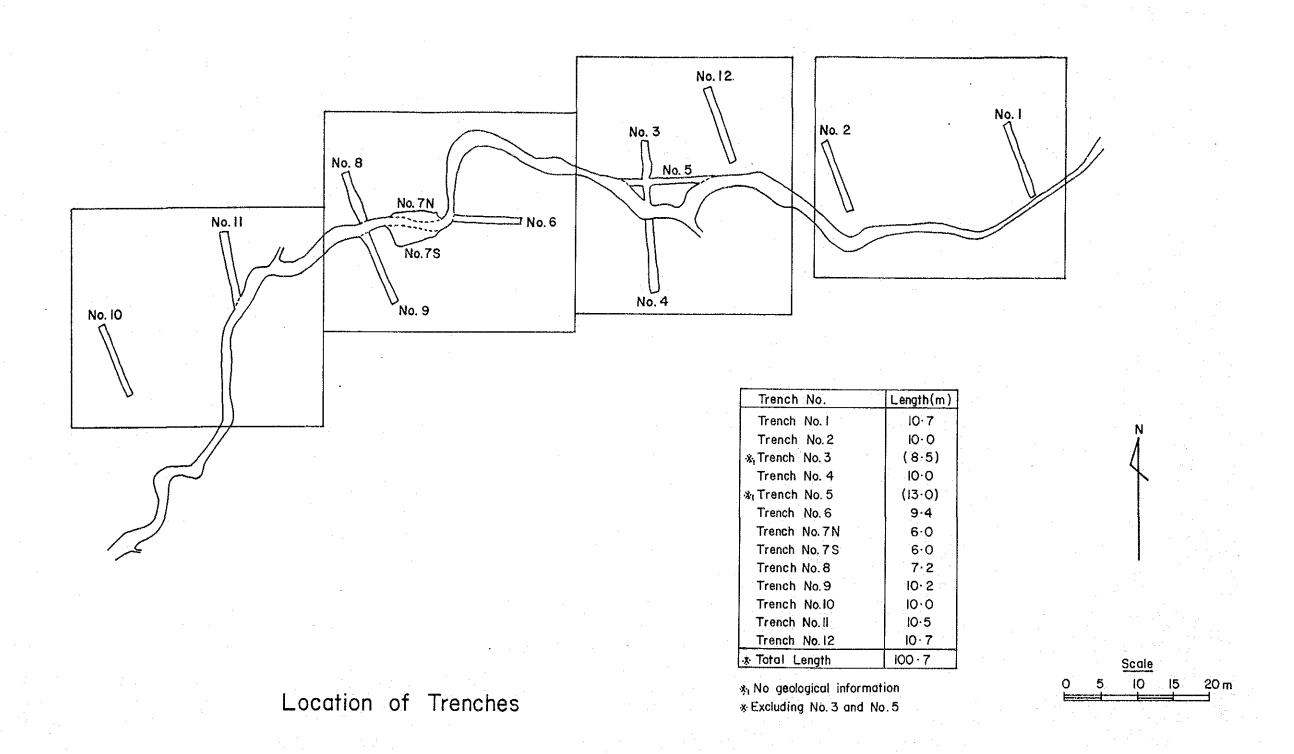
Ser-	Sample No.	As (ppm)	Ag (ppm)	Mn (ppm)	Hg (ppb)	uA (aqq)	Sb (ppm)	Ser No	Sasple No.	As (ppm)	Ag (ppm)	Mn (ppa)	Hg (ppb)	Au (pps)	d2 (aqq)
