
## APPENDIX F

## PLANNING OF FACILITIES FOR THE MASTER PLAN

(Ref.: Section 5.3., Vol. VI)



|                    | 0                           | s<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S |             |          |                 |            |     |                |                 | e e e e e e e e e e e e e e e e e e e |          |               | OM PORTO      |          |                |                 | and the second |                 |                  |          |                    |     |                |                |     |             |            |            |          |
|--------------------|-----------------------------|--------------------------------------------------------------------------------------------------|-------------|----------|-----------------|------------|-----|----------------|-----------------|---------------------------------------|----------|---------------|---------------|----------|----------------|-----------------|----------------|-----------------|------------------|----------|--------------------|-----|----------------|----------------|-----|-------------|------------|------------|----------|
| ndition            | ain                         | Capacity                                                                                         | (m/s)       |          |                 | 3.02       |     |                |                 | 3.46                                  |          |               |               |          | .:             |                 |                | 2.94            | 929              |          |                    |     | 4.40           | 06.            |     |             |            | 1.71       |          |
| Existing Condition | Existing Drain              | <b></b>                                                                                          | E)          |          |                 | 7.7×6.0 F  |     |                |                 | 91x1.6V                               |          |               |               |          |                |                 |                | 111.48 W6.8x1.5 | 111.48 W16.6x1.7 |          | <br>:              |     | 3.5<br>V,7×1.0 | 3.6×0.9        |     |             |            | v5.6×1.3   |          |
|                    |                             | Capacity                                                                                         | (s/ш)       |          | 29.65           | 97.62      |     | 4.84           | 4.84            | 97.62                                 |          | 28.61         | 37.50         |          | 11.48          | 40.40           | 40,40          | 11.48           | 11.48            |          |                    |     | 12.25          | 13.07          |     | 9/.9        | 8.14       | 18.99      |          |
|                    | xed Drain                   | Velocity                                                                                         | (S/LL)      |          | 4 7.38          | 4 1.38     |     | 707 6          | 101 6           | 4 7.38                                |          | 9 2/5         | 2.19          | <u> </u> | 27.7 0         | 5 2.07          |                | 4 /.44          | 4 1.44           |          |                    |     | 0/./ 9         | 6 1.64         |     | 4/:/        | 0 1.22     | 0 1.48     |          |
|                    | Proposed                    |                                                                                                  | (m) (‰)     |          | 95<br>35×30 0.4 | 0          | 2.  | V 20 X 1.5 1.0 | 1 5.0 × 1.5 1.0 | V 23.5 x 3.0 0.4                      |          | 8.8 × 2.4 2.0 | U 45 x 24 2.0 |          | 1 25 × 1.8 2.0 | W 6.0 x 2.6 1.5 | 11.2 x 2.6 1.5 | 30.4 × 3.2 0.4  | V 240x 3.2 0.4   |          |                    |     | 0.2 × 21 0.6   | U4.1 x 2.2 0.6 |     | 5.4 1.7 1.0 | 25×1.8 1.0 | U45x22 1.0 |          |
|                    | Runoff                      | L                                                                                                | (S)         |          | 128.88 V 235×30 | 125.73 WZ  |     | 6.56 22        | 6.56 14 2       | 27.59 42                              |          | 35.32 11.4    | 41.00 14      |          | 15.12 12       | 53.10 14 6      | 5/56 56        | 147.18 2        | 142.05 12        |          |                    |     | 15.57 54       | 17.51 14       |     | 7.84 42     | 9.99 14 2  | 25.20 44   |          |
| 2000               |                             |                                                                                                  | (S/III)     |          | 96.68           | 87.30      | :   | 4.67           |                 | 88.79                                 |          | 25.48         | 29.36         |          | 10.84          | 38.01           | 36.64          | 102 55          | 98.06            |          | <br>               |     | //./5          | 12.48          |     | 5:70        | 7.23       | 14.61      |          |
| Year               | Design                      | oilteo<br>Per Ja                                                                                 | ) (111/S)   |          | 2 0.052         | 0000       | - : | 3 0.118        | 3 0.112         | 9 0.049                               |          | 5 0.139       | 3 0.116       |          | 5 0./32        | 3 0112          | 2 0.107        | 3 0.047         | 3 0.044          | ·        |                    |     | 4 0./30        | 3 0.1/8        |     | 0 0.176     | 9 0.760    | 2 0.108    |          |
| ië                 | əf                          | oeffici<br>Storag                                                                                |             |          | 55 0.69         | 55 0.69    |     | 55 0.73        | 55 0.73         | 55 0.69                               |          | 55 0.75       | 55 0.73       | :        | .55 0.75       | 55 0.73         | 55 0 72        | 55 0.68         | 55 0.68          |          |                    |     | 55 0 74        | 55 0.73        |     | 55 0.80     | 55 0.78    | 55 0.72    | -        |
| <i>i</i> .=        | nolitar                     | neonoo<br>Tonus                                                                                  | 2           |          | 1/2.9 0.        | 0          |     | 0              | 4               | 0 6,                                  |          | 0             | 5             |          | 7 0            | 0               | 0              | 7               | 0                |          | <br>, ricanton and |     | 8              | 0              |     | 19.7 0.     | 2          | 0          | $\dashv$ |
|                    | -                           | _<br>emiT                                                                                        |             |          |                 | 107.9 117. |     | 36             | 2.4 40.         | 1.3/12                                |          | 92 6          | 3.51          |          | , 7 3/.        | 310 41          | 8 42           | 7 /25.          | 9 134.           |          |                    |     | 1.8 31         | 7.0 37.        |     | 9.7 19      | \$ 2 23.   | 2.1.42     |          |
|                    | Time of Flovin to the Drain | ch Total                                                                                         | (min) (min) |          | 6.201           |            |     | 0.             | 3 5 30.         | 3.4 11                                |          | 81 5.81       | 9.6 28        |          | . 7 21.        | Ŋ               | 8 32           | 4 1/5           | 2 /24            | <u>.</u> |                    |     | 12 8 7         | 5.2 27.        |     | 0.7         | 3.5 /3     | 5. / 32.   |          |
|                    | Ë                           |                                                                                                  | * E         |          | /0              | 400        |     | 52             |                 | 670                                   | <u>·</u> | 7/            | 3600          |          | 27.            | 3900 2          | 4/20           | 4490 4          | 5250 9           | River    | <br>               |     | 27             | 14/0           |     |             | 006        | 098        | -        |
|                    | Length                      | ch To                                                                                            | (m)         |          | (2000)          | 400        | (T) | (00)           | 220             | 270 6                                 | (O)      | 2360          | 240 36        | )        | (2200)         | 300 39          | 220 41         | 370 44          | 760 52           | Kelang   | <br>·<br>          |     | 0/6            | 500 14         | (9) | 650         | 250 9      | 9          | (J)      |
|                    |                             |                                                                                                  | (DU)        |          | 8               | 17450 4    | -   | <u> </u>       | 4/6             | 18/20 2                               | ) oZ     | 23            | 253 / 12      | 0        | (2)            | 339.4 3         | 342.4          |                 | 1                | 70 Ke    | <br>:              |     | 40             | 105.8 5        | 70  | 9           | 45.2       | 8          | 07       |
|                    | Area                        | Each Total                                                                                       | (na)        |          | 17300           | 159 17     | 7   | 39.6           | 20              | 245/18                                | 7        | 183.3         | 69.8          | 7        | 82.1           | 4.2             | 3.0 34         | 27.4 2181.8     | 46.82228.6       | 7        |                    | -   | 85.8           | 20.0 10        | 7   | 32.4        | 12.8 4     | 14.0 165   | 7        |
| -                  | oN v                        | wolin.                                                                                           |             |          |                 |            |     |                |                 | $\odot$                               |          |               |               |          |                | (O)             |                | <u>ල</u>        | }                |          | <br>               |     | - 1            |                |     |             |            | (2)        |          |
| -                  | ON                          | əuil                                                                                             | +           | <u> </u> | 3               |            | ,   | 3              | (0)             | <u>)</u><br>છ                         |          | 4)            | 9             |          | 3              | )<br>(3)        | _              | (E)             | (e)              |          |                    | -   | <u> </u>       | (3)            |     | (e)         | 4)         | <u>্</u>   |          |
|                    | inen<br>ne                  | Nan<br>O<br>Oatch                                                                                |             | ///      |                 |            |     |                |                 |                                       |          | 7             |               |          |                |                 |                |                 |                  |          |                    | N-2 |                |                |     |             |            |            |          |

|                    |                             |                                                                                      |             |             |     |     |  |           |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |        |   |     |     |           |             | . Marianta  | CHAPTER TO |           | -           | -            | ****** |   |   | ~~~т                                    |   |  |
|--------------------|-----------------------------|--------------------------------------------------------------------------------------|-------------|-------------|-----|-----|--|-----------|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------|---|-----|-----|-----------|-------------|-------------|------------|-----------|-------------|--------------|--------|---|---|-----------------------------------------|---|--|
|                    | Renarks                     | 7. C. S.                                         |             |             |     |     |  |           |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |        |   |     |     |           |             |             |            |           |             |              |        |   |   | 111111111111111111111111111111111111111 |   |  |
| dition             | gin                         | Capacity<br>(m <sup>3</sup> /s)                                                      |             |             |     |     |  |           |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |        |   | . ] |     | 2.28      | 7.48        | 7.42        |            |           |             |              |        | · |   |                                         |   |  |
| Existing Condition | Existing Drain              | Size Ca                                                                              |             |             |     |     |  |           |                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |        |   |     |     | V0.9×0.6  | 5.6×1.3     | 12 3.7×1.4  |            |           |             |              |        |   |   |                                         | · |  |
|                    | Drain                       | yCapacity<br>(m <sup>3</sup> /s)                                                     | 4.64        | 24.96       |     |     |  | 2.67      |                                                  | 2.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3 4.90      |        |   |     | ·   | 9.29      | 11.40       | 16.71       |            | 9/.9      | 1 21.41     |              |        |   | - |                                         |   |  |
|                    | Proposed Dro                | Slope/Velocity/Capacity<br>(%) (m/s) (m <sup>7</sup> /s)                             | 1.2 1.13    | 0.9 1.53    |     |     |  | 0.3 0.60  |                                                  | 0.3 0.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.3 0.68    |        |   |     |     | 1.2 1.34  | 1.0 1.32    | 0.8 1.33    |            | 0.8 1.05  | 0.8 /4      |              |        |   |   |                                         |   |  |
|                    |                             | Size<br>(m)                                                                          | 4.8 × 1.4   | √ 50x25     |     |     |  | ¥ 20×1.5  |                                                  | 4.8x1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | v 2.5× 1.9  |        |   |     |     | U3.0×1.7  | U 3.0 x 2.0 | E 40×2.3    |            |           | 1 45×25     |              |        | - |   |                                         |   |  |
| Q<br>Q             |                             | off Storm<br>Storm<br>S) (m3s)                                                       | 4.25 5.84   | 31.18       |     |     |  | 2.35 3.26 | -                                                | 2.18 3.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11 5.71     |        |   |     |     | 64 11.89  | 10.74 14.95 | 15.05 21.07 |            | 5.60 7.81 | 19.93 27.95 | -            |        |   |   |                                         |   |  |
| r 2000             |                             | Perha Total<br>Runoff<br>(πγ̈́s) (πγ̈̀s)                                             | 0.174 4.    | 0.106 22.27 |     |     |  | 0.164 2.  |                                                  | 0.195 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.161 4.    |        |   |     |     | 0.183 8.  |             | 0.125 15    |            | 0.145 5   | 0.123 19    |              |        | - |   |                                         |   |  |
| in Year            | ient<br>ge<br>tnei:         | Coeffic<br>Stora<br>offico                                                           | 55 0:80     | 0.72        | :   |     |  | 0.65 0.75 |                                                  | 0.65 0.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.65 0.75   |        | , |     |     | 0.60 0.79 | 0.60 0.75   | 0.60 0.73   |            | 0.60 0.75 | 0.73        |              | 7      | : |   |                                         |   |  |
|                    | jo<br>noitori               | emiT <u>E</u>                                                                        | 10 3 20 3 0 | 9 439       |     |     |  | 189 289 6 |                                                  | 1 22.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 19.9 29.9 0 |        |   |     |     | 5 2/5     | 3 29.3      | 2 39 2      |            | 3 31.3    | 7.2 402060  |              |        |   |   | i.                                      |   |  |
|                    | Time of Flo<br>in the Droin | Each Tota<br>(min) (mir                                                              | 10 3 10     | 8 /         | ver |     |  | 18.9 18   |                                                  | 12.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.0 19      | River  |   |     |     | // 8 //   | 7.8 19.     | 9.9         |            | 21.3 21.  |             | River        |        |   |   |                                         |   |  |
|                    | ength                       | Each Total Each Total Each Total E Section (Min) (Min) (Min) (Min) (Min) (Min) (Min) | 989         | 160 2020    |     | 1   |  | (650)     | 3                                                | 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 40 440      | Ke/ang |   |     |     | 400       | 0/0/ 0/9    |             |            | (7300)    | 90 1860     | Ke/ang       |        |   |   |                                         |   |  |
|                    | Area                        | to T                                                                                 |             | 210.1       | 70  | 1   |  | G         | 70                                               | Q <sub>1</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 25.5        |        |   |     |     | 47.2      | 9.72        | 120.4       | 70         |           | 162.0       |              |        |   |   |                                         |   |  |
|                    | ٠                           | wollnI<br>면접<br>는                                                                    | 24.4        | 9/          |     |     |  | 14.       |                                                  | \(\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tinit}\\ \text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\ti}}\\ \ti}\\\ \tittt{\text{\tin}\text{\text{\text{\text{\text{\text{\texitt{\text{\text{\text{\texi}\tint{\text{\texi}\tintt{\text{\texi}\tittt{\texi}\tittt{\text{\texi}\text{\texi}\til\tex | 0 1         |        |   |     |     | 47        | 24          | 4.5         |            | 3.8       | (S)         |              |        | 1 |   |                                         |   |  |
|                    | 1.745                       | Mam<br>of<br>Catchr<br>Line                                                          | N-2 6       |             |     | 2 . |  | 9         |                                                  | <u>(v)</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u></u>     |        |   |     | V-4 | <u> </u>  | <u>@</u>    | (i)         | :          | 4         | (2)         | 7.4          |        |   |   |                                         |   |  |
|                    |                             |                                                                                      |             |             |     |     |  |           | <del>*************************************</del> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |        | F | -2  | •   |           |             |             |            |           |             | - Care Table |        |   |   |                                         |   |  |

|                    |                | negrajustiko, ink          |                            |          |                          | 46                       | (81=102)               | ^                              | S                                  | 60                         |                 |                                      |          |        |                   |              |                                |                  |     |   |      |          |   |     |    | 1 |  |
|--------------------|----------------|----------------------------|----------------------------|----------|--------------------------|--------------------------|------------------------|--------------------------------|------------------------------------|----------------------------|-----------------|--------------------------------------|----------|--------|-------------------|--------------|--------------------------------|------------------|-----|---|------|----------|---|-----|----|---|--|
|                    | -              | Remarks                    |                            |          | (976)                    | 16) R2=046<br>(S=080)    | , (3.10)<br>, (C=5.44) | 580=2)                         | (C=7.50<br>(0.32)                  | (0:20) S=080               | (0.29)          |                                      |          |        |                   |              |                                |                  |     |   |      |          |   |     |    |   |  |
|                    |                | മ്                         |                            |          | R1=1.13 (8.46)<br>0=0.94 | R1=7.43 (3.16)<br>0=0.22 | 22 = 7.09              | R2 = 0.35 (C=0.85)<br>0 = 0:74 | R2=1.61 (C=7.53)<br>0 =0.77 (0.32) | R2=2.31 C=<br>0 = 0.22 (0. | 20              |                                      |          |        | :                 |              |                                |                  |     |   |      |          |   |     |    |   |  |
| ocition            | ri Ci          |                            | (m <sup>3</sup> /s)        |          | 8.14                     | 1.93                     | 3.57                   |                                |                                    | 17.22                      |                 |                                      |          |        |                   |              |                                |                  |     |   |      |          |   |     |    |   |  |
| Existing Condition | Existing Ordin | 0 0 0                      |                            | 1        | 3.0 X 1.1                | V22×1.0                  | v 3.8×1.4              |                                |                                    | V6.0 x 1.9                 |                 |                                      | <u> </u> |        |                   |              |                                |                  |     |   |      |          |   |     |    |   |  |
| L                  |                |                            |                            |          | 7.67 ₩                   | 5.65 V                   | 7.79 V                 | 8.72                           | 81.01                              |                            | 13.16           | 1                                    |          |        |                   |              |                                |                  |     |   |      |          |   |     |    |   |  |
|                    | Drain          | 1 3                        | (m/s)                      |          | 1.52                     | 1.57                     | 1.64                   | 1.68                           | 1.68                               | 1.72                       | 987             |                                      | -        |        |                   |              |                                |                  |     |   |      |          |   |     | 1. |   |  |
|                    | Proposed       |                            | (%)                        |          | 1.5                      | 0.7                      | 6.0                    | 0.0                            | 0.8                                | 0.8                        | 6.0             |                                      |          |        |                   |              |                                |                  |     |   |      |          |   |     |    |   |  |
|                    | P. C.          | 0                          | (E)                        |          | 1.4×1.4                  | 12.0 × 2.0               | E 2.3 x 2.3            | U 2.4 x 2.4                    | U26×26                             | U 2.7 × 2.7                | U 2.8 x 2.8     |                                      |          |        |                   |              |                                |                  |     |   |      |          |   |     |    |   |  |
|                    | Runoff         | Major                      | E (%E)                     |          | 3.24                     |                          | 9.85                   | 10.05                          | 12.57 #                            | 13.43                      | 15.72           |                                      |          |        |                   |              |                                |                  |     |   |      |          |   |     |    |   |  |
| 000                | Rinoff         | Total                      | Runoff<br>(m/s)            |          | 2.35                     | 4.52                     | 7.08                   | 7.22                           | 9.02                               | 9.62                       | 11.26           |                                      |          |        |                   |              |                                |                  |     |   |      |          |   |     | 1  |   |  |
|                    |                | 0<br>1<br>1<br>1<br>1<br>1 | Sto<br>Sto<br>Set<br>(T/s) |          | 0.223                    | 0.200                    | 0.180                  | 0.175                          | 0.75                               | 0.766                      | 0.162           |                                      |          |        |                   |              |                                |                  |     |   |      |          |   |     |    |   |  |
| >                  | -   tui        | rage<br>rage               | otS<br>teoD                | ·        | 0.80                     | 0.77                     | 0.75                   | 0.75                           | 3 0.75                             | 0.74                       | 0.74            | :                                    |          | 3.     |                   |              |                                |                  | 2.4 |   |      |          |   |     |    |   |  |
| j :                | Ľ              | Hor                        | in <del>A</del>            |          | 0.77                     | 0.72                     | 0.72                   | 0.77                           | 7 0.73                             | 4 0.72                     | 0.71            |                                      | <br>_    | <br>:: |                   | 7.75<br>2.75 |                                | 1 <del>-</del> - |     | - | <br> |          |   |     |    |   |  |
|                    | 1              | o eu                       | iT E<br>mΩ(Γ               |          | 20.5                     | 25.0                     | 292                    | 30.0                           | 3/7                                | 33                         | 34.0            | 3.7                                  | <br>     |        |                   |              |                                |                  | : - |   |      |          |   |     |    |   |  |
|                    | Time of Flow   | Total                      | (min.) (min.)              |          | (8.7)                    | 15.0                     | 19.2                   | 20.0                           | 21.7                               | 23.4                       | 24.0            |                                      |          |        |                   |              | : .                            |                  | :   |   |      |          |   | i.  |    |   |  |
|                    | Time           | E 17                       | (min)                      |          | 8/                       | 4.5                      | 4.2                    | 0.0                            | 17                                 | 17                         | 0.6             |                                      |          |        |                   |              | 2                              |                  |     |   |      |          |   |     |    |   |  |
|                    | ļ.             | 1040                       | E                          |          | (565)                    | 1120                     | 1520                   | 1595                           | 1765                               | 1930                       | 0661            |                                      | <br>. A. |        |                   | 20<br>10 20  |                                |                  |     |   |      |          |   |     |    |   |  |
|                    | Length         | <u>u</u>                   | (E)                        |          | 755                      | 400                      | 400                    | 75                             | 170                                | /65                        | 90              | 1, 1<br>1, 1<br>1, 2<br>1, 2<br>1, 2 |          |        |                   |              |                                |                  | ,   |   |      |          |   |     |    |   |  |
|                    | ed             | 1040                       | (hd)                       |          | (846)<br>/0.53           | (3.96)                   | 39.34                  | (1.20)                         | 5/51                               | (2.25)                     | (8.37)<br>69.50 |                                      |          |        |                   |              |                                |                  |     |   |      |          |   |     |    |   |  |
|                    | Area           | Ę<br>Li                    | (ha)                       |          | 2.07                     | 8.11                     | 218                    | 0.74                           | 0.77                               | 4.17                       | 3.20            |                                      |          |        | 14.1<br>1.1<br>1. |              | 1,241<br>1,241<br>241<br>1,441 |                  |     |   |      |          |   |     |    |   |  |
|                    | οM             | МО                         | lìnI                       | 1.<br>1. |                          |                          |                        |                                |                                    |                            |                 |                                      |          |        |                   |              |                                | 1 V T            |     |   |      | 3.<br>3. |   |     | ٠. |   |  |
|                    |                | )                          |                            |          | 9                        | ( <u>0</u> )             | ල<br>(                 | <del>(</del> <del>1</del> )    | 9                                  | 9                          | 0               |                                      |          |        |                   |              |                                |                  | 7.  |   |      | Y.       |   | - X | 4  |   |  |
|                    | e<br>inər      | chr<br>or<br>name          | ν.<br>Cα                   | N-5      |                          |                          |                        |                                |                                    |                            |                 |                                      |          |        |                   |              |                                |                  |     |   |      |          | 4 |     |    |   |  |

|                     |                | Remarks      |                                                          |       | (RI=4.17 0=0.54) | ı,      | R2 = 0.29 (X/=0.30)<br>C = 4.84 (0.90) | C= 3.72    | P.=1.02 (2.54) | C = 1.00 (0.08)(0=0.20) | S = 0.95      | (R) = 225 RZ=2815=073)                            | S=6.06<br>(0=3.94)                    |           | C = 0.07 (3.82)<br>O = 0.38 (0.09) (S=027) |              | C = 0.33 (1.12)<br>0 = 0.56 (0.17) | C=2:86 (/5.01)<br>(O=0.56) |          |   |   |          |      |   |      |    |   |     |
|---------------------|----------------|--------------|----------------------------------------------------------|-------|------------------|---------|----------------------------------------|------------|----------------|-------------------------|---------------|---------------------------------------------------|---------------------------------------|-----------|--------------------------------------------|--------------|------------------------------------|----------------------------|----------|---|---|----------|------|---|------|----|---|-----|
| Toyletion Condition | Drain          | 5            | Capacity<br>(m³s)                                        |       | 1.42             | 1.75    | 1.07                                   | 0.70       |                |                         |               |                                                   |                                       |           |                                            | 1.47         | 1.47                               | 1.47                       |          |   |   |          | -    | - |      |    |   |     |
| Tyletino            | Existing Drain |              | Size<br>(m)                                              |       | V2.9×0.9         | V20×1.1 | 1.6x1.0                                | V1.3×1.2   |                |                         |               |                                                   |                                       |           |                                            | 2.7 \$       | 91.2                               | 8                          |          | - |   |          |      |   |      |    |   |     |
|                     | Drain          |              | Slope(Velocity(Capacity<br>(%) (m/s) (m <sup>3</sup> /s) |       | 2.62             | 2.88    | 3.67                                   |            |                | 1.79                    | 1.79          | 2.79                                              | 3.84                                  | 1 4.48    |                                            | <u> </u>     | 9.33                               |                            | _        | - |   |          |      |   |      |    | _ |     |
|                     | -              | ŀ            | Slope/Velocity<br>(%) (m/s)                              |       | 1.0 1.30         | 12 1.42 | 1.1 1.42                               | 1.1 1.46   |                | 1.0 1.18                | 1.0 1.18      | 0.8 1.21                                          | 1.1 148                               | 1.1.154   | ļ                                          | <u> </u>     | 1.9                                | ļ                          | -        |   |   | :        | <br> |   |      |    |   |     |
|                     | Proposed       | -            | Size Sk<br>(m) (%                                        | _     | 1.5×7.5          | 15×15   | 1 7×7.4                                |            |                | 41.3×1.3                | 2.00 H1.3×1.3 | 1.6×1.6                                           | 11.7×1.7                              | 1.8 × 7.8 |                                            | 1            | $\vdash$                           | <u> </u>                   | 1        |   |   |          |      |   |      |    |   |     |
|                     | Rinoff         | Major        | Storm<br>(m/k)                                           |       | 2.92             | 302     | Г                                      | 1 1        |                | 1.93                    | 2.00          | 3.44                                              | 479                                   |           | <u> </u>                                   | <del> </del> | <u> </u>                           |                            | 1_       |   |   |          |      |   |      |    |   |     |
|                     | 2002           | ~ ⊢          | Runoff<br>(m/s)                                          |       | 2.11             | ļ       | 62                                     | (r)        |                | 1.40                    | 7-1.45        |                                                   | 3.45                                  |           | <u> </u>                                   |              |                                    | `                          | <u> </u> |   |   |          |      |   | ·    |    | _ |     |
|                     | Year           |              | Setti<br>Setha<br>(戒s)                                   |       | 8 0221           |         | <del> </del>                           | 1          |                | 0.80 0.244              | 0.79 0.217    | 8610 61                                           | 76 0.144                              |           | 1                                          | <u> </u>     |                                    |                            | 0/:0     |   |   |          |      |   |      |    |   |     |
|                     |                | ieu<br>Ide   | onuR<br>oitteoC<br>orot&<br>orot&                        | l     | 0.75 0.78        | 7       | 0                                      | 2 01       |                | 0.76 0.2                | 0.72 0.7      | 0.64                                              | 0.55                                  | 050 005   | , ,                                        | 070          | 040                                | 5 6                        | #/.0     |   |   |          |      |   |      |    |   | i · |
|                     | - (            | . 1          | E Concer<br>E Time                                       |       | 4 22.4           | 24      |                                        |            |                | 46/ 46                  | 0 22.0        |                                                   | -                                     | ì         | <b></b>                                    | 27.6 37.6    | J                                  |                            | 4.04     |   | - |          |      |   |      |    |   |     |
|                     | me of Flow     |              | Each Total (min)                                         |       | 1.6              |         | , ,                                    | +-         |                | 4.1                     | 2.6 120       | <del>  -                                   </del> |                                       | -         | 7 6                                        | 7 00         | -                                  | -                          | 9.7      |   |   |          | _    |   |      |    |   |     |
|                     |                |              | Total<br>(m)                                             | 1     | (755)            | 7035    | 0447                                   | <b>-</b>   |                | 590                     | 765           | <u> </u>                                          | 1 0                                   | 1         | 7757                                       | 67/2         |                                    | —                          | 2540     |   |   | -        |      |   |      |    |   |     |
|                     |                | Length       | Each                                                     | " i . | 00/ (0           |         | 1                                      |            | البالم         | 270                     | 9010          | ' '                                               | 1                                     | 1         | 7                                          |              | 1                                  | ٧                          | 00       |   |   |          |      |   | <br> |    | _ |     |
|                     |                | Area         | Each Total                                               |       | (9.30)           |         | (1.20)                                 |            |                | 2.92 5.74               |               | 0.88 (8.36)                                       |                                       |           | -                                          | 1            | (62%)                              |                            | 286 723  |   | - | -        |      |   |      |    |   |     |
|                     | 01             |              | wolłnI<br>B 등                                            |       | 6                | 3 6     | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \  | ) <u>,</u> | (9)            | 2                       | 0             | 0                                                 | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | `         | 00                                         | 2            | ,                                  | 2                          | 7        |   |   | <u> </u> |      | - |      | -  |   |     |
|                     |                |              | əuil                                                     |       | E                | (%)     | XC                                     | )(4)       | <del> </del>   | ণ্ড                     | (0)           | (E)                                               | (%)                                   | 0         | 1                                          |              | 2                                  | (                          | 3)       |   | 1 |          |      | 1 |      | 1. |   |     |
|                     | ţŪ             | e<br>I<br>Ou | Caich<br>Caich<br>Caich                                  |       | 0                |         |                                        |            |                |                         |               |                                                   |                                       |           |                                            |              |                                    |                            | 1        |   |   |          |      |   |      |    |   |     |

|                    |                              |                                    |     |                                              |                                   | nerge were                     |                 | -                                    | -        |            | -           | خصصت                   | po meson       | quenus.     | - | - | - | ~~~ | <del></del>     | ويستحصون | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ***** | ****           | Trans.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7 |   | -     | ,<br>, | ~~~~ |
|--------------------|------------------------------|------------------------------------|-----|----------------------------------------------|-----------------------------------|--------------------------------|-----------------|--------------------------------------|----------|------------|-------------|------------------------|----------------|-------------|---|---|---|-----|-----------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|-------|--------|------|
|                    | ( )<br>( )<br>( )            | SA DILIAN                          |     | R1 = 0.32(0.16)<br>C = 1.38(1.71) (0 = 0.65) | $R_1 = 0.09 (0.72)$<br>(C = 2.66) | R1 = 0.05 (2.26)<br>(0 = 2.35) | 1 = 2.73 (2.35) | I = 2.67<br>(S = 2.72)<br>(S = 2.77) |          | C= 1.25    | D= 6.44     | I = 3.75<br>(C = 5.70) | I=6/0          |             |   |   |   |     |                 |          | and the same of th |       | - Targiti-L- i | THE PROPERTY OF THE PROPERTY O |   |   |       |        |      |
| Existing Condition | Drain                        | Capacity<br>(m <sup>3</sup> s)     |     |                                              |                                   | 0.56                           |                 | 2.08                                 |          |            |             |                        |                |             |   |   |   | !   | 1               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |   | ·.    |        |      |
| Existing           | Existing Drain               | Size (m)                           |     |                                              |                                   | 1.5 x 0.8                      |                 | ¥2.2×0.9                             |          |            |             |                        | ·              |             |   |   |   |     |                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                | <br> <br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |   |       |        |      |
|                    | Ë                            | Slope/Velocity/Capacity (%) (m/s)  |     | 1.45                                         | 2.39                              | 3.27                           | 4.68            | 5.76                                 |          | 0.62       | 2.84        | 4.99                   | 11.79          | ļ           |   |   |   |     |                 | ;<br>{   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |   |       |        |      |
|                    | sed Drain                    | be Velocity                        |     | 1,72                                         | 6,                                | 1 1.42                         | 1               | 3 1.45                               | <b> </b> | 90%        | 601 9       | 97./ 9                 | 6 7.56         | ļ           |   |   |   |     |                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | :<br>:         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | : |   |       |        |      |
|                    | Proposed                     | Size Slope                         |     | B/2×/2 //0                                   | 1                                 | 17 97 x97 E                    | 60 61x61A       | W2.1×2.1 0.8                         |          | 10.8 × 0.8 | U17X1.7 0.6 | WZ.1x2.1 0.6           | 29 x 29 0.6    | <del></del> |   |   |   |     |                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |   |       |        |      |
|                    | Runoff                       | Major<br>Storm<br>(m3)             |     | /.5/ B/                                      | ,                                 |                                |                 |                                      | : .      | 0.60 116   | 3.01 11     |                        | 14.08 U 2.9×29 |             |   |   |   |     | \(\frac{1}{2}\) |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | ,              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |   |       |        |      |
| 2000               | Runoff                       | Total<br>Runoff<br>(m/k)           |     | 0//                                          | 2.09                              | 2.87                           | 4.07            | 5.04                                 |          | 0.44       | 2.18        | 404                    | 6101           |             |   |   |   |     |                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |   |       |        |      |
| Year               | Design                       | Stored<br>Settic<br>Setta<br>(m/s) |     | 0.260                                        |                                   | 0.232                          |                 |                                      |          | 0.350      | 0.283       | 0.244                  | 0.211          |             |   |   |   |     |                 |          | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |   |       |        |      |
| in Y               | fne                          | ioitteoO                           |     | 19 0.81                                      | 83                                | 71 0.81                        | 69 0.79         | 70 0.77                              |          | 90 0.87    | 90 0.30     | 85 0.78                | 75 0.77        |             |   |   |   |     |                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |   |       |        |      |
|                    | uoitai                       | emit E<br>mesmoo E<br>tonusi       |     | (8.8)                                        |                                   | 19.3 0.                        | 21.5 0          | 24.1 0                               |          | /4.5 0     | 20.4 0      | 23.8 0.                | 24.3 0         | <del></del> |   | 2 |   |     |                 | 7.7      | 4,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |   | * : . | -      |      |
|                    | Time of Flow<br>in the Drain |                                    |     | (6.8)                                        | 9.1                               | 9.3                            | 11.5            | 141                                  |          | 4.5        | 10.4        | 13.8                   | 14.3           |             |   |   |   |     |                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |   |       |        |      |
|                    | Time<br>in the               |                                    |     | 5 20                                         | ļ                                 | 550 0.2                        | 730 2.2         | 950 2.6                              | -        | 4.5        | 625 5.9     | 965 3.4                | 70 02          | -           |   |   |   |     |                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |   |       |        |      |
|                    | Length                       | Each Total (m)                     | 1   | (380)                                        | - 1                               | 20 5                           | 180 7           | 220 9                                |          | 265        | 360 62      | 240 06                 | 20 970         |             |   |   |   |     |                 | 1.       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | : |       |        |      |
|                    | Area                         | Each   Total   E<br>(ha) (ha)   (  |     | (2.52)                                       | (3.38)                            | (4.61)                         | `               | (3.49)                               |          |            |             |                        | (6.70)         |             |   |   |   |     |                 |          | , , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |   |       |        |      |
|                    | :                            | <del></del>                        |     | 7.70                                         | 0.00                              | 0.03                           | 2.73            | 2.67                                 | F        | 7.25       | 6.44        | 3./5                   | (8)            | 37          |   |   |   |     |                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |   |       |        |      |
| L                  |                              | Line<br>wolinI                     |     |                                              | (2)                               | ල<br>ල                         | 4               | (2)                                  | 6        | (a)        | (Z)         | 8                      | 9              |             |   |   |   |     | :               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |   |       |        | -    |
| ţ                  | nem<br>nem                   | Nar<br>Catch                       | N-7 |                                              | )                                 |                                | 9               | · ·                                  |          |            | )           |                        | 9)             |             |   | ; | : |     |                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |   |       | S. 134 |      |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                  |                                    | Acceptance (All Carlos | Service Marie                        |                                                          | ***************************************    |    | -                       | <del></del>                                      | _         | T | .سر |      | T                               | T 1                                              |                              | 1                                          |                                      |            | T                                        |                                                  |                                           |          | 1 |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------|------------------------|--------------------------------------|----------------------------------------------------------|--------------------------------------------|----|-------------------------|--------------------------------------------------|-----------|---|-----|------|---------------------------------|--------------------------------------------------|------------------------------|--------------------------------------------|--------------------------------------|------------|------------------------------------------|--------------------------------------------------|-------------------------------------------|----------|---|--|
| Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                  |                                    |                        |                                      |                                                          |                                            |    |                         |                                                  |           |   |     |      |                                 |                                                  |                              |                                            |                                      |            |                                          | 60                                               | 3663' = 342.1 +37.4 25.50                 |          |   |  |
| Existing (<br>Existing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Size Stope/Velocity Capacity Size Capacity (m) (%) (m/s) (m <sup>3</sup> /s) (m) | 7.9 2.2 0.4 0.90 9.77 WD8XO.9 1.05 |                        | 030×19 0.6 1.00 8.05 5 5/x09 1.14    | 70.7                                                     | 2.8 × 1.7 0.6 1.33 5.57                    |    | 2.9 × 1.8 0.4 1.12 5.17 | 80x25 0.5 1.23 28.37 V.9X10 1.0                  |           |   |     |      | 0.5 0.95                        |                                                  | V 30x 2.   0.8   1.21   1.18 | 0.5 /.                                     | 188x2.4 04 1.07 23.48 5x1.1 1.47     |            | 1.0 1.14 6.16                            | 5 0.4 1.12 28.35                                 | V 40×25 0.4 1.12 28.35 V 1.1×1.7 3.77     |          |   |  |
| in Year in the Drain of Elow of the Drain of Flow of the Drain of the | Each Total 音 音 記憶 さば Perha Total (mus) (mis) (mis) (mis) (mis) (mis) (mis) (mis) | 0000                               | 2                      | 31.1 41.1 0.60 0.73 0.121 7.15 10.07 | (500 1.0 33.0 43.0 0.60 0.72 0.116 (6.33 23.03 0         | 15.4 15.4 25.4 0.60 0.77 0.165 5.31 7.37 3 |    | 6 94 □                  | 1800 4.1 37.7 47.7 0.60 0.72 0.110 28.05 39.32 1 | River     |   |     |      | 20.8 0.50 0.79 0.154 8.87 12.26 | 1520 18 5 29 3 39 3 0.50 0.73 0.104 9.89 13.85 W | 02 07 121 0 000 000 000 0    | 14.0 14.0 44.0 64.0 0711 05.05 18.25 18.51 | 49.0 59.0 050 0.71 0.078 21.89 31.15 |            | 17.9 17.9 27.9 0.50 0.76 0.130 5.77 8.01 | 2960 3.1 52.1 62.1 0.50 0.70 0.075 25.34 35.74 1 | 3460 77 598 698 050 070 0.069 25.27 35.82 | ng River |   |  |
| No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Margine Cach Total Each Total (ha) (ha) (m) (m)                                  |                                    | 78.4 (20)              | 59 /                                 | (3) (4, 3, 14, 8, 100, 150, 150, 150, 150, 150, 150, 150 | 2                                          | 70 | 32.2 /200               | (6) 48.8 255.0 300 78                            | To Kelang |   |     | 6-1/ | 380                             | ə -                                              |                              | 74.6 500                                   | (2) 68.3 280.7 / 240                 | ( ) To ( ) | (6) 44.4 (1200)                          | 7 337.8 200                                      | 5 366.3 500                               | To Ke1   |   |  |

