マレイシア国

キナバタンガン河流域開発計画調査

主報 告書

昭和57年3月

国際協力事業団

開二

82 - 049

マレイシア国

キナバタンガン河流域開発計画調査

主報告書

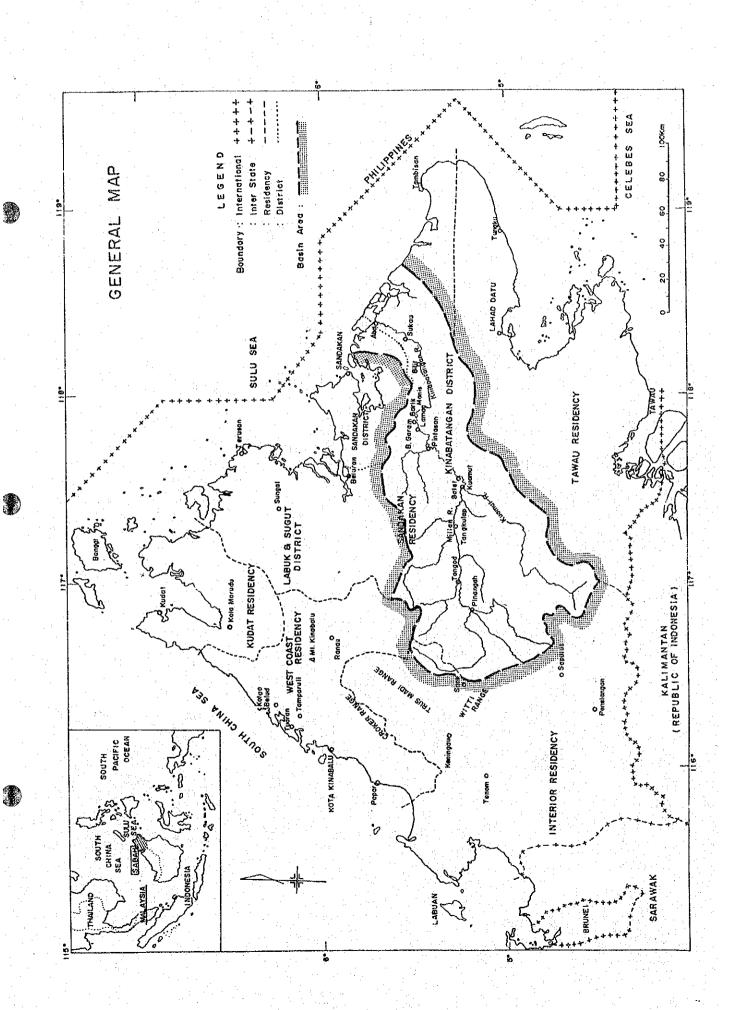
LIBRARY

昭和57年3月

国際協力事業団

日本国政府は、マレイシア国政府の要請に応えてキナバタンガン河流域開発計画調査を行なう ことを決定し、国際協力事業団がこれを実施した。

事業団は株式会社建設技術研究所,中央開発株式会社共同企業体 阿部勝久氏を団長とする調査団を昭和55年12月から昭和56年11月に亘りマレイシア国に派遣した。


現地において、調査団はマレイシア国政府の関係者と意見交換を行うとともにキナバタンガン 河流域を対象に現地調査を行なった。帰国後現地調査結果に基づき国内作業を進め今般その全て の作業を終了し、ここに報告書提出の運びとなった。

本報告書が同開発計画に寄与するとともに二国間の友好親善に役立つならば、これにまさる喜びはない。

終りに、当調査団に対し密接な協力を惜しまれなかったマレインア国政府関係者に対し、こと に深く感謝する次第である。

昭和57年3月

国際協力事業団 総裁 有 田 圭 輔

1. 概 説

マレイシア国サバ州東部にあるキナバタンガン河流域は、従来未開発のまま放置されてきたが、1970年代の後半から連邦政府および州政府は、雄大な可能性をもつこの地域を、開発対象地域として、着目し始めてきた。

当流域には現在種々の開発計画が予定されているが、順序正しい開発のためには洪水防御計画と水資源開発計画が不可欠の要素である。このためにはキナバタンガン河の上流あるいは中流にダムを建設することが必要であり、その結果洪水防御によって従来の洪水氾濫区域が利用可能となり、この区域に対する農業開発と、ダム貯水位を利用した水力発電によってサバ州東部地域に増大する電力需要に対して電力供給を行うことが出来る。

このことから、本調査では計画対象地域での洪水防御、農業開発および発電計画からなる開発計画を実施するために、キナバタンガン河中流域のバラット地点に多目的ダム建設を計画した。

とのバラットダムの貯水池容量は, 洪水防御および利水目的に利用する。

また将来の電力需要をまかなうために、ダム貯水位によって生ずる水位差を利用して水力発 電を行う。

2. 調査の目的および範囲

調査の目的

マレイシア政府と日本政府の間で合意された本調査の目的は、キナバタンガン河流域開発計画のプリフィージビリティー調査を実施することであり、具体的には当流域の洪水氾濫区域における概略的な開発計画を策定することである。

調査の範囲

本調査の範囲は次の通りである。

- 1) キナバタンガン河流域の水資源開発可能性および農業開発可能性の検討
- 2) 計画ダムの比較・検討
- 3) 洪水防御計画の検討
- 4) 発電計画および農業開発計画を含む水資源開発計画の検討

3. 計画対象地域

キナバタンガン河は流域面積 16,800 km² で位置は北緯 4°30′~5°45′ 東経 116°25′ ~118°40′ の範囲にある。

キナバタンガン河上流はミリアン河とよばれ、多くの支川を合流しながら山間部を流下し、 クワムット村でクワムット河と合流する。さらに本川はその後中流部でロカン河や他の支川を 合流しながらスル海に注いでいる。

本川の河口から300kmの区間の河川沿岸地域は標高15m以下の平坦地であり、この中下 流部は蛇行が激しく河川からの流出土砂によって広大な沖積平野が発達している。

本河川下流部の河床勾配は約1/15,000である。

キナバタンガン河流域はサバ州で最も人口が希薄な地域で1980年の人口は約29,000人, 過去10年間の年平均人口増加率は7.6%である。

水文的には当流域の年間降雨量は 2,500 mm~ 3,000 mm の範囲にあり、また過去 10 年間に生起した洪水の最大は 1971年 2月洪水でこの時の日最大流量はタンクラップで 3,020 m²/s,バラットで 5,250 m²/s におよんでいる。

4 9 4

バラットダムは、キナバタンガン河の河口から260kmの中流部に位置し、主ダム1と副ダム4からなりすべてアースフィルダムで計画した。またこれら5ダムの総堤体積は、5,320,000 meとなっている。

バラットダムの有効貯水容量は 4.789×10°m³で, このうち4.665×10°m³が洪水調節容量として用いられ,5,400 m³/s のバラット地点基本高水流量を 900 m³/s に調節する。また残りの0.12×10°m³は、利水目的に用いられる。

放流施設は、洪水調節用と貯水位を常時満水位(N.W.L)に維持するため用の2種類を設置する。洪水調節用としては中5 m高さ28.5 mの越流部を設置、また常時満水位を維持するための施設には直径7 mの放流管3 本を設置する。そしてこの放流施設は発電にも利用する。中300 mの自由越流部を有する洪水吐は、ダムの右岸側の丘陵地に2 ケ所設置し、設計洪水流量を安全に流下させる。

しかしながら一方ではこのプロジェクト実施により、520km²の用地買収と850戸の家屋補償が必要である。

5. 洪水調節

キナバタンガン河流域の洪水調節規模は 20 年確率を採用し、ダムによって洪水調節を行う。 この場合バラットダムとバリックマニス地点の基本高水 5,400 m²/s, 6,000 m²/s をそれぞれ 900 m²/s, 1,500 m²/s に調節するために必要なダム洪水調節容量は 4.665×10° m²で、河道への流下流量 1,500 m²/s は現況河道疎通能力と合致しているため、河道改修の必要性はな

そしてダム完成によって、20年確率以上の洪水に対して洪水氾濫が生じなくなる区域は

107,000 ha であり、この区域の著しい生産性の向上が期待出来る。

6. 農業開発

洪水調節によって洪水被害のなくなる 107,000 ha のうち農業開発区域の対象となるのは 55,000 ha であるが, このうち実際に森林伐採, 抜根, 農地造成等の工事を行う区域は 48,700 ha で, 最終的な作付面積は 44,000 ha である。

栽培作物は水稲の2期作(オフシーズン、メインシーズン)とし、大規模機械化農業方式を 導入する。この場合オフシーズンのかんがい用水供給に必要なダムの利水容量は0.12×10⁹m² である。

農業生産をスムーズに行うのにフル生産段階で必要な労働者数は約4,000人で,内訳は管理部門および農業専門家として190人,熟練労働者580人,準熟練労働者は3,230人である。

7. 水力発電

水力発電所は、主ダムの左岸側直下流に設置し、発電方式は流れ込み式を採用する。この発電出力は31,500 KWで年間総発生電力量は168×10⁶KWHである。またこれに必要な発電施設は容量10,500 KWのチューブタービン3台、11,000 KVAの3相垂直軸型発電機3台である。

送電線は、バラットダムからサンダカンまでの100km区間をサンダカン〜コタキナバルを結ぶ既設道路とバラットダムへの取付け道路に沿って設置し、132 KV、 3 相 3 線の送電線で消費地への供給を行う。

8. 施工計画

プロジェクト実施に要する建設期間は 10 年間とし、1983年開始、1992年竣工する。各項目の、詳細設計期間を含む建設期間は、次に示す如くである。

項目施工期間

ダ ム ; 1983年7月~1992年12月

農業開発 ; " " ~ 1992年10月

電力開発 ; " " ~ 1992年12月

9. プロジェクトコスト

1981年価格を用いて求めた請け負い方式による全体のプロジェクトコストはUS\$1,050×10⁶ でとのうち外貨分はUS\$622×10⁶(59%),内貨分はUS\$428×10⁶(41%)である。また各項目ごとのプロジェクトコストは、下記の通りである。

(×108 US\$)

_項	8		外 貨	内貨	合 計
Ŋ.	۵	;	141.3	147.1	288.4
農業	開発	;	422.3	270.9	693.2
電力	開発	;	58.1	10.6	68.7
合	計	;	621.7	428.6	1,050.3

10. プロジェクト評価

エコノミックコスト

エコノミックコストの総計はUS \$ 705.3×10 °で, 外貨分はUS \$ 410.5×10°, 内貨分はUS \$ 294.8×10° である。各項目別のコストは、次に示す通りである。

$(\times 10^6 \text{ US} \$)$

項目	外貨	内 貨	合 計
<i>§</i> 4	; 96.8	106.2	203.0
農業開発	279.6	182.4	462.0
電力開発	34.1	6.2	40.3
合 計	; 410.5	294.8	705.3

プロジェクト便益

本プロジェクト実施による年間便益の総計はUS*81.03 \times 10 6 で、各部門別の便益は、下に示す通りである。

(×106 US\$)

部門		年間便益
洪水防御	;	0.29
農業開発	;	77.04
電力開発	;	3.70
合 計	;	81.03

内部収益率(IRR)

プロジェクトの評価は、プロジェクト便益とエコノミックコストによる内部収益率(IRR)で行う。プロジェクトライフを 50 年とした場合の本プロジェクトの 1RRは、7.1 %である。

11. 結 論

キナバタンガン河流域開発計画は、流域の河川沿岸地域の未利用地を洪水防御によって農業用地として開発することと合わせて、東部海岸地域で増大する電力需要をまかなうことを目的として策定された。

本計画は、キナバタンガン河流域全体の生産性を高めるため、またサバ州の地域計画を促進 するために重大な役割を果すものといえるが、経済的にみた実現性が低く、また初期の投資額 が膨大であるところから、当分の間本計画の実施は勧告しがたい。

計画諸元の総括

1. ダムおよび貯水池

貯 水 池

EL. 43.0 m 設計洪水位(D.F.W.L) サーチャージ水位(S.W.L) EL. 37.0 m EL. 17.5 m 常時満水位(N.W.L) EL. 16.5 m 最 低 水 位(L.W.L) $5.000 \times 10^9 \, \text{m}^3$ 総貯水容量 $4.785 \times 10^9 \, \text{m}^3$ 有効貯水容量 $4.665 \times 10^9 \, \text{m}^3$ 洪水調節容量 $0.120 \times 10^9 \, \text{m}^3$ 利 水 容 量 $0.215 \times 10^9 \, \text{m}^3$ 堆 砂 容量 ۸

主ダム

ダム高

堤 頂 長

堤 頂 巾

堤 頂標高

ダム堤体積

副ダム No.1

ダム高

堤 頂 長

堤 頂 巾

堤 頂 標 髙

ダム堤体積

副ダム № 2

ダ ム 高

堤 頂 長

堤 頂 巾

堤頂標高

ダム堤体積

46.0 m

530.0 m

10.0 m

EL. 46.0 m

 $2.15 \times 10^6 \, m^3$

16.0 m

540.0 m

10.0 m

EL. 46.0 m

 $0.33 \times 10^6 \, m^3$

42.0 m

550.0 m

10.0 m

EL. 46.0 m

 $1.83 \times 10^6 \, m^3$

ダム高

堤 頂 長

堤 頂 巾

堤頂標高

ダム堤体積

副ダム No.4

タ ム 喜

堤 頂 長

堤 頂 巾

堤 頂 標 髙

ダム堤体積

洪水吐

越流巾

越流水深

設置ヶ所数

放流設備

洪水調節用

常時満水位維持用

取付道路

補償家屋数および用地買収

補償家屋敷

用地買収

2. 洪水調節

洪水調節規模

基本高水流量

パラットダムサイト

パリックマニス

洪水調節方式

計画高水流量

バラットダムサイト

バリックマリス

洪水被害軽減区域

10.0 m

120.0 m

10.0 m

EL. 46.0 m

 $0.02 \times 10^6 \, \text{m}^3$

26.0 m

780.0 m

10.0 m

EL. 46.0 m

 $0.99 \times 10^6 \, \text{m}^3$

300 m

6 m

2 ケ所

巾 5 m×高 28.5 m (自由越流部)

直径 7 m×長 40 m× 3 本 (ゲート付き)

48 Km

850 戸

520 Km²

20 年確率

 $5,400 \, m^3/s$

 $6,000 \, m^3/s$

バラットダム

 $900 \, m^3 / s$

 $1,500 \, m^3/s$

107,000 ha

3. 農業開発

農業開発区域

総面積

作付面積

栽 培

栽培作物

作付体系

予想収量(籾)

農業形態

トラクター

コンバイン

精米機

必要労働力

かんがいシステム

ポンプ場

用 水 路

幹線水路

二次水路

末端水路

排水システム

既設水路の改良

支川排水路

二次排水路

関連構造物

農業用道路網

幹線農道

支線農道

関連構造物

移住

用地買収

55,000 ha

44,000 ha

水 稲

2期作

4.2 t/ha (オフシーズン)

3.8 t/ha (メインシーズン)

