Roads (cont.)

Ite	m .	Unit	Quantity	Unit Cost	Cost (M\$)	Remarks
Bridge		m ²	60 ^m x 6 ^m	2,000	720,000	. 7:
,	Mag. 11			;	:	i e
Sub-Total	ergine i .				720,000	
Total				:	16,512,650	

Table 4.4 River Treatment

H\$20,572,000.-

	4.2. 4.	1.	1		
Item Alle Bor	Vnit	Quantity	Unit Cost	Cost (H\$)	Remarks
1. Coffering (1st)	. 24	and the same			
Banking	_m 3	27,500	5.0	137,500	· <u>-</u>
Sub-Total				137,500	12 N. T. C. S.
2. Coffering (2nd)					ia neil
Rock Embankment	- B3	234,800	15.5	3,639.400	
Filter Embankment	11	25,300	17.5	442,750	
Core Embankment	91	70,300	14.0	984,200	
Hiscellaneous	set	1		151,650	3%
Sub-Total				5,218,000	
3. Diversion Tunnel					
Common Excavation	m3 .	11,400	9.0	102,600	
Rock Excavation	*1	46,300	22.5	1,041,750	
Tunnel Excavation					
Horizontal	89	56,000	86.5	4,844,000	
Back Fill	n	3,500	5,0	17,500	
Concrete Lining					
Hórizontal -	"	16,500	305.0	5,032,500	
Intake Concrete		5,700	250.0	1,425,000	

(to be continued)

River Treatment (cont.)

Item	Unit	Quantity	Unit Cost	Cost (H\$)	Remarks
Plug Concrete	_m 3	2,800	225.0	630,000	
Reinforcement Bar	t (860	1,800.0	1,548,000	
Miscellaneous	set	:1.		438,650	3%
Sub-Total				15,080,000	
4. Grouting					• + : 1
Contact Grouting	_m 3	500	265.0	132,500	
Xiscellaneous	set.	1.s. 1		4,000	. 11
Sub-Total	· · · · · · · · · · · · · · · · · · ·			136,500	3 %
Total				20,572,000	
		•	•		
				-	on a fig.gr

Table 4.5 Dam

н\$59,976,000

Item	Unit	Quantity	Unit Cost	Cost (H\$)	Remarks
1. Dam	- 1	1960 N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
Common Excavation	en3	221,000	9.5	2,099,500	ttuin .
Rock Excavation	13	221,000	23.0	5,083,000	el efer
Rock Embankment	"	1,927,000	15.5	29,868,500	la Balana na maka
Filter Embankment	, 11	255,000	17.5	4,462,500	
Core Embankment	"	534,000	14.0	7,476,000	r vytví
Riprap and Protec- tion Rock	11	79,000	18.5	1,461,500	uga ni eriin e
Miscellaneous	set	1.s. 1	· · · · · · · · · · · · · · · · · · ·	1,519,000	3 % · · · · .
Sub-Total				51,970,000	
2. Grouting				,	
Drilling	m	22,100	130	2,873,000	
Curtain Grouting	ŧ	3,300	1,350	4,455,000	
Hiscellaneous	set	1.s. 1		222,000	3%
Sub-Total		-		7,550,000	
3. Grout Tunnel (1 = 160 m)					
Tunnel Excavation	m ³	1,850	86.5	160.025	11.54m ³ /m
Concrete	"	750	305	228,750	4.71a ³ /a
Reinforcement Bar	t	30	1,800	54,000	40kg/m ³
Niscellaneous	set	1.s. 1		13,225	3%
Sub-Total				456,000	
Total				59,976,000	

Table 4.6 Spillway

M\$21,200,000.-

Item	Vnit	Quantity	Unit Cost	Cost (M\$)	Remarks
l. Spillway	:				
Common Excavation	_m 3	70,000	9.0	630,000	1
Rock Excavation	89	213,000	23.0	4,899,000	e je ž
Ploor and Wall Concrete	• • • • • • • • • • • • • • • • • • •	2,240	255.0	571,200	
Pier Concrete	li .	780	265.0	206,700	erite to A to the total
Overflow Section Concrete	; 18	8,370	230.0	1,925,100	
Concrete for Shute	, a	11,270	255.0	2,873,850	- 1
Stilling Base Concrete	11	25,790	255.0	6,576,450	
Backfill	1 40 1 40	6,620	5.0	33,100	
Reinforcement Bar	t	1,450	1,800.0	2,610,000	e Park St.
Anchor Bar	ts.	48	2,200.0	105,600	
Bridge	set	1	· · · · · · · · · · · · · · · · · · ·	106,000	
Miscellaneous	set	1		663,000	L = 37 m
Total				21,200,000	

Table 4.7 Intake

H\$3,512,000-

Item	Unit	Quantity	Unit Cost	Cost (M\$)	Remarks
1. Intake		•			
Common Excavation	щ3 .	23,100	9.5	219,450	- -
Rock Excavation	11	9,900	23.0	227,700	i i ja
Embankment	п	5,300	5.0	26,500	
Retaining Wall Concrete	113	6,200	255.0	1,581,000	ring.
Concrete in Intake Body	88	1,330	265.0	352,450	lister Nij
Invert Concrete	'n	723	250.0	180,750	25.3
Slug Concrete	111	310	265.0	82,150	
Pier Concrete	.11	482	265.0	127,730	
Reinforcement Bar	t	340	1,800.0	612,000	
Xiscellaneous	set	1		102,270	3₹
Total			1 25	3,512,000	A 1 1 1 1 1

Table 4.8 Penstock

M\$25,654,000.-

Item Maria Maria	Unit	Quantity	Unit Cost	Cost (H\$)	Remarks
1. Penstock					
Tunnel Excavation	e fr				are the
Horizontal Section	` _E 3	32,600	86.5	2,819,900	es e e e e
Vertical Section	11				ti.
。 《《意题·维尔》	i.	6,700	110.0	737,000	+ 1 °.
Concrete Lining Horizontal				į.,	+ - 4*
Section Chapters	18	11,400	230.0	2,622,000	
Yertical Section		2,900	230.0	667,000	
Reinforcement Bar	t	46	1,800.0	82,800	
Xiscellaneous	set	1.s. 1		208,300	3%
Sub-Total		-		7,137,000	
2. Grouting					
Contact Grouting	_E 3	1,050	350.0	367,500	
Drilling	19	1,900	130.0	247,000	
Consolidation Grouting	t	285	1,350.0	384,750	
Miscellaneous		1.s. 1	-	7,750	
Sub-Total				1,007,000	

(to be continued)

Penstock (cont.)

Item	Unit	Quantity	Unit Cost	Cost (H\$)	Remarks
3. Steel Penstock	;		,		
Steel Penstock	t	3,000	5,400.0	16,200,000	1475 88
Sub-Total		\$ \$		16,200,000	
4. Service Adit					
Tunnel Sub-Total	TED	150	8,730.0	1,310,000 1,310,000	
oup-rotar	,			<u>, , , , , , , , , , , , , , , , , , , </u>	A Black College College
Total		<u></u>		25,654,000	1.18 (8)

Table 4.9 Power House

H\$20,450,000.~

Item	Vnit	Quantity	Unit Cost	Cost (H\$)	Remarks
1. Power House				: :	
Commón Excavation	m3	58,400	9.0	525,600	
Rock Excavation	n :	25,100	22.5	564,750	
Embankment	1 "	13,200	5.0	66,000	
Concrete for Side Wall	18	7,100	255.0	1,810,500	
Concrete for Foundation		8,300	250.0	2,075,000	
Barell Casing Concrete		4,800	255.0	1,224,000	
Slab Concrete	0	2,100	265.0	556,500	
Outlet Concrete	11	5,000	255.0	1,275,000	
Retaining Wall		2,700	255.0	688,500	
Reinforcement Bar	t	1,870	1,800.0	3,366,000	
Miscellaneous	set	1.s. 1		368,150	37
Sub-Total				12,520,000	

(to be continued)

Power House (cont.)

Item	Vnit	Quántity	Unit Cost	Cost (H\$)	Remarks
2. Architectural Work	:				
Main Control Building	_m 3	25,100	230.0	5,773,000	
Plumbing, Air Conditioning and Ventilation Korks	11	35,000	55.0	1,925,000	i je na sekta Vista stolika i je
Hiscellaneous	set	1.s. 1	Sea of the	232,000	3%
Sub-Total	T E EF			7,930,000	
Total	1			20,450,000	

Table 4.10 Outdoor Switch Yard

in a first tem (1711) to a si	Unit	Quantity	Unit Cost	Cost (H\$)	Remarks
l. Outdoor Switch Yard	:				
Excavation	_m 3	7,500	9.0	67,500	+ Ē
Embankment	51 ,	47,000	5.0	235,000	
Concrete for Retaining Wall	16	2,660	235.0	625,100	
Concrete for Poundation	B	630	255.0	160,650	
Reinforcement	t	85	1,800.0	153,000	e ^{ll} elektric
Bullast	ъ3	970	49.0	47,530	41
Kiscellaneous	set	1.s. 1		41,220	3%
Total				1,330,000	

Table 4.11 Gate Screen

M\$3,500,000.-

item start a	Unit	Quantity	Unit Cost	Cost (M\$)	Remarks
1. Gate Screen					
Intake Gate	t	85	3,300.0	790,500	- - 1012 - 1214 美
Screen		150	5,000.0	750,000	art pri
Outlet Gate	3 11	150	8,700.0	1,305,000	•
Diversion Channel Cate	"	62	8,730.0	541,260	aa shijetaje Biji bijetaj
Hiscellaneous	sèt			113,240	3%
Total				3,500,000	1 (1) (1) (1)

Table 4.12 Estimated Construction Cost for the Optimum Development Scheme

Lower Tekai

10³ H\$

			IV Ry
1. Pro	paratory Works	3,930	
Acc	cess Road	103	
Ter	nporary Facilities	3,827	
2. Ci	vil Works	34,773	
	version and re of River	5,078 16,000	
	illway	4,950	And the second s
Ín	take Structure	920	141
Pe	nstock	810	
Po	ver House	6,440	
Ме	chanical Equipment	575	
3. Ge	nerating Equipment	13,000	
4. Er	gineering Service	4,136	(1)+(2)+(3)x8Z
	overnment Ministration	1,551	(1)+(2)+(3)×3%
6. C	ontingency	4,591	(1)+ +(5)x8%
7. G	rand Total	61,981	

Table 4.13 Roads

M\$103,000.-

Item	Vnit	Quantity	Unit Cost	Cost (M\$)	Remarks
(2)~(6) 0.34km				jan enti	
Common Excavation	_m 3	2,300	9.0	20,700	. =
Rock Excavation	1 1,	580	20.50	11,890	+ 1.5 + 1.5
Subbase Coursing	. 81 (2.4)	620	49.00	30,380	
Asphalt	E2	2,040	16.30	33,252	
Drainage Appliance	set	1		6,778	<u>:</u>
Sub-Total				103,000	A constitution
Total			23	103,000	-

Table 4.14 River Treatment (Coffer Dam)

M\$5,078,000.-

Itém	Unit	Quantity	Unit Cost	Cost (H\$)	Remarks
1. Coffering (1st)			:		4
Sheet Pile	D.	590	4,475.0	2,640,250	·,
Fill Work	_m 3	10,600	2.0	21,200	
Sub-Total				2,661,450	* . * . <u></u> . • 1
2. Coffering (2nd)					er ve
Sheet Pile	æ	340	4,475.0	1,521,500	
Fill Kork	m3	8,200	2.0	16,400	
Excavation		500	5.6	2,800	
Concrete	n	2,400	142.0	340,800	
Gate	ŧ.	10	8,000.0	80,000	14114
Withdrawal Quantity	set	1.s. 1		455,050	
Sub-Total				2,416,550	
Total				5,078,000	

Table 4.15 Dam

н\$16,000,000.-

Item	Vnit	Quantity	Unit Cost	Cost (H\$)	Remarks
1. Dam Body		:	1		
Common Excavation	m ³	18,200	9,5	172,900	
Rock Excavation	",	24,100	23.0	554,300	11 11 11 11 11 11 11 11 11 11 11 11 11 1
Concrete Class A	, H ,	800	235.0	188,000	σck=270
Concreté Class B	н -	45,700	190.0	8,683,000	oek=230
Concrete Class C	11	10,400	170.0	1,768,000	σck=170
Reinforcement Bar	t	58	1,800.0	104,400	
Miscellaneous	set	1.s. 1	1995 B. 1 B. 1	349,400	3%
Sub-Total				11,820,000	
2. Foundation Treatmen	it Tuon	el (t=70m)			
Tunnel Excavation	m ³	810	86.5	70,065	
Concrete	n	330	305.0	100,650	
Reinforcement Bar	ŧ	13	1,800.0	23,400	
Miscellaneous	set	1.s. 1	:	5,885	37
Sub-Total				200,000	
	+	 	 	1	
3. Grouting					
3. Grouting Drilling	æ	12,500	130.0	1,625,000	
-	a t	12,500 1,425	130.0 1,350.0		

(to be continued)

Dam (cont.)

Item	Unit	Quantity	Unit Cost	Cost (M\$)	Remarks
Miscellaneous	set	1.s. 1		116,250	3%:
Sub-Total				3,980,000	er Programmer
Total				16,000,000	

Table 4.16 Spillway

M\$4,950,000.~

Item	Unit	Quantity	Unit Cost	Cost (H\$)	Remarks
l. Spillway				- 1-N/1	3. 24.455
Common Excavation	_m 3	22,500	9.0	202,500	in a constitution
Rock Excavation	10	10,400	23.0	239,200	-
Side Wall Concrete	"	7,700	255.0	1,963,500	
Invert Concrete	13	6,100	250.0	1,525,000	
Guide Wall Concrete	11 .	1,100	255.0	280,500	
Reinforcement Bar	t	331	1,800.0	595,800	
Miscellaneous	set	1		143,500	3%
Total				4,950,000	

Table 4.17 Intake

H\$920,000.-

Item i les	Unit	Quantity	Unit Cost	Cost (M\$)	Remarks
1. Intake					. !
Common Excavation	₁₂ 3.	1,100	9.5	10,450	
Rock Excavation	11	3,100	23.0	71,300	
Retaining Wall Concrete	•	1,200	255.0	306, 000	
Concrete in Body Intake	01	750	265.0	198,750	
Invert Concrete	.,	500	250.0	125,000	ete e j
Reinforcement Bar	t	100	1,800.0	180,000	
Miscellaneous	set	1.s. 1		28,500	3%
Total	:		1 / 2	920,000	galler in

Table 4.18 Penstock

M\$810,000.-

Item	Unit	Quantity	Unit Cost	Cost (M\$)	Remarks
1. Penstock		;	4		
Common Excavation	_m 3	1,100	9.5	10,450	. ·
Rock Excavation	-	2,500	23.0	57,500	to the second
Foundation Concrete	81	1,150	250.0	287,500	
Reinforcement Bar	t	23	1,800.0	41,400	in Day e
Miscellaneous	sėt:	1.s. 1		13,150	3%
Sub-Total			- "	410,000	N. Salvada
2. Steel Penstock				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Steel Penstock	t	72	5,400.0	388,800	
Miscellaneous,	set	1.s. 1		11,200	数数 实
Sub-Total				400,000	
Total				810,000	

Table 4.19 Power House

(Power House, Outlet)

H\$6,440,000.-

	Item	Vnit	Quantity	Unit Cost	Cost (M\$)	Remarks
1.	Power House					
	Common Excavation	<u>m</u> 3	8,500	9.0	76,500	
	Rock Excavation	B	12,700	22.5	285,750	
	Concrete for Side Wall	†I	2,470	255.0	-629,850	
	Concrete for Foundation	ts -	2,070	250.0	517,500	
	Borrel Casing Concrete	11	1,000	255.0	255,000	torial experience
	Slab Concrete	31	320	265.0	84,800	:
	Outlet Concrete	55	340	255.0	86,700	
	Retaining Wall Concrete	••	2,280	255.0	581,400	
	Reinforcement Bar	*1	450	1,800.0	810,000	
	Hiscellaneous	set	L		102,500	3%
	Sub-Total				3,430,000	
Ż.	Architectural Work					
	Power House Building	₈ 3	10,000	230.0	2,300,000	
	Plumbing, Air Conditioning and Ventilation Work	11	11,400	55.0	.627 ₃ 000	
	Miscellaneous	set	1.s. 1		83,000	3%
	Sub-Total				3,010,000	
То	tal				6,440,000	

Table 4.20 Gate Screen

M\$575,000.~

Item	Vnit	Quantity	Unit Cost	Cost (X\$)	Remarks
1. Gate, Screen				*	in tukin t
Intake Gate	t i	27	9,300.0	251,100	
Outlet Gate	11	18	8,700.0	156,600	
Screen	11	30	5,000.0	150,000	
* Niscellaneous	set	1.s. 1		17,300	3 %
Total				575,000	

	=					
			*, 1 a		N. F	
	:	:			· ·	
·		_				t (in the garden state)
÷			i Linguis de la companya de la company			
	:	1 - ₄ 1 - 2 - 3	ā.	-	1	· North Anna Anna Aire
:		To all All a	•		: : :	- 2989 Jun
:			-			
1 1 1						・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・
			1 1 1 1 00/2			
	٠.				5.4	1
			; ;			tone of the
			•		1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
			÷	•		

4.6 Construction Planning and Implementation Schedule

 $(x^{2}-x)^{2} + (x^{2}-x)^{2} + (x^{2}-x)^{2$

ender the first the end of the complete end of the

4.6.1 Genéral de la company de

Technical data for the Upper Tekai and Lower Tekai is shown in the table below.

raporte in the extension of the result of th

The Particulate (1) (4) The American Control of the Control of th

Thomas is		Dimension			
Item	Unit	Upper Tekai	Lower Tekai		
Type. 5 5 45 45 4 5 6 5 6 6 6 6 6 6 6 6 6 6 6		Rock F111	Concrete Gravity		
Height of Dam	E)	101	38		
Crest Length	a	350	7 % 160 (1782)		
Volume of Dam Embankment	3	3,125,000	56,900 (3)		
Effective Depth	21 m 32 5	10	4.5		
Generating Energy	- MM	-150 le	5.8		

The State of the S

ing panggalang di katalong panggalang panggalang panggalang panggalang panggalang panggalang panggalang pangga Banggalang panggalang panggalang panggalang panggalang panggalang panggalang panggalang panggalang panggalang

California propries and the state of the sta

period and the second

The second of the second

MAN A DESCRIPTION OF THE STATE OF

The Upper Tekai is located about 20 km upstream of the Lower Tekai. To expedite the completion of work, an access road will be completed prior to starting the primary work. Consequently, this work will be started immediately after conclusion of the work contract. Construction of the Upper Tekai power station is scheduled to be started in March 1936, followed by the start of filling in November (when the rainy reason begins) 1989 with operations scheduled to start in July 1991. To reduce construction costs by utilizing the flood control function of the Upper Tekai, the construction work of the Lower Tekai will be started with sluice diversion in April (during the dry season) 1989. Dam concrete will be placed two months after the start of filling of the Upper Tekai. The start of operations of the Lower Tekai power station will be in July 1991, the same as for the Upper Tekai power station.

6 (six) years.

4.6.2 Upper Tekai

(1) Schedule

The principal schedule for Upper Tekai is as follows:

- a) Completion of access road and temporary road

 (road from the aggregate plant to spoil site) February 1986
- b) Start of excavation of diversion tunnel June 1986
- c) Start of excavation of diversion and dam October 1987
- d) Dam embankment start July 1988
- e) grouting of dam body October 1989 (complete)
- f) Spillway July 1987
- g) Penstock May 1987
- h) Power station Harch 1988
- i) Start of reservoir filling November 1989
- j) Start of operations July 1991

(2) Construction

a) Access road

The construction of an access road will be started in February 1984, with the road completed to the Upper Tekai by February 1986.

and the state of t

The temporary road from the upper dam site to the aggregate plant and to the spoil site will be completed by February 1986 to enable commencement of the primary work immediately.

b) Temporary facilities

After concluding the contract, the erection of camp facilities, generator equipment, etc. will be started. At the same time, land preparation (excavation of about 75,000 m³) of the aggregate plant site and the erection of such plant and batcher plant will be started because spray aggregate for the diversion tunnel will be required from August 1986 and lining concrete from October of the same year.

c) Diversion tunnel

Excavation will be started from both the inlet and outlet sites to shorten the construction period.

Concrete will be cast in parallel with excavation work while leaving the invert unconcreted. Invert concrete will be cast after completion of excavation.

d) Dam body

Dam excavation will be started on both banks after completion of diversion. Excavated soil will be transported by dump truck from the river bed to the spoil area.

Embankment work will be started from July 1988, at a rate of 6,290 m³/day up to EL. 130 m and a mean 3,400 m³/day up to 166.2m. Excavation and embankment work will be done only during the daytime.

e) Quarry site

Two quarry sites are selected on the right bank downstream of the Upper Tekai, for core, rock and filter materials. The aggregate plant will be erected on the right bank of the Upper Tekai, to produce concrete aggregate for the Upper and Lower Tekai and filter materials for the embankment.

.f) Grouting

For dam foundation treatment, curtain grouting will be carried out, with an improved target of 2 Lu, up to the third grouting.

g) Spillway

Excavation at the over flow part will be started in July 1987.

After diversion, the shute and stilling basin will be excavated from the upper section. Concrete placing will be done in parallel with excavation. (Completion schedule, December 1989)

h) Pressure tunnel

Excavation will be made by an access tunnel of 150 m length in order to avoid simultaneous work as power station construction. For the inclined section, excavation will be made by widening after excavating the pilot tunnel from the lower section. After completion of excavation, installation of steel pipe, concrete placing, and grouting will be carried out.

· "我们没有一个人看一个人就有一个大家。"

i) Power station

Excavation for the power station will be started after completion of dam excavation and completed in five months at an average excavation rate of 20,000 m³/month, in accordance with the benched excavation. A part of the excavated soil and rocks will be re-used for land preparation of the switchyard. Concrete placing will be done in parallel with the installation of draft-tube, cashing and generation. After completion of power station concrete placing, architectural work will be carried out simultaneously with generating equipment.

Accessed a separation of the first of the property of the first of the second

4.6.3 Lower Tekai

(1) Schedule

The principal schedule for the Lower Tekai is as follows:

a) Start of temporary facilities erection - January, 1989

មុំស្រាន់ ស្រាស់ ស្ត្រីស្តីស្រាស់ ស្ត្រី សំនាំ សំនិង សំនឹងស្ថាល់ សង្សិស្សសង្ស័យ សំនាន់ សំនាន់ សំនាន់ សំនាន់ សំ

- b) First cofféring April 1989
 - c) Dam excavation August 1989
 - d) Start of concrete placing on the right bank January 1990
- e) Secondary coffering June 1990
- f) Start of concrete placement on the left bank October 1990
 - g) Excavation of spillway and water intake August 1989

to his team by upon his wife a content of a transition of a color factor of

rancent gift he hattatete til vill i sitte sitet et et en en et it et e

- h) Penstock December 1989
- i) Power station August 1989
- Start of operations July 1991

(2) a Construction and the second as the second as the second as

The access road to the Lower Tekal site will be a branch of the access road to the upper dam site and run over the crest of the Lower Tekal dam to the power station. For the temporary road to be used during construction, a temporary bridge will be built from the left to right bank to transport construction materials and equipment.

b) Temporary facilities

Camp facilities will be located at a flat area approximately 3 km upstream from dam site. Concrete aggregate plant will be installed at Quarry site D. Principal temporary facilities here include the batcher plant (30 m³/H), cooling plant, cement silo and one-side travelling cable crane (6T) which will be located in the vicinity of dam site.

c) Diversion work

After comparing diversion tunnel and sluice diversion methods in terms of cost and construction period, the latter was selected. Because the reservoir filling of the Upper Tekai will be started in November 1989, the first stage of sluice diversion will be made in April (dry season). Discharge was estimated at 200 m³/s from the remaining basin for a 10-year period. The second stage will be implemented in June 1990, when two diversion tunnels (8 = 4.0 m, H = 4.0 m, and R = 2.0 m) are completed inside the embankment. In both the first and second stages of sluice diversion, sheet piles will be driven.

d) Dam excavation

Dam excavation will be started from August 1989. Upon completion of the first stage of sluice diversion, excavation of the right bank will be started. For the left bank, excavation will be started in March 1990, after completion of the second stage of sluice diversion. Excavation will be made from the top of the bank downward, in accordance with the benched excavation method. Excavated soil will be loaded onto dump trucks on the river bed and carried to the soil area.

翻翻 医油油蛋白 人名捷勒内克克马克克

e) Dam concrete

Placing of dam concrete will be started in January 1990 and completed in about 16 months. Concrete placing will be continued day and night, with an average volume of 160 m³ a day. For concrete placing, the one-side travelling cable crane (6T) will be used. The batcher plant to be used will have a capacity of 30 m³/h. The construction schedule is as follows: concrete of about 20,000 m³ on the right bank in five months (up to EL. 65.0 m) during the first stage and concrete on the left bank above EL. 65.0 m after completion of the second stage of sluice diversion.

f) Grouting

For the dam foundation treatment, curiam grouting will be used, with an improved target of 10 Lu, up to the fourth grouting.

g) Spillway

Excavation and concrete work for the spillway will be made approximately parallel with work on the dam body. Excavated soil will be carried to the spoil area about 3 km downstream of the dam site. Concrete placing for the guide wall will be made simultaneously with that for the dam body, with one lift being 1.0 to 1.5 m.

h) Penstock

Excavation for the penstock will be made simultaneously with that of the dam body. After completion of excavation, installation of the penstock and concrete placing will be implemented.

i) Power station

Excavation for the power station will be started in August 1989, and completed in five months with an average volume of 5,000 m³/month. Concrete placing will be completed in seven months, with an average volume of 1,600 m³ per month. As in the case of the Upper Tekai, excavated soil will be utilized for land preparation of the switchyard.

no del mileta de la competitación de la competitación de la final de la final de la final de la competitación d La competitación de la competitación de la competitación de la final de la competitación de la competitación d La competitación de la

Andrew for the fire growing of the control was a moved on the control of the second of the second of the control of the contro

្រុម ប្រទេស ស្រាស់ ស្រាស ស្រាស់ ស្រាស

5. ECONOMIC EVALUATION FOR POWER BENEFITS AND OTHER ASPECTS

5. Economic Evaluation for Power Benefit and Other Associated Aspects

5.1 Introduction

The purpose of this chapter is to identify and quantify the costs and benefits concerning the proposed Project in order to evaluate its economic viability. The criterion used in this appraisal is the Internal Rate of Return for the power benefit which is derived from the viewpoint of comparison of costs between the Project and an assumed alternative power generation scheme. The cash flow table of the Project is in accordance with the construction schedule presented in Figure 1 M Included in the analysis are several cases with varying assumptions for the yearly fuel costs of the alternative scheme; and IRRs and Net Present Values (NPV) are estimated for each of these cases.

Although the present Project is conceived as a single-purposed one, the subsequent sections deal not only with the main benefit but also other major aspects such as forestry, flood mitigation, irrigation and agriculture, tourism and others. For the main benefit, following a description on power generation and transmission in Peninsular Halaysia, the evaluation framework and the major parameters used in the present analysis are explained.

Country of the Country of the Country of the

With respect to the other aspects, however, only forestry losses are estimated in terms of NPV. The effects of the Project on the otehr aspects - e.g. flood mitigation, irrigation and agriculture, tourism and others - are assessed qualitatively; since they are either expected to be small or subject to uncertainties and therefore not easily measurable. The results of the economic evaluation are presented in Section 5.8. With regard to the effects of the Project on natural environment, the results of the field survey carried out by the present study team are summarized in Appendix 2.

that the factor of the first of the second process of the first of the second section of the second of the second

AT ME 2018年 新新生物系统 电影性 医多种性皮肤 (1)

5.2 Power Benefits

5.2.1 Power Generation in the Peninsular Malaysia

During the fiscal years 1970 to 1980, total electricity sales in the Peninsular Malaysia increased at an average annual rate of about 13 percent, reflecting the economy's need for additional power (see Table 5.1). In April 1981, the NEB forecast the long-term power demand for the years up to 2000 using econometric models, with the assumption that the system load factor will not greatly change over the forecast period. As shown in Table 5.2, maximum demand and annual energy demand were forecast to be 4,154 MW and 25,254 GWH in 1990, and 9,135 MW and 55,550 GWR respectively in the year 2000. These figures are six to seven times greater than the corresponding present figures, and show an average annual increase rate of 9.8 percent.

therefore the following of the property of the second of t

The present installed capacity of NEB's generating plants amounts to approximately 2,480 MW with the composition shown in Table 5.3. The percentage of generating plants connected with the NEB integrated system (except diesel-engine generators for rural electrification) is 65 percent for thermal power stations, 26 percent for hydro power stations, 4 percent for gas turbines, and 5 percent for diesel generators. According to the plan established by the NEB based on the long-term power demand forecast, power stations with a total installed capacity of 3,262 MW are scheduled to be constructed by 1990 with hydro power stations accounting for 28 percent, gas turbines for 5 percent, and oil-fired thermal and combined cycle stations for 67 percent (see Table 5.4). Fig. 5.1 shows the generation development schedule with the nominal installed capacity and the forecast peak demand up to the fiscal year 1990.

