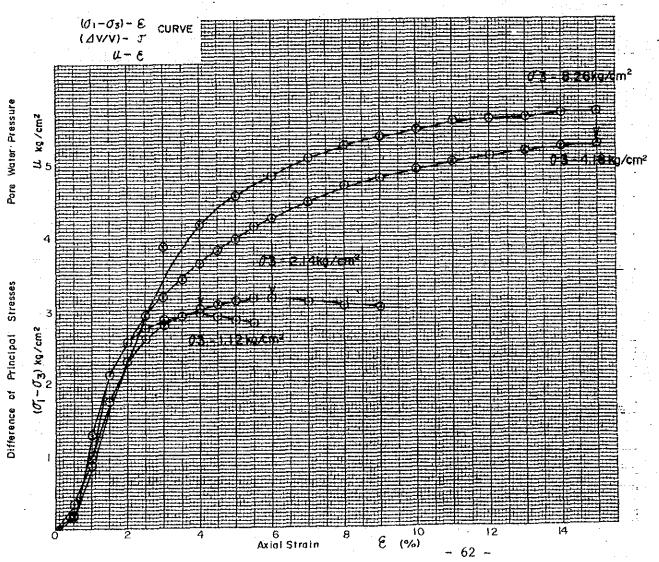

				Da Sales Sagara and a second s	-						
TRIAX	KIAL COMPRES	SION TEST	(LOADING		(i) CÜ	CU CD		FOR	REPOI	RTING	
NAME	OF PROJECT	TENOM PA	ANGI PROJEC	T, PHASE II		DATE	9	~10	- 85		mes
SAMPLE	NO. 8 DEPTH	SP - 7	Wopt	(m ~	m)]	rested	BY SU	JHAIBI	UN		
Loading M	Strain Control		1.0 %	/min Provin	ng Ring (Capacity	30	06 kg			
	Specimen Nun	nber	No. j	No. 2	No. 3	3	No. 4		No.		
	Consolidation Pressu	ire (kg/cm²)	1.12	2,14	4	.18	8,	26			
	$(\sigma_1 - \sigma_3)_f$	(kg/cm²)	. 4,680	6.013	6.8	319	7,60	00			_
	£ 1	(%)	14,0	15.0		14.0	. 13	3.0			
*	Uf ·	(kg/cm²)			ļ				ļ <u>.</u>		
Peak	A _f				_					<u> </u>	
A1	er				. 						_
	601	(%)		 							
	Elapsed Time to F	ailure (min)	14	15		14	***	13,			
N	Modulus of Elasticity	E 50 (kg/cm²)	146	86	1	03		12			
	Room Temperature	(°C)	28,0	28. 0	2	28.0	28	0.8	<u> </u>	:	

Т	RIAXIAL COMPRES	SSION TEST MOHR'S STRESS DIAGRAM)		CŪ CD	FOR REPORTING
NA	ME OF PROJECT	TENOM PANGI PROJECT, PHASE III	1	DATE	9 - 10 - 85
SA	MPLE NO. & DEPTH	SP-7 Wopt' (m~	m)	TESTED BY	SUHAIBUN
a B	Normally Consolidated	Cu = 0.95 kg/cm² = 25.40	C, 2	kg/	cm², ø¹a
scol	Over- Consolidated	$C = \frac{kg/cm^2(0 = 2 \sim 4 kg/cm^2)}{g}$	C, =	kg/	′cm² . ≠′=

TR	IAXIAL COMPRESSIO	ON TEST (INITIA ONSOLIDATION:			/ :	CŪ CD	I FOR F	REPORTING	э м
NAI	ME OF PROJECT	TENOM PANGI	PROJE	ECT PHAS	SE III	DATE	9 - 10	- 85	→
SAI	MPLE NO. a DEPTH	SP-7 Wopt (2.0 m~ 5.0 m)			TESTED SUHAIBUN			 \	
S	Sample (Undisturbed (<u>Disturbed</u>)		Type of Apparatus		!	Type Product		
s	haped With	Trimmer · Other(Compactio) on	Condition o During Con	f Drainage solidation	Single Drain	Paper	Drainage. Orain	
þ	raper ties C	Classification	G	s 2.85	wi	48.9	w _p w	21.8 %	-
Spe	cimen Number			No. I	No. 2	No. 3	No. 4	No. Mean	····
Cons	solidation. Pressure	{kg	/cm²)	1.12	2.14	4,18	8.26		 -
Ę	Height	H•	(cm)	8.0	8.0	80	8.0		
Specimen	Diameter		(cm)	3.8	3.8	3.8	3.8		_
	Volume	v.	(cm)	91	91	91	91	· 	
jo :	Weight		(g)	181.43	180.29	179.95	180.05		- -
Conditions	Wet Density	r (g /cm ³)	1.994	1.981	1.977	1.979		
Cond	Water Content	Wo	(*/₀)	25.4	24.4	26.4	25. 2	25.4	_
Inifal	Void Ratio			0.792	0.790	0.877	0.803		
<u>=</u>	Degree of Saturation	Sr	(%)	ļ	88.0	91.5	89.4	90.1	_ (
Ð	Consolidation Time	Drl Density d (g/c		+	1.592	1.564	1.581	1.582	. _
Data	Ordinad Volume	ΔV	(cm ³)						
Consol.	Vold Ratio After Consolid	ation 6							_
<u>S</u>	Room Temperature		(°C)		1				-
				Tlr	ne Drained Vo	olume Curve f	or Consolidati	on	
(cm ³)									
rme L									
× ×									==
Drained Volume									
ā									
	0.1	1	10		100		1000	•	

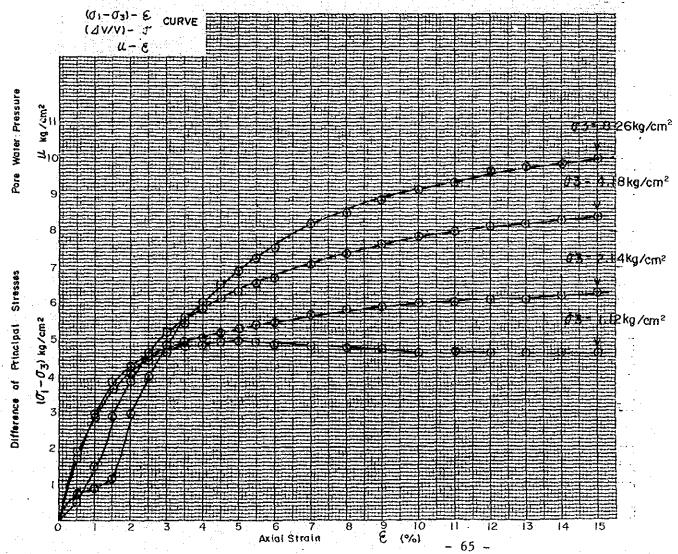

(min)

TO	PIAYIAI COMPRESSI	ON TEST (INITIAL C	CAIDITION	(,	(VV) · CU	
		ON TEST (INITIAL C ONSOLIDATION: DATE			cũ co	FOR REPORTING
NΑ	ME OF PROJECT	TENOM PANGI PROJ	ECT, PHAS	E	DATE	7 - 10 - 85
SAI	MPLE NO. a DEPTH	SP-7 Wopt + 2%	(2.0 m	ı~ 5.0 m)	TESTED BY	SUHAIBUN
S	Sample	Undisturbed (Disturbed) Wopt + 2%	Type of Ag	paratus	British ELE F	Type Product
s	haped With	Trimmer Other() Compaction	Condition of During Cons	Drainage iolidation	Single Draina	age. Doubel Drainage. Paper Drain
P	1	lassificationCLG	s2.85	ωί	48.9 %	ω _p _21.8 %
Spec	cimen Number		No. I	No. 2	No. 3	No. 4 No. Mean
Cons	iolidation Pressure	(kg/cm²)	1.12	2.14	4.18	8.26
2	Height		8,0	8.0	8.0	8.0
Specimen		D (cm)		3.8	3.8	3.8
o o	Volume		- 	91	91	91
	Was Dandley	₩• (g)		183.0	182,3	183.8
Conditions		γ (g/cm³)	† -	2.010	2,003	2.019
	Water Content Void Rotto			27.9	26.7	27.2 27.3 0.795
Inita!	Degree of Saturation	8• Sr (%)	0.840 92.6	0.812 979	0.803 94.8	97.5 95.7
		Dry Density∦d (g/cm³)	· 	1, 572	1,581	1,588 1.572
Data	Ordined Volume				1,331	7,500
ਰੰ	Vold Ratio After Consolid					
Cons	Room Temperature	(%)				
			Tim	e Drained Vol	ume Curve for	Consolidation
(cm3)						
-						
iume						
۵ ۷						
Drained Volume						
ā						

