社会開発協力部報告書

113 517 3DS

GOVERNMENT OF MALAYSIA

1.0

NATIONAL WATER RESOURCES STUDY, MALAYSIA PERLIS-KEDAH PULAU PINANG REGIONAL WATER RESOURCES STUDY

Antonio antonio

SHING'

G. WATER DUALITY

.

.

.

.

.

.

.

.

GOVERNMENT OF MALAYSIA

NATIONAL WATER RESOURCES STUDY, MALAYSIA PERLIS-KEDAH-PULAU PINANG REGIONAL WATER RESOURCES STUDY PART 1

VOL. 6

ANNEX

G. WATER QUALITY

FEBRUARY 1984

JAPAN INTERNATIONAL COOPERATION AGENCY

NATIONAL WATER RESOURCES STUDY, MALAYSIA PERLIS-KEDAH-PULAU PINANG REGIONAL WATER RESOURCES STUDY PART 1

LIST OF VOLUMES

Vol.	1	-	MAIN REPO	RT
Vol.	2	-		SOCIO-ECONOMY DOMESTIC AND INDUSTRIAL WATER SUPPLY
Vol.	3	-	ANNEX C.	AGRICULTURE
Vol.	4	-	ANNEX D.	IRRIGATION DEVELOPMENT
Vol.	5	~		METEOROLOGY AND HYDROLOGY GROUNDWATER RESOURCES
Vol.	6	-	ANNEX G.	WATER QUALITY
Vol.	7	-	ANNEX H.	FLOOD MITIGATION PLAN
Vol.	8	-	ANNEX I.	REGIONAL WATER DEMAND AND SUPPLY BALANCE SYSTEM
Vo1.	9	-	К.	ENGINEERING GEOLOGY CONSTRUCTION MATERIAL PROPOSED DAM PROJECTS
Vol.	10	-	ANNEX M. N.	COST ESTIMATE OF PROPOSED DAM PROJECTS ECONOMIC ANALYSIS OF PROPOSED SOURCE FACILITIES
Vol.	11		Ρ.	LAND USE IN PROPOSED RESERVOIR AREAS ENVIRONMENTAL IMPACT OF PROPOSED SOURCE FACILITIES LEGAL AND INSTITUTIONAL ARRANGEMENT

国際協力事	「業団
受入 月日 '84. 4.25	113
登録No. 10256	SDS

ABBREVIATIONS

(1) Organization/Plan

	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
	4MP	:	Fourth Malaysia Plan
	DID (JPT)	:	Drainage and Irrigation Department
	EPU	:	Economic Planning Unit
	FELCRA	:	Federal Land Consolidation and Rehabilitation Authority
•	FELDA	:	Federal Land Development Authority
	GSD	•	Geological Survey Department
	JICA	:	Japan International Cooperation Agency
	MADA	:	Muda Agricultural Development Authority
	NEB (LIN)	:	National Electricity Board
	NWRS	:	National Water Resources Study
	PWD (JKR)	:	Public Works Department
	RISDA	:	Rubber Industry Small-Holders Development Authority
	WHO	:	World Health Organization

(2) Others

B	: Benefit
BOD	: Biochemical Oxygen Demand
С	: Cost
COD	: Chemical Oxygen Demand
D&I	: Domestic and Industrial
dia.	: Diameter
EIRR	: Economic Internal Rate of Return
El.	: Elevation Above Mean Sea Level
Eq.	: Equation
Fig.	: Figure
GDP	: Gross Domestic Product
GNP	: Gross National Product
н	: Height, or Water Head
NHWL.	: Normal High Water Level
O&M	: Operation and Maintenance
Q	: Discharge
Ref.	: Reference
SS	: Suspended Solid

- i -

ABBREVIATIONS OF MEASUREMENT

Length

mm	Ħ	millimeter
сm	=	centimeter
m	÷	meter
km		kilometer
ft	=	foot
yd	×	yard

Area

0		
cm ²	=	square centimeter
m ²	=	square meter
		hectare
km ²	==	square kilometer

Volume

2		
cmo	=	cubic centimeter
1	==	lit = liter
		kiloliter
m3	=	cubic meter
gal.	=	gallon

Weight

mg	=	milligram
g	~	gram
kg	=	kilogram
ton	-	metric ton
lb	==	pound

Time

s	=	second
min	=	minute
h i	<u></u>	hour
d	=	day
У	=	year

Electrical Measures

v	= Volt
A	= Ampere
Hz	= Hertz (cycle)
Ŵ	= Watt
kW	= Kilowatt
MW	= Megawatt
GW	= Gigawatt

Other Measures

8	= percent
\mathbf{PS}	= horsepower
0	= degree
T I	= minute
••	= second
°C	= degree in centigrade
10 ³	= thousand
106	= million
109	= billion (milliard)

Derived Measures

m ³ /s =	cubic meter per second
cusec =	cubic feet per second
mgd =	million gallon per day
kWh =	kilowatt hour
MWh =	Megawatt hour
GWh =	Gigawatt hour
kwh/y =	kilowatt hour per year
kVA =	kilovolt ampere
BTU =	British thermal unit
psi =	pound per square inch

Money

M\$	= Malaysian ringgit
US\$	= US dollar
¥	= Japanese Yen

CONVERSION FACTORS

To Metric System

From Metric System

		Per timene i su de la participación de la constructione
Length	1 cm = 0.394 inch	1 inch = 2.54 cm
	1 m = 3.28 ft = 1.094 yd	1 ft = 30.48 cm
	1 km = 0.621 mile	1 yd = 91.44 cm
· · · · · · · · · · · · · · · · · · ·		1 mile = 1.609 km
Area	$1 \text{ cm}^2 = 0.155 \text{ sq.in}$	$1 \text{ sq.ft} = 0.0929 \text{ m}^2$
	$1 \text{ m}^2 = 10.76 \text{ sq.ft}$	$1 \text{ sq.yd} = 0.835 \text{ m}^2$ 1 acre = 0.4047 ha
	1 ha = 2.471 acres	1 acre = 0.4047 ha
	$k \ km^2 = 0.386 \ sq.mile$	$1 \text{ sq.mile} = 2.59 \text{ km}^2$
Volume	$1 \text{ cm}^3 = 0.0610 \text{ cu.in}$	1 cu.ft = 28.32 lit
	1 lit = 0.220 gal.(imp.)	$1 \text{ cu.yd} = 0.765 \text{ m}^3$
	l kl = 6.29 barrels	l gal.(imp.) = 4.55 lit
	1 m^3 = 35.3 cu.ft	1 gal.(US) = 3.79 lit
	$106 \text{ m}^3 = 811 \text{ acre-ft}$	1 acre-ft = 1,233.5 m ³
Weight	1 g = 0.0353 ounce	1 ounce = 28.35 g
	1 kg = 2.20 1b	$1 \ 1b = 0.4536 \ kg$
	1 ton = 0.984 long ton	$1 \log \tan = 1.016 \tan$
	= 1.102 short ton	1 short ton = 0.907 ton
	· · · ·	
Energy	1 kWh = 3,413 BTU	1 BTU = 0.293 Wh
· · · · · · · · · · · · · · · · · · ·		
Temperature	$^{\circ}C = (^{\circ}F - 32) \cdot 5/9$	$^{\circ}F = 1.8^{\circ}C + 32$
Derived	$1 \text{ m}^3/\text{s} = 35.3 \text{ cusec}$	$1 \text{ cusec} = 0.0283 \text{ m}^3/\text{s}$
Measures	$1 \text{ kg/cm}^2 = 14.2 \text{ psi}$	$1 \text{ psi} = 0.703 \text{ kg/cm}^2$
	l ton/ha = 891 lb/acre	1 lb/acre = 1.12 kg/ha
	$10^6 \text{ m}^3 = 810.7 \text{ acre-ft}$	$1 \text{ acre-ft} = 1,233.5 \text{ m}^3$
	$1 \text{ m}^3/\text{s} = 19.0 \text{ mgd}$	$1 \text{ mgd} = 0.0526 \text{ m}^3/\text{s}$
Local	1 lit = 0.220 gantang	1 gantang = 4.55 lit
Measures	l kg = 1.65 kati	1 kati = 0.606 kg
· · · ·	1 ton = 16.5 pikul	l pikul = 60.6 kg
· · · · · · · · · · · · · · · · · · ·		

- iii -

ANNEX G WATER QUALITY

·

TABLE OF CONTENTS

		Page
1.	INTRODUCTION	G-1
2.	EXISTING FACILITIES IN CITIES FOR POLLUTANT LOAD	
	ABATEMENT	G-2
	2.1 Sewerage System in Georgetown and its Vicinity	G-2
	2.2 Sewerage System in Other Cities	G-3
	2.2.1 Butterworth, Bukit Mertajam	G-3
	2.2.2 Sungai Petani	G-3
	2.2.3 Alor Setar	G-4
	2.2.4 Kangar	G-4
3.	HISTORICAL AND PRESENT CONDITION OF WATER QUALITY	
	BY RIVER	G-5
	3.1 Water Quality	G5
	3.1.1 BOD ₅	G ~ 5
	3.1.2 Suspended solid (SS)	G~5
	3.1.3 Other pollutants	G-6
÷	3.1.4 Water quality conditions by river	G-6
	3.2 Pollution Sources and Their Locations	G~8
•	3.3 Major Pollutants by Pollution Source	G-9
4.	PRESENT MONITORING SYSTEM OF WATER QUALITY	G - 10
	4.1 Water Quality Monitoring Stations and Their Locations	G-10
	4.2 Water Quality Parameters and Frequency of Sampling	G-10
5.	DEVELOPMENT PLANS FOR PUBLIC SEWERAGE SYSTEM	G-12
	5.1 Sewerage System Master Plan for Pulau Pinang	G-12
	5.2 Sewerage System Plans for Butterworth/Bukit	
	Mertajam Metropolitan Area	G - 13
	5.3 Sewerage System Plans for Alot Setar	G-14
6.	PROJECTION OF WATER QUALITY	G-16
	6.1 General	G-16
	6.2 Water Quality Projection	G - 16
	6.2.1 Methodology	G-16
•	6.2.2 Net unit pollutant load (NUPL)	G-17
	6.2.3 Discharge ratio (D-ratio)	G-18

-- <u>i</u> --

			Page
		6.2.4 Runoff ratio (R-ratio)	G-18
		6.2.5 Infiltration ratio (I-ratio)	G-18
:		6.2.6 Residual purification ratio (RP-ratio)	G-19
		6.2.7 River maintenance flow	G-19
		6.2.8 Projection of water quality	G-19
7.	POLL	JUTANT LOAD ABATEMENT PLANS FOR RIVER WATER	G-21
	7.1	General	G-21
	7.2	Setting of Water Quality Criteria	G-21
	7.3	Planning of Treatment Facilities	G-22
	7.4	Planning of Pollutant Load Abatement for River Water	G-23
	7.5	Recommended Pollutant Load Abatement Plan	G-24
 8.		NING MATERIALS, ECONOMIC BENEFIT AND COST MANPOWER REQUIREMENT	G-26
	8.1	Planning Materials	G-26
		8.1.1 Construction cost	G-26
		8.1.2 O&M cost	G-29
	8.2	Economic Benefit and Cost	G-29
	8.3	Manpower Requirement	G-30
		8.3.1 Manpower requirement for construction	G-30
		8.3.2 Manpower requirement for O&M	G-30
REF	FERENC	ES	G-32

LIST OF TABLES

		Page
1.	Pollutant Levels of Rivers in 1978	G~35
2.	Pollutant Levels of Rivers in 1979	G36
3.	Pollutant Levels of Rivers in 1980	G-37
4.	Pollutant Levels of Rivers in 1981	G-38
5.	Pollutant Levels of Rivers in 1982	G-39
6.	Water Quality Analysis Data, Sampling in January 1983 by River (1/5)	G-40
7.	Water Quality Analysis Data, Sampling in January 1983 by River (2/5)	G-41
8.	Water Quality Analysis Data, Sampling in January 1983 by River (3/5)	G-42
9.	Water Quality Analysis Data, Sampling in January 1983 by River (4/5)	G-43
10.	Water Quality Analysis Data, Sampling in January 1983 by River (5/5)	G- 44
11.	Classification of WQMS According to BOD5 Classification Using Mean BOD5	G- 45
12.	Classification of WQMS According to SS Classification Using Mean SS	G- 46
13.	Inventory of Rubber Factories (1/2)	G-47
14.	Inventory of Rubber Factories (2/2)	G - 48
15.	Inventory of Palm Oil Mills	G - 49
16.	Water Demand Projection of Rubber Factories	G - 50
17.	Water Demand Projection of Palm Oil Mills	G - 51
18.	Projection of PIG Production	G- 51

Page

		Page
19.	Number of Water Quality Monitoring Station by Water Quality Control Region in Northern Region	G 52
20.	List of Water Quality Monitoring Station (WQMS) by River (1/3)	G-53
21.	List of Water Quality Monitoring Station (WQMS) by River (2/3)	G-54
22.	List of Water Quality Monitoring Station (WQMS) by River (3/3)	G~55
23.	Projected BOD Load in 1990 and 2000 Under the Condition of 4MP	G~56
24.	Projected BOD Load in 1990 and 2000 Under the Condition of Lower Economic Growth	G-57
25.	Assumed Development of Septic Tank in Urban Area	G-58
26.	Assumed BOD Concentration of Non-Sewerage-Urban-Domestic	G-58
27.	NUPL by Classification of Manufacturing and Customer Water Demand by State	G-59
28.	NUPL of Industrial Effluent by State	G-60
29.	Assumed Discharge Ratio, Runoff Ratio, Infiltration Ratio and BOD Concentration of Effluent Assumed Under Present Purification Level	G-61
30.	Assumed Development of Land Disposal in Palm Oil Mills and Rubber Factories	G - 62
31.	Assumed Discharge Ratio of Palm Oil Mills and Rubber Factories	G-62
32.	Residual Purification Ratio by Basin	G-63
33.	Summary of Projected BOD Load and BOD Concentration Under the Condition of 4MP	G-63
34.	Summary of Projected BOD Load and BOD Concentration Under the Condition of Lower Economic Growth	G-64
35.	Composition of BOD Load into River Under the Condition of 4MP	G - 65
36.	Composition of BOD Load into River Under the Condition of Lower Economic Growth	G-66

•

. . . - iv -

37.	Standard Relating to Living Environment for Rivers in Japan	G-67
38.	Water Quality Criteria for Fresh Surface Water Proposed by the National Pollution Control Commission in Philippines	G-68
39.	Present BOD3 Concentration Limits for Watercourse Discharge for Palm Oil Mills and Rubber Factories	G-69
40.	Outline of Proposed Public Sewerage System for Pollutant Load Abatement for River Water Under the Condition of 4MP	G -7 0
41.	Outline of Proposed Public Sewerage System for Pollutant Load Abatement for River Water Under the Condition of Lower Economic Growth	G-70
42.	Treatment Capacity to be Treated in Rubber Factories, Palm Oil Mills and a Sugar Mill Under the Condition of 4MP and Lower Economic Growth	G-71
43.	Pollutant Load in 1990 and 2000 by Basin with and Without Project Under the Condition of 4MP	G-72
44.	Pollutant Load in 1990 and 2000 by Basin with and Without Project Under the Condition of Lower Economic Growth	G-73
45.	Direct Construction Cost and Land Aquisition Cost of Sewerage Facilities in Case of Butterworth Project	G-74
46.	Breakdown of Construction Cost of Public Sewerage Systems for Butterworth and Bukit Mertajam	G - 75
47.	Assumed Unit Construction Cost for Pollutant Load Abatement Facilities	G - 76
48.	Estimated Public Development Expenditure for Sewerage System Under the Condition of 4MP	G - 77
49.	Estimated Private Development Expenditure for Sewerage System Under the Condition of 4MP	G- 77
50.	Estimated Public Development Expenditure for Sewerage System Under the Condition of Lower Economic Growth	G - 78
51,	Estimated Private Development Expenditure for Sewerage System Under the Condition of Lower Economic Growth	G-78
52.	Estimated Private Development Expenditure for Purification System in Rubber Factories Under the Condition of 4MP and Lower Economic Growth	G- 79

Page

		Page
53.	Beneficial and Adverse Effects of Water Pollution Abatement Plan Under the Condition of 4MP	G-80
54.	Beneficial and Adverse Effects of Water Pollution Abatement Plan Under the Condition of Lower Economic Growth	G-81
55.	Length of River Stretches Where BOD Concentration is more than 10MG/L with and Without Project Under the Condition of 4MP	G-82
56.	Length of River Stretches Where BOD Concentration is more than 10MG/L with and Without Project Under the Condition of Lower Economic Growth	G-82
57.	Estimated Manpower Requirement for Public Sewerage Systems by City Under the Condition of 4MP $(1/2)$	G-83
58.	Estimated Manpower Requirement for Public Sewerage Systems by City Under the Condition of 4MP (2/2)	G-84
59.	Estimated Manpower Requirement for Public Sewerage Systems by City Under the Condition of Lower Economic Growth (1/2)	G-85
60.	Estimated Manpower Requirement for Public Sewerage Systems by City Under the Condition of Lower Economic Growth (2/2)	G-86

- vi -

LIST OF FIGURES

Distribution of Mean BOD₅ Levels by WOMS in 1978 to 1982 (1/2)1. Distribution of Mean BOD5 Levels by WQMS in 1978 to 1982 (2/2) 2. 3. Distribution of Mean SS Levels by WQMS in 1978 to 1982 (1/2) 4. Distribution of Mean SS Levels by WOMS in 1978 to 1982 (2/2)5. Distribution of Mean COD Levels by WOMS in 1978 to 1982 (1/2)Distribution of Mean COD Levels by WOMS in 1978 to 1982 (2/2) 6. Distribution of Mean pH Levels by WQMS in 1978 to 1982 (1/2) 7. Distribution of Mean pH Levels by WOMS in 1978 to 1982 (2/2)8. Distribution of Mean NH4-N by WQMS in 1978 to 1982 (1/2) 9. Distribution of Mean NHA-N by WOMS in 1978 to 1982 (2/2) 10.

- 11. Composition of Pollution Sources
- 12. Distribution of Projected BOD Concentration in 1990 and 2000 Under the Condition of 4MP (1/3)
- 13. Distribution of Projected BOD Concentration in 1990 and 2000 Under the Condition of 4MP (2/3)
- 14. Distribution of Projected BOD Concentration in 1990 and 2000 Under the Condition of 4MP (3/3)
- 15. Distribution of Projected BOD Concentration in 1990 and 2000 Under the Condition of Lower Economic Growth (1/3)
- 16. Distribution of Projected BOD Concentration in 1990 and 2000 Under the Condition of Lower Economic Growth (2/3)
- 17. Distribution of Projected BOD Concentration in 1990 and 2000 Under the Condition of Lower Economic Growth (3/3)
- 18. Water Quality Projection Flow Chart
- 19. Relationships Between BOD Concentration and Environmental Feature, and River Water Quality Limit
- 20. Typical Layout of Stabilization Pond Process
- 21. Typical Layout of Aerated Lagoon Process
- 22. Relationships Between O&M Cost and Construction Cost

- vii -

PLATES

- 1. Location of Pollution Sources (1/2)
- 2. Location of Pollution Sources (2/2)
- 3. Location of Water Quality Monitoring Stations (1/2)
- 4. Location of Water Quality Monitoring Stations (2/2)

1. INTRODUCTION

This Sectoral Report presents a study on projection of river water quality in 1990 and 2000 in the 5 river basins, i.e. Perlis river, Kedah river, Merbok river, Muda river and Perai river, including historical and present condition of river water quality, present water quality monitoring stations, development plans for public sewerage systems and pollutant load abatement plans for river water.

Pollutant load abatement plans for river water were projected to keep the river water quality less than 5 mg/l in BOD concentration for D&I water supply and less than 10 mg/l in BOD concentration for conservation of river environment. As these plans, improvement of purification systems in rubber factories and public sewerage systems in cities with many people and industries like Kangar, Alor Setar, Sg. Petani, Kulim, Butterworth and Georgetown were proposed in the Study. To carry out the river water pollutant load abatement plans will be expected to decrease the pollutant load into rivers and keep the river water clean.

In making the analysis and reporting, necessary data were collected from the ministries and agencies of the Government of Malaysia and state and district authorities. And the Study team could carry out sampling and analysing of river water in 7 river basins in Jan. 1983 with the help of DOE in Butterworth.

2. EXISTING FACILITIES IN CITIES FOR POLLUTANT LOAD ABATEMENT

2.1 Sewerage System in Georgetown and its Vicinity

Georgetown Sewerage System

In Georgetown, the sewerage system which serves an estimated 217,000 people conveys an average dry weather sewage flow of 3.7×10^6 1/d. The collection system comprises 188 km sewers. Flows are conveyed through 4 km interceptors to 13 pump stations, which lift sewage flows through 11 km of force main to the Jelutong Outfall.

The collection system is divided into twenty sewer services. Because a major portion of the urban area is flat, each sewer service area is relatively small in extent. In addition to the areas presently sewered, there are six areas that are not yet connected to the Georgetown sewerage system.

Pump stations range in peak flow capacity from 773 l/min to 33.6 m^3 /min. Several stations discharge to common force mains. In a number of cases sewage is pumped twice.

Three force mains convey all Georgetown area sewage to the meter house, located on a reclaimed land at 335 m from seashore. The outfall jetty extends another 366 m seaward from the meter house; sewage flow through an open channel flume, above high tide level, and is discharged to the Western Channel. Tidal currents in the channel ranges between 1.0 and 1.5 m/s on an average. These are sufficiently strong to create effective dispersion of the present sewage discharge within approximately 1.6 km of the outfall (Ref. 1).

Bandar Bayan Baru Sewerage System

The present sewerage system in Bandar Bayan Baru consists of approximately 3000 m gravity sewers, 805 m of force mains, a 6.1 m³/min peak flow capacity pump station and two stabilization ponds designed to treat an average flow of 3.4×10^6 l/d. This small system provides sewerage for an estimated 5,000 persons which is 20% of total population of 25,000 in Bandar Bayan Baru. From estimated 1,000 premises, the average dry weather flow was 660 m³/d. All flows are conveyed through the pump station to the treatment site. Here, in two ponds (one of which is mechanically aerated), waste water undergoes an intermediate secondary level of treatment prior to discharging at the mouth of Kluang river (Ref. 1).

North Coast Sewerage System

Most hotels in the North Coast area presently relay on septic tank for waste disposal; several hotels, including Golden Sand Beach Hotel, Rasa Sayang Beach Hotel, Lone Pine Hotel, Palm Beach Hotel, have small waste water treatment systems. Although some residences in the area are also connected with septic tanks, many premises rely on pit privies or pour flush latrines (Ref. 1).

Septic Tank System

Estimated 10,000 premises or 96,000 people corresponding to 20% of the total population of 480,000, use septic tanks for disposal of sanitary wastes.

The private septic tank system consists of a tank with a design capacity of 114 l/person for residential, or 68 l/person for public building, plus 50% additional volume for sludge storage (Ref. 1).

Conservancy System

Premises served by night-soil collection service are equipped with latrines or urinals which discharge to special buckets. The 28 lit. rubber buckets are collected either daily or on alternate days. They are transported to the Kg. Jave Baru Depot and discharged to the sewer for conveyance to the Jelutong Outfall (Ref. 1).

2.2 Sewerage System in Other Cities

2.2.1 Butterworth, Bukit Mertajam

At present there is one community served by a modern sewerage system which collects and treats both sullage and toilet flush water. And current practice of night soil disposal is generally classified into three categories; namely (1) Septic tank system, (2) Bucket system, and (3) Pit privy/over-river latrine system. There are 50 communal septic tank systems and approximately 16,300 bucket systems in Butterworth, Bukit Mertajam and Seberang Jaya (Ref. 2).

Based on the Feasibility Study for Sewerage and Drainage Project Butterworth/Bukit Mertajam Metropolitan Area Malaysia, the public sewerage system is under construction in the center of Butterworth and Bukit Mertajam. The facilities under construction are 3 treatment plants, i.e., Sg. Juru Treatment Plant with $34 \times 10^3 \text{ m}^3/\text{d}$ in treatment capacity, Mak Madin Treatment Plant with $14 \times 10^3 \text{ m}^3/\text{d}$ and Sg. Nyor Treatment Plant with $3 \times 10^3 \text{ m}^3/\text{d}$. Total served population and served area will be 84,000 people and 1,066 ha in 1990.

2.2.2 Sungai Petani

There are 2 septic tank and oxidation pond systems, 3 Imhof tank systems and bucket system in Sungai Petani Town. At present 90,000 people which is about 70% of total population of 130,000 in Sungai Petani are served by septic tank and oxidation pond system and oxidation pond system is planned in each new house scheme area. Very few people is served by bucket system. This bucket system will be changed to septic tank system.

2.2.3 Alor Setar

At present there are several waste disposal systems in Alor Setar. They are 4 oxidation pond systems, 12,000 private septic tank systems, 21 communal septic tank systems, 2,355 bucket systems and 405 conservancy systems, and number of served premises are 1,530, 18,000, 1,700, 4,840 and 770, respectively (Ref. 3).

2.2.4 Kangar

There are two waste disposal systems in Kangar Town. They are septic tank system and bucket system. Septic tank system serves 18,000 people which is 95% of total population of 19,000 people and bucket system serves 1,000 people in operation area in Town Council.

3. HISTORICAL AND PRESENT CONDITION OF WATER QUALITY BY RIVER

3.1 Water Quality

Since March, 1978, regular river water quality monitoring program has been carried out partly to assess the existing conditions of public waters by DOE.

The number of Water Quality Monitoring Station (WQMS) in Water Quality Control Regions (WQCR) 1-7 carried out by the branch of DOE in Butterworth were 55 in 1978, 68 in 1979 and 1980, 67 in 1981 and 55 in 1982.

According to data obtained from DOE in 1978 - 1982, the mean, maximum and minimum values of the five selected parameters namely BOD5, COD, pH, SS and NH_4-N are as shown in Tables 1 to 5.

In January 1983, the Study team has done a field survey for river water quality, and then water sampling collection was carried out at most WQMS in the Study area with the help of the branch of DOE in Butterworth and all water samples were analysed in the laboratory of the Chemistry Department, Pulau Pinang. The results of the analysis are as shown in Tables 6 to 10.

3.1.1 BOD5

BOD is the most suitable parameter as a primary indicator of organic pollution. Distribution of mean BOD_5 levels by WQMS of 8 rivers from 1978 to 1982 are as shown in Figs. 1 and 2. An acceptable U.K. classification initiated by D. Balfour and Sons (Ref. 4) is based on BOD_5 at 20°C as follows:

BOD5	Classification
0 - 4 mg/l	Clean
4 - 8 mg/1	Mildly Polluted
8 - 12 mg/l	Moderately Polluted
More than 12 mg/1	Grossly Polluted

If this BOD5 classification is applied on the data in Tables 1 to 5 for the 8 rivers, some stretches in Perlis river, Kedah river, Merbok river and Juru river were grossly polluted in 1978 to 1982 as shown in Table 11.

3.1.2 Suspended solid (SS)

SS in the Study area is mainly caused by the operation of sugar mills and rubber factories as same as the sugarcane field, young rubber tree field and development area. Distribution of mean SS levels by WQMS of 8 rivers from 1978 to 1982 are as shown in Figs. 3 and 4. REPORT ON WATER POLLUTION CONTROL JURU RIVER BASIN shows a SS classification as follows:

SS	Classification
0 - 50 mg/l	Class A
50 - 100 mg/l	Class B
100 - 150 mg/l	Class C
More than 150 mg/l	Class D

If this SS classification is applied on the data in Tables 1 to 5 for the 8 rivers, some stretches in all rivers except Muda river were polluted in SS levels more than 150 mg/l as shown in Table 12.

3.1.3 Other pollutants

The distributions of mean COD, pH and NH₄-N levels by WQMS of 8 rivers from 1978 to 1982 are as shown in Figs. 5 to 10.

3.1.4 Water quality conditions by river

Using 5 parameters, i.e. BOD5, COD, pH, SS and NH₄-N, water quality conditions in Perlis river, Kuar river, Kedah river, Merbok river, Muda river, Perai river, Juru river and Jejawi river are described as follows:

(1) Perlis river

The Perlis river shows high BOD5 concentration, 15 mg/l in 1979 and 7 mg/l in 1982, at the upper reaches of the river, higher SS concentration than 50 mg/l between 1978 and 1982 at the middle and lower reaches and high NH₄-N concentration at the upper reaches. The pollution source of the high BOD5 and HN₄-N concentration at the upper reaches seems to be a big sugar mill of KILANG GULA FELDA PERLIS SDN. BHD. There is no big pollution source downstream from the sugar mill except Kangar urban area. There are many population and several kind of industries in Kangar urban area. Therefore, Kangar is the biggest pollution source in the Perlis basin. The pollution sources of high SS concentration seems to be sugarcane field, cultivated land and development area.

(2) Kuar river

The Kuar river is generally clean.

(3) Kedah river

Big pollution sources in the Kedah river basin are a sugar mill of KILANG GULA PADANG TERAP BHD., and Alor Setar urban area. In 1978, there was no purification facilities in a sugar mill, so water quality downstream of the sugar mill recorded very high concentration of BOD5, COD, SS, NH₄-N and other parameters. After purification facilities

were installed on an advice of DOE the situation improved. Characteristics of treated effluent from KILANG GULA PADANG TERAP BHD. are as follows:

Sampling date	: Oct. 2, 1982
pH	: 6.6
BOD5	: 688 mg/l
COD	: 1,500 mg/1
Ammoniacal Nitrogen	: 0.88 mg/1
Nitrate Nitrogen	:< 0.05 mg/1
SS	: 230 mg/1
Oil and Grease	: 5 mg/1

Waste water from Alor Setar urban area deteriorates river water quality organically.

It is considered that pollution source of higher SS concentration than 150 mg/l in the Padang Terap river basin is a large scale sugarcane field.

(4) Merbok river

Merbok river is the most polluted river in the Study area. The biggest pollution sources in this river basin seem to be 3 rubber factories, LEE LATEX (PTE) LTD., UNIROYAL MALAYSIAN PLANTATIONS SDN. BHD. and PLANTATION LATEX (M) SDN. BHD. The second biggest pollution source is Sg. Petani urban area.

Concentrations of BOD_5 , COD and NH_4-N were very high level at the downstream of these rubber factories, and high NH_4-N level was recorded downstream of Sg. Petani urban area.

According to a study by DOE (Ref. 5), BOD load produced from the rubber factories is estimated to be 3.3 ton/d which is 53% of the total BOD of 6.7 ton/d in the basin and BOD load from domestic sewage is estimated to be 2.9 ton/d which is 46% of the total BOD. The Tok Pawan river and its tributaries and the Sungai Petani river was very polluted, however, water quality in the Merbok Ketil river, the Baharu river, the Pasir river, the Bangkok river, the Labang river and the Bujang river is good and suitable for breeding fresh water fishes, farming, drinking and other domestic uses.

(5) Muda river

In spite of the existence of several rubber factories in the Muda river basin as pollution sources, the river water of the Muda river is not polluted by organic matters.

The discharge volume of the Muda river is very large and, therefore, the concentrations of BOD5, COD, SS and NH4-N are so low that the river water of the Muda river basin is useful for D&I water supply to Sg. Petani, Butterworth, Bukit Mertajam and Georgetown, breeding of fresh water fishes and irrigation.