401	SYL1126	10.2	0.9	Ÿ	78	tr.	tr.	441	5YL1222	7,8	1.4	42	46	0,2	1.4
402	SYL1127	12.6	0.9	12	76	tr.	tr.	442	SYL1223	٢.3	0.8	15	52	0.2	0.6
403	SYL1128	4.9	1.0	12	105	tr.	tr.	443	SYL1224	3.3	0.8	17	44	tr.	0.6
404	SYL1129	8.7	1.2	5	113	tr.	1.5	444	SYL1225	3.0	0.8	5	63	0.1	2.1
405	SYL1130	8.3	0.9	8	71	tr.	tr.	445	SYL1226	8.5	1.2	5	52	tri	0.9
406	SYL1151	5.7	0.9	7	71	tr.	13.1	446	SYL1227	5.9	1.5	7	76	tr.	1.7
407	SYL1152	tr.	0.6	2	75	tr.	2.4	447	SYL1228	8.5	0.9	B	88	0.1	3.0
408	SYL1153	54.4	1.0	90	133	tr.	tr.	448	SYL1229	12.3	1.4	4	78	tr.	0.6
409	SYL1154	19.4	0.9	16	94	tre	2.5	449	5YL1230	0.7	1.1	6	107	tr.	1.5
410	SYL1155	10.7	1.0	Ģ	90	tr.	1.3	450	SYL1231	14.5	0.1	6	87	tri	tr.
411	SYL1156	27.2	0.7	. 11	299	tr.	1.0	451	SYL1232	1.1	0.7	6	90	tr.	0.9
412	SYL1157	1.5	1.0	8	302	0.2	0.5	452	SYL1251	3.7	0.7	12	49	tr.	4.1
413	SYL1158	tr.	0.8	76	90	tr.	tr.	453	SYL1252	3.7	0.7	٩	99	0.1	2.0
414	SYL1159	16.5	1.5	19	95	tr.	· tr.	454	SYL1253	3.1	0.9	11	129	tr.	6.7
415	5YL1160	2.9	1.5	24	192	tr.	3.5	455	SYL1254	7.9	0.4	9	134	tr.	4.8
416	SYL1161	19.7	0.7	11	81	tr.	2.6	456	SYL1255	10.6	1.4	5	132	tr.	tr.
417	SYL1162	53.5	0.8	10	57	0.1	2.7	457	SYL1256	5.8	0.9	10	98	0.1	tr.
418	SYL1163	16.0	1.3	17	88	tr.	tri	458	SYL1257	70.0	1.1	53	70	0.1	tr.
419	SYL1164	17.8	1.5	253	117	0.1	2.0	459	SYL1258	tr.	0.6	23	57	0.1	0.5
420	SYL1201	13.7	1.6	322	79	0.1	tr.	460	SYL1259	tr.	0.9	18	108	0.2	tr.
421	SYL1202	10.8	1.9	14	86	tr.	tr.	451	SYL1260	tr	1.3	15	102	0.1	tr.
422	SYL1203	6.7	1.9	20	83	0.1	7.2	462	SYL1261	tr.	1.2	P	152	0.1	tr.
423	SYL1204	9.3	1.0	17	78	tr.	4, 1	463	SYL1262	6.5	1.0	33	100	tr.	tr.
424	SYL1205	6.3	0.9	59	183	0.1	5.4	464	SYL1301	7.2	0,8	586	tr.	0.1	tr.
425	SYL1206	0.7	0.9	11	239	0.1	6.0	465	SYL1302	3.8	0.7	17	tr.	tr.	tr.
426	SYL1207	6.7	1.0	11	97	0.1	2.4	466	SYL1303	8.9	1.2	202	53	0.1	tr.
427	SYL1208	11.9	1.2	to	106	0.1	5.8	467	SYL1304	5.1	0.4	٩	57	0.1	tr.
428	SYL1209	3.0	0,9	14	47	tr.	2.9	468	SYL1305	5.1	0.4	6	59	0.1	0.5
429	SYL1210	8.9	1.0	8	77	tr.	4,4		SYL1306	11.6	0.5	6	42	0.1	0.9
430	SYL1211	17.5	0.6	7	49	0.1			SYL1307		1.3	6	45	0.1	8.0
431	5YL1212	8.2	1.1	14	57	0.1		}	SYL1308		0.7	7	74	0.1	3.8
432	SYL1213	4.8	1,4	16	62	0.1	3.0	472	SYL1309	4.8	0.6	6	80	0.2	6.4