大規模機械化農業

750台

250 台

6 t/hr × 11 ケ所

4,000人

斜流ポンプ 23ヶ所

158 Km 素掘り水路

461 km 素掘り水路

2,244 Km 素掘り水路

88 Km

231 ㎞ 素掘り水路

1,122 ㎞ 素掘り水路

645 ケ所

635 Km 砂利舗装

935 km 未 舗 装

27 ケ所

4,000世帯

4.700 ha

4. 水力発電

発電所

最大使用水量

発 電 室

発電設備

ターピン

発 電 機

年間発生電力

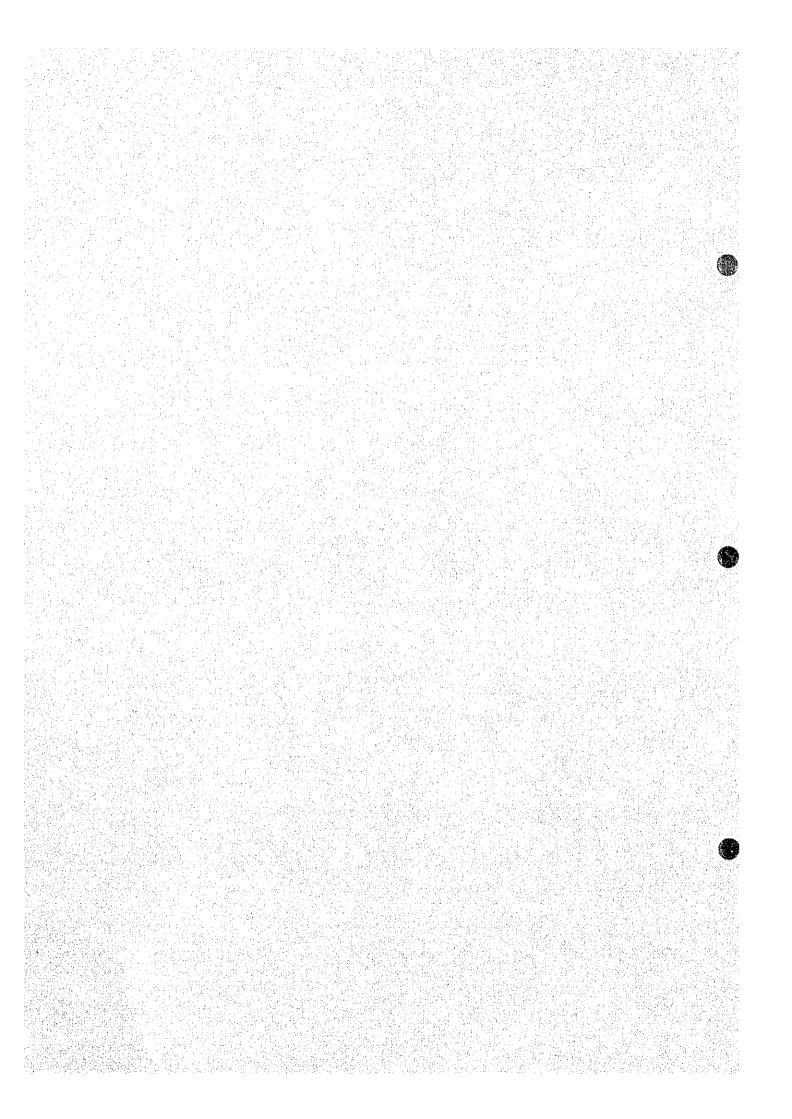
送 電 線

 $450 \, m^3 / s$

巾 20 m×長 48 m×高さ 35 m

半地下式

テューブラーターピン


10,500 KW×3台

3 相水平軸発電機

11,000 KVA×3台

 $168 \times 10^6 \, \text{KWH}$

延長 100 km, 132 KV

序	:		文	
概		要	図	
要		¥	约	
音	画	諸カ	この紛	\$tf····································
第	1	章	序	章······
	1.	٠	調査	その経緯
		2	調査	この概要
				- 調査の目的····································
				調査の範囲・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
篞	2	音	 #	设的背景
'n,		1		☆経済的背景
	Ţ.		- tr (1)	『の背景
给				" - 4 % E対象地域の現況
<i>≯</i> ₹			1.	『的状況・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	Э.			位置かよび地形・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
٠.,		: · · ·		下層 4 年 C 4 4 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1
			1. 2	気 候
		1.	l. 4	
		J. 9.	l. 5	相关的经验的 机工作 医电子 化二苯二甲基甲二烷 法人工的 医二氏病 医二甲二氏征 医抗原性
	ļ.		11.	土壌をよび土地分類・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
		3.	l. 7	
	s.	3.	l. 8	然小饭 音
	3.	2	農	
; :		3. 2	2. 1	
		3. 2	2. 2	農業形態
		3. 2	2. 3	栽培作物1
	: :	3. 2	2. 4	農業生産・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	11 11 11	3. 2	2, 5	畜産,内陸面漁業,林業
	3.	3	社会	経済状況 1
1.		3.	3. 1	行政区分
	٧.	3.	3. 2	民勢統計 1
٠.				

				٠				6 - 6 - 1				. :			
														1.1	•
						用				:		1,1			1 1
		3.	3.	3	水利	用		*********			******		******		• 11
		3.	3.	4	電	力········									
		3.	3.	5	交通を	。 よび通信	•••••	i.i.			•••••		••••••		12
	3.	A	3	田石	信祭 開る	十画							• • • • • • • • •		. 12
				20 J J	· 446										1 1
第	4 :	草	i	計世	」策定"		:		• • • • • • • • • • • • • • • • • • • •		•••••	*********	• • • • • • • • • •		1 14
	4.	1		既											
	4.	2	ł	開発	計画の	の概要	••••••							********	14
		4.	2.	1	キナバ	: タンカン	河流域	共水氾濫	地域の位	置付け・				*********	14
		1	2.	2		2濫地帯で									
					DZ //\(\))基本理念	י פול נוט כיי	2 1014721	'						
			2.		開発 🤈)基本埋念			••••••		*******			*********	. 19
	4.	3		ダム	およひ	ゞ貯水池…	· · · · · · · · · · · · · · · · · · ·								- 15
		4.	3.	1	貯水池	しの必要機	能				,				15
		4.	3.	2	ダムサ	イトの選	定		• • • • • • • • • • • • • • • • • • • •					• • • • • • • • • • • • • • • • • • • •	16
	٠.	Á	3	3	パラッ	トダムお	よび貯っ	k油の計	面規模…						17
				#L	<i>ū</i> -1= 25m										. 17
_			:		. 1971 (VEL	方御計画規									1.79
		4.	4.	1	洪水以	5個計画規 5水流量…					*****				. 17
		4.	4.	2	基本高	5水流量…					••••••				
		4.	4.	3	洪水队	方御方法…		• • • • • • • • • • • • •			• • • • • • • • • • • • • • • • • • • •		••••••		18
		4.	4.			5水流量お							•••••		18
		4.	4	5	便	益								<u> </u>	. 19
			:	$t=\tau_{i}$											19
		5			開発・	月発対象地				4.4				**.	177
		4.	5.										••••••	*******	19
		4.	5.	2	栽培作	F物の選定					• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • •	•••••	19
		4.	5.	3	農業形	/態					•••••	• • • • • • • • • • • • • • • • • • • •			20
		4.	5.	4	農耕お	ゝよび農産	物処理・	,			•••••	•••••		2,	. 20
		А	5	1, 1		開発計画…									21
		7.	-	, ,		方。 分働力									22
		4.	5.	6	必要先	子>>>>		•••••							22
				7	便						• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	••••••	********	23
:	4.	6	1	電力	開発・								•••••		23
	٠.	4.	6.	1	将来€	電力需要	およびは	烘給地…	• • • • • • • • • • • • • • • • • • • •	 . * * * * * * * * * * * * * * * * *		• • • • • • • • • • • • • • • • • • • •			23
		4.	6		発	電							•		23
						線	1-				4 . * 4	•••••			
	:														
	٠,	4.	6.	4	便	益	• • • • • • • • •	••••••••••••••••••••••••••••••••••••••	• • • • • • • • • • •		*******	• • • • • • • • •		********	24
	. f .		- 1	٠.						. 4		112			141

٠	en en en en estado en en entre en en en en en en entre e Han en en entre en e
٠	第 5 章 予備設計
٠	5. 1 概 説
	5.2 タムおよび貯水池・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	5. 2. 1 タ ム··································
	5.2.2 洪水吐
	5. 2. 3 放流設備
	5. 2. 4 転流工
•	5.2.5 取付け道路20
	5. 3 農業開発
	5.3.1 かんがい,排水設備
	5. 3. 2 農業施設
	5. 3. 3 農業機械
	5.4 水力発電
	5. 4. 1 発電所建屋
	5. 4. 2 発電機器
	5.4.3 送電線
	第 6 章 施工計画および建設費
	6. 1 概 説
	6. 2 🖋 д
	6.2.1 施工計画
	6. 2. 2 積 算
	6. 3 農業開発
	6.3.1 施工計画
	6. 3. 2 積 算
, , , , , , , , , , , , , , , , , , ,	6.4 水力発電
	6. 4. 1 施工計画
	6. 4. 2 積 算 32
	6.5 移住費 かよび用地,家屋補償費
	第 7 章 プロジェクト評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	7. 1 概
	7.2 プロジェクトコスト
	7.3 経済評価
	7.3.1 プロジェクト便益34
	7.3.2 エコノミックコスト
	rakan di kacamatan dan di kacamatan di kacamatan di kacamatan di kacamatan di kacamatan di kacamatan di kacama

	7. 3	. 3	内部収益率 (IRR) ···································	 	••••••	 •••••	 37
	7. 3	. 4	感度分折	 	***********	 	 37
7.			経済的影響				
			論				
付爾	Ř	管理	委員会および調査団名簿				

表 目 次

Cable 2-1	GROSS DOMESTIC PRODUCT	39
Cable 3-1	FLOOD DAMAGE	40
Table 3-2	PRESENT LAND USE	41
fable 4-1	FEATURES OF POSSIBLE DAMSITES	42
Table 4-2	COMPARISON OF THREE DAMSITES	43
Cable 4-3	ANNUAL EXPECTED FLOOD DAMAGE REDUCTION	44
Table 4-4	COMPARISON FOR CROP SELECTION	45
Table 4-5	FARMING SCALE AND BENEFIT	46
Table 4-6	ECONOMIC PRICE OF RICE	47
Table 4-7	NET PRODUCTION VALUE UNTIL FULL PRODUCTION STAGE .	48
Table 4-8	FUTURE POWER DEMAND	49
Table 4-9	COMPARISON OF UNIT CONSTRUCTION COST PER KWH	50
Table 5-1	MAIN COMPONENT OF IRRIGATION PROJECT	
Table 6-1	CONSTRUCTION COST OF BALAT DAM	52
Table 6-2	AGRICULTURAL DEVELOPMENT COST	-53
Table 6-3	HYDRO POWER DEVELOPMENT COST	54
Table 7-1	ANNUAL DISBURSEMENT OF THE PROJECT COST	55
Table 7-2	ANNUAL DISBURSEMENT OF THE ECONOMIC COST	56
10177 / Y	THE PARTY AND	

図 目 次

Fig.	3-1	FLOW REGIME AT TANGKULAP	57 _.
Fig.		LAND CAPABILITY MAP	58
Fig.		PROFILE OF THE KINABATANGAN RIVER AND TRIBUTARIES.	59
Fig.		CHUILITE ATELITY DESCRIPTION ASSAULT OF THE PROPERTY OF THE PR	60
Fig.		PRESENT FLOW CAPACITY	60°
Fig.	The second secon	INUNDATION AREA IN THE LOWER BASIN	61
Fig.		PRESENT CROPPING PATTERN	62
Fig.		ADMINISTRATIVE DIVISION	63
Fig.		SABAH GENERATING STATIONS, 1978	64
_	3-10	DAILY LOAD CURVE OF SANDAKAN	65
Fig.		LOCATION OF POSSIBLE DAMSITES	66
Fig.		DISTRIBUTION OF KAMPUNG BY GROUND HEIGHT	67
Fig.		SUBMERGED AREA BY. BALAT. DAM	68
Fig.		ALLOCATION OF RESERVOIR STORAGE CAPACITY	69
Fig.		INTERPRETATION OF STANDARD PROJECT AND	
6-		DESIGN FLOOD DISCHARGE	70
Fig.	4-6	HYDROGRAPHS OF STANDARD PROJECT AND DESIGN FLOOD	
		DESIGN FLOOD	71
Fig.	4-7	LEAST CONSTRUCTION COST OF DAM AND RIVER	
6 -		IMPROVEMENT	72
Fig.	4-8	POTENTIAL AGRICULTURAL DEVELOPMENT AREA	73
	4-9	PROPOSED AGRICULTURAL DEVELOPMENT AREA	74
	4-10	FARMING ORGANIZATION	75
	4-11	PROPOSED CROPPING PATTERN AND METEOROLOGICAL	
		CONDITIONS	76
Fig.	4-12	PROPOSED AREA FOR PADDY DEVELOPMENT	77
	4-13	REQUIRED RESERVOIR CAPACITY FOR WATER REQUIREMENT.	78
	4-14	FLOW DIAGRAM OF MAXIMUM DIVERSION REQUIREMENT	79
_	4-15	COMPARISION OF GENERATING TYPE	80
	4-16	ROUTE MAP OF TRANSMISSION LINE	81
Fig.		PLAN OF BALAT DAM	82
Fig.	5-2	PROFILE ALONG AXIS OF DAM	83
Fig.		TYPICAL CROSS-SECTION OF DAM	84
Fig.		PLAN OF OUTLET FACILITY	85
Fig.		TYPICAL LAYOUT OF FIELD STRUCTURE	86
Fig.		PLAN AND SECTION OF HYDRO POWER STATION	87
Fig.	6-1	CONSTRUCTION SCHEDULE	88

一 政府官庁

DID

かんがい局

DOA

農 業 局

FELDA

連邦土地開発局

JICA

国際協力事業団

SAFODA

サバ森林開発局

SEB

サバ電力公社

SLDB

サバ土地開発公社

-- 地方関連事項

FMP

第4次マレイシアプラン

GDP

国内総生産

NEP

新経済政策

OPP

長期計画

SMP

第2次マレイシアプラン

SRPS

サバ地域計画調査

TMP

第3次マレイシアプラン

--- 長 き

m

 $y - y - = 3.28 \ 7 \ 7 - 1$

Km

 $+ \mu + \mu - \mu - = 1,000 + \mu - \mu - = 0.62 = 1.000$

ma

f t

フィート=0.3メーター

--- 面 積

 $\sim 29 - \nu = 100 \, \text{T} - \nu = 2.47 \, \text{T} - \text{D} - \nu$

ha Km²

平方キロメーター= 247.1 エーカー

acre

エーカー=0.40 ヘクタール

― 容積および重量

リットル=0.22 ガロン

litre m³

立方メーター= 35.31 立方フィート

m³∕s

立方メーターパーセコンド

cuff

立方フィート=0.028 立方メーター

l b

ポンド=0.45 キログラム

Kati

カティ=0.75 ポンド

Pikul

ピクル=100 カティ=0.06 トン

--- 通

貨

US\$

米ドル

M \$

マレイシアドル

¥

日本円

-- その他

EL.

標高

HP ·

馬力

A C

交 流

Hz

周波数

V

ボルト

ΚV

キロボルト=1000 ボルト

KW

キロワット

MW

メガワット

KWH

キロワット時

MWH

メガワット時

MSL.