(6) Perai river

There are many cities/towns, rubber factories and animal husbandries as pollution sources in the Perai river. Out of these pollution sources, almost cities/towns are located in coastal area except Kulim. Waste water from these cities/towns and a few animal husbandries in coastal area is discharged to the sea directly. Therefore, river water of the Perai river is not polluted, though sampling stations located at the downstream of rubber factories showed comparably high BOD5 and NH4-N in 1979, 1980 and 1982.

(7) Juru river

Juru river water is very polluted by domestic waste water and effluent from a rubber factory. Domestic waste water is discharged from Bukit Mertajam urban area to the river and effluent is discharged from ALMA RUBBER ESTATE SDN. BHD. Animal husbandry is also main pollution source in this river basin. In the urban area, level of NH₄-N was very high in 1979, 1981 and 1982.

(8) Jejawi river

Jejawi river water is not so polluted because there are only few pollution sources such as urban areas, rubber factories and animal husbandry. However, sampling stations which are located in a urban area or at the downstream of rubber factories showed high levels of BOD5 and NH₄-N like other river basins.

3.2 Pollution Sources and Their Locations

Major/industrial towns, rubber factories, palm oil mills and animal husbandry are considered as main pollution sources of river water pollution in the Region.

Among 20 major/industrial towns, the towns whose waste water affects river water quality are Kangar, Alor Setar, Sg. Petani and Kulim. Treated or not treated waste water from other cities including Georgetown and Butterworth are discharged to the river mouth or the sea directly.

There are 33 rubber factories in Kedah and 9 rubber factories in Pulau Pinang. In these 42 factories, 24 factories have the purification system like an anaerobic/facultative pond.

There are a palm oil mill in Kedah and 4 in Pulau Pinang. Among them 4 palm oil mills have the purification system like a biological anaerobic pond.

Number of pigs in animal husbandry has been increasing in 12 cities/ towns, especially in Pulau Pinang. No treatment facilities for waste water are installed in almost pig farms. The locations of existing pollution sources are as shown in Plates 1 and 2. An inventory including data on existing effluent treatment system is as shown in Tables 13 and 14 for rubber factories and in Table 15 for palm oil mills. Projected water demand with indication of effluent treatment system is as shown in Table 16 for rubber factories and Table 17 for palm oil mills. Projected pig production by city/town is as shown in Table 18.

3.3 Major Pollutants by Pollution Source

Major pollutants in domestic waste water are BOD, COD, SS and Ammoniacal Nitrogen. Domestic waste water has also N and P which trend to cause eutrophication in rivers, lakes and sea.

Industrial waste water contain various kind of matters, but BOD, COD, SS, oil and grease, N and P are generally as major pollutants in industrial waste water (Ref. 6).

In the effluent of rubber factory the concentrations of BOD, COD, total solids, SS, dissolved solids, and N are very high (Ref. 7).

In the palm oil waste water the concentrations of BOD, COD, SS, P and N are very high (Refs. 8, 9).

Major pollutants of animal husbandry effluent are BOD, COD, SS, ${\tt P}$ and ${\tt N}.$

4. PRESENT MONITORING SYSTEM OF WATER QUALITY

4.1 Water Quality Monitoring Stations and Their Locations

The water quality sampling and analysing system was initiated by DOE in the northern region in 1978.

Number of water quality monitoring station (WQMS) by water quality control region (WQCR) is as shown in Table 19.

Monitoring stations by river are listed in Tables 20 to 22 and the location of these stations are shown in Plates 3 and 4.

Monitoring stations are mainly located on the downstream of the water quality pollution sources, i.e. rubber factories, sugar mills, main cities and other sources. Therefore there are a lot of stations in the river basin which has the many water quality pollution sources. Waste water from pollution sources are surveied by these monitoring stations.

4.2 Water Quality Parameters and Frequency of Sampling

The national waters are principally used for agricultural irrigation, the generation of power, domestic and industrial water supply, waste disposal, transportation, recreation, environmental conservation, fishing, bathing and propagation of aquatic life. Water quality requirements are most demanding for domestic water supply, less so for water used in recreation and propagation of aquatic life, and least so for waters used in the industries and agricultural irrigation. Water quality parameters are varied in accordance with above-mentioned four sectors of water uses. Water quality parameters to which limits are provided in the Environmental Quality Act are Alkalinity, Colour, Hardness, Odour, 8 Organics, pH, Dissolved Solids, Turbidity, SS, Temperature, 14 Biocides and 37 Inorganic Chemicals. Water quality parameters which are generally analysed in laboratories in order to know the state of river water quality are pH, BOD 5 days at 20°C, COD, Ammoniacal Nitrogen as N, Total Kjedahl Nitrogen as N, Nitrate Nitrogen as N, Chloride as Cl⁻, Phosphate as P, Total Solids dried at 105°C, SS dried at 105°C, Dissolved Solids, Iron as Fe, Colour, Turbidity, Total Hardness as CaCO3, Calcium as Ca and Magnecium as Mg. For the river water sampled in the field survey in January 1983 for the Study, these 17 parameters were analysed in the laboratory in Pulau Pinang and these analysis data are shown in Tables 6 and 10.

Sampling frequency in 1983 which is planned by the Branch of DOE in Butterworth (Ref. 10) are as follows:

Name of Station	Sampling Frequency
Perlis	4 times per year
Kuar	4
Kedah	4
Merbok	12
Muda	6
Perai	6
Juru	6
Jejawi/Tengah	4

Quantitative analysis of all river water quality samples in the northern region is carried out by the laboratory in Pulau Pinang belonging to Department of Chemistry.

5. DEVELOPMENT PLANS FOR PUBLIC SEWERAGE SYSTEM

There are several cities having 4MP continuation projects or projects with master plan under the 4MP for their sewerage systems. These cities are Pulau Pinang including Georgetown, Bandar Bayan Baru and the Northern Coast, Butterworth/Bukit Mertajam and Alor Setar. The sewerage development plans of these cities are as described below.

5.1 Sewerage System Master Plan for Pulau Pinang

The recommended master plans of sewerage systems for Pulau Pinang including Georgetown, Bandar Bayan Baru and the Northern Coast are as follows (Ref. 1):

- (1) The recommended improvements include extension of lateral and trunk sewers that convey flows to the disposal sites, several new pump stations, improvements to existing pump stations, additional force mains, and a new ocean outfall with preliminary treatment facilities throughout the Greater Georgetown.
- (2) The Bandar Bayan Baru system should remain a separate entity with all sewage conveyed to a purification treatment plant which provides secondary level of purification.
- (3) The Northern Coast should be connected into the Greater Georgetown Sewer System. All hotel, commercial, and residential sewage generated in the recreation area along the North Coast would be collected by a major trunk sewer. And the sewage would flow to the Jelutong Outfall through the pump station, force main and a gravity sewer.
- (4) The development period according to the Master Plan is divided into four stages, namely, 1981-1985, 1986-1990, 1991-1995, and 1996-2000. The designed population, capital and operation and maintenance (O&M) costs at 1980 price level are as follows:

	Designed Population (10 ³)	Costs at 1980 Capital (M\$10 ⁶)	Price Level O&M (M\$10 ⁶ /y)
1980	197	18.6	0.99
1981 - 1985	-	41.2	1.57
1986 - 1990	348	47.1	2,02
1991 - 1995		44.9	2.43
1996 - 2000	589	17.9	2.80

5.2 Sewerage System Plans for Butterworth/Bukit Mertajam Metropolitan Area

The proposed plans of sewerage system for Butterworth/Bukit Mertajam Metropolitan Area are as follows (Ref. 2):

- (1) The sewerage system should be principally a separate system.
- (2) The physical facilities recommended to be developed include

 (i) system of sanitary main, branch and lateral sewers, (ii) pumping stations, and (iii) sewage purification facilities in the form of stabilization ponds.
- (3) Industrial waste water should also be taken into account for sewerage planning. The joint purification of industrial waste water with domestic waste using stabilization ponds should be implemented from the economic point of view.
- (4) It is considered appropriate to divide the program into four construction stages, namely 1980 1985 (1st stage), 1986 1990 (2nd stage), 1991 1995 (3rd stage) and 1996 2000 (4th stage). Total cost of construction and O&M at current price of the first stage is as follows:

	1980	1981	1982	1983	1984	1985
Construction	6,078	5,377	6,404	8,717	3,518	7,655
O&M	110	204	214	506	689	858
Total	6,188	5,581	6,618	9,223	4,207	8,513

Note: Escalated at 5% per annum from end 1977 price.

- (5) The First Stage program should comprise the main sewer with total length of about 55 km to convey sewage to the purification plant with four stabilization ponds, which will be then discharged into either the Perai river or the Juru river directly through nearby waterway.
- (6) Projected connected population and households in Butterworth/ Bukit Mertajam Metropolitan area is as follows:

	Total	Estimated Connected	Estimated Households
Year	Population	Population	Connected
1981	310,700		
1982	327,800		
1983	345,800	24,700	4,330
1984	364,900	43,200	7,620
1985	385,000	63,900	11,300
1986	398,600	76,400	13,700
1987	412,700	85,100	15,400
1988	427,300	86,200	15,700
1989	442,400	87,300	16,000
1990	458,000	88,500	16,300

5.3 Sewerage System Plans for Alor Setar

The proposed plans of sewerage system for Alor Setar are as follows (Ref. 3):

- Waste water from residential areas, commercial areas, institu-(1) tional areas and schools should be purified at the proposed purification plant.
- The physical facilities recommended to be developed include (2) (i) system of sanitary main, branch and lateral sewers, (ii) pumping stations, and (iii) sewage purification facilities in the form of stabilization ponds with facultative ponds and maturation ponds in series.
- To achieve the objectives, the program is divided into several (3) periods. The first 5 years are proposed as the first stage with the recommended items as follows:

- Proposed Sewerage Facilities:

- Sewer Facilities 21.9 km
- Pumping Stations 6 pumps
- · Waste Stabilization Pond Sedimentation Cell Facultative Pond Maturation Pond l set
- · Cleaning Machine
- Laboratory

Total 4,571 3,487 5,169 6,231 5,647

- Total Cost of Construction and O&M at current price

	8% per annum from original price of the yea				
1979)			Unit:	M\$10 ³	
: 	1981	1982	1983	1984	1985
Construction	4,354	4,911	5,738	5,045	2,774
0 & M	217	258	493	602	713
Total	4.571	5,169	6.231	5.647	3.487

- Projected Connected Population and Households

	Total Population	Estimated	Estimated
	in Master Plan	Connected	Households
Year	Study Area	Population	Connected
1982	157 000		
-+ + -	157,000		
1983	163,300		
1984	169,900	10,100	1,836
1985	176,700	17,900	3,255
1986	183,800	23,000	4,182
1987	191,100	23,200	4,218
1988	198,800	23,000	4,236
1989	206,700	23,500	4,273
1990	215,000	23,600	4,291

G-15

6. PROJECTION OF WATER QUALITY

6.1 General

Pollutant load and water quality of rivers by Basin were projected based on projection of D&I water demand. Major pollution sources are 5 cities/towns, rural areas in 17 districts, 42 rubber factories, 4 palm oil mills and animal husbandry in the Study area. These sources are grouped into nine categories; i.e., (1) Urban domestic sewerage, (2) Urban domestic non-sewerage, (3) Rural domestic, (4) Urban manufacturing sewerage, (5) Urban manufacturing non-sewerage, (6) Rural manufacturing, (7) Palm oil processing, (8) Rubber processing and (9) Animal husbandry. Each category has its own values in net unit pollutant load, discharge ratio, runoff ratio and infiltration ratio. Composition of the above pollution sources is illustrated in Fig. 11.

In order to know the degree of organic water pollution in rivers, BOD was selected among five parameters for living environment such as BOD, SS, DO, pH and NH_4-N .

Projected pollutant load and water quality by Basin are as shown in Tables 23 and 24. And projected maximum BOD concentration distributions in 1990 and 2000 for the condition of 4MP and lower economic growth are illustrated in Figs. 12 to 17.

6.2 Water Quality Projection

6.2.1 Methodology

Water quality of river was projected for all Basins in the Study area.

Water quality was calculated by the following order:

- (1) Pollutant load from pollution source (PLS)
 - = Customer demand (C.D.) x Discharge ratio (D-ratio)
 x Net unit pollutant load (NUPL)
- (2) Pollutant load inflow to river (PLR)
 - = PLS x Runoff ratio (R-ratio)

x (1 + Infiltration ratio (I-ratio))

(3) Pollutant load at some point (PLSP)

= PLR x Residual purification ratio (RP-ratio)

(4) Water quality at some point (W.Q.)

= CD x D-ratio x NUPL x R-ratio x (l + I-ratio)
x RP-ratio/Maintenance flow at some point

G-16

Water quality was calculated by return point of polluted waste water in a Basin.

Water quality projection flow-chart is given in Fig. 18.

Calculation of water quality was carried out on the following assumptions:

- Hydraulic discharge used for water quality projection is Basin discharge in 1977 which is the driest year between 1961 and 1980;
- (2) When the river water is abstracted at intake, pollutant load of the river is decreased. The decreased load is expressed as (Abstracted volume x Water quality);
- (3) Urban domestic and manufacturing waste water in the coastal area is discharged not to river, but to sea directly after treating;
- (4) A part of abstracted water from river is reduced by (SD-CD)/2;
- (5) The effluent from pollution sources is discharged at the return point; and
- (6) I-ratio of groundwater into sewer pipe in city/town having public sewerage system is 20% of the average daily treatment capacity.

6.2.2 Net unit pollutant load (NUPL)

In order to know the degree of water pollution in the river, five parameters such as pH, BOD, SS, DO and NH_4-N will be used. Of these parameters, BOD is the most suitable parameter to know the organic pollution of river water. The reason is described hereunder.

The river water is, first of all, polluted organically because of the direct discharge of domestic waste water and night soil. Then industrial effluent containing heavy metal and chemical materials pollutes the river water chemically but industrial effluent with heavy metal should not be discharged to water body without treatment. Therefore, heavy metals are not suitable parameters to know man-made pollution of river water. River has the self purification mechanism which purifies organic pollution. This mechanism is caused by the fact that aerobic bacteria in river water transforms organic matters to inorganic matters using dissolved oxygen. The volume of dissolved oxygen used by aerobic bacteria is BOD. For the above reasons, BOD load was used in the Study as pollutant load.

Data for NUPL of sewerage, urban, rural, manufacturing, processing and animal husbandry were available in Malaysia (Ref. 12). NUPL was estimated based on several reports (Refs. 2, 11, 12 & 13), assuming that the purification measures remain at the present level of BOD concentration in 1990 and 2000. NUPL of non-sewerage-urban-domestic was estimated based on assumed development of septic tank in urban area as shown in Tables 25 and 26. NUPL of manufacturing by state was estimated by weighted average of water demand by state and NUPL by type of manufacturing. NUPL by type of manufacturing and water demand by state are given in Table 27. NUPL of manufacturings by state is as shown in Table 28. Estimated NUPL is given in Table 29.

6.2.3 Discharge ratio (D-ratio)

Water consumers use clean water and then discharge polluted water to drainage, river or sea directly. D-ratio is the ratio of consumer water demand and discharged water. D-ratio of domestic consumer was determined based on the Malaysian data. D-ratio by pollution source is as shown in Table 29.

In manufacturing, D-ratio was determined with consideration of the recyclic water use development. In palm oil mills and rubber factories the land disposal system is assumed to be progressively applied as shown in Table 30. D-ratio of palm oil mills and rubber factories was determined with consideration of land disposal development and outflow of 10% of pollutant load from land disposal area as shown in Table 31. In animal husbandry no water is used.

6.2.4 Runoff ratio (R-ratio)

The ratio of the reduction in discharged pollutant loads, which is the ratio before and after discharged pollutant reaches a river, is called the runoff ratio.

R-ratio is about 0.1 in rural areas but increases with the progress of urbanization. For a drainage channel made of concrete, R-ratio rises to nearly 1.0. R-ratio by pollution source is as shown in Table 29.

6.2.5 Infiltration ratio (I-ratio)

The infiltration ratio in the existing sewerage systems in the Region is equivalent to about 25% to 30% of the average flow. Since existing systems are constructed with rigid cement joints, it is to be expected that, with the provision of flexible, water tight joints in the future, the infiltration ratio will be about 20% of the average daily flow (Refs. 12, 14, 15 & 16). I-ratio is assumed to be 20% in the Study.

6.2.6 Residual purification ratio (RP-ratio)

Pollutant load in river reduces by deposition, adsorption, biological decomposition and so on. The ratio of reduced pollutant load by these mechanism to the original pollutant load is called the residual purification ratio. In other words, RP-ratio is the ratio of pollutant load of upperstream and downstream. RP-ratio has a figure in the range of 0 to 1 by conditions of water quality, water velocity, water discharge, water depth, and riverbed of the river basin. The relationships between RP-ratio and water quality is close. RP-ratio is about 0.7 in a river with clean water and RP-ratio by basin is assumed to be 0.7 - 0.9 with consideration of the river water quality in 1980 and 1982. RP-ratio by basin is as shown in Table 32.

6.2.7 River maintenance flow

The river maintenance flow used for water quality projection is the minimum natural runoff in the river among those between 1961 and 1980.

6.2.8 Projection of water quality

Water quality of 8 Basins, i.e., the Perlis river basin, the Kedah river basin, the Merbok river basin, the Muda river basin, the Perai river basin, the Juru river basin, the Jejawi river basin and the Pulau Pinang basin was projected for two cases, i.e., the condition of 4MP and lower economic growth. Projected BOD load and BOD concentration by basin in 1990 and 2000 are as shown in Table 33 for the condition of 4MP and Table 34 for the condition of lower economic growth. Total BOD load from pollution sources in the Study area will be 118 ton/d in 1990 and 209 ton/d in 2000 under the condition of 4MP, and 107 ton/d in 1990 and 141 ton/d in 2000 under the condition of lower economic growth, respectively.

It is assumed that waste water from 15 cities mentioned hereunder out of 20 cities is discharged to the sea directly because these 15 cities are located near the sea coast. These 15 cities are Butterworth, Bukit Mertajam, Georgetown, Jitra, Guar Chempedak, Yan Kuala Ketil, Kg. Pmtg Kuching, Perai, Bandar Seberang Jaya, Air Itam, Tg. Tokong, Gelugor, Tg. Bunga and Bandar Bayan Baru.

BOD load from these 15 cities will be 18 ton/d in 1990 and 47 ton/d in 2000 under the condition of 4MP and 14 ton/d in 1990 and 25 ton/d in 2000 under the condition of lower economic growth, respectively.

BOD load into main stream will be 37 ton/d in 1990 and 67 ton/d in 2000 under the condition of 4MP, and 32 ton/d in 1990 and 41 ton/d in 2000 under the condition of lower economic growth, respectively.

Composition of BOD load into river is as shown in Tables 35 and 36. In case of the condition of 4MP, in 1990, urban domestic, urban industry, rubber factories and palm oil mills will be the biggest pollution sources and those BOD load will be 16 ton/d being equivalent to 43% of the total BOD load of 37 ton/d. In 2000, the biggest pollution sources will be urban domestic and urban industry followed by rubber factories and palm oil mills, and BOD load of urban domestic and urban industry into river will be 38 ton/d being equivalent to 57% of the total BOD load of 67 ton/d. That of rubber factories and palm oil mills will be 21 ton/d being equivalent to 31% of the total. In case of the condition of lower economic growth, in 1990, rubber factories and palm oil mills will be the biggest pollution sources and its BOD load will be 14 ton/d being equivalent to 44% of the total BOD load of 32 ton/d. In 2000, they will be also the biggest pollution sources having the BOD load of 21 ton/d being equivalent to 51% of the total BOD load of 41 ton/d.

The projection of BOD concentration was conducted in consideration of the river maintenance flow. Projected maximum and minimum BOD concentration by basin are as shown in Tables 33 and 34.

In case of the condition of 4MP, the highest BOD concentration, 81 mg/l in 1990 and 111 mg/l in 2000, was projected for the Merbok river basin because of the non-treated effluent from urban and rural area and rubber factories. In case of the condition of low economic growth, the Merbok river basin also shows the highest BOD concentration of 71 mg/l in 1990 and 92 mg/l in 2000. Distribution of BOD concentration along the rivers of 5 basins is illustrated as in Figs. 12 to 14 for the condition of 4MP and Figs. 15 to 17 for the condition of lower economic growth. These 5 basins are the Perlis river basin, the Kedah river basin, the Merbok river basin, the Muda river basin and the Perai river basin.

In case of the condition of 4MP, these basins except the Muda river basin show a stretch of higher BOD concentration than 25 mg/l in 2000. It is projected that these stretches are polluted by the waste water from urban domestic and urban industry, i.e. Kangar, Alor Setar, Sg. Petani and Kulim where are located near coast. And all intakes for domestic and industry water supply are located at the upper part of these polluted stretches. Therefore, polluted river water is not abstracted for D&I water supply.

7. POLLUTANT LOAD ABATEMENT PLANS FOR RIVER WATER

7.1 General

As the result of the water quality projection in the Study area for 1990 and 2000, downstream of almost rivers, especially, the Merbok river will be polluted. Therefore it is necessary to consider the pollutant load abatement from viewpoints of water use and environmental quality in river. The best method for pollutant load abatement is that pollution sources control polluted effluent from sources by themselves.

7.2 Setting of Water Quality Criteria

Water quality standards are of two kinds as follows:

- (1) standards for drinking water which pertain to water delivered to consumers after treatment; and
- (2) standards for raw water which are classified depending upon the purpose of utilization, i.e., domestic and industrial water supply, fishery, irrigation, bathing and conservation of environment.

International Standards for Drinking Water have been promulgated by the World Health Organization (WHO) as a worldwide guide to the improvement of water quality and treatment. In Malaysia, there are Standards of Bacteriological Quality of Water and Standards for Toxic Substances derived from the WHO Standards and they have been used by relevant agencies.

The Standards for Toxic Substances include Toxicity Limits and Water Quality Criteria for 4 categories, i.e., (i) municipal water supply, (ii) recreation, propagation of fish and other aquatic wildlife, (iii) agricultural irrigation and (iv) industrial water supply. Adopted parameters are 74 in number but they do not include BOD. Standards of raw water in some countries, Holland, U.S.A., U.S.S.R., Philippines and Japan have adopted several parameters including BOD, Concerns the living environment, river water quality is classified according to water usage, and environmental quality standards values for BOD, DO, SS, pH and Coliform are established for each class. Japanese Standards relating to living environment is as shown in Table 37 and Philippines' water quality criteria is as shown in Table 38. In the Study, BOD is adopted in order to observe the river water quality. Some relationships between BOD concentration in a river and environmental quality, and river water quality standard in some countries are illustrated as in Fig. 19.

As the water quality criteria, two targets for the water pollution abatement are proposed from the viewpoint of environmental quality in the Study. One target is BOD concentration in a river at less than 5 mg/l for the purpose of D&I water supply and another target is BOD concentration in a river at less than 10 mg/l for the conservation of river environment.

7.3 Planning of Treatment Facilities

To reduce BOD concentration to the proposed limit in a river, the improvement of treatment facilities in pollution sources should be conducted.

First of all, the improvement of purification methods in all palm oil mills and rubber factories is assumed. Improved purification methods are rubber investigation in Palm Oil Research Institute of Malaysia (PORIM) and Rubber Research Institute of Malaysia (RRIM) to attain the limit of BOD concentration for watercourse discharge from palm oil mills and rubber factories. DOE proposed 50 ppm for the future limit. Present limits for watercourse discharge in palm oil mills and rubber factories are as shown in Table 39.

If there still remains a river stretch of higher BOD concentration than the proposed limit, the construction of a sewerage system in the urban area immediately upstream of the river stretch is assumed.

Urban domestic and manufacturing waste water is collected and treated in public sewerage treatment facilities. BOD concentration in the effluent from a sewerage system is estimated to be 30 mg/l.

No purification measure is assumed for the effluent from rural area and animal husbandry.

For purification method of effluent from palm oil mills, anaerobic digestion with extended aeration or land disposal are proposed. As treatment method of effluent from rubber factories, aerobic and facultative pond for SMR and oxidation ditch for Latex Concentrate. The layout of the stabilization pond process, combining facultative pond with maturation pond, is shown in Fig. 20.

For public sewerage system, aerated lagoon process is proposed in the Study. This process is historically developed from stabilization pond. Floating aerator for surface aeration is commonly used to supply the necessary oxygen and arise reduction level of laod. Maturation pond is necessary to reduce coliform after treating in the aerated lagoon. The layout of aerated lagoon process is shown in Fig. 21.

7.4 Planning of Pollutant Load Abatement for River Water

As mentioned in 6.3.8, high BOD concentration was projected at the downstream of big pollution sources, i.e., rubber factories or cities/ towns. Therefore, it is necessary to plan the treatment facilities in the Perlis river basin, the Kedah river basin, the Merbok river basin and the Perai river basin.

The purification methods in the rubber factories to be improved and the public sewerage systems in the urban area to be constructed in 1990 and 2000 by basin are as follows:

		Rubber, Palm
Basin Name	City/Town	or Sugar
Perlis	Kangar	Sugar
Kedah	Alor Setar	Rubber
Merbok	Sg. Petani	Rubber
Muda		Rubber
Perai	Kulim	Rubber
P. Pinang		Rubber

Georgetown and Butterworth are located in coastal area, therefore the effluent from these cities is discharged to the sea directly. However from the viewpoints of public health and environment, public sewerage system has been already installed in Georgetown and under construction in Butterworth. Outlines of proposed public sewerage system under two conditions are as shown in Tables 40 and 41. And effluent volume to be treated in rubber factories in 1990 and 2000 is as shown in Table 42.

According to the result of the river water quality projection on the assumption of the improvement of purification system in rubber factories and the construction of public sewerage system in urban area in 1990 and 2000, BOD concentration at the every intake point for D&I water supply will be less than 5 mg/l, however BOD concentration of the stretch near river mouth in the Perlis river basin, the Kedah river basin and the Merbok river basin in 2000 under the condition of 4MP and lower economic growth will be more than 10 mg/l. BOD load in 1990 and 2000 by basin with and without project under the condition of 4MP and lower economic growth are as shown in Tables 43 and 44. To reduce BOD concentration to 10 mg/l, it is necessary to increase river water discharge. As the river maintenance flow, river water discharge which includes the discharge to keep lower BOD concentration than 10 mg/l is proposed in the Study. The river water discharge to keep BOD concentration at less than 10 mg/l by river are as follows:

			Maintenance	Flow $(10^3 \text{ m}^3/\text{s})$
Basin Name	Year	Intake No.	Condition of 4MP	Condition of Lower Economic Growth
Perlis	2000	11	1.5	0.4
Kedah	2000	28	6.2	2.3
Merbok	2000	2	3.7	1.4

7.5 Recommended Pollutant Load Abatement Plan

It is assumed that BOD concentration should not be more than 5 mg/l in river stretches where intakes are located and 10 mg/l in other river stretches.

The recommended measures to attain the above-mentioned standard are the improvement of purification facilities in all the rubber factories, palm oil mills and sugar factories and sewerage development in large towns. There is no significant measures to reduce BOD load from small towns, rural areas and animal husbandry. If the standard cannot be attained with all the above-mentioned measures, either augmentation of river flow by operation of storage dams or diversion of urban sewerage to the sea through a conduit.

Three alternative plans are proposed to attained the above-mentioned standard in the Perlis river basin, the Kedah river basin and the Merbok river basin.

Alternative 1:	to provide a sewerage system in large towns and to augment the river flow with dams.
Alternative 2:	to provide a sewerage system in large towns and conduit which conveys sewage into the sea.
Alternative 3:	to augment the river flow with dams and with no sewerage development in large towns.

Construction cost of sewerage system and conduit and augmentation of river flow with dams by alternative by river basin for the condition of 4MP are summarized as follows:

			Co	nditio 4MP	n of		tion of Lower <u>nomic Growth</u> <u>lternatives</u> 2 3 33 - 6 - - 91 89 - 10 - 10 - 10 60 - 7 - 370		
			Al	ternat	ives	Al	ternat	ives	_
Basin Name	Meas	sures	1	2	3	1	2	3	
Perlis	Sewerage Conduit	(M\$10 ⁶) (M\$10 ⁶)	74	74 6	-	33		-	-
	Dam	(10 ⁶ m ³)	.3	_	91	3		91	
Kedah	Sewerage Conduit Dam	(M\$10 ⁶) (M\$10 ⁶) (106 m3)	247 _ 19	247 10	_ _ 110	89 - 19	10	- - 110	
Merbok	Sewerage Conduit Dam	(M\$106) (M\$10 ⁶) (10 ⁶ m ³)	155	155 7 -	- 370	60 		- - 370	

Selection between Alternative 1 and 3 by basin depends on the cost of dams, which are being studied by a study team. It is herein assumed that Alternative 1 is selected in 3 basin.

In the Muda river basin, the improvement of purification method in all the rubber factories and the palm oil mill is recommended.

In the Perai river basin, the recommended plan includes the improvement of purification method for the rubber factories and sewerage system in Kulim.

8. PLANNING MATERIALS, ECONOMIC BENEFIT AND COST AND MANPOWER REQUIREMENT

8.1 Planning Materials

8.1.1 Construction cost

Construction costs of purification facilities for palm oil mills, rubber factories and sewerage facilities for urban area composed of sewer, pumping station and treatment facilities are estimated, basing on the data from DOE and the previous studies available, i.e. Master Plan and Feasibility Study for Sewerage and Drainage System Project in Alor Setar and its Urban Environs Malaysia Report. The construction cost of pretreatment facilities for domestic and industrial water supply are estimated using the data of the previous studies available.

Construction cost is estimated in the four categories, i.e. (1) direct construction cost, (2) engineering service & administration, (3) land acquisition, and (4) physical contingency. Engineering service and administration costs are assumed to be 10% of the direct cost. Physical contingency is assumed to be 30% of the total of the above (1) to (3).

For the sewerage facilities, direct construction costs by facilities in reference of the hearing data of Butterworth Project as shown in Table 45 are as follows:

> Cs = 0.666Q $C_{T} = 4.33 + 0.067Q$

where, Cs: Direct construction cost of sewer, M10^6$ CT: Direct construction cost of treatment facilities, M10^6$ Q : Treatment capacity, $10^3 \text{ m}^3/\text{d}$

Unit direct construction cost of sewerage facilities per 100 x 10^3 m³/d of treatment capacity is M\$77.6 x 10^6 .

Land acquisition cost for sewerage facilities in reference of the hearing data of Butterworth Project as shown in Table 45 are as follows:

 $C_{L} = 0.107Q$

where, CL: Land acquisition cost of treatment facilities, M10^6$ Q: Treatment capacity, $10^3 \text{ m}^3/\text{d}$

Unit land acquisition cost of sewerage facilities per 100 x 10^3 m³/d of treatment capacity is estimated to be M\$10.7 x 10^6 .

Construction and land acquisition costs of sewerage facilities are generally born by the public and the private sector. Therefore calculation of costs for sewerage systems was carried out on the following assumptions:

- (1) In the existing urban area, cost of house connection pipe is born by the private; and
- (2) In the new development urban area, costs of branch sewer and house connection pipe are born by the private.

Cost and share of branch sewer and house connection pipe to total costs of sewerage systems are as shown in Table 46.