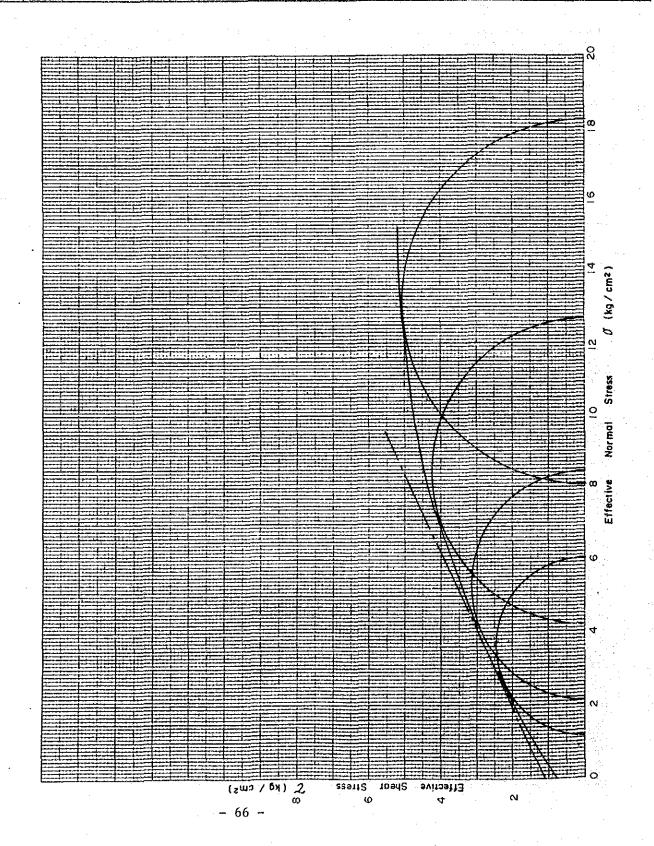
10 Elapsed Time

TRIAXIAL COMPRESS	SION TEST (LOADING DATA) CÜ	CD CD	FOR REPORTING
NAME OF PROJECT	TENOM PANGI PROJECT, PHASE II	DATE	7 - 10 - 85
SAMPLE NO. 8 DEPTH	SP - 7 Wort + 2% (2.0 m ~ 5.0 m)	TESTED BY	SUHAIBUN

ethod Strain Control Stress Control	1.0 %	/min Prov	ving Ring Capacit	y 306 k	Q
	No.	No. 2	No. 3	No. 4	No.
Consolidation Pressure (kg/cm²)	1, 12	2.14	4,18	8,26	
$(\sigma_1 - \sigma_3)_f$ (kg/cm ²)	. 2,95	3.16	5, 26	5, 62	1.2
£ f (%)	4.0	6.0	15.0	1 4.0	
U† (kg/cm²)					
Aţ	1				
•f					
Ev f (%)					
Elapsed Time to Failure (min)	4.0	6,0	15.0	14.0	
Modulus of Elasticity E,50(kg/cm²)	134	112	131	117	
Room Temperature (°C)	28	28	28	2.8	
	Rate Compression Specimen Number Consolidation Pressure (kg/cm²) (\(\textit{\sigma}\) - \(\textit{\sigma}\) (kg/cm²) \(\textit{\sigma}\) (kg/cm²)	Rate Compression	Rate Compression	Rate Compression 1.0 % /min Proving Ring Capacita	Rate Compression 1.0 % /min Proving Ring Capacity -305.5

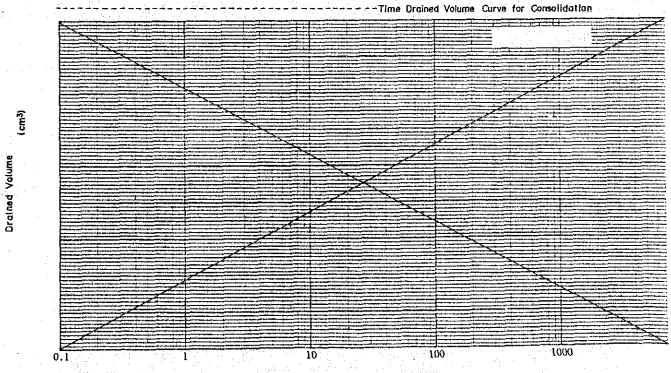


T	RIAXIAL COMPRES		ST STRESS DIAGRAM)	Na. Ta'ra jac garaf a fill a faire a f	(Ú) CU CŪ CD	FOR REPORTING
NA	ME OF PROJECT	TENOM	PANGI PROJECT, PHASE	ш	DATE	7 - 10 - 85
SA	MPLE NO. & DEPTH	SP-7	Wopt + 2% (2.0 m ~!	5.0 m)	TESTED BY	SUHAIBUN
E E	Normally Consolidated	Qi = 0.7	kg/cm², øu = 19.29	c, =	kg/	cm². ø'=
SCOPE	Over - Consolidated	C =	kg/cm^2 , $g^2 = 2 \sim 4kg/cm^2$)	c' =	kg/	cm². s'=



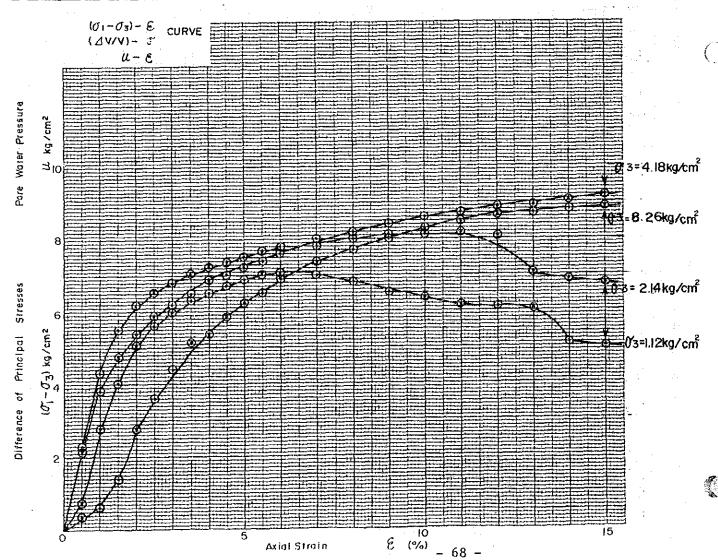
TRI	AXIAL COMP		ON TEST				4:	ÇŨ · CD	h-()h-/ h	REPORTING	
NAN	ME OF PROJE	ст	TENOM	PANGI I	PROJE	CT, PHASE	U	DATE	14 - 10	- 85	, rangemen
SAN	MPLE NO. & I	DEPTH	SP-8	Wopt		(2.0 n	n~ 5,0 m)	TESTED BY	SUHAIB	JN	
\$	ample	ا ب	Undisturbed · (Disturbed		Type of A	pparatus		ype roduct		
SI	naped With		Trimmer · · · Remoukled	Other(,	Condition o During Con	f Drainage solidation	Single Drain	nage. Doubei Paper I	Drainage. Orain	
Pi	raper ties		Classification ——	<u>CL</u>	G	s 2.84	wi	56.4	∕• w _p	22.0 %	
Spec	cimen Number			· · · · · · · · · · · · · · · · · · ·		No. I	No. 2	No. 3	No. 4	No.	
Cons	olidation Pressure			(ke	g/cm²)	1.12	2.14	4.18	8, 26		
Ę	Height			H•	(cm)	8.0	8.0	8.0	8.0	- 	
Ѕрвсітел	Diameter				(cm)	3.8	3.8	3.8	3.8		
S S	Volume			-		91	91	91	91		
	Weight Wet Density			W•	(g) (g /cm³)	2 063	185.03	2.039	2,064		
Conditions	Water Content	• 		ω ₀	(%)	+	19.0	21.0	20,3	20.1	•
	Void Ratio			#•	_ _	0.655	0.664	0.681	0.655		
lai ta	Degree of Sature	tion		Sr	(%)	88	81	88	88		(
Data	Consolidation Tim		Dry De	nsity ∂d(g	/cm³)	1.716	1.712	1 689	1.716		
	Vold Ratia After	Consolid	atlan								
Con	Room Temperatur	8			(°C)		ne Droined Vo	lume Curve f	or Consolidati	on .	
	E E						The Brance re				=
											Ξ
(cm3)											
											=
u E B E											Ξ
Drained Valume											
aine											
స											
											=
•	0.1				10		100		1000	1800 N	
				Elap	sed Tin						
					- 64	- im	ýn) ·			•	