In September 1981, the NEB published a report reviewing the generation development with alternative programmes including coal-fired thermal stations over the period from fiscal 1986 to 1990. In the

an this earth in this are common thair and in his on the company in the

report, it was concluded that the proposed hydro projects of Ulu Trengganu, Pergau, Tembeling and Tekai should be implemented. With the development of the Tembeling project presently suspended due mainly to environmental factors, the development of the Tekai project with the revision of installed capacity of 161 MM is now considered to be more important.

Regarding the system's load characteristics, the maximum demand, generated load factor and the load curve of January 4 (Monday), 9 (Saturday) and 10 (Sunday) in 1982 are presented in Table 5.5, Figs. 5.2, 5.3 and 5.4. As shown in these figures, thermal power stations run for the base load, and hydro power stations and gas turbine generators for the peak load. Fig. 5.5 shows the present weekday load duration curve converting the load curve of Fig. 5.2 on January 4, 1982 into equivalent linear. Based on this load duration curve and the NEB's forecast annual growth rate of 9.8 percent (1980 ~ 2000 year, Table 5.2), the load duration curve with maximum and minimum demands are obtained for fiscal 1990, 1995 and 2000 (Fig. 5.6 and Table 5.6).

As is apparent in the forecast load duration curve in Fig. 5.6, Upper Tekai's installed capacity of 150 MM with a planned average daily operation time of 3.6 hours should be placed on the top of the system's load curve among the power stations which are to serve the system's peak demand. The actual weekday operation time of the Upper Tekai, however may become longer than the average figure suggested considering the substantially lower peak demand on Sundays and Saturdays.

1.14

en de la filipe de la comparte de seu en la comparte de la comparte de la comparte de la comparte de la compar La comparte de la co

on de la filosofia de la filo de la filosofia España de filosofia de la filosofia

医垂直性 医毛线 医多次线 美国 医皮肤 医自己的 医克拉氏病 医自己的

elections of distributions are a surface as are a supplied

5,2.2 Power Transmission was a many that the first the property of the pro-

In parallel with the NBB's power generation development program established in April 1981, the expansion and reinforcement program for the existing 132 KV/275 KV transmission network is now under implementation. This program covers the whole west coast of the Peninsular Halaysia and a 275 KV loop transmission line which interconnects the west coast with the east coast, and the north and the central regions of the Peninsula. (See Fig. 5.7) The 275 KV loop transmission line consists of double circuits, each with ACSR 300 mm², carrying a maximum transmission capacity of 1,174 MVA (587 MVA x 2). The program is scheduled to be completed by 1985.

1997年,1997年,1997年,1997年,1997年,1997年,1997年,1997年,1997年,1997年,1997年,1997年,1997年,1997年,1997年,1997年,1997年,1997年,1

The NEB system is currently linked with the systems of Singapore (PUB) and Thailand (EGAT). The connection with the PUB system, currently using a 22 KV line, is planned to be upgraded to a new 230 KV cable line with a maximum capacity of 200 HVA to cope with emergency conditions. In the case of the EGAT, the connection was completed in Pebruary 1981 at the Bukit Ketri Substation using a 132 KV, 150 mm² line with a maximum capacity of 75 HVA. Here again, however, the interchange of electricity is made only under emergency conditions and is limited to 30 HVA to 50 HVA in practice.

e la sette di la comatina di la collega de la persona de la coma e di la compania de la coma

The NEB's basic plan for the construction of transmission lines for the Tekai hydro power station is as follows. Construction of 132 KV x 2 double circuits is to be made over a distance of approximately 60 Km from the Upper Tekai station to the existing Jerantut Substation via the Lower Tekai station. The Jerantut Substation is connected to the Kg. Awah Substation by a 150 mm² transmission line with a capacity of 77 MVA. Therefore, because the output of the Tekai hydro power stations will exceed the capacity of the existing 132 KV transmission line, a new 132 KV transmission line of about 71 km in length should be constructed from the Jerantut Substation along the existing transmission line extended to Kg. Awah.

t regarga (p. t.). The contract of the conjugate property and the contract of the configuration of

5.2.3 Evaluation Framework

The economic value of public funds invested in these power projects which aim at alleviating future shortages in the system's peak-load capacity or improving system reliability cannot be fully quantified and thus an estimate of return on investment cannot be expressed. In the absence of an established methodology for properly quantifying the benefits of power supply, an economic evaluation (especially for hydro projects) is usually carried out by comparing the costs attributable to the concerned project (net of duties and taxes) — including the cost of transmission — to the least costly alternative (thermal) program able to meet the same system demand.

It must be mentioned, however, that any evaluation made in this way implicity assumes that the demand for future peak-load power generation must be met either by the proposed project or by some alternative means, because the social loss of not meeting the power demand would be far larger than the net benefits accruing to any marginal non-power projects. Thus, the IRR (or more exactly, the discount rate, which equalize the present values of the costs of the two alternatives) calculated on this assumption is not relevant when making a choice between the proposed project and any marginal projects in other sectors of the economy, although it is relevant for evaluating projects within the power sector.

In general, a new project is evaluated not as an individual project but as a part of a comprehensive program in order to take account of the capabilities and load-follow operation characteristics of all existing as well as planned facilities. However, because of the relatively small size of the proposed project's capacity (161 kW compared with the system's forecast peak demand of more than 4,000 kW in 1990), it was suggested by NEB that the evaluation would be restricted to comparing the proposed project with an assumed single alternative project using gas turbine units, considering the load-follow operation for peak demand which is to be met by the proposed project.

Table 5.1 Energy Generated and Sold by NEB (GWH)

	Fiscal Year	Energy generated & purchased (GMI)	Sending end énergy (GAH)	Energy sold (GVH)	Rate of increase (2)	a Egypta (1971) a sanan a sanan
	197Ô	2498.1	2406.3	2175.0	2 4	ti tila
	1971	2755,8	2645.8	2398.9	10.3	4
	1972	3189.4	3057.4	2766.4	15.3	
+ 1	1973	3647.0	3491.8	3145.4	13.7	
e na series	1974	4106.3	3929.5	3502.1	11.3	\$1.74.
	1975	4650.7	4441.9	3982.3	. 213.5 1321	100 % 1 F1
v <u>*</u> -	1976	5356.9	5103.2	4543.5	c 14.1 (18)	
	1977	6257.8	5953.6	5297.1	16.6	
•	1978	6991.5	6651.4	5934.2	12.0	
	1979	7651.3	7302.4	6541.0	10.2	
a tarangan	1980	8466	8071	7266	11.1	

per productive

(Source ; NEB Annual Reports, 1969/70 - 1979/80)

19 4 1 1 4 4 A

Long-Term Demand Forecast by NEB (1981 to 2000)

Fiscal Year	Annual (GVH)	Peak Demand (HW)	Load Factor (1)
1980	8,610	1,397	70.38
1981	9,641	1,621	67.89
1982	11,034	1,614	69.44
1983	12,730	2,127	68.32
1984	14,595	2,388	69.77
1985	16,449	2,178	67.59
1986	18,906	3,110	69.40
1990	25,254	4,154	69.40
1995	36,976	6,082	69.40
2000	55,550	9,138	69.40
(Annual Grow	th Rate (1)	रहणकरमञ्जूष हराहर	
Fiscal Year	Energ	y Peak	Dezand
1980 - 1985	13.8	ericute (bekar a 14	.7 . 10. 10. 10.
1980 - 1990	11.4		.5
1980 - 1995		Javo 5 6 5 10	√3 % (√2) - 11 (√2)
1980 - 2000	9.8	<u></u>	.8

(Source ; NEB System Development, 1981 - 2000 Part 1 : Load forecasts)

and the first of the first that the same of the first state of the first section in the same of the sa

Table 5.3 Power Generating Plant of NEB

(1) Hydro Pover Stations

english production of the control of	(Śub-to)	-513	663.5 961
Others			15.4
Chenderoh	3	x 10	()33RS9) OE
Sultan Yusuf	4	x 25	100
Sultan Idris II	3	x 50	150
Texengor	4 units	x 87 KW	348 XX

(2) Thereal Pover Stations

Pasir Gudang	2 uni	ts x 120 K/	240 अप
Connaught Bridge	4	x 20	80
Gelugor	4	× 10	40
Kalaka	-4	x 10	40
Sultan Ismail	3	x 10	30
	. 1 3 1 1	x 30	90
Perai	3	x 30	90
	3	x 120	360
Tuanku Jaafar	4	± 60	240
(Port Dickson)	3	x 120	360
Kalim Navar	2	x 20	40 (PRHÈC)

	: *	5 ± 5 ±		(Sub-to	tal)	1,610 KH
		7.35	*			
(3)	Cas Turi	bices -	* * * *	÷		
	14474	5.1	*	•		er til til skriver i skriver
	Gelugór			1 unit	x 20 kM	20 164
	Connaug	ht Bridge	<i>' :</i> -	1	x 20	20
	Tuanku .	Jaafar		1 unit	x 20 Hz	20 101
	Tanjong	Gelang		1	x 20	20
	Sultan	Iseail		1 .	x 20	20
		7 7		(Sub-to	tal)	100 258

(4) Diesel-engine Generators

Lundang		37.95 KW
K. Trengganu	•	24.15
Kezaran		4.61
Dungun		. 3.145
Kuantan		11.73
Less		2,60
K. Rozpin	•	2,85
Others		30.876
Diesel engine generators rural electrification	for	6.300
	(Sub-total)	124.211 164

Total 2,477,611 84

Table 5.4 Power Expansion Program

(1) Power Stations Committed

	į.		÷	· .	completion scheduled
Connaught Bridge	(G/T)	2 units	x 80 xx	160 KV	1983
Bersia (H)		3	x -24	72	1983
Kenering (R)		3	x 40	120	1983/4
Paka (C/C)	1 2	9	x 100	900	1984/5
Port Kelang (0)		2	x 300	600	1985
Kenyir (B)	41 .	4	x 100	400	1985
		:	Total 2	525 KM	

 $\mathcal{F}(\mathcal{F}) = \mathcal{F}(\mathcal{F}) + \mathbf{vol}(\mathcal{F})$ and $\mathcal{F}(\mathcal{F})$, where \mathcal{F}

where, (0) : Ecavy oil burning

(G/T): Gas turbine heavy off burning

(8) : Hydró power station

(C/C) : Combined cycle, natural gas burning

(2) Power Stations Planned (as of 1982)

. .

经分类的 铁宝矿

Port Kelang (0)	2 units	x 300 MV	600 RM	1986/7
Ulu Treagganu (A)	2	x 100	200	1988
Pergau (B)	2	x 50	100	1988
Tesbeling (B)	4	x 27.5		1988
	- 300 I	Total 1	,010 Kr	e factions.

ទូវស៊ីនិង មើនសហគុន ក្រសួក្ស និងស្វន៍នៃ ្រុមការក្រុមការប្រជាជាប្រជាជាធ្វើការប្រជាជាធ្វើការប្រជាជាធ្វើការប្រជាជាធ្វើការប្រជាជាធ្វើការប្រជាជាធ្វើការប្រជ

1. 李文子为一次,李文(

Fig. 5.1 Generation Development 1981-1990

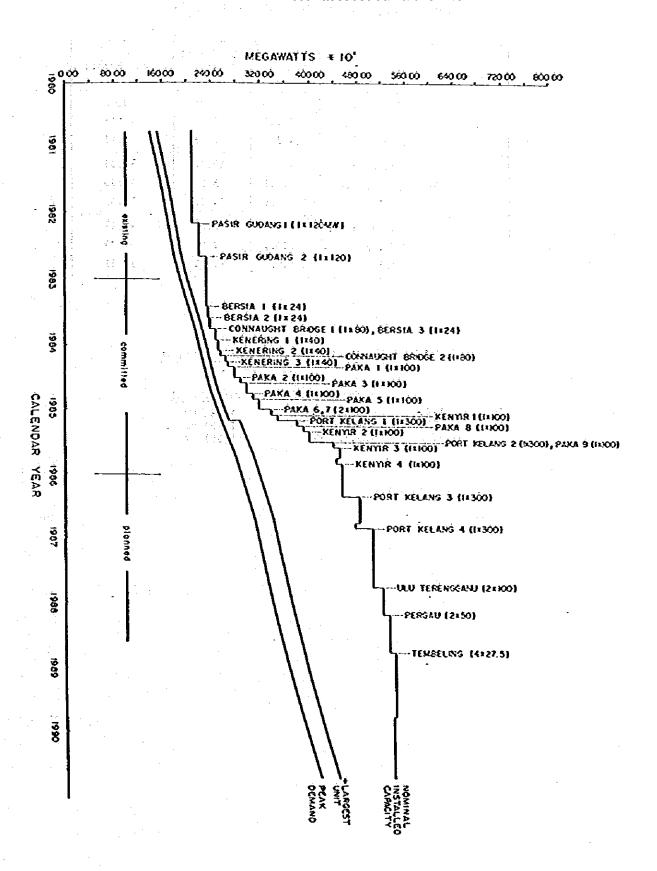
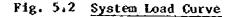
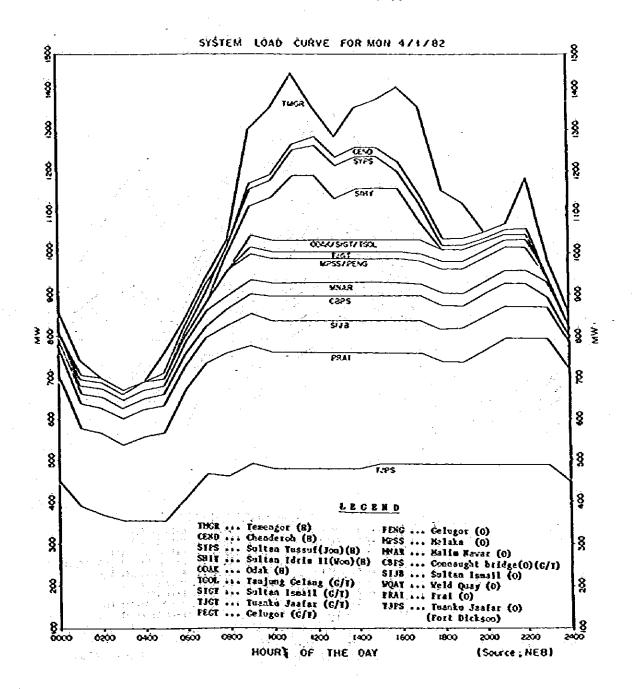
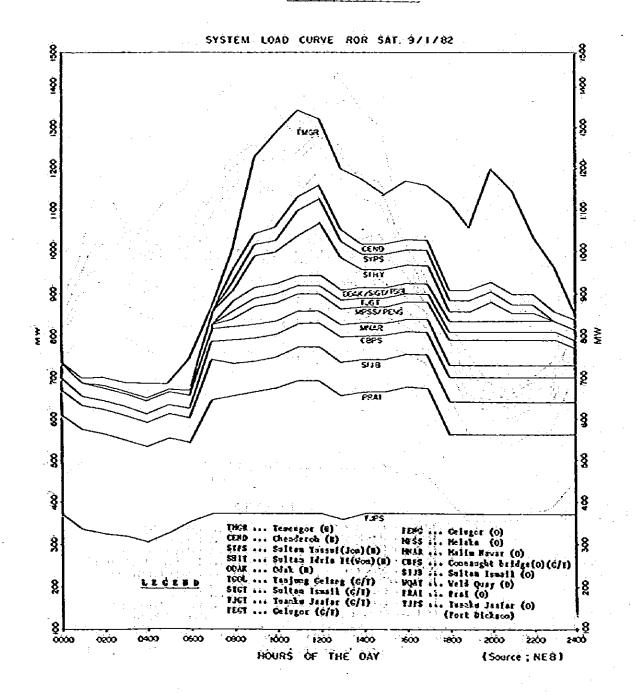
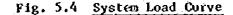
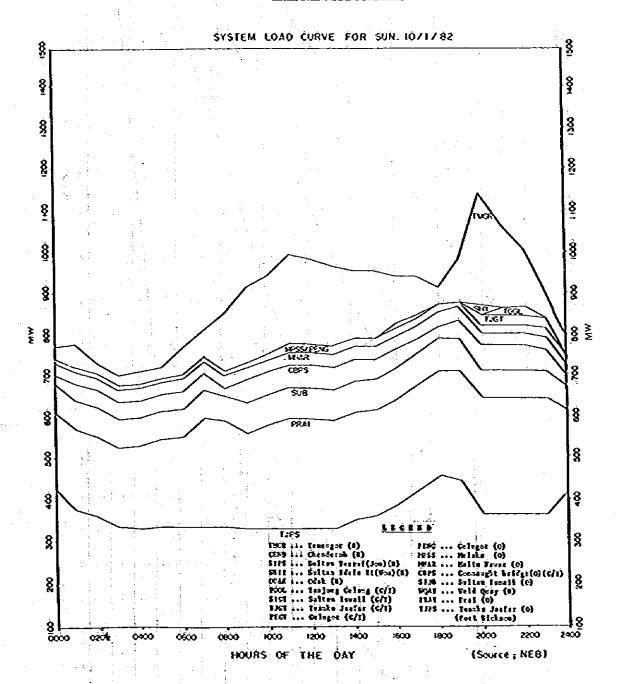
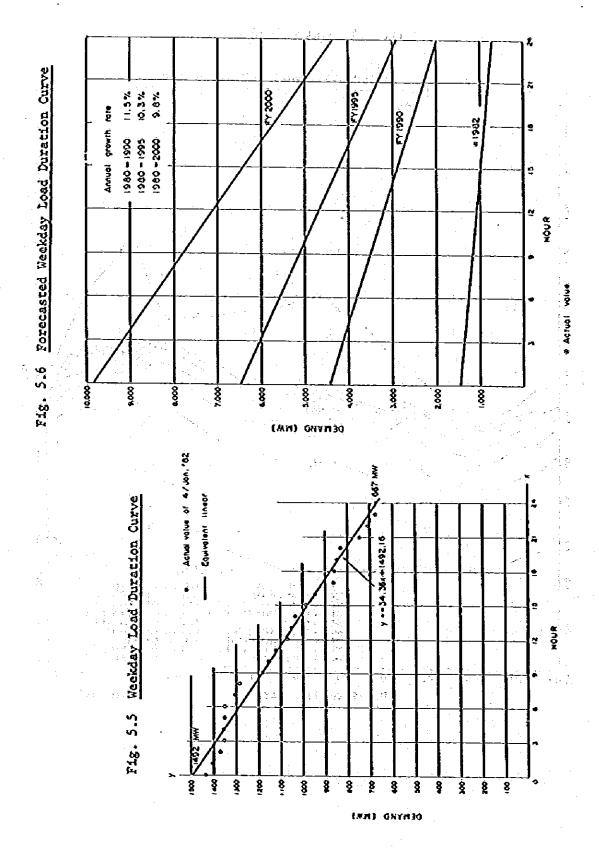



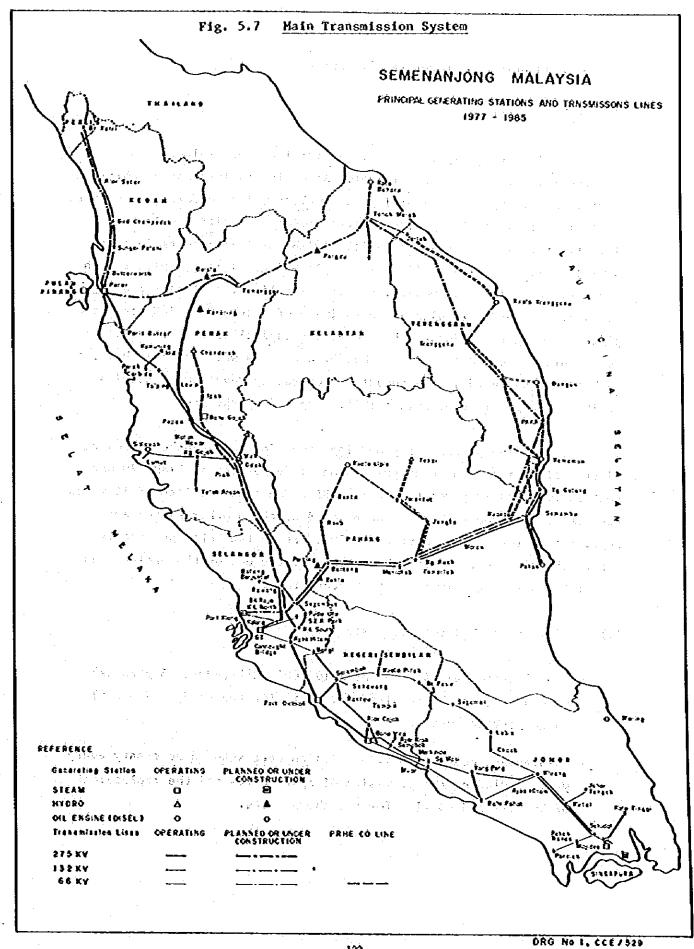
Table 5.5 Maximum Demand and Load Factor

			Max1eus Démand (KV)	Generated Power (GVH)	Lozd Pactor
1982 Jan.	4th	Thermal power	1,037.0 398.2	22,21 4,12	89.23 43.15
		Total	1,435.2	26.33	76.45
		Thermal power	944.0	19.72	87.06
, et	9tb	Hydro pover	426.6	5.11	49.90
		Total	1,370.6	24.83	75.49
	* - · · · ·	Thereal power	852.5	18.67	91.27
n	10th	Hydro pover	283.9	2.53	37.39
		Total	1,136.4	21.22	77.81

Table 5.6 Maximum and Minimum Demand

	Max. Desand	Min. Demand
1990 1995	4,435 KW 6,496 KW	1,983 K4 2,903 KV
2000	9,759 151	4,363 264


Fig. 5.3 System Load Curve

)

)

5.2.4 Assumptions of Power Benefit Analysis

(1) Capital Cost

As previously explained, gas turbines were selected as an alternative for the present project. According to information obtained from Japanese suppliers exporting gas turbine units to foreign countries including Halaysia, the present international competitive unit cost (c.i.f. price in Halaysia) is US\$160-170/kW, excluding costs for site development, transmission lines and engineering. This - together with the costs for site development, transmission lines, engineering and contingency added - results in an estimate of about US\$300/kW for a complete set of gas turbines. Therefore, the capital cost in terms of local currency was determined as M\$660/kW. It is worth noting that the same figure was used in the Report of Generation Development Studies FY 1986 through FY 1990, August 1981, supplied by the NEB.

For the purpose of preparing cash flow tables, the following distribution of capital costs was assumed: 20 percent in 1989, 70 percent in 1990 and 10 percent in 1991. Since an economic life of 15 years was assumed for gas turbines, there would be three other subsequent capital investment flows during the 50 years of the Tekai project is life. The salvage value of gas trubines at the end of the project was calculated assuming a 10 percent discount rate.

(2) Operation and Maintenance Costs

- Annual personnel expenses of M\$192,000 (M\$12,000 x 16 persons) were assumed to be required for operating two 22 MW and one 67 MW gas turbine units.
- Maintenance costs of M\$6.152 million were assumed necessary every year, including the provision of spare parts and the replacement of buckets and nozzles for the above units.

(3) Fuel Costs

The NEB purchases its fuel oil at a domestic market. For the calculation of economic return, however, the world market price of M\$617/ton (US\$30/bb1) was used, based on the Singapore f.o.b. price of medium fuel oil in early 1982.

An amount of 313.62 ton/G.W.H of fuel consumption was obtained by assuming the daily load curve shown in Fig. 5.8 and using technical data supplied by a plant manufacturer (see Table 5.7) were used. A decrease of 10 percent in thermal efficiency due to temperatures in Halaysia and a heat value of 11,000 kcal/kg were assumed in this calculation.

(4) Adjustment Factors

Adjustment factors of 1,119 for kW value and 0.982 for kW.H value (see Table 5.8) were applied for the above costs in preparing cash flow tables.

Item	Name- Plate Rating (Kw)	Heat Rate LHV (Kcal/Kwb)	Daily Runnig Hour	Annual Generating Energy (10 ⁶ Kw·h)	Annual Fuel Consumption for Energy Generation (ton)	Annual Running Days *1	Annual Fuel Consumption for Starting Up *2 (ton)	Total Annual Fuel Consumption (ton)
н	75,000	2,670	6-20	123.91	35,755	365	240	35,955
8	75,000	2.670	3.86	66.25	20,206	365	240	20,446
ო	24,700	3,080	24.0	55.12	17,740	365	16	20,484
-		•			u e-∦-			
Total				245.28	76,354		S71	76,925

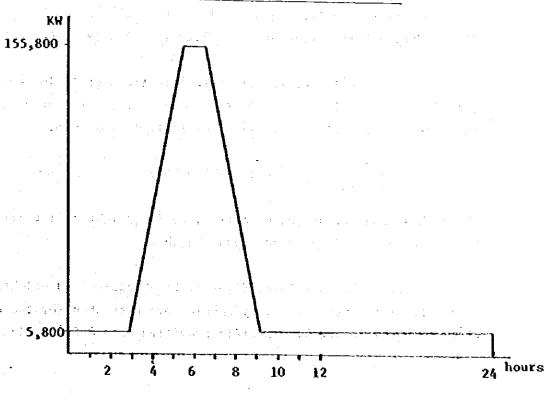
*1 Actual annual running days are decreased by 10% due to overhauls.

^{*2 329} times of annual starting ups are supposed, considering 10% of overhaul rate.

Table 5.8 Adjustment Pactors

	Hydro	Gas Turbine
Transmission Loss Rate	4.0%	1.5%
Accident Frequency	0.5%	5.02
Station Use	0.3%	1.0%
Overhaul Rate	2.0%	10.0%
	<u> </u>	

(For KW Value)


$$\frac{(1-0.04)}{(1-0.015)} \times \frac{(1-0.005)}{(1-0.05)} \times \frac{(1-0.003)}{(1-0.01)} \times \frac{(1-0.02)}{(1-0.1)} = 1.119$$

(For KW•H Value)

$$\frac{(1-0.04)}{(1-0.015)} \times \frac{(1-0.003)}{(1-0.01)} = 0.982$$

Barrier Carlos Carres

Fig. 5.8 Model Daily Power Generation Curve

5.3 Porestry

5.3.1 Forest Resources in the Reservoir Area

It is anticipated that the proposed Upper Tekai Dam will begin to store water in November 1989 and that by the middle of 1991 both the Upper and Lower Tekai Dams will reach operating levels. The reservoirs of the two dams will flood an area of about 8,210 ha including approximately 7,960 ha of primary forest area (see Table 5.9). These areas include a number of small islands in the proposed reservoirs.

Logging is practiced at present in Malaysia, for marketable species of trees with a Diameter at Reference Point (usually at breast height) of 18 inches (45.7 cm) and over. Thus, for the present purpose of economic evaluation, the forest resources in the reservoir area are based, in order to obtain the total net volume of marketable trees of 18 inches and over, on the following two data sources:

- (1) Data gathered at PLOT-1 (0.25 ha) and PLOT-2 (0.15 ha) of the field biotic environment survey carried out by the present study team (for details, see Appendix 2, Fig. 2); and
- (2) A National Inventory of West Halaysia, 1970-1972

For the 14 species of marketable trees of 18 inches and over recorded in the PLOT-1 and PLOT-2, a bole volume (or a gross volume) of each tree was calculated by using the following formula:

$$v = \frac{d^2 + hb}{12h^2} (3h^2 - 3h + hb + hb^2)$$

where, h stands for height of a tree, hb for height of the first large branch and d for diameter at breast height.

From the calculated figures, bole volumes and weights of marketable trees per hectare by species are estimated for the PLOT-1 and PLOT-2 (see Table 5.10). Specific gravities of 0.8 for medium hard wood

and 0.6 for light hard wood are assumed in this estimation. In Table 5.10, the log prices at the Jerantut log-yard in 1981 obtained from the Forestry Department are also shown. Then, by applying the estimated loss rates of 15 percent during harvesting and transport and 30 to 35 percent of defective trees for sales net volumes and weights are estimated at 106.55 m³/ha and 71.71 ton/ha for the PLOT-1 and 54.11 m³/ha and 36.25 ton/ha for the PLOT-2. As PLOT-1 and PLOT-2 can be regarded as representing 4,580 ha and 3,380 ha of the total flooded forest area of 7,960 ha (see Table 5.9), the total net volume and weight of forest resources are estimated at about 0.67 million m³ and 0.45 million tons, based on the field survey data.

The second data source (A National Forest Inventory of West Malaysia) shows the national weighted average figures of gross volume of forest resources by forest type (see Table 5.11). Since the net volume of marketable species expressed as a percentage of gross volume was estimated at 47 (see Table 5.12), the estimated net volumes and weights per hectare for the forest types S and G, which are mapped in the reservoir area, are 87.28 m³/ha and 57.48 ton/ha for the forest type S and 78.26 m³/ha and 52.43 ton/ha for the forest type G, respectively. Thus, by multiplying the estimated forest areas of 1,100 ha for the type S and 6,860 ha for the type G, we arrived at a total net volume of about 0.63 million m³ and a total net weight of about 0.42 million tons.

The small differences between the two estimations seem to be due mainly to (1) the smallness of both PLOT-1 (representing areas of low undulation) and PLOT-2 (representing relatively steep slopes along the river channel); (2) the fact that the national inventory data cover a wide area with different characteristics by random samplings in which 10 to 30 percent of standard error is reportedly involved; and (3) possible inaccuracy of the small-scale inventory map indicating the border line of forest types. Thus, in the following valuation of forestry losses, the average figures of the two estimates of 0.65 million m³ and 0.435 million tons are used.

