8. WATER POLLUTION ABATEMENT PLANS

8.1 General

As the result of the water quality projection in Peninsular Malaysia for 1990 and 2000, most rivers in the west coast especially, the southern half will be polluted. Therefore it is necessary to consider the water pollution abatement form the viewpoints of water use and environmental quality in river. The best method for water pollution abatement is that pollution sources control polluted effluent from sources by themselves. As mentioned in 7.3.2, BOD is the most suitable and common parameter of organic water pollution in river. Water pollution abatement is, therefore, the reduction of BOD load by some treatment method in pollution sources.

8.2 Setting of Water Quality Criteria

Water quality standards are of two kinds as follows:

- (1) standards for drinking water which pertain to water delivered to consumers after treatment,
- (2) standards for raw water which are classified depending upon the purpose of utilization, i.e., domemstic and industrial water supply, fishery, irrigation, bathing and conservation of environment.

International Standards for Drinking Water have been promulgated by the World Health Organization (WHO) as a worldwide guide to the improvement of water quality and treatment. In Malaysia Standards of Bacteriological Quality of Water and Standards for Toxic Substances derived from the WHO Standards have been carried out.

Standards for raw water in Malaysia have been promulgated as Toxicity Limits and Water Quality Criteria for 4 categories, 1.e., (i) municipal water supply, (ii) recreation, propagation of fish and other aquatic wildlife, (iii) argicultural irrigation and (iv) industrial water supply. Adopted parameters are 74 parameters except BOD. Standards of raw water in some countries, Holland, U.S.A., U.S.S.R., Philippines and Japan have adopted several parameters including BOD. Concerns the living environment, river water quality is classified according to water usage, and environmental quality standards values for BOD, DO, SS, PH and Coliform are established for each class. Japanese Standards relating to living environment is shown in Table 44 and Philippines water quality criteria is shown in Table 45. In the Study BOD is adopted in order to observe the river water quality. Some relationships between BOD concentration in a river and environmental quality, and river water quality standard in some countries are illustrated in Fig. 19.

As water quality criteria, two alternative targets for the water pollution abatement are proposed from the viewpoint of environmental

quality in the Study. Alternative P1 sets BOD concentration in a river at less than 5 mg/lit in 1990 onwards. Alternative P2 limits BOD concentration in a river at less than 10 mg/lit in 1990 onwards.

8.3 Planning of Treatment Facilities

In case of the necessity of BOD concentration reduction for the proposed limit in a river, the improvement of treatment facility in pollution sources should be proposed.

First of all pollution sources, the improvement of purification methods in all palm oil mills and rubber factories is assumed. Improved purification methods are under investigation in Palm Oil Research Institute of Malaysia (PORIM) and Rubber Research Institute of Malaysia (RRIM) to attain to the limit of BOD concentration for watercourse discharge from palm oil mills and rubber factories. DOE proposed 50 ppm for the future limit. Present limits for watercourse discharge in palm oil mills and rubber factories are shown in Table 3 & 6.

If there still remains a river stretch of higher BOD concentration than the proposed limit, the construction of a sewerage system in the urban area immediately upstream of the river stretch is assumed.

Urban domestic and manufacturing wastewater is collected and treated in public sewerage treatment facilities. BOD concentration in the effluent from a sewerage system is estimated to be 30 mg/lit.

No purification measure is assumed for the effluent from rural area and animal husbandry.

For purification method of effluent from palm oil mills, anaerobic digestion with extended aeration or land disposal are proposed. As treatment method of effluent from rubber factories, aerobic and facultative pond for SMR and oxidation ditch for Latex Concentrate. The layout of the stabilization pond process, combining facultative pond with muturation pond, is shown in Fig. 20.

For public sewerage system, aerated lagoon process is proposed in the Study. This process is historically developed from stabilization pond. Floating aerator for surface aeration is commonly used to supply the necessary oxygen and arise reduction level of load. Maturation pond is necessary to reduce coliform after treating in the aerated lagoon. The layout of aerated lagoon process is shown in Fig. 21.

9. PLANNING MATERIALS

9.1 Financial Cost

9.1.1 Construction cost

Construction costs of purification facilities for palm oil mills, rubber factories and sewerage facilities for urban area composed of sewer, pumping station and treatment facilities are estimated, basing on the data from DOE and the previous studies available, i.e. Master Plan and Feasibility Study for Sewerage and Drainage System Project in Alor Setar and Its Urban Environs Malaysia Report. And construction cost of pretreatment facilities for domestic and industrial water supply are estimated using the data of the previous studies available.

Construction cost is estimated in the four categories, i.e. (1) direct construction cost, (2) engineering service & administration, (3) land acquisition, and (4) physical contingency. Engineering service and administration costs are assumed to be 10% of the direct cost. Physical contingency is assumed to be 30% of the total of the above (1) to (3).

For the sewerage facilities, direct construction costs by facility in reference of the data of Alor Setar Project are as follows;

$$C_S = 0.937Q$$
 $C_P = 0.279 + 0.0552Q$
 $C_T = 1.02 + 0.153Q$

Where Cs: Direct construction cost of sewer, M\$10⁶
Cp: Direct construction cost of pumping station, M10⁶
Cr: Direct construction cost of treatment facility, M\$10⁶
Q: Treatment Capacity, 10³m³/d

Unit direct construction cost of sewerage facilities per $100 \times 10^3 \text{m}^3/\text{d}$ of treatment capacity is M\$115.8 x 10^6 .

Land acquisition cost for sewerage facilities in reference of the data of Alor Seter Project are as follows;

$$C_{PL} = 0.0168 + 1.43 \times 10^{-3} \times Q$$

 $C_{TL} = 0.152 \times Q^{0.787}$

Where CpI = Land acquisition cost of pumping station, $M\$10^6$ CTL = Land acquisition cost of treatment facility, $M\$10^6$ Q = Treatment capacity, $10^3 \text{m}^3/\text{d}$

Unit land acquisition cost of sewerage facilities per $100 \times 10^3 \text{m}^3/\text{d}$ of treatment capacity is estimated to be M\$5.9 x 10^6 .