433	SYL1214	3.3	1.6	۶	52	0.1	5.6	473	SYL1310	tr.	0.9	В	63	0.1	6.3
434	SYL1215	tr.	1.8	5	46	0.1	1.5	474	5YL1311	tr.	0.4	8	60	0.1	tr.
435	5YL1216	2.6	1.2	5	59	0.1	1.4	475	SYL1312	tr.	0.7	10	50	0.1	tr.
436	SYL1217	3.7	1.1	6	72	0.1	1.4	476	SYL1313	tr.	0.6	6	93	0.1	tr.
437	SYL1218	7.8	1.5	В	57	0.1	2.0	477	SYL1314	tr.	0.7	13	54	0.1	2.6
438	SYL1219	8.2	1.5	35	34	0.1	tr.	478	5YL1315	tr.	1.0	7	66	0.1	tr.
439	SYL1220	13.7	1.1	13	25	0.1	tr.	479	5YL1316	tr.	1.0	7	75	0.1	7.8
440	SYL1221	27. j	1.4	14	57	0.1	tr.	480	SYL1317	tr.	1.1	7	52	0.1	1.0

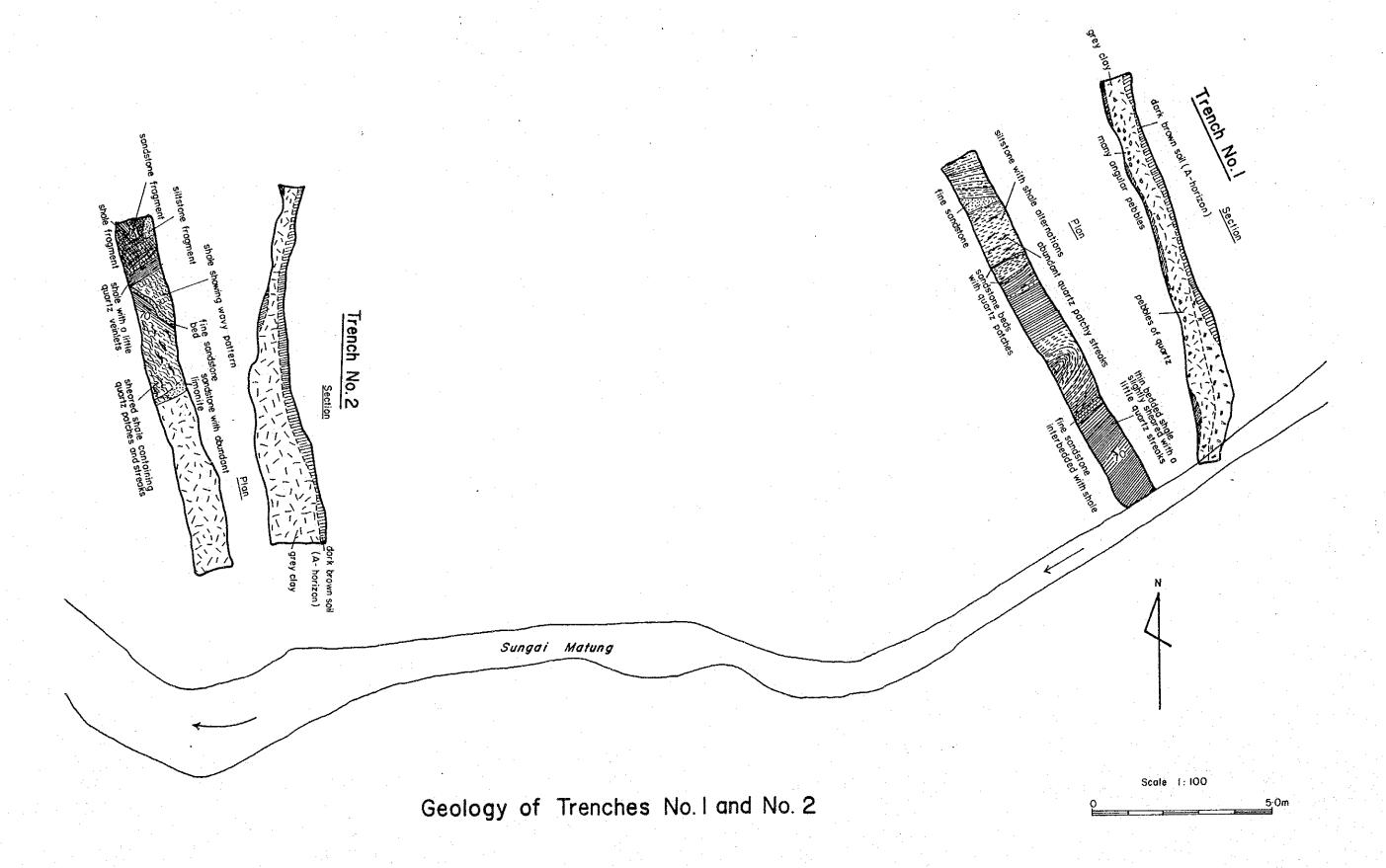
Appendix 3 RESULTS OF CHEMICAL ANALYSIS OF SOIL SAMPLES, SUNGAL SINYI AREA

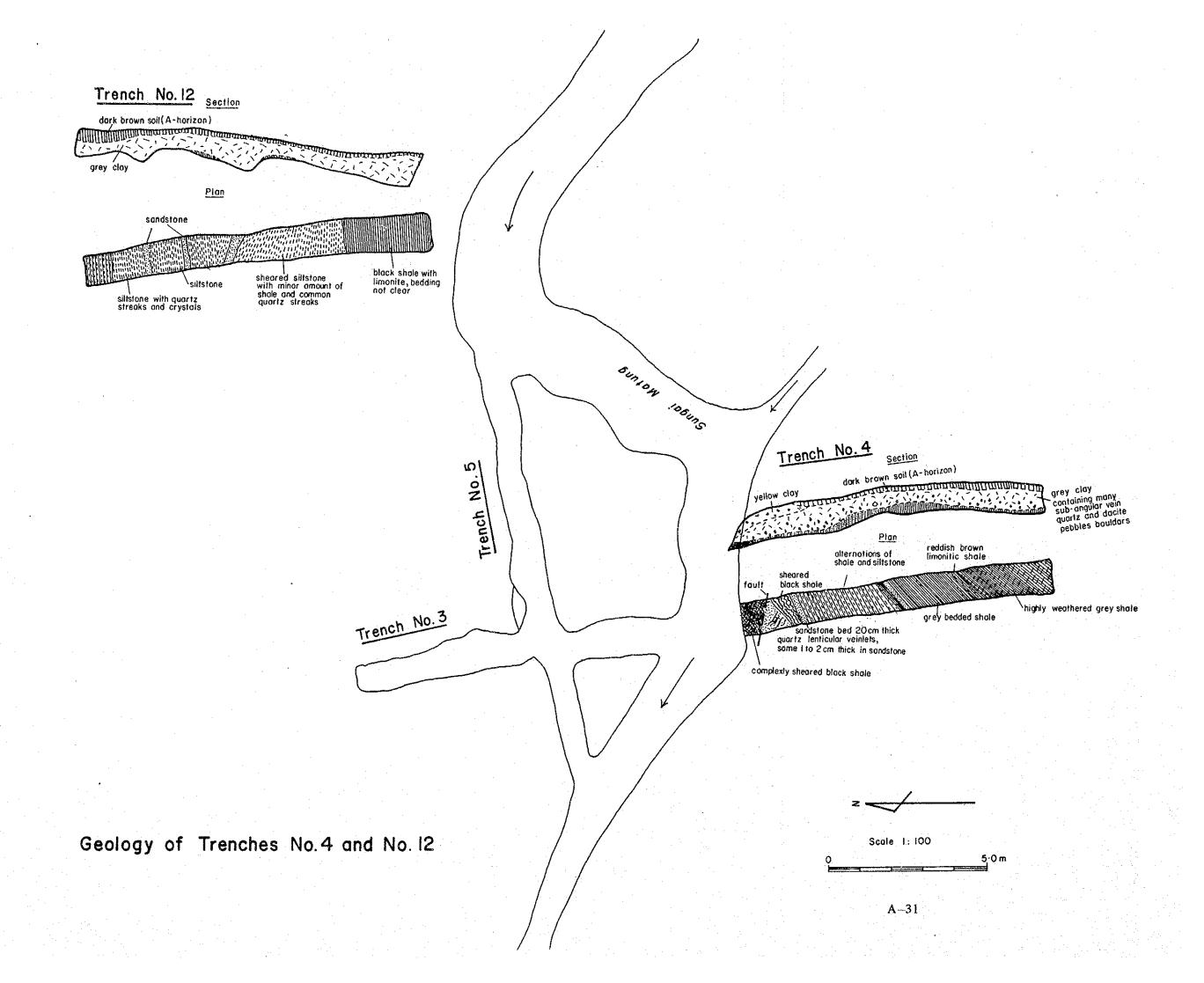
Ser No	Sample No.	As (ppm)	Ag (ppml	Mn (ppm)	Hg (ppb)	Au (ppm)	Sb (ppm)	Ser	Sample No.	As (ppm)	Ag (ppm)	Mn (ppm)	Hg (ppb)	Au (ppn)	Sb (ppa)
481	5YL1318	4.5	2.2	5	48	0,1	7.5	521	SYL1414	tr.	1.3	7	66	0.2	6.2
	SYL1319	7.0	1.8	7	47	0,1	tr.	522	SYL1415	tr.	2.3	9	66	0.2	3.4
483	SYL1320	14.0	1.1	9	40	0.1	tr.	523	SYL1416	1.0	1.0	15	50	0.2	4.2
484	SYL1321	9.4	1.6	5	61	0.1	13.7	524	SYL1417	tr.	0.7	Ь	45	0.2	5.9
485	SYL1322	7.7	1.4	5	41	0.1	6.1	525	SYL1418	3.7	1.0	5	41	0.2	tr.
486	5YL1323	ţr.	1.3	7	76	0.1	0.9	526	SYL1419	4.1	0.7	4	35	0.1	tr.
497	SYL1324	tr.	1,1	Ь	64	0,1	2.4	527	SYL1420	2.0	0.8	5	46	0.2	6.5
488	SYL1325	tr.	1,1	P	56	0.1	1.0	528	SYL1421	3.1	1.2	4	59	0.1	5.6
489	SYL1326	4.2	1.6	5	111	0.1	tri	529	SYL1422	5.4	0.7	5	55	0.1	4.2
490	SYL1327	2.1	1.3	6	96	0.2	tr.	530	SYL1423	5.4	0.7	16	48	0.2	1.7
491	SYL1328	11.2	0.8	3	53	0.2	19.1	531	SYL1424	tr.	0.B	ь	47	0.2	1.7
492	SYL1329	5.9	0.7	3	. 72	0.2	tr.	532	SYL1425	tr.	0.9	5	48	0.2	2.3
493	5YL1330	7.0	1.1	b	72	0.2	1,9	533	5YL1426	tr.	0.B	ь	51	0.1	1.2
494	SYL1331	11.2	1.2	6	53	0.2	17.2	534	SYL1427	tr.	1.1	7	97	0.2	tr.
495	5YL1332	5.6	0.9	27	. 34	0.3	1.2	535	SYL1428	tri	1.4	8	61	0.2	1.9
496	5YL1333	7.1	1.1	4	56	0.2	18.3	536	SYL1429	6.1	1.0	Q	44	0.1	1.0
497	SYL1334	B.4	0.6	6	58	0.2	5.2	537	SYL1430	3.4	1.3	12	56	0.2	1.4
498	SYL1351	22.7	1.0	5	53	0.2	tr.	538	SYL1431	6.8	0.8	7	45	0.2	2.9
499	SYL1352	15.7	0.9	ь	101	0.3	4.0	539	SYL1432	5.4	1.5	6	54	0.2	tr.
500	5YL1353	17.5	0.3	6	110	0.2	3.0	540	SYL1433	5.4	1.3	21	50	0.2	tr.