Table 5.9 Forest Areas of Upper and Lower Tekai Reservoirs

			and Carlo
	Total Forest Area Area (ha) (ha)	Areas Repre- sented by PLOT-1 and PLOT-3 (ha)	Areas by Forest Type (ha)
Upper Tekai Reservoir	7,600 7,400	4,580 (PLOT-1) 2,820 (PLOT-2)	1,100 (Forest Type: S) 6,300 (Forest Type: G)
Lover Tekai Reservoir	610 560		560 (Forest Type: G)
Total	8,210 7,960	1 7,960	7,960 2,960 2,960 (4),87,87,87,87

Table 5.10 Bole Volumes, Weights and Prices of Marketable Trees

	r Tunga un tra i gi	spinores (18)	<u> </u>	<u> </u>	<u> </u>	
	i i i i i i i i i i i i i i i i i i i	Bole Yolume (K ³ /ha)	Bole Weight (ton/ha)	Percentage of Weight	Prices (1981) (M\$/ton)	
PLOT-1	Keruing	48.29	38.63	29.7	254	
	Kempas Other MHW	22.54	18.03	13.9	209	
	L.R. Meranti	9. 55	5.78	14.4 14.4	280	. D 1
garan da	Mersava	78.01	46.81	36.0	260	
\ \ \ \ #	Nyatoh	7.47	4.48	3.5	174	
2, 22.	Other LHW	26.99	16,19	, 12.5	. 137	
+ .; ***	Total	192.85	129.88	100.0	H\$ 234/ton	(Weighted Average)
PLOT-2	Other MKW	31.28	25.02	41.1	140	
	L.R. Meranti	36.19	21.72	35.7	280	og 24 og
	Other LKW	23.48	14.09	23,2	137	And for several
	Total	90.95	60.83	100.0	H\$ 189/ton	(Weighted Average)

Table 5.11 Gross Volume of Primary Forest by Forest Type (National Weighted Average)

Forest Type	Diameter at Reference 12+(30.5cm)	Point in Inches 18+(45.7cm)
S	247.3 m ³ /ha	185.7 m ³ /ha
G	221.2	166.5
1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	,: √,: 183.7 -	129.6

this avid the lates of the lates of the second of the seco

Source: A National Forest Inventory of West Halaysia, 1970 - 1972

Table 5-12 Net Volume of Marketable Species Expressed as a Percentage of Gross Volume

And the Mark Andrews Andrews and the second of the second

	Diameter at Reference 18+(45.7cm)	Point in Inches 24+(61.0cm)
Primary Hill	47	51
Recently Harvested Hill	40 (16 5) 45 4 € 1 (17 55 40	42
Hill Forest Harvested	ot en in der egentaan in de Georgia 43 gestaan in de ee	
before 1966		

Source: A Wational Forest Inventory of West Walaysia,

STATE OF THE SECOND SECTION OF THE SECOND SE

5.3.2 Valuation of Forestry Losses

The valuation of expected forestry losses requires estimates of yearly net benefits accrual to logging activities in the storage area with and without the present Tekai dams. Since it was clarified at the discussion with Pahang State officials that there would be adequate time for forest harvesting before reservoir impoundment, the following two cases were assumed for the with condition.

Case 1: 50 percent of forest resources in the storage area logged Case 2: 70 percent of forest resources in the storage area logged

For these two cases, it was further assumed that log harvesting would be carried out for four years - from 1986 to 1990. For the
without condition, it was assumed that 50 percent of forest resources
in the storage area would be logged within six years and relogged on a
45-year cycle.

The price of logs harvested in the area was estimated at M\$144/m³ by using the data obtained from the Forestry Department. These data are shown in Table 5.10. Logging costs, including felling, skidding, yarding and hauling cost, were assumed to be M\$106/m³, based on the data supplied by Jengka Co. to NEB. Because hauling roads are necessary for both with and without conditions, road construction cost was ignored for the present purpose. These assumptions finally lead to a net benefit of M\$38/m³ for one unit of the logging product in the area.

Table 5.13 shows the yearly logging benefits for years up to 2111 for the without and the two with cases of the Project. Two alternative scenarios assuming 1.5 percent and 3 percent of relative escalation in log price per annum are also presented in the Table. Summarized in Table 5.14 are estimated of net present values of forestry losses for these cases and scenarios by applying a 10 percent discount rate.

Table 5.13 Projected Cash Flows for Forest Production (MS x 10⁶)

			74.5	Dame: Case I		FM	With Dams: Cas	Case 2
	WATEN	Without Dams		1 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	Escalation 30%	Constant	Escalation 1.5%	Escalation 3.0%
3	Constant Log Price	했네요	(D) (D) (A)	Increment (E) (E)-(B)	Increment (F) (F)-(C)	Therement (G) (G)-(A) (H)	a	Increment (I) (I)-(C)
1986 1987 1988 1989 1990 1991 2016-21 2049-51 2076-81		3.87 3.93 3.99 4.05 4.11 4.17 37.72 58.97 7 92.17 3	6 6 6 6 1 1 1 1 1	3.23 -0.64 3.28 -0.65 3.33 -0.66 3.38 -0.67 4.11 37.72 37.72 92.17	3.48 -0.68 3.48 -0.69 3.58 -0.72 3.69 -0.73 -4.56 -4.56 -374.47	4.32 0.61 4.52 4.32 0.61 4.59 4.32 0.61 4.73 4.32 0.61 4.73 3.71 - 3.71 - -22.23 - -22.23 - -22.23 - -22.23 -	4.52 0.65 4.59 0.66 4.66 0.67 4.73 0.08 -4.11 -4.11 -37.72 -58.97 -92.17	4.37 0.67 4.37 0.70 5.01 0.71 5.16 0.74 -4.69 6.30 6.3

Notes: The figures shown in 'Increment' columns are forestry losses attributable to the Project. Cash flow figures after 2112 are omitted.

Table 5.14 NPV of Forestry Losses (MS x 109)

a service and applicable of the service of the serv

				
	toa	: : :		
1	3% of Escalation per annum	11.83	6.93	
	3%.of			
ros Price	1.5% of Escalation per annum	65*6	(most likely)	
	Constant Price	\$°06.	3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3	
	<u></u>			_
		50% logged	70% logged	
1	# 1	Case .1:	Case 2:	

Note: A 10% discount rate is applied for 300 years of cash flow streams.

5.4 Plood Mitigation

5.4.1 Flood Damages in the Past

Major flood damages coincide with the north-east monsoon seasons. Fig. 5.9 shows storm rainfall distribution in the monsoon season. Judging from the isohyet pattern, high intensity rainfall occurs along the Tekai and the Tembeling. As a result, a such a rather narrow river as the Tekai rises very rapidly in the monsoon season. Although there is no substantial flood record on the Tekai, most of the tributaries of the Pahang are subject to the overflowing of their banks every wet season. The Pahang River system has an extremely high intensity of rainfall once or twice during the monsoon season inundating the area beyond its banks for a week or more.

Three serious floods in the past were recorded in 1926, 1971 and 1972. The 1926 flood was the biggest for the twentieth century in terms of rainfall intensity. Nevertheless, their flood damages were not very serious because the Basin was not adequately developed at that time. In contrast, many development schemes, both urban and rural, were carried out during the 1960s and 70s in the lower areas along the Pahang. As a result, the 1971 flood in January caused serious damages with 24 deaths and 153 thousand refugees. It was considered to be the biggest damage in this century despite the fact that the rainfall intensity was less than that of the 1926 flood. In the case of the 1972 flood, the rainfall was largely restricted to the eastern half of the Pahang.

Table 5.15 shows 1970/71 flood damages to crops, livestock, and fisheries. Data analyzed were provided from the Pahang State Covernment. In order to clarify 1970/71 flood damages along the Pahang, seven districts were grouped into the following two: (1) districts through which the Tekai, and its downstreams in the Tembeling and the Pahang flow such as Jerantut, Temerloh and Pekan: (2) the remaining four districts of Lipis, Kerau, Bentong, and Kuantan.

It is clear that, in regard to the various categories, most of the 1970/71 flood damages are concentrated in the former three districts except for those depending on a coconut and fresh water diet. Plood damages to rubber, buffaloes, and cattle are exclusively concentrated in the former. The number of casualities and damages to padi, taploca and goats and sheep are also concentrated in the former districts which account for more than 90 percent of the total. The number of damaged houses, fruits, chickens and pigs are also concentrated in the former districts. This analysis shows that the 1970/71 flood damages in Pahang State are highly concentrated in the districts along the Pahang in the downstream of the Tekai. This implies that flood mitigation measures for the Pahang river system, including the proposed Tekai dams, could save enormous amounts of economic resources in these areas from flood resulting from intense rainfall in the catchment area of the Pahang.

Table 5.16 shows relationships between three district water warning levels and actual water levels recorded during major floods. Normal water levels range from 194.5 feet or 59.3 m at Kuala Tahan to 19.0 feet or 5.8 m at Kg. Paloh Hinai. The first warning level was set up at 15.5 feet or 4.7 m above normal water level at Kuala Tahan and at 12 feet or 3.7 m at Kg. Paloh Hinai. The third warning level is set up at 25.5 feet or 7.8 m above normal water level at Kuala Tahan and at 18.0 feet or 5.5 m at Kg. Paloh Hinai.

The difference between the normal water level and the third water warning level is larger in the downstream. The upperstream seems to be more tolerable to water fluctuations than the upstream. Nevertheless, as shown in Table 5.17, the frequency of floods over the third warning level is higher at locations along the upperstream than at those along the downstream. For example, the number of floods going over the third warning level at Kuala Tahan is nine out of fourteen or 64.3 percent. At Kg. Paloh Hinai, the number is five out of thirteen floods or 38.5 percent. Conversely, the frequency of floods below the first warning level is less at locations along the upperstream than at those

化对邻苯甲基化亚磺酸钠 建硫酸氢 海经的海南 医海绵 医二氏病 医动脉管膜炎

along the downstream. Four out of fourteen floods or 28.6 percent at Kuala Tahan are below the first warning level. At Kg. Paloh Hinai five out of thirteen floods or 38.5 percent are below the first warning level.

The data show that the actual water levels in the upperstream often rise beyond the third warning level. Those in the downstream do not rise very often beyond the third warning level. The number of water levels below the first warning level is the same as that beyond the third warning level.

5.4.2 Flood Mitigation Effects of Tekai Dans

·最初的 · 我们要的 (4) (4) (4) (4)

The preceding analysis shows that the water level in the downstream of the Pahang has smaller fluctuations than in the upperstream. Careful attention is needed, however, to this point because smaller fluctuations do not mean less flood damage. As shown in Table 5.15, most flood damages in Pahang State were concentrated along the downstream of the Pahang.

entropy and the series

Table 5.18 shows the calculated water flow with and without the Tekai dams at the lower dam site. The calculations were made by adopting the recorded hydrograph of December 1972 and by using adjustment factors of 0.8, 1.0, 1.2, 1.4, 1.6, 1.8 and 2.0 (see Volume III for detail). Because of the small storage capacity of the Lower reservoir, it was assumed that the storm water would be stored in the Upper reservoir only. The relationship between the calculated water with and without the Tekai dams is plotted on the solid line in Fig. 5.10, while the dotted line indicates flood surcharge volume of the Upper reservoir.

By using the relationship shown in Fig. 5.10, flood nitigation effects were calculated by assuming five cases of flood water flows at Kg. Herting and at Kg. Temerloh where hydrological data were available (see Tables 5.19 and 5.20). In this calculation, the water flows attri-

建铁铁铁 化工作处理性经验的复数 网络红色的 医大眼性 医不足 化二氯甲基甲基甲基

butable to the Tekai were assumed to be proportionate to the catchment areas at the Lower Tekai dam site and at Kg. Merting and Kg. Temerloh. Changes in water levels were calculated by using available Height-Quantity curves (see Figs. 5.11 and 5.12).

As seen from the Tables 5.19 and 5.20, a substantial volume of flood water will be cut at Kg. Merting and Kg. Temerloh. Nevertheless, the economic effects due to the cutting of water levels will be too small to calculate at the moment due to the comparatively small size of the Project's catchment area. It must be mentioned, however, that when the storm rainfall is concentrated in the northern part of the Pahang Basin as illustrated in Pigs. 5.11 and 5.12 for the 1971 flood, the flood mitigation effects of the Project on water levels will be much greater than the calculated figures. Also, it must be emphasized that the positively tangible effects of the present Project will become more prominent with the implementation of comprehensive flood control measures as recommended in the following.

atinati esta e latra servicio e carresta carreste radasta, se a celebra e la comenza e se Profesio e come come se al arte de la comenza e la está e regió de la acesta de la comenza a comenza e la come

5.4.3 Comprehensive Plood Control Measures for the Pahang Basin

In general, flood control measures include river channel improvements and construction of new flood-channels to increase flood discharge capacity; and the construction of retarding basins, regulating reservoirs and dams to regulate flood discharge itself. A decision as to which of these measures or which combination of these measures is to be chosen depends largely on characteristics of the pattern of floods and the present as well as future land uses of the river basin area concerned.

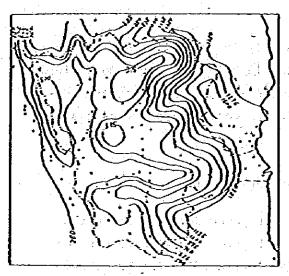
The flood patterns of the Pahang are characterized by a relatively flat hydrograph with long lasting rainfalls. Extensive swamps and barrens in the middle to lower reaches of the river suggest that land use constraints are few. In addition, power development potentials are found in the upper reaches. Considering these characteristics of

and the second of the first of the second production of the theory of the second of the second production of the second of the s

the Pahang Basin area, the following flood control measures are recommended (see Fig. 5.13).

(1) From Temerloh to the River-Mouth

Little physical constraints suggest that channel improvements together with flood-channels and/or retarding basins may be advantageous.


(2) From Yap to Temerloh

As the wilds are found extensively in the left bank, floodplains in that area may be used for retardings in order to reduce flood flows and to alleviate implementation costs in the lower reaches. Opportunities to plant floating rice varieties can be expected as a side benefit of these retarding basins.

(3) Upper Reaches eg. Sg. Tembeling, Sg. Jelai, etc.

Because of the high potential for power development in the area, multi-purpose dam constructions may be promoted with careful co-ordination with other water resources development. In the branches, however, channel improvements may also be required.

Fig. 5.9 Storm Rainfall Distribution

1972

Note: All Isohyets are in Millimeters

(Source; 3.2.6, Vol.3, Pahang River Basin Study)

Table 5.15 1970/71 Flood Damages to Crops, Livestock, and Fresh Water Fishes

	100	No. of		Gron	Crop Damage (Arro)	(Arro)			Livascock	LOCK		10.000
100 Kabanga	Casual	Houses	Padi	Rubber	Coconut	Padi Rubbar Coconur Pruirs Tapioca	Tapioca	Buffaloss	Cattle Coats/	اخا	Chickens Pigs	Fresh Water Diec (5)
A Care Land		33		1	•	ı	- 20 € 1 - 22 € - 3 € - 4 € - 4 €					\$\$0
2) Temerloh	ને	39	246.5	26.5	•	ñ	70.5		25	25.		1,350
3). Pekan	1,822	115	307	9,060	110	1,771	370		វ	3 1584	12	2,210
4. C.		H	3.5	•	•		1			•	1	11,290
S) Kaub	**************************************	*	* 1	*	*	-	*	*	*	*	*	1,050
Bootoeg (9.		А	83	•		•	ı		•	on T		.798
7) Kuancan	178	92	m	ı	300	798	25.5		•	573	** m	3,000
TOTAL ((11)+2)-43)]?	3,252 (92.5%)	21.5 (87.0%)	388 885	8,086.5 (100x)	(28.92)	2,602 (69.3%)	215 588 8,086.5 410 2,602 466. (87.0%) (94.1%) (100%) (26.8%) (69.3%) (94.5%)	(1001)	13 (17 (2001)	11 61 2,219 (1002)(93,42) (73,72)	15 (80%)	24,248

. No daca available.

Table 5.16 Flood and Water Warning Level along the Pahang River

(Unit: Foot)

						1 2 2
	Kuala	Kuala	Jerantut	Temprion	හි හි	Kg. Falon
	Tahan	Temboling	Ferry	Bridge	gurqueres	นากลา
Normal Level	+194.5	+140.0	+130.0	+83.0	+38.0	+19.0
Distant Month Asso	÷.	+17.0.	+15.0.51	+13.0, ,,	+8-0-8+	+12-0/+3
Corporated Texas	+20.5(+5)	+25-0(+8)	+23-0(+8)	+20.0(+/)	+11.0(13)	+15.0(+3)
Third Warning Level	+25.5(+5)	+32.0(+/)	+30.05+	+26.0(+6)	+14.0.41+	+18.0
Dec.1926 Flood level	+76.3(III)	+81.1(111)	+58.8(III)	+54.9(III)	+45.0(III)	+33.4(III)
Dec. 1931 Flood level	+46.4(XIX)	+59.5(III)	+46.5(III)	+39.4(III)	•	•
March 1967 Flood level	+34.4(III)	+41.6(III)	+34.5(III)	+26.5(III)	+14.8(111)	+18.5(111)
Jan. 1971 Flood level		+58.8(III)	+50.4(III)	+42.7(III)	+29.1(III)	+26.9(III)
Dec. 1971 Flood level	+41.3(III)	+49.5(III)	+42.7(III)	+32.8(III)	+21.1(III)	+22.0(III)
Dec. 1972 Flood level	+36.8(III)	+40.9(III)	+32.8(III)	+26.7(III)	+14.3(111)	+18-8(111)
Dec. 1973 Flood level	+38.8(III)	+42.6(III)	+34.8(III)	+26.5(III)	+13.2 (II)	416.9.4H
Dec. 1974 Flood level	+8.7	+13.7		: S:39+		
Dec. 1975 Flood level	+35.0(III)	+37.0(111)	+29.9 (11)	+23.7 (17)	412.0.11+	+16.2 (II)
Dec. 1976 Frood level	6.6+	+18.2 T	+12.7	+12.2	**************************************	+10.3
Nov. 1977 Flood level	+5.2	+16.4	+12.0	რ. 6+	+2° &	47.8
Nov. & Dec. 1978 Flood level	+25.2 (II)	+17.6	+20.3 T	16-7-4-I	か うか	
Nov. 1979 Flood level	+34.9(III)	+38.9(III)	+33.6(111)	+25.0 II	+13.6 TT	+17. 6.71+
Dec. 1980 Flood level	+11.8	+19.6 (I)	+15.8 (I)	+8.1	×.^+	つ か 十
		7 -				

*Danger begins when flood exceeds third warning level.

III> third warning level

II > second warning level

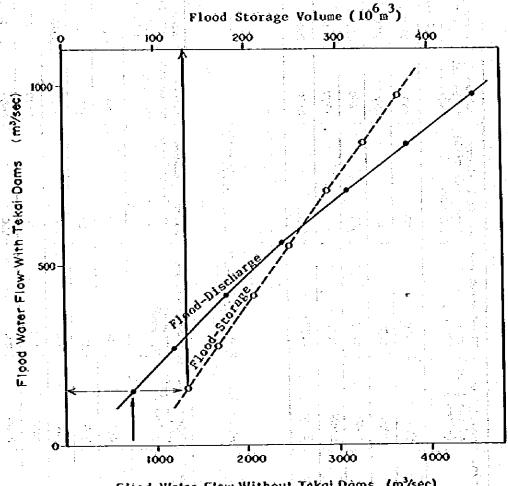
I > first warning level

Table 5.17 Frequency of Flood Exceeding Respective/Warning Levels

	Kuala Tahan	Kuala Tembeling	Jerantut Ferry	Temerloh Bridge	Ks. Ts. Belimbing	Kg. Paloh Hinai
Below First Warning Level	4/14 (28.6%)	2/14 (14.3%) 3/14 (21.4%)	3/14 (21.4%)	4/14 (28.6%)	5/13 (38.5%)	5/13 (38.5%)
Above First Warning Level	0/14 (0%)	3/14 (21.4%)	2/14 (14.3%)	2/14 (14.3%) 1/14 (7.1%)	0/13 (0%)	0/13 (0%)
Above Second Warning Level	1/14 (7-12)	0/14 (0%)	1/14 (7.1%)	2/14 (14.3%)	3/13 (23.1%)	3/13 (23.1%)
Above Third Warning Level	9/14 (64.3%)	9/14 (64.3%)	8/14 (57.1%)	7/14 (50.0%) 5/13 (38.5%)	5/13 (38.5%)	5/13 (38.5%)

Table 5.18 Flood Water Flow Calculation

ge Discharge from twer Dam (m3/sec).	150	270	017	880	2004	820	096
Discharge from Upper Dam (m ³ /sec)	130	240	360	470	88	200	810
Flood surcharge volume (106m3)	131.5	169.	209.	249.2	289.1	329.1	368.9
Surcharge water level in Upper Dam (m)	158.429	159.137	159.707	160.240	160.739	161.212	161.655
Flood water flow at Lower Dam site without Tekal Dams (m ³ /sec)	780	1,220	1,780	2,440	3,120	3,750	4,470
Adjustment Factor	8.0	р. О.1	52677 - Francis	1.4	3. 3. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	88.1	2.0


Table 5:19 Flood Mitigation at Kg. Merting

Nator flow without Tokal dams (m3/000)	Water level (m)	Water flow of the rekai (m3/aeo)	Flood surphange volume (105m3)	Water discharge from lower Tokai (m'/sec)	Volumo to bo out (m /sec)	Water flow with Toked dame (m3/see)	Difference in water level (m)
2000	57.59	550	1.18	100	450	1550	56.59 1.00
4000	51.15	10%0	1.58	2/10	850	3150	59-77 1-38
0009	63.96	1640	1.99	380	1260	4740-	62-25
3,000	86.38	2190	2.32	500 .	1690	6310	64-36 2-02
10,000	80.53	2930	2.70	630	2100	7900-	66.26 2.27

Table 5.20 Flood Mitigation at Kg. Temerloh

Water flow without Tekai dams (m3/see)	Wator level	Water flow of the Tokai (m3/600)	Micod surcharge volume (106m3)	Mater discharge from lower Teltai (m ³ /sec)	Volumo to be out (m ³ /sec)	Water flow with Tekai damg (m³/see)	Difference in water level (m)
6,000	34-44	440	103	70	370	5630	34.08 0.36
3,000	36.21	500	123	120	460	7540	35.52 0.39
10,000	37-76	730	132	150	580	9920	3%.32 0.44
20,000	13.72	1450	184	330	1120	18830	43-15 0-57
30,000	18.21	2:80	232	200	1630	27.820	47.31 0.90

Fig. 5.10 Flood Water Flow With and Without Tekai Dams

Flood Water Flow Without Tekal Dams (m³/sec)

Fig. 5.11 H-Q Curve at Kg. Merting

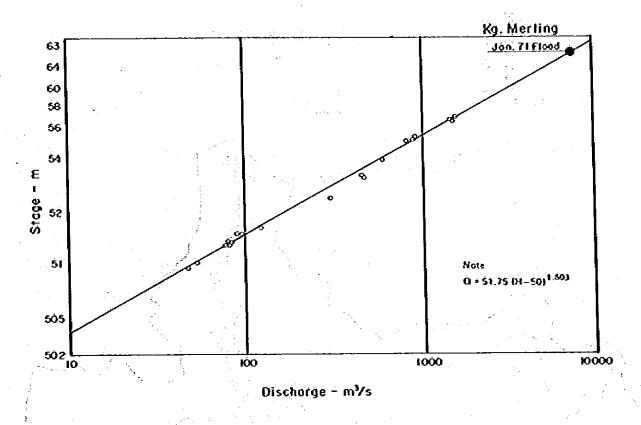
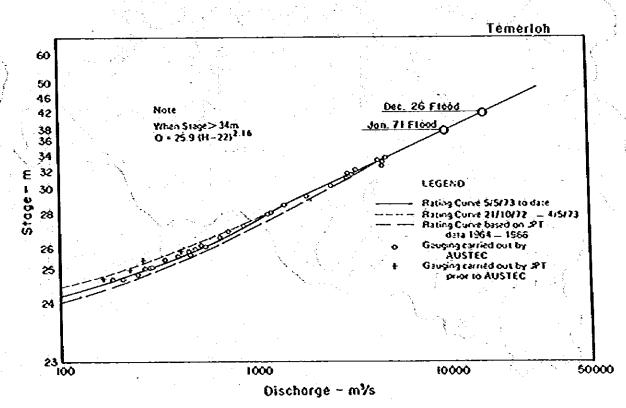
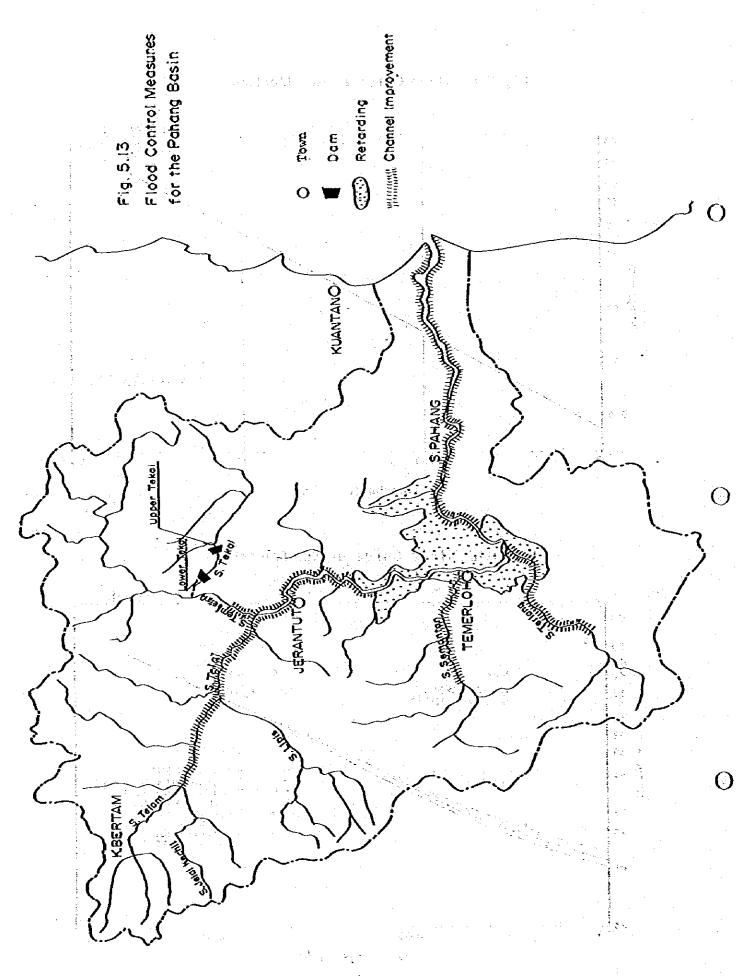




Fig. 5.12 H-Q Curve at Kg. Temerloh

5.5 Agriculture and Irrigation

Careful investigations were carried out on the existing and potential agricultural activities in the State of Pahang, concentrating particularly on the possible impact of the Project on the rice culture in the region. The study included both the positive and negative effects foreseen by the operation of the Project on the production of rice and other major crops, as well as the water transportation activities in the State. However, in considering the relatively minor impact of the Project on the agricultural activities in the region, only a brief summary of the investigation results will be presented in this section of the report.

The State of Pahang is comprised mainly of seven districts: Jerantut, Temerloh, Pekan, Lipis, Raub, Bentong and Kuantan. The ratios of rice area to the total land area of all these districts have been low, ranging from 2 to 13 percent in 1974, and tended to decline (see Table 5.21). The remaining land area consists mostly of forest and swamp, and to a certain extent by perenial crops. The two extensive areas of forest -- Taman Regara in the northern Pahang and the Klau Game Reserve in the southwest -- occupy a total land area of 3,130 square kilometers. Swamps are found extensively in the coastal plain and in the Tasek Bera region in the southwest. Along the coast are fishing villages, and also single-cropping padi is found. The banks and levées of the Pahang River, and the interior valleys are dominated by a mixedcropping system in which farmers cultivate at the same time coconuts, fruit trees, bananas, cassava, vegetables and a few rubber trees; paidfields are found only in the inundated valley floors. The inland region of Pahang State, especially in its western and southwestern parts, is planted mainly in rubber, and to a lesser extent in oil palm.

The rice production in Pahang State is presently carried out under the following three types of water supply: irrigation system, pump system, and rain-fed system. The average ratios of land area under these three systems in the region's total rice area are 25.5 percent, 36.9 percent, and 37.6 percent respectively. While the rice fields of those districts with small rice areas -- such as Lipis, Bentong and Raub -- are almost totally irrigated, the rice cultivation in the Temerloh District which occupies more than 60 percent of the total rice area of Pahang State is almost entirely under the rain-fed system (see Table 5.22). The results of a previous study "Pahang Tua Irrigation System" showed that the average yield of rice cultivated in irrigated land was about 80 percent larger compared to the yield of rice under the rain-fed system in the region. Thus, investments in irrigation proved to have high returns, and possible effects of the Project on the water availability for irrigation in the future must be the major factor for consideration.

