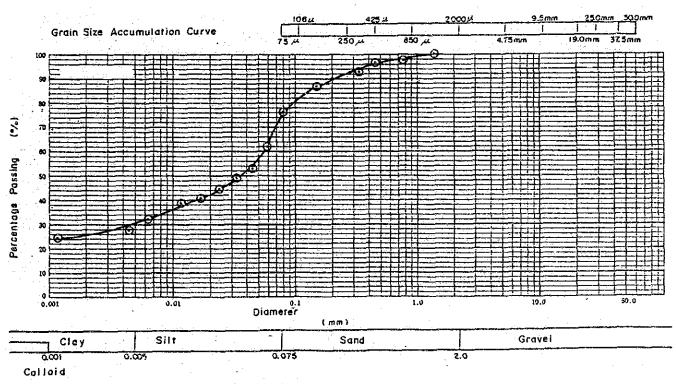
DATA OF CONSTRUCTION MATERIALS

LIST OF FIGURES

		Do co
		Page
-Gradation Analysis	SP-3	30-9-85 1
-Gradation Analysis	SP-3	Aug. 16 '85 2
-Gradation Analysis	SP-3	Aug. 16 '85 3
-Gradation Analysis	SP-3	Aug. 14 '85 4
-Gradation Analysis	SP-3	30-9-85 5
Gradacion Analysis	5P-3	30-9-83 3
-Gradation Analysis	SP-4	19-9-85 6
-Gradation Analysis	SP-4	10-9-85 7
-Gradation Analysis	SP-5	Aug 22 '85 8
-Gradation Analysis	SP-5	19~9-85 9
-Gradation Analysis	SP-5	Aug. 16 '85 10
oracacton maryors	3: 3	Aug. 10 00 10
-Gradation Analysis	SP-5	Aug. 16 '85 11
-Gradation Analysis	SP-5	Aug. 14 '85 12
-Gradation Analysis	SP-6	3-10-85
-Gradation Analysis	SP-6	15-9-85 14
-Gradation Analysis	SP-6	5-10-85
-Gradation Analysis	SP-6	7-9-85 16
-Gradation Analysis	SP-7	10-9-85 17
-Gradation Analysis	SP-7	30-9-85 18
-Gradation Analysis	SP-7	30-9-85 19
-Gradation Analysis	SP-1	10-9-85 20
- -		
-Gradation Analysis	SP-1	7-9-85
-Gradation Analysis	SP-1	5-10-85 22
-Gradation Analysis	SP-1	3-10-85 23
-Gradation Analysis	SP-1	3-10-85 24
-Gradation Analysis	SP-1	17-10-85 25
-Gradation Analysis	SP-2	12-9-85 26
-Gradation Analysis	SP-2	30-9-85 27
-Gradation Analysis	SP-2	30-9-85
-Gradation Analysis	SP-2	18-10-85 29
-Gradation Analysis	Temporary Road	5-10-85 30
-Gradation Analysis	an a	21-9-85 31
-Gradation Analysis	SP-8 SP-8	9-10-85 32
-Gradation Analysis	SP-8	
-Gradation Analysis	SP-9	21-9-85 34
-Gradation Analysis	SP-9	21-9-85 35
-Gradation Analysis	SP-10	21-9-85 36
-Gradation Analysis	SP-10	10-9-85 37
-Gradation Analysis	SP-10	3-10-85 38
-Gradation Analysis	SP-10	3-10-85
and a superior		3-10-03
-Compaction Curve	Borrow Area A	SP-4 Mixed 40
-Compaction Curve	Borrow Area A	SP-6 Mixed 41
-Compaction Curve	Borrow Area A	SP-7 Mixed 42
-Compaction Curve	Quarry	SP-1 Mixed 43
-Compaction Curve	Quarry Site	SP-2 Mixed 44
	and the state of t	

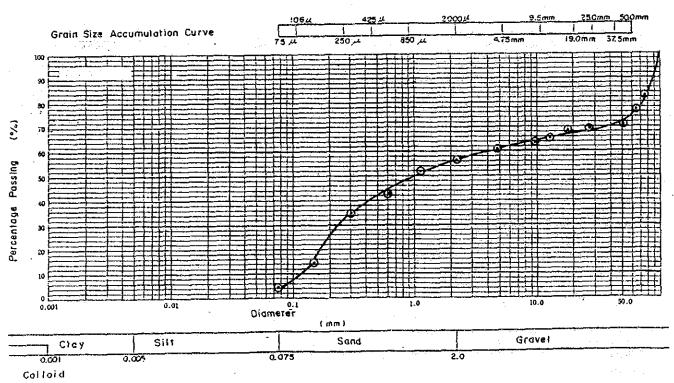

			Page
-Compaction Curve Tempor	ary Road	Temporary Road	45
	Area B	SP-8 Mixed	46
	Area B	SP-10 Mixed-1	
•	Area B	SP-10 Mixed-2	
		SE IV MIREG Z	40
-Compaction and Coefficient o		on A Miles A	A.D.
Permeability Curve Borrow	Area A	SP-4 Mixed	49
-Compaction and Coefficient o	f		
Permeability Curve Borrow	Area A	SP-6 Mixed	50
-Compaction and Coefficient o	f		
		SP-7 Mixed	51
-Compaction and Coefficient o			
Permeability Curve Quarry		SP-1 Mixed	52
-Compaction and Coefficient o			
Permeability Curve Quarry		SP-2 Mixed	53
-Compaction and Coefficient o	f		
		Temporary Road	54
-Compaction and Coefficient o		- -	•
_		SP-8 Mixed	55
•			
-Compaction and Coefficient o	f		
		SP-10 Mixed-1	56
-Compaction and Coefficient o		or to minea i	30
		SP-10 Mixed-2	57
-			
-Triaxial Compression Test (Lo	ading Data;	Sp-7 Wopt	38
Mariania 3 Orangana and Mark			
-Triaxial Compression Test		CD 7 W	F.0.
(Mohr's Stress Diagram)		SP-7 Wopt	29
-Triaxial Compression Test			
(Initial Condition : Consolid	ation : Date)	SP-7 Wopt	60
-Triaxial Compression Test			
(Initial Condition : Consolid	ation : Date)	SP-7 Wopt + 2%	61
-Triaxial Compression Test (L	oading Datal'	SP-7 Wort + 2%	62
-Triaxial Compression Test	ouding Duca,	or thope the	
(Mohr's Stress Diagram)		SP-7m Wopt + 2%	63
-Triaxial Compression Test		or an nope : zv	00
(Initial Condition : Consolid	ation . Datel	SD-9 Work	6.4
(Initial condition : Consolid	acton; bace)	area wope	i.
-Triaxial Compression Test (L	oading Data)	SP-8 Wopt	65
-Triaxial Compression Test			
(Mohr's Stress Diagram)		SP-8 Wopt	66
-Triaxial Compression Test	4	and the second second	
(Initial Condition : Consolid	ation : Date)	SP-8 Wopt + 2%	67
-Triaxial Compression Test (L	oading Data)	SP-8 Wopt + 2%	68
-Triaxial Compression Test			
(Mohr's Stress Diagram)		SP-8 Wopt + 2%	69
-Triaxial Compression Test			70
(Initial Condition : Consolid	ation : Date)	SP-7 Wopt	70
-Triaxial Compression Test (L	oading Data)	SP-7 Wopt	71
	Daging Data)	38-7 WOPC	**************************************
-Triaxial Compression Test		SP-7 Wopt	70
(Mohr's Stress Diagram)		SF-/ WOPC	12
-Triaxial Compression Test		0D 7 17 15	72
(Initial Condition : Consolid	ation : Date)	art/ wopt	13
		•	
		•	
			•

	Page
-Triaxial Compression Test (Loading Data) -Triaxial Compression Test	SP-7 Wopt + 2% 74
(Mohr's Stress Diagram) -Triaxial Compression Test	SP-7 Wopt + 2% 75
(Initial Condition : Consolidation : Date)	SP-8 Wopt 76
-Triaxial Compression Test (Loading Data) -Triaxial Compression Test	SP-8 Wopt 77
(Mohr's Stress Diagram) -Triaxial Compression Test	SP-8 Wopt 78
(Initial Condition : Consolidation : Date)	SP-8 Wopt + 2% 79
-Triaxial Compression Test (Loading Data) -Triaxial Compression Test	SP-8 Wopt + 2% 80
(Mohr's Stress Diagram)	SP-8 Wopt + 2% 81
-Gradation Analysis	GP-1 Mixed 82
-Gradation Analysis	GP-2 Mixed 83
-Gradation Analysis	GP-3 Mixed 84
-Gradation Analysis	GP-4 Mixed 85
-Gradation Analysis	GP-5 Mixed 86

ASTM D422-63 GRADATION ANALYSIS								FOR REPORTING
NAME OF PROJECT	TENOM	PANGI	PROJECT	PHASE	ш	DATE	30) - 9 - 85
SAMPLE NO. & DEPTH	SP-3	٠(1.0 r	ח	m)	TESTED BY	DO	ORA

specific Gravity
Gs 2.84

9,	Grain Size (mm)	50.0	37.5	25.0	19.0	9.50	4.75	2.00	0.85	0.425	0.25	0.106	0.075
Sie	Total Passing (%)	100.0	100.0	0.00	100.0	100.0	100.0	100.0	98.5	97.2	93.0	85.0	75.8
metar	Grain Size (mm)	0.05	0.05	0.01	0.005	0.003	0.002	0.001					
Hydro	Total passing (%)	59.0	43.0	37.5	30.0	27.0	26.0	25.0					<u></u>


	4.75 mm <	0 %	Maximum Diameter	1. 2 mm
	4.75~2.00 mm	0 %	60% Diameter (D 60)	mm
100	2.00~0.425	2.8 %	30% Diameter (D 30)	
ogo	0.425 ~0.075 mm	21. 4 %	10% Diameter (Dia)	mm
0	0.075~0.005 mm	45.8 %	Coefficient Of Uniformity Cu= Deo / Dio	
	0.005 mm >	30.0 %	Coefficient Of Curvature Cc = (D3012/ D60 x Dio	

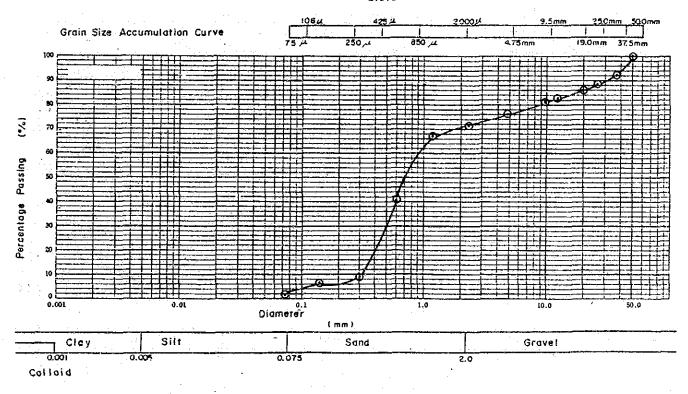
ASTM D422-63	GRADATION ANALYSIS		FOR REPORTING
NAME OF PROJECT	TENOM PANGI PROJECT, PHASE I	DATE	AUG. 16. 85
SAMPLE NO. & DEPTH	SP-3 (3.0 m	m) TESTED BY	DORA

specific Gravity

Gs. 2.85

•	Grain Size (mm)	50.0	37.5	25.0	19.0	9.50	4.75	2.00	0.85	0.425	0.25	0.106	0.075
Siev	Total Passing (%)	70.7	69.5	69.4	68.2	63.7	61.0	56.0	48-0	39,0	30.0	8,5	3.8
neler	Grain Size (mm)							,					
Hydro	Total passing(%)												