501	SYL1354	17.6	1.7	5	28	0.1	3.1	541	SYL1434	7.8	0.9	8	48	0.1	2.2
502	SYL1355	19.6	1.2	9	92	0.2	2.4	542	SYL1435	8.2	1.0	9	40	0.2	tr.
503	SYL1356	tr.	0.8	4	85	0.2	3.3	543	SYL1451	46.9	1.1	50	144	0.3	5.8
504	SYL1357	5,2	0.7	16	44	0.2	0.5	544	SYL1452	36.0	0.8	12	168	0.3	5.3
505	5YL1358	3.8	0.7	25	35	0.2	1.6	545	SYL1453	16.3	0.9	7	139	0.2	tr,
506	SYL1359	5.2	1.2	8	25	0.2	22.3	546	SYL1454	32.0	0.9	8	82	0.2	2.0
507	SYL1360	۶.4	0.8	В	133	0.3	1.7	547	SYL1455	27.5	1.0	46	99	0.3	4.1
508	SYL1401	16.4	0.8	423	123	0.2	3.0	548	SYL1456	21.8	1.4	5	85	0.2	2.7
509	SYL1402	19.6	2.4	425	113	0.2	1.6	549	SYL1457	tr.	0.8	3	32	0.2	0.7
510	SYL1403	1.7	0.8	10	87	0.2	5.4	-	SYL1458	tr.	0.6	5	270	0.2	2.4
511	5YL1404	4.2	0.6	5	49	0.2	tr.		SYL1459	35.0	0.6	4	tr.	0.5	1.3
512	SYL1405	5.9	1.2	9	67	0.2	0.5		SYL1501	4.1	0.7	43	123	0,1	tr.
513	SYL1406	3.8	0.9	6	32	0.1	0.9	-	SYL1502	14.3	0.6	529	63	0.2	tr.
514	SYL1407	8.7	1.4	6	55	0.2	0.9		SYL1503	7.5	0.8	276	45	0.2	1,4
515	SYL1408	2.8	1.0	5	63	0.2	0.7	-	SYL1504	tr.	0.9	16	54	0.1	1.7
516	SYL1409	3.B	1.3	6	84	0.2	tr,		SYL1505	3.4	0.6	25	58	0.2	tr.
517	5YL1410	4.5	1.3	9	106	0.3	3,3		SYL1508	3.4	0.3	4	tr.	0.1	7.3
518	SYL1411	7.7	1.0	8	88	0.2	6.4		SYL1507	3.7	1.3	5	26	0.2	5.5
519	SYL1412	5.2	1.1	10	55	0.2	2.4		SYL1508	3.4	0.6	4	45	0.2	tri
520	SYL1413	tr.	0.9	11	78	0.2	4.3	560	SYL1509	4.8	0.8	5	95	0.2	tr.

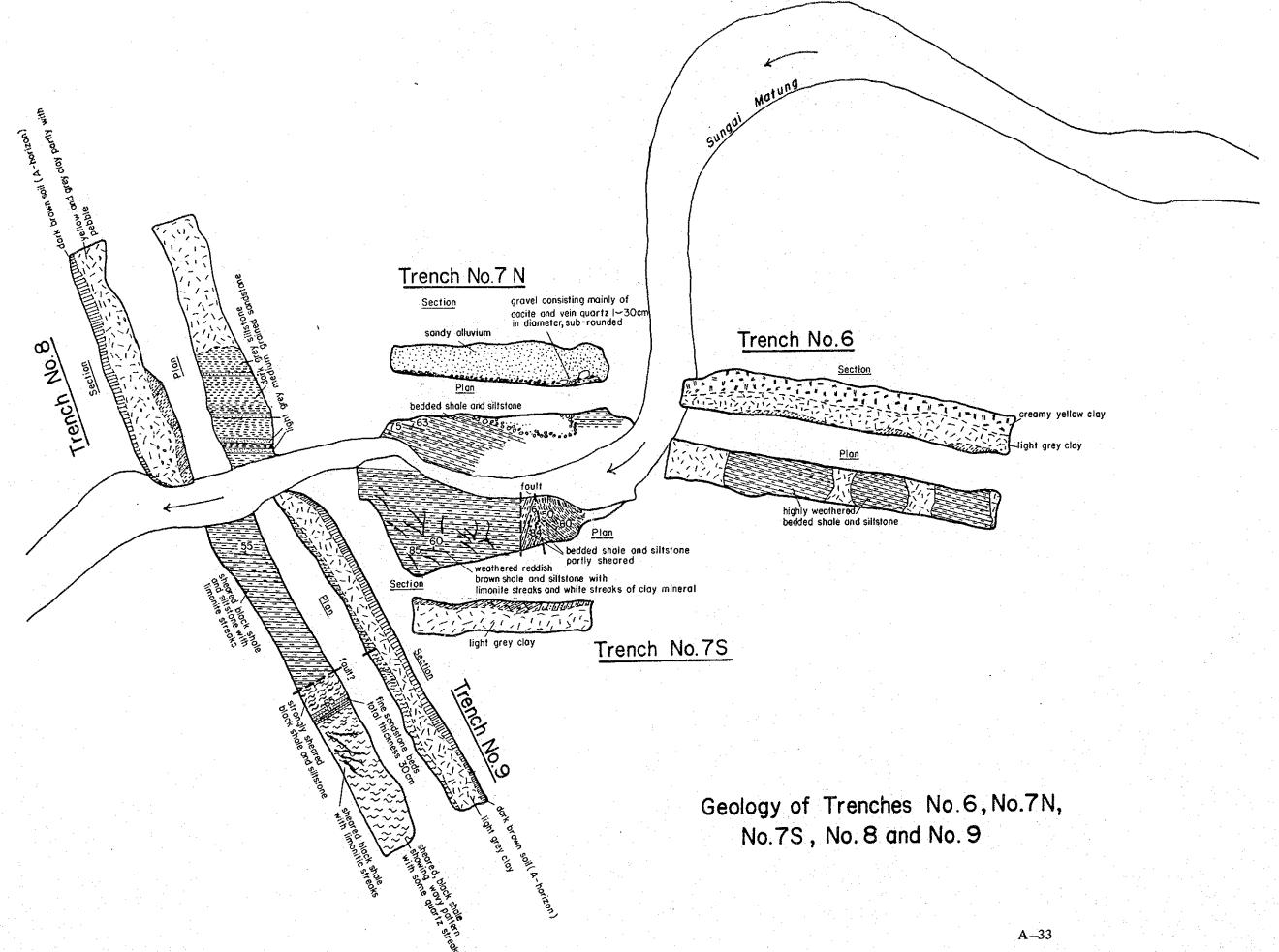
Ser No	Sample No.	As (ppm)	Ag (ppm)	tin (ppm)	Hg (ppb)	Au (ppm)	Sb (ppm)	Ser No	Sample No.	As (ppn)	Ag (ppm)	Ma (ppm)	Hg (ppb)	Au (ppn)	Sb (ppm)
561	SYL1510	1.0	0.9	5	78	0.2	1.6	601	SYL1606	7.2	0.3	3	47	0.1	2.0
562	SYL1511	6.5	1.1	В	106	0.1	tr,	602	5YL1607	39.9	0.6	5	41	0.1	4.7
563	SYL1512	tr.	1,1	24	49	0.2	4.7	603	5YL1608	17.6	0,6	9	43	0, j	5.9
584	SYL1513	tr.	1.2	5	36	0.1	2.2	604	SYL1609	10.4	0.5	18	142	tr.	2.4
565	SYL1514	tr	0.9	10	tr.	0.1	tr.	605	SYL1610	10.8	0.6	11	35	0.1	4.6
566	SYL1515	tr.	0.9	7	38	0.1	4.5	606	5YL1611	tr.	0.9	18	55	0.1	3.6
567	SYL1516	tr.	0.9	P	31	0.1	5.2	607	SYL1612	5.4	0.7	٩	55	0.2	1.7
568	SYLI517	5.4	1.3	. 43	29	0.1	5.0	808	SYL1613	2.2	0.5	5	49	0.1	3.7
569	SYL1518	4.3	0.9	14	92	0.1	4.2	609	SYL1614	2.5	0.B	Ŷ	51	0.2	5.5
570	5YL1519	5.0	1.0	7	39	0.1	5.5	610	SYL1615	4.0	1.1	7	. 37	0.2	4.2
571	SYL1520	4.0	0.7	6	41	0.1	2.3	611	SYL1616	4.9	0.7	14	tr.	ţr.	5.7
572	SYL1521	4.0	1.4	7	80	0.1	2.7	612	SYL1617	8.9	1.0	5	36	0.2	50.9
573	SYL1522	6.5	0.8	7	49	0.2	4.4	613	SYL1618	3.9	0.8	3	41	0.1	3.4
574	SYL1523	2.2	1, 4	5	81	0.2	3.3	614	SYL1619	7.9	1.1	5	74	0.2	2.0
575	SYL1524	tr.	1.3	5	72	0.2	3.6	615	SYL1620	tr.	0.9	7	46	0.2	2.3
576	SYL1525	tr.	1.3	3	53	0.2	5.2	616	SYL1621	2.5	0.8	ç	38	0.2	2.7
577	SYL1526	5.0	0.9	4	37	0.1	10.1	617	SYL1622	tr.	0.8	19	43	0.2	4.3
