
APPENDIX I

IMPLEMENTATION PRIORITY OF INDIVIDUAL FACILITIES

APPENDIX I. IMPLEMENTATION PRIORITY OF INDIVIDUAL FACILITIES

Implementation priority of individual works, which was requested by the Malaysian Government, is presented as follows:

I.1. Division of Drainage Facilities

Division of trunk drains is the same as that of the trunk drains proposed by the Study Team, based on consideration of such factors as topographical condition and existing capacity of trunk drains, the division of each trunk drain ranges from one to 13 parts. (Ref.: Fig. 5.8 to 5.10 of Volume VI)

1.2. Method for Determining Implementation Order of Individual Works

In order to determine the implementation order of individual works, it is necessary to assess its effect, on flood mitigation.

The following index is adopted for determining implementation priority.

Index of effect to cost

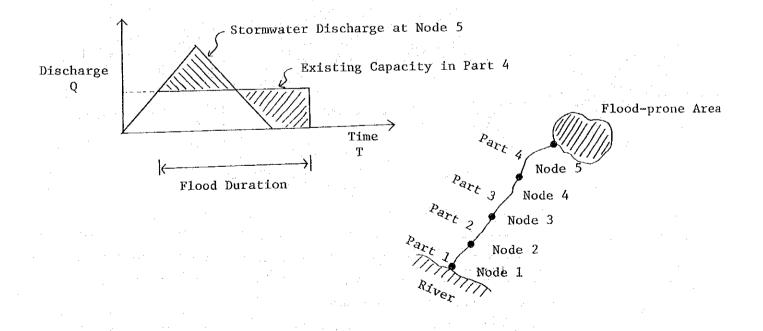
$$= \frac{P \times D}{C}$$

where

- P: Flood-Prone Area Population in 1980
- D: Decrease of Flood Duration
 - = (Flood Duration according to land use in 1980 and 5-year return period) (Flood Duration according to land use in 1980 and 5-year return period after improvement of a certain part of trunk drain)
- C: Involved Cost for improving a certain part of trunk drain to accommodate stormwater according to land use in 2000 and

5-year return period, excluding engineering fee and contingency cost.

However, careful attention should be paid to the fact that this index is devised only from available data. Therefore, consideration of such basic factors as damage decrease, reduced flood area, reduced flood depth, etc. will be necessary.


I.3. Method of Calculation

a) Calculation of Flood Duration

i) Part 4

- (1) Calculate existing Stormwater discharge at Node 5
- (2) Calculate existing capacity in Part 4
- (3) Calculate flood duration (T_4)

Fig. I.1. Priority for Trunk Drain Parts Requiring Improvement

ii) Part 3

- (1) Calculate existing stormwater discharge at Node 4
- (2) Calculate existing capacity in Part 3
- (3) Calculate flood duration (T3)
- iii) Flood duration T_2 and T_1 are calculated similarly.

The longer the flood duration, the greater its effect on the concerned part of the trunk drain. For example, assuming flood duration (T) to be as follows:

$$T_1 = 250 \text{ minutes}$$
 $T_2 = 0 \text{ "}$
 $T_3 = 350 \text{ "}$
 $T_4 = 400 \text{ "}$

The longest flood duration is 400 minutes, depending on the existing capacity of Part 4. Therefore, Part 4 would be improved first. Succeeding improvements for Part 3 and Part 1 would be made in the order of next longest flood duration. Part 2, having adequate capacity, would not require improvement work.

b) Decrease of Flood Duration

Improvement of Part 4 would shorten flood duration caused by its inadequate capacity. However, as a result, flooding would occur from Part 3, lasting 350 minutes; that is, flood duration would be shortened 50 minutes, (from 400 to 350 minutes,) by improving Part 4. Decrease in flood duration in other parts of the trunk drain by improvement or reconstruction is assumed as follows:

Improved Part	Decrease
Part 4	50 min.
" 4 and 3	150 min. (400 - 250)
" 4, 3 and 1	400 min. (400 - 0)
" 4, 3, 1 and 2	400 min.

Calculation of (population in flood-prone area) x (decreased flood duration)/(involved cost)

I.4. Result

Implementation priority of individual works is tabulated in Table I.1 according to the above-mentioned index, which is presented in Table I.3.

Additionally, the index values of parts of the trunk drains presented in Table I.2 are nil.

Based on consideration of the cause of flooding involved cost, etc., implementation priority of gates, bunds and retention ponds is judged to be higher than that of parts of trunk drains.

Table I.1. Implementation Priority of Parts of Trunk Drain

					· · · · · · · · · · · · · · · · · · ·
Implemen- tation Priority	Parts of Trunk Drain	Catchment Code No.	Implemen- tation Priority	Parts of Trunk Drain	Catchment Code No.
1,	8	(s8)	25.	5,7	(N-9)
2.	8,9	(N-6)	26.	3,5	(S-5)
3.	5	(S-8)	27.	1	(S-4)
4.	8,11	(A-1)	28.	8	(N-9)
5.	9	(S-8)	29.	2	(N-9)
6.	2	(A-5)	30.	4,5	(N-4)
7.	2,4	(A-2)	31.	3,5	(S-10)
8.	12,13	(N-6)	32.	5,7,8,9	(N-7)
9.	11	(N-6)	33.	5	(N-8)
10.	7	(A-3)	34.	2,5,7	(N-2)
11.	10	(N-6)	35.	1,2	(S-5)
12.	3,6	(N-8)	36.	4	(S-5)
13.	1,3	(A-5)	37.	1	(S-7)
14.	3	(A-3)	38.	3,4,5	(N-5)
15.	7	(s-8)	39.	1,3,5	(S-9)
16.	3	(S-2)	40.	1,3	(N-4)
17.	1	(N-8)	41.	2,3,4	(N-6)
18.	5,9,10	(A-4)	42.	2	(S-5)
19.	6	(A-3)	43.	4	(S-9)
20.	2	(S-10)	44.	2,3	(N-3)
21.	2,3	(S-7)	45.	1	(S-10)
22.	4	(A-3)	46.	1	(S-3)
23.	4,6,7	(A-4)	47.	2	(N-5)
24.	1,2,3	(S-6)			

Note: Parts of trunk drain are the same as line numbers of trunk drain which are shown in Figs. 5.8 to 5.10 of Volume VI.

Table I.2. Implementation Priority of Parts of Trunk Drain
(The index value is nil.)

Catchment Code No.	Parts of Trunk Drain
N-1	1-9
2	1,3,4,6
3	1
4.	2
5	1,6,7
6	1,5-7
7	1-4,6
8	2,4
9	1,3,4,6
S-1	1-3
2	1,2,4
8	1-4,6
9	2
10	4
A-1	1-7,9,10
2	1,3
3	1,2,5
4	1-3,8
5	4
0-1	1-7
2	1–5
3	1~8
4	1-5
5	1-8
6	1–19

Note: Parts of trunk drain are the same as line numbers of trunk drain which are shown in Figs.5.8 to 5.10 of Volume VI.

Table I.3.(1) Index of Effect to Cost (Flood-Prone Are Population) x (Decrease of Flood Duration)

(Involved Cost)

Implementation Priority 38 47 30 0,7 34 77 (a)x(b) (c) (45) (32) (38) (71) (52) (41) (141)Index (135)(12) 9 88 284 140 0 0 54 0 8 lated Con-struction Cost ((C) (M\$) (C) 979,000 Cost & Accumu-126,000 463,000 622,000 1,085,000 126,000 463,000 495,000 958,000 622,000 1,580,000 337,000 1,018,000 1,997,000 351,000 Construction 1,664,000 1,664,000 2,069,000 351,000 2,069,000 385,000 2,069,000 Decrease of Flood Duration (min) (b) 1180 1180 120 30 33 120 700 910 120 39 8 170 130 150 120 30 910 ဗ္ဗ 330 Flood Duration (min) 3 1180 1180 120 120 8 Š 8 120 8 8 170 150 120 120 370 910 016 130 200 Prone Area Population (a) Flood-1000 400 200 O 500 800 0 0. 200 0 001 400 Existing Capacity (m3/sec) 1.93 0.30 7.42 3.57 3.57 3.57 3.57 3.57 3.57 7.42 7.42 0.30 1.71 0.50 0.50 2.28 1.71 1.71 1.90 41.2 39.3 Served A (ha) 38.6 51.5 22.6 39.3 51.5 38.6 120.4 41.2 165.8 210.1 14.3 11.2 47.2 120.4 120.4 Area 105.8 210.1 Runoff Coefficient . O 0.45 0.55 0.55 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.45 0.55 0.55 0.55 0.55 0.45 0.45 0.45 0.45 Time of Concen-tration tc(min) 30.08 29.2 21.5 31.3 39.2 31.7 30.0 25.0 29.2 31.7 39.2 31.3 6.67 43.9 28.9 22.1 39.2 42.1 37.0 (5,4,2),3 Proposed Line No. (5,4),2 (5,4),3 (5,7),2 (1),5,34; (5) (5),4 3,2 5,4 6, 5,3 5,4 5,7 3,1 ιΛ Catchment Code No. N-5 N-Z 7-2 N-2 Flood-Prome Area No. 77 œ σ 임 디 'n Q ന

Implementation Priority	-	-	l	1	-	41	2	8	6	11	32		12	17	1	33	1	1	I	ŀ
Index (a)x(b) (c)	(7)	(6)	(57)	(65)	(45)	53	5245	2027	1927	1883	154	(1133)	1259	710.	(287)	141	0	(340)	(378)	(213)
Construction Cost & Accumulated Con- struction Cost (C) (M\$)	918,000	82,000	244,000	394,000	632,000	128,000	472,000	918,000	82,000	1,816,000	1,102,000	662,000	267,000	1,366,000	662,000	1,656,000	662,000	662,000	267,000 929,000	1,366,000
Decrease of Flood Duration (min)(b)	20	30	100	270	340	420	3000	3020	3030	3420	100	750	1170	1630	950	1630	1630	750	1170	1630
Flood Duration (min) 3	420	700	390	320	150	80	3420	750	400	. 068	100	1630	880	097	1630	680	1630	1630	880	760
Flood- Prone Area Population (a)	300						(1000)				1700	1000			200		0	300		·
Existing Capacity (=3/sec)	1.47	1.47	1.47	0.70	1.07	1.15	0.10	1.47	1.47	1.47	2.08	1.07	1.05	1.05	1.07	0.30	1.07	1.07	1.05	1.05
Served Area A (ha)	53.8	51.6	50.6	20.2	16.5	10.2	25.7	53.8	51.6	50.6	25.5	255.0	141.8	78.4	255.0	32.2	255.0	255.0	141.8	78.4
Runoff Coefficient C	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.65	07.0	07.0	07.0	0.40	07.0	0.40	07.0	0.40	07.0
Time of Concen- tration tc(min)	40.2	37.5	37.2	36.1	32.1	24.4	31.3	40.2	.37.5	37.2	24.1	51.5	48.7	42.0	51.5	28.2	51.5	51.5	48.7	42.0
Proposed Line No.	13,12	(13,12),11	(13-11),10	(13-10),4	(13-10,4),	(13-10,4,	8,9	(8,9), 13,12	(8,9,13	(8,9,13, 12,11),10	7,8,9,5	9	6,(3)	(6,3),1	9	5,(6)	9	9	(6),3	(6,3),1
Catchment Code No.	N-6									•	7-N	8-12								
Flood- Prome Area No.	15			٠.			16				19	20			21	.·	22	23	٠,	