The Pahang River forms the so-called Pahang River Basin which includes the whole area of Pahang State except large parts of Kuantan District and of the Pekan District. The Pahang River Basin is one of the flood-prone areas in Peninsular Malaysia. The flooding in this basin is caused by the occurrence of tropical depressions during the North-East Monsoon period which lasts from November to January. These depressions result in long-lasting heavy rainfall which makes the Pahang River overspill its banks in the middle and lower reaches and results in disastrous flooding in the lower areas of the basin (see details in the previous section).

and the first of the said of the said was

The present Dam Project which is proposed to utilize the water flow in the Tekai River will principally affect the water flow of the lower stream of the Pahang River in the following manner: (1) The proposed Dam will store water in its reservoir and thus reduce the water flow in the lower stream of the Pahang River during rainy seasons; (2) the proposed Dam will release water and thus increase the water flow in the lower stream of the Pahang River during dry seasons (see Table 5.23 for the expected changes in water flow at Temerloh). Therefore, the possible positive and/or negative impacts of the proposed projects can be identified by investigating possible effects of these changes in

ger again nicht gabiterang dat bei.

water availability to agricultural production. Following are the major findings of the present study.

- (a) The project has no negative effects on agricultural production, as the water flow of the Pahang River in rainy seasons is far more than enough to supply water for irrigation in the foreseeable future (see Table 5.24).
- (b) Instead, the proposed project may contribute to increasing rice production, as the Project will increase the water availability in dry seasons during which future irrigation projects may be short of water. It is estimated that the proposed Dam will work in increasing about 30 percent of the minimum water flow at Temerloh, the district with the largest rice area and the lowest irrigation ratio.
- (c) The project will, to some extent, reduce the maximum water flow in the lower stream of the Pahang River and, thus, will function in mitigating crop damages brought about by flood.
- (d) As the Project will increase the water flow in the lower stream of the Pahang River in dry seasons, it will contribute to improving water transportation which is presently an important transportation network in the area.

Table 5.21 Rice Area by Districts in Pahang State

n skálan v rokustí

		1974		. 33	1966	
District	Rice	Total Agricultural Land	% of Rice Area	Rice Area	Total Agricultural Land	% of Rice Area
Jerancut	7,392	152,671	8.4	018'5	53, 305	0.6
Temerloh	23,907	374,174	7.9	21,441	197,527	10-9
Pekan	13,994	104,085	13.4	6,749	48,176	0-71
Lipis	6,820	117,927	ν, 80	5,352	67,415	7.9
Kaub	968,4	117,927	4.2	3,855	87,258	9.4
Bentong	2,277	123,055	1.9	1,113	92,377	а. Н
Kuantan	1,653	84,486		735	43,953	1.7
Total	61,469	1,138,483	or discon degrain ora in chi	77.75 77.75	860*865	

Source: Ministry of Agriculture, The Present Land Use of Penisular Malaysia Vol.1

Table 5.22 Area by the Type of System in Pahang State

District	Irrigation Sucrem (A)	Pump Svatem (B)	Rain-fed System (C)	Total (A)+(B)+(C)=(D)	%((£)	(a) (a)	(j) (j) (j) (j)
					0 96	26.9	37.6
Jerantut	759	1,100	1,120	2,979	C:C7		
Temerloh	553	2,025	22,602	25,180	2.5	φ ç	89.8
Pekan	1,005	5,141	6,579	12,725	7	· ·	
Lipis	2,095	0	•	2,095	0.001) i) o
Raub.	2,850	819	210	3,779	75.4		, ,
Bentong	1,535	0	99	1,601	95.9	0	1 5
Kuantan	631	707	1,219	2,252	28.0	17.9	1

Table 5.23 Changes in Water Flow at Temerloh

Xeax	Average Water flow without Tekal dama (m3/wec)	Minimum vacer flow (m ³ /sec)	Tekal's portion in the minimum water flow (m3/aec)	Minimum water flow without the flow from the Takai (m ³ /sec)	Minimum water itow with the operation of Tekal dama (m3/sec)	flow (m3/eec)
		21 761	9.02	115.11	155.11	30.98
1975	13.030			. 0,3 70	05.761	33.37
1976	343.84	91.22	6.63	AC ** \$0		
	74 VC	116.37	8.45	107.92	147.72	20.15
// 6**		4	70	141.17	181.17	28.94
1978	382.66	15223			0 - C	35.29
1979.	470.77	68.89	4.71	\$1.09) · · · · · · · · · · · · · · · · · · ·	
	e de la casa de la cas	62.55	6.72	85.83	125.83	33.28
1980	•				31 T	

. <u>.</u> .

							e Geografia
2000	m ³ /year)	2000	0.00-00-00-00-00-00-00-00-00-00-00-00-00	100.0	0.00.0		
in 1990 and 2000	(Unit: 106m3/year)	1990	100.0 100.0 711.5 69.5	100.0	83.2 92.1 79.9		
		2000	26, 660 102 818 920	3%	4,157 9,098 13,255	%6	i de tentro esta Novembro de tentro esta Novembro de transportation
River Utilization Ratio in Pahang Basin	g sala Salah Marana	1990	26,660 54 585 639	150,100	2,210 8,380 10,590	7%	e Study
Utilization		: :	(A) & Industrial		ndustrial		National Water Resource Study
Table 5.24 River			Surface Run-off (A) Demand Domestic & In Irrigation Total (B)	Ratio (A) ×100) [National Total] Surface Run-off (C)	Demand Domestic & Industrial Irrigation Total (D)	Ratio ((0)×100)	Source: National W
	Tarring	<u> </u>	ភី ភីអីអ័	<u>% ⊡ ƙ</u>	дни	~	ا م

Source: National Water Resource Study

and the temperate response with the contribution of the temperature of the second

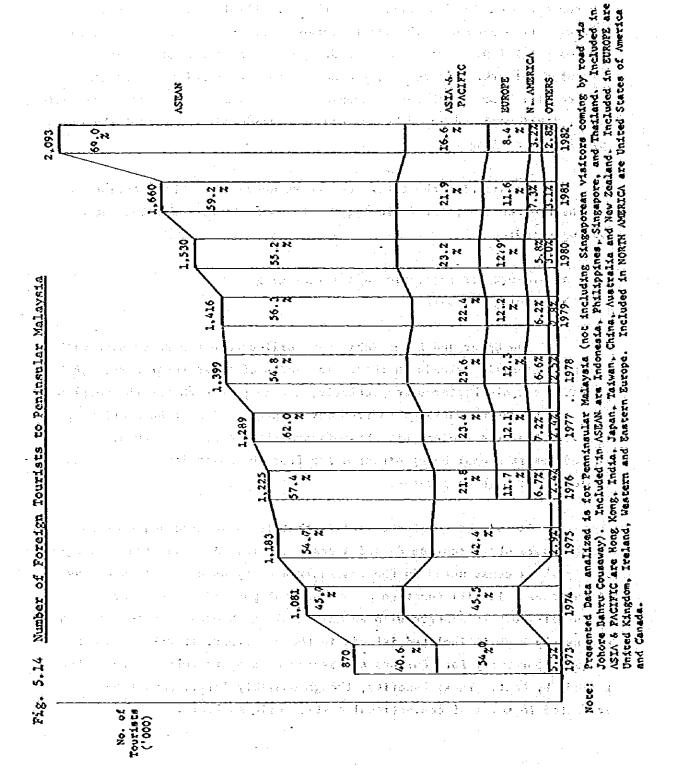
5.6 Tourism

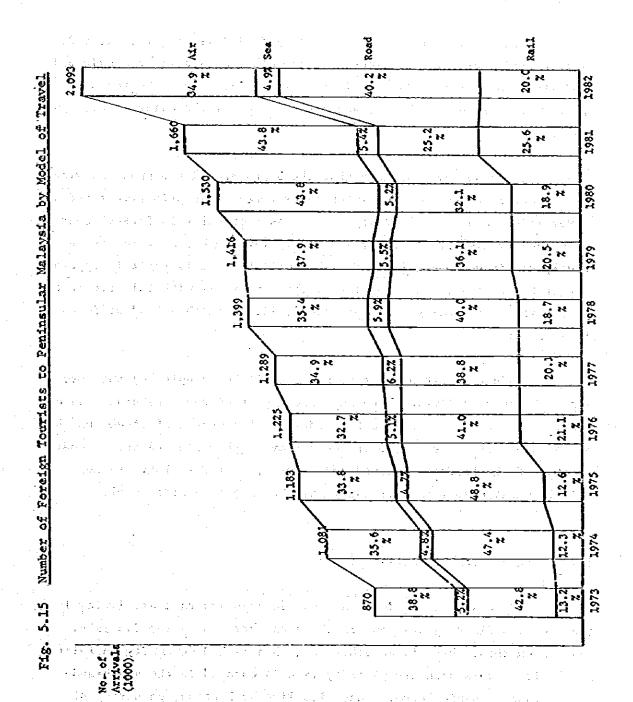
The number of foreign tourists visiting Peninsular Malaysia doubled in the last decade, from 869,599 in 1973 to 2,093,121 in 1982 (see Fig. 5.14). Poreign exchange earnings by the tourist industry also increased rapidly from M\$132 million in 1970 to M\$545 million in 1980. The amount of the earnings was ranked seventh in 1979 after rubber, crude petroleum, tin, sawn logs, palm oil and sawn timber.

Pig. 5.15 shows the increases of tourist arrivals by modes of travel. The largest share was assigned to arrivals by road from 1973 to 1978. After 1979, however, those by air have occupied the largest shares. The rapid increase of foreign tourists by air coincides with promotion efforts undertaken by the Tourist Development Corporation (TDC) and Malaysian Airline System (NAS).

According to the Fourth Malaysia Plan (1981-1985), programmes to promote the development of the tourist industry will be further expanded. TDC will reinforce promotion activities through tourism sales missions to explore new tourist markets. Foreign exchange earnings from tourism are expected to amount to M\$877 million at the end of 1985. Thus, tourism will remain one of the major foreign exchange earners which generate a considerable number of employment opportunities.

There are two possible routes for tourists to get to the site of Tekai Power Station, one waterway and one overland route from the town of Jerantut, which is connected with major big cities by road and railway networks. Taman Negara, adjacent to the Project area, however, is accessible only by boat from Kuala Tembeling near Jerantut.


For the future of the area, two proposals of transport facilities by the government must be mentioned. First, a new railway in envisaged to be constructed along the eastern coast of the Peninsula where the tourist industry will be developed. And second, a highway construction is proposed to the north of Taman Negara. Once these facilities are constructed, a circular transport network will be established around the Project area. Not only Tekai Dams but also Taman Negara will be enclosed within this circular network. Eventually, the access to both Tekai Dams and Taman Negara will become much more convenient compared with the present situation. Thus, Tekai Dams and Taman Negara can be considered as a set of the tropical tourist industry.


Considering the future transport network and characteristics of the Project area, the following two types of tourism development can be suggested:

- a) resort for recreation and sightseeing
- b) zoological park

The Upper and Lower Tekai Dams will create two reservoirs with a number of small islands in them. The areas of these reservoirs, 7,600 hectares and 610 hectares respectively, are large enough for the development of the above mentioned tourism development. It must be mentioned, however, that the Project site has disadvantages compared with other inland resort areas; being situated far from the major large cities and subjected to high temperature.

One advantage of the site is that it is located adjacent to Taman Negara where tourism demand already exists. Assuming that zoological park is constructed in the reservoir area by using small island as animal cages, it will function as an integral part of Taman Negara, as it is difficult to observe wild animals in Taman Negara. If the animals are safely kept in isolated islands in the reservoir, it will create a unique opportunity for tourists to observe them by travelling around the islands by boat. These benefits, though possibly large, cannot be evaluated in terms of conventional cost-benefit analysis.

5.7 Other Aspects

5.7.1 Environmental Implications

The area surrounding the proposed site is, in general, endowed with a wealth of natural resources rather than a base for economic and industrial activities. The environmental implications here focus on factors concerning the biota, and preservation of the natural environment.

The survey indicates that the biota around the proposed site is characterized by lowland dipterocarps forest in a primitive state and diversified fauna. Lowland dipterocarp is tropical rain forests characterized by high productivity and widely varying biota, which is relatively sensitive to development. The current trend is for this type of forest to decrease. Also notable is that, parallel with this trend, the population of several species of animals living in this kind of forest is decreasing.

Since a portion of this forest will be occupied by this project, the animals living there may lose a part of their natural environment. However, it is difficult to estimate the degree of effect on the blota solely from the result of the survey on this limited area. Positioning of the forest concerned and a survey on the ecology of those animals whose number is decreasing must be made on a wider scale.

5.7.2 Innundation of Settlement

Several households of a countain minority race are living in the proposed flooding area and in the area surrounding the dam lake. Apart from this, there is no other long-established community on related facilities. This countain minority race is engaged in the slash-andburn method of agriculture. They also live by hunting, gathering of fruit, etc. The exact population, however, could not be ascertained.

The projected effect of dam construction on these inhabitants includes sumbersion of a part of their living place and fruit-gathering area beneath the dam lake. In addition to this direct effect, there is the indirect effect of the temporary influx of a large number of laborers at the construction stage. This will have a considerable influence on the living environment of the minority race living in the area.

The decision has been made to carry out a survey on the actual condition of these people before implementation of this project. In addition, an anthropological study should be made on how they will be able to adapt themselves to the new environment and to establish flexible and effective countermeasures to minimize the effect of the development project this community.

5.7.3 Hineral Resources

There is no previous record of any mineral findings or investigations within the Tekai area. Recently, however, the Halaysia Geological Survey Department has done research in this area. Evaluation of mineral resources within the dam filling area was made on the basis of the result of research by the Department. The table below summarizes the result of our research on various minerals.

As is evident from the table, no apparent prospective mineral resources exist in the dam filling area. However, the potential of uranium and mineral phosphate reserves existing should not be completely ruled out for rocks in the Tembeling group. (See the remarks in the attached Table 5.25) The dam filling area is principally made up of Tembeling group rocks, but the filling area occupies a very small percentage of the entire area including the Tembeling group. As a result, the probability of these mineral resources existing within the filling area is extremely small.

Table 5.25 Mineral Resources Survey Data within the Tekai Area

In- vesti- gation Kethod	Minerals	Concentration or Outcrop State	Evaluation	Remarks
	Copper	0 ∿ 25 ррм	Not prospective	No geological indica- tion of mineralization
ream Silt	Zinc	Ô ∿ 180 pp m	ditto	One exceptional case showed a concentration of 460 ppm. However, there was no geological indication of mineralization
Geochemical Survey of Stream Silt	Léad	0 ∿ 35 ppm	ditto	Nostly less than 10 ppm, except for a very limited area where concentration was 60 ppm or more
ដូចប	Arsenic	0 ~ 20 ррт	ditto	
Geochemi	Holybdenum	Less than 2 ppm	ditto	
	Tin	13 ррш	ditto	19 ppm at several points
	Tangsten	Less than 4 ppm	ditto	
Panning	Heavy metals (excluding ferric oxide)	O or extremely few	Dicto	No indication except for gold in the Sg. Kulin area
Ä	Ferric oxide	Slightly	ditto	
Aerial Prospecting	Barite	65 cm wide metalli- ferous vein (Sg. Retang) 10 cm diameter brec- ciated block (anak Sg. Keram)	Småll reserves	

personal continued and the second of the sec

(Continued)

In- vesti- gation Method	Minerals	Concentration or Outcrop State	Evaluation	Remarks
	Uranium ore		Not identified up to now	Rocks in the Tembeling group are similar to uranium producing beds in Thailand and America. Therefore, the potential of uranium resources existing should not be ruled out
No Detail		Milije sa jedenome Gr <u>ife s</u> jedenim de		Termus shale is similar to the mineral phosphate producing bed in Thailand, but the presence of this has not been identified.

(a) A particular of the experience of the content of the experience of the experi

5.8 Economic Evaluation

The principal costs and benefits of the proposed Project are those associated with the electrical power supply. In the preceding sections, however, other associated aspects — including forestry, flood mitigation, irrigation and agriculture, tourism and some others — are also dealt with. Among these aspects, forestry losses, innundation of settlements and the environmental impact on flora and fauna can be considered as types of indirect effects of the Project to the region's economy and society. In economic analysis, however, only forestry losses in terms of opportunity cost of land were estimated (M\$3.76 million to H\$11.83 million depending on assumptions — see Table 5.1), since other Indirect effects are not obvious and not measurable.

With regard to flood mitigation, agriculture and irrigation, and tourism, due to the limited effects of the Project at present and uncertainties involved in the future, only qualitative assessments were made. It must be emphasized, however, that the Project will positively function in the future development of the region and no adverse effects will be brought about in the downstream areas. These associated effects are summarized in Table 5.26.

The power benefits, in the absence of an established and properly measured methodology, were conventionally evaluated by comparison with alternative gas turbine units, which have the load-follow operation for the peak demand to be met by the Project. Assumptions for the power benefits, or the costs attributable to the alternative gas turbines, are presented in Section 5.2. The economic analysis for power benefits was carried out based on these assumptions. With regard to the fuel cost, however, the analysis included with and without cases of relative fuel price escalation together with cases using natural gas with 70 percent of the fuel oil price or the oil equivalent price. Thus, the analysis was extended to cover the following six cases of different fuel cost streams.

			. n.g.
Table 5.26 Su	Summary of Effects on Other Assoc	Lated Aspects	
÷.			
· 计特别分割 新建筑 医水原性			a di di
Complete Complete and sentence of sentence of the sentence of			3 - 1 3 - 1 3 - 1
100 000 000 000 000 000 000 000 000 000	Effects	Ren	Remarks
Forestry	Cost of about MS5 million	Subject to harv	harvesting schedule log prices
Flood Mitigation	Expected to be small but		
	positive		
Irrigation and Agriculture	Expected to be small but positive		
Tourism	Expected to be developed as	Further studies	required
	iter Tam		
	Park)		
Environmental Implications	Not quantatively measured		
Innundation of Settlement	Small		
8	Small		

- Case 1: Fuel oil at constant price
- Case 2: Puel oil with relative price escalation of 1.5 percent per annum
- Case 3: Fuel oil with relative price escalation of 3 percent per annum
- Case 4: Natural gas at constant OEP
- Case 5: Natural gas with relative price escalation of 1.5 percent per annum
- Case 6: Natural gas with relative price escalation of 3 percent per annum

The following tables of A-1 to A-12 show that differential cash flows for each of these cases throughout the assumed Project's economic life of 50 years and the present values of these cash flows discounted at rates of 8, 10, 12, 14, 16 and 18 percent, respectively. 1983 was taken as the base year for the calculation of fuel costs and 1984 for the present values.

The calculated net present values and IRRs of the Project for the above assumed six cases are summarized in Table 5.27 and Figure 5.16. It must be mentioned, however, that these estimates do not include the cost of land loss or the forestry losses incurred by the Project. If this cost, say H\$5 million, is included, the estimated IRRs will decrease by about 0.4 percent.

Table 5.27 Series Development for Upper and Lower Tekai
(NPVs and IRRs)

IRR	NPV	(H\$x10 ⁶) fo	r Discount	Rate
Z	107	127	147	16%
14.78	104.8	46.8	10.2	-13.3
17.13	181.8	98.7	46.8	13.4
19.60	292.0	170.2	95.7	48.3
11.62	33.2	6.6	-30.6	-45.3
13.67	87.1	29.8	-5.0	-26.6
15.86	164.2	79.8	29.2	-2.2
	14.78 17.13 19.60 11.62 13.67	X 10X 14.78 104.8 17.13 181.8 19.60 292.0 11.62 33.2 13.67 87.1	Z 10% 12% 14.78 104.8 46.8 17.13 181.8 98.7 19.60 292.0 170.2 11.62 33.2 6.6 13.67 87.1 29.8	X 10X 12X 14X 14.78 104.8 46.8 10.2 17.13 181.8 98.7 46.8 19.60 292.0 170.2 95.7 11.62 33.2 6.6 -30.6 13.67 87.1 29.8 -5.0

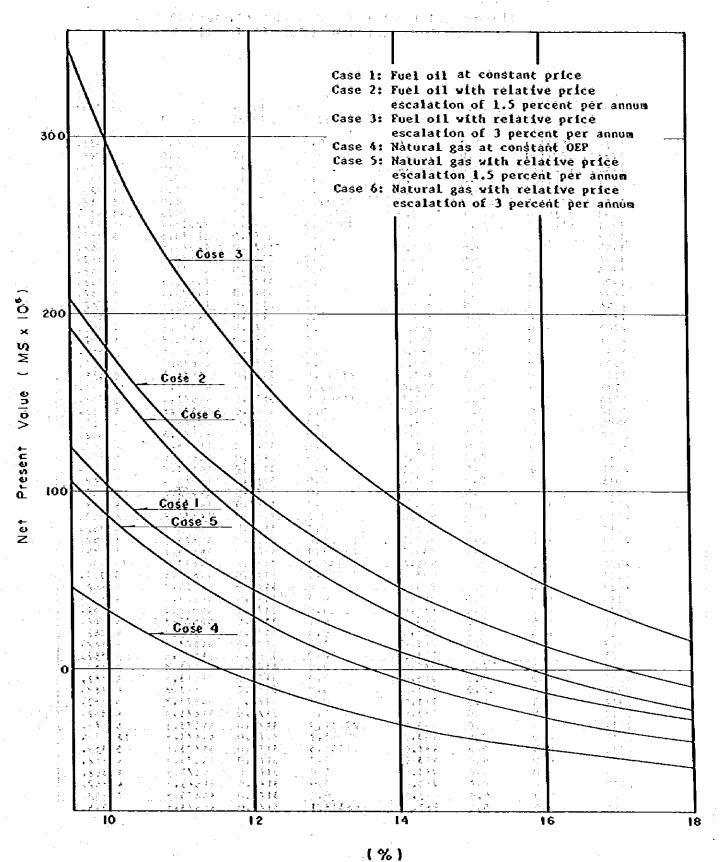


Table.A.1.
DIFFERENTIAL CASH FLOW SHEET (THOUSAND ME)
--- CASE 1 : FUFL OIL (CONSTANT PRICE)---

	1				-		İ
	1.44	3.5					
		Adamontos					
YEAR	YST.)	(TRANS.)	44 44		TURBINE	44506000	35 15 11
,	*****	(taxis)	(0-4)	L_(CONSIA)_	(0;3)	(EUEL)	
_1984 5	556.0	0.0	0.0	Ĉ.9	0.0		5556.9
1985 8	021.0	0.0	0.0	0.0	0.0	0.0	-3021.0
	623.0_	0.0	0.0		Ô.O	0.0	-16673.1
1987 26	184.0	0.0	0.0	0.0	̕G	0.0	. 26134.0
	\$17.0. 754.0	5209.6 9115.8	0.0		<u>Q.Q</u>		45776.6
	264.0	9116.8	_ 0.0	2301249		0.9 0.0	-59457.
	443.0	2604.8	405.0	11506.5	96.0	\$2336.7	
1992	0.0_	Ó.O	9.3.0	O.O	_31/2.0_	35613.3	46362.3
1993	0.0	0.0	943.0	0.0	3175.0	446/3.4	46352.3
1994 1995	0.0	O•Ò	94340	<u>0.0</u>	_ 3172.0	445/3+3	46362.3
1996	0.0	0.0 0.0	933.0 953.0	0.0 0.0	3172.0 3172.0	446/3.3	46352.3
1997	0.0	0.0	953.0	P.0	3175.0	446/3.3	4636243
1798	0.0	ŏ.ŏ	9:3.0	0.0	3172:0	446/3.3	46362
1799	0.0	0.0	963.0	0.0	3172.0	446/3.5	45352.3
5000	0.0	0•0	933.0	0.0	3172.0_	446/3.3	4535215
2001 2002	0.0	0.0	9.3.0	0.0	317210/	44673.3	46362,3
5003	0.0	0.0	933.0 983.0	<u>0.0</u>	313510	466/3.3	56382.3
_2004	0.0	0.0	933.0	0.9 23012.9	317210 317210	44673.3 - 44673.3	46>62.9
2005	0.0	0.0	983.0	80545.2	31/2.0	446/3.4	15140510
2006	0.0	0.0	983.0	11506.5	3172.0_	44573.3	59369.3
2007	0.0	0.0	983.0	0.0	3172.0	445/3.8	46552.4
2008	0.0_	Q.Ó	983.0	0.0//	3172.0	44673.3	46-62.3
2009 2010	0.0	0.0 0.0	983.0 _983.0_	0.0	3175.0	44673.3	46362.3
5011	0.0	0.0	v.3.0		<u>\$17\$.0</u>	44671.8	<u> </u>
2012	_0.0	0.0.	. 933.0	0.0	3172.0	_ 45613.3	46162.3
2013	0.0	0.0	9:3.0	0.0	317210	44673.3	46*62.5
\$016	0.0	0•0	983,0	0.0	317260_	446/3:3	50352.8
2015 _2016	0.0	0.0	983.0	0.0	3175.0	44673.3	45552+5
2017	0.0	0.0	983.0_		3172.0_	446/3.3	
2018	0.0	0.0 0.0	_983.0 _983.0_	0.0	3172.0 _3172.0	446/318	46462.3
2019	0.0	0.0	953.0	23012.9	3175.0	44673.3	46352.3
_ 2020	0.0.		-983.0-	80545.2	5172.ó_	_ 44673.3	12/402.0_
2051	0.0	0.0	953.0	11506.5	3172.0	4467313	58369.3
-5055	0.0.		- 943.0		31/2.0	46673.3	£6562.3
2023 2024	0.0 0.0	0.0 0.0	983.0	0.0	31/5.0	446/3.5	46:62.3
2025	0.0	0.0	923.0.	0.0	3175*0 3175*0	44673.3 44673.3	46662.4_
5059	0.0	0.0.	993.0	0.0		446/3.3.	46162.8
5053	0.0	0.0	983.0	0,0	3172.0	44673.5	40567.3
_2328	0.0	0.0	9.3.0	0.0	3172.0	445/5.8	46*32.1
2039 2030	0.0	0.0	943.0	0.0	3175.0	44573.3	40362.3
2031	0.0	0.0	943.0	<u>n.o</u>	31 <i>72.0</i> 31 <i>72.0</i>	- 446/3.3	40:50:3
2032	0.0	0.0	983.0	, , , , , , , , , , , , , , , , , , ,	3172.0	44673,8	4646244
2033	0.0	0.0	983.0	0.0	3172.0	446/3.5	64352.3
5034	_0.0.		233.0	<u> </u>	3172.0	450/312	62.75.7
2035 2034	0.0	0.0	923.0	80545.2	5172.Ú	446/3.5	12/40-00
-2036	0.0 0.0	0.0	983.0	1150 <u>\$</u> . \$	_ 3)/{.0.	\$\$613.3	5.55.65
2038	0.0	0.0	943.0	0,0 9.0	_3175°0 _3175°0	446/3.4	6.562.4
2039	0.0	0.0	983.0	0.0	31/2.0	44673.3	46362.4.
2040	_0.0	9.0	943.0		3172.0	446/3.3	46362.4
2041	0.0	0.0	983.0	-46316.1	3172.0	. 446/313	545.7

131

. .

Table, A.2.