For the purification facilities for palm oil mills, direct construction costs are M3,600/m^3/d$ of treatment capacity for anaerobic digestion with extended aeration and M2,400/m^3/d$ of treatment capacity for anaerobic digestion with land disposal. In consideration of land disposal development; 50% in 1990 and 75% in 2000, direct construction costs in 1990 and 2000 are as follows:

Unit direct construction cost of purification facilities of palm oil mills are estimated to be M $3,000/m^3/d$ of treatment capacity in 1990 and M $2,700/m^3/d$ in 2000.

Purification facilities of palm oil mills is assumed to be constructed in the palm oil mills area, so no land acquisition cost is need.

For the purification facilities for rubber factories, direct construction costs are M700/m^3/d$ of treatment capacity for SMR production and M2,100/m^3/d$ of treatment capacity for Latex concentrate production.

Percentage of rubber factories by type of rubber production in 1980 is as follows:

Type of Rubber Production	Number of Rubber Factory	Share			
		01/41/0			
Conventional and SMR	146	70%			
Latex Concentrate, Mixed and Others	60	30%			

On the assumption of the same share in 1990 and 2000 as in 1980, direct construction cost in 1990 and 2000 is estimated as follows:

 $C_R = (0.7 \times 0.7 + 2.1 \times 0.3) \times Q = 1.12 \times Q$

where, CR: Direct construction cost of purification facilities, $$M\$10^3$$

Q : Treatment capacity, m³/d

Unit direct construction cost of purification facilities of rubber factory is estimated to be M1,120/m^3/d$ of treatment capacity in 1990 and 2000.

As the pretreatment facilities, two treatment methods are proposed. For BOD concentration in raw water between 2 mg/l and 20 mg/l, pretreatment is carried out by the rapid sand-filter and activated carbon absorption (Secondary treatment). For BOD concentration between 20 mg/l and 200 mg/l, an aerated lagoon process such as aerated lagoon or maturation pond (Primary treatment) is further needed. The direct construction cost of the above-mentioned pretreatment facilities are estimated as follows:

> $C_{pre} 1 = 3.75 \times 10^{-6} \times L^{2.9} \times (Q_D + Q_Z)$ $C_{pre} 2 = 22.9 \times 10^{-6} \times L^{2.9} \times (Q_D + Q_Z)$

where, C_{pre} 1: Direct construction cost of primary pretreatment facilities, M\$10⁶ Cpre 2: Direct construction cost of secondary pretreatment facilities, M\$10⁶ L : Reduction level of pretreatment facilities, % QD : Treatment capacity for domestic water supply, 10³ m³/d QZ : Treatment capacity for industrial water supply, 10³ m³/d

Unit direct construction cost of pretreatment facilities are estimated to be M\$31.7 x 10^6 per 100×10^3 m³/d of treatment capacity for primary pretreatment facilities and M\$193.6 x 10^6 per 100×10^3 m³/d of treatment capacity for secondary pretreatment facilities as 50% reduction level.

Pretreatment facilities is assumed to be constructed in the treatment plant area, so no land acquisition cost is need.

The unit construction cost by type of treatment facilities are estimated as shown in Table 47 and summarized below.

Type of Treatment Facility	Unit Construction Cost $(M$10^6/100 \times 10^3 m^3/d)$
	· · · · · · · · · · · · · · · · · · ·
Public sewerage system	120
Purification facilities of palm oil mills in 1990	430
Purification facilities of palm oil mills in 2000	390
Purification facilities of rubber factory	
in 1990 & 2000	160
Primary pretreatment facilities	45
Secondary pretreatment facilities	280

For the proposed river water pollution abatement, estimated public and private development expenditure for public sewerage system under the condition of 4MP and lower economic growth are as shown in Tables 48 to 51 respectively. For the proposed improvement of purification in rubber factories, estimate private development expenditure is as shown in Table 52.

8.1.2 O&M cost

The O&M costs include O&M cost of sewer, pumping station and aerated lagoon process for public sewerage system, O&M cost of ponding process for purification facilities in palm oil mills and rubber factories and O&M cost of aerated lagoon for primary pretreatment and rapid sand filter bed for secondary pretreatment.

Relationship between construction cost and ratio of O&M cost and construction cost by city is shown in Fig. 22. The ratio has the range from 1 to 4%. In the Study, the annual O&M cost is assumed to be 4% of the total construction cost for public sewerage system and 2% of the total construction cost for purification facilities of palm oil mills and rubber factories and pretreatment facilities.

8.2 Economic Benefit and Cost

Economic benefit for water pollution abatement is assumed to be composed with the sewerage benefit and the saving in pretreatment facility.

The sewerage benefit is the willingness-to-pay by served people and saving in the cost of purification of industrial waste water. It is assumed to be 0.6% of real income of served people and gross value of manufacturing production of served industries in this Study.

Pretreatment facilities are necessary if BOD concentration in raw water is more than 2 mg/l for domestic water supply or 5 mg/l for industrial water supply. Its cost can be saved, if the proposed water pollution abatement measures reduced BOD concentration in the river across this limit. This saving in cost is counted as a part of water pollution abatement benefit. This benefit, however, is nil because the intakes in the Region are located in relatively clean river stretches.

Economic cost for water pollution abatement is estimated to be 80% of the financial cost of public sewerage system, purification facilities of palm oil mills and rubber factories and pretreatment facilities for D&I water supply.

Beneficial and adverse effects of water pollution abatement plans under the condition of 4MP and lower economic growth are as shown in Tables 53 and 54.

8.3 Manpower Requirement

8.3.1 Manpower requirement for construction

Manpower requirement for construction is estimated, basing on the data of Ministry of Local Government and Federal Territory. The staff in the Construction Division of Sewerage Department is composed with four categories as follows:

Staff Category	Number of Staff
Executive Engineer	1
Assistant Engineer	3
Technical Assistant	2
Technician	3
Total	. 9

In consideration of the above staff-requirement and construction schedule, manpower requirement is estimated for construction schedule of every 50 x 10^3 m³/d per year as follows:

Staff Category	Number of Staff	Share (%)
- •	2	25
Engineer	2	
Technical Assistant	2	25
Technician	2	25
Others	2	25
Total	8	100

Estimated manpower requirement for construction by city with public sewerage system under the condition of 4MP and lower economic growth are as shown in Tables 57 to 60 respectively.

8.3.2 Manpower requirement for O&M

Manpower requirement for O&M is estimated, basing on the data of the staff-requirement of the Operation Division, Sewerage Department, Ministry of Local Government and Federal Territory as well as manpower requirement for construction. The staff in the Operation Division of Sewerage Department is composed with categories as follows:

Staff Category	Number of Staff
Treatment Plant	
- Laboratory Assistants IMG Workers	3 18
Pumping Stations	
- Mechanical Supervisors IMG Workers	1 11
- Sewer Inspectors IMG Workers	2 29
Other Operations	
Works Manager Chemist/Biologist Technical Assistant (Electrical) Supervisors (Works) Assistant Clerk/Typist Technicians (Sampling Meter Reader) Security IMG Workers Driver	1 2 1 1 2 1 3 22 1
Total	98

.

In consideration of the above staff-requirement and staff required in the D&I water supply, manpower requirement is estimated for treatment capacity of every 200 x 10^3 m³/d as follows:

Staff Category	Number of Staff	Share (%)
Engineer	2	4
Technical Assistant	3	6
Technician	18	38
Others	24	52
Total	47	100

Manpower requirement for O&M by city with public sewerage system under the condition of 4MP and lower economic growth are as shown in Tables 57 to 60 respectively.

REFERENCES

- 1. PENANG SEWERAGE PROJECT FINAL FEASIBILITY REPORT, PREPARED FOR TOWN COUNCIL OF PULAU PINANG, March 1980
- 2. FEASIBILITY STUDY FOR SEWERAGE AND DRAINAGE PROJECT BUTTERWORTH/ BUKIT MERTAJAM METROPOLITAN AREA MALAYSIA, February 1979, JICA
- 3. SEWERAGE AND DRAINAGE SYSTEM PROJECT IN ALOR SETAR AND ITS URBAN ENVIRONS MALAYSIA, March 1981, JICA
- 4. KUALA LUMPUR AND ENVIRONS, MASTER PLAN FOR SEWERAGE AND SEWERAGE DISPOSAL, June 1975, D. Balfour & Sons
- 5. LAPURAN KAJIAN GARISDASAR LIMBAGAN SUNGAI MERBOK WILAYAH KAWALAN KUALITI AIR 4, SEKSYEN KUALITI AIR BAHAGIAN ALAM SEKITAR, KEMENTERIAN SAINS, TEKNOLOGI DAN ALAM SEKITAR, MALAYSIA, 1981
- INDUSTRIAL WASTEWATER MANAGEMENT PROGRAMME IN MALAYSIA, IR. GODWIN SINGAM, DOE, SYMPOSIUM ON INDUSTRIAL WASTEWATER CONTROL, JULY 7-11, 1980
- 7. STUDIES ON EFFLUENTS FROM RUBBER PROCESSING FACTORIES IN MALAYSIA, RUBBER RESEARCH INSTITUTE OF MALAYSIA, 1974
- 8. PALM OIL WASTE TREATMENT BY AEROBIC PROCESS, CHIN K.K., WATER POLLUTION CONTROL IN DEVELOPING COUNTRIES, Feb. 1978
- 9. PALM OIL MILL EFFLUENT SURVEY, PALM OIL RESEARCH INSTITUTE OF MALAYSIA, RUBBER RESEARCH INSTITUTE OF MALAYSIA, Oct. 1981
- 10. STESYEN PENGAWASAN KUALITI AIR KEBANGSAAN 1983, BAHAGIAN ALAM SEKITAR WILAYAH UTARA, KEMENTERIAN SAINS, TEKNOLOGI DAN ALAM SEKITAR
- 11. MUNICIPALITY OF IPOH SEWERAGE FEASIBILITY STUDY, GOVERNMENT OF MALAYSIA, FINAL REPORT, ENEX, March 1974
- 12. COMPREHENSIVE BASIN-WIDE PLANNING OF SEWER SYSTEM RECOMMENDED STANDARDS (Japanese), 1980, Ministry of Construction, Japan
- 13. OVERVIEW OF LAND-BASED POLLUTION SOURCES IN MALAYSIA (DRAFT REPORT), 1980, WHO Pepas
- 14. DRAFT MASTER PLAN AND FEASIBILITY STUDY FOR KOTA KINABALU SEWERAGE, August, 1981
- 15. DRAFT MASTER PLAN AND FEASIBILITY STUDY FOR SANDAKAN SEWERAGE, August, 1981
- 16. DRAFT MASTER PLAN AND FEASIBILITY STUDY FOR TAWAU SEWERAGE, August, 1981

- 17. DATA KUALITI AIR PROGRAM PENGAWASAN SUNGEI 1978, Bahagian Alam Sekitar, Kementerian Sains, Teknologi Dam Alam Sekitar, MALAYSIA
- 18. DATA KUALITI AIR 1979 WILAYAH UTARA, Seksyen Kualiti Air, (Unit Kawalan Pencemaran Air), Bahagian Alam Sekitar, Kementerian Sains, Teknologi Dam Alam Sekitar
- 19. WATER QUALITY ANALYSIS DATA 1980, 1981 AND 1982, Bhg. Alam Sekitar, Wilayah Utara
- 20. STESYEN PENGAWASAN KUALITI AIR KEBANGSAAN 1983, BAHAGIAN ALAM SEKITAR WILAYAH UTARA, KEMENTERIAN SAINS, TEKNOLOGI DAM ALAM SEKITAR
- 21. QUALITY OF THE ENVIRONMENT IN JAPAN, 1981, Environment Agency, Government of Japan
- 22. MANILA WATER SUPPLY III PROJECT, PICOREM, 1979, Republic of the Philippines
- 23. ENVIRONMENTAL QUALITY ACT 1974, ENVIRONMENTAL (PRESCRIBED PREMISES) (CRUDE PALM-OIL) REGULATIONS 1977, GOM
- 24. ENVIRONMENTAL QUALITY ACT 1974, ENVIRONMENTAL QUALITY (PRESCRIBED PREMISES) (RAW NATURAL RUBBER) REGULATIONS 1978, GOM

·

٠

•

TABLES

 Table 1
 POLLUTANT LEVELS OF RIVERS IN 1978

														Uni	it: mo	g/l exco	opt pH
River Name	. Woms	No. of					BOD ₅						spend		·	Ammoniac	al
& WOCR NO.		Samples	Mean	H (La Max	Min	Mean		Min	Mean	COD Max	111		Solid			Nitroge	
			noun	(MAA	, ittin	nean	PAA	6111	nean	FidX	Min	Mean	Мах	Min	<u>Mear</u>	<u>1 Max</u>	Min
Kedah	6103601	- 5	6.4	7.0	5.8	5	10	2	94	230	20	49	100	25	0.36	5 0.67	.0.01
3	6204602	5	6.6	7.5	6.3	3		2	13			36		10			0.01
	6204603	5	6.7	7.3	6.3	5	10	2	26			41	70	5			0.01
	6204620	5	6.0	7.3	3.7	6	13	`1	24			33		5			0.01
	6206605	5	6.8	7.2	6.6	9	35	2	35	115	10	42	60	20			0.01
	6206606	4	6.8	7.2	6.5	17	56	1	65	185	10	43	75	15			0.01
	6206607	4	6.7	6.7	6.6	2		×.1	19	30	10	36	60	5	0.02		0.01
	6206608	4	6.0	6.7	4.0	88		3	155	500	Nil	91	210	40	0.35	1.35	0.01
	6306609	5	6.6	7.2	6.0	2	4	1	13	25	Nil	34	40	30	0.02	0.05	0.01
	6306611 6306612	5 5	6.7	7.3	6.2	3	4	1	12	30	Nil	57	175	5	0.02	0.05	0.01
	6386610	4	6.7 6.0	7.4	6.3 4,5	2 150	3	1	14	20	Nil	51	115	5	0.04		0.01
		*	0.0	. 7.44	4,3	120	464	<1	663	2178	10	95	175	40	0.44	0.94	0.01
Merbok 4	5604601 5604602	1	6.7	6.7	6.7	3	3	3	252	252	252	80	80	80	0.01	0.01	0.01
*	5604602	1	6.5	6.5	6.5	14	14	14	131	131	131	90	90	90	0.01	0.01	0.01
	5705604	1	6.5 6.3	6.5	6.5	6	6	6	223	223	223	65	65	65	0.01		0.01
	5705605	1	6.3	6.3 6.3	6.3 6.3	6	6	6	267	267	267	50	50	50	0.01		0.01
	5705606	1	6.5	6.5	6,5	23 188	23 188	23 188	44	44	44	50	50	50	1.14		1.14
	5704607	ĩ	5.8	5.8	5.8	4	4	100	447 10	447 10	447 10	85	85	85	13.9		13.9
	÷ .					•	•	-1	10	10	10	40	40	40	0.01	0.01 4	(0.01
Muda	5503601	5	6.6	6.8	6.5	1	2	4	16	~30	4	40	110	15	0.22	1.00 <	(0.01
5	6007615	2	6.8	6.8	6.7	4	4	4	. 10	20	Ó	28	30	25	0.03	0.05 4	
	5505603	4	6.3	6.7	6.0	3	6	1	12	18	- 8	41	50	35	0.02	0.03 <	0.01
	5504602 5606604	5	6.5	6.8	6.3	2	3	<1	15	< 30	0	37	80	20	0.03	0.06 <	0.01
	5505612	3	6.5 6.3	6.7	6.4	3	5	<1	20	51	<4	63	95	25	0.03	0.08 <	0.01
	5606605	4	6.5	6.6 6.7	6.0	2	4	<1	17	40	0	37	60	5	0.03	0.06 <	
	5806614	5	6.4	6.6	6.3 6.2	4	8 2	<1 <1	17	55	< 4	59	80	20	0.09	0.33 <	
	5906607	5	6.4	6.8	6.0	2	4	<1	20 28	37 74	<4	59	90	5	0.02	0.05 <	
	6007608	5	6.6	6.7	6.4	ĩ	4	<1	22	56	10 4	40 46	70 80	5 20	0.07	0.23	
Perai	5404601	9	7.0	7.3	6.1	2	5	<1	130	226	38	105	225	10	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		
6	5403602	9	6.9	7.7	5.4	4	n	<1	135	300	38	103	235 210	10 20	0.31	0.85 <	
	5404603	9	6.8	7.2	6,5	3	6	<1	106	196	Nil	84	180	10	0.26 0.37		0.05
	5404604	9	6.6	6.9	6.0	2	3	<1	58	120	Nil	58	150	10	0.20	0.60 0.52 <	Nil
	5404605	8	6.2	7.4	5.3	2	4	<1	15	31	Nil	46	110	ŝ	0.41		0.01
	5404606	9	6.0	7.0	5.4	2	5	< 1	20	39	Nil	61	140	10	0.30	1.10	Nil
	5404607	9	6.2	9.6	5.2	4	15	< 1	26	67	9	48	130	10	0.13	0.64 <	
	5404608	9	6.2	8.0	5.4	2.7	8 -	<0.5	18	48	Nil	48	130	15	0.36	0.98 <	
	5504609	9	6.3	7.0	5.7	3	9	1	20	30	< 5	53	115	10	0.44	1.85	
	5405621	8	5.8	6.2	5.1	2	3	<1	11	38	Nil	44	115	15	0.05	0.18 <	0.01
	5505610	9	5.8	7.2	5.1	3	5	1	36	76	10	61	120	25	0.38	1.87 .0	0.01
Juru	5304601	9	7.5	8.5	6.4	6	12	1	195	315	124	117	255	10	0.46	1.94 <	0.01
6	5304602	8	6.8	7.9	4.6	11	46	<1	152	264	10	63	120	5	0.11	0.30 <	0.05
	5304603	9	6,0	7.8	3.4	7	18	<1	126	260	19	130	420	10	1.49	4.25 (0.01
	5304604	9	5.5	7.3	3.1	5	10	<1	89	226	Nil	53	110	15	2.71	4.10 (0.56
	5304605 5304606	9		8.0	5.4	158	320	6	327	740	20	348	800	145	8.20	18.1 (0.43
	5304608 5304607	9	6.7 6.9		6.4 6.2	53 32	320	5	72	160	Nil	64	110	5	7.55		0.80
	5304608	9 .			5.8	12	65 25	2	84	170	20	116	345	55	8.31	16.3 1	
	5304609	9			4.9	33	160	2. 4	26 88	48 305	10 20	66 139	110 545	10 5	1.49 8.08	3.84 <0 33.0 (
Jejawi	5204601	1 .	8.0	8.0	8.0	1	1	ı	153	152	167						
-	5204602	ĩ			7.6	3	3	3	184	153 184	153 184	5 40	5 40	5	0.01		0.01
	5205603	ī			6.9	ĩ	ĩ	1	10	10	104	50	40 50	40 50	0.02		0.02
	5205604	1			7.2	3	3	3	30	30	30	25	25	25	0.06).06
	5204606	1			6.7	3	3	3	10	10	10	30	30	30	0.01).32).01
	5204607	1	7.9	7.9	7.9	1	1	1	20	20	20	45	45	45	0.14		0.14

Source; Ref. 17

G-35

Table 2 POLLUTANT LEVELS OF RIVERS IN 1979

•

River Name &	WQMS	No. of	pl	I (Ia	b)		BOD5			COD			spend Solid:		Ammonia	acal Ni	troge
WQCR No.	No.	Samples	Mean	Max	Min	Mean	Max	Min	Mean	Max	Min	Mean	Max	Min	Mean	Max	Min
Perlis	6401601	1	7.7			120			320			÷			0.18		•
1	6401602	1	6,9			1			130						0.50		
	6401603	1	7.2			1			210			-			0.01		
	6402604	1	7.2			3			45			-			0.04		
	6402605	1	6.4			3			35						0.01		
	6402606	1	7.8			3			5			-			0.01		
	6402634	1	6.7			15			30			375			0.62		
	6402635 6502607	1 1	7.2			1			95			50			2.88		
	+		7.9			2			5			.55			0.01		
Kuar	6102601	1	6,3			5			70			100			0.07		
2	6103602 6204603	1.	6.4			8			30			· 95			0.10		
	6204604	1	6.0 6.4			3 3			30 30			70 100			0.07		
	6304605	· 1	6.0			3			35			75			0.10 0.33		
	6304606	ĩ	6.3			2			40			65			0,20		
Kedah	6103601	5	6.4	7.1	5.6	2	,	~	78	105	20		166	20		1 00	• · ·
3	6103613	3	6.0	6.3	5,6	2	3	<1 1	45	185 70	20 30	69 53	155 65	30 45	0.67 1.00	1.90	0.19
-	6203614	2	7.1	7.5	6.7	2	ž	ī	265	310	220		. 85	60	0.54	0,70	0.3
	6204602	5	6.3	6.8	6.0	2	4	ĩ	31	105	5	.69	110	45	0.24	0.50	0.0
	6204603	5	6.6	7.3	6,1	1	2	ĩ	12	20	5	60	80	45	0.11	0.26	0.0
	6204620	5	6.6	7.1	6.0	7	25	<1	27	90	10	67	75	55	0.11	0.24	0.0
	6206605	4	6.7	7.2	6.0	1	2	<١	11	20	5	96	135	75	0.05	0.10	0,0
	6206606	4	6.6	7.1	6.1	3	7	1	50	160	5	170	360	60	0.13	0.25	0.0
	6206607	4	6.5	7.1	6.0	2	2	1	11	15	5	84	110	60	0.03	0.15	0.01
	6306609	4	6.9	7.2	6,4	2	4	1	14	40	5	70	140	35	0.09	0.15	0.0
	6306610	4	6.9	7.3	6.3	2	6	1	14	35	5	78	120	45	0.21	0.65	0.04
	6386611 6306612	4	6.9	7.3	6.5	1	1	< <u>1</u>	6	15	Nil	50	55	35	0.09	0.15	0.03
			6.8	7.2	6.5	2	3	1	14	30	5	41	85	20	0.06	0.10	0.01
Merbok 4	5604601 5604602	4 5	7.7 7.0	8.0 7.2	7.5 6.6	6 8	20	1	200	305	5	120	160	90	0.07	0.15	0.0
	5604603	3	7.1	7.3	7.0	13	19 35	Nj.1 2	194 238	365 385	90 140	103 133	175 215	65 75	2.31 2.48	3.82	
	5705604	3	6.9	7.1	6.7	10	28	í	121	260	55	70	130	20	2.48 6.58	6.25 15.95	0.13
	5705605	5	6.9	7.2	6.6	100	455	Nil	132	495	15	75	159	30	12.69	47,35	1.73
	5705606	4 ·	6.9	7.2	6.5	169	340	4	358	570	40	116	205	80	21.91	45.50	0.40
	5704607	3	7.6	7.8	7.5	35	100	Nil	278	315	220	117	165	80	8.17	23.55	0.15
huda	5503601	3	7.2	7.5	6.7	2	2	1	148	275	5	58	120	25	0.11	0.18	0.07
5	5504602	3	6.9	7.4	6.5	2	2	<1	17	35	ō	13	25	5	0.05	0.06	0.03
	5505603	4	6.5	6.7	6.1	2	3	1	13	30	5	60	90	30	0.41	1.30	0.05
	5506604	6	6.8	7.5	6.5	2	3	1	4	10	0	59	100	15	0.08	0.15	0.01
	5606605	6	7.1	7.6	6.4	1	2	< 1	9	30	0	84	180	35	0.07	0.15	0,02
	5906607	6	6.6	6.9	6.3	1	2	1	9	30	0	68	130	25	0.08	0.15	0.01
	6007608	3	6.5	6.7	6.4	1	1	1	13	25	5	40	60	20	0.10	0.15	0.05
	5505612 5806614	6 6	6.8	7.6 7.1	6.3	1	2	1	14	20	5	72	125	10	0.10	0.20	0.05
			6.6		6.3	2	4	1	9	20	0	45	60	25	0.08	0.15	0.01
Perai 6	5403602 5403601	11	7.3	7.9	6.5	3	7	1	259	505	100	78	140	15	0.22	0.51	0.01
U	5404603	11 11	7.1	7.8	6.5	3	4	<1	192	580	15	66	225	10	0.28	0.45	0.01
	5404604	11	7.0 6.7	7.7	6.0	3 4	7	2	121	395	10	68	105	20	0.30		0.01
	5404605	11	6.7	7.6	4.8 6.1	3	15 8	2 <1	97 53	345 180	5 15	87	190	45	0.21		0.01
	5404606	11	6.0	7.1	4.0	4	8	1	27	45	15	95 57	300 110	20 10	0.23 0.33	0.48 0.72	0.06
	5405607	11	5,5	6.8	4.4	5	25	1	31	40 80	5	51	75	20	0.33	0.72	0,10
	5404608	11	5.9	7.1	4.3	3	7	ī	22	35	10	64	100	25	0.64	1.30	0.15
	5404609	11	6.1	6.6	5.5	2	5	1	20	45	5	60	90	25	0.50	0.95	0.05
	5505610	3	6.2	6.5	5.9	2	4	1	23	40	5	80	100	60	0,25	0.32	0.12
	5405621	11	6.2	6.4	5.6	3	6	· 1	17	35	-5	119	420	25	0.11	0.26	0.02
uru	5304601	11	6.4	7.7	4.8	3	5	ł	227	525	95	55	130	15	1.44	2.83	0.20
6	5304602	11	5.5	7.9	3.0	3	8	1	170	385	25	75	130	15	1.37	2.95	0.10
	5304603	10	5.9	7.8	3.4	5	15	1	184	590	10	70	130	35	1.93	3,00	0.90
	5304604	10	5.2	7.4	3.3	3	5	1	106	320	15 :	63	105	15	2.64	4.91	1.12
	5304605	11	6.4	7.4	3.5	107	290	3	195	695	5	102	250	40		16.68	0.10
	5304606	11	6.9	7.5	5.9	27	80	S	102	350	30	65	105	40		21.00	0,50
	5304607 5304608	11	6.8	7.5	6.4	77	200	8	218	520	60	81	170	10		34.90	1.00
	5304608 5304609	9 9	6.5 6.9	7.0 7.5	5.9 6.4	14 48	80 112	<1	36	130	10	63	130	35	1.30	3.95	0.03
							112	, 4	97	230	30	106	295	20		22.05	3.90
	5204601 5204607	2 2	8.0 64	8.0 6.9	7.9	3	3	2	1.75	875	1.75	70	90	50	0.16	0.25	0.06
	5205603	2	6.4 6.1	6.8 6.1	6.0 6.0	5	7	2	20	20	20	40	55	25	0.27	0.45	0.08
	5205603	2	6.0	6.5	5.5	8 2	10 3	6 1	15 15	15 25	15	40	65 45	15	0.46	0.90	0.02
	5205606	2	6.1	6.2	6.0	3	3 4	1	15	25 10	5 5	30 33	45 50	15 15	0.23 0.40	0.25 0.55	0.20 0.25
						2			•					د د	0.40		v. 43

Table 3 POLLUTANT LEVELS OF RIVERS IN 1980

Unit: mg/l except pH

River													_		nit: m	g/1 exc	ept pH
Name &	WOMS	No. of	lq	H (La	ь)		BOD5			COD			ispend Solid:		Ammoni	iacal Ni	trogen
WQCR NO.	-	Samples	Mean	Мах	Min	Mean	Max	Min	Mean	Max	Min	Mean		Min	Mean	Max	Min
Perlis	6401601	2	7,5	7.8	7.2	2	2	2	50	70	- 30	115	160	70	0.39	0.45	0,32
1	6401602	. 2	7.3	7.4	7.2	2	2	1	20	20	20	228	380	75	0.23	0.45	0.01
	6401603	2	7.5	7.8	7.1	2	2	1	30	· 40	20	545		50	0.14	0.26	0.01
	6402604 6402605	1 2	7.7 7.0	7.7	7.7 7.0	1 2	1	1	10	10	10	60	60	60	0.23	0.23	0.23
	6402606	2	8.3	8.4	8.2	1	2 1	1	20 45	30 50	10 40	213 28	310 30	115 25	0.20	0.38	0.01
	6502607	2	8.1	8.2	8.0	1	1	1	25	30	20	20 40	50	30	0.55 0.07	$0.10 \\ 0.13$	0.01 0.01
	6402608	2	8.4	8.4	8.3	2	2	ĩ	30	50	10	43	65	20	0.02	0.02	0.01
	6402634	2	8.0	8.1	7.9	2	2	2	30	40	20	65	65	65	1.29	2.10	0.47
	6402635	2	7.5	7.6	7.3	1	_ 1	1	40	50	30	55	85	25	0.09	0.17	0,01
Kuar	6102601	2	6.9	6.9	6.8	5	8	2	60	60	60	435	650	220	0.52	0.53	0.50
2	6103602	2	6.7	6.8	6.6	3	3	2	50	60	40	238	330	145	0.30	0.50	0.10
	6204603 6204604	2	6.7 6.6	6.9 6.9	6.5 6.2	3 1	4	<1	20	30	10	100	140	60	0.08	0.08	0.08
	6304605	2	6.5	6.8	6.2	1	1	<1 <1	20 10	30 10	10 10	123 88	185 130	60 45	0.02 0.14	0.02	0.01 0.01
	6304606	2	6.5	6.7	6.3	2	3	ì	15	20	10	90	125	55	0.10	0.13	0.01
Kedah	6103601	5	6.8	7.4	6,5	3	7	1	30	60	10	92	150	30	0,62		
3	6103613	5.	6.6	7.0	6.0	2	4	î	21	40	10	56	150	15	0.82	1.09 3,56	0.26 0.01
	6204602	6	6.8	7.2	0.1	1	2	1	13	20	10	58	90	35	0.21	0.40	0.02
	6204603	5	6.9	7.3	6.5	1	3	<1	16	20	10	51	90	15	0.59	2,50	0.03
	6204620 6206605	5	6.8	7.1	6.6	1	2	1	26	60	10	65	110	30	0.15	0.45	0.01
	6206606	6	6.9	7.1 7.2	6.4 6.0	4 3	19 9	<1 <1	22 25	60 60	10 10	88 83	205 195	35 20	0.11 0.21	0.25	0.03
	6206607	6	6.8	7.1	6.2	1	í	1	13	20	10	51	95	25	0.09	0.41 0.20	0.07 0.01
	6306609	4	7.1	7.3	6.7	1	1	<1	15	30	10	41	60	30	0.04	0.10	0.01
	6306610	4	6.7	7.0	6.0	· 1	2	<1	18	40	10		1255	35	0.04	0.06	0.01
	6306611 6306612	6	6.9 7.0	7.2	6.0 6.8	1.	2 1	<1 <1	25	50	10		1210	20	0.05	0.09	0.02
									27	55	10	78	205	35	0.06	0.15	0.01
Merbok 4	5604601 5604602	4 4	7.2 7.2	8.0 7.6	6.7	1	2	1	103	275	20	70	125	35	0.15	0.24	0.01
•	5705604	4	7.4	7.8	6.7 6.6	5	6 8	1 1	66 24	95 35	20 10	58 65	95 110	30 25	$1.87 \\ 1.76$	3.27 4.01	0.52
	5705605	4	6.4	7.1	4.7	8	27	i	34	55	20	76	150	25	7.16	19.78	0.10 0.43
	5705606	4	7.5	8.1	6.9	221	380	3	380	640	50	63	100	35	21.96	46.44	0.23
	5704607	3	7.1	8.0	6.3	2	3	$\langle 1 \rangle$	80	110	30	109	145	75	0,23	0.30	0.20
Muda	5503601	3	7.0	7.2	6.8		2	1	23	45	10	103	160	45	0.13	0.26	0.02
5	5504602	3	6.9	7.1	6.7	1	1	1	20	30	· 10	60	120	30	0.14	0.22	0.09
	5505603	3	6.8	7.0	6.7	2	3	1	18	25	10	40	65	15	0.09	0.12	0.08
	5606604 5505612	3	7.0: 6.9	7.2 7.1	6.8 6.6	1	2 1	1	12 13	15 20	10 10	65 83	120 155	25	0.06	0.13	0.02
	5606605	3.	7.4	7,5	7.3	2	8	1	47	20 90	20	62	120	25 25	0.04 0.09	$0.05 \\ 0.15$	0.03 0.05
	5806614	3	6.7	6.9	6.5	1	1	1	17	30	10	63	100	35	0.08	0.13	0.04
	5906607	3	6.7	6.9	6.6	ı	2	1	3Ò	55	10	42	55	25	0.67	0.10	0.02
	6007608	2	6.9	6.9	6.8	2	2	1	28	45	10	33	40	25	0.12	0.18	0.06
Perai	5403602	9	7,6	8.0	7.0	2	6	~1	117	200	45	122	345	50	0.399	1.03	0.16
6	5404601 5404603	9	7.5	8.1	7.0	2	3	1	108	235	30	91	110	10	0,96	6.23	0.04
	5404604	9 9	7.3 7.0	7.8 7.4	6.7 6.5	1 2	4 4	<1 <1	59 4	180 80	$10 \\ 10$	116 93	345 205	60 40	0.28	0.99	0.04
	5404605	6	6.0	6.8	5.1	2	2	1	40	120	20	180	340	40 40	0.14 0.27	0.27 0.27	0.08
	5404606	9	6.4	7.4	5.6	2	3	<1	24	40	10	92	310	15	1.33	0.37	0.01
	5405607	9	6.1	7.3	4.7	2	4	1	23	40	10	62	105	15	0,199	10.37	0.07
	5404608 5504609		6.7	7.4	6.3	2	2	1	25 -	75	10	53	65	40	0.55	2.18	0.04
	5505610		6.8 6.5	7.3 6.5	6.1 6.5	2 2	4 2	1 2	19 20	30 20	5 20	52 30	70	15	0,57	1.48	0.01
	5405621		6.4	7.3	5,2	1	3	2	23	35	10	85	30 230	30 30	0.92 0.12	0.92 0.27	0.92 0.01
Juru	5304601	10	7.32	8.0	5.2	2	6	1		300	50						
6	5304602			7.9	4.3	2	8	1	151 122	200	40	104 121	275 540	25 50	0.63 1.51	1.55 4.48	0.07 0.36
	5304603	10		7.9	4.3	5	19 19	ī	124	210	30	149	430	65	2.40	4.10	0.19
	5304604			7.8	4.6	7	31	l	81.5	170	20	159	735	40	3.19	4.56	1.80
	5304605 5304606			7.5	5.9		290	2	187	350	20	105	230	35	4.38	12.16	0.07
	5304606			7.8 7.8	6.2 6.4	19 33	40 88	4 1	77 119	130 220	40. 30	58 88	125 115	35 45		11.92	2.81
	5304608			7.4	6.2	11	57	1	85	300	20	68	110	40	6.83 1.83	17.04 5.66	0.65 0.12
	5304609			7.7	6.1	23	84	4	171 1		20	124	285	20	7.51	16.26	0.97
Jejawi	5204601	3	7.57	7.9	7.0	1	2	1	60	100	10	63	110	20	0.26	0.51	0,10
7	5205603	3		7.2	6.5	3	4	ĩ	40	70	20	22	30	10	0.14	0.26	0.10
	5205604			6.6	5.5	2	3	1	17	30	10	132	325	35	0.11		0.03
	5205606 5204607				6.6	2	2	1	13	20	10,	37	50	30	0.05	0.11	0.01
	J20400/	ا د	6.57	6,8	6.1	2	3	1	78	160	20	602 1	1425	140	0.21	0,41	0.03