				:						·	······							— т		
Implementation Priority			25	28	29	1	•	16	46	•	27	1	1		. 35	I	,	7.5	ŧ	. 26
Index (a)x(b)	(5)	(36)	369	331	299	0	0	803	29	(10)	334	(44)	(124)	(132)	136	(23)	(75)	77	(177)	365
Construction Cost & Accumu- lated Con- erruction Cost	(C) (MS)	200.60/5	1,721,000 2,029,000	3,525,000	1,259,000	932,000	708,000	319,000	517,000	517,000	1,078,000	7,010,000	2,329,000	395,000	768,000	7,010,000	2,329,000	768,000	7,010,000	2,329,000
Decrease of Flood Duration	(min) (b)	10	680	1060	1300	450	006	079	20	50	240	007	890	066	1100	007	066	1100	400	1100
Flood	(min) 3	1300	1290	620	240	006	450	640	50	20	240	1100	700	210	110	1100	700	110	1100	700
Flood- Prone Area Population	(a)	1100				0		400	300	100	1500	1300		<u> </u>		400	-1		3100	
Existing	(m3/sec)	1.75	1.47	3.77	2.25	0.79	1.72	0.30	1.78	1.78	1.69	1.11	1.11	0.51	2.60	1.11	1.11	2.60	1.11	1.11
Served	A (ha)	337.8	280.7	366.3	95.1	108.9	127.5	30.5	11.8	11.8	53.9.	147.1	97.4	16.0	45.0	147.1	97.4	45.0	147.1	97.4
Runoff Coefficient	၁	07.0	0.40	07.0	07.0	07.0	07.0	0,40	0.75	0.75	0.55	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50
Time of Concen-	tc(min)	62.1	59.0	69.8	39.3	23.3	29.7	18.2	13.7	13.7	16.3	1.74	35.1	17.9	24.2	47.1	35.1	24.2	47.1	35.1
Proposed Line No.		7	(7).5	(7.5).8	(7.5.8).2	1	(1),2	3	1		1	\$-6, <u>\$-6</u>	5 (5).3	(5.3).1	(5,3,1),2	S-6, S-6 3 2	5 (5) 3	(5,3),2	S-6, S-6	(5),3
Catchment Code No		6-N			:	S-2			S-3		8-4	8-5							:	
Flood	Area No.	24				25	1 .	26	27	28	29	30			٠.	31			32	

											,		_	,	a .te		,		
Implementation Priority	ŀ	36	24.	-	•	37	-	21	τ	5.	15			ì	ţ.	ŀ	•	1	l
Index $\frac{(a)x(b)}{\langle c \rangle}$	(110)	135	405	(19)	(18)	76	(16)	513	8528	2782	875	(116)	3735	(2374)	(3655)	(1711)	(375)	(676)	(828)
Construction Cost & Accumu- lated Con- struction Cost (C) (M\$)	000,010,7	9,752,000	6,661,000	784,000	5,752,000	732,000	5,752,000	732,000	245,000	1,474,000	6,895,000	344,000	545,000	1,474,000	245,000	1,474,000	6,895,000	545,000	1,474,000
Decrease of Flood Duration (min)(b)	979	1100	750	30	240	1360	210	1330	3320	3940	5570	.07	3320	5610	3320	3940	5570	3320	5570
Flood Duration (min) 3	1100	097	75.0	1360	1330	1120	1330	1120	5570	2250	1630	5610	5570	2250	5570	2250	1630	5570	2250
Flood- Prone Area Population (a)	1200		3600	200			2500		1400			1000			009			300	
Existing Capacity (=3/sec)	1.11	0.83	0.51	0.15	0.63	0.63	0.63	0.63	0.71	1.88	0.50	07.0	0.71	1.88	17.0	1.88	0.50	0.71	1.88
Served Area A (ha)	147.1	49.7	59.5	27.0	110.8	94.3	110.8	94.3	539.2	539.2	106,4	387.4	539.2	539.2	539.2	539.2	106.4	539.2	539.2
Runoff Coefficient C	0.50	0.50	0,.0	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45
Time of Concentration tration	47.2	36.1	25.8	27.6	8.84	38.2	48.3	38.2	83.6	87.8	52.1	27.3	83.6	87.8	83.6	87.8	52.1	83.6	87.8
	3-6, S-6 3 2 5	7, (5)	3,2,1	H	$(1), \frac{5-6}{3}, 3$	(1,3),2	3 3	(3),2	8	6,(8)	7,(6,8)	۲۸.	8,(5)	6,(8,2)	80	6,(8)	7, (6,3)	ω	6,(3)
Catchment Code No.	s-5		. 9-S	5-7					8-8					,					
Flood- Prome Area No.	34		35	36			37		33			38			39			07	

								······ 7								T						
Implementation Priority		39	43	ŀ	45	20	31	1	•	•		7	7	10	19	22	14	18	23	9	1	13
Index (a)x(b)	(42)	79	37	(16)	33	533	(184)	0	0	0	(191)	3119	2018	1907	681	470	1240	685	765	2283	(305)	1244
- B	4,781,000	1,293,000	4,781,000	4,086,000	2,195,000 6,281,000	1,445,000	4,086,000	4,266,000	552,000	2,316,000	552,000	2,316,000	3,254,000	269,000	1,092,000	900,000	1,523,000	254,000	724,000	1,385,000	2,156,000	921,000
Decrease of Flood Duration (min)(b)	200	390	160	110	350	1100	1450	3890	300	6390	300	6390	1990	570	1030	1180	1180	290	760	1020	1030	1790
Flood Duration (min) 3	390	190	160	350	240	1450	350	3890	6390	0609	6390	0609	1990	1180	610	150	1180	760	170	1790	770	760
Flood- Prone Area Population (a)	1000	.	1100	909		700		0	0		1400	-1- · ·	3300	006		·	1600	909	T	3100	1 —	
Existing Capacity (m ³ /sec)	1.83	0.89	1.51	2.47	1.54	0.24	2.47	0.10	0.38	0.38	0.38	0.38	0.58	0.83	0.91	0.58	0.83	1.14	1.14	0.30	1.00	0.30
Served Area A (ha)	87.2	23.2	32.7	105.0	48.4	26.5	105.0	39.6	1623.0	1178.2	1623.0	1178.2	133.6	106.9	63.6	12.2	106.9	52.5	21.8	36.9	56.1	16.8
Runoff Caefficient C	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	07-0	0.40	0.40	0,40	0.50	0.55	0.55	0.55	0.55	0.65	0.65	0.85	0.85	0.85
Time of Concen- cration	26.9	23.4		32.9	28.5					168.3	255.3	168 3	۶ ۶۶	53.6	7 47	35.7	53.6	31.5	26.4	30.9	0 %	20.1
Proposed Line No.	(5) (3	(4 3) 1	7 (7 (7)	, 1 7	(5.3).1	2	(2) 5 3	2,1,1,1	1 .	8 (11)	31.	α (15)		1	7 (1)	(7 6) 4	3.7	10 9 5	(10,9,5)	6,7,4	, (5)	(2,3),1
Catchment Code No.	0-0			-	21.6					1	· 		2-4	7 4	C W		•	77	, G	v = 4	· •	· :
Flood- Prome Area No.	۲/	1		74	7	:	;		3	4		÷	0	0	4		9	3 2	-	2.5		

APPENDIX J

EXISTING CAPACITY OF DRAIN

(Ref.: Section 2.4.3, Vol. VI)

는 사람들은 마음을 보고 있는 것이 되었다. 그런 사람들은 사람들은 사람들은 사람들은 사람들은 사람들은 사람들이 되었다. 그런 사람들은 사람들은 사람들은 사람들은 사람들은 사람들은 사람들은 사람들은
그리트로 한 독선도 아이번 속에 마음을 하고 있다. 그들은 그를 가는 그를 보고 되어 있다. 그는 그는 그리는 것이 없는 것이 없는 것이다.
그는 사람이 가장 살아 보고 있는데 하면 하는 것이 하는데
그렇지다. 그렇게 다쳤다는 그녀는 사람들은 사람들이 가지를 다 했다. 그는 내가 되었다. 그는 사람들은 그는 그 그 그리고 하는데

Table J.1. Existing Capacity of Drain

Catchment	D		Existing Dra	in	Proposed Design
Catchment Code No.	Proposed Line No.	Point	Width(m)× Height(m)	Capacity (m3/sec)	Storm Discharge (m ³ /sec)
N-1		1	E TA 27.6 × 1.7	15.94	
	9	2	E TA 21.1 × 1.8	13.00	98.14
		3	E TA 16.6 × 1.7	° 9.29	(10.6)
		4	E TA 7.7 × 1.3	2.72	
	8	5	E TZ 12.1 × 1.3	7.32	102.55
		6	E TA 6.8 × 1.5	. 2.94	(34.9)
	3	7	E TA 7.1 × 1.6	3.46	88.88 (25.7)
		8	E TA 8.0 × 1.3	2.82	
	1	9	E TA 9.5 × 2.2	6.16	87.28
		10	E TA 7.9 × 1.4	3.12	(28.9)
		11	TZ $\begin{array}{c} 9.5 \\ 0.9 \end{array} \times 1.7$	。 3.02	
N-2		1	E TA 5.6 × 1.3	• 1.71	
	5	2	E TA 5.6 × 1.3	1.71	17.84 (10.4)
·		3	$\begin{array}{ c c c c c }\hline E & TZ & 4.4 \\ 2.0 & \times 1.0 \\\hline \end{array}$	3.63	
		4	C TZ $\frac{6.3}{3.9} \times 1.7$	7.34	
	2	5	$C TZ = \begin{array}{c} 5.8 \\ 0.4 \end{array} \times 1.8$	1.22	12.40 (6.5)
		6	$\begin{array}{c c} & 3.6 \times 0.9 \\ \hline & 1.6 \times 0.9 \end{array}$	• 1.90	
		7	E TZ $\frac{3.8}{0.6} \times 1.2$	2.18	
	1	8	C TZ $\frac{3.9}{2.4} \times 1.4$	9.59	11.11
		9	C TZ $\frac{4.0}{1.9} \times 1.3$	4.62	(2.5)
The state of					<u></u>

Note 1; E : Earth TZ : Trapezoidal C : Concrete TA : Triangle CB : Concrete Block

^{2;} Figures in parentheses is a ratio of proposed design storm discharge to existing drain capacity

^{3;} Point is shown in Fig.2.10, Proposed line No. is shown in Figs.5.8 to 5.10 of Vol.VI.