Construction and land acquisition costs of sewerage facilities are generally beared by the public and the private sector. Therefore calculation of costs for sewerage systems was carried out on the following assumptions;

- (1) in the existing urban area, cost of house connection pipe is beared by the private,
- (2) in the new development urban area, costs of branch sewer and house connection pipe are beared by the private.

Cost and sheare of branch sewer and house connection pipe to total costs of sewerage systems is shown in Table 46.

For the purification facilities for palm oil mills, direct construction costs are M\$3,300 per m³/d of treatment capacity for anaerobic digestion with extended aeration and M\$2,200 per m³/d of treatment capacity for anaerobic digestion with land disposal. In consideration of land disposal development; 50% in 1990 and 75% in 2000, direct construction costs in 1990 and 2000 are as follows;

$$Cp = (3.3 \times 0.5 + 2.2 \times 0.5) \times Q = 2.75 \times Q \text{ in } 1990$$

 $Cp = (3.3 \times 0.25 + 2.2 \times 0.75) \times Q = 2.48 \times Q \text{ in } 2000$

Where Cp : Direct construction cost of purification facility, $M\$10^3$ Q : Treatment capacity, m^3/d

Unit direct construction costs of purification facilities of palm oil mill are estimated to be M\$2,750 per m^3/d of treatment capacity in 1990 and M\$2,480 per m^3/d in 2000.

Purification facilities of palm oil mill is assumed to be constructed in the palm oil mill area, so no land acquisition cost is need.

For the purification facilities for rubber factories, direct construction costs are M\$660 per $\rm m^3/d$ of treatment capacity for SMR production and M\$1,980 per $\rm m^3/d$ of treatment capacity for Latex Concentrate production.

Percentage of rubber factories by type of rubber production in 1980 is as follows;

Type of Rubber Production	Number	of Rubber Factor	y Share
Conventional and SMR		146	70%
Latex Concentrate, Mixed and Others		60	30%

On the assumption of the same share in 1990 and 2000 as in 1980, direct construction cost in 1990 and 2000 is estimated as follows;

$$C_R = (0.66 \times 0.7 + 1.98 \times 0.3) \times Q = 1.06 \times Q$$

Where C_R : Direct construction cost of purification facility, M\$10 3 Q: Treatment capacity, m $^3/d$

Unit direct construction cost of purification facilities of rubber factory is estimated to be 1,060 per m^3/d of treatment capacity in 1990 and 2000.

No land acquisition cost of purification facility in rubber factory is need as the assumption of palm oil mill.

As the pretreatment facilities, two treatment methods are proposed. For BOD concentration in raw water between 2 mg/lit and 20 mg/lit, pretreatment is carried out by the rapid sand-filter and activated carbone absorption (Secondary treatment). For BOD concentration between 20 mg/lit and 200 mg/lit, an aerated lagoon process such as aerated lagoon or maturation pond (primary treatment) is further needed. The direct construction costs of the above-mentioned pretreatment facilities are estimated as follows:

Cprel =
$$3.48 \times 10^{-6} \times L^{2.9} \times (Q_D + Q_Z)$$

Cpre2 = $21.2 \times 10^{-6} \times L^{2.9} \times (Q_D + Q_Z)$

where, Cprel: Direct construction cost of primary pretreatment facility, $M\$10^6$

Cpre2: Direct construction cost of secondary pretreatment facility, M\$106

L: Reduction level of pretreatment facility, %

QD: Treatment capacity for domestic water supply, 103m3/d

Qz: Treatment capacity for industrial water supply, 103m3/d

Unit direct construction costs of pretreatment facility are estimated to be M\$29.4 x 10^6 per 100 x $10^3\text{m}^3/\text{d}$ of treatment capacity for primary pretreatment facility and M\$86.5 x 10^6 per 100 x $10^3\text{m}^3/\text{d}$ of treatment capacity for secondary pretreatment facility as 50% reduction level.

Pretreatment facilities is assumed to be constructed in the treatment plant area, so no land acquisition cost is need.

The unit construction costs by type of treatment facility are estimated as shown in Table 47 and summarized below.

9.1.2 0&M cost

The O&M costs include O&M cost of sewer, pumping station and aerated lagoon process for public sewerage system, O&M cost of ponding process for purification facilities in palm oil mills and rubber factories and O&M cost of aerated lagoon for primary pretreatment and rapid sandfilter bed for secondary pretreatment.

Relationship between construction cost and ratio of O&M cost and construction cost by city is shown in Fig. 22. The ratio has the range from 1% to 4%. In the study, the annual O&M cost is assumed to be 4% of the total construction cost for public sewerage system and 2% of the total construction cost for purification facilities of palm oil mills and rubber factories and pretreatment facilities.

9.2 Economic Benefit and Cost

Economic benefit for water pollution abatement is assumed to be composed with the sewerage benefit and the saving in pretreatment facility.

The sewerage benefit is the willingness-to-pay by served people and saving in the cost of purification of industrial waste-water. It is assumed to be 0.6% of real income of served people and gross value of manufacturing production of served industries in this Study.

Pretreatment facilities is necessary if BOD concentration in raw water is more than 2 mg/lit for domestic water supply or 5mg/lit for industrial water supply. Its cost can be saved, if the proposed water pollution abatement measures reduced BOD concentration in the riveracross this limit. This saving in cost is counted as a part of water pollution abatement benefit.

Economic cost for water pollution abatement is estimated to be 80% of the financial cost of public sewerage system, purification facilities of palm oil mills and rubber factories and pretreatment facilities for D & I water supply.