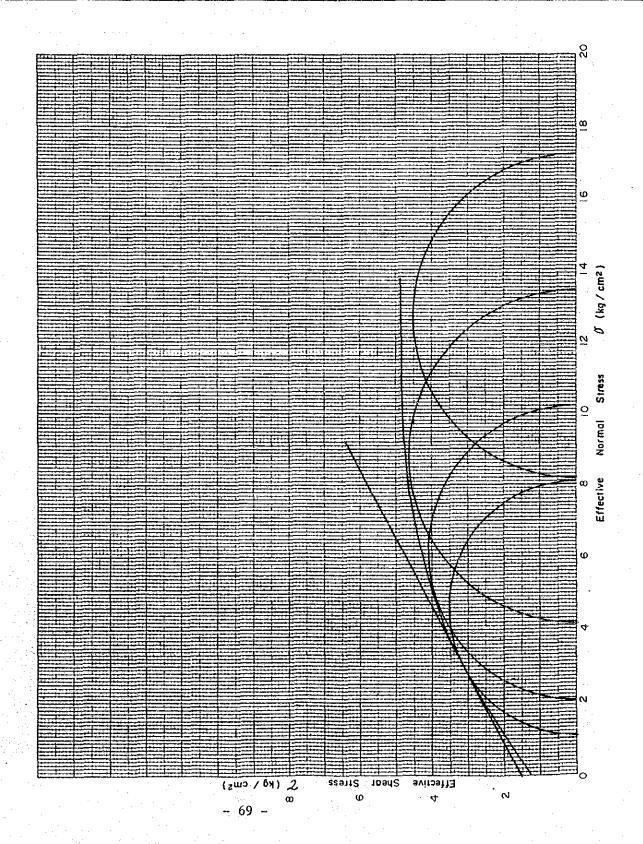
TRIA)	XIAL COMPRESSION	I TEST	(LOADIN	G DATA)		:u :a:	FOR	REPORTING
NAME	OF PROJECT TEN	IOM PAI	NGI PROJEC	T, PHASE N		DATE	14 - 10) - 85
SAMPLI	E NO. B DEPTH SF	- 8	Wopt	12.0m~5	i.O m) TE	STED BY	SUHAI	BUN
oading M	Method Strain Control Stress Rate Compression			/min Provi	ng Ring Ca	pocity	******	
	Specimen Number		No.	No. 2	No. 3	No.	4	No.
	Consolidation Pressure	(kg/cm²)	1,12	2.14	4.	18	8. 26	
	$(\sigma_1 - \sigma_3)_f$ (kg/cm	, ²)	4.923	6.233	8.3	96	10.053	
	£ f (%)		5.0	15.0	15	5.0	15. O	2.5
: *	Uf (kg/cm	1 ²)						
Peak	A							
A	01	141						
•	Eu ; (%)			1				
	Elapsed Time to Failure	(min)	5	15		5	15	
N	todulus of Eigsticity E50(kg/cm²)	280	35.6	160	0.7	58.8	
	Room Temperature	(°C)	28	28]	8	28	



T	RIAXIAL COMPRES			DIAGRAM)		<u></u>	UC CO	FOR REP	ORTING
NΔ	ME OF PROJECT	TENOM	PANGL PRO	JECT, PHASE	ш	DATE		14 - 10 -8	5
SA	MPLE NO. 8 DEPTH	SP - 8	Wopt	(2.0 m~ !	5,0m)	TESTED	3Y	SUHAIBUN	
					<u> </u>				
u OL	Normally Consolidated	Cu = 1 05	kg/cm², øu	= 25,40	C' =		g/cm	1 ² . ø'=	,
88	Over- Consolidated	C =	ka/cm² ali		c' =	k	a /cn	n², ø'≘	· .

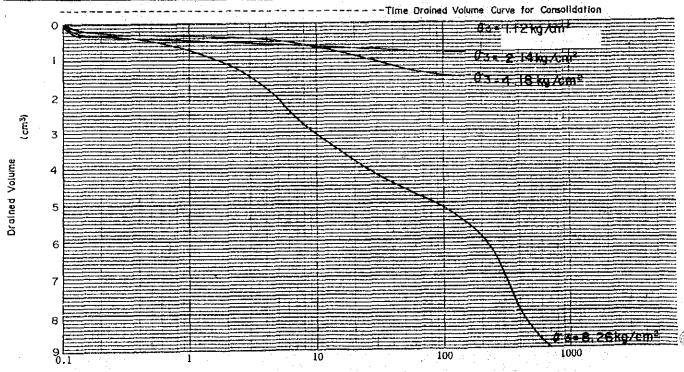
TRIAXIAL COMPRES	SSION TEST (INITIAL CONSOLIDATION: DAT		CŪ CD	I FOR REPORTING
NAME OF PROJECT	TENOM PANGI PRO	JECT, PHASE II	DATE	18-10-85
SAMPLE NO. a DEP	TH SP-8 Wopt +	2% (2.0m~ 5.0 m)	TESTED 8Y	SUHAIBUN
Sample	Undisturbed Disturbed	Type of Apparatus	British . 1 ELE Pro	Type duct
Shaped With	Trimmer Other() Rermoulded	Condition of Drainage During Consolidation	Single Drain	age. Doubel Drainage. Paper Drain
Properties	Classification C L	Gs 2.84	56.4 •/	. w _o 22.0


Spec	imen Number		No. I	No. 2	No. 3	No. 4	No.
Cons	olidation Pressure	(kg/cm²)	1.12	2.14	4.18	8,26	
Ç.	Height H	• (cm)	8.0	8.0	8.0	8.0	
Specimen	Diameter	(cm)	3.8	3.8	3.8	3. 8	
୍ଥି -	Volume V	(cm²)	91	91	91	9 1	
5	Weight W	• (g)	184.91	184.20	185.30	183.11	
Conditions	Wet Density	(g/cm ³)	2 032	2.024	2036	2.012	
Š	Water Content ம	(*/ _e)	22.86	22.11	23.36	2 1.0 2	22 34
	Void Ratio e	•	0.717	0.713	0.720	0.708	
inital In	Degree of Saturation Sr	(*/•)	91	88	. 92	84	
	Consolidation Time Dry Density (d	(g / cm³)	1.654	1.658	1.651	1.663	
Data	Orained Volume 4	V (cm³)					
Consol. 1	Vold Ratio After Consolidation	8					
ပိ	Room Temperature	(°C)		[

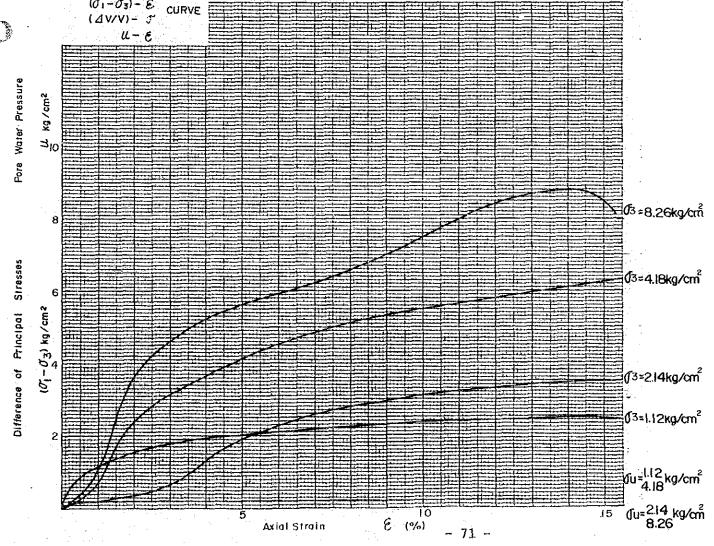

Elapsed Time

TRIAXIAL COMPRESS	SION TEST (LOADING DATA)	(ii) CÜ	CU CD	FOR REPORTING
NAME OF PROJECT	TENOM PANGI PROJECT, PHASE	M	DATE	18 - 10 - 85
SAMPLE NO. 8 DEPTH	SP-8 Wopt + 2% (20m ~	5. Om)	TESTED BY	SUHAIBUN