|                                       | ************************************** | <del></del>                         |             | e-midros     |              |           | OUT HALL  |        |   | NA FEECO |     |           |              |          |             |                 | 90001A36 | Comment lays |     |           |         |      |          |              |        |   |     |          |
|---------------------------------------|----------------------------------------|-------------------------------------|-------------|--------------|--------------|-----------|-----------|--------|---|----------|-----|-----------|--------------|----------|-------------|-----------------|----------|--------------|-----|-----------|---------|------|----------|--------------|--------|---|-----|----------|
|                                       |                                        | Refiliar Ks                         |             |              |              |           |           |        |   |          |     |           |              |          |             |                 |          | :            |     |           |         |      |          |              |        |   |     |          |
|                                       | Ω                                      | v<br>Ľ                              | ٠.          | ;            |              |           |           |        |   |          |     |           |              |          |             |                 |          |              |     |           |         | -    |          |              |        |   |     |          |
| odi+ion                               | ain                                    | Capacity                            | (S/m)       |              | 1.29         | 2.48      | 2.36      |        |   | :        |     | 0.79      | 1.72         |          |             | 13.23           |          |              |     | 1.78      |         |      |          | 69.1         |        |   |     |          |
| Existing Continue                     | Existing Drain                         | l                                   | (m)         |              | V 2.8×1.1    | 5.0 X 1.5 | 5.8 /x/3  |        |   |          |     | 2.9 × 0.6 | 21×6         |          |             | 12.5<br>U3/x/.6 |          |              |     | 1.5 x 1.2 |         |      |          | 1.6×3.0      |        | • |     |          |
| <u>1</u>                              |                                        | L                                   |             |              | 7.26 ∨ 2     | 8.20 4 5  | 3 × 91    |        |   |          |     | 13.87 42  | 387 V29×1.2  |          | 4.39        | 1848 13         |          |              |     | A 69      |         | <br> | <u> </u> | : 52 40.     |        |   |     |          |
|                                       | Drain                                  | City Cap                            | (s/m) (s/   |              | 0.84 7.      | 8 98      |           |        |   |          |     | ļ         | 1.42 /3      | <u> </u> | 1.25 4      | 1.51            |          | <u>.</u>     |     | 1.60 3.   |         | <br> |          | 2.44 //      |        |   |     |          |
|                                       | Proposed                               | SlopeVelocityCapacity               | (%) (m/s)   | · · .        | 0.4 0.6      | 0.4 0.4   |           |        |   |          |     | 1.1 1.42  | 1.1          |          | / 9 /       |                 | -        |              |     | 14 1.     |         |      |          | 1.9 2.       |        |   |     |          |
|                                       | Prop                                   | l                                   | (E)         |              | U30×20       | V 35x 2.0 |           |        |   |          |     | 7.8 X V   | 9.8 × 0.9    |          | V 4.2 × 1.6 |                 |          |              |     | 97×97 n   |         |      |          | 4.66 UZ 7×20 |        |   |     |          |
|                                       | Runoff                                 | Major<br>Storm                      | (W%)        | <del>.</del> | 8.81         | 10.53 14  |           |        |   |          |     | 7.48 W    | 17.63 W      |          | 5.67 V      | 24.12           |          | •            | . : | 4.85 L    |         |      |          | 14.66 E      |        |   | •   |          |
| 5                                     | -                                      |                                     | (%)<br>(%)  |              | 6.28         | 7.50      | 8.23      |        | : |          |     | 1263      | 12.62        |          | 4.12        | 17.40           |          |              |     | 3.55      |         |      |          | 10.67        |        |   |     |          |
| \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | Design                                 | Storot2<br>Silteo<br>Paris<br>Paris | (m/s)       |              | 0.081        | 0.067     |           |        |   |          |     | 0.776     | 0.000        |          | 0.735       | 0.098           |          |              |     | 0.307     |         |      |          | 0.198        |        |   |     |          |
| >                                     | JUƏ                                    | ioilli90                            | O           |              | 40 0 73      | 40 0.71   | 40 0.71   |        |   |          |     | 40 0.78   | 40 0.75      |          | .40 0.82    | 40 0.75         |          |              |     | 75 0.88   |         |      |          | 0.55 0.84    |        |   |     |          |
| -=                                    | -  }                                   | mit<br>Concent<br>Tonus             |             | .,           | 41.10.       | 53.9 0.4  | 57.4 0.   |        |   |          |     | 23.3 0.4  | 29.7 0.4     |          | 18.2 0.4    | 30.8 0.         |          |              |     | 13.7 01   |         |      |          | 16.3 0.      |        |   |     |          |
|                                       |                                        |                                     | _ [         |              | 37.7         | 43.0      |           |        |   |          |     | 13.3      | 19.7         |          | 8.2         | 20.8            |          | <u>.</u>     |     | 3.7       |         |      |          | 6.3          |        |   |     |          |
|                                       | Time of Flow                           | Each                                | (min) (min) |              | 3/./         | 12.8      | 3.5       | River  |   |          |     | 13.3      | 4.9          |          | 8.2         | 1, 1,           | River    |              |     | 3.7       | River   |      |          | 6.3          | River  |   |     |          |
|                                       | Length                                 | Total                               | E)          | : 4.         | O -          | 1440      | 1620      | Kelang | • |          |     |           |              |          |             | 1410            | 2 * 5    |              |     |           | 26      |      |          |              | Kelang |   |     |          |
|                                       | Lei                                    | al Each                             | E           | -            | (75æ)<br>800 | 0 840     | 6 180     |        |   |          |     | (00//)    | 5 530        |          | 380         | 15/100          | Kelaxg   |              |     | 350       | Ke/a 19 |      |          | (906)        |        |   |     |          |
|                                       | Area                                   | Each Total                          | (ha) (ha)   |              | 77.5         | 34.5 //2. | 16.6 128. | 70     |   |          | -   | 6.801     | 8.6 127.     | 70       | 30.5        | 10.5 177.       | 70       |              |     | 8.        | 70      |      |          | 53.9         | 7.0    |   | -   |          |
| -                                     | oN /                                   | wolin<br>Щ                          | -           |              | 7            | Ö         | 7/        |        |   |          |     | 0/        |              |          | (3          | (S)             |          |              |     |           |         |      |          | ۍ            | :      |   | -4- |          |
| -                                     |                                        | əuiJ                                |             |              | 9            | 0         | <u></u>   |        |   | <u> </u> |     | 9         | ( <u>o</u> ) |          | (i)         | 4               |          |              |     |           |         |      |          | 0            |        | • | - 1 | $\dashv$ |
|                                       | an<br>Inam                             | Man<br>O<br>Aoto<br>Mar             |             | 5-1          |              |           |           |        |   | - Colo   | 5-2 | :         |              |          |             |                 |          |              | 5-3 |           |         |      | 5-4      |              |        |   |     |          |

| <del>process</del> | ingens estat        |                                                          | ~ |                  |                  |               |     |              | -             | T        |   | ******              |                       |              | T           | -carox   | en cualum f     |           |           |        | T |               |                       | ~~~~~     |       |              |             |    | ٦           |
|--------------------|---------------------|----------------------------------------------------------|---|------------------|------------------|---------------|-----|--------------|---------------|----------|---|---------------------|-----------------------|--------------|-------------|----------|-----------------|-----------|-----------|--------|---|---------------|-----------------------|-----------|-------|--------------|-------------|----|-------------|
|                    | Remarks             |                                                          |   |                  |                  |               |     |              |               |          |   |                     | ro<br>Retention Pond  |              |             |          |                 |           |           |        |   |               |                       |           |       |              |             |    |             |
| Existing Condition | Drain               | Capacity<br>(m³/s)                                       |   | 0.51             | 2.60             | ///           |     | 0.83         |               |          |   | 0.51                |                       |              |             |          | 0.15            | 0.63      |           |        |   | 1.48          | 2.21                  | 61-1      |       |              | 0.40        |    |             |
| Existing           | Existing Drain      | Size<br>(m)                                              |   | 1.0<br>1.0×5×0.8 | U 1.8x1.0        | 2.7x1.2       |     | 4.5×12       |               |          |   | ₩ 2.9×0.8           |                       |              |             |          | V 2.7x0.4       | ¥ 29 ×0.9 |           |        |   | V52x12        | 3.1<br>√.0x2.1        | V 5.1×1.2 |       |              | V 4. 1×0.8  |    |             |
|                    |                     | Capacity<br>(m?s)                                        |   | 3.25             | 7.33             | 12.74         | : _ | 6.33         | 17.46         |          |   | 8.47                | 25/6                  | 25.16        |             | <u>.</u> | 432             | 12.45     | 13.53     |        |   | 32.81         | 32.81                 | 32.81     |       | 8.87         | 34.89       |    | 7.13        |
|                    | ed Drain            | Slope/Velocity/Capacity<br>(%) (m/s) (m <sup>3</sup> /s) |   | 1.04             | 1.22             | 1.24          |     | 1.18         | 1.25          | -        | - | 5 0.93              | 1.27                  |              | -           |          | 5 0.80          | 5 101     | 5 1.03    |        |   | 3 1.04        | 3 1.04                | 3 1.04    |       | 0.5 0.96     | 3 1.06      |    | 0.3 1.09    |
|                    | Proposed            | Size Slope<br>(m) (%)                                    |   | 4.1x1.3 1.2      | 11 8.8 x 1.8 0.4 | 4 5.8×2.0 0.3 |     | H3.4×1.8 0.4 | V 8.5x2.1 0.7 |          |   | 7.6<br>4.0 × 1.8 0. | 12.1<br>7.5 x 2.3 0.6 |              |             | :        | V 2.0 x / 7 0.5 | 93×1.9 05 | 45×20 0.5 |        |   | V.5.6 0.3     | 15.6<br>10.0x 2.8 0.3 | V5.6 0.3  | *     |              | 15.8 0.3    |    |             |
|                    | Runoff              | Storm Si<br>(m/k) (r                                     |   | 4/1 4.5          | 9.65 HB.8        | 1680 145.8    |     | 8.33 H 3.4   | 22.23 VS.     |          |   | 7.5                 | 33.27 47.             | 3            |             |          | 543 W 2.        | 552 4 5   | 7.41 25   |        |   | 43.68 NO.     | 42.06 210.            | 40.17 NO  |       | 1.35 43      | 45.87 200   |    | 9.20 137×20 |
| 2000               |                     | Total Ma<br>Runoff St<br>(m/k) (m                        |   | 299 4            | 693 9            | 1.98 16       |     | 5.96         | 5.74 22       |          |   | 7.32 10.            | 23.48 33              |              |             |          | 3.87            |           | 1240 1    |        |   | 30.93 4       | 29.53 4               | 28.32 4   |       | 8.11         | 32.15 4     |    | 6.64        |
|                    | Design Ru           | Perha Tr<br>(mys) ((                                     |   | 0.187            | 0.154            | 0 /23 /       |     | 0.120        | 1010          |          |   | 0.123               | 0.093                 | -            |             | : .      | 0.145           |           | 0.112     |        |   | 0.121         | 0.093                 | 980.0     |       | 0.750        | 0.083       |    | 0.182       |
| Year               | əg<br>tuəi          | Coeffici<br>Storag<br>Coeffic                            |   | 0.82             | 0.77             | 5 0.74        |     | 5 0.73       | 0.72          |          |   | 5 0.77              | 5 0.71                | <del> </del> |             |          | 55 0.76         | 5         | 55 0.73   |        |   | 55 0.72       | 65 0.70               | 65 0.70   |       | 65 0.74      | 65 0.70     |    | 65 0.77     |
| <u>.</u>           | noiton<br>†         | emiT E<br>Emonox<br>FonuS<br>TonuS                       |   | 179 0.55         |                  | `             |     | 36.1 0.5     | 47.1 0.55     |          |   | 25.8 0.4            | 4                     |              |             |          | 27.1 0.5        | 4         | 40.7 0.5  |        |   | 45.9 0.6      |                       | 74.1 0.6  |       | 33.2 0.6     | 77.3 0.6    |    | 24.5 0.     |
|                    | Flow                | otal<br>min)                                             |   | 2.0              | 74.2             | 25.1          |     | 1.92         | 37.1          |          | : | 8.5/                | 404                   | 43.2         |             |          | 1.4.            |           | -         | er     |   | 935.9         |                       | 4 64.1    |       | 2 23.2       | 2 67.3      |    | 5 145       |
|                    | Time of<br>in the D |                                                          | 1 | 6.1              | ٠,               | `             |     | 26.1         | 077 00        |          |   | 15.8                |                       |              | Q           |          | 1.0.1           | 1400 10   |           |        |   | 35.9          | 2400 19.8             |           |       | 23.          | 3/00 3      | -  | 1/4.        |
|                    | Length              | Each Total (m)                                           | 1 | 480              | 455 93           |               | -   | 800          | 800 2600      | <b>D</b> | - | 850                 | 400 3000              | 50 3050      | 1 · · · · · |          | 800             | ·         |           | Kelang |   | (220)<br>7200 |                       |           |       | (38)<br>(00) |             | ®  | (930)       |
|                    |                     | 7                                                        |   |                  | 45.0             | 47.6          | 70  | /            | 1.951         | 70       |   |                     | 25.28                 | 252.8        |             |          |                 | 94.3      | 8011      | 70     |   |               | 317.5                 | 329.3     | 70    |              | 387.4       | To |             |
|                    | Area                | <del></del>                                              |   | 08/              | 29.0             | 52.4          |     | 49.7         | 0.6           |          |   | 59.5                | -                     | ╁╌           |             |          | 270             | 67.3      | 7.6.5     |        |   | 2556          | 619                   | 811       |       | 54.          | 0.4         |    | 36.5        |
|                    |                     | wolini                                                   |   |                  |                  |               |     |              | (O)           |          |   | _                   | (1)                   |              |             |          | 1               |           |           |        |   |               |                       |           | ,<br> |              | ( <u>()</u> |    | _           |
|                    |                     | ריוטפ                                                    |   | 9                | (0)              | (O            |     | 4            | 9             |          |   | (S                  | 0                     | 0            | _           | _        | G               | <u>@</u>  | 0         |        |   | 9             | <u>@</u>              | <u></u>   |       | <b>a</b>     | 9           |    | 9           |
|                    | ueuı<br>ie          | Nan<br>O<br>Catchr                                       |   | 5-5              |                  |               |     |              |               |          |   | 5-8                 |                       |              |             |          | 1-5             |           |           |        |   | 5-8           |                       | :<br>~_   |       |              |             |    |             |

|                                         | <u>.</u>                     | S<br>E<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S |           |              |       |          |   |     |           |    |              |           |      |                  |           |          |   |      |                |     |                |           |     | La constant  |              |         |  |
|-----------------------------------------|------------------------------|--------------------------------------------------------------------------------------------------|-----------|--------------|-------|----------|---|-----|-----------|----|--------------|-----------|------|------------------|-----------|----------|---|------|----------------|-----|----------------|-----------|-----|--------------|--------------|---------|--|
| ondition                                | rain                         | Capacity<br>(m3k)                                                                                |           | 0.7 /        | 887   |          |   | -   | 98.0      |    | 3.02         | 1.83      |      | 1.51             |           |          |   |      | 1.54           |     | 0.24           | 2.47      |     |              |              |         |  |
| Existing Condition                      | Existing Drain               | Size                                                                                             | +-        | V.5.8×0.9    |       |          |   |     | V 22 0.8  |    | 1.7×9.7F     |           |      | 5.5<br>V 7.5×0.8 |           |          |   | -    | 5.8<br>4.7×8.4 |     | 2.0 x 8.0 U    | 6.9 x 1.6 |     |              |              |         |  |
|                                         | Drain                        | Capacity<br>(m <sup>3</sup> /s)                                                                  | 100       |              | 1     | <u> </u> |   |     | 482       |    | 5.90         |           |      | 7.26             | 7         |          |   |      | 9.07           |     | 5.47           | 18.23     |     | 19.8         | 27.03        |         |  |
|                                         | 1                            | Slope Velocity Capacity (%2) (m/s)                                                               |           | ļ            | ļ`    | ļ        |   |     | 0.8       |    | 0.6 7.33     |           |      | 0.7 7.02         | 0.6 1.42  |          |   |      | 0.4 7.29       |     | 0.6 1.31       | 0.4 1.53  | ·•  | 0.6 1.48     | 0.9 1.55     |         |  |
|                                         | Proposed                     | Size Sk                                                                                          |           | <b>↓</b>     |       | <u> </u> |   |     | 0 001×83F | 1  | U2.5 x 2.0 0 |           |      | 4.7 × 6 0        |           |          |   |      | 0 02 X 0 X E   |     | 0 6:1 × 5:2 Fl | US4x250   |     | H3.3 x 2.0 0 | 10.5 × 2.5 0 |         |  |
| *************************************** | Runoff                       | Major<br>Storm<br>(m/k)                                                                          | 1000      |              | 58.25 |          |   |     | 6.04      |    | 7.86         | 20.95 V   | 7.12 | 8.62             | 28./7     |          |   |      | 17.95          |     | 6.77           | 23.84     |     | 11.26        | 32.33        |         |  |
| 2000                                    |                              | Total<br>Runoff<br>(m)%)                                                                         |           | ļ            | ļ     |          |   |     | 4.36      |    | 569          |           |      | 6.25             | 20.24     |          |   |      | 8.62           |     | 4.88           | 19.12     |     | 9.76         | 23.74        |         |  |
| Year                                    | Ē Design                     | Serric<br>(m/s)                                                                                  | 1110      | L            | L     |          | · |     | 8810 8.   | L  | 8 0.191      | 6 0.172   |      | 161.0            | 691.0     |          |   | -    | 5 0.78         |     | 16 0.184       | 24 0.163  |     | 8 0.206      | 0./60        |         |  |
| Ē                                       | insi                         | TonnA<br>Soeffici<br>Storagon<br>SorofS                                                          | 0.45 0.41 | 0.65         | 0.65  |          |   |     | 0.65 0.78 |    | 0.65 0.78    | 0.65 0.76 |      | 0.65 0.78        | 0.65 0.76 | -        |   |      | 0.70 0.75      |     | 0.70 0.76      | 0.70 0.74 |     | 0.70 0.78    | 0.70 0.74    |         |  |
|                                         | 10                           | amiT E                                                                                           | ٦         | 0            | _     |          |   |     | 4 23.4    | ļ  | 7 22.7       | 9 26.9    |      | 7 22 7           | . / 28. / |          |   | <br> | 5 28.5         |     | . 2 27.2       | 4 32.9    |     | 6 22 6       | 9 33 9       | - 1     |  |
|                                         | Time of Flow<br>in the Drain | Each Total<br>(min) (min)                                                                        | 27 6 42   | 0            | 2     | River    |   |     | 13.4 /3.  |    | 12 7 12      | 3.5 /6    |      | 12.7 12.         | 1.2 18    | 7        |   |      | 18.5 /8.       |     | 17.2 17        | 4. 4 22.  |     | 12.6 12.     | 1.0 23       | River   |  |
|                                         |                              | Total<br>(m)                                                                                     | 2500      | 3400         | _     |          |   |     |           |    |              | 1290      |      |                  | 1390      | 19 River |   |      |                |     |                | 0/9/      |     |              | 0067         | at      |  |
|                                         | Length                       | tal Each<br>a) (m)                                                                               | 1 ~       | ~            | 7     | O Kelang |   |     | 00//      |    | 000/         | 7.8 290   | i    | (740)<br>540     | 2.5 100   | Kelang   |   |      | (1400)         | (O  | (2007)         | 0         | 7.1 | (080         | 1.6 90       | > Kelar |  |
|                                         | Area                         | Each Total (ha)                                                                                  |           | 0            | 0 53  | 70       |   |     | 23.2      | 70 | 29.8         | 34.8 87.  | 70   | 32.7             | 0 120.    | 70       | : |      | 48.4           | 170 | 26.5           | 30.11.05  | 70  | 39.6         | 0 /44        | 7.0     |  |
|                                         |                              | Puil<br>wolini                                                                                   |           | (6)          |       |          |   | - 1 |           |    |              | 9         |      |                  | 9         |          |   |      |                |     |                | 9         |     |              | <u>ම</u>     |         |  |
|                                         |                              | Non<br>O<br>Noteh                                                                                | 5-8       | ( <u>@</u> ) | 6     | :        |   | 8-9 | ()        |    | (Z)          | ව)        |      | (4)              | (G)       |          |   | 2-10 | $\bigcirc$     |     | (9)            | <u>ව</u>  |     | 4)           | (5)          |         |  |

A-1, A-2

| generation of the second | Red<br>A<br>S<br>X<br>S      |                                  |      |              |                 |          |             |                 |          |              |             |             |     |            |                 |    |             |     |             |              |      |   | Service of the servic |               |    | Andrew Andrews |    |            |
|--------------------------|------------------------------|----------------------------------|------|--------------|-----------------|----------|-------------|-----------------|----------|--------------|-------------|-------------|-----|------------|-----------------|----|-------------|-----|-------------|--------------|------|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----|----------------------------------------------------------------------------------------------------------------|----|------------|
| ndition                  | Drain                        | Capacity<br>(m <sup>3</sup> /s)  |      |              | 0.58            |          |             | 1.95            |          |              | 2.20        | 1.14        |     | 4.40       | 0.38            | -  | 2.97        |     |             |              |      |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.45          |    | 1.69                                                                                                           |    |            |
| Existing Condition       | Existing D                   | Size C                           |      |              | 3.3<br>V0.8×0.7 |          |             | 7 12/8×1.3      |          |              | 4.7×1.2     | U 7×1.0     |     | 43.5×1.2   | 34.88 V 0.9×0.7 |    | V 70x18     |     |             |              |      |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9.92 V 5.7x12 |    | V 5.7×14                                                                                                       |    |            |
|                          |                              | Capacity<br>(m½s)                |      | 20.23        | 20.23           | *        | 27.43       | 28.37           |          | 9.26         | 37.64       | 36.43       |     | 8.05       | 34.88           |    | 4.32        |     | 7.74        | 34.88        |      |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |    | 5.75                                                                                                           |    | 2.95       |
|                          | ed Drain                     | velocity<br>(m/s)                |      | 9///         | 9// 2           | -        | 7 7.28      | 5 1.23          |          | 8 1.15       | 5 1.25      | 5 1.27      | _   | 8,/9       | 1 0.64          |    | 5 0.80      |     | 3 0.76      | 1 0.64       |      |   | <br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.6 7.53      | _  | 0.4 1.15                                                                                                       | _  | 91.19      |
|                          | Proposed                     | Size Slope<br>(m) (%)            |      | V5.5×2.5 0.5 | 105 x 2.5 0.5   |          | W75×20 0.7  | V/3.0 × 2.5 0.5 |          | V3.0×1.9 0.8 | V 90×25 0.5 | W/55×25 0.5 |     | U30x19 0.6 | 25.4×2.7 0.     |    | J 20×1.7 0. |     | V35×2.1 0.3 | ¥25.0×2.7 0. |      | - |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 43.5×210      |    | U 3.0×1.9 0.                                                                                                   |    | U1.9×1.5 0 |
|                          | Runoff                       | Major<br>Storm<br>(m³s)          |      | 25.85 🗵      | 25.24. ₩        | **       | 26.58       | 36.94 ₩         | -        | 70.28 V      | 40.66       | 48.20 🗤     |     | 10.23      | 45.5/ U         |    | 5.69        |     | 10.52       | 43.71        |      |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13.18         |    | 7.60                                                                                                           |    | 3.87       |
| 2000                     | 1 1                          | Total<br>Runoff<br>(m½)          |      | 18./3        | /7.63           |          | 19.00       | 25.75           |          | 7.34         | 28.23       | 33.78       |     | 7.21       | , 3/.8/         | :  | 3 4.02      |     | 7.41        | 30.84        |      |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 951         |    | 5.44                                                                                                           |    | 4 2.80     |
| Year                     | Design                       | Serha<br>(㎡s)                    |      | 2 0.042      | 0.040           |          | 3 0.082     | ľ !             |          | 3 0.087      | 9 0.037     | 8 0.033     |     | 1 0.065    |                 |    | 2 0.073     |     | 8 0.019     | 8 0.019      |      |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 77 0.15,      |    | 15 0.132                                                                                                       |    | 30 0.74    |
| in Y                     | tne<br>ent                   | fonuA<br>Softioi<br>Storog       |      | 0.40 0.69    | 040 069         |          | 040 0.73    | 0.40 0.69       |          | 0.40 0.73    | 0.40 0.69   | 040 0.68    |     | 0.40 0.71  | 040 0.48        |    | 0.40 0.72   |     | 040 0.68    | 0.40 0.68    |      |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.55 0.77     |    | 0.55 0.75                                                                                                      |    | 0.55 0.80  |
|                          | lo<br>noitui                 | етіТ <u>Е</u><br>толоо <u>(Е</u> |      | 99.1         | ,50/            |          | 404         |                 |          | 2 36.2       | 3 //53      | 3 /323      |     | 6 55 6     | 7               |    | 2 472       |     | 8 254 8     | 245.3 255.3  |      |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6 25.6        |    | 6 31.6                                                                                                         |    | 1 20 1     |
|                          | Time of Flow<br>in the Drain | Each Total<br>(min.) (min.)      |      | 1,68         | 60 95           | <u> </u> | 30.4        | L `Y            |          | 26.8 26.     | 3 105       | 170 122     | ٠., | 45.6 45.6  | LY              |    | 372 37      |     | 244.8 244.  | 0.5 245.     | _    |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 156 15.       | 1  | 21.6 21.6                                                                                                      | :  | 01 1.01    |
|                          |                              | Total Ea<br>(m) (rr              |      | 3            |                 |          |             | 0661            |          | ?            | 2230        | 3500        |     | . 1.       | 4840            |    |             |     | 2           | 4860         | Rive |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |    |                                                                                                                |    |            |
|                          | Length                       | Each<br>(m)                      |      | (8000)       | 7 400           | (9)      | (2250)      | 062 9           | <u>૭</u> | (30)         | 9 240       |             |     | (2650)     | 2 1340          |    | (1950)      |     | (1)000)     |              | Aur  |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (/400)        | 4  | (/450)                                                                                                         | 4) | (000)      |
|                          | Area                         | Each Total<br>(ha) (ha)          |      | 43/.7        | 0 440           | 70       | 231.7       | 5.2 677.6       | 70       | 84.4         | 762.        | 260,7,023.6 | 70  | 6.011      | 43.711782       | 70 | 55.0        | 170 | 389.8       | 0 1623.0     | 70   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.88          | 70 | 41.2                                                                                                           | 70 | 1,6/       |
|                          | .oN                          | wolinI<br>  页 完                  |      | 4            |                 |          | "           | 9               |          | - 3          | (E)         | ~           |     |            | 7               |    |             |     | 35          | 99           | -    | : |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |    |                                                                                                                |    |            |
|                          |                              | Marr<br>of<br>Catchr<br>Line     | A-1- | 0            | 9               |          | ( <u>()</u> | (O)             | ,        | 4            | 9           | 9           |     | 6          | <u>®</u>        |    | (G)         |     | <u>(0)</u>  | (C)          |      |   | A-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |    | 0                                                                                                              |    | (6)        |

| Particular | and tracks       |                                            |             | <u>later</u> |   | cycloser size I |         |     |           |              | *********  |                 |     |              |          | 1        | ALCO ACC |   |          | e proposition de la constantina della constantin |           |           |           | ctly.                                            |                | - Former |   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------------------------------|-------------|--------------|---|-----------------|---------|-----|-----------|--------------|------------|-----------------|-----|--------------|----------|----------|----------|---|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|-----------|--------------------------------------------------|----------------|----------|---|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0<br>0<br>7<br>1 | \$                                         |             |              |   |                 |         |     |           |              |            |                 |     | :            |          |          |          |   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |           |           | Port Area (2856) is directly drained to the sea. | :              |          |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ω                |                                            |             |              |   |                 |         |     |           |              |            |                 |     |              |          |          |          |   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |           |           | Area (28<br>ined to                              |                |          |   |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  | <b>&gt;</b>                                |             | <u></u> .    |   |                 |         |     |           |              |            |                 |     |              |          |          |          |   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |           |           | _                                                | :              |          | _ |
| Conditio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Drain            | Capacity<br>(m³/s)                         | 0.58        |              |   |                 |         |     | 0.85      |              |            | 0.58            |     |              | 76.0     | 0.83     | . ,      |   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |           |           | 10.98                                            |                |          |   |
| Existing Condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Existing Drain   | Size<br>(m)                                | V5.0×1.4    |              |   |                 |         |     | 1./x8.E.v | 6.09 V28x0.8 |            | 2.33 V 3.1x /.0 |     |              | 4.0×0.8  | 5.9×0.6  |          |   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |           |           | 7.0 X                                            |                |          |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  | Slope/Velocity/Capacity<br>(%) (m/s) (m/s) | 16.46       |              |   |                 | 2.46    |     | 4.62      | 6.09         |            | 2.33            |     | 5.58         |          | /4.55    |          | : |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.74      | 8.07      | /3.45     | 15.81                                            |                |          |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | d Drain          | Slope Velocity<br>(%) (m/s)                | 1.62        |              |   |                 | 0.64    |     | 0.75      | 1.17         |            | 0.00            |     | 1.24         | 1.34     | 1.07     |          |   | <u> </u> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.27      | 1.25      | 7.32      | 7.42                                             |                |          |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Proposed         | Slope<br>(%)                               | 0.5         |              |   |                 | 40      |     | 9.4       | . 0          |            | 0.5             |     | 0.5          |          |          |          |   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9.0 1     |           | 601       | 011                                              |                |          |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Pro              | Size (m)                                   | ± 5.0 × 2.3 |              |   |                 | 4.5×7.5 |     | 5.9 ×1.7  | ₩3.3×/.8     |            | 11/8x/5 0.5     |     | U3.2×1.6     | ₩4.3×2.1 | 41x23    |          |   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | □ 2.5×1.7 | 山 3.5×2.1 | V 3.5×2.1 | 082×21                                           |                |          |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Runoff           | Major<br>Storm<br>(m/s)                    | 27.83       |              |   |                 | 3.17    |     | 5.84      | 8.19         |            | 3.77            |     | 7.37         |          | 19.20    |          |   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.24      | 10.64     | 15.21     | 45                                               |                |          |   |
| 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  | Total<br>Runoff<br>(m/s)                   | /5.63       |              |   |                 | 2.30    |     | 4.20      |              |            | 2.23            |     | 5.30         |          | 1        |          |   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.52      |           | 10.88     |                                                  | ·.             |          |   |
| Year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Design           | Perha<br>(m³s)                             | 0.117       | -            |   |                 | 0.237   |     | 0.766     |              |            | 0.783           |     | 0.221        |          |          |          |   |          | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.269     |           |           | 0.192                                            |                |          |   |
| ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 96<br>Iuei       | Storac<br>Siffeo                           | 0.73        |              |   |                 | 0.82    |     | 0.74      | 0.72         |            | 0.76            |     | 08.0         | 0.74     | 70 0.72  | · ·      |   | 11:      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.80      | 5 0.75    | 5 0.74    | 0.74                                             |                |          |   |
| Ë                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ļ                | Tonnol                                     | 9 0.55      |              |   |                 | 0 0.70  |     | 8 0.70    | 8 0.70       |            | \$ 0.70         |     | 3 0.70       | 5 0.70   |          |          |   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 0.85    | 0         | 0 0.85    |                                                  |                |          |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  | emiT E                                     | 37.         |              | - |                 | 0 18.0  |     | 31.8      | 43           |            | 4 274           |     | 3 20.        | 34       | 47.      |          |   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | , 20.     | 30.       | 0 34.     |                                                  |                |          |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | of Flow<br>Drain | Each Toral (min)                           | 27.9        |              |   | <br>            | 69      |     | 27.8      |              |            | 17.             |     | .0/          | 245      |          |          |   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.       | 20.       | 24.       | 24.                                              |                |          |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Time of in the D |                                            | 6.3         | ه            |   |                 | 8.0     |     | 2/8       | 0 27         |            | 17.4            |     | 10.3         |          | 4.0      |          |   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10,       |           | 6,        |                                                  | <u>ک</u><br>نو |          |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | gth              | Total<br>(m)                               | 2087        | RIV          |   |                 |         |     |           | 1520         |            |                 | 11. |              | 1560     | 1810     | Rivel    |   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | 7550      |           | 1                                                | RIVE           | 14 1     |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Length           | Each Tota<br>(m) (m)                       | 88          | Aur          |   | <br>            | 300     | (D) | 700       | 920          | $\bigcirc$ | (00)            | 9   | (750)<br>570 | 560      |          | Aur      |   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 750       | 800       | 230       | 50                                               | Aur            |          |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Area             | Total<br>(ha)                              | /33.6       | 70           |   |                 |         | 70  |           | 43.3         | 70         |                 | 70  |              | 63.6     | 6.901    | 70       |   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | 36.9      | 56.       | 72.4                                             | 70             |          |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ar               | Each<br>(ha)                               | 13.3        |              |   |                 | 9.7     |     | 25.3      | 6.<br>E.     |            | 12.2            |     | 24.0         | 27.4     | 0        |          |   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.9/      | 20.1      | 19.2      | 16.3                                             |                |          |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DN 1             | wolini                                     | <u> </u>    |              |   |                 |         |     | :         |              |            |                 |     |              | 4        | (O)      |          |   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |           |           |                                                  |                |          |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ٠.               | əuil                                       | <b>4</b> )  |              |   |                 | 9       |     | <u>@</u>  | (O)          |            | 4               |     | ৩            | 9        | <b>(</b> | 1        |   |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9         | 0         | <u>ි</u>  | <b>4</b> )                                       |                | ·        |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | men<br>ne        | Vatch<br>O<br>Vatch<br>Vatch               | A-2         |              |   | A-3             |         |     |           |              |            |                 |     |              |          |          |          |   |          | A-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |           |           |                                                  |                |          |   |

|                    |                     |                                         |      |                    |           |             |                                  |                |         |                               |              |                      |              |                                   |       |             |   |   |     |   |   |   | فجمتند. | este este |   |   | A-  | 4 |
|--------------------|---------------------|-----------------------------------------|------|--------------------|-----------|-------------|----------------------------------|----------------|---------|-------------------------------|--------------|----------------------|--------------|-----------------------------------|-------|-------------|---|---|-----|---|---|---|---------|-----------|---|---|-----|---|
|                    | Remorks             | WALLO SEEDING WALL                      |      | (C=7.50)<br>C=7.26 | (= :,43)  | R/=0.08     | K1 = Z30 (173)<br>S = 1.14 (186) | R1=0.75 (5.00) | 3000    | C = 2.41 (3.03)<br>(R2 = /24) | (2.61)       | K = 0.62<br>C = 2.06 | بخ           | (I=5.50 C=1.03)<br>(0=250 R/=311) |       |             |   |   |     | - |   |   |         |           |   |   |     |   |
| Existing Condition | Drain               | Capacity<br>(m <sup>3</sup> /s)         |      |                    |           | 0.00        | 4/.7                             |                |         |                               |              |                      | 5 0.58       |                                   |       |             |   |   |     |   |   |   |         |           |   |   |     |   |
| xisting            | Existing Drain      | Size (m)                                |      |                    |           | 0.6 x 0.5   | U.2.9×0.7                        |                |         |                               |              |                      | V 7.2×0.5    |                                   |       |             |   |   |     |   |   |   |         |           |   | - |     |   |
| 111                |                     | Slope Velocity Capacity (%) (m/s) (m/s) |      | 1.09               | 2.35      | 4.38        | 5.65                             | 7.72           |         | 1.97                          | 2.59         | 2.84                 | 8.90         | 10.77                             |       |             |   |   | : : |   |   |   |         |           |   |   |     |   |
|                    | d Drain             | Velocity<br>(m/s)                       |      | 7.00               | 1.76      | 1.22        | 1.30                             | 1.36           |         | 0.86                          | 1.00         | 60%                  | 1.36         |                                   |       |             |   | _ | _   |   |   |   |         |           |   |   |     |   |
|                    | Proposed            |                                         | <br> | 0.0                | 5 0.8     | 3.0 0.6     | 2.2 0.6                          | 2.4 0.6        |         | 6 0.4                         | 7 0.5        | 0.6                  | 27 0.5       | Ö                                 | <br>- |             |   |   |     |   |   |   |         |           |   |   | - : |   |
|                    |                     | Size                                    |      | / / x / / n        | U/5×1.5   | H 2.0 × 2.0 | U 2.2 × 2.2                      | 12.4×2.4       |         | 9/x9/n                        | 3.06 W.7×1.7 | 11.7×1.7             | U2.7×2.7     |                                   |       |             |   |   |     |   | . |   |         |           |   |   |     |   |
|                    | Runoff              | Storm<br>(m/s)                          |      | 7.13               | 2.65      | 5.35        | 663                              | 8.23           |         | 217                           | 3.06         | 3.56                 | 11.13        | /3.62                             |       |             |   |   |     |   | · |   |         |           |   |   |     |   |
| 2000               | Runoff              | Total<br>Runoff<br>(m/s)                |      | 082                | 1.92      | 3.87        | 4.78                             | 5.93           |         | 1.57                          | 2.21         | 2.56                 |              | $\Box$                            |       |             | : |   |     |   |   |   | :       |           |   |   |     |   |
| Year               | . — .               | Settio<br>(R)<br>(R)                    | ~    | 0297               | 0.266     | 0.262       | 0.219                            | 0.215          |         | 0.235                         | 0.234        | 1120                 |              |                                   |       |             |   |   |     |   |   |   |         |           |   |   |     |   |
|                    | 96                  | Coeffic<br>Storae<br>Coeffic            | 1    | 0 0.81             | 0 0.78    | 0.7         | 2 0.76                           |                |         | 4 0.77                        |              |                      |              |                                   |       |             |   |   |     |   |   |   |         |           |   |   |     |   |
| Ë                  | rioitori            | mennoo <u>C</u><br>TonnA                | -    | (18.3)             | 22.3 0.90 | 23.0 0.90   |                                  | 26.8 0.8       | -       | 24.5 0.84                     |              | 30.3 0.86            | <del> </del> | +                                 |       |             |   |   |     |   |   |   |         |           |   |   |     |   |
|                    | f Flow<br>Drain of  | Total (min)                             |      | (5.3) (1           | -         |             | L                                |                |         | (90) (                        |              |                      | <b> </b>     | <del></del>                       | <br>  | <del></del> |   |   |     |   |   |   |         |           |   |   |     |   |
|                    | Time of<br>in the D | Each Total<br>(min) (min)               |      | 4.8                | 0         | 1 7 7 1     | 3.4                              | 9.0            |         | 7.5                           |              | ď                    | ,            | 0.2                               |       |             |   |   |     |   |   |   |         |           |   |   |     |   |
|                    | Length              | Totai<br>(m)                            | -    | (200)              |           | <u> </u>    | ļ                                |                |         | (285)                         | <b></b>      | 1 .                  |              | —                                 |       |             |   |   | :-  |   |   |   |         |           |   |   |     |   |
|                    | Len                 | Each (m)                                | 3 '  | 06/ 9              | 5) 235    | 3           | N                                |                |         | 29) 365                       |              | ,                    | 1.0          | 1                                 |       |             |   |   |     |   |   |   |         |           |   |   | 1   |   |
|                    | Area                | Each Total                              |      | 200                |           | ന           |                                  | 0.75 27.59     | .:      | 241 6.70                      | 30           | <del>-</del> -       |              | (/2./4)                           |       |             |   |   |     |   |   | - |         | 1         |   |   |     |   |
| -                  | ON                  | wolini<br>명 도                           | 1    | *                  | "         | 0           | بې<br>دې                         | 0              | <u></u> | 2                             | 0            | -                    | (S)          | 1                                 | <br>  |             | _ | - |     |   |   |   | -       |           | - |   |     |   |
|                    |                     | Puil                                    |      | 0                  | (3)       | 0           | 4                                | 9              | - 4     | 9                             | (E)          | (0)                  | (0)          |                                   |       |             |   |   | -   |   |   | - |         |           | - |   |     |   |
|                    | e<br>tuent          | Man<br>o<br>Calchi                      | A-4  |                    |           |             |                                  |                |         |                               |              |                      |              |                                   |       |             |   |   |     |   |   |   |         | :         |   |   |     |   |