	4.75 mm <	39.0	°/a	Maximum Diameter		100 mm
	4.75~2.00 mm	5,0	%	60°% Diameter (0 60)		4.1 mm
riion	2.00~0.425	17.0	%	30% Diameter (D 30)		0.25 mm
ropo	0.425 ~0.075 mm	35,2	°/ ₀	10% Diameter (D10)		0.13 mm
a_	0.075~0.005 mm		%	Caefficient Of Uniformity Cu= Deo/ Dio	 	16.4
	0.005 mm >		%	Coefficient Of Curvature Cc = (D30) / D60 x D10		0.11

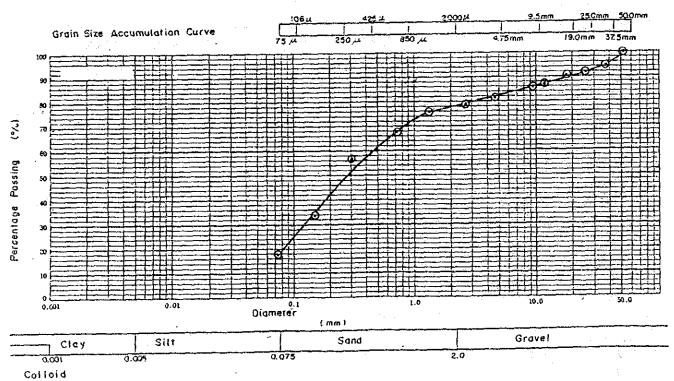

ASTM D422- 63	GRADATION ANALYSIS FOR REP					
NAME OF PROJECT	TENOM PANGI PROJECT, PHASE III	DATE	AUG . 16 . 85			
SAMPLE NO. & DEPTH	SP-3 (4.0 m m)	TESTED BY	DORA			

Particle Size & Weight Percentage of Partigles under the Size

specific Gravity

Gs 2.42

9	Grain Size (mm)	50.0	37.5	25.0	19.0	9.50	4.75	2.00	0.85	0.425	0.25	0.106	0.075
Sign	Total Passing (%)	100,0	92.0	89,4	86.2	80,6	76.6	70.5	58.0	20,0	8.0	5.0	1.9
meler	Grain Size (mm)										*		
Hydro	Total passing (%)				 -								

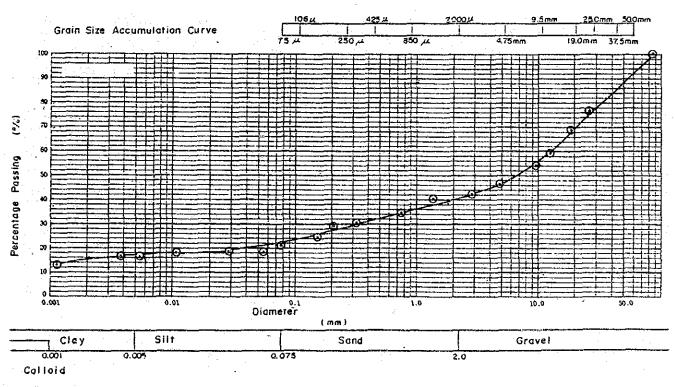


		4.75 mm <	23.4 %	Maximum Olameter	50.0 mm
ortion	ے	4.75~2.00 mm	6.l •/•	60% Diameter (0 60)	0.9 mm
	ortio	2.00~0.425	50.5 %	30% Diameter (D 30)	0.51 mm
	ğ	0.425 ~0.075 mm	18.1 %	10% Diameter (D10)	0.3 mm
ا م		0.075~0.005 mm	%	Coefficient Of Uniformity Cu = Dec / Dio	290
L	\rightarrow	0.005mm >	•/。	Coefficient Of Curvature Cc = (D30) / D60 x D10	0.93

ASTM 0422 - 63	GRADATION ANALYSIS	FOR REPORTING
NAME OF PROJECT	TENOM PANGI PROJECT, PHASE TO DATE AL	JG. 14.'85
SAMPLE NO. & DEPTH	SP-3 (5.0 m m) TESTED BY	OORA

specific Gravity
Gs 2.42

39	Grain Size (mm)	50.0	37.5	25.0	19.0	9.50	4.75	2.00	0.85	0.425	0.25	0.106	0.075
Siev	Tatal Passing (%)	100.0	94.4	91.6	89.9	85.2	81.1	78,0	69,5	62,0	51,0	27.0	17.9
ne ia	Grain Size (mm)												
Hydroi	Total passing (%)												

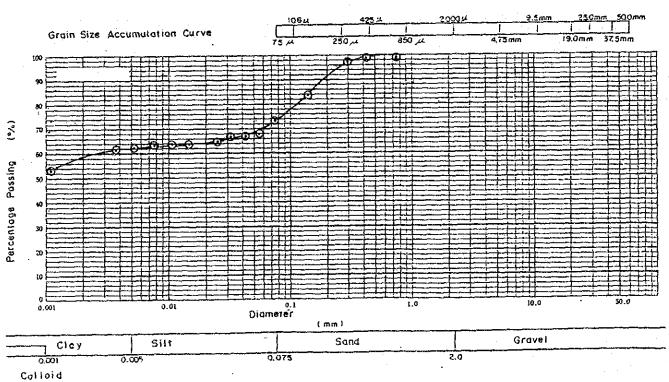

-	4.75mm <	18.5 %	Maximum Diameter	50 mm
	4.75~2.00 mm	3.1 %	60°% Diameter (D 60)	0.35 mm
l i	2.00~0.425	16.0 %	30% Diameter (D 30)	0.13 _{mm}
ropo	0.425~0.075 mm	44.1 %	10% Diameter (D10)	(0.042) mm
a	0.075~0.005 mm	%	Coefficient Of Uniformity Cu= Dep / Dio	(8.3)
	0.005 mm >	%	Coefficient Of Curvature Cc = (D30) / D60 x D10	(1. 1, 5)

ASTM D422 - 63	GRADATION ANALYSIS		FOR REPORTING
NAME OF PROJECT	TENOM PANGI PROJECT, PHASE III	DATE	30 - 9 - 85
SAMPLE NO. & DEPTH	SP-4 (10 m m)	TESTED BY	DORA

specific Gravity

<u>Gs</u> 2.84

	Grain Size (mm)	50.0	37.5	25.0	19.0	9.50	4.75	2.00	0.85	0.425	0.25	0.106	0.075
Sie	Total Passing (*/•)	90,0	84.0	760	68,9	54.3	47.0	41.5	36.0	32.0	29.5	23,5	22.0
meter	Grain Size (mm)	0.05	0.02	0.01	0.005	0.002	0.001						
Hydro	Total passing(%)	19.5	18.5	18.5	18.0	15.5	13,0						

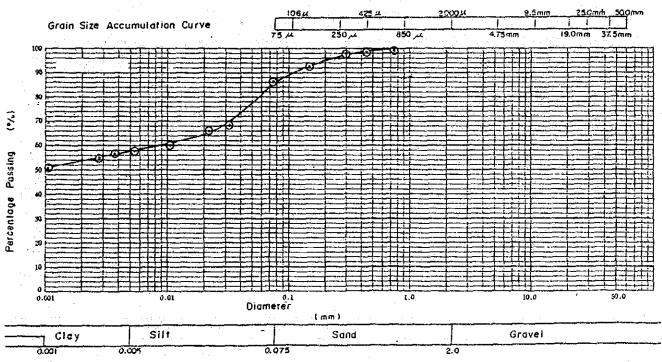

	4.75 mm <	47.0 %	Maximum Diameter	80.0 mm
ے	4.75~2.00 mm: a	5.5 %	60% Diameter (0 60)	mm
i i	2.00~0.425	9.5 %	30% Diameter (030)	mm
o o	0.425~0.075 mm	10.0 %	10% Diameter (Dia)	mm
	0.075~0.005 mm	4.0 %	Coefficient Of Uniformity Cu = Deo / Dia	
	0.005mm >	18, 0 %	Coefficient Of Curvature Cc = (D30) / D60 x D10	

ASTM 0422 - 63	GRADATION ANALYSIS		FOR REPORTING
NAME OF PROJECT	TENOM PANGI PROJECT, PHASE III	DATE	19 - 9 - 85
SAMPLE NO. & DEPTH	SP-4 (3.0 m m)	TESTED BY	DORA

specific Gravity

Gs 2.86

1	Grain Size (mm)	50.0	37.5	25.0	19.0	9.50	4.75	2.00	0.85	0.425	0.25	0.106	0.075
Siev	Total Passing (%)	100.0	100.0	100,0	100.0	100.0	100.0	100.0	100.0	988	95,0	78.5	72.6
neter	Grain Size (mm)	0.05	0.02	0.01	0,005	0.003	0.002	0.001				- -	
Hydro	Total passing (%)	66.5	64.0	63.5	62,0	61.0	59.0	52,0					

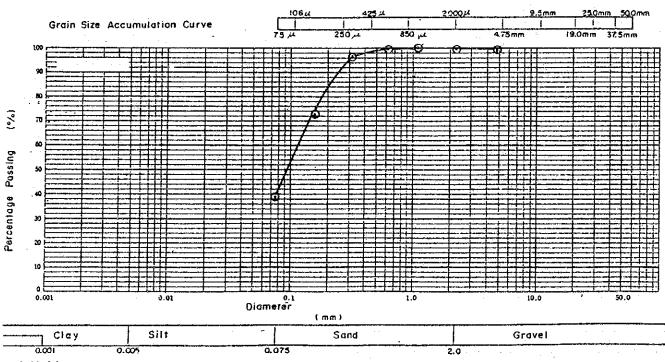

	4,75 mm <	0 %	Maximum Diameter	0.85 mm
_	4.75~2.00 mm	0 %	60% Diameter (D 60)	mm
rtion	2.00~0.425	1. 2 %	30% Diameter (D 30)	mm
000	0.425 ~0.075 mm	26,2 %	10% Diameter (D 10)	mm
ď	0.075~0.005 mm	10,6 %	Coefficient Of Uniformity Cu = 060 / Dio	
	0.005mm >	62.0 %	Coefficient Of Curvature Co=(D30)2/Deo x D10	

ASTM D422 - 63	GRADATION ANALYSIS	FOR REPORTING	
NAME OF PROJECT	TENOM PANGI PROJECT, PHASE I	DATE	10 - 9 - 85
SAMPLE NO. & DEPTH	SP-4 (2.0 m 5.0 m)	TESTED BY	DORA

)

specific	Gravity			
		Gs	2.83	

9	Grain Size (mm)	50.0	37.5	25.0	19.0	9.50	4.75	2.00	0.85	0.425	0.25	0.106	0.075
Sie	Total Passing (%)	100.0	100.0	100.0	100. 0	100.0	100,0	100.0	99.9	99,1	9 7.0	90,5	865
meter	Grain Size (mm)	0.05	0.02	0.01	0.005	0.003	0.002	0.001		i			
Hydro	Total passing (%)	78.0	66. 0	60.5	580	55.5	53.0	51.0					


0.001	0.005	0.075	2.0
Colloid		- "	

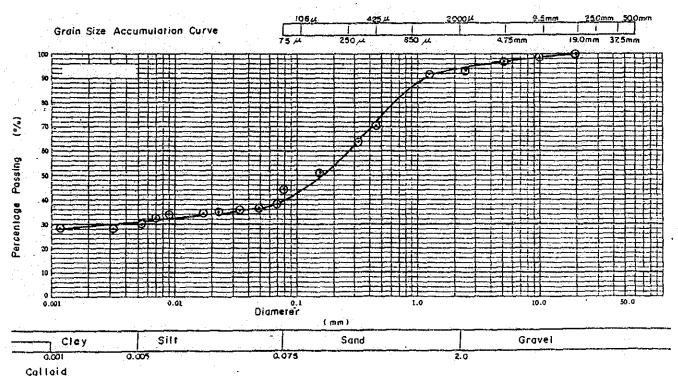
	1	4.75mm <	0 %	Maximum Diameter	1.0 mm
-		4.75~2.00 mm	0 %	60% Diameter (D 60)	тт
	rtio	2.00~0.425	0.9 %	30% Diameter (D 30)	mm
	rope	0.425 ~0.075 mm	12.6 %	10% Diameter (Dia)	mm
	G.	0.075~0.005 mm	28.5 %	Coefficient Of Uniformity Cu= Dec/ Dio	
		0.005 mm >	58.0 %	Coefficient Of Curvature Cc = (D30) ² /D60 x D10	