平均潮位

O/M

維持管理

.C

摂 氏

g/o

百分率

1.1 調査の経緯

マレイシア国サバ州東部にあるキナバタンガン河流域は、従来、未開発のまま放置されていたが、1970年代の後半から連邦政府および州政府は、雄大な可能性をもつこの流域を着目し始めてきた。

しかしながら、当流域は毎年のように洪水被害を被っており、将来の開発のためには洪水防御計画とそれに伴う水資源開発計画が不可欠の要素である。

この状況のもとに、マレイシア政府は1979年日本政府に対し、キナバタンガン河流域を含む サバ東部海岸区域に総合水資源開発計画のマスタープランの検討を要請してきた。

この要請に対し、日本政府は計画検討の実施を了承したが、その範囲を拡大し、両政府の合意のもとにサバ州のみならずマレイシア全土を調査対象地域とし、国際協力事業団(JICA)を通じ、1980年に全国水資源開発調査のための調査団を派遣した。

一方,キナバタンガン河流域の開発の重要性を認識しているマレイシア政府は,当流域開発 計画のブリ・フィージビリティー調査のための調査団派遣を日本政府に改めて要請した。

1.2 調査の概要

1.2.1 調査の目的

マレイシア政府と日本政府との間で合意された本調査の目的は、キナバタンガン河流域開発 計画のプリ・フィーシビリティー調査の実施であり、具体的には当流域の洪水氾濫区域におけ る概略的な開発計画を策定することである。

1.2.2 調査の範囲

調査の範囲は次の通りである。

- 1) キナバタンガン河流域の水資源開発可能性および農業開発可能性の検討
- 2) 計画ダムの比較・検討
- 3) 洪水防御計画の検討
- 4) 電力開発および農業開発を含む水資源開発計画の検討

本調査は2段階に分けて実施し、第1次段階では3.5ヶ月の調査期間において流域の農業開発可能性の検討と、計画ダムの比較検討を行った。また第2次段階では7ヶ月の調査期間でマレイシア政府によって実施されたボーリング調査および地形測量調査ならびに追加収集資料をもとに流域開発計画を策定した。

2.1 社会経済的背景

マレイシアの新経済政策 (NEP) の目標は貧困の撲滅と、人種間の公平を期すためのマレイシア社会の再編成にある。との政策を遂行するため、長期計画 (OPP, 1971~1990)の骨子が設定された。との二大目標の背後にあるのは、連帯・安全・公平・経済均等発展を目的とした社会の編成である。

との長期計画(OPP, 1971~1990)の最初 10年において、マレイシア国の経済は急速に成長し、経済構造にも変革をきたした。

第4次マレイシアプラン(FMP, 1981~1985)は、この長期計画(OPP)の最初の10年間に引き続く第2次10ヶ年の幕開けを飾る時期にあたる。この第4次マレイシアプランは、マレイシア新経済政策(NEP)の社会経済的目標を確実に達成するために、第2次マレイシアプラン(1971~1975)および第3次マレイシアプラン(1976~1980)において形づくられた政策方針を引き継ぐものである。

サバ州においては、このマレイシア5ヶ年計画の実施により、表2-1に示すように着実な経 済の進展がみられた。

第1次マレイシアプラン(1966~1970)でのサバ州の政策目標は、経済成長、社会経済的不公平の是正と福祉の普及および人的資源の開発にあり、この期間において国内総生産(GDP)は7.5%の経済成長をとげた。

しかし第 2次マレイシアブラン (1971 ~ 1975)で、サバ州は政策目標を連邦政府の政策目標である新経済政策(貧困の撲滅とマレイシア社会の再編成)の方向に修正を行ない、サバ州固有の問題や州の開発段階に応じて調整を加えながら政策を遂行した。この期間にマレイシア経済全体の 7.2%をしめるサバ州は、GDP 50.1% (年率 8.5%)の経済成長を遂げた。

第 3 次マレイシアプラン (1976~1980) では、マレイシア連邦は GDP 50.7% (年率 8.5%)、サバ州は 43.8% (年率 7.5%)の経済成長が期待され、1980年にサバ州の GDP はマレイシア全体の 7.5%のシェアを占めると推定される。

第 4 次マレイシアプランでサバ州は、開発予算として $3,172.4 \times 10^6$ マレイシアドル (M\$) を計上している。このうち連邦政府が $M\$1,845.6 \times 10^6$ (58.2%),サバ州政府が $M\$1,230.0 \times 10^6$ (38.8%) をそれぞれ出資し、残りの $M\$96.7 \times 10^6$ (3.0%) は州公社資金から出資されることになっている。

この計画の基本的開発目標は,農業地域開発,食料自給の達成,労働力の供給と労働生産性の向上を確保したうえでの工業開発,ならびに商業,工業生産へのブミプトラ参画の促進,社会経済基盤の整備等である。

近年のサバ州の経済成長は目をみはるものがあるが、マレイシア経済の繁栄にとって必ずしも好ましくない経済構造の不均衡を呈している。その第1はサバ州経済が第1次産業部門のごく限られた種類の生産物に依存しており、またその生産物を加工せずに附加価値のないまま輸出していることであり、第2に近代的製造業、商業、エステートが発達している一方、低所得者層の大部分を占める伝統的な零細農が存在していることである。

とのような第1次産業に依存した経済構造は、農業や林業生産物に対する加工産業を発展させて、改善していく必要があり、サバ州政府は、生産物の附加価値を高めるために加工産業の振興に力を注ぐべき状況にある。これとともに増加する食料需要を満たすため、また農産物に対する加工産業を支えるために、増産、新農地の開拓といった農業開発も重要な開発目標となっている。

2.2 計画の背景

キナバタンガン河流域の年降雨量は 2,500 輛~ 3,000 輛 であり、また当河川の河川勾配は非常に緩く (1/15,000), この 2 つの要因が相俟って当河川沿いの地域では毎年のように洪水に見舞われている。このことから当流域の開発計画実施に先立ち、洪水調節計画は必要欠くべからざるものとなっている。

当流域の99%は森林地帯であり、現在農業開発の行われているのはわずかに0.5%程度である。一方サバ州は1978年には全需要量の54%に相当する63,000 tの米を輸入しており、このため食料自給率を高めることを目的とし、重要な生産目標作物である米の増産に力を注いている。その政府の目的を達成するうえでもキナバタンガン河流域の低平地に適切な洪水防御計画とかんがい計画を立案することが要望されている。

サバ州の電力供給を管轄するサバ電力公社(SEB)は都市域の消費電力需要の増加と新経済 政策に沿った農村区域の生活向上の助成に対応して電力供給を行ってきている。さらに、現在 の電力エネルギーは主に原油に依存しており、将来の価格上昇を考慮した場合、代替エネルギー 開発の必要性が大きいことが認識されており、この中でも水力発電は最も優先度の高いものと なっている。

このような背景から,サバ州は地域開発の一環としてキナバタンガン河流域の開発を考慮している。

第3章 調査対象地域の現況

3.1 地理的状况

3.1.1. 位置および地形

本計画の調査対象地域は,一般概要図に示す如くキナバタンガン河流域である。この流域は キナバタンガン区(サンダカン行政区を構成する3つの区の1つ)の殆んどを占めている。

キナバタンガン河は、流域面積 16,800 km²、北緯 4°30′~5°45′、東経 116°25′~118°40′の範囲にあり、主流は、その源をサバ州の脊椎とも言うべきクロッカー山脈の一部であるウィティおよびトラマスディ山脈に発し、流路延長は約 560 kmである。

3.1.2 気 候

サバ州は熱帯気候地帯に属し、東南アジアモンスーン地帯のほぼ中央に位置する。北東モンスーンは 11 月から 3 月頃まで続き、南西モンスーンは 5 月から 8 月頃にかけて卓越するが、一般に南西モンスーンが西海岸に雨期をもたらし、北西モンスーンが東海岸に雨期をもたらす。

降 雨

キナバタンガン河流域およびその近傍には、28ヶ所の降雨観測所が存在するが、これらの 観測所の降雨資料によれば、当流域の年雨量は2,500~3,000 碗である。

気温および湿度

気温および湿度は4観測所において観測されており、この観測結果では、5月の日平均気温 が最も高い。また1年を通じた日平均気温は海岸側に位置するサンダカンで27℃、山地にあ るクアムットでは25℃である。日平均相対湿度はほぼ80%前後であり、山地側のクアムットが海岸側のサンダカンより若干高い。

日照および蒸発量

日照時間は2観測所で、また蒸発量は4観測所でそれぞれ観測されている。この観測記録によると年間日照時間は2,400時間に達し、これは日照率27%に相当する。また年蒸発量は1,500 mm~1,800 mm 程度で、月蒸発量は4月~6月頃が最も多く150 mm~170 mmである。

3.1.3 流出,流出土砂および洪水

流 出

キナバタンガン河にはウル・クアムット、タングクラップ、バラットおよびパリックマニスの4自記水位観測所が存在する。これらのうち、ウル・クアムットおよびタングクラップ観測所が、1969年に設置され、バラット観測所が1978年、バリックマニス観測所が1979年に

設置され、それ以来各観測所において水位観測が行なわれている。流量観測も各観測所において行なわれており、感潮区間に位置するバリックマニスを除いて既にかんがい局(DID)において水位 - 流量曲線が作成されている。

1970年から1979年の10年間におけるタンククラップ地点の日平均流量を推定すると約 $200\,m^3/s$ である。(図 3-1参照)

また、バラット地点の日平均流量は水位記録がないのでタンククラップ地点との面積比で推 定すると約 350 m³/s である。

流出土砂

キナバタンガン河の河川水は褐色で明らかに泥および細砂を含んでおり、流出土砂の殆んどはウォッシュロードおよび浮遊砂より成っていると考えられる。かんがい局(DID)により実施された実測流砂観測資料よりタングクラップ地点における年間流砂量を推定すると、0.86×10⁶ m³/Year と推定され、これは比堆砂量で140 m³/Km²/Year に相当する。

洪 水

現地調査結果によれば、最近の大洪水は1963年、1968年、1971年および1981年に発生している。 これら各洪水の氾濫期間は約1ヶ月程度つづき、これが当流域の開発を困難にしている。資料 は充分ではないが、既往最大洪水は1963年に生起している。また、最近10年間における最 大洪水は1971年2月洪水であり、日平均最大流量はタンククラップで3,020㎡/s に達し、 同洪水時のバラット地点における日平均最大流量は5,250㎡/s と推定される。

3.1.4 潮 位

スル海の潮位はサンダカン港において観測されており、この記録によると潮位は小潮時で 40 cm, 大潮時で 150 cmの振巾で変動している。

3.1.5 地 質

サバ州全域の地質は、各種堆積岩類がほとんどでわずかに火成岩および基盤結晶片岩類等を伴う。これらは表層堆積物によりおおわれている。堆積岩類は、中生代白亜紀から新生代第三紀鮮新世にわたる地質年代の砂岩・シルト岩・泥岩・ケツ岩・レキ岩・チャート・石灰岩および凝灰岩から成る。

火成岩と基盤結晶片岩類は点在しており、三畳紀(あるいはより古い年代)から第四紀の地質年代に属する花崗岩・閃緑岩・斑レイ岩・安山岩・玄武岩・超苦鉄質岩および幾種類からの変成岩から成る。表層の堆積物は第四紀の沖積世および供積世の礫・砂・沈泥・粘土・泥炭から成り、それらは河川沿岸、三角州周辺などの流域内部に分布している。

キナバタンガン河流域の大部分の岩石は新第三紀の地質年代に属し他の地域に分布している ものに比べて新しい。また主に砂岩・ケツ石・泥岩やそれらの互層から成り、石灰岩・レキ岩・ チャート・半花崗岩・火成岩・基盤結晶片岩類は少ないことがわかる。これらの岩石は多かれ 少なかれ断層や褶曲の影響を受けている。

3,1.6 土壌および土地分類

当流域の土壌およびその母材については"Land Resources Study, The Soil of Sabah, vol2, Sandakan and Kinabatangan Districts"および"Land Capability Classification of Sabah, Vol.2, the Sandakan Residence Maps" に詳細に述べられていて、この土壌調査および関連調査の結果から土地分類がなされている。

これらの報告書によればキナバタンガン区は広大な土地資源を有し、その土壌は農業適応性により5段階に分類されている。このうち第1グループは農業開発に全く問題のない土壌であるが、キナバタンガン河流域には存在しない。第2グループは農業適応性が高い土壌、第3グループは農業適応性が中程度の土壌である。これは当流域にかなり広範囲に分布している。また第4および第5グループは農業に不適格な土壌であり、前者は採鉱予定地、後者はいかなる用途にも適さない土壌である。

キナバタンガン河の中流および下流域の広大な地域を占める土地の約半分は, 第2グループの 土壤および第3グループの土壌より成っている。(図3-2参照)

3.1.7 河 川

流域

キナバタンガン河上流はミリアン河と呼ばれており、多くの支川と合流しながら山間部を流下し、クアムット村地点でクアムット河と合流する。ミリアン河およびクアムット河の流域面積は各々6,825 km²および3,140 km² である。キナバタンガン河はその後、中流部でロカン河や他の支川と合流しながらスル海に注いでいる。多くの支川が合流しているキナバタンガン河の河川形状は、図3-3k示す様に無数の枝を有する巨木の幹の様である。

河口から300 kmの区間の河川域は標高 15 m 以内の平坦地であり、この中下流部は蛇行が激しく、広大な沖積平野が発達している。河口部には広大な三角洲が拡がり、ことでキナバタンガン河は幾つかの流路に分派して海へ注いでいる。

キナバタンガン河バラット下流部の平均河床勾配は、約1/15,000である。

河 道

キナバタンガン河の河道沿いの流路延長は、直線距離の約1.5倍である。

河道の横断形状は,殆んど単断面形状で,河床から 10 m の高さまでの範囲で河岸が浸食されている。区間ごとの河床勾配は,バラット~ブキットガラム間で約 1/10,000 , ブキッガラムペスカウ間で 1/15,000 , またスカウ~河口間で 1/20,000 である。

また河幅は、図3-5に示すごとく150m~200mの範囲である。

また同じく図3-5に河道の疎通能力の縦断変化図を示すが、この図から分るようにバラットダム下流の最小及び平均の疎通能力は、それぞれ1,500m/s及び1,800m/sである。

3.1.8 洪水被害

キナバタンガン河流域では毎年のように洪水が発生し、数年に1回は大洪水が発生して人命 の損失を始め、家屋・作物・家畜等流域住民に多大な被害をもたらし、住民生活にも大きな支 隨をきたしている。

洪水被害の実態は記録が乏しく不明確であるが、近年の洪水では 1963 年洪水が最大で、その洪水継続日数は 1 ケ月以上にわたったと言われている。

比較的資料のそろっている最近 10 年余りにおいては、1968 年 1 月の洪水被害が最大で8,000 人の住民が洪水による被害を受け、193 軒の家屋が流出し、また700 軒の家屋が損壊した。(表3-1参照)

20年確率洪水(バリックマニス流量; 6,000 m/s)の想定氾濫域図は図3-6に示すごとく, その面積は107,000 ha におよんでいる。

3.2 農 業

3. 2. 1 土地利用状况

キナバタンガン区の総面積は 4,537,075 acres (1,814,830 ha) である。このうち、99 %以上が森林、湿地等で占められ、わずかに 0.52 % が耕地として利用されている。全耕地面積 23,624 acres (9,450 ha) のうち表 3 - 2 に示すように約 73 % はゴム、オイルバーム、ココナツおよびココアの栽培に利用されており、14 %が焼畑による陸稲栽培に利用されている。一方、計画対象地域のほとんどは沖積層およびピート層に存在する二次林により覆われており、わずかに 1 %弱が現在耕地面積として利用されている。

計画対象地域の農産物については、藤栽培や小規模の水稲バイロット農場がみられる程度で ある。

3.2.2 農業形態

本地区の農業生産活動は、労働力不足と社会基盤整備の遅れから、広大な農業適地を有しな がら極めて立ち遅れているが、その農業形態は大略次の4タイプに分類される。

- 1) エステート農業
- 2) 原始的な焼畑農業
- 3) 混合営農とも言うべき自給兼販売の零細農業
- 4) 上記 2) および 3) の改善のための政府支援の小規模開発農園