POLLUTANT LEVELS OF RIVERS IN 1981

														Ur	nit: mg	/l exc	ept pH
River							÷					Su	spend			,,	oro ru
Name & WQCR No.		No. of Samples	pH Mean	I (La) Max	o) Min	Mean	BOD5 Max	Min	Mean	COD Max	Min	Mean	Solids Max	Min		acal Ni	
			<u> </u>											eiru	Mean	Max	Min
Perlis l	6401602 6402603	4 4	6.8 7.0	7.3	6.2 6.6	2	3	1 1	35 41	. 45	20	76	120	20	0.03	0.04	0.02
1	6402603 6402604	2	7.2	7.4	6.9	<i>c</i>			30	60 40	25 20	84 110	135 180	30 40	0.03 0.02	0.05	$0.01 \\ 0.01$
	6402605	4	6.5	6.8	6.2	1	2	$\langle 1$	38	65	20	121	185	.50	0.02	0.02	0.01
	6402606	3	7.2	7.8	6.5	2	3	<1	20	- 30	10	35	.55	20	0.03	0.04	0.01
	6402607	1	7.7	7.7	7.7	1	1	1	10	10	10	55	55	55	0.01	0.01	0.01
	6402608 6402634	3 4	7.3 7.1	7.9 7.4	7.0 6.9	1	2	1	32	: 55	10	82	105	50	0.02	0.03	0.01
	6402635	4	6.5	6.9	6.2	1	2	<1	26 23	35 40	15 10	8 <u>1</u> 75	145 175	25 25	0.03 0.05	0.04	0.01 0.02
	6502601	4	. 7.7	7.9	7.4	-	-		13	20	5	46	80	25	0.02	0.04	0.01
Kuar	6102601	2	6.4	6.6	6.1	-	-		65	90	40	68	70	65	0.03	0.04	0.02
2	6103602	1	6.2	6.2	6.2	3	3	3	3	3	3	85	85	85	0.40	0.40	0.40
	6204603 6204604	2 2	6.4 6.3	6.5 6.4	6.3 6.1	2 2	2 2	<1 <1	25	30	20	88 143	100 185	75 100	0.085	0.16 0.03	$0.01 \\ 0.02$
	6304605	ī	7.2	7.2	7.2	ړ د 1	21	<1	5	5	5	55	55	55	0.025	0.03	0.02
	6304606	2	-		-	-	-	-	13	20	5	68	75	60	0.065	0.08	0.05
Kedah	6103601	6	6.7	7.6	6.0	1	2	<1	41	120	10	55	115	20	0.18	0.53	<0.01
3	6204602	6	6.6	7.0	6.1	2	4	1	19	30	10	44	80	20	0.09	0.35	0.01
	6204603 6204620	5 5	6.8 6.7	7.1	6.4 6.2	1	2 4	<1 <1	15 18	20 30	10 10	58 61	125 125	20	0.01	0.01	0.01 <0.01
	6206606	5	6.8	7.4	6.3	4	10	1	21	40	10	56	170	10 20	0.012	0.02	0.01
	6206607	5	6.9	7.8	6.2	2	4	ī	19	20	15	69	170	20	0.012		<0.01
	6306609	6	6.9	7.5	6.1	2	3	(1	8	10	5	68	250	10	0.02	0.06	0.01
	6306610	6	6.6	7.4	5.9	5	13	<1	25	40	10	90	260	40	0.08	0.33	0.01
	6306611 6306612	6 6	7.1 6.7	7.5 7.4	$6.3 \\ 6.1$	- 2	- 5	<1	14 16	25 30	10 10	54 125	70 605	20 15	0.02	0.04	0.01
	6103613	6	6.3	6.9	5.6	2	2	1	32	50	10	69	130	25	0.16	0.06 0.42	$0.01 \\ 0.01$
	6306611 (A) 1	7.3	7.3	7.3	<1	41	<1	10	10	10	30	30	30	0.01	0.01	0.01
Merbok	5604601	5	7.1	7.2	7.0	1	2	<1	106	200	10	55	125	15	0.022	0.06	0.01
4	5604602 5705604	5 5	6.7 6.6	6.7 6.8	6.6 6.4	3 2	5 3	1 <1	98 82	220 220	20 20	47	65	25	0.52	1.57	0.02
	5705605	ŝ	6.4	6.6	6.1	3	8	1	31	220 60	15	35 63	50 180	20 10	0.13	0.41 4.67	$0.01 \\ 0.01$
	5705606	5	6.2	6.5	5.8	88	196	13	320	540	45	51	75	15	21.38	52,20	2.97
	5704607 5705606 (s	4	6.9 6.3	7.0 6.5	6,6 6,0	1	1 2	<1 1	119 30	300 70	10 10	130	230	55	0.35	1.18	0.01
Muda	5503601	5	6.7	7.8	6.1	1	2	<1	17	35	10	35	55	20	0.11	0.14	0.06
5	5504602	5	6,7	7.6	6.1	1	ĩ	<1 <1	15	25	10	$\frac{118}{101}$	360 285	35 20	0.026	0.05	0.01 0.01
	5505603	5	6.5	7.2	6.2	<1	<1	<1	16	30	10	45	85	20	0.02	0.05	0.01
	5606604	5	6.7	7.4	6.2	<1	1	<١	22	45	10	80	185	10	0.016	0.04	0.01
	5606605 5906607	5 5	7.0 6.4	7.8 7.1	6.3	<1 <1	<1	<1	18	30	10	112	255	20	0.016	0.04	0.01
	6007608	2	6.6	6.6	6.1 6.5	.1	1	く1 く1	14 10	20 10	10 10	53 45	100 70	20 20	0.03 0.07	.0.06	0.01
	5505612	5	6.5	7.2	6.1	<1	ĩ	4	16	30	15	90	245	30	0.02	0.08	0.05 0.01
	5806614	5	6.5	7.1	6.2	<1	1	<1	15	20	10	56	95	20	0.02	0.04	0.01
Perai 6	5403602	6	7.5	8.1	6.6	<1	1	<1	137	230	80	79	125	30	0.078	0.18	0.01
Ŷ	5404601 5404603	6 6	7.3 6.9	7.8 7.3	6.5 6.2	1	2	<1 <1	103 104	220 160	20 25	46 79	85 160	20	0.12	0.28	0.02
	5404604	6	6.7	6.8	5.9	2	4	<1	-48	90	25 15	79 52	80	20 20	0.14	0.37 0.30	0.01 0.01
	5404605	6	6.4	7.1	5.5	1	2	<1	18	30	10	44	70	10	0.09	0.25	0.02
	5404606	6	6.0	6.5	5,3	2	3	<1	15	20	10	46	70	20	0.165	0.59	0.01
	5405607 5404608	6	5.8	6.1	5.5	1	2	<1	18	25	10	44	95	25	0.13	0.30	0.01
	5404608	6 6	6.2 6.0	6.5 6.5	5.6 5.3	2 1	3	<1 <1	20 53	30 225	10 10	48 47	75 85	25 25	0.35	1.10	0.01
	5405621	ő	6.0	6.5	5.5	2	5	< <u>1</u>	15	225	5.	51	85 80	25 20	0.70 0.04	2.73 0.08	0.01 0.01
Juru	5304602	4	5.4	6.8	3,5	2	3	1	146	250	50	39	55	20	0.35	0.94	0.03
6	5304603	4	6.4	6.8	5.7	4	5	2	96	250	40	145	445	30	2.02	3.20	0.05
	5304604 5304605	6 6	6.4 6.6	6.9 7.5	6.0	3	8 223	<1	95	175	20	68	210	15	3.24	6.79	0.01
	5304606	4	6.7	7.5 6.9	5.9 6.4	97 36	231 61	15 2	376 120	735 200	60 20	197 46	790 55	35 25	10.35	20.20	0.02
	5304607	6	6.8	7.5	6.3	47	123	10	157	400	20 65	46	55 100	45 45	12.495		0.04 0.08
	5304608	6	6.6	7.3	6.2	19	40	4	66	120	20	67	110	25	4.278	8.55	0.02
laisui	5304609	5	6.7	6.9	6.3	19	27	9	84 161	130	65 50	76	100	35	4.62	9.05	0.17
Jejawi 7	5204601 5204607	4 4	7.4 6.3	7.7 7.0	6.9 5.3	2 2	3 3	,1 1	161 44	400 115	50 15	135	225	45	0.05	0.10	0.02
	5205603	4	6.1	6.9	5.0	-	-		44	115	15 10	173 51	505 . 80	40 25	0.02	$0.02 \\ 0.10$	0.01
	5205604	4	6.2	6.7	5.6	1	ı	<1	10	15	5	43	70	30	0.08	0.10	0.01 0.01
	5205606	4	6.1	6.7	5.4	-	-	-	14	25	10	43	45	35	0.01	0.02	0.01
<i>(</i> 1	no. Nof	10															

.

Table 5 POLLUTANT LEVELS OF RIVERS IN 1982

Unit: mg/l except pH

														U	nit: m	g/l exc	ept pH
River	- Hour						DOD						spende				
Name (WQCR No	~	No. of Samples	P Mean	H (La Mai		Mean	BOD5 Max	Min	Mean	COD Max	Min	Mean	Solids Max	5 Min	Ammoni Mean	iacal Ni	
						<u>un</u>		1111	tiouri			nean	rian		nean	Мах	Min
Perlis	6502601	1	7.8	7.8		1	1	1	5	5	5	15	15	15	0.02	0.02	
1	6401602 6401603	1 4	7.2	7.2		1	1	1	40	40	40	55	55	55	0.03	0.03	
	6402605	4	7.0	7.0		2 2	4	1	44 34	65 40	15 25	190 198	500 255	60	0.28	0.58	
	6402606	4	8.2	8.3		1	2	1	14	25	25	43	235	110 20	0.28	0.46	
	6402608	i	7.4	7.4		7	7	7	35	35	35	65	65	65	0.02	0.02	
	6402634	3	7.5	8.0	7.1	2	2	2	32	50	15	72	95	40	0.19	0.39	0.02
	6402635	1	6.5	6.5	6.5	4	4	4	40	40	40	60	60	60	0.03	0.03	0.03
Kuar	6102601	3	7.0	7.1	6,8	· 1	2	<۱	33	40	30	45	60	35	0.50	0.84	0.24
2	6204603	3	6.7	6.8		1	2	1	18	25	10	123	180	80	0.50	1.31	0.24
	6204604	2	6.3	6.8	5.8	2	2	2	23	30	15	185	215	155	0.48	0,86	0.10
	6204606	1	6.7	6.7	6.7	2	2	2	15	15	15	20	20	20	0.15	0.15	0.15
Kedah	6103601	3	6.4	6.9	5.9	2	2	41	35	40	30	45	85	25	0.42	0.51	0.25
3	6204602	2	6,8	7.0		3	4	2	23	30	15	38	45	30	0.045		0.02
	6204603	3	6.8	7.0	6.3	1	1	<1	17	35	5	95	215	30	3.057		0.02
	6306610	3	7.0	7.4		5	8	1	22	30	10	182	360	65	0.04	0.06	0.03
	6306611	3	7.0	7.4		1	2	1	15	35	5	210	550	20	0.037		0.02
	6206607 6306609	2 2	66 68	6.6 7.0		<1 1	<1	<1	20	30	10	- 55	55	55	0.04	0.05	0.03
	6103613	2	6.3	6.3	0.5	2	2	<1 <1	13 30	20 40	5 20	55 88	90 90	20 85	0.03 0.18	0.04 0.32	0.02
												•••	50	•••	0.10	0.52	0105
Merbok	5604601	6	6.9	7.6		3	9	<1	120	335	35	126	435	25	0.67	1.94	0.01
4	5604602 5705604	8 8	7.5	8.7	6.3	- 4	6	1	125	265	45	51	95	20	2.00	2.93	0.02
	5705605	8	6.1	7.8	6.7 3.7	2 12	4 76	्य <1	70 44	230 140	10 10	45 147	75 785	20 30	0.82 11.73	1.78	0.01
	5705606	8	5.9	7.4	4.2		1260	10		2895	15	118	650	25		54.00 302.00	0.01
	5704607	7	7.2	7.5	6.8	1	2	<1	167	255	75	75	95	40	0.27	0.75	0.03
	5604601A	2	6.9	7.0	6.8	2	3	2	35	45	25	170	260	80	7.00	13.60	0.40
Muda	5503601	1	7.7	7.7	7.7	1	1	1	140	140	140	75	75	75	0.02	0,02	0.02
5	5504602	7	6.7	7.4	6.2	ī	2	<1	16	25	10	34	65	5	0.14	0.66	0.02
	5505603	7	6.9	7.6	6.5	1	1	<1	13	25	5	55	80	40	0.107	0.37	0.01
	5505604	7	7.0	7.5	6.7	1	1	~1	13	25	5	44	65	30	0.07	0.12	40.01
	5606605	2	7.2	7.2	7.1	1	4	4	13	-20	5	28	30	25	0.24	0.47	0.01
	5906607 5505612	6 1	6.9 7.3	7.4	6.8 7.3	1	1 <1	<1 <1	13 5	20 5	5 5	49 60	95	5	0.16	0.74	0.01
	5806614	7	6.6	7.2	6.2	1	2	4	11	20	5	50	60 150	60 10	0.02	0.02 0.30	0.02
	5709605A	1	7.4	7.4	7.4	ĩ	<1	<1	5	5	5	55	55	55	0.12	0.12	0.12
	5808605	4	7.4	7.7	7.1	1	1	<1	11	20	5	40	55	10	0.135	0.36	0.02
	S.T.	1	7.1	7.1	7.1	1	<1	<1	10	10	10	50	50	50	0.32	0.32	0.32
Perai	5604601	1	7.6	7.6	7.6	1	1	1	315	315	315	65	65	65	0,02	0.02	0.02
6	5403602	8	7.2	7,5	6.7	2	5	<1	108	245	40	59	95	20	0.32	17.00	0.01
	5403603	1	7.4	7.7	7.4	1	1	1	110	110	110	65	65	65	0.01	0.01	0.01
	5403604	8	6.9	7.4	6.4	1	2	<1	52	160	10	59	105	20	0.15	0.33	0.01
	5404605 5404606	1 7	7.6 6,5	7.6 7.1	7.6 5.8	1	1 2	1	35	35	35	95	95	95	0.02	0.02	0.02
	5405607	2	6.6	6.9	5.8	1 3	2 5	<1 1	21 38	35 45	5 30	49 55	75 70	20 40	0.33 0.145	0.58 0.27	0.02
	5404608	8	6.6	7.1	6.1	1	2	<1	24	40	10	69	105	20	0.93	2.80	0.02
	5504609	1 ·	7.3	7.3	7.3	1	1	1	15	15	15	60	60	60	0.02	0.02	0.02
	5405621	7	6.3	6.7	5.2	1	1	<1	16	40	5	94	255	55	0.09	0.32	0.01
-	5404621	1	7.1	7.1	7.1	1	<1	4	30	30	30	60	60	60	0.01	0.01	0.01
-	G. MENGKUAN	31	5.2	5.2	5.2	1	<1	۲۱	10	10	10	125	125	125	-	-	-
Juru	5304604	9	4.4	7.0	2.9	5	11	<1	66	165	10	88	225	35	5.67	11.90	0.07
6	5304605	9		7.3	4.6	35	108	3	92	190	25	73	185	20	8.34	31.30	0,99
	5304606	7	6.6	7.1	6.1	19	30	5	73	90	30	56	100		15.50	20.20	
	5304607 5304608	9 4	6.7 6.4	7.6 7.0	5.0	70 30	186 44	10 15	178 85	360 125	30 60	95 55	185 70	40	15.22	29.50	2.80
	5304609	4	6.8		6.3	27	44 51	15		125	60 40	55 79	100	25 65	9.61 9.78	11.20 19.70	6.80
	5304603	i	6.4	6.4		4	4	4	195	195	195			110	5.00	5,00	3.10 5.00
	5304604A	1	3.3	3,3	3.3	1	<1	<1	55	55	55	35	35	35	5.10	5.10	5.10
Jejawi	5204601*	6	6.0	7.6	3.8	1	2	K 1	252	635	50	78	170	20+	0.70	, ,.	0.01
7	5205603	6		6.9	4.5	1	2	۲۲ ۲۷	252 13	20	50 10	78 34	50	30* 20	0.70 0.13	1.14	0.01
	5205604	1		6.4	6.4	ī	ĩ	1	5	5	5	35	35	35	0.01	0.34 0.01	0.04 0.01
	5205606	1		6.6	6.6	1	1	1	10	10	10	30	30	30	0.01	0.01	0.01
	5204607	6	6.5	7.1	5.9	4	11	<1	25	65	4	100	135	20	0.31	0.75	0.02

WATER QUALITY ANALYSIS DATA, SAMPLING IN JANUARY 1983 BY RIVER (1/5)

Chemical Analysis		Per	lis	
(mg/1)	6401603	6402605	6402606	6402634
Sampling Time	0940	1010	1040	1110
Sampling Date	21.1.83	21.1.83	21,1.83	21,1,83
1. pH at 26°C	7.7	7.1	8.1	7.9
2. B.O.D. 5 Days @20°C	1 .	2	2	. 2
3. Chemical Oxygen Demand	10	15	5	20
4. Ammoniacal Nitrogen as N	1.07	0,38	0.29	0.20
5. Total Kjeldahl Nitrogen as N	1.90	1.40	0.98	0.28
б. Nitrate Nitrogen as N	0.50	0.35	0.10	0.25
7. Chloride (as Cl ⁻)	44	7	8	. 16
8. Fluoride (as F)	-	-	-	-
9. Sulphate (as SO4)	-	-	· _	
10. Phosphate (as P)	0.10	0.11	0.03	0.05
ll. Total Solids Dried at 105°C	310	340	315	160
12. Suspended Solids Dried at 105°C	130	175	35	45
13. Dissolved Solids	180	165	280	115
14. Oil and Grease	-	- -	-	-
15. Salinity % (Parts per thousand)	0	0	. 0	. 0
16. Conductivity (umhos/cm)	260	60	500	170
17. Arsenic (as As)	-	-	-	-
18. Iron (as Fe)	0.8	1.6	0.1	0.1
19. Color (Hazen units)	70	70	10	20
20. Turbidity (FTU)	80	130	5	10
21. Total Hardness as CaCO3	55	25	255	70
22. Cadmium (as Cd)	**	-	-	-
23. Sodium (as Na)	-	-	-	-
24. Potassium (as K)		-	-	-
25. Calcium (as Ca)	16.0	5,2	49.2	18,4
26. Magnesium (as Mg)	4.1	2,4	31.6	5.6
27. Dissolved Oxygen	2.1	5.0	2.9	2.0

WATER QUALITY ANALYSIS DATA, SAMPLING IN JANUARY 1983 BY RIVER (2/5)

Sampling Time 1000 0940 1230 1740 1600 1710 166 Sampling Date 22.1.83 22.1.83 21.1.83	Chemical Analysis				Kedah			
Sampling Date 22.1.83 22.1.83 21.1.83<	(mg/1)	6103601	6103613	6204603	6206607	6306609	6306610	6306611
1. pH at 26°C 7.1 7.1 7.3 7.4 7.5 7.2 2. B.O.D. 5 Days @20°C 3 1 1 2 1 1 3. Chemical Oxygen Demand 30 30 10 40 10 10 10 4. Ammoniacal Nitrogen as N 1.30 0.62 0.08 0.21 0.10 0.21 0.1 5. Total Kjeldahl Nitrogen as N 1.51 1.18 0.31 0.32 0.34 0.42 0.3 6. Nitrate Nitrogen as N 0.05 0.15 0.10 0.	Sampling Time	1000	0940	1230	1740	1600	1710	1645
2. B.O.D. 5 Days @20°C 3 1 1 2 1 1 3. Chemical Oxygen Demand 30 30 10 40 10 10 10 4. Ammoniacal Nitrogen as N 1.30 0.82 0.08 0.21 0.10 0.21 0.11 5. Total Kjeldahl Nitrogen as N 1.51 1.18 0.31 0.32 0.34 0.42 0.31 6. Nitrate Nitrogen as N 0.05 0.15 0.10 0.10 0.10 0.10 0.10 7. Chloride (as Cl ⁻¹) 10 7 2 3 4 5 8. Fluoride (as F) -	Sampling Date	22.1.83	22.1.83	21.1.83	21.1.83	21.1.83	21.1.83	21.1.83
3. Chemical Oxygen Demand 30 30 10 40 10 10 1 4. Ammoniacal Nitrogen as N 1.30 0.82 0.08 0.21 0.10 0.21 0.11 5. Total Kjeldahl Nitrogen as N 1.51 1.18 0.31 0.32 0.34 0.42 0.36 6. Nitrate Nitrogen as N 0.05 0.15 0.10 0.10 0.10 0.10 0.11 7. Chloride (as Cl ⁻⁺) 10 7 2 3 4 5 8. Fluoride (as SQ ⁺⁻) - </td <td>1. pH at 26°C</td> <td>. 7.1</td> <td>7.1</td> <td>7.3</td> <td>7.3</td> <td>7.4</td> <td>7.5</td> <td>7.4</td>	1. pH at 26°C	. 7.1	7.1	7.3	7.3	7.4	7.5	7.4
A. Arwoniacal Nitrogen as N 1.30 0.62 0.08 0.21 0.10 0.21 0.13 5. Total Kjeldahi Nitrogen as N 1.51 1.18 0.31 0.32 0.34 0.42 0.3 6. Nitrate Nitrogen as N 0.05 0.15 0.10 0.10 0.10 0.10 0.10 7. Chloride (as Cl ⁻¹) 10 7 2 3 4 5 8. Fluoride (as SO4) -	2. B.O.D. 5 Days @20°C	3	1	1	2	1	1	. 1
5. Total Kjeldahl Nitrogen as N 1.50 0.02 0.03 0.21 0.10 0.21 0.1 6. Nitrate Nitrogen as N 0.05 0.15 0.10 0.10 0.10 0.10 7. Chloride (as C1 ⁻) 10 7 2 3 4 5 8. Fluoride (as F) - - - - - - 9. Sulphate (as S04) - - - - - - 0. Phosphate (as P) 0.27 0.19 0.06 0.05 0.03 0.04 0.0 1. Total Solids Dried at 105°C 125 140 65 65 60 75 11 2. Suspended Solids Dried at 105°C 15 45 10 5 5 30 6 4. Oil and Grease - - - - - - - 5. Salinity % (Parts per thousand) 0 0 0 0 0 0 0 6. Conductivity (umhos/cm) 85 60 40 40 60 70 6 70 70	3. Chemical Oxygen Demand	30	30	10	40	10	10	10
6. Nitrate Nitrogen as N 0.05 0.11 0.12 0.14 0.42 0.1 7. Chloride (as Cl ⁺) 10 7 2 3 4 5 8. Fluoride (as F) -	4. Ammoniacal Nitrogen as N	1.30	0.82	0.08	0.21	0.10	0.21	ò.18
7. Chloride (as Cl ⁻) 10 7 2 3 4 5 8. Fluoride (as Cl ⁻) 10 7 2 3 4 5 9. Sulphate (as SO ₄) - <td>5. Total Kjeldahl Nitrogen as N</td> <td>1.51</td> <td>1.18</td> <td>0.31</td> <td>0.32</td> <td>0.34</td> <td>0.42</td> <td>0.34</td>	5. Total Kjeldahl Nitrogen as N	1.51	1.18	0.31	0.32	0.34	0.42	0.34
Andread (as F) 10 7 2 3 4 5 8. Fluoride (as F) -	6. Nitrate Nitrogen as N	0.05	0.15	0.10	0.10	0.10	0.10	0,10
9. Sulphate (as SO4) - </td <td>7. Chloride (as C1~)</td> <td>10</td> <td>7</td> <td>2</td> <td>3</td> <td>4</td> <td>S</td> <td>5</td>	7. Chloride (as C1~)	10	7	2	3	4	S	5
0. Phosphate (as P) 0.27 0.19 0.06 0.05 0.03 0.04 0.0 1. Total Solids Dried at 105°C 125 140 65 65 60 75 11 2. Suspended Solids Dried at 105°C 15 45 10 5 5 45 5 3. Dissolved Solids 110 95 55 60 55 30 6 4. Oil and Grease -	8. Fluoride (as F)	-	-	-	-	-	-	
1. Total Solids Dried at 105°C 125 140 65 65 60 75 11 2. Suspended Solids Dried at 105°C 15 45 10 5 5 45 5 3. Dissolved Solids 110 95 55 60 55 30 6 4. Oil and Grease -	9. Sulphate (as SO4)	-	-		-		-	-
1. Total Solids Dried at 105°C 125 140 65 65 60 75 11 2. Suspended Solids Dried at 105°C 15 45 10 5 5 45 5 3. Dissolved Solids 110 95 55 60 55 30 6 4. Oil and Grease - - - - - - - - 5. Salinity % (Parts per thousand) 0 0 0 0 0 0 0 0 6. Conductivity (umhos/cm) 85 60 40 40 60 70 6 7. Arsenic (as As) - - - - - - - - 8. Iron (as Fe) 0.4 0.4 0.6 0.4 0.1 0.1 0.1 9. Color (Hazen units) 70 70 30 20 10 10 7 10. Turbidity (FTU) 25 65 10 5 5 5 4 11. Manganese (as Mn) - - - - - - -<	0. Phosphate (as P)	0.27	0.19	0.06	0.05	0.03	0.04	0.03
2. Suspended Solids Dried at 105°C 15 45 10 5 5 45 5 3. Dissolved Solids 110 95 55 60 55 30 6 4. Oil and Grease - - - - - - - - - 5. Salinity & (Parts per thousand) 0 0 0 0 0 0 6 6. Conductivity (unhos/cm) 85 60 40 40 60 70 6 7. Arsenic (as As) - <td>1. Total Solids Dried at 105°C</td> <td>125</td> <td>140</td> <td>65</td> <td>65</td> <td>60</td> <td>75</td> <td>110</td>	1. Total Solids Dried at 105°C	125	140	65	65	60	75	110
4. Oil and Grease -	Suspended Solids Dried at 10	5°C 15	45	10	5	5	45	50
4. Oil and Grease -	3. Dissolved Solids	110	95	55	60	55	30	60
6. Conductivity (unhos/cm) 85 60 40 40 60 70 6 7. Arsenic (as As) -	4. Oil and Grease	-	-	-	-	_	_	_
7. Arsenic (as As) -	5. Salinity % (Parts per thousa	nd) 0	0	o	0	0	0	0
7. Arsenic (as As) -	6. Conductivity (umhos/cm)	85	60	40	40	60	70	60
9. Color (Hazen units) 70 70 30 20 10 10 70 9. Color (Hazen units) 70 70 30 20 10 10 70 0. Turbidity (FTU) 25 65 10 5 5 5 44 1. Manganese (as Mn) -	7. Arsenic (as As)	~	-	-	-	-	-	_
9. Color (Hazen units) 70 70 30 20 10 10 70 0. Turbidity (FTU) 25 65 10 5 5 5 44 1. Manganese (as Mn) - <td>8. Iron (as Fe)</td> <td>0.4</td> <td>0.4</td> <td>0.6</td> <td>0.4</td> <td>0,1</td> <td>0.1</td> <td>0.8</td>	8. Iron (as Fe)	0.4	0.4	0.6	0.4	0,1	0.1	0.8
0. Turbidity (FTU) 25 65 10 5 5 5 44 1. Manganese (as Mn) -	9. Color (Hazen units)	70	70	30	20	10		70
1. Manganese (as Mn) -	D. Turbidity (FTU)	25	65	10	5	5		40
3. Sodium (as Na) -	l. Manganese (as Mn)	-	-	~	_	_	_	-
4. Total Hardness as CaCO3 20 15 15 15 25 25 26 5. Calcium (as Ca) 4.4 4.8 4.0 4.4 8.0 8.4 5.6 5. Magnesium (as Mg) 2.2 1.2 1.0 0.7 1.0 1.2 1.2	2. Cadmium (as Cd)	-	-	· _	•	_	-	_
A. Total Hardness as CaCO3 20 15 15 15 25 25 26 G. Calcium (as Ca) 4.4 4.8 4.0 4.4 8.0 8.4 5.0 G. Magnesium (as Mg) 2.2 1.2 1.0 0.7 1.0 1.2 1.2	3. Sodium (as Na)	-	-	-	-	~	-	-
b. Calcium (as Ca) 4.4 4.8 4.0 4.4 8.0 8.4 5.6 b. Magnesium (as Mg) 2.2 1.2 1.0 0.7 1.0 1.2 1.3 c. Dissolved Owngan 1.2 1.2 1.0 1.2 1.3	1. Total Hardness as CaCO3	20	15	15	15	25	25	20
Magnesium (as Mg) 2.2 1.2 1.0 0.7 1.0 1.2 1.2	. Calcium (as Ca)	4.4	4,8		-			5.6
	. Magnesium (as Mg)	2.2	1.2	1.0				1.2
	. Dissolved Oxygen	1.2	1.1	6.7	7,4	8.5	5.0	7.9