0-1, 0-2

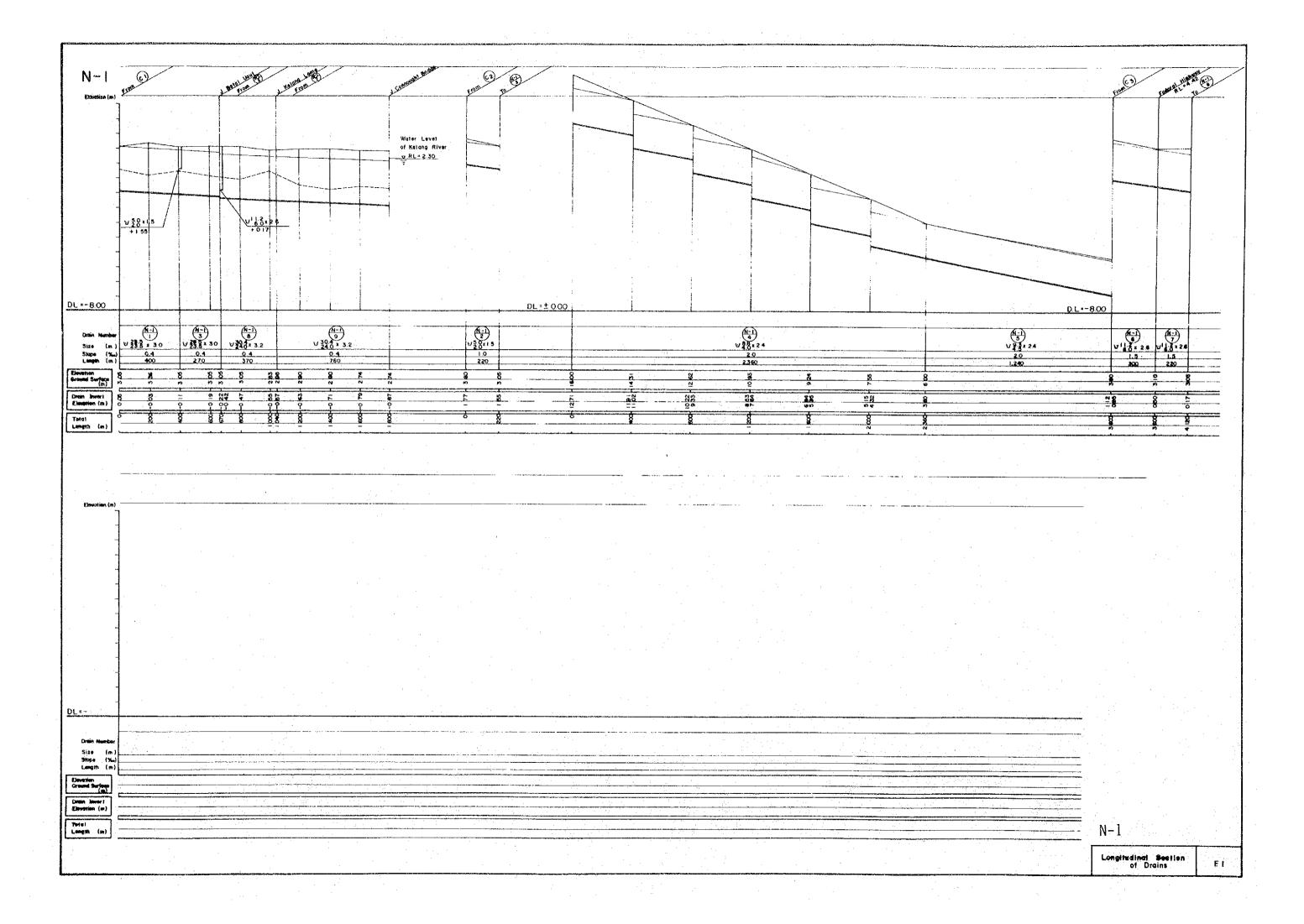
| r.                 | *********                  |                                            | ·             |     | ,<br>          |     |           |                     | T        | · ·        |     |                    |             | . 1                      | erio (manan | ********* | of Column 19 |      |           | epsp.incom |              | ~~~~      |              |          |          |       |               |            |     |     |
|--------------------|----------------------------|--------------------------------------------|---------------|-----|----------------|-----|-----------|---------------------|----------|------------|-----|--------------------|-------------|--------------------------|-------------|-----------|--------------|------|-----------|------------|--------------|-----------|--------------|----------|----------|-------|---------------|------------|-----|-----|
|                    | υ<br>2<br>2<br>3<br>0<br>0 | 64 171100                                  |               |     |                |     |           |                     |          |            |     |                    |             | 9591 = 366.9+870.1× 0.30 |             |           |              |      |           |            |              |           | · .          |          |          |       |               |            |     |     |
| Existing Condition | Existing Drain             | Capacity                                   | (m³/s)        | ÷   |                |     |           |                     |          |            |     |                    |             |                          |             |           |              |      |           |            |              |           |              |          |          |       |               |            |     |     |
| Existing           | Existing                   | Size                                       | (m)           |     |                |     |           |                     |          | ·          |     |                    |             | ·                        |             |           |              |      |           |            |              |           |              |          |          |       |               |            |     |     |
|                    | 'n                         | Capacity                                   | (m³/s)        |     | 9.05           |     | 13.74     | 96.61               |          | 11.25      | ·   | 9.05               | 16.48       | 26.01                    |             |           |              |      | 8.42      | ٠          | 6.84         | 16.89     |              | 427      | 18.15    | -     |               |            |     |     |
|                    | d Drain                    | Slope Velocity Capacity                    | (m/s)         |     | 0.68           |     | 0.74      | 0.78                |          | 1.05       |     | 0.68               | 1.16        | 0.87                     |             | ÷         |              |      | 0.67      |            | 0.74         | 0.0       |              | 0.82     |          |       |               |            |     |     |
|                    | Proposed                   | Slope                                      | (%)           |     | 02             |     | 0.2       | 0.2                 |          | 02         |     | 0.2                | 0.2         | 0.2                      |             |           |              |      | 0.2       |            | 0.3          | 0.3       | -:           | 0.2      |          |       |               |            |     |     |
|                    | Pro                        | Size                                       | (m)           |     | 8.8<br>V 40×24 |     | 1.0 × 2.5 | 12.7<br>v 7.5 x 2.6 |          | U4.9 x 2.5 |     | -88<br>V 4.0 × 2.4 | ₩ 5.5 x 3.0 | 139×32                   |             |           |              | ,    | 8.6 × 2.3 |            | 8-83 V 30x21 | 1.0 × 2.5 |              | 130×20   | 11.2 x26 |       |               |            |     |     |
|                    | Runoff                     |                                            |               |     | 12.22          |     | 19.30     |                     |          | 14.40      |     | 11.42              | 21.11       | 34./4                    |             |           |              |      | 10.74     |            | 8.83         | 20.35     |              | 5.46     | 22.38 ₪  |       |               |            |     |     |
| 2000               | Runoff                     | Total<br>Runoff                            | (m/s)         |     | 8.38           |     | 65:11     | 16.07               |          | 10.22      | :   | 8.01               | /4.82       | 23.98                    |             | -         |              |      | 7.54      |            | 6.25         | 14.36     |              | 3.93     |          |       | -             |            |     |     |
| Year               | Design                     | orogen<br>Original<br>Original<br>Original | (m³/s)        |     | 0.030          |     | 0.040     |                     |          | 0.084      |     | 0.053              | 0.047       |                          |             |           |              |      | 0.069     |            | 0.081        | 0.063     |              | 0.126    |          | L     |               |            |     |     |
| Ϋ́e                | et<br>ient                 | orot<br>oit te                             | o)<br>S       | i   | 0.68           |     | 0.69      | 0.68                |          | 0.72       |     | 0.69               | 0.69        | 0.68                     |             |           |              |      | 0.70      |            | 0.77         | 0.70      |              | 0.75     | 0.69     |       |               |            |     |     |
| Ë                  | tnə                        | ionu<br>ioiite                             | )OO           |     | 0.45           | -   | 0.45      | 0.45                |          | 0.45       |     | 0.45               | 0.45        | 0.45                     |             |           |              | :    | 0.50      | V .        | 0.50         | 0.50      |              | 0.50     | 0.50     |       |               |            |     |     |
|                    |                            | emiT<br>meono                              |               | : , | 6.991          |     | 0 /2/     | 210.9               |          | 45.9       |     | 84.9               | 6 66        | 2/2.5                    | :           |           |              |      | 69.3      |            | 56.2         | 79.5      |              | 29.0     | 82.3     |       |               |            |     |     |
|                    | Time of Flow in the Drain  | Total                                      | (min) (min) ( | -   | 6.951          |     | 0 ///     | 200.9               |          | 35.9       |     | 74.9               | 89.9        | 202.5                    |             |           |              | 10.0 | 59.3      |            | 46.2         | 69.5      | <del>-</del> | 0.61     | 72.3     |       |               |            | e e |     |
|                    | ime of                     | Each                                       | min)          |     | 156.9          |     | 0 7//     | 44.0                |          | 35.9       |     | 74.9               | 15.0        | 9.7                      |             |           |              |      | 59.3      |            | 46.2         | 10.2      |              | 19.0     | 20.00    |       |               |            |     |     |
|                    |                            | Total                                      | (m)           |     |                |     |           | 5340                |          |            |     |                    | 3540        | 5420                     | RIVE        |           |              |      |           |            |              | 2630      |              |          | 2780     | River |               |            |     |     |
|                    | Length                     | Each                                       | (m)           |     | 3340           | (S) | (4750)    |                     | <b>©</b> | 2000       | (0) | (2950)<br>2540     | (30)        | 80                       | PU104       | 1.        |              |      | 2100)     | (O)        | (2000)       | 530       | (2)          | (006)    | 150      |       |               |            |     |     |
|                    | 0                          |                                            | (ha)          |     | ٧              | 70  | ) 'Y      | . [                 | 70       |            | 70  | ) · '              | 3/5 3       | 959.1                    | TO A        |           |              | :    | ×         | 70         | -            | 229.9     | 70           | ¥        | 260.7    | TO A  | 1             | \ <u>-</u> |     |     |
|                    | Area                       | Each Total                                 | (ha) (        |     | 2.662          |     | 299.7     | 63 8 642            | -        | 4.721      | 7   | 15/2               | 42.43       | 6 / 1                    | 7           |           |              |      | 8 601     | <u>'</u>   | 77.1         | 41.52     |              | 31.2     | 9        |       | - 1           |            |     |     |
|                    | οN                         | wolt                                       | υI            |     |                |     |           | 0                   |          |            |     |                    | 4           | (O)                      |             |           |              |      |           |            |              | 9         |              |          | (3)      |       |               |            |     | . ! |
|                    | οN                         | əui                                        | 1             |     | 9              |     | (2)       | (e)                 |          | 4          |     | 9                  | 9           | <b>(</b>                 | 1.          |           |              |      |           |            | ( <u>0</u> ) | <u></u>   |              | <b>4</b> | (3)      | 4     | 77            | _          |     |     |
|                    | ueu<br>Je                  | noM<br>o<br>otch                           | Ċ             | 1-0 |                |     |           |                     |          |            |     |                    |             |                          |             |           |              | 0-2  | ; ' .     | :          |              |           |              |          |          |       | : 1).*<br>: : |            |     |     |

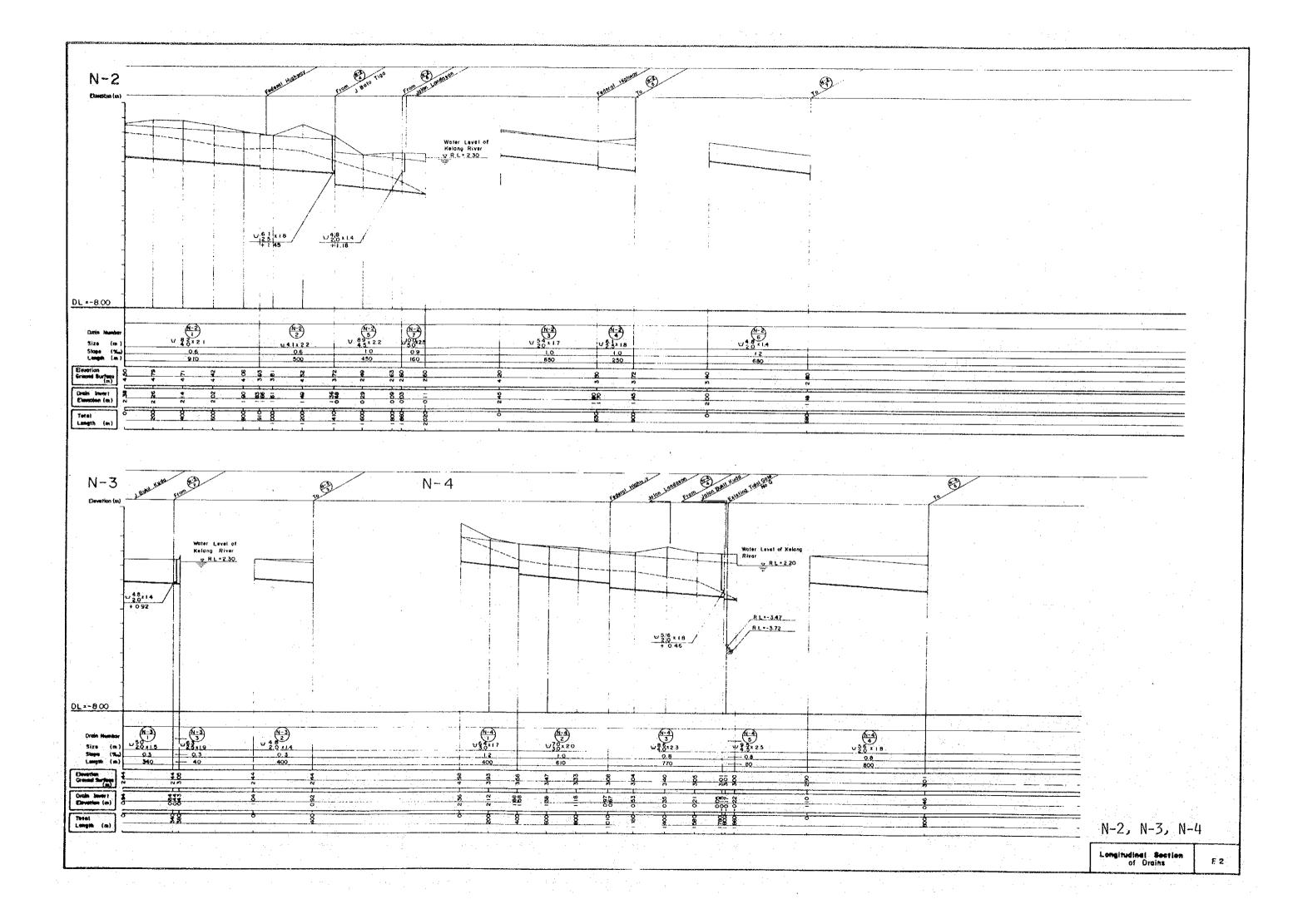
|                    |                              |                                         |     |              | aio orașa    | *****           | ****       | manaém       |          | nace of    |     |                | ******                   |       |     | Y           |     |                 |     | CV-MC-CPG       | -  | T              |                           |       |     | 445-300 |   | 30.178.00 | 7   |
|--------------------|------------------------------|-----------------------------------------|-----|--------------|--------------|-----------------|------------|--------------|----------|------------|-----|----------------|--------------------------|-------|-----|-------------|-----|-----------------|-----|-----------------|----|----------------|---------------------------|-------|-----|---------|---|-----------|-----|
|                    | Remarks                      |                                         |     |              |              |                 |            |              |          |            |     |                | 10729 = 2085+1008.3×0.35 |       |     |             |     |                 |     |                 |    |                | 589,8 = 77.8 +597.4× 0.35 |       |     |         |   |           |     |
| Existing Condition | Drain                        | Capacity (m <sup>3</sup> /s)            |     |              |              |                 |            |              |          |            |     | -              |                          |       |     |             |     |                 |     |                 |    |                |                           |       |     |         |   |           |     |
| xisting            | Existing Drain               | Size<br>(m)                             |     |              |              |                 |            |              |          |            |     |                |                          |       |     |             |     |                 |     |                 | 1. |                |                           |       |     |         |   |           | :   |
|                    |                              | Capacity<br>(m <sup>3</sup> /s)         |     | 15.77        | 16.96        | 20.36           | 21.77      | 21.77        |          | 121        |     | 3.10           | 21.77                    |       |     |             |     | 26.34           |     | 6.30            |    | 2.38           | 3//3                      |       |     |         |   |           |     |
|                    | ed Drain                     | Siope Velocity Capacity (%) (m/s) (m/s) |     | 0.77         | 0.79         | 0.83            | 0.84       | 0.84         |          | 0.74       |     | 0.86           | 0.84                     |       |     |             |     | 1.03            |     | 1.05            |    | 3 0.83         | 3 1.08                    |       |     |         |   |           |     |
|                    | Proposed                     | Size Slopa<br>(m.) (%)                  |     | 11.4 2.7 0.2 | W 60x 28 0.2 | 50×3.1 0.2      | V 65×31 02 | 12.7 3.1 0.2 |          | 8.0 91×91A |     | U2.0 x 2.0 0.3 | V 6.5 x 3.1 0.2          |       |     |             |     | V 6.0 x 3.2 0.3 |     | H 2.8 x 2.5 0.3 | :  | 12.2 × 1.5 0.3 | V 6.0 × 3.5 0.3           |       |     |         |   |           |     |
|                    | Runoff                       | Storm<br>(m/s)                          |     | 20.01 46     | 21.94 46     | 24.64 V 6.0×3.1 | 26.93 ₩ "  | 27.12 ₩ 6    |          | 2.24 147   |     | 4.03 42        | 28.23                    |       |     |             |     | 33.19 14        |     | 8.10 113        |    | 3.04 112       | 39.71 √                   |       |     |         |   |           |     |
| 2000               | Runoff                       | Total<br>Runoff<br>(m/s)                |     | /3.96        | 15.30        | 19.39           | 18.68      | 1844         |          | 7.60       |     | 16.2           | 16.31                    |       |     |             |     | 23.48           |     | 5.74            |    | 3 2.20         |                           |       |     |         |   |           |     |
| Year               | Design                       | Oeffic<br>(π/s)                         |     | 9 0.037      | 8 0.026      | 8 0.023         | 8 0.020    | 8 0.018      |          | 0.085      |     | 77 0.099       |                          |       |     | -           |     | 0.70 0.049      | t l | 0.72 0.066      |    | 0.76 0.093     | 0.70 0.047                |       | · · |         |   |           |     |
| ř                  | ient<br>de                   | Puno<br>Soeffic<br>Prord                | 1   | 0.35 0.69    | 0.35 0.68    | 0.35 0.68       | 0.35 268   | 0.35 0.68    | ·        | 0.35 0.75  |     | 0.35 0.77      | 0.35 0.68                |       |     |             |     | 0.35 0.         |     | 035 0           |    | 0.35 0.        | 0.35 0                    | •     |     |         |   |           |     |
|                    | 10<br>noiton                 | emiT E                                  |     | 5 97.5       | 5 /49.5      | 8 175.8         | 8 202.8    | 7 223 7      |          | 8 30.8     |     | 9 23.9         | 3 225.3                  |       |     |             |     | 6 88.6          |     | 0 45.0          | ·  | 9 26.9         | 5 71.5                    |       |     |         |   |           |     |
|                    | Time of Flow<br>in the Drain | Each Total<br>(min) (min)               |     | 5 87.        | 0 /39.       | 3/65.           | 0 192      | 9 2/3.       |          | 8 20.      |     | 9 13.          | 6 2/5.                   |       |     |             |     | 6 58.           |     | 0 35.           |    | 16.9 16.       | 6                         |       |     |         |   |           | -   |
|                    |                              | Total Each (min)                        | T   | 87.          | 6280 52      | 7530 26         | 8830 27    | 9830 20.     |          | 20.        |     | .67            | 0/66                     | River |     |             |     | 58.             |     | 35.             |    | 1/             | 3680                      |       |     |         | - |           |     |
|                    | Length                       | Each<br>(m)                             |     | 3900         | 2380         | 1250            | /300       | 000/         | (b)      | (006)      | (A) | 200            | 80                       | 20/0h |     |             |     | 3500            | (O  | 2/00            |    | 800            | 180                       | Besar |     |         |   |           | , i |
|                    | Area                         | Each Total<br>(ha) (ha)                 |     | 377.3        | 211.0 5883   | 168.0 756.3     | 6          | 90.2 1024.4  |          | 8.8        | 70  | 20.4           | 0.3 1072.9               |       |     |             |     | 0,              | 70  | 0.48            | 70 | 23.7           | 0 589.8                   |       |     |         |   | -         |     |
| -                  | ON A                         | wolinI<br>□ 교 은                         |     | 37           | 2/           | 9/              | 67         | 6            | <u> </u> | 1          |     | N              | (9)                      |       | 1.5 | <del></del> | -   | 479.            |     | <b>'</b> 0      |    | ~              | 9                         |       | -   | -       | - |           |     |
| -                  |                              | əuil                                    | -   |              |              |                 |            | (1)          |          |            |     |                | (4)<br>(4)               |       |     | :<br>       |     | (i)             |     |                 |    | (C)            | <u>ි</u><br>ල             | 7     | -   |         | - | -         |     |
|                    | 1.                           | Man<br>Catch                            | 0-3 | 3            | D            | (2)             | (S)        | (d)          |          | (5)        | 1.  | 9              | O O                      |       |     |             | 0-4 |                 |     | $\mathcal{D}$   |    | ( <u>2</u> )   | 9                         |       |     |         |   |           |     |

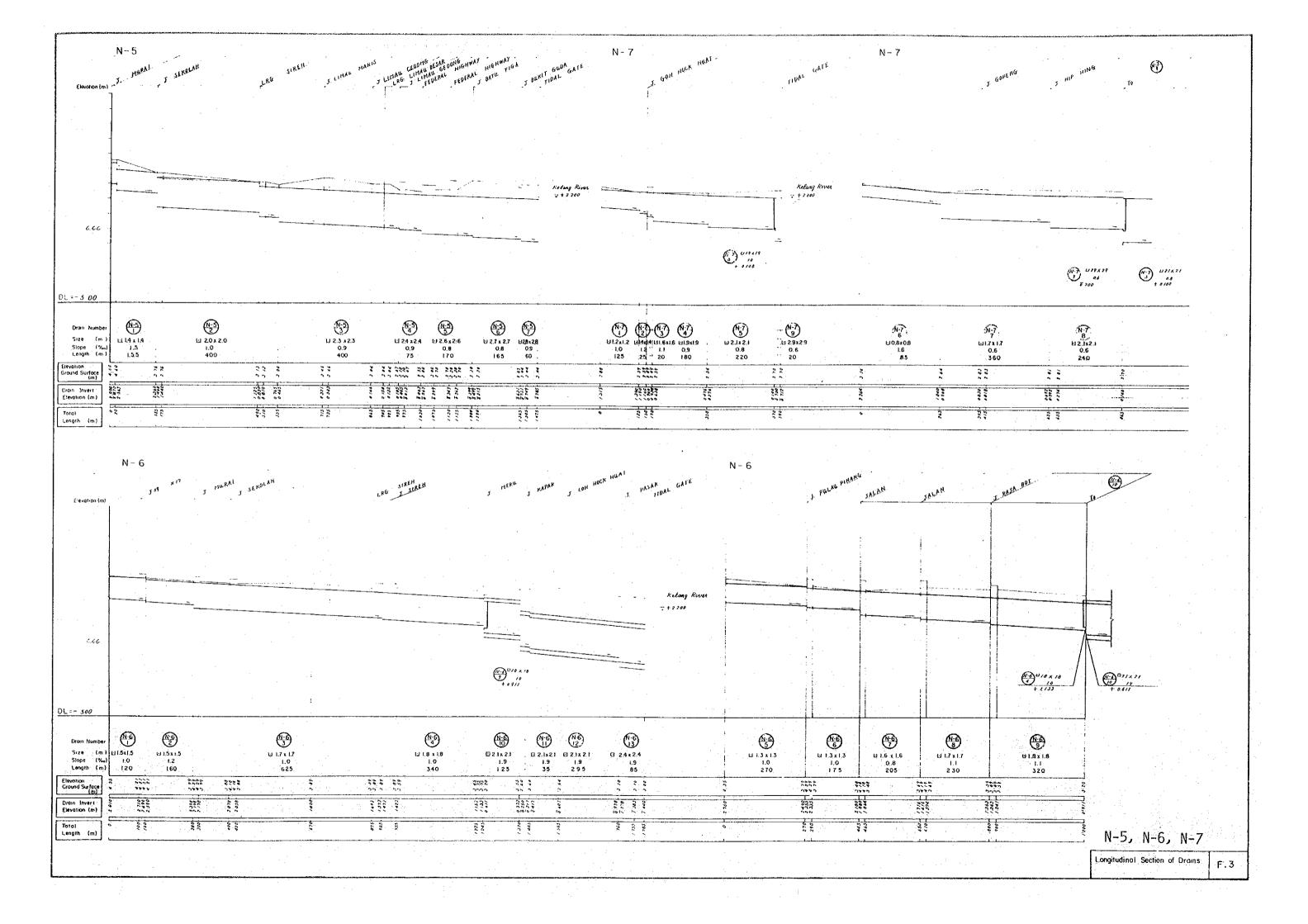
|                    |                       |                                           |     |                |                  |    |                  | winomunist | - maintone       | ,carcaro     | and the same      |                 |                                |     |          | -   |          | processor. | وحبيضام | ·   | ., | -           | _ |   | <br>1 | <br>******** | - |
|--------------------|-----------------------|-------------------------------------------|-----|----------------|------------------|----|------------------|------------|------------------|--------------|-------------------|-----------------|--------------------------------|-----|----------|-----|----------|------------|---------|-----|----|-------------|---|---|-------|--------------|---|
|                    | v<br>2<br>2<br>0<br>0 | )                                         |     |                |                  |    | -                |            |                  |              |                   |                 | 1354,0 12 = 303,3+1751,1× 0.30 |     |          |     |          |            |         |     |    |             |   |   |       |              |   |
| Existing Cardition | Drain                 | Capacity<br>(m <sup>3</sup> /s)           |     |                |                  |    |                  |            |                  | ·            |                   |                 |                                |     |          |     |          |            |         |     |    |             |   |   |       |              |   |
| Existing           | Existing Drain        | Size (m)                                  |     |                |                  |    |                  |            |                  |              |                   |                 |                                |     |          |     |          |            |         |     |    |             |   |   |       |              |   |
| _=_                |                       | Capacity<br>(m <sup>3</sup> /s)           |     | 16.89          | 18.15            |    | 10.56            |            | 3.53             | 32.12        | 33.76             | 33.76           | 33.76                          |     |          |     |          |            |         |     |    |             |   |   |       |              |   |
|                    | ed Drain              | Slopel Velocity Capacity (%) (m7/s)       |     | 0.01           | 0.93             |    | , 03             |            | 0.89             | 040          |                   | 0.0             |                                | -   |          |     |          |            |         |     |    |             |   |   |       |              |   |
|                    | Proposed              | Size Slope                                |     | 0x25 0.3       | 0x2.6 0.3        |    | 6x25 02          |            | UZ.1x2.1. 0.3    | V.00×3.1 0.2 | 54 3.2 0.2        | V/0.0 x 3.2 0.2 | 5.4 3.2 0.2                    |     |          |     |          |            |         |     |    | <del></del> |   |   |       | -            |   |
|                    | Runoff                | Major<br>Storm<br>(m/s)                   |     | 23.33 V 60x 25 | 25.61 J. 1.0x2.6 |    | 14.85 H 4.6x 2.5 |            | 4.67 82          | 42.93        | 46.19 W 10.0x 3.2 | 42.38 W         | 42.30 V 16.4 x 3.2             |     |          |     |          |            |         |     |    |             |   |   | -     |              |   |
| 2000               | Runoff                | Total<br>Runoff<br>(m's)                  |     | 16.20          | _                |    | 10.54            |            | 3.35             | 29.79        |                   | 28.86           |                                | ļ   | - 1      |     |          |            |         |     |    | ·           |   |   |       |              |   |
| Year               | Design                | Stords<br>Settle<br>(T/s)                 |     | 0.052          |                  |    | 1010             |            | 0.737            | 0.037        | 0000              | 3 0.022         |                                |     |          |     |          |            |         |     |    | ····        |   |   |       |              |   |
| n Y                | fn9                   | Diffic Coeffic                            |     | 0.50 0.69      | 50               |    | 50 073           |            | 50 0.76          | 50 068       | 50                | 50 0.68         | 50                             |     |          |     |          |            |         |     | -  |             | - |   |       |              |   |
|                    | 10<br>noitori         | emiT E<br>mexmoo(E<br>NonuR               | -   | 99.1           | 3                |    | 4/0              |            | 27.2 0.          | 149.4 0.     |                   | 267.3 0.        | 273.0                          |     |          |     |          |            |         |     |    |             |   |   |       |              |   |
|                    | of Flow<br>Drain      | Each Total is the Comin (min) (min)       |     | 1.88.1         |                  | 1  | 31.0             |            | 2 172            | 139.4        | 187.1             | 2 257.3         | 0                              |     |          | - 1 |          |            |         |     |    |             |   |   |       |              |   |
|                    | Time<br>in the        | _                                         |     | 89.            |                  |    | 310              |            | 17.              | ```          |                   | 70.             | 'n                             | L   |          |     |          |            |         |     |    |             |   |   |       |              |   |
|                    | Length                | ach Total<br>m) (m)                       |     | (4800)         | 620 5420         |    | 1900)            | <b>(4)</b> | (00)             | 2060 7480    | 560 100           | 660 13700       | 300 /400                       |     |          |     | •        |            |         |     |    |             |   | : |       | d            |   |
|                    | Area                  | Each Total Each Tota<br>(ha) (ha) (m) (m) |     |                | 371.3            | 70 |                  | 70         |                  | 805.2        | 1094.3            | 1311. 6 3660    | 42. 4 /354.0                   |     |          |     | 17<br>17 |            | 10000   |     |    |             |   |   |       |              |   |
|                    |                       | wolini<br>B<br>타                          |     | 311.7          | 59.6             |    | 104.4            |            | 25.6             | 2)303.9      | 1.682             | 2/7.3           | 42.4                           |     |          |     |          |            |         |     |    |             |   |   |       |              |   |
|                    |                       | Line                                      | _   |                |                  | 12 |                  |            |                  | $\bigcirc$   |                   | (               |                                | - 3 | <u> </u> |     |          |            |         | 100 | -5 | 100         |   |   |       |              |   |
|                    |                       | Nan<br>O<br>Mote<br>Agi I                 | 0-5 | <u></u>        | $\bigcirc$       |    | 3                |            | $[\mathfrak{S}]$ | P            | 9                 | 9               | D)                             |     | 4        |     |          |            |         |     |    |             |   |   |       |              |   |