ASTM D422 - 63	GRADATION ANALYSIS		FOR REPORTING
NAME OF PROJECT	TENOM PANGI PROJECT, PHASE II	DATE	AUG , 22. 85
SAMPLE NO. 8 DEPTH	SP-5 (I.O m m)	TESTED BY	DORA

specific Gravity Gs 2.87

39	Grain Size (mm)	50.0	37.5	25.0	19.0	9.50	4.75	2.00	0.85	0.425	0.25	0.106	0.075
Sig	Total Passing (%)			·			1 00.0	100.0	99.5	99.0	93.0	57.0	398
meter	Grain Size (mm)												
Hydro	Total passing (%)							-					

Col	i	o i	ď	
-----	---	-----	---	--

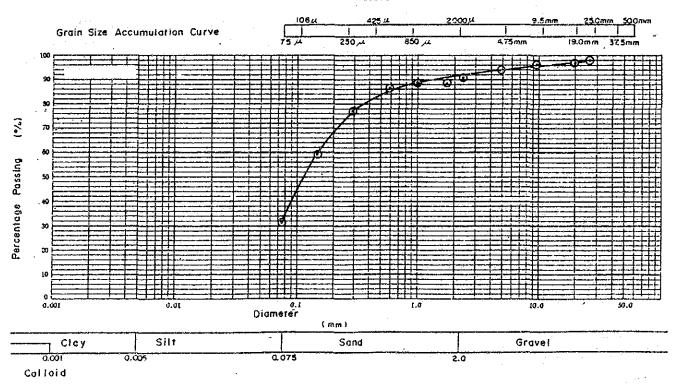

	4.75mm <	0 %	Maximum Diameter	4.75 mm
و	4 .75~2.00 mm	0 %	60% Digmeter (Dec.)	0.12 mm
ortio	2.00~0.425	1.0 %	30% Diameter (D 30)	mm (60.0)
rope	0.425 ~0.075 mm	59,2 %	10% Diameter (Dio)	(0.042) mm
Q.	0.075~0.005 mm	%	Coefficient Of Uniformity Cu= Deg / Dio	2,85
	. 0.005 mm >	%	Coefficient Of Curvature Cc=(D30) ² /D60 x D10	0.71

ASTM D422 - 63	GRADATION ANALYSIS		FOR REPORTING
NAME OF PROJECT	TENOM PANGI PROJECT, PHASE III	DATE	19 - 9 - 85
SAMPLE NO. & DEPTH	SP-5 (2.0 m m)	TESTED BY	DORA

)

specific Gravity Gs 2.74

9	Grain Size (mm)	50.0	37.5	25.0	19.0	9.50	4.75	2.00	0.85	0.425	0.25	0.106	0.075
Sie	Total Passing (%)	100.0	100.0	100.0	100.0	98.6	96.3	93.0	84.5	70.5	60.0	44.0	40.0
meter	Grain Size (mm)	0.05	0.02	0.01	0.005	0.003	0.002	0.001					
lydro	Total passing (%)	37.0	34.5	33,5	29.5	28.5	28.5	28,0					

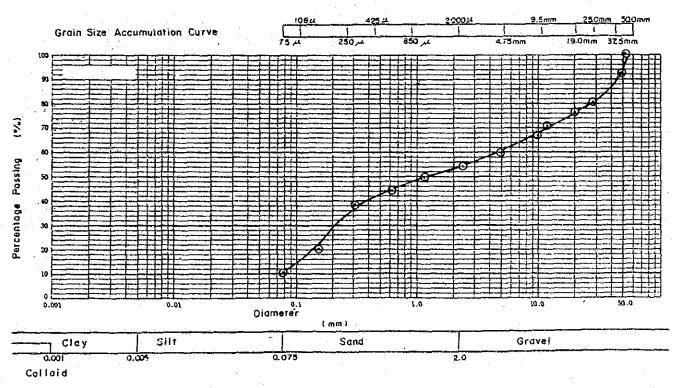

_		 			1
1		4.75 mm <	3.7 %	Maximum Diameter	20.0 mm
		 4.75~2.00 mm	3, 3 %	60% Diameter (D 60)	mm
	rtio	2.00~0.425	22.5 %	30% Diameter (D 30)	mm
	ropo	 0.425~0.075 mm	30.5 %	10% Diameter (0 10)	mm
	a.	 0.075~0.005 mm	10.5 %	Caefficient Of Uniformity Cu = Deo / Dio	
		 0,005 mm >	29.5 %	Coefficient Of Curvature Cc = (030) ² /060 x 010	

ASTM D422 - 63	GRADATION ANALYSIS		FOR REPORTING
NAME OF PROJECT	TENOM PANGI PROJECT, PHASE III	DATE /	\UG . 16 , 85
SAMPLE NO. & DEPTH	(3.0 m m)	TESTED BY (OORA

specific Gravity

Gs 2.74

39 29	Grain Size (mm)	50.0	37.5	25.0	19.0	9.50	4.75	2.00	0.85	0.425	0.25	0.106	0.075
Sie	Total Passing (%)	1 0 0.0	100.0	97.9	97.6	96.6	94.2	90.0	88.5	82.0	72,0	44.0	314
meter	Grain Size (mm)							,					
Hydro	Total passing (%)												

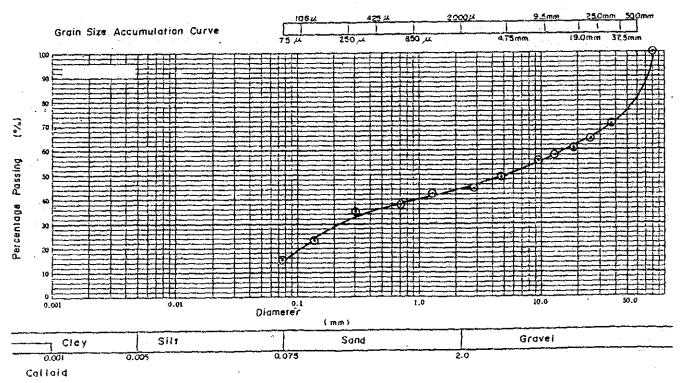

	4.75 mm <	5.8 %	Maximum Diameter	37.5 mm
[4 75~2.00 mm	4.2 %	60% Diameter (D 60)	mm.
ortio	2.00~0.425	8.0 %	30% Diameter (0.30)	mm
ropo	0.425 ~0.075 mm	50.9 %	10% Diameter (Dia)	mm
	0,075~0.005 mm	*/4	Coefficient Of Uniformity Cu = Deo / Dio	
	0.005 mm >		Coefficient Of Curvature Cc = (D30) ² /D60 x D10	

ASTM D422 - 63	GRADATION ANALYSIS		FOR REPORTING
NAME OF PROJECT	TENOM PANGI PROJECT, PHASE II	DATE	AUG. 16. 85
SAMPLE NO. & DEPTH	SP-5 (4.0 m	m) TESTED BY	DORA

specific Gravity

Gs 2.49

2	Grain Size (mm)	50.0	37.5	25.0	19.0	9.50	4.75	2.00	0.85	0.425	0.25	0.106	0.075
Sie	Total Passing (%)	100.0	92.4	8.08	76,7	67.6	60.3	54.0	47.5	42,0	35.0	15.5	11,2
meter	Grain Size (mm)							,					
Hydro	Total passing (%)												

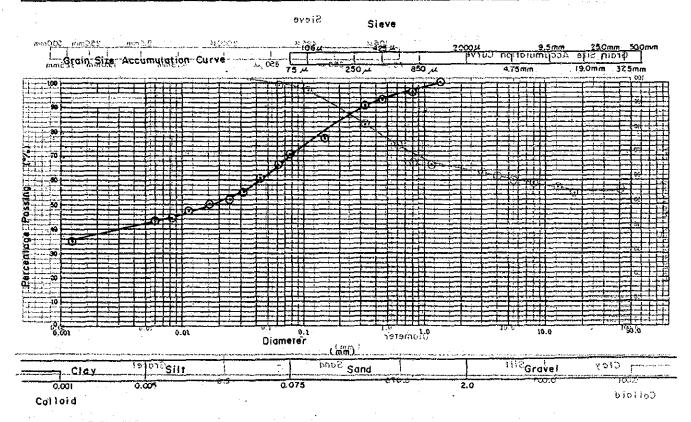


		4.75 mm <	39.7 %	Maximum Diameter	50.0 mm
_		4 .75~2.00 mm	6.3 %	60% Diameter (D 60)	4.75 mm
) in		2.00~0.425	12.0 %	30% Diameter (D 30)	0.2 mm
To be	2	0.425~0.075 mm	30·8 %	10% Diameter (Dio)	0.07 mm
	١	0.075~0.005 mm	- %	Caefficient Of Uniformity Cu = Deo / Dio	67.8
		0.005 mm >		Coefficient Of Curvature Cc = (030) ² /Deo x Dio	0.1

ASTM D422 - 63	GRADATION ANALYSIS		FOR REPORTING
NAME OF PROJECT	TENOM PANGI PROJECT, PHASE II	DATE	AUG 14. 85
SAMPLE NO. & DEPTH	SP-5 (5.0 m	m) TESTED BY	DORA

specific	Gravity			
•		Gs.	2.49	·

5	Grain Size (mm)	50.0	37.5	25.0	19.0	9,50	4,75	2.00	0.85	0.425	0.25	0.106	0.075
Siev	Total Passing (%)	79,0	70.5	64,8	61,6	55.6	49.5	43.0	39.5	37,0	3 2.0	18.0	15.8
meter	Grain Size (mm)							,					
Hydro	Tatal passing (%)												

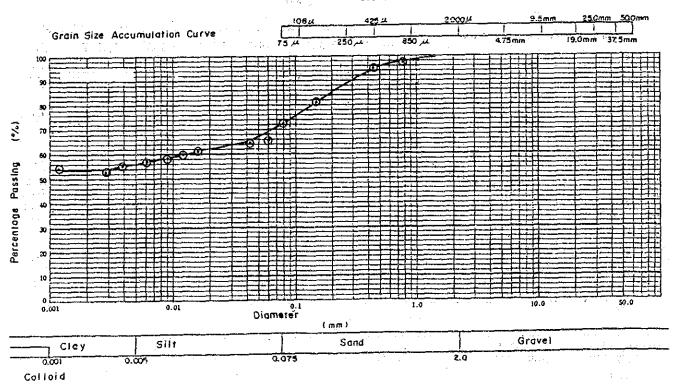

	4.75mm <	50.5 %	Maximum Diameter	80 mm
_	4 .75~2.00 mm	6.0 %	60% Diameter (0.60)	18 mm
ļ į	2.00~0.425	3.0 %	30% Diameter (0.30)	0.205 mm
l e	0.425 ~0.075 mm	21,2 %		(0,036)mm
0	0.075~0.005 mm	%		(500)
	0.005mm >	*/«	Coefficient Of Curvature Cc = (D30) ² /D60 x D10	(0.06)