このなかで、規模・技術等から見てエステート農業と焼畑農業はキナバタンガン河流域の農業を特徴づけるものであり、両者は非常に対照的な存在である。

3.2.3 栽培作物

1979年のキナバタンガン区における主要農作物はオイルバーム, ゴム, ココア, ココナツ, 米等である。これらの作物は米を除いて大規模あるいは中規模のエステート農場で栽培されており, 年間を通じて収穫可能である。

トウモロコシ, キャッサバ, 野菜, ピーナッツ, 甘藷等の単年作物は, 焼畑地で小規模に栽培され, 自家消費 あるいは周辺地域市場用に年間を通じて収穫している。

陸稲は、焼畑や高台で小規模に栽培され、8月から10月にかけて、直接播種し、1月から3月にかけて収穫する。プキットカラムの試験農場での水稲は図3-7に示すように、1月、2月の洪水期をさけて収穫できるように6月頃苗床に植付けの後、7月頃水田に移植、そして11月頃収穫している。

3.2.4 農業生産

キナバタンガン区における作物収穫量は、サバ州平均よりも10~20 多程度低い。これは 農業規模が小さいことや、原始農耕に依存しているためである。また、最近植付されたオイル パームやココアが未成熟な幼木であるという状況も収穫高を少なくしている一因となっている。

3.2.5 畜産,内陸面漁業,林業

畜 産

畜産業は市場施設のあるサンダカン周辺部に集中しているが、キナバタンガン区には商業目的の家畜飼養場はない。

内陸面漁業

1979年の統計によると、キナバタンガン区を含むサンダカン行政区には 20,500 匹の稚魚が配布され延べ面積 110 acres (44 ha)で、260 ケ所の養魚池がある。主な養殖稚魚の種類はランパンジャワ、鯉、ビッグ・ヘッド、シルバーカープ、草魚、テラピア等である。

林業

1978年現在,全サバ州の森林区の23%,商業林の4分の1以上がキナバタンカン河流域のラマク森林区に集中している。

地区内の木材伐採量は、1973年をピークに年々減少しつづけており、近い将来、森林資源は枯渇することが予想されている。なお、木材生産のほとんどは輸出にむけられている。

3.3 社会経済状況

3.3.1 行政区分

マレイシアの行政区分は、小区分から順に村、区、行政区、および州よりなっている。図3-8はその行政区分図で村については境界が明確でないため除いてあるが、これによれば、キナバタンガン区とキナバタンガン河流域は概ね一致している。

また森林区分によれば、キナバタンガン河流域はほとんどラマク森林区内に属し、残りはサ ンダカン森林区に含まれる。

上記行政区分に加え、サバ電力公社はサバ州を東部および西部の2つに分けており、キナバタンガン河流域はこの分割では東部に含まれる。

3.3.2 民勢統計

当調査対象域にほぼ対応するキナバタンガン区の人口は1980年で29,000人であり,1970年から1980年に至る過去10年間の人口増加率は約7.6%であった。この増加率はサバ州の5.3%、サンタカン行政区の5.5%に比べ非常に高いものとなっている。

また当流域の人口密度は1.6人/km²にすぎず、サバ州において最も人口の希薄な地域となっており、住民は流域に分散して居住している。

一世帯当りの人口は1980年に5.4人で1970年当時の4.5人に比べると著しい増加を示している。また、労働力については人口密度からも判断されるように絶対数が少なく、1980年時点で9,800人前後である。

されらの住民は主に林業, 農業生産に生計を依存しており, 一部の人間は副業として内陸面漁 業を営んでいる。

当流域の人口は非常に希薄にもかかわらず人種構成は非常に複雑で、そのほとんどはオランスンガイと呼ばれる土着民族で、次いで多いのがインドネシア人である。中国人はサバ州全体では2位を占めているにもかかわらず、当流域には少なく1970年の調査によると流域人口の約3%に過ぎない。

3.3.3 水利用

一般に河川水は、かんがい、都市用水に利用される。

しかし、当流域の河川沿いには部分的に小規模の天水を利用した水田がみられるものの、プ キットガラム農業試験場を除いてかんがい施設は見当らない。

同様に,都市用水供給施設についても当流域には見当らず,地域住民は河川水を家庭用水と して利用し,雨水も合わせて利用している。

3.3.4 電 力

サバ州における発電および電力供給は 1957 年に設立されたサバ州電力公社 (SEB) において運営管理されている。

1978年の統計資料では都市域において、12の主要発電所と29の小規模発電所があり、 これらはいづれもディーゼル発電でこの年の電力供給量は250×10³ MWhにおよび、サバ州全 体の約30%の住民にSEBによる電力が供給されている。この電力消費の割合は27%が産 業、33%が一般家庭、残りが商業、公共施設等に使用されている。

発電所間の送電線網はまだ完備しておらず、電力の供給範囲は発電所地点近辺に限られている。しかしながら、人口の多い西部区域においてはコタキナバルとトウアラン間(22KVライン)、コタキナバルとパパール間(11KV、6.6KVライン)、そしてサンダカン市近辺のラブック道路沿(33KVライン)のような比較的短い区間での送電線がすでに設置されている。また 1983年には、テノンパンギ発電所からコタキナバルに至る 132KV と 66 KV の送電線が設置、電力供給される予定である(現在建設中)。一般家庭用の電気は 50 Hz の交流で、単相 240 V と 3 相 415 V である。

サバ州の発電所位置,主要送電線網および東部地区の大都市における日負荷変動は各々図 3 - 9,図 3-10に示すとおりである。

3.3.5 交通および通信

当流域の交通は道路および河川に依存しており、このうち道路網は不充分ながらサンタカンとラハダトおよびサンダカンとブキットガラムを結ぶ主要道路と木材切り出し運搬のためのフィーダー道路がある程度でこれらはいずれも、未舗装である。

河川は流域の住民にとって非常に重要な交通路の役割を果しており,一般住民の通行,日常 品および木材運搬に利用されている。

マレインア航空によって統括されている空路は当流域のプキットガラムから 90 kmの所に位置するサンダカンからコタキナバルに毎日運航されている。

また、外洋航路の基地としてもサンダカン港が重要な役割をもち、当州の主要産業である木材の輸出積み出しが活発に行なわれている。電話通信網は通信局の管轄のもとにサンダカンと プキットガラム間に敷かれているのみである。

3.4 現行開発計画

第3次マレイシア計画によれば、サバ州政府は合計 203,346 acres (81,340 ha)の土地開発を計画しており、これは公共団体による126,465 acres (50,586 ha)および民間企業による76,881 acres (30,752 ha)の土地開発よりなっている。

本プロジェクトの計画対象地域においては、40%が政府開発計画に割当てられ、20%が民間に払い下げられる予定であり、残りの40%の開発計画予定はないが、民間への払い下げが急速に進みつつある。

これらの政府開発計画および民間払下げ用地のうち洪水氾濫区域については、毎年のように生ずる洪水のためにサバ森林開発局(SAFODA)による藤栽培計画と稲作公社団による稲作バイロット農場(Paddy Pilot Farm)が実施されているのみである。

またその他に、コタ・キナバタンガンと呼ばれる都市計画、バトゥプティ橋の架橋を含むサンダカン~ラハッドダツ幹線道路計画の2つのプロジェクトが現在着手中である。

4.1 概 説

本計画対象地域の秩序ある開発には洪水調節は必要不可欠であり、このためには、キナバタンガン河上流あるいは、中流にダムを建設する事が必要である。

このダムの建設により、下流域の洪水氾濫は防御され、従来洪水常襲地帯であった地域の農業開発が可能となるばかりでなく、電力開発により、増大するサバ東部の電力需要に対処出来る。

このことから、本調査では計画対象地域での洪水防御、農業開発および電力開発からなる開発計画を実施するために、キナバタンガン河中流のバラット地点に多目的ダム建設を計画した。 このバラットダムの貯水池容量は洪水防御および利水目的に利用する。

ダムによる洪水調節計画は下流域の洪水被害を軽減し、従来、洪水氾濫地帯であった地域の 生産性を高める事を目的として策定するものである。

この地域の農業開発計画はダム建設により水資源を開発し、これを利用して政府の自給自足 政策に沿った農業生産を向上させるために策定するものである。

また, 貯水池の水位を利用した水力発電は, 将来の電力需要に対処する事を目的として策定するものである。

4.2 開発計画の概要

4.2.1 キナバタンガン河流域洪水氾濫地域の位置付け

第4次マレイシアプラン (FMP)の開発目標は、マレイシア新経済政策 (NEP)の基本理念に沿って、今後も主に州経済の基盤となる農業部門の開発を指向している。

この農業開発の方針としては、現地開発方式とよぶ、現存する農村地域住民を不案内な地域に移住させるのでなく、現在居住する地域の社会経済基盤を整備充実し生産性を高める方式と、移住計画方式とよぶ経済的に有利な作物を栽培し、高収入を得るための未開発の開発と貧農層へ土地資源の均等配分を実施する二方式がある。

サバ州に於ける人口分布状況,土地所有形態および社会経済基盤の整備状況から判断する と稲作ばかりでなく,他の作物にも適した広大な未利用地が存在するサンダカン,タワウ行政 区に最も適した開発方式は、さきにのべた方式のうち移住計画であると考えられる。

特にキナバタンカン河沿いの洪水氾濫地帯は、稲作に残された最善かつ唯一の未利用地であり、現在の食糧不足の解消および州政府の輸出作物の多様化計画を促進する上で大きな可能性を秘めている。

4.2.2 洪水氾濫地帯での開発の制約条件

計画対象地域は、次に述べるようにキナバタンガン河の洪水氾濫や、労働力不足という開 発に対する大きな問題を有している。

- 1) キナバタンガン河の氾濫により対象地域は毎年のように洪水被害を被り、広大な平担地が 利用出来ない状況となっている。
- 2) 対象地域の最近 10 年の平均人口増加率は 7.6%と州平均の 5.3%に比べ高いものの人口密度は 1.6人/Km² と州平均の 15人/Km² に比べて極端に低い。

4.2.3 開発の基本理念

サバ州の最大資産である森林資源が、急速に減少しつつある現段階において、サバ州政府が 州経済の安定的に発展のためにキナバタンガン河流域の開発、特に洪水氾濫地帯の積極的な 利用に意を注ぐのは当然である。そのために考えられる基本理念は次のものである。

- 1) 洪水調節により最小の費用で最大の効果をあげるよう配慮しながら洪水氾濫地帯を耕作可能にする。
- 2) 食糧の自給自足というマレイシア国およびサバ州政府の政策に基づき稲作開発を最優先 に考える。
- 3) 国際競争力をつけるために労働生産性を高めると共に、恒常的な労働力不足を補うため に近代的農場経営はもとより、農業の機械化を促進する。
- 4) 東海岸地帯の電力需要に対処するために、まず水力発電の開発を促進し発電における石油の依存を低下すること。
- 5) 高附加価値の収益をあげるため農業を基本とした産業を導入すること。

4.3 ダムおよび貯水池

4.3.1 貯水池の必要機能

本ダム計画を策定するにあたり配慮すべき基本事項は下記の通りである。

1) 洪水調節

キナバタンガン河流域の洪水調節計画の規模はマレイシア国の他の河川における例を, 参考にして 20 年確率とした。従って計画対象地域は 20 年確率以下の洪水に対して安全 になる。

2) 利 水

ダムによって開発される水量は乾期のかんがい用水として利用する。

かんがい対象地区の必要水量は5年確率に相当する流況に基づき算定し、ダムの利水容量をもとめる。

3) 発電

計画ダムには流れ込み発電方式を採用したため,水力発電のために特に貯水容量は設けない。

4.3.2 ダムサイトの選定

5万分の1地形図および航空写真に基づいて、キナバタンガン河流域でのダム建設候補地 点として 13 ケ所を選んだ。

これらの位置図および建設候補地点の特徴は各々図4-1および表4-1に示す通りである。

これらの 13 ケ所のダム建設候補地点より、下記条件および受益地に対する必要貯水容量 を考慮して、バラット、デラマコット、ミリアン、クアムットの 3 地点を詳細な比較検討対 象ダムとして選定した。

- 一ダム建設の経済性;ダム堤体容量に対する貯水池容量の比が大きい事。
- 一洪水調節の有効性;ダム基水面積が大きい事。

これら3ヶ所の候補地点について費用ー便益検討を行ない、最終的に、ダム建設候補地点 として他のダムより経済的に有利なバラット地点を選定した。

バラットダム地点の地形、地質および社会的条件は下記の通りである。

一地形条件

バラットダム地点は、キナバタンガン河河口より約260kmのバラット村の近くである。 ダム地点の左岸側は比較的勾配の急な丘陵であるが、右岸側は非常になだらかな傾斜地 で小さな谷が4ケ所存在する。

ダム軸縦断面から判断すると、ダム高が標高 60mを越えるとダムの堤体容積は極めて大きいものとなる事が予想される。

一地質条件

基盤は第3紀漸新世から中新世の砂岩、泥岩からなり、河の両岸に分布しているのがみられる。これらの基盤を被覆して第4紀沖積層が現河川および沢沿いに厚く推積し、下層より、礫、砂、シルト、粘土で構成されている。

これらの事から地質的にみたハイダムの建設の可能性は低いと考えられる。

一社会的条件

適正な評価を行なうのに十分な資料は存在しないが、貯水位が標高 50 mを越えると貯水 面積は広大となり、水没家屋も増大し、水没地域住民の生活環境に厳しい影響を与える事 になる。水没する可能性のある村の分布は図4-2に示す通りである。

4.3.3 バラットダムおよび貯水池の計画規模

ダムおよび貯水池の規模は計画の目的を満足するように、ダムと他の代替案との比較によって決定されるものである。各部門に対する必要ダム貯水容量は後にのべる各部門での検討の結果次のように決定した。

総貯水容量 : 5.0 × 10° m³

洪水調節容量; 4.665 × 10° m³

利水容量 ; 0.120 × 10° m⁸

有効貯水容量; 4.785 × 10° m³

堆砂容量<1;0.215×109 m3

水没面積 < 2; 520Km²

図4-4に貯水池容量配分図を示す。

また上記によるバラットダムの計画規模は前にのべたダムの地形, 地質, 社会的条件を満足している。

4.4 洪水防御

4.4.1 洪水防御計画規模

洪水防御の計画規模はマレイシアの他河川で採用されている計画規模を参考に 20 年確率 を採用する。

4.4.2 基本高水流量

基本高水流量は、キナバタンガン河流域の水文資料に基づく水文解析結果と、マレイシア半島の他河川で採用されている 20 年確率の比流量を参考にして求めた。

この結果, バラットダムサイト, バリックマニス, 河口の各地点における基本高水流量は 下記の様である。

バラットダムサイト;5,400m³/s (流域面積;10,730km²)

 $N = \frac{12,960 \text{ Km}^2}{3}$

河 口 ; 6,000 m³/s ("; 16,800 Km²)

<1: 堆砂容量は 200 km²/km²/year の比堆砂量を用いた。この値はキナバタンガン河の流砂量の観測結果とマレイシア 半島のバダス河での計画値を、参考に計画の安全性を考慮して設置した。

<2:図4-3参照

洪水被害を軽減するための洪水防御方法の主なものとして次のものがある。

- 1) ダム
- 2) 放水路
- 3) 輪中堤を含む河川改修
- 4) 遊水池

これらの方法は、単独あるいは併用されるものであるが、下記に述べる検討結果からダム による方法が最適と考えられる。

図4-5 に基本高水流量配分図,図4-6 に基本高水ハイドログラフに用いられた1971 年2月洪水のハイドログラフを示す。

4.4.3 洪水防御方法

洪水防御方法の検討結果

キナバタンガン河流域においては、 20 年確率規模の洪水に対する遊水池を設置することは 地形的に困難であり、また、放水路については、ダム建設や河道改修に比べ建設費からみて 不利となっている。