,

WATER QUALITY ANALYSIS DATA, SAMPLING IN JANUARY 1983 BY RIVER (3/5)

	Chemical Analysis		Kuar				Mer	bok		
	(mg/1)	6102601	6204603	6204604	5604601	5604602	5704604	5705605	5705606	5704607
	Sampling Time	0840	1200	1140	1010	1240	1340	1400	1520	1420
	Sampling Date	21.1.83	21,1,83	21.1.83	20.1.83	20.1.83	20.1.83	20,1.83	20.1.83	20,1.83
1.	pH at 26°C	7.3	7.1	7.0	7.2	7.8	7.7	5.0	5.2	7.7
2.	B.O.D. 5 Days @20°C	1	2	1	3	14	4	14	325	2
3.	Chemical Oxygen Demand	10	15	10	115	85	40	80	500	44
4.	Ammoniacal Nitrogen as N	0.23	0.96	0.50	0,17	3.25	5.9	16.8	95.25	0.36
5.	Total Kjeldahl Nitrogen as N	0,53	1.68	1.90	0.39	4.20	6.16	17.08	99.12	0,42
6.	Nitrate Nitrogen as N	0,05	0.20	0.15	0.05	0.10	0.50	0,20	0.30	0.15
7.	Chloride (as Cl ⁻)	4	5	4	4	8,525	5,025	1	5	13,025
8.	Fluoride (as F)	-	-	-	-	-	-	-	-	-
9.	Sulphate (as SO4"-)	-	-	-	-		-	-	-	· –
10.	Phosphate (as P)	0.06	0.11	0.05	0.04	0,28	0.20	1,55	9.55	0.05
11.	Total Solids Dried at 105°C	105	90	165	70	21,645	11,705	135	690	29,535
12.	Suspended Solids Dried at 105°C	15	10	85	20	25	20	15	30	40
13.	Dissolved Solids	90	80	80	50	21,620	11,685	120	660	29,495
14.	Oil and Grease	-	-	-	-	-	-	-	-	· _
15.	Salinity % (Parts per thousand)	0	Ò	0	0	2.0	0.8	0	0.2	2.2
16.	Conductivity (umhos/cm)	60	60	40	42	35,000	15,000	210	1,100	38,000
17.	Arsenic (as As)	_	-	-	-	-	-	-	· –	-
18.	Iron (as Fe)	0.4	1.4	0.4	0.4	0.1	0.1	1.2	0.8	0.1
19.	Color (Hazen units)	70	10	70	10	15	15	15	70	10
20.	Turbidity (FTU)	35	5	4.5	5	5	5	5	35	5
21.	Manganese (as Mn)	-	-	-	-	-	-	-	-	-
22.	Cadmium (as Cd)	-		-	-	-	-	-	1 <u>1</u>	· _
23.	Sodium (as Na)	-	-	-	-	-	-	-	-	••
24.	Total Hardness as CaCO3	20	15	10	20	2,780	1,700	30	45	4,710
25.	Calcium (as Ca)	4.8	4.8	3.2	4.8	192	112	6.0	14.4	288
26.	Magnesium (as Mg)	1.5	1.0	0.7	1.5	559	345	3.4	2.7	970
27.	Dissolved Oxygen	2.0	1.1	6.7	2.0	0,6	4.1	0.8	1.5	7.4

,

.

WATER QUALITY ANALYSIS DATA, SAMPLING IN JANUARY 1983 BY RIVER (4/5)

	Chemical Analysis				Muda			
	(mg/1)	5504602	5505603	5606604	5608605	5906607	5906614	5607606
	Sampling Time	1730	1550	1450	1220	1110	1030	1420
	Sampling Date	16,1,83	16.1.83	16.1.83	16.1.83	16.1.83	16.1.83	16.1.83
1.	pH at 26°C	7.4	7,2	7.2	7.8	7.3	7.3	7.2
2.	B.O.D. 5 Days @20°C	1	l	1	1	1	1	1
з.	Chemical Oxygen Demand	20	20	20	5	20	5	5
4.	Ammoniacal Nitrogen as N	0,30	0.06	0.04	0.10	0.20	0.07	0.08
5.	Albuminoid Nitrogen	-	-	_	-	-	-	-
6.	Nitrate Nitrogen as N	0.25	0.20	0.25	0.20	0,15	0.74	0.40
7.	Chloride (as Cl ⁻)	2	2	2	3	2	2	2
8.	Fluoride (as F)	-	-	-	•	-	-	-
9.	Sulphate (as SO4)	-	-	-	-		-	
10.	Phosphate (as PO4)	-	-			. 🛥		-
11.	Total Solids Dried at 105°C	55	55	70	95	55	50	55
12.	Suspended Solids Dried at 105°C	30	30	10	10	10	20	20
13.	Dissolved Solids	25	25	60	85	45	30	35
14.	Oil and Grease	-	_	-	-	-	-	-
15.	Salinity % (Parts per thousand)	0	0	0	0	0	0	0
16.	Conductivity (umhos/cm)	40	40	50	90	30	30	30
17.	Arsenic (as As)	-	-	-	-	-	-	-
18.	Iron (as Fe)	0.4	0.2	0.4	0.4	0.4	0.4	0.4
19.	Color (Hazen units)	5	10	5	5	5	5	5
20.	Turbidity (FTU)	5	10	5	5	5	. 5	5
21.	Manganese (as Mn)	-	-	-	-	-	-	-
22.	Cadmium (as Cd)	-	-	-	-	-	-	• [•]
23.	Sodium (as Na)	-	-	-	-	-	-	· _
24.	Total Hardness as CaCO3	15	15	20	40	10	10	15
25.	Calcium (as Ca)	4.8	4.8	5.6	12.8	3.2	2.8	3.6
26.	Magnesium (as Mg)	0.7	0.7	1.0	1.9	1.0	1.0	1.0
27.	Dissolved Oxygen	7.3	7.2	7:5	7.5	8.1	6.5	8.2

,

.

WATER QUALITY ANALYSIS DATA, SAMPLING IN JANUARY 1983 BY RIVER (5/5)

	Charden L. Analyzin		Juru				Perai		
	Chemical Analysis (mg/l)	5304604	5304605	5304607	5403602	5404604	5404606	5404608	5405621
	Sampling Time	1230	1150	1130	1400	0910	1000	0940	1020
	Sampling Date	6.1.83	6.1.83	6.1.83	6.1.83	6.1.83	6.1.83	6.1.83	6.1.83
۱.	pH at 26°C	4.3	7.2	7.1	7.4	6.7	5.6	6.5	6.4
2.	- B.O.D. 5.Days @20°C	1	19	15	1	. 1	1	1	1
3.	Chemical Oxygen Demand	20	45	35	345	15	50	5	5
4.	Ammoniacal Nitrogen as N	2.24	1.56	4,68	0.56	0.28	0.30	0,83	0.29
5.	Total Kjeldahl Nitrogen as N	2.74	2,52	5.88	1.01	0.63	0.78	0.94	0.39
6.	Nitrate Nitrogen as N	0.05	1.00	1.50	0.25	0.30	0.15	0.30	0.35
7.	Chloride (as Cl ⁻)	32	8	32	3,020	12	5	3	3
8.	Fluoride (as F)	0.20	0.08	0.24	0.24	0.07	0.05	0.06	0.04
9.	Sulphate (as SO4)	95	14	14	1,010	4.5	5.0	2.0	2.5
10.	Phosphate (as P)	0.10	1.61	0.97	0.11	0.12	0,19	0.23	0.13
11.	Total Solids Dried at 105°C	235	125	210	6,210	100	55	85	130
12.	Suspended Solids Dried at 105°C	40	65	65	35	65	30	50	100
13.	Oil and Grease	18	33	4		No	t detecte	d	
14.	Color (Hazen units)	10	15	30	15	15	40	60	70
15.	Turbidity (FTU)	5	5	5	5	5	10	15	40
16.	Zinc (as Zn)	0.10	0.24	0.08	0.10	0.09	0.07	0.06	0.15
17.	Arsenic (as As)	0.002	0.002	0.002	0.003	0.001	0.001	0.003	Not detected
18.	Iron (as Fe)	1.6	0.8	1.0	0.2	0.4	0.4	0.4	0.1
19.	Lead (as Pb)	No	t detecte	ed	0,05	Not detected	0.08	Not detected	0.04
20.	Chromium (as Total Cr)	No	t detecte	ad	0.03		Not de	tected	
21.	Manganese (as Mn)	0.11	0.03	0.05	0.04	0.03	0.02	0.02	0,01
22.	Total Hardness as CaCO3	55	20	50	970	10	10	15	5
23.	Phenol	No	t detecte	ad		No	t detecte	d	
24.	Detergents	No	t detecte	ed		No	t detecte	d	
25.	Calcium (as Ca)	10	4.4	14	64	2.4	2.4	4.0	1.2
26.	Magnesium (as Mg)	7.5	2.2	3.2	197	1.2	1.0	1.0	0.7
27.	Boron (as B)	No	t detecte	ed		No	t detecte	d	
28.	Mercury (as Hg)	0.002	0.002	0.002	0.004	0.001	0.002	0.003	0.002

m = 1 - 7 -	
Table	

11 CLASSIFICATION OF WOMS ACCORDING TO BOD5 CLASSIFICATION USING MEAN BOD5

		1		1978					1979		
River	WQCR	No. of					No. of		·····		
Name	No.	WQMS	<u></u>	Mip	MoP	GP	WQMS	C1	Mip	Мор	GP
Deulis.	-						<u>^</u>	-		-	
Perlis	Ŧ	V EA			âr.		9	7	0	0	2
Kuar	2	· -	**		-		6	4	2	0	0
Kedah	3	12	5	3	1	3	13	12	1	0	0
Merbok	4	7	2	2	0	3	7	0	2	1	4
Muda	5	10	10	0	0	0	9	9	0	· 0	0
Perai	6	11	11	0	0	0	11	10	1	0	0
Juru	6	9	0	3	2	4	9	3	l	0	5
Jejawi	7	6	6	0	0	0	5	3	2	0	0

				1980					1981		
River Name	WQCR No.	No. of WQMS	C1	Mip	Мор	GP	No.of WQMS	<u>c1</u>	Mip	Мор	GP
Perlis	1	10	10	0	0	0	7	7	0	0	0
Kuar	2	6	5	1	0	0	4	4	0	0	0
Kedah	3	12	12	0	0	0	11	10	1	0	0
Merbok	4	6	3	2	0	1	7	6	0	0	1
Muda	5	9	9	0	0	0	9	9	0	0	0
Perai	б	11	11	0	0	0	10	10	0	0	0
Juru	6	9	2	2	1	4	8	3	0	0	5
Jejawi	7	5	5	0	0	0	3	3	0	0	0

				1982		
River	WQCR	No. of				
Name	No.	WQMS	C1	Mip	Mop	GP
Perlis	1	8	6	1	0	0
Kuar	2	4	4	0	0	0
Kedah	3	8	7	1	0	0
Merbok	4	7	5	0	0	2
Muda	5	11	11	0	0	0
Perai	6	12	12	0	0	0
Juru	6	8	2	1	0	5
Jejawi	7	5	5	0	0	0

Remarks;	Cl :	Clean	0 - 4 mg/l
	Mip:	Mildly polluted	4 - 8 mg/l
	Mop:	Moderately polluted	8-12 mg/l
	GP :	Grossly polluted	>12 mg/l

-

				1978					<u>1979</u>		
River	WQCR	No. of	0-50	50-100	100-150	>150	No. of	0-50	50-100	100-150	>150
Name	No.	WQMS	mg/l	mg/1	mg/l	mg/l	WQMS	mg/1	mg/l	_mg/l	mg/1
							_		_	_ ·	-
Perlis	1	-	-		-	-	3	1.	1	0	Ļ.
Kuar	2	-	-	-			6	0	6	0	. 0
Kedah	3	12	8	4	0	0	13	2	10	0	1
Merbok	4	7	3	4	0	0	7	0	2	5	0
Muda	5	10	7	3	0	0	9	3	6	0	0
Perai	6	11	4	5	2	0	11	0	10	1	. 0

].

Table 12CLASSIFICATION OF WQMS ACCORDING TO
SS CLASSIFICATION USING MEAN SS

.

				1980					1981		
River	WQCR	No. of	0-50	50-100	100-150	>150	No. of	0-50	50-100	100-150	>150
Name	No.	WQMS	mg/l	mg/l	mg/l	mg/1	WQMS	mg/l	mg/l	mg/l	mg/l
Perlis	1	10	3	3	1	3	10	2	6	2	θ
Kuar	2	6	0	3	1	2	6	0	5	1	<u>0</u>
Kedah	3	12	1	9	0	2	12	2	9	1	0
Merbok	4	6	0	5	1	0	7	3	3	1	0
Muda	5	9	3	5	1	0	9	2	4	3	0
Perai	6	11	1	7	2	1	10	6	4	0	0
Juru	6	9	0	3	5	1	8	2	4	1	1
Jejawi	7	5	2	1	1	1	5	2	1	1	1

				1982		
River	WQCR	No. of	0-50		100-150	>150
Name	No.	WQMS	mg/1	mg/l		mg/l
Perlis	1	8	2	4	0	2
Kuar	2	4	2	0	1	1
Kedah	3	8	2	4	0	2
Merbok	4	7	1	2	3	1
Muda	5	11	7	4	0	· 0
Perai	6	12	1	10	1	0
Juru	6	8	1	6	1	0
Jejawi	7	5	3	2	0	0

Juru

Jejawi

6,

б

Table 13 INVENTORY OF RUBBER FACTORIES (1/2)

Code No		State	Type of Production	Actual Production (mt/d)		Quantity of Effluent (10 ³ m ³ /y)	BOD3 & SS o or Raw E BOD3 (mg/1)	ffluent
1	Ban Seng Rubber Co. Sdn. Bhd.	Kedah	Conventional (RSS)	6.6	No Treatment	65.5	168	68
2	Eng. Joo Seng Rubber Dealers Co. Sdn. Bhd.	Kedah	Conventional (RSS)	12.0	Sedimentation Trap	5.2	48	16
3	Plantation Latex (M) Sdn. Bhd.	Kedah	Conventional	7,5	Anaerobic & Aerobic Pond	65.7	200	250
4	Ladang Perbadanan Kedah	Kedah	SMR	7.5	Anaerobic & Aerobic	60.0	200	600
5	Lam Eng. Rubber Factory (M) Sdn. Bhd.	Kedah	Conventional (Crepe)	2.5	No Treatment	45.8	200	250
б	Uniroyal M'sia Plantations Sdn. Bhd.	Kedah	Mixed (LC/SMR)	48.0	Data Not Available	203.0	2,350	275
7	Lean Hoe Rubber Factory	Kedah	SMR	25.0	Anaerobic/Facultative Pond	31.7	53.8	24
8	Lee Latex (Pte) Ltd.	Kedah	Mixed (LC/SMR)	50.0	Proposed Oxidation Pond	231.0	520	84
9	Teh Ah Yau Rubber Factory Sdn. Bhd.	Kedah	SMR	24.0	Anaerobic/Facultative Pond	9 162.0	200	200
10	Lubuk Segintah Estate	Kedah	SMR	3.5	Anaerobic & Aerobic Pond	30.0	200	250
11	Tiong Huat Rubber Factory Sdn. Bhd.	Kedah	SMR	20.0	Data Not Available	43.2	589	353
12	Badenoch Estate	Kedah	Latex Concentration	10,6	Land Disposal	54.0	-	. –
13	Lee Rubber Cc. (Pte) Ltd.	Kedah	Conventional (RSS)	· 30.0	Proposed Aeration Pond	13.5	874	315
14	Kuala Ketil Factory	Kedah	Conventional (Crepe/RSS)	18.0	Anaerobic/Aerobic Pond	121.0	88	60
15	Sungai Tawar Latex Co. Sdn. Bhd.	Kedah	Mixed (SMR/LC/ Crepe)	18.0	No Treatment	16.4	315	96
16	Kilang Getah Mardel (Jeniang Estate)	Kedah	SMR	43.0	Treatment System to be in Commission	324.0	382	840
	Kilang Getah Mardel (Baling Estate)	Kedah	SMR	25.0	No Treatment	355.0	97	207
	Selangor Coconut Bhd.	Kedah	Mixed (LC/Skim/ Crepe Drain Rubber)	18.0	Data Not Available	77.0	500	1,000
	Thye Group SMR Factory	Kedah	Mixed (SMR/Sheet Rubber)	10.2	Anaerobic/Aerobic Pond	64.8	63.3	114
	Kuala Muda Estate	Kedah	Conventional (ADS)	9.0	No Treatment	57.6	963	114
	Ladang Pinang Funggal	Kedah	SMR	5.45	Anaerobic/Aerobic Pond	41.8	200	250
	Bertam Consolidated Rubber Co., Ltd.	Penang	SMR	15.0	Anaerobic/ Stabilization Pond	39.3	68	64

INVENTORY OF RUBBER FACTORIES (2/2)

Code	Name of		Type of	Actual Production		Quantity of Effluent	BOD3&SS o or Raw E	ffluent
No.	Factory	State	Production	(mt/d)	Purification System	(103 m3/y)	BOD3(mg/l)	SS(mg/1)
23	Tong Teik Co. Sdn. Bhd.	Penang	Conventional (RSS/Crepe)	27,8	Anaerobic/Facultative Pond	e 54.6	7	65
24	Tai Teong Rubber Factory Sdn. Bhd.	Penang	SMR	24.0	Land Disposal	197.0	470	124
25	Lee Rubber Co. (Pte) Ltd.	Penang	Mixed (SMR/RSS)	65.0	No Treatment	154.0	685	309
26	Hock Heng Co. Sdn. Bhd.	Kedah	SMR	26.0	Anaerobic/ Stabilization Complete Recycling	- *	40	53
27	Tong Teik Rubber Products Sdn. Bhd.	Kedah		:				
28	Highlands and Lowlands Bhd.	Kedah	Conventional (RSS/ADS)	4.4	Anaerobic/Facultative Pond	e 47.0	19	80
29	Malakoff Factory	Penang	Mixed (SMR/LC)	14.4	Anaerobic/Aerobic	84.9	40.6	-
30	Henrietta Rubber Estate Ltd.	Kedah	SMR	11.0	Anaerobic/Aerobic Pond	81.9	46.8	·
31	Padang Meika Factory	Kedah	Concentrate	100.0	Anaerobic/Facultativ Pond	e 106.0	450	1,000
32	Alma Rubber Estate Sdn. Bhd.	Penang	Mixed (Crepe/SMR)	17.0	No Treatment	163.0	74	6
33	Highland and Lowlands Bhd.	Kedah	Conventional (RSS/ADS)	5.0	Anaerobic/Facultative Pond	e 22.5	300	250
34	Ladang Victoria	Kedah	Conventional (SMR/RSS)	2.92	No Treatment	23.4	1,850	850
35	Sungai Ular Estate	Kedah	Mixed (ADS/SMR etc.)	2.1	Anaerobic/Aerobic Pond	57.0	80	91
36	Pelam Estate Sdn. Bhd.	Kedah	Conventional (RSS/ADS)	5.49	Anaerobic/Aerobic Pond	9.52	200	250 [´]
37	Lee Rubber Co. (Pte) Ltd.	Penang	SMR	100.0	No Treatment	1,430.0	119	188
38	Selama Estate Factory	Kedah	Mixed (SMR/OENR)	16.0	Anaerobic/Aerobic Pond, Aeration	74.7	100	120
39	Batu Lintang Rubber Co. Bhd.	Kedah	SMR	16.0	Anaerobic/Aerobic Pond	132.0	58	120
40	Southern Rubber Works Sdn. Bhd.	Penang	SMR	35.0	No Treatment	45.5	241	49.7

1001 Lee Bee Rubber Kedah Factory.Sdn. Bhd. 1002 Bukit Mertajam Estate Penang

Table 15 INVENTORY OF PALM OIL MILLS

Code No.	Name of Factory	State	Average Production of FFB (mt/d)	Purification System	Average Quantity of Effluent (103 m ³ /y)		D3 & SS or Raw H D3(mg/1)	ffl	
1	Kilang Kelapa Sawit, Bukit Mertajam	Kedah	160	Biological-Anaerobic Ponds	W: 33.4	₩:	80	₩:	180
2	Batu Kawan Palm Oil Mill	Penang	130	Biological-Anaerobic & Aerobic, Land Disposal	W: 33.9	W:	43		
3	Malpom Industries Behad	Province Wellesley	300	Oxidation Pond	W: 52.4	W:	500	₩:	500
4	Guan Palm Oil Mill Sdn. Bhd.	Penang	80	Oil Trap, Anaerobic Pond, Facultative Pond, Land Appli- cation, Land Disposal	L: 14.4	L:	5,000	L:	2,500
5	Kilang Sawit Dilot 1808	Penang	-	Data Not Available					

Unit: 10 ³ m ³	· · · · · · · · · · · · · · · · · · ·	Demand	Water		Rubber Factory	Basin
Remarks	2000	1990	1985	1982	No.	No.
Without P.	66	56	51	48	1	3
Without P.	133	112	102	96	2	•
With P.S.	81	68	62	57	3	4
With P.S.	95	68	62	57	4	
Without P.	27	23	21	19	5	
N.A.	610	432	394	370	6	
With P.S.	368	225	205	193	7	
With P.S.	637	450	410	386	. 8	
With P.S.	178	178	178	178	9	
N.A.	312	179	158	145	11	
With P.S.	325	269	237	217	13	
With P.S.	70	70	70	70	19	
N.A.	440	152	76	21	1001	
With P.S.	25	25	25	25	10	5
L.D.	73	73	73	73	12	
With P.S.	123	123	123	123	14	
With P.S.	229	162	142	130	15	
With P.S.	294	294	294	294	16	
Without P.	171	171	171	171	17	
N.A.	123	123	123	123	18	
Without P.	62	62	62	62	20	
With P.S.	37	37	37	37	21	
With P.S.	959	649	632	620	31	
Without P.	18	18	18	18	34	
With P.S.	34	34	34	34	36	
With P.S.	191	135	119	109	22	6
With P.S.	267	180	176	173	23	
L.D.	916	346	247	183	24	
Without P.	825	422	411	404	25	
With P.S.	330	169	164	161	26	
With P.S.	329	120	115	111	27	
With P.S.	27	27	27	27	28	
With P.S.	138	93	91	89	29	
With P.S.	68	68	68	68	30	
Without P.	105	105	105	105	32	
With P.S.	31	31	31	31	33	
With P.S.	9	9	9	9	35	
N.A.	261	14	8	2	1002	

821

902

1,582

.

Without P.S.

WATER DEMAND PROJECTION OF RUBBER FACTORIES Table 16

Remarks; P.S.: Purification system L.D.: Land disposal N.A.: Not available

741

37

7

G~50

Unit: $10^3 \text{ m}^3/\text{y}$

Basin	Palm Oil Mill		Water	Demand		
No.	No.	1982	1985	1990	2000	Remarks
5	1	29	48	48	60	With P.S.
6	2	3	12	12	40	With P.S.
	3	5	23	24	80	With P.S.
	4	1	24	25	40	L.D. with P.S.

Remarks;	P.S.:	Purification system
	L.D.:	Land disposal
	N.A.:	Not available

Table 18 PROJECTION OF PIG PRODUCTION

Animal Husbandry		Deede	NY 1	6 m.	
-		Basin	and the second se	er of Pigs	
No.	City/Town	No.	1980	1990	2000
1	Bertam	5	8,960	11,300	13,600
2	Tasek Gelugor	6	30,100	37,900	45,900
3	Bagan Ajam Bagan Jarmal	6	8,980	11,300	13,700
4	Machang Bubok	6	7,830	9,850	11,900
5	Bukit Tengah	6	7,690	9,680	11,700
6	Bukit Taubun	6	27,800	34,900	42,300
7	Sungei Bakap	6	12,000	15,200	18,300
8	Telok Bahang	7	10,500	13,200	16,000
9	Tanjong Bunga	7	5,020	6,310	3,070
10	Paya Terubong	7	17,900	22,500	27,300
11	Sungei Nibong	7	18,100	22,800	27,600
12	Bayau Lepas	7	37,900	47,700	57,800

NUMBER OF WATER QUALITY MONITORING STATION BY WATER QUALITY CONTROL REGION IN NORTHERN REGION

			Catchment Area		N	umber	of WOM	S	
WQCR	State	River	(km ²)	1978	1979	1980	1981	1982	1983
1	Perlis	Perlis	653	0	9	10	10	8	4
2	Kedah	Kuar	249	0	6	6	6	4	3
3	Kedah	Kedah	3,100	12	13	12	12	8	8
4	Kedah	Merbok	746	7	7	6	7	7	6
. 5	Kedah/ P. Pinang	Muda	3,792	10	9	9	9	11	7
6	P. Pinang	Perai/ Juru	560	20	20	20	18	20	9
7	P. Pinang	Jejawi/ Tengah	186	6	5.	5	5	5	4
Tot	al			55	69	68	67	57	41

G-52

LIST OF WATER QUALITY MONITORING STATION (WQMS) BY RIVER (1/3)

River Name & WQCR No.	WQMS No.	River Name	Latitude	Longitude	Distance from River Mouth (km)	Note
Perlis 1	6401602	Perlis	6° 26'	100° 11'	6.76	Jambatan Jalan Bahru di Kangar
	6401603	Perlis	6° 26'	100° 9'	12.88	Hujung jalan di Kg. Tebing Tinggi
	6402604	Jejawi	6° 26'	100° 12'	17.22	Jambatan Sg. Jejawi di Sena
	6402605	Arau	6° 25'	100° 13'	16.30	Jambatan Sg. Arau di antara Kg. Padang, Behordan Kg. Guar Syed Alwi
	6402606	Chuping	6° 29'	100° 15'	22.74	Jambatan di Kg. Perawah
	6402634	Gial	6° 27'	100° 16'	23.55	Titi jalan Arau ke Kangar
	6402635	Arau	6° 25'	100° 17'	30.97	Titi jalan Arau
	6502601	Jernih	6° 32'	100° 16'	25.32	Titi Tampang
	6402608	Gial	6° 28'	100° 16'	26.77	Jambatan Sg. Gial dekat Pusat Kesihatan Kecil di Kg. Gial
Kuar 2	6102601	Kuar	6° 11'	100° 17'	1.61	Jambatan Sg. Kuar daripada Alor Janggus
	6103602	Padang Hang	6° 11'	100° 20'	4.83	Jambatan di Kawasan Gunung Keriang
	6204603	Tanjung Pauh	6° 15'	100° 25'	11.91	Jambatan dekat Jitra
	6204604	Bata	6° 17'	100° 26'	14.65	Jambatan dekat Kg. Biak dan Jitra
	6304605	Wang	6° 18'	100° 28'	16.74	Tepi jalan dekat Kg. Padang Panjang
	6304606	Bata	6° 20'	100° 26'	18.03	Jambatan Jalan Ansun Ke Kg. Teluk

Source; Ref. 20

LIST OF WATER QUALITY MONITORING STATION (WQMS) BY RIVER (2/3)

River Name & WQCR No.	WOMS No.	River Name	Latitude	Longitude	Distance from River Mouth (km)	Note
Kedah	6103601	Kedah	6° 7'	100° 21'	13.20	Di Kuala Kedah (Tidal Barrage)
3	6103613	Kedah	6° 6'	100° 23'	17.22	Di Alor Setar
	6204602	Anak Bukit	6° 12'	100° 25'	29.94	Di Belakang Loji Pembersihan Air Bukit Pinang
	6204603	Padang Terap	6° 13'	100° 28'	38.47	Pelubong Barrage pertemuan Sg. Padang Terap dan Taliair
	6204620	Padang Terap	6° 13'	100° 28'	38.31	Sg. Padang Terap di Pelubong Barrage
	6206606	Padang Terap	6° 15'	100° 37'	64.40	Sg. Padang Terap sebelum pertemuan Sg. Padang Terap/ Sg. Pedu di Kuala Nerang
	6206607	Pedu	6° 15'	100° 37	64.40	Sg. Pedu sebelum pertemuan Sg. Padang Terap/Sg. Pedu di Kuala Nerang
	6306609	Padang Terap	6° 18'	100° 40'	65,68	Takat Pengambilan Air di Kilang Gula
	6306610	Padang Terap	6° 18'	100° 40'	71.68	Sg. Padang Terap selepas pertemuan Sg. Padang Terap/ Sg. Sari
	6306611	Sari	6° 18'	100° 40'	75.34	Di Jambatan sebelum takat pelepasan effluen Kilang Gula Padang Terap
	6306612	Padang Sanai	6° 20'	100° 39'	90.16	Berhampiran di Balai Polis di Padang Sanai
Merbok	5604601	Merbok	5° 38'	100° 24'	10.46	Di Kg. Batu Lintang
4	5604602	Petani	5° 38'	100° 29'	20.12	Jambatan di Pekan Sg. Petani
	5705607	Merbok	5° 44'	100° 29'	20.52	Jambatan di Semiling
	5705604	Merbok	5° 42'	100° 30'	28.98	Di Pekan Sg. Lalang
	5705605	Merbok	5° 43'	100° 31'	32.20	Jambatan dekat Bedong
	5705606	Merbok	5° 45'	100° 31'	38.64	Jambatan di Sg. Tok Pawang
	5604601 (A) Simpor				Kota Kuala Muda
Muda	5503601	Muda	5° 35'	100° 22'	5.15	Di Kota Kuala Muda
5	5504602	Muda	5° 33'	100° 25'	12.88	Jambatan Merdeka di Bumbong Lima
	5505603	Muda	5° 34'	100° 30'	25.76	Jambatan keretapi di Pinang Tunggal
	5505612	Muda	5° 31'	100° 34'	39.44	Jambatan Sidam di Kg. Sidam Kanan
	5606604	Muda	5° 35'	100° 37'	53.93	Jambatan Syed Omar
	5608605	Muda	5° 35'	100° 39'	65.20	Di Kuala Ketil
	5806614	Muda	5° 49'	100°_38'	102.23	Jambatan di Jeniang
	5906607	Muda	5° 56'	100° 41'	123.16	Di Jereri
	6007608	Muda	6° 0'	100° 43'	142.48	Di Kg. Lubok Merbau
	5608605	Ketil	5° 35'	100° 49'		Di Kuala Pegang
	S.T.	Tawar				Pekan Tawar

Source; Ref. 20

Table 22	LIST OF WATER QUALITY MONITORING STATION (WQMS) BY RIVER (3/3)

River Name &					Distance from River Mouth	n
WQCR No.	WQMS No.	River Name	Latitude	Longitude		Note
Perai 6	5403602	Perai	5° 24'	100° 23'	2,89	Jambatan Tunku Abdul Ráhman menyeberangi Sg. Perai ke Butterworth
	5404601	Perai	5° 24'	100° 24'	7.40	Jambatan di Permatang Pauh ke Mak Mandin
	5404603	Perai	5° 25'	100° 24'	10.94	Jalan Mati di Kg. Sama Gagah
	5404604	Perai	5° 26'	100° 26'	15.29	Jalan Mati di Kg. Kota
	5404605	Perai	5° 26'	100° 27'	19.64	Jalan Mati di Kg. Terus
	5404606	Jarak	5° 27'	100° 28'	29.94	Jambatan menyeberangi Sg. Jarak ke Padang Menora
	5404608	Kereh	5° 28'	100° 28'	28.33	Jambatan menyeberangi Sg. Kereh dekat Lahar Yooi
	5405607	Jarak	5° 28'	100° 30'	33.32	Jambatan menyeberangi Sg. Jarak ke Tasik Gelugor
	5405621	Kulim	5° 26'	100° 30'	34.45	Jambatan di Sg. Ara Kuda
	5504609	Kereh	5° 28'	100° 28'	32.36	Jambatan menyeberangi Sg. Kereh ke Tasik Gelugor daripada Pokok Machang
	5505610	Kereh	5° 32'	102° 31'	42.02	Jambatan menyeberangi Sg. Kereh Kg. Bahau dalam Ladang Ekor Kuching
Juru 6	5304602	Derhaka	5° 21'	100° 25'	1.04	Pertemuan antara Sg. Tok Kedidi dan Sg. Juru
	5304603	Juru	5° 20'	100° 26'	6.11	Selepas Kg. Tok Kangar
	5304604	Juru	5° 20'	100° 27'	8.21	Di Jambatan Tun Abdul Razak
	5304605	Kilang Ubi	5° 20'	100° 28'	10.30	Jambatan Keretapi di Sungai Kilang Ubi
	5304606	Pasir	5° 21'	100° 28'	12.55	Jambatan di Pelandok Jatuh
	5304607	Rambai	5° 22'	100° 27'	13.04	Jambatan di Kg. Sg. Rambai
	5304608	Ara	5° 22'	100° 28'	16.10	Jambatan dekat Bukit Mertajam di Kg. Tanah Liat
	5304609	Rambai	5° 23'	100° 28'	16.42	Jambatan dekat Bukit Mertajam ke Kubang Semang
Jejawi 7	5204601	Jejawi	5° 16'	100° 27'	4.02	Pengkalan Feri di Bukit Tambun
	5204607	Junjong	5° 17'	100° 28'	10.14	Jambatan dekat Simpang Ampat
	5205603	Jejawi	5° 12'	100° 30'	20.44	Jambatan dekat Kg. Jawi
	5205604	Jejawi	5° 12'	100° 31'	25.27	Jambatan selepas Kg. Lima
	5205606	Jejawi	5° 14'	100° 33'	28.65	Jambatan Sg. Jawi di Kg. Relau
	S.T.C.	Tasek Chempedak				Di Tasek

Source; Ref. 20

.