9.3 Manpower Requirement

9.3.1 Manpower requirement for construction

Manpower requirement for construction is estimated, basing on the data of Ministry of Local Government and Federal Territory. The staff

in the Construction Division of Sewerage Department is composed with four categories as follows:

Staff Category	Number of Staff
Executive Engineer	1
Assistant Engineer	. 3
Technical Assistant	2
Technician	3
Total	9

In consideration of the above staff-requirement and construction schedule, manpower requirement is estimated for construction schedule of every 50 x $10^3 \mathrm{m}^3/\mathrm{d}$ per year as follows,

Staff Category	Number of Staff	Share (%)
Engineer	2	25
Technical Assistant	2	25
Technician	2	25
Others	2	25
Total	8	100

9.3.2 Manpower requirement for O&M

Manpower requirement for O&M is estimated, basing on the data of the staff requirement of the Operation Division, Sewerage Department, Ministry of Local Government and Fedecal Territory as well as manpower requirement for construction. The staff in the Operation Division of Sewerage Department is composed with categories as follows;

Staff Category	Number of Staff
Treatment Plant	
 Laboratory Assistants IMG Workers 	18
Pumping Stations	
- Mechanical Supervisors IMG Workers	11
- Sewer Inspectors IMG Workers	29
Other Operations	
Works Manager	$oxed{\mathbf{I}}$. The second of $oxed{\mathbf{I}}$, $oxed{\mathbf{I}}$
Chemist/Biologist	2
Technical Assistant (El	ectrical) 1
Supervisors (Works)	$oldsymbol{1}$
Assistant Clerk/Typist	2
Technicians (Sampling M	leter Reader) 1
Security	3
IMG Workers	22
Driver	1
Total	98

In consideration of the above staff-requirement and staff required in the D&I water supply, manpower requirement is estimated for treatment capacity of every 200 x $10^3 \text{m}^3/\text{d}$ as follows,

Staff Category	Number of Staff	Share (%)
Engineer	2	1
Technical Assistant	3	1
Technician	18	7
Others	240	91
Total	263	100

REFERENCES

- DRAFT MASTER PLAN AND FEASIBILITY STUDY FOR KOTA KINABALU SEWERAGE, August. 1981
- 2. DRAFT MASTER PLAN AND FEASIBILITY TUDY FOR SANDAKAN SEWERAGE, August, 1981
- 3. DRAFT MASTER PLAN AND FEASIBILITY STUDY FOR TAWAU SEWERAGE, August, 1981
- 4. LAHAD DATU SEWERAGE MASTER PLAN AND DESIGN OF PHASE I, May, 1981
- 5. WATER QUALITY MANAGEMENT IN MALAYSIA, DOE, July, 1980
- 6. ENVIRONMENTAL QUALITY ACT 1974, Environmental Quality (Prescribed Premises) (Ras Natural Rubber) (Amendment) Regulations 1980, Government of Malaysia
- 7. ENVIRONMENT QUALITY ACT 1974, Environmental (Prescribed Premises) (Crude Palm Oil) Regulations 1977, Government of Malaysia
- 8. THE TREATMENT OF LIQUID WASTE FROM PALM OIL FRUIT PROCESSING FACTORIES, Whitting, D.A.M. 1978
- 9. A REPORT ON THE PIGGRY WASTE PROBLEM IN PAYA MENKUANG, Alor Gajah District, Melaka, November, 1980
- 10. PRELIMINARY REPORT ON WATER POLLUTION CONTROL SUGUT AND LABUK RIVER BASINS: IMPACT OF MAMUT COPPER MINE, DOE, May, 1977
- 11. NATIONAL WATER QUALITY MONITORING PROGRAMME, 1981, DOE, January, 1981
- 12. KUALA LUMPUR AND ENVIRONS, MASTER PLAN FOR SEWERAGE AND SEWERAGE DISPOSAL, Government of Malaysia, June, 1975
- 13. BINTULU REGIONAL CENTRE STUDY FINAL REPORT, Volume IV, June, 1979
- 14. BINTULU REGIONAL CENTRE STUDY FINAL REPORT, Volume V, June, 1979
- 15. RURAL ENVIRONMENTAL SANITATION PROGRAMME 1973-1980, Ministry of Health, September, 1981
- ENVIRONMENTAL QUALITY ACT 1974, Environmental Quality (Sewerage and Industrial Effluents) Regulations 1979
- 17. EFFLUENTS FROM NATURAL RUBBER PROCESSING FACTORIES AND THEIR ABATEMENT IN MALAYSIA, P.S. Chin et. al. Water Pollution Control in Developing Countries, 1978

- 18. PALM OIL MILL EFFLUENT, Palm Oil Research Institute of Malaysia, Rubber Research Institute of Malaysia, October, 1981
- 19. MANILA WATER SUPPLY III PROJECT APPENDIX C, RAW WATER QUALITY, PICOREM, December, 1979
- 20. KETAS-KERTAS MENGENAI KAJIAN KEMUNGKINAN PELAKSANAAN KAWALN PELEPASAN BUANGAN TERNAKAN BABI (1981-1985) (Malay)
- 21. LIST OF PRIVATE PIG FARMS IN THE VARIOUS DISTRICTS, Veterinary Department Kota Kinabalu, Sabah, 1981
- 22. MAJAR PIG FARMS IN SARAWAK, Department of Agriculture Kuching, Sarawak, 1982
- 23. SABAH REGIONAL PLANNING STUDY, FINAL REPORT 2
- 24. FEASIBILITY STUDY FOR SEWERAGE AND DRAINAGE PROJECT BUTTERWORTH/ BUKIT MERTAJAM METROPOLITAN AREA MALAYSIA, JICA, February, 1979
- 25. SEWERAGE AND DRAINAGE SYSTEM PROJECT IN ALOR SETAR AND ITS URBAN ENVIRONS MALAYSIA, JICA, March, 1981
- 26. COMPREHENSIVE BASIN-WIDE PLANNING OF SEWER SYSTEM RECOMMENDED STANDARDS, Ministry of Construction, Japan, 1980 (Japanese)
- 27. OVERVIEW OF LAND-BASED POLLUTION SOURCES IN MALAYSIA (DRAFT REPORT)

TABLES

Table 1 INVENTORY OF EXISTING SEWERAGE SYSTEM

Town	Total	in 1980 (10 ³) Served by Sewerage System	Purification System	Ultimate Effluent Receiving Watercourse
Kota Kinabalu	60	19	No Purification System	Likas Bay
		8	Stabilization Lagoons	The surface water drain along Penampang Road
Sandakan	70	26	No Purification System	Sandakan Harbour, Sulu Sea
Tawau	45	12	No Purification System	Cowie Bay
Labuan	12	Data Not Avail- able	No Purification System	Labuan Harbour
Lahad Datu	17	Data Not Avail- able	No Purification System	Celebes Sea
Kudat	11	Data Not Avail- able	No Purification System	Marudu Bay

Remarks; Marine disposal without treatment is carried out in most cities.