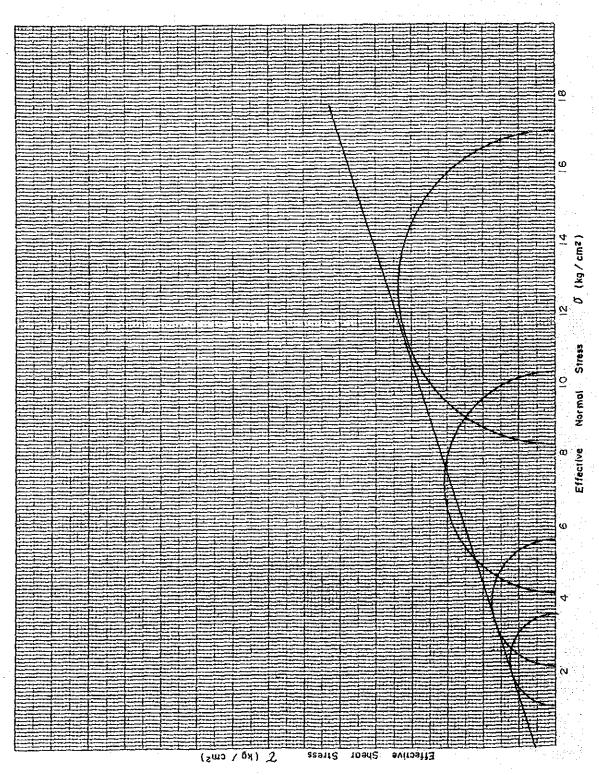
M pnibbo.	ethod Strain Control Stress Control		ng Ring Capacit	Ring Capacity			
	Specimen Number	No. I	No. 2	No. 3	No. 4	No.	
	Consolidation Pressure (kg/cm²)	1,12	2.14	4.18	8.26		
	$(\sigma_1 - \sigma_3)_{\dagger}$ (kg/cm ²)	6.972	8.148	9 5 3	8.896		
i	(%) t 3	6.0	. 11.0	15.0	15.0		
	U† (kg/cm²)					<u> </u>	
Peak	Af		<u> </u>				
AI	ef				<u> </u>	<u> </u>	
	Ev 1 (%)						
. [Elapsed Time to Failure (min)	6.0	11,0	15.0	15.0		
N	todulus of Elasticity E50(kg/cm²)	14.0	356	418	153		
	Room Temperature (°C)	28	28	28	2 8		



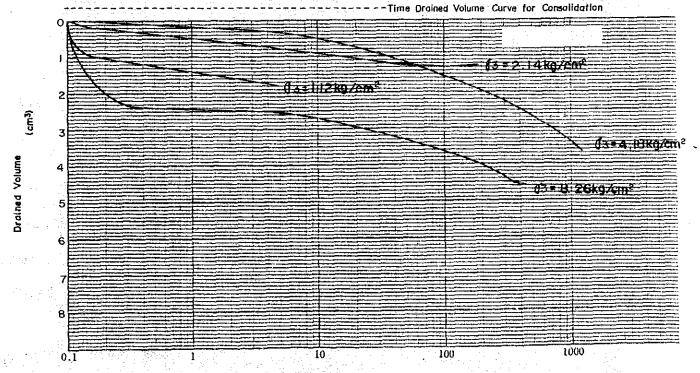
T	RIAXIAL COMPRES		ST STRESS DIAGRAM)	CŪ CI	- FOR REPORTING
N/	AME OF PROJECT	TENOM	PANGI PROJECT, PHASE	Ш	DATE	18 - 10 - 85
SA	MPLE NO. & DEPTH	SP - 8	Wopt + 2%(2.0 m ~	5.0 m)	TESTED B	SUHAIBUN
	Normally Consolidated	Cu = 1.55	kg/cm².øu = 26.57	C' =	kg	/cm² . ø'=
SCOPE	Over- Consolidated	C =	kg/cm². ø ±	C, =	kg	/cm² . ø'=



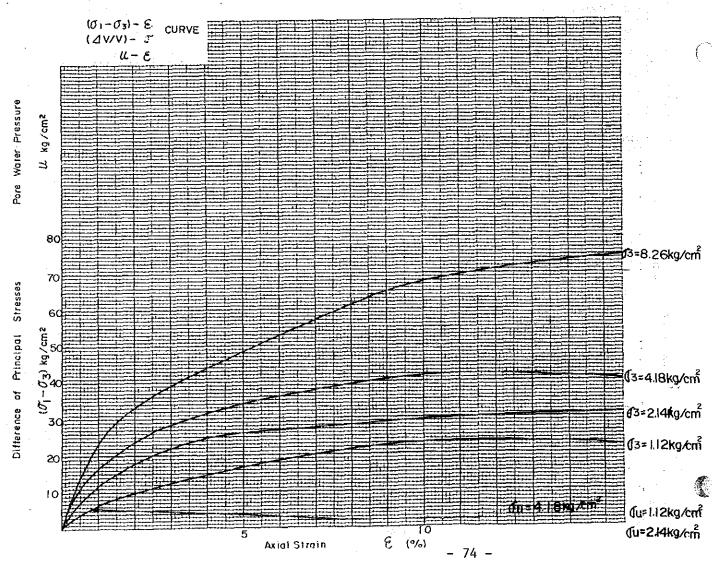
TRIAXIAL COMP			T (INITIAL ATION : DA		CŪ CD	FOR REPORTING
NAME OF PROJE	CT	TENOM	PANGI PRO	DJECT , PHASE II	DATE	24 - 10 - 85
SAMPLE NO. & (НТЧЭС	SP-7	Wopt	(2,0 m~ 5.0 m)	TESTED BY	SUHAIBUN
Sample		Jndisturbed ()(sturbed [*]	. Type of Apparatus	British T	
Shaped With	·	Trimmer (Remoulded	Other()	Condition of Drainage During Consolidation	Single Drain	age, Doubel Orainage, Paper Orain
Properties	C	Classification		Gs 2.85 W.	•/	ω


	the state of the s			A Company			<u> </u>	
Spec	imen Number			No. I	No. 2	No. 3	No. 4	No.
Cons	olidation Pressure	(kg/cm²)	1.12	2.14	4.18	8.26	
_ ا	Height	Н•	(cm)	8	8	8	8	
operation.	Diameter	D	(cm)	3.8	3.8	3.8	3.8	L
	Volume	٧.	(cm)	91	91	91	91	
ਰ	Weight	W.	(g)	184.20	179.13	175.59	180 75	
2	Wet Density	r	(g /cm ³)	2.024	1.968	1.929	1.986	1.976
empilione empili	Water Content	ω.	(*/•)	2 5.90	26.10	2830	29.90	27.55
	Void Ratto	6 •		0.772	0.824	0.894	0.865	
101111	Degree of Saturation	Sr	(*/=)	95.6	90.1	90.1	99	<u></u>
	Consolidation Time Dry	Density ∂d	(g/cm³)	1,608	1,562	1.504	1,528	1,550
Consol, Data	Drained Volume	4 V	(cm ³)]		
	Vold Ratio After Consolidation				L			
	Room Temperature		(°C)					