G-55

.

PROJECTED BOD LOAD IN 1990 AND 2000 UNDER THE CONDITION OF 4MP

		1990		2000			
		BOD Load from	BOD Load into	BOD Load from	BOD Load into		
Basin	Intake	Pollution Sources	Main Stream	Pollution Sources	Main Stream	Pollution	
Name	No.	(ton/d)	(ton/d)	(ton/d)	(ton/d)	Sources	
					0.0	Rural	
Perlis	4	0.3	0,0	0.5	0.0	Rural	
•	6	0.2	0.0	0.4	0.0	Rural	
	. 8	0.2	0.0	0.4			
	11	4.0	1.9	11.0	5.9	Kangar,Rural Rural	
(Sg. Arau)	8	0.2	0.0	0.4	0.0	Rural	
(6g. Gial)	11	0.3	0.0	0.4	0.0	RULAI	
	Sub-tota	1 5.2	1.9	13.1	5.9		
Kedah	7	1.0	0.1	1.4	0.1	Rural	
Redan	15	0.0	0.0	0.1	0.0	Rural	
	27	7.5	1.5	11.0	1.8	Rural	
	21					RF(1,2)	
	28	5.8	3.8	15.1	10.3	Alor Setar	
	22	0.4	0.0	0.6	0.1	Rural	
(Sg. Temin)	24	0.9	0.5	1.8	1.1	Rural	
(Sg. Temin)					······································		
	Sub-tota	.1 15.6	5.9	30.0	13.4	· · ·	
Merbok	1	5.0	3.0	8.2	4.8	RF(3,4,6,7,8,9, 1001)	
	2	8.1	4.9	21.8	13.1	Sg.Petani,RF(9,	
	3	0.2	0.1	0.2	0.1	RF(5) 11.13)	
	4	0.8	0.5 4	3.0	1.8	Tikan Batu	
	Sub-tota		8,5	33.2	19.8		
Muda	11	0,1	0.0	0.0	0.0	RF(16)	
	12	0.6	0.1	0.8	0.1	Rural	
	14	1.0	0.1	1.4	0.1	Rural	
	16	1.1	0.1	1.5	0.2	Rural	
	17	0.1	0.1	0.3	0.2	Kuala Ketil	
	18	0.0	0.0	0.0	0.0	RF(10)	
	19	1.3	0.6	1,2	0.6	Rural, RF(18), P(1)	
(Sq. Sedim)	22	0.1	0.1	0.2	0.1	RF(12,31,36)	
(Sq. Sedim)	23	0.0	0.0	0.0	0,0	RF(14)	
(sy, seurin)	26	0.8	0.4	0.7	0.4	Rural, RF(20,21,34)	
(Sg. Ketil)	46	2.7	1.0	3.0	1,0	Rural, RF(15,17)	
(09. 10011)	Sub-tota		2.5	9.1	2.7		
Perai	6	2.1	1.0	6.0	3.4	Kulim,Rural	
	8	13.5	1.4	16.9	1.7	RF(26,28,35,1002) Rural,	
		13.5	1. I	10.5		RF(22,24,30,33) A(1,2)	
	9	3.6	2.1	6.2	3.7	RF(23,25)	
	Sub-tota	1 19.2	4.5	29.1	8.8		
P.Pinang	1	3.9	2.1	5.4	2.9	Air Itam	
		12.0	5.0	17.2	7.6	RF(37),A(10)	
	Sub-tota	1 ['] 15.9	7.1	22.6	10.5		

Remarks; RF: Rubber factory P : Palm oil mill A : Animal husbandry

.

PROJECTED BOD LOAD IN 1990 AND 2000 UNDER THE CONDITION OF LOWER ECONOMIC GROWTH

		1990		2000		
		BOD Load from	BOD Load into	BOD Load from	BOD Load into	
Basin	Intake	Pollution Sources	Main Stream	Pollution Sources	Main Stream	Pollution
Name	NO.	(ton/d)	(ton/d)	(ton/d)	(ton/d)	Sources
B						
Perlis	4	0.2	0.0	0.4	0.0	Rural
	6	0.2	0.0	0.3	0.0	Rural
	8	0.2	0.0	0.3	0.0	Rural
	11	2.5	1.1	3.4	1.5	Kangar, Rural
(Sg. Arau)	8	0.2	0.0	0.3	0.0	Rural
(Sg. Gial)		0.2	0.0	0.3	0.0	Rural
	Sub-tota	1 3.5	1.1	5.0	1.5	
Kedah	7	0.8	0.1	1.0	0.1	Rural
	15	0.1	0.0	0.1	0.0	Rural
	27	6.9	1.4	9.1	1.7	Rural
						RF(1,2)
	28	5.0	3.1	5.2	3.4	Alor Setar
(Sq. Temin)	22	0.3	0.0	0.4	0.0	Rural
(Sg. Temin)	24	0.7	0.4	0.8	0.5	Rural
	Sub-tota	1 13.8	5.0	16.6	5.7	
		* *				
Merbok	1 2	5.0	3.0	8.0	4.8	RF(3,4,6,7,8,9,1001)
		5.4	3.2	. 7.2	4.3	Sg. Petanî, RF(9,11,13)
	3	0.2	0.1	0.2	0.1	RF(5)
	4	0.4	0.3	0.7	0.4	Tikan Batu
	Sub-tota	1 11.0	6.6	13.1	9.6	
Muda	11	0.1	0.0	0.0	0.0	RF(16)
11944	12	0.5	0.1	0.6	0.1	Rural
	14	0.8	0.1	1.1	0.1	Rural
	16	0.9	0.1	1.1	0.1	Rural
	17	0.1	0.1	0.1	0.1	Kuala Ketil
	18	0.0	0.0	0.0	0.0	
	19	1.3	0.6	1.2		RF(10)
(Sg. Sedim)	22	0.1	0.1	0.2	0.6	Rural, RF(18), P(1)
(Sq. Sedim)	23	0.0	0.0	0.0	0.1 0.0	RF(12,31,36)
(Syr Dealla)	26	0.8	0.4	0.7		RF(14)
(Sg. Ketil)	46	2,5	1.0	2.6	0.4 0.9	Rural,RF(20,21,34) Rural,RF(15,17)
(0)(Sub-tota		2,5	7.6	2.4	Kura1, Kr (15, 17)
				7.0	2.4	
Perai	6	1.3	0.8	3.3	2.0	Kulim,Rural RF(26,28,35,1002)
	8	13.3	1.5	16.3	1.8	Rural,
						RF(22,24,30,33)
	9	3.6	2.1	6.2	3.7	A(1,2) RF(23,25)
	Sub-total	······	4.4	25.8	7.5	
D Direc-	,	2 2	, -	- -		
P.Pinang	1	3.2	1.7	3.1	1.6	Air Itam
		12.0	5.0	17.2	7.6	RF(37),A(10)
	Sub-total	15,2	6.7	20.3	9.2	

Remarks; RF: Rubber factory P : Palm oil mill A : Animal husbandry

Table 25ASSUMED DEVELOPMENT OF SEPTICTANK IN URBAN AREA

Unit: %

Pollution Source	1980	1990	2000
Septic tank	20	- 35	50
Others	80	65	50

.

Table 26ASSUMED BOD CONCENTRATION OF
NON-SEWERAGE-URBAN-DOMESTIC

				Unit: mg/l
Pollution Source	NUPL	1980	1990	2000
Septic tank	80	16	28	40
Others	200	160	130	100
Non sewerage urban d	lomestic	180	160	140

Table 27 NUPL BY CLASSIFICATION OF MANUFACTURING AND CUSTOMER WATER DEMAND BY STATE

Classification			mer Water I	Demand (10 ⁶	m ³ /y)		
of	NUPL	the second se	Perlis	P.P:	P.Pinang		
Manufacturing	(mg/l)	1990	2000	1999	2000		
Condition of 4MP							
Food	250	27.0	66.7	20.8	16.1		
Textile	400	0.0	0.0	21.3	23.0		
Wood Product	610	0.7	1.4	0.2	0.1		
Paper Product	150	0.0	0.0	13.7	17.2		
Publishing	150	0.0	0.3	1.5	4.3		
Chemicals	160	3.4	24.4	44.5	98.6		
Rubber	10	14.3	67.8	6.4	9.5		
Non-metal	10	1.0	5,2	1.2	2.1		
Basic Metal	10	0.1	0.7	16.9	43.7		
Machinery	10	0.8	6.4	26.0	64.3		
Miscellaneous	350	0.0	0.0	0.0	0.0		
Condition of Lower H	conomic Growt	h					
Food	250	17.6	21.3	19.5	15.7		
Textile	400	0.0	0.0	17.2	19.3		
Wood Product	610	0.5	0.5	0.1	0.1		
Paper Product	150	0.0	0.0	11.2	13.0		
Publishing	150	0.0	0.0	1.1	2.1		
Chemicals	160	1.8	5.3	29.8	66.5		
Rubber	10	8.8	16.1	5.0	6.9		
Non-metal	10	0.6	1.1	0.9	1.4		
Basic Metal	10	0.0	0.1	12.2	23.0		
Machinery	10	0.0	0.0	18.5	34.0		
Miscellaneous	350	29.8	45.7	0.0	0.0		

Table 28 NUPL OF INDUSTRIAL EFFLUENT BY STATE

		BOD Conce	ntration (mg/1)		
	·		Condit	ion of	
:	Conditio	on of 4MP	Lower Economic Growt		
State	1990	2000	1990	2000	
Kedah/Perlis	210	185	170	145	
P. Pinang	155	180	165	140	

ASSUMED DISCHARGE RATIO, RUNOFF RATIO, INFILTRATION RATIO AND BOD CONCENTRATION OF EFFLUENT ASSUMED UNDER PRESENT PURIFICATION LEVEL

Pollution Source	Year	Discharge Ratio	NUPL (mg/1)	Runoff Ratio	Infil- tration Ratio
Domestic					
Urban sewerage	1990 & 2000	0.9	30	1.0	0.2
Urban non-sewerage	1990	0.9	160	0.6	0
	2000	0.9	140	0,6	0
Rural	1990 & 2000	0.8	200	0.1	0
Manufacture					
Urban sewerage	1990 & 2000	1.0	30	1.0	0.2
Urban non-sewerage	1990 & 2000	1.0	/3	0.6	0
Rural	1990 & 2000	1.0	$\frac{/3}{/3}$	0.1	0
Palm Oil Mill					
With P.S.	1990	0.55	50	0.6	0
/1	2000	0.3	50	0.6	0
Without P.S./1	1990	0.55	22,000	0.6	0
	2000	0.3	22,000	0.6	0
Land disposal	1990	0.1	50	0.6	0
	2000	0.1	50	0.6	0
Rubber Factories					
With P.S.	1990	0.9	50	0.6	0
	2000	0.8	50	0.6	0
Without P.S.	1990	0.9	2,320	0.6	0
	2000	0.8	2,320	0.6	0
Land disposal	1990	0.1	50	0.6	0
	2000	0.1	50	0.6	0
Animal Husbandry	1990 & 2000	1.0	200/2	0.1	0

.

• .

Remarks; <u>/1</u>: Purification System $\frac{72}{3}$: g/d/head $\frac{73}{3}$: See Table 28

ASSUMED DEVELOPMENT OF LAND DISPOSAL IN PALM OIL MILLS AND RUBBER FACTORIES

Unit:	8
-------	---

	1980	1990	2000
Palm oil mills	25	50	75
Rubber factories	0	10	20

Table 31ASSUMED DISCHARGE RATIO OF PALM OILMILLS AND RUBBER FACTORIES

······	1980	1990	2000
Palm Oil Mills		· · · · · · · · · · · · · · · · · · ·	
Surface runoff ratio of land disposal area	0.25 x 0.1	0.5 x 0.1	0.75 x 0.1
Discharge ratio of palm oil mills	0.75	0.5	0.25
Discharge ratio	0.8	0.55	0.3
Rubber Factories			
Surface runoff ratio of land disposal area	0 x 0.1	0.1 x 0.1	0.2 x 0.1
Discharge ratio of rubber factories	1.0	0.9	0.8
Discharge ratio	1.0	0.9	0.8

Basin No.	RP Ratio
1	0.7
2	0.7
3	0.9
4	0.9
5	0.7
6	0.9
7	0.7

Table 32 RESIDUAL PURIFICATION RATIO BY BASIN

.

 Table 33
 SUMMARY OF PROJECTED BOD LOAD AND BOD
 CONCENTRATION UNDER THE CONDITION OF 4MP

			_	0			
	1990			2000			
	BOD	Load	BOD	BOD	Load	BOD	
	From	Into	Concentration	From	Into	Concentration	
Basin	Source	River	in River	Source	River	in River	
Name	(ton/d)	(ton/d)	(mg/l)	(ton/d)	(ton/d)	(mg/1)	
				1 12			
Perlis	5	2	0 - 44	13	6	0 ~ 86	
Kedah	16 (1)	6	0 - 27	30 (3)	13	0 - 37	
Merbok	14	9	0 - 81	33	20	0 - 111	
Muda	8	3	0 - 3	9	3	0 - 4	
Perai	19(11)	5	0 - 9	29 (29)	9	0 - 25	
Juru	8	4	0 - 46	7	3	0 - 35	
Jejawi	14	1	0 - 3	18	2	0 - 5	
<u>P. Pinang</u>	16 (6)	7		23(15)	11	<u> </u>	
Total	100(18)	37		162(47)	67		

Remarks; (): BOD Load discharge to the sea directly

SUMMARY OF PROJECTED BOD LOAD AND BOD CONCENTRATION UNDER THE CONDITION OF LOWER ECONOMIC GROWTH

	1990			2000			
	BOD Load		BOD	BOD	Load	BOD	
	From	Into	Concentration	From	Into	Concentration	
Basin	Source	River	in River	Source	River	in River	
Name	(ton/d)	(ton/d)	(mg/1)	(ton/d)	(ton/d)	(mg/1)	
perlis	4	1	0 - 32	5	2	0 - 80	
Kedah	14 (1)	5	0 - 27	17 (1)	6	0 - 28	
Merbok	11	7	0 - 71	1.3	10	0 - 92	
Muda	7	3	0 - 3	8	2	0 - 4	
Perai	18 (8)	4	0 - 7	26(17)	8	0 - 17	
Juru	10	4	0 - 46	10	2	0 - 23	
Jejawi	14	1	0 - 3	17	2	0 - 5	
P. Pinang	15 (5)	7	<u>~</u>	20 (7)	9		
Total	93(14)	32		116(25)	41		

Remarks; (): BOD Load discharge to the sea directly

Table 35COMPOSITION OF BOD LOAD INTO RIVER
UNDER THE CONDITION OF 4MP

								,
		1	990		•	2	000	
Basin	E	BOD Load	into Riv	/er	E	BOD Load	into Riv	ver
Name	PR	UI	RA	Total	PR	UI	RA	Total
Perlis	0	2	0	2	0	6	0	6
Kedah	1	4	1	6	1	11	1.	13
Merbok	4	5	0	9	6	14	0	20
Muda	2	0	1	3	2	0	1	3
Perai	3	1	1	5	5	2	2	9
Juru	1	2	1	4	. 0	2	1	3
Jejawi	0	0	1	1	0	0	2	2
P. Pinang	5	2	0	7	7	3	1	11
Total	16 (43)	16 (43)	5 (14)	37 (100)	21 (31)	38 (57)	8 (12)	67 (100)

Unit: ton/d

Remarks; PR : Palm oil mill and rubber factory effluent

UI : Urban domestic and urban industry effluent

RA : Rural and animal husbandry

(): % of the total BOD load

.

Table 36COMPOSITION OF BOD LOAD INTO RIVER UNDERTHE CONDITION OF LOWER ECONOMIC GROWTH

		19	990			20	000	
Basin	E	IOD Load	into Riv	ver	В	OD Load	into Riv	er
Name	PR	UI	RA	Total	PR	UI	RA	Total
Perlis	0	1	0	ı	0	2	0	2
Kedah	1	3	1	5	1.	4	1	6
Merbok	4	3	0	7	6	4	0	10
Muda	2	0	1	3	2	0	0	2
Perai	2	1	1	4	5	1	2	8
Juru	1	2	1	4	0	1	1	2
Jejawi	0	0	1	1	0	0	2	2
P. Pinang	4	2	1	7	7	1	1	9
Total	14 (44)	12 (37)	6 (19)	32 (100)	21 (51)	13 (32)	7 (17)	41 (100)

Unit: ton/d

Remarks; PR : Palm oil mill and rubber factory effluent UI : Urban domestic and urban industry effluent

RA : Rural and animal husbandry

(): % of the total BOD load

37 STANDARD RELATING TO LIVING ENVIRONMENT FOR RIVERS IN JAPAN

					Standard Valu	ues <u>/1</u>	
Cate- gory		ose of Utilization	рн	BOD (mg/l)	SS (mg/l)	DO (mg/1)	Number of Coliform Groups (MPN/10 ⁻¹ 1)
AA	conser	supply, class l; vation of natural nment & uses listed	6.5-8.5	l or less	25 or less	7.5 or more	50 or less
A	fisher	supply, class 2; y, class 1; bathing listed in B-E	6.5-8.5	2 or less	25 or less	7.5 or more	1,000 or less
в	fisher	Water supply, class 3; fishery, class 2, & uses listed in C-E		3 or less	25 or less	5 or more	5,000 or less
С	trial s	Fishery, class 3; indus- trial water, class 1, & uses listed in D-E		5 or less	50 or less	5 or more	
D	agricul	rial water, class 2; ltural water/2, & isted in E	6.0-8.5	8 or less	100 or less	2 or more	
E		rial water, class 3; vation of environment	6.0 - 8.5	10 or less	Floating matter such as garbage should not be observed.	2 or more	
1	Remarks;	<u>/2</u> : At the point of	es to the abstracti	standard on for a	e daily average v values of lakes griculture, pH sh t be less than 5 m	and coast all be be	
	(The same applies to the standard values of lakes.) 1. Conservation of natural environment: Conservation of scenic spots and other natural resources.						~
	 Water supply, class 1: Water treated by simply cleaning operation, su as filtration. Water supply, class 2: Water treated by normal cleaning operation such as sedimentation and filtration. Water supply, class 3: Water treated through a highly sophisticated cleaning operation including pretreatment. 						peration such

- 3. Fishery, class 1: For aquatic life such as trout and bull trout inhabiting oligosaprobic water, and those of fishery classes 2 & 3 Fishery, class 2: For aquatic life, such as the salmon family and sweetfish inhabiting oligosaprobic water and those of fishery class 3.
 - Fishery, class 3: For aquatic life such as carp and silver carp inhabiting B-mesosaprobic water.
- Industrial water, class 1: Water given normal cleaning treatment such as sedimentation.
 Industrial water, class 2: Water given sophisticated treatment by chemicals.

Industrial water, class 3: Water given special cleaning treatment.

5. Conservation of environment: Up to the limits at which no unpleasantness is caused to people in their daily life (including a walk by the riverside, etc.).

Source; Ref. 21

WATER QUALITY CRITERIA FOR FRESH SURFACE WATER PROPOSED BY THE NATIONAL POLLUTION CONTROL COMMISSION IN PHILIPPINES

			Standa	ard Values	5
Classifi-	Purpose of		BOD	DO	Coliform .
cation	Utilization	рН	(mg/l)	(mg/1)	(MPN/100 ml)
AA	Domestic Water Supply/1	7-8.5	-	· _ .	50 or less
А	Domestic Water	6.5-8.5	5 or	5 or	500
	Supply/2		less	more	or less
B	Bathing	6.5-8.5	10 or	5 or	1,000
.2	<u> </u>		less	more	or less
C	Fishing	6.5-8.5	15 or less	5 or more	5,000 or less
D	Agricultural and Industrial Water Supply	6.5-8.5	-	3 or more	-

Remarks;	<u>/1</u> :	Domestic water supply:	Water from watersheds which are uninhabited and otherwise protected and can be used for water supply with limited treatment.
	<u>/2</u> :	Domestic water supply:	A conventional treatment is necessary for water supply use of these waters.

Source; Ref. 22

G-68

Table 39 PRESENT BOD3 CONCENTRATION LIMITS FOR WATERCOURSE DISCHARGE FOR PALM OIL MILLS AND RUBBER FACTORIES

Unit: mg/l

Year	Palm Oil Mill	SMR & Conventional Grade Factory	Latex Concentration Factory
1978	5,000	-	_
1979	2,000	300	**
1980	1,000	200	450
1981	1,000 - 500	100 (50)*	300
1982	500 - 250		200
1983	250	. ••	100 (50)*

Remarks; *: This additional limit is the arithmetic mean value determined on the basis of a minimum of four samples taken at least once a week for four weeks consecutively.

Source; Refs. 23, 24

.

G-69

Table 40OUTLINE OF PROPOSED PUBLIC SEWERAGE SYSTEMFOR POLLUTANT LOAD ABATEMENT FOR RIVERWATER UNDER THE CONDITION OF 4MP

				1990			2000	
					Served			Served
			Treatment	Service	Popu-	Treatment	Service	Popu-
Basin	C	ity/Town	Capacity	Factor	lation	Capacity	Factor	lation
No.	No.	Name	$(10^3 \text{ m}^3/\text{d})$	(%)	(103)	$(10^3 m^3/d)$	(%)	(103)
1	C1	Kangar	16	85	18	63	100	29
3	C2	Alor Setar	52	85	70	201	100	96
4	C3	Sg. Petani	34	85	52	130	100	75
~	~ 4	-	-	~ ~	25	26	100	50
6	C4	Kulim	<u>,</u> 7	65	25	26	100	. 50
6	C5	Butterworth	36	40	33	92	80	66
7	C8	Georgetown	72	70.	207	100	80	237
	Tot	al	217	-	405	612	- .	553

Remarks; Public sewerage systems in C5 & C8 are not affecting to river water quality.

Table 41OUTLINE OF PROPOSED PUBLIC SEWERAGE SYSTEM FOR
POLLUTANT LOAD ABATEMENT FOR RIVER WATER UNDER
THE CONDITION OF LOWER ECONOMIC GROWTH

				1990			2000	
Basin	C	ity/Town	Treatment Capacity	Service Factor	Served Popu- lation	Treatment Capacity	Service Factor	Served Popu- lation
No.	No.	Name	$(10^3 m^3/d)$	(%)	(10 ³)	$(10^3 \text{ m}^3/\text{d})$	(१)	(10 ³)
1	Cl	Kangar	2	20	4	15	80	18
3	C2	Alor Setar	12	30	23	48	80	59
4	C3	Sg. Petani	8	30	. 17	32	80	46
6	C4	Kulim	l	10	4	8	80	30
6	C5	Butterworth	17	25	19	51	70	44
7	C8	Georgetown	46	55	149	57	70	159
	Tot	al	86		216	181	-	356

Remarks; Public sewerage systems in C5 & C8 are not affecting to river water quality.

TREATMENT CAPACITY TO BE TREATED IN RUBBER FACTORIES, PALM OIL MILLS AND A SUGAR MILL UNDER THE CONDITION OF 4MP AND LOWER ECONOMIC GROWTH

Unit: $10^3 \text{ m}^3/\text{d}$

-		Treatment	Capacity
Basin No.	Basin Name	1990	2000
2	Perlis	0.05	0.05
3	Kedah	0.60	0.64
4	Merbok	7.60	10.04
5	Muda	1.20	1.28
6	Perai	5.04	9.36
7	P.'Pinang	3.25	5.06

Remarks: Operation days per year by industry are as follows:

Rubber factories:	250 days
Palm oil mills :	250 days
Sugar mills :	120 days

POLLUTANT LOAD IN 1990 AND 2000 BY BASIN WITH AND WITHOUT PROJECT UNDER THE CONDITION OF 4MP

		1990									
			W	thou	t Proje	ct		V	lith 1	Project	
		BOD	Load	into	River	Max. BOD	BOD	Load	into	River	Max. BOD
	Basin		(to	on/d)		in River		(to	n/d		in River
No.	Name	PR	UI	RA	Total	(mg/l)	PR	UI	RA	Total	(mg/l)
1	Perlis	0	2	0	2	44	0	1	0	1	10
3	Kedah	1	4	1	6	27	0	2	1	3	1.0
4	Merbok	4	5	0	9	81	0	2	0	2	10
5	Muda	2	0	1	3	3	1	0	1	2	2
6	Perai	3	1	1	5	9	0	0	1	1	3
6	Juru	1	2	1	4	46	0	1	1	2	23
6	Jejawi	0	0	1	1	3	0	0	1	1	3 .
7	P. Pinang	5	2	0	7		. 0	2	0	2	
To	otal	16	16	5	37		1	8	5	14	

2000

		·	Wi	thou	t Proje	ct	With Project				
		BOD	Load	into	River	Max. BOD	BOD	Load	into	River	Max. BOD
	Basin		(to	on/d)		in River		(to	on/d)		in River
No.	Name	PR	UI	RA	Total	(mg/l)	PR	UI	RA	Total	(mg/1)
1	Perlis	0	6	0	6	86	0	2	0	2	17
3	Kedah	1	11	1	13	37	0	5	1	6	16
4	Merbok	6	14	0	20	111	0	4	0	4	15
5	Muda	2	0	1	3	4	1	0	1	2	3
6	Perai	5	2	2	9	25	0	1	2	3	5
6	Juru	0	2	1	3	35	0	1	1	2	23
6	Jejawi	0	0	2	2	5	0	0	2	2	5 .
7	P.Pinang	7	3	1	11	***	0	3].	4	
To	otal	21	38	8	67		1	16	8	25	

Remarks; PR: Palm oil mill and rubber factory effluent UI: Urban domestic and urban industry effluent RA: Rural and animal husbandry

POLLUTANT LOAD IN 1990 AND 2000 BY BASIN WITH AND WITHOUT PROJECT UNDER THE CONDITION OF LOWER ECONOMIC GROWTH

			, ¹			19	90				
			W	ithou	t Proje	ct		V	lith 1	Project	•
		BOD	Load	into	River	Max. BOD	BOD	Load	into	River	Max. BOD
	Basin		(to	n/d		in River		(to	on/d)		in River
No.	Name	PR	UI	RA	Total	(mg/1)	PR	UI	RA	Total	(mg/l)
1	Perlis	0	1	0	1	32	0	1	0	1	8
3	Kedah	1	3	1	5	27	0	2	1	3	10
4	Merbok	4	3	0	7	71	0	2	0	2	9
5	Muda	2	0	1	3	3	1	0	1	2	2
6	Perai	2	1	1	4	7	0	0	1	1	2
6	Juru	1	2	1	4	46	0	1	1	2	23
6	Jejawi	0	0	1	1	3	0	0	1	1	3
7	P.Pinang	4	2	1	7	_	0	2	1	3	
To	tal	14	12	6	32		1	8	6	15	

		2000									
			Wi	.thou	t Proje	ct		V	lith 1	Project	-
		BOD	Load	into	River	Max. BOD	BOD	Load	into	River	Max. BOD
· · · · · · · · · · · · · · · · · · ·	Basin		(to	on/d)		in River		(to	on/d)		in River
NO.	Name	PR	UI	RA	Total	(mg/l)	PR	UI	RA	Total	(mg/1)
1	Perlis	0	2	0	2	80	0	1	0	0	15
3	Kedah	1	4	1	6	28	0	2	1	3	13
4	Merbok	6	4	0	10	92	0	1	0	1	12
5	Muda	2	0	0	2	4	1	0	0	1	3
6	Perai	5	1	2	8	17	0	0	2	2	3
6	Juru	0	1	1	2	23	0	0	1	1	11
6	Jejawi	0	0	2	2	5	0	0	2	2	5
7	P.Pinang	7	1	1	9		0	1	1	2	
Тс	otal	21	13	7	41		1	4	7	12	

