Table 12. LIST OF WATER QUALITY MONITORING STATION (WQMS) BY RIVER (1/2)

River Name & NQCR No.	VQHS No.	River Name	Latitude	Longitude	Distance from River Mouth (km)	Remarks
Benut	1632601	Benut	1° 39'	103" 15'	8.44	Benut
(1)	1833602	Benut	1" 49"	103° 18'	33.49	Simp Rengam Pump House
	1833603	Ulu. Benut	1° 51'	103° 18'	38-16	Batu 56, Jln. Air Hitam
	1832604	Hachap	1° 52'	103° -151	39.77	Batu 58-1/4, Jln. Air Hitam
:	1833605	_	1° 48'	103° 18'	33.81	Parit Waji Yasin
Pontian	1534604	Besar	1° 34'	103° 25'	16.74	Kg. Parit Kerinchi
Besat (2)	1534605	Ayer Hitan	I" 35'	103° 27 °	23.18	Dekat Kg. Parit Kerinchi
	1734614	Besar	1° 431	103° 27'	38.80	Batu 32-1/2, Bukit Betu Jln. Air Hitem
Pouttan Kechil	1534603	Kechil	1 32 1	103° 291	14.26	Kg. Sawah
(3)						
Skudai (5)	1536601	Skudai	19 351	103° 39'	17.71	Bekalan Air
	1536602	Skudal	1° 36'	103° 39'	21.74	Ladang Sena
	1636601	Skudai	1, 38,	103° 28'	28.50	Selang
	1636603	Skudai	1° 36'	103° 35°	24.31	Senai
	1636605	Skudai	1° 381	103° 37'	30.91	Ladang Swee Lam
Skuda1	1636606	Skudal	1° 39'	103° 36'	33-97	Kulai
(5)	1636607	Skudai	1° 41'	103° 34'	38.80	Sengkang
	1735608	Skudai	1° 42'	103° 31'	45.00	Sednak
Tebrau	1537609	Tebrau	· 1° 33¹	103° 45'	9-82	Kangka Tehrau
(6)	1537613	Tebrau	1° 341	103° 43.51	35.10	Lembangan Tehrau
	1636612	Tebrau	1° 38'	103° 41'	42.67	Selang
Johor	1538601	Tiram	1° 34'	103" 481	44.27	Jamb ulu Tiram
(7)	1637602	Ti ram	1° 38'	103° 45*	38.64	Pekan ulu Tiram
	1638611	Berangan	1° 41'	103° 52'	38.16	Bukit 21, Jln. Kota Tinggi
•	1640601	Temon	1° 39'	104° 01'	31.39	Felda Air Tavan
	1737604	Johor	1" 43"	103° 541	44.28	Kota Tinggi
	1737606	Johor	1° 45'	103° 461	61.09	Kg. Semangor
	1737607	Semangor	1° 44'	103° 42'	69.71	Bukit 10, Jln. Kulai Kota Tinggi
. :	1834608	Sayang	1° 48'	103° 31'	99.34	Ladang Sinora
	1834609	Sayang	1° 49'	103° 29'	104.17	Layang-Layang

Table 13 LIST OF WATER QUALITY MONITORING STATION (WQMS) BY RIVER (2/2)

River Hane & WQCR No.	wons ho.	River Name	Latitude	Longitude	Distance from River Houth (km)	Remarks
Johor	1834610	Sayang	1° 53'	103° 24'	120,11	Rengan
(7)	1835611	Remis	1° 48°	103° 28†	109.0	Ulu Remis
	1836601	Schol	1° 50'	103° 411	75.5	Jln. Penggeli Timor
	1836602	Sayang	1° 48'	103° 40°	78.09	Jln. Kulai/Penggeli Timor
	1836603	Pengeli	1° 49'	103° 37'	86.54	Felda Inas
4	1837604	Mnggio	L* - 501	103° 42†	75.67	Jln. Penggeli Timor
Sedili	1839604	Besar	I° 52'	103° 571	56.99	llavai
Besur (8)	1839605	Doho1	1° 531	103° 55'	66.98	Bukit 40, Jln. Kota Tinggi Hersing
	1840602	Genhot	l° 53'	104° 03'	21.25	Jamb Sg. Cembot
	2039606	Besar	2° 001	103° 541	61.18	Ladang Ubi
	2038608	Besar	2° 02'	103° 52'	92.09	Bukit 52, Jln. Kota Tinggi Hersing
	2138611	Ambat	2° 11'	103° 52'	111.25	Bukit 63, Jln. Kota Tinggi Nersing

Table 14 INVENTORY OF PURIFICATION SYSTEM FOR RUBBER PROCESSING

Code	Name of Factory	River Name	Type of	Actual	n Purification	uantity of Effluent	Treated M	
		Mente	Production	(ton/d)	System	(m ³ /hr)	BOD	SS
1	Tropical Products Co. (Pte) Ltd.	Pontian	SMR	28.85	Recycle & Anderobi ponds	c 1.52	43	69
2	Sykt. Lai Hup Seng Rubber Factory Sdn. Bhd.	Pulai	Remilles Crepe	4.84	Recycle	••	<u>-</u>	-
3	Lam Leong Rubber Co. Sdn. Bhd.	Pontian	RSS	7.76	Anaerobic and facultative ponds	0.25	62.7	85
4	Hiap Heng Trading Co. Sdn. Bhd.		Remilles Crepe	*	Anaerobic and facultative ponds	*12.0	*75	*300
5	Lee Rubber Co. (Pte)		RSS	11.0	Anaerobic and facultative ponds	* 0.72	190	25
6	Mardec Kulai Factory	Skudai	SMR & Latex	28.6	Anaerobic and facultative ponds	51.0	800	335
7	Chip Hong Rubber	Skudai	SMR	_	Data Not Available	_	- -	, ·
8	Seng Cheong Rubber Co. Sdn. Bhd.	Skudai	SMR	*	*Anaerobic Pond	*26.2	*83	<u>.</u>
9	Foh Cheong SMR Factory	Skudai	SMR	4.0	Anaerobic and facultative ponds	3.55	47.5	116
10	Ladang Kulai Besar	Skudai	ADS	4.0	Anaerobic and facultative ponds	*38.4	*200	*146
11	Lee Plantation (Pte) Ltd.	Skudai	Latex & Crepe	11.66	Anaerobic and facultative ponds	8.42	27	75
12	Lee Rubber Co. (Pte)	Skudai	SMR	28.21	Anaerobic and facultative ponds	29.3	32	25
13	Lee Latex (Pte) Ltd.		Latex	*	Data Not Available	*27.7	*1,953	*220
14	Ladang Tebrau Majidee	Tebrau	Latex	-	*Biological Ponding System	* 9.3	*200	*92
15	Tropical Produce Co. (Pte) Ltd.		Latex	28.0	Anaerobic and facultative ponds	231.0	1,530	320
16	Ulu Tiram Rubber Factory	Johor	Latex	18.46	Anaerobic and facultative ponds	. 11.25	34	80
17	Tai Tak SMR Factory		SMR	2.75	Anaerobic and facultative ponds	3.27	48	100
18	Kilang Getah felda		SMR		Anaerobic and facultative ponds	. -	<u>-</u>	· · ·
19	Keck Seng (M) Sdn. Bhd.		SMR	*	*Biological Ponding	*93.5	*200	*250
20	Teluk Senggat SMR Factory		SMR	*	*Biological Ponding	*19.3	*158	*140

^{*} Information carried out by DOE in 1982.

Table 15 INVENTORY OF PURIFICATION SYSTEM FOR PALM OIL PROCESSING

			Actual		Quantity of Effluent	Treated F	
Code		River P Name	roduction (ton/hr)	Purification System	(m ³ /hr)	BOD	SS
No. 1	Name of Factory Southern Palm Oil Mill	Benut	5.65	Land disposal	12.28	120	250
2	KKS Kulai, Benta Plantation	Pontian	8.0	Land disposal	10.0	237	2,609
3	Yule Catto Palm Oil Mill	Skudai	6.0	Land disposal	12.0	650	3,500
4	Fraser Palm Oil Mill	Skudai	6.0	Land disposal	20.0	117	245
5	Kulai Palm Oil Mill	Skudai	*	*Biological Treatment	*W;74.5 *W;	26,700 *W	28,300
6	South Johor Palm Oil Mill	Skudai	2.58	Land disposal	12.0	80.2	130
. 7	Kim Long Palm Oil Mill	Tebrau	6.0	Land disposal	11.0	182	1,150
8	Ulu Remis Palm Oil Mill	Johor	11.4	Land disposal	23.65	-	. · -
9	Felda Ulu Belitong (Propose)	Johor	·	<u>-</u>			••
10	Ulu Sebol Palm Oil Mill	Johor	5.4	Anaerobic and facultative ponds	18.0	70.2	260
11.	Eng Wei Palm Oil Mill	Johor	4.0	Land disposal	10.0	490	4,000
12	Felda Penggeli Palm Oil Mill	Johor	10.0	Anaerobic and facultative ponds	20.0	110	250
13	Felda Taib Andak Palm Oil Mill	Johor	6.48	Anaerobic and facultative ponds	14.0	100	200
14	Felda Bukit Besar Palm Oil Mill	Johor	**************************************	*Biological treatment	*W;164.0	62	200
15	Kulim Malaysia Sdn. Bhd.	Johor	9.0	Land disposal	10.0	237	2,609
16	Tai Tak Palm Oil Mill	Johor	9.0	Anaerobic and facultative ponds	6.3	30	136
17	Masai Palm Oil Mill	•	-	Data Not Available	- .		-
18	Felda Air Tawar Palm Oil Mill		9.0	Anaerobic and facultative ponds	20.0	.80	220
19	Pelda Semencu Palm Oil Mill		10.8	Anaerobic and facultative ponds	20.48	120	230
20	Felda Adela Palm Oil Mill		14.0	Anaerobic and facultative ponds	19.72	300	300
21	Felda Sening Palm Oil .		11.34	Anaerobic and facultative ponds	13.83	70	140
22	Felda Lok Heng Palm Oil Mill		14.0	Anaerobic and facultative ponds	10.0	100	400
23	Semperna Palm Oil Mill		4.0	Anaerobic and facultative ponds	4.5	30	136
24	Sungai Ambat Palm Oil Mill	Sedili	4.0	Anaerobic and facultative ponds	4.8	95.7	490
25	Tenggaroh Palm Oil Mill	Sedili		Data Not Available	-	-	-

Information carried out by DOE in 1980

Effluent into watercourse

Table 16 INVENTORY OF PURIFICATION SYSTEM FOR PINEAPPLE PROCESSING

Code	Name of Factory	River Name		Actual Productio	n Purification	Quantity of Effluent	Treated (mg	
	1240001	Manie	Production	(ton/d)	System	(m ³ /d)	BOD	SS
1	Peninsula Plantation	Benut						
	Sdn. Bhd. Simpamp Renggam	benut	Pineapple Cutes (Semi finished	45	Anaerobic and facultative por	ıds		· <u>-</u> ·
			products)					
2	Peninsula Plantation, Pineapple Canning Padt, Sikom	Pontian	Canned pineapples	30	Anaerobic and facultative pon	68 ds	*1,930	65
							:	4.
3	Lee Pineapple (M) Sdn. Bhd.	Skudai	Canned pineapples	0.5	Land disposal	_		-
4	United Malaysia Pineapple Growers & Canners Pte. Ltd.	Skudai	Canned pineapples	1.6	Anaerobic and facultative pon	273 ds	5.0	20

^{*} The purification system was not working.