578	SYL1527	10.1	0.9	6	50	0.1	4,9	818	SYL1623	, tr.	0.6	3	49	0.1	15.2
579	SYL1528	10.1	1.0	8	41	0.1	4.3	619	SYL1624	tr.	0.8	3	39	0.1	3.0
580	SYL1529	7.5	0.9	7	55	0.2	1.1	620	SYL1625	1.0	0.7	14	39	0.1	2.9
581	SYL1530	2.5	0.9	4	62	0.1	2.7	621	SYL1626	9.4	0.8	4	41	0.2	3.0
582	SYL1531	9.0	0.6	9	86	0.2	3,2	622	SYL1627	8.4	0.8	5	31	0.1	3.0
583	SYL1532	8.3	0.6	5	49	0.2	2.2	623	SYL1628	20.2	0.8	4	36	0.2	3.3
5B4	SYL1533	6.5	0.6	5	48	0.1	4.9	624	SYL1629	3.0	0.8	4	36	0.1	4.9
585	SYL1534	5.8	0.9	7	46	0.1	4.3	625	SYL1651	15.3	0.3	11	57	0.1	4,6
586	SYL1535	5.8	0.6	5	40	tr.	4.7	626	SYL1652	7.4	0.3	4	81	0, 1	4,9
587	SYL1536	1.8	0.7	198	tr,	tr.	6.0	627	5YL1653	tr.	0.5	5	48	0.1	4,3
588	SYL1537	2.2	0.8	306	27	0.1	2.4	628	SYL1654	228.0	0.4	11	81	0.6	5.9
589	SYL1551	3.6	0.7	13	38	0.1	4.2		5YL1655	531.2	0.5	7	458	1.6	5.0
\vdash	5YL1552	0,7			tr.	tr.	4.2		SYL1701	3.4	: 0, 1	17	36		2.3
	SYL1553	12.9	0.5	5	42	0.1	b.2		SYL1702	18.2	1.0	613		0.2	2.7
	SYL1554	5.8	0.4	4	70	0.1			SYL1703	13.8	1.0	85	81	0,1	4.6
1	SYL1555	67.6	1.1	14	62	0.3			SYL1704	tr.	0.9	79	48	0.1	5.6
	SYL1556	238.6	0.7	6	77	0.8			SYL1705	tr.	1.0	173	44	0.1	3.6
	SYL1557	192.6	0.B	16	90	0.6	4.7	<u> </u>	5YL1706	2.5	0.5	612	54	. 0.2	5.9
 	SYL1601	15.1	0.6	9	87	0.1	5.0		5YL1707	0.5	0.2	23	35	ţr.	5.3
ļ	SYL1602	5.8	0.7	12	97	0.1			SYL170B	3.0	0.8	40	27	0.1	4.6
	5YL1603	15.8	0.6	33	167	0.2		ļ	SYL1709	1.5	0.4	5	73	0.1	4,9
	SYL1604	14.0	0.9	134	42	0.1			SYL1710	4.4	0.3	11	76	0.1	3.2
600	SYL1605	7.5	0.4	14	79	0.1	6.7	640	5YL1711	9.4	0.9	6	.64	0.1	2.0

		,	· ·		·		
Ser No	Sample No.	As (ppm)	Ag (ppm)	fin (ppm)	Hg {ppb}	Au (ppm)	Sb (ppn)
641	SYL1712	3.9	0.8	14	42	0.1	2.6
642	SYL1713	6,4	0.7	5	40	0,1	5, 2
643	SYL1714	4.9	1.2	6	38	0.2	3.6
644	SYL1715	1,0	1.1	17	40	0,2	2.6
645	SYL1716	4.4	: 0.9	ÿ	33	0.1	2.7
646	SYL1717	3,4	0.8	10	41	0,1	4.7
647	SYL1751	3.0	0.5	13	66	0.1	6.0
648	SYL1752	7.4	0.3	3	66	tr.	4.3
649	SYL1753	13.8	0.8	5	64	0.1	3.3
650	SYL1754	"tri.	0.8	3	82	0.1	4.0
651	SYL1801	tr.	0.8	5	62	0.1	8.5
652	SYL1802	tr.	3.6	7	140	0.1	8.8
653	SYL1803	tr.	1.2	20	98	0.1	2.4
654	SYL1804	tr.	1.2	24	167	0.1	1.4
655	SYL1805	4.2	1.5	13	46	0.1	2.3
656	SYL1806	1.8	0.9	8	134	0,1	5.6
657	SYL1807	2.8	0.7	. 11	48	0.1	4.9
658	SYL1851	1.4	0.5	4	92	0.1	4.7
659	SYL1852	3.7	0.7	76	.51	0.1	€.2
660	SYL1853	tr.	0.7	18	25	0.1	4.9


Appendix 9 Analytical Results of Soil Samples, Sungai Matung Area


								F				-			
Ser No	Sample No.	As (ppm)	Ag (ppa)	Mn (ppm)	Hg (ppb)	Au (ppm)	(bbw)	Ser No		As (ppm)	Ag (ppm)	Mn (ppm)	Hg (pph)	Au (ppm)	Sb (ppm)
1	MSL0101	tr.	1.2	23	94	0.1	.7.3	41	MBF0308	2.0	0.3	25	441	0,1	8.7
2	MGL0102	tr,	1.0	14	62	0.1	3.8	42	MGL0309	10.6	0.5	62	252	0.1	7.B
3	MGL0103	tr.	0.8	37	85	0.1	12,7	43	NGL0310	22,5	0,5	114	183	0.1	9.5