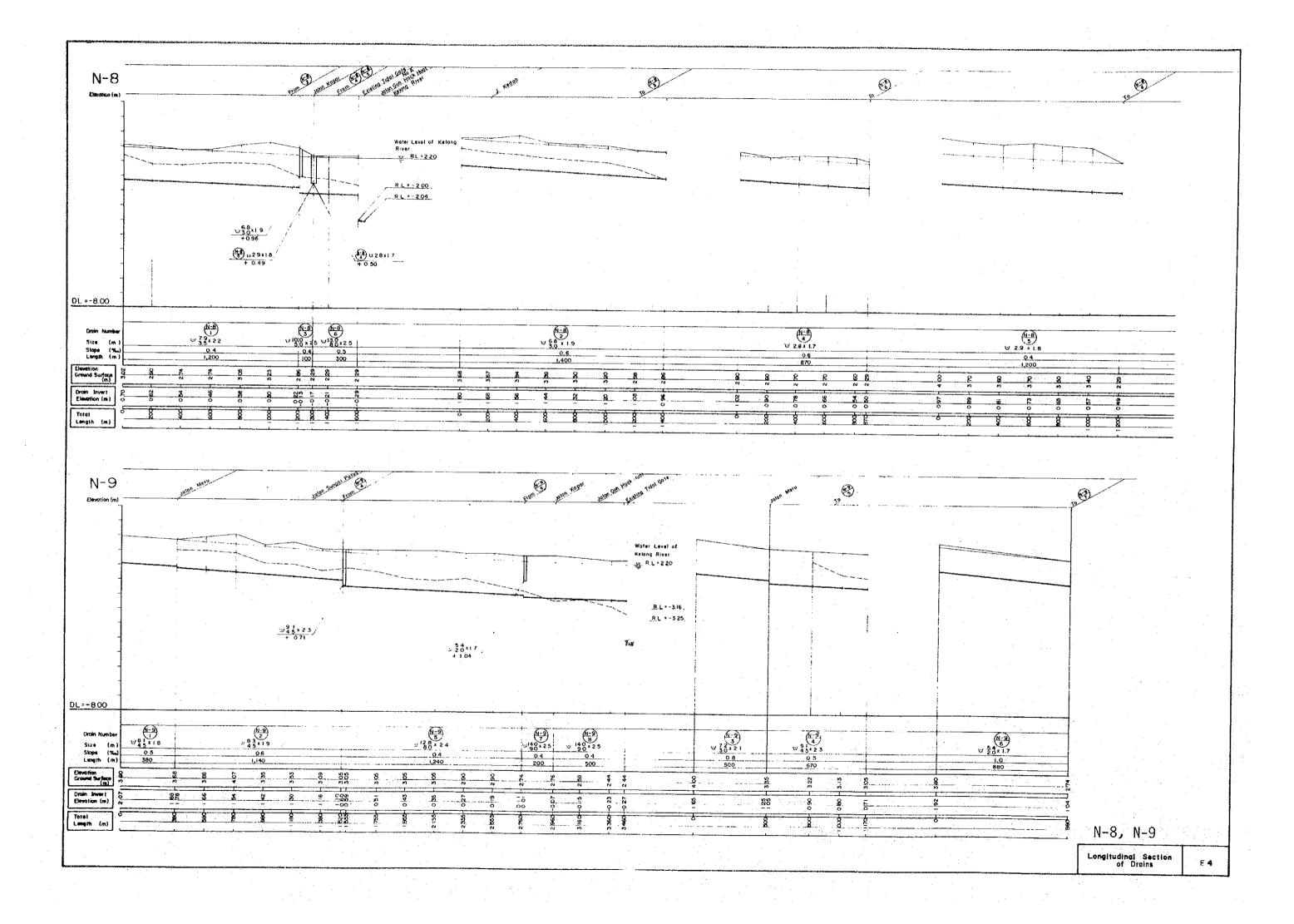
|                    | Remorks<br>SK  |                         |             |     |            |            |             |           | Adding and |                    |               |              |                      |              |     |            |              |            |          |           |             |            |                  |          |             |            | -           |                   |              |          |
|--------------------|----------------|-------------------------|-------------|-----|------------|------------|-------------|-----------|------------|--------------------|---------------|--------------|----------------------|--------------|-----|------------|--------------|------------|----------|-----------|-------------|------------|------------------|----------|-------------|------------|-------------|-------------------|--------------|----------|
| Existing Condition | Existing Drain |                         | (m³/s)      |     |            |            |             |           |            |                    | :             |              |                      |              |     |            |              |            |          |           |             |            |                  |          |             |            | ·           |                   |              |          |
| Existir            | Existi         | Size                    | (E)         |     |            |            |             | :         |            |                    |               |              |                      |              |     |            |              |            |          |           |             |            |                  |          |             |            |             |                   | ~            |          |
|                    | ri.            | Slope Velocity Capacity | (m/⁄s)      |     | 44.44      | 44.44      |             | 19.26     | 19.26      | 53.70              | 53.10         | 53.70        | 53.10                | 53.70        |     | 88.11      | 11.88        | 81:101     |          | 29.87     | 31.83       | 31.83      | 123.86           |          | 419         | 7.24       | 9.05        | 12.54             | 14.83        |          |
|                    | d Drain        | Velocity                | (m/s)       |     | 0.93       | 0.93       |             | 0.94      | 0.94       | 0.95               | 0.95          | 0.95         | 0.95                 | 0.95         |     | 1.10       | 0//          | 1.13       |          | 0.85      | 0.87        | 0.87       | 177              |          | 0.66        | 0.65       | 2 0.68      | 2 0.73            | 2 0.76       |          |
|                    | Proposed       | Slope                   | (%)         |     | 0 0.2      | 0 0.2      |             | 7 0.3     | 7 0.3      | 0 0.2              | 0.02          | 0.2          | 20 02                | 0.02         |     | 3.8 0.2    | 38 02        | 3.9 0.2    |          | 20 63     | 2.8 0.2     | 2.8 0.2    | 4.1 0.2          | ~        | 1.9 0.3     | 2.4 0.2    | 2.4 0.2     | 2.6 0.2           | 2.6 0.2      |          |
|                    | Œ.             | Size                    | ( E )       |     | 21.0 x 3.0 | 21.0 x 3.0 |             | V.4 x 2.7 | 11.4 × 2.7 | 24.0<br>18.0 × 3.0 | 12.00 × 3.0   | V 18.0 x 3.0 | 24.0<br>V 18.0 × 3.0 | 240 x 3.0    |     | 27.6 x 3.8 | U 20.0 x 3.8 | 298 39     |          | 17.4 ×2.7 | 17.6×2.8    | 17.6 × 2.8 | 33.2<br>V 25.0 X |          | V 5.8 × 1.9 | 7.8 × 2.4  | 88<br>740×  | 16.00 \ \\ 50.0 \ | 20.38 W 6.0x | <u> </u> |
|                    | Runoff         | Major                   | (സ്)        |     | 59.90      |            |             | 24.79     | 25.46      | 46.69              | 88.00         | 87.99        | 63.91                | 57.91        |     | 120.01     | 110.78       | 136.95     |          | 39.59     | 42.58       | 4245       | 161.17           |          | 5.66        | 6.07       | 11.74       |                   |              | Ш        |
| 2000               | Runoff         | Total                   | (%E)        |     | 41.95      | 40.81      |             | 17.39     | 14.61      | 48.96              | 47.57         | 44.83        | 43.45                | 38.96        |     | 83.52      | 77.15        | 95.17      | <u>.</u> | 27.75     | 29.82       | 28.89      | 1/3.73           |          | 401         | 6.42       |             | 11.25             |              |          |
| ear                | 5              | Perha                   | (m/ˈs)      |     | 0.030      | 0.029      |             | 0.059     | 0.055      | 0.027              | 0.024         |              | 0.00                 | 9/00         |     | 0.024      | 0.022        | 0.076      |          | 0.030     | 0.027       | 0.025      | 0.076            |          | 0.077       | 0.062      | 1           |                   | 0.018        |          |
| \ \>               | el<br>tri9     | porc<br>ioiii           | 1S<br>900   |     | 0.68       |            | i           | 0.70      | 0.70       | 0.68               |               | 0.68         | 0.68                 |              |     | 0.68       | 0.68         | 790 0      |          | 0.68      | 0.68        |            | 790 0            | <u>L</u> | 0 0.72      | 2 0.71     | L           |                   | 0 0.68       | L        |
| ع. ا               |                | iton                    |             |     | 6 0.40     |            |             | 7 040     | 9          | 040                | 5             | 6 0.40       | 8 0.40               | 5            | -   | 0.40       | 9 0.40       | 0          | _        | 9 0:40    | 0           | 6 0.40     | .2 0.40          | _        | 43.4 0.40   | 0.         | 60          | 0                 | 0            |          |
|                    | I              | 9W)                     | T (Fig.     | _   | 6 /48.6    | 0          |             | 7 62      | 0          | .69/ 9:            | 5 193         | 6 217.       | 8 244                | 3            |     | 7/90.      | 0            |            |          | 44/ 6     | 3.7 168.    | 86/98      | 1. 2 304.        |          | 4           | 0          | 60          | 3                 | 0            |          |
|                    | of Flow        | Total                   | (min) (min) | -   | 6 /38.     | 4          | 1           | 7 52      | 01         | 9                  | 0             | 1            | 2 234.               | -            |     | 7 /80.     | 2 202        | 0          | Г        | 9 134.    | 8           | 0.         | _                |          | 4 33.       | 8          | -           | ~                 | 45           | 11       |
|                    | Time of        |                         |             |     | 8.67       | <b>_</b>   | <u> </u>    | 52        |            | 0 /2.              | \ \ \         | l            |                      |              | L   | /80        |              |            |          | 134       | l           | L          |                  | 100      | 33          | <u> </u>   |             |                   | L            | 1 1      |
|                    | Length         | Fach Total              | (E)         |     | 8          | me a       |             | 8         | 3300       |                    |               |              |                      | 50 10370     |     | 8          | 1400 13100   | 700 13800  |          | 8         | 20 7920     |            | <u> </u>         |          | 0087        | 630 1930   |             | l                 |              |          |
|                    | 19             | 1 L                     | (E)         |     | 7600       | 14         | (0)         | T         |            |                    | ٠, ١          | 1 7          | 1                    | 7 . '        |     | 0011       |              | 1          |          | 6700      | 1104.4 1220 |            | <u> </u>         | - 25     |             | -10        | 4           | 489.0 3000        | 9.6 2660     | 1 1      |
|                    | Area           | Each Total              | (ha) (ha)   |     | 13083      | 0 / 1200   | 1           | 2948      | 30.9 325.7 | 80.3 1813.4        | 1,88.5 1981.9 | 153 0 2/34 9 | 51.7 2286.6          | 148.2 2434.8 | 7.0 | 3480.2     | 26.4.3506.6  | 4 8 504B 2 |          | 9051      | -           | 5/3 //55.  | 0                |          | 52.1        | 51.4 10.3. |             | 236.6.48          | 290.6 779.   | 70       |
| -                  | oV             |                         |             |     | -          | -          | ļ. <u>.</u> |           |            | $\bigcirc$         |               |              | ,                    | -            |     | 3          |              | 6          | )        | 5         |             |            | 6                | -        |             |            |             |                   | - 2          |          |
| -                  | οN             | θl                      | ijŢ         | 1   | (3)        | KE         | )           | O         | (0)        | (i)                | 4             | (9)          | (9)                  | (E)          | -   | (3)        | (%)          | (6)        |          | 3         | (9)         | (3)        | (2)              |          | (3)         | C          | )( <u>4</u> | (9)               | 3            |          |
|                    | 9<br>tnər      | on<br>or<br>ndo         | Cal         | 0-6 |            |            |             |           |            |                    |               |              |                      |              |     |            |              |            |          |           | :           |            |                  |          |             |            |             |                   |              |          |

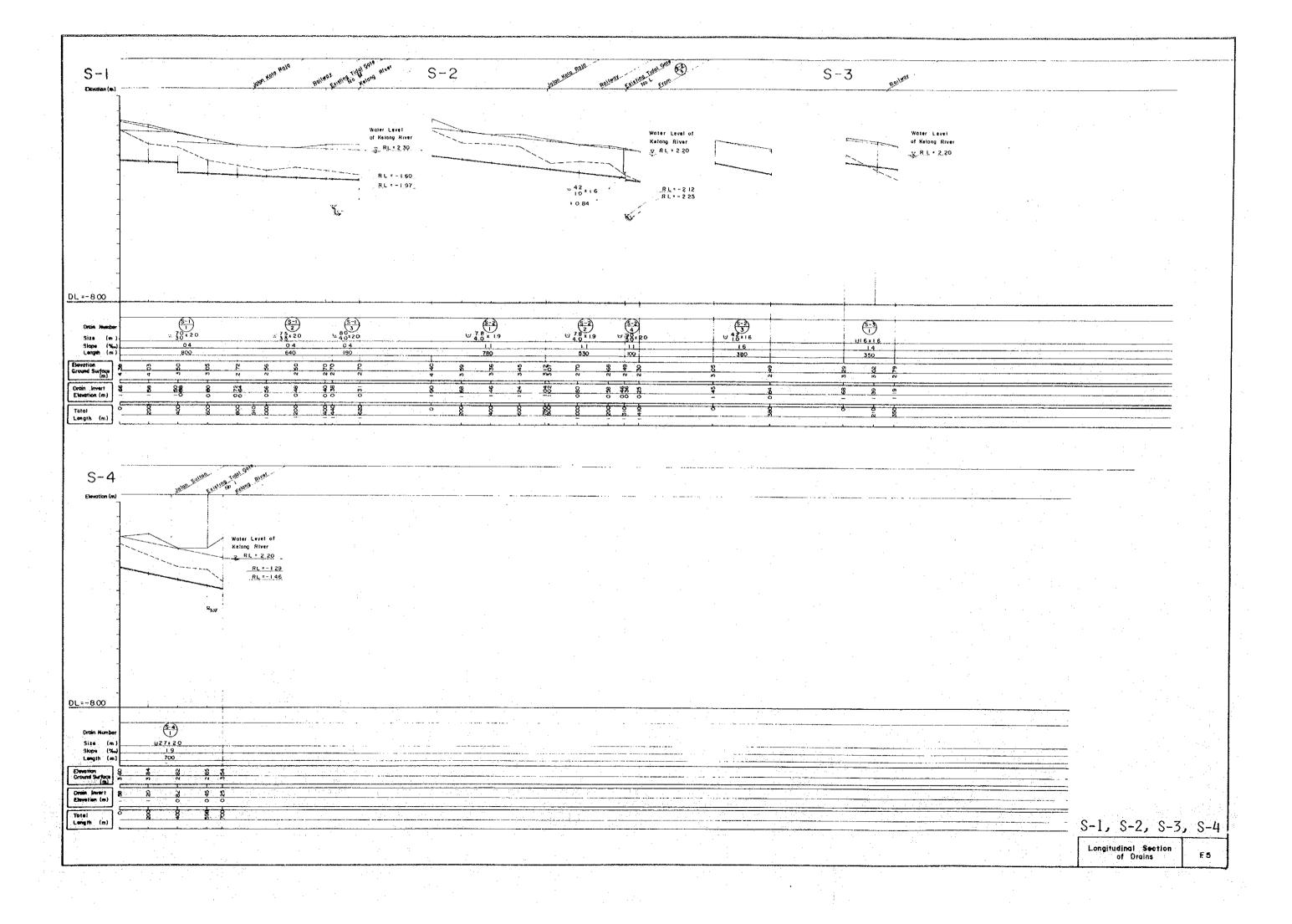
|   |                    |                              |                                                          |               |             |            |                   |   | <br> | -     | -   | - | -    | -   |                         | -      | - |   | -  |     |         |     |      | T |   | aranasa. |   | ******   | 1 |
|---|--------------------|------------------------------|----------------------------------------------------------|---------------|-------------|------------|-------------------|---|------|-------|-----|---|------|-----|-------------------------|--------|---|---|----|-----|---------|-----|------|---|---|----------|---|----------|---|
|   |                    |                              |                                                          |               |             |            |                   |   |      | -     |     |   | :    |     |                         |        |   |   |    |     | •       |     |      |   |   |          |   |          |   |
|   |                    | Remarks                      | )                                                        |               |             |            | : *<br>:*         |   |      | -     |     | · |      |     |                         |        |   |   |    |     |         |     |      | : |   |          |   |          |   |
|   |                    | Ω<br>0<br>20                 |                                                          |               |             |            |                   | ٠ |      |       |     |   |      |     |                         |        |   |   |    |     |         |     |      |   |   |          | : |          |   |
|   | <del></del> i      | <del> </del>                 |                                                          |               |             |            |                   |   |      |       |     |   |      |     |                         |        |   |   |    |     | <u></u> |     |      |   |   |          |   |          |   |
|   | Existing Condition | Drain                        | Capacity<br>(m <sup>3</sup> s)                           |               |             |            |                   |   |      |       |     |   |      |     |                         |        |   |   |    |     |         |     |      |   |   |          |   |          |   |
|   | Existing           | Existing Drain               | Size (m)                                                 |               |             |            |                   |   |      |       |     |   |      |     |                         |        |   |   |    |     |         |     |      |   |   |          |   |          |   |
|   |                    |                              | SiopelVelocity Capacity<br>(%) (m/s) (m <sup>3</sup> s)  | 2.98          | 15.77       | 129.28     | -                 |   |      |       | ·   |   |      | 23° |                         |        |   |   |    |     |         |     |      |   |   | -        |   |          |   |
|   |                    | Drain                        | (rn/s)                                                   | 0.74          | 0.77        | 1.18       |                   |   |      |       |     |   |      |     |                         |        |   | : |    |     |         |     |      |   |   |          |   |          |   |
|   |                    | Proposed                     | Slope\<br>(%)                                            | 0.2           | 0.2         | 0.2        |                   |   |      |       |     |   |      |     |                         |        |   |   |    |     |         |     |      |   |   |          |   |          |   |
|   |                    | Pro                          | Size<br>(m)                                              | 4.01 H 2.3×20 | 1.4 2.7 0.2 | 1 342 x4 1 |                   |   |      | 11    |     |   |      |     |                         |        |   |   |    |     |         |     |      |   |   |          |   |          |   |
|   |                    | Runoff                       | Storm<br>(m/s)                                           | 4.01          | 2/.6/       | 178.5/ 5   | -                 |   |      |       |     |   |      |     |                         |        |   |   |    |     |         |     |      |   |   |          |   |          |   |
|   | 2000               | Runoff                       | Total<br>Runoff<br>(m/s)                                 | 2.86          | 15.07       |            | .,                |   |      |       |     |   |      |     |                         |        |   |   |    |     |         |     |      |   |   |          |   |          |   |
|   | Year               | Design F                     | Settle<br>Settle<br>Settle<br>(म्रेंड)                   | 0.085         |             |            |                   |   | -    |       |     |   |      |     |                         |        |   |   |    | ·   |         |     |      | - |   |          |   |          |   |
|   | اگر                | eb<br>jeut                   | onota<br>oittead                                         | 0.73          | 0.67        |            |                   |   |      |       |     |   |      |     |                         |        |   | - |    |     |         |     |      |   |   |          |   |          |   |
|   | =                  | f<br>fu9i                    | ionuA<br>Soeffic                                         | 9 0.40        | 70.40       | 6040       |                   |   |      |       |     |   |      |     |                         |        |   |   |    |     |         |     |      |   |   |          |   |          |   |
|   |                    | 10<br>Tottru                 | amit E                                                   | 8 37.8        |             | 6 309 6 0. | River             |   |      |       |     |   |      |     |                         |        |   |   |    |     | ;<br>;  |     |      |   |   |          |   |          |   |
|   |                    | Time of Flow<br>in the Orain | Tota<br>(min                                             | 8 27.9        | 7 270.7     | 4 299.6    |                   |   |      |       | : : |   |      |     |                         |        |   |   |    |     |         |     |      |   |   |          |   |          |   |
|   |                    | Time<br>th                   | Eact<br>(min                                             | 27.8          |             | کا         | g,                |   |      |       |     | - |      |     |                         | :<br>: |   |   |    |     |         |     |      |   |   |          |   |          |   |
|   |                    | Length                       | Total Each Total 喜 (min) (min)                           | 20            | 760 11270   | 0 14520    |                   |   |      |       |     |   |      |     | - 121<br>- 121<br>- 121 |        |   |   |    | - 1 | 2.4     |     |      |   |   |          |   |          |   |
|   |                    | Δī                           | Eact (m)                                                 | (7200)        |             |            | Rapar             |   |      |       |     |   | . A. |     |                         |        |   |   |    |     |         |     |      |   |   | :.       |   |          |   |
|   |                    | Area                         | Each Total Each Total Each Total (ha) (ha) (m) (m) (min) | 7             | 3 886.6     | 8 7999.3   | 70                |   |      |       |     |   |      |     |                         |        |   |   |    |     |         |     |      |   |   |          | 1 |          |   |
|   |                    |                              |                                                          | 33.7          | 11.         |            |                   | : | 1    |       |     |   |      |     |                         |        |   |   | 11 | 1   |         |     |      |   |   |          |   |          |   |
|   | -                  |                              | eni_l<br>wollnI                                          | (             | <b>②</b>    | (2)        |                   |   |      |       |     | 1 | * 1  |     | <u>.</u>                |        |   |   |    |     |         |     |      |   | 1 | 1.5      |   |          |   |
| - |                    |                              | 5 4 6                                                    | (C) 9         | @           | 6)         | e Critic<br>Plant |   |      | , y 1 |     |   |      |     |                         |        |   |   |    |     |         | - : |      |   |   |          |   | <u>.</u> |   |
| L |                    | и́в                          | Nar<br>Catch                                             | 0             |             |            | ale a minel       |   |      |       |     |   |      |     |                         |        |   |   |    |     |         |     | أحبا |   |   |          |   |          |   |

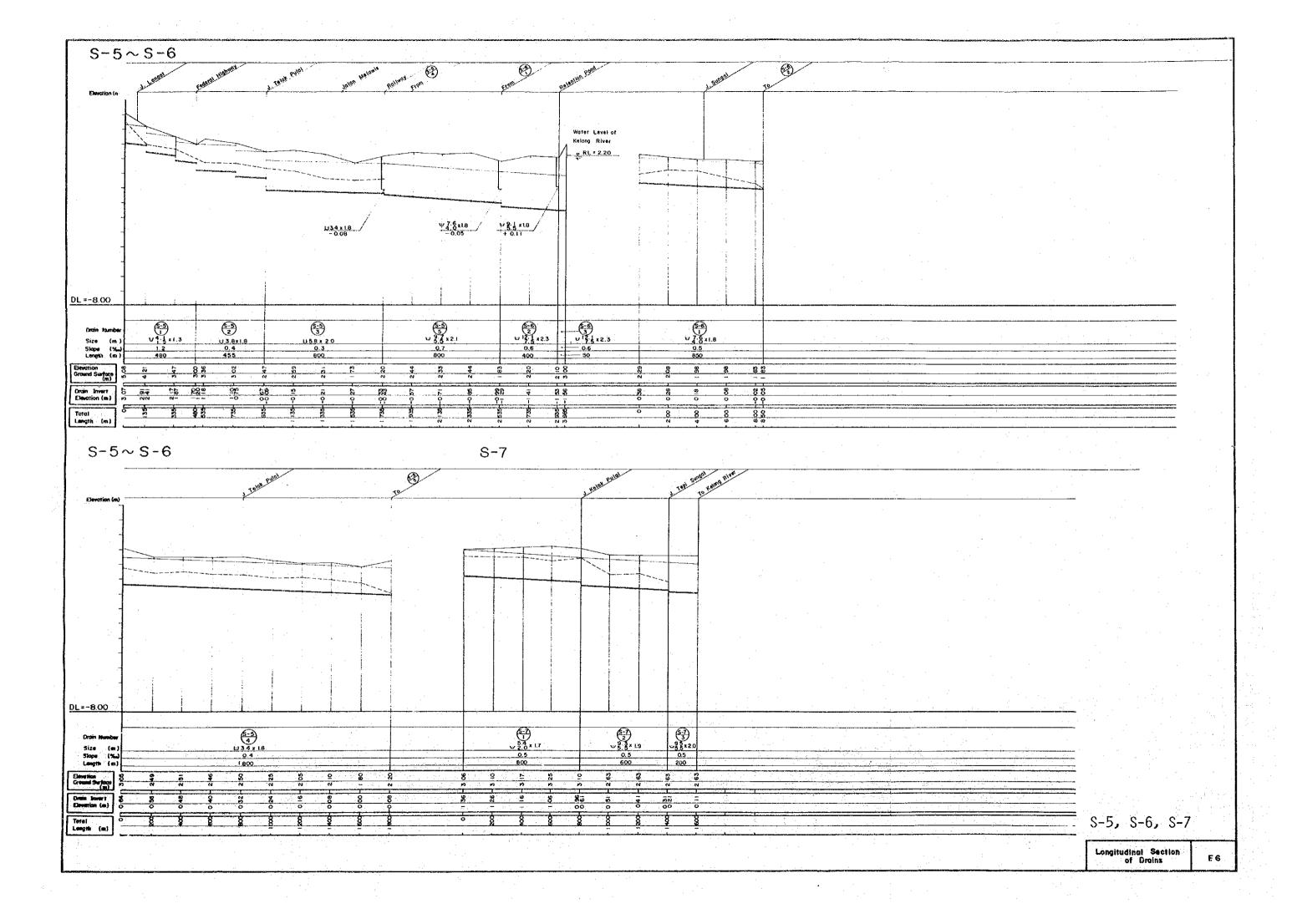

|                    |                |                           |                     |                           |                  | and the second | outstand; r            | a   | manual. |               | <del></del> | -                                      |            |           | -3464343   |            |           |            |                                              |            |            |            | · T                                    | *************************************** |          | T        | -        |   |                                        | - |
|--------------------|----------------|---------------------------|---------------------|---------------------------|------------------|----------------|------------------------|-----|---------|---------------|-------------|----------------------------------------|------------|-----------|------------|------------|-----------|------------|----------------------------------------------|------------|------------|------------|----------------------------------------|-----------------------------------------|----------|----------|----------|---|----------------------------------------|---|
|                    | 22,773,232     |                           |                     |                           |                  |                | -                      | 1   |         |               |             |                                        |            |           | •          |            |           |            |                                              |            |            |            |                                        | -                                       |          |          |          |   |                                        |   |
|                    | Remarks        |                           |                     |                           |                  |                |                        |     |         |               |             |                                        |            |           |            |            |           |            |                                              |            |            |            |                                        |                                         |          |          |          | - |                                        |   |
|                    | U.             | 2                         |                     |                           |                  |                |                        |     |         |               |             |                                        |            |           |            |            |           |            |                                              |            |            |            |                                        |                                         |          |          |          |   |                                        |   |
| ğ                  |                | - <del>Cit</del>          | 75                  |                           |                  |                |                        |     | _       |               |             |                                        |            | -         |            |            |           |            |                                              |            |            |            |                                        |                                         |          |          |          |   |                                        |   |
| ) Condit           | g Drain        | Capacity                  | (m <sup>3</sup> /s) |                           |                  |                |                        |     |         |               |             |                                        |            |           | _          |            |           |            |                                              | -          | _          | _          |                                        |                                         |          |          |          | - |                                        |   |
| Existing Condition | Existing Drain | Size                      | (E)                 | .                         |                  |                |                        |     |         |               |             |                                        |            |           |            |            |           |            |                                              |            |            |            |                                        |                                         |          |          |          |   |                                        |   |
|                    |                | pocity                    | π <sup>3</sup> /s)  | 11.18                     | 13.78            | 16.71          | 21.81                  |     |         | 367           | 427         |                                        | 3.84       | 4.48      | 8.33       | 8.33       | 8:33      | 11.92      |                                              | 1.45       | 2.39       | 3.27       | 4.68                                   | 5.76                                    | 66.11    |          |          |   |                                        |   |
|                    | Drain          | Slopel Velocity Capacity  | (%) (m/s) (%)       | 121                       | 1.27             | 133            | 1.41                   |     |         | 1.42          | 1.46        |                                        | 1.48       | 1.54      | 1.89       | 1.89       | 681       | 2.0.7      |                                              | 1/2        | 136        | 1.42       | 1.44                                   | 1.45                                    | 7.56     |          |          |   |                                        |   |
|                    | Proposed       | Siopel                    | (%)                 | 0.8                       | 0.8              | 0.8            | 0.8                    |     |         | 0 /           | 1.0         |                                        | 1/         | / /       | 1.9        | 6.7        | 6 /       | 6.7        |                                              | 0 /        | 7.2        | / ;        | 0.0                                    | 0.8                                     | 9.0      |          |          |   |                                        |   |
|                    | Pro            | Size                      |                     | 2 x 2. /                  | 7.9<br>3.5 × 2.2 | 8.6 x 2.3      | 9.8 × 2.4<br>5.0 × 2.4 |     |         | 71×71         | U/8×1.8     |                                        | W17×1.7    | W/8×1.8   | 02.1×2.1   | 02:1×2.1   | 021×21    | 2.4 × 2.4  | ٠.                                           | 1.2 × 1.2  | U / 4× 1.4 | 47.6 X 1.6 | 7.9×1.9                                | 21x21                                   | 29 x 2.9 |          |          |   |                                        |   |
|                    | off            |                           |                     | 72<br>730 x               | Ĭ. E.            | 2 40           | 20.00                  | -   |         | 7 10          | 7 77        |                                        | 7          | E /.      | 20         | 0 2        | <u>.</u>  | <u>.</u>   |                                              | 23         | 7          | 23         | 1                                      | Ð                                       | ā        |          |          |   |                                        |   |
| 0                  |                | Major<br>Storm            |                     | 4                         | 2                | 7              | 9                      | :   |         | 2             | رى          |                                        | 3          | 5         | 6          | .0         | .5        | 35         |                                              | 1.09       | 60         | 38         | 8                                      | 24                                      | 9        |          |          |   |                                        |   |
| 2000               | Runoff         | Total                     |                     | 10.64                     | 12.42            | 15.27          |                        |     |         | 3.7           | 3.63        |                                        | 3.45       | 3.55      |            | 7 7.60     | 2 7.65    | 7 10.85    |                                              |            | 2 2.09     | 2 2.88     | 0 4.08                                 | 7                                       | 1 10.1   | •        |          |   |                                        |   |
| Year               | Design         | Perha                     | (m³/s)              | 0150                      | 0.736            | 0.124          | 0.123                  | : : |         | 0.188         | 0179        |                                        | 0.144      | 6/3       | 0.148      | 0.147      | 0.142     | 0.750      |                                              | 0.260      | 0.272      | 0.232      | _                                      | 0.19                                    | 0.21     |          |          |   |                                        |   |
| >                  | ə              | fficik<br>orag<br>iolitie | IS                  | 0.75                      | 0.74             | 0.73           | 0 0:73                 |     |         | 0 0.74        | 2 0.73      |                                        | 5 0.76     | 7 0.75    | 59 0.73    | 9 0.73     | 9 0.73    | 74 0.73    |                                              | 19.0 61    | 83 0.81    | 1 0.81     | 69 0.79                                | 70 07                                   | 75 0.77  |          |          |   |                                        |   |
| r:                 | اِ ا           | Jour                      | ਮੁ                  | 0.60                      |                  | 9.0            | 0.6                    |     |         | 1 0.80        | 1 082       |                                        | 6 0.55     | 3 0.57    | 2 0.6      | 5 0.6      | 2 0.69    | ó          |                                              | 8 07       | 0.8        | 3 0.71     | 5 0.6                                  | 1 0                                     | 3        |          |          |   |                                        |   |
| 9-N)               | 5              | ime<br>incenti            |                     | 2) (26.2)<br>3 29.3       |                  |                | 5 40.5                 |     |         | 7 32.         | / 36        |                                        | 6 27.      | 3 37.3    | 272 37     | 27.5 37.   | 30.2 40.  | 30.9 40.9  |                                              | (6.8) (16. | 9.1.19     | 9.3 19     | 17.5 21                                | 1 24                                    | 74.3 24. |          |          |   |                                        |   |
| A ey               | Time of Flow   | n Total                   |                     | (16.2)                    | 7                |                | 0 30.5                 |     |         | (191)         | 26,         | ,                                      | 7 17.      | 7 2/3     |            |            | 1 30      | 7 30       |                                              | 9 7 0      | 3          | 2          | 71 2                                   |                                         |          |          |          |   | -                                      |   |
| Alternative        | F              |                           | (min)               | 85                        | L                | <u> </u>       | <u></u>                |     |         | 3.0           | 00 4.0      | <u> </u>                               | 7          | 3         | 5 1.7      | 60 03      | 2         | 0.         |                                              | 2.         | 530 0.     | 550 0.     | Vi                                     | 950 2.6                                 | l        | <u> </u> |          |   | -                                      |   |
| Alte               | Length         | th Total                  | Ē.                  | (1285)                    |                  | <u> </u>       |                        | -   | <br>    | (/4/0)        | 0 2000      | <del> </del>                           | (046)      | 0 1520    | 25 2/25    | 5          | 295 2455  | 85 2540    |                                              | (380)      | 5          | 20 5       | :                                      | 220 9.                                  |          |          |          | - |                                        |   |
|                    | <u> </u>       | ai Each                   |                     | 70)                       |                  | <del> </del> - | <del> </del>           |     |         | 27)<br>55 250 | 340         |                                        | 97) 23     | 72 320    | _          | 89 3       |           |            | <u>                                     </u> | 52) 72     | 38) 2      |            | /                                      |                                         | - (      |          |          |   | -                                      |   |
|                    | Area           | ch Total                  |                     | 3.90 77.60                |                  | 37.50 723.70   | 38.90 162.00           |     |         | 2.28 16.55    | 372 20.29   |                                        | 6.06 23.93 | 1.79 25.9 | 045 (4.18) | 1.07 51.69 | 0.89 53.8 | 2.86 72.30 |                                              | 70 (2:     | 009 (3.38) | 0.05 12.   | 2.73 (4.32)                            | 267 25                                  | (22.64)  |          |          |   | -                                      |   |
| -                  | ON             | Nol<br>Each               |                     | <u>ب</u>                  | 20.              | 3/.            | 38                     |     | _       | 2             | . v         |                                        | 6          | ,         |            |            | 0         | .01        | ( <del>6</del> 2)                            | <i>'</i>   | 0          | 0          | ""                                     |                                         |          | (63)     |          | - |                                        | - |
|                    | .oN            |                           |                     |                           | (0)              | (e)            | (4)                    | (F) |         | (S)           | 9           | (b)                                    |            | (0)       | 9          | (9)        | (3)       | (3)        | (A)                                          | (S)        | (4)        | (3)        | (9)                                    | (9)                                     | (8)      | 9        |          |   | -                                      | - |
| -                  | tnen           | mol<br>To<br>nhot         | റ്റ                 | $\frac{(\cdot)}{(\cdot)}$ |                  |                | 2                      |     |         | 9             | <u> </u>    | -                                      |            | <u> </u>  |            | <u>)</u>   |           |            | -                                            | <u>)</u>   | <u>ک</u>   | 9          |                                        |                                         |          | 1        | 17       | - |                                        |   |
|                    | Ü              | տոն                       | <b>V</b>            |                           | <u></u>          |                |                        |     |         | Ļ             |             | ــــــــــــــــــــــــــــــــــــــ |            | ,         |            | <u></u>    |           | ــــــا    |                                              | <u> </u>   |            | لبا        | ــــــــــــــــــــــــــــــــــــــ | <u> </u>                                |          |          | <u> </u> |   | ــــــــــــــــــــــــــــــــــــــ |   |