Remarks; PR: Palm oil mill and rubber factory effluent UI: Urban domestic and urban industry effluent RA: Rural and animal husbandry

Table 45DIRECT CONSTRUCTION COST AND LAND ACQUISITION
COST OF SEWERAGE FACILITIES IN CASE OF
BUTTERWORTH PROJECT

	Treatment Plant								
	Sg. Juru	Mak Madin	Sg. Nyor						
Item	Τ.Ρ.	Т.Р.	т.р.						
Served Population (10 ³)									
1985 & 1990		84							
Final		103							
Served Area (ha)									
1985 & 1990		1,066							
Final									
Treatment Capacity $(10^3 \text{ m}^3/\text{d})$	ł		۰.						
1985 & 1990	34	14	3						
Final	53	17	3						
Treatment Plant Area (ha)	13.2	11.8	6.5						
Construction Cost (M\$10 ⁶)	6.7	5.0	4.7						
Land Acquisition Cost (M\$10 ⁶)	3.3	2.9	1.6						
Sewer Length (km)	- 	51	· · · · · · · · · · · · · · · · · · ·						
Construction Cost of Sewer (M\$10 ⁶)		34							

BREAKDOWN OF CONSTRUCTION COST OF PUBLIC SEWERAGE SYSTEMS FOR BUTTERWORTH AND BUKIT MERTAJAM

	Cost (M\$10 ⁶)	Share (%)
Trunk Sewer	166	27
Pumping Facilities	5	1
Treatment Facilities	50	8
Land	45	7
Sub-total	266	44
Branch Sewer	281	46
House Connection Pipe	62	10
Sub-total	343	56
Total	609	100

Remarks;

(1): At 1976 price

(2): Excluding engineering cost and physical contingency

Source; Ref. 2

Table 47 POLLUTANT LOAD ABATEMENT FACILITIES

				Unit:	M\$10 ⁶ /100	$\times 10^3 \text{ m}^3/\text{d}$		
			rificat aciliti			Pretreatment Facilities		
	Public Sewerage	Ра	.lm	Rubber 1990 &	Primary Pre-	Secondary Pre-		
Item	Systems	1990	2000	2000	treatment	treatment		
Direct Const. Cost	77.6	300.0	270.0	112.0	31.7	193.6		
Land Acquisition	10.7	-	-	-	-	-		
Engineering	7.8	30.0	27.0	11.2	3.2	19.4		
Sub-total	96.1	330.0	297.0	123.2	34.9	213.0		
Physical Contingency	28,8	99.0	89.1	37.0	10.5	63.9		
Total	121.9	429.0	386.1	160.2	45.4	276.9		

ASSUMED UNIT CONSTRUCTION COST FOR

Basin	1	City/Town				Unit	: M\$10 ⁶
No.	No.	Name	4MP	5MP	6MP	7MP	Total
1	Cl	Kangar	10	23	24	17	74
3	C2	Alor Setar	32	74	83	58	247
4	C3	Sg. Petani	21	47	51	36	155
6	C4	Kulim	6	13	14	10	43
6	C5	Butterworth	24	48	49	35	156
7	C8	Georgetown	13	26	26	18	83
Total		-	106	231	247	174	758

Table 48ESTIMATED PUBLIC DEVELOPMENTEXPENDITURE FOR SEWERAGE SYSTEM
UNDER THE CONDITION OF 4MP

Table 49

ESTIMATED PRIVATE DEVELOPMENT EXPENDITURE FOR SEWERAGE SYSTEM UNDER THE CONDITION OF 4MP

ì

Basin		City/Town				Unit:	м\$10 ⁶
No.	No.	Name	4MP	5MP	6MP	7MP	Total
1	Cl	Kangar	3	13	19	13	48
3	C2	Alor Setar	5	26	41	27	99
4	C3	Sg. Petani	4	20	31	20	75
6	C4	Kulim	1	5	7	5	18
6 [.]	C5	Butterworth	3	5	5	4	17
7	C8	Georgetown	6	9	5	4	24
Total			22	78	108	73	281

ESTIMATED PUBLIC DEVELOPMENT EXPENDITURE FOR SEWERAGE SYSTEM UNDER THE CONDITION OF LOWER ECONOMIC GROWTH

Basin		City/Town				Unit:	м\$10 ⁶
No.	No.	Name	4MP	5MP	6MP	7MP	Total
1	Cl	Kangar	4	10	. 11	8	33
3	C2	Alor Setar	10	26	31	22	89
4	C3	Sg. Petani	7	18	21	14	60
6	C4	Kulim	4	8	9	6	27
6	C5	Butterworth	13	32	37	25	107
7	C8 ·	Georgetown	2	9	13	9	33
Total			40	103	122	84	349

Table 51ESTIMATED PRIVATE DEVELOPMENT EXPENDITUREFOR SEWERAGE SYSTEM UNDER THE CONDITIONOF LOWER ECONOMIC GROWTH

Basin		City/Town				Unit:	м\$10 ⁶
No.	No.	Name	4MP	5MP	6MP	7MP	Total
1	Cl	Kangar	1	3	4	3	11
3	C2	Alor Setar	1	2	3	2	8
4	C3	Sg. Petani	1	3	4	3	11
6	C4	Kulim	1	2	2	1	6
6	C5	Butterworth	1	1	0	0	2
7	C8	Georgetown	0	0	0	0	0
Total			5	11	13	9	38

Table	52	ESTIMATED PRIVATE DEVELOPMENT EXPENDITURE
		FOR PURIFICATION SYSTEM IN RUBBER FACTORIES
		UNDER THE CONDITION OF 4MP AND LOWER
		ECONOMIC GROWTH

	Basin				Unit:	M\$10 ⁶
No.	Name	4MP	5MP	6MP	7MP	Total
3	Kedah	0.5	0.5	0.2	0.1	1.3
4	Merbok	5.9	7.1	3.4	2.4	18.8
5	Muda	0.9	1.0	0.3	0.2	2.4
6	Perai	3.9	6.1	4.6	2.8	17.4
7	P.Pinang	2.5	3.4	2.1	1.4	9.4
Tota	1	13.7	18.1	10.6	6.9	49.3

Table 53BENEFICIAL AND ADVERSE EFFECTS OFWATER POLLUTION ABATEMENT PLAN
UNDER THE CONDITION OF 4MP

		Item		Amount
1.	Nati	onal Economic Development		
	1.1	Economic Benefit		
		Sewerage	(м\$10 ⁶)	170
		Saving in pre-treatment for D&I water supply	(M\$10 ⁶)	0
		Total	(M\$10 ⁶)	170
	1.2	Economic Cost		-
		Sewerage	(m\$10 ⁶)	240
		Private purification facilities	(M\$10 ⁶)	27
		Pre-treatment for D&I water supply	(M\$10 ⁶)	0
		Total	(M\$10 ⁶)	267
	1.3	EIRR	(%)	-
2.	Envi	ronmental Quality		
	2.1	Beneficial Effects		
		Reduction in length of river stretch where BOD concentration is more than 10 mg/l in 2000 (see Table 55)	(km)	52
3.	Soci	al Well-Being		
	3.1	Beneficial Effects		
		Number of people served by proposed sewerage system in 2000	(10 ³)	250
	3.2	Adverse Effect		-

Table 54BENEFICIAL AND ADVERSE EFFECTS OF WATERPOLLUTION ABATEMENT PLAN UNDER THE
CONDITION OF LOWER ECONOMIC GROWTH

.

		Item		Amount
1.	Nat:			
	1.1	Economic Benefit		
		Sewerage	(m\$10 ⁶)	47
		Saving in pre-treatment for D&I water supply	(M\$10 ⁶)	0 [`]
		Total	(M\$10 ⁶)	47
	1.2	Economic Cost		
		Sewerage	(M\$10 ⁶)	104
		Private purification facilities	(m\$10 ⁶)	27
		Pre-treatment for D&I water supply	(M\$10 ⁶)	0
		Total	(M\$10 ⁶)	131
	1.3	EIRR	(%)	-
2.	Envi	ronmental Quality		
	2.1	Beneficial Effects		
		Reduction in length of river stretch where BOD concentration is more than 10 mg/l in 2000 (see Table 56)	(km)	52
3.	Soci	al Well-Being		
	3.1	Beneficial Effects		
		Number of people served by proposed sewerage system in 2000	(10 ³)	153
	3,2	Adverse Effect		

Table 55LENGTH OF RIVER STRETCHES WHERE BOD CONCENTRATIONIS MORE THAN 10 MG/L WITH AND WITHOUT PROJECTUNDER THE CONDITION OF 4MP

Unit: km

				is more the	an 10 mg/l		
E	Basin	Studied	199			2000	
No.	Name	Length	Without	With	Without	With	
1	Perlis	33	10	0	10	0	
3	Kedah	102	12	0	12	0	
4	Merbok	22	22	0	22	0	
5	Muda	164	0	0	0	0	
6	Perai	40	0	0	8	0	
Tot	al	361	44	0	52	0	

Table 56LENGTH OF RIVER STRETCHES WHERE BOD CONCENTRATIONIS MORE THAN 10 MG/L WITH AND WITHOUT PROJECTUNDER THE CONDITION OF LOWER ECONOMIC GROWTH

Unit: km

.

Length of Stretch where BOD Concentration is more than 10 mg/l

Length of Stretch where BOD Concentration

			is more than 10 mg/1					
Б	asin	Studied	199	1990)		
No.	Name	Length	Without	With	Without	With		
1	Perlis	33	10	0	10	0		
3	Kedah	102	12	0	12	0		
4	Merbok	22	22	0	22	0		
5	Muda	164	0	0	0	0		
_6	Perai	40	0	0	8	0		
Tot	al	361	44	0	52	0		

Table 57ESTIMATED MANPOWER REQUIREMENT FOR
PUBLIC SEWERAGE SYSTEMS BY CITY
UNDER THE CONDITION OF 4MP (1/2)

.

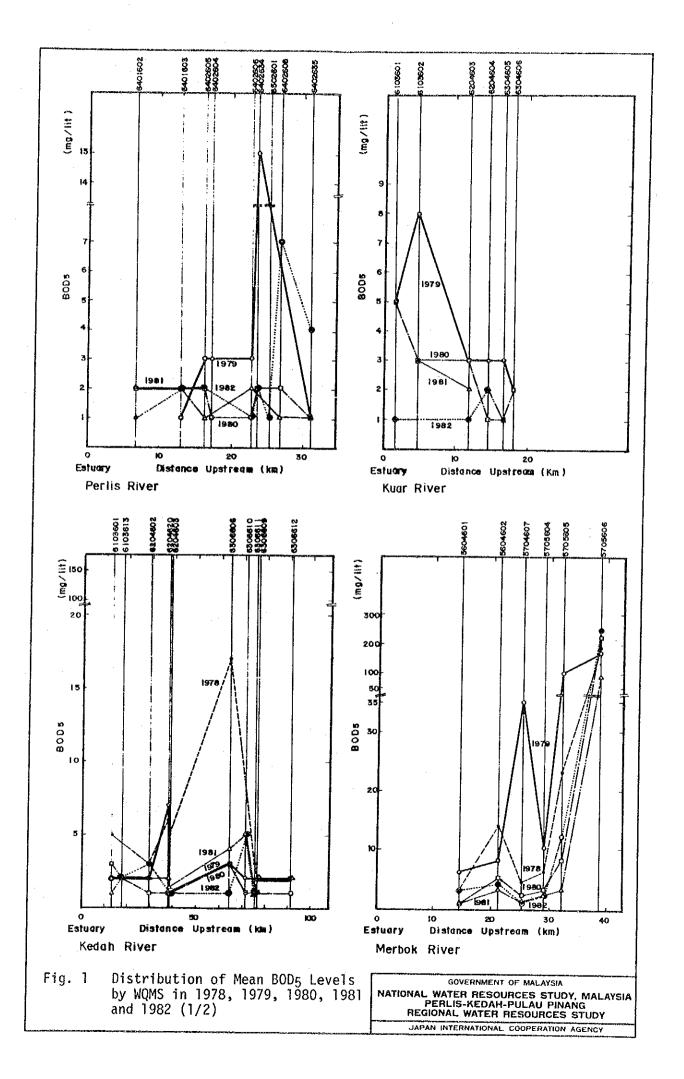
		Constr	uction	0 & M				
Category	4MP	5MP	6MP	7MP	4MP	5MP	6MP	7MP
<u>Cl Kangar</u>								
Engineer	1	1	1	1	0	1	1	1
T. Assistant	1	1	1	1	0	1	1	1
Technician	1	1	1	1	0	2	4	6
Others	1	1	1 .	1	0	2	5	8
Total Government Staff	4	4	4	4	0	6	11	16
C2 Alor Setar								
Engineer	1	1	1	1	0	1	2	3
T. Assistant	1	1	1	1	0	1	2	4
Technician	1	1	1	1	0	5	12	19
Others	1	1	1	1	0	7	16	25
Total Government Staff	.4	4	4	4	0	14	32	51
<u>C3 Sg. Petani</u>		·						
Engineer	1	1	1	1	0	1	1	2
T. Assistant	1	1	1	1	0	l	2	2
Technician	1	1	1	1	0	4	8	12
Others	1	1	1	1	0	5	10	16
Total Government Staff	4	4	4	4	0	11	21	32

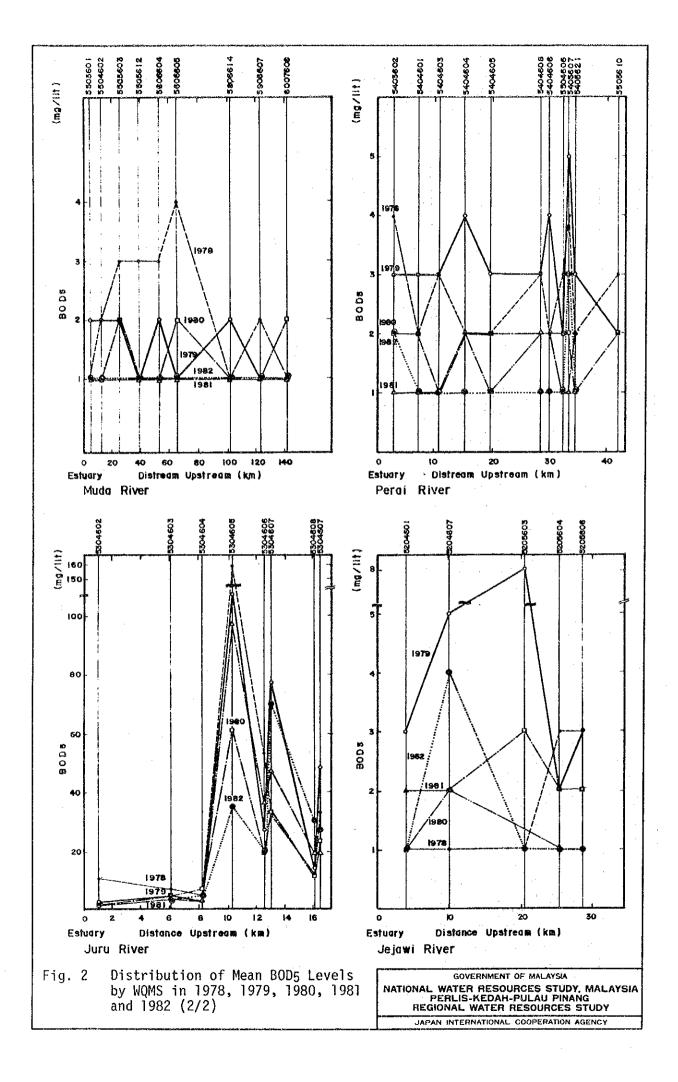
ESTIMATED MANPOWER REQUIREMENT FOR PUBLIC SEWERAGE SYSTEMS BY CITY UNDER THE CONDITION OF 4MP (2/2)

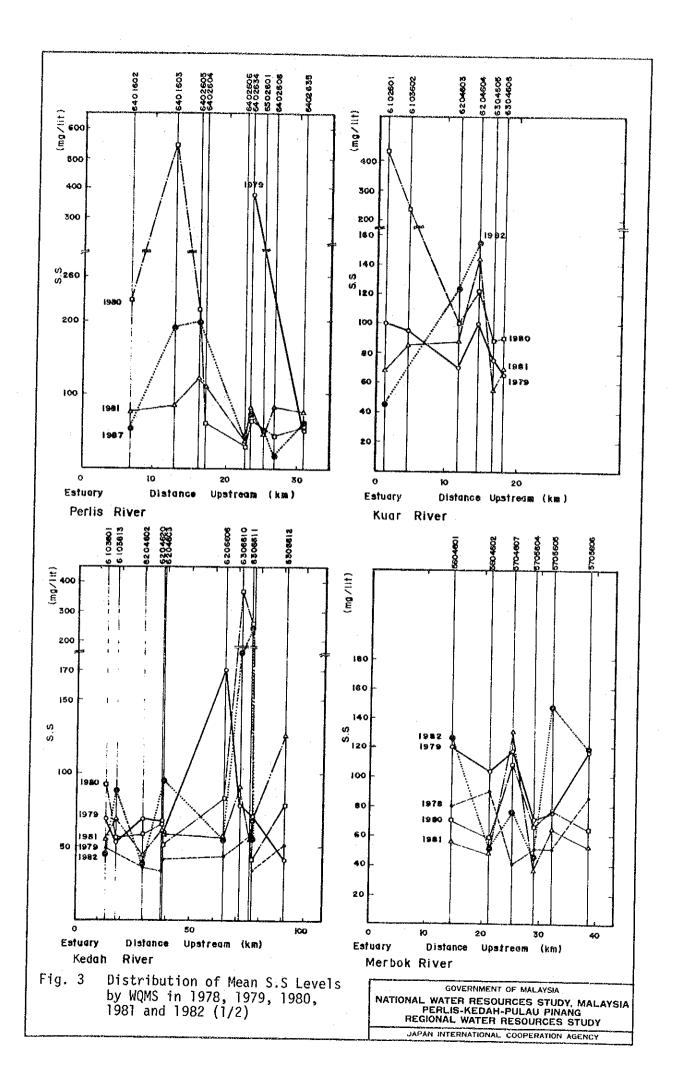
		Constr	uction	O & M				
Category	4MP	5MP	6MP	7MP	4MP	5MP	6MP	7MP
C4 Kulim			·					
Engineer	1	1	1	1	0	1	1	1
T. Assistant	1	1	1	1	0	1 -	1	1
Technician	1	1	1	1	0	1	2	3
Others	1	1	1	1	0	1	2	4
Total Government Staff	4	4	4	4	0	4	6	9
C5 Butterworth								
Engineer	1	1	1	1	0	1	1	. 1
T. Assistant	1	1	1	1	0	1	1	2
Technician	1	. 1	1	1	0	4	6	9
Others	1	1	1	1 .	0	5	8	12
Total Government Staff	4	4	4	4	- 0	11	16	24
C8 Georgetown								
Engineer	1	1	1	1	1	1	1	2
T. Assistant	1	1	1	1	1	2	2	2
Technician	1	1	1	1	6	7	, 8	10
Others	1	1	1	1	8 ·	9	11	13.
Total Government Staff	4	4	4	4	16	19	22	27

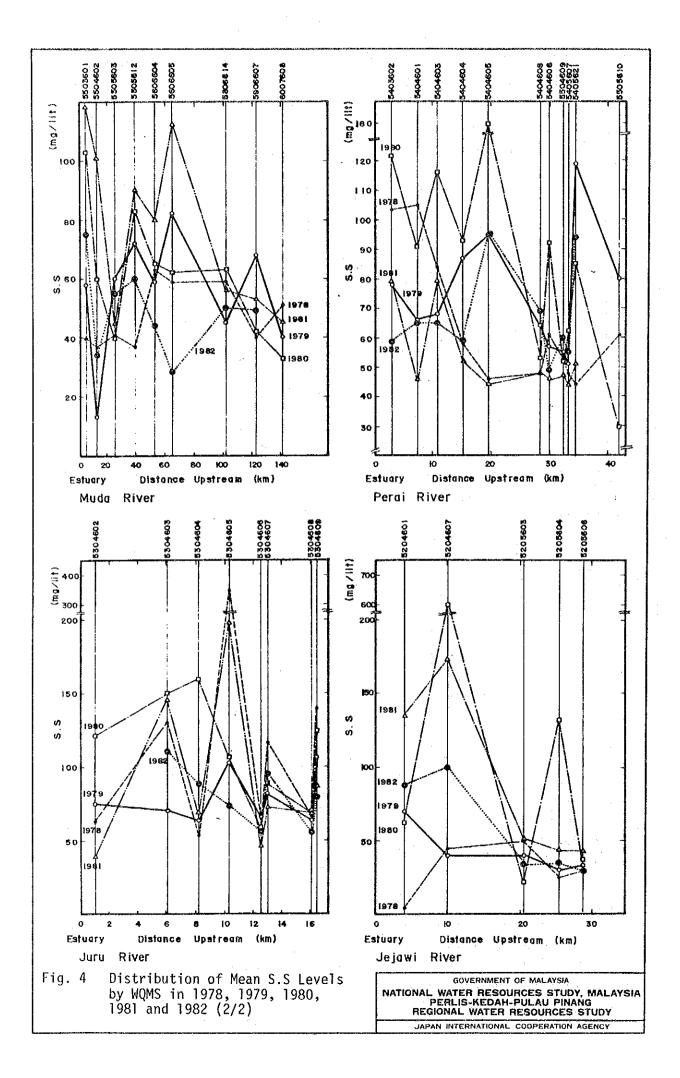
.

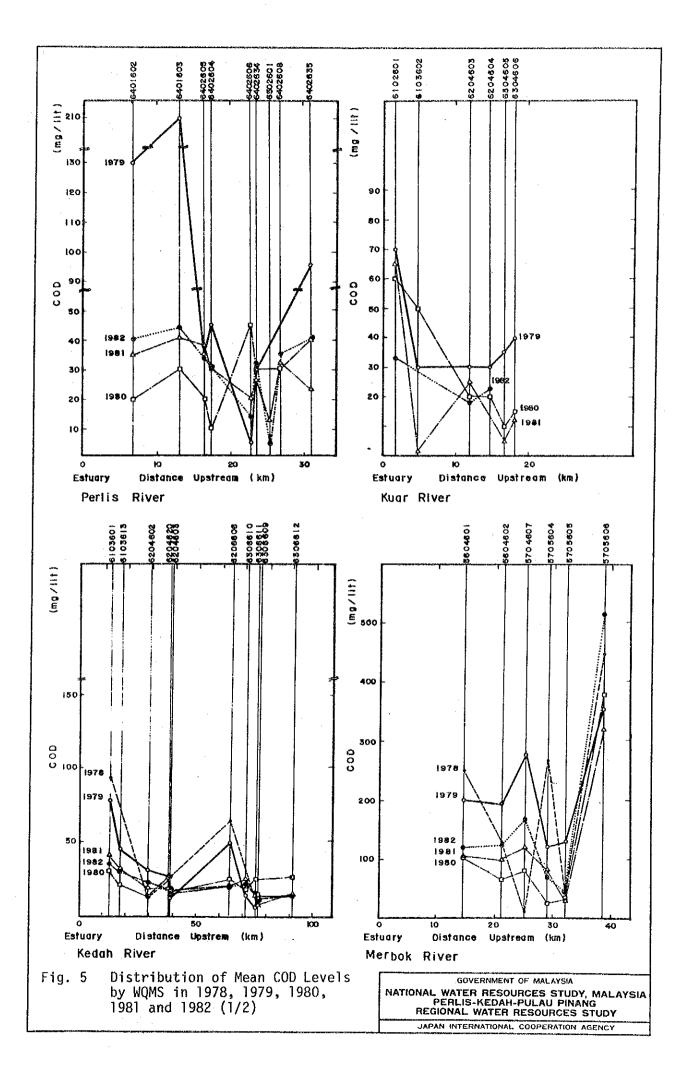
Table 59 ESTIMATED MANPOWER REQUIREMENT FOR PUBLIC SEWERAGE SYSTEMS BY CITY UNDER THE CONDITION OF LOWER ECONOMIC GROWTH (1/2)

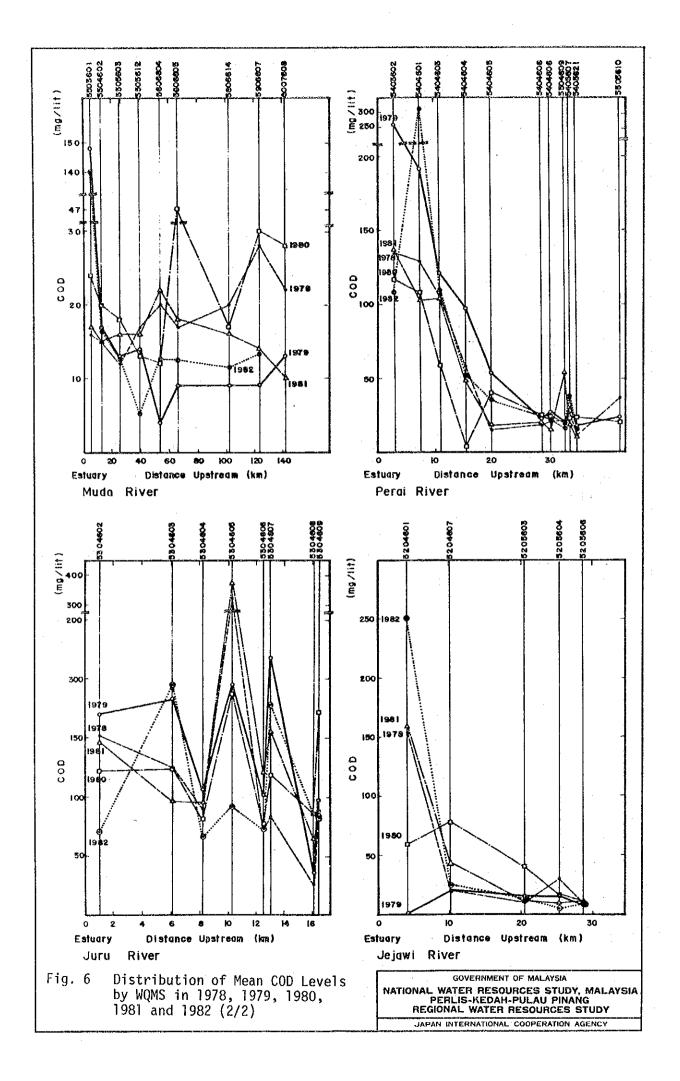

	Construction				0 & M			
Category	4MP	5MP	6MP	7MP	4MP	5MP	6MP	7MP
Cl Kangar					-			
Engineer	1.	1	1	1	0	1	1	1
T. Assistant	1	1	1	1	0	1	1	1
Technician	1	1	1	1	0	1	2	2
Others	1	1	1	1	0	1	2	3
Total Government Staff	4	4	4	4	0	4	6	7
C2 Alor Setar								
Engineer	1	1	1	1	0	1	1	1
T. Assistant	1	1	1	1	. 0	1	1	1
Technician	1	1	1	1	0	2	4	6
Others	1	1	1	1	0	3	5	8
Total Government Staff	4	4	4	4	0	7	11	16
<u>C3 Sg. Petani</u>								
Engineer	1	1	1	1	0	1	1	1
T. Assistant	1	1	1	1	0	1	1	1
Technician	1	1	1	1	0	2	3	4
Others	1	1	1	1	0	2	4	5
Total Government Staff	4	4	4	4	0	6	9	11

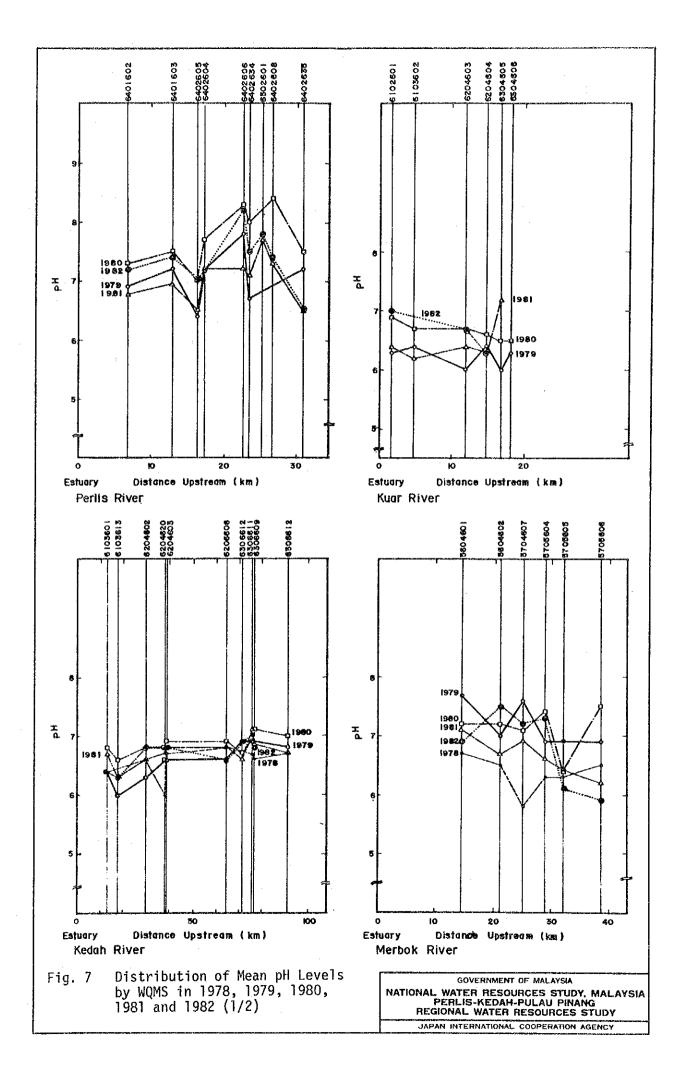

•

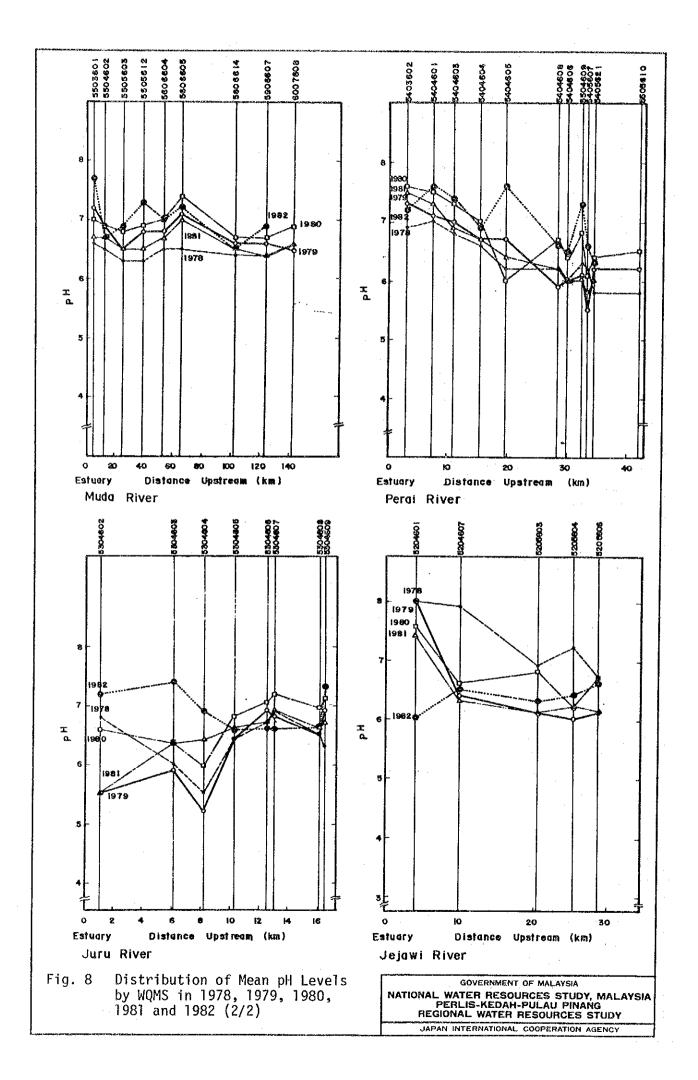

Table 60ESTIMATED MANPOWER REQUIREMENT FOR PUBLICSEWERAGE SYSTEMS BY CITY UNDER THE
CONDITION OF LOWER ECONOMIC GROWTH (2/2)