Table 17 INVENTORY OF STOCK FARMS

			No. of	Amount of Water
Code		Direct Name	Heads	Used (m^3/d)
No.	District	River Name	110000	and many deep spin mid. Delt glis Shak deep make man with delt delt gene vang delt sme after delt delt
	Valuano	Benut	12,000	78.54
1 2	Kuluang Kuluang	Benut	800	••
3	Pontian		1,800	17.99
3 4	Kuluang	Pontian Besar	2,000	13.09
5	Pontian	Pontian Besar	3,950	- ,
6	Pontian	Pontina Besar	750	13.09
7	Pontian	Pontian Kechil	1,611	26.18
8	Pontian	Pontian Kechil	3,620	15.99
9	Pontian	Pontian Kechil	1,110	8.73
10	Pontian	Pontian Kechil	980	17.45
11	Pontian	Pontian Kechil	1,376	17.45
12	Pontian	Pontian Kechil	800	13.99
13	Pontian	Pontian Kechil	1,500	17.45
14	Pontian	Pontian Kechil	1,280	26.18
15	Pontian	Pontian Kechil	2,000	26.18
16	Pontian	Pontian Kechil	873	13.09
17	Pontian	Pontian Kechil	2,811	-
18	Pontian	Pontian Kechil	1,900	26.19
19	Pontian	Pontian Kechil	800	21.82
20	Pontian	Pontian Kechil	2,000	-
21	Pontian	Pontian Kechil	3,500	26.18
22	Pontian	Pontian Kechil	4,200	52.36
23	Pontian	Pontian Kechil	1,200	17.45
24	Pontian	Pontian Kechil	1,300	17.45
25	Pontian	Pontian Kechil	950	26.19
26	Pontian	Pontian Kechil	800	8.73
27	Pontian	Pontian Kechil	885	26.18
28	Pontian	Pulai	10,470	**
29	Johor Bahru	Pulai	22,000	147.27
30	Johor Bahru	Skudai	18,000	· · · · · · · · · · · · · · · · · · ·
31	Johor Bahru	Skudai	1,500	
32	Johor Bahru	Skudai	5,000	24.54
33	Johor Bahru	Skudai	4,000	47.27
34	Johor Bahru	Tebrau	5,000	<u> -</u>
35	Johor Bahru	-	9,000	87.27
36	Johor Bahru		5,000	-
37	Johor Bahru		1,000	-
38	Johor Bahru	Johor	5,000	-
39	Johor Bahru	Johor	1,000	16.34
40	Johor Bahru	Johor	3,000	16.36
41	Johor Bahru	Johor	2,000	16.36
42	Johor Bahru	Johor	2,000	27.27
43	Johor Bahru	Johor	2,000	20.04
44	Johor Bahru	Johor	22,000	147.27
45	Johor Bahru	Johor	1,000	8.18
46	Johor Bahru	Johor	4,000	34.09
47	Johor Bahru	Johor	3,000	32.72
48	Johor Bahru	Johor	1,000	16.36
49	Kota Tinggi	Sedili Besar	1,075	12.27
			→ , → • •	

Table 18 NUMBER OF WATER QUALITY MONITORING STATION BY WATER QUALITY CONTROL REGION

		Catchment Area	No. of WQNS					
WQCR	River Name	(km ²)	1978	1979	1980	1981	1982	1983
1	Benut	568.0	. 3	2	-	4	4	5
2	Pontian Besar	323.4		-	-	3	3	3
3	Pontian Kechil	92.4			. •••	1	1	1
4	Pulai	292.0	-	- .	. -	-	-	÷
Ś.	Skudai	297.1	8	8	8	8	. 8	8
6	Tebrau	258.1	**			2	3	3
7	Johor	2,686.8	6	6	8	7	. 7	15
8	Sedili Besar	1,396.8	-	g/m	7		5	6
9	Sedili Kechil	302.2					-	
Total			17	16	23	25	31	41

Table 19 SAMPLING FREQUENCY OF WQCR

		Sampling	Frequency		r Year)	
River Name	1978	1979	1980	1981	1982	1983
Benut	1	9	-	1	5	7 or 8
Pontian Besar	_		3	2 or 3	2	4
Pontian Kechil	-	-	~	3	2	4
Skudai	8 or 9	9	12	1-3	5	8.
Tebrau	~	P error	=+>	3	2	3 or 4
Johor	5 or 6	8 or 9	11	6 or 7	4 or 5	5-9
Sedili Besar				byw	1	2 or 3

Table 20 CAPITAL COSTS FOR SEWERAGE AND SEWAGE TREATMENT

M\$103) (Unit: 2001-2010 TOTAL 1991-2000 1980-1990 92,972 177,085 25,642 58,471 Johor Bahru 66,597 94,399 13,727 14,075 Skudai Valley 7,891 17,655 8,186 1,578 Pasir Gudang 289,139 167,460 47,545 74,134 Sub-Total 18,240 6,912 11,328 Subsidiary Drainage 2,721 2,721 Immediate Improvements 167,460 310,100 83,767 58,873 Total Capital Costs

Table 21 COSTS FOR OPERATION AND MAINTENANCE

(Unit: M\$103)

	1980-1990	1991-2000	2001-2010	TOTAL
Johor Bahru	6,191	21,995	42,071	70,257
Skudai Valley	2,556	7,966	19,813	30,335
Pasir Gudang	2,428	12,460	24,929	39,817
Sub-Total	11,175	42,421	86,813	140,409
Subsidiary Drainage	1,909	4,033	6,170	12,112
Immediate Improvements	5,828	**************************************		5,828
Total O & M Costs	18,912	46,454	92,983	158,349

Table 22 ASSUMED DISCHARGE RATIO, RUNOFF RATIO, INFILTRATION RATIO AND BOD CONCENTRATION OF EFFLUENT ASSUMED UNDER PRESENT PURIFICATION LEVEL

	•				
Pollution Source	Discharge Ratio	NUPL (mg/l)	Runoff Ratio	Infiltration Ratio	
Domestic					
Urban sewerage	0.9	20	1.0	0.2	
Urban non-sewerage	0.9	*2	0.6	0	
Rural	0.8	200	0.1	0	
Manufacture					
Urban sewerage	1.0	20	1.0	0.2	
Urban non-sewerage	1.0	*3	0.6	O	
Rural	1.0	*3	0.1	0	
Palm Oil Mills		•			
With P.S. *1	1.0	50	0.6	0	
Without P.S.	1.0	22,000	0.6	0	
Land Disposal	0.1	50	0.6	0	
Rubber Factories					
With P.S.	1.0	50	0.6	0	
Without P.S.	1.0	2,320	0.6	0	
Land Disposal	0.1	50	0.6	0	
Pineapple Factories	•				
With P.S.	1.0	50	0.6	0	
Without P.S.	1.0	1,120	0.6	0	
Land Disposal	0.1	50	0.6	.0	
Animal Husbandry	1.0	20 *2	0.1	0	

Remark:

*1 : Purification System

*2 : See Table 23

*3 : See Table 24

*4 : g/day/Head

Table 23 ASSUMED DEVELOPMENT OF SEPTIC TANK IN URBAN AREA

Unit: %

Pollution Source	1980	1983	1985	1990	1995	2000	2005
	28	30	35	40	45	50	55
Septic tank Others	72	70	.65	60	55	50	45

Table 24 ASSUMED BOD CONCENTRATION OF NON-SEWERAGE-URBAN DOMESTIC

Unit : mg/l

Pollution Source	NUPL	1980	1983	1985	1990	1995	2000	2005
Septic tank	80	22	24	28	32	36	40	44
Others	200	144	140	130	120	110	100	90
Non sewerage urban	domestic	166	164	158	152	146	140	134

Table 25 NUPL BY CLASSIFICATION OF MANUFACTURING, CUSTOMER WATER DEMAND AND NUPL OF INDUSTRIAL EFFLUENT

Classification of	NUPL	Customer Water Demand (106 m3/y)					
Manufacturing	(mg/1)	1983	1985	1990	1995	2000	2005
Food	250	24.5	27.4	35.0	42.2	45.3	56.9
Textile	400	10.3	10.5	11.3	12.1	11.9	12.9
Wood Product	610	0.4	0.4	0.4	0.4	0.4	0.4
Paper Product	150	6.4	7.4	13.5	23.7	38.6	69.9
Publishing	150	0.0	0.0	0.1	0.1	0.2	0.3
Chemicals	160	15.3	17.8	25.7	35.8	43.8	69.2
Rubber	10	7.3	7.2	6.4	5.8	4.3	4.4
Non-metal	10	0.7	0.7	0.9	1.2	1.5	1.9
Basic Metal	10	0.1	0.1	0.2	0.3	0.4	0.6
Machinery	10	1.9	2.2	3.5	5.0	5.1	9.1
Miscellaneous	350	0.1	0.1	0.1	0.1	0.1	0.1
NUPL of Industrial Ed (mg/l)	ffluent	209	208	204	198	193	184

Table 26 WATER DEMAND PROJECTION OF RUBBER FACTORIES

Unit: $10^3 \text{ m}^3/\text{y}$

Rubber Factory			Water	Demand	i Nemocket	
No.	1983	1985	1990	1995	2000	2005
1.	164	151	114	82	53	36
2	20	15	11	8	5	4
3	44	41	31	22	14	10
4	21	19	14	10	7	5
5	64	58	44	32	20	14
6	97	97	97	96	96	97
7	63	63	63	63	63	63
8	69	69	69	69	69	69
9	20	20	20	20	20	20
10	20	20	20	20	20	20
11	94	94	94	94	94	94
12	147	147	147	147	147	147
13	107	107	107	107	107	107
14	127	127	126	1.24	128	131
 15	98	98	98	98	98	98
16	125	125	125	125	125	125
17	11	11	11	11	11	11
18	135	135	133	131	130	127
19	174	174	173	171	: 178	178
20	52	51	51	50	50	44
Total	1,652	1,622	1,548	1,480	1,435	1,400

Table 27 WATER DEMAND PROJECTION OF PALM OIL MILLS

Unit: $10^3 \text{ m}^3/\text{y}$

Palm Oil Mill			Water	Demand		
No.	1983	1985	1990	1995	2000	2005
1	167	167	167	167	167	167
2	139	139	139	139	139	139
3	171	171	171	171	171	171
4	171	171	171	171	171	17
5	139	139	139	139	139	13
6	69	69	69	69	69	6
7	198	198	198	198	198	198
8	324	324	324	324	324	32
9		193	215	214	202	198
10	165	165	165	165	165	16
11	120	120	120	120	120	120
12	201	201	194	188	196	20
13	193	192	189	193	204	21
14	126	123	122	124	143	14
15	220	220	220	220	220	220
16	279	279	279	279	279	27
17	121	121	121	121	121	12
18	229	224	216	214	217	25
19	317	315	310	301	304	319
20	350	349	346	338	340	34
21	185	190	285	289	293	28
22	331	337	323	325	324	318
23	114	114	114	114	114	11
24	135	135	135	135	135	13
25	288	410	254	211	239	23
26	-	_	264	272	276	26
27	-	-	307	345	333	31
28	100	181	189	174	174	17
29	-		183	174	174	17
30		<u>-</u>		161	219	22
Total	4,852	5,247	5,928	6,055	6,170	6,20