Source; Public Works Department

Table 2 CHARACTERISTICS OF RUBBER FACTORY EFFLUENT

Unit: mg except pH

		Product Type	<u> </u>
		SMR &	Latex
Parameter		Conventional Grade	Concentrate
рН		5.6	4.6
BOD5		1,500	3,236
COD		2,295	6,976
SS		345	6,686
Ammoniacal Ni	trogen	118	622
Total Nitroge	n :	161	858

Source; Ref 5

Table 3 RUBBER FACTORY EFFLUENT STANDARD FOR WATERCOURSE DISCHARGE

(1) CONCENTRATED LATEX OR ITS ASSOCIATED PRODUCTS

unit: mg/1 except pH

	Limits According to Periods of Discharge			
	1.4.1980 -	1.4.1981 -	1.4.1982 -	1.4.1983 -
Parameter	31.3.1980	31.3.1982	31.3.1981	Thereafter
BOD3	450	300	200	100 (50*)
COD	1,500	1,000	500	400
Total Solids	2,500	2,000	1,000	-
SS	1,000	800	250	150 (100)
Ammoniacal Nitrogen	350	300	300	300
Total Nitrogen	450	350	350	350
pH	6-9	6-9	6-9	6-9

(2) PRODUCTS OTHER THAN CONCENTRATED LATEX OR ITS ASSOCIATED PRODUCTS

unit: mg/l except pH

	Limits According to Periods of Dischar		
	1.4.1979 -	1.4.1980 -	1.4.1981 -
Parameter	3.3.1980	31.3.1981	Thereafter
BOD3	300	200	100 (50*)
COD	750	500	250
Total Solids	1,000	1,000	· ·
SS	250	250	150 (100*)
Ammoniacal Nitrogen	70	70	40 ⁺
Total Nitrogen	100	100	60 ⁺
pH	6-9	69	6-9

Remarks; * This additional limit is the arithemetic mean value determined on the basis of a minimum of four samples taken at least once a week for four weeks consecutively.

+ Value on filtered sample.

Source; Ref. 6

Table 4 INVENTORY OF PURIFICATION SYSTEM FOR RUBBER PROCESSING

Code No.	Name of Factory	State	Type of Production	Actual Production mt/day	Purification System	Quantity of Effluent m ³ /year	BOD ₃ & SS of Treated or Raw Effluent BOD ₃ (mg/l) SS(mg/l)	f Treated uent SS(mg/1)
201.	Ball Estates Sdn. Bhd. Rubber Factory	Sabah	RSS SMR	11	Rubber Trap, Anaerobic Pond, Facultative Pond	90,168	W: 19.81	W: 26
204.	Putatan Crumb Rubber Factory	Sabah	SMR5 BLOCK Rubber	r 22	No Treatment System	130,924.8	s: 50	S: -500
205.	Tenom SMR Factory	Sabah	SMR BLOCK Rubber	101	Rubber Trap, Anaerobic Pond, Facultative Pond	90,300	W: 25	W: 130
208.	Meradong SMR Factory	Sarawak	SMR BLOCK rubber	2	No Treatment System	54,588	W: 155.5	W: 287
209.	Skrang SMR Factory	Sarawak	SMR BLOCK rubber	ι'n	No Treatment System	54,588	W: 98.5	W: 110
210.	Lim Liang Kee SMOKE House	Sarawak	SMR OFFGRADE SMOKE SHEFT	4∞	Recycle Process	1	: •	1

Remarks; W: Effluent into Watercourse, S: Effluent into Sea,

Source; DOE

Table 5 CHARACTERISTICS OF PALM OIL MILL EFFLUENT (RAW EFFLUENT)

Unit: mg/lit except pH

Parameter	Range	Mean
BOD ₃	10,250 - 47,500	25,000
COD	15,500 - 106,360	53,630
Total Solids	11,450 - 164,950	43,635
SS	410 - 60,360	19,020
Ammoniacal Nitrogen	0 - 110	35
Total Nitrogen	180 - 1,820	770
рН	3.8 - 4.5	4.1

Source; Ref. 18

Table 6 PALM OIL MILL EFFLUENT STANDARD FOR WATERCOURSE DISCHARGE

unit: mg/l except pH

	Limits According to Periods of Discharge										
Parameter	1.7.1980 - 30.6.1981	1.7.1981 - 30.6.1981	1.7.1982 - 31.12.1983	1.1.1984 Thereafter							
BOD ₃	1,000	500	250	100 (50*)							
COD	2,000	1,000	-	-							
Total Solids	2,000	1,500									
SS	600	400	400	400							
Ammoniacal Nitrogen	15	10	150 ⁺	100+							
Total Nitrogen	75	50	300 ⁺	200+							
рН	5.0 - 9.0	5.0 - 9.0	5.0 - 9.0	5.0 - 9.0							

Remarks; * This additional limit is the arithemetic mean value determined on the basis of a minimum of four samples taken at least once a week four weeks consecutively.