ASTM-DA2207 63		GRADATIONYANWAYSPETAGASE		FOR REPORTING
NAME OF PROJECT	ATE	TENOM PARSHPROTECP, PHASEAGE MONT	DATE	NAME 28 - 1897-EL
SAMPLE NO. A PO DE	AN	8P(m 6 (m 100.8 m) 3 - 9 h	ESTED BY	SAMPLE NOAROOF

1,43%

Particle Size & Weight Percentage nu of Partigles tounder the Size & Veight Percentage nu of Partigles tounder the Size & Veight Percentage nu of Partigles tounder the Size of Particle Size & Veight Percentage nu of Particle Size & Veight Percent

	specific Gravity Gs. 2.86								specific Gravity <u>Gs</u> 2.72							
0.75	ે	rain Siz	(mm)	₹\$0.°0°	37.5	29:8	ี้ 9:6	9.50	Q:95	2.68	0.85	0.425	'ර.පු.දි	50.108	, o. c) ₇₅
5.95	T	fall Pass	mନ୍ତି (ବି/ବି)	₹0 3 0°0	16696	18081	18091	180,081	180.061	180°9	97.8	್ಕಾ <u>ಚ</u> ಚ	88.8	25.573.51	T 70	0.6
meter		rain Stz	e (mm)	0.05	0.02	ં જી૦	0.00050	0(000)3)	0.0020	0.66.0	0.02	0.05	(mm) t	rain Siz		e(en)o
ydro	To	tal pass	ing (%)	64.0	51.0	87.8	42,5	<u>4</u> δ.²ο	8,4€	94°8 34.8	62.0	65.0	ing (°/s)	tal pass	îT ,	15

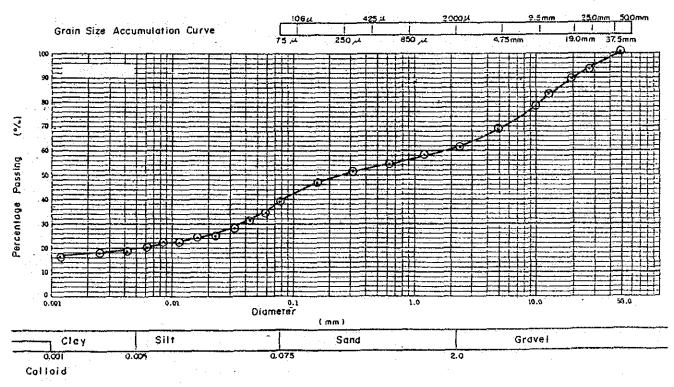

toto C).s		4.75 mm etempio on	mixbM	N. B. W.	Maximu	m Diametermar A		1.2	
ww.			1 .75 -42.00 mm det empil	^°0a	°. % . %	60*/•	4.75~2.00 mm of a point	<u> </u>	_ <u>-</u>	mm
ស៊ច្ស " "	1 .5.		2.00~0.425 Telembic	30%	26.7.1	30%	Diameter 8\$4.0~00.8		3	mm
teres .	og o		0.425 ~0.075 mm 919m910	N°01	22.7.6%	10%	Diameter (TO 0 - 25 A 0		1.5	mm
	م		0.075-0.005mm;	ಗೊಂಡು	28.1 %	Coeff	ciam Of Unitermity 70.0 Cu= 060 / Dio			} :
			610 0:005 mm >2	<u></u> ቸመማው "	42.5	Coeff	cient Of Curvature			

ASTM D 422 - 63	GRADATION ANALYSIS FOR	REPORTING
NAME OF PROJECT	TENOM PANGI PROJECT, PHASE III DATE 15-9	- 85
SAMPLE NO. & DEPTH	SP-6 (3.0 m m) TESTED BY DORA	

specific Gravity

Gs 2.86

	Grain Size (mm)	50.0	37.5	25.0	19.0	9.50	4.75	2.00	0.85	0.425	0.25	0.106	0.075
Siev	Total Passing (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	98.0	95,3	89.0	78.0	72.2
neter	Grain Size (mm)	0.05	0.02	0.01	0.005	0,003	0.002	0.001					
lydror	Total passing(%)	65.0	62,0	59.0	54.5	530	520	51.0					

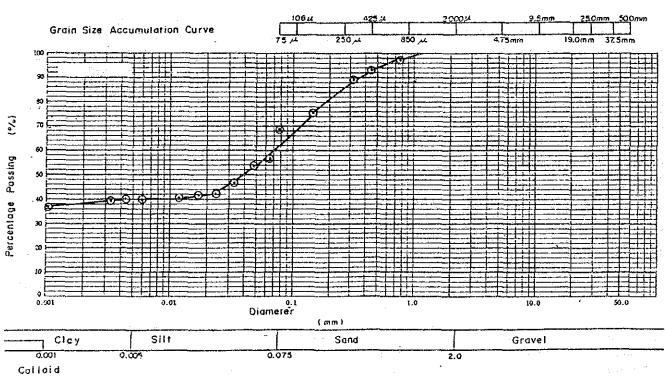


	4.75mm <	0 %	Maximum Diameter	2.0 mm
	4.75~2.00 mm	0 %	60% Diameter (D.60)	mm
riion	2.00~0.425	4.7%	30% Diameter (D30)	, mm
000	0.425~0.075 mm	23.1 %	10% Diameter (Dio)	mm
مَ	0.075~0.005 mm	17.7 %	Coefficient Of Uniformity Cu= Deg/ Dro	
	0.005mm >	54.5 %	Coefficient Of Curvature Cc = (D30) / D60 x D10	

ASTM D422-63	GRADATION ANALYSIS	FOR REPORTING	
NAME OF PROJECT	TENOM PANGI PROJECT, PHASE I	DATE	5 - 10 - 85
SAMPLE NO. & DEPTH	SP-6 (5.0 m m)	TESTED BY	DORA

specific	Gravity	
	•	Gs 2.84

9,	Grain Size (mm)	50.0	37.5	25.0	19.0	9.50	4.75	2.00	0.85	0.425	0.25	0.106	0.075
Sie	Total Passing (%)	100.0	100.0	93.9	90,0	78.6	68,9	61.0	59.0	54.0	51,0	44.0	39.7
meter	Grain Size (mm)	0.05	0.02	0.01	0.005	0003	0.002	0.001					
Hydro	Total passing (%)	34, 0	25.0	22,5	20.0	19.0	0.81	16.5					


	4.75mm <	31.1 %	Maximum Diameter	50 mm
ے	4.75~2.00 mm	7.9 %	60% Diameter (D 60)	mm
rito	2.00~0.425	7.0 %	30% Diameter (D 30)	<u></u> www
ropo	0.425~0.075 mm	14.3 %	10% Diameter (D'10)	m
a.	0.075~0.005 mm	19.7 %	Coefficient Of Uniformity Cu = 060 / Dio	
	0.005 mm >	20.0 %	Coefficient Of Curvature Cc=(Ds01 ² /Ds0 x Dio	

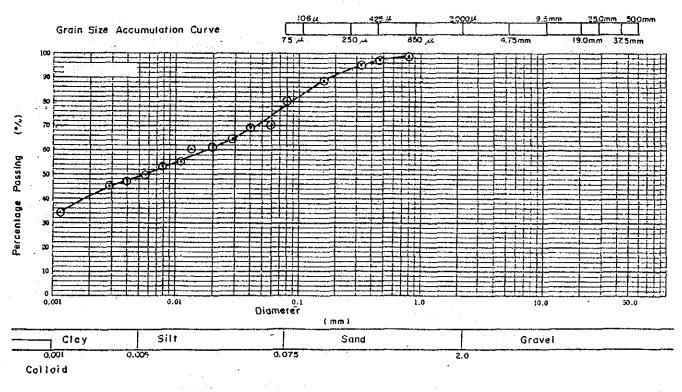
ASTM D422 - 63	GRADATION ANALYSIS		FOR REPORTING
NAME OF PROJECT	TENOM PANGI PROJECT, PHASE II	DATE	7 - 9 - 85
SAMPLE NO. & DEPTH	SP - 6 (1.0 m 2.0 m	TESTED BY	DORA

specific Gravity

Gs 2.86

89 5	Grain Size (mm)	50.0	37.5	25.0	19.0	9.50	4.75	2.00	0.85	0.425	0.25	0.106	0.075
Sie	Total Passing (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	99.0	93.7	85,0	71.0	65.0
metar	Grain Size (mm)	0.05	0.02	0.01	0.005	0.003	0.002	0.001					: -
Hydro	Total passing (%)	56.0	42,5	41.0	40.0	39.5	38.0	37.0					

Cley	-	Silt		Sand	1	Gravel	*.	
0.001	0.005	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.075	:	2.0		1, 100	
lloid		· ·		-	•		\$ 100	
	· · · · · · · · · · · · · · · · · · ·	4.75 mm <	7 0	% Maximum D	iometer		1.0	mu

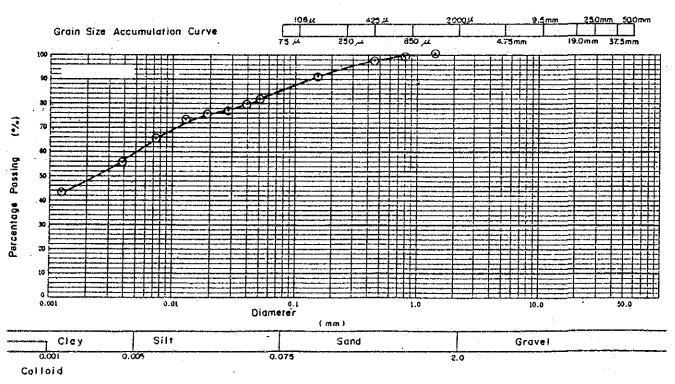

	4.75 mm <	0 %	Maximum Diameter	I.O mm
ے	4 75~2.00 mm		60% Diameter (D 60)	mm
ortion	2.00~0.425	6.3 %	30% Diameter (D 30)	mm.
rope	0.425 ~0.075 mm	28.7 %	10% Diameter (Dia)	mm
	0.075~0.005 mm	25.0 %	Coefficient Of Uniformity Cu= Dec / Dio	
	0.005 mm >	40.0 %	Coefficient Of Curvature Cc = (030) ² /D60 x D10	

ASTM D422 - 63	GRADATION ANALYSIS	,	FOR REPORTING
NAME OF PROJECT	TENOM PANGI PROJECT, PHASE III	DATE	10 - 9 - 85
SAMPLE NO. & DEPTH	SP-7 (10 m m)	TESTED BY	DORA

specific Gravity

Gs 2, 86

Sieve	Grain Size (mm)	50.0	37, 5	25.0	19.0	9.50	4.75	2.00	0.85	0.425	0.25	0.106	0.075
	Total Passing (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100,0	97,6	930	85,0	80,3
meler	Grain Size (mm)	0.05	0.02	0.01	0.005	0.003	0.002	0.001					
Hydro	Total passing (%)	73.0	61,0	54.5	50.5	45.5	41.0	32.0					

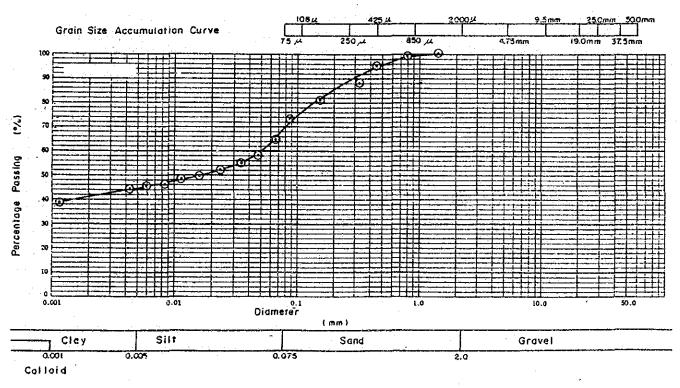

	4.75 mm <	0 %	Maximum Diameter	0.85 mm
ا ا	4.75~2.00 mm	0 %	60°% Diameter (D 60)	mm
or 1 io	2.00~0.425	2.4 %	30% Diameter (D 30)	mm
00	0.425~0.075 mm	17, 3 %	10% Diameter (Dia)	mm
<u>d</u>	0.075~0.005 mm	31.3 %	Coefficient Of Uniformity Cu = Deo / Dro	
	0.005mm >	49.0 %	Coefficient Of Curvature Cc = (030) / 060 x 010	