Table 28 WATER DEMAND PROJECTION OF PINEAPPLE FACTORIES

Unit: $10^3 \text{ m}^3/\text{y}$

Pineapple Factory			Water	Demand		
No.	1983	1985	1990	1995	2000	2005
1	209	212	239	274	285	292
2 · · · · · · · · · · · · · · · · · · ·	•••	60	63	96	100	109
3	113	127	149	178	200	226
4	83	103	116	144	157	182
5	72	91	110	137	150	197
6			52	103	143	175
7.	-		_		100	146
Total	477	593	729	932	1,135	1,327

Table 29 DOMESTIC WATER DEMAND PROJECTION OF CITIES/TOWNS

Unit: $10^6 \text{ m}^3/\text{y}$

City	y/Town		D	omestic W	ater Dem	land	
No.	Name	1983	1985	1990	1995	2000	2005
1	Johor Bahru	18.7	22.2	31.3	46.0	60.1	76.5
2	Masai & P.G.	1.0	1.1	1.6	2.2	2.5	3.8
3	Kulai	1.8	2.1	3.5	5.2	6.5	10.9
4	Senai	0.2	0.2	0.5	0.8	1.1	1.7
5.	Kelapa Sawit	0.2	0.2	0.3	0.7	0.9	1.3
6	Ulu Tiram	0.2	0.3	0.6	1.0	1.7	2.5
7,	Bandar Penawa	· <u>-</u>		0.1	0.1	0.3	1.1
8	P4	. .	0.2	0.2	0.3	0.8	1.2
9.:	P7	_	0.2	0.3	0.7	1.0	1.3
1.0	Kota Tinggi	0.8	1.1	1.5	2.2	3.2	4.1
11	P2		0.2	0.2	0.3	0.8	1.2
12	Bandar Tenggara		0.4	0.7	1.1	1.8	2.6
13	Pontian Kechil	1.5	1.8	2.8	4.2	5.9	8.3
14	Pekan Nanas	0.5	0.6	0.7	0.9	1.0	1.1
L5	Layang-Layang	·	0.2	0.1	0.2	0.4	1.1
16	Renggam	0.1	0.2	0.1	0.2	0.4	1.1
17	Simpang Renggam	-	0.2	0.2	0.3	0.4	1.1
	Total	25.0	31.2	44.7	66.4	88.8	120.9

Table 30 INDUSTRIAL WATER DEMAND PROJECTION OF CITIES/TOWNS

Unit: $10^6 \text{ m}^3/\text{y}$

City	y/Town		Inc	dustrial	Water De	mand	
No.	Name	1983	1985	1990	1995	2000	2005
1	Johor Bahru	17.3	20.7	30.1	40.9	49.8	81.1
2	Masai & P.G.	7.3	7.9	9.9	12.6	15.8	17.4
. 3	Kulai	1.8	2.1	3.4	5.1	7.0	12.3
4	Senai	0.5	0.6	0.9	1.2	1.4	2.0
5	Kelapa Sawit	0.5	0.7	0.7	1.0	1.2	1.6
6	Ulu Tiram	0.5	0.6	1.0	1.3	1.8	3.1
7	Bandar Penawa	· · · · · · · · · · · · · · · · · · ·	0.1	0.1	0.2	0.6	1.3
8	P4		0.3	0.5	0.6	1.2	1.3
9	P7	_	0.3	0.5	0.8	1.4	1.4
10	Kota Tinggi	1.0	1.2	1.6	2.4	4.3	5.0
11	P2	. Mass	0.3	0.5	0.6	1.2	1.3
12	Bandar Tenggara	-	0.4	0.7	1.2	2.5	2.9
13	Pontian Kechil	1.5	1.9	2.8	4.3	5.5	9,6
14	Pekan Nanas	0.6	0.7	0.9	1.0	1.1	1.5
15	Layang-Layang	0.3	0.3	0.5	0.5	0.7	1.4
16.	Lenggam	0.3	0.3	0.5	0.5	0.6	1.4
17	Simpang Renggam	0.3	0.3	0.5	0.6	0.7	1.4
	Total	31.9	38.7	55.1	74.8	96.8	146.0

Stock	Farm	nap and due to an and one	non days they are, and have any may had any	Number	of Heads	·	
No.		1983	1985	1990	1995	2000	2005
1		12,280	12,850	14,400	15,660	17,040	18,540
2		820	860	960	1,040	1,130	1,240
3		1,840	1,930	2,160	2,350	2,560	2,780
4		2,050	2,140	2,400	2,610	2,840	3,090
5		4,040	4,230	4,740	5,150	5,600	6,100
6		770	800	900	980	1,070	1,160
7.		1,650	1,720	1,930	2,100	2,280	2,490
8		3,700	3,880	4,350	4,720	5,140	5,590
9	•	1,140	1,190	1,330	1,450	1,580	1,710
10		1,000	1,050	1,180	1,280	1,390	1,510
11		1,410	1,470	1,650	1,800	1,960	2,130
12		820	860	960	1,040	1,130	1,240
13		1,530	1,610	1,800	1,960	2,130	2,320
14		1,310	1,370	1,530	1,670	1,820	1,980
15	2	2,050	2,140	2,400	2,610	2,840	3,090
16		890	930	1,040	1,140	1,240	1,350
17		2,880	3,010	3,370	3,670	3,990	4,340
18		1,940	2,030	2,270	2,480	2,700	2,930
19		820	860	960	1,040	1,130	1,240
20		2,050	2,140	2,400	2,610	2,840	3,090
21	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3,580	3,750	4,200	4,570	4,970	5,410
22		4,300	4,500	5,040	5,480	5,960	6,490
23		1,230	1,290	1,450	1,570	1,710	1,850
24		1,330	1,390	1,560	1,700	1,850	2,010
25	÷	970	1,020	1,140	1,240	1,350	1,470
26	:	820	860	960	1,040	1,130	1,240
27		910	950	1,060	1,150	1,250	1,370
28		10,710	11,210	12,560	13,660	14,860	16,170
29		22,510	23,550	26,390	28,710	31,230	33,980
30		18,410	19,270	21,590	23,490	25,560	27,800
31		1,530	1,610	1,800	1,960	2,130	2,326
32		5,120	5,350	5,990	6,520	7,090	7,720
33		4,090	4,280	4,800	5,220	5,680	6,180
34		5,120	5,350	5,990	6,520	7,090	7,720 13,900
35.		9,210	9,640	10,800	11,740 6,520	12,770 7,090	7,720
36		5,120	5,350	5,990 1,200	1,300	1,410	1,540
37		1,020	1,070	5,990	6,520	7,090	7,720
38		5,120	5,350		1,300	1,410	1,540
39		1,020	1,070	1,200 3,600	3,910	4,250	4,630
40		3,070	3,210	2,400	2,610	2,840	3,090
. 41		2,050	2,140		2,610	2,840	3,090
42		2,050	2,140	2,400 2,400	2,610	2.840	3,090
43		2,050	2,140	26,390	28,710	31,230	33,980
44		22,510	23,550	1,200	1,300	1,410	1,540
: 45		1,020	1,070	4,800	5,220	5,680	6,180
46		4,090	4,280		3,910	4,250	4,630
47		3,070	3,210	3,600	1,300	1,410	1,540
48		1,020	1,070	1,200		1,410	1,660
49		1,100	1,150	1,290	1,400	1,520	x # 000

Remark: (1) Number of heads is assumed to grow with the annual average rate of 2.3% during the period from 1983 to 2990, and 1.7% from 1990 to 2005.

⁽²⁾ The farms which have more than 1,000 heads at 2005 are picked up.

Table 32 SUMMARY OF PROJECTED BOD LOAD AND BOD CONCENTRATION

		1995			2005	
Basin Name	BOD LO From Source (ton/d)	AD Into River (ton/d)	BOD Concen- tration in River (mg/l)	BOD LO. From Source (ton/d)	AD Into River (ton/d)	BOD Concentration in River (mg/1)
Benut	1.7	0.3	0- 2	2.9	1.0	0- 8
P. Besar	2.5	1.2	0-13	3.4	1.6	0-17
P. Kechil	6.6(4.9)	0.5	0-19	12.9(9.8)	0.7	0-26
Pulai	2.3	0.8	0- 4	2.8	1.0	0-6
Skudai	9.0	5.0	0-43	16.7	9.6	0-68
Tebrau	0.4	0.1	0- 1	0.5	0.1	0- 1
Johor	10.9	4.6	0-13	20.4	10.2	0-33
S. Besar	1.7	0.5	0- 1	2.8	1.1	0- 2
S. Kechil	0.3	-	<u> </u>	0.4	-	-
Total	35.4(4.9)	13.0	:	61.9(9.8)	25.3	

Remarks: () : BOD LOAD discharged to the sea directly.

Table 33 COMPOSITION OF BOD LOAD INTO RIVER

Unit: ton/d

		19	95			20	005	
	BO	D LOAD	into	River	ВС	D LOAD	into	River
Name	PRP	UI	RA	Total	 PRP	UI	RA	Total
Benut	0.1	0.1	0.1	0.3	0.1	0.8	0.1	1.0
P. Besar	0.5	0,6	0.1	1.2	 0.5	1.0	0.1	1.6
P. Kechil	0.4	0	0.1	0.5	0.6	o	0.1	0.7
Pulai	0	0.7	0.1	0.8	.0	0.9	0.1	1.0
Skudai	0.7	4.2	0.1	5.0	0.7	8.8	0.1	9.6
Tebrau	0.1	0	0	0.1	0.1	0	. 0	0.1
Johor	0.6	3.7	0.3	4.6	0.6	9.2	0.4	10.2
S. Besar	0.2	0.2	0.1	0.5	0.2	0.8	0.1	1.1
S. Kechil	0	0	0.1	0.1	0	0	0.1	0.1
Total	2.6	9.5	1.0	13.1	 2.8	21.5	1.1	25.4
	(20)	(73)	(7)	(100)	(11)	(85)	(4)	(100)

Remarks:

PRP: Palm oil mills, rubber factory and pineapple factory effluent

UI: Urban domestic and urban industry effluent

RA: Rural and animal husbandry

(): % of the total BOD load

Table 34 STANDARD RELATING TO LIVING ENVIRONMENT FOR RIVER IN JAPAN

Cate- gory	Purpose of Utilization	ъ́Н	BOD (mg/l)	SS (mg/l)	DO (mg/l).	Number of Coliform Groups (MPN/10 ⁻¹ 1)
AA	Water supply, class 1; conservation of natural environment & uses listed	6.5 - 8.5	l or less	25 or less	7.5 or more	50 or less
	in A-E					
A :	Water supply, class 2; fishery, class 1; bathing & uses listed in B-E	6.5 - 8.5	2 or less	25 or less	7.5 or more	1,000 or less
В	Water supply, class 3; fishery, class 2, & uses listed in C-E	6.5-8.5	3 or less	25 or less	5 or more	5,000 or less
C	Fishery, class 3; industrial water, class 1, & uses listed in D-E	6.5 - 8.5	5 or less	50 or less	5 or more	
D	Industrial water, class 2; agricultural water 2, & uses listed in E	6.0 - 8.5	8 or less	100 or less	2 or more	
E	Industrial water, class 3; conservation of environment	6.0-8.5	10 or less	Floating matter such as garbage should not be observed.	2 or more	

Remarks; $\underline{/1}$: The standard value is based on the daily average value. (The same applies to the standard values of lakes and coastal waters.)