このことから、河道改修とダム建設を当流域に対する妥当な洪水防御方法として選択し、 双方で受けるつ高水流量の適正配分割合について、さらに比較検討を行った。

ダムおよび河道改修の建設費合計とバリックマニスの流量との関係は図4-7に示す如く であるが、この図からみて経済的にみたダムおよび河道改修の最適組合せ流量配分は、キナバ タンガン河の計画流量を1,500 m³/s とすることである。

この計画流量 1,500 m³/s は現状の河道疎通能力に合致しているところから、最終的に最も経済的な洪水防御方法として採用されるのはダム建設のみである。

4.4.4 計画高水流量および洪水調節容量

さきに述べた検討結果から バラットダムサイト, バリックマニス 地点および河口での計画流量は次の様である。

パラットダムサイト ; $900\,\mathrm{m}^{\mathrm{s}}/\mathrm{s}$

バリックマニス; $1,500 \, m^3/s$

河口 ; 1,500 m⁸/s

バラットダムサイト基本高水流量 $5,400\,\text{m}^{8}/\text{s}$ を $900\,\text{m}^{8}/\text{s}$ に調節するために必要な貯水容量は $4.665\times10^{9}\text{m}^{8}$ である。

図4-5,4-6に計画高水流量配分および計画高水ハイドロクラフを示す。

4.4.5 便 益

洪水調節便益は、プロジェクト実施によってえられる洪水被害額の軽減で表わされ、年便 益は現状における年被害額と 20 年確率規模で洪水防御を行った場合の年被害額の差で求め られる。

洪水被害には直接被害、間接被害と無形被害の各被害が考えられるが、ここでは家屋と農作物に対する直接被害と間接被害を考慮して評価を行う。

ただし被害の対象となる流域の資産は現況の資産を用いる。との結果洪水調節便益はUS \$ 290×10³ で詳細は表 4-3 に示す如くである。

4.5.1 農業開発対象地域

キナバタンガン河流域全体で考えられる農業開発の適性区域は 486,000 ha で、これは全流域面積の約30% に相当する。(図4-8 参照)

計画ダムの完成によって利用可能となるダム下流域の洪水氾濫地域は 107,000ha でとの 5 5 沖積土が 55,000ha, ピート土壌は 45,500ha で残りの 6,500ha は沖積性の河岸地帯である。

ここでピート土壌 45,500 ha については、一般的に酸性もしくは強度の酸性を示し、農業の生産性が低いため開発対象区域から外した。

この結果,農業開発対象区域は55,000haで,このうちから小さな丘陵地,点在する湿地等の不適地およびかんがい排水路,農道,農場施設のための用地等を除いた作付面積は44,000haである。(図4-9参照)

4.5.2 栽培作物の選定

農業開発で提案する集約農業に適する栽培作物を選定する際に考慮しておくべき諸条件は 下記に述べるようなものである。

1) 洪水状況 ;20年確率以上の規模の洪水で氾濫

2) 土壌および地力;肥沃度および傾斜度

3) 気象条件 ;降雨分布その他

4) 生産性 ; 生産コストおよび純益

5) 必要労働者数 ;労働力および機械化農業の容易度

6) 生産物の市場性;国内および海外市場

上記の諸条件を考慮し、次にのべるような理由から単年作物を裁培作物として選定する。

1) 計画対象流域については、ダム完成によって 20 年確率洪水以下の被害はなくなるも

のの、それ以上の規模の洪水に対しては、なお洪水被害をうけ、オイルパームやココアの ような永年作物を全滅させる恐れがある。

2) キナバタンガン河流域は計画対象地域以外に永年作物に適した広大な台地を有している。

さらに単年作物の中から最終的に水稲を次に述べる理由から栽培作物として選定した。

- 1) 広大な平担地における大規模機械化農業の適用が可能な作物である。
- 2) 比較的利潤にとみ、また市場が安定している。

その他前に述べた諸条件のうち気温や降雨等の気象条件については年間を通じてすべての 作物の生育に充分な状況にあり、適性作物選定のための制約条件にならない。

4.5.3 農業形態

44,000haの面積を対象にした米の栽培に対して必要な労働力は、小農形式で一世帯 2haの水田を分譲するとした場合 22,000世帯であり、一世帯 5人とするとこの農業開発のために入植せねばならない人口は 110,000人におよぶ。しかしキナバタンガンの平地を開発する場合の大きな問題の 1 つは前にも述べたような労働力の不足である。

農業生産面からいえば表 4-5 に示すように小規模の個別農業に比べ、少ない労働力による大規模農業の方が生産性が高い。さらに計画対象地域の地形的条件は大規模機械化農業による稲作生産に極めて好ましい状態である。

この結果,本計画では機械と最小限の労働力を利用した大規模商業ベースの稲作栽培形態を 採用する。

計画の管理運営に関する責任を明確にするため、農業用の維持管理,稲の栽培,精米およびその販売に関し、効率的な商業生産活動を目指した自営組織を確立する。

この組織は図4-10に示す如くである。

また農業開発計画区域は精米機の処理能力を基礎とし、農業生産活動と計画運営の利便性から 11 区画に分割し、それぞれについて出張所、修理所などの必要施設を設置する。ただし、そのうち1区画は中央区画として中央管理事務所や他の中央施設を設置する。

これとは別に農業試験と技術者の養成をかねて試験農場を設置し技術の向上を計る。

4.5.4 農耕および農産物処理

1) 作付体系および品種の選定

稲の生理学的特性, 気象条件およびかんがい用水量から考えて次の作付体系を採用した。 4月, 5月, 6月にかけては降雨量は除々に増加するために, この間土壌は1期作目の種ま きに適切な状態になる(オフシーズン)。 との収穫は雨が多くなる 10 月以降をさけて 9 月までに行う必要がある。 同様に 10 月~12月は降雨条件から 2期作目の種まきに適当な時期で (メインシーズン)収穫は、1月、2月の降雨期をさけて 3 月以降に行う。

この結果、図4-11の作付体系の如く第一期作は4月中旬~8月中旬(5月~9月)の約120日間で、第2期作は10月~3月(11月中旬~4月中旬)の約150日間となる。

この様な作付体系に対して、目下適用出来る品種としては、突風や病害に強い IR-42 (栽培期間 135-150 日間)とMR-7(同115-130日)が適当である。

との品種の生産量は約4t/haで、 精米後の歩留りは68%である。また作付はMR-7を 1 期作、IR-42を 2 期作用として用いる。

2) 営農形態

稲作栽培に対して大規模機械化農業を採用したが一農作業グループが耕作する作業単位面 積は400haとし、この面積に対する基幹農業機械はトラクター6台とコンバイン2台を用い それに、25人の運転手と農場労働者を配置する。

圃場への種まきは、ドリルシーダーによる直播きとし水田が適当な湿潤状態になった時期 に行ない、発芽の後、稲の成熟段階まで水田にかんがいする。

耕うん整地は70馬力のトラクターを使用し、稲の防除作業には噴霧機、散粉機、収穫はコンバインをそれぞれ用いる。

3) 予想収穫高

開発完了段階での最終日標収穫量は1期作目(オフシーズン)が4.2 t/ha, 2期作目が3.8 t/haであるが, この収穫量は作付第1年目より圃場条件の改善や農業技術の向上で年々増加し最終目標収穫量に達するものとする。

下の表に5年間の予想収穫量を示す。

		年	(ton/	/ha)		
	第1年目	2 年目	3年目	4年目	5 年目	
1期作(オフシーズン)	2.6	3.0	3.4	3.8	4.2	
2期作 (メインシーズン)	2.4	2.8	3.2	3.5	3.8	
Total	5.0	5.3	6.6	7.3	8.0	:

4) 精 米

生産された籾は精米の歩留りを改善し、また計画対象地域からサンダカンへの輸送費用を 節約するため、計画対象地域の近代的な精米施設で精白する。

精米所はさきに述べたように、それぞれの区画 (約4,000ha)毎に設置し、その処理能力は 6 t/hrで計画する。(図 4-12参照)

4.5.5 土地開発計画

1) 土地造成

農業開発適正地 55,000ha のうち 農場施設の設置に必要な 4,700ha と作付面積 44,000ha (23プロックに分割)の合計 48,700ha について森林伐採、抜根、地ならし等によって土地造成を行う。(図 4-12参照)

2) かんがいシステム

|) 必要取水量

取水量は降雨形態と蒸発量に基づいて求められるが、降雨形態についてはクワムット観測所で観測されたデータの中から5年確率に相当する1978年の降雨記録を対象とし、蒸発量はパン蒸発計の値をもとに設定した。

この結果,かんがい用水の補給に必要なダム貯水量は $0.12 \times 10^9 m^8$ で計画最大必要取水量は $1.772 \ell/s/ha = 78 m^8/s/44,000 ha である。$

図4-13は必要ダム貯水容量の計算結果を示す。

1) 取水方法

取水方法として、ダムから直接自然かんがい、頭首工からの自然かんがい、河川からのボンプアップ取水の3手法について検討した結果、本計画ではボンプアップ取水を採用した。概略比較では、減価償却と維持管理費の年経費からみた場合、ボンプアップ取水は他の2手法に比べ1/4の費用となっている。

図4-14は最大取水要求量に対する取水系統図を示す。

3) 排水システム

1) 計画排水流量

排水施設はクワムット観測所の降雨記録から5年確率日雨量に相当する1971年2月6日の144.8mmの日雨量をもとに計画した。

集水面積、必要排水時間、流出率を考慮して求めた計画排水流量は次の様である。

域外排水量 ; 5.0 ℓ/s/ha

水田内既存水路; 5.5 ℓ/s/ha

支川排水路 ; 8.4 l/s/ha

二次排水路 ; 10.9 e/s/ha

1) 排水方法

計画ダムで調節した後の河道の計画高水位は水田開発区域の標高より低いため、水田からの排水は自然流下させることが可能であり、ここでは自然流下方式とした。

4.5.6 必要労働力

開発完了段階での計画に必要な労働者数は約4,000人で, これらの人々は190人の職員と専門家,580人の熟練労働者と3,230人の準熟練労働者の3職種から構成される。

このうち、職員および専門家は事務所管理、市場の売買、会社経営それに米の生産、精米に関する技術等の分野で高度の経験者が必要である。このため、これらの人々はマレイシア全体から募集する必要がある。

熟練労働者は事務所や工場での会計,書記,機械修理等の分野を担当するもので,これらの人々はサンダカンもしくはコタキナバルで募集する。

準熟練労働者は流域内の住民を農業機械繰作等について訓練をした後で、就業させるものとする。

4.5.7 便 益

この計画が完全な活動状態になると 239,360 tの精米と 31,680 tの米ぬかを産出する。この精米と米ぬかの単価は M\$1,242/tonと M\$417/tonでこれを用いた場合,総生産価格は M\$310×10°である。また総生産価格から生産費用 M\$125×10°と 20年確率以上の洪水による被害額 M\$8×10°を引いた本計画の純益は M\$177×10°(M\$2,854/ha)である。

米の生産は計画着工から6年目に最初の収穫を得,15年目までは段階的な土地開発に応じて生産量が増大し15年目以降は一定量の最終目標生産量が得られる。

表4-6, 4-7に米の単価と6年目-15年目までの年便益を示す。

4.6 電力開発

4.6.1 将来の電力需要および供給地

増大していく電力需要に対処するため、SEB は既設のディーゼル発電量の出力増大や水力発電所と天然ガス発電所の建設を計画している。

サバ州全体および東部地区の主要都市であるサンダカン、タワウ、ラハダツでの将来の電力需要量は表 4 - 8 に示す如くであるが、本計画の電力供給地としては次にのべる理由からサンダカンを選んだ。

バラット発電所に最も近い都市である。

サンダカンの 1990 年の電力需要量 68.3×10³ KW に対し、バラット発電所の発生電力は 31.5×10³ KW である。

4.6.2 発 電

発電方式の選定

バラット発電所のタイプには次の3通りが考えられる。

- 1) 流れ込み式
- 2) 調整池式

3) 貯水池式

とれら3つのタイプのうち、経済的な観点から流れ込み式を採用した。(図4-15参照)

発 電

パラット発電所の最適規模を求めるために 1970年~1979年の平均流況である 1975年の年間流況を用い、4ケースの最大使用水量によって発電コストの比較を行った。この結果、最終的に最も経済的な発電容量は次のようである。(表 4 - 9 参照)

最大使用水量 : 450 m³/s

有効落差 : 8.4 m

最大出力 : 31,500KW

年間発生電力量: 168×106 KWH

4.6.3 送電線

バラット発電所からサンダカンへの送電は 132 kV 3相3線の送電線で図4-16 に示すように、バラットダムの取付道路と既設道路沿い延長 100km区間について設定する。

4.6.4 便 益

バラット水力発電所の便益評価は代替火力発電所の必要経費に基づいて行われる。 ここでは代替火力発電所として、ガス発電所を適用し、この場合のKW価値としてUS\$68 /KW, KWH価値としてUS\$0.019/KWHを用いた。

この結果、年間便益はUS $$3.7\times10^6$ で内訳は電力便益US $$0.7\times10^6$ 、電力量便益US $$3.0\times10^6$ である。

5.1 概 説

第4章で検討した種々の最適必要施設に対し、本章では予備設計を行う。予備設計する主な ものはバラットダムと関連施設、農業施設、かんがい、排水施設および送電線を含む水力発電 所等である。

5.2 ダムおよび貯水池

5.2.1 & A

バラットダムは主ダム1、副ダム4から成り立っているが、主ダムはキナバタンカン河に 位置し本川の水をせきとめる。

また、主ダムの右側に設置する副ダムは鞍部から貯水池の水が越水するのを防ぐ。 供水吐けや余裕高の検討結果からえられたダムの諸元は次の通りである。

	主ダム		副ダ	4	
		No. 1	No. 2	No. 3	No. 4
ダム高 (m)	46	16	42	10	26
堤 長(m)	530	540	550	120	780
提体積 (m³) 2	2,150,000	330,000	1,830,000	20,000	990,000

これら5ダムの総体積は、5,320,000 m^8 である。図5-1,5-2,5-3 に各ダムと付帯の構造物の一般平面図、標準断面図、縦断面図を示す。

ダム型式

ダム型式は、次に述べる理由からのり面保護したアースフィルダムを採用する。

1) ダムサイトの基盤は砂岩および泥岩で構成されており、この基盤のうえを第4紀沖積 層がおおっている。

この泥岩、沖積層にはコンクリートダムは不適である。

2) この区域周辺ではアースフィルダム用の堤体材料は得やすいが、ロック材を得るのは 難かしい。

余裕高

ダム余裕高は風波浪によって生する貯水位上昇に対する安全性を考慮して、3 mを採用した。

ダム基礎

現在バラットダムの基礎は36m以上の沖積層におおわれているが、数種のダム基礎工の うちとの条件に対して経済的に優れ、また施工の容易な不透水ブランケット法を適用する。

5.2.2 洪水吐

洪水吐の設計対象流量は、バラットダム地点の可能最大流量 15,500 m/s とし、人為的な 誤操作による洪水被害の増大をさけるためと、管理の容易さを考慮し自由越流方式を採用する。

ダムサイトの地形的条件からいくと洪水吐は当ダムについて2ケ所必要で、主ダム右岸側に1ケ所とNo.1とNo.2副ダムの間にもう一ケ所設置する。洪水吐の越流部の形状は図5-2に示すように巾300m、水深6mである。