4	NGL0104	tr.	0.8	13	72	0.1	4.2	44	M6L0311	24.1	5.0	258	57	0.1	16.0
5	MGL0105	4.6	0.6	38	83	0.1	11.1	45	M6L0312	23,3	0.3	232	47	0,1	7.0
Ь	M&L0106	13.6	0.7	12	264	0.1	7.3	46	MGT0313	22.5	0.4	151	57	0.1	7.5
7	M6L0107	36,9	0.5	P	- 377	0.1	4.4	47	M6L0314	6.9	0.9	334	78	0.1	10.5
8	MSL0108	29.5	1.0	219	84	0.1	5, 1	48	MGL0315	18.4	0.8	262	57	1.0	16.8
٩	MSL0110	22.2	1.5	60	42	0.1	6.7	49	M6L0316	29.0	0.6	303	76	0.1	26.1
10	MGL0111	5.5	1.1	ç	75	0.2	۶.3	50	MGL0317	31.2	0.5	332	86	0,1	7.2
11	M6L0112	4.6	0.9	8	74	0.2	5.1	51	MGE0401	4.1	0.6	ç	120	0.1	6.0
12	MGL0113	3.7	1.0	7	70	0.2	17.5	52	MGL0402	5.1	0.7	38	104	0.1	7.5
13	MGL0114	6.0	0.8	9	92	0.2	2,1	53	MSL0403	17.9	0.7	8	187	0.1	7.2
14	MGL0115	3.2	1.2	9	79	0.2	3.8	54	MGL0404	12.2	0.7	8	261	0.1	6.2
15	KGL0116	- 3.7	0.9	6	70	0.1	9,3	55	MGL0405	18.4	0.4	11	690	0.2	5,6
16	MGL0117	5.1	0.8	8	56	0.1	3.9	56	M8L0406	17.4	0.4	4	683	0.1	4.2
17	M6L0201	tr.	0.7	21	189	0.1	1.6	57	MSL0407	3.6	1.1	3	164	0.1	6.2
18	MGL0202	tr,	0.5	10	224	0.1	7.3	58	M6L0408	tr.	0.6	3.0	67	0.1	5, 9
19	M6L0203	tr.	0.7	10	186	0.1	11.8	59	M6L0409	25.1	0.3	21	93	0.1	5.2
7Ó	HGL0204	8,3	0.9	9	277	0.1	tr.	60	HGL0410	31.2	0.7	49	95	0.1	4,6
21	MSL0205	11,1	0.9	9	768	0.1	10.0	61	M6L0411	10.2	0.5	6	88	0,2	3,1
22	MSL0206	26.2	0.7	76	492	0.1	2.4	62	MSL0412	10.2	1.0	7	78	0.2	3.8
23	MSL0207	24,9	1,1	178	112	0.1	3.3	63	MGL0413	15.4	0.7	14	91	0.2	3.0
24	MGL0208	21.3	0.5	233	144	0.1	7.3	54	M6L0414	9.2	0.6	32	42	0.1	5.7
25	MGL0209	15,1	0.8	362	86	0.1	0.8	65	MBL0415	9.7	0.6	Ь	50	0.1	6.9
26	MSL0210	20.0	0.4	193	48	0.2	1.8	66	M6L0416	18.4	0.8	8	88	0.2	4.6
27	M5L0211	tr.	0.4	18	57	0.1	4.1	67	MGL0417	15.4	0.7	8	72	0.1	3.9
28	MSL0212	tr.	0.8	8	67	0.1	10.6	68	MGL0501	26.1	0.5	5	335	0.1	3.9
29	M6L0213	tr.	0.8	13	51	0.1	4.2	69	M6L0502	37.4	0.5	ç	484	0.1	7.0
30	MGL0214	tr,	0.5	4	52	tr.	2.3	70	MBL0503	37.4	0.8	11	540	0.2	5.9
31	MGL0215	tr.	0.6	7	44	0.1	3.1	71	MGL0504	16.4	1.0	16	535	0.1	7.0
32	MGL0216	6.1	0.9	6	50	0.1	19.8	72	MGL0505	17.4	0.7	34	896	0.2	6.9
33	M6L0217	5.7	0.7	5	46	0.1	5.6	73	NGL0506	24.6	0.6	31	268	0.1	14.0
34	M6L0301	8.6	0.6	7	182	0.1	12.6	74	M6L0507	9.2	0.5	16	114	0.1	35.6
35	HGL0302	12.7	0.5	18	216	0.1	11.6	75	MSL0508	tr.	0.4	9	73	0.1	3.4
36	MGL0303	11.9	0.5	66	133	0.1	3.1	76	MGL0509	8.2	0.8	3	107	0.1	4.7
- 37	MGL0304	23.3	0.4	41	276	0.1	9.0	77	MGL0510	29,2	0.6	6	134	0.1	22.6
38	MGL0305	10.2	0.5	14	846	0.2	9.0	78	M6L0511	3.1	0.3	5	24	0.1	19.4
39	MGL0306	5.3	0.2	6	422	tr.	10.9	79	NGL0512	15.4	0.5	11	62	0.2	9.6
40	MGL0307	4.1	0.6	14	140	0.1	9.0	80	M6L0513	7.2	0.3	10	70	0.1	9.1


Ser No		As (pps)	Ag (ppm)	Mn (ppp)	Hg (ppb)	Au (PPM)	Sb (ppm)	Ser No	Sample No.	As (ppa)	Ag (ppa)	Mn (ppm)	Hg (ppb)	Au (ppn)	Sb (ppm)