/2: At the point of abstraction for agriculture, pH shall be between 6.0 and 7.5 and dissolved oxygen shall not be less than 5 mg/l.

(The same applies to the standard values of lakes.)

- Conservation of natural environment: Conservation of scenic spots and other natural resources.
- Water supply, class 1: Water treated by simply cleaning operation, such as filtration.
 - Water supply, class 2: Water treated by normal cleaning operation such as sedimentation and filtration.
 - Water supply, class 3: Water treated through a highly sophisticated cleaning operation including pretreatment.
- 3. Fishery, class 1: For aquatic life such as trout and bull trout inhabiting oligosaprobic water, and those of fishery classes 2 & 3
 - Fishery, class 2: For aquatic life, such as the salmon family and sweetfish inhabiting oligosaprobic water and those of fishery class 3.
 - Fishery, class 3: For aquatic life such as carp and silver carp inhabiting B-mesosaprobic water.
- Industrial water, class 1: Water given normal cleaning treatment such as sedimentation.
 - Industrial water, class 2: Water given sophisticated treatment by chemicals. Industrial water, class 3: Water given special cleaning treatment.
- 5. Conservation of environment: Up to the limits at which no unpleasantness is caused to people in their daily life (including a walk by the riverside, etc.).

Table 35 WATER QUALITY CRITERIA FOR FRESH SURFACE WATER PROPOSED BY THE NATIONAL POLLUTION CONTROL COMMISSION IN PHILIPPINES

			Standa	ard Values	i 4
Classifi- cation	Purpose of Utilization	На	BOD (mg/l)	DO (mg/l)	Coliform (MPN/100 ml)
AA	Domestic Water Supply/1	7 ~ 8.5	-	-	50 or less
Α	Domestic Water Supply/2	6.5 ~ 8.5	5 or less	5 or more	500 or less
В	Bathing	6.5 - 8.5	l0 or less	5 or more	1,000 or less
c	Fishing	6.5 - 8.5	15 or less	5 or more	5,000 or less
D	Agricultural and Industrial Water Supply	6.5 - 8.5	-	3 or more	

Remarks; /1: Domestic water supply:

Water from watersheds which are uninhabited and otherwise protected and can be used for water supply with limited treatment.

/2: Domestic water supply:

A conventional treatment is necessary for water supply use of these waters.

Table 36 PRESENT BOD3 CONCENTRATION LIMITS FOR WATERCOURSE DISCHARGE FOR PALM OIL MILLS AND RUBBER FACTORIES

Unit: mg/lit

Year	Palm Oil Mill	SMR & Conventional Grade Factory	Latex Concentration Factory		
1978	5,000	au au	_		
1979	2,000	300			
1980	1,000	200	450		
1981	1,000 - 500	100 (50)*	300		
1982	500 - 250	-	200		
1983	250	-	100 (50)*		

Remarks: *: This additional limit is the arithmetic mean value determined on the basis of a minimum of four samples taken at least once a week for four weeks consecutively.

Table 37 OUTLINE OF PROPOSED PUBLIC SEWERAGE SYSTEM
FOR POLLUTANT LOAD ABATEMENT FOR RIVER WATER

			1995			2005			
City/Town	Basin	Treatment Capacity (10 ³ m ³ /d)	Ser- vice Factor (%)	Served Popu- lation (10 ³)	Treatment Capacity (103 m ³ /d)	Ser- vice Factor (%)	Served Popu- lation (10 ³)		
Johor Bahru		108	40	216	345	70	558		
Masai & P.G.	- -	41	85	26	65	95	43		
Kulai	Skudai	27	85	60	73	100	123		
Senai	Skudai	5	85	12	12	100	20		
Kelapa Sawit	P. Besar	0	0	0	2	20	3		
Kota Tinggi	Johor	0	0	0	14	50	25		
B. Tenggara	Johor	6	85	15	17	100	31		
P. Kechil	P. Kechi	1 23	85	50	56	100	97		
Total		210		379	584	-	900		

Remarks:

Public sewerage system in Johor Bahru, Masaí & P.G. and P. Kechil are not affecting to river water quality.

Table 38 TREATMENT CAPACITY TO BE TREATED IN RUBBER FACTORIES, PALM OIL MILLS AND PINEAPPLE FACTORIES

Unit: $10^3 \text{ m}^3/\text{d}$

Total Capacity of Rubber Factories by Product

		1995			2005	
Basin Name	SMR	Latex	Total	SMR	Latex	Tota1
Benut	O	0	o	0	0.	. 0
P. Besar	0	0	0	0	0	0
P. Kechil	0	0	- 0	0	0	0
Pulai	0	0	0	0	0	0
Skudai	0.64	0.08	0.72	0.64	0.08	0.72
Tebrau	0	0.50	0.50	0:	0.52	0.52
Johor	0	0	0	0	0	0
S. Besar	0	0	0	0	0	0
S. Kechil	0	0	0 -	, , O	0	0
Total	0.64	0.58	1.22	0.64	0.60	1.24

Treatment Capacity of Palm & Pineapple Factories by Purification System

		1995	· · · · · · · · · · · · · · · · · · ·		2005	· · · · · · · · · · · · · · · · · · ·
Basin Name	E.A.	L.D.	Total	E.A.	L.D.	Total
Benut	0	0.67	0.67	0	0.67	0.67
P. Besar	0.38	0.56	0.94	0.44	0.56	1.00
P. Kechil	0.55	0	0.55	0.79	. 0	0.79
Pulai	0	0	. 0	. 0	0	.0
Skudai	0.56	1.37	1.93	0.56	1.37	1,93
Tebrau	0	0.79	0.79	0	0.79	0.79
Johor	4.08	1.36	5.44	4.31	1.36	5.67
S. Besar	0.84	0	0.84	0.95	· · · · · · O.	0.95
S. Kechil	0	0	0	0	0	0
Total	6.41	4.75	11.16	7.05	4.75	11.80

Remarks: Operation days per year are 250 days.

E.A.: with Extended Aeration

L.D.: with Land Disposal

Table 39 POLLUTANT LOAD BY BASIN WITH AND WITHOUT PROJECT

1995

and the second second		Without Project								
									roject	
	BOD	Load	into	River	Max. BOD	BOD	Load	into	River	Max. BOD
			on/d)		in River		(t	on/d)		in River
Basin Name	PRP	UI	RA	Total	(mg/l)	PRP	UI	RA	Total	(mg/1)
Benut	0.1	0.1	0.1	0.3	2	0.1	0.1	0.1	0.3	2
P. Besar	0.5	0.6	0.1	1.2	13	0.1	0.6	0.1	0.8	. 8
P. Kechil	0.4	0	0.1	0.5	19	0	0	0.1	0.1	5
Pulai	0	0.7	0.1	0.8	- 3	0	0.7	0.1	0.8	4
Skudai	0.7	4.2	0.1	5.0	43	0.1	1.3	0.1	1.5	11
Tebrau	0.1	0.	.0	0.1	. 1	0	0	- 0	0	0
Johor	0.6	3.7	0.3	4.6	13	0.3	3.0	0.3	3.6	. 7
S. Besar	0.2	0.2	0,1	0.5	1	0.1	0.2	0.1	0.4	. 1
S. Kechil	.0	. 0,	0	0	0	0	0	0	0	0
Total	2.6	9.5	0.9	13.0		0.7	5.9	0.9	7.5	

2005

		Without Project						Project_	<u></u>	
e e	BO) Load	into	River	Max. BOD	BOD	Load	into	River	Max. BOD
		(ton/d)	in River		(to	on/d)	<u> </u>	in River
Basin Name	PRP	UI	RA	Total	(mg/1)	PRP	UI	RA	Total	(mg/l)
Benut	0.1	0.8	0.1	1.0	8	0.1	0.8	0.1	1.0	8
P. Besar	0.5	1.0	0.1	1.6	17	0.1	0.8	0.1	1.0	10
P. Kechil	0.6	0	0.1	0.7	120	0.1	0	0.1	0.2	16
Pulai	0	0.9	0.1	1.0	6	0	0.9	0.1	1.0	6
Skudai	0.7	8.8	0.1	9.6	68	0.1	1.8	0.1	2.0	11
Tebrau	0.1	0	0	0.1	1	0	0	0	0	· O
Johor	0.6	9.2	0.4	10.2	33	0.3	5.6	0.4	6.3	9
S. Besar	0.2	0.8	0.1	1.1	. 2	0.1	0.8	0.1	1.0	2
S. Kechil	0	0	. 0	0	0	0	0	0	0	0
Total	2.8	21.5	1.0	25.3		0.8	10.9	1.0	12.7	•

Remarks: PRP: Palm oil mill, rubber factory and pineapple factory effluent

UI: Urban domestic and urban industry effluent

RA: Rural and animal husbandry

Table 40 DIRECT CONSTRUCTION COST AND LAND ACQUISITION COST OF SEWERAGE FACILITIES IN CASE OF BUTTERWORTH PROJECT

	Treatment Plant						
Item	Sg. Juru T.P.	Mak Madin T.P.	Sg. Nyor T.P.				
Served Population (10 ³)							
1985 & 1990		84	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
Final		103					
Served Area (ha) 1985 & 1990		1,066					
Final		1,200					
Treatment Capacity (10 ³ m ³ /d)							
1985 & 1990	34	14	3				
Final	53	17	3,				
Treatment Plant Area (ha)	13.2	11.8	6.5				
Construction Cost (M\$10 ⁶)	6.7	5.0	4.7				
Land Acquisition Cost (M\$10 ⁶)	3.3	2.9	1.6				
Sewer Length (km)		51					
Construction Cost of Sewer (M\$10 ⁶)		34					

Remarks; (1): Costs are 1983 price

(2): Price escalation rate to 1985 is assumed to be 5%

Table 41 BREAKDOWN OF CONSTRUCTION COST OF PUBLIC SEWERAGE SYSTEMS FOR BUTTERWORTH AND BUKIT MERTAJAM

	Cost (M\$10 ⁶)	Share (%)
Trunk Sewer	166	27
Pumping Facilities	5	3
Treatment Facilities	50	8
Land	45	: . 7
Sub-total	266	44
Branch Sewer	281	46
House Connection Pipe	62	10
Sub-total	343	56
Total	609	100

Remarks; (1): At 1976 price
(2): Excluding engineering cost and physical contingency

Table 42 PRETREATMENT CAPACITY TO BE PRETREATED IN D&I WATER DEMAND WITH AND WITHOUT PROJECT

Without Project

			1995		2005			
Intake	Basin Name	Max.BOD	Pre. 103 m3/d)	R.L.	Max.BOD (mg/l)	Pre. (103 m3/d)	R.L. (%)	
R24	Benut	1.9	0		2.2	0	has	
R26 :	Johor	10.3	0	- .	47.5	11	58	
R29	P.Besar	11.4	0 .	-	13.0	0		
R31	Skudai	20.9	161	4	33.2	161	40	
R41	Johor	2.0	0	<u>-</u>	5.0	0		
Total	, 		161	,	gay gaya akin adab aya sinki mid mid ayar indi	172		