5.2.3 放流設備

放流設備は、洪水を調節するためと常時満水位に貯水位を維持するための2種類設置する。 これらは主ダムの左岸側に平行して設置する。洪水調節設備は巾5 m, 高さ28.5 m の越 流部を有し、20年確率洪水5,400 m³/s を900 m³/s に調節する。

常時満水位を維持するための放流設備は、450 m³/sの流量を対象に設計し、直径 7 mの放流管 3 本とする。またこの放流設備は発電にも用いられる。(図 5 - 4 参照)

5.2.4 転流工

転流工は主ダムとNo 2 副ダムの建設に必要で、他の 3 副ダムは高地に位置しているため転流工は不要である。

転流工は仮排水トンネルと仮締め切り堤から成るが、主ダムとM2副ダムの施工期間の違いから、転流工の設計対象流量は次の2種類を用いた。

主ダムの転流工の設計には 20 年確率流量 5,400 m /s を適用する。この流量はダムサイト右岸部のラタンガン河に通じる低地部と主ダムの左岸側に設置する直径 8 m, 長さ 950 m の 2 本の仮排水トンネルによって放流する。

No.2 副ダムの転流工の設計には5年確率流量3,500 m³/s を用いる。これは上記の仮排水トンネルと主ダムの放流設備で放流する。

5.2.5 取付け道路

建設資機材運搬用にダムサイトから、サンダカンとコタキナバルを結ぶ幹線道路に連絡させる取付け道路は、長さ 48kmで2橋の建設が必要である。

5.3 農業開発

5.3.1 かんがい、排水設備

かんがい、排水に必要な設備は表 5 - 1 に示すごとくであり、代表的な諸施設の配置図を 図 5 - 5 で示す。

ーかんがいシステム

かんがい用水は23ヶ所のポンプ地点でそれぞれ、径500~900㎜の斜流ポンプ3~4基を設置する。かんがい水路は素掘りで64m/haの割合で配置する。

二次水路,末端水路,分流工等の関連構造物はDIDの要綱にそって計画する。

一排水システム

排水路はすべて素掘りで33m/haの割合で設置し、主排水路や吸水渠の末端にフラップ 弁を設置する。

一道路網

効果的な大規模農業を運営するために、砂利舗装幹線農道と未舗装支線農道が14m/ha 20m/haの割合で配置する。

5.3.2 農業施設

各農業区画には事務所,修理所,倉庫,トラクター格納庫,精米所等,米の生産に各種の 施設が必要である。

これらの施設は洪水をさけるため高台に配置する。

事務所

本部事務所は、プロジェクト管理の中枢として設置し、事務室の他会議室、待合室等を 設置し、事務室の収容能力は 550 人用で設計する。

支部事務所は、収容能力 280 人で待合室を備え、各区画に設置する。

本部および支部に必要な事務所の面積は次の通りである。

本部; 1,500 m 1 1 ケ所

支部: 600㎡ 10ヶ所

倉庫

農産物その他を貯蔵するための倉庫は事務所に隣接して各区画ごとに設ける。収容能力としては、肥料 1,500 t、農薬 250 t その他機械部品、潤滑油等の農業資材を収容できるように設計する。

倉庫; 2,500 m 11 ケ所

修理所

作業場は農機具や揚水ポンプの修理、維持のために各区画に設置する。

修理所設備としては、施盤、溶接機器、研磨機、穴あけ機、エアーコンプレッサー、プレス等を配備する。

修理所(本央); 2,000 ㎡ 1ケ所

修理所(支部); 1,000 ㎡ 10 ケ所

トラクター置場

農業機械を収容するトラクター置場は各区画についてトラクター 60 台, アタッチメント 150 台, コンバイン 2 台が収容できるように設計する。

トラクター置場; 2,000 ㎡ 11 ケ所

精米所

精米所は各区画に1ヶ所設置する。

精米工場; 3,400 m² 11 ケ所

貯 蔵 庫; 1,000 m² /

発電所; 680 ㎡ "

精米能力; 6 ton/hr

その他

その他の施設として米その他資機材の運搬のために鉛着き場が必要である。

船着き場; 50㎡ 11ヶ所

5.3.3 農業機械

稲作栽培のために、4輪トラクターとコンパイン収穫機を主要農機として用いるが、予備 の台数を加えた主要農機とアタッチメントの総数は次の通りである。

4輪トラクター ;600台

クローラートラクター; 150台

コンパイン収穫機 ; 250 台

ディスクブラウ ; 250台

ロタペイター ; 350 台

ドリルシーダー ; 150台

パワーダスター ; 250 台

ダンプトラック : 250 台

5.4 水力発彎

5.4.1 発電所建屋

建屋はバラットダム放流設備の下流に長さ 20 m, 巾 48 m, 地上 20 m, 地下 15 m の大きさの鉄筋コンクリートとし中に発電機 3 基を配備する。

図5-6に建屋と水路の平面,側面図を示す。

5.4.2 発電機器

水力タービンは流量 150㎡/s, 落差 8.4 mで計画し, バルブ型テューブラタービンとする。 タービンは次の事項を考慮して選択した。

常時満水位; EL. 17.5 m

低 水 位; EL.16.5 m

放 水 位; EL. 8.0 m

有 効 落差; 8.4 m

水 頭 損失; 1.1 m

発電機に設置する3基の発電機はいずれも水平軸11,000KVA3相50ヘルツである。

5.4.3 送電線

132KV の送電線を導く鉄塔はバラット発電所からサンダカンまでの 100 Km区間について 250 m ごとに設置する。

導線はコロナ放電を考慮し,160 m² の鋼心アルミより線を用いる。

第 6 章 施工計画および建設費

6.1 概 説

本章ではダム、農業施設、発電についての施工計画および建設費について述べる。

施工計画の実施に当っては、現地における建設資機材の調達の可能性およびその価格、現地施工業者の施工能力、工事に使用される機械、機材の修理能力および施設、現場への交通手段、その他工事に関係する項目等について、慎重な配慮と評価が必要である。

工事材料として一般的に必要な木材,レンガ,石材,燃料,オイル等はほご全量現地調達が可能である。

しかし、高精度、高品質が要求される建設用鋼材、鉄パイプ、ゲート、バルブについては輸 入となる。

セメントについては一部現地調達,一部輸入になる。本調査では、施工計画を技術的観点から設定した。このため実施にあたっては、この施行計画について他の見地から再度検討の必要がある。

6.2 5 A

6.2.1 施工計画

バラットダムの主要工事の施工計画は下記に示す通りである。

- 転流工 ; 1985年10月~1987年 3月

- 仮締め切りダム; 1987年 4月~1988年 9月

-施流設備 ; 1987年 1月~1990年 6月

- 主ダム : 1988年10月~1990年12月

- 副ダム : 1990年 1月~1992年 6月

-洪水吐 : 1988年 1月~1992年 6月

上記のすべての工事を含んだ全体の施工期間は図6-1に示すように10年間である。

掘削工事は年間を通じて行なうが、盛土およびコンクリート工事は日雨量 20 mm以上の降雨日は行わない。

6.2.2 積 算

建設費

主要土木工事, 用地買収, 技術経費と10%のコンティンジェンシーを含むバラットダムの総建設費はUS\$201×10°で, このうち外貨分はUS\$97×10°, 内貨分はUS\$104

×10° である。

工種別の建設費は表6-11に示す如くである。

維持管理および取り替え費用

ダムの維持管理費は人件費,機械設備操作費,車輛費,管理費および雑費からなるが, プロジェクトライフ中の年間維持管理費はUS\$0.15×10⁶ である。

また、ダム操作開始後 35 年目に行うゲートの取り替え費用はUS\$7.4×10°である。

6.3 農業開発

6.3.1 施工計画

純開発面積 44,000ha の施工計画は経済的見地から迅速を開発を行い、栽培はダム建設によって洪水被害が防御される時期に合わせて技術的に出来るだけ早く行う。

一方ダム建設期間中,洪水はメインシーズンにのみ生じるところからオフシーズンの栽培は可能である。このためパラットダムの完成する1993年までは,オフシーズンの一期作のみ行い,ダム完成後,2期作を実施する。

このダム完成後2期作が実施出来るように農業開発の全体的な建設期間は,8年以上に収めた。図6-1に施工計画を示す。

開発は、純開発面積を7区画に分けて段階的に開発を行い、それぞれの区画は3年間で森林伐採、農地造成、ポンプ場、事務所、精米工場の建設の順で工事を完了する。

6.3.2 積 算

建設費

農業開発の建設費は農地開発,移住費,用地補償費,技術費と10%のコンティンジェンシーから成り,全体でUS\$460×10°,そのうち外貨US\$280×10°,内貨US\$180×10°である。

項目ごとの建設費は表6-2に示す通りである。

プロダクションコスト

維持管理費を含むプロダクションコストは栽培、労働力、油、部品等の農業生産に投入する費用であるが、年間のプロダクションコストはUS\$54.6×10⁸である。

取り替え費用

ポンプ, ゲート, 精米機, 農業機械, 維持管理に必要な設備等の取り替えに必要な費用は、プロジェクト期間全体でUS\$685.1×10°である。

6.4 水力発電

6.4.1 施工計画

発電の施工計画はダム完成と同時に電力供給が開始出来るように、以下の状況を考慮して立 案した。

- 発電設備の製造
- 施工現場への諸設備の搬入
- 一設備の設置
- 主ダムの放流施設の建設

これらの施工に必要な期間は3年間で、この他送電線の建設はダムサイトの発電設備の完成に間に合うように着手する。

図6-1に施工計画を示す。

6.4.2 積 算

建設費

発電の建設費は発電所建物、土木工事、発電設備、送電線、技術費、10%のコンティンジェシー等から構成され、全体では $US\$40.3\times10^6$ 、この55外貨分は $US\$34.1\times10^6$ 、内貨分は $US\$6.2\times10^6$ である。

建設費の詳細は表6-3に示す通りである。

維持管理費および取り替え費用

維持管理費の主なものは人件費,機械設備,操作費,車輛費,行政管理費,雑費等であるが,年間維持管理費はUS\$0.80×10⁶ になる。

また発電設備の取り替えは最初の操作から 35 年後に行い,その費用は $US\$19.6 \times 10^8$ である。

6.5 移住費および用地,家屋補償費

移住費

移住計画の必要性は次の理由による。

- 1) ダム建設による水没地域に存在する家屋数は850戸でここの住民は移住させる必要がある。
- 2) 本プロジェクトの農業開発の管理, 運営に必要な労働力は熟練職員 770 人, 準熟練労働者 3,230人の計4,000 人で, これらの労働力は新たに移住させる必要がある。

ここでは、これらの労働力のうち熟練職員 770人はコタキナパルから移住するものとし、 残りの 3,230人についてはダム水没地域の住民とキナバタンガン流域内の住民を訓練養成し てあてはめる。

移住に必要な施設の主なものは

- 1) 行政管理者の宿舎を含む移住者の家屋
- ⅱ) 学校,礼拝所,病院,店舗
- 111) 運搬費
- iv) 電力設備

等でこれに必要な費用はUS\$16.4×10°である。

用地補償

プロジェクト実施で補償しなければならない用地は、ダム水没地域 $520 \, \mathrm{Km}^2 \, \mathrm{k}$ 。 農業 開発区域内に設置する道路、かんがい施設のための用地(全農業開発区域の $8\, \mathrm{S}$)であり、この用地補償費は全体で US \$ 32.2×10^8 である。

家屋補償

補償家屋数は 850 戸で、補償費はUS \$ 1.1×10 °である。

第 7 章 プロジェクト評価

7.1 概 説

ことではプロジェクト評価について述べる。このプロジェクトの目的はダム建設によって洪水被害を軽減し、現在の洪水氾濫区域を農業目的に利用できるように転換し、農業生産量を増加させることにあり、またサンダカン市の電力需要をまかなうための発電計画も合わせて考慮する。

とのプロジェクトの経済的にみた実現の可能性は洪水調節、農業発電の各開発計画をパッケージとして、前に述べた施工計画の条件のもとに内部収益率 (IRR)で評価し、感度分析も実施工程の変更、米の目標生産量の減少等で行った。

マレイシアドルと円のドルへの変換レートはUS\$1 = M\$2.3 = ¥230とした。またプロジェクトライフは 50 年とした。

7.2 プロジェクトコスト

1981年価格を用いたプロジェクトコストはUS\$1,050.3×10⁶ で、このうち外貨はUS\$621.7×10⁶ 内貨はUS\$428.6×10⁶であるが、積算の基になった工事数量はこの調査で実施した予備設計にもとづいてもとめた。また、プロジェクト実施に必要な資機材の費用および単価は類似工事の最近の価格を用いた。これらの価格には税金などが含まれており、フィジカルコンティンジェンシーはすべての工事、資機材費に対し10%、プライスコンティンジェンシーは、外貨、内貨とも7%の年上昇を考慮した。各項目別のプロジェクトコストは次の通りである。

(×10°US\$)

項目	外 貨	内貨	合 計
84	141.3	147.1	228.4
農業開発	422.3	270.9	693.2
電力開発	58.1	10.6	68.7
合計	621.7	428.6	1,050.3

7.3 経済評価

7.3.1 プロジェクト便益

プロジェクト便益は1義的便益と2義的便益に分けられるが、数量化は1義的便益に対して行う。

1) 1 義的便益

洪水調節、農業開発、電力開発の各部門から得られる 便益は下記に示す通りである。

(×10° US\$)

項目年便益洪水調節: 0.29農業開発: 77.04電力開発: 3.70

合計 81.03

このうち洪水調節による便益はバラットダムの完成後、ダムの洪水調節効果によって 1993 年から生じる。

農業開発は 10 年の間,段階的に開発されるため農業便益は各区域の開発完了に伴って生じるが,各区域の便益は農業生産量の目標が達成されるまでの5年間(ビュルトアップ期間)は直線的に増加するものとして取り扱う。

発電による便益は関連工事が完成する1993年以降から生じる。また各部門の便益はプロジェクトライフ期間中を通じて毎年もたらされる。

2) 2 義的便益

本計画の実施における2義的便益としては、観光促進、社会経済基盤整備の促進、貯水 他を利用しての内陸面漁業の促進等の他、農業開発のために切り倒された木材は周辺の地 域に利用出来る。

この他, 本計画は外貨の節約に貢献する。

1978 年にサバ州は 63,000 t の米の輸入をしているが、本計画実施によって 239×10³ t の米が生産され、しばらくの間米の余剰が生じる。もしこれをマレイシア全土で利用したとすれば US \$ 129×10⁶の外貨が節約されることになる。

7.3.2 エコノミックコスト

国際入札で購入する資機材、技術費は国際価格で求め、マレイシア国で調達するものについては、キナバタンカン河流域近傍で現在実施されている類似工事を参考に求めた。

建設費の主なものはダム建設費とその付帯構造物費用、農業開発費、電力開発費であるが、 との建設費のエコノミックコストはUS \$ 705.3×10^6 でとのうち外貨はUS \$ 410.5×10^6 内貨US \$ 294.8×10^6 である。

各項目別のコストは下記に示す通りである。

項 E	外貨	内貨	合計	(×10° US\$)
K 1	96.8	3 106.2	203.0	
農業開乳	卷 279.6	5 182.4	462.0	
電力開発	¥ 34.	6.2	40.3	
合計	410.	5 294.8	705.3	

費用割り振り

上記の費用は、各項目別に表わされたものであるが、ここで各部門別の費用をもとめるためにダム建設費の費用割り振りを、洪水調節と農業開発に用いられるダムの容量比で割り振った。結果は下記に示す通りである。