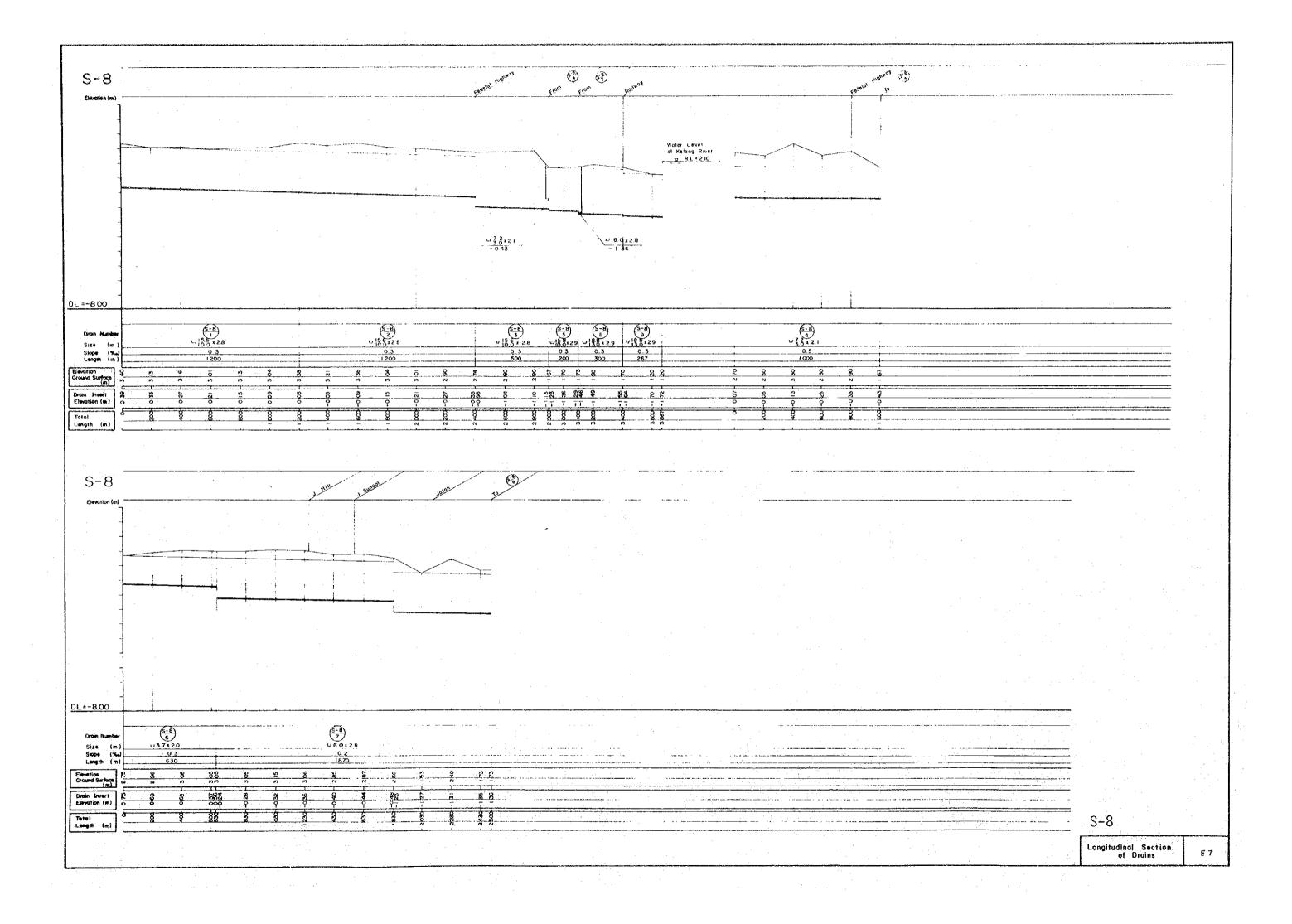

|                    | υ<br>Δ.<br>2<br>2<br>2<br>3<br>3<br>0 |                         | PASSENCE AND ADDRESS OF THE PA |               |            |                 | Parameter in the Control of the Cont |           |                  | and the second |          |               |           | -     |                  |         |            |           |            |                    |    |          |          |     |   |   |       |   |
|--------------------|---------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------------|----------------|----------|---------------|-----------|-------|------------------|---------|------------|-----------|------------|--------------------|----|----------|----------|-----|---|---|-------|---|
| Condition          | Drain                                 | Capacity                | (m <sup>2</sup> s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |            |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                  |                | <u>.</u> |               |           |       |                  |         |            |           |            |                    |    |          |          |     |   |   |       |   |
| Existing Condition | Existing Drain                        | Size                    | (m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |            |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                  |                |          |               |           |       |                  |         |            |           |            |                    |    |          |          |     |   |   |       |   |
|                    | ıin                                   | Capacity                | (m <sup>3</sup> /s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8.22          | 8.22       | 16.26           | 17.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 19.55     | 24.75            |                | 3.62     | 3.62          | 888       |       | 1.45             | 2.39    |            |           |            |                    |    |          |          |     |   |   |       |   |
|                    | sed Drain                             | Slope/Velocity/Capacity | (5/m) (m/s) (m/s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8 1.59        |            |                 | 8: 1.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.8 7.39  |                  |                | 661 61   | 1.9 1.79      | 1.9 2.24  | ·<br> | 1.0 1.12         | 2 1.36  | 1 1.42     | 0.9 1.44  | 0.8 1.45   | 0.6 7.56           |    |          |          |     |   |   |       |   |
|                    | Proposed                              | Size Slo                | %) (m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.4 × 2.4 0.8 | 24×2.4 0.8 | 83<br>3.5 × 2.4 | 3.5 x 2.5 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9.0 × 2.5 | 9.9<br>4.5 x 2.7 |                | 1 5/x5/B |               | 21×2.1    |       | 1/2×/2/          | U14x14  | 7 97 491   | 0 61x61A  | 2.1 × 2.1  | U 29×29 0          |    |          |          |     |   |   |       |   |
|                    | Runoff                                |                         | (നും                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A             | <u> </u>   | a               | Д                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Α         | 7                |                | 6        | 0             | 0         |       |                  | П       | _1         |           | 7          | FI                 |    |          |          |     |   |   |       |   |
| 2000               |                                       |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.34          | 6.44       | 14.72           | 16.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           | 22.72            |                | 301      | ]             | 7.59      |       | 1.09             |         | 2.88       |           |            | 10.16              |    | <br>·    |          |     |   | : |       |   |
| Year               | E Design                              | Perha                   | ) (m/s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.181         | 0.159      | 3 0.132         | 2 0.122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 0.113   | 1 0.112          |                | 1 0.269  | $\rightarrow$ | 0 239     |       | 1 0.260          | 1 0.272 | 1 0232     | 9 0210    | 10107      | 7 0211             |    |          |          |     |   |   |       |   |
| i<br>Y             | 1n9i<br>90                            | of fic                  | S<br>900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 75 075        | 175 0.73   | 55              | 165 072                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 165 071   | 165 071          | -1             | 75 084   | 75            | 0.00 52.0 |       | 180 620          | 183 081 | 180 120    | 2.69 0.79 | 2.70 0.77  | 275 077            |    | <br>     |          |     |   |   | -<br> |   |
| (9-7               | to<br>noitori                         | amiT<br>neono<br>ionoi  | (min)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (28.4)        | 37.8 0.    | 40.7 0          | 45.7 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 50.2 0    | 51.10            |                | (15.0)   |               | 19.9      |       | (8.8)            | 1010    | 193 0      | 2/5       | 24.1       | 243 0              |    |          |          |     |   |   |       |   |
| 9 B (N             | of Flow<br>Drain                      | Total                   | (min) (min)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (184)         | 5 27.8     | 30.7            | 35.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5 40.2    | 1.14 6           |                | (5.0)    |               | 6.0       |       | (6.8)            | 3 91    | 9.3        | 2 //.5    | 6 14.1     | 2 /43              |    |          |          | 1 2 |   |   |       | : |
| Alternative        |                                       | Total Each              | (m) (mi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (1400)        | 2250 6.5   |                 | 2875 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3245 4.5  | 3325 0.9         |                | 565 1.5  |               | 940 0.6   |       | (380)<br>505 2:0 | 530 03  | 550 0.2    | 730 22    | 950 26     | 970 02             |    |          |          |     |   |   |       |   |
| Alt                | Length                                | Each Tr                 | (m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 270 14        | 580        | 225             | 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 370 3     | 80 3             |                | 55/      |               | 90        | :     | /25              | 25      | 20         | 180       | 220        | 20                 |    |          |          |     | _ |   |       |   |
|                    | Area                                  | Total                   | ) (ha)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (32.14)       | 40.48      | (37.70)         | 0 /32.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 153.58  | 38.90 202.48     |                | (4/8)    | 8 13.59       | 3 31.82   |       |                  |         | 15 (4.61)  | (4.32)    | (349)      | (22.64)<br>- 48.20 |    |          | : :<br>: |     |   |   |       |   |
|                    |                                       | Molitical Right         | nI<br>(br)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8.34          | - I        | 3.90            | 20.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 31.50     | 38.9             | <b>(f.)</b>    | 7.03     | 2.18          | 1843      | (62)  | 170              | 0.00    | 0.05       | 2.73      | 2.67       |                    | વિ | 4.       |          |     |   |   |       |   |
| 1                  | · .                                   | əui.                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0             | <u> </u>   | ୍ର<br>(ଅ        | 4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u>্</u>  | <u> </u>         | 9              | <b>(</b> | (O)           | <b>6</b>  | )     | 9                | (3)     | <b>(2)</b> | <u>ා</u>  | <b>(3)</b> | (S)                | ۳  | - 1<br>1 |          |     |   |   |       |   |
| +                  | աeև<br>Մ                              | Nar<br>O<br>Apt         | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9-N           | (8)        |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                  |                |          |               |           |       |                  |         |            |           |            |                    |    |          |          |     |   |   |       |   |

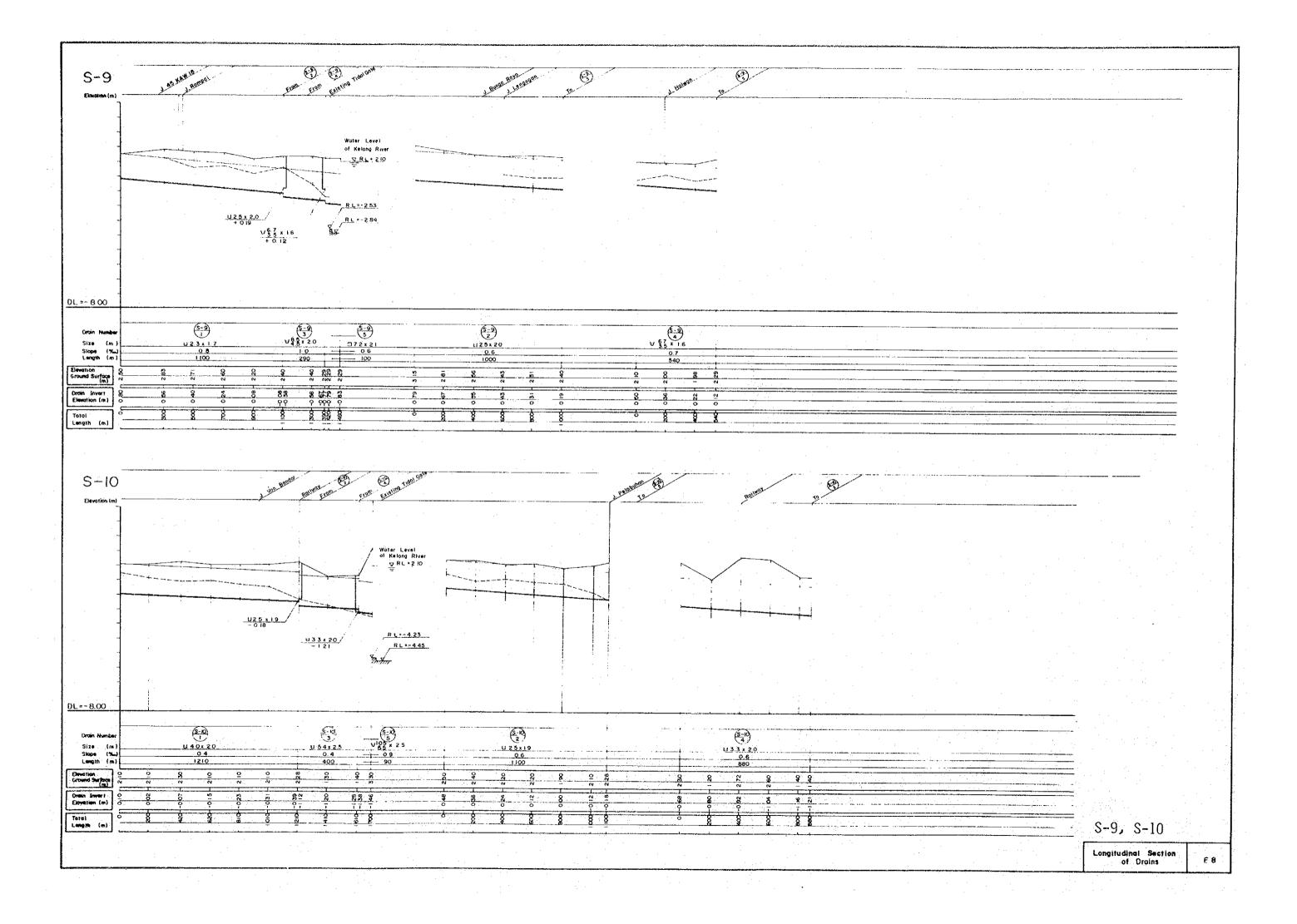

| Alternative C (N-6) in Year 2000   Existing Drain   Famorike   Existing Condition   Existin               |            |              | en an annual de principal de pr |                                 | 714          |                                                  |              |             |                | T        |       | - T          |                  |            |        |          | ·              |        | T     |     |     |    |   |                                                  |   |              |    |   | 200.00       | 2,25402      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--------------|--------------------------------------------------|--------------|-------------|----------------|----------|-------|--------------|------------------|------------|--------|----------|----------------|--------|-------|-----|-----|----|---|--------------------------------------------------|---|--------------|----|---|--------------|--------------|
| Alternative C (N-6)   in Ye ar 2000   Existing Condition   Existing Co               |            |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |              |                                                  |              |             |                |          |       |              | ļ                |            |        |          |                |        |       |     |     |    |   |                                                  |   |              |    |   |              | Ì            |
| Alternative C (N-6)   in Ye ar 2000   Existing Condition   Existing Co               |            | بر<br>بر     | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 |              |                                                  |              |             |                | -        |       |              |                  |            | ĺ      |          |                | :      |       |     |     |    |   | 1                                                |   |              |    |   |              |              |
| Alternative C (N-6)   in Ye ar 2000   Existing Condition   Existing Co               |            | 9            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·                               |              | 1                                                |              |             |                |          |       | j            |                  |            |        |          |                |        |       |     |     |    |   |                                                  |   | •            | ·  |   |              |              |
| Carry   Carr               |            |              | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 |              |                                                  |              |             |                |          |       |              |                  |            |        |          |                |        |       |     |     |    |   | ļ                                                |   |              |    |   |              |              |
| Carry   Carr               | E          | Ţ[           | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                               |              |                                                  |              |             |                | $\dashv$ |       | -            |                  | $\dashv$   |        |          |                | -      |       |     |     |    |   |                                                  | _ |              |    |   |              |              |
| Carry   Carr               | giting     | gin          | apacit<br>m³s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                 |              |                                                  |              |             | İ              |          |       |              |                  |            |        |          |                |        |       |     |     |    |   |                                                  |   |              |    |   |              |              |
| Alternative C (N-6)   In Year 2000   Alternative C (N-6)   Alternativ               | S          | ng D         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                               |              |                                                  |              | <del></del> |                | $\dashv$ |       | -            |                  | -          |        |          | -              |        |       |     |     |    |   |                                                  |   |              |    |   |              |              |
| Alternative C (N-6)   In Year 2000   Alternative C (N-6)   Alternativ               | Xistir     | Xisti        | Size<br>(m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                 |              |                                                  |              |             |                |          |       |              |                  |            |        |          |                |        |       | .   |     |    |   |                                                  | , |              |    |   |              | :            |
| Alternative C ( N-6) in Year 2000   Alternative C ( N-6) in Year               |            | 1 1111       | S) S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8/                              | 78           | 11                                               | 8/8          |             | 29             | 29       | 88    |              | 22               | 22         | 117    |          | 249            | 3.82   | 4.09  |     |     |    |   |                                                  |   |              |    | - |              |              |
| A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            | nin          | g E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                               | /3           | 9/                                               | 5/2          |             |                |          |       | -            |                  |            |        |          |                |        |       |     |     |    |   |                                                  |   | <del>.</del> |    |   |              |              |
| A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            | 1            | elociti<br>(m/s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 121                             | 1.27         | 1.33                                             | 1.41         |             | 1.79           | 1.79     | 2.24  |              | 159              | 1.59       | 1.63   |          | 1.23           | 1.31   | 7.63  |     |     |    |   |                                                  |   |              | L. |   |              |              |
| A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            | paso         | Sope (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8.0                             | 0.0          | 0.8                                              | 0.0          |             | 6.1            | 6.1      | 6.1   |              |                  | 0.8        | 0.8    |          | 60             | 0.8    | 9.0   |     |     |    |   |                                                  |   |              |    |   |              |              |
| Alternative C (N-6) in Year 2000   Alternative C (N-6)   A               |            | Prop         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | <del> </del> |                                                  |              |             | 5,5            | 50/      | 2.1   |              | 82.7             | 2.4        | 2.5    |          | × /.5          | × /. 0 | x 3 / | -   |     |    |   |                                                  |   |              |    |   |              |              |
| Alternative C (N-6) in Year 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |              | Siz<br>m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7.2<br>7.0<br>7.0<br>7.0<br>7.0 | 7.9 ×        | 8.4<br>8.0                                       | 9.8<br>5.0 x |             | 3 / 5 /        | 17.5     | × /.2 |              | (0.26<br>U.2.4 x | 12.4       | U 2.5) |          | W/5            | E 7.8  | E 3.1 |     |     |    |   |                                                  |   |              |    |   |              |              |
| Alternative C (N-6) in Year 2000  And Hornative C (N-6) in Year 2000  And Hornative C (N-6) in Year 2000  Each Total Each Each Total Each Total Each Each Each Each Each Each Each Each                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | off          | 호 E %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                 |              |                                                  |              |             |                |          |       |              |                  |            |        |          |                |        |       |     |     |    |   |                                                  |   | •            |    |   | .            |              |
| Alternative C (N-6) in Year 22 Area Length inthe Origin to Figure 1 (mg) in the Origin to Figure 1 (mg) in the Origin to Figure 2 (mg) in the Origin to Figure 2 (mg) in the Origin in the Origin to Figure 2 (mg) in the Origin i             |            |              | B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B<br>B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                 | 0,           | <i>L</i>                                         | - 9          | -           | _              | 8        | 0     |              | 70               | 0          | 9      |          | 5              | 60     | œ     |     |     | -  |   |                                                  |   |              | -  |   |              |              |
| Alternative C (N-6) in Year  Area Length Time or in A feet Design Into Cook Total Each Each Each Each Each Each Each Each                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3          | unof         | Runo<br>(m/s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10.64                           | 12.42        | 15.2                                             | 19.8         |             | 3.0            | 3.2,     | 7.5   | ;            | 6.9              | 7.3        | 8.0    |          | 2.0            | 3.2    | 12.6  |     |     |    |   |                                                  |   |              |    |   |              |              |
| Alternative C (N-6) in Year Area Length in time or Films of Films              |            | . Igi        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 | 36           | 24                                               |              |             | 692            | 245      | 239   | , .          | 172              | 191        | 143    |          | 222            | 208    | 143   |     |     |    |   |                                                  |   |              |    |   |              |              |
| Columbia                | 9          |              | P E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                               |              | +                                                | 3 0.7        |             |                |          |       |              | ļ l              |            |        |          |                |        |       |     |     |    |   |                                                  | - |              | _  | - | -            |              |
| Alternative C (N-6) in the Digit of Filow of Gargo of Gar             |            | Э            | Storag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6                               | 0.74         |                                                  | 0.7.         |             |                |          |       |              | 5 0.7            | 5 0.7      |        |          |                |        |       |     | : - |    | _ | -                                                |   |              | -  | ļ |              |              |
| Alternative C (N<br>Artea Length Time of Flow<br>Each Total Each Total Each Total<br>Each Total Each Total Each Total<br>Each Total Each Total Each Total<br>Each Total Each Total Each Total<br>(Artea State Stat | . <u>c</u> | Ē .          | ilonu되                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 %                             | 0.60         | 0                                                | 0            |             | Ö.             | 0        | 0     |              | 1                | Ö          | 0      |          | 0              | 0      | a     |     |     |    | _ | _                                                |   |              |    | ļ | <del> </del> | ļ            |
| Alternative C (N<br>Artea Length Time of Flow<br>Each Total Each Total Each Total<br>Each Total Each Total Each Total<br>Each Total Each Total Each Total<br>Each Total Each Total Each Total<br>(Artea State Stat | 1          | 10<br>DOID   | emiT <u>E</u><br>mesoxX <u>C</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 262)                            | 34.7         | 39.5                                             | 40.5         | . :         | (/5.0,<br>/6.5 | 19.3     | 199   | 77 -         | 33.9             | 37.1       | 44     |          | (18.8,<br>22.3 | 25.0   | 44.4  |     |     |    |   |                                                  |   |              |    |   |              |              |
| Alternative C Area Length In the Dol (area) (m) (m) (min) (nother Dol (area) (a             | 1          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (2.0)                           | 7 7          | 50.5                                             | 30.5         |             |                | 93       | 66    |              | 18.4)            | 11         | 34.2   |          | 88)            | 15.0   | 34.4  |     |     |    |   |                                                  |   |              |    |   |              |              |
| Alterno<br>Area Length    Cach Total Each Total   (m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |              | 4. c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 | +            | <del>                                     </del> |              |             |                | 8        | 9     |              | 1                |            |        |          |                | 7      |       |     |     |    |   |                                                  |   |              |    | - | -            |              |
| ON wolfn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1          | - E          | E E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                               |              | <u> </u>                                         |              |             |                |          | ļ     | <u> </u>     |                  |            |        |          |                |        |       |     |     |    | ļ | -                                                | - | -            |    | - | -            | -            |
| ON wolfn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4          | 1            | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 128                             | 1/0/         | 2280                                             | 236          | :           | (4/0           | L        |       |              |                  | 222        |        | <b>.</b> |                |        | 292   |     |     | l. |   |                                                  |   |              |    |   | <u> </u>     | L            |
| ON wolfn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | \ \ \      | Leng         | ach                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 300                             |              | 370                                              | 80           |             | 155            | 295      | 80    |              | 505              | 300        | 675    |          | 245            | 205    | 20    |     |     |    |   |                                                  |   |              |    |   |              |              |
| ON wolfn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |              | rai E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (0/2                            |              |                                                  | -            |             | 121            | 39       | 1.82  |              | 1                | <b>—</b> — |        | <u> </u> | 37             | 5.53   | 6.54) |     |     |    |   |                                                  |   |              |    |   |              |              |
| ON wolfn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            | Area         | 유<br>구<br>구                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | \$ <mark>€</mark>   \$          | 3 6          | 20 /2                                            | 70 /62       |             |                | 8/       | 43 3. |              | 06 (3            | 77 4:      | 36 54  | -        | 39 (2          | 1,6/   |       |     | · · |    |   | <del>                                     </del> |   |              | -  | - |              |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                               | 5 8          | 3,5                                              | 38           |             | 1              | 8        | 18    | <del> </del> | +                | 4          | //     | 1        | 9              | - 40   | -     |     | _   |    | - | <u>                                      </u>    |   |              | -  | - | +-           | <del> </del> |
| T IN THE ROLL OF T             |            |              | · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                 |              |                                                  |              | (P)         |                |          |       | (6,2)        | )                |            |        | (3)      |                |        |       | (F) |     |    |   |                                                  | _ |              | _  |   | _            |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (S                              | <u>@</u>     |                                                  | <b>a</b>     |             | (4)            | 9        | 0     |              | <b>®</b>         | (e)        | 9      |          | (3)            | (2)    | (3)   |     |     |    |   |                                                  | _ |              |    | 1 |              | <u> </u>     |
| O Cotchment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | in <u>ər</u> | ndri<br>To<br>ndət <u>o</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 717                             | ()           |                                                  | -            |             | :              |          |       |              |                  |            | :      |          |                |        |       |     |     |    |   |                                                  |   |              |    |   |              |              |

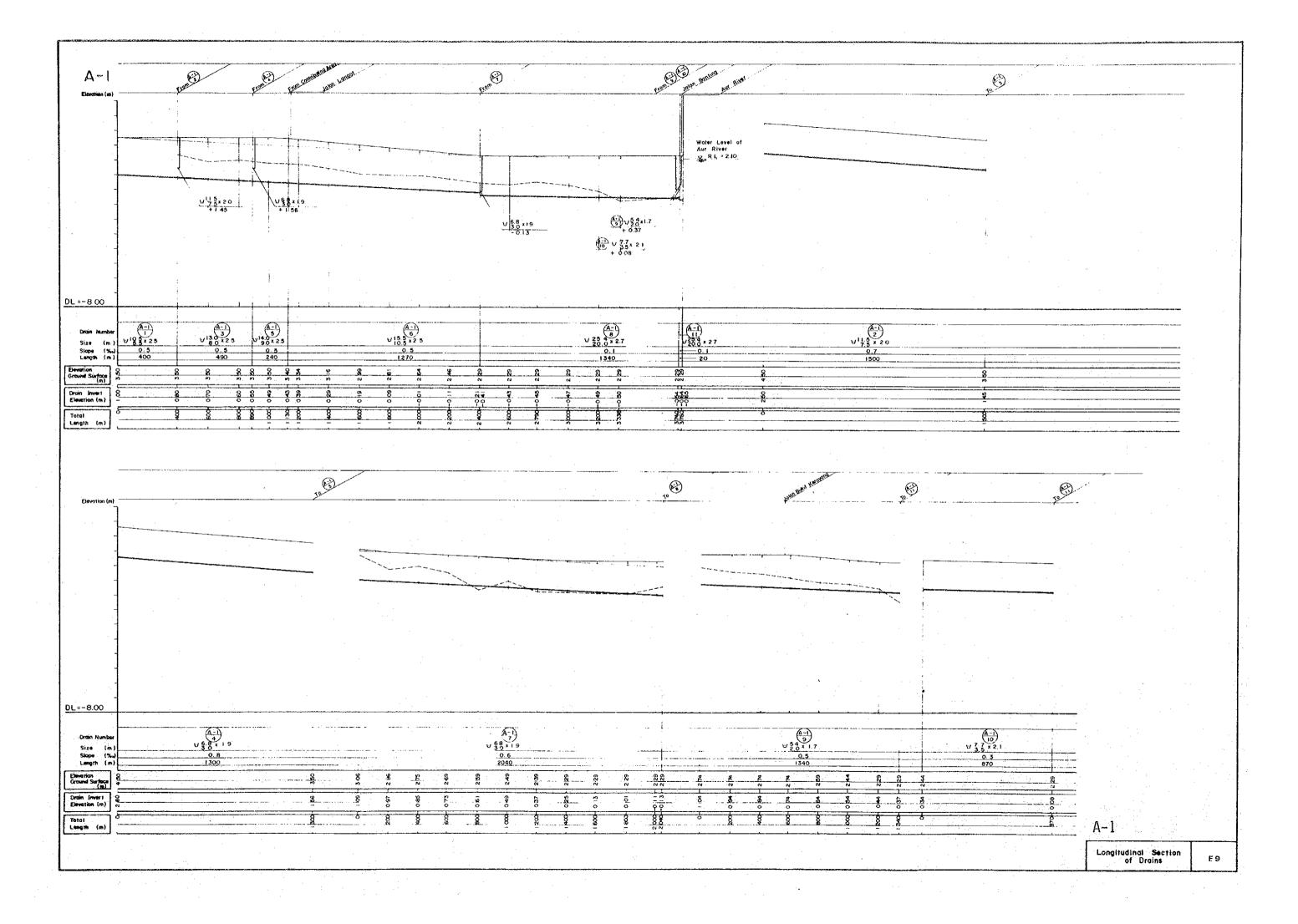

|                    | 0<br>2<br>1<br>0<br>0        |                                 |               |              |     |             |           |     |              |              |            |           |             |              |               |                 |         |   |         |           |    |   |  |  |   |   |                |
|--------------------|------------------------------|---------------------------------|---------------|--------------|-----|-------------|-----------|-----|--------------|--------------|------------|-----------|-------------|--------------|---------------|-----------------|---------|---|---------|-----------|----|---|--|--|---|---|----------------|
| andition           | Orain                        | Capacity (m3/c)                 | , S/,         |              |     |             |           |     |              |              |            |           |             |              |               |                 |         |   |         |           |    |   |  |  |   |   |                |
| Existing Candition | Existing Drain               |                                 | È             |              |     |             |           |     |              |              |            |           |             |              |               |                 |         |   |         |           |    |   |  |  |   |   |                |
|                    | ii                           | Capacity<br>(m <sup>3/c</sup> ) |               | 11.98        |     | 7.32        | 18.37     |     | 3.76         |              | 13.97      | 27.36     |             | 8.47         | 35.62         | 35.82           |         |   |         |           |    |   |  |  | : |   |                |
|                    | sed Drain                    | Slope Velocity Capacity         | - -           | 3 1.24       |     | 3 7.10      | 4 1.53    |     | 2 1.08       |              | 3 1.27     |           |             | 5 093        | 6 1.42        |                 |         |   |         |           |    |   |  |  |   | : |                |
|                    | Proposed                     |                                 | 2/3           | 44.4×2.5 0.3 |     | W38x2.0 0.3 | 152x26 04 |     | V 63x1.4 / 2 | # 37x2.0 0.4 | U 56×22 03 | _         |             | V4.0×1.8 0.5 | V 70x 2.9 0.6 | V 7.0 x 2.9 0.5 |         |   |         | •         |    |   |  |  |   |   |                |
|                    | Runoff                       | Storm                           | è             | 77           |     | 20          | , FI      |     | , a          | А            | 73         | `^        | <del></del> | V.           | <u>,</u>      | <u>``</u> 2     |         |   |         | *.        | -  |   |  |  |   |   |                |
| 2000               | Runoff                       | Funoff                          |               | 17.25        |     | 6.97        | 17.49     |     | 3.28         | 7.65         | 13.25      | 24.72     |             | 7.32         | 32.45         | 32.26           |         |   |         |           | -: |   |  |  |   |   |                |
| Year               | = Design                     | offic<br>Perha                  |               | 7 0.164      |     | 161.0       | 2 0.773   |     | 2 0.205      |              | 4 0.136    | -         |             | 7 0.123      | 0.093         | 1 0.092         |         | • |         |           | :  | : |  |  |   |   |                |
| in Y               | HUS                          | Runofic<br>Stora                |               | 0.60 0.77    |     | 0.60 0.80   | 0.60 0.72 |     | 0.60 0.82    | 0.60 0.77    | 0.60 0.74  | 0.60 0.71 |             | 0.45 0.77    | 0.60 0.71     | 0.60 0.71       |         |   |         |           |    | : |  |  |   |   |                |
| ( 5 L              | io<br>noimi                  | emil (<br>neora)                | Tunna T       | 25.7         |     | 8.61        | 45.6      |     | 19.7         | 23.9         | 34.5       | 55.2      |             | 25 8         | 60.0          | 6 60.6          |         |   |         |           |    |   |  |  |   |   | Ta .           |
| Catchmen           | Time of Flow<br>in the Drain | th Total                        |               | 15.7         | . • | 8 9.8       | 9 35.6    |     | 7 7.7        | 2 13.9       | 6 24.5     | 6 45.2    |             | 8 /5.8       | 8             | 0.6 50.0        | ,       |   |         |           |    |   |  |  |   |   |                |
| S7.                |                              |                                 |               | \$           |     | 9.          | 2540 19   |     | 7            | 935 6        | 1735 10    |           |             | 75           | 3740 4        | 7               | 2 River |   | • • • • | Assault 1 |    |   |  |  |   |   |                |
| B (Ss~             | Length                       | Each                            | (1111)        | 280          | ල   | 630         | 08/       | (O) | 480          | 455          | 800        | 800       | 6           | 850          | 400           | 50              | Kelang  |   |         |           |    |   |  |  |   |   |                |
| Case               | Area                         | ch Toral                        | (10)          | 68.0         | 70  | 5           | 7 154.8   | 170 | o.           | 29.0 45.0    | 52.4 97.4  | 252.2     | 70          | . 5          | 37.2 348.9    |                 | 70      |   |         |           |    |   |  |  |   |   | <br>1<br>3<br> |
|                    |                              | wolini<br>B                     |               | 79           | •   | 36          | (J) 49.   |     | /6.          | 29           | 52         | 0         |             | 59.          | (g)   31      | 0               |         | 1 |         |           |    |   |  |  |   |   |                |
|                    |                              | eui-J                           | $\mathcal{L}$ | -+           |     | 0           | <u>ි</u>  |     | <b>⊕</b>     | (b)          | 9          | <u></u>   |             | @            | <u>©</u>      | 9               |         |   |         |           |    |   |  |  |   |   |                |
|                    | an<br>T                      | Nar<br>Calch                    |               | <u>ک</u>     | 27  | (8)         |           |     |              |              |            |           |             |              | اب.           |                 |         |   |         |           |    |   |  |  |   |   |                |

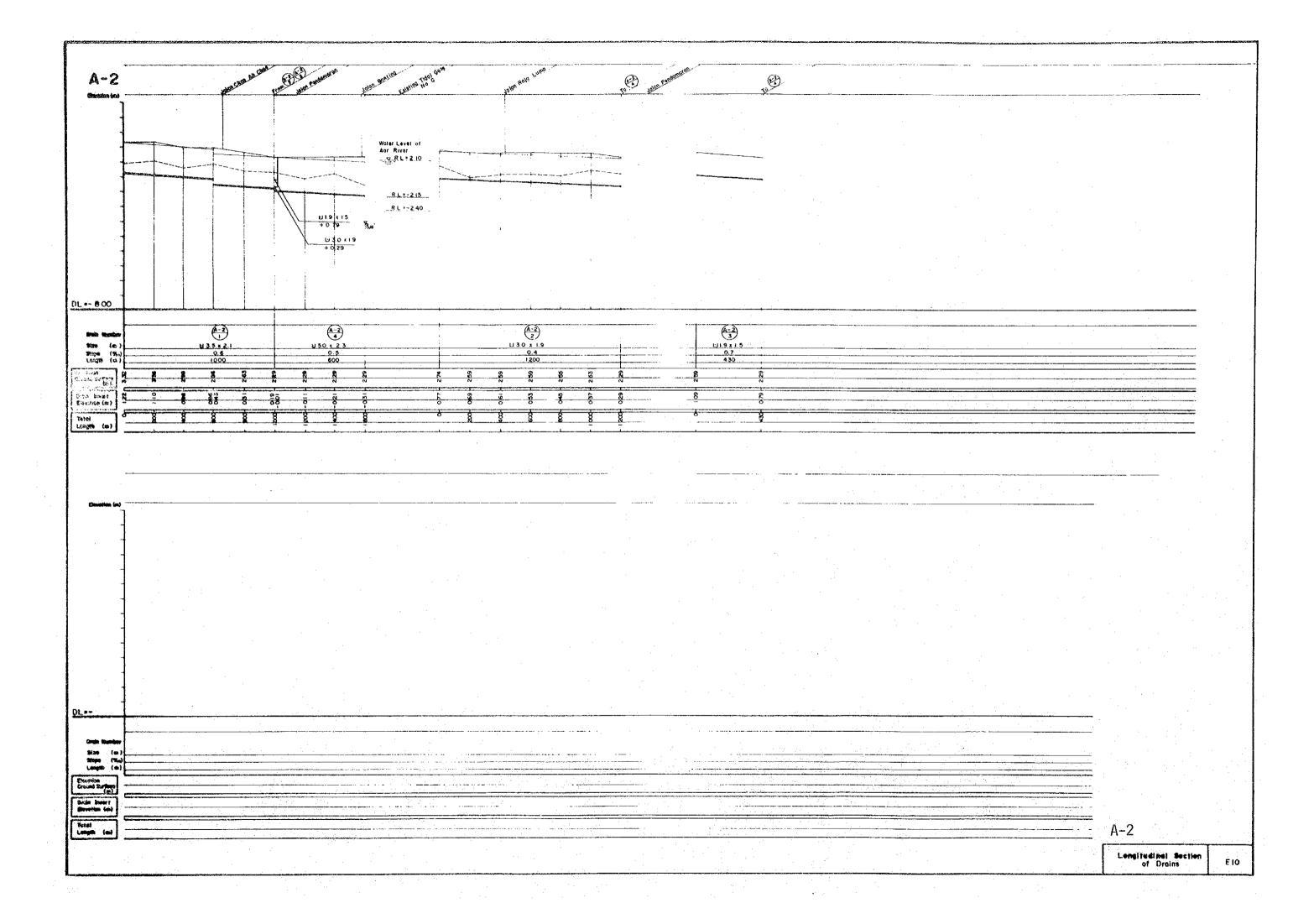

| , (1122 — ()       | Remarks        |                                                          |           |              |             |               |           |            |    |             |                   |              |               |           |               |        |          |   |   |   |      | <br> |   |      |       |  |
|--------------------|----------------|----------------------------------------------------------|-----------|--------------|-------------|---------------|-----------|------------|----|-------------|-------------------|--------------|---------------|-----------|---------------|--------|----------|---|---|---|------|------|---|------|-------|--|
| io                 |                |                                                          |           |              |             |               |           |            | _  |             |                   |              |               |           | -             |        |          |   |   |   |      |      | - |      |       |  |
| Existing Condition | Existing Drain | Capacity (m <sup>3</sup> /s)                             |           |              |             |               |           |            |    | _           |                   |              |               |           |               |        |          |   |   |   | <br> |      |   |      |       |  |
| Existin            | Existi         | ty Size                                                  | 70        |              | -           |               | 6         | 2          |    | 9           | 4                 | 4            |               | 4         |               |        |          |   |   |   |      |      |   |      | _     |  |
|                    | Drain          | ny Capaat<br>(m <sup>3</sup> /s)                         | 10.2      | .            |             |               | 7 489     | 7 642      |    | 9           | 8                 | 3 11.54      |               | 3 4.64    | 8 15.9        | 1.     |          |   |   |   |      |      |   |      |       |  |
|                    | 1 1            | Slope Velocity Capacity<br>(%) (m/s) (m <sup>3</sup> /s) | 0.6 1.050 |              |             |               | 0.6 0.89  | 0.6 1.37   |    | 1.0 1.14    | 10 1.22           | 1.0 7.33     |               | 1.2 1.13  | 09 138        |        |          |   |   |   |      |      |   |      |       |  |
|                    | Proposed       | Size S<br>(m) (c                                         | 7.8 1.9 C |              |             |               | 5.3 x 1.9 | 9.1×8.2    |    | 4 2.0 × 1.7 | U 2.5×1.8         | v 2.7×2.1    |               | 1 20×14   | 8.1<br>V35×23 |        |          |   |   |   |      |      |   |      |       |  |
|                    | Runoff         | Najor<br>Storm<br>(㎡法)                                   | , ,       |              | 7           |               | ā         | Я          |    | ס           | נ                 | ⋾            |               | Þ         | >             |        |          |   |   |   |      |      |   |      |       |  |
| 2000               | Runoff         | Total<br>Runoff<br>(m/s)                                 | 887       |              | A 29 ha     |               | 454       | 909        |    | 5.70        | 723               | 10.96        |               | 4.25      | /4.50         |        |          |   |   | · |      |      |   |      |       |  |
| Year               | Design         | Siora<br>Coeffic<br>(m/s)                                | 0127      |              | : 32:3      |               | 0.103     |            |    | 0.176       | 0.160             | 0.088        | ·             | 0.174     | 0086          |        |          |   |   |   |      |      |   |      |       |  |
| i                  | .  tuə         | Coeffici                                                 | 0.55 0.74 |              | Pond ( = tc | <del></del> - | 0.55 0.72 | 055 0.71   |    | 0.55 0.80   | 0.55 0.78         | 055 071      | <del>,-</del> | 0.55 0.80 | 0.55 071      |        |          |   |   |   |      |      |   |      |       |  |
| Pond )             |                | emiT E                                                   | 33.2 0    | - 7-1        | Retention P |               | 45.8      | 520        |    | 19.7        | 23.2              | 57.7         |               | 20.3      |               |        |          |   |   |   |      |      |   |      |       |  |
| Datention          | e of Flow      | (min) (min)                                              | 23.2 23.2 | tion Pond    |             |               | 2.6 35.8  |            |    | 49.         | 5.                |              |               | 10.3 10.3 | 49.           |        |          |   |   |   |      |      |   |      | <br>  |  |
| - 1                | F. F.          | Total Eac<br>(m) (m                                      | 23        | To Retention | Dutflow F   |               | 2/ 0/6    | 2.3        |    | 6           | 900               |              |               | 9/        | 7             | 5      |          |   |   |   |      | -    |   | -    |       |  |
| # 100 + 00 T       |                | Each 7                                                   | (750)     | m3/20C       | SC          |               | 099       | 500        | 9  | (500)       | 250               | 3 450        | 0             | 989       |               | Ke/ang |          | , |   |   |      |      |   |      |       |  |
| 4+!/W/ C-!W        | Area           | Each Total Each Total (ha) (m) (m)                       |           | 10.22        | 3.7 7       |               | (44.8)    | 20.0 (64.8 | 70 | 32.4        | 2.8 45.           | 14.8 (124.8) | 70            | 24.4      | 199 (169.1)   | 70     |          |   |   |   |      |      |   |      |       |  |
|                    | <u> </u>       | wolini<br>명 은                                            | (2)       |              |             |               | /         | 2          |    | ,           | \( \frac{1}{2} \) | (S)          |               |           | (9)           |        |          |   |   |   |      | -    |   | 11.2 | 1. 1. |  |
|                    |                | Carchr<br>Line                                           | Œ         |              |             |               |           | 0          |    | (9)         | 4                 | 9            |               | 9         | 0             |        |          |   | 1 |   |      |      |   |      |       |  |
|                    | əi             | Mam<br>10<br>Catchr                                      | N-2       | (R.P.)       |             |               |           | <u> </u>   |    |             | <u></u>           |              |               | F-        | -22           |        | <u> </u> |   |   |   |      |      |   |      | L     |  |