With Project

		· .	1995		2005			
Intake No.	Basin Name	Max,BOD (mg/l)			Max.BOD	Pre. (10 ³ m ³ /d)	R.L.	
R24	Benut	1.8	. 0		2.1	0		
R26	Johor	4.2	0	-	7.7	0	-	
R29	P.Besar	1.2	0		1.5	0		
R31	Skudai	10.9	0		10.5	0	٠	
R41	Johor	0.3	o		1.1	0		
Total			0			0		

Remarks: Pre.: Primary Pretreatment capacity

R.L.: Reduction Level

Table 43 ASSUMED UNIT CONSTRUCTION COST FOR pollution LOAD ABATEMENT FACILITIES

Unit: M106/100 \times 10^3 \text{ m}^3/\text{d}$

			Fac:					
	${\tt Public}$	Pa]	Palm &					
	Sewerage	Pinea	ipple	Rul	pper	Pretreatment		
Item	System	E.A.	L.D.	SMR	Latex	Facilities		
Direct Const. Cost	81.5	378.0	252.0	74.0				
	91.5	370.0	252.0	74.0	221.0	33.3		
Land Acquisition	11.2	_	-	- 1 - 1				
Engineering	8.2	37.8	25.2	7.4	22.1	3.3		
Sub-total	100.9	415.8	277.2	81.4	243.1	36.6		
Physical Contingency	30.3	124.7	83.2	24.4	72.9	11.0		
Total	131.2	540.5	360.4	105.8	316.0	47.6		

Purification system with extended aeration Remarks: E.A.: L.D.: Purification system with land disposal

SMR, Latex: Products of rubber factories

Table 44 ESTIMATED PUBLIC DEVELOPMENT EXPENDITURE FOR SEWERAGE SYSTEM

Unit: M\$ 106

City/Town		5MP	6MI	7MP	8MP	Total
Johor Bahru		61	118	134	100	413
Masai & P.G.		25	31	22	18	96
Kulai		16	26	26	20	88
Senai		5	3	3	5	25
Kota Tinggi	+ ** + **	3	٠٤	3 10	8	29
B. Tenggara		· 6	9	9	7	31
P. Kechil		14	22	21:	16	73
Total		130	22	2 229	174	755

Table 45 ESTIMATED PRIVATE DEVELOPMENT EXPENDITURE FOR SEWERAGE SYSTEM

Unit: M\$ 106

City/Town	5MP	6MP	7MP	8MP	Total
Johor Bahru	23	65	90	65	243
Masai & P.G.	9	15	15	12	51
Kulai	8	19	24	17	68
Senai	2	5	5	4	16
Kota Tinggi	1	4	6	5	16
B. Tenggara	3	6	8	6	23
P. Kechil	. 6	14	18	13	51
ستند عند الله حدد الله الله الله الله لهذه ليب عبد الله الله عبد الله الله الله الله الله الله الله					
Total	52	128	166	122	468

Table 46 ESTIMATED PRIVATE DEVELOPMENT EXPENDITURE FOR PURIFICATION SYSTEM IN RUBBER FACTORIES,
PALM OIL MILLS AND PINEAPPLE FACTORIES

Unit: M\$ 10⁶

Basin Name	5MP	6MP	7MP	8MP	Total
Benut	1.5	1.5	0.6	0.6	4.2
P. Besar	2.4	2.6	1.2	1.2	7.4
P. Kechil	1.8	2.2	1.6	1.3	6.9
Pulai	0	0	Ö	0	0
Skudai	5.3	5.4	2.2	2.2	15.1
Tebrau	2.7	2.7	1.1	1.1	7.6
Johor	16.2	16.8	7.5	7.3	47.8
S. Besar	2.7	3.0	1.5	1.4	8.6
S. Kechil	0	0	0 :	0	0
Total	32.6	34.2	15.7	15.1	97.6

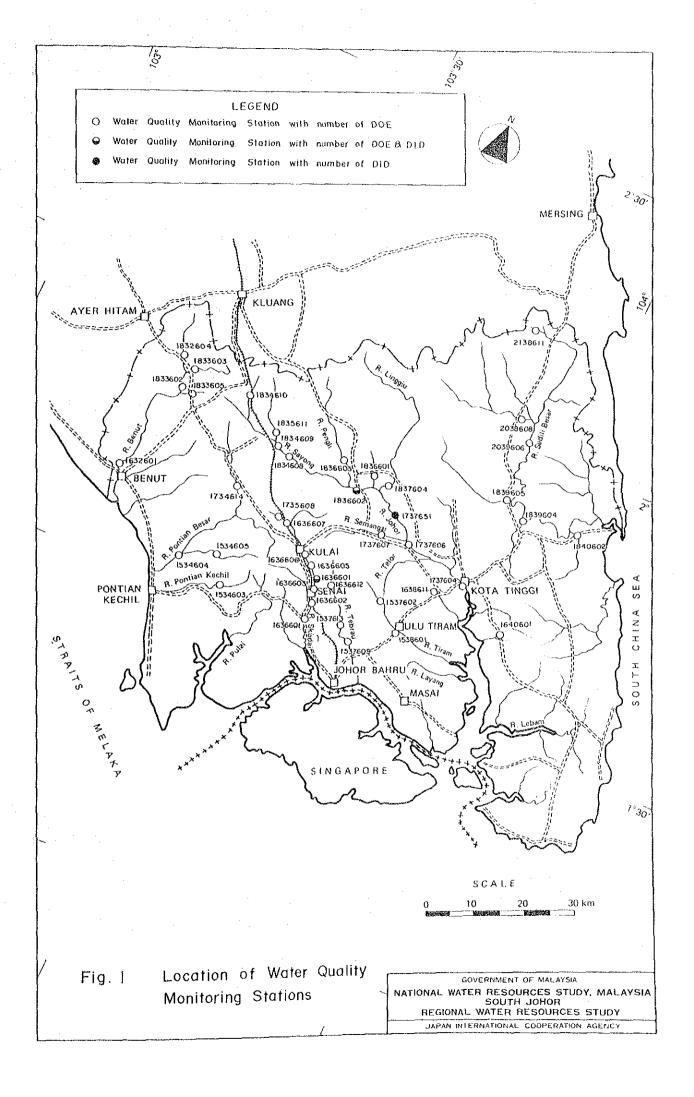
Table 47 BENEFICIAL AND ADVERSE EFFECTS OF WATER POLLUTION ABATEMENT PLAN

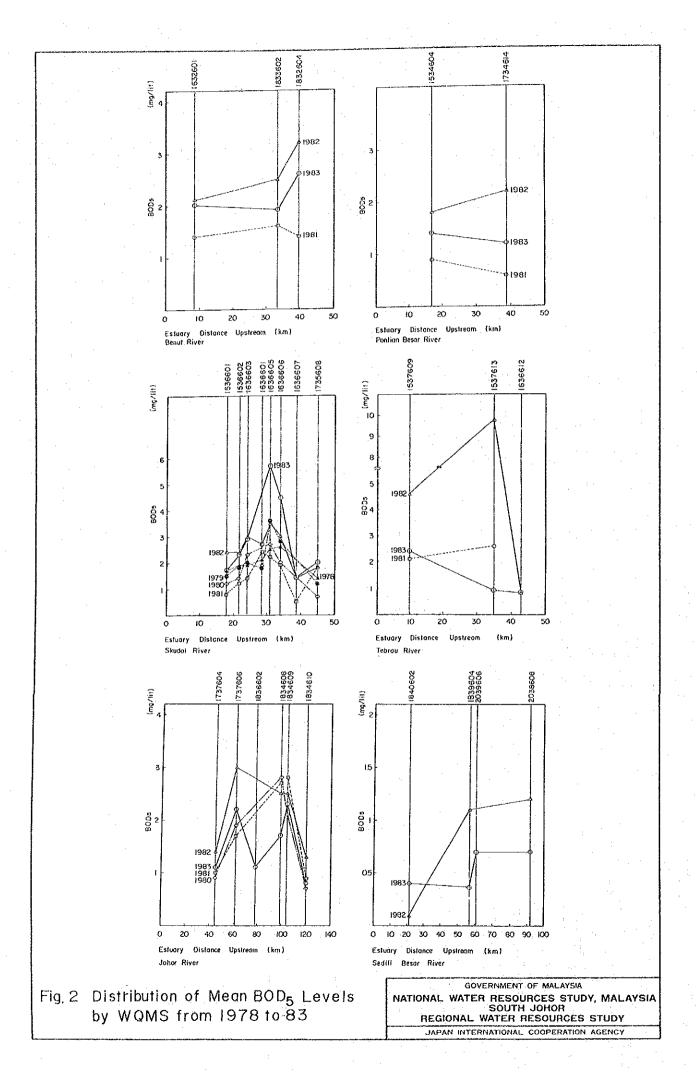
	Item		Amount
1. Na	tional Economic Development	الله فقد هند مدين بيند وله يسد _ف يو و	· · · · · · · · · · · · · · · · · · ·
			4
1.	1 Economic Benefit	(M\$106)	168
	Sewerage	(M\$10 ⁶)	4 -
	Saving in pre-treatment for D&I water supply	(M\$10°)	23
	Total	(M\$10 ⁶)	191
	Total		
1.	2 Economic Cost		
4	Sewerage	(M\$106)	276
٠.	Private purification facilities	(M\$106)	43
	Pre-treatment for D&I water supply	(M\$10 ⁶)	0
	Total	(M\$10 ⁶)	319
1.	3 EIRR	(%)	· <u>-</u>
2. En	vironmental Quality		
2.	l Beneficial Effects		
	Reduction in length of river stretch where BOD		the second
	concentration is more than 10 mg/l in 2005	(km)	119
3. So	cial Well-Being	:	
3.1	Beneficial Effects		
	Number of people served by		-
	proposed sewerage system in 2005	(103)	900
· 3 ·	2 Adverse Effect		
J • 4	SIMPORUC HILOUG		