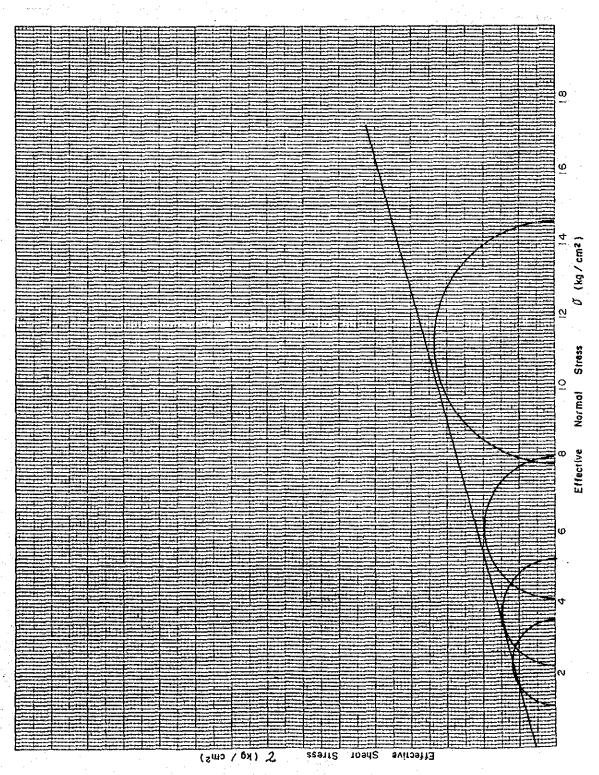
	XIAL COMPRESS OF PROJECT						
			ANGI PROJEC				0 - 85
SAMPLE	E NO. 8. DEPTH	SP-7 W	/opt	(2,0m ~	5.0 m) TESTE	D BY SUHAI	BUN
oading M	Aethod Strain Control S Rate Compression			/min Provi	ng Ring Capacit	у	
in the	Specimen Numi	ber	No. I	No. 2	No. 3	No. 4	No.
	Consolidation Pressur	e (kg/cm²)	1.12	214	4.18	8.26	
	$(\sigma_1 - \sigma_3)_{\dagger}$ (1	(g/cm²)	2.427	3.552	6.140	8.763	
	€ f ('	%)	I 5.0	15.0	15.0	13.0	
×	U _f (kg/cm²)	0.002	0	0.02	0	
Peak	Aş				•		
A1	er					<u> </u>	ļ
	Ev 1 (1	%)			·		
	Elapsed Time to Fai	lure (min)	15	15	15	13	
M	loculus of Elasticity	E50(kg/cm²)	186	31	161	16.5.2	
	Room Temperature	(°C)					
rressure /cm²	(σ ₁ -σ ₃)- ε curv (ΔV/V)- τ ω- ε	/E					



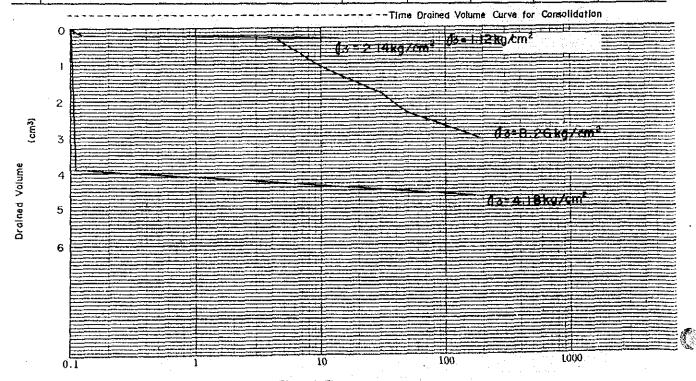
Τ{	RIAXIAL COMPRES		EST STRESS DIAG	SRAM)	OD CD	FOR REPORTING
NΔ	ME OF PROJECT	TENOM	PANGI PROJECT,	PHASE II	DATE	24 - 10 - 85
SA	MPLE NO. & DEPTH	SP-7	Wopt (2,0m ~ 5.0 m	LESTED BY	SUHAIBUN
			and the second s			والمرابع والم
G E	Normally Consolidated	Cu =	kg/cm², øu =	C, =	0,567 kg /	'cm². ø'= 17.69
SCOP	Over~ Consolidated	C =	kg/cm², ø =	C' ≠	kg	′cm². ø'=


TRIAXIAL COMPRESS	CONDITION: E)	CD CD	FOR REPORTING	
NAME OF PROJECT	TENOM PANGI PRO	JECT, PHASE II	DATE	18 - 10 - 85
SAMPLE NO. & DEPTI	1 SP-7 Wopt + 2%	(2.0 m~ 5,0 m)	TESTED BY	SUHAIBUN
Sample	Undisturbed Disturbed	Type of Apparatus	British T	
Shaped With	Trimmer Other() Remoulded	Condition of Orainage During Consolidation	Single Draina	age, Doubel Orainage. Paper Drain
Properties	Classification	Gs 2.85 ພ _{ິເ}	48.9 %	. ω _p 21.90 %

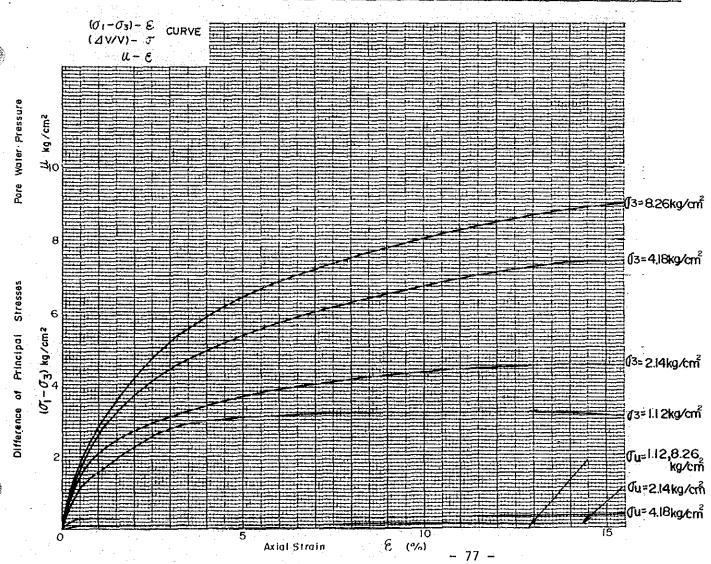
Spec	imen Number			No. I	No. 2	No. 3	No. 4	No.
Cons	olidation Pressure	(1	(g/cm²)	1,12	2.14	4.18	8.26	
_	Height	H∗	(cm)	8	8	8	8	
Specimen	Diameter	D	(cm)	3.8	3.8	3, 8	3.8	
n i	Volume	∇.	(ci3)	91	91	91	91	
5	Weight	₩.	{ g }	186.30	185.00	186.20	186.10	
STION I	Wet Density	r	(g /cm ³)	2.019	2,033	2.046	2.045	
Conquitions	Water Content	ധം	(%)	27.5	27.9	283	27.8	27. 9
	Void Ratio	•	-	0.774	0.792	0.788	0.781	
Ē	Degree of Saturation	Sr	(%)	100	100	100	100	
	Consolidation Time Dry De	nsity d(g/cm)	1.606	1.590	1.594	1.600	1.598
Consol. Data	Drained Volume	۵V	(cm ³)	[<u></u>		
	Vold Ratio After Consolidation	6					L	L
5	Room Temperature		(°C)	}		T	[



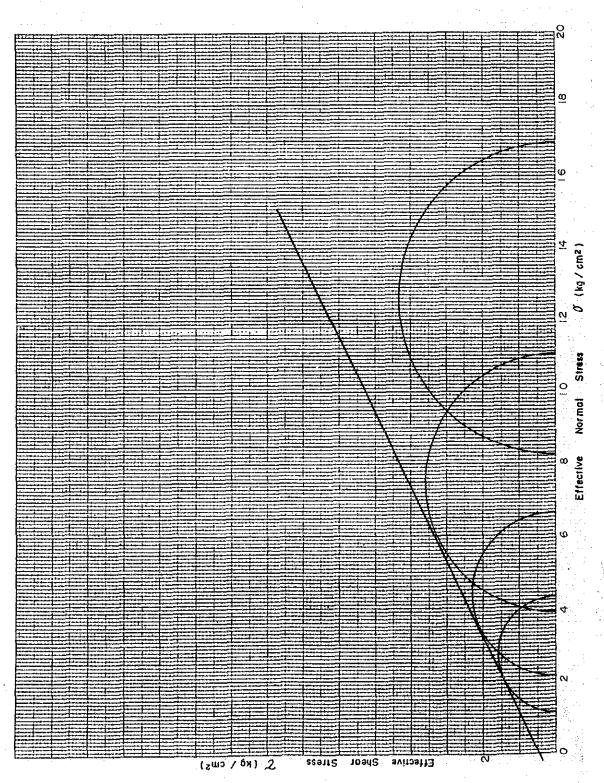
TRIAXIAL COMPRES	ப்ப SION TEST (LOADING DATA) (ப்	CD CD	FOR REPORTING
NAME OF PROJECT	TENOM PANGI PROJECT, PHASE III	DATE	18 - 10 - 85
SAMPLE NO. 8 DEPTH	SP-7 Wopt+2% (2.0 m ~ 5.0 m)	TESTED BY	SUHAIBUN
Loading Method Strain Control			


ding M	Rate Compression	0, 1	/min Prov	ing Ring Capaci	ty	· · · · · · · · · · · · · · · · · · ·
	Specimen Number	No.	No. 2	No. 3	No. 4	No.
-	Consolidation Pressure (kg/cm	1.12	2.14	4,18	8, 26	
	$(\sigma_1 - \sigma_3)_{\ell}$ (kg/cm ²)	. 2.363	3,039	4.173	7.418	
	£ † (%)	12.1	14.1	12, 2	15, 25	
	U f (kg/cm²)	0	0	0,20	0.53	
₹Ded ¥	Aţ				· .	<u> </u>
₹ .	er					
	Eu ; (%)					
	Elapsed Time to Failure (min)	12.1	14.1	12.2	15. 25	
N	Modulus of Elasticity E50(kg/cm²) 70	11 9	139.3	8 1 1	
	Room Temperature (°C)	28	28	28	28	