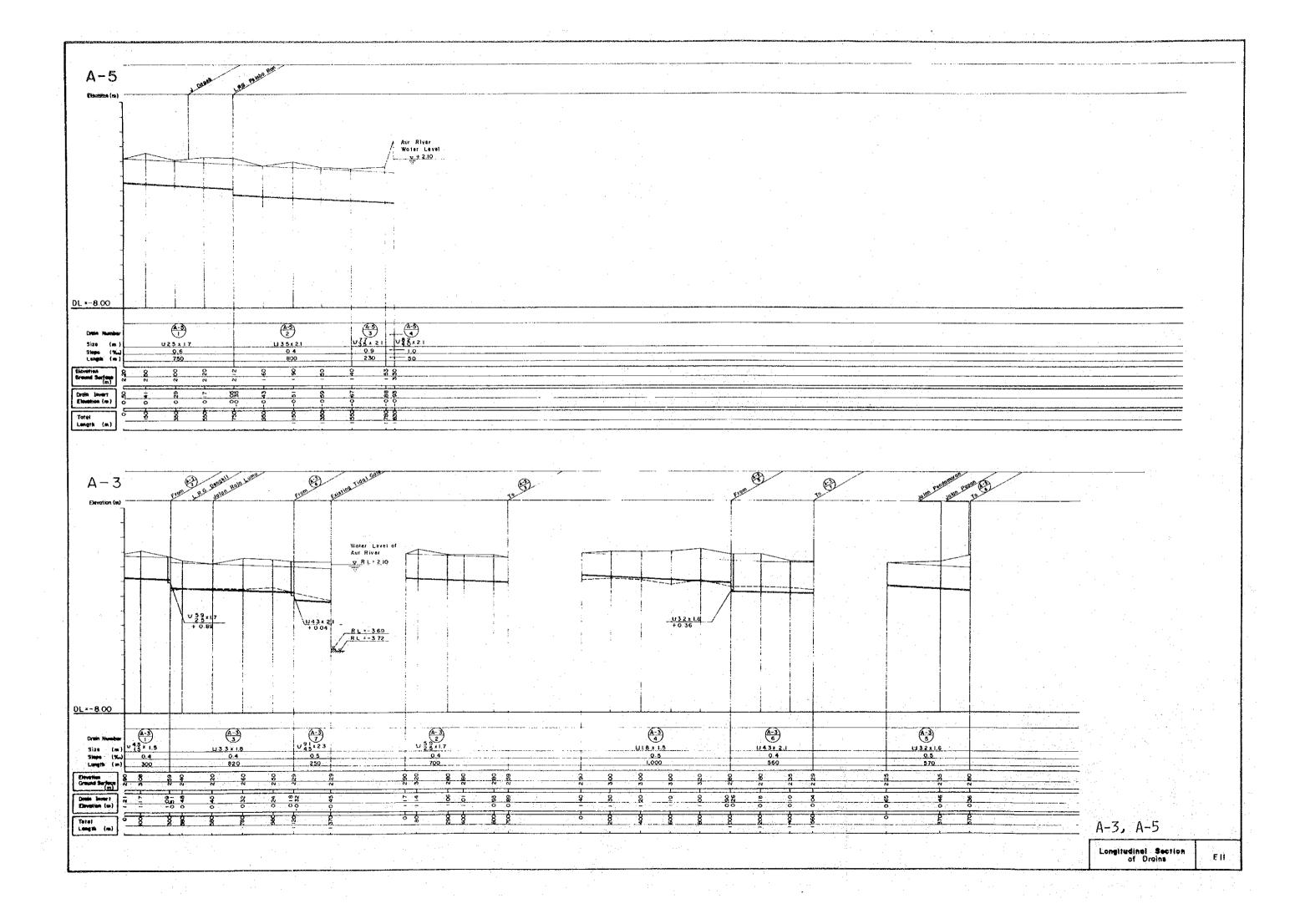


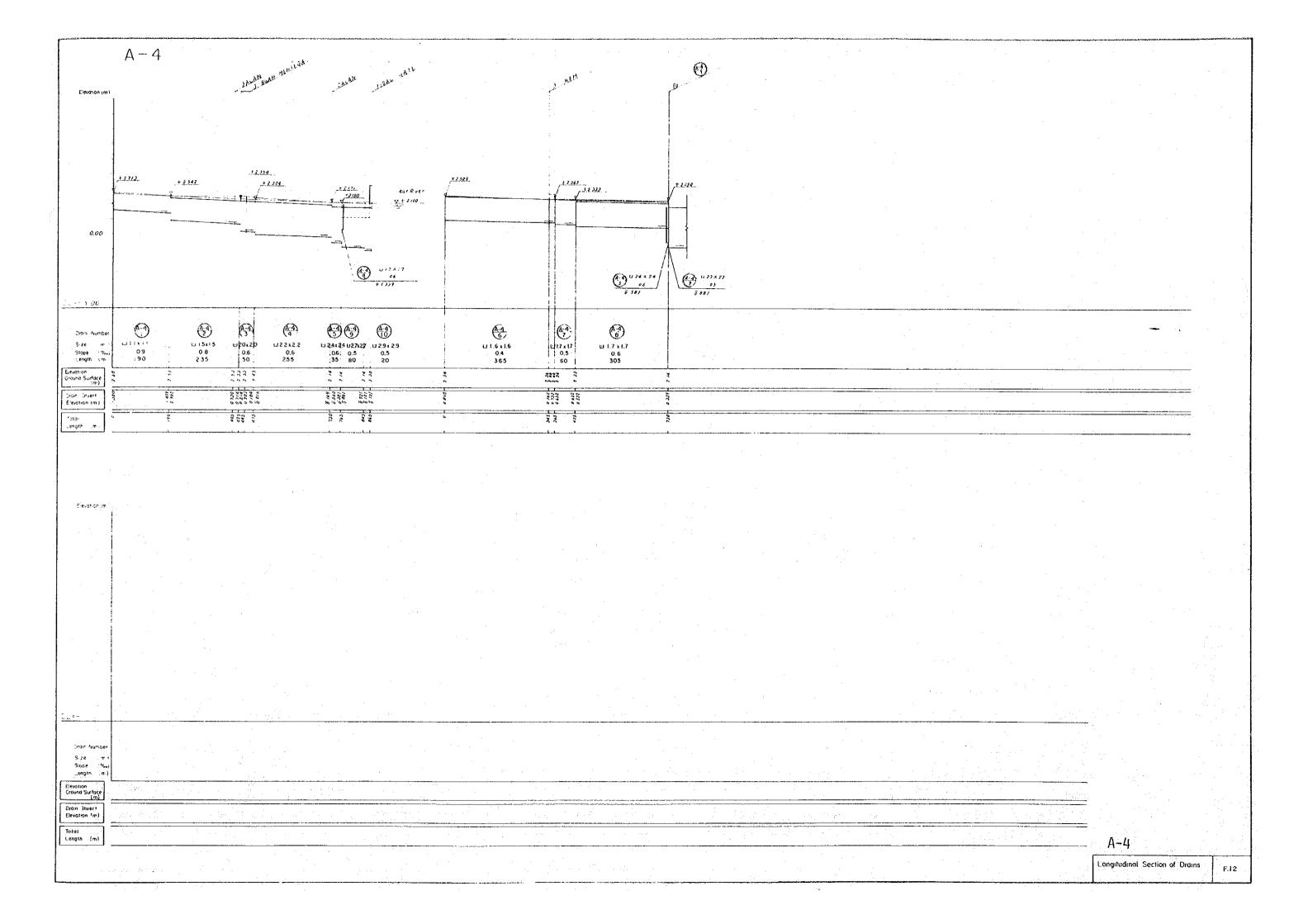



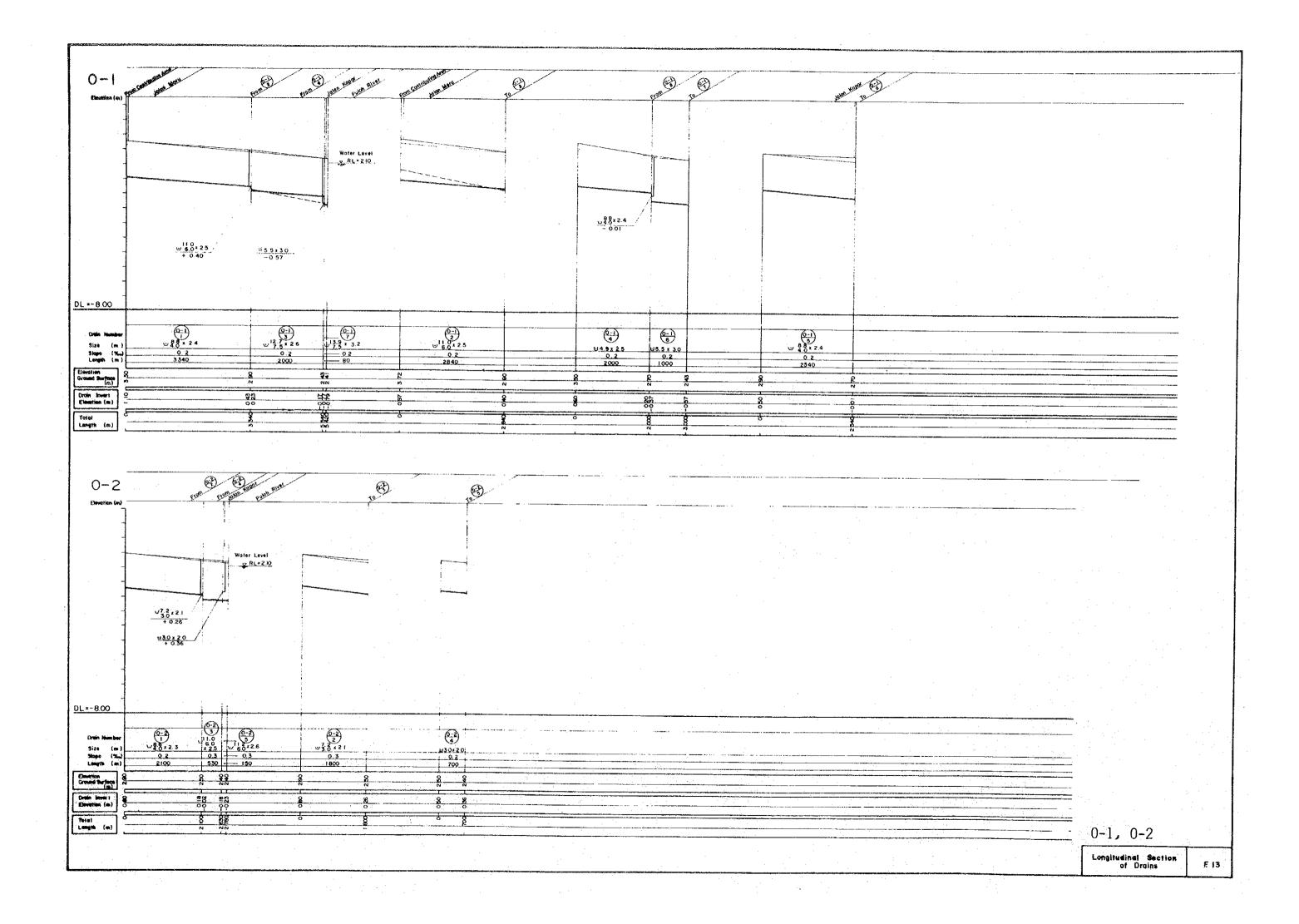



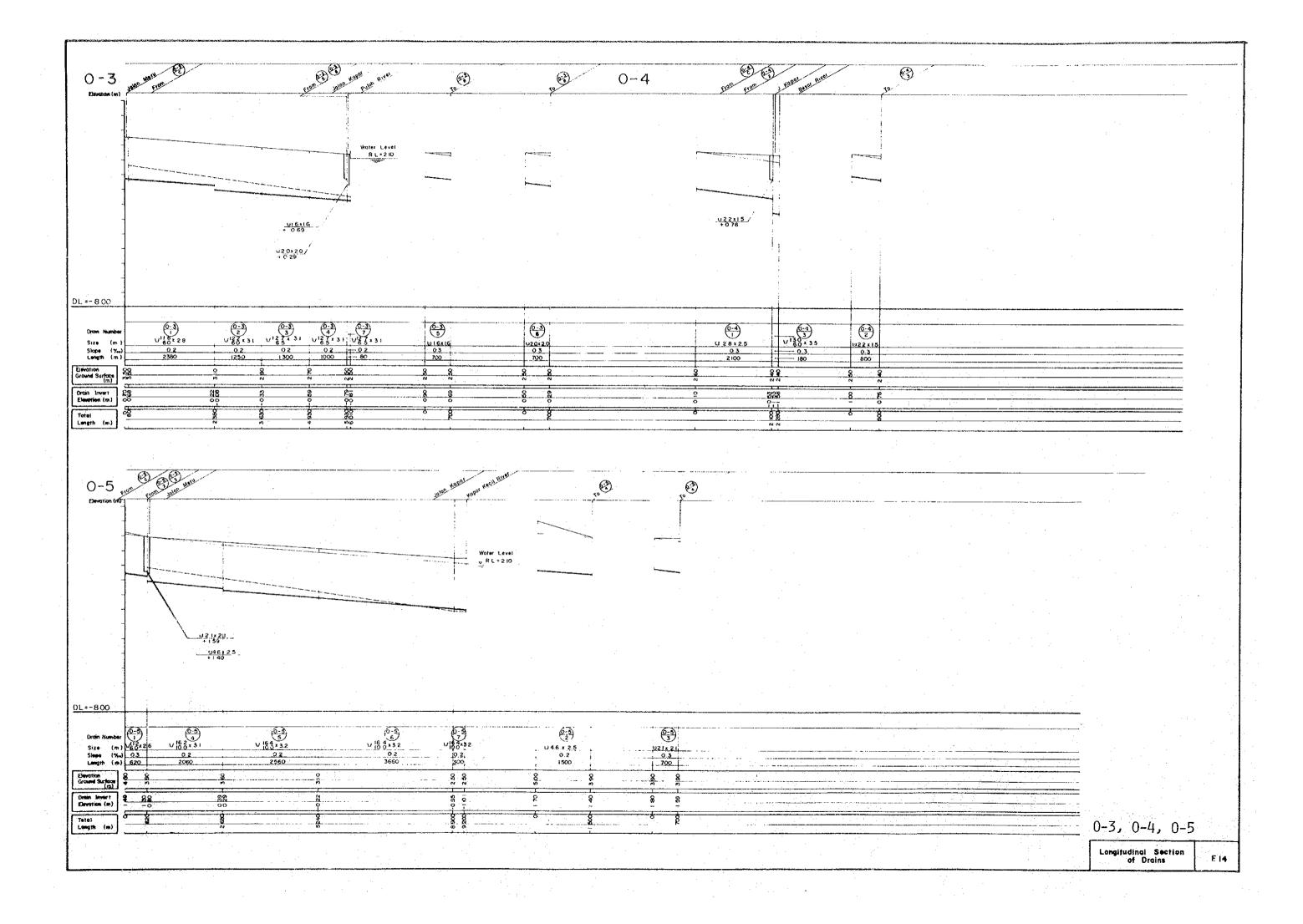



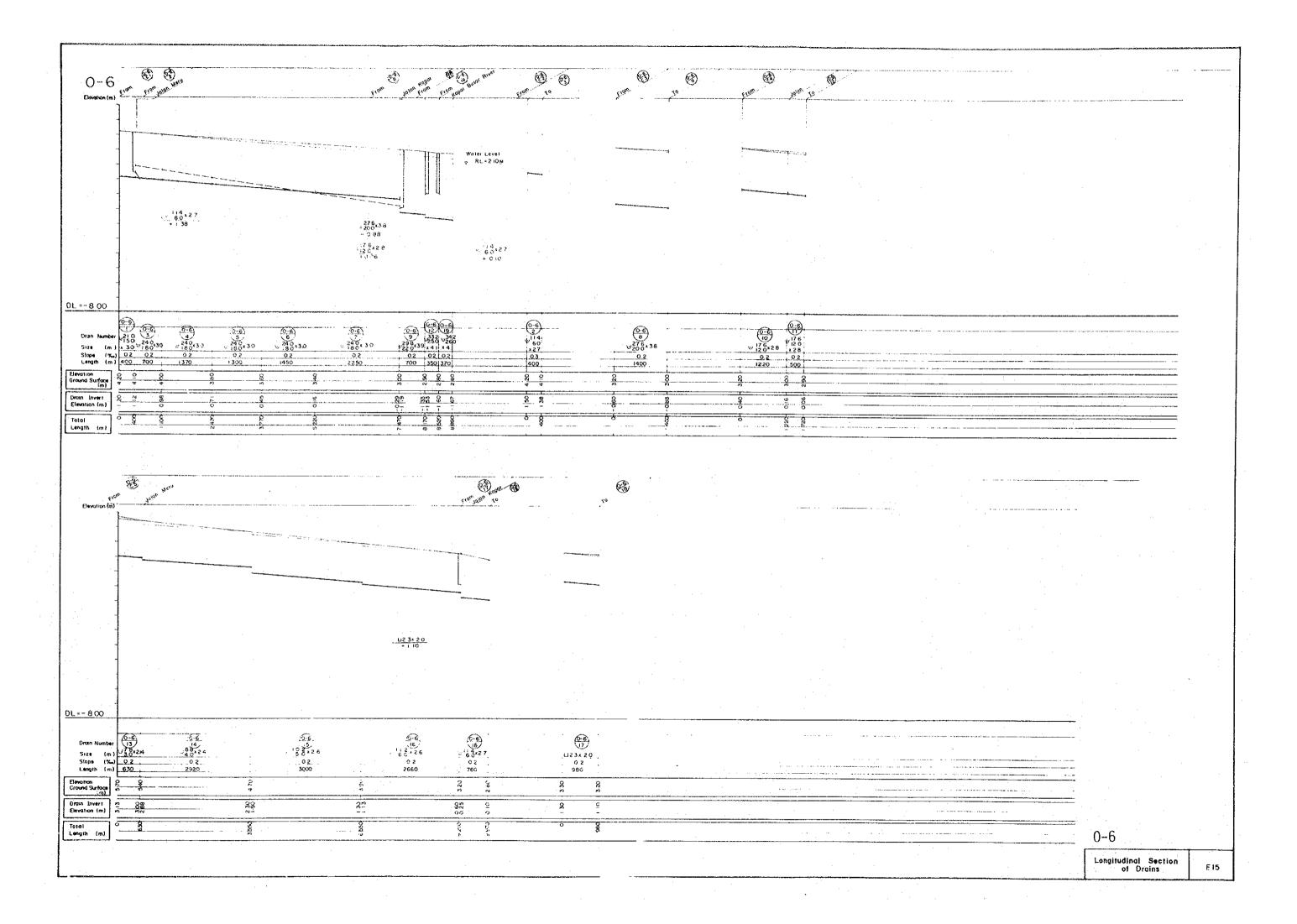














# APPENDIX G

# IMPLEMENTATION PRIORITIES

(Ref.: Table 6.1., Vol. VI)

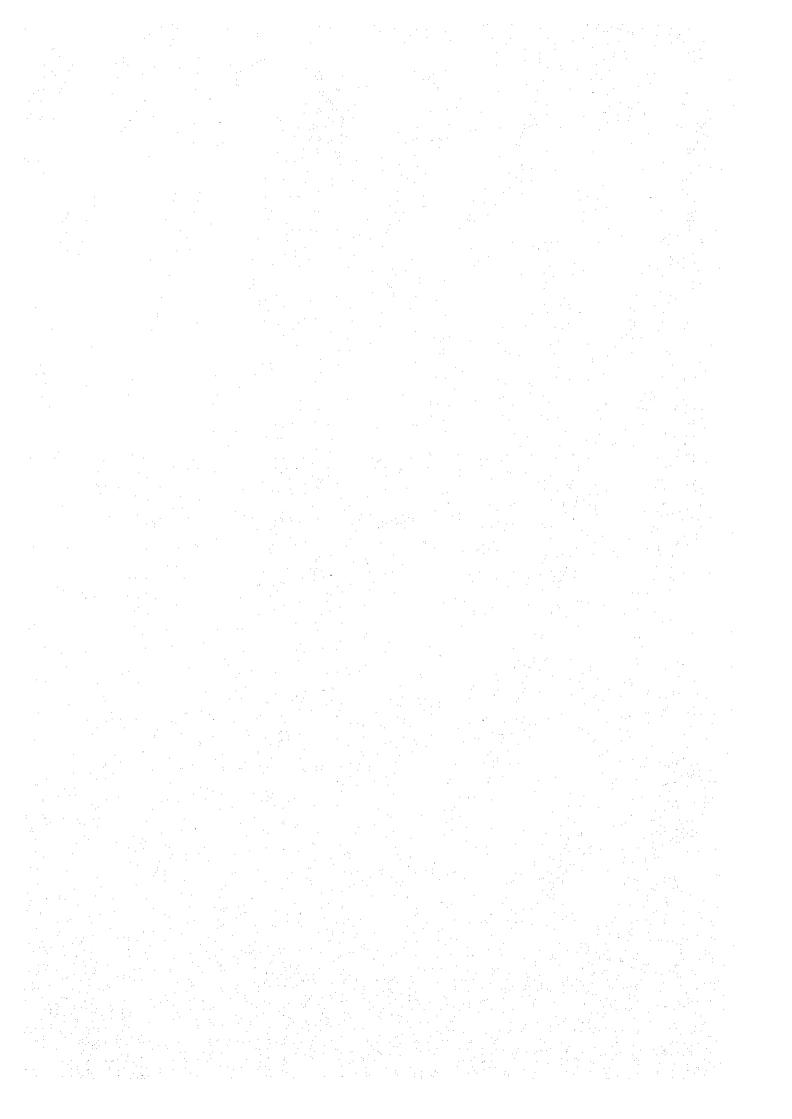



Table G.1. Population Density of Catchments

|                       | Aı               | Area                 | Served Pop       | Population       | Population Density  | Density             | Rai         | Rating |
|-----------------------|------------------|----------------------|------------------|------------------|---------------------|---------------------|-------------|--------|
| Catchment<br>Code No. | Served Area (ha) | Contributing<br>Area | 1980<br>(Person) | 2000<br>(Person) | 1980<br>(Person/ha) | 2000<br>(Person/ha) | 1980        | 2000   |
|                       |                  | (114)                |                  |                  |                     |                     | c           | 061    |
| N-1                   | 372.7            | 2,378.3              | 5,166            | 22,578           | 13.9                | 9.06                | <b>&gt;</b> | 077    |
|                       | 210.1            | 1                    | 006,6            | 20,270           | 47.1                | 96.5                | 8           | 160    |
| 1 (1                  | 25.5             | ţ                    | 798              | 3,045            | 31.3                | 119.4               | 70          | 200    |
| ` <                   | 162.0            | ı                    | 11,890           | 16,047           | 73.4                | 1.66                | 120         | 160    |
| t v                   | 5 69             | 1                    | 6,959            | 7,904            | 100.1               | 113.7               | 200         | 200    |
| ۷ (                   | 72.3             | 1                    | 7,286            | 7,024            | 9.96                | 97.2                | 160         | 160    |
| ) [                   | 2.2.7            | ı                    | 2,604            | 3,252            | 60.2                | 67.5                | 08          | 120    |
| - α                   | 255.0            | ı                    | 13,559           | 21,380           | 53.2                | 83.8                | 8           | 160    |
| ) <sub>,</sub>        | 342.7            | 39.4                 | 1                | 14,550           | i<br>I              | 42.5                | 0           | 8      |
| , <u>[</u>            | - 199            | 63.5                 | 1,724            | 2,060            | 26.5                | 31.6                | 70          | 70     |
| )<br>i %              | 169.8            | 7.7                  | 3,691            | 3,360            | 21.7                | 19.8                | 700         | 0      |
| ו ניי                 | 11.8             | ŧ                    | 863              | 1,056            | 73.1                | 89.5                | 120         | 160    |
| ) 4                   | 5<br>5<br>3<br>6 | 1                    | 2,898            | 2,016            | 53.8                | 37.4                | 8           | 040    |
| - <b>ເ</b> r          | 156.1            | 1                    | 6,035            | 13,441           | 38.7                | 98.9                | 70          | 160    |
| , vc                  | 96.7             | 1                    | 1,620            | 5,140            | 16.8                | 63.5                | 0           | 120    |
| 2                     | 110.8            | 1                    | 4,941            | 10,212           | 44.6                | 92.2                | 80          | 160    |
| - ∞                   | 539.2            | * <b>1</b>           | 22,574           | 56,732           | 41.9                | 66.7                | 8           | 160    |
|                       |                  | ł                    |                  |                  |                     |                     |             | i      |
| -                     |                  |                      |                  |                  |                     |                     |             |        |

(to be Cont'd)

Table G.1. (Cont.)

| 1980     | Served Population |
|----------|-------------------|
| 27.00    |                   |
|          | ı                 |
|          | 1                 |
|          | 1                 |
| 1.6      | 1,591.            |
|          | 1                 |
|          | ı                 |
|          | ì                 |
|          | ı                 |
|          | ŧ                 |
| 0.1      | 870.1             |
| 4.0      | 164.0             |
| 8        | 1,008.3           |
| 7.4      | 597.4             |
| T.       | 1,751.1           |
| 1.6      | 8,151.6           |
| 16,623.0 |                   |

Notes: \* Excluding 2,817 persons \*\* Excluding inhabitants of North Port area

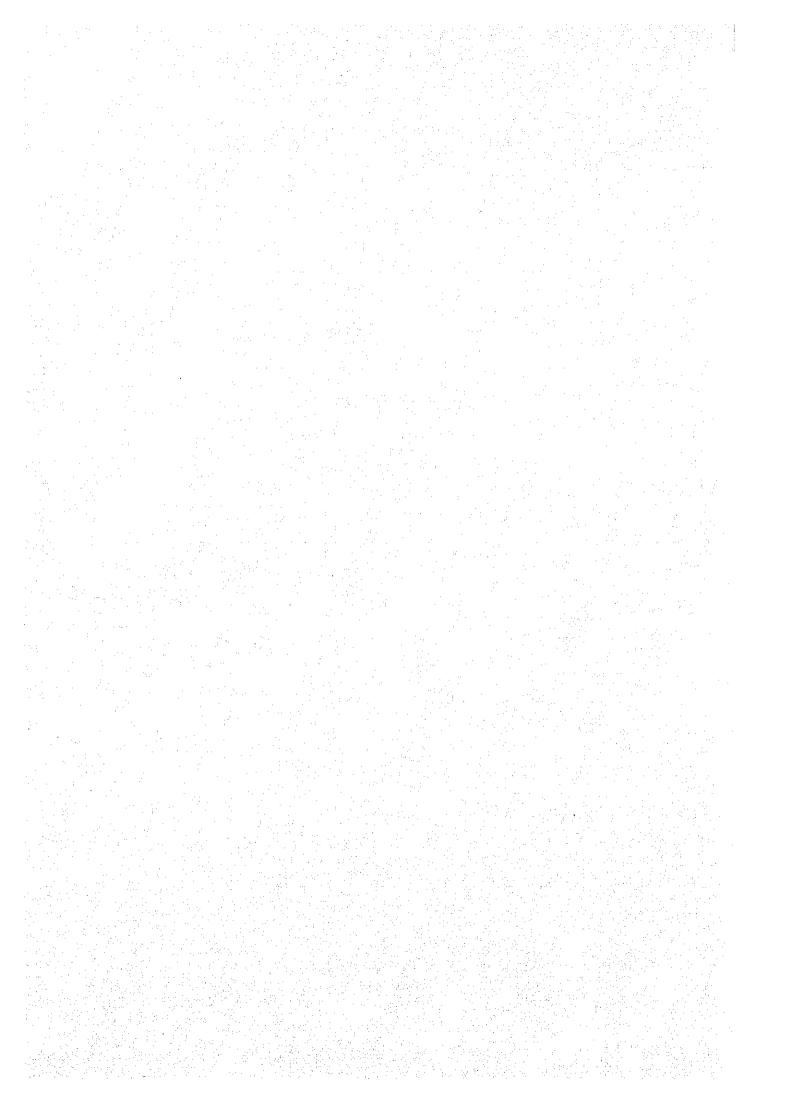
Table G.2. Ratio of Flooded Area

|              |           | Ratio of       |        |                       |              | Ratio of           |        |
|--------------|-----------|----------------|--------|-----------------------|--------------|--------------------|--------|
|              |           |                |        | :                     |              | Flooded Area       | •      |
|              | Flooded   | to             | Rating |                       | Flooded      | ţ                  | Rating |
| Catchment    | Area (ha) | Catchment Area | Points | Catchment<br>Code No. | Area<br>(ha) | Catchment Area (%) | Foince |
| , code       | 1911      |                |        |                       |              | :                  |        |
| N-1          | 0         | 0              | 0      | S-11                  | 0            | 0                  | )<br>O |
| 2            | 13.9      | 7              | 0      | A- 1                  | 25.2         | en                 | 0      |
| , <b>(</b> * | 3.7       | 15             | 0      | 2                     | 26.2         | 20                 | 50     |
| ) 7          | 15.9      | 10             | 0      | en.                   | 17.7         | 17                 | 0      |
| ≻ L∕         | 18.2      | 26             | 50     | 7                     | 14.6         | 28                 | 50     |
| n vo         | 29.1      | 07             | 100    | ν.                    | 72.3         | 72                 | 150    |
| 7            | 30.7      | 79             | 150    | 9                     | 0            | H                  | 0      |
| œ            | 31.1      | 12             | 0      | н                     | 0            | 0                  | 0      |
| 6            | 24.3      | 7              | 0      | 2                     | 0            | 0                  | 0      |
| S<br>L       | 0         | 0              | 0      | ۳                     | 0            |                    | 0      |
| 2            | 27.2      | 16             | 0      | 7                     | 0            | 0                  | 0      |
| ო            | 2.5       | 21             | 20     | Ŋ                     | 0            | 0                  | 0      |
| 7            | 7.5       | 14             | 0      | 9                     | 0            | 0                  | 0      |
| Ŋ            | 145.1     | 66             | 200    |                       |              |                    |        |
| 9            | 7.96      | 100            | 200    |                       |              |                    | :      |
| 7            | 89.2      | 81             | 200    |                       |              |                    |        |
| œ            | 127.4     | 24             | 50     |                       |              |                    |        |
| 6            | 30.9      | 56             | 50     | · .                   |              | .:<br>-:           |        |
| 10           | 24.9      | 17             | 0      |                       |              |                    |        |
|              |           |                |        |                       |              |                    |        |

Table G.3. Ratio of Estimated Stormwater Runoff to Existing Drain Capacity

| 1                                                                        |             |     | •   |      |      |        |        |      |          |      |     |     |     |              |      |      | - 1  |
|--------------------------------------------------------------------------|-------------|-----|-----|------|------|--------|--------|------|----------|------|-----|-----|-----|--------------|------|------|------|
| Rating<br>Points                                                         | 07          | 80  | 200 | 200  | 120  | 80     | 200    | 07   | 200      | 07   | 707 | 07  | 0   | 707          | 70   |      | ·    |
| Ratio of Estimated Stormwater Runoff to Existing Drain Capacity          | <b>8.</b> 4 | 7.2 | i   | 24.7 | 11.3 | 7.9    | 20.3   | 1.3  | ı        | 1.4  | 1   | 2.3 | 1.0 | 3.1          | 2.4  |      |      |
| Catchment<br>Code No.                                                    | 8-9         | 10  | 11  | A-1  | 2    | :<br>m | 7      | · •  | 9        | 0-1  | 2   | m   | 7   | · ω          | 9    |      |      |
| Rating<br>Points                                                         | 200         | 80  | 200 | 07   | 07   | 07     | 07     | 120  | 160      | 07   | 80  | 40  | 80  | 08           | 120  | 160  | 200  |
| Ratio of Estimated<br>Stormwater Runoff<br>to Existing Drain<br>Capacity | 25.0        | 6.5 | 1   | 2.4  | 1.0  | 3.8    | o<br>m | 13.2 | 15,9     | 8°°° | 8.2 | 1.9 | 6.3 | 9.9          | 14.5 | 19.5 | 36.7 |
| Catchment<br>Code No.                                                    | N-1         | 2   | m   | 7    | 'n   | 9      | 7      | œ    | <u>_</u> | S-1  |     | ო   | 4   | ٠<br>٠<br>٧٦ | 9    | 7    | œ    |

Table G.4. Ratio of Commercial & Industrial Land


| nage & Ind |                                            |                  |                                   |                                                         |                  |
|------------|--------------------------------------------|------------------|-----------------------------------|---------------------------------------------------------|------------------|
|            | & Industrial Use Areas to Catchment Area * | Rating<br>Points | Drainage<br>Catchment<br>Code No. | & Industrial Use<br>Areas to<br>Catchment Area *<br>(%) | Rating<br>Points |
|            | (9)                                        |                  |                                   |                                                         | (                |
| N-1        | 22.5                                       | 25               | S-9                               | 14.9                                                    | 5                |
| 2          | 1.6                                        | 0                | 07                                | 6•99                                                    | 75               |
|            | 2.0                                        | 0                | i-1<br>i-1                        | 97.8                                                    | 100              |
| 7          | 14.4                                       | 0                | A-1                               | 1.2                                                     | 0                |
|            | 31.4                                       | 25               | 2                                 | 30.5                                                    | 25               |
|            | 63.8                                       | 75               | ო                                 | 25.1                                                    | 25               |
| , ,        | 86.3                                       | 100              | 7                                 | 65.7                                                    | 75               |
| - 00       | 21.3                                       | 25               | ıń                                | 80.4                                                    | 100              |
| ) o        | 24.9                                       | 25               | 9                                 | 64.7                                                    | 75               |
| , 1        | 1                                          | 0                | 0-1                               | 31.1                                                    | 25               |
| 2          | 10.1                                       | 0                | . 2                               | 56.4                                                    | 20               |
| <u> </u>   | 74.6                                       | 75               | ٣                                 | 13.2                                                    | 0                |
| 7          | 65.7                                       | 75               | 7                                 | E,                                                      | 0                |
| ٠,         | 8.0                                        | 0                | Ŋ                                 | 50.7                                                    | 20               |
| vo         | 7.3                                        | 0                | 9                                 | 5.3                                                     | 0                |
| 7          | 1.4                                        | 0                |                                   |                                                         |                  |
| <b>∞</b>   | 10.3                                       | 0                |                                   |                                                         |                  |

Note: \* Excluding contributing area

# APPENDIX H

# COST ESTIMATION

(Ref.: Section 5.3.4., Vol. VI)