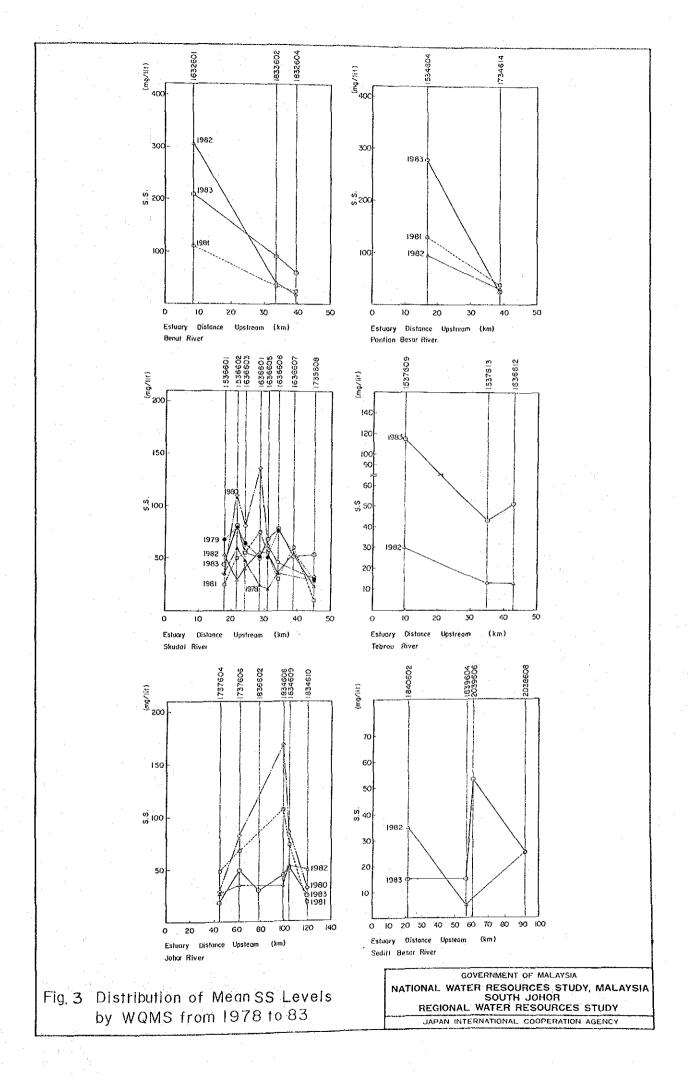
Table 48 LENGTH OF RIVER STRETCHES WHERE BOD CONCENTRATION IS MORE THAN 10 mg//
WITH AND WITHOUT PROJECT

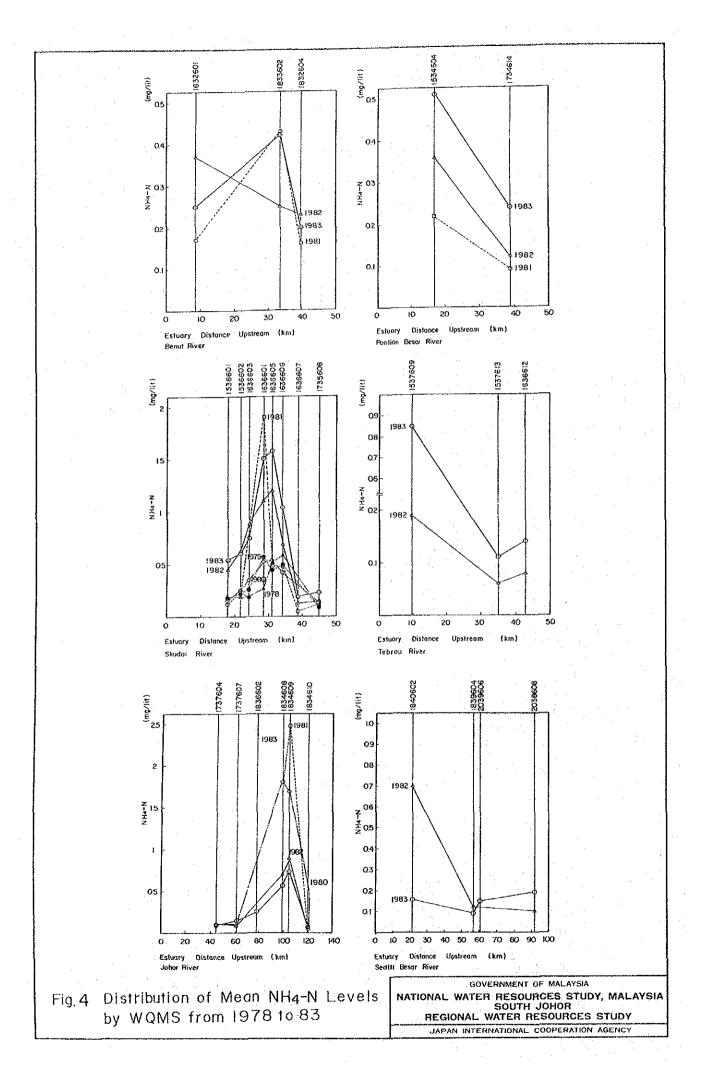
Unit: km

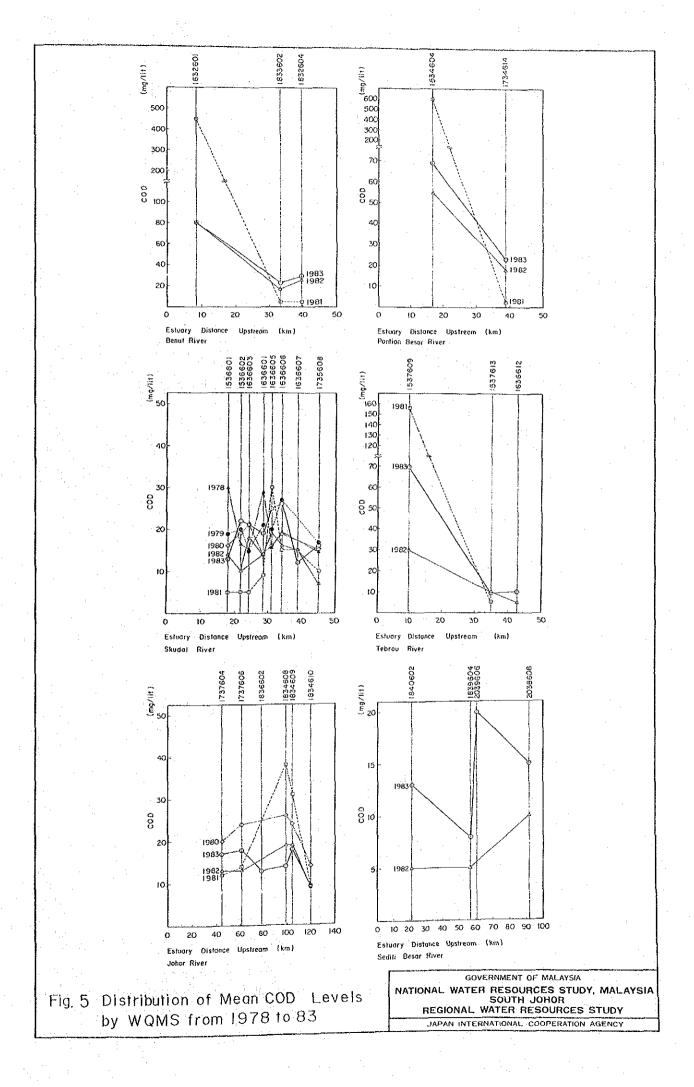
And the second			Length of Stretch where BOD Concentration is more than 10 mg/1					
_		Concentra						
Basin	Studied	199)5	2005				
Name	Length	Without	With	Without	With			
Benut	41	0	0	0	0			
P. Besar	33	8	0	8	O			
P. Kechil	18	18	0	18	0			
Pulai	28	. 0	0	0 .	0			
Skudai	37	37	0	37	0			
Tebrau	30	0	0	0	0			
Johor	85	42	0	56	0			
S. Besar	67	0	0	0	0			
S. Kechil	35	0	0 :	0	0			
	374	105	0	119	0			

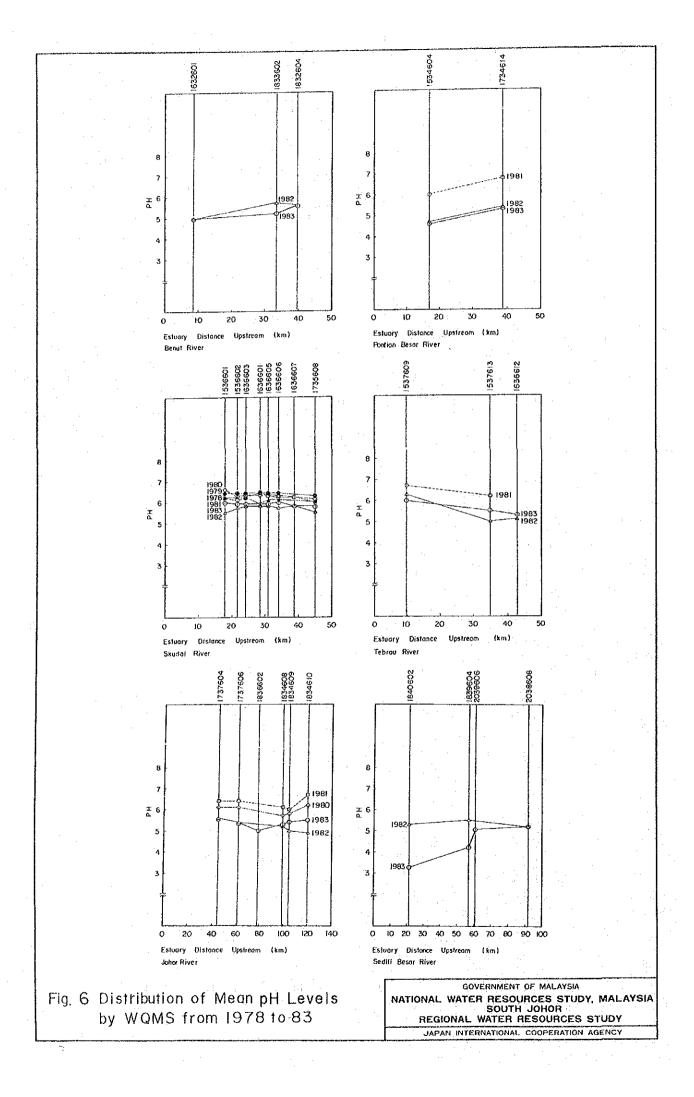

Table 49 ESTIMATED MANPOWER REQUIREMENT FOR PUBLIC SEWERAGE SYSTEM BY CITY (1/2)