T	RIAXIAL COMPRES	SION TEST IOHR'S STRESS DIAGE	RAM)	OD CD	FOR REPORTING
NA	ME OF PROJECT	TENOM PANGI PROJECT,	PHASE I	DATE	18 - 10 - 85
SA	MPLE NO. 8 DEPTH	SP - 7 Wopt + 2% (2.	0 m ~ 5.0 m)	TESTED BY	SUHAIBUN
or m	Normally Consolidated	Cu = kg/cm ² , #u =	c, =	0.581 kg/	cm². ø'= 14.84
SCOPE	Over-Consolidated	C = kg/cm ² , # =	c' =	kg/	'cm². ø'=

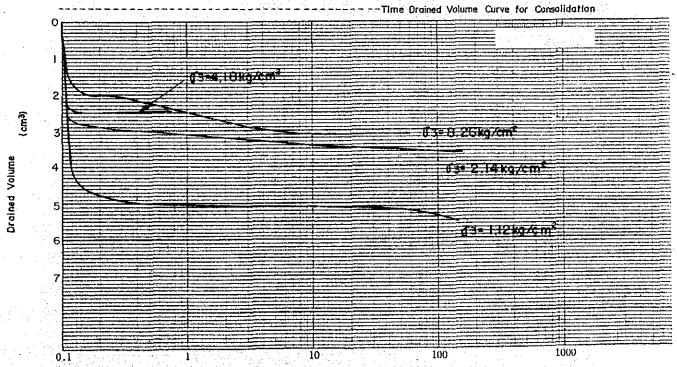


TRI	AXIAL COMPRE	SSION TEST CONSOLIDAT	<u>``</u>	CO · CD	FOR R	EPORTING				
NAM	ME OF PROJECT	TENOM P	ANG	PROJE	CT, PHAS	ET	DATE	- 85		
SAN	MPLE NO. 8 DEP	TH SP-8	Wopt		(2.0 m	~ 5.0 m)	TESTED BY	N		
Sc	ample	` Undisturbed · Dis	turbed	Type of Ap	paratus	British ELE	Type Product			
Sh	naped With	Trimmer · Oth (Remoulded)	ier()	Condition of During Cons		Single Draina	ige. Doubel Paper (Orainage. Orain	
Properties Classification CL Gs 2.84 WL */* Wp										
Spec	imen Number				No. i	No. 2	No. 3	No. 4	No.	
Consc	olidation Pressure		(k	g/cm²)	1.12	2.14	4.18	8.26	<u> </u>	
ę,	Height		: Н•	. (cm)	8	8	8	8		
Specimen	Diometer		Ď	(cm)	3.8	3.8	3.8	3.8		
ĝ	Volume		₩.	(cm)	91	91	91	91		
ŏ	Weight		₩.	(g)	184.84	183.49	185.20	187.90		
ions	Wet Density			(g/cm ³)	2.031	2.016	2.035	2.064	2,037	
Conditions	Water Content		ω̈́o	(%)	20.7	21.4	21.44	21.0	21,14	
	Void Ratio		8.		0.687	0.408	0.695	0.663	0.613	
Inital	Degree of Saturation		Sr	(*/-)	86	100	88	90	91	
	Consolidation Time	Dry Density	d (g	/c m³)	1 683	2.016	1, 676	1.708	1.771	
Data	Orained Volume		4 V				I			
Consol. D	Void Ratio After Co	solidation	8		[
og i	Room Temperature			(°C)						

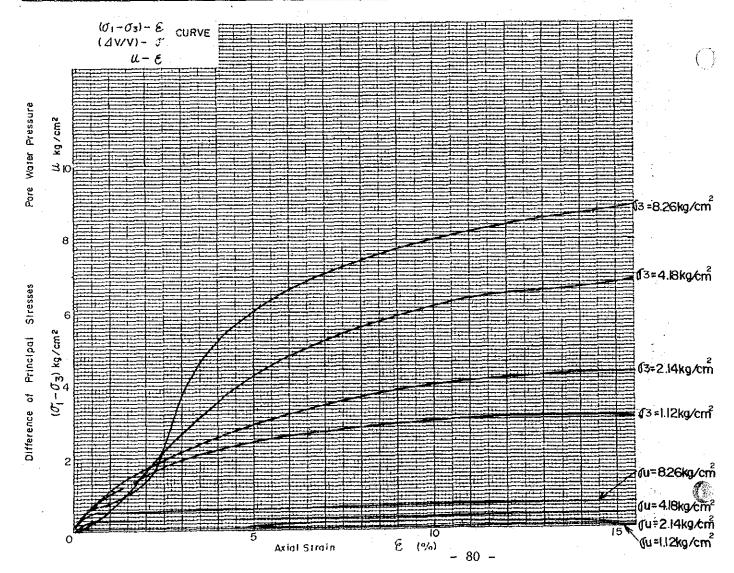


	Specimen Num	ber	No.	ı	No.	2	No.	3	No.	4.	No.
Loading Method Strain Control Stress Control Rate Compression/min											
SAMPLE NO	. & DEPTH	SP-8	Wopt		(2	0m ~ 5	(m 0.c	TESTEC	ВА	SUHAI	BUN
NAME OF	PROJECT	TENOM PA	MGI	PROJE	CT, P	HASE 1	II	DAT	E.	26 -	ìo - 85
TRIAXIA	L COMPRES	SION TEST	۲ (۱.(DADING	DA		υυ (ປັ)	CD CD		FOR	REPORTING

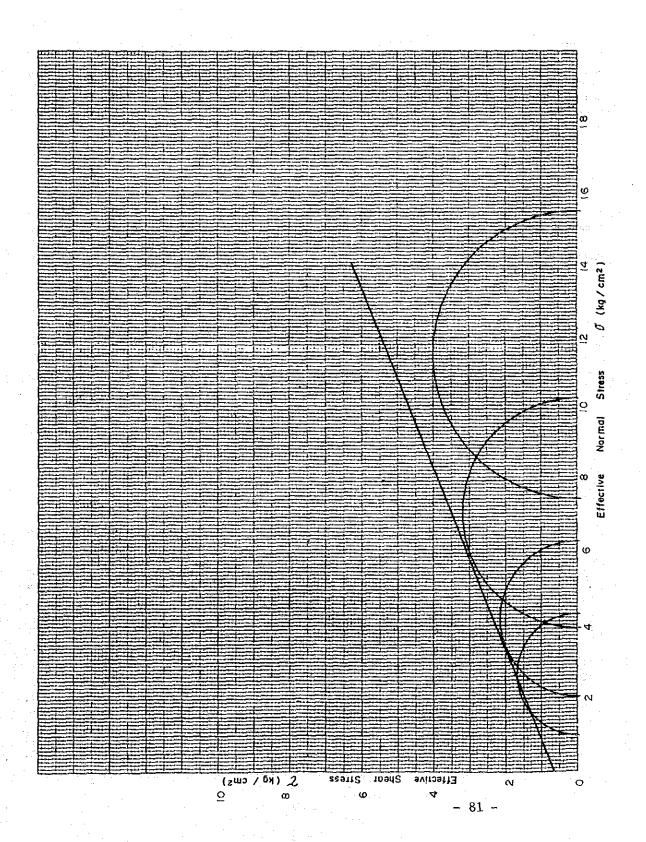
	Rate Compression	******	/min / roving King Capacity						
	Specimen Number	No. I	No. 2	No. 3	No. 4	No.			
	Consolidation Pressure (kg/cm²	1.12	2.14	4.18	8,26				
	$(\sigma_1 - \sigma_3)_f$ (kg/cm ²)	3.179	4.504	7,446	8. 694				
¥	€ f (%)	12	15	15	15				
	U1 (kg/cm²)	0	0.001	0.30	0				
Peak	Af								
¥	64					<u> </u>			
	Ev + (%)								
	Elapsed Time to Failure (min)	12	15	15	15				
N	(ladulus of Elasticity E50(kg/cm²)	280	356	2 98	206, 5				
	Room Temperature (°C)	27	27	27	27				