ASTM D422 - 63	GRADATION ANALYSIS		FOR REPORTING		
NAME OF PROJECT	TENOM PANGI PROJECT, PHASE III	DATE	30 - 9 - 85		
SAMPLE NO. & DEPTH	SP-7 (3.0 m m)	TESTED BY	DORA		

specific Gravity

Gs 2.81

•	Grain Size (mm)	50.0	37.5	25.0	19.0	9.50	4.75	2.00	0.85	0.425	0.25	0.106	0.075
Sie	Total Passing (%)	0,001	100.0	100,0	100.0	100.0	100.0	100.0	9 9,0	97.8	95.0	89.5	86.9
meter	Grain Size (mm)	0.05	0.02	0.01	0,005	0.003	0.002	0.001					
Hydro	Total passing (%)	82.0	76.0	70.0	59.0	53,0	48.5	42.0					

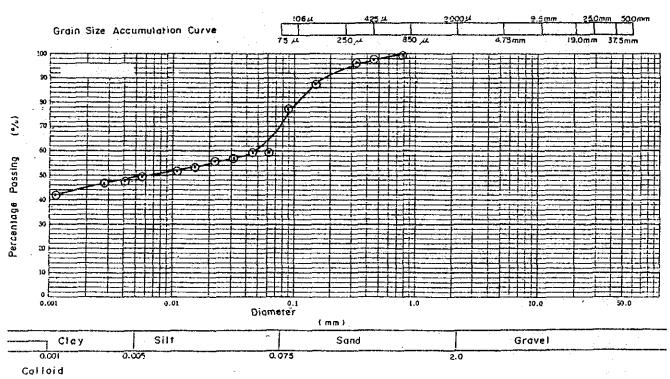

	4.75 mm <	0 %	Maximum Diameter	1.2	mm
e	4.75~2.00 mm	0 %	60% Diameter (D 60)		nımı
01110	2.00~0.425	2, 2 %	30% Diameter (D 30)		mas.
a e .	0.425~0.075 mm	10.9%	10% Diameter (Dio)	п	un (m)
"	0.075~0.005 mm	27, 9%	Coefficient Of Uniformity Cu = 060 / 010		*
	0.005 mm >	59.0 %	Coefficient Of Curvature Cc = (0301/Deo x Dio		

ASTM D422-63	GRADATION ANALYSIS		FOR REPORTING
NAME OF PROJECT	TENOM PANGI PROJECT, PHASE TI	DATE	30 - 9 - 85
SAMPLE NO. & DEPTH	SP-7 Mixed (2.0 m 5.0 m)	TESTED BY	DORA

specific Gravity

Gs 2.85

8	Grain Size (mm)	50.0	37.5	25.0	19.0	9.50	4.75	2.00	0.85	0.425	0.25	0.106	0.075
Sie	Total Passing (%)	0.001	100.0	100.0	100.0	100,0	100. 0	100.0	99.0	9 6. 0	86,0	78,0	72.0
meler	Grain Size (mm)	0.05	0.02	0.01	0,005	0003	0.002	0.0 01					
Hydro	Total passing (%)	60.0	52.0	48.0	45.0	43.0	41.0	38,0					

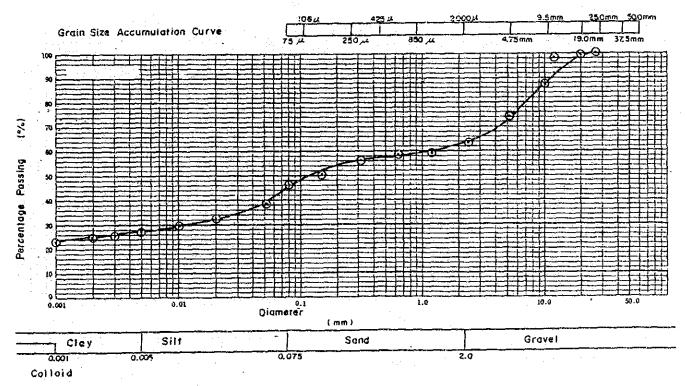

	4.75mm <	0 %	Maximum Diameter	1.2 mm
_	4 .75~2.00 mm	0 %	60% Diameter (D 60)	mm
orito	2.00~0.425	4.0 %	30% Diameter (0 30)	mm
0	0.425 ~0.075 mm	24.0 %	10% Diameter (Dio)	mm
ا م	0.075~0.005 mm	27.0 %	Coefficient Of Uniformity Cu = Dec / Dio	
	0.005 mm >	45.0 %	Coefficient Of Curvature	

ASTM D422-63	GRADATION ANALYSIS	FOR REPORTING
NAME OF PROJECT	TENOM PANGI PROJECT, PHASE II DATE 10	- 9 - 85
SAMPLE NO. 8 DEPTH	SP-1 (1.0 m m) TESTED BY D	ORA

specific Gravity

Gs___2.77____

9 >	Grain Size (mm)	50.0	37.5	25.0	19.0	9.50	4.75	2.00	0.85	0.425	0.25	0.106	0.075
Sie	Total Passing (%)	100. 0	100.0	100.0	100.0	100.0	100.0	100.0	99.0	97.0	94.0	80,5	76.4
meter	Grain Size (mm)	0.0 5	0.02	0.01	0.005	0.003	0.002	0.001					
Hydro	Total passing(%)	61.0	54,0	52,0	49.0	47,0	45.0	40.5					

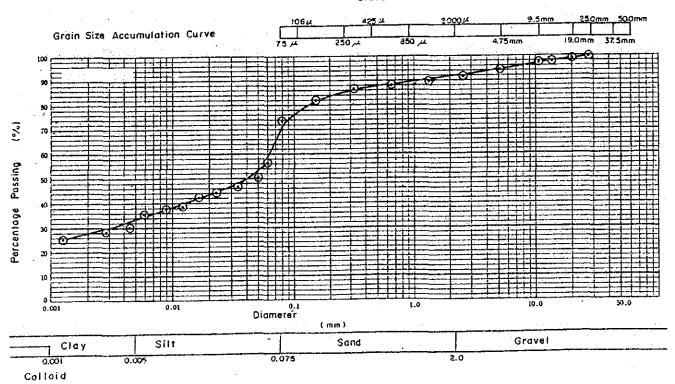


	4.75 mm <	0 %	Maximum Diameter	2.00	mm
۔	4 .75~2.00 mm	0 %	60% Diameter (D 60)		mm
rito	2.00~0.425	3.0 %	30% Diameter (D 30)		mm
ropo	0.425~0.075 mm	20.6 %	10% Diameter (Dio)		mm
0-	0.075~0.005 mm	27.4 %	Caefficient Of Uniformity Cu= Deo / Dio		
	. 0.005 mm >	49,0 %	Coefficient Of Curvature Cc = (030) ² / 060 x Dio		

ASTM D422 - 63	GRADATION ANALYSIS	FOR REPORTING	
NAME OF PROJECT	TENOM PANGI PROJECT, PHASE III	DATE	7-9-85
SAMPLE NO. & DEPTH	SP-1 (2.0 m m)	TESTED BY	DORA

specific Gravity Gs 2.85

	Grain Size (mm)	50.0	37.5	25.0	19.0	9.50	4.75	2.00	0.85	0.425	0.25	0.106	0.075
Siev	Total Passing (*/•)	100.0	100.0	100,0	98.5	86.7	74.1	62.0	59.0	57.5	55.5	48.5	45.6
ne lei	Grain Size (mm)	0.05	0.02	0.01	0.005	0,003	0,002	0.001				- ~	
Hydro	Total passing(%)	38,3	32.7	30.7	27.8	26.1	254	23.8					


Γ			4,75mm <	25	9 %	Maximum Diameter	25.0	, ww
			4.75~2.00 mm	12.	. %	60% Diameter (D 60)	1.3	ົເນັເນ
	100		2.00~0.425	4.	5 %	30% Diameter (D30)	0.0085	<u> </u>
	ropo		0.425 ~0.075 mm	11.	9 %	10% Diameter (D10)	~~~~~~~~	mm
	4		0.075~0.005 mm	17.	8 %	Coefficient Of Uniformity Cu= Deo / Dio		
	 	 \ \	0.005 mm >	27.	8 %	Coefficient Of Curvature Cc = (D30) ² / Dec x D10		····

ASTM D422 - 63	GRADATION ANALYSIS		FOR REPORTING
NAME OF PROJECT	TENOM PANGI PROJECT, PHASE I	DATE	5-10 - 85
SAMPLE NO. & DEPTH	SP-1 (3.0 m m)	TESTED BY	DORA

specific Gravity

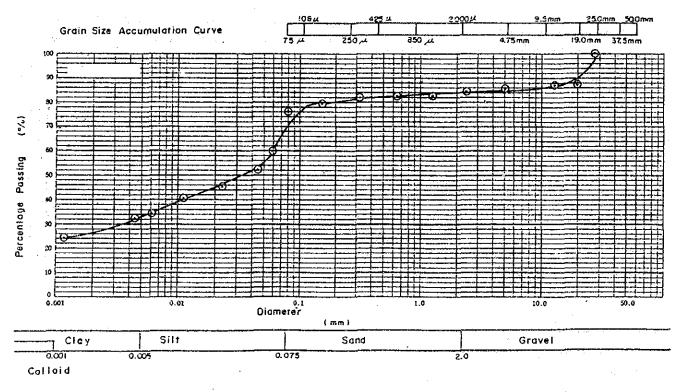
Gs 2.77

5	Grain Size (mm)	50.0	37.5	25.0	19.0	9.50	4.75	2.00	0.85	0.425	0.25	0.106	0.075
Siev	Total Passing (%)	100.0	100.0	100.0	99.2	97.9	95.0	920	89,5	88.0	87.0	78.5	74.8
neter	Grain Size (mm)	0.05	0.02	0.01	0.005	0.003	0.002	0.001			. 		
tydror	Total passing (%)	54.0	44.5	39.5	3 2.5	30.0	280	25. O					

	4.75 mm <	5.0 %	Maximum Diameter	25.0 mm
	4 75~2.00 mm	3.0 %	60°% Diameter (0 60)	mm
rtion	2.00~0.425	4.0 %	30% Diameter (D 30)	mm
ropo	0.425~0.075 mm	13.2 %	10% Diameter (Dia)	mm
0.	0.075~0.005 mm	42, 3 %	Caefficient Of Uniformity Cu= Oso / Dio	
	0.005 mm >	32.5 °/ _a	Coefficient Of Curvature Cc = (030) / Deo x Dio	

ASTM D422 - 63	GRADATION ANALYSIS		FOR REPORTING
NAME OF PROJECT	TENOM PANGI PROJECT, PHASE I	DATE	3 - 10 - 85
SAMPLE NO. & DEPTH	SP-1 (4.0 m m)	TESTED BY	DORA

								speci	fic Grav	ity <u>Gs</u>	2.83	}	. .
	Grain Size (mm)	50.0	37.5	25.0	19.0	9.50	4.75	2.00	0.85	0.425	0.25	0.106	0.075
Siev	Tatal Passing (%)	100.0	100.0	100.0	100.0	94.5	89.2	84.0	80.0	77.5	75.0	69.0	66.0
melæ	Grain Size (mm)	0.05	0.02	0.01	0.005	0.003	0.002	0.001					L
yaro	Total passing (%)	55.0	42.0	38.0	32.5	30.0	29.0	27.0			i		