+ value on filtered sample

Source; Ref. 7

Table 7 INVENTORY OF PURIFICATION SYSTEM FOR PALM OIL PROCESSING

Code No.	Name of Factory	State	Average Production of FFB mt/day	Purification System	Average Quantity of Effluent m ³ /year	BOD3 & SS of Treated or Raw Effluent BOD3(mg/1) SS(mg/1)
202.	Bal Estate Palm Oil Mill	Sabah	341	Anaerobic pond, Aerobic pond	50,544	W: 113 W: 1,287
203.	Apas Balong Palm Oil Mill	Sabah	366	under construction	68,784	W: <300 W: 700
204.	Mostyn Kunak Palm Oil Mill	Sabah	270	Anaerobic pond, Facultative pond, Oxidation pond, Land Disposal	25,000	L: 500 L: 2,100
206.	Giram Palm Oil Mill	Sabah	100	Anaerobic pond, Aerobic pond, Land Disposal	18,000	L: 90 L: 501
205.	Sabah Agricultural Development Palm Oil Mill	Sabah	80	Anaerobic pond, Land Disposal	: 8 <u>1</u>	L: 1,000 -
207.	Silabukan Palm Oil Mill	Sabah	100	No Treatment System	15,000	S: 22,800 S: 35,40
209.	Townsgong Palm Oil Hill	Sabah	150	Cooling Pond, Anaerobic Pond, Aerobic Pond	26,880	W: 100 W: 1,900
210.	Suan Lamba Palm Oil Mill	Sabah	50	No Treatment System	7,500	S: 4,800 -
212.	Sungai Majang Palm Oil Mill	Sabah	200	under construction	36,000	s: 5,700 s: 10,80
211.	Sungai Manila Palm Oil Mill	Sabah	316	No Treatment System	47,500	S: 10,200 S: 31,60
214.	Sabah Palm Oil Mill	Sabah	150	Anaerobic Pond, Digestion Pond, Land Disposal	4,800	L: <2,000 -
215.	Pamol Palm Oil Factory	Sabah	336	Anserobic Pond, Anserobic Ditch, Others Under Cons-	46,800	W: 800 W: 2,488
				truction		
217.	Beaufort Palm Oil Mill	Sabah	28	under construction	5,349.9	W: <360 W: 700
218.	Danau Palm Oil Mill	Sarawak	4.5	No Treatment System	376.8	W: 284.5 -
219.	Sarawak Oil Palm Sdn. Bhd.	Sarawak	220	Stabilisation Pond	62,400	W: 200 W: 204
220.	Niah Falm Oil Mill	Sarawak	450	Anaerobic Pond Facultative Oxidation Pond	100,000	W: <100 W: -
223.	Mukan Palm Oil Mill	Sarawak	100	Anaerobic Pond, Aerobic Pond or Facul- tative Oxidation Pond,		W: <500 W: -

Remarks; W: Effluent into Watercourse, S: Effluent into Sea, L: Effluent onto Land Source; DOE

Table 8 CHARACTERISTICS OF WASHING FROM PIG FARMS

Unit: mg/l

Parameter	Analysis results
BOD ₃	1,900 = 21,600
COD	4,800 - 39,000
Total Solids	3,690 - 22,300
Suspended Solids	636 - 15,900
Ammoniacal Nitrogen	75 - 950
Total Nitrogen	370 - 2,080
Organic-N (excluding NH3)	140 - 1,370
Phosphate	160 - 1,600

Source; Ref. 9

Table 9 WATER QUALITY DATA AROUND MAMUT COPPER MINE MONITORED BY DOE IN 1980 (1/2)

Unit : mg/l except ph

													•
	Location of Sampling Point	Mean	pH Max	Min	Mean :	SS Nax	Min	Mean	Cu Max	Min	Mean	Cd Max	Min
1.	Waste Discharge Channel No.	10.1	11.6	6.7	1123	2970	330	0.08	0.25	0.01	0.02	0.08	0.00
2,	Water Intake Of Mamut River	7.6	9.7	6.5	187	755	20	0.02	80.0	0.00	0.00	0.00	0.00
3.	106 Thickener Discharge	8.1	10.8	4.1	81	140	. 15	0.03	0.15	0.00	0.00	0.00	0.00
4.	Namut River Affected by the Open Pit Mining	7.1	9.0	6.0	3661	6440	1100	0.56	4.00	0.01	0.01	0.04	0.00
5.	t06 Thickener Discharge (Control) Before Lohan Tailing Dam	7.3	. 8.7	6.8	121867	248400	13970	0.04	0.11	0.01	0.00	0.01	0.00
6	Lohan Simpangan Road Bridge	7.7	8.6	7.2	1597	9850	195	0.08	0.50	: 0.01	0.00	0.01	0.00
7.	Effluent Dischage At Spillway of Lohan Tailing Dam	7.1	8.4	4.1	876	8180	0	0.02	0.05	0.01	0.01	0.04	0.00
8	Effluent Discharge from Sillway into River Bongkud	7.3	8.3	6.7	70	160	.0	0.01	0.04	0.00	0.00	0.01	0.00
9,	Confluence of 8 & River Bongkud	7.6	8.2	7.1	51	85	5	0.01	0.02	0.00	0.00	0.01	0.00
10.	River Bongkud At Vehicle Crossing Road	7.8	8.4	7.2	27	60	5	0.00	0.02	0.00	0.00	0.01	.0.00
11.	Sugui Mantukungan (Near the Road Before Poring)	7.6	8.4	7.3	15	45	0	0.01	0.04	0.00	0.00	0.01	0.00
12.	Poring Rest House Bridge Crossing Over Mamut River to Poring Hot Spring	7.2	8.3	6.7	138	405	0	0.05	0.15	0.00	0.00	10.0	0.00
13.	Ranau-Lohan Road Track Bridge Crossing Mensaban River	7.7	8.3	7.2	25	60	0	0.01	0.03	0.00	0.00	0.01	0.00
14.	River Rakurit At Kg. Marakan Rd. Stop Near Takurik-Liwagu Con- fluenc	7.4	8.3	6.9	18	50	5	0.01	0.04	0.00	0.00	0.01	0.00
15.	Sugui Liwagu Near Rest House	7.3	8.3	6.9	32	85	Û	0.01	0.02	0.00	0.00	0.01	0.00
16.	River Langunan At Kg. Togis near the Bridge	7.3	8.2	6.8	25	70	. 0	0.02	0.09	0.00	0.00	0.01	0.00
17.	River Mankadan	7.4	8.2	6.9	17	40	. 5	0.01	0.04	0.00	0.00	0.01	0.00
18.	Confluence of River Mandakan & Langanan	7.3	8.2	7.1	16	70	0	0.01	0.04	0.00	0.00	10.0	0.00
19.	River Sugut At Kg. Moragan	7.4	8.1	7.0	35	145	10	0.01	0.03	0.00	0.00	0.01	0.00
20.	Upstream of R. Labuk at Tupulid	7.4	8.2	6.8	2176	16920	5	0.00	0.01	0.00	0.00	0.00	0.00
21.	Downstream of R. Labuk at Tupulid	7.1	8.2	4.6	219	810	10	1.67	10	0.00	0.00	0.00	0.00
22.	River Malid At Tupulid	7.6	8.1	7.1	23	55	5	0.01	0.04	00.0	0.00	0.00	0.00
23.	Sugui Monnad at Kg. Monrad	7.2	8.0	6.8	137	590	5	0.01	0.03	0.00	0.02	0.07	0.01
24.	River Labuk At Beluran	7.0	7.2	6.6	813	3100	50	0.02	0.02	0.01	0.06	0,10	0.00
25.	River Labuk At Sabah Palm	7.1	7.3	7.0	88	190	20	0.03	0.04	0.00	0.04	0.07	0.01
26	River Labuk At Botation	7.2	7.2	. 7.1	167	400	10	0.01	0.02	0.00	0.00	0.00	0.00
27.	River Labuk At Kolapis	6.9	7.1	6.7	2906	9700	100	0.02	0.03	0.01	0.13	0.20	0.06
28.	River Labuk At Klagan	7.2	7.2	7.1	67	100	40	0.01	0.01	0.01	0.00	0.00	0.00