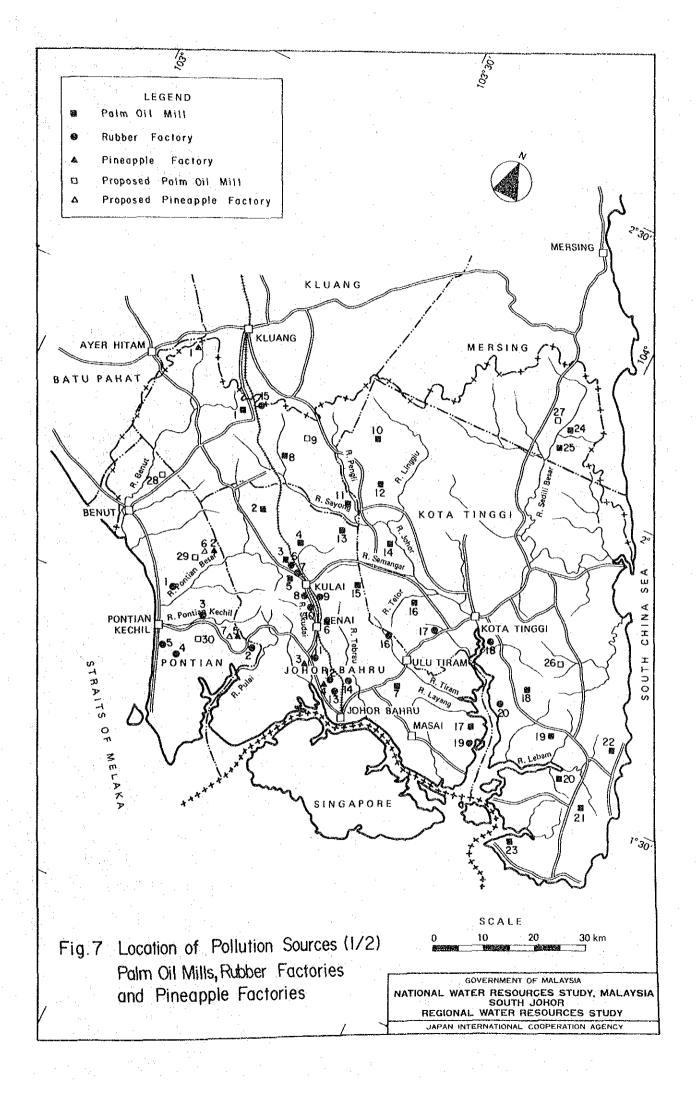

	Construction			O&M				
ategory	5MP	6MP	7MP	8MP	5MP	6МР	7MP	8MP
ماه الماه	_~~~-	· · · · · · · · · · · · · · · · · · ·					÷	
ohor Bahru			:			•		
Engineer	1	1	1	1	2	2	3	4
T. Assistant	1	1	1	1	2	2	4	. 6
Technician	1	1	1	1	8	10	21	32
Others	1	1	1	1	11	13	29	45
Total Government Staff	4	4	4	4	23	27	57	87
asai & P.G.			•			·		
Engineer	. 1	1	1	1	1	1	1	1
T. Assistant	1	1	1	1	1	1	1	2
	1	1	î	î	3	4	. 5	6
Technician	1	1	1	1	4	5	6	8
Others				J.	·			
Total Government Staff	4	4	4	4	, 9	11	13	17
ılai	٠.							
 Engineer	1	1	1	1	0	1	1	1
T. Assistant	1	1	1	1	0	1	1	. 2
Technician	1	1	1	î	0	3	5	7
Others	1	1	1	1	0.	4 :	7	9
Orners		i						
Total Government Staff	4	4	4	4	0	9	14	19
enai				٠.				
Engineer	1	1	1	1	0	1	1	1
T. Assistant	1	1	1	1	0	. 1	1	1
Technician	1	1	1	1	0	:1	1 1	2
Others	1	1	1	1 .	. 0	1	. 1	2
Total Government Staff	4	4	4	4	0	4	4	6

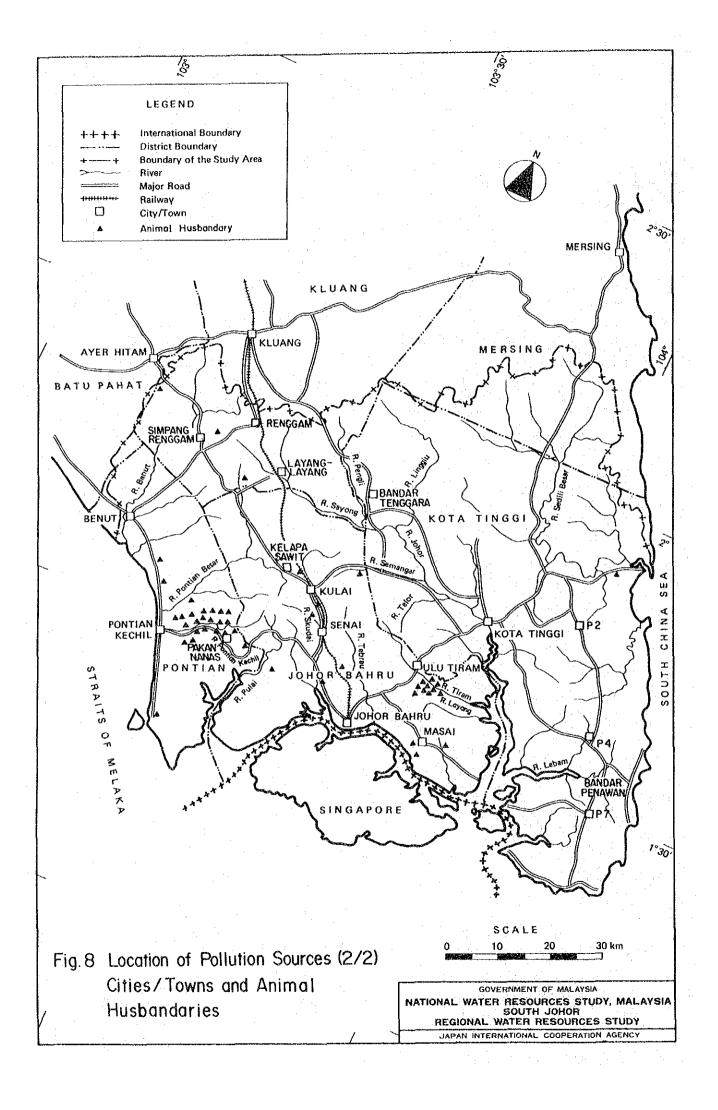

Table 50 ESTIMATED MANPOWER REQUIREMENT FOR PUBLIC SEWERAGE SYSTEM BY CITY (2/2)


	~~ ~ ~ ~ ~ ·	Const	ructio	on			M&C	
Category	5MP	6мР	7MP	8мР	5MP	6мр	7MP	8MP
Kota Tinggi				Li yali mir ya tak ma	A		- 4 4 - 14 - 14	:.
Engineer	0	1	· 1	1	0	0	. 1	 1
T. Assistant	0	1	1	1	o ·	o.	1	1
Technician	Ö	· 1	1	1	. o	Ö	2	2
Others	0	1	ī	ī	0	ő	2	3
Total Government Staff	0	4	4	4	0	0	6	7.
Bandar Tenggara								
Engineer	1	1	1	1	0	1	1	1
T. Assistant	1	1	1	1	0	1	1	1
Technician	1	1	1	1	0	2	2	2
Others	1	1	1	1	. 0	. 2	2	3
this read first hard trans area, hade then deep hour pass, halfs order than houry grade have pass your black broke head and have								
Total Government Staff	4	4	4	4	0	6	. 6	7
Pontian Kechil				٠				
Engineer	1	1 .	1	1	1	1	1	1
T. Assistant	1	1	1	1	1	1	1	1
Technician	1	1	1	1	2	3	4	. 6
Others	1	1	1	1	2	3 3	5	7
Total Government Staff	4	4	4	4		8	11	 15


FIGURES







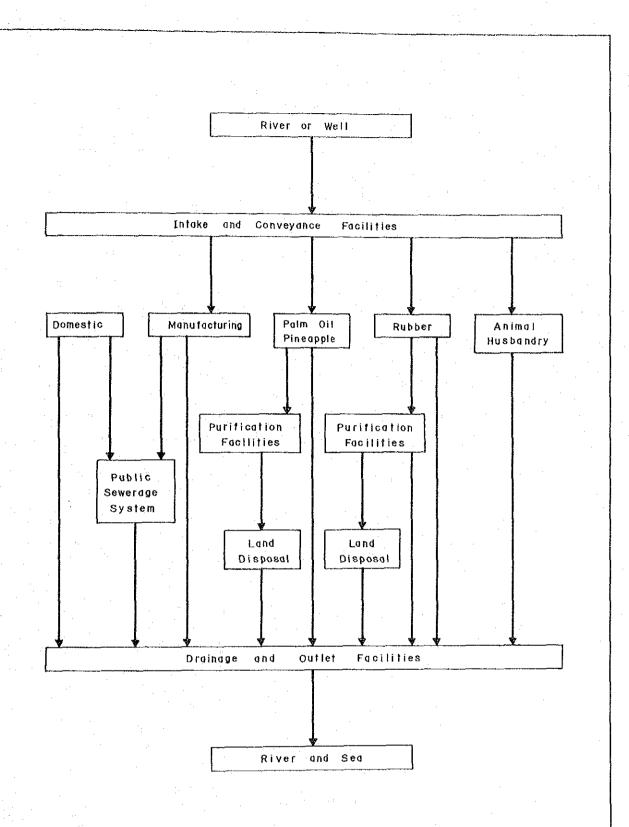


Fig. 9 Composition of Pollution Sources

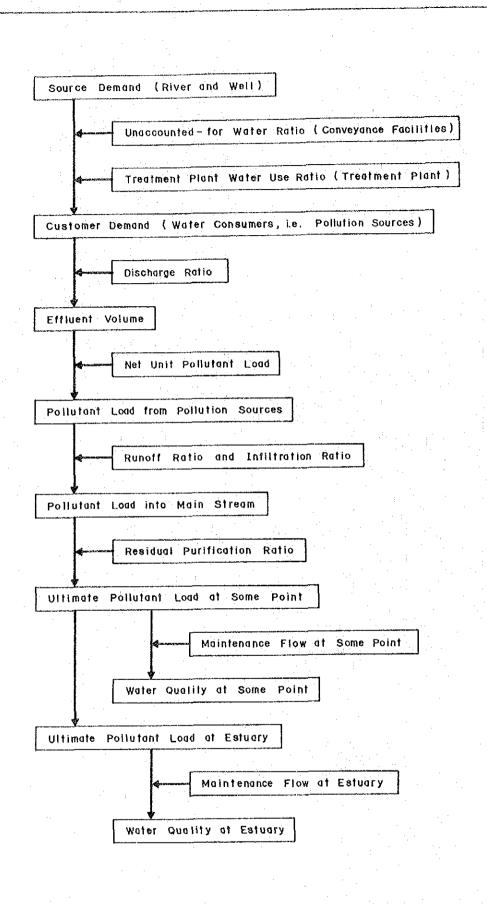
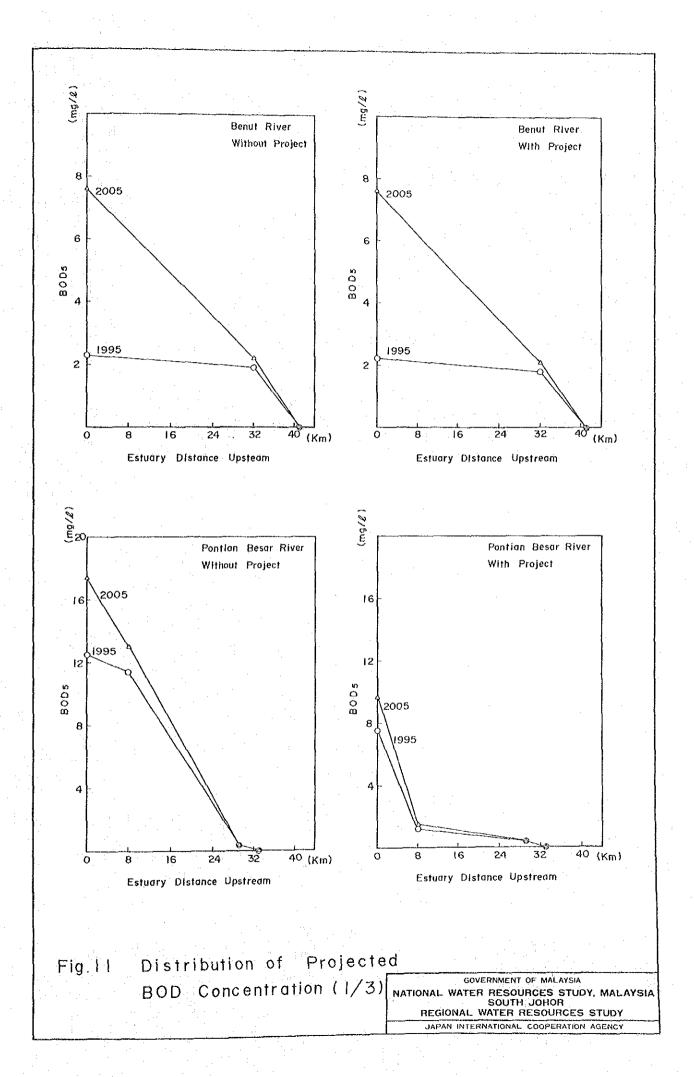
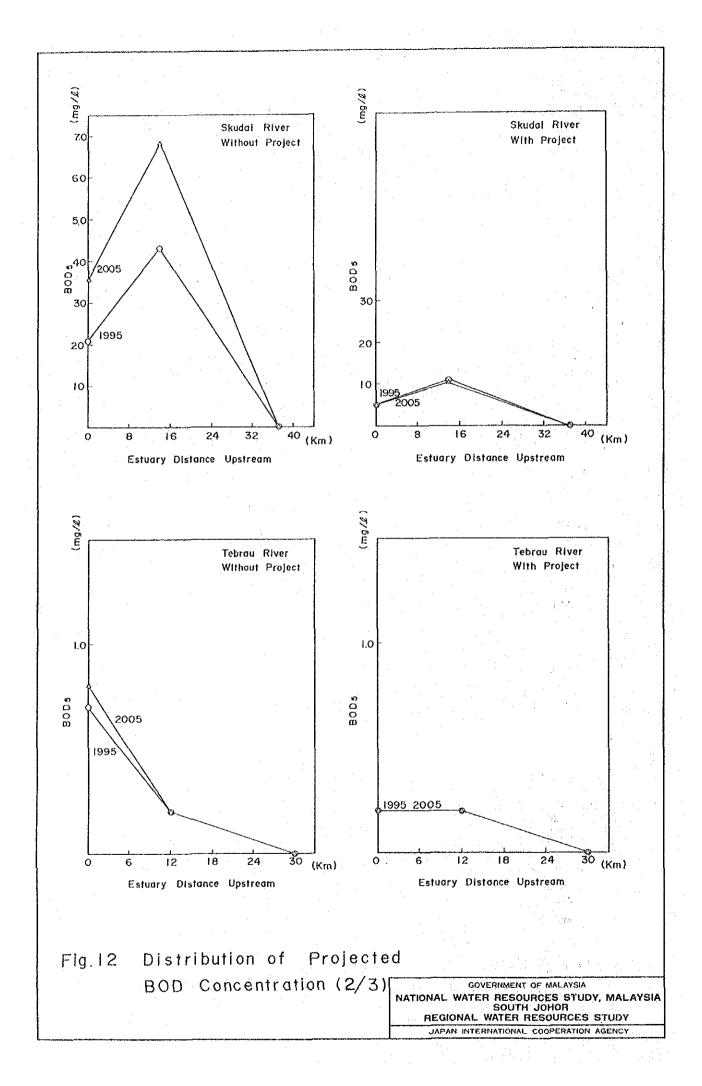