NET PRESENT VALUES (THOUSAND HS)

---CASE 1: EUEL OIL (CONSTANT PRICE)

YEAR	8\$	10%	T VALUES FOR	345	16%	133
1984	-5556.0	+5556.0	- 35556.0			
1985	-742619	7291.8	7361.6	*5556.0 	-555610	-5556.0
1986	+14294.4	-13779.3	-13291.6		-6+14.2-	4/37•
1987	20785.7	-19672.4	-18637.3_	-12329.3 		-110741
1988	-33610.4	+31231.9	-29060.1	-27073.3	15775.0 '- -25254.4	
1989	40735.3	-37167.1	-33965.0_	-31088.4.	20499.2	23595
1990	+11539.5	-10067.7	+9036-1	-8125.7		2016413 - 360619
1991 -	-32975.1	29000 <u>.</u> 3	<u>25</u> 563.8	<u> </u>	122261	-12241.5
1992	2531815	21361.9	18927.1	18423.2	14294,4	12457
1994	23443.1	19374.4	16899.2_	14410.7	12322,7	19565
1995	20398.7	1806747	15038.6	12641.0	10623.0	8953.
1996	1.8609.9		13472.0_	1 <u>1988.6</u>	9157,8	7558.0
1997	1723114	14932.0 13574;5	.12028.5	6:6559		6431.
1998	1595510	1536012	19739.8	<u>8532.5</u>	6305.7	5449.4
1999	14773.1	1121816	2.953941	748465	5367:0	4619
2000	13673.8	1019847	85 <u>61.7</u>	<u></u>	5057.8	3913
2001	12665.6		7644.4	5759.1	4360.2	33161
5005	11727.4	8428.7	<u>0?</u> 2> <u>+3</u> 6094.0	5051.8 4431.4	3 <u>/5</u> 8.3	23101
2003	10353.7	2662.5	5441.1	4431.4 3837.2		2352
2004	14991.7	30386.6	7243.8	5084.3	2703.4	<u> </u>
2005	25310.4	8.61571	11793.9	8132.3		2550
5009	10736.5	7170.4	4823.8		<u> </u>	394949
5001	7981.5	523316	3457.9	2301.5	154218	1530
5008	7390.2	4757.8	3087.4	2018.9	1330.0	10414
2009	6842.3	4325:3	2756.6	1271.0	1146.5	8\$2.4 747.
2010	633549	3932+1	2461.3	1553.5	348.4	633.
2011	5366.6:	3574.6	2197.6		852.0	53 <u>{, 1</u>
2012	563241	324946	1962.1	1195.3	734.5	4556
	5029.7	295612	<u> </u>	1043.6	633.2	385.
2015	465741 	2635.6	1564.2	919.8	545.9	326.
2016	3992.7	246115	1306.6	806.3		
2017	3697.0:	221945 201748	1247.0	707.7	40517	2346
8105	3423.1	1836.3	1113.4			98.5
2019	472810	248615			301.5	165.6
2020	7978.9	412116	1323.4 2154.5	712.3	33745	213:0
2021	3384.6		85143	1139.3	£ = = =	3241
\$055 E	2516.1	1252.9	631.8			127
2023 🚉 _	2329.7	1139.0	564.L	82.8	166.5	87.0
\$054	2157.1	1935.4	503.4	248.1		234
2025	1997.4	94113	449 .7	217.6		62.
5059	184944	85517	401.5	190.9	95.0	5245
202 <i>7 :-</i>	1212.4	277.9		167.5		4419 3410
5059	158546 -	70712	320.1	146.9		35+1
2029 <u></u> 2030	146341	645.9	285.8	128.2	58.9	276
	1359.4	53415	522.5	113.0	50.8	23.1
5031	1253.7	> > > > > > > > > > > > > > > > > > > >			43.8	13.6
2032 2033	116514	483.0	203.4	87.0	37.7	16.6
	1689.6		181.4		÷ 32 +5	
2035 2035	1957.6	\$9512	241.3	44.3	61.8	
2014	251523 ····································	SIZIATA			65-7 =	
2037. 2				84.1 @ 		1948
2038	73616	2.51511	103.1		18:0	
on to	1467A	(1) 4 1 4 1 A	74 75 66 6	. € 4823 39.6 .23.	A	644
010	120	1.33663	. D. 4	3.22 36 3.22	43.4	
2041	19992313	56363	0616	6.3 × A 1 A	11.5	· 146
		· 25 35557		تنتيب المستنب		

Table, A.3. ्रा ४५६ क्षापुर्वे विकास के अवश्राक्ष के प्रविधान के ना

DIFFERENTIAL CASH FLOW SHEET (THOUSAND MS) ---CASE 2 : FUEL OIL (PRICE ESCALATION 1.5% PER ANNUM)---

		i i i	1 14 21 2 1 4	ing Gartimak∗ka <u>t</u> ak	in the second		
YEAR		TEKAI	8.48	213	TURBINE	25.3	SENEF IT
	(CONSTA)	(TRANS.)	(O-H)	(CONST.)	(K+0)	SEUEL)	30112F1
	ar i i i i i i i i i i i		1008 -	. a.\$310g.g.	F. 1951;	. Sag535	.665
1984	5556.0	0.0	- ***		~ Š *Š<##	<u></u>	:5556.0
1985 1986 -	8021.0 16673.0		0.0	0.0 		. 0.0 . 0.0	+392140 -1652349
1987	26134.0	0.0	0.0	0.0	4.0	0.0	-2613667
1788	4051740	5209.6	0.0_	2.0.1	0.0		-4572666
	7375410	9116.3	0.0	23015.9	0.0	0.0	-59357,0
	89264.0	9116.8	010	1 \$0545.2_	.ii 0.0 .		1733566_
1991	87443.0	2604+8	40510 492310	1150615		~ \$516243 ~ \$102925	-5353349
1793			98310		3175.0	51-45.6	5433416
1994	0.0	2.7.2	2.983 i Ď		31/2.0 _	32623.3	5421213
1795	0.0		983.0	7 · · · · · · · · · · · · · · · · · · ·	31/5:0	5341216	55601.6
1996		0.0	983.0 943.0	<u> </u>	3172.0 . -3172.0	.5421343 5502740	5649213 _ 5/21619
1998			933.0	9.0	31/2.0	55 152 16	53041.4
1799			9.3.0	9.0	3172.0	56679.23	53579.2
\$ijġġ¨	0.0		983.0	<u> </u>	3172.0	_ 5/540,5:	5972015
2001	0.0		983.0	9.0	3172.0	53403.6	60535.6
\$003 2003	0.0	0.0	983.0 983.0	0.0	31/2;0_ 31/2;0	_ 592/9:6.	61563.6
2004				0.0 	3172.Q	6016313 6137153	6735713
2005	0.0		963.0	80545.2	3172.0	61937.4	144721.5
_ 2006_	0.0	- 0.0	983.0-	11506.5	3175.0	-6291742	76512.7
2007	1 7 7		933.0	0.0	3175.0	63360.9	6654919
2008			933.0		3115.0		6700758
2010 2010			983.0	0.0	31/2.0 31/2.0	65771;13 66777;4	1 108916
2011			933.0	0.0	317210	6777966	6996946
2012.			983.0	0.0	3172.0_	-69/76.3-	20185.3.
2013	0.0		983.0	0.0	31/2:0	6932812	7201742
~ 2014:	7.7.7		953.0	0.0 2.2 0.0		- 70575.6	7356456
2015 _2016			\$\$3.0 \$33.0	0.0	3172.0	7193367 73017-8	7412737
2017	0.0		953.0	0.0	3172.0	74113.0	7637240
2018		0.0.			31/2.0_	25224.2-	27413.7_
2019	0.0		\$ \$83.0 L	23012.9	317510	76353.0	10155419
5050		0.0		80545-2-	3172.0_	-11498.3-	16023245
1502 5055	0i0 0i0	· * · *	= (5.93310 <u>= (5.9</u> 6310_	11506.5	317510	- 1356918: - 13849:7:	9235613
2023	7 7		983.0	0.0	3172.0	8103643	63227.5
- 2024	0.0	i Ö.Ö.	983.0		<u></u> 3172•¢	- 3225318-	84462.8
5052	0.0		3.1983.0	0.0	3172.0	8348746	8567616
-2026 202 7	0.0)	= - 983.0- 983.0	0.0	3172.0_ 3172.0	-84739.9	
_2028.		1 7 7	2983.0	22 0.0		36011103 8730111	5*203×0
5058	0.0		9.49.3.0	9.00	3172.0	3361016	9079918
2030	0.0	0.0.	z.,1933.0	0.0	3372.0_	_82739.5_	8.2129.3.
5031	0.0		3 983.0	2.22.0.0	3172.0	2123513	934/7.14
	0.0		933.0	0.0	0.5518E	92653.1.	9434/41
2034_					31,55.0	9404840	96237.0
2035	0.0		913.0	1.8054542	3172.0	9539045	17452417
2036	0.0	0.0	4943.0 -			98343,9	112039.4_
2037	0.0		983.0	0.0	3175.0	99419.0	102009.0
2038			983.0-		3172.0.	101316.3	103555.3
2039 _2040	0.0	0.0	# # 923.0 = 0x3.0-	>,	31/2.0 	1025 56.0	10572510
2041	0.0		983.0	-46316.1	3172.0	105-44.1	61417.0

Table, A.4.

NET_PRESENT_VALUES_CIHQUSAND_MS)

---CASE 2 : FUEL OIL (PRICE ESCALATION 1.5% PER ANYUH)---

		PŘ-Šc	NT VALUES FOR	DISCOUNT RATE		
YÉAŔ	. 84 .	10%		14\$	165	13#
		eath in leading the c	(高橋) 公司	4 - 4 - 4 - 1 - 1 - 1		
	*5556.0			5554.0	5556.0_	
	-7426.Y 14294.4		-7161.6	-7036.0	-6714.7	-6797.5
	20785 . 7	-13779.3 -19672.4	-13291.6_ -18637.3		-15390-3-	
	33610.4	-31531.4	-29060i1		-16775.0 -25254.4	-15236.4 23585.3
	40738.3		-33965.0		-2.1499.2	-26154,5
	11239.5			-8125.7	-2320.5	
	31 326.5		-24235.8	-21455.3	-1498.4	-15554.0
	28779.3				- 10248.3.	
	27030.a 25353.7		19435.4 17648.1 .	16616.1	1420216	12125.5
	23846.6		1598412	13156.3	10365.5	10472.7
	22398.4		14427.2	11/08.9	9501.8	9703.0 7737.6
	21038.2		13112.5	10417.3	8309.3	3653.5
1993	19760.9	15284.1.	11876.4 _	9269.6	1266.5-	5719.7
	18561.2		10757.0	3243.3	6354.7	4917.4
0003	17434.5	12993.9.		7 340 . 3	5557.3-	4227.4-
2007	16376.3	11987.9	3825.0	6531.7	4360.0	3634.4
	15382.5 14449.1		7240.2	\$312.A \$172.5	425(i2_	3124.5
	18509.8		8943.Z_	6277.4	3717.0 4433.2	2635.2
2005	28749.3	19556.4	13395.4	9237.0	6410.9	3149.5; 4477.3
2006	14092.2	941).6.	6331.5	4289.4	2925.7-	
	11249.3		4873.7	3243.9	2174.4	1467.5
2003	10567-1			2336.3	1901.2	1241.7
2010	9926.3 9324.5		3998.8	\$569.0	1653.2	134433
2011	8759.2	5337.1	3622.2	22 <u>5</u> 6, 2 2034.6	1454.6	<u>}32. 6</u>
2012	8228.2	4922.4	297241	1810.6	1115.6	680.3
2013	7729.4	4539.9	269242	1611.6	973.1	592.7
2014	7261.0	4187.2	2438.3	1434.0	851.1	509.5
2015	0.1589		2209.1	1276.2	744.4	433.2
	6407.6			1135.4	651.D.	326.2_
2017 2018	6019.4 5654.7	3285.3	1312.8	1010.8	569.4	353.3
_ 5018	6868.6		1642.1	392.6	498.0	278,5
	100 14.5	5183.4	1923.4 2709.6	1035.2 1432.a	563.2 766.1	397.8
1502	5355.4		1394.4	724.4	330.6	505.5
	4404.2	2193.1	1105.5_	569.4	291.5	152,2.
2023	4137.5	5055.8	100118	502.3	254.9	130,9
5054	3387.0		907.5		223.0	112.5
2025	3651.7		822.1	397.9	195.0	96.3
2050	3430.6 3432.5		<u>744.7</u> 674.7	354.1 315.2	170.6	A3- 2
5058	3027.8		6)1.2	230.5	149.2	71.5
2029	2844.6			249.7	114.2	
2030	2672.4				99.8	
2031	2510.7		454.4	8.591	37.3	
2032	_235843	977.6	411.2_	176.3	16.4	
2033	2216,1		3/3.0	156.7	66.8	25.9
_ 2034	257246				12+2	
2035	3546.1	A to the second second	554.9 309.1		•2.7 49.3	33.5
2037	172672	652.9	251,2	98.3	39.1	
2039	_1622.1	405.5			34.2	
5036	1524.0	553.5	. 308.5	11.9	50.0	
5040	1431.6	51214	186.3_	1.89.3	56.5	<u> </u>
2041 3 TOTAL 3	769.1		96.8	35.3	13.1	
	\$0030.0	181843.6	<u>9</u> 8735•\$	46840.9	13419.0	-3561.9

Table.A.5.

OIFFERENTIAL CASH FLOW SHEET: (THOUSAND MS)