J-1

Catch-	Proposed		Existing Dra	in	Proposed Design
ment Code No.	Line No.	Point	Width(m)×Height(m)	Capacity (m3/sec)]
N-2	1	10	C TZ $\frac{3.5}{1.7} \times 1.0$	。 4.40	
		11	C TA 3.8 × 0.6	1.23	
N-4		1	C TZ 7.0 × 2.7	17.57	
	3 .	2	C TZ 8.0×1.6	9.19	14.98
		3	C TZ $\frac{6.4}{3.2} \times 2.1$	9.24	(2.1)
		4	C TZ $\frac{6.9}{3.7} \times 1.4$	。 7.42	:
		5	C TZ $\frac{7.5}{2.0} \times 2.0$	21.21	
.*	2	6	C TZ $\begin{array}{c} 6.7 \\ 2.1 \end{array} \times 1.6$	14.14	10.71 (1.4)
		7	C TZ $\begin{array}{c} 5.6 \\ 0.8 \end{array} \times 1.3$. 7.48	(1.17)
		8	C TZ $\begin{array}{c} 4.5 \\ 2.1 \end{array} \times 1.1$	7.71	
	1	9	C TZ $\begin{array}{cc} 1.8 \\ 0.9 \end{array} \times 0.6$	2.28	8.60 (3.8)
		10	C TZ $\frac{2.9}{0.5} \times 1.2$	7.52	(3.0)
N-5	6	1	C TZ 7.9 × 3.0	49.56	12.72
	0	. 2	C TZ $\frac{6.0}{3.3} \times 1.9$. 17.22	13.43 (0.8)
	3	3	C TA 3.8 × 1.4	3.57	7.00
	3	4	C TZ $\frac{4.0}{0.6} \times 1.4$	4.78	7.08 (2.0)
	2	5	C TA 3.0 × 1.1	1.98	/ FO
	<u>.</u>	6	C TA 2.2 × 1.0	• 1.93	4.52 (2.3)
-	1		C TZ 3.0 × 1.1	8.14	2.35 (0.3)

Catch-	Proposed		Existing Dra	in	Proposed Design
ment Code No.	Proposed Line No.	Point	Width(m)×Height(m)	Capacity (m ³ /sec)	Storm Discharge (m ³ /sec)
N-6	11,12,13	1.	(i=1.9°/) \$\phi\$ 1,200	1.47	10.85 (7.4)
	4	2	C TA 1.3 × 1.2	0.70	3.63 (5.2)
		3	C TZ $\frac{1.6}{0.4} \times 1.0$	° 1.07	
	3	4	C TA 1.8 × 1.2	1.15	3.12 (2.9)
		5	C TA 1.2 × 0.7	0.32	
	2	6	C TA 2.0 × 1.1	1.15	2.18 (1.9)
	1	7	C TA 2.9 × 0.9	1.42	2.11 (1.5)
N-7	5	1	E TZ 4.3 × 0.9	2.22	5.04
· · · · · · · · · · · · · · · · · · ·		2	$\begin{array}{ccc} \text{CBTZ} & \overset{2.5}{2.2} \times 0.9 \end{array}$	0 2.08	(2.4)
	3	3	$\begin{array}{ccc} \text{CBTZ} & 1.5 \times 0.8 \end{array}$	0.56	2.87 (5.1)
N-8		1	E TZ 12.5 × 2.1	7.48	
	6	2	E TZ $\frac{10.6}{4.1} \times 1.4$	4.56	26.36 (24.6)
·		3	E TZ $\frac{4.6}{2.8} \times 0.9$	1.14	(24.0)
		4	E TZ 4.4 × 1.0	0 1.07	
		5	E TZ $\frac{4.9}{0.8} \times 0.9$	0 1.05	
		,6	E TZ $\frac{4.2}{1.3} \times 1.5$	2.29	
	1	. 7	E TZ $\frac{4.6}{1.1} \times 1.1$	1.47	9.22
	1	8	$E TZ = \frac{2.3}{1.2} \times 0.7$	0.46	(8.8)
	1	9	$\begin{bmatrix} E & TZ & 3.4 \times 0.8 \end{bmatrix}$	0.75	

Canah	Proposed		Existing Dra	in	Proposed Design
Catch- ment Code No.	Line No.	Point	Width(m)×Height(m)	Capacity (m3/sec)	Storm Discharge (m ³ /sec)
	·	10	E TZ $\frac{3.2}{1.8} \times 0.7$	0.70	
		1.1	$E TZ = \frac{1.8}{0.5} \times 0.6$	0.21	
		12	C TZ $\begin{array}{cc} 2.9 \\ 1.6 \end{array} \times 1.3$	3.59	
		13	E TZ $\begin{array}{c} 4.8 \\ 1.9 \end{array} \times 1.3$	0.94	4.4
		14	E TZ $\frac{4.3}{1.8} \times 1.1$	2.08	·
	2	15	$\begin{array}{c} 3.8 \\ 1.1 \\ 2.3 \end{array} \times 0.9$	• 1.14	7.10
		16	E TZ $\begin{array}{c} 2.3 \\ 1.0 \\ 4.7 \end{array} \times 1.2$	1.05	(6.2)
		17	E TZ $\begin{array}{c} 4.7 \\ 0.9 \end{array} \times 1.3$	2.18	
		18	C TA 1.5 × 1.0	0.54	
		19	C TZ $\frac{2.9}{0.8} \times 0.7$	1.11	
N-9	. 0	1	E TZ $\begin{array}{c} 6.6 \\ 1.1 \end{array} \times 1.7$	• 3.77	25.59
	8	2	E TA 9.5 × 1.7	4.60	(6.7)
	7	3	$E TZ = \frac{3.5}{2.2} \times 1.2$	1.75	25.29 (14.5)
		4	E TZ	6.09	
		5	E TZ $\frac{4.6}{1.6} \times 1.2$	1.96	
		6	E TZ $\frac{4.0}{1.5} \times 1.1$	• 1.47	
	5	7	E TA 2.8 × 1.5	0.92	21.89 (14.9)
		8	$\begin{bmatrix} E & TZ & 4.1 \\ 1.3 & 1.3 \end{bmatrix} \times 1.3$	1.77	
t i		9	E TZ $\frac{3.2}{1.1} \times 0.8$	0.67	
·	5.7	10	E TZ $\begin{array}{c} 2.9 \\ 0.7 \end{array} \times 1.0$	0.75	

	Duanagad		Existing Dra	in	Proposed Design
Catch- ment Code No.	Proposed Line No.	Point	Width(m)×Height(m)	Capacity (m3/sec)	Storm Discharge (m ³ /sec)
N O	4	11	E TZ $\frac{4.4}{0.9} \times 1.0$	1.17	13.22
N-9	4	12	E TZ $\frac{2.5}{1.7} \times 0.5$	0.34	(38.9)
		13	$E TZ = \frac{4.5}{0.3} \times 1.5$	2.25	
		14	E TZ $\frac{4.9}{1.1} \times 1.5$	3.06	0.06
	2	15	$\begin{array}{ccc} \text{E TZ} & 3.5 \\ 0.6 & \times 1.0 \end{array}$	1.05	9.86 (4.4)
		16	E TZ $\frac{4.4}{1.2} \times 1.3$	2.32	
		17	C TA 2.6 × 0.9	0.95	
S-1	3	1	E TZ 5.8 × 1.3	2.36	8.17 (3.5)
		2	E TZ 5.7 × 1.7	3.12	
	2	3	$\begin{array}{ c c c c c c }\hline E & TZ & 4.5 \times 1.3\\\hline & 1.3 & \end{array}$	1.96	7.45 (3.0)
	N.	4	$\begin{array}{ccc} \text{E TZ} & 5.0 \times 1.5 \\ 1.0 & \end{array}$	。 2.48	
		5	$E TZ = \frac{3.2}{1.3} \times 0.8$	1.60	
	1	6	E TZ $\begin{array}{ccc} 3.8 \times 1.3 \\ 0.5 \end{array}$	2.97	6.21 (4.8)
		7	E TA 3.1 × 0.9	1.09	
		8	E TA 2.8 × 1.1	• 1.29	
S-2	4	1	E TZ $\frac{12.5}{3.1} \times 1.6$	13.23	17.39 (1.3)
gardining series		2	CBTA 2.9 × 1.2	• 1.72	
		3	$\begin{array}{ccc} \text{CBTZ} & \begin{array}{c} 2.4 \\ 1.2 \end{array} \times 1.0 \end{array}$	1.88	12.56
	2	4	$\begin{array}{ c c c c c c }\hline CBTZ & 2.2 & \times & 1.2\\\hline & 0.4 & \times & 1.2\\\hline \end{array}$	1.30	(7.3)
		5	$\begin{array}{c c} CBTZ & 3.4 \times 1.6 \\ \hline 0.3 & \end{array}$	3.00	
	- 3				
			J - 5		
			A second second		

			Existing Dra	<u> </u>	Description of Description
Catch- ment Code No.	Proposed Line No.	Point	Width(m)xHeight(m)	Capacity (m3/sec)	Proposed Design Storm Discharge (m ³ /sec)
		6	E TZ $\frac{3.8}{0.9} \times 0.9$	0.63	
S-2	1	7	E TZ $\frac{2.9}{2.2} \times 0.6$	0.79	12.56 (15.9)
		8	E TZ $\frac{3.2}{2.6} \times 0.7$	1.38	
S-3		1	CBTZ 1.6 × 1.7	4.91	
	1	2	CBTZ $\frac{1.5}{1.2} \times 1.4$	2.14	3.45
		3	$\begin{array}{ccc} \text{CBTZ} & \frac{1.5}{1.2} \times 1.2 \end{array}$	• 1.78	(1.9)
S4		1	CBTZ 1.6 × 3.0	0 1.69	
	1	2	CBTZ 2.7 × 1.4	2.57	10.67
		3	CBTZ $\begin{array}{c} 2.8 \\ 0.9 \end{array} \times 1.0$	2.57	10.67 (6.3)
		4	$\begin{array}{ccc} \text{CBTZ} & \begin{array}{c} 1.5 \\ 0.3 \end{array} \times 1.4 \end{array}$	0.57	
S-5		1	CBTZ $\frac{2.8}{0.7} \times 0.6$	0.36	
	3	2	$\begin{array}{ccc} \text{CBTZ} & 2.7 \times 1.2 \\ & 1.1 \end{array}$	• 1.11	11.98
		3	E TZ $\frac{4.1}{1.3} \times 1.5$	1.59	(10.8)
<i>i.</i>	· · · · · · · · · · · · · · · · · · ·	4	$\begin{array}{ c c c c }\hline E & TZ & 3.2 \times 0.8\\\hline & 1.7 & \end{array}$	0.57	
	-	5	E TZ $\frac{4.3}{1.8} \times 1.0$	• 2.60	
	2	6	$\begin{array}{c c} E & TZ & \begin{array}{c} 2.6 \\ 0.9 \end{array} \times 1.2 \end{array}$	1.40	6.84 (2.6)
		7	$\begin{array}{ccc} \text{E TZ} & 3.0 \times 1.1 \\ 1.0 & \end{array}$	2.65	
	1	8	E TZ 1.0 × 0.8	° 0.51	2.93
		9	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	6.21	(5.7)
	4	10	E TZ 10.7 × 1.2	1.75	