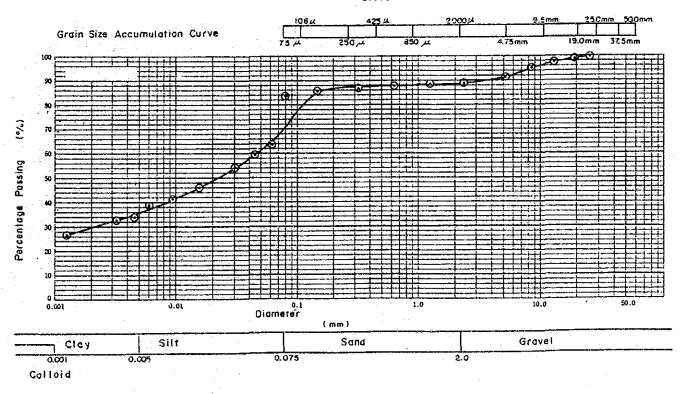

	4.75mm <	10.8 %	Maximum Diameter	19.0 mm
	4.75~2.00 mm	5.2 %	60°/. Diameter (Dec)	mm
rition	2.00~0.425	6.5 %	30% Diameter (D 30)	ww
ropo	0.425~0.075 mm	11.5 %	10% Diameter (D10)	mm
٩	0.075~0.005 mm	33, 5 %	Coefficient Of Uniformity Cu = 060 / Dio	
	0.005mm >	32.5 %	Coefficient Of Curvature Cc = (0301 7060 x 010	

ASTM D422 - 63	GRADATION ANALYSIS		FOR REPORTING
NAME OF PROJECT	TENOM PANGI PROJECT, PHASE III	DATE	3 - 10 - 85
SAMPLE NO. & DEPTH	SP-I (5.0 m m)	TESTED BY	DORA

specific Gravity

Gs 2.87

8	Grain Size (mm)	50.0	37.5	25.0	19.0	9.50	4,75	2.00	0.85	0.425	0.25	0.106	0.075
Sie	Total Passing (%)	100.0	100.0	100.0	89.0	86.5	85.7	84.0	83.0	82.5	81.0	78.0	76.2
meler	Grain Size (mm)	0.05	0.02	0.01	0.005	0.003	0.002	0.001					
Hydro	Total passing (%)	58.0	45.0	40.0	340	31.0	28,5	24.0					

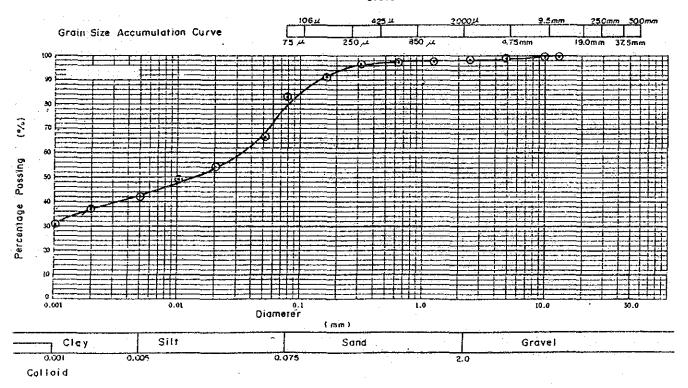


	4.75 mm <	4.3 %	Maximum Diameter	25.0 mm
_	4.75~2.00 mm	1.7 %	60% Diameter (D 60)	mm.
rtio	2.00~0.425	1.5 %	30% Diameter (0.30)	നന
ropo	0.425~0.075 mm	6.3 %	10% Diameter (Dio)	mm
%	0.075~0.005 mm	42.2 %	Coefficient Of Uniformity Cu= 060 / D10	
	0.005 mm >	34.0 %	Coefficient Of Curvature	

ASTM D422 - 63	GRADATION ANALYSIS	FOR REPORTING	
NAME OF PROJECT	TENOM PANGI PROJECT, PHASE II	DATE	17 - 10 - 85
SAMPLE NO. : & DEPTH	SP-1 Mixed (3.0 m ~ 5.0 m)	TESTED BY	DORA

specific Gravity
Gs 2.85

	Grain Size (mm)	50.0	37.5	25.0	19.0	9.50	4.75	2.00	0.85	0.425	0.25	0.106	0.075
Sie	Total Passing (%)	100.0	100.0	100.0	99.3	95.6	91.7	89.6	87.0	86.0	8 5.0	82.0	77.0
mela	Grain Size (mm)	0.05	0.02	0.01	0.005	0.003	0.002	0.001					
Hydro	Total passing (%)	63.0	49.0	43.0	37.0	34.0	31.0	27. 0					


	4.75 mm <	8.3	Maximum Diameter	mm
ے	4 .75~2.00 mm	2.1 •	60°% Diameter (D 60)	mm
1011	2.00~0.425	3.6	30% Diameter (D 30)	றரு
ropo	0.425~0.075 mm	9.0 •	10% Diameter (D10)	mm
٥	0.075~0.005 mm	40.0	Coefficient Of Uniformity Cu = Deo / Dio	
	0.005 mm >	37.0	Coefficient Of Curvature Cc = (030) ² / 060 x 010	

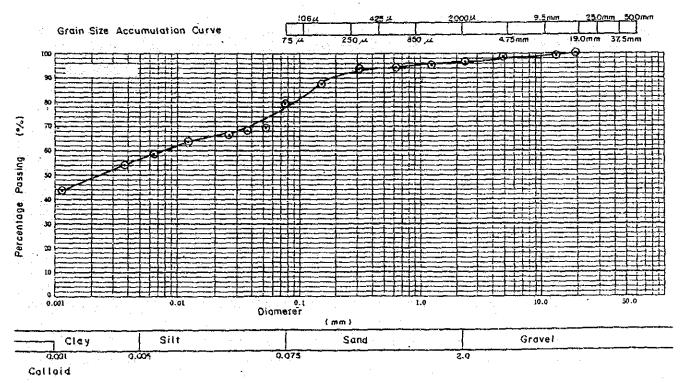
ASTM D422 - 63	GRADATION ANALYSIS FOR REPORTING
NAME OF PROJECT	TENOM PANGI PROJECT PHASE II DATE 12-9-85
SAMPLE NO. & DEPTH	SP-2 (1.0 m m) TESTED BY DORA

specific Gravity

Gs 2.85

	Grain Size (mm)	50.0	37.5	25.0	19.0	9.50	4.75	2.00	0.85	0.425	0.25	0.106	0.075
Sign	Total Passing (%)	100.0	100.0	100.0	100.0	99.7	99.1	98.0	97.5	97.0	95.5	87,0	83.0
meler	Grain Size (mm)	0.05	0.02	0.01	0.005	0003	0.002	0.001			:		
Hydro	Total passing(%)	64.5	55.3	49.4	42.5	40.0	37.5	31.6					

	4.75mm <	0.9 %	Maximum Diameter	12.5 mm
ے	4.75~2.00 mm	1.1 %	60% Diameter (D 60)	mm
ortio	2.00~0.425	1.0 %	30% Diameter (D 30')	mm
ropo	0.425~0.075 mm	14.0 %	10% Diameter (Dio)	തന
<u>a</u>	0.075~0.005 mm	40.5 %	Coefficient Of Uniformity Cu= Dec / Dio	
	0.005 mm >	42,5 %	Coefficient Of Curvature Coefficient Of Curvature Coefficient Of Curvature	

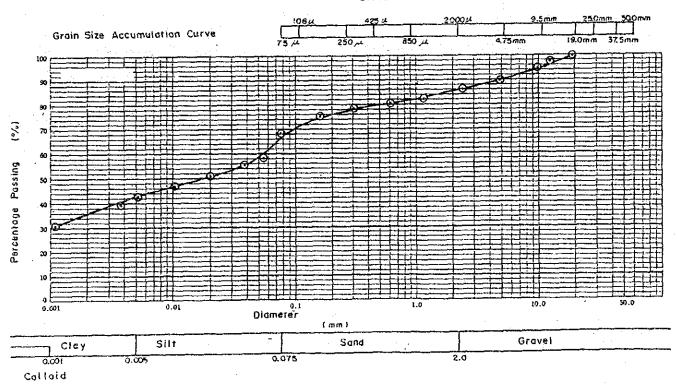

ASTM D422 - 63	GRADA	GRADATION ANALYSIS						FOR REPOR	RTING	
NAME OF PROJECT	TENOM	PANGI	PROJE	ECT,	PHASE II		DATE	30) - 9 - 85	
SAMPLE NO. & DEPTH	SP-2	.{	20	m		m)	TESTED BY	D	ORA	

Particle Size & Weight Percentage of Partigles under the Size

specific			
•	<u>Gs</u>	2.84	

	Grain Size (mm)	50.0	37,5	25.0	19.0	9.50	4.75	2.00	0.85	0.425	0.25	0.106	0.075
1	Total Passing (%)	100. 0	100.0	100·0	100.0	98.5	97.8	96.0	94.5	93.5	92.0	83.0	79.0
100	Grain Size (mm)	0.05	0.02	0.01	0.005	0.003	0.002	o.00i					
Hydro	Total passing (%)	72.0	65.0	62.0	55.5	50.5	47.0	42.0					

Sieve

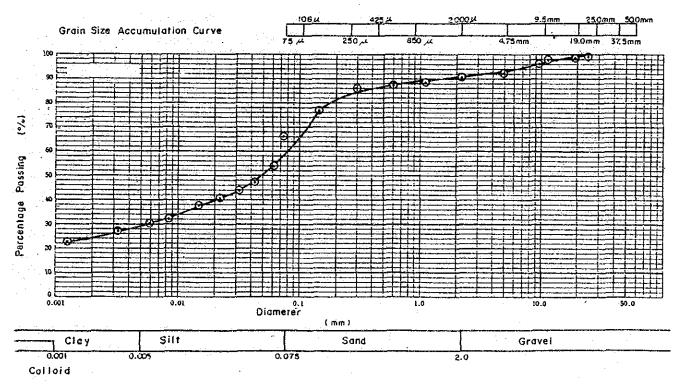

	4.75mm <	2, 2 %	Maximum Diameter	19.0 mm
-	4.75~2.00 mm	l. 8 %	60% Diameter (0 so)	mm
orlion	2.00~0.425	2.5 %	30% Diameter (D 30)	mm mm
rop	0.425~0.075 mm	14. 5 %	10% Diameter (D10)	mm
<u> </u>	0.075~0.005 mm	23. 5 %	Coefficient Of Uniformity Cu= Deo / Dio	
	0.005 mm >	55·5 • /•	Coefficient Of Curvature Co = (030) / 060 x 010	

ASTM D422 - 63	GRADATION ANALYSIS	FOR REPORTING	
NAME OF PROJECT	TENOM PANGI PROJECT, PHASE II	DATE	30 - 9 - 85
SAMPLE NO. 8 DEPTH	SP-2 (3.0 m m)	TESTED BY	DORA

specific Gravity

Gs 2.84

33	Grain Size (mm)	50.0	37, 5	25.0	19.0	9.50	4,75	2.00	0.85	0.425	0.25	0.106	0.075
Siev	Total Passing (%)	100.0	100.0	100,0	100.0	95,0	90.4	85.0	81.5	79.5	78.0	72.0	67.7
neler	Grain Size (mm)	0.05	0.02	0.01	0.005	0.003	0.002	0.001					
Hydroi	Total passing (%)	60.0	51.0	46.5	41.0	37.5	32.5	30.0			·		