81	MGL0514	5.6	0.4	7	50	0.2	10.1	121	MBL0803	35.5	0.5	5	223	0.1	tr.
82	MGL0515	7.2	0.5	۶	74	0.2	7.1	122	HGL0804	23.1	0.3	6	143	0.1	13.6
83	MGL0516	6.6	0.4	7	245	0,1	9.3	123	MGL0805	24,5	0.7	4	115	0.2	1.0
84	HGL0517	4.1	0.5	6	280	0.1	10.3	124	MGL0806	29.5	0.6	13	339	0.4	15.2
85	M6L0601	87,1	0.7	12	551	0.2	43.6	125	MGL0807	25,4	0.2	5	194	0.1	6.9
86	MGL0602	63.0	0.6	14	839	0.2	7.6	126	MGL0808	16.2	0.4	5	160	0.1	7.6
87	MGL0603	18.4	0.3	5	478	0.1	12.7	127	MGL0809	18.9	0.2	4	138	0.1	2.9
88	MGL0604	9.2	0.3	5	401	0,1	11.8	128	MGL0810	16.6	0.2	3	112	0.3	45.3
89	MGL0605	tr.	0.1	6	385	0.1	1.5	129	MGL0811	21.2	0.3	5	101	0.1	tr.
90	H6L0404	tr.	0.1	3	214	0.1	tr.	130	MGL0B12	37,4	0.2	6	193	0.3	tr.
91	MGL0607	7.2	0.1	13	322	0.2	tr.	131	MGL0813	42.9	0.2	3	182	0.1	tr.
92	MGLO60B	4.5	0.2	5	287	0.1	tr.	132	MGL0814	. tr.	0.3	5	149	0.2	4.5
93	MGL0609	4,1	0.1	3	149	0.1	tr.	133	MGL0815	42.5	0.7	5	137	0.3	8.3
94	MGL0610	26.6	0.1	7	164	0.2	tr.	134	MGL0816	0.5	0.5	7	82	0.1	7.7
95	MGL0611	27.1	0.7	40	160	0.1	tr.	135	NGL0817	0.9	0.5	12	124	0.2	2,5
96	MGL0612	17.4	0.5	5	155	2.4	tr.	135	MGL0901	4.2	0.4	10	202	0.1	2.0
97	MGL0613	22.0	0.3	2	154	0.1	tri	137	MGL0902	29.5	0.5	10	201	0.1	2.5
98	MGL0514	4.6	0.6	4	319	0.1	1.9	138	MGL0903	27.7	0.5	. 6	187	0.1	1.7
99	MGL0615	12.3	0.5	7	326	0.1	2.2	139	MGL0904	24.9	0.5	8	155	0.3	11.1
100	M6F0919	4.1	0.5	3	674	0.1	1.0	140	MGL0905	45.2	0.4	15	174	0.2	2.5
101	MGL0617	19.9	0.5	8	179	0.2	13.8	141	NG1.0906	36.0	0.3	9	185	0.1	22.1
102	M6L0701	48.1	0.6	18	473	0.2	1.0	142	MGL0907	33.7	0.5	٩	142	0.1	tr.
103	MGL0702	30.7	0.5	15	293	0.1	1.7	143	MGL0908	55.4	0.5	9	127	0.3	4.2
104	M6L0703	15.4	0.6	12	298	0.1	1.3	144	MGL0909	75.2	0.6	26	140	0.1	3.1
105	MGL0704	tr.	0.3	4	171	0.1	tr.	145	MGL0910	62.8	0.5	4	157	0.2	6.8
106	MGL0705	tr.	0.5	14	340	0.1	tr.	146	MGL0911	61.4	0.8	2 4	126	0.3	1.6
107	MGL0706	6.1	0,4	3	226	0.1	7,4	147	M6L0912	55.8	0.5	6	132	0.2	2.6
108	MGL0707	6.1	0.2	3	248	0,1	3.2	148	M8L0913	50.8	0.5	11	176	0.2	2.1
107	MGL0708	15.9	0.3	42	276	0.1	tr	149	M61.0914	2.8	0.6	8	122	1.0	2.8
110	M6L0709	16.5	0.3	3	131	0.1	9.9	150	MGL0915	2.3	0.4	5	106	0.1	0.5
111	MGL0710	27.2	0.4	8	166	0.1	tr.	151	MGLOP16	tr.	0.3	11	125	0.1	0.8
112	M6L0711	4.2	0.3	7	135	0.1	3.4	152	M6L0917	2.8	0.4	8	110	0.2	1.0
113	M6L0712	13.4	0.4	22	122	0.1	tr.	153	MSL1001	0.5	0.7	6	51	0.3	1.0
114	MGL0713	18.0	0.6	5	139	0.1	tr.	154	M6L1002	31.4	0.6	- 11	96	0.2	1.0
115	MGL0714	5.1	0.4	6	125	0.3	tr.	155	MGL1003	37.4	0,2	196	105	1.3	0.8
116	MGL0715	0.9	0.4	4	200	0.1	tr.	156	MGL1004	44.8	0.4	11	181	0.2	0.8
117	MGL0716	10.2	0.6	11	104	0.2	tr.	157	MGL1005	26.8	0.3	Ŷ	241	0.2	tr.
118	MGL0717	2.8	0.6	3	90	0.1	0.7	158	M6L1006	43.4	0.3	15	131	0.1	1.8
119	MGL0801	tr.	0.4	7	331	0.2	0.5	159	M&L1007	56.8	0.3	17	110	0.3	3.9
120	MGL0802	37.8	0.4	9	271	0.1	tr.	160	MSL1008	75.7	0.7	15	189	0.2	5.4


162 163 164 165 166 167 168 170 170 171 172	MGL1009 MGL1010 MGL10112 MGL1013 MGL1014 MGL1015 MGL1016 MGL1017 MGL1017 MGL1101 MGL1102 MGL1102	76.1 58.2 6.9 35.5 7.4 7.4 7.8 2.3 0.5	0.7 0.5 0.6 0.4 0.3 0.4 0.6 0.6	14 8 25 11 7 31 50 115	151 84 96 68 82 67 117 209	tr. 0.1 0.1 0.1 0.3 0.1	2.6 tr. tr. 4.2 3.1 5.0		MGL1215 MGL1216 MGL1217 MGL1301 MGL1302	9,7 27,2 49,8 14,8	0.6 0.6 0.7 0.6	8 7 7 11	215 135 328 257	tr. 0.1 tr. tr.	4.7 5.1 6.2 4.2
163 164 165 166 167 168 170 170 171 172	MGL1011 MGL1012 MGL1013 MGL1014 MGL1015 MGL1016 MGL1017 MGL1101 MGL1102	6,9 35,5 35,5 7,4 7,4 7,8 2,3 0,5	0.6 0.4 0.3 0.4 0.6 0.6	25 11 7 31 50 115	96 68 82 67 117 209	0.1 0.1 0.3 0.1	tr. 4.2 3.1 5.0	203 204 205	MGL1217 MGL1301	49.8 14.8	0.7	7 11	328 257	tr. tr.	6.2 4.2