	n		Existing Dra	in	Proposed Design					
Catch- ment Code No.	Proposed Line No.	Point	Width(m)×Height(m)	Capacity (m3/sec)	Storm Discharge (m ³ /sec)					
·		11	E TA 9.4 × 1.1	1.15	·					
		12	$E TZ = \frac{3.6}{0.8} \times 0.8$	0.33						
		13	E TZ $\frac{4.8}{1.7} \times 0.8$	0.55						
S-5	4	14	E TZ $\begin{array}{c} 4.0 \\ 1.5 \end{array} \times 1.2$	0.83	5.96 (7.2)					
		15	E TZ $\begin{array}{ccc} 4.4 & \times 1.2 \\ 3.0 & \times 1.2 \end{array}$	1.03						
		16	E TZ $\frac{3.8}{1.5} \times 1.2$	0.56						
		17	$E TZ = \frac{4.1}{1.7} \times 1.0$	0.56						
		18	$E TZ = \frac{4.5}{1.6} \times 1.1$	3.23						
		19	E TZ 4.0 × 1.5	1.44						
	7	20	E TZ $\frac{3.2}{0.7} \times 0.8$	1.01	15.80					
		21	E TZ $\frac{4.7}{1.0} \times 1.5$	• 2.03	(7.8)					
	(New S-8)	22	$\begin{array}{ccc} \text{E TZ} & \begin{array}{c} 5.2 \\ 0.3 \end{array} \times 1.7 \end{array}$	2.85						
S-6		1	E TZ $\frac{3.4}{0.8} \times 1.6$	3.06						
		2	E TA 2.9 × 0.8	0.51						
	1	3	E TA 2.9 × 0.7	0.38	7.38					
	*	4	E TA 2.5 × 0.3	0.09	(14.5)					
		5	E TA 3.9 × 0.5	0.33	:					
		6	$E TZ = \frac{6.5}{1.9} \times 0.9$	2.24						
S-7		1	E TZ 7.0×1.3	1.81						
	2	2	$E TZ 0.4 \times 0.4$	0.14	9.98 (15.8)					
		3	E TZ $\frac{2.9}{0.2} \times 0.9$	0.63						
		4	E TA 2.2 × 0.6	0						

			That a star in the		
Catch- ment Code No.	Proposed Line No.	Point	Existing Dra Width(m)×Height(m)	Capacity (m3/sec)	Proposed Design Storm Discharge (m ³ /sec)
		5	E TZ $\frac{3.2}{1.2} \times 0.7$	0.23	
S7	1	6	E TA 2.7 × 0.6	0.04	3.47
3-7	J	7	E TA 2.2 × 0.5	0.04	(23.1)
		8	E TA 2.7 × 0.4	• 0.15	
S-8	9	1	E TZ $\frac{10.7}{6.4} \times 1.1$	3.91	40.91
	,	2	E TA 7.5 × 1.4	• 1.88	(21.8)
	8	3	E TA 5.8 × 0.9	° 0.71	42.61
	0	4	E TA 5.5 × 1.5	1.46	(60.0)
: .	5	5	E TA 4.1 × 0.8	0.40	32.19 (80.5)
	3	6	E TZ $\frac{5.3}{2.3} \times 1.0$	1.63	28.29
	3	7	E TA 5.1 × 1.2	° 1.19	(23.8)
		8	E TZ $\frac{5.6}{1.8} \times 0.9$	1.29	
		9	E TZ $\frac{3.8}{1.1} \times 1.9$	2.36	
		10	E TZ $\begin{array}{cc} 6.2 \\ 1.6 \end{array} \times 2.1$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20.55
	· 2	11	5.1	° 2.21	29.55 (13.4)
		12	E TZ $\frac{7.8}{4.7} \times 2.0$	5.14	
		13	E TZ $\begin{array}{cc} 5.2 \\ 1.2 \end{array} \times 1.8$	1.40	
		14	E TZ $\begin{array}{c} 6.8 \\ 1.1 \end{array} \times 2.0$	2.40	
	1	15	E TA 4.8 × 1.7	1.36	
	1	16	E TA 5.4 × 1.8	2.32	• .

atch-	Proposed		Existing Dra	Proposed Design				
aten- ment Code No.	Line No.	Point	Width(m)×Height(m)	Capacity (m3/sec)	Storm Discharge (m ³ /sec)			
		1.7	E TZ 3.8 × 1.2	1.12	30.84			
S-8	1	18	E TZ $\begin{array}{c} 4.6 \\ 0.9 \end{array} \times 1.5$	1.92	(20.8)			
		19	$\begin{array}{ccc} \text{E TZ} & 3.6 \\ 0.8 & \times 1.6 \end{array}$	1.59				
		20	C TA 5.2 × 1.2	° 1.48				
S-9	3	1	E TA 4.7 × 2.0	1.83	15.09 (8.2)			
•		2	E TA 10.5 × 1.5	2.98				
	1	3	E TZ $\frac{3.4}{0.4} \times 0.8$	0.98	4.40			
		4	$\begin{array}{ c c c c c }\hline E & TZ & 2.2 \\ 1.0 & \times 0.8 \\\hline \end{array}$	0.89	(4.9)			
		5	E TZ $\frac{2.5}{1.1} \times 0.6$	0.66				
		6	E TZ $\frac{5.7}{1.6} \times 1.1$	• 3.02				
	2	7	E TA 9.8 × 1.5	5.85	5.59			
	-	8	E TA 8.9 × 1.7	6.52	(1.9)			
		9	E TA 1.0 × 0.8	0.15				
		10	E TZ $\frac{8.2}{2.1} \times 1.4$	5,48				
	4	11	E TZ	0 1.51	6.18			
		1.2	E TA 5.2×0.5	0.45	(4.1)			
		13	$E TZ \frac{5.3}{2.0} \times 0.8$	1.67				
S-10	3	1	E TZ $\begin{array}{c} 6.9 \\ 2.6 \end{array} \times 1.6$	2.47	17.04 (6.9)			
		2	E TZ $\begin{array}{ccc} 3.2 \times 2.3 \\ 1.5 \end{array}$	1.64				
	1	3	$\begin{array}{ c c c c c c }\hline E & TZ & 3.5 \\ 0.5 & \times 1.1\end{array}$	0.47				
			J~9					

	m.iv			Existing Dra	ain	Proposed Design
Catch- ment Code No.	Proposed Line No.	Point	Width(m)×Height(m)	Capacity (m3/sec)	Storm Discharge (m ³ /sec)
		4	E TZ	$\frac{5.8}{1.8} \times 1.4$	• 1.54	
S-10	1	5	CBTZ	$\frac{4.1}{1.0} \times 1.2$	1.11	8.53
		6	CBTZ	$\frac{3.4}{1.1} \times 1.1$	0.87	(5.5)
		7	CBTA	3.5 × 1.0	0.50	
		8	CBTZ	$\frac{2.0}{1.0} \times 0.7$	0.24	
		9	E TZ	1.4 0.6 × 0.5	0.23	
		10	E TZ	$\frac{1.7}{0.6} \times 0.6$	0.17	
	2	11	E TZ	$\frac{3.1}{0.5} \times 1.4$	1.53	4.80
	2.	12	E TZ	$\frac{2.0}{0.8} \times 0.6$	0.24	(9.1)
		13	C TZ	3.4 × 1.1	3.30	
		14	C TZ	$\frac{1.5}{0.3} \times 0.8$	• 0.53	
A-1		1.	Е ТА	2.8 × 0.9	0.22	
	8	2	ETZ	$\frac{3.6}{0.9} \times 0.7$	• 0.38	31.85
	· · · · · · · · · · · · · · · · · · ·	3	E TZ	$\frac{2.9}{1.3} \times 0.9$	0.41	(83.8)
		4	E TZ	$\frac{2.7}{2.2} \times 0.7$	0.75	
		5	E TZ	$\frac{2.6}{2.0} \times 1.1$	1.31	
		6	E TZ	$\frac{2.8}{1.7} \times 1.1$	1.33	·
		7 :	E TA	1.8 × 0.8	0.27	
	6	8	E TZ	$\frac{2.8}{1.7} \times 1.0$	• 1.14	33.83 (29.7)
		9	E TZ	$\frac{3.0}{1.6} \times 1.3$	1.67	(25.7)
		10	E TZ	$\frac{2.7}{1.4} \times 1.5$	1.76	
		11	E TZ	$\frac{2.0}{0.5} \times 0.9$	0.44	

	Desmand		Existing Dra	in	Proposed Design					
Catch- ment Code No.	Proposed Line No.	Point	Width(m)×Height(m)	Capacity (m ³ /sec)	Storm Discharge (m ³ /sec)					
A-1	6	12	E TZ $\frac{2.7}{0.8} \times 1.0$	0.79						
	5	. 13	E TZ 4.7 × 1.2	2.20	28.27 (12.9)					
•	3	14	E TZ 3.2 × 1.3	• 1.95	25.72 (13.2)					
÷		1.5	E TZ 4.6 × 1.4	2.76						
	1	16	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.58	17.67 (30.5)					
		17	E TA 8.8 × 1.9	5.68						
		18	E TZ $\frac{9.5}{1.2} \times 1.7$	6.28						
		19	E TZ 7.0×1.5	3.79						
	7	20	$\begin{bmatrix} E & TZ & 7.0 \\ 3.9 & \times 1.4 \end{bmatrix}$	5.42	7.18					
	,	21	$\begin{array}{ c c c c c c }\hline E & TZ & 6.1 \\ 2.2 & \times 1.4 \\\hline \end{array}$	3.82	(1.6)					
		22	$E TZ = \frac{8.0}{3.5} \times 1.2$	0 4.40						
		23	$\begin{array}{ c c c c c c }\hline E & TZ & 6.1 \\ 2.0 & \times 1.5\end{array}$	4.03						
		24	$\begin{array}{ c c c c c c }\hline E & TZ & 6.4 \\ & 3.4 & \times 1.2\end{array}$	3.81						
		25	$\begin{bmatrix} E & TZ & \frac{5.7}{3.4} \times 0.9 \end{bmatrix}$	2.27						
		26	C TA 4.6 × 0.7	1.05						
		27	C TZ $\frac{6.1}{1.0} \times 2.3$	5.57						
		28	C TZ $\frac{2.8}{1.6} \times 1.8$	3.18	•					
		29	C TZ $\frac{3.4}{1.0} \times 1.8$	• 2.97	3.92					
	9	30	C TZ $\frac{4.1}{1.9} \times 1.8$	3.69	(1.3)					
		31	E TZ $\begin{array}{ccc} 4.2 \times 1.3 \\ 1.2 \end{array}$	1.27						
		32	E TZ $\frac{3.2}{1.8} \times 0.9$	1.01						
		33	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.60						