Remarks; The location of sampling points is referred to Fig. 17

Source ; DOE

Table 10 WATER QUALITY DATA AROUND MAMUT COPPER MINE MONITORED BY DOE IN 1980 (2/2)

Unit: mg/l except pH

	•						7.4					4,41.4 1	
			Cr	100	1.	Zn			Mn	٠.		Fe	
	Location of Sampling Point	Mean	Max	Min	Mean	Max	Min	Mean	Max	Min	Meati	Max	Min
1,	Waste Discharge Channel No.1	0.01	0.05	0.00	0.07	0.24	0.01	0.28	1.25	0.01	0.04	0.07	0.01
2.	Water Intake of Manuat River	0.00	.00.0	00.0	0.05	0.14	0.02	0.07	0.36	0.00	0.14	0.70.	0.00
3.	106 Thickener Discharge	0.00	0.01	0.00	0.05	0.20	0.01	0.03	0.16	0.00	0.04	0.18	0.00
4.	Mamut River Affected By the Open Pit Mine	0.02	0.04	10.0	0.31	1.10	0.05	4.64	20.00	0.06	2.55	20.25	0.03
5.	106 Thickener Discharge (Control) Before Lohan Tailing Dam	0.01	0.04	0.01	0.09	0,17	0.03	0.46	2,20	0.03	0.22	0.43	0.02
6.	Lohan Simpangan Road Bridge	0.00	0.01	0.01	0.12	0.26	0.02	0.24	1.55	0.01	0.59	4.10	0.01
7.	Effluent Discharge At Spillway of Lohan Tailing Dam	0.00	10.0	0.00	0.05	0.10	0.02	0.10	0.54	0.00	0,08	0.33	0.01
8-	Effluent Discharge From Spill- way Into River Bongkud	10.0	0.02	0.00	0.14	0.52	0.02	0.14	0.45	0.01	0,21	0.54	0.02
. 9.	Confluence of 8 & River Bongkud	0.00	0.01	0.00	0.06	0.21	0.02	0.09	0.32	0.00	0.39	1.45	0.00
10.	River Bongkud At Vehicle Crossing Road	0.00	10.01	0.00	0.05	0.11	0.00	0.02	0.12	0.00.	0.11	0.34	0.00
11.	Sugui Mantukungan (Near the Road Before Poring)	0.00	0.00	0,00	0.06	0.16	0.01	0.00	0.01	0.00	0,03	0.05	0.00
12.	Poring Rest House Bridge Crossing Over Mamut River to Poring Hot Spring	0.00	0.00	09.0	80.0	0.25	0.01	0.05	0.18	0,00	0.28	1.65	0.00
13.	Kanau-Lohan Road Track Bridge Crossing Mensaban River	0.00	0.00	0.00	80.0	0.21	0.01	10.0	0.07	0.00	0.05	0.21	0.00
14.	River Rakurit At Kg. Marakan Rd. Stop Near Takurik-Liwagu Con- fluence	0.00	0.01	0.00	0.06	0,11	0,01	0.01	0.02	0.00	0.03	0.69	0.00
15.	Sugui Liwagu Near Rest House	0.00	0.00	0.00	0.07	0.13	0.02	0.02	0.06	0.00	0.06	0.19	0.01
16.	River Langunan At Kg. Togis Near the Bridge	0.00	0.00	0.00	0.07	0.17	0.02	0.02	0.10	0.00	0.08	0.27	0.00
17.	River Mankadan	0.00	0.01	0.00	0.04	0.08	0.02	0.01	0.05	0.00	0.03	0.09	0.00
18.	Confluence of River Mandakan & Langanan	0.00	0.00	0.00	0.14	1.00	0.01	0.01	0.02	0.00	0.03,	0.14	0.00
19.	River Sugut At Kg. Moragan	0.00	0.01	0.00	0.14	0.96	0.02	0.02	0.07	0.00	0.06	0.22	0,00
20.	Upstream of R. Labuk at Tupulid	0.00	0.00	0.00	0.09	0.50	0.01	0.01	0.04	0.00	0.04	0.08	10.0
21.	Downstream of R. Labuk at Tupulid	0.00	0.00	0.00	0.25	1.00	0.02	0.05	0.35	0.00	1.51	10	0.01
22,	River Malio At Tupulid	0.00	0.00	0.00	.0.10	0.26	0.02	0.00	0.01	0.00	0.04	0.07	0,00
23.	Sugui Monnad At Kg. Monnad	0.04	0.12	0.00	0.06	0.12	0.01	0.04	0.12	0.00	0.23	0.55	0.04
24.	River Labuk At Beluran	0.02	0.03	0.00	0.06	0.07	0.04	0.05	0.14	0.00	0.27	0.80	0.02
25.	River Labuk At Sabah Palm	0.00	0.00	0.00	0.31	0.10	0.03	0.03	0.08	0.00	0.11	0.22	0.05
26.	River Labuk At Botation	0.005	0.01	0.00	0,05	0.07	0.04	0.06	0.17	0.00	0.32	0.90	0.01
27,	River Labuk At Kolapis	0.02	0.02	0.01	0.10	0.25	0.02	0.05	0.14	0.01	0.21	0.44	0.02
28.	River Labuk At Klagan	0.01	0.01	0.00	0.03	0.05	0.01	0.07	0.18	0.00	0.48	1.25	0.01