---CASE 3 : FUEL OIL (PRICE ESCALETION 3.0% PFR ANNUM) ---

। ভালত হালেকাল কৰি লাখিক স্থানিক
TERM (CONST.) (TERMS.) (Q-R) (CONST.) (Q-N) (FUGL.) 1784 5556.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 1785 8021.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1786 18673.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1787 26184.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1788 26184.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1789 73754.0 7316.8 0.0 25075.9 0.0 0.0 0.0 5755.6 1789 73754.0 7316.8 0.0 25055.2 0.0 0.0 0.0 5755.0 1799 87433.0 2604.0 655.0 11506.5 1120.0 5225.1 5016.6 1799 87433.0 2604.0 655.0 11506.5 1120.0 5225.1 5016.6 1799 8743.0 2604.0 655.0 11506.5 1120.0 5225.1 5016.6 1799 8743.0 2604.0 655.0 11506.5 1120.0 5225.1 5016.6 1799 8743.0 2604.0 655.0 11506.5 1120.0 5225.1 5016.6 1799 8743.0 2604.0 655.0 11506.5 1120.0 5225.1 5016.6 1799 8743.0 2604.0 655.0 11506.5 1120.0 5225.1 5016.6 1799 8743.0 2604.0 655.0 0.0 1170.0 6019.7 1796 0.0 0.0 923.0 0.0 1170.0 6019.7 1796 0.0 0.0 923.0 0.0 1170.0 6019.7 1797 0.0 0.0 923.0 0.0 1170.0 65644.0 6575.0 1798 0.0 0.0 923.0 0.0 1170.0 65644.0 6575.0 1798 0.0 0.0 0.0 923.0 0.0 1170.0 65644.0 1170.7 1798 0.0 0.0 0.0 923.0 0.0 1170.0 65644.0 1170.7 1799 0.0 0.0 0.0 923.0 0.0 1170.0 65644.0 1170.0 1798 0.0 0.0 0.0 923.0 0.0 1170.0 65644.0 1170.0 1799 0.0 0.0 0.0 923.0 0.0 1170.0 65644.0 1170.0 1799 0.0 0.0 0.0 923.0 0.0 1170.0 65644.0 1170.0 1799 0.0 0.0 0.0 923.0 0.0 1170.0 65644.0 1170.0 1799 0.0 0.0 0.0 923.0 0.0 1170.0 1631.1 1799 0.0 0.0 0.0 923.0 0.0 1170.0 1631.1 1799 0.0 0.0 0.0 923.0 0.0 1170.0 1631.1 1799 0.0 0.0 0.0 923.0 0.0 1170.0 1631.1 1799 0.0 0.0 0								
1985 8021.0 0.0	YEAR		TEKAI (TRANS.)	(0-H)			(FUEL)	8cher11
1985 8021.0 0.0				- 1	4 • 13:13:13:11 1 1 1 1 A \ A		A A	
1986	 : -: -:							
1987 26184.0 0.0 0.0 0.0 0.0 0.0 0.6 -26124.0 1989 73754.0 9116.8 0.0 23012.9 0.0 0.0 0.5 1990 83204.0 9116.8 0.0 23012.9 0.0 0.0 0.5 1991 87443.0 2604.8 405.0 0.0 0.5 5225.7 1991 87443.0 2604.8 405.0 0.0 0.1 17255.0 1992 0.0 0.0 0.0 933.0 0.0 0.1 17255.0 1993 0.0 0.0 0.0 933.0 0.0 0.0 172.0 1995 0.0 0.0 0.0 933.0 0.0 0.0 172.0 1995 0.0 0.0 0.0 933.0 0.0 0.0 172.0 1995 0.0 0.0 0.0 933.0 0.0 0.0 1996 0.0 0.0 0.0 935.0 0.0 0.0 1997 0.0 0.0 0.0 935.0 0.0 0.0 1997 0.0 0.0 935.0 0.0 0.0 1998 0.0 0.0 0.0 935.0 0.0 1998 0.0 0.0 0.0 935.0 0.0 1998 0.0 0.0 0.0 935.0 0.0 1999 0.0 0.0 935.0 0.0 0.0 1999 0.0 0.0 0.0 935.0 0.0 1999 0.0 0.0 0.0 935.0 0.0 1999 0.0 0.0 0.0 935.0 0.0 1999 0.0 0.0 0.0 935.0 0.0 1990 0.0 0.0 0.0 935.0 0.0 1990 0.0 0.0 0.0 935.0 0.0 1990 0.0 0.0 0.0 935.0 0.0 1990 0.0 0.0 0.0 935.0 0.0 1990 0.0 0.0 0.0 935.0 0.0 1990 0.0 0.0 0.0 935.0 0.0 1990 0.0 0.0 0.0 935.0 0.0 1990 0.0 0.0 0.0 935.0 0.0 1990 0.0 0.0 0.0 935.0 0.0 1990 0.0 0.0 0.0 935.0 0.0 1990 0.0 0.0 0.0 935.0 0.0 1990 0.0 0.0								
1998 405317. 0 52097.6 0.0 0.0 0.0 0.0 0.57557. V 1990 89224.0 9116.8 0.0 0.53552.2 0.0 0.0 0.0 174555.5 1992 9743.0 2004.3 405.0 11506.5 96.0 282751.7 50556.5 1992 90.0 0.0 933.0 0.0 1172.0 53249.1 A04426.1 1994 0.0 0.0 933.0 0.0 3172.0 50411.1 A04426.1 1994 0.0 0.0 935.0 0.0 3172.0 50411.1 A04426.1 1995 0.0 0.0 935.0 0.0 3172.0 50544.1 65551.0 1996 0.0 0.0 935.0 0.0 3172.0 50544.1 65551.0 1998 0.0 0.0 935.0 0.0 3172.0 50544.3 67732.3 1998 0.0 0.0 935.0 0.0 3172.0 50544.3 67732.3 1998 0.0 0.0 935.0 0.0 3172.0 50544.3 67732.3 1998 0.0 0.0 935.0 0.0 3172.0 67574.3 67732.3 1998 0.0 0.0 935.0 0.0 3172.0 67574.3 67732.3 1999 0.0 0.0 935.0 0.0 3172.0 67574.3 67732.3 1990 0.0 0.0 935.0 0.0 3172.0 67574.3 67732.3 1990 0.0 0.0 935.0 0.0 3172.0 67574.3 67722.3 1990 0.0 0.0 935.0 0.0 3172.0 67574.3 67722.3 1990 0.0 0.0 935.0 0.0 3172.0 67574.3 67722.3 1990 0.0 0.0 935.0 0.0 3172.0 67574.3 67722.3 1990 0.0 0.0 935.0 0.0 3172.0 67574.3 1990 0.0 0.0 935.0 0.0 3172.0 67574.3 1990 0.0 0.0 935.0 0.0 3172.0 67574.3 1990 0.0 0.0 935.0 0.0 3172.0 67574.3 1990 0.0 0.0 935.0 0.0 3172.0 67574.3 1990 0.0 0.0 935.0 0.0 3172.0 67574.3 1990 0.0 0.0 935.0 0.0 3172.0 67574.3 1990 0.0 0.0 935.0 0.0 3172.0 67574.3 1990 0.0 0.0 935.0 0.0 3172.0 67574.3 1990 0.0 0.0 935.0 0.0 3172.0 67574.3 1990 0.0 0.0 935.0 0.0 3172.0 67574.3 1990 0.0 0.0 935.0 0.0 3172.0 67574.3 1990 0.0 0.0 935.0 0.0 3172.0 67574.3 1990 0.0 0.0 935.0 0.0 3172.0 67574.3 1990 0.0 0.0 935.0 0.0 3172.0 67								
1999 23754.0 9116.8 0.0 23912.9 0.0 0.0 0.0 57557.7 1991 87243.0 2604.8 405.0 11506.5 90.0 28275.7 50556.5 1991 87243.0 2604.8 405.0 11506.5 90.0 28275.7 50556.5 1992 0.0 0.0 935.0 0.0 3172.0 60937.7 50276.7 1993 0.0 0.0 935.0 0.0 3172.0 60937.7 50276.7 1994 0.0 0.0 935.0 0.0 3172.0 60937.7 60277.7 1995 0.0 0.0 935.0 0.0 3172.0 63534.1 652531.0 1998 0.0 0.0 935.0 0.0 3172.0 63634.1 652531.0 1998 0.0 0.0 935.0 0.0 3172.0 63634.1 652531.0 1998 0.0 0.0 935.0 0.0 3172.0 63634.1 652531.0 1998 0.0 0.0 935.0 0.0 3172.0 63634.1 652531.0 1998 0.0 0.0 935.0 0.0 3172.0 63634.1 73773.2 1998 0.0 0.0 935.0 0.0 3172.0 63634.1 73773.2 1998 0.0 0.0 935.0 0.0 3172.0 63634.1 73773.2 1998 0.0 0.0 935.0 0.0 3172.0 63634.1 73773.2 1998 0.0 0.0 935.0 0.0 3172.0 63633.1 73771 2000 0.0 0.0 935.0 0.0 3172.0 33333.7 73272.2 2002 0.0 0.0 935.0 0.0 3172.0 33333.7 73222.2 2002 0.0 0.0 935.0 0.0 3172.0 33333.7 73222.2 2003 0.0 0.0 935.0 0.0 3172.0 33333.7 73222.2 2004 0.0 0.0 935.0 3102.9 3172.0 33336.1 103323.0 2005 0.0 0.0 935.0 3102.9 3172.0 33336.1 103323.0 2005 0.0 0.0 935.0 30545.5 3172.0 33166.1 103323.0 2006 0.0 0.0 935.0 30545.5 3172.0 33166.1 103323.0 2005 0.0 0.0 935.0 30545.5 3172.0 33166.1 103323.0 2005 0.0 0.0 935.0 30545.5 3172.0 33166.1 103323.0 2005 0.0 0.0 935.0 0.0 3172.0 33166.1 103323.0 2006 0.0 0.0 935.0 0.0 3172.0 33166.1 103323.0 2007 0.0 0.0 935.0 0.0 3172.0 33166.1 103323.0 2008 0.0 0.0 935.0 0.0 3172.0 33166.1 103323.0 2008 0.0 0.0 935.0 0.0 3172.0 33166.1 103323.0	T 15 15 15 15 15 15 15 15 15 15 15 15 15			1 1 5 1 -				
1990 89244.0 9116.8 0.0 365.53.2 0.0 0.1 172.55.6 1991 87443.0 2004.18 405.0 11506.5 90.0 28275.1 505.55.5 1992 87443.0 2004.18 405.0 11506.5 90.0 28275.1 504.55.5 1993 0.0 0.0 933.0 0.0 3172.0 5021.1 504.6 1994 0.0 0.0 935.0 0.0 3172.0 501.5 107.0 1995 0.0 0.0 935.0 0.0 3172.0 505.4 355.5 1996 0.0 0.0 935.0 0.0 3172.0 505.4 355.5 1996 0.0 0.0 935.0 0.0 3172.0 505.4 355.5 1998 0.0 0.0 948.0 0.0 3172.0 505.4 367.7 1998 0.0 0.0 948.0 0.0 3172.0 675.5 677.2 1998 0.0 0.0 948.0 0.0 3172.0 675.4 677.2 1998 0.0 0.0 948.0 0.0 3172.0 675.4 677.2 1999 0.0 0.0 948.0 0.0 3172.0 675.4 677.2 1990 0.0 0.0 948.0 0.0 3172.0 675.4 677.2 1990 0.0 0.0 948.0 0.0 3172.0 675.4 677.2 1990 0.0 0.0 948.0 0.0 3172.0 675.4 677.2 2000 0.0 0.0 948.0 0.0 3172.0 675.4 772.2 2001 0.0 0.0 948.0 0.0 3172.0 675.4 772.2 2002 0.0 0.0 948.0 0.0 3172.0 675.4 772.2 2003 0.0 0.0 948.0 0.0 3172.0 675.4 772.2 2004 0.0 0.0 948.0 0.0 3172.0 675.4 772.2 2005 0.0 0.0 948.0 0.0 3172.0 675.4 772.2 2006 0.0 0.0 948.0 0.0 3172.0 878.4 772.2 2007 0.0 0.0 948.0 0.0 3172.0 878.4 772.2 2008 0.0 0.0 948.0 0.0 3172.0 878.4 772.2 2008 0.0 0.0 948.0 0.0 3172.0 878.4 106.5 2009 0.0 0.0 948.0 0.0 3172.0 878.4 106.5 2009 0.0 0.0 948.0 0.0 3172.0 878.4 106.5 2009 0.0 0.0 948.0 0.0 3172.0 878.4 106.5 2009 0.0 0.0 948.0 0.0 3172.0 878.4 106.5 2001 0.0 0.0 948.0 0.0 3172.0 3172.0 3172.0 2001 0.0 0.0 948.0 0.0 3172.0 3172.0 3172.0 2001 0.0 0.0 948.0 0.0 3172.0 3172.0 3172.0 2004 0.0 0.0								
1991 87443.0 2604.8 405.0 11506.5 96.0 28275.7 50555.7 1995 0.0 0.0 9235.0 0.0 3172.0 60937.7 62226.7 1995 0.0 0.0 9235.0 0.0 3172.0 60937.7 62226.7 1995 0.0 0.0 9235.0 0.0 3172.0 61933.7 62226.7 1995 0.0 0.0 9235.0 0.0 3172.0 61933.7 62226.7 1995 0.0 0.0 9235.0 0.0 3172.0 65954.5 67733.2 1997 0.0 0.0 9235.0 0.0 3172.0 65954.5 67773.2 1997 0.0 0.0 9235.0 0.0 3172.0 65954.5 67773.2 1998 0.0 0.0 9235.0 0.0 3172.0 67573.0 6762.0 1298.0 1998 0.0 0.0 9235.0 0.0 3172.0 67573.0 6762.0 1298.0 1998 0.0 0.0 9235.0 0.0 3172.0 67573.0 6762.0 1298.0 1998 0.0 0.0 9235.0 0.0 3172.0 67573.0 6762.0 1298.0		بالصاد والأشماء					0.0	
1993					11506.5	96.0		-50554.5
1994 0.0		0.0.	0.0	953.Q			58239.1	
1995								855591
1976								46262 0
1997							ASAJA 4	
1998						2 3 3 3 5 5		
1999 0.0								
2000 0.0 0.0 983.0 0.0 3172.0 78333.7 76327.7 2001 0.0 0.0 983.0 0.0 3172.0 78335.5 7622.2 2002 0.0 0.0 0.0 983.0 0.0 3172.0 78335.5 30574.5 2003 0.0 0.0 983.0 0.0 3172.0 39655.5 2574.5 2004 0.0 0.0 983.0 2001.2 9 3172.0 39655.5 2574.5 2005 0.0 0.0 983.0 2001.2 9 3172.0 35595.3 168333.4 2006 0.0 0.0 983.0 1506.5 3172.0 35595.3 168333.4 2006 0.0 0.0 983.0 0.0 3172.0 90312.2 95001.2 2008 0.0 0.0 983.0 0.0 3172.0 90312.2 95001.2 2008 0.0 0.0 983.0 0.0 3172.0 90312.2 95001.2 2008 0.0 0.0 983.0 0.0 3172.0 90312.2 95001.2 2010 0.0 0.0 983.0 0.0 3172.0 93546.8 95755.8 2010 0.0 0.0 983.0 0.0 3172.0 93546.8 95755.8 2011 0.0 0.0 983.0 0.0 3172.0 93546.8 95755.8 2012 0.0 0.0 983.0 0.0 3172.0 93546.8 104221.1 2011 0.0 0.0 983.0 0.0 3172.0 93546.8 104221.1 2011 0.0 0.0 983.0 0.0 3172.0 93546.8 104221.2 2012 0.0 0.0 983.0 0.0 3172.0 105276.1 11727.0 2013 0.0 0.0 983.0 0.0 3172.0 105276.1 11727.0 2014 0.0 0.0 983.0 0.0 3172.0 105276.1 11727.0 2016 0.0 0.0 983.0 0.0 3172.0 11827.4 113476.4 2017 0.0 0.0 983.0 0.0 3172.0 118247.4 113476.4 2018 0.0 0.0 983.0 0.0 3172.0 118247.4 113476.4 2019 0.0 0.0 983.0 0.0 3172.0 118247.4 113476.4 2019 0.0 0.0 983.0 0.0 3172.0 118247.4 113476.4 2019 0.0 0.0 983.0 0.0 3172.0 118247.4 113476.4 2019 0.0 0.0 983.0 0.0 3172.0 118449.1 129378.1 2017 0.0 0.0 983.0 0.0 3172.0 118449.1 129378.1 2019 0.0 0.0 983.0 0.0 3172.0 118449.1 129378.1 2019 0.0 0.0 983.0 0.0 3172.0 118449.1 159356.7 2020 0.0 0.0 983.0 0.0 3172.0 15938.3 1522703								
2001 0.0 0.0 983.0 0.0 3172.0 76955.2 7262.3 2002 0.0 0.0 983.0 0.0 0.0 3172.0 83065.5 22576.5 2003 0.0 0.0 983.0 0.0 0.0 3172.0 83065.5 22576.5 2204 0.0 0.0 0.0 983.0 2201.9 3172.0 83065.5 22576.5 2206.0 0.0 0.0 983.0 2201.9 3172.0 8306.1 105532.0 2005 0.0 0.0 983.0 11506.5 3172.0 8306.1 105532.0 2006 0.0 0.0 983.0 11506.5 3172.0 8306.1 103533.6 2208.0 0.0 0.0 983.0 11506.5 3172.0 9361.6 2 101662.7 2208.0 0.0 0.0 983.0 0.0 0.0 3172.0 9361.6 2 93001.2 2208.0 0.0 0.0 983.0 0.0 0.0 3172.0 9363.6 95725.6 2200.0 0.0 0.0 983.0 0.0 0.0 3172.0 9363.6 95725.6 22010 0.0 0.0 983.0 0.0 0.0 3172.0 9363.6 95725.6 22010 0.0 0.0 983.0 0.0 0.0 3172.0 9253.9 101621.7 22011 0.0 0.0 983.0 0.0 0.0 3172.0 9253.9 101621.7 22011 0.0 0.0 983.0 0.0 0.0 3172.0 102209.9 101621.7 22012 0.0 0.0 983.0 0.0 0.0 3172.0 102209.9 101621.7 22013 0.0 0.0 983.0 0.0 0.0 3172.0 102209.9 101621.7 22013 0.0 0.0 983.0 0.0 0.0 3172.0 102209.9 101621.4 22013 0.0 0.0 983.0 0.0 0.0 3172.0 102209.9 101623.4 22014 0.0 0.0 983.0 0.0 0.0 3172.0 103636.4 110623.4 22014 0.0 0.0 983.0 0.0 0.0 3172.0 103636.4 110623.4 22014 0.0 0.0 983.0 0.0 0.0 3172.0 115033.0 117227.0 2202.0 0.0 0.0 983.0 0.0 0.0 3172.0 115033.0 117227.0 2202.0 0.0 0.0 983.0 0.0 0.0 3172.0 115033.0 117227.0 2202.0 0.0 0.0 983.0 0.0 0.0 3172.0 115033.0 117227.0 2202.0 0.0 0.0 983.0 0.0 0.0 3172.0 122043.4 12203.8 22018 0.0 0.0 983.0 0.0 0.0 3172.0 122043.4 12323.8 22018 0.0 0.0 983.0 0.0 0.0 3172.0 122043.4 12323.8 22018 0.0 0.0 983.0 0.0 0.0 3172.0 122043.4 124323.8 22018 0.0 0.0 983.0 0.0 0.0 3172.0 122043.4 12323.6 2201 0.0 0.0 983.0 0.0 0.0 3172.0 122043.4 12323.6 2201 0.0 0.0 983.0 0.0 0.0 3172.0 122043.4 124323.8 22018 0.0 0.0 983.0 0.0 0.0 3172.0 122043.4 124323.8 22018 0.0 0.0 983.0 0.0 0.0 3172.0 122043.4 124323.8 22018 0.0 0.0 983.0 0.0 0.0 3172.0 122043.4 124323.8 22018 0.0 0.0 0.0 983.0 0.0 0.0 3172.0 122043.3 174023.3 174023.3 12203.0 0.0 0.0 983.0 0.0 0.0 3172.0 13203.3 12203.3 12203.0 0.0 0.0 983.0 0.0 0.0 3172.0 13403.3 12203.3 12203.3 12203.0 0.0 0.0 983.0 0.0 0.0 3172.0 13403.3 1								
2005 0.0 0.0 983.0 0.0 3172.0 80855.5 32376.5 2008 0.0 0.0 983.0 80555.2 3172.0 8355.5 32376.5 2005 0.0 0.0 983.0 80555.2 3172.0 8355.9 3 168333.4 2008 0.0 0.0 983.0 11506.5 3172.0 355.9 3 168333.4 2008 0.0 0.0 983.0 0.0 0.0 3172.0 9312.2 93501.2 2008 0.0 0.0 983.0 0.0 0.0 3172.0 9312.2 93501.2 2008 0.0 0.0 983.0 0.0 0.0 3172.0 93536.6 95255.6 2009 0.0 0.0 983.0 0.0 0.0 3172.0 93536.6 95255.6 2010 0.0 0.0 983.0 0.0 0.0 3172.0 93536.6 95255.6 2010 0.0 0.0 983.0 0.0 0.0 3172.0 93536.6 95255.6 2010 0.0 0.0 983.0 0.0 0.0 3172.0 10200.9 104395.9 2012 0.0 0.0 983.0 0.0 0.0 3172.0 10200.9 104395.9 2012 0.0 0.0 983.0 0.0 0.0 3172.0 10200.9 104395.9 2012 0.0 0.0 983.0 0.0 0.0 3172.0 10200.9 104395.9 2012 0.0 0.0 983.0 0.0 0.0 3172.0 105266.1 107365.1 2013 0.0 0.0 983.0 0.0 0.0 3172.0 105266.1 107365.1 2014 0.0 0.0 983.0 0.0 3172.0 105454.4 110623.4 2014 0.0 0.0 983.0 0.0 3172.0 105454.4 110623.4 2014 0.0 0.0 983.0 0.0 3172.0 105454.4 110623.4 2014 0.0 0.0 983.0 0.0 3172.0 115039.9 117227.0 2016 0.0 0.0 983.0 0.0 3172.0 115039.9 117227.0 2016 0.0 0.0 983.0 0.0 3172.0 115039.9 117227.0 2016 0.0 0.0 983.0 0.0 3172.0 115039.9 117227.0 2016 0.0 0.0 983.0 0.0 0.0 3172.0 115039.9 117227.0 2016 0.0 0.0 983.0 0.0 0.0 3172.0 115039.9 117227.0 2016 0.0 0.0 983.0 0.0 0.0 3172.0 115039.9 117227.0 2018 0.0 0.0 983.0 0.0 0.0 3172.0 115039.9 117227.0 2018 0.0 0.0 983.0 0.0 0.0 3172.0 115039.9 117227.0 2018 0.0 0.0 983.0 0.0 0.0 3172.0 125765.0 127394.0 2019 0.0 0.0 983.0 0.0 0.0 3172.0 125765.0 127394.0 2019 0.0 0.0 983.0 0.0 0.0 3172.0 125765.0 127394.0 2019 0.0 0.0 983.0 0.0 0.0 3172.0 125765.0 127394.0 2019 0.0 0.0 983.0 0.0 0.0 3172.0 135369.4 216594.5 2020 0.0 0.0 0.0 983.0 0.0 0.0 3172.0 135369.4 216594.5 2020 0.0 0.0 0.0 983.0 0.0 0.0 3172.0 135369.4 216594.5 22620 0.0 0.0 0.0 983.0 0.0 0.0 3172.0 135369.4 216594.5 22620 0.0 0.0 0.0 983.0 0.0 0.0 3172.0 135369.4 216594.5 22620 0.0 0.0 0.0 983.0 0.0 0.0 3172.0 135369.4 216594.5 22629.5 0.0 0.0 0.0 983.0 0.0 0.0 3172.0 135369.4 216593.3 1712238.3 22636 0.0 0.0 0.0 983.0 0.0 0.0 31	2001			983.0			76053.2	
2004 0.0 0.0 933.0 23012.9 3172.0 83106.1 103523.0 2005 0.0 0.0 933.0 80545.2 3172.0 35547.3 168333.4 21066 0.0 0.0 933.0 11506.5 3172.0 36167.2 101662.7 2007 0.0 0.0 933.0 0.0 3172.0 90312.2 93001.2 2008 0.0 0.0 933.0 0.0 3172.0 90312.2 93001.2 2008 0.0 0.0 933.0 0.0 3172.0 93536.4 95725.6 2009 0.0 0.0 933.0 0.0 3172.0 96342.6 95531.6 2010 0.0 0.0 933.0 0.0 3172.0 96342.6 95531.6 2010 0.0 0.0 933.0 0.0 3172.0 96342.6 95531.6 2010 0.0 0.0 933.0 0.0 3172.0 102207.9 104395.9 2012 0.0 0.0 933.0 0.0 3172.0 102207.9 104395.9 2012 0.0 0.0 943.0 0.0 3172.0 102207.9 104395.6 2013 0.0 0.0 943.0 0.0 3172.0 103526.1 127465.1 2013 0.0 0.0 943.0 0.0 3172.0 103526.1 127465.1 2013 0.0 0.0 943.0 0.0 3172.0 103526.1 127465.1 2015 0.0 0.0 943.0 0.0 3172.0 103526.1 127465.1 2015 0.0 0.0 943.0 0.0 3172.0 10353.4 11023.4 2014 0.0 0.0 943.0 0.0 3172.0 10353.4 11023.4 2014 0.0 0.0 943.0 0.0 3172.0 11047.4 11356.5 2015 0.0 0.0 943.0 0.0 3172.0 11047.4 11356.5 2015 0.0 0.0 943.0 0.0 3172.0 11047.4 11356.5 2016 0.0 0.0 943.0 0.0 3172.0 11247.4 11356.5 2016 0.0 0.0 943.0 0.0 3172.0 122043.5 124222.3 2016 0.0 0.0 943.0 0.0 3172.0 122043.5 12422.3 2018 0.0 0.0 943.0 0.0 3172.0 122043.5 12422.3 2018 0.0 0.0 943.0 0.0 3172.0 122043.5 12422.3 2018 0.0 0.0 943.0 0.0 3172.0 122043.5 12422.3 2019 0.0 0.0 943.0 3054512 3172.0 129476.2 154673.1 2020 0.0 0.0 0.0 943.0 3054512 3172.0 129476.2 154673.1 2021 0.0 0.0 943.0 3054512 3172.0 129476.2 154673.1 2022 0.0 0.0 0.0 943.0 3054512 3172.0 129476.2 154673.1 2022 0.0 0.0 0.0 943.0 0.0 0.0 3172.0 145420.1 14442.0 143571.0 2021 0.0 0.0 943.0 0.0 0.0 3172.0 145420.3 14749.1 21596.7 2022 0.0 0.0 0.0 943.0 0.0 0.0 3172.0 145420.3 14749.3 126094.6 2021 0.0 0.0 943.0 0.0 0.0 3172.0 145400.1 143571.0 2022 0.0 0.0 0.0 943.0 0.0 0.0 3172.0 145400.3 152609.2 156693.2 2024 0.0 0.0 0.0 943.0 0.0 0.0 3172.0 145400.3 152609.2 156693.2 2024 0.0 0.0 0.0 943.0 0.0 0.0 3172.0 145400.3 156693.3 171155.5 2024 0.0 0.0 0.0 943.0 0.0 0.0 3172.0 145400.6 1584793.3 2030 0.0 0.0 0.0 943.0 0.0 0.0 3172.0 145400.6 186793.3 17115	2002.		0.0	933.0	0,0	3172.0 -	78335.5	30524.5
2005 0.0 0.0 93.0 80545.2 3172.0 35597.3 16333.4 2006 0.0 0.0 93.0 11506.5 3172.0 35597.3 16333.4 2007 0.0 0.0 93.0 11506.5 3172.0 90812.2 93001.2 2008 0.0 0.0 93.0 0.0 3172.0 90812.2 93001.2 2008 0.0 0.0 93.0 0.0 3172.0 95536.6 95725.6 2010 0.0 0.0 93.0 0.0 3172.0 95536.6 95725.6 2010 0.0 0.0 93.0 0.0 3172.0 95536.6 95725.6 2010 0.0 0.0 93.0 0.0 3172.0 95536.6 95725.6 2010 0.0 0.0 0.0 93.0 0.0 3172.0 102207.9 103495.9 2012 0.0 0.0 93.0 0.0 3172.0 102207.9 103495.1 2013 0.0 0.0 93.0 0.0 3172.0 102207.9 103495.1 2013 0.0 0.0 93.0 0.0 3172.0 102207.9 103495.1 2014 0.0 0.0 93.0 0.0 3172.0 103234.4 11023.4 2014 0.0 0.0 93.0 0.0 3172.0 103234.4 11023.4 2014 0.0 0.0 93.0 0.0 3172.0 103434.4 11023.4 2014 0.0 0.0 93.0 0.0 3172.0 115354.4 11023.4 2014 0.0 0.0 983.0 0.0 3172.0 115354.4 1134/6.6 2015 0.0 0.0 983.0 0.0 3172.0 115354.4 1134/6.6 2016 0.0 0.0 983.0 0.0 3172.0 115035.9 117227.6 2016 0.0 0.0 983.0 0.0 3172.0 115035.9 117227.6 2018 0.0 0.0 983.0 0.0 3172.0 12043.4 12437.3 129378.1 2017 0.0 0.0 983.0 0.0 3172.0 12043.4 12437.3 129378.1 2017 0.0 0.0 983.0 0.0 3172.0 12043.5 124374.0 2019 0.0 0.0 983.0 200 3172.0 12043.5 124374.0 2019 0.0 0.0 983.0 200 3172.0 12043.5 124374.0 2019 0.0 0.0 983.0 200 3172.0 12043.5 124374.0 2019 0.0 0.0 983.0 200 3172.0 12045.0 12334.0 2020 0.0 0.0 0.0 983.0 200 3172.0 12045.0 12334.0 2020 0.0 0.0 0.0 983.0 200 3172.0 120476.2 156403.1 2022 0.0 0.0 0.0 983.0 200 3172.0 120476.2 156403.2 2021 0.0 0.0 983.0 200 0.0 3172.0 15003.3 122271.3 2024 0.0 0.0 983.0 200 0.0 3172.0 15003.3 122271.3 2024 0.0 0.0 983.0 200 0.0 3172.0 150001.2 156403.2 151356.7 2022 0.0 0.0 0.0 983.0 200 0.0 3172.0 150001.2 156403.2 2023 0.0 0.0 0.0 983.0 200 0.0 3172.0 150001.2 156403.2 2024 0.0 0.0 983.0 200 0.0 3172.0 150001.2 156403.2 2024 0.0 0.0 983.0 200 0.0 3172.0 150001.2 156403.2 2024 0.0 0.0 983.0 200 0.0 3172.0 150001.2 156403.2 2024 0.0 0.0 0.0 983.0 200 0.0 3172.0 150001.2 156403.2 2024 0.0 0.0 0.0 983.0 200 0.0 3172.0 150001.2 156403.2 2024 0.0 0.0 0.0 983.0 200 0.0 3172.0 150001.2 156403.3 1711223.2			and the second of the second o					
2006							_ 83106-1	
2007				983.0	80545.2			
2008								01001.3
2010 0.0 0.0 983.0 0.0 3172.0 98342.6 98531.6 2011 0.0 0.0 983.0 0.0 3172.0 92252.9 101421.7 2011 0.0 0.0 983.0 0.0 3172.0 102207.9 104393.9 2012 0.0 0.0 983.0 0.0 3172.0 105276.1 197465.1 2013 0.0 0.0 983.0 0.0 3172.0 105454.4 110623.4 2014 0.0 0.0 983.0 0.0 3172.0 115635.1 117427.6 2015 0.0 0.0 983.0 0.0 3172.0 115637.4 113376.4 2016 0.0 0.0 983.0 0.0 3172.0 115637.4 113376.4 2017 0.0 0.0 983.0 0.0 3172.0 115035.0 117227.6 2018 0.0 0.0 983.0 0.0 3172.0 12043.3 124232.3 2018 0.0 0.0 983.0 0.0 3172.0 12043.3 124232.3 2019 0.0 0.0 983.0 0.0 3172.0 12043.3 124232.3 2010 0.0 0.0 983.0 0.0 3172.0 12043.3 124232.3 2011 0.0 0.0 983.0 0.0 3172.0 12043.3 124232.3 2012 0.0 0.0 983.0 0.0 3172.0 120476.2 154678.1 2020 0.0 0.0 983.0 30545.2 3172.0 13733.1 2 151356.7 2021 0.0 0.0 983.0 11506.5 3172.0 137331.2 151356.7 2022 0.0 0.0 983.0 0.0 3172.0 137331.2 151356.7 2023 0.0 0.0 983.0 0.0 3172.0 137331.2 151356.7 2024 0.0 0.0 983.0 0.0 3172.0 144142.0 143511.0 2025 0.0 0.0 983.0 0.0 3172.0 144142.0 143511.0 2026 0.0 0.0 983.0 0.0 3172.0 154016.3 16605.3 2027 0.0 0.0 983.0 0.0 0.0 3172.0 154016.3 16605.3 2028 0.0 0.0 983.0 0.0 0.0 3172.0 154016.3 16625.3 2028 0.0 0.0 983.0 0.0 0.0 3172.0 154016.3 16625.3 2029 0.0 0.0 983.0 0.0 0.0 3172.0 154016.3 16625.3 2020 0.0 0.0 983.0 0.0 0.0 3172.0 154016.3 16625.3 2020 0.0 0.0 983.0 0.0 0.0 3172.0 164016.3 16625.3 2020 0.0 0.0 983.0 0.0 0.0 3172.0 164016.3 16625.3 2020 0.0 0.0 983.0 0.0 0.0 3172.0 164016.3 166225.3 2020 0.0 0.0 983.0 0.0 0.0 3172.0 164016.3 166225.3 2020 0.0 0.0 0.0 983.0 0.0 0.0 3172.0 164016.3 166225.3 2020 0.0 0.0 0.0 983.0 0.0 0.0 3172.0 164016.3 166225.3 2020 0.0 0.0 0.0 983.0 0.0 0.0 3172.0 164016.3 166225.3 2020 0.0 0.0 0.0 983.0 0.0 0.0 3172.0 164016.3 166225.3 2020 0.0 0.0 0.0 983.0 0.0 0.0 3172.0 164016.3 166225.3 2020 0.0 0.0 0.0 983.0 0.0 0.0 3172.0 164016.3 166225.3 2031 0.0 0.0 0.0 983.0 0.0 0.0 3172.0 164016.3 166225.3 2032 0.0 0.0 0.0 983.0 0.0 0.0 3172.0 17409.6 220000.3 2035 0.0 0.0 0.0 983.0 0.0 0.0 3172.0 220423.3 226025.4 2036 0.0 0.0 0.0 983.0 0.0								
2010 0.0 0.0 983.0 0.0 3172.0 192209.9 104395.9 2012 0.0 0.0 983.0 0.0 3172.0 102209.9 104395.9 2012 0.0 0.0 983.0 0.0 3172.0 105276.1 197465.1 2013 0.0 0.0 983.0 0.0 3172.0 108434.4 110623.4 2014 0.0 0.0 983.0 0.0 3172.0 113637.4 11367.4 2015 0.0 0.0 983.0 0.0 3172.0 115038.9 117227.0 2016 0.0 0.0 983.0 0.0 3172.0 115038.9 117227.0 2018 0.0 0.0 983.0 0.0 3172.0 115038.9 117227.0 2018 0.0 0.0 983.0 0.0 3172.0 125705.0 127394.0 2019 0.0 0.0 983.0 0.0 3172.0 125705.0 127394.0 2019 0.0 0.0 983.0 0.0 3172.0 125705.0 127394.0 2010 0.0 0.0 983.0 0.0 3172.0 129476.2 154678.1 2020 0.0 0.0 983.0 11506.5 3172.0 1333694.4 216074.6 2021 0.0 0.0 983.0 11506.5 3172.0 137361.2 151056.7 2022 0.0 0.0 0.0 983.0 0.0 3172.0 137361.2 151056.7 2022 0.0 0.0 0.0 983.0 0.0 3172.0 14442.0 143571.0 2023 0.0 0.0 983.0 0.0 3172.0 1517361.2 151056.7 2024 0.0 0.0 983.0 0.0 3172.0 1517361.2 151056.7 2025 0.0 0.0 0.0 983.0 0.0 3172.0 1517361.2 151056.7 2026 0.0 0.0 983.0 0.0 3172.0 1517361.2 151056.7 2027 0.0 0.0 983.0 0.0 3172.0 164016.3 166295.3 2028 0.0 0.0 983.0 0.0 3172.0 164016.3 166295.3 2028 0.0 0.0 983.0 0.0 3172.0 164016.3 166295.3 2028 0.0 0.0 983.0 0.0 3172.0 168036.8 171125.3 2028 0.0 0.0 983.0 0.0 3172.0 168036.8 171125.3 2028 0.0 0.0 983.0 0.0 3172.0 168036.8 171125.3 2028 0.0 0.0 983.0 0.0 3172.0 168036.8 171125.3 2028 0.0 0.0 983.0 0.0 3172.0 168036.8 171125.3 2028 0.0 0.0 0.0 983.0 0.0 3172.0 168036.8 171125.3 2028 0.0 0.0 0.0 983.0 0.0 3172.0 168036.3 171125.3 2028 0.0 0.0 0.0 983.0 0.0 3172.0 168036.3 171125.3 2028 0.0 0.0 0.0 983.0 0.0 3172.0 188001.2 156790.2 2031 0.0 0.0 0.0 983.0 0.0 3172.0 188001.2 156790.2 2031 0.0 0.0 0.0 983.0 0.0 3172.0 188001.2 156790.3 2031 0.0 0.0 0.0 983.0 0.0 3172.0 188001.6 188790.6 2032 0.0 0.0 0.0 983.0 0.0 3172.0 188001.6 188790.6 2033 0.0 0.0 0.0 983.0 0.0 3172.0 188001.6 188790.6 2034 0.0 0.0 0.0 983.0 0.0 3172.0 188001.6 188790.6 2035 0.0 0.0 0.0 983.0 0.0 3172.0 2201710.6 2202725.5 2036 0.0 0.0 0.0 983.0 0.0 3172.0 2201710.6 2201710.6 2201710.6								
2012 0.0 0.0 983.0 0.0 3172.0 105276.1 107465.1 2014 0.0 0.0 983.0 0.0 3172.0 115636.4 110623.4 2014 0.0 0.0 983.0 0.0 3172.0 115636.4 110623.4 2015 0.0 0.0 983.0 0.0 3172.0 115038.0 117227.0 2015 0.0 0.0 983.0 0.0 3172.0 115038.0 117227.0 2016 0.0 0.0 983.0 0.0 3172.0 115038.0 117227.0 2016 0.0 0.0 983.0 0.0 3172.0 125038.0 127239.0 2018 0.0 0.0 983.0 0.0 3172.0 125205.0 127394.0 2019 0.0 0.0 983.0 23012.9 3172.0 125205.0 127394.0 2019 0.0 0.0 983.0 23012.9 3172.0 125205.0 127394.0 2019 0.0 0.0 983.0 23012.9 3172.0 133369.4 2160994.6 2021 0.0 0.0 983.0 11508.5 3172.0 137361.2 151056.7 2022 0.0 0.0 0.0 983.0 11508.5 3172.0 137361.2 151056.7 2022 0.0 0.0 0.0 983.0 0.0 0.0 3172.0 145120.5 141422.0 143571.0 2023 0.0 0.0 0.0 983.0 0.0 0.0 3172.0 145120.5 147915.5 2024 0.0 0.0 983.0 0.0 0.0 3172.0 145120.5 147915.5 2024 0.0 0.0 983.0 0.0 0.0 3172.0 145120.5 147915.5 2024 0.0 0.0 983.0 0.0 0.0 3172.0 145120.5 147915.5 2025 0.0 0.0 0.0 983.0 0.0 0.0 3172.0 150093.3 15229713 2025 0.0 0.0 0.0 983.0 0.0 0.0 3172.0 150093.3 15229713 2025 0.0 0.0 0.0 983.0 0.0 0.0 3172.0 150093.3 15229713 2025 0.0 0.0 0.0 983.0 0.0 0.0 3172.0 150093.3 15229713 2025 0.0 0.0 0.0 983.0 0.0 0.0 3172.0 150093.3 1662253 2026 0.0 0.0 0.0 983.0 0.0 0.0 3172.0 150093.3 162253 2026 0.0 0.0 0.0 983.0 0.0 0.0 3172.0 164016.3 1662253 2026 0.0 0.0 0.0 983.0 0.0 0.0 3172.0 164016.3 1662253 2026 0.0 0.0 0.0 983.0 0.0 0.0 3172.0 164016.3 16428.2 2028 0.0 0.0 0.0 983.0 0.0 0.0 3172.0 164016.3 16428.2 2028 0.0 0.0 0.0 983.0 0.0 0.0 3172.0 164016.3 16428.2 2028 0.0 0.0 0.0 983.0 0.0 0.0 3172.0 164016.3 16428.2 2028 0.0 0.0 0.0 983.0 0.0 0.0 3172.0 164016.3 16428.2 2028 0.0 0.0 0.0 983.0 0.0 0.0 3172.0 164016.3 16428.2 2028 0.0 0.0 0.0 983.0 0.0 0.0 3172.0 164016.3 16428.2 2028 0.0 0.0 0.0 983.0 0.0 0.0 3172.0 164016.3 16428.2 2028 0.0 0.0 0.0 983.0 0.0 0.0 3172.0 164016.3 16428.2 2028.2 2028 0.0 0.0 0.0 983.0 0.0 0.0 3172.0 164016.3 16428.2 2028.2 2028 0.0 0.0 0.0 983.0 0.0 0.0 3172.0 164016.3 16428.2 2028.2 2028 0.0 0.0 0.0 983.0 0.0 0.0 3172.0 164016.3 2272						317240		
2013 0.0 0.0 983.0 0.0 3172.0 108454.4 110623.4 2015 0.0 0.0 983.0 0.0 3172.0 111647.4 1133f6.4 2015 0.0 0.0 983.0 0.0 3172.0 115035.0 117227.0 2016 0.0 0.0 983.0 0.0 3172.0 118439.1 120578.1 2017 0.0 0.0 983.0 0.0 3172.0 122043.5 124232.3 2018 0.0 0.0 983.0 0.0 3172.0 122043.5 124232.3 2019 0.0 0.0 983.0 0.0 3172.0 1294f6.2 154678.1 2020 0.0 0.0 983.0 23012.9 3772.0 1294f6.2 154678.1 2020 0.0 0.0 983.0 8054512 3172.0 133369.4 216094.6 2021 0.0 0.0 983.0 11508.5 3172.0 137369.2 151056.7 2022 0.0 0.0 983.0 0.0 3172.0 145422.3 154078.1 2023 0.0 0.0 983.0 0.0 3172.0 145422.3 14739.5 2024 0.0 0.0 983.0 0.0 3172.0 145422.3 14739.5 2024 0.0 0.0 983.0 0.0 3172.0 145422.3 14739.5 2025 0.0 0.0 983.0 0.0 3172.0 145422.3 14739.5 2026 0.0 0.0 983.0 0.0 0.0 3172.0 145422.3 156672.2 2027 0.0 0.0 983.0 0.0 0.0 3172.0 150093.5 15223713.2 2028 0.0 0.0 983.0 0.0 0.0 3172.0 1546016.3 166205.3 2029 0.0 0.0 983.0 0.0 0.0 3172.0 164016.3 166205.3 2029 0.0 0.0 983.0 0.0 0.0 3172.0 164016.3 166205.3 2029 0.0 0.0 983.0 0.0 0.0 3172.0 164016.3 166205.3 2029 0.0 0.0 983.0 0.0 0.0 3172.0 164016.3 176195.3 2029 0.0 0.0 983.0 0.0 0.0 3172.0 164016.3 166205.3 2029 0.0 0.0 983.0 0.0 0.0 3172.0 164016.3 166205.3 2029 0.0 0.0 983.0 0.0 0.0 3172.0 164016.3 166205.3 2020 0.0 0.0 983.0 0.0 0.0 3172.0 164016.3 166205.3 2020 0.0 0.0 983.0 0.0 0.0 3172.0 164016.3 166205.3 2020 0.0 0.0 983.0 0.0 0.0 3172.0 164016.3 166205.3 2020 0.0 0.0 983.0 0.0 0.0 3172.0 164016.3 176195.3 2030 0.0 0.0 0.0 983.0 0.0 0.0 3172.0 164016.3 176195.3 2031 0.0 0.0 0.0 983.0 0.0 0.0 3172.0 164016.3 176195.3 2032 0.0 0.0 0.0 983.0 0.0 0.0 3172.0 164016.3 176195.3 2033 0.0 0.0 0.0 983.0 0.0 0.0 3172.0 164016.3 176195.3 2034 0.0 0.0 0.0 983.0 0.0 0.0 3172.0 164016.3 176195.3 2035 0.0 0.0 0.0 983.0 0.0 0.0 3172.0 164016.3 176195.3 2036 0.0 0.0 0.0 983.0 0.0 0.0 3172.0 184001.6 18679.6 2037 0.0 0.0 0.0 983.0 0.0 0.0 3172.0 207776.6 220225.6 2036 0.0 0.0 0.0 983.0 0.0 0.0 3172.0 207776.6 220225.6 2037 0.0 0.0 0.0 983.0 0.0 0.0 3172.0 207776.6 220225.6 2039 0.0 0.0 0.0 983.0 0.0 0	1005	0.0	0.0			3172.0	102207.9	104395.9
2014				983.0	<u> </u>	3)/2.0_	_10\$226.1	107465; 1
2015			The state of the s			21,45.0		110623.4
2016						\$1 {{		1133(8,6
2017	2012				V.0	3) (2, 0,		
2018						3172.0		
2019 0.0 0.0 983.0 23012.9 3172.0 129476.2 154678.1 2020 0.0 0.0 983.0 8054512 3172.0 133360.4 216394.6 2021 0.0 0.0 983.0 11508.5 3172.0 133360.4 216394.6 2022 0.0 0.0 983.0 0.0 3172.0 14542.0 143571.0 2023 0.0 0.0 983.0 0.0 0.0 3172.0 14542.0 143571.5 2024 0.0 0.0 983.0 0.0 0.0 3172.0 150893.3 15223713 2025 0.0 0.0 983.0 0.0 0.0 3172.0 150893.3 15223713 2025 0.0 0.0 983.0 0.0 3172.0 156601.2 156690.2 2026 0.0 0.0 983.0 0.0 3172.0 156601.2 156690.2 2026 0.0 0.0 983.0 0.0 3172.0 156601.2 156690.2 2026 0.0 0.0 983.0 0.0 3172.0 166016.3 166255.3 2028 0.0 0.0 983.0 0.0 3172.0 166016.3 166255.3 2028 0.0 0.0 983.0 0.0 3172.0 168988.3 171125.3 2029 0.0 0.0 983.0 0.0 3172.0 168988.3 171125.3 2029 0.0 0.0 983.0 0.0 3172.0 168988.3 171125.3 2030 0.0 0.0 983.0 0.0 3172.0 168938.3 171125.3 2030 0.0 0.0 983.0 0.0 3172.0 168938.3 171125.3 2030 0.0 0.0 983.0 0.0 3172.0 168938.3 171125.3 2030 0.0 0.0 983.0 0.0 3172.0 168938.3 171125.3 2030 0.0 0.0 983.0 0.0 3172.0 172224.9 181413.9 2031 0.0 0.0 983.0 0.0 3172.0 172224.9 181413.9 2031 0.0 0.0 983.0 0.0 3172.0 193383.3 193037.8 2035 0.0 0.0 983.0 0.0 3172.0 193383.3 193037.8 2035 0.0 0.0 983.0 0.0 3172.0 203719.1 228927.0 2035 0.0 0.0 983.0 0.0 3172.0 203719.1 228927.0 2035 0.0 0.0 983.0 0.0 3172.0 203719.1 228927.0 2035 0.0 0.0 983.0 0.0 3172.0 203719.3 228927.0 2035 0.0 0.0 983.0 0.0 3172.0 203719.3 228927.0 2035 0.0 0.0 983.0 0.0 3172.0 203719.3 228927.0 2035 0.0 0.0 983.0 0.0 3172.0 203719.3 228927.0 2035 0.0 0.0 983.0 0.0 3172.0 203719.3 228927.0 2035 0.0 0.0 983.0 0.0 3172.0 203719.3 228927.5 228927.5 2035 0.0 0.0 983.0 0.0 3172.0 233647.4 236636.4 2040 0.0 0.0 983.0 0.0 3172.0 233647.4 236636.4 2040 0.0 0.0 983.0 0.0 0.0 3172.0 233647.4 236636.4 2040 0.0 0.0 983.0 0.0 0.0 3172.0 233647.4 236636.4 2040 0.0 0.0 983.0 0.0 0.0 3172.0 233647.4 236636.4 2040 0.0 0.0 983.0 0.0 0.0 3172.0 233647.4 236636.4 2040 0.0 0.0 983.0 0.0 0.0 3172.0 233647.4 236636.4 2040 0.0 0.0 983.0 0.0 0.0 3172.0 233647.4 236636.4 2040 0.0 0.0 983.0 0.0 0.0 0.0 3172.0 233647.4 236636.4 2040 0.0 0.0 0.		1 1	4 A 4 A 4 A 4 A 4 A 4 A 4 A 4 A 4 A 4 A	983.0		3172.0		
2021 0.0 0.0 983.0 11508.5 3172.0 1373.6 1.2 151258.7 2022 0.0 0.0 983.0 0.0 3172.0 14142.0 143271.0 2023 0.0 0.0 983.0 0.0 3172.0 145126.5 147913.5 2024 0.0 0.0 983.0 0.0 3172.0 150093.5 15223713 2025 0.0 0.0 983.0 0.0 3172.0 150093.5 15223713 2025 0.0 0.0 983.0 0.0 3172.0 150093.5 15223713 2026 0.0 0.0 983.0 0.0 3172.0 154016.3 16622513 2028 0.0 0.0 983.0 0.0 3172.0 164016.3 16622513 2028 0.0 0.0 983.0 0.0 3172.0 164016.3 16622513 2028 0.0 0.0 983.0 0.0 3172.0 168938.3 171125.3 2029 0.0 0.0 983.0 0.0 3172.0 168938.3 171125.3 2030 0.0 0.0 983.0 0.0 3172.0 174234.3 17619313 2031 0.0 0.0 983.0 0.0 3172.0 174234.3 17619313 2031 0.0 0.0 983.0 0.0 3172.0 184601.6 186790.6 2031 0.0 0.0 983.0 0.0 3172.0 184601.6 186790.6 2032 0.0 0.0 983.0 0.0 3172.0 184601.6 186790.6 2032 0.0 0.0 983.0 0.0 3172.0 195343.3 193037.8 2036 0.0 0.0 983.0 0.0 3172.0 195343.3 193037.8 2036 0.0 0.0 983.0 23012.9 3172.0 203719.0 22687.2 2033 0.0 0.0 983.0 23012.9 3172.0 203719.0 22687.2 2035 0.0 0.0 983.0 23012.9 3172.0 203719.0 22687.2 20350.3 2036 0.0 0.0 983.0 23012.9 3172.0 203719.6 220500.3 2035 0.0 0.0 983.0 23012.9 3172.0 203719.6 220500.3 2035 0.0 0.0 983.0 23012.9 3172.0 203719.6 220423.3 226012.5 2037 0.0 0.0 983.0 0.0 3172.0 203247.4 226012.5 220423.3 226012.5 2037 0.0 0.0 983.0 0.0 3172.0 233247.4 236036.4 229225.6 2039 0.0 0.0 983.0 0.0 3172.0 233247.4 236036.4 229225.6 2039 0.0 0.0 983.0 0.0 3172.0 233247.4 236036.4 229225.6 2049				983.0		3372.0		
2022 0.0 0.0 983.0 0.0 3172.0 145726.5 147915.5 2024 0.0 0.0 983.0 0.0 3172.0 145726.5 147915.5 2024 0.0 0.0 983.0 0.0 3172.0 150093.5 152797.3 2025 0.0 0.0 983.0 0.0 3172.0 156691.2 156790.2 2026 0.0 0.0 983.0 0.0 3172.0 156691.2 156790.2 2026 0.0 0.0 983.0 0.0 3172.0 154691.2 156790.2 2027 0.0 0.0 983.0 0.0 3172.0 164016.3 166295.3 2028 0.0 0.0 983.0 0.0 3172.0 164016.3 166295.3 2028 0.0 0.0 983.0 0.0 3172.0 164916.3 166295.3 2029 0.0 0.0 983.0 0.0 3172.0 174936.3 171125.3 2030 0.0 0.0 983.0 0.0 3172.0 174936.3 176195.3 2031 0.0 0.0 983.0 0.0 3172.0 174926.9 181413.0 2031 0.0 0.0 983.0 0.0 3172.0 174926.9 181413.0 2031 0.0 0.0 983.0 0.0 3172.0 184601.6 186790.6 2032 0.0 0.0 983.0 0.0 3172.0 184601.6 186790.6 2032 0.0 0.0 983.0 0.0 3172.0 184601.6 186790.6 2032 0.0 0.0 983.0 0.0 3172.0 189132.7 192328.7 2033 0.0 0.0 983.0 0.0 3172.0 189132.7 192328.7 2033 0.0 0.0 983.0 23012.9 3172.0 201719.0 226822.9 2035 0.0 0.0 983.0 23012.9 3172.0 201719.0 226822.9 2035 0.0 0.0 983.0 23012.9 3172.0 201719.0 226822.9 2035 0.0 0.0 983.0 23012.9 3172.0 201719.0 226822.9 227699.2 2035 0.0 0.0 983.0 0.0 3172.0 20423.3 227699.2 2035 0.0 0.0 983.0 0.0 3172.0 23847.4 226036.4 229225.6 2039 0.0 0.0 983.0 0.0 3172.0 23847.4 226036.6 229225.6 2039 0.0 0.0 983.0 0.0 3172.0 23847.4 226036.6 229225.6 2039 0.0 0.0 983.0 0.0 3172.0 23847.4 226036.6 229225.6 2039 0.0 0.0 983.0 0.0 3172.0 23847.4 226036.6 229225.6 2040 0.0 0.0 983.0 0.0 3172.0 23847.4 226036.6 229225.6 2040 0.0 0.0 983.0 0.0 3172.0 23847.4 226036.6 229225.6 2040 0.0 0.0 983.0 0.0 3172.0 23847.4 226036.6 229225.6 2040 0.0 0.0 983.0 0.0 3172.0 23847.4 226036.6 229225.6 2040 0.0 0.0 983.0 0.0 3172.0 23847.4 226036.6 229225.6 2040 0.0 0.0 983.0 0.0 3172.0 238403.0 240362.9 245051.9 2	5050	0.0	0.0	_ \$83 _. 0	8054512		_133360.4	216394.6
2023				983.0		3172.0	しんしょうしん こうさん	
2024 0.0 0.0 983.0 0.0 3172.0 150.093.3 152757.3 2025 0.0 0.0 983.0 0.0 3172.0 156601.2 15670.2 2026 0.0 0.0 933.0 0.0 3172.0 159239.2 161428.2 2027 0.0 0.0 983.0 0.0 3172.0 164016.3 166255.3 2028 0.0 0.0 983.0 0.0 3172.0 164936.3 171125.3 2029 0.0 0.0 983.0 0.0 3172.0 174034.3 171125.3 2030 0.0 0.0 983.0 0.0 3172.0 174034.3 176193.3 2031 0.0 0.0 983.0 0.0 3172.0 174034.3 181413.9 2031 0.0 0.0 983.0 0.0 3172.0 184601.6 186703.6 2032 0.0 0.0 983.0 0.0 3172.0 184601.6 186703.6 2033 0.0 0.0 983.0 0.0 3172.0 184601.6 186703.6 2033 0.0 0.0 983.0 0.0 3172.0 195343.3 198037.8 2036 0.0 0.0 983.0 0.0 3172.0 195343.3 198037.8 2037 0.0 0.0 983.0 23012.9 3172.0 207770.6 290508.3 2038 0.0 0.0 983.0 30585.2 3172.0 207770.6 290508.3 2038 0.0 0.0 983.0 30585.2 3172.0 207770.6 290508.3 2038 0.0 0.0 983.0 30585.2 3172.0 207770.6 290508.3 2039 0.0 0.0 983.0 0.0 3172.0 235647.4 236636.4 2040 0.0 0.0 983.0 0.0 3172.0 235647.4 236636.4						<u>317240</u>		
2025						317240		
2026 0.0 0.0 9330 0.0 3172.0 159239.2 161420.2 2027 0.0 0.0 9330 0.0 3172.0 164016.3 166255.3 2028 0.0 0.0 9330 0.0 3172.0 168936.3 171125.3 2029 0.0 0.0 9330 0.0 3172.0 174074.3 176193.3 2030 0.0 0.0 9430 0.0 3172.0 174074.3 176193.3 2031 0.0 0.0 9430 0.0 3172.0 184601.6 186707.6 2031 0.0 0.0 943.0 0.0 3172.0 184601.6 186707.6 2032 0.0 0.0 943.0 0.0 3172.0 190132.7 192326.7 2033 0.0 0.0 943.0 0.0 3172.0 190132.7 192326.7 2033 0.0 0.0 943.0 0.0 3172.0 190132.7 192326.7 2035 0.0 0.0 943.0 23012.9 3172.0 201719.1 226922.0 2035 0.0 0.0 943.0 23012.9 3172.0 201719.1 226922.0 2035 0.0 0.0 943.0 23012.9 3172.0 201719.1 226922.0 2035 0.0 0.0 943.0 11396.5 3172.0 201719.1 226922.0 2037 0.0 0.0 943.0 11396.5 3172.0 201719.3 227639.3 2036 0.0 0.0 943.0 11396.5 3172.0 20423.3 227639.3 2036 0.0 0.0 943.0 0.0 3172.0 23443.3 227639.3 227639.3 2036 0.0 0.0 943.0 0.0 3172.0 234036.4 229225.4 2039 0.0 0.0 943.0 0.0 3172.0 23344.4 236036.4 229425.4								
2027			and the second second					
2028 0.0 0.0 933.0 0.0 3172.0 168936.3 171123.3 2029 0.0 0.0 933.0 0.0 3172.0 174934.3 176193.3 2030 0.0 0.0 943.0 0.0 3172.0 174924.9 181413.9 2031 0.0 0.0 943.0 0.0 3172.0 184601.6 186793.6 2032 0.0 0.0 943.0 0.0 3172.0 190137.7 192328.7 2033 0.0 0.0 943.0 0.0 3172.0 190137.7 192328.7 2033 0.0 0.0 943.0 0.0 3172.0 190137.7 192328.7 2035 0.0 0.0 943.0 23012.9 3172.0 201719.1 226923.9 2035 0.0 0.0 943.0 23012.9 3172.0 201719.6 290504.3 2035 0.0 0.0 943.0 20345.2 3172.0 201719.6 290504.3 2035 0.0 0.0 943.0 11306.5 3172.0 201719.6 290504.3 2037 0.0 0.0 943.0 11306.5 3172.0 201719.6 220602.8 2037 0.0 0.0 943.0 11306.5 3172.0 220423.3 222602.8 2037 0.0 0.0 943.0 11306.5 3172.0 220423.3 222602.8 2039 0.0 0.0 943.0 0.0 3172.0 220423.3 2226512.8 2039 0.0 0.0 943.0 0.0 3172.0 220423.3 2226512.8 2039 0.0 0.0 943.0 0.0 3172.0 233247.4 236636.4 229225.4 2040 0.0 0.0 943.0 0.0 3172.0 240362.3 2453051.9								
2031 0.0 0.0 983.0 0.0 31/2.0 184601.6 18670).6 2032 0.0 0.0 933.0 0.0 31/2.0 190132.7 192328.7 2033 0.0 0.0 983.0 0.0 3172.0 195343.3 198032.8 2034 0.0 0.0 993.0 23012.9 3172.0 201719.1 226822.0 2035 0.0 0.0 923.0 2595.2 3172.0 201719.6 290508.3 2036 0.0 0.0 923.0 20585.2 3172.0 201719.6 290508.3 2037 0.0 0.0 923.0 11598.5 3172.0 214093.7 227639.2 2038 0.0 0.0 923.0 0.0 3172.0 227036.4 229225.4 2039 0.0 0.0 923.0 0.0 3172.0 233247.4 236036.4 2040 0.0 0.0 933.0 0.0 3172.0 233247.4 236036.4	\$058	0.0	0.0	93310				
2031 0.0 0.0 983.0 0.0 31/2.0 184601.6 18670).6 2032 0.0 0.0 933.0 0.0 31/2.0 190132.7 192328.7 2033 0.0 0.0 983.0 0.0 3172.0 195343.3 198032.8 2034 0.0 0.0 993.0 23012.9 3172.0 201719.1 226822.0 2035 0.0 0.0 923.0 2595.2 3172.0 201719.6 290508.3 2036 0.0 0.0 923.0 20585.2 3172.0 201719.6 290508.3 2037 0.0 0.0 923.0 11598.5 3172.0 214093.7 227639.2 2038 0.0 0.0 923.0 0.0 3172.0 227036.4 229225.4 2039 0.0 0.0 923.0 0.0 3172.0 233247.4 236036.4 2040 0.0 0.0 933.0 0.0 3172.0 233247.4 236036.4		0.0	0.0		0.0	3172,0		
2033				943.0			179224.9	181413.9
2033	2031	0.0	0.0	983.0	0.0	31/2/0	184601.6	18679).6
2036 0.0 0.0 943.0 23012.0 201/10.1 226423.6 200504.3 2035 0.0 0.0 923.0 60545.2 3172.0 201/10.6 220504.3 2036 0.0 0.0 923.0 11506.5 3)72.0 214005.7 227637.2 2037 0.0 0.0 923.0 0.0 3172.0 220423.3 227637.2 2038 0.0 0.0 923.0 0.0 3172.0 220423.3 227632.4 2039 0.0 0.0 923.0 0.0 3172.0 235647.4 236636.4 22040 0.0 923.0 0.0 3172.0 235647.4 236636.4 2040 0.0 923.0 0.0 3172.0 240362.2 245051.9	2032	0.0		A33.0		\$1\\$\io	1901 33.7	192328) 7
2035 0.0 0.0 983.0 80545.2 3172.0 2077/0.6 290508.3 2036 0.0 0.0 983.0 11508.5 3)72.0 214003.7 227698.2 2037 0.0 0.0 983.0 0.0 3172.0 220423.3 222612.4 2038 0.0 0.0 983.0 0.0 3172.0 227036.4 229225.6 2039 0.0 0.0 983.0 0.0 3172.0 23547.4 236036.4 2040 0.0 983.0 0.0 3172.0 240362.3 245051.3			υ•υ Λ Λ	7. E 40	31013.0			
2036								
2037 0.0 0.0 983.0 0.0 3172.0 220423.3 222632.3 22035.4 23036.4 220225.4 2039 0.0 0.0 983.0 0.0 3172.0 23547.4 236636.4 2040 0.0 983.0 0.0 3172.0 240382.3 245051.3 2040 0.0 983.0 240382.3 245051.3 240382.3 240382.3 245051.3 240382.3 245051.3 240382.3 245051.3 240382.3 240382.3 245051.3 245051.3 2450				921.0		3353	21400 8.2	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
2038 0.0 0.0 983.0 0.0 3172.0 227036.6 229225.6 2039 0.0 0.0 983.0 0.0 3172.0 235647.6 236636.6 2040 2040 2040 2040 2040 2040 2040 204					7.6	7.36	2204233	732/113
2039 0.0 0.0 953.0 0.0 3172.0 235647.6 236636.6 2040 0.0 245051.3				963.0	0.0	3) 72.0		
2040 0.0 0.0 983,0 24046222 243651.0 240	5039	0.0			0.0	3172,0	233547.4	
	2040	Q.p.	0.0	983.0	0.0	3122.0	240362,3	2450519
	5041	0.0	0.0	983.0	-46316.1	3155.0	248038.7	203961+6