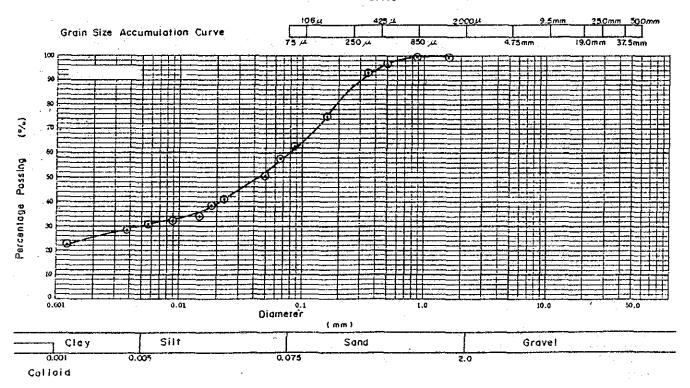


	4.75mm <	9.6 %	Maximum Diameter	19.0 mm
	4.75~2.00 mm	5.4 %	60% Diameter (D so)	mm
ritor	2.00~0.425	5.5 %	30% Diameter (D 30)	
ropo	0.425 ~0.075 mm	11.8 %	10% Diameter (D10)	mm
a.	0.075~0.005 mm	267 %	Caefficient Of Uniformity Cu = Deo / Dro	
	0.005 mm >	41.0 %	Coefficient Of Curvature Cc = (D301 ² / D60 × D10	

ASTM D422 - 63	GRADATION ANALYSIS	FOR REPORTING
NAME OF PROJECT	TENOM PANGI PROJECT, PHASE III DATE 18	8 - 10 - 85
SAMPLE NO. & DEPTH	SP-2 Mixed TESTED BY DO	ORA

specific Gravity <u>Gs</u> 2.83

9 >	Grain Size (mm)	50.0	37.5	25.0	19.0	9.50	4,75	2.00	0.85	0.425	0.25	0.106	0.075
Sie	Total Passing (%)	100.0	100.0	100.0	99.2	96.2	92.6	90.0	88.5	86.5	83.5	7 LO	62.0
meler	Grain Size (mm)	0.05	0.0 2	0.01	0.005	0003	0.002	0.001				·	
Hydro	Total passing(%)	50,0	41.0	35.0	30.5	28, 0	26.0	22.5					

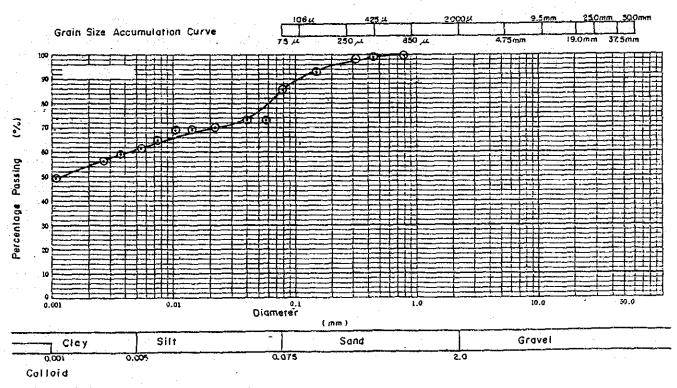

	4.75mm <	7.4 %	Maximum Diameter	mm
ء	4 .75 ~2.00 mm	2,6 %	60% Diameter (D 60)	mm
prilo	2.00~0.425		30% Diameter (D 30)	Ма
ropo	0.425~0.075 mm	24.5 %	10% Diameter (Dia)	mm
- a-	0.075~0.005 mm	31.5 %	Coefficient Of Uniformity Cu= Dec / Dio	
	0.005 mm >	30.5 %	Coefficient Of Curvature Cc = (D30) ² /Dso x D10	

ASTM D422-63	GRADATION ANALYSIS		FOR REPORTING
NAME OF PROJECT	TENOM PANGI PROJECT, PHASE II	DATE !	5 - 10 -85
SAMPLE NO. & DEPTH	TEMPORARY ROAD (m m)	TESTED BY D	ORA

specific Gravity

Gs 2.87

9	Grain Size (mm)	50.0	37.5	25.0	19.0	9.50	4.75	2.00	0.85	0.425	0.25	0.106	0.075
Sie	Total Passing (*/*)	100, 0	100.0	100,0	100.0	100.0	100.0	100.0	99.5	96.8	90.0	70.0	63.5
meler	Grain Size (mm)	0.05	0.02	0.01	0,005	0.002	0.001						
Hydro	Total passing(%)	55.0	38,5	33.0	30.5	26.0	22.0						

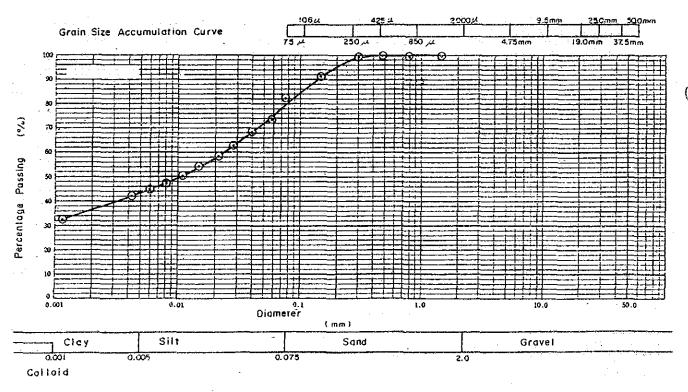

	4,75 mm <	0 %	Maximum Diameter	1.2	шш
	4 ,75~2.00 mm	0 %	60% Diameter (D 60)		mm
oi r	2.00~0.425	3.2 %	30% Diameter (0.30)		Mm
ropo	0.425 ~0.075 mm	33.3 %	10% Diameter (Dio)		mm
	0.075~0.005 mm	33.0 %	Coefficient Of Uniformity Cu=Deo/Dio		
	0.005 mm >	30.5 %	Coefficient Of Curvature Cc = (D30) ² /D60 x D10		

ASTM D422 - 63	GRADATION ANALYSIS	FOR REPORTING	
NAME OF PROJECT	TENOM PANGI PROJECT, PHASE III	DATE	21 - 9 - 85
SAMPLE NO. & DEPTH	SP-8 (1.0 m m)	TESTED BY	DORA

specific Gravity

Gs 2.76

5	Grain Size (mm)	50.0	37.5	25.0	0,61	9.50	4,75	2.00	0.85	0.425	0.25	0.106	0.075
Sie	Total Passing (%)	100. 0	100,0	100,0	100.0	100.0	100.0	100. 0	100.0	98.6	97.0	900	85.4
meter	Grain Size (mm)	0.05	0.02	0.01	0.005	0.003	0.002	0.001					
Hydro	Total passing (%)	77. 0	70.0	68.0	61.0	57.5	54,5	49.0					



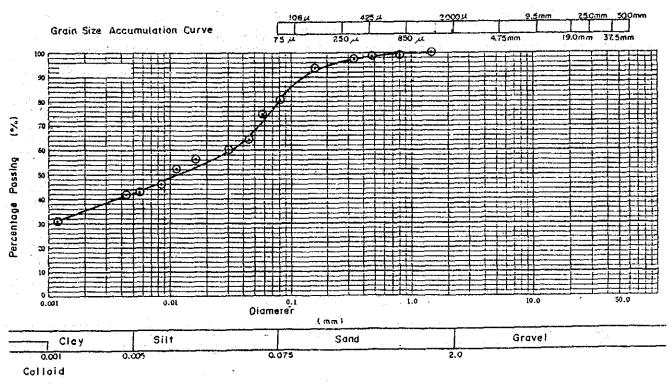
	4.75mm <	0 %	Maximum Diameter	0.85 mm
	4.75~2.00 mm	0 %	60% Diameter (0.60)	T T T T T T T T T T T T T T T T T T T
ortion	2.00~0.425	1, 4 %	30% Diameter (0 30)	
0	أينا محمد ممدد	13.2%	10% Diameter (D 10)	mm
٠ م	0,075~0.005 mm	24.4 %	Coefficient Of Uniformity Cu = Deo / Dio	
	0.005mm >	61.0 %	Coefficient Of Curvature Cc=(030) ² /060 x 010	

ASTM D422 - 63	GRADATION	ANALYSIS		FOR REPORTING
NAME OF PROJECT	TENOM PANGI	PROJECT, PHASE II	DATE S	9 - 10 - 85
SAMPLE NO. & DEPTH	SP - 8	3.0 m m)	TESTED BY	DORA

specific Gravity
Gs 2.80

	Grain Size (mm)	50.0	37.5	25.0	19.0	9.50	4.75	2.00	0.85	0.425	0.25	0.106	0.075
Sie	Total Passing (*/•)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	997	98.0	0.88	82.9
mela	Grain Size (mm)	0.05	0.02	0.01	0,005	0.003	0.002	0.001					; ;
Hydro	Total passing(%)	73.0	59.0	50, 5	44.5	40.0	37.0	32.0					

	4.75mm <	0 %	Maximum Diameter	0.85 mm
	4 .75~2.00 mm	0 %	60% Diameter (D 60)	mmi
lo Ita	2.00~0.425	0.3 %	30% Diameter (D 30)	mm
ropo	0.425 ~0.075 mm	16, 8 %	10% Diameter (Dia)	mm
-	0.075~0.005 mm	38. 4 %	Coefficient Of Uniformity Cu= Dso / Dro	
	0.005mm >	44.5 %	Coefficient Of Curvature	

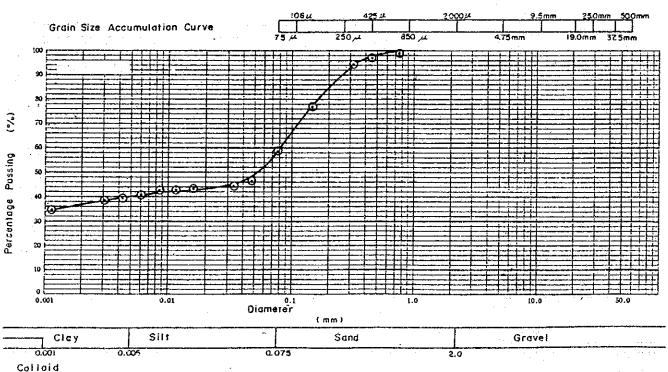

ASTM D422 - 63	GRADATION ANALYSIS	FOR REPORTING
NAME OF PROJECT	TENOM PANGI PROJECT, PHASL II DATE	3 - 10 - 85
SAMPLE NO. & DEPTH	SP-8 Mixed (2.0 m 5.0 m) TESTED BY	DORA

Particle Size & Weight Percentage of Partigles under the Size

specific Gravity

Gs. 2.84

9	Grain Size (mm)	50.0	37.5	25.0	19.0	9.50	4.75	2.00	0.85	0.425	0.25	0.106	0.075
Siev	Total Passing (%)	100.0	100.0	100.0	100.0	100.0	100.0	100. 0	99.5	98.8	96.5	88.0	80.8
melei	Grain Size (mm)	0.0 5	0.02	0,01	0.005	0.003	0.002	0.001					
Hydro	Total passing (%)	70.0	59.0	51.0	44.0	39.5	36.5	31.0			<u></u>		