Catch-	Proposed		Existing Dra	in	Proposed Design		
ment Code No.	Line No.	Point	Width(m)×Height(m)	Capacity (m ³ /sec)	Storm Discharge (m ³ /sec)		
A-2	4	1	E TA 5.1 × 1.1	1.04	15.53		
	'	2	E TA 5.0 × 1.4	0.58	(26.8)		
		3	E TA 5.7 × 1.4	° 1.69			
		4	E TZ $\frac{4.4}{1.7} \times 1.1$	0.78			
		5	E TZ	1.61			
	2	6	E TZ 5.6 × 1.4	1.94	5.36 (3.2)		
		. 7	$E TZ = \begin{array}{c} 3.9 \\ 0.8 \end{array} \times 1.4$	1.44			
		8	E TA 5.7 × 1.5	1.87			
		9	$\begin{array}{ccc} \text{E TZ} & 5.1 \\ 1.7 & \times 0.9 \end{array}$	1.19			
		10	E TA 8.0 × 1.6	5.57			
		11	E TA 7.4 × 2.0	2.26			
		12	E TA 4.7 × 1.5	1.78			
* .	1	13	$E TZ = \begin{array}{c} 5.4 \\ 1.2 \end{array} \times 1.1$	2.78	9.41 (3.8)		
, , , , , , , , , , , , , , , , , , ,		14	E TA 5.2 × 1.4	2.79	(3.0)		
:		15	E TA 5.7 × 1.2	0 2.45			
		16	E TA 1.4 × 1.3	0.54			
A-3	7	1	E TZ $\frac{8.7}{6.9} \times 0.6$	1.19	13.70		
	7	2	E TZ $\frac{5.9}{1.9} \times 0.6$	0.83	(16.5)		
		3	E TZ 9.7 × 2.0	7.62			
		4	E TZ $\frac{4.0}{1.5} \times 0.8$	° 0.91	10.03 (11.3)		
· :		5	E TZ 4.4 x 0.8	0.86	()		

			ر من المسلم		
Catch-	Proposed		Existing Dra	in	Proposed Design
ment Code. No	Line No.	Point	Width(m)×Height(m)	Capacity (m ³ /sec)	Storm Discharge (m ³ /sec)
		6	$E TZ = \frac{3.4}{1.0} \times 0.8$	0.70	
		7 .	E TA 3.1 × 1.0	0.57	
A-3	4	8	E TZ $\begin{array}{cc} 2.8 \\ 0.9 \end{array} \times 0.8$	0.57	2.15 (3.7)
		9	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.87	
		10	E TA 3.1 × 1.0	• 0.58	
-		11	E TZ $\frac{10.3}{2.4} \times 1.1$	3.50	:
		12	$E TZ = \frac{8.5}{2.8} \times 0.8$	• 1.92	
	3	13	E TZ $\frac{9.0}{2.5} \times 1.5$	5.36	5.76 (3.0)
		14	$\begin{bmatrix} E & TZ & 8.9 \\ 4.4 & 1.3 \end{bmatrix}$	5.38	
		15	E TA 5.8 × 1.2	1.56	
-		16	E TA 7.6 × 2.1	5.03	
		17	E TA 3.8 × 1.1	0.85	
	2	18	E TA 5.1 × 1.4	1.62	4.11 (4.8)
		19	C TA 1.4 × 0.9	0.11	
		20	C TA 0.8 × 0.4	0.05	
A-4	9	1	E TA 7.2 × 0.5	0.58	7.99 (13.8)
		2	CBTA 3.7 × 1.2	1.71	4.78
	4	3	$\begin{bmatrix} CBTZ & \frac{2.7}{1.9} \times 0.7 \end{bmatrix}$	0 1.14	(4.2)
	3	4	CBTZ 0.6 x 0.5	0.09	3.87 (43.0)
A-5	4	1	E TZ 7.0 x 1.8	°10.98	13.91 (1.3)
	_	2	φ 1.2 (i=0.2°/)	0.48	

APPENDIX K

PLANNING OF FACILITIES FOR THE FEASIBILITY STUDY

(Ref.: Section 4.2., Vol. VII)

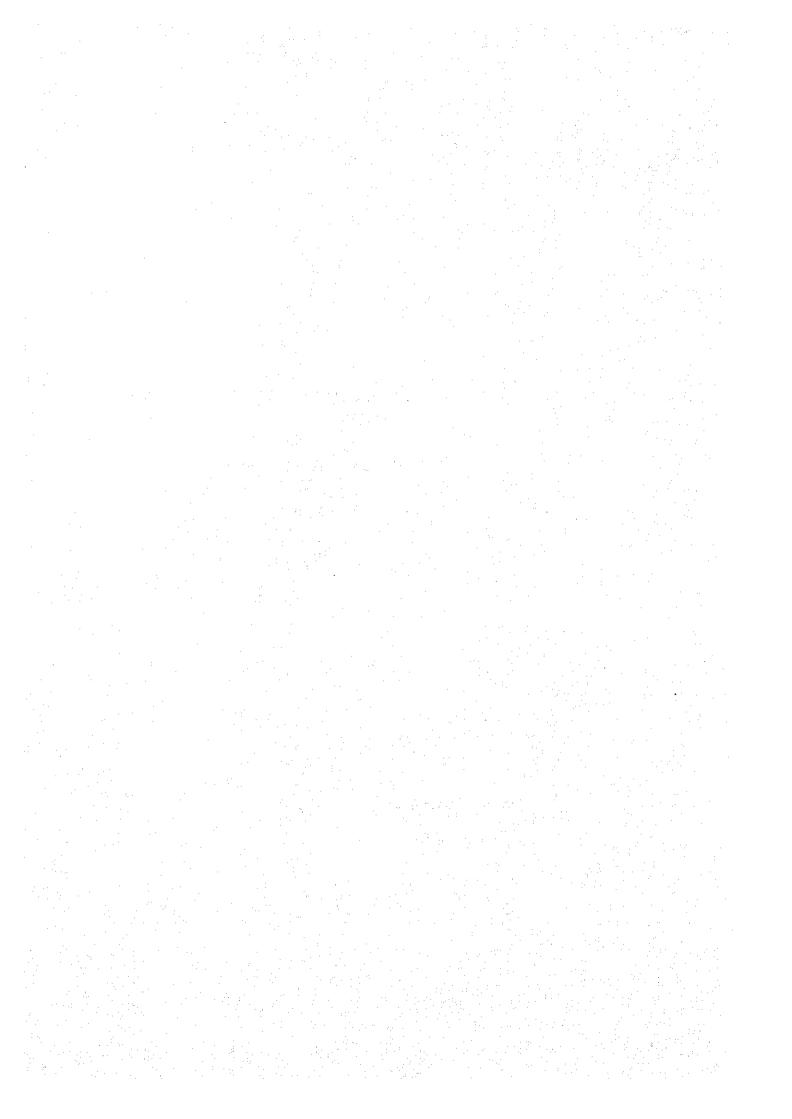


Table K.I Hydraulic Computation for N-5 Catchment

ing Condition Existing Drain Size Capacity (m)	RI= 3.29 ha RI= 2.24	30x11 2.13 R1= 7.93 0.38x11 2.13 0 = 0.94	$RI = 3.76$ $S = 0.80$ $S = 0.80$ $V_0 = 7.43 Re = 0.46$ $V_1 = 7.49 Re = 0.22$	R1 = 7.02 R2 = 2.32 C = 4.46 R2 = 0.43 C= 0.96	Re= 0.35 \(\text{0.6}\times 1.4 \\ \text{7.54} 0 = 0.09	X = 0.53 X = 0.85 0 = 0.74 0 = 5.06	C = 4.47 0 = 0.09	Rz = 7.67 $0 = 0.77$ $0 = 0.77$ $0 = 0.77$ ensity) I: Industrial Area $0: Open Space$
Exist Exist Each Total Each Each Total Each Total Each Total Each Total Each Each Total Each Each	3 29	3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	(4) 396 420 5.5 5.5 15.5 0.70 0.85 0.260 1.03 1.41 10.10×10 1.8 1.33 1.19 (2) (3) 8.11 2260 400 1120 4.5 15.0 25.0 0.72 0.77 0.200 4.52 6.26 1120×20 1.0 1.57 5.65	7.82 540 6.4 6.4 16.4 0.76 0.84 2.	(S) 0.35 956 1/5 655 1.4 7.8 17.8 0.85 0.82 0.290 2.77 3.91 ±1.5×1.6 1.2 1.40 (Q) 7.76 3934 400 1520 4.2 19.2 29.2 0.72 0.75 0.780 7.08 9.85 ±1.23×2.3 0.9 1.64 (D) 7.79 3934 400 1520 4.2 19.2 29.2 0.75 0.75 0.75 0.80 1.08 9.85 ±1.23×2.3 0.9 1.64	(9) 6.74 41.28 75 1595 0 8 20 0 71 0.75 0.77 7.22 10.05 1.0 0.85 0.49 (9) 0.74 41.28 75 10.04 1.04 1.04 1.04 204 0.90 0.80 0.80 0.80 0.80 0.80 0.80 0.90	(10) (4) 447 310 3 9 3 9 13 9 0 90 0 88 0 359 1.60 2.19 11.2 x1.2 1.5 1.37. 1.77 (10) (9) 0.09 7.62 40 575 0.5 10.9 20.9 0.89 0.79 0.274 2.09 2.88 11.4 x1.4 1.3 1.41 2.49	(2) (1) 0.06 9.46 25 600 0.3 11.2 21.2 0.82 0.75 2.37 3.27 ±1.5×15 1.3 1.48 2.99 (3) (4) 0.06 9.46 25 600 0.3 11.2 21.2 0.82 0.75 2.02 12.57 ±26×26 2.0 1.60 10.18 (5) (4) 0.77 1.51 1.7 0.77 0.75 0.75 0.02 12.57 ±26×26 2.0 1.60 10.18 (C.Commercial Area (High Density) S. Institutional Area (Midium Density)
Name of Catchment	\$-1 \$-1 \$-1							