TI	RIAXIAL COMPRES		STRESS DIA	GRAM)	00 CD	FUR REPORTING
NΔ	ME OF PROJECT	TENOM	PANGI PROJECT	, PHASE II	DATE	26 - 10 - 85
SA	MPLE NO. 8 DEPTH	SP-	8 Wopt (2.0 m ~ 5.0 m	TESTED BY	SUHAIBUN
PE	Normally Consolidated	Cu =	kg/cm², #u =	C' =	0.413 kg/	'cm², ø'= 26.01
SCOP	Over-Consolidated	C =	kg/cm², ø =	c' :	kg /	/cm² 、 ≠'=

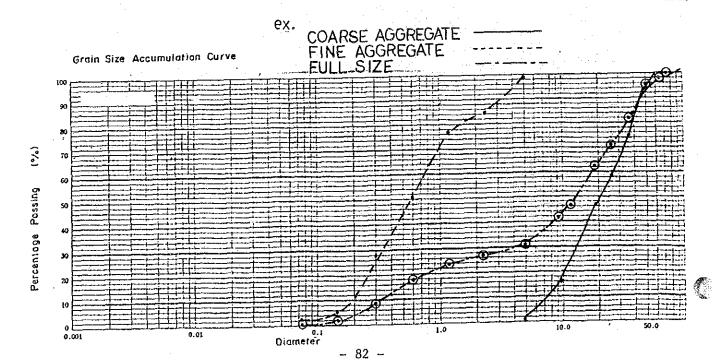


TRIAXIAL COMPRESSION TEST (INITIAL CONDITION: UU · CU FOR REPORTING (CŪ) CD CONSOLIDATION: DATE) OF PROJECT NAME DATE 22 - 10 - 85 TENOM PANGI PROJECT, PHASE II TESTED BY SAMPLE NO. 8 DEPTH SP-8 SUHAIBUN Wopt + 2 % (2.0 m~ 5.0 m) British Type Sample Undisturbed · Disturbed Type of Apparatus ELE Product Condition of Drainage During Consolidation Single Drainage Doubel Crainage. Shaped With Trimmer · Other(Remoulded Properties Classification Gs 2.84


iman Number			No. I	No. 2	No. 3	No. 4	No.
olidation Pressure	į, j	kg/cm²)	1. 12	2.14	4.18	8.26	
Height	H•	(cm)	8	8	8	8	
Diameter	O	(an)	3,8	3.8	3.8	3, 8	
Volume	v.	(cm)	91	91	91	91	
Weight	w .	(g)	183.92	183.40	184.29	184.64	
Wet Density	7	(g /cm ³)	2,019	2,015	2.025	2.029	
Water Content	ω̈́o	(%)	23.3 0	22,83	22.41	22.89	22.86.
Void Ratto	e.		0.734	0.731	0.717	0,720	
Degree of Saturation	Sr	(*/*)	90	89	89	90	
Consolidation Time Dry Density	ða (g	/cm³)	1.637	1,641	1.654	1,651	1,646
Drained Volume	4 V	(cm³)					
Vold Ratio After Consolidation	e						
Room Temperature		(°C)		T			[
	Height Diameter Volume Weight Wet Density Water Content Void Ratio Degree of Saturation Consolidation Time Dry Density Drained Volume Void Ratio After Consolidation	Height H. Diameter D Volume V. Weight W. Wet Density V. Water Content W. Void Ratio e. Degree of Saturation Sr Consolidation Time Dry Density Ød (g) Drained Volume 4 V. Void Ratio After Consolidation e	Oildation Pressure (kg/cm²) Height He (cm) Diameter D (cm) Volume V. (cm²) Weight We (g) Water Content Wo (°/-) Void Ratio e. Degree of Saturation Sr (°/-) Consolidation Time Dry Density /d (g/cm³) Drained Volume 4 V (cm³) Void Ratio After Consolidation e	Height Height Height Gram Resource Comparison Resource Comparison Resource Res	No. No	oildation Pressure (kg/cm²) 1.12 2.14 4.18 Height H₀ (cm) 8 8 8 Diameter D (am) 3,8 3,8 3,8 Volume V₀ (cm³) 91 91 91 Weight W₀ (g) 183,92 183,40 184,29 Water Density Y (q/cm³) 2,019 2,015 2,025 Water Content W₀ (⁰/₀) 23,30 22,83 22,41 Void Ratio ๑₀ 0.734 0.731 0.717 Degree of Saturation Sr (⁰/₀) 90 89 89 Consolidation Time Dry Density /d (g/cm³) 1,637 1,641 1.654 Drained Volume 4 V (cm³) 1,637 1,641 1.654 Vold Ratio After Consolidation e - - -	Note

-								
TRIAX	KIAL COMPRESS	SION TEST	(LOADING	DATA)	υυ ©Ū	CU CD	FC	OR REPORTING
NAME	OF PROJECT	TENOM P	ANGI PROJE	CT, PHASE	Ш	DA TI	22	-10-85
SAMPLE	E NO. 8 DEPTH	SP-8	Wopt + 2 %	(2.0m~	5.0 m)	TESTEC	BY SUL	IAIBUN
Loading M	Method Strain Control S	~~~		/min Prov	ving Ring	Capacity		
	Specimen Num	ber	No. I	No. 2	No.	3	No. 4	No.
	Consolidation Pressu	re (kg/cm²)	1.12	2,14	4	18	8.26	
·	$(\sigma_1 - \sigma_3)_f$	kg/cm²)	. 4.219	6. 294	10.	224	15,613	
	E 1	%)	13. 26	15,20	15.	14	15.21	
~	U _f (kg/cm²)	0.009	0.11	0	.38	0.69	
Peak	Af							
₹	eş				<u> </u>			
	Eu f	%)						
	Elapsed Time to Fa	ilure (min)	13.3	15		15	15	
<u></u>	Modulus of Elasticity	E 50(kg/cm²)	186	107	7	2. (129.1	
	Room Temperature	(°C)	28	28		28	28	<u>:</u>

Т	RIAXIAL COMPRES (1)	OU OU	CD CD	FOR REPORTING		
NA	ME OF PROJECT	E M	DATE		22 - 10 - 85		
SA	MPLE NO. 8 DEPTH	SP-	8 Wopt + 2% (2.0m~	5.0 m)	TESTE	D BY	SUHAIBUN
PE	Normally Consolidated	Cu ≄	kg/cm², øu =	C, =	0.619	kg/c	m². ø¹= 2 1.75
SCOPE	Over- Consolidated	C =	kg/cm², ø =	C' =		kg/c	m² ø's

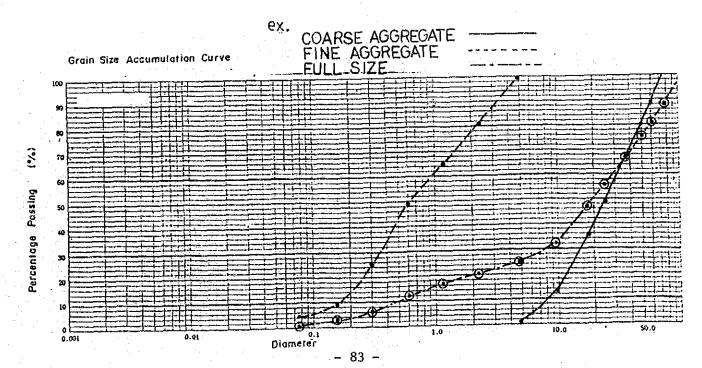

ASTM C136 - 84	GRADATION ANALYSIS		FOR REPORTING
NAME OF PROJECT	TENOM PANGI PROJECT, PHASE II	DATE	5 - 9 - 85
SAMPLE NO. & DEPTH	GP - 1 Mixed (1.0 m 2.0 m)	TESTED BY	DORA

		 										
	Grain Size (mm)		_90	75_	_63	50	37.5	25	19	12.5	9.5	4.75
Sie	Total Passing (%)				98.9	94.5	74.9	58.6	46.3	24.0	16.0	0.3