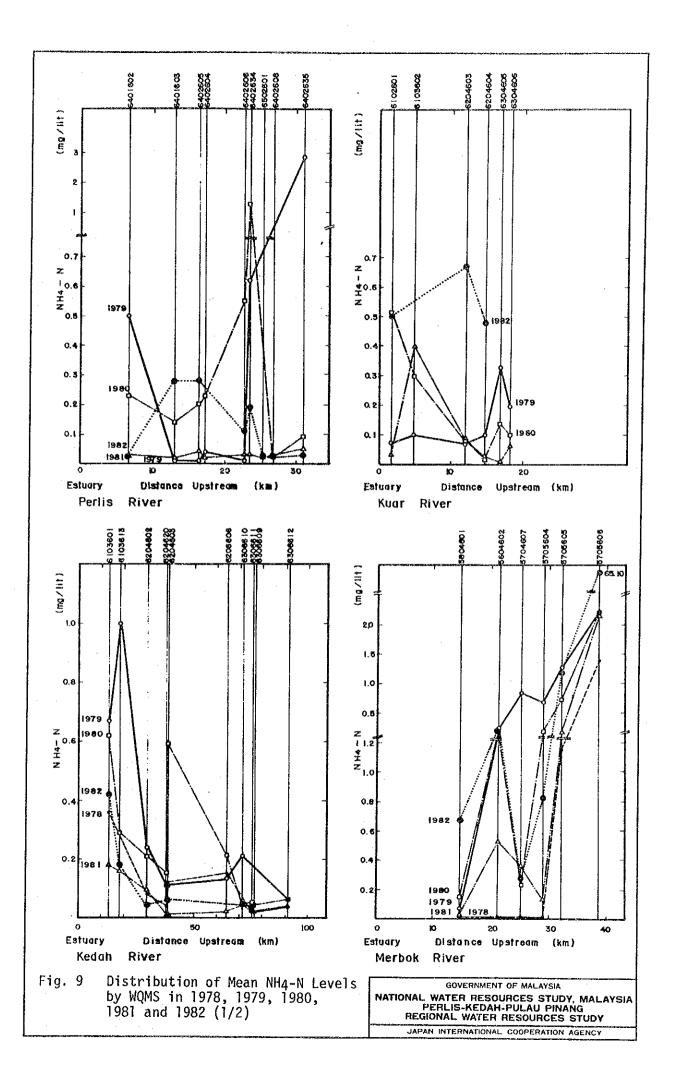

	Construction				0 & M				
Category	4MP	5MP	6MP	7MP	4MP	5MP	6MP	7MP	
C4 Kulim									
Engineer	1	1	1	1	0	1	1	- 1	
T. Assistant	1	1	1	1	0	1	1	1	
Technician	1	1	1	1	0	1	1	1	
Others	1	1	1	1	0	1	1	2	
Total Government Staff	4	4	4	4	. 0	4	4	5	
C5 Butterworth									
Engineer	1	1	1	1	0	l	1	1	
T. Assistant	1	1	1	1	0	1	1.	1	
Technician	1	1	1	1	0	3	4	6	
Others	1	1	1	1	0	4	6	7	
Total Government Staff	4	4	4	4	0	9	12	15	
C8 Georgetown									
Engineer	1	1	1	1	1	1	1	1	
T. Assistant	1	1	1	1	1	1	1	1	
Technician	1	1	1	1	5	5	6	6	
Others	1	1	1	1	6	7	8	8	
Total Government Staff	4	4	4	4	13	14	16	16	

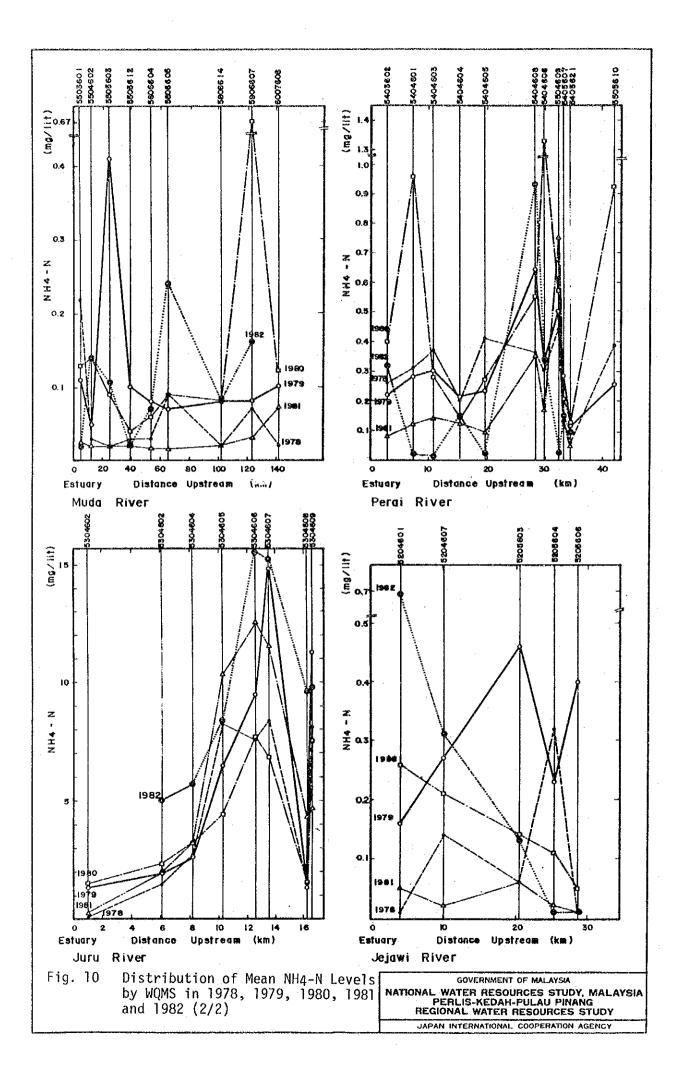


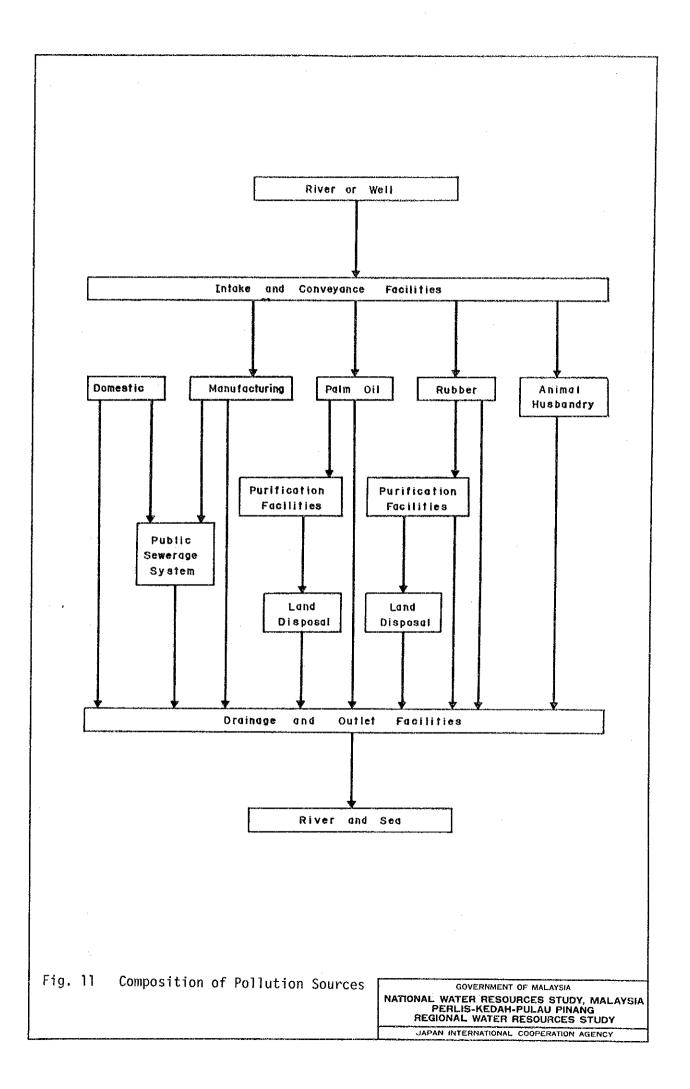


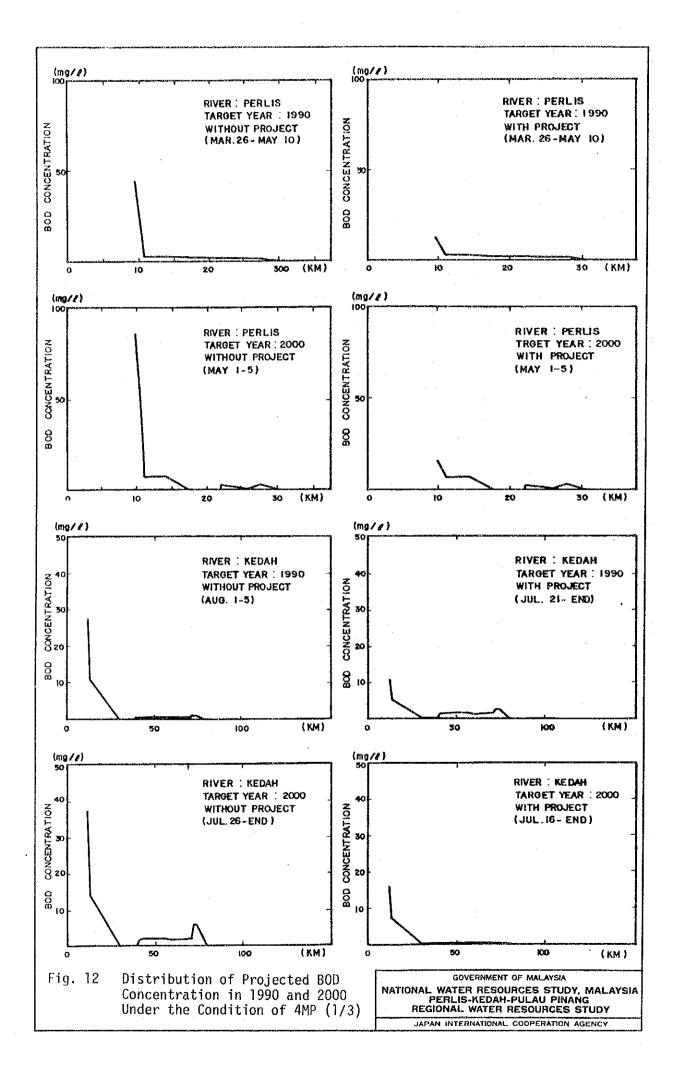


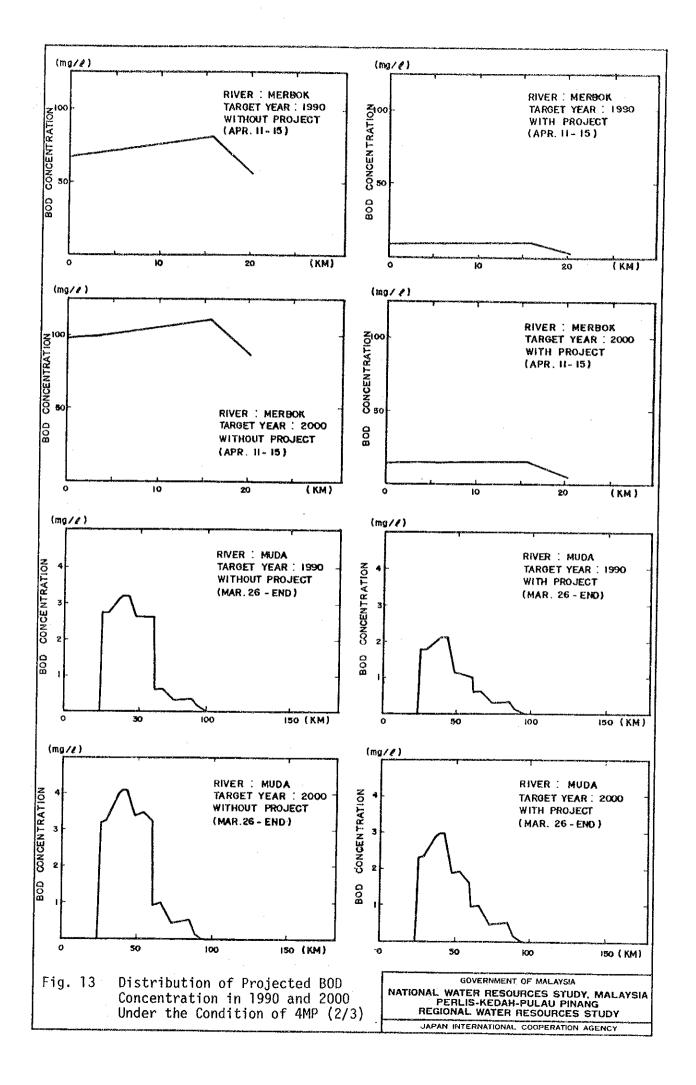


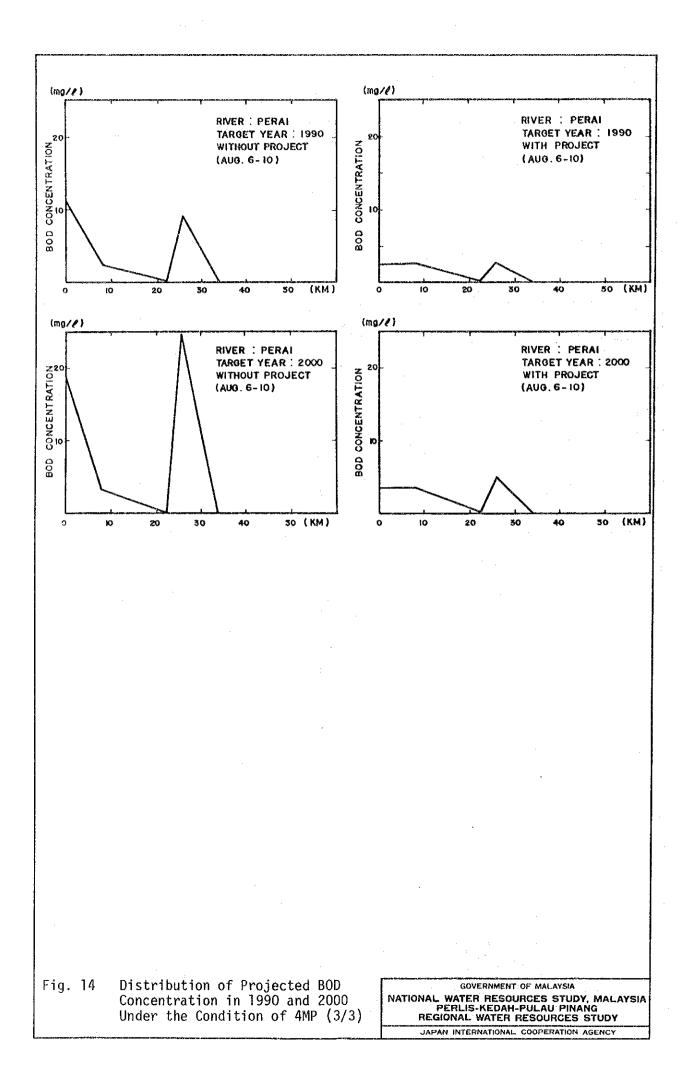


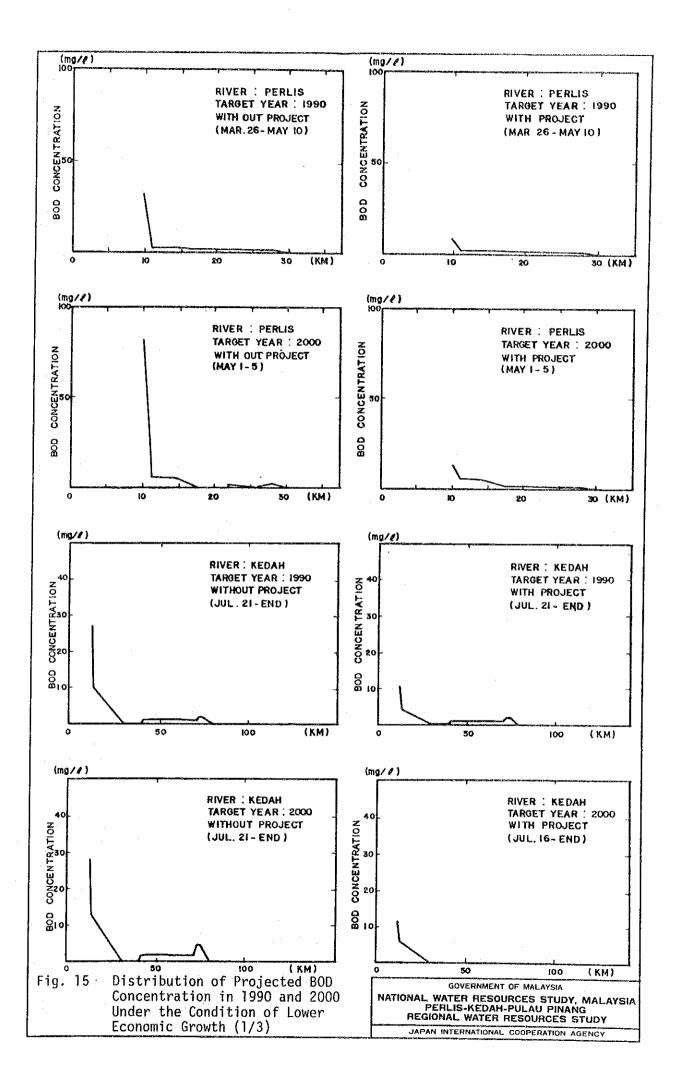


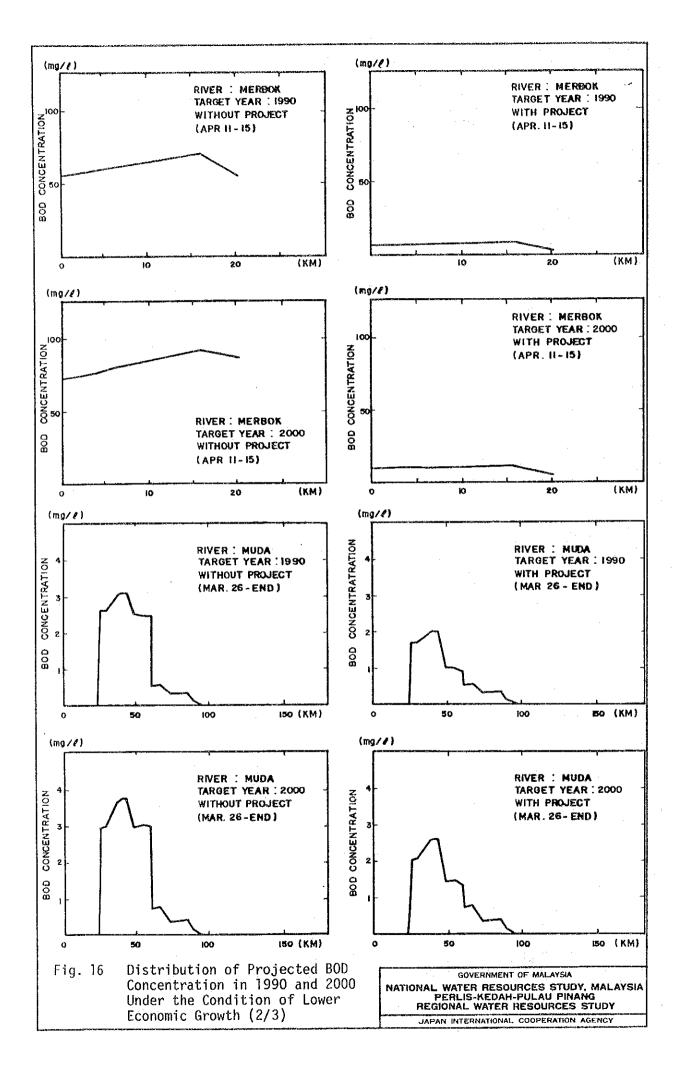


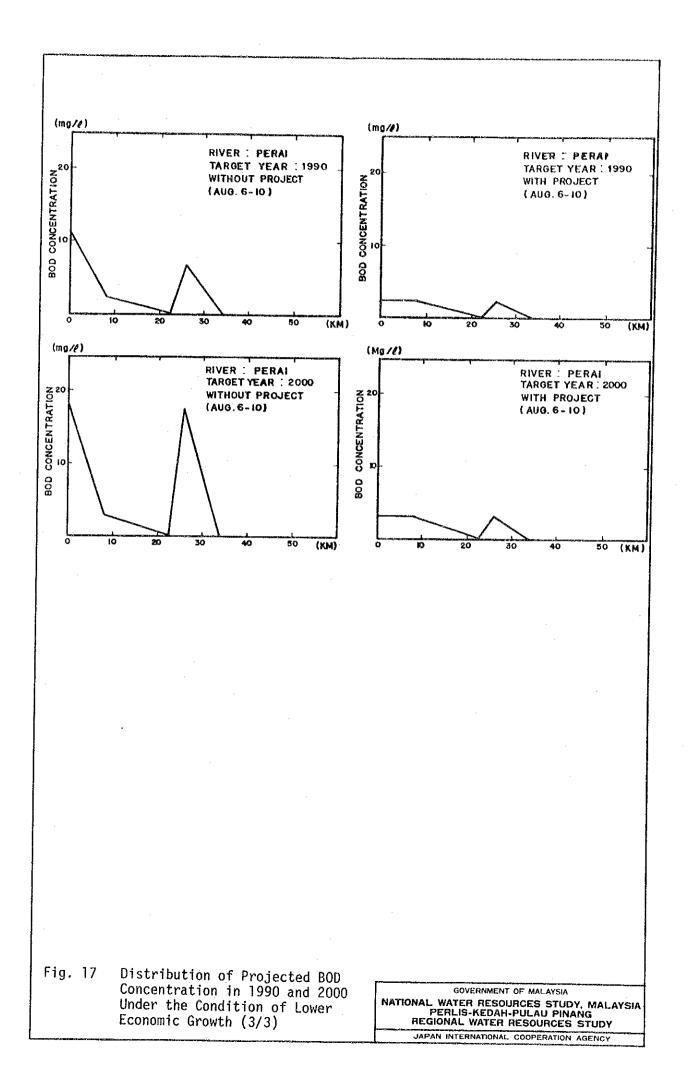


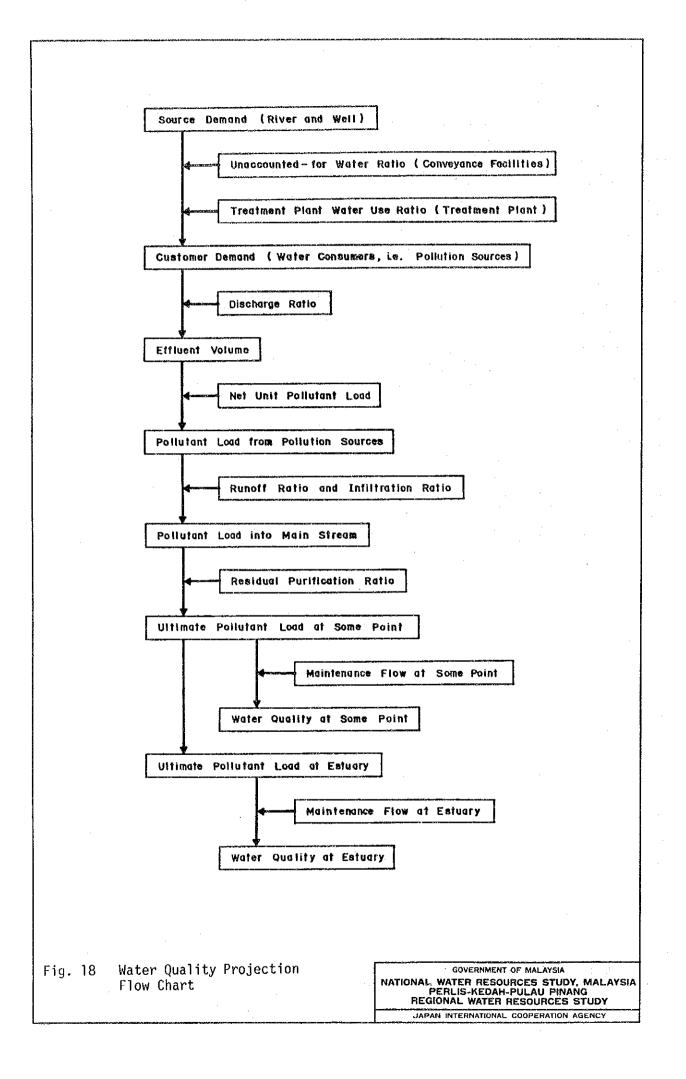












Environmental Feature

Self Purification by River

Odors Occurrence from River

Fish Inhabitation Carp and Silver Carp

River Water Quality Limit

Netherlands

River Water Quality Standard

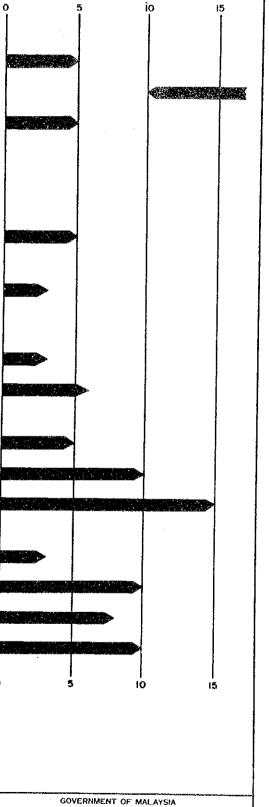
Oklahoma State, USA

for Domestic Water Supply

USSR

for Domestic Water Supply & Food Manufacturing

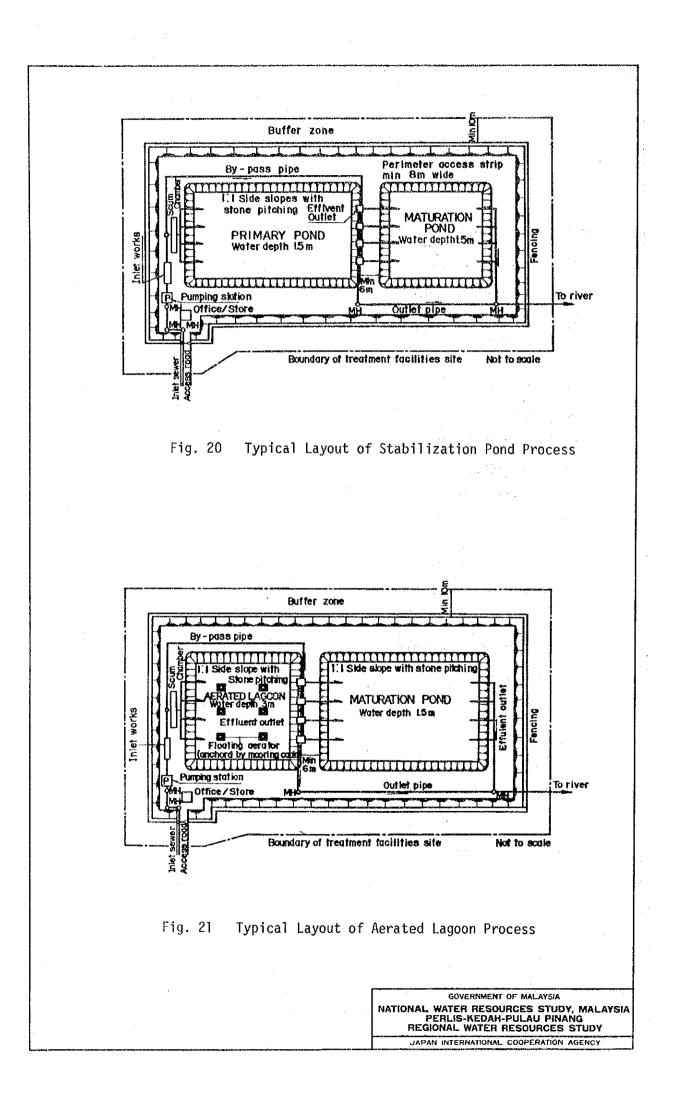
for Bothing, Sports & Recreation

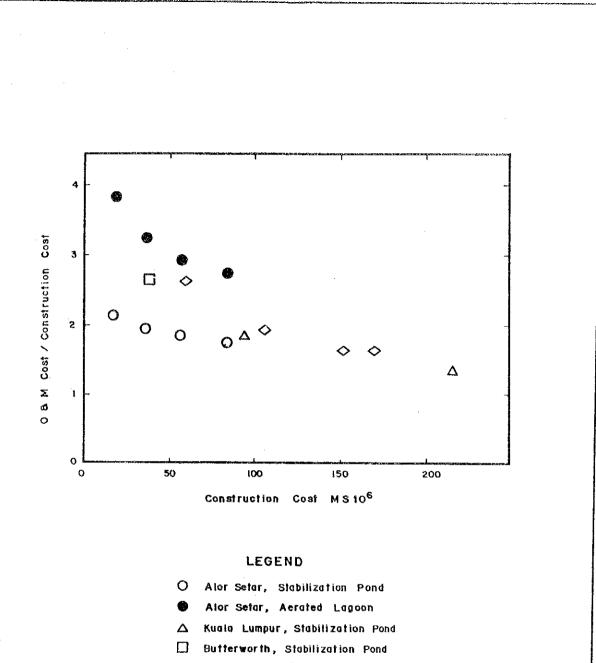

Philippines

for Domestic Water Supply

- for Bathing
- for Fishing

Japan


- for Domestic Water Supply
- for Industrial Water Supply
- for Agricultural Water Supply
- for Conservation of Environment



BOD Concentration (mg/lit)

Fig. 19 Relationships Between BOD Concentration and Environmental Feature, and River Water Quality Limit

GOVERNMENT OF MALAYSIA NATIONAL WATER RESOURCES STUDY, MALAYSIA PERLIS-KEDAH-PULAU PINANG REGIONAL WATER RESOURCES STUDY JAPAN INTERNATIONAL COOPERATION AGENCY

♦ Georgetown , Preliminary Treatment

Fig. 22 Relationships Between O&M Cost and Construction Cost

GOVERNMENT OF MALAYSIA NATIONAL WATER RESOURCES STUDY, MALAYSIA PERLIS-KEDAH-PULAU PINANG REGIONAL WATER RESOURCES STUDY JAPAN INTERNATIONAL COOPERATION AGENCY