Table.A.6.

NET PRESENT VALUES (THOUSAND MS)

---CASE 3 FUEL OIL (PRICE ESCALETION 3.0% PER ANNUM)---

4.4	·	PŘESENI	VALUES FOR	DESCOUNT, RAT	E	
YEAR	8\$	10\$	121	144	16%	135
1986	-5556.0	-5556.0	-5556.0	+5556.0	+5556.0	-5555.0
1985	-7426.9	-7291.3	-7161.6	+7056.0	-6714.7	-6777.5
1986	-14294.4	-13779.3	-13291.6	-12329.3	-12390.3	-11974.3
1987	-20785.7	-19672.4	-18637.3	-17673.5	-16//5.0	+1523614
1983	-33610.4	-31231.9	-59980.1	·27075.6	-25254.4	+2353545
1989	-40733.3	-37167.1	-33965.0	-31033.4	-53699.5	-26164.5
1990	-11239.5	-10067.7	-903641	-3125;7	- - 47350.5	-6506.7
1991	29493.2	- 25942.5	2286344	20203+5	. :1/337.3	
1992	32674.4	28213.5	2442611	21201.2	13467.4	16337.5
1993	31128.9	2458515 2468515	22439 i.6 20615 i 3	19135+2	<u>163</u> 62 <u>,7</u> 14514.1	14029.41
1994 1995	29657.3 28256.1	23091.5	12939.3	15587.1	12374.7	12233.5 10667.7
1996	26921.9	5190115	17401.0	140/1.3	11420.8	937547
1997	25651.4	2020716	15937.7	12701.5	10131.3	311245
998	24441.4	1890413	14689.5	11465.5	3937.7	7074.3
1999	23289.2	1763516	13497.1	10349.9	7.973.4	6169.9
5000	8.19155	1654519	12401.8	9343.2	7073.7	53.1.0.
2001	_ 21146, 2	15580 iQ	11325.7	8434.6	5275.7	4693.9
\$005	2015142	14483.1	10471.4	7614.5	5567.8	4923.1
2003	19203+1	1355047	<u>9</u> 622-3	6374.3	5939.9/	3\$73.0
2004	23237.3	16099.3	11228.0	7880.7	5565+5	3953.9
2005	33440.5	2274740	15580.9_	10744.1		5207.3
2006	18736.7	12513.4	841812	5703.1	3659.9	2673.6
<u>2007</u>	15837.6 15095.9	10386;2 9718:6	6862+4 6306+6	4567.5	<u> </u>	2345.4 1892.4
2609	14387:4	909411	5798.0	3723.5	2410.6	1572:3:
2010	13712.4	8509.9	5326.8	3362.1	2139.1	13/1/5
2011	13069.4	7963.3	4895.7	3035.8	1898.2	119646
2012	12456:7	7452.0	4499.5	2741.2	1634.4	1043:2
2013	1187340		4135.5	2475.2	1494.7	910.5
2014	11316.5	65261	3301.0	2235.1	1326.5	19413
2015	10786.8	6107.6	3693.6		1177.2	69219
2014	10581.8	5715.6	3211.1	1822+5	1044.7	60415
2017	9800.6	5349.1	2951.5	1645.8	927.1	527i4!
\$018	9342.1	500611	5,415.9	1486.2	355*8	460,1
2019	1046146	<u> </u>	2929.5	<u>1576-7_</u>	85Z-8	<u>421</u> -6
5050 4 2	1353249 8/59.2		335412	1932.3	1033.1	553.3
5055	7713.8	384110	228 <u>017</u> 193648	983.5	955.9	353.3
2023	7353.4	3595.0	1/80.4	892.7	\$10.5 453.1	256.6
2024	7009.9	3361.3	1636.6	808.3	402-1	205.4
2025	6582.6	3149.3	1504.5	728.2	356.9	127.1
\$059	6370.6	294747	1383.0	657.6	316.8	154.5
2027:	6073.3	2759.1	1271.4_	\$ 9 5 0	231.2	134.3
2025	5789.9	2582.5	1168.8	536.4	249.6	117.6
- 5055	5519.8	2417.3-	1074.4-	484.5		
5030	5262.3	5595.9	287.7	437.6	196.6	89.6
2031	5017.0	2117.9-	908.1	<u>_</u>	174.\$`	
5035	4793,1	1982.4	334.8	357.0	154.9	63.2
2033 <u></u> -	4560-1	: 1855.7	767.5		137.\$_	\$9•\$
2034	4535.3	1933.0	785.2	72 4 6 1	135.3	57,3
2035 <u></u> 2036	416242	160310			149.9	
2037	3767.8	142418			35.4	41.6
2033	3592.4	133313	504+1	195.6	75.8	30,1
2039	3425.1	1248.5.		::		28.3
2040	3265.7	1168.7	426.1	ે 15કે 1	59.7	55.4
2041.	2537.4	891.6.			43. 2	
TOTAL ' A A .	501153.2	291956.3	170220.5	95720.3	43273.4	17137.5

Table, A.7.
DIFFERENTIAL CASH FLOW SHEET (IHOUSAND MS)
---CASE 4: NATURAL GAS (CONSTANT PRICE)---

		1000		1147 %	4,34,545	_	54, 4,
YEAR		TEKAT	1.0	1 GAS			BENEFIT
	(CONST.)	(TRANS.)	(K-0)	(COAST.)	(0-4)	(FUFL)	
	- 4-			*	1 - 6 1 2 - 4		
1984	5556.0	0.0	0.0	0.0	0.0	9.0	-555630_
1985	8021.0		0.0	0.0	0.0	010	+3021.0
10.00	16673.0	0.0	· 0.0	0.9	9.0	0.0	-16673.0
	26134.0		0.0	6.0	0.0	0.0	-26124.0
		5209.6	7 - 7		0.0		-43/2616
1988				0.0		0.0	
1789	73754.0	9116.8	0.0	23012.9	0.0		
:	89284.0	9116.8	0.0:-	8054542	0:0:		
1991	87443.0	2604.8	405.0	1150615	9610	1563513	-6321415
1792	0.0	0.0	963.0	0.0	31/2:0.	3127127	3348048
1 / 93	0.0	6.0	9.4310	2 በ ነበ	317510	312/15/55	3345316
1994		0.0	9ć 3 · O		31/2+0	_3127137555.	3346016_
1995	0.0	0.0	933.0	0.0	317210	312/16/201	33453.6
1796_		0.0	933.0	0.0	31/2+9	312/11/	33459.6_
1997		0.0	963.0	0.0	3172.0	3127117	33457.5
1998	0.0-		933.0	0.0	_31/2+0:	31221.2	3345346
		0.0	98310	0.0	317210:	3127117:5	33450.6
1799				0.0	_317240-	_3127127	33450+6
\$000		. <u>₹.</u> 9 . 0 . 0					
5001	0.0	14 0.0	983.0	940	317240	312/15/19%	33447.6
5005	7 - 7	- 0.0			3172:0-	_312/1./	33453-5-
2003	7 - 7	.0.0	9*3.0	0.0	3175.0	312/17/	33480.6
2004_	0.0	0.0_	933.0	53015*&	5122:0	312/1-/	\$6+73-5-
2005	0.0	· • • • • • • • • • • • • • • • • • • •	983.0	80545.2	317210	312/11/	114335.3
— 2006 —	0.0-	n.o -	943.0	11506+5	3172.0	31271+7	44967.1-
2007	< i 0.0	0.0	933.0	0.0	317210	31271.7	33463.6
_ 2008			9è3èÒ	Ô.O	3172:0	_312/1.7	33.67.6_
2009	0.0	0.0	98310	0.0	3172.0	3127117	33453.6.
2010	0.0		983.0	0.0	3122+0	31221.7	33462.6
2011	0.0	1 7 7 7	98310	0.0	31/2:0	31271.7	33460.6
2012				Ŏ.ŏ	31/2.0	_31271.7	33463.6.
2013	0.0		983.0	0.0	317210	31271.7	35460.5
2014_			983.0	0.0	3172.0_	_312/1.2	33460.6
				4 5 4 5		31271.7	33467.6
2015			983.0	0.0	31/210	1 E E E E E E E E E E E E E E E E E E E	
5016-	7	••••	983.0		3172+0-	-312/1-7	33-63-6-
2017			983.0		317510	315/11/	33467.8
2018.		Q.Q-			31/2-0_	3127147	33450+61
2019.	0.0	0.0	983.0	53015*3	31/5.0	31271.7	56473.5
- 5050	0.0	0.0-		805 65.2	3135rG		114335.87
2021	0.0	0.0	983.0	11506.5	3172.0	31271.7	4498711
2022	o.ò		933.0	0.0	3172.0_	312/1./	3346926
2023	0.0		963.0	0.0	3172.0	31271.7	33450.6
2024			983.0	0.0	3172.0_	312/1-7-	33467.6
2025		0.0	983.0	0.0	3172.0	31271.7	33460.6
- 5959	0.0	* *		ō.ō.	3172.0	31271.2	33465.6
2027		0.0	983.0	0.0	3172.0	312/147	33467.6
_2028			933.0	0.0		31271.7.	4.63.6
2029	0.0	#T	983.0	0.0	3173.0	312/1./	33463.6
	. 7.7		983.0	0.0_	3172.0	312/1./	33450.6
2030		Z - Z	A & A & A				33457.6
5031	0.0		983.0	0.0	\$155°X	3153370	
50.35				ç.o	3132.9	31533.7	3346).6.
2033	0.0		983.0	0.0	3135.0	315719	33467.6
2034	0.0		847.0-	\$3015.8	<u> </u>	الإرابيان	56423.5
2035	0.0		983.0	80545.2	3172.0	31551*5	114005.8
2036	0.0	0.0	983.0	11504.5_	3135.9_	31271./ <u></u>	4476741
2037	0.0	0.0	953.0	0.0	3172.0	3127] . 7.	33660.6
2038	0.0	* 1. 1 ± ±	943.0	9.0	3)72.0	312/1.7.1.	33457.6.
			933.0	0.0	3135.0	312/1.7	33462.6
2040 2040	0.0		933.0	0.0	3172.0	312/1.7	3345045
2011	0.0		983.0	-46316.3	3)12.0	\$1271.7	
40.71		11 ST - VIV		CONTRACTS.	្រុកស្រីសិសី	n erenanen er	೬ ಕರ್ಕರ್ಷನ್

Table.A.8.

NET PRESENT VALUES (THOUSAND ML).

--- CASE 4 ! NATURAL GAS (CONSTANT PRICE)---

11 11 4 1 4 1 1		OPESENT	VALUÉS FOR	OISCOUNT RAT	F	
YEAR	85	10%	125	14%	165	185
		عادة	•		eee a	
1984	5556.0	-5556.0 -7291.3	±5556.0 -7161.6	+5556+3 -7036+0	5556+0 -6714.7	
1985 1986	-14294.4	-13779.3	-13291.6	12829.3	12390.8	-11774.3
1987	-20785.7	-19672.4	+18637+3	-17673.5	-16//5.0	-15736.4
1988	3361044	31231.7		27073.3	25254.4	-23535.3
1989	-40733.3	-37167-1	+33965.0	-31055.4	-24499.5	-26164.5
1990	-11239.5	-10067.7	-23595.1		7320.S -22367.2	6606.9 -19844.6
1991	-3638541 1807748	-32439.1 15609.7	13514.2	11739.9	10296.4	2901.4
1993	16738.7	14190.6	12066.3	10289.4	3738.6	7543.9
1994	1549318	15600.2	10//3.6	9052-9	7535.0	639342
1995	1435047	11727.8	961942	7917.4	6538.3 5636.9	5417.7
1996	13287.7	10661.6	<u>853</u> 8_5	6945.1 6992.2	4359.4	459145 3331.1
1997 1998	1230344	9692.4	7668.3 6346.7	5344.0	4139,1	3297.5
1999	10543.2	3010.2	6113.1	4637.7	3611.3	2774.5
2000	9766.9	7232.0	5453.2	4512.0	3113.2	2363.2
\$003	9043.4	6650.0	4873.4	3607+1	2633.8	2007.0
5005	8373.5	6018.2	4351.2-	5164.1	2313.6 1994.5	179943 144144
5003	7753;2 ** 12116;3	5471.1 8394.4	3885.0 5854.4	2775.5 4109.1	2701.9	2361.6
2004	22643.0	15405.7	10552.4	7276.6	5050.2	3527.0
5009	8271.3	5524.0	3716.2_	2517.6	1717.2	1173,9
2007	5698.9	3736.8	2469.0	1645.3	1101.5	745.4
2008	527647	3397.1	2204.5	1661.5	949.6	630.0
\$00,4	4885.9	3086.3	1968.3	1264.5	818.6 705.7	533.4 452.5
2010	4523.9	2807.5 2552.3	1757.4	973.0	608.4	33.5
2012 2012	4188.8 3373.6	2320.3	1401.0	853.5	524.5	
2013	3591.3	2109.3	1250.9	748.7	452.1	275.4
2014	3325.2	1917.6	1116.2_	656.7	339.8	233.4
2015	3073.9	1743.3	997.2	576.1	336.0	197.3
_ 2016	2850.9	1584.8	890+3 -		289*7	167.6_
2017	2639.7	1440.7	795.0 709.8	443.3 383.3	249.7 215.3	147.0
	3319.6	5009.6	1069.6	575.7	313.2	172.2
\$020	7139.6	3688.0_		1019.4	545,1	29476
1505	2607.5	1322.4	678.9	352.7	135.3	99.5
	1796.5	894.6 _		230.2_	<u>118.</u> 9	62.1-
2023	1663.4	813.2	402-7	202.0	102.5	52.6
- 5056	1540.2	739 <u>/1</u> 672/1	<u> </u>	177.2 155.4	16.2	37.5
2025	1426.1	611.0	286.7.	136.3.	65.7	32.0
2027	1222.7	555.5	256.0	119.6	56.6	27.1
2028	113211	_ 505.0	228.5	106.9	48.8	23.0.
\$0\$9	1048.3	459.1	504.0	0.50	42.1	19.5
2030 <u>**</u>	9{0•6:		132.2	3 <u>0</u> • /		16.5
\$031	83511	3/9.4	162.7 	70.3 62.1.	31.3 26.9	
2033	77613	₹8 ⁻ 31315"	· 5 5 29.7	54.5	23.2	1971
2034	120441	<u> (1) </u>	195.4		33.8	
2035	552011	832.9	352.2	142.3	58.8	2465
5039	855.0		154.0			
2037	\$6643		(182.4 (184.73.6	7 - 128.3	12.8 11.1	5 · 2
5038 (*)	524.4. 485.5				9.5	3.7
5040 247		- 1 -		9. 21.4.		3, 2
2041	-159.9		1.05		-2.7	-1.0
TOTAL	100347.3		+6555.4	-30642.2	+45325.3	<u>-54165×4</u>

ADIE.A.9.