FINE AGGREGATE

	Grain Size (mm)		 					4.75	2.40	1.18	0.6	0.3	0.15
Sieve	Total Passing (%)			 				100.0	87.3		51.3	28.2	4.7
<u></u>		<u> </u>	<u> </u>		Į 	 	<u> </u>	ļ		<u> </u>		 	0.075
			1		-1-2				• .				1.11

		•		,									,			1
	Grain Size (mm)	90	75	63	50	37.5	25	19	12.5	9.5	4.75	2.36	1,18	0.6	0.3	0.15
Siev	Total Passing (*/•)	100.0	98.6	97.8	94.9	81.5	70.5	62.1	46.8	414	30.7	26.7	24.0	15.7	8.6	1.4
		<u></u>			<u> </u>		L		<u></u> -	1					:	0.075
															•	0.3

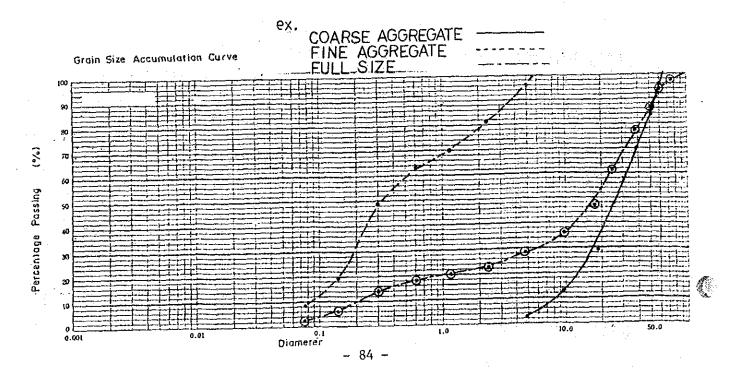

ASTM C136 - 84	GRADATION ANALYSIS	eastern Agents (1955) - The same of the section of	FOR REPORTING
NAME OF PROJECT	TENOM PANGI PROJECT, PHASE II	DATE 2	6 - 9 -85
SAMPLE NO. & DEPTH	GP-2 Mixed (1.0 m 2.0 m)	TESTED BY DO	ORA

	Grain Size (mm)		90	75_	_63_	50	37.5	25	19	12.5	9.5	4.75
Sign	Total Passing (%)			100.0	892	79.5	66.6	49.2	35.8		13.4	1.7
·					· ·	 . !	~ _ ,,		•	(21.0)		

FINE AGGREGATE

	Grain Size (mm)					4.75	2,36	1.18	0.6	0.3	0.15
Siev	Total Passing (*/•)					99.7	80.3			25.1	9.2
		<u></u>	 		·· ····	<u>,</u>		L			0.075
	:										5.0

	Grain Size (mm)	. 90	75	63	50	37.5	25	19	12,5	9.5	4.75	2.36	1,18	0.6	0.3	0.15
Siev	Total Passing (%)	93.0	88.0	81.1	74.9	66.6	55.5	46.9		32.6	25 1	20.2	16.2	12.5	6.3	23
	<u> </u>		·		····						•					0.075
•																1.3


ASTM C136 -84	GRADATION ANALYSIS		FOR REPORTING
NAME OF PROJECT	TENOM PANGI PROJECT, PHASE II	DATE	25 - 9 - 85
SAMPLE NO. 8 DEPTH	Mixed GP-3 (I.O m 2.O m)	TESTED BY	DORA

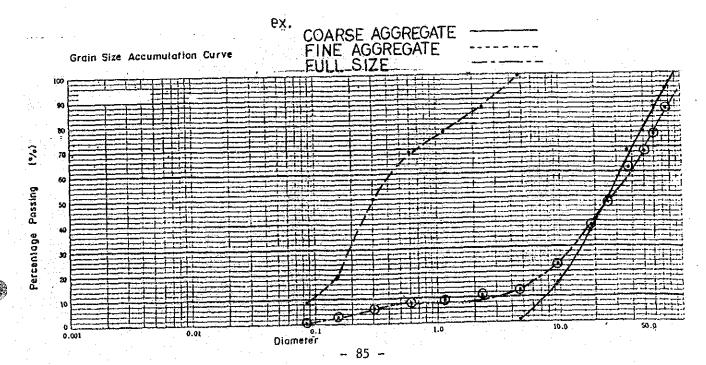
و	Grain Size (mm)		90	75_	63	50	37.5	25	19	12.5	9.5	4 <i>.</i> 75
Sie	Total Passing (%)			100.0	95.9	83.5	69.8	47.5	28.8		12.9	2.2
<u> </u>	<u> </u>	 							•	(20.0)	•

FINE AGGREGATE

		·						·				r		7
	Grain Size (mm)					·		4.75	2.36	1.18	0.6	0.3	0.15	
20	Total Passing (%)							95.8	80.5	70.1	62.7	48.3	19.1	
														
													8.2	

		ter and the second second										,	 -				
	٧٤.	Grain Size (mm)	90	75	63	50	37.5	25	19	12.5	9.5	4.75	2.36	1,18	0.6	0.3	0.15
		Total Passing (%)	1000	97.6	94.7	85.9	76.3	60.6	47.4		36.2	28.7	23.1	20.1	18.0	13.9	5.5
! —						L	L	L	L			<u></u>				-	0.075
												÷					2.4

ASTM C136 - 84	GRADATION ANALYSIS						
NAME OF PROJECT	TENOM PANGI PROJECT, PHASE II	DATE	19 - 9 - 85				
SAMPLE NO. & DEPTH	GP-4 (1.0 m 2.0 m	, TESTED BY	DORA				

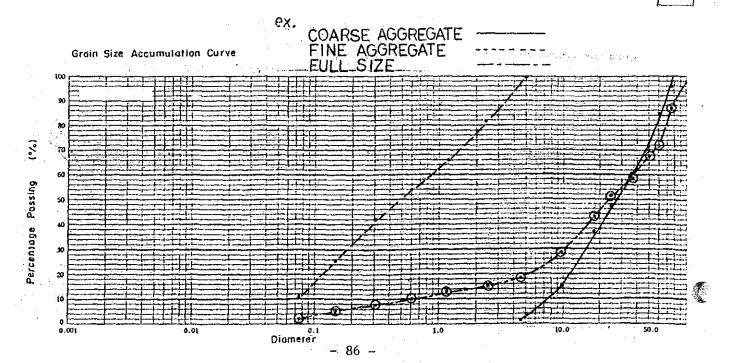

()

	Grain Size (mm)		90	75_	63	50	37.5	25	19	12.5	9.5	4.75
Sie	Total Passing (%)		0.00	93.3	86.9	76.4	68.4	48.9	36.0		14.6	1.2
·	<u></u>	 	2.4.44						•	(22.0)		

FINE AGGREGATE

	Grain Size (mm)							4.76	2.36	1.18	0.6	0.3	0.15
Siev	Total Passing (%)					·		99.8	87.1	76.9	69.3	50.0	19.8
	<u> </u>	 								<u></u>		,	0.075

. 60	Grain Size (mm)	90	75	63	50	37.5	25	19	12.5	9.5	4.75	236	1,18	0,6	0.3	0.15
Siev	Total Passing (%)	90.0	85.1	75.4	67.9	61.9	47.7	38.2		22.6	12.6	10.4	9.1	8.2	6.0	2.4
<u> </u>		<u> </u>					•									0.07\$
																1.0


ASTM: C136 - 84	GRADATION ANALYSIS	FOR REPORTING
NAME OF PROJECT	TENOM PANGI PROJECT, PHASE II DATE	7 - 9 - 85
SAMPLE NO. & DEPTH	GP-5 Mixed (1.0 m 2.0 m) TESTED BY	DORA

	Grain Size (mm)			90	75_	63	50	37.5	25	19	12.5	9.5	4.75
Sie	Total Passing (%)			100.0	96.0	78.5	71.3	59.3	47.2	36.7		15.5	1.3
(23.0)											[

FINE AGGREGATE

89 >	Grdin Size (mm)				, 			4.76	2.36	1.18	0.6	0.3	0.15
Sign	Total Passing (%)	1							83.9	i		4:15	25.8
	(-	•	•							0.075
	•		FU	ILL S	SIZE		· .						JO. 7

Grain Size (mmi) 90 75 63 50 37.5 25 19 12.5 9.5 4.75 2.36 1.18 0.6 0.3 0.15
Total Passing (%) 93.0 86.6 71.8 66.8 58.5 50.1 42.8 — 28.1 18.4 15.4 12.2 9.9 7.6 4.7
0.075