164 165 166 167 168 169 170 171 172	MGL1012 MGL1013 MGL1015 MGL1016 MGL1017 MGL1101 MGL1102	35.5 35.5 7.4 7.4 7.8 2.3 0.5	0.4 0.3 0.4 0.6 0.6	11 7 31 50 115	68 82 67 117 209	0.1 0.3 0.1 0.2	4.2 3.1 5.0	204 205	M6L1301	14.8	0.5		257	tr.	4,2
165 166 167 168 169 170 171 172 173	MGL1013 MGL1014 MGL1015 MGL1016 MGL1017 MGL1101 MGL1102	35.5 7.4 7.4 7.8 2.3 0.5	0.3 0.4 0.6 0.6	7 31 50 115	82 47 117 209	0.3 0.1 0.2	3,1 5.0	205							
166 167 168 169 170 171 172	M6L1014 M6L1015 M6L1016 M6L1017 M6L1101 M6L1102	7.4 7.4 7.8 2.3	0.4 0.6 0.6 0.5	31 50 115	67 117 209	0.1	5.0		HGL1302	17.1	٦, ,				
167 168 169 170 171 172	MGL1015 MGL1016 MGL1017 MGL1101 MGL1102	7.4 7.8 2.3 0.5	0.6 0.6 0.5	50 115	117 209	0.2		204		1	0.4	10]	201	0.1	11.1
168 169 170 171 172 173	MGL1016 MGL1017 MGL1101 MGL1102	7.8 2.3 0.5	0.6 0.5	115	209		E 2	200	MGL1303	19.4	0.5	27	129	0.1	4.7
169 170 171 172 173	MGL1017 MGL1101 MGL1102	2.3	0.5				J. 2	207	MGL1304	9.2	0.6	302	101	0,1	9.3
170 171 172 173	MGL1101 MGL1102	0.5		q		0.1	3,1	208	MGL1305	9.7	0.3	137	208	0.3	4.6
171 172 173	MGL1102		0.5		151	tr.	2.6	209	MGL1306	2.3	0.2	23	114	tr.	6.2
172 173		6.9		13	257	0.1	15.1	210	MGL1307	tr.	0.5	52	113	0.1	4.1
173	MSL1103		0.5	15	188	0.1	2.1	211	MGL1308	tr.	0.4	41	116	0.1	8.7
		5.5	0.5	39	128	0.2	3,4	212	MGL1309	tr.	0.6	94	155	tr.	11.8
	MGL1104	39:2	0.5	50	60	0.1	1.6	213	MGL1310	tr.	0.4	313	164	0.1	3,9
174	MGL1105	35.5	0.6	97	272	0.2	3.1	214	X6L1311	tr.	0.3	54	142	0.1	የ.0
175	M6L1106	19.4	0.6	34	228	0.3	5.7	215	MGL1312	141.2	0.4	37	88	0.2	7.7
176	MSL1107	0.5	0.6	38	236	0.1	2,9	216	M6L1313	92.6	0.3	18	102	0.1	10.6
177	MSL1108	tr.	0.4	19	118	0.1	4.4	217	MGL1314	23.1	0.6	28	174	tr.	5.4
178	MGL1109	5.1	0.6	17	245	0.2	5, 2	218	MGL1315	6.5	0.5	26	70	0,1	6.4
179	MGL1110	1.8	0.5	19	58	tr.	4.1	219	MGL1316	26.3	0.8	148	120	0,1	12.2
190	MSL1111	tr.	0.6	- 12	38	0.1	tr.	220	MGL1317	33.7	0.5	16	96	0.1	8.5
181	MGL1112	4.6	0.5	231	tr.	0.1	1.5	221	MSL1401	31.4	0.6	338	98	tr.	7.0
182	MGL1113	tr.	0.6	54	122	0.1	3.1	222	MGL1402	19.4	0.6	187	251	tr.	1.8
183	MGL1114	tr.	0.6	111	72	0.1	6.7	223	M6L1403	1.8	0.7	92	255	tr.	2.4
184	MGL1115	12.0	0.4	13	139	0.1	8.8	224	MGL1404	6.5	0.5	231	196	tr.	3.8
185	MGL1116	7.4	0.5	6	68	tr.	4,4	225	NGL1405	45.2	0.6	100	208	tr.	1.8
186	MGL1117	0.5	0.4	2	4.2	0.2	4.4	226	MGL 1406	37.4	0.4	67	225	0.1	8.7
187	MSL1201	የ.2	0.7	508	162	0.1	2.4	227	MSL1407	tr.	0.4	145	176	tr.	3, 1
188	MGL1202	11.1	0.5	36	198	tr.	1.6	228	MGL 140B	tr.	0.6	13	167	0.1	3.6
189	KGL1203	12.0	0.8	90	140	0.1	4.1	229	MGL1409	tr	0.7	48	150	0.1	6.0
190	MSL1204	19.4	0.9	20	200	tr.	2.0	230	MGL1410	tr.	0.5	52	131	0.1	4.9
191	MGL1205	13.4	0.5	27	156	0.1	1.5	231	X6L1411	tr.	0.4	115	454	tr,	4.6
192	MSL1206	22.6	0.5	151	99	0.1	2.0	232	MSL1412	65.5	0.5	647	186	tr.	9.5
193	MGL1207	tr.	0.7	76	140	0.1	1.0	233	MGL1413	69.2	0.7	198	88	tr.	3.3
194	M6L1208	3.7	0.8	13	249	tri.	5.7	234	MGL1414	62.8	0.5	559	129	0.1	3.5
195	MSL1209	tr,	0.3	26	215	tr.	tr.	235	MGL1415	55.8	0.5	467	108	0.1	4.6
196	MSL1210	tr.	0.5	12	154	0.1	1.8	236	M6L1416	18.0	0.5	458	91	0.1	6.0
197	MGL1211	tr.	0.6	28	225	0.1	2, 1	237	MGL1417	51.7	0.4	43	64	0,1	5.6
198	M6L1212	7,4	0.6	29	90	tr.	1.6					•			7.
199	M6L1213	23,1	1.0	76	44	tr.	3.8								
200	MGL1214	11.1	0.9	21	218	0.2	B.0								7. E. * 1

Appendix 10 Geology of Trenches, Sungai Matung Area