DIEFERENTIAL CASH FLOW SHEET CIHOUSAND MS)
---CASE 5 : NATURAL GAS (PRICE ESCALETION 1.5% PER ANNUM)---

YEAR	(CONST.)	TEKAL (TRANS.)	(ó-H)	GAS (CONST.)_	10881NE (H-0)	_ (FUEL)	3E88611
1984		0.0	0.0		0.0	0.0	
1985	8021.0	0.0	0.0	2.0	0.0	0,0	-302123
1786 -		0.0	0.0_	0.0	0.0	0.0	16671.0
1987	26184.0	0.0	0.0	0.0	0.0	9.0	-2613449
1788		5209.6	Q.Q	0.0	0.0		
1989 1990 -	273754.0 289264.0	9116.8	0.0	23012.9	0.0	0.0	-39357.4
1791	87443.0	9116.8 2604.3	······ 0 • 0 -	80545.2		0.0	17535.6
1992_	0.0	2004.5	405.0 283.0	11506.5	96.0 31/2.0	1/613.6	61536.4
	0.0	0.0	983.0	0.0	3172.0	35 <u>75514</u> 3629149	12344.5
1994	0.0	0.0	_ 933.0	. (0.0 (0.0)	31/2.0		33450. 1 39025. 3
1995	0.0	0.0	983.0	0 . 0	31/2.0	3/335.3	39577.3
1296 -	0.0.	0.0	943.0_	0.0	_31/2.0_	37-49.7:	40133.7
1997	0.0	Ó.O	983.0	5 0.0	3172.0	33513.9	40/07.3
1468	O.Q	Q • P	_953.0_		_3172.0_	39026.7	41235.2
1999	0.0		933.0	0.0	3172.0		4137241
SOÇO =			<u> 983.0 </u>	0.0	3172.0	_4927364	4246744
1005	0.0	5 O.O	983.0	0.0	3172.0	4013215	4307145
2002	م`ي•وَ. مسئلك		_ ,	0.0	3172.0	_41495 <i>i1</i>	4353417
2003 : 2004	0.0		983.0	0.0	3172.0	4211875	4430742
	Q.Q.		_ 283.0	23012.9	3172.0	42/49.9	67451.3
	0.0 0.0	0.0	983.0	80545.2	3172.0	4337172	156152.3
2007	0.0	0.0	you 983.0	13.506.5	3122.0	_ 44042.Q <u>`</u>	\$/232.5
8005	0.0	0.0	253.0	0.0	3172.0 _3172.0	44792.6	46391.6
2009			983.0	0.0	31/2.0	455/3,2	4/562.2
2010	0.0	0.0	983.0	0.0	3172.0	4674445	48242.8
2011	0.0	0.0	983.0	0.0	31/2.0	47445.7	49634.7
2012	0.0	0.0	983.0	0.0	3172.0	48157.4	57346.4
2013	0.0	0.0	983.0	0.0	3175.0	43379.7	51058.7
5014	0.0	0.0	983.0	n.g	3172.0	49812.9	51871.9
2015	0.0	0.0	983.0	0.0	\$172.0	50357.1	52546.1
5016	0.0	0.0	933.0	. n.o	3 (72.0	\$1112.5	53331.5
5013	0.0	0.0	983.0	0.0	3172.0	513/9.1	54363.1
\$018_	0.0	0.0	983.0	0.0	31/2.0	52557.3	
2019		0.0	983.0	53015.3	0.5112	5344741	78649.0
5050-	0,0,	0.0	983.0	80545.2	3175.0-	_5424843	136983.0
2022 2021	0.0	0.0	983.0	11506.5	3172.0	\$506245	68753.0
5053	0.0		983.0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	3122.0_	_\$55 \$3.5	\$\$\$??\$
2024		0.0	983.0	0.0	31/2.0	\$672643	\$891543
2025	0.0	0.0	983.0	0.9		_\$757747-	59766.7
9202	0.0	0.0	983.0		3172.0	: ????!! (📯 a t	60630.3
1565	ŏ.ŏ.	0.0	3.0	0.0	3115.0	_59317.9 <u>.</u> 60207.7	61576.9
8505	0,0	0.0	_983.Q_	0.0	3172.0	61110.8	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
5053	0.0	0.0	953.0	0.0	\$172.0	62027.4	64216.4
2030	0.0	0.0	983.0	0.0	3172.0	62457.8	65146.3
2031	0.0	0.0	933.0	0.0	\$172.0	63002.2	5,190.66
2032		·	983.0		3172.0	64360.7	67049.7
2033	0.0	0.0	943.0	0.0	31/2.0	65333.6	65355.6
2034	Ç.Q.,		933.0	53015.3	\$172.0	_6652161	92023.5
2035	0.0	0.0	933.0	80545.2	31/2.0	6782314	150557.6
2036			- 983.0	11506.5	\$112.0	69340.2	8253612
2037	0.0		983.0	5. 5. O.O.	3145.0	69373.3	72062.3
2038 <u>-</u>	Q• <u>v</u> .		983.0	<u></u>	_ 31/2.0_	. 70921.4	73110.4
203 <u>9</u> 2040	0.0		943.0	১ : ১১ টু • গু	3175-0	7133562	2417465
2040 2041	0.Q		933.0		_313240_	73084.6	75253i\$
2041	V4U	y• 0•0 -	963.0	446316.1	31/2.0	7416017	3113365

Table. A. 10.

NET PRESENT VALUES (THOUSAND ME)

	<u> </u>	L PŘÍ ŠEM	T VALUES FOR	OLSCOUNT RA	TE L	ege literatur
YEAR	84	10%	125	14%	16%	18\$
1984	-5556.0	-5556.0	+5556.0	-5556.3	-5556.0	*5558.0
1985	~7426.9	+7291.8	-7161.6	-7936.0	6714,7_	E 379735
1986 1937	-14294)4 -2073577	-13779.3	-13291.6	-15=54-3	+12390.8	-11974.3
1938	-33610.4	-19672.4 -31231.9	-18637 <u>.3</u> -29060.1	-17673.5	-16/75.0	+15714.4
1989	-40738.5	-3716741	-33965.0	+27073.a +31048.4	*25254.4 -23499.2	*2358513
1990	-11239.5	-10067.7	-9736.1	÷8125.7	-7320.5	-2616445 -650644
1991	-35731.1	-3142411	-27700.4	-2447245	-21667.4	-1922313[
1992	20500.3	1770115.	15325.2	13301.3	11574.1	1039417
1993	19250.1	1631917	13378.8	11833.2	10118.7	3675.4
1995	18076.3	15046.0	12565.1	10526.3	3346.4	745814
1996	1593946	1387118 <u>.</u> 1273914	11 377 • 7 10392 • &	9 36442_		6653.6
1997	1496812	1179118.	9329.2		6761.9 5911.9	5507.4
1998	14056.2	1037118	8447.9	6573.7	 5163.8	4733.3
1999	13199.9	10023.2	7649.9	5366.2	4512.1	3427.0
\$000	12395.8	924262	6927.4	5213.9	3951.2	3705.7
2005 \$001	1164619	85 <u>2145</u>	6773-1	4643.1		2593.4
2003	1093241	7857i1 7244i6	5680.8	4130.9	3050.9	2223.5
2004	14579.0	10100.6	513564	36/5.2	2041.0	1373.6
2005	25055.6	17043.4	7044.4	4944.3 8550.1	5491.7	2490.6
2006	10620.3	7092.8	4775.6	3535.8	5537-1 2204.9	<u>3912.0</u>
2002	7986.4	5236.8	3660.0	2303.0_	1543.7	1513.8
\$008	7500.5	4828.8	3133.5	2049.0	1349.8	895.6
2009	7044.3	4452.6	2837.8	1823.1		767.8-
5010	6615.9	4105.8	2570.0	1622.1	1032-1	661.7
5015	62) 3. 8 5835. 9	378650 3491.2	2327.6	1443.3		563.3
2013	5481.1	3219.4	2108.0 1909.1	1284.2 	739.1	439.0
2014	5147.9	2968.7	1729.0	1016.7	690.A 603.4	425
2015	4835,1:	2737.6	1566.0	904.7	527-6-	313+6
5016	4541.3	2524.5	141843	805.0	461.4	267.0
	4265.4	\$358-0	1284.5	716.3	403.5	220.5
2018	4006.3 5319.4	2146.3	1163.4	637.4	352.5	127.3
5050	857845	*****	1489.6 2316.4		436.2	239-3
2021	3987.0	2022.	1038.1	539.3_	283.4_	353; ? 150; 6
5055	3118.2	1552.7	782.9	399.6	206.4	107.8
- 5053	2923,9	1431.9	709.1	355.6	180.5	<u>.</u>
2024	275161	1320,5	642.3	316.4	157.8	79.6
5059	2427.5	5 1317•8	581.8		138.0.	
2027		1123.1	526.9 477.3		120.7	58.9
\$0\$8° €	311113	955.3	432.3	193.4	105.6	50.6 43.5
2029	2011.8	881.0	391.6	116.6	80.7	
5030	1889.7	8)2,5	354.7	157.1	70.6	35.5
2031	1775.1	:: - 749	32143	110.1	61.7	2/45
2032	Pr TOOTISTS	69111	34 20110	124.4		
2034	1565145	03/14			47.2	<u> 2014</u>
	297243	<u>::</u>	465.1	**********	35.1 3.2.3	2314
2030	· IDUBAZA	* 58444	222.7	0.796.2	11 2	
2037	1219.7	46162	177.5	69.\$	三进 27.6-	9. 1112
2038	114548	\{	16018	0 : 1 61 . 8	24.2	9.6
30/0		* 4 4 ~				843
2040	1011.1 373.6	36149	131.9	44.0	18.5	2.1
TOTAL	184842.4	ـــــــــــــــــــــــــــــــــــــ	50185.5			
		V	6740616	ニンひくひょう	•/03/8.5	+61:17 < .11

Table. A.11. DIFFERENTIAL CASH FLOW SHEET (THOUSAND MS) --- CASE 6 : NATURAL GAS (PRICE ESCALETION 3.0% PER ANNUM) ---

YEAR		EKAI	3. ⁴⁵	GAS	TURBINE		BENEF IT
CO	NST.)(1	RAN\$.).	(к-с)	(CONST.)	(n-H)	(FUEL}	
_ 1986 - = -5	556.0	. n.n	0.0	و. ئىد، 0 رۇ ئارىدىنىسلارد.		··	
7 45 4 4 5	021.0		Ò.ŏ	0.0	0.0	0.9	-0.8556.0- -302110
198616	673.0		0.0		^^.ŏ		- 416673.11
	184.0	0.0	0 . 0	0.0	0.0	0:0	-26134:0
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7						—— Ó 🛂 🚉	4572616.
" T" " " " " " " " " " " " " " " " " "		11043 .: 11648	0.0	2301249 8054542	0.0 0.0	0.0	
		604.8	405.9	11506.5	96.0	ء د حد الؤنَّ عُنْدِ حدد 19507.0	17335.6 - - 59643.4
1192	0.0	0.0	983.0		_3172.0_	40302.3	
1193	0.0	} 0.0	983.0	0.0	3172:0		44215.4
1:95	_ 0.0		933.0	0.0	_ 3122.0_	43237.22.2.	45476.2.
1995	0.0	0.0	983.0 953.0	0.0 0.0	31/2.0	44535.8	46774.2
1997	0.0	0.0	983.0		_0.\$\$12. _0.\$\$18	4730111	40112.4
1998		0.0	923.0	0.0	_31/2.0_	48220-1	50506.1 50506.1
1199	0.0	0.0	983.0	0.0	3172.0	50131./	52370.7
- 5500	_ 0.0		- 983.0	0.9	3172.0	-5163/.1	5337641-
1005	Q•Q	0.0	\$. 933:0	0.0	3172.0	53237./	55426.7
5005	0.0 0.0		983.0		-3115.0-	54334.8	5702-3-8-
2003 - 2004	0.0	0.0	983.0 		3172.0 -3172.0	564//•2 531/4.3	5:662.9
2005	0.0	0.0	933.0	80545.2	3172.0	59319.5	**************************************
2006		_ 0.0_	_983.0	11506.5	3122.0	_ 61717.0	1561215.
2007	0.0	0.0	983.0	0.0	3172.0	63563.5	65757.5
5jōğ	Q∙Q		983.0		_3172-0	-65475.6	6766416-
2009 2010	0.0 _0.0	0.0	983.0 983.0	0.0	3175.0	67439.3	69624.4
2011	0.0	Ó.0	983.0		3172.0	89483.0 71546.9	21652.1. /3/35.9
\$015	0.0	0.0_	983.0	0.0	3172.0_	73693.3	75352.3
2013	0.0	0.0	983.0	0.0	3172.0	75904.1	78003.1
2014	0.0	0.0	983.0	ç.o	3172.0_	73131.2	80376.2
2015	0.0	0.0	983.0	0.0	3172.0	83524.6	82715.6
2016	_0.0	0.0_	983.0		3173.0	32962.6	85131.4
2018	0.0 0.0	0.0	983.0 983.0	0.0	3172.0 - 3172.0	85430.6	87619.6
2019	0.0	0.0	983.0	23012.9	3135.0 - 3155.0	93633.3	
2020	_ 0.0	0.0	983.0	80545.2	_3172.0_	_93352.3	_1/6336.5.
1565	0.0	0.0	983.0	11506.5	3172.0	96152.8	109343.3
	0.0	0.0_	983.0		_3172.0_	99037.4	101224.4
2023	0.0	0.0	983.0	9. 0	3155.0	102008.5	10419745
5052	0.0	0.0	983.0 983.0	0.0	_3155.0 _3155.0	105363.4	_127257.4
2026	0.0	0.0	983.0	0.0	3172.0	108220.8	110409.8
1927	0.0	0.0	983.0	0.0	3375.0	114311.4	11700).
5059	Q.Q	0.0	983.0	0.0	31/2.0	118255.7	120444.7
5958	0.0	0.0	983.0	0.0	3)/5:0	121303.4	123992.4
- 5031 - 5030	0.0	0.0	983-0	0.0	7115.0	125457.4	_127646.4
5035	0.0	0.0	983.0 983.0	0.0	3172.0	129221.1	131417.1
2033	0.0	0.0	933.0		31(\$.0 31(\$.0	133097.7	1352*6.7_ 439279.6
_2039	0.0	ŏ•ŏ	0.63.0	23012.9	_3172.0_	151293.3	18612542
2035	0.0	0.0	983.0	80545.2	3155.0	14545964:	223173.6
2036	. 0.0	0.0	953.0	11508.5	3372.0.	149202.6	15349351
2037	0.0	6.0	, 983.0	1150.0	3175.0	15429566-1	15543546
2038 2039	0.0 , ∈		963.0	~~#~~##£ 0.9 ~~		158925.4	161114;4
2140	0.0	0.0 0.0	983.0	**************************************	317210	16369312	16548262
2041	~0.0	0.0	983.0	*48316.1	_317210_	16360410	120133.0
	1			* * * *	3:15.0	1736623014	12453424
			1.1	8.386		1.8103	
÷			1. * 1		1.131	2.7.57	
7 4 5	F		F 1 1 1 1 1		0.51188	ु६३८ अ	

--- CASE 6 1 NATURAL GAS (PRICE ESCALETION 3.9% PER ANNUM)---

		PŘESENI	VALUES FOR	DISCOUNT RAT	lÉ	-
XEAR	8%	104	124			1.8%
1984	-5556.0	-5556.0	-5558+0	+5556.0	i ÉEE A. Á	éssé n
1985	-1426.9	-7291.3	-7161.6	-7936.0	:5556+0 -6914.7	-5556.9 -6777.5
1986	-14294.4	-13779.3	+13291+6	-12829.3	-12370.8	-11774.3
1987	-20785.7	-19672.4	-18637.3	-17673.5	-16/75.0	-15936.4
1988	-33610.4	-31231.9	-29060 1	-27073.8	<u>2525414</u>	23595.3
1989	-40733.3	-37167+1	-33965.0	-31038.4	-23499.2	-20164.5
1990	-11239.5	-10067.7	9036+1	8125.7		5605.9
1991.	-34451.3	-30298.6	-267Č8 • 2	-2359610	-20391.3	-13535.2
1992 1993	_23226.9 22118.7		12363.5 15944.5	15 <u>071+0</u> 13596+6	13 <u>113.5</u>	1143/.4_
1994	_ 21064.3	17533.1		12266.7	10305.Z	9968.7 653\$.7
1995	20060.9	16394.3	13446.7	11067.3	9140.6	0533.7. 7573.7
1996	- 19108.1	15330.1	12349.3	9986.2	81ñ\$.2	6635-0
1997	18197.4	14335.5	11361.9	9019.6	7137.3	5755.1
1995	17332.6		10412.0	8130.Z	6373.6	501 7.0
1999	16509.4	12537.1	9567.9	7337.0	5555.2	4373.3
SQQQ	15725.9	11725.0	3788.4	6620.9		5313.2
5001	14980.1	10965.9	8.5108	5975.0	4445.6	3324.5
<u> </u>	14270.2	30256+3		539243 _	3942.9	2593.6
2003 2004	13594.3	9592.8	6811.9	4866.5	3497.1	2527.3
2005	17888.2 28339.0	12393.4 19276.9	8643.4	<u></u>	4284.3	3243.7
2006		9264.1	13204.0 6232.3	4255*5 8102*1	6319.3 2329.8_	4413.3 1922.2_
2007	11199.5	7343.7	4852.1	3229.5	2164.3	146140
2008	1067047	6869.7	4657.9	2915.1	1720 • 3	1274-1-
2009	10167.1	6426.5	4095.8	2631.3	1703.5	1311.1
5010	9637.5	6012+0	3743.2	2375.2	1511.2_	963.9
5011	9230.8	5624.4	3457.8	2144.1	1340.7	345.0
2012	879548	5261.9	3127•1	1935 . &	1139.4_	737.3_
2013 2014	8381.6 7987.0	4923.0 4605.9	2919.4 2682.6	1747.3 1577.4	1055.2	642.7
2015	7611.2	4309.4	2465.1	1424.1	936+2_ 830+6	563.6 488.9
\$016	7253.2	4032.0	2265,2	1285.7	736.9	426.5
2017	6912.2	3772.6	2081.7	1169.3	653.9	3/240
2018	6587.4	3530.0	1913.0	1043.0	530.2_	32444
5016	7834.5	4121.9	2193.9	1180.3	842.4	353.5
5051 5050	11027.4_	5696.3	7477.1	1524.5	341.9	455.0
	6369.7 5434.9	3230.5 2706.3	1658.5	861.6	452.7	240.5
2023	5180.0	2532.5	1364,6 1254.2	628.9	359.7 319.2	<u>137.3</u>
2024	4937.2	2369.9	1152.7	567.7	283.2	145.7
2025	4705.8	2517.7	1059.4	512.8	251.3	124.7
5059	4485.4	2075.4	973.7	463.0	223.0	102.3
\$055	4275.3	1942.2	895.0	418.1	197.9	94.9
2058	4075.2	1812.2_	822.6	377.6	<u>125.4</u> _	32.9
5050	3884.4	1/01.1	756.1	340.9	155.9	15.5
- 5030 	3702.7	1592.0 1490.0	495 <u>.0</u> 635.6	307.9	138,3_	63.0_
2032	3364.5	1394.5	587.2	251.1	122.8 109.0	55.0 50
2033	3207.2	1305.1	539.8	\$26.8	96.7	41,3
2034	3548.0	1417.5	575.8	237.6	30.6	42.4
2035	4504.6	1767.0	204.9	285.5	117.7	49.2
5038	2988.7	1151+1	451.0		<u></u>	23.3
2037	594919	1001.5	395.4	150.8	60.0	24.3
2038	2525.0	937.4	. <u></u> 35443_	136.2	53.3_	\$1.3.
	2407.1	877.4	325+7	153.0	47.3	1845
5039	3361:5	442	7 6 6		* * *	b 4 -
5040 5040	2294.8_ 1611.5	821.3 566.2	299.4 202.8	ULal 73.9	42.0 27.4	10.4

6. SUMMARY AND CONCLUSION

6. Summary and Conclusion

i Maria de Arria da 1985, a castalia debidi de la carga la colo

The purpose of this investigation is to study the feasibility of the Tekai River Basin Water-power Development Project for the Pahang. Drainage System running through the Pahang. The study was performed to ascertain the most economical development method, development scale, structural design and work schedule for the two proposed sites (Upper and Lower Tekai). These sites, located on the downstream basin of the Takai River, were selected to ensure the highest possible effective utilization of hydraulic resources.

Study of the development method and scale was made on two cases: a single development plan (independent Upper and Lower Tekai) and a series development plan (integrating Upper and Lower Tekai). In this study, water power, that is, the ability to respond quickly to load fluctuation and the superior availability of power supply to meet peak load demand, were taken into consideration.

· 1885年 1985年 1986年 1986年 1985年 198

The optimum scale of single development was determined from the benefit/cost (B/C) ratio and extra benefit (B-C), while calculating annual power generation on the basis of comparison of dam height, equipment output and available water depth.

The optimum scale of series development was determined from B/C and B-C, while calculating annual power generation on the basis of comparison of equipment output (the optimum scale of the independent development plan for the Upper Tekai fixed and the H.W.L. of the Lover Tekai set to tailrace water level of the Upper Tekai). In calculating the benefit, the gas turbine was considered as a substitute thermal power source.

For the design of sturctures, a study was made of the arrangement and technical data to ensure the highest level of economical feasibility within a precision range applicable at the feasibility study stage.

Results of various investigations of topography, geology, weather, river conditions, etc. were used as bases for conclusions.

As for the development method, it is concluded that the series development (integrating the Upper and Lower dam) is feasible, as a result of the examination of the aforementioned facts. It is recommended that the Detail Design of this project be started immediately, including the construction of the access road and the logging of the area to be innundated by the Upper dam.

The following are the most optimum development scale and the principal dimensions of Tekai Project.

- (1) The most appropriate form and scale for the proposed Upper Tekai dam is the center core rockfill type with a height of 101 m (crest level EL. 166.2 m). For the Lower Tekai, a concrete gravity dam with a height of 38 m (crest level EL. 81 m) would be recommended.
- (2) The installed capacity of the Upper Tekai dam is 150 HM, while the Lower Tekai works' capacity is 5.8 HM. Consequently, the total of the two dams is 155.8 HM.
- (3) The average annual energy generation is 194.8 GMH at Upper Tekai and 40.3 GMH at Lover Tekai, totaling 235.1 GMH for the two dams.
- (4) The estimated construction cost is 289 x 10⁶ K\$ for Upper Tekai and 62 x 10⁶ H\$ for Lower Tekai, totaling therefore 351 x 10⁶ K\$.
- (5) The benefit/cost ratio (B/C) of the series development of Upper and Lower Tekai is 1.53, the extra benefit (B-C) is 23.10 x 10⁶ H\$ and the internal rate of return (I.R.R.) is 14.78% (Assuming that fuel oil remains at a constant price; including construction cost of power transmission line).
- (6) The approximate stage of execution of works is expected to be as follows, when the start of operation of Upper and Lower Tekai is planned in July 1991.

化海洋化物设置 的复数海绵物 机形型 电二进行通道 化邻环烷 医外腺性动物 化水流定量管量管

(1) Tekai Development Scheme

•	Upper Dam	Lover Dam	Series
. Installed Capacity	150,000 kw	5,800 kW	155,800 kW
. Dam Body Volume	3.125×10 ⁶ m ³	5.69×10 ⁴ m ³	
. Dam Height	101 m	38 m	
. Maximum Operating Level	157 m	75 m	
. Minimum Operating Level	147 m	70.5 a	
. Effective Depth	10 m	4.5 m	
. Effective Storage Capacity	680×10 ⁶ m ³	21.5x10 ⁶ a ³	
. Normal Water Level	153.7 ш	73.5 m	
. Tailrace Water Level	75 m	55.6 m	
. Haximum Turbine Discharge	235 m ³ /s	40 m ³ /s	
. Construction Cost	289×10 ⁶ H\$	62×10 ⁶ HS	351×10 ⁶ H\$
· Annual Cost	35.83×10 ⁶ н\$	7.98×10 ⁶ H\$	43.81x10 ⁶ H\$
. Annual Energy Generation	194.8×10 ⁶ kWh	40.3×10 ⁶ kWh	235.1×10 ⁶ kWh
. Annual Benefit	58.42×10 ⁶ H\$	8.49×10 ⁶ н\$	66.91×10 ⁶ H\$
· B-C	22.59×10 ⁶ H\$	០.51x10 ⁶ អ\$	23.10×10 ⁶ H\$
. B/C	1.63	1.06	1.53

(2) Estimated Construction Cost

		4.44.1		11.
Por	Option	Development	Scheme	

tot obtimum pevetobment scheme	Upper Tekai	Lover Tekat	
. Preparatory Works	32.26×10 ⁶ И\$	3.93×10 ⁶ н\$	
Access Road	16.51×10 ⁶ "	0.10×10 ⁶ "	
Temporary Facilities	15.74×10 ⁶ H	3.83x10 ⁶ "	
. Civil Korks	156.19 _{×10} 6 "	34.77x10 ⁶ "	
Diversion and Care of River	20,57x10 ⁶ "	5.08×10 ⁶ "	
Dam	59.97×10 ⁶ "	16.00 106 "	
Spillway	21.20×10 ⁶ "	4.95x10 ⁶ "	
Intake Structure	3.51×10 ⁶ "	0.92x10 ⁶ "	
Penstock	25.65×10 ⁶ "	0.81×10 ⁶ "	
Powerhouse	20.45×10 ⁶ "	6.44×10 ⁶ "	
Switchyard	1.33×10 ⁶ "	en en en e	
Mechanical Equipment	3.50×10 ⁶ "	0.58x10 ⁶ "	
. Generating Equipment	53.00x10 ⁶ "	13.00×10 ⁶ "	
. Engineering Service	19.31×10 ⁶ "	4.14x10 ⁶ "	
. Government Administration	7.25x10 ⁶ "	1,55×10 ⁶ "	
. Contingency	21.44×10 ⁶ "	4.59×10 ⁶ "	
. Grand Total	289.45 _{×10} 6 _{H\$}	61.98×10 ⁶ H\$	

(3) Economic Analysis

Series Development for Upper and Lower Tekai

IRR 2	IRR	NPV (H\$x10 ⁶) for Discount Rate				
	10%	12%	14%	16%		
Case 1	147.78 min	104.8	46.8	10.2	-13.3	
Case 2	17.13	181.8	98.7	46.8	13.4	
Case 3	19.60	292.0	170.2	95.7	48.3	
Čásě 4	11.62	33.2	6.6	-30.6	-45.3	
Case 5	13.67	87.1	29.8	-5.0	-26.6	
Case 6	15.86	164.2	79.8	29.2	-2.2	

Case 1: Fuel oil at constant price

Case 2: Fuel oil with relative price escalation of 1.5 percent per annum

Case 3: Fuel oil with relative price escalation of 3 percent per annum

Case 4: Natural gas at constant OBP

Case 5: Natural gas with relative price escalation of 1.5 percent per annum

Case 6: Natural gas with relative price escalation of 3 percent per annua

(4) Construction Schedule

Upper Tekai

- a) Completion of access road and temporary road

 (road from the aggregate plant to spoil site) Pebruary 1986
- b) Start of excavation of diversion tunnel June 1986
- c) Start of excavation of diversion and dam October 1987
- d) Dam embankment start July 1988
- e) Grouting of dam body October 1989 (complete)
- f) Spillway July 1987
- g) Penstock May 1987
- h) Power plant Harch 1988
- i) Start of reservoir filling November 1989
- j) Start of operations July 1991

Lover Tekai

- a) Start of temporary facilities erection January 1989
- b) First coffering April 1989
- c) Dam excavation August 1989
- d) Start of concrete pouring on the right bank January 1990
- e) Secondary coffering June 1990
- f) Start of concrete placement on the left bank October 1990
- g) Excavation of spillway and water intake August 1989
- h) Penstock November 1989
- i) Power plant August 1989
- j) Start of operations July 1991