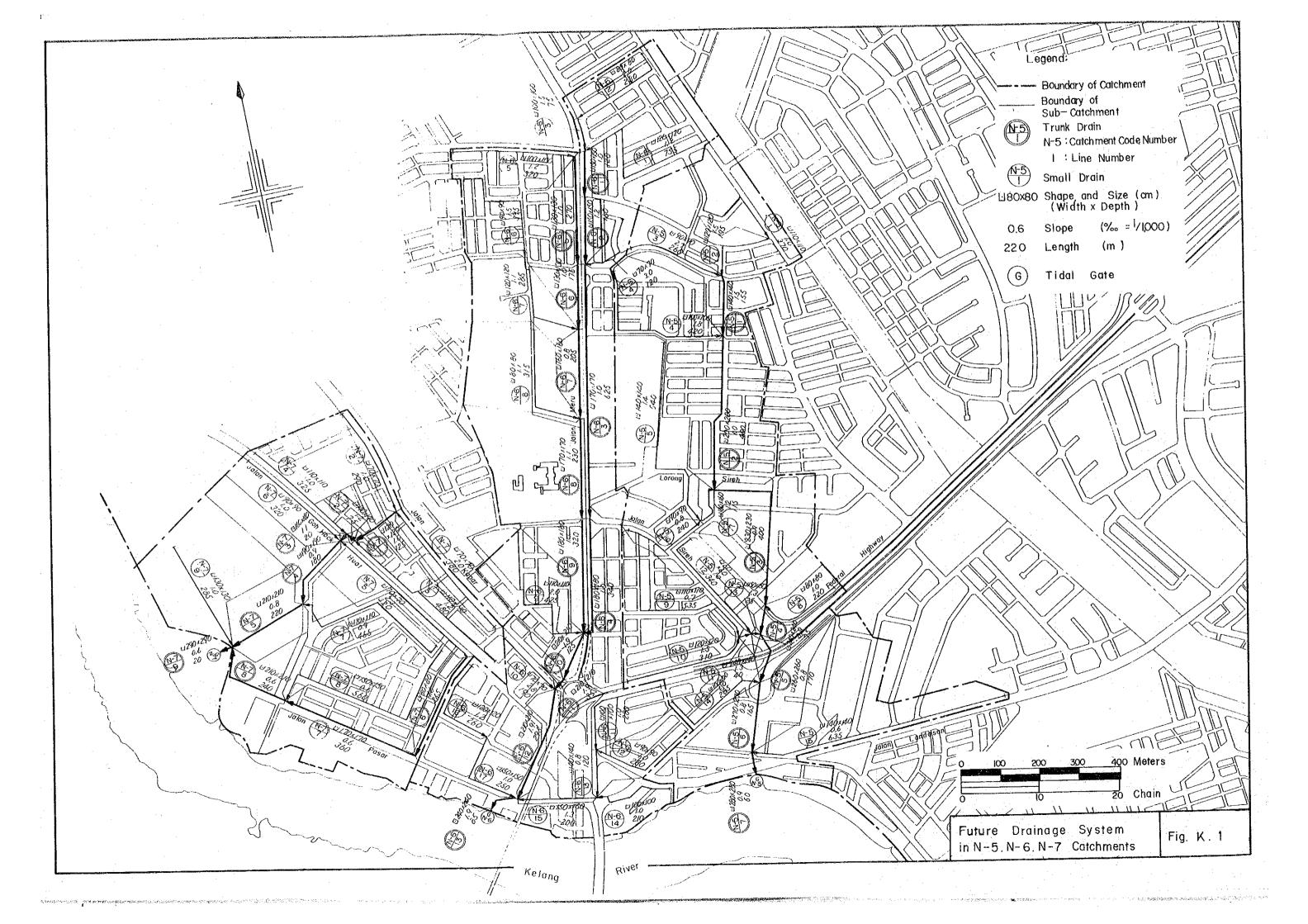
	2.4								•											
ueu ei			Area	Length		Time of Fin the Dr	Organ or	:	9 109	Design	Runoff	Runoff	Ą	Proposed	d Drain	u		Existing Drain	Drain	
Catchr Od Man	ləni⊐	wollnI B 라	Each Total (ha) (ha)		Each Total	Each Total (min)	Total (min) (min)	Tonnson Sonno Soefficie	Storag Soffici	Per ha (m/s)	Total Runoff (m%)	Major Storm (m/s)	Size (H)	Slope	Slope Velocity(Slope Velocity Capacity Runoff (%) (m/s) (m/s)	Runoff (m³/s)	Size (m)	Capacity (m ³ /s)	Remarks
N-5	(4)	2.25	25	285		5.7	5.4 15.1	1 0.85	0.86	0 322	0.72	66 0	0/×0/ =	0.7	000	0 89				C = 2.05 ha 0 = 0.20
	<u></u>	© 4	17 5700		1020					77/ 0	0 70		10 × 10 ×	ـــــ	0 % ,	76 //		6.7x0.3		R2 = 2.31 C=0.84
	1	1-		1		╄	+			00/1	7.02	?	1	0	3/-/	07/1		9.0	77:01	0 = 0 72 5 = 0 00
	(3)	70 9	24	707		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	10 8 //	2/ 5 0 5/	6	041 0	1 40	70 /	10817	1	70 0	0//				Rz = 8.00
	╁.	6		1	l	1	-1		<u>.</u>	3	7,77	_	1	8.0	0/- 0	76-7-		7.3		C = 0.27
	-+	6)	20 69.50	000	0661	0.6	24.0 34.0	0 0.71	0 74	0 162	11.26	15,72	13 2.8 × 2.8	900	1.86	13.76		W477X2.7	57.05	
				<u>.</u>	·		,							-						
		•	 :				•					:								
								_							†					
				ļ																
							<u> </u>								-					
	1						-	-			.									
										•						• •				
																				MANAGEMENT AND
-							· ·													
			-				-	-												
,			_																	
				ļ				-												
								-												
			-																	
																·				
		:															7		:	
									-										:	
						The state of the s														

Table K.. 2 Hydraulic Computation for N-6 Catchment

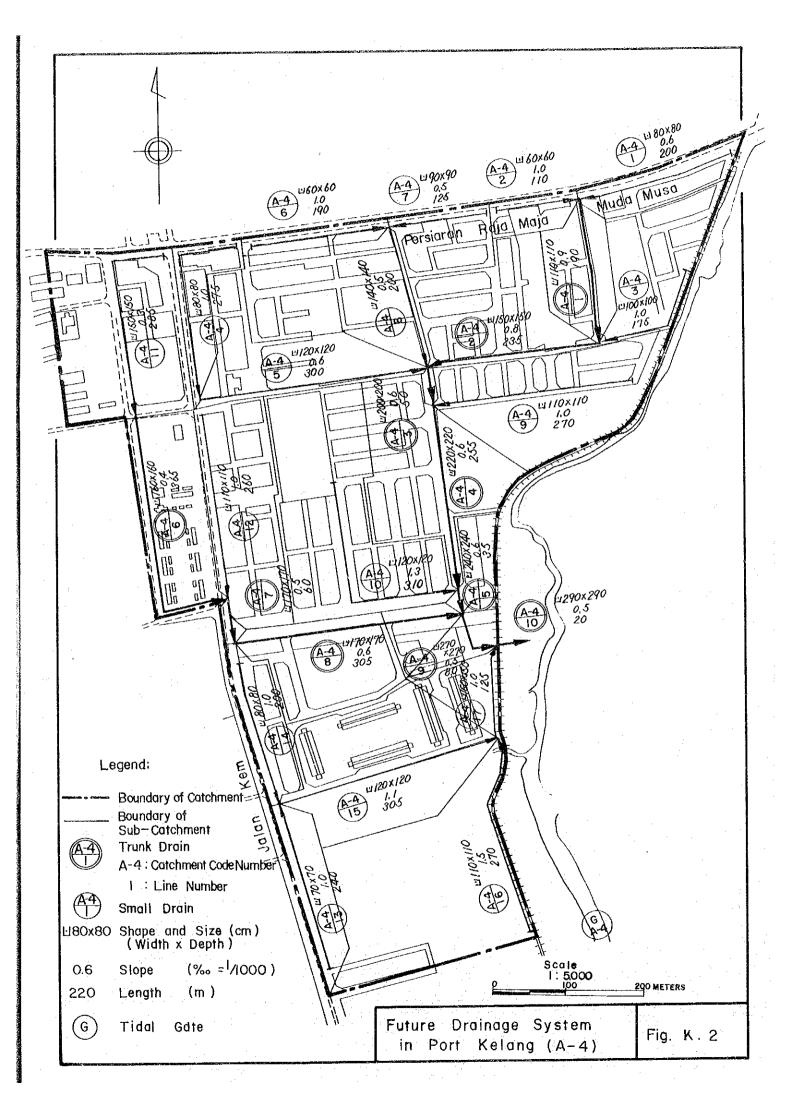
		Remarks		RI= 4.17 C= 1.17	6.	K/ = 7.63			0.49 = 0.60	<u> </u>	K) = 0.90	35 RZ =	0.62 C = 3.72		R1 = 2.54 C=0.08	R1= 1.92 C= 1.00	S=0.95		R1= 2.25 0 = 2.35	R2 = 2.8/0 = 0.72 S = 0.73	0=0.98	700		nt :	S = 0.39		S = 9.84 0=0.07	00000000000000000000000000000000000000	1/9 0 10 0 10 0	
ng Condition	I 🛪 .	Size Capacity	(m) (m ³ / _s)					~2.7×0.9 /.	120,0 x 11 0			0	0 2,1×1.2																	
Existing		acity Runoff	/s) (m³/s)	65.7		9.00	60.	.62	88	1	0.60	3,67	27		0.98	82.	1.79		0.82	1.52	2.79		0.51	3.84	4.48		1.62	55.0	0 33	
	ed Drain	Slope Velocity Capacity) (m/s) (m³/s)	1.22		1.27	1 121 2	0 1.30 2	1.2 1.42 2		0 135 0	1.0 1.42 3			2 1.08 0	. `	8/ /		1.5 1.13	1.17	0.8 1.21		1 98 0 1.		5 45.1.1		2.0 7.49	1.82	1.89	
	Proposed	Size Slop	(m) (%)	11.2×1.2 1.2		14 0.8×0.8 2.0	1 01x011	11/5×/5/	11/5×/5/		U 0.7×0.7 3	.]	81x81 N		1 0×1.0 /	1.3×1.3			1 0.9×0.9	U1.2×1.2	1.6×1.6		1 80x80F	1.7×1.7 1	1 8/x8/1		/:/x/:/	© 2./×2./	02.1x2.1	
2000	Runoff Runoff	Total Major	(m/s) (m/s)	1.34 1.85		0.48 0.66		2.11 2.92	2.18 3.02		0.46 0.63		3.63 5.08		401 920	``	~		0.65 0.89	1.20 1.66	2.48 3.44		0.43 0.59		3.55 4.95		1.37 1.88	7.49 10.48	7 60 10 64	_
Year 2	Jesign F	<u> </u>	(m)s)	79 0.228		0.87 0.293	0.279		077 0.213		0.94 0.387	0.188	0.179		0 85 0 269	4200			84 6.249	0 08	77 0		0.84 0.108		0.75 0 138		0.86 0.327	0.73 0.148	251.0 02.0	
i ci	noite	onneon Thorn Tione Sicies	ල ව ම	20.8 0.74 0.		14 3 0 75 0	4 0.75	22 4 0.75 0	4 0.76		11.6 0.86 0	0.80	1 0.82		15.3 0.72 0	0.76	0 72		16.2 0.69 0	20.5 0.60 0	24,9 0.64 0.		16.2 0.30 0	27.6 0.55 0	31.3 0.57 6		15.0 0.86	37.2 0.69		
	Tim of Flow	Total	(min.)	8.01 8.01		4.3 4.3	Υ,	1.6 12.4	2.0 14.4		9.1	22	0 4		4 y	0	6/ 70))	6.2 6.2	4 3 10.5	2.9		6.2 6.2	*/			5.0 5.0	1.7-27.2	0.3 27.5	
	Length	0	Ê	755		280	1	120 875		l. 1	/20	1	240	1	220	1 .	347	}	3.6.6	<u></u>	205		3/5	1	320		425		35 2160	
	Area	Þ	(ha) (ha)	588		1,63	179 3.42	0.26 9.56			1.20	5 13 16 55		1	2 82	^[٥٧	1	2.60	7 7 72 6	.88		3.94	6.06 23.93			4.18	2005	1.07 51.69	
		N au			0			\odot		0		0		C		6		(C)	9	(F)	0	0	(O)			9	8	<u>@</u>		3
	tua	to to tchm	D)	N-6		(<u>v)</u>	(E)	\bigcirc	<u> </u>		4		<u>(4</u>		(v)	(G)(©			$\frac{\mathcal{I}}{\mathcal{I}}$	0			U				ン 		