# a. Trunk Drain

| Line *       | Length       | Width x Height                     | Construc-<br>tion Cost | Land Acqui-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Remarks |
|--------------|--------------|------------------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| <u> </u>     | (m)          | (m) (m)                            | (M\$1,000)             | (M\$1,000)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |
| i            | 400          | $R = \frac{29.5}{23.5} \times 3.0$ | 664                    | 3,131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |
| 2            | 220          | $R = \frac{5.0}{2.0} \times 1.5$   | 180                    | 585                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ·       |
| 3            | 270          | $R = \frac{29.5}{23.5} \times 3.0$ | 448                    | 2,360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |
| 4            | 2,360        | $R = \frac{8.8}{4.0} \times 2.4$   | 2,572                  | <b>-</b> ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |
| 5            | 1,240        | $R = \frac{9.3}{4.5} \times 2.4$   | 1,364                  | · <u>-</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |
| 6            | 300          | $R = \frac{11.2}{6.0} \times 2.6$  | 356                    | 88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |
| 7            | 170          | $R = \frac{11.2}{6.0} \times 2.6$  | 201                    | 633                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |
|              | 50           | B 4-2.8 x 2.6                      | 426                    | . : .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |
| 8            | 363          | $R = \frac{30.4}{24.0} \times 3.2$ | 635                    | 1,647                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |
|              | 7            | Br 30.4                            | 638                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
| 9            | 746          | $R = \frac{30.4}{24.0} \times 3.2$ | 1,306                  | 152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |
|              | 14           | Br 2-30.4                          | 1,276                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •       |
|              |              |                                    |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
|              |              |                                    |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •       |
| Sub Total    | 6,140 m      |                                    | 10,066                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
| b. Tidal     | Gate         |                                    | 665                    | the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |
| c. Retent    | ion Pond     |                                    | -<br>-                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
| d. Bund      |              |                                    |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | * · ·   |
| Total        | · .          |                                    | 10,731                 | ing selection of the se |         |
| B. Land Acqu | isition Cost |                                    | <del>-</del>           | 8,596                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |
| C. Engineeri | ng Fee       |                                    | 1,610                  | in the second se |         |
| ), Contingen | cy Cost      |                                    | 2,468                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |

<sup>\*</sup> Line Nos are shown in Fig. 5.8. of Vol.VI

R : Rubble Wall Channel B : Box Culvert Br: Bridge

| Line * | Length | 111.1.1.1 | - Nedala                     | Construc-<br>tion Cost | Land Acqui-<br>tion Cost | Remarks |
|--------|--------|-----------|------------------------------|------------------------|--------------------------|---------|
| 10.    | (m)    | (m)       | x Height (m)                 | (M\$1,000)             | (M\$1,000)               |         |
| 1      | 910    | R         | 8.2<br>4.0 × 2.1             | 919                    | 1,492                    |         |
| 2      | 450    | С         | 4.1 x 2.2                    | 878                    | -<br>-                   |         |
| •      | 50     | В 2       | -2.05 x 2.2                  | 140                    | •                        |         |
| 3      | 650    | R         | 5.4<br>2.0 × 1.7             | 569                    | 962                      | · .     |
| 4      | 200    | R         | $\frac{6.1}{2.5} \times 1.8$ | 182                    | 226                      |         |
|        | 50     | B 2       | -3.05 x 1.8                  | 153                    |                          |         |
| 5      | 430    | R         | 8.9<br>4.5 × 2.2             | 449                    | 50                       |         |
|        | 20     | В 3       | -3.00 x 2.2                  | 129                    | •                        |         |
| 6      | 680    | R         | 4.8<br>2.0 × 1.4             | 541                    | 69                       |         |
| 7      | 140    | R .       | 0.0<br>5.0 x 2.5             | 160                    | 36                       |         |
|        | 20     | В 4       | -2.5 x 2.5                   | 155                    | -                        |         |

|    | Sub Total 3,600 m     | 4,275      |       |
|----|-----------------------|------------|-------|
|    | b. Tidal Gate         | 210        |       |
|    | c. Retention Pond     | i.         |       |
|    | d. Bund               |            |       |
|    | Total                 | 4,485      |       |
|    |                       |            |       |
| В. | Land Acquisition Cost | -          | 2,835 |
| c. | Engineering Fee       | <u>673</u> |       |
| D. | Contingency Cost      | 1,032      |       |
|    |                       | ,          |       |
|    | GRAND TOTAL           | 9,025      |       |

<sup>\*</sup> Line Nos are shown in Fig. 5.8. of Vol.VI

R : Rubble Wall Channel

B : Box Culvert

C : Railway Crossing

#### Catchment N-3

# A. Construction Cost

# a. Trunk Drain

| Line* No. | Length (m) | Width x Height (m) (m)           | Construction Cost (M\$1,000) | Land Acqui-<br>tion Cost<br>(M\$1,000) | Remarks |
|-----------|------------|----------------------------------|------------------------------|----------------------------------------|---------|
| 1         | 320        | $R = \frac{5.0}{2.0} \times 1.5$ | 262                          | 35                                     |         |
|           | 20         | B 2-2.5 x 1.5                    | 51                           | <b>.</b>                               |         |
| 2 .       | 400        | $R = \frac{4.8}{2.0} \times 1.4$ | 318                          | 41                                     |         |
| 3         | 40         | $R = \frac{6.3}{2.5} \times 1.9$ | 37                           | <del></del>                            |         |

| ·  | Sub T | otal 780 m       | · . | 668                                      |           |
|----|-------|------------------|-----|------------------------------------------|-----------|
|    | ь. Т  | idal Gate        |     | 140                                      |           |
| ٠. | c. I  | Recention Pond   |     |                                          | wa n      |
|    | d. I  | Bund             |     | 112                                      |           |
|    | Total | ı                |     | 920                                      |           |
| в. | Land  | Acquisition Cost |     | en e | <u>76</u> |
| c. | Engi  | neering Fee      |     | 138                                      |           |
| р. | Cont  | ingency Cost     |     | <u>212</u>                               |           |
|    |       | GRAND TOTAL      |     | 1,346                                    |           |

\* Line Nos are shown in Fig. 5.8. of Vol.VI

R : Rubble Wall Channel B : Box Culvert

| Line*<br>No. | Length | Width x Height                                       | Construc-<br>tion Cost | Land Acqui-<br>tion Cost | Remarks |
|--------------|--------|------------------------------------------------------|------------------------|--------------------------|---------|
|              | (m)    | (m) (m)                                              | (M\$1,000)             | (M\$1,000)               |         |
| 1            | 400    | $R = \frac{6.4}{3.0} \times 1.7$                     | 354                    | 370                      |         |
| 2            | 610    | $R = \frac{7.0}{3.0} \times 2.0$                     | 592                    | -                        |         |
| 3            | , 700  | $R = \frac{8.6}{4.0} \times 2.3$                     | 746                    | 25                       |         |
|              | 70     | В 3-2.9 ж 2.3                                        | 455                    | -                        |         |
| 4            | 800    | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 720                    | 101                      |         |
| 5            | 60     | R $9.5 \times 2.5$                                   | 678                    | 15                       |         |
|              | 20     | B 3-3.2 x 2.5                                        | 150                    | <u>-</u>                 |         |

|    | Sub        | Total 2,660 m      |       |   | 3,695  | ÷ |            |  |
|----|------------|--------------------|-------|---|--------|---|------------|--|
|    | <b>b</b> . | Tidal Gate         |       |   | 200    |   |            |  |
|    | c.         | Retention Pond     |       |   | -<br>- |   | 100        |  |
|    | d.         | Bund               |       |   | 117    |   |            |  |
|    | Tota       | al                 | * * . | • | 4,012  |   |            |  |
| В. | Lan        | d Acquisition Cost |       |   | -      |   | <u>511</u> |  |
| c. | Eng        | ineering Fee       |       |   | 602    |   |            |  |
| D. | Con        | tingency Cost      | •     |   | 923    |   |            |  |
|    |            | GRAND TOTAL        |       |   | 6,048  |   |            |  |

<sup>\*</sup> Line Nos are shown in Fig. 5.8. of Vol.VI

R : Rubble Wall Channel B : Box Culvert

|    | a, Itume Di |             |     |       |         |                        |                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----|-------------|-------------|-----|-------|---------|------------------------|-----------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | Line*       | Length      | Wic | lth x | Helght  | Construc-<br>tion Cost | Land Acc              | u1-<br>t | Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|    |             | (m)         |     | n)    | (m)     | (M\$1,000)             | (M\$1,00              | 0)       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    | 1           | 135         | С   |       | x 1.4   | 99                     | _                     |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    |             | 20          | В   | 1.4   | x 1.4   | 24                     | -                     |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    | `2          | 360         | С   |       | x 2.0   | 421                    |                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    |             | 40          | В   | 2.0   | x 2.0   | 74                     | -                     |          | . "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|    | 3           | 320         | С   | 2.3   | x 2.3   | <br>448                |                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    |             | 80          | В   | 2,3   | x 2.3   | 174                    |                       | ٠        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    | 4           | <b>'55</b>  | С   | 2.4   | x 2.4   | . 81.                  | -                     |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    |             | 20          | В   | 2.4   | x 2.4   | 45                     | , <del></del>         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    | 5           | 100         | c   | 2.6   | x 2.6   | 165                    | -                     |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    |             | 70          | В   | 2.6   | x 2.6   | 172                    | -                     |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    | 6           | 145         | С   | 2.7   | x 2.7   | 251                    |                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    |             | 20          | В   | 2.7   | x 2.7   | 51                     | · <u>-</u>            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    | 7           | 40          | С   | 2.8   | x 2.8   | 72                     |                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    | ,           | 20          | В   | 2.8   | 3 x 2.8 | 53                     | <del>-</del>          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    | •           |             | •   |       | ;       |                        |                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    |             |             |     |       |         |                        |                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    | Sub Total   | 1,425 m     |     |       |         | 2,130                  | ·<br>:                |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    | b. Tidal    | Gate        |     |       |         | 155                    |                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    | c. Retent   | Ion Pond    |     |       |         | ·                      | _                     |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    | d. Bund     |             |     |       |         | 8                      |                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    | Total       |             |     |       | •       | 2,293                  |                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    | Iotai       |             |     |       |         |                        |                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| В. | Land Acqui  | sition Cost |     |       |         | -                      | <u>.</u>              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    |             | . P         |     |       |         | <u>344</u>             |                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| c. | Engineerin  | g ree       |     |       |         | <u> </u>               | •.                    |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| D. | Contingenc  | y Cost      |     |       | 1.      | <u>527</u>             |                       | * 1      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    | •           |             |     |       |         | <br>                   |                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    |             |             |     |       |         |                        | and the second second |          | and the second of the second o |

<sup>\*</sup> Line Nos are shown in Fig. 5.8. of Vol.VI

GRAND TOTAL

3,164

C : Concrete Channel
B : Box Culvert

| a, | Trunk | Drain |
|----|-------|-------|
|    |       |       |

|    | Line*<br>No. Length   | Width x Height | Construc-<br>tion Cost | Land Acqui-<br>sition Cost              | Remarks                                     |
|----|-----------------------|----------------|------------------------|-----------------------------------------|---------------------------------------------|
|    | (m)                   | (m) (m)        | (M\$1,000)             | (M\$1,000)                              |                                             |
|    | 1 100                 | C 1.5 x 1.5    | 80                     | ••                                      |                                             |
|    | 20                    | B 1.5 x 1.5    | 26                     | <b></b> .                               |                                             |
|    | .2 160                | C 1.5 x 1,5    | 128                    |                                         |                                             |
|    | 3 555                 | c 1.7 x 1.7    | 527                    | ·                                       |                                             |
|    | 70                    | B 1.7 x 1.7    | 105                    | p.e                                     |                                             |
|    | 4 270                 | C 1.8 x 1.8    | 278                    | -                                       |                                             |
|    | 70                    | B 1.8 x 1.8    | 116                    | <del></del>                             |                                             |
|    | 5 270                 | C 1.3 x 1.3    | 176                    | <del>-</del>                            |                                             |
|    | 6 155                 | C 1.3 x 1.3    | 101                    | · ·                                     |                                             |
|    | 20                    | B 1.3 x 1.3    | 21                     | -                                       |                                             |
|    | 7 185                 | C 1.6 x 1.6    | 161                    | · <b>_</b>                              |                                             |
|    | 20                    | B 1.6 x 1.6    | 28                     |                                         |                                             |
|    | 8 210                 | C 1.7 x 1.7    | 200                    |                                         |                                             |
|    | 20                    | B 1.7 x 1.7    | 30                     | -                                       |                                             |
| •  | 9 300                 | C 1.8 x 1.8    | 309                    | <b></b>                                 |                                             |
|    | 20                    | B 1.8 x 1.8    | 33                     |                                         |                                             |
|    | 10 125                | B 2.1 x 2.1    | 244                    | <u>.</u>                                | Depth of Box >1.5m<br>Culvert               |
|    | 11 35                 | B 2.1 x 2.1    | 82                     |                                         | H                                           |
|    | 12 295                | B 2.1 x 2.1    | 693                    |                                         | : <b>n</b>                                  |
|    | 13 85                 | B 2.4 x 2.4    | 225                    | - · · · · · · · · · · · · · · · · · · · | u                                           |
|    | Sub Total 2,985 m     |                | 3,563                  |                                         |                                             |
|    | b. Tidal Gate         |                | 155                    |                                         |                                             |
|    | c. Retention Pond     |                | <b>-</b>               |                                         |                                             |
|    | d. Bund               |                | 24                     |                                         |                                             |
|    | Total                 |                | 3,742                  |                                         |                                             |
| В. | Land Acquisition Cost |                | -                      | <b>-</b>                                | 4 (2) 4 (4) (4) (4) (4) (4) (4) (4) (4) (4) |
| c. | Engineering Fee       | •              | <u>561</u>             |                                         |                                             |
| D. | Contingency Cost      |                | 861                    |                                         |                                             |
|    | GRAND TOTAL           |                | 5,164                  |                                         |                                             |

<sup>\*</sup> Line Nos are shown in Fig. 5.8. of Vol.VI

C : Concrete Channel
B : Box Culvert

| Line *     | Length | Width x Height (m) (m) | Construction Cost (M\$1,000) | Land Acqui-<br>tion Cost<br>(M\$1,000) | Remarks |
|------------|--------|------------------------|------------------------------|----------------------------------------|---------|
| 1          | 125    | C 1.2 x 1.2            | 75                           | -                                      |         |
| 2          | 25     | C 1.4 x 1.4            | 18                           | <b></b>                                |         |
| <b>'</b> 3 | 20     | B 1.6 x 1.6            | 28                           | -                                      |         |
| 4          | 180    | C 1.9 x 1.9            | 198                          | •••                                    |         |
| 5          | 220    | C 2.1 x 2.1            | 275                          | -                                      |         |
| 6          | 265    | С 0.8 х 0.8            | 80                           | , see                                  |         |
| 7          | 340    | C 1.7 x 1.7            | 323                          | •••<br>•                               | •       |
|            | 20     | B 1.7 x 1.7            | 30                           | <del>-</del>                           |         |
| 8          | 210    | C 2.1 x 2.1            | 263                          | 115                                    |         |
|            | 30     | B 2.1 x 2.1            | 59                           | -                                      |         |
| 9          | 20     | C 2.9 x 2.9            | 37                           | <del>-</del>                           |         |
|            |        |                        | *                            |                                        |         |

| Sub    | Total 1,455 m      | 1,386          |            | ÷ |
|--------|--------------------|----------------|------------|---|
| ъ.     | Tidal Gate         | 155            |            |   |
| c.     | Retention Pond     | · <del>_</del> |            |   |
| d,     | Bund               | 50             |            |   |
| Tot    | al                 | 1,591          |            |   |
| B. Lan | d Acquisition Cost | <b>~</b> .     | <u>115</u> |   |
| C. Eng | ineering Fee       | 239            |            |   |
| D. Con | ntingency Cost     | <u>366</u>     |            |   |
|        | GRAND TOTAL        | 2,311          |            |   |

<sup>\*</sup> Line Nos are shown in Fig. 5.8. of Vol.VI

C : Concrete Channel
B : Box Culvert

# a. Trunk Drain

| Line * | Length | Width x Height                    | Construc-<br>tion Cost | Land Acqui-<br>tion Cost | Remarks |
|--------|--------|-----------------------------------|------------------------|--------------------------|---------|
|        | (m)    | (m) (m)                           | (M\$1,000)             | (M\$1,000)               |         |
| 1 .    | 1,200  | $R = \frac{7.9}{3.5} \times 2.2$  | 1,236                  | 130                      |         |
| .2     | 1,380  | $R = \frac{6.8}{3.0} \times 1.9$  | 1,297                  | 248                      |         |
| •      | 20     | в 3-2.3 х 1.9                     | 65                     | -                        |         |
| 3      | 80     | $R = {10.0 \atop 5.0} \times 2.5$ | 91                     | 21                       |         |
|        | 20     | B 3-3.35 x 2.5                    | 155                    |                          |         |
| 4      | 870    | C 2.8 x 1.7                       | 1,131                  | -                        |         |
| 5      | 1,200  | C 2.9 x 1.8                       | 1,656                  | ·<br>-                   |         |
| 6      | 293    | $R = \frac{13.0}{8.0} \times 2.5$ | 349                    | 40                       |         |
|        | 7      | Br 13.0                           | 273                    | <del>-</del>             |         |

| Sub Total 5,070 m        | 6,253                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------------------------|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| b. Tidal Gate            | 260                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| c. Retention Pond        | • • • • • • • • • • • • • • • • • • • |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| d. Bund                  | 71                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Total                    | 6,584                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| B. Land Acquisition Cost | - ,                                   | 439                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| C. Engineering Fee       | 988                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| D. Contingency Cost      | <u>1,514</u>                          | Average and the second |
| GRAND TOTAL              | 9,525                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

<sup>\*</sup> Line Nos are shown in Fig. 5.8. of Vol.VI

C : Concrete Channel R : Rubble Wall Channel

B : Box Culvert

Br: Bridge

# a. Trunk Drain

| Line * | Length | Width x Height                    | Construc-<br>tion Cost | Land Acqui-<br>tion Cost | Remarks |
|--------|--------|-----------------------------------|------------------------|--------------------------|---------|
|        | (m)    | (m) (m)                           | (M\$1,000)             | (M\$1,000)               |         |
| 1      | 380    | $R = \frac{8.1}{4.5} \times 1.8$  | 353                    | 76                       |         |
| 2      | 1,100  | $R = \frac{8.3}{4.5} \times 1.9$  | 1,056                  | -                        |         |
| ,      | . 40   | в 3-2.8 х 1.9                     | 203                    | -                        |         |
| 3      | 500    | $R = \frac{7.2}{3.0} \times 2.1$  | 498                    | 87                       | -       |
| 4      | 650    | $R = \frac{9.1}{4.5} \times 2.3$  | 696                    | 103                      |         |
| •      | 20     | в 3-3.05 х 2.3                    | 135                    | :<br>. <del>-</del>      |         |
| 5      | 1,240  | $R = \frac{12.8}{8.0} \times 2.4$ | 1,438                  | 283                      |         |
| 6      | 880    | $R = \frac{5.4}{2.0} \times 1.7$  | 770                    | 106                      |         |
| 7      | 200    | $R = {14.0 \atop 9.0} \times 2.5$ | 241                    | 67                       | ·       |
| 8      | 486    | $R = {14.0 \atop 9.0} \times 2.5$ | 586                    | 322                      |         |
|        | 14     | Br 14.0                           | 588                    | -                        |         |

|    | Sub Total 5,510 m     |     | 6,564                 |       |
|----|-----------------------|-----|-----------------------|-------|
| •  | b. Tidal Gate         |     | 275                   |       |
| •  | c. Retention Pond     |     |                       |       |
|    | d. Bund               |     | ·-                    |       |
|    | Total                 | E 1 | 6,839                 |       |
| В. | Land Acquisition Cost |     | · .<br>. <del>-</del> | 1,044 |
| c. | Engineering Fee       |     | 1,026                 |       |
| D. | Contingency Cost      |     | 1,573                 |       |

10,482

GRAND TOTAL

R : Rubble Wall Channel B : Box Culvert Br: Bridge

<sup>\*</sup> Line Nos are shown in Fig. 5.8. of Vol.VI

# a. Trunk Drain

| Line * | Length | Wie | dth x Height     | Construc-<br>tion Cost | Land Acqui-<br>tion Cost | Remarks                        |
|--------|--------|-----|------------------|------------------------|--------------------------|--------------------------------|
|        | (m)    | (1  | m) (m)           | (M\$1,000)             | (M\$1,000)               |                                |
| 1      | (800)  | R   | 7.0 x 2.0        | -                      |                          | Outside of the<br>Project Area |
| ,2     | (600)  | R   | 7.5 x 2.0        |                        | -                        | 11                             |
|        | ( 20)  | В   | 3-2.5 x 2.0      |                        | <u></u>                  | tt                             |
|        | ( 20)  | В   | 3-2.5 x 2.0      | ,-                     | -<br>-                   | · n                            |
| 3      | 180    | R   | 8.0<br>4.0 x 2.0 | 176                    | 33                       |                                |

|    |                                                              |    | e e        |
|----|--------------------------------------------------------------|----|------------|
|    | Sub Total 180 m                                              |    | 176        |
|    | b. Tidal Gate                                                |    | 165        |
|    | c. Retention Pond                                            |    |            |
|    | d. Bund                                                      | ." |            |
|    | Total                                                        |    | <u>341</u> |
|    |                                                              |    |            |
| В. | Land Acquisition Cost                                        |    | - 33       |
| C. | Engineering Fee                                              |    | <u>51</u>  |
|    | $\mathcal{L}_{\mathcal{L}}(\mathcal{L}_{\mathcal{L}})$ (2.2) |    |            |
| D. | Contingency Cost                                             |    | 78         |
|    | GRAND TOTAL                                                  |    | 503        |

\* Line Nos are shown in Fig. 5.8. of Vol.VI

R : Rubble Wall Channel B : Box Culvert

| Line * No. | Length<br>(m) | W1di<br>(m) | th x Height ) (m)            | Construction Cost (M\$1,000) | Land Acqui-<br>tion Cost<br>(M\$1,000) | Remarks                |
|------------|---------------|-------------|------------------------------|------------------------------|----------------------------------------|------------------------|
| . 1        | 780           | R           | 7.8<br>4.0 x 1.9             | 745                          | 187                                    |                        |
| .2         | 510           | R           | $\frac{7.8}{4.0}$ x 1.9      | 487                          | 129                                    |                        |
|            | . 20          | В           | 3-2.6 x 1.9                  | 92                           | ·                                      |                        |
| 3          | 380           | R           | $\frac{4.2}{1.0} \times 1.6$ | 319                          | 71                                     |                        |
| 4          | 80            | R           | $_{5.0}^{9.0}$ x 2.0         | 80                           | 1                                      | •                      |
|            | 20            | В           | 3-3.0 x 2.0                  | 555                          | <b></b>                                | Cross the railway line |

|          | Sub Total 1,790 m;    | 2,278        |     |
|----------|-----------------------|--------------|-----|
|          | b. Tidal Gate         | 180          |     |
|          | c. Retention Pond     |              |     |
|          | d. Bund               | 112          |     |
|          | Total                 | <u>2,570</u> |     |
| В.       | Land Acquisition Cost | <u> 388</u>  | . • |
| <b>C</b> | Engineering Fee       | <u>386</u>   |     |
| D,       | Contingency Cost      | <u>591</u>   |     |
|          | GRAND TOTAL           | <u>3,935</u> |     |

R: Rubble Wall Channel B: Box Culvert

| Line * | Length (m) | Width x Height (m) (m) | Construction Cost (M\$1,000) | Land Acqui-<br>tion Cost<br>(M\$1,000) | Remarks                |
|--------|------------|------------------------|------------------------------|----------------------------------------|------------------------|
| 1      | 330        | c 1.6 x 1.6            | 284                          | 83                                     |                        |
|        | 20         | B 1.6 x 1.6            | 150                          |                                        | Cross the railway line |

|             | Sub Total 350 m       | 434          | e<br>e er |   |
|-------------|-----------------------|--------------|-----------|---|
| ÷           | b. Tidal Gate         | 100          |           |   |
|             | c. Retention Pond     | <del>.</del> |           | • |
|             | d. Bund               | 15           |           |   |
|             | Total                 | 549          |           |   |
| В.          | Land Acquisition Cost | · <b>-</b>   | 83        |   |
| c.          | Engineering Pee       | <u>82</u>    |           |   |
| D.          | Contingency Cost      | 126          |           |   |
| <del></del> | CRAND TOTAL           | 840          |           |   |

<sup>\*</sup> Line Nos are shown in Fig. 5.8. of Vol.VI

C : Concrete Channel B : Box Culvert

| Line* | Length<br>(m) | Width x Height (m) (m) | Construction Cost (M\$1,000) | Land Acqui-<br>tion Cost<br>(M\$1,000) | Remarks |
|-------|---------------|------------------------|------------------------------|----------------------------------------|---------|
| 1     | 680           | c 2.7 x 2.0            | 952                          | 82                                     |         |
|       | 20            | B 2.7 x 2.0            | 44                           | <u></u>                                |         |

|    | Sub Total 700 m       |       | 996        |    |  |
|----|-----------------------|-------|------------|----|--|
|    | b. Tidal Gate         | , 1   | 120        |    |  |
|    | c. Retention Pond     |       | -          | :  |  |
|    | d. Bund               |       | 20         |    |  |
|    | Total                 |       | 1,136      |    |  |
| В, | Land Acquisition Cost | •     | -          | 82 |  |
| c. | Engineering Fee       |       | <u>170</u> |    |  |
| D. | Contingency Cost      | tions | <u>261</u> |    |  |
|    | GRAND TOTAL           |       | 1,649      |    |  |

<sup>\*</sup> Line Nos are shown in Fig. 5.8. of Vol.VI  $\,\cdot\,$ 

C : Concrete Channel
B : Box Culvert

| Line* | Tanash | 1936b - 19-44b                   | Construc-  | Land Acqui-<br>tion Cost | Remarks                |
|-------|--------|----------------------------------|------------|--------------------------|------------------------|
| No.   | Length | Width x Height                   | tion Cost  | LION COST                | Kenarks                |
|       | (m)    | (m) (m)                          | (M\$1,000) | (M\$1,000)               |                        |
| 1     | 460    | $R = \frac{4.1}{1.5} \times 1.3$ | 352        |                          |                        |
|       | 20     | B 2-2.05 x 1.3                   | 43         | _                        |                        |
| 2     | 435    | C 3.8 x 1.8                      | 718        |                          |                        |
|       | 20     | B 2-1.9 x 1.8                    | 50         | <del></del>              |                        |
| 3     | 760    | C 5.8 x 2.0                      | 1,702      | 502                      |                        |
|       | 40     | в 2-2.9 х 2.0                    | 125        | crea                     |                        |
| 4     | 1,780  | C 3.4 x 1.8                      | 2,706      | <u>.</u>                 |                        |
|       | 20     | В 2-1.7 х 1.8                    | 46         | <del>-</del> .           |                        |
| 5     | 780    | $R = \frac{9.2}{5.0} \times 2.1$ | 800        | -                        |                        |
| ·     | 20     | B 3-3.3 x 2.1                    | 630        | <b>.</b>                 | Cross the railway line |

| ٠. | Sub Total 4,335 m     | 7,172    |                    |        |
|----|-----------------------|----------|--------------------|--------|
|    | b. Tidal Gate         | 180      | $x^{\prime\prime}$ |        |
|    | c. Retention Pond     | <u>-</u> |                    |        |
|    | d. Bund               | 72       |                    |        |
|    | Total                 | 7,424    |                    |        |
| В. | Land Acquisition Cost | -        | 502                |        |
| C. | Engineering Fee       | 1,080    |                    |        |
| D. | Contingency Cost      | 1,656    |                    | :<br>: |
|    | GRAND TOTAL           | 10,662   |                    |        |

<sup>\*</sup> Line Nos are shown in Fig. 5.8, of Vol.VI

C : Concrete Channel

R : Rubble Wall Channel

B : Box Culvert

# a. Trunk Drain

| Line*      | Length | Wic | lth x Height             | Construc-<br>tion Cost | Land Acqui-<br>tion Cost | Remarks |
|------------|--------|-----|--------------------------|------------------------|--------------------------|---------|
|            | (m)    | (r  | m) (m)                   | (M\$1,000)             | (M\$1,000)               |         |
| · <b>1</b> | 830    | R   | 7.6<br>4.0 x 1.8         | 768                    | 169                      |         |
|            | 20     | В   | 3-2.55 x 1.8             | 83                     | <del></del> ,            |         |
| 2          | 400    | R   | $\frac{12.1}{7.5}$ x 2.3 | 444                    | 170                      |         |
| 3          | 50     | R   | $\frac{12.1}{7.5}$ x 2.3 | 56                     | <del>-</del>             |         |

|    | Sub Total 1,300 m     | 1,351 | •                                     |                                                       |
|----|-----------------------|-------|---------------------------------------|-------------------------------------------------------|
|    | b. Tidal Gate         | 238   | •                                     |                                                       |
|    | c. Retention Pond     | 1,480 | 2,160                                 | $V = 118,000 \text{ m}^3$<br>$A = 54,000 \text{ m}^2$ |
|    | d. Bund               | 122   |                                       |                                                       |
|    | Total                 | 3,191 |                                       |                                                       |
| В. | Land Acquisition Cost |       | 2,499                                 |                                                       |
| c. | Engineering Fee       | 1,107 |                                       |                                                       |
| D. | Contingency Cost      | 1,698 |                                       |                                                       |
|    | GRAND TOTAL           | 8,495 | · · · · · · · · · · · · · · · · · · · | ·                                                     |

<sup>\*</sup> Line Nos are shown in Fig. 5.8. of Vol.VI

R : Rubble Wall Channel

B : Box Culvert

| Line * | Length | Width x Height                   | Construc-<br>tion Cost | Land Acqui-<br>tion Cost | Remarks |
|--------|--------|----------------------------------|------------------------|--------------------------|---------|
|        | (m)    | (m) (m)                          | (M\$1,000)             | (M\$1,000)               | •       |
| 1      | 800    | $R = \frac{5.4}{2.0} \times 1.7$ | 704                    | 120                      |         |
| 2      | 580    | $R = \frac{9.3}{5.5} \times 1.9$ | 568                    | 81                       |         |
|        | 20     | B 3-3,1 x 1.9                    | 114                    | -                        |         |
| 3      | 180    | $R = \frac{9.5}{5.5} \times 2.0$ | 18 <b>0</b>            | 28                       |         |
|        | 20     | B 3-3.2 x 2.0                    | 125                    | <b>-</b>                 |         |

|    | Sub Total 1,600 m     | 1,691          |                       |
|----|-----------------------|----------------|-----------------------|
|    | b. Tidal Gate         | 185            |                       |
|    | c. Retention Pond     | <u></u>        |                       |
|    | d. Bund               | 12             |                       |
|    | Total                 | 1,888          |                       |
| В, | Land Acquisition Cost | · <del>-</del> | 229                   |
| c. | Engineering Fee       | <u>450</u>     |                       |
| D. | Contingency Cost      | <u>688</u>     | $\mathcal{J}_{i} = 0$ |
|    | GRAND TOTAL           | <u>3,255</u>   | 14 - 4                |

- R : Rubble Wall Channel B : Concrete Channel

# a. Trunk Drain

|    | Line *      | Length      | Width x Height                     | Construc-<br>tion Cost                | Land Acqui-<br>tion Cost | Remarks                               |
|----|-------------|-------------|------------------------------------|---------------------------------------|--------------------------|---------------------------------------|
|    |             | (m)         | (m) (m)                            | (M\$1,000)                            | (M\$1,000)               |                                       |
|    | 1           | 1,200       | $R = \frac{15.6}{10.0} \times 2.8$ | 1,584                                 | 2,592                    |                                       |
|    | 2           | 1,200       | $R = \frac{15.6}{10.0} \times 2.8$ | 1,584                                 | 2,832                    |                                       |
|    | 3           | 493         | $R = \frac{15.6}{10.0} \times 2.8$ | 651                                   | 211                      |                                       |
|    |             | 7           | Br 15.6                            | 328                                   | <b>≟</b> :               | e.                                    |
|    | 4           | 980         | $R = \frac{7.2}{3.0} \times 2.1$   | 975                                   | 90                       |                                       |
|    |             | 20          | B 2-3.6 x 2.1                      | 94                                    | <del>-</del> .           |                                       |
|    | . <b> 5</b> | 200         | $R = \frac{15.8}{10.0} \times 2.9$ | 270                                   | 74                       |                                       |
|    | 6           | 630         | C 3.7 x 2.0                        | 1,077                                 | -                        |                                       |
|    | 7           | 1,810       | C 6.0 x 2.8                        | 6,570                                 | -                        |                                       |
|    |             | 60          | B 2-3.0 x 2.8                      | 325                                   |                          | 20m/No. x 3 No. = 60m                 |
|    | . 8         | 300         | R 18.8 x 2.9                       | 423                                   | 122                      |                                       |
|    | 9           | 257         | $R = \frac{18.8}{13.0} \times 2.9$ | 362                                   | 67                       |                                       |
|    |             | 10          | 13.0<br>Br 18.8                    | 1,045                                 | -                        | Cross the<br>railway line             |
|    |             |             |                                    |                                       |                          |                                       |
|    |             |             | •                                  |                                       |                          | •                                     |
|    | Sub Total   | 4,167 m     |                                    | 15,288                                |                          | •                                     |
|    | b. Tidal    | Gate        |                                    | 390                                   |                          | · · · · · · · · · · · · · · · · · · · |
|    | o Parent    | ion Pond    |                                    |                                       |                          |                                       |
|    | c Retent    | Zon rond    |                                    |                                       |                          |                                       |
|    | d Bund      |             |                                    | <b></b>                               |                          |                                       |
|    | Total       |             |                                    | 15,678                                |                          |                                       |
| _  |             |             |                                    |                                       | 5,988                    |                                       |
| В. | Land Acqui  | sition Cost |                                    |                                       | 3,733                    |                                       |
| C. | Engineerin  | ng Fee      |                                    | 2,352                                 |                          |                                       |
| D. | Contingenc  | y Cost      |                                    | 3,606                                 |                          |                                       |
|    |             |             |                                    | · · · · · · · · · · · · · · · · · · · |                          |                                       |
|    | GRANI       | TOTAL       |                                    | 27,624                                |                          |                                       |

<sup>\*</sup> Line Nos are shown in Fig. 5.8. of Vol.VI

R : Rubble Wall Channel

C : Concrete Channel
B : Box Culvert

Br: Bridge

| Line* | Length<br>(m) |   | th x Height (m) (m)          | Construction Cost (M\$1,000) | Land Acqui-<br>tion Cost<br>(M\$1,000) | Remarks                |
|-------|---------------|---|------------------------------|------------------------------|----------------------------------------|------------------------|
| 1     | 1,060         | c | 2.3 x 1.7                    | 1,219                        | -                                      |                        |
|       | 40            | В | 2.3 x 1.7                    | 74                           |                                        | 2-Box Culverts         |
| 2     | 960           | С | 2.5 x 2.0                    | 1,296                        | _                                      |                        |
|       | 40            | В | 2.5 x 2.0                    | 83                           | ·<br>-                                 |                        |
| 3     | 290           | R | $\frac{8.5}{4.5} \times 2.0$ | 287                          | 191                                    |                        |
| 4     | 520           | R | $\frac{6.7}{3.5}$ x 1.6      | 450                          | <b></b>                                |                        |
|       | 20            | В | 3-2,25 x 1,6                 | 61                           | <del>-</del>                           |                        |
| 5     | 100           | В | 3-2.4 x 2.1                  | 2,350                        | <del>-</del>                           | Cross the railway line |

|    | Sub Total 3,030 m     | 5,820  |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|----|-----------------------|--------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | b. Tidal Gate         | 185    |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|    | c. Retention Pond     | 960    | 960   | $v = 70,000 \text{ m}^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|    | d. Bund Total         | 6,965  |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| В. | Land Acquisition Cost |        | 1,151 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| С. | Engineering Fee       | 1,045  |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| D. | Contingency Cost      | 1,602  |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|    | GRAND TOTAL           | 10,763 |       | - And Andrews - |