部門	外貨	内貨	合計	$(\times 10^6$	US\$)
洪水調節	94.4	103.5	197.9		
農業開発	2.4	2.7	5.1		
合計	96.8	106.2	203.0		

ただし発電についてはダムに容量をもたないところから、ダム建設費の費用割り振りは 行わない。

部門別積算

ダム建設費の割り振りをもとに各部門別のエコノミックコストをもとめると次のようである。 部 門 外貨 内貨 合計 (×10⁶ US\$)

ある。	部門	外貨	内貨	合計	(×106 US\$)
	洪水調節	94.4	103.5	197.9	
	農業開発	282.0	185.1	467.1	
	電力開発	34.1	6.2	40.3	
	合計	410.5	294.8	705.3	

操作および維持管理費

本計画に関わる各施設はプロジェクトライフの間、確実に目標の便益をあげるため操作、維持管理されなければならないが、それに必要な費用は $US:\$55.55 \times 10^6$ でその内訳は次の通りである。

項目	年費用	(×10° US\$)
g	0.15	
農業開発 :	54.60	
電力開発 :	0.80	
合計	55.55	

取り替え費用

本計画の各施設はプロジェクトライフ期間中駆動効率を低下させないため、耐用年数をこ えた施設を取り替えるが、その費用は下記に示す通りである。

項	8	费用	$\times 10^6$	US\$)
Ŋ	A	7.4	•	
農業	開発	685.1		
電力	開発	19.6		

7.3.3 内部収益率(IRR)

プロジェクト評価は求められた便益とエコノミックコストを用い、内部収益率(IRR) で行なう。プロジェクトライフを 50 年間とした場合の IRRは7.1%である。

7.3.4 咸度分析

感度分析は1)米の生産量の減少,2) 建設期間の延滞,3)建設費の高騰の条件下で行った。 結果は下記に示す通りである。

		IRR(%)
1)	米生産量の減少 (-10%)	5.5
2)	建設期間(10年間延滞)	6.4
3)	建設費の高騰 (+10%)	5.6

7.4 社会経済的影響

経済評価の項で述べた便益の他、この計画の実施により社会経済的にいくつかの好ましい影 響が生じる。

まずダムサイトへの取付道路と農業用道路の整備により地域的な交通網の改善が生じ、その 地域の経済活動が活発になる他,情報交換の改善にも寄与する。

また農業生産の増大によって経済活動に活発になり、また洪水防御によって生活環境が改善 されるため, この地域の社会経済状況が安定する。

その他、農産物の増大、機械化農業、社会経済基盤の整備によって農産物を主体とした工業 化が促進される。

しかし反面,計画の実施によって貯水池予定地内の耕地が水没し、850以上の世帯がどこかに 移住しなければならない。これらの家族は完全に補償されるとはいうものの,近隣住民の地域 社会形態には深刻な影響を与える。

このことから,本計画の遂行にあたって水没地周辺域の地域社会形態の回復と水没地住民の 移住には慎重な配慮が必要である。

この他キナバタンカン河は将来においても、流域住民の移動と、生産量は減少するとはいうも のの,木材の運搬のための交通網の役割を果すことが考えられる。

しかし、ダム建設によって舟運が中断されるため、ダム取付道路が従来の河川の役割にとっ て代るととになる。

第 8 章 結 論

キナバタンガン河流域開発計画は、流域の河川沿岸地域の未利用地を洪水防御によって農業地として開発することと、合わせて東部海岸地域で増大する電力需要をまかなうことを目的として策定された。

この調査の結果として本計画が技術的に可能であることは明らかになったもののIRRでプロジェクト評価した場合 7.1%と経済的にみた実現性は低い。また、現在ほとんどわずかしか住民のいない未利用の森林地帯を順序正しく開発していくためには、洪水防御と共に森林伐採、社会経済基盤整備、労働力の導入等、初期投資は膨大なものになる。

このことから、本計画はキナバタンガン河流域全体の生産性を高めるため、またサバ州の地域計画を促進するために重大な役割を果すものといえるが、現時点でみる限りでは、当分の間本計画は勧告しがたい。

TABLE

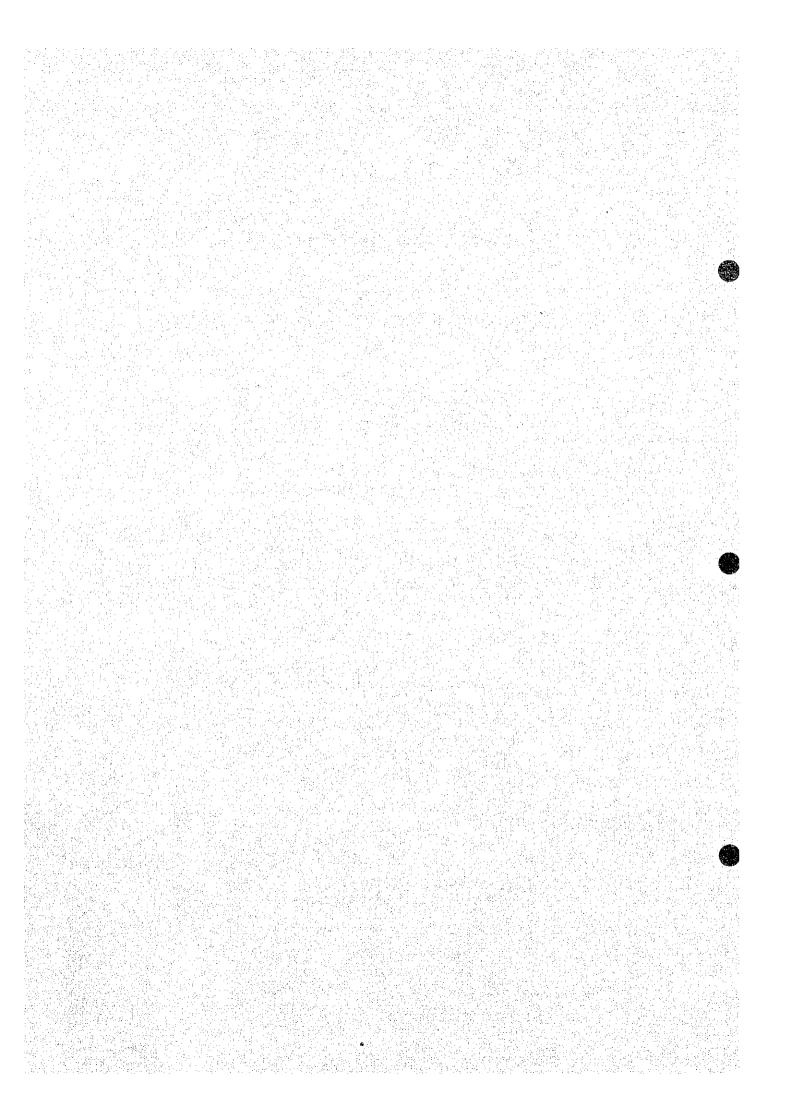


Table 2-1 GROSS DOMESTIC PRODUCT

	1970-CDP (M\$ M11110n) N S	3DP [10n] S	1970-80 Av. Annual Growth (2) M	80 (%) S	1980-GDP (W\$ Million) M S	-GDP [Ifon] S	1980-85 Av. Annual Growth (X) M	-85 nual (%) S	1985-CDP (M\$ Million) M	GDP 11on) S	1985-90 Av.Annual Growth (%)	5-90 nual n (%) S	1990-GDP (M\$ Militon) M	GDP 11on) S
Agriculture, forestry and fishery	3,852 (30.5)	460 (54.2)	4.2	6.5	5,809 (22,9)	861 (44.3)	3.0	2.2	6.720 (18.3)	962 (34.8)	4.0	4.6	8,193	1,203
Mining and Quarrying	834 (6.6)	(6.3)	3.8	56.5	1,214 (4.8)	264 (13.6)	5.8	8.6	1,607	400 (14.5)	3.0	5.3	1,863	\$17.6)
Manufacturing	1,858 (14.7)	21 (2.5)	11.2	7.9	5,374 (21.2)	45 (2.3)	11.0	16.6	9,040 (24.6)	97 (3.5)	10.8	13.4	15,121 (27.6)	182 (4.4)
Construction	541 (4.3)	36 (4.2)	8.2	11.1	1,186	103 (5.3)	3.0	11.9	1,824 (5.0)	181 (6.5)	10.0	12.0	2,938 (5.4)	320 (7.8)
Electricity, Gas and Water	238 (1.9)	10 (1.2)	o,	٠. د.	592 (2.3)	24 (1.2)	10.0	10.2	953 (2.6)	39 (1.4)	ez.	10.4	1,500	(1.6)
Transport, Storage and Communications	632 (5.0)	(9.3)	10.4	9.3	1,696 (6.7)	107 (5.5)	8.0	9.7	2,492 (6.8)	170 (6.1)	9.0	10.7	3,834	283
Wholesale, Hotels and Restaurant	1,717 (13.6)	105 (12.4)	6.7	6.1	3,295	189 (9.7)	8.0	12.2	4,841 (13.2)	336 (12.1)	88	11.0	7,279 (13.3)	568 (13.8)
Insurance and Ownership of Dwellings	1,126 (8.9)	66 (7.8)	6.7	7.3	2,155 (8.5)	134 (6.9)	7 4	න ග	3,079	205 (7.4)	8 19	10.1	4,629 (8.4)	332 (8.1)
Public Administration and Defence	1,466 (11.6)	89 (10.5)	හ හ	7.7	3,398 (13.4)	187 (9.6)	0.6	11.8	5,228 (14.2)	327 (11.8)	9.0	11.0	8,044	553
Other Services	354 (2.9)	14 (1.7)	6. 4	7.9	657 (2.5)	30 (1.6)	7.6	10.6	948 (2.6)	50 (1.8)	0.6	۲. ا	1,459 (2.7)	85 (2.1)
TOTAL GDP	12,618 (100.0)	848 (100.0)	7.2	8.7	25,376 (100.0)	1,944	7.7	7.3	36,732 (100.0)	2,767	% %	8.2	54,860 (100.0)	4,107 (100.0)
(GDP per capita)	1,172.2 1,302.9	1,302.9			1,836	1,847			2,337.8	2,216.9			3,128.5	2,807.6

Source: Forth Malaysia Plan, 1981-85
Note: M: Malaysia, S: Sabah and (): %

Table 3-1 FLOOD DAMAGE

#O+1		. :		Year			٠
4.C.M.	1968	1971	1974	1976	1977	1980	1981
Farmland:ha (acre)	*	*	*	*	58 (144) 11	2	3) 227 (567)
	8,000	2,000	*	*	2,500	*	*
Dead or lost: nos	*	*	*	13	*	*	~
House : nos							
-Washed away	193	*	m	*	20	М	<u> </u>
-Broken	200	*	*	*	60%	ý)
-Inundated	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	*	*	*		123	300
Fow1: nos	*	*	*	*	1,090	*	*

Note: This is compiled based on the recods collected from Drainage & Irrigation Dept., District Office, and Relief Committee.

No data available

Table 3-2 PRESENT LAND USE

IIn	1t	. 4	Δ	cre
1111	f I			L. L. L.

Group	1970	1979
Rubber	1,993	1,383
Oil Palm	4,197	12,457
Coconut	2,627	2,251
Cocoa	0	1,074
Paddy (Wet)	26	110
Paddy (H111)	~	3,200
Maize	ertige Frank i State St	473
Ground Nuts		59
Sweet Potato		200
Mixed Horticulture	2,810	
Agricultural Land	11,661*	23,624

Source: The Present Land Use of the Sandakan Residency,1970 Crop Acreage Sabah 1979

⁻ Not available

^{*} Except shifting cultivation area

Damsite	Catchment Area (km^2)	/2 Dead Storage (x106 m ³)	Effective Storage (x10 ⁶ m ³)	Dam Height (n)	Dem Body Volume (x10 ⁶ m ³)	Effective Storage per Dam Body Volume (m ³ /m ³)	Flood Control Potentiality (km ² /km ²)
1, Milian (!)	950	19	300*	97	6	33	680*0
2. Milian (2)	1,640	33	*009	42	œ	75	0,153
3. Melikop	290	9	100*	20	്ന	33	0.027
4. Pinangah	1,200	24	1,200	35	. 1	1,200	0.112
5. Tongod	099	13	×0.	32	1	70	0.062
6. Imbak	390	Φ	100*	51	8	20	0.036
7. Karamuak	450	G	200*	24	2	100	0.042
8. Kuamut (1)	086	20	200*	81	7	29	0.091
9. Kuamut (2)	2,770	55	2,770	95	22	126	0.258
10. Kuamut	3,100	62	3,100	76	24	129	0,289
11. Milian	6,650	133	6,650	45	11	605	0.620
12. Deramakot	10,360	207	10,360	9*	01	1,036	0.966
11. Balat	10,730	215	10,730	43	∞	1,341	1.000

Note: /1/2 /3

For the sizes of the respective basins, numbered 1 to 13 inclusive, see Fig. 4-1 Equivalent to 100-year volume at unit silt deposit of $200~{\rm m}^3/{\rm km}^2/{\rm year}$. Effective storage is estimated by the unit volume of $1{\rm x}10^6~{\rm m}^3/{\rm km}^2/{\rm year}$ which is the annual available rainfall. * Effective storage modified by the topographic configuration of the respective damsites.

Height of dam crest above the presumed existing riverbed.

Dam body volume is computed on the basis of a fill dam with fase slope of 1 : 3.0 on both up- and down-stream of the dam body.

Table 4-2 COMPARISON OF THREE DANSITES

Uni	t	•	million	US\$

Damsite	Milian- Kuamut	Der	amakot	Balat
Cost (C)	1,380.0		820.1	707.4
Benefit (B)	60.7		59.4	58.1
(B) / (C)	0.04		0.07	0.08

Table 4-3 ANNUAL EXPECTED FLOOD DAMAGE REDUCTION

(1) Annual Expected Direct Flood Damage Reduction

•		<u> </u>		1		<u> </u>			<u> </u>		\neg	Τ		_
(age (10 ³ us\$	Wich Dam		C)	c)	c	>	ម	•			ſ
6 (4 x 5)	Expected Damage(10 ³ US\$)	Without Dam		891	2	ć,)	27	, ,	σ			 	257
5	Expected	Value		683		0.100) }	0.00	0000	210 0	,		1	Total
	age(10 ³ us\$)	With Dam		C	>	С	•	C	>	765	505			
4	Average Damage(10 ³ US\$)	Without Dam		385		531	l))	521	- T	531	100			:
	Damage(10 ³ US\$)	Wich Dam	c	>	¢	Э.	c	>		0	1	531		
n		Without Dam	c	o	rcu	155	100		r C	ንንቷ	, (231		
2	eturn Discharge Flood	(m ³ /s)	_	000.4	000	3,890	070 7	4,040	0	0,000		6,450		
Н	eturn	eriod	7.3.9	7 - 7 / 7		1/5	01/1	7.40	007	7/70		1/30		

(2) Annual Flood Control Benefit

(unit: 103US\$)

14.		:		: 		:
Damage	With	the project the Project	5	1	9	296 - 6 = 290
Expected Damage	Without	the project	257	39	296	296 –
			Direct	Indirect	ar	nefit)
			Building & Interior Direct	Effects	Tota	Damage Reduction (Benefit)

Note: The indirect damage to buildings and inteiror effects

is fixed at 15% of the direct damage.