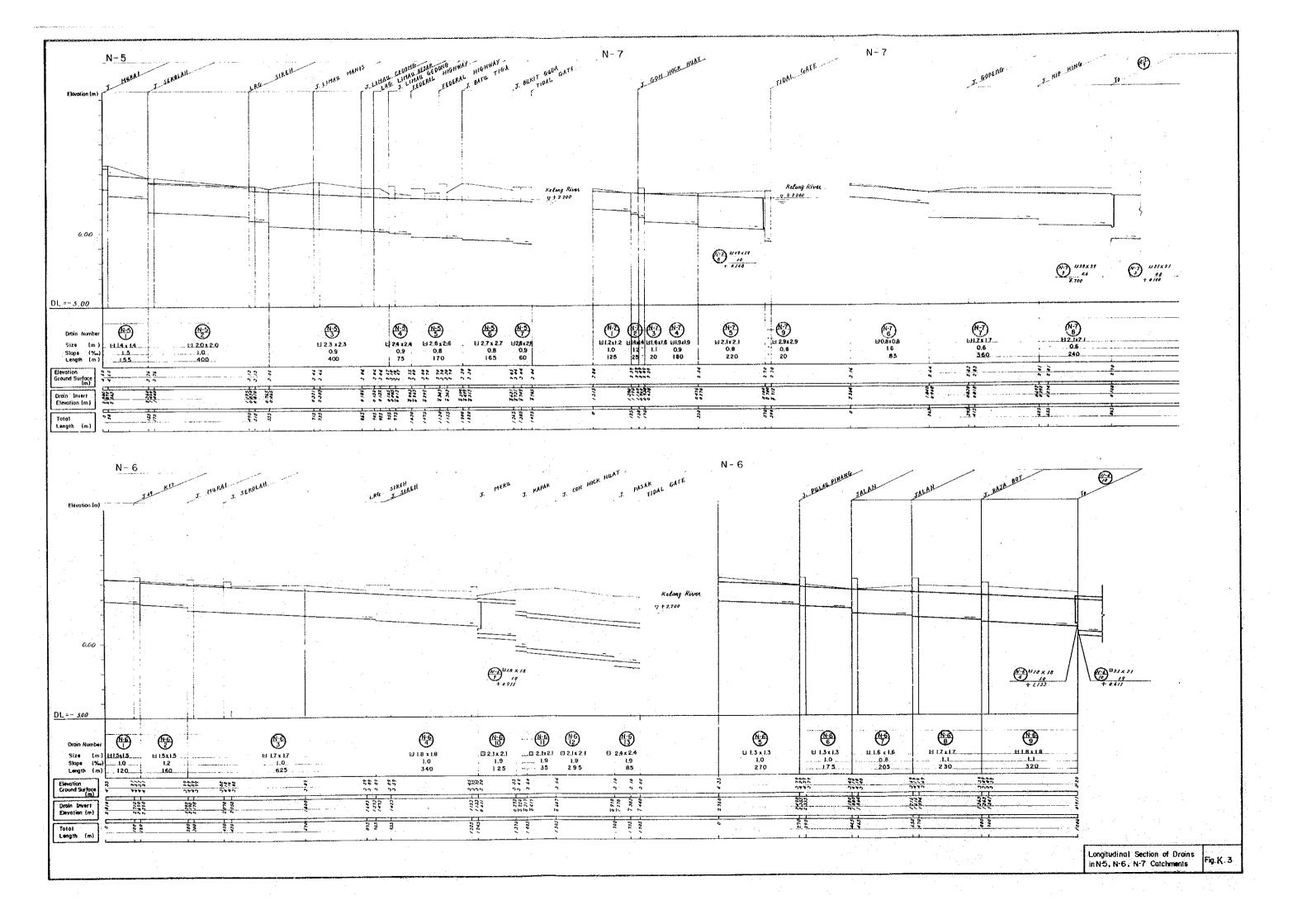
Existing Condition	xisting Drain	Size Capacity Remarks (m) (m)s)	C = 1.12 ha 0 = 0.17			1	ζ = 2.23	ii .	ii	u		u 11 11 12	n 1 1 1 1 1 1 1 1 1 1			u u u u u u													
Runoff Size	Runoff Size	(m) (s/m)	0.58	8.33		0.89	The second secon		0.67	0.67	2.95	0.89	0.87 0.89 2.99	0.89 0.89 2.99	2.99 2.99 2.99 2.99	2.99 2.99 2.59 2.62	2.89 2.89 2.89 2.62 2.62	2.89 2.89 2.89 2.62 2.62	2.99 2.99 2.52 2.62 2.62	2.89 2.89 2.89 2.62 1.92	2.89 2.89 2.89 2.62 2.62 11.99	2.89 2.89 2.89 2.62 2.62	2.89 2.89 2.89 2.62 2.62 11.92	2.89 2.89 2.89 2.62 2.62 2.62	2.99	2.89	2.99	2.99	2.89 2.89 2.89 2.62 2.62 2.62
Drain elocity Capcaty (m/s) (230 6.58 6.32		1.30	1.09	_		90.0 89 0.89		0.92		1.11	1.11	17.7	0.90	0.90	0 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1,30	122	1,10	1.70	1,10	1,17	1,20	70.5	1, 20	70.5	1, 20 1	7.02	70.20	7.07
5	7.0	07		E2.1 x 2.1 1.9		010x1010		0.7 0.0×0.0 H																					
	Major Off Storm	(1.17s)	6/4	10.73		76 1.04		9	000	2 02	202	2 02	0 03	2.02	2.02	2.02	2.02	2.02	2.02	2.02	2.02	2.02	2.02	2.02	2.02	2.02	2.02 2.02 1.76 2.80 15.22	2.02	2.02
sign		(m/s) (m/s)	349 0.45	142		343 0.7		.337 0.61									 			<u> </u>					<u> </u>				
age cient	o oc	Storc Oetfi	0 16.0	0.73 0	13	0 88 0		0.85 0		0.83	0.83 0	0.83.0	0.000	0.88	0.83 0	0.83 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.633 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.000 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 6.83 2 6.90 2 6.73 2 6.73	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.000	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.000	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	J	Tinne E Sconcentin ThornA Tonn Floring	12.6 0.82	40.2 0.69		14.9 0.90		15.2 0.90	_	/	06.0 1.1.	1 8	7 8 4	7 8 4	1 8 4 1														
			2.6			4.9 /		5.2 1	-	/	7.7		1 8 6																
4	in the Orain		2.6			4.9		5.2	0 '	/			2 2			2 2 2 2	7 7 7 7 0	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	7 7 7 7 0					7 7 7 7 7 9 1					
	Length	h Total	2	5 2455					000		4						 			 	 	 	╎╶╎╶┝┈╣┈╏┈┡┈╃┈╃┈╏┈┞┈┞┈	╎					
	Le	ш —	061	87 295		280		780	4.65 120	i	i I	i	1 1 1	1 1															
	Area	Each Total (ha) (ha)	1.29	.89 53.87		2.23		8/	61 4			68																	
<u> </u>		wolinī 및 ç	,		(a)		(S)		0																				
_	4 4	əui	<u>(a)</u>			3	③	(2)	(O)	_	<i>></i>		40																
1		Nam ot Oatchr	N-6 (<u> </u>)		\bigcirc	<u>ر</u>		<u></u>	ン																	

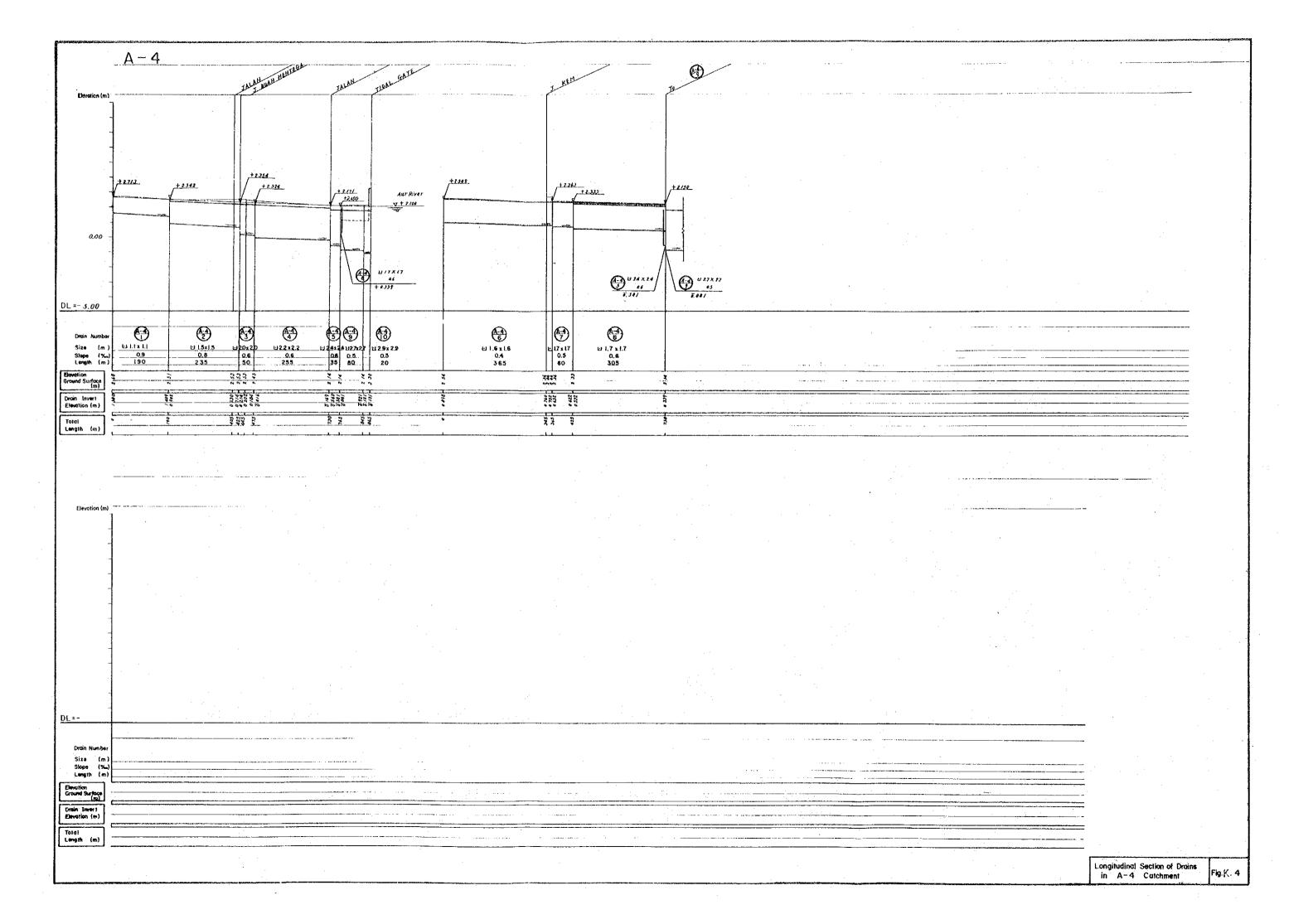
Table K.3 Hydraulic Computation for N-7 Catchment