Remarks; The location of sampling points is refer to Fig. 17

Source ; DOE

Table 11 WATER QUALITY DATA AROUND MAMUT COPPER MINE MONITORED BY MINING COMPANY IN 1980

Unit: mg/l except pil

			- pll	:		Turbidi	Cu				
* Sampling	Point No.		Mean	Мах	Nin	Mean	Max	Nin	Mean	Max	Min
	1		7.0	8.3	6.3	3,39	11.67	0.33	0.11	0.32	0.04
	2 .		8.5	8.9	8.1	0.76	2.57	0.00	0.11	0,36	0.04
	3	. :	8.1	8.3	7.7	1.30	5.66	0.00	0.10	0.28	0.03
	4 .		8.2	8.5	7.9	3,28	21.52	0.07	0.12	0.27	0.03
	\$		8.5	8.9	8.0	0.54	2.39	00.00	0.07	0.19	0.01
	6		8.2	8.5	7.6	4.17	19.76	0.17	0.14	0.52	0.08

Remarks; * The location of sampling points is refer to Fig. 9

Source; Overseas Mineral Resources Development Sabah Bhd.

WORLD HEALTH ORGANIZATION STANDARDS FOR Table 12 DRINKING WATER

Substance or Proper	Maximum recommended concentration	Maximum permissible concentration
Total Solids (mg/1)	500	1,500
Colour (units*)	5	50
Turbidity (units*)	5	25
Taste	unobjectionable	
Odour	unobjectionable	
Fe (mg/1)	0.1	1
Mn (mg/1)	0.05	0.05
Cu (mg/1)	0.05	1.5
Zn (mg/1)	5	15
Ca (mg/1)	75	200
Mg (mg/1)	30	150
	If the water contains at least 250 mg/l of	
	sulphates	
So ₄ (mg/1)	200	400
C1 (mg/1)	200	600
pН	7 to 8.5	6.5 to 9.2
Phenolic compounds		0.000
(as phenol) (mg/l)	0.001	0.002
Anionic detergents (mg/1)		1.0
Mineral Oils (mg/l)	0.01	0.03
Total Hardness (meq/1)	2 (100mg/1 CaCo ₃)	
Pb (mg/1)	· · · · · · · · · · · · · · · · · · ·	0.05
As (mg/1)	-	0.05
Se (mg/1)	•	0.01
Cr (hexavalent) (mg/1)	· · · · · · · · · · · · · · · · · · ·	0.05
CN (mg/1)	-	0.20
Cd (mg/1)		0.01
Ba (mg/1)		1.00
Ca (mg/1)		2.00 <1.5
F (mg/1)	-	and the second s
NO ₃ (mg/1)	//1\ 	≺ 45
Carbon Chloroform extract		0.5
Alkyl Benzyl Surfonates (mg/1/ -	1.0

Platinum-Cobalt Colour Scale Turbidity Units Remarks;

Table 13 POLLUTANT LEVELS OF RIVERS IN SABAH IN 1978

Unit: mg/l except pl

River Name &	Woms	No. of		pH			COD		Sı	ıspended Solids			moniaca Mitrogen	
Basin No.	No.	Samples	Mean	Max	Min	Mean	Max	Min	Mean	Max	Min	Mean	Max	Min
Segema 210	5181501	13	7.1	7 - 6	6.5	40	66	14	269	615	95	-		
	ing a facility			100	1			- "	114	2.2.4				
Kinabatangan 211	5373501 5375501	2 5	6.4 7.0	7.4	6.3	73	-	, -	165 216	215. 630	115	<u>-</u>	-	_
Labuk	5768501	8-	6.9	7.1	6.7	72	179	3	59	110	10	-	٠	
213	5872501	ιi	6,8	7.3	6.2	29	47	6	171	560	25	-		-
	5961501	6	7.8	9.2	6.7	12	20	6	51	195	0	••	-	
	6073501	7	7.1	7.2	6.7	15	60	3	81	270	10	-	-	-
Sugut 214	6172501		7.0	7.3	6.8	39	85	16	141	445	15	_		-
Bengkoka 216	6670501	4	6.9	· 7.1	6.8	28	- 47	2	28	55	15	-	-	
Kadamaian	6264501	6	7.0	7.5	6.5	92	150	- 35	- 117	395	5	_		-
218	6364501	5	7.3	7.8	6.9	22	40	3	11	20	5 5	<u>-</u> "		
Tuaran	6162501	3	6.8	6.9	6.7	66	114	3	8	10	5	-	-	. , -
219	* *.								1,11	•	- 1			
Putatan 220	5961501	.4	7.0	7.3	6.7	59	88	24	. 40	95	15	-	· -	
_ 1		<u>.</u> .				27		•	34	115	0			_
Papar 221	5760501	7	6.9 6.9	7.3 7.3	6.6 6.4	27 16	42	3	20	30	Ö	_	_	-
221	5760502	3	0.9	7.3	0.4	10	_	<u> </u>	20	30	Ü			
Padas	4959501	. 2	7.5	8.1	6.8	3	- .	-	50	80	20			
224	5159501	. 1	7.7			-	•		35			-	-	•
11.1	5261502	2	7.7	8.3	, 7.1	4	•	-	30	30	30			:
Mengalong 226	5055502	. 2	7.2	7.2	7.2	46	61	. 31	48	85	10	- -	-	-