Fig. 10 Water Quality Projection Flow Chart

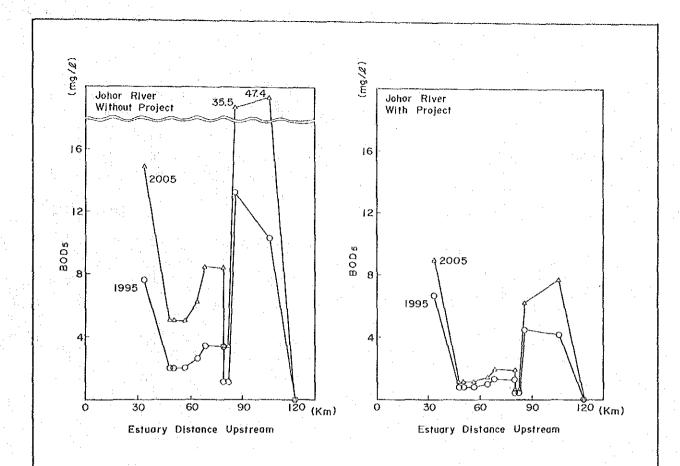


Fig. 13 Distribution of Projected BOD Concentration (3/3)

Environmental Feature

Self Purification by River

Odors Occurrence from River

Fish Inhabitation Carp and Silver Carp

River Water Quality Limit

Netherlands

River Water Quality Standard

Oklahoma State, USA

tor Domestic Water Supply

USSR

for Domestic Water Supply & Food Manufacturing

for Bathing, Sports & Recreation

Philippines

for Domestic Water Supply

for Bothing

tor Fishing

Japan

for Domestic Water Supply

for Industrial Water Supply

for Agricultural Water Supply

for Conservation of Environment

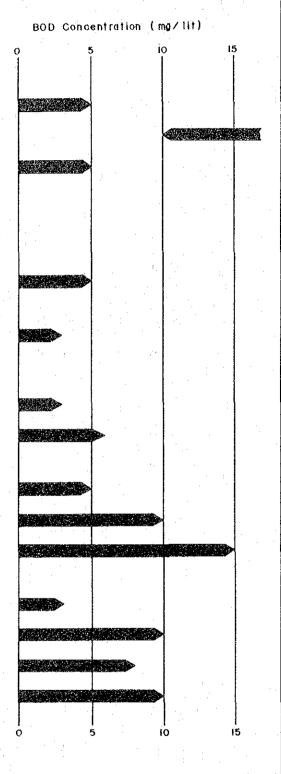


Fig. 14 Relationships Between BOD
Concentration and Environmental
Feature, and River Water
Quality Limit

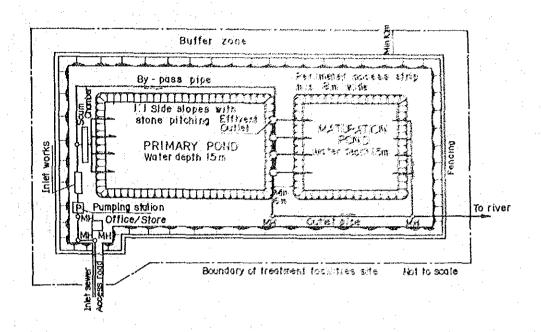


Fig. 15 Typical Layout of Stabilization Pond Process

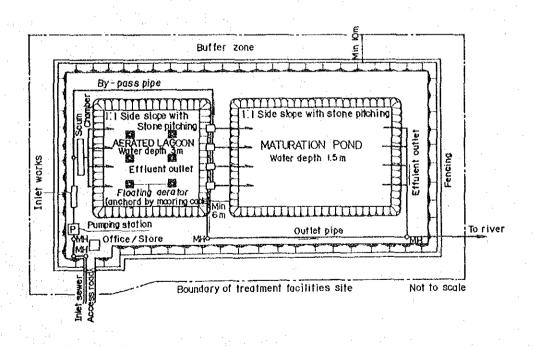
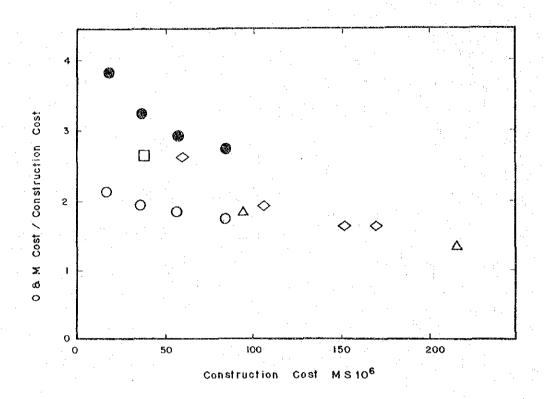
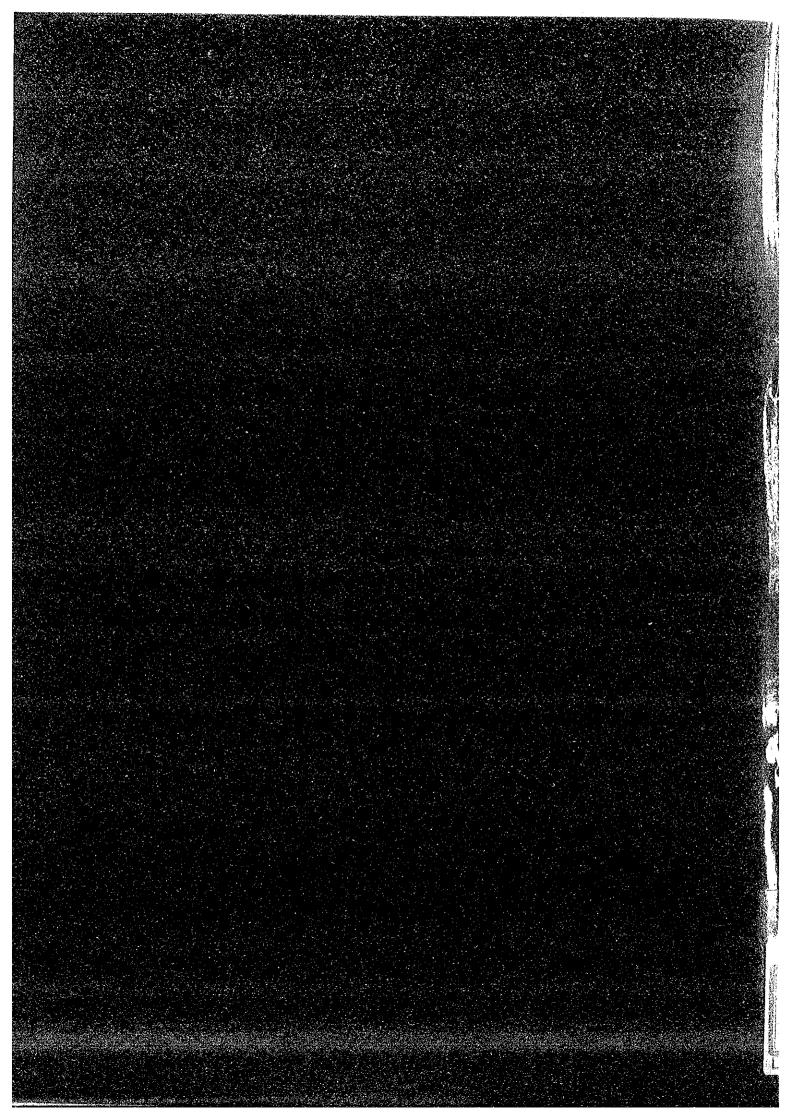



Fig. 16 Typical Layout of Aerated Lagoon Process


LEGEND

- O Alor Setar, Stabilization Pond
- Ator Setar, Aerated Lagoon
- △ Kuala Lumpur, Stabilization Pond
- ☐ Butterworth, Stabilization Pond
- Georgetown, Preliminary Treatment

Fig. 17 Relationships Between 08 M
Cost and Construction Cost

GOVERNMENT OF MALAYSIA
NATIONAL WATER RESOURCES STUDY, MALAYSIA
SOUTH JOHOR
REGIONAL WATER RESOURCES STUDY

JAPAN INTERNATIONAL COOPERATION AGENCY