	(Xe Barks	C = 1.28 ha		K1=0.10 C-0.75	R, = 0.36 C = 1.38	0, = 0.79	N = 2.66	KI - 0.07		0 = 2.35	K! = 0.05	14. 2. 4		7 = 7.35	· ₁₁	. [7.6	\$ = 0.77	+ -	707-7	ι	Z = 2.77)ł	T = 4.75	\$		
Condition	Existing Drain	Capacity (m/s)			···															3.07	:							-	!
1	Fxistii	Size (m)					;	!	!	!	-					_ }			٥	V22×0.9						: 			
Existing	·	Runoff (m/s)		:					. !		:	1	20 20									2	- W		-	-	: : :	0. 0	9
	uin Lin	Slope Velocity Capacity (%) (m/s)		i	0.34			7.26	2.39		1.15	3.27		9 0.52	-	2 0.67	1 4.68		00.10	5 5.76		9 0,62	2.84		2.03	6 4.99	.!		6 11.79
	sed Drain	velocity (m/s)	2.0 7.10		0 0.78	77.7		1.2 1.15	2 1.36		1.0 1.05	1.1 1.42		3 1.10		0.00	0.9 1.44	-	0.0 7.00	8 1.45		80.7 97	60.7 9.0		0.6 1.00	0,6 1.26		1.0 1.18	2.6 1.5
	Proposed	Size Slope	1		0.7 XOX 1.0	1.2×1.2		1 11x11 1	14×14 /		1.1×1.1	/ 9./×9./ FI		10.7×07 2		1 60×60 FT	0 6/x6/F		0 //x//R	M2.1×2.1 0		10.0×0.0	17×7.7 0		N 15x15 6	1 2./×2./ 6			₩2.9×2.9
	Runoff	Major Storm S (m/s) (2		0.34 10	5/ 12%		140 111	98		22 11/	8		0.63 NO		0.75 HO	5.62 14/		1.32 B	6 98 112		0.60 130	3.01 13.		2,36 14,	5.57		75	14.08 W.
2000		Total Mc Runoff St (m/s) (n	.1		0.25 0	7.10 1	-	1.02	2.09 2		0.89	2.67 3		0.46		0.55 0	4.07		98.0	5.04		0 44	2,18		1.71	4.04		25.	10.17
1	5	Per ha R (m/s)	 		0.201	0.260		0.303	0.272		0.193	0.232		0. 235		0.235	0.2/0		0.275	0.197		0.350	0.283		0.287	0.244		0	0.211
Year	9U£	Storag Storag Soefficie	8		57 0.83	79 0.01		87 0.83	83 0.81		52 0 85	1/ 0.9/		65 0 84		65 0.84	62 0 29		81 0.82	70 0.77		90 0.87	90 0 80		90 0.80	.05 0.70		0,45 0.87	75 0.77
Gi	non	emit g ninsonco g ninsonus	0		16.8 0.3	18.80.7		17.3 0.6	19.1 0.6		1550	1930.		16.10		16.1 0.	27.5 0.		1800	24.10		14.50	4		19.7 0	23.80.		Q.	24.3 0.
	Flow	Total (min)	0 9		8.8	8.6		7.3	7.6		2.5	6.9		19 1		1.9	2 11.5		080	6 14.1		5 4.5	\$ 10.4		7 9.7	4 13.8		4,	2 14.3
	Time of	<u> </u>	\top	4 1	8.8	505 2.0	~	7.3	530 0.3	-	5.5	550 0.2		9		8	730 2		9.	250 2.0		4	625 5		6	865 3.		4	020 0
	Length	Each Total		 	290	125 5		480	25		325	20		420		320	180		465	- 1		265	360		560	-	2 V V V V V V V V V V V V V V V V V V V	285	20
	Area	Total	2		A	0 4.22		д	9 7.69			05 12 35		97		35	73 19 40		61	67 25.56		25	44 7.69		0	15 16 54		07	4820
	<u></u>	Inflow E	 	-	1.24	01.1	0	3.38	000	©	19.4	(Z) 0, 0,		6 /	(4)	2.3	(A)	<u>্</u>	3.49	(4) 2 6	6	1, 2	6.4	8	5 70	(L)	0	vol.	200
		V əui⊃	(C		(3)		9	(S))	4	0		ভ		9	(D)		((h)		9	©		(0)	(e))		3
	eu)	Name Oatchm																			:		:						_

C: Commercial Area
R: Residential // (High Density)
R2: Institutional // S: Industrial // (): Open Space


Table K.4 Hydraulic Computation for A-4 Catchment


			2 A	C=0.98 ha		C = 0.52	C= 7.26		13	C = 2:51		0 1	C = 2.18		C = 0.52	i	C= 7.02	C=2.77	R1=0.08	{	16 15	àn		R1 = 5.00	R1 = 0.75		R2= 1.24	C= 2.41	0 1	Š.
ace	Condition	Drain .	Capacity (m ³ /s)			~													2.26			3.47	-							=-
Open Space	į	Existing Drain	Size (m)									~							V 2.7 x 0.7			J37x1.2			-			. ·		
9	Existing		Runoff (m/s)				·		·																			. :		
		in	Slope Velocity Capacity (%) (m/s)	0.38		0.23	1.09	-	0.89	2.35		0.49			0.23		0,40		*		1.15	5.65		7.65	7		4	i		1.15
		ed Drain	Velocity (m/s)	0.66	1	0,70	1.00		0 000	31.16		0.85	0.07		0.70		5 0.65	5 0.88			1.05	5 1.30		3 1.27	6 1.36	-	3 0.71	4 0.86		0 1.05
		Proposed		80 8 0 ×	1	0.1 9.0×	× 1.1 0.9		0.t 0.t×	×1.5 0.8		0 / 8 0×	×1.2 0.6		0.6×0.6 1.0		× 0.9 0.5	1/4×/4 0.5	× 2.0 0.6		0.1 1.1×1.1	× 2.2 0.6		W 1.2× 1.2 1.3	× 2.4 0.6		5x 75 0.3	W 7.6× 1.6 0.4		1×1.1 1.4
			Size (m)	5 = 0.8 × 0.8	-	27 W 0.6 × 0.6			8 41.0×1.0	5 U15×15		44 HO 8XOB	16 W1.2×1.2	·	25 E 0.6		51 1 0.9 × 0.9	76 11.4	75 ₩ 2.0× 2.0		1.1 14 1.1	63 W 2.2×			23 1 2.4×			/7 W 7.8	-	27 14 7.
	00		off Storm s) (m/s)	-	 	20 0.2	82 1.13		72 0.98	92 2.65		32 0.4	64 /./		18 0.2		Ó	28 1.7	87 5.35		0.86 1.1	78 6.6		47 2.01	93 8.23		1.21 1.66	1.57 2.1	-	93 1.2
	2000	in Runoff	Total Runoff (m/s)	36 0.33	L	378 0.	297 0.6		0	,		327 0.	0		343 0.		367 0.37	296	ری		0.238 0.	219 4.		294 1.	V		0 281 1			0 350 0
	Year	ent Design	Coeffici (m)s	0.85 0.336		0.90 0.3	0.81 0.2	ĺ	0.89 0.370			0.84 0.3	78 0.266		0.86 0.5		99	9/8			0,86 0.	0.76 0.2		87	0.76 0 2		0.83 0	- 1		88 0
	Ċ	ţue	Runofi Coefficio Storaç	0.90		0.90			0 06 0	8	•	0.90	0.90		0.90		0.90	0.90 0			0.62 0	0.82		0.75 0.	0.81		0.80	9.84		0.90
		10	Time	3 /53	L	7 12.7	7 18.7		1 13.1	3 22.3	-	0.91	3 22.3		9 14.9		4 13.4	6 18.9	23		6 /4.6	4 26.4		2 14.2	8 26.8		0 17.0	5 24.5		0 44 0
		Time of Flow in the Drain	Each Total (min)	6.) (4)		7 2	4 8.	-	. / 3.	6 12.		0.	6.3 12.3		4 6		4	0.9	7		6 4	16.		2 4	4 16		7.0 7.0	7.5 14	- !	0
			Total Each (m)	4		ď	390 3		67	625 3.	•		575		4		ري	390 4			*	930 3.		*	265	-		650 7		*
		Length		200		011	061		175	235		275	300		061		125	200	50	:	270	255	. :	310	i I		285	365		260
		Area	Total (ha)				2.76			7.22			3.78					4.31	14.79			21.84		,	5 27.59			6.70		
			 	0.98		0.52	1.26		1.95	2.57		1.00	2.18		0.52		1.02	2.77	5 0.00		3.6/			5.00	0.75		4.29			2.6/
	- 1		l ani l wolinI		0	(2)		0	3)		0	\dashv	(L)	0	(2)	(®)	0	8	0	4	9	0	(S)	(6)	(A)	(6)			0	(3)
	1	เนอน	Nam Odchr Nam	4-4		<u>(ツ</u>	U		(S)	© 3		4	(<u>৬</u>)		9)			<u>)</u>	(C)		<u>)</u>			(A)	<u> </u>			9		<u>)</u>


Cutting Cutt		Remarks		2.06	000	0,63	0.34	1,03	2000	2 7.76	= 467	0.40	0.00															
Control Cont					2				à	0		10	\$		-		-	 	 							.		
Second S	dition	Gapac (m)/s				_		_	-	-		- -		+					- !						.			
Color Colo	ļ	Existin Size (m)																		ļ	İ		:	1		-		
Cucin Cuci	Existin	moff Tays)																										
Control Cont		11	.59	84	98				0.49	1,52	-	1.41	. 1	^			 											
Control Cont		Drain ocityCap (m)					.78		.85	.17		1.29	,]	- }										-				
Control Cont		losed Jope Vel						_		777		7.5]	0.5														
Name of the control		5	↓				7×0.7		80 × 0.	27 XZY		11×1.1	15×15	2.9 × 2.9					-								-	
A-4 A-60 Length Time of Flow Length Time of Flow Length Len			++				3				-	02	¥															
Area Length Time of Flow Length	.00	<u></u>			66	1	24			20											-	· ·						
Month Mont	Ŏ N				7.		ó	_		1		49 1.	"							<u>:</u>								
Name of Flow Name	Year	Coefficient Coefficient (m. 7 cm.)				_		-		9													-					
Mome		Storage	920		.020	+	ফ			寸						•						,						
Company Comp		to emiT E	25.5	30.3	ن		15.7		14.3	20.3			22.0	31.5														
Name		From Drain Total	15.5							}			<u>-</u>	ļ			 						-					
Mome of Catchment Mome			0.7	"	1		5.7		*	¥		ري ري		<u> </u>	<u>.</u>								-	-	-			
Nompet N							9		00			02						 				_		_				
Nome		1 1 m ~		~			X		26	100		2	1									_	-	ļ	-	 		
Mame		Area ach To		ļl	65		1.17		1.03			5.07					 				-		-	-				
Mampe Catchment						<u> </u>	,	(S)			<u>(E)</u>		ļ			-									-:			
		•	©	(8)			(3)		(3)	(9)		(3)	E	©			-			-								
		Name Of Odentende	A-4											_	L			<u> </u>					L	<u></u>		<u></u>		
and the control of t The control of the control of							. '				-	.* .*							4: 1.									