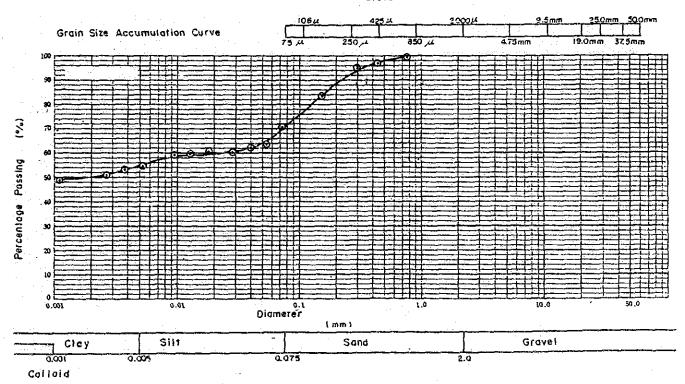

-	4.75 mm <	0 %	Maximum Diameter	1.2 mm
	4.75~2.00 mm	0 %	60% Diameter (D 60)	mm
riion	2.00~0.425	1.2 %	30% Diameter (0 30)	mm
900	0.425~0.075 mm	18.0 %	10% Diameter (Dio)	mm
<u>a</u>	0.075~0.005 mm	36.8 %	Coefficient Of Uniformity Cu = Deo / Dio	
	0.005 mm >	44.0 %	Coefficient Of Curvature Cc = (D30) ² /D60 x D10	

ASTM D 422 - 63	GRADATION ANALYSIS		FOR REPOR			
NAME OF PROJECT	TENOM PANGI PROJECT PHASE II		DATE	21 - 9 - 85		
SAMPLE NO. & DEPTH	SP-9 (1.0 m	m)	TESTED BY	DORA		

specific Gravity

Gs 2.85

Sieve	Grain Size (mm)	50.0	37, 5	25.0	19.0	9.50	4.75	2.00	0.85	0.425	0.25	0.106	0.075
	Total Passing (%)	100.0	100.0	100. 0	100. 0	100.0	100.0	100. 0	99.5	97.3	92.0	68.0	593
Hydrometer	Grain Size (mm)	0.05	0.02	0.01	0.005	0.003	0.002	0.001					
	Total passing (%)	48.0	44.0	42.5	41.0	39.5	36.5	35.0					

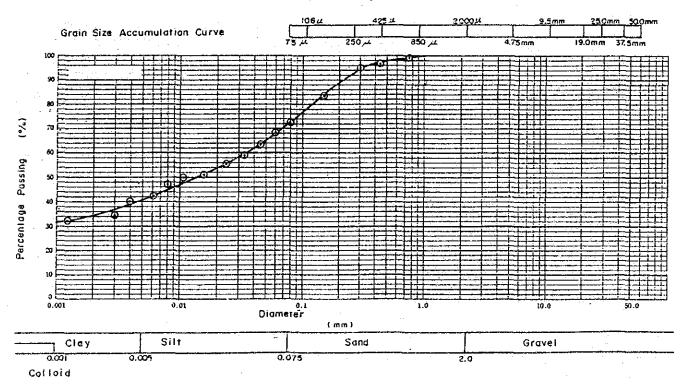


	4,75 mm <	0 %	2.00 mm	
_	4 .75~2.00 mm	0 %	60% Diameter (D 60.)	mm
ortio	2.00~0.425	2.7 %	30% Diameter (D 30)	mm m
a o	0.425~0.075 mm	38.0 %	10% Diameter (Dia)	mm
0.	0.075~0.005 mm	18.3 %	Coefficient Of Uniformity Cu = Deo / Dro	
	0.005 mm >	41.0%	Coefficient Of Curvature Cc = (D30) ² /D60 x D10	

ASTM D422- 63	GRADATION ANALYSIS		FOR REPORTING
NAME OF PROJECT	TENOM PANGI PROJECT, PHASE II	DATE	21 - 9 - 85
SAMPLE NO. 8 DEPTH	SP-9 (4.0 m m)	TESTED BY	DORA

specific	Gravity		
		Δ'-	2, 5 K

Sieve	Grain Size (mm)	50.0	37.5	25.0	19.0	9.50	4.75	2.00	0.85	0.425	0.25	0.106	0.075
	Total Passing (*/•)	100.0	100.0	100.0	100.0	100.0	100.0	100. 0	99.5	97.5	9 2.5	78.0	71,7
meter	Grain Size (mm)	0.05	0.02	0.01	0.005	0.003	0.002	0.001			: .		
Hydro	Total passing (%)	63.0	60.0	59.0	55,0	52.5	51.0	49, 0		1			

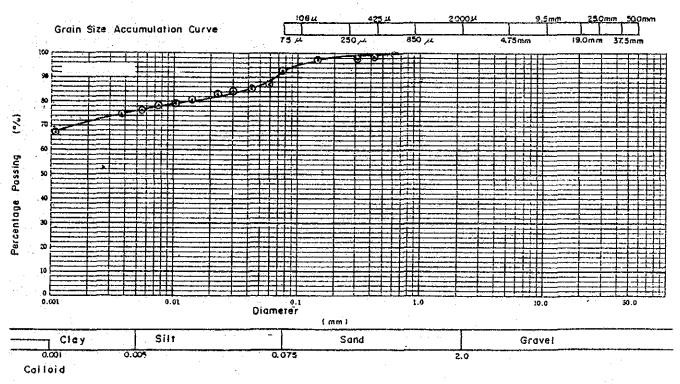

·				
	4.75 mm <	0 %	Maximum Diameter	1.0 mm
	4 .75~2.00 mm	0 %	60% Diameter (D 60)	
12.0	2.00~0.425	2.5 %	30% Diameter (D 30)	mm
ropa	0.425 ~0.075 mm	25.8 %	10% Diameter (DIO)	mm
a.	0.075~0.005 mm	16.7 %	Coefficient Of Uniformity Cu= 060 / Dig	
	0.005 mm >	55.0 %	Coefficient Of Curvature	

ASTM D422 - 63	GRADATION ANALYSIS		FOR REPORTING
NAME OF PROJECT	TENOM PANGI PROJECT, PHASE II	DATE	21 - 9 - 85
SAMPLE NO. & DEPTH	SP-10 (2.0 m m)	TESTED BY	DORA

specific Gravity

Gs_____

Sieve	Grain Size (mm)	50.0	37.5	25.0	19.0	9.50	4,75	2.00	0.85	0.425	0.25	0.106	0.075
	Total Passing (%)	0.001	100.0	100.0	1 00. 0	100.0	100.0	100. 0	99.0	97,2	92.5	79.0	72.2
meler	Grain Size (mm)	0.05	0.02	0,01	0.005	0.003	0.002	0.001		•		-	
Hydro	Total passing (%)	67.0	54,5	49.0	42.0	35.5	33.5	32.5					

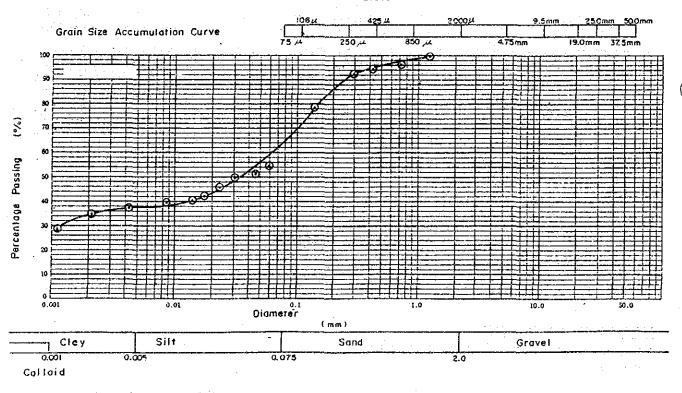


-				
	4,75 mm <	0 %	Maximum Diameter	mm
ortion	4 .75~2.00 mm	0 %	60% Diameter (D 6a)	mm
	2.00~0.425	2.8 %	30% Diameter (D30)	mm
rop	0.425 ~0.075 mm	25.0 %	10% Diameter (Dio)	mm
٥	0.075~0.005 mm	30.2 %	Coefficient Of Uniformity Cu = Deo / Dro	
	0.005 mm >	42.0 %	Coefficient Of Curvature Cc = (D30) ² /D60 x D10	

ASTM D422-63	GRADATION ANALYSIS	FOR REPORTING		
NAME OF PROJECT	TENOM PANGI PROJET , PHASE II	DATE I	0 - 9 - 85	
SAMPLE NO. & DEPTH	SP-10 (4.0 m m)	TESTED BY	DORA	

specific Gravity
Gs 2.85

9 >	Grain Size (mm)	50.0	37.5	25.0	0.61	9.50	4.75	2.00	0.85	0.425	0.25	0.106	0.075
Sie	Total Passing (%)	0.001	1 00,0	100.0	100.0	100.0	100.0	100.0	99.5	98,7	98.0	95,0	92,8
meler	Grain Size (mm)	0.05	0.02	0,01	0.005	0.003	0.002	0.00 1					
Hydro	Total passing (%)	86.5	82.0	79.0	75.5	73.0	71.0	67.0					


	4.75mm <	0 %	Maximum Diameter	I.O mm.
ء ا	4 .75~2.00 mm	0 %	60% Diameter (D 60)	mm
i i	2.00~0.425	1, 3 %	30% Digmeter (0 30)	mm
9	0.425~0.075 mm	5.9 %	10% Diameter (D.10)	mm
"	0.075~0.005 mm	17.3 %	Coefficient Of Uniformity Cu = Deo / Dio	
	0.005 mm >	75.5 %	Coefficient Of Curvature	

ASTM D422 - 63	GRADATION ANALYSIS		FOR REPORTING
NAME OF PROJECT	TENOM PANGI PROJECT, PHASE II	DATE	3-10-85
SAMPLE NO. & DEPTH	SP-10 Mixed-1 (1.0 m 2.0 m)	TESTED BY	DORA

specific Gravity

Gs 2.86

Sieve	Grain Size (mm)	50,0	37.5	25.0	19.0	9.50	4.75	2.00	0.85	0.425	0.25	0.106	0.075
	Total Passing (%)	100.0	100.0	100.0	100.0	100.0	100. 0	100.0	98.5	95.1	90.0	74.0	70.9
mele	Grain Size (mm)	0.05	0,02	0.01	0.005	0.003	0.002	0,001					
Hydro	Total passing(%)	60.5	43.0	38.5	38.0	36,5	33,5	28.0					

	4.75 mm <	0 %	Maximum Diameter	1.2 mm
e	4 .75~2.00 mm	0 %	60% Diameter (D ₆₀)	mm
rtio	2.00~0.425	4.9 %	30% Diameter (D 30)	mm
ropo	0.425~0.075 mm	24.2 %	10% Diameter (Dia)	mm
4	0.075~0.005 mm	32.9 %	Coefficient Of Uniformity Cu= Deo / Dio	
	0.005 mm >	38.0 %	Coefficient Of Curvature Cc = (D30) ² /Dso x D10	

ASTM D422 - 63	GRADATION ANALYSIS	FOR REPORTING	
NAME OF PROJECT	TENOM PANGI PROJECT, PHASE II	DATE	3-10-85
SAMPLE NO. & DEPTH	SP- 10 Mixed-2 (3.0 m ~ 5.0 m)	TESTED BY	DORA

								s peci	tic Grav	rity <u>Gs</u>	2.8		
•	Grain Size (mm)	50.0	37.5	25.0	19.0	9.50	4.75	2.00	0.85	0.425	0.25	0.106	0.075
Sie	Total Passing (%)	0.001	100.0	100.0	100.0	100.0	100.0	100.0	99.5	992	97.0	88.5	84.4
meter	Grain Size (mm)	0.05	0.02	0.01	0.005	0.003	0.002	0.001					
dro	Total passing (%)	720	590	52.5	480	43.0	400	340		[]		[

Sieve Grain Size Accumulation Curve 3 Percentage Passing 0.1 Diameter (mm) Cley Sand Gravel 0.075 Colloid 4.75 mm < Maximum Diameter 60% Diameter (D 60) 4 75~2 00 mm Proportion 2.00~0.425 30% Diameter 0.8 % 10% Diameter 0.425 ~0.075 mm 14.8 % Coefficient Of Uniformity 0,075 ~0,005 mm Cu= Dec / Dio 0.005 mm > Cc = (D30) / D60 x D10