<sup>\*</sup> Line Nos are shown in Fig. 5.8. of Vol.VI

C : Concrete Channel

R : Rubble Wall Channel B : Box Culvert

| a. Trunk Dr | ain |
|-------------|-----|
|-------------|-----|

| Line*<br>No. | Length | Width × Height                                            | Construc-<br>tion Cost | Land Acqui-<br>tion Cost | Remarks                |
|--------------|--------|-----------------------------------------------------------|------------------------|--------------------------|------------------------|
|              | (m)    | (m) (m)                                                   | (M\$1,000)             | (M\$1,000)               |                        |
| 1            | 1,190  | C 4.0 x 2.0                                               | 2,142                  | e- ,                     |                        |
| •            | 20     | $B = 2-2.0 \times 2.0$                                    | 53                     | -                        |                        |
| 2            | 1,080  | C 2.5 x 1.9                                               | 1,404                  |                          |                        |
|              | 20     | B 2.5 x 1.9                                               | 41                     | e==                      |                        |
| 3            | 380    | C 5.4 x 2.5                                               | 1,140                  | **                       | a tho                  |
|              | 20     | B 2-2.7 x 2.5                                             | 452                    |                          | Cross the railway line |
| 4            | 860    | c 3,3 x 2.0                                               | 1,376                  | 131                      |                        |
|              | 20     | B 3.3 x 2.0                                               | 265                    | <del></del>              | Cross the railway line |
| 5            | 90     | $R = \begin{array}{c} 10.5 \\ 5.5 \end{array} \times 2.5$ | 104                    | <b>-</b>                 |                        |

|    | Sub Total 3,680 m     |     | 6,977   |       |                                       |
|----|-----------------------|-----|---------|-------|---------------------------------------|
|    | b. Tidal Gate         |     | 215     |       |                                       |
|    | c. Retention Pond     |     | 1,160   | 1,230 | $V = 88,000 \text{ m}^3$              |
|    | d. Bund Total         |     | 8,352   |       |                                       |
| В. | Land Acquisition Cost |     | -       | 1,361 |                                       |
| c. | Engineering Fee       |     | 1,253   |       |                                       |
| D. | Contingency Cost      | . • | • 1,921 |       | · · · · · · · · · · · · · · · · · · · |
|    | GRAND TOTAL           |     | 12,887  |       |                                       |

<sup>\*</sup> Line Nos are shown in Fig. 5.8. of Vol.VI

C : Concrete Channel
R : Rubble Wall Channel
B : Box Culvert

a. Trunk Drain

| (m) (m) (m) (k§1,000) (k§1,000)  1 400 R 5.5 x 2.5 458 562  2 1,500 R 11.5 x 2.0 1,545 2,727  3 490 R 13.0 x 2.5 583 794  4 1,300 R 6.8 x 1.9 1,222 1,240  5 240 R 19.0 x 2.5 289 428  6 1,263 R 15.5 x 2.5 1,553 165  7 Br 15.5 326 -  7 2,040 R 6.8 x 1.9 1,918 -  8 1,340 R 25.4 x 2.7 1,970 346  9 1,320 R 2.0 x 2.7 1,970 346  9 1,320 R 2.0 x 2.7 1,970 346  9 1,320 R 5.4 x 1.7 56 -  10 870 R 7.7 x 2.1 870 55  11 13 R 25.4 x 2.7 19 -  7 Br 25.4 533 -  Sub Total 10,810 m 12,497  b. Tidal Gate 495  c. Retention Pond d. Bund (for A-6 Catchment) 83  Total 13,075  B. Land Acquisition Cost - 6,317  C. Engineering Fee 1,608  D. Contingency Cost 23,534                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    | Line*                                 | Length     | Width x Height                                    | Construc-<br>tion Cost | Land Acqui-<br>sition Cost | Remarks |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---------------------------------------|------------|---------------------------------------------------|------------------------|----------------------------|---------|
| 2 1,500 R 11.5 x 2.0 1,545 2,727  3 490 R 13.0 x 2.5 583 794  4 1,300 R 6.8 x 1.9 1,222 1,240  5 240 R 14.0 x 2.5 289 428  6 1,263 R 15.5 x 2.5 1,553 165  7 Br 15.5 326 -  7 2,040 R 6.8 x 1.9 1,918 -  8 1,340 R 25.4 x 1.7 1,970 346  9 1,320 R 5.4 x 1.7 56 -  10 870 R 7.7 x 2.1 870 55  11 13 R 25.4 x 2.7 19 -  7 Br 25.4 533 -  Sub Total 10,810 m 12,497  b. Tidal Gate 495  c. Retention Pond d. Bund (for A-6 Catchment) 83  Total 13.075  B. Land Acquisition Cost - 6,317  C. Engineering Fee 1,608  D. Contingency Cost 2.5 583 794                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |                                       | •          |                                                   | (M\$1,000)             | (M\$1,000)                 |         |
| 3 490 R 13.0 x 2.5 583 794 4 1,300 R 6.8 x 1.9 1,222 1,240 5 240 R 14.0 x 2.5 289 428 6 1,263 R 15.5 x 2.5 1,553 165 7 Br 15.5 326 - 7 2,040 R 6.8 x 1.9 1,918 - 8 1,340 R 25.4 x 2.7 1,970 346 9 1,320 R 5.4 x 1.7 1,155 - 20 B 3-1.8 x 1.7 56 - 10 870 R 3.5 x 2.1 870 55 11 13 R 25.4 x 2.7 19 - 7 Br 25.4 533 -  Sub Total 10,810 m 12,497 b. Tidal Gate 495 c. Retention Pond d. Bund (for A-6 Catchment) 83 Total 13.075  B. Land Acquisition Cost - 6,317 C. Engineering Fee 1,608 D. Contingency Cost 2.5 289 428 1,240 x 1.9 1,222 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,240 1,24 |    | . 1                                   | 400        | $R = \frac{10.5}{5.5} \times 2.5$                 | 458                    | 562                        |         |
| 4 1,300 R 6.8 x 1.9 1,222 1,240  5 240 R 14.0 x 2.5 289 428  6 1,263 R 15.5 x 2.5 1,553 165  7 Rr 15.5 326 -  7 2,040 R 6.8 x 1.9 1,918 -  8 1,340 R 25.4 x 2.7 1,970 346  9 1,320 R 2.0 x 1.7 1,155 -  20 B 3-1.8 x 1.7 56 -  10 870 R 7.7 x 2.1 870 55  11 13 R 25.4 x 2.7 19 -  7 Br 25.4 533 -  Sub Total 10,810 m 12,497  b. Tidal Cate 495  c. Retention Pond -  d. Bund (for A-6 Catchment) 83  Total 13,075  B. Land Acquisition Cost - 6,317  C. Engineering Fee 1,608  D. Contingency Cost 2.5 1,553 165  1 1,400 x 2.534 2.5 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    | 2                                     | 1,500      | $R = \frac{11.5}{7.5} \times 2.0$                 | 1,545                  | 2,727                      |         |
| 5 240 R 14.0 x 2.5 289 428 6 1,263 R 15.5 x 2.5 1,553 165 7 Br 15.5 326 - 7 2,040 R 6.8 x 1.9 1,918 - 8 1,340 R 25.4 x 2.7 1,970 346 9 1,320 R 5.4 x 1.7 1,155 - 20 B 3-1.8 x 1.7 56 - 10 870 R 7.7 x 2.1 870 55 11 13 R 25.4 x 2.7 19 - 7 Br 25.4 533 - Sub Total 10,810 m 12,497 b. Tidal Gate 495 c. Retention Fond - d. Bund (for A-6 Catchment) 83 Total 13,075  B. Land Acquisition Cost - 6,317 C. Engineering Fee 1,608 D. Contingency Cost 2.5 1,553 165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    | . 3                                   | 490        | $R = \frac{13.0}{8.0} \times 2.5$                 | 583                    | 794                        |         |
| 6 1,263 R 15.5 x 2.5 1,553 165  7 Br 15.5 326 -  7 2,040 R 6.8 x 1.9 1,918 -  8 1,340 R 25.4 x 2.7 1,970 346  9 1,320 R 5.4 x 1.7 1,155 -  20 B 3-1.8 x 1.7 56 -  10 870 R 7.7 x 2.1 870 55  11 13 R 25.4 x 2.7 19 -  7 Br 25.4 533 -  Sub Total 10,810 m 12,497  b. Tidal Gate 495  c. Retention Pond -  d. Bund (for A-6 Catchment) 83  Total 13,075  B. Land Acquisition Cost - 6,317  C. Engineering Fee 1,608  D. Contingency Cost 2,534                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    | 4                                     | 1,300      | $R = \frac{6.8}{3.0} \times 1.9$                  | 1,222                  | 1,240                      |         |
| 7 Br 15.5 326 - 7 2,040 R 6.8 x 1.9 1,918 - 8 1,340 R 25.4 x 2.7 1,970 346 9 1,320 R 5.4 x 1.7 1,155 - 20 B 3-1.8 x 1.7 56 - 10 870 R 7.7 x 2.1 870 55 11 13 R 25.4 x 2.7 19 - 7 Br 25.4 533 - Sub Total 10,810 m 12,497 b. Tidal Gate 495 c. Retention Pond - d. Bund (for A-6 Catchment) 83 Total 13,075  B. Land Acquisition Cost - 6,317 C. Engineering Fee 1,608 D. Contingency Cost 2.534                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | 5 .                                   | 240        | $R = \frac{14.0}{9.0} \times 2.5$                 | 289                    | 428                        |         |
| 7 2,040 R 3.0 x 1.9 1,918 -  8 1,340 R 25.4 x 2.7 1,970 346  9 1,320 R 5.4 x 1.7 1,155 -  20 B 3-1.8 x 1.7 56 -  10 870 R 7.7 x 2.1 870 55  11 13 R 25.4 x 2.7 19 -  7 Br 25.4 533 -  Sub Total 10,810 m 12,497  b. Tidal Gate 495  c. Retention Pond -  d. Bund (for A-6 Catchment) 83  Total 13,075  B. Land Acquisition Cost - 6,317  C. Engineering Fee 1,608  D. Contingency Cost 2,534                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    | 6                                     | 1,263      | $R = \frac{15.5}{10.5} \times 2.5$                | 1,553                  | 165                        |         |
| 8 1,340 R 25.4 x 2.7 1,970 346  9 1,320 R 5.4 x 1.7 1,155 -  20 B 3-1.8 x 1.7 56 -  10 870 R 7.5 x 2.1 870 55  11 13 R 25.4 x 2.7 19 -  7 Br 25.4 533 -  Sub Total 10,810 m 12,497  b. Tidal Gate 495  c. Retention Pond -  d. Bund (for Λ-6 Catchment) 83  Total 13,075  B. Land Acquisition Cost - 6,317  C. Engineering Fee 1,608  D. Contingency Cost 2,534                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |                                       | 7          | Br 15.5                                           | 326                    | <del></del>                |         |
| 9 1,320 R 5.4 x 1.7 1,155 - 20 B 3-1.8 x 1.7 56 - 10 870 R 7.7 x 2.1 870 55  11 13 R 25.4 x 2.7 19 - 7 Br 25.4 533 - Sub Total 10,810 m 12,497 b. Tidal Gate 495 c. Retention Pond - d. Bund (for A-6 Catchment) 83 Total 13,075  B. Land Acquisition Cost - 6,317  C. Engineering Fee 1,608  D. Contingency Cost 2,534                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    | 7                                     | 2,040      |                                                   | 1,918                  | . <del>-</del>             |         |
| 20 B 3-1.8 x 1.7 56 -  10 870 R 7.7 x 2.1 870 55  11 13 R 25.4 x 2.7 19 -  7 Br 25.4 533 -  Sub Total 10,810 m 12,497  b. Tidal Gate 495  c. Retention Pond - d. Bund (for A-6 Catchment) 83  Total 13,075  B. Land Acquisition Cost - 6,317  C. Engineering Fee 1,608  D. Contingency Cost 2,534                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    | 8                                     | 1,340      |                                                   | 1,970                  | 346                        | ·       |
| 10 870 R 7.7 x 2.1 870 55  11 13 R 25.4 x 2.7 19 - 7 Br 25.4 533 -  Sub Total 10,810 m 12,497  b. Tidal Gate 495  c. Retention Pond - d. Bund (for A-6 Catchment) 83  Total 13,075  B. Land Acquisition Cost - 6,317  C. Engineering Fee 1,608  D. Contingency Cost 2,534                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    | 9                                     | 1,320      | R $\begin{array}{c} 5.4 \\ 2.0 \end{array}$ x 1.7 | 1,155                  | -                          |         |
| 11 13 R 25.4 x 2.7 19 - 7 Br 25.4 533 -  Sub Total 10,810 m 12,497  b. Tidal Gate 495  c. Retention Pond - d. Bund (for A-6 Catchment) 83  Total 13,075  B. Land Acquisition Cost - 6,317  C. Engineering Fee 1,608  D. Contingency Cost 2,534                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |                                       | 20         | B 3-1.8 x 1.7                                     | . 56                   | ·                          |         |
| 7 Br 25.4 533  Sub Total 10,810 m 12,497  b. Tidal Gate 495  c. Retention Pond - d. Bund (for A-6 Catchment) 83  Total 13,075  B. Land Acquisition Cost - 6,317  C. Engineering Fee 1,608  D. Contingency Cost 2,534                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    | 10                                    | 870        | $R = \frac{7.7}{3.5} \times 2.1$                  | 870                    | 55                         |         |
| Sub Total 10,810 m       12,497         b. Tidal Gate       495         c. Retention Pond       -         d. Bund (for A-6 Catchment)       83         Total       13,075         B. Land Acquisition Cost       -       6,317         C. Engineering Fee       1,608         D. Contingency Cost       2,534                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    | 11                                    | 13         | $R = \frac{25.4}{20.0} \times 2.7$                | 19                     | _                          |         |
| b. Tidal Gate 495  c. Retention Pond -  d. Bund (for A-6 Catchment) 83  Total 13,075  B. Land Acquisition Cost - 6,317  C. Engineering Fee 1,608  D. Contingency Cost 2,534                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |                                       | 7          | Br 25.4                                           | 533                    |                            |         |
| c. Retention Pond d. Bund (for A-6 Catchment)  83  Total  13,075  B. Land Acquisition Cost  - 6,317  C. Engineering Fee 1,608  D. Contingency Cost  2,534                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    | Sub Total                             | 10,810 m   |                                                   | 12,497                 | ÷                          |         |
| d. Bund (for A-6 Catchment)       83         Total       13,075         B. Land Acquisition Cost       - 6,317         C. Engineering Fee       1,608         D. Contingency Cost       2,534                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    | b. Tidal G                            | ate        |                                                   | 495                    |                            |         |
| Total 13,075  B. Land Acquisition Cost - 6,317  C. Engineering Fee 1,608  D. Contingency Cost 2,534                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    | c. Retenti                            | on Pond    |                                                   | <b>-</b>               |                            |         |
| B. Land Acquisition Cost - 6,317  C. Engineering Fee 1,608  D. Contingency Cost 2,534                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    | d. Bund (f                            | or A-6 Cat | chment)                                           | 83                     |                            |         |
| C. Engineering Fee 1,608  D. Contingency Cost 2,534                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    | Total                                 |            |                                                   | 13,075                 |                            |         |
| C. Engineering Fee 1,608  D. Contingency Cost 2,534                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | В. | Land Acquis                           | ition Cost |                                                   | <del>-</del>           | 6,317                      |         |
| D. Contingency Cost 2,534                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    | •                                     |            |                                                   | ers.                   |                            |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | c. | Engineering                           | Fee        |                                                   | 1,608                  |                            |         |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | D. | Contingency                           | Cost       | • iA                                              | 2,534                  |                            |         |
| GRAND TOTAL $\underline{23,534}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    | · · · · · · · · · · · · · · · · · · · |            |                                                   |                        | <u> </u>                   |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | GRAND                                 | TOTAL      |                                                   | 23,534                 |                            |         |

<sup>\*</sup> Line Nos are shown in Fig. 5.8. of Vol.VI

R : Rubble Wall Channel Br: Bridge

# a. Trunk Drain

| Line*<br>No. | Length | Wid | th x Height | Construc-<br>tion Cost | Land Acqui-<br>tion Cost | Remarks |
|--------------|--------|-----|-------------|------------------------|--------------------------|---------|
|              | (m)    | (m  | (m)         | (M\$1,000)             | (M\$1,000)               |         |
| 1            | 980    | C   | 3.5 x 2.1   | 1,676                  |                          |         |
|              | 20     | В   | 3.5 x 2.1   | 51                     |                          |         |
| 2            | 1,160  | С   | 3.0 x 2.1   | 1,798                  | ••                       |         |
|              | 40     | В   | 3.0 x 2.1   | 94                     | -                        |         |
| 3            | 430    | c   | 1.9 x 1.5   | 404                    | · <b>-</b>               |         |
| 4            | 560    | С   | 5.0 x 2.3   | 1,238                  | -                        |         |
|              | 40     | В   | 2-2.5 x 2.3 | 124                    | -                        |         |

|             | Sub Total 3,230 m     |   | 5,385        |                                                                 |
|-------------|-----------------------|---|--------------|-----------------------------------------------------------------|
|             | b. Tidal Gate         | • | 155          |                                                                 |
|             | c. Retention Pond     |   | -            |                                                                 |
|             | d. Bund               |   | <del>-</del> |                                                                 |
|             | Total                 |   | 5,540        |                                                                 |
| В.          | Land Acquisition Cost |   | -            | en Sur en <del>d</del> e en |
| c.          | Engineering Fee       |   | <u>831</u>   |                                                                 |
| D.          | Contingency Cost      |   | 1,274        |                                                                 |
| <del></del> | GRAND TOTAL           |   | 7,645        |                                                                 |
|             |                       |   |              |                                                                 |

<sup>\*</sup> Line Nos are shown in Fig. 5.8. of Vol.VI

C : Concrete Channel
B : Box Culvert

#### a. Trunk Drain

| Line*<br>No. | Length | Width x Height                   | Construc-<br>tion Cost | Land Acqui-<br>tion Cost | Remarks |
|--------------|--------|----------------------------------|------------------------|--------------------------|---------|
|              | (m)    |                                  | (M\$1,000)             | (M\$1,000)               |         |
| 1            | 300    | $R = \frac{4.5}{1.5} \times 1.5$ | 245                    | <b>~</b>                 |         |
| 2            | 700    | $R = \frac{5.9}{2.5} \times 1.7$ | 616                    |                          |         |
| 3            | 780    | C 3.3 x 1.8                      | 1,162                  | -                        |         |
|              | 40     | B 3.3 x 1.8                      | 92                     | <del>-</del>             |         |
| 4            | 1,000  | C 1.8 x 1.5                      | 900                    | -                        |         |
| 5            | 530    | C 3.2 x 1.6                      | 721                    | <b>-</b>                 |         |
|              | 40     | B 2-1.6 x 1.6                    | 84                     | -                        |         |
| 6            | 560    | C 4.3 x 2.1                      | 1,092                  | -                        |         |
| 7            | 250    | $R = \frac{9.1}{4.5} \times 2.3$ | 269                    | <del>-</del>             |         |

|    | Sub Total 4,200 m     | 5,181                                 |
|----|-----------------------|---------------------------------------|
| -  | b. Tidal Gate         | 190                                   |
|    | c. Retention Pond     | <u>.</u>                              |
|    | d. Bund               | <b>29</b>                             |
|    | Total                 | 5,400                                 |
| В. | Land Acquisition Cost | · · · · · · · · · · · · · · · · · · · |
| c. | Engineering Fee       | <u>810</u>                            |
| D. | Contingency Cost      | 1,242                                 |
|    | GRAND TOTAL           | <u>7,452</u>                          |
|    |                       |                                       |

C : Concrete Channel
R : Rubble Wall Channel
B : Box Culvert

| Line* | Length | Width x Height | Construc-<br>tion Cost | Land Acqui-<br>tion Cost | Remarks |
|-------|--------|----------------|------------------------|--------------------------|---------|
|       | (m)    | (m) (m)        | (M\$1,000)             | (M\$1,000)               |         |
| 1     | 190    | c 1.1 x 1.1    | 95                     | . <u>-</u>               |         |
| 2     | 215    | C 1.5 x 1.5    | 172                    | <del>-</del>             |         |
| •     | 20     | B 1.5 x 1.5    | 26                     | <b></b>                  |         |
| 3     | 30     | C 2.0 x 2.0    | 35                     | <del>-</del>             |         |
|       | 20     | B 2.0 x 2.0    | 37                     |                          |         |
| 4     | 255    | C 2.2 x 2.2    | 339                    | ***                      |         |
| 5     | 35     | B 2.4 x 2.4    | 79                     | ·                        |         |
| · 6   | 345    | C 1.6 x 1.6    | 300                    | -                        |         |
|       | 20     | B 1,6 x 1.6    | 28                     | -                        |         |
| 7     | 60     | C 1.7 x 1.7    | 57                     | -                        |         |
| 8     | 305    | c 1.7 x 1.7    | 290                    | -                        |         |
| 9     | 80     | C 2.7 x 2.7    | 138                    | -                        |         |
| 10    | 20     | C 2.9 x 2.9    | 37                     | -                        |         |
|       |        |                |                        |                          |         |

| Sub Total 1,59      | 5 m  | 1,633                                 |  |
|---------------------|------|---------------------------------------|--|
| b. Tidal Gate       |      | 1.55                                  |  |
| c. Retention Pon    | nd   | -<br>-                                |  |
| d. Bund             | ·    | + + + + + + + + + + + + + + + + + + + |  |
| Total               |      | <u>1,788</u>                          |  |
| B. Land Acquisition | Cost |                                       |  |
| C. Engineering Fee  |      | <u>268</u>                            |  |
| D. Contingency Cost |      | 411                                   |  |
| GRAND TOTAL         |      | 2,46 <u>7</u>                         |  |

<sup>\*</sup> Line Nos are shown in Fig. 5.8. of Vol.VI

C : Concrete Channel
B : Box Culvert

# a. Trunk Drain

| Line* | Length | Wid | th x Height                  | Construc-<br>tion Cost | Land Acqui-<br>tion Cost | Remarks |
|-------|--------|-----|------------------------------|------------------------|--------------------------|---------|
|       | (m)    | (n  | n) (m)                       | (M\$1,000)             | (M\$1,000)               |         |
| 1     | 730    | С   | 2. x 1.7                     | 883                    | -                        |         |
|       | 20     | В   | 2.5 x 1.7                    | 38                     | <b>-</b> .               |         |
| 2     | 780    | С   | 3.5 x 2.1                    | 1,334                  | -                        |         |
|       | 20     | В   | 3.5 x 2.1                    | 51                     | -                        |         |
| 3     | 230    | В   | $\frac{7.7}{3.5} \times 2.1$ | 230                    | 76                       |         |
| 4     | 50     | R   | $^{8.2}_{4.0}$ x 2.1         | 51                     | 4 .                      |         |

| Sub Total 1,830 m        | 2,587      |                                |
|--------------------------|------------|--------------------------------|
| b, Tidal Gate            | 170        |                                |
| c. Retention Pond        | 770        | 1,080 $V = 53,000 \text{ m}^3$ |
| d Bund                   | -          |                                |
| Total                    | 3,527      |                                |
| B. Land Acquisition Cost |            | 1,160                          |
| C. Engineering Fee       | <u>529</u> |                                |
| D. Contingency Cost      | <u>811</u> |                                |
| GRAND TOTAL              | 6,027      |                                |

<sup>\*</sup> Line Nos are shown in Fig. 5.8. of Vol.Vİ

C : Concrete Channel

R : Rubble Wall Channel B : Box Culvert

| a. | Trunk | Drain |
|----|-------|-------|

| e  | Line*      |               | ر<br>الم ال | th x Height                   | Construc-<br>tion Cost                 | Land Acqui-<br>tion Cost | Remarks                        |
|----|------------|---------------|-------------|-------------------------------|----------------------------------------|--------------------------|--------------------------------|
|    | No.        | Length<br>(m) | (m)         |                               | (M\$1,000)                             | (M\$1,000)               | : ·                            |
|    | 1          | (3,320)       |             | 8.8<br>4.0 × 2.4              | <u></u>                                | -<br>-                   | Outside of the<br>Project Area |
|    |            | 20            | <b>B</b> :  | 3-2.95 x 2.4                  | 1.37                                   | -                        |                                |
|    | 2          | (2,833)       | R           | 11.0 x 2.5                    | ······································ | <b>-</b>                 | Outside of the<br>Project Area |
|    |            | 7             | Br          | 11.0                          | 231                                    | <del>-</del> .           |                                |
| :  | 3          | 2,000         | R           | $\frac{12.7}{7.5} \times 2.6$ | 2,420                                  | 882                      | ٠.                             |
|    | 4          | 2,000         | C           | 4.9 x 2.5                     | 5,480                                  | 204                      |                                |
|    | 5          | 2,520         | R           | 8.8<br>4.0 x 2.4              | 2,747                                  | 816                      |                                |
|    |            | 20            | В           | 3-2.95 x 2.4                  | 137                                    | -                        |                                |
|    | 6          | 1,000         | С           | 5.5 x 3.0                     | 3,600                                  | 120                      | •                              |
|    | 7          | 73            | R           | $\frac{13.9}{7.5}$ x 3.2      | 101                                    |                          | ·                              |
|    | 4 . •      | 7             | Br          | 13.9                          | 292                                    | iæ-                      |                                |
|    |            |               |             |                               |                                        |                          |                                |
|    | . 5        |               |             |                               |                                        |                          |                                |
| :  | Sub Total  | 7,647 m       |             |                               | 15,145                                 |                          |                                |
|    | b. Tidal   | Gate          |             |                               | -                                      |                          |                                |
|    | ;          |               |             |                               | · · · <u>-</u>                         |                          |                                |
|    | c. Retent  | tion Pond     |             |                               |                                        |                          |                                |
|    | d, Bund    |               |             |                               | -                                      |                          | ·                              |
|    | Total      |               |             | ·<br>·<br>·                   | 15,145                                 |                          |                                |
| В. | Land Acqui | isition Cost  |             |                               | <del>-</del> :                         | 2,022                    |                                |
| c. | Engineeri  | ng Fee        |             |                               | 2,272                                  |                          |                                |
| D. | Contingen  | cy Cost       |             |                               | 3,483                                  |                          |                                |
|    |            |               | :           | ·                             | <del></del>                            |                          | <del></del>                    |

<sup>\*</sup> Line Nos are shown in Fig. 5.9. of Vol.VI

GRAND TOTAL

22,922

C : Concrete Channel

R : Rubble Wall Channel
B : Box Culvert

Br: Bridge

#### a. Trunk Drain

| Line* | Length  | Wid | th x lleight                 | Construc-<br>tion Cost | Land Acqui-<br>tion Cost | Remarks                        |
|-------|---------|-----|------------------------------|------------------------|--------------------------|--------------------------------|
|       | (m)     | (m  | ) (m)                        | (M\$1,000)             | (M\$1,000)               |                                |
| 1     | (2,100) | R   | 8.6<br>4.0 x 2.3             | · -                    | -                        | Outside of the<br>Project Area |
| 2     | (1,800) | R   | $\frac{7.2}{3.0} \times 2.1$ | , <del></del>          |                          | н                              |
| 3     | 530     | R   | $\frac{11.0}{6.0}$ x 2.5     | 612                    | 153                      | ·                              |
| 4     | 700     | C . | 3.0 x 2.0                    | 1,050                  | . 32                     |                                |
| 5     | 143     | R   | $^{11.2}_{6.0} \times 2.6$   | 169                    | . •                      |                                |
|       | 7       | Br  | 11.2                         | 235                    | -                        |                                |

|             | Sub Total 1,380 m     | 2,066        |  |
|-------------|-----------------------|--------------|--|
|             | b. Tidal Gate         |              |  |
|             | c. Retention Pond     | <del>-</del> |  |
|             | d. Bund               | -            |  |
|             | Total                 | 2,066        |  |
| В.          | Land Acquisition Cost | <u>185</u>   |  |
| <b>c.</b> : | Engineering Fee       | 310          |  |
| D.          | Contingency Cost      | <u>475</u>   |  |
|             | GRAND TOTAL           | 3,036        |  |

C : Concrete Channel
R : Rubble Wall Channel
Br: Bridge

| Line* | Lèngth  | Width x Height                    | Construc-<br>tion Cost | Land Acqui-<br>tion Cost | Remarks                        |
|-------|---------|-----------------------------------|------------------------|--------------------------|--------------------------------|
|       | (m)     | (m) (m)                           | (M\$1,000)             | (M\$1,000)               |                                |
| 1,    | (2,373) | $R = \frac{11.6}{6.0} \times 2.8$ | -                      | , <del></del>            | Outside of the<br>Project Area |
|       | 7       | Br 11.6                           | 244                    | <del>-</del>             | ~ *                            |
| 2     | (650)   | $R = \frac{12.2}{6.0} \times 3.1$ | -                      | _                        | Outside of the<br>Project Area |
|       | 600     | $R = \frac{12.2}{6.0} \times 3.1$ | 798                    | 194                      |                                |
| 3     | 1,300   | $R = \frac{12.7}{6.5} \times 3.1$ | 1,742                  | 441                      | `                              |
| 4     | 1,000   | $R = \frac{12.7}{6.5} \times 3.1$ | 1,340                  | 339                      |                                |
| 5     | 700     | C 1.6 x 1.6                       | 602                    | ~                        |                                |
| 6     | 700     | C 2.0 x 2.0                       | 812                    | -                        |                                |
| 7     | 73      | $R = \frac{12.7}{6.5} \times 3.1$ | 98                     | -                        |                                |
| •     | 7       | Br 12.7                           | 267                    | <del>-</del> .           |                                |

|    | Sub Total 4,387 m     |   | 5,903 |            |
|----|-----------------------|---|-------|------------|
|    | b. Tidal Gate         |   | -     | :          |
|    | c. Retention Pond     |   | -     |            |
|    | d. Bund               | * | -     |            |
|    | Total                 |   | 5,903 |            |
| В. | Land Acquisition Cost |   | ·     | <u>974</u> |
| c. | Engineering Fee       |   | 885   |            |
| D. | Contingency Cost      |   | 1,358 |            |
|    | GRAND TOTAL           |   | 9,120 |            |

<sup>\*</sup> Line Nos are shown in Fig. 5.9. of Vol.VI

C : Concrete Channel R : Rubble Wall Channel Br: Bridge

a, Trunk Drain

| Line* | Length | ength Width x Height |                            | Construc-<br>tion Cost | Land Acqui-<br>tion Cost | Remarks |
|-------|--------|----------------------|----------------------------|------------------------|--------------------------|---------|
| * .   | (m)    | (m                   | (m)                        | (M\$1,000)             | (M\$1,000)               |         |
| 1     | 2,100  | c                    | 2.8 x 2.5                  | 3,528                  | 82                       |         |
| ` 2   | 800    | С                    | 2.2 x 1.5                  | 824                    | -                        |         |
| 3     | 173    | R                    | $^{13.0}_{6.0} \times 3.5$ | 251                    | -                        |         |
|       | 7      | Br                   | 13.0                       | 273                    | <del>-</del>             |         |

|         |                       | , |                |    |  |
|---------|-----------------------|---|----------------|----|--|
|         | Sub Total 3,080 m     |   | 4,876          |    |  |
|         | b. Tidal Gate         |   | -              |    |  |
|         | c. Retention Pond     |   | <del>-</del>   |    |  |
|         | d. Bund               |   | <del>-</del> . |    |  |
|         | Total                 |   | 4,876          |    |  |
| В.      | Land Acquisition Cost | • | -              | 82 |  |
| c.      | Engineering Fee       |   | <u>731</u>     |    |  |
| D.      | Contingency Cost      |   | 1,121          |    |  |
|         |                       |   |                | ·  |  |
| ***<br> | GRAND TOTAL           |   | 6,810          |    |  |

\* Line Nos are shown in Fig. 5.9. of Vol.VI

C : Concrete Channel
R : Rubble Wall Channel
Br: Bridge

| Line * | Length  | Width x Height                     | Construc-<br>tion Cost | Land Acqui-<br>tion Cost<br>(M\$1,000) | Remarks                        |
|--------|---------|------------------------------------|------------------------|----------------------------------------|--------------------------------|
|        | (m)     | (m) (m)                            | (M\$1,000)             | (1191,000)                             |                                |
| 1      | 620     | $R = \frac{11.2}{6.0} \times 2.6$  | 735                    | 182                                    |                                |
| .2     | 1,500   | C 4.6 x 2.5                        | 3,315                  | 140                                    |                                |
| 3      | 700     | C 2.1 x 2.1                        | - 868                  | <del></del> .                          |                                |
| 4      | (2,053) | $R = \frac{16.2}{10.0} \times 3.1$ | <del>-</del>           |                                        | Outside of the<br>Project Area |
|        | 7       | Br 16.2                            | 340                    |                                        |                                |
| 5      | (2,560) | $R = \frac{16.4}{10.0} \times 3.2$ | <b></b>                | <del></del> .                          | Outside of the<br>Project Area |
| 6      | (3,660) | $R = \frac{16.4}{10.0} \times 3.2$ |                        | <u></u>                                | fl                             |
| 7      | 293     | $R = \frac{16.4}{10.0} \times 3.2$ | 425                    | 162                                    |                                |
|        | 7       | Br 16.4                            | 344                    | <del></del>                            |                                |

|    | Sub Total 3,127 m     |   | 1 11 1 | 5,991        |                                                                                                                                       |
|----|-----------------------|---|--------|--------------|---------------------------------------------------------------------------------------------------------------------------------------|
|    | b. Tidal Gate         |   | '      | : <u>-</u>   |                                                                                                                                       |
|    | c. Retention Pond     |   |        |              |                                                                                                                                       |
|    | d. Bund               | • |        | -            |                                                                                                                                       |
|    | Total                 |   |        | <u>5,991</u> |                                                                                                                                       |
| В. | Land Acquisition Cost |   |        | <u>.</u> -   | 484                                                                                                                                   |
| С. | Engineering Fee       |   |        | 899          | erina di Salamania.<br>Ny INSEE dia mampiasa ny kaominina dia kaominina dia mpikambana ara-daharanjaraharanjaraharanjaraharanjarahara |
| D. | Contingency Cost      |   |        | 1,378        |                                                                                                                                       |
|    | GFAND TOTAL           |   |        | 8,752        |                                                                                                                                       |

<sup>\*</sup> Line Nos are shown in Fig. 5.10. of Vol.VI

C : Concrete Channel R : Rubble Wall Channel Br: Bridge

| a. Trunk | Drain |
|----------|-------|
|----------|-------|

|      | d. Bund Total      | ion Pond              |                                                                                 | -<br>24,987             |                        |                                |
|------|--------------------|-----------------------|---------------------------------------------------------------------------------|-------------------------|------------------------|--------------------------------|
|      | Sub Total b. Tidal | and the second second |                                                                                 | 24,987                  |                        |                                |
|      | 19                 | 370                   | $R = \frac{34.2}{26.0} \times 4.1$                                              | 808                     |                        |                                |
|      |                    | 753<br>7              | Br 11.4                                                                         | 239                     | ~                      |                                |
|      | 17<br>18           | 980                   | C $2.3 \times 2.0$<br>R $\frac{11.4}{6.0} \times 2.7$                           | 1,235<br>913            | 226                    |                                |
|      | 16                 | (2,660)               | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                            | -                       | **                     |                                |
|      | 15                 | (3,000)               | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                            | **                      | <b></b>                | Outside of the<br>Project Area |
|      |                    | 20                    | $3-2.95 \times 2.4$                                                             | 137                     | . –                    |                                |
| *. * |                    | (2,600)               | $R = \begin{array}{c} 8.8 \\ 4.0 \times 2.4 \end{array}$                        | <b>-</b>                | -                      | Outside of the<br>Project Area |
|      | 14                 | 300                   | $R = \begin{array}{c} 8.8 \\ 4.0 \\ \end{array} \times 2.4$                     | 327                     | 67                     |                                |
| : .  | 13                 | 630                   | R 7.8 x 2.4                                                                     | 677                     | 185                    | 4                              |
|      | 12                 | 350                   | $R = \frac{33.2}{25.0} \times 4.1$                                              | 754                     |                        |                                |
| ٠    |                    | 7                     | Br 17.6                                                                         | 370                     | -                      |                                |
|      | 11                 | 493                   | $R = \begin{array}{c} 17.6 \\ 12.0 \end{array} \times 2.8$                      | 670                     | 290                    |                                |
|      | 10                 | 220                   | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                            | 1,659                   | 717                    |                                |
|      |                    | 7 .                   | Br 29.8                                                                         | 626                     |                        |                                |
|      | 9                  | 693                   | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                            | 1,379                   | -                      |                                |
|      | 8 .                | 1,400                 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                            | 2,660                   | 1,016                  |                                |
|      | 7                  | 2,250                 | $\begin{array}{ccc} R & 24.0 & \times & 3.0 \\ 18.0 & \times & 3.0 \end{array}$ | 3,488                   | 1,391                  | ·                              |
|      | 6                  | 1,450                 | $R = \begin{array}{c} 24.0 \\ 18.0 \\ \end{array} \times 3.0$                   | 2,248                   | 896                    |                                |
|      | . 5                | 1,300                 | $R = \begin{array}{c} 24.0 \\ 18.0 \\ \end{array} \times 3.0$                   | 2,015                   | 881                    |                                |
|      | 4                  | 1,370                 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                            | 2,124                   | 929                    |                                |
|      | •                  | 7                     | Br 24.0                                                                         | 504                     | · <del></del>          |                                |
|      | 3                  | 693                   | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                            | 1,074                   | 470                    |                                |
|      | 2                  | 400                   | $R = \frac{11.4}{6.0} \times 2.7$                                               | 486                     | 120                    |                                |
|      | 1                  | 400                   | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                            | 594                     | 235                    |                                |
|      | No.                | Length (m)            | Width x Height (m) (m)                                                          | tion Cost<br>(M\$1,000) | sition Cost (M\$1,000) | Remarks                        |

<sup>\*</sup> Line Nos are shown in Fig. 5.10, of Vol.VI