Table 4-4 COMPARISON FOR CROP SELECTION

Harvesting Marketability Productivity	‡	+	4	+1	† †	+1	+	+++++++++++++++++++++++++++++++++++++++	+ +
Marketabi	‡	+	+!	4-1	+	+	+	+++	ı
Harvesting	++	+	•	+1	1	+		1	
Yield	‡	+	+1	+	‡	++	• • • • •	+	‡
Soils	Alluvial	Peat & Alluvial	Peat & Alluvial	Peat & Alluvial					
Crops	Paddy	Soya bean	Groundnuts	Mangobeans	Taploca	Maize	Ginger	Red chilly	Pineapple

+++ Very sultble, Very good

+ + Suitable, good

+ Moderate

+ Limited

Not suitable, difficult

Table 4-5 FARMING SCALE AND BENEFIT

	· ·		•	the second secon
	Case	T	II	III
1.	Farming Form	Small Scale	Medium Scale	Large Scale
2.	Operation Unit	15 ha/group	35 ha/group	400 ha/group
3.	Manpower	1.2 ha/man (0.87 man/ha)	4.5 ha/man (0.23 man/ha)	16 ha/man (0.06 man/ha)
4.	Planting Method	Transplanting	Drill sowing	Drill sowing
5.	Main Machinery	Power tiller x 3 Binder x 3 Thresher x 3	Tractor (25HP) x Small combine x	Clawler x 1
6.	Machinery Invest- ment (M\$/ha)	2,210	2,380	2,638
7.	Yield Paddy (ton/ha) Rice (x 65%) Bran (x 9%)	8.0 5.2 0.72	8.0 5.2 0.72	8.0 5.2 0.72
8.	Production Value Rice M\$1,242/ton Bran M\$417/ton Total	6,458 300 6,758	6,458 300 6,758	6,458 300 6,758
9.	Production Cost (M\$/ha) Labour cost OM - machinery* Farm inputs etc.	4,156 2,150 457 1,549	3,822 1,610 663 1,549	2,854 300 1,005 1,549
10.	Net Benefit (M\$/ha)	2,602	2,936	3,904

^{*} Excluding depreciation cost of farm machinery

Table 4-6 ECONOMIC PRICE OF RICE

Item	Unit	Rice
Projected 1990 World Market Price /1	US\$/ton	575
Quality Adjustment /2	%	90
Projected Price	US\$/ton	518
Shipping & Handling	US\$/ton	+ 33
FOB/CIF Price, Sandakan	US\$/ton	551
Equivalent in M\$ (x2.3)	M\$/ton	1,267
Domestic Transport/Handling	M\$/ton	- 25
Farm Gate Economic Price	M\$/ton	1,242

^{/1} Mid-Year Updating of Commodity Price Forecast, IBRD, June 1981.

The produced rice in the project has a little high percentage of brokens, its price is assumed to be 10% lower than Bangkok FOB price of Thailand 5% broken rice.

Table 4-7 NET PRODUCTION VALUE UNTIL FULL PROCUCTION STAGE

Unit : 1,000M\$

Construction	Gross Production	Total Production	Net Production
Year / <u>1</u>	Value	Cost	Value
1987 6th	4,587	2,854	1,733
1988 7th	21,346	12,843	8,503
1989 8th	40,576	22,832	17,744
1990 9th	62,276	33,821	29,455
1991 10th	86,445	42,810	43,635
1992 11th	112,378	52,799	59,579
1993 12th	265,421	125,576	139,845
1994 13th	283,945	125,576	168,369
1995 14th	297,529	125,576	171,953
1996 15th	306,174	125,576	180,598
1997 16th	310,496	125,576	184,980

^{/&}lt;u>1</u> See Fig. 6-1

Table 4-8 FUTURE POWER DEMAND

Unit: MW

	· · · · · · · · · · · · · · · · · · ·				OHIL: MW
Year	Sabah	Sandakan	Tawau	Lahad Datu	Semporna
1981	93.7	20.3	11.4	3.0	0.7
1982	112.0	23.5	13.7	3.5	0.9
1983	113.0	27.3	16.4	4.1	1.1
1984	157.0	31.4	19.5	4:.7	1.3
1985	185.0	36.1	23.2	5.4	1.6
1986	210.9	41.2	27.4	6.1	1.9
1987	238.3	46.9	32.4	6.9	2.3
1988	266.9	53.5	38.2	7.9	2.7
1989	296.3	60.5	44.7	8.9	3.2
1990	328.9	68.3	52.3	10.2	3.7
1991	361.7				
1992	397.9	: :			
1993	437.7				
1994	477.2				
1995	520.1		No fig	gure availabl	e
1996	566.9				
1997	617.9				
1998	667.3				
1999	720.7				
2000	778.4				

Source: Sabah Electricity Board (SEB)

Table 4-9 COMPARISON OF UNIT CONSTRUCTION COST PER KWH

Maximum Discharge (m ³ /s)	400	450	500	550
Effective Head (m)	8.40	8.40	8,40	8.40
Maximum Output (kw)	28,000	31,500	35,000	38,500
Annual Energy Output (10 ⁶ kwh)	159	168	175	182
Unit Construction Cost per kwh (US\$)	0.142	0.141	0.154	0.179

Table 5-1 MAIN COMPONENT OF IRRIGATION PROJECT

1.	Pumping Stations (Inclined Mixed Flow Type)		23	place
	Dia. 500mm x3 units - Dia. 900mm x4 units	(130-590 HP)		
2.	Irrigation Canal			
•	Convey Canal (Steel Pipe Line Dia. 1200mm- Dia.	1,800mm)	10	km
i D	Main Canal	(50-160 cusec.)	158	km .
	Secondary Canal	(32 cusec.)	461	km
	Tertiary Canal	(1.2 cusec.)	2,244	km
	(Total 2,830 km)			
	Related Structures			
	Check Gate	(50-160 cusec.)	70	nos.
	Offtake	(32 cusec.)		nos.
	Turn out (Type I & II)	(1.2 cusec.)	2,200	
	End check	(1.2 cusec.)	2,200	
	Division Box		28,600	. :
	Main Syphon	(50-160 cusec.)	·	nos.
	Secondary Syphon	(32 cusec.)	13	nos
	Secondary Crossing Structures	(32 cusec.)	550	nos.
	Tertiary Crossing Structures	(1.2 cusec.)	13,200	nos
	Drainage Canal			
	Existing Channel Improvement		88	km
· · .	Lateral Drain	(210 cusec.)	231	km
	Sub Lateral Drain	(20 cusec.)	1,122	km
	(Total 1,455 km)			
	Related Structure			
	End Sluice	(210 cusec.)	95	nos.
- - -	Drainage Conduit	(210 cusec.)	550	nos.
١.	Road & Bridge			
	Farm Road (gravel metaled)		635	km
	On-farm Road		935	km
	Bridge		27	nos.
5.	Land Acquisition		4,700	ha

Table 6-1 CONSTRUCTION COST OF BALAT DAM

Unit: 10³ US\$

	Work Item	Foreign Currency	Local Currency	Total
1.	Main Work			Management of the second se
	Access Road	2,900	3,400	6,300
	Diversion	10,000	6,900	16,900
	Dam Body	11,000	12,000	23,000
	Spillway	24,200	21,200	45,400
	Outlet	21,900	11,700	33,600
	Preparatory Work	7,000	5,500	12,500
	Sub Total	77,000	60,700	137,700
2.	Land Acquisition and	·	30,800	30,800
	House Evacuation			
3.	Engineering Service	11,000	2,800	13,800
4.	Physical Contingency	8,800	9,400	18,200
	Total	96,800	103,700	200,500

Table 6-2 AGRICULTURAL DEVELOPMENT COST

Unit: 10³ US\$

	Work Item	Foreign Currency	Local Currency	Tota1
1.	Main Work	Control of the second s		
	Jungle Clearing & Levelling	38,000	33,600	71,600
·.	Irrigation, Drainage, Farm Road, Related Structres	63,400	75,500	138,900
	Preparatory Work	10,100	10,900	21,000
	Sub Total	111,500	120,000	231,500
2.	Agricultural Production Facilities Buildings & Equipment for Office, Workshop and Pilot Farm	14,400	2,500	16,900
	Rice Mill & Farm Machinery	99,300	15,300	114,600
	Sub Total	113,700	17,800	131,500
3.	Resettlement Scheme		16,400	16,400
4.	Land Acquisition	***	2,500	2,500
5.	Engineering Service	29,000	7,300	36,300
6.	Physical Contingency	25,400	16,400	41,800
Tota	a1	279,600	180,400	460,000

Table 6-3 HYDRO POWER DEVELOPMENT COST

Unit: 10³ US\$

+	Work Item	Foreign Gurrency	Local Currency	Total
1.	Main Work		1	
	Civil Works	800	700	1,500
-	Power House	1,900	900	2,800
	Generating Equipment	18,200	1,400	19,600
	Transmission Line	4,900	1,500	6,400
	Preparatory Work	2,600	400	3,000
	Sub Total	28,400	4,900	33,300
2.	Engineering Service	2,600	700	3,300
3.	Physical Contingency	3,100	600	3,700
	Total	34,100	6,200	40,300

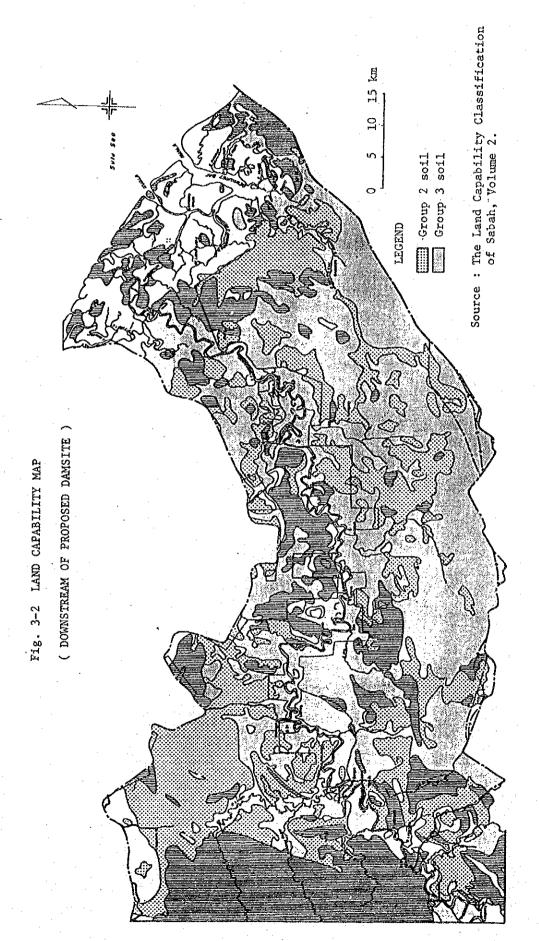
Table 7-1 ANNUAL DISBURSEMENT OF THE PROJECT COST

21,18 46.04 24.86 (5ch) 15.97 26.79 42.76 Unit : x105 US\$ 21.29 4.48 16,91 (4th) 1985 33.55 7.14 6.41 1.96 0.40 1.46 0.10 (3rd) 6.83 1.34 5.12 0.37 Ę. 0.09 1.10 0.18 0.83 (2nd) 4.18 0.62 3.19 0.37 C) , L (1st) υ. C TOTAL L.C. 10.57 693.17 422.32 270.85 428.49 147.07 621.68 141.28 TOTAL F.C. 58.08 68.65 1050.17 288.35 GRAND Agricultural Development Hydro Power Development WORK ITEM Total

(CONTINOP)													
MARY TYRM	9)	1987 (6±h)	1988 (7th)	1988 (7th)	1989 (8th)	1989 (8th)	6	1990 (9th)	1991 (10th	1991 10th)	1992 (11th	1992 (11th)	
	F.C. L.C.	L.C.	F.C.	L.C.	F.C. L.C. F.C. L.C.	L.C.	F.C.	L.C.	F.C. L.C. F.C. L.C. F.C. L.C.	L.C.	F.C.	L.C.	
	i L	c c	000	·	01 70	20 61	00 76	17 10	77.0%		1,00	 	
Баш	7/•ст	15.72 23.99	70.20	74.10	24-10	17.30	66.47	10.17	20.20 14.10 14.10 14.12 14.14 10.14 14.14	00.01	900) - - -	
Agricultural Development		45.07 35.02	62,15	39.61	66.50	42.53	71.15	45.30	62.15 39.61 66.50 42.53 71.15 45.30 76.13 48.47 59.81 31.97	48.47	59.81	31.97	
Hydro Power Development							19.00	3.00	19.00 3.00 18.70 3.57 20.04 3.81	3.57	20.04	3.81	
Total	60.79	60.79 59.01	82,35	53,71	90.68	60.49	115.14	69.91	82.35 53.71 90.68 60.49 115.14 69.91 111.47 67.59 93.93 47.34	67.59	93.93	47.34	

Note: F.C.: Foreign Currency L.C.: Local Currency

Table 7-2 ANNUAL DISBURSEMENT OF THE ECONOMIC COST


Unit : x106 US\$

WORK ITEM	GRAND	TOTAL TOTAL	TOTAL	13	1982 (1st)	198	1983 (2nd)	1984 (3rd)	1984 (3rd)	19	1985 (4th)	1986 (5th	986 5th)
	TOTAL	F.C.	L.C.	F.C.	L.C.	F.C. L.C. F.C. L.C. F.C. L.C. F.C. L.C. L	L,C	F.C.	L.C.	F.C.	L.C.	F.C.	Ľ.C.
Dam	203.00	96.80 106.20	106.20	1		0.62	0.18	1.25	0.37	6.24	15.07	0.62 0.18 1.25 0.37 6.24 15.07 13.04 20.59	20.59
Agricultural Development	462.00	279.60 182.40	182.40			3.19 0.83 4.79 1.36 5.60 4.31 21.87 17.69	0.83	4.79	1.36	5.60	4.31	21.87	17.69
Hydro Power Development	40.30	34.10 6.20	6.20			0.37 0.09 0.35 0.09	0.09	0.35	0.09				
Total	705.30	410.50 294.80	294.80			4.18	1.10	6-39	1,82	11.84	19,38	4.18 1.10 6.39 1,82 11.84 19.38 34.91 38.28	38.28

(CONTINUED)		•				•		•					
TOWN ACCOUNT	1987	87	1988	88	61	1989	1990	90	1991	91 .h.\		92	٠.
- WOKK IIEM	9	(OEU)	>	(/cu/	٥	(ocu)	ر ا	(900)	(TOCH)	cn,	(3377)	(11.7	
	F.C.	L.C.	F.C.	r°C.	F.C.	r.c.	F.C.	L.C.	F.C. L.C. F.C. L.C. F.C. LoC. F.C. L.C. F.C. L.C. L.C.	L.C.	F.C.	L.C.	
									1				
Dam	12.00	18.60	14.40	10.35	16.11	12.27	15.56	13.46	12.00 18.60 14.40 10.35 16.11 12.27 15.56 13.46 9.92 9.02 7.66 6.21	9.02	7.66	6.21	
Agricultural Development	34,38	27.12	44.31	28.64	44.31	28.64	44.31	28.21	34.38 27.12 44.31 28.64 44.31 28.64 44.31 28.21 44.31 28.21 32.53 17.39	28.21	32.53	17.39	
Hydro Power Development	İ						11.83	1.87	11.83 1.87 10.65 2.08 10.90 2.07	2.08	10.90	2.07	
Total	46.38	45.72	58.71	38.99	60.42	40.91	71.7	43.54	16.38 45.72 58.71 38.99 60.42 40.91 71.7 43.54 64.88 39.31 51.09 25.75	39.31	51.09	25.75	

Note: F.C.; Foreign Currency L.C.; Local Currency

Fig. 3-1 FLOW REGIME AT TANGKULAP