Table 14 POLLUTANT LEVELS OF RIVERS IN SABAH IN 1979

Unit: mg/1 except pR

River Name &	Woms	No. of		рН			COD		St	spended Solids	-		montacă itrogen	
Basin No.	No.	Samples	Hean	Max	Min	Nean	Мах	Min	Mean	Мах	Min	Mean	Max	Min
Pensiangan 201	4764501	6	7.0	7.3	6.7	32	90	3	33	65	5	0.02	0.03	0.01
Kalumpang 208	4581501	2	7.0	7.1	6.8	23	23	23	290	370	210	0.02	0.02	0.02
Segema 210	5181501	22	7.2	8.1	6.8	28	61	10	192	535	10	0.04	0.13	0.00
Kinabatangan 211	5373501 5375501	9 8	7.3 7.2	8.5 7.7	6.9 7.1	35 42	74 89	13 10	105 124	355 360	0 20	0.03	0.05	0.02
Labuk 213	5768501 5872501 5961501 6073501	14 18 11 2	7.2 7.0 7.2 7.5	7.3 7.4 7.9 7.5	7.1 6.5 6.9 7.4	80 27 15 5	622 89 35 6	0 3 3 3	415 80 18 15	730 625 40 20	5 5 5 10	0.02 0.02 0.03 0.03	0.03 0.04 0.05 0.03	0.01 0.00 0.02 0.03
Sugut 214	6172501	9	6.9	7.2	6.7	17	29	6.	51 :	205	5	0.03	0.08	0.02
Bengkoka 216	6670501	6	7.6	8.7	6.9	24	66	7	65	305	5	0.04	0.07	0.02
Kadamaian 218	6264501 6364501	6 5	7,4	7.7 7.4	7.1 6.9	16 10	29 19	3	42 15	200 30	5 10	0.04	0.08 0.03	0.02 0.02
Tuaran 219	6162501	2	7.3	7.4	7.1	5	. 6	3	15	30	10	0.02	0.03	0.01
Putacan 220	5961501	3	7.2	7.9	6.9	5	10	3	20	40	10	0,03	0.05	0.01
Papar 221	5760501 57 60502	10 5	6.9	8.1 7.4	6.4	19 24	63 50	0	61 41	415 145	0 10	0.03	0.04	0.01 0.00
Pades 224	4959501 5159501 5261502	6 6 3	7.0 7.2 7.2	7.2 7.6 7.6	6.6 6.8 6.9	61 57 30	97 146 32	15 3 28	52 166 42	145 545 60	15 5 5	0.03 0.02 0.02	0.06 0.03 0.02	0.01 0.02 0.01
Mengalong 226	5055502	8	7.0	7.4	6.6	21	61	3	28	50	5	0.03	0.03	0.02

Table 15 POLLUTANT LEVELS OF RIVERS IN SABAH IN 1980

Unit	\ga :	i except	þ
------	-------	----------	---

River		No.		_11			COD			spended Solids			un Laca trogen	
Name & Basin No.	WQMS No.	of Samples	Mean	pil Mex	Hin	Mean	Max	Min	Mean	Max	Hin	Hean	Hax	Hin
Kalumpang 208	4581501	4	7.0	7.2	6.8	17	28	8	60	90	10	0.01	0.02	0.00
Kinabatangan 211	5373501 5375501	9 8	7.2 7.5	7.5 8.0	6.9 7.0	15 22	62 81	0	223 198	570 330	80 75	0.03 0.03	0.05	0.02
Labuk 213	5768501 5872501 5961501	4 4 6	7.3 7.1 7.7	7.9 7.2 8.4	6.7 6.8 7.1	31 23 3	100 43 9	2 8 0	24 86 89	65 155 185 75	5 20 30 15	0.02 0.07 0.03 0.03	0.03 0.20 0.05 0.03	0.02 0.02 0.00 0.02
Sugut	6073501 6172501	5 7	7.6 7.2	7.4	7.1 6.7	37 12	66	. 8	. 46	430	10-	0.03	0.03	0.02
214 Bengkoka 216	6670501	2	7.2	7.3	7.0	8	: 15	0	8	15	0	0.01	0.02	0.00
Kadamaian 218	6264501 6364501	3 4	7.2	7.4 7.6	6.8 6.5	12 13	29 20	5 8	103 20	240 30	5 15	0.03 0.04	0.03 0.04	0.02 0.03
Tuaran 219	6162501	2	7.6	8.0	7.2	. 11	· (1	11	128	175	. 80	0.03	0.03	0.02
Putatan 220	5961501	1	7.0	~-		20		-	5		-	0.02		*
Papar 221	5760501 5760502	3	7.0 7.2	7.2	6.9	32 1	40 4	20 0	17 28	35 35	5 15	0.04 0.02	0.05	0.03 0.02
Padas 224	4959501 5159501 5261502	1 2 2	6.9 7.2 7.1	7.2 7.3	7.2 6.9	13 14 13	20 26	- 8 0	120 193 33	295 45	- 90 20	0.00 0.02 0.02	0.02 0.03	0.02 0.00
Mengalong	5055502	2	7.3	7.6	7.0	17	23	10	18	25	10	0.02	0.03	0.00

POLLUTANT LEVELS OF RIVERS IN SARAWAK IN 1981 Table 16

Unit: mg/l except pH Ammoniacal Nitrogen In Max Min Suspended Solids Nο. River ROĎs COD Name & WAMS οĒ Mean Mean Min Mean Mean Mean Min Hin Max Max Max Basin No No. Samples Hax 0.02 4750601 0.80 12.5 6.9 Limbang 4750602 6.9 0:80 6.5 16 229 0.02 3744602 7.0 2,30 28.0 142 Baram 93 0.02 12.5 230 4143601 6.8 2.30 19 0.04 1.00 56.5 Miri 4640601 5.9 231 0.02 0.90 1,10 0.70 7.3 6.3 7.1 Kemena 3130601 0.60 26.3 16.0 0.02 0.02 3132602 6.0 0.80 0.40 35.0 17.5 12 2 0.02 236 30 3133603 5.7 0.04 3234604 6.0 0.60 32 0.70 0.80 0.60 15.0 13 0.01 0.02 2825601 2 6.3 6.7 Tatau 2828604 6.6 0.70 0.90 0.50 16.0 Ħ 11 я 0.04 0.06 0.02 237 6.8 1.40 16.0 5 0.02 2523602 Mukah 239 2421602 1.20 13.0 trace Oya 240 2025605 2029616 6.8 0.80 14.0 20 Rajang 0.90 18.0 25 6.6 -0,80 11.0 28 11 2120604 2:40 6.5 6.8 0.70 20.0 41 2737608 15 16.0 Sarikei 6.9 1.40 2014609 1713601 1.40 38.0 210 Kerian 1812603 I. 6.0 1.40 31.5 จก trace 243 Saribas 243 1.70 9.5 1514602 6.6 trace 7.0 2.10 Lupar 244 1018603 6.5 trace 6.3 7.3 1114607 6.3 6.2 0.50 0.60 0.40 8.0 6.5 14 18 10 trace trace 1115605 1.80 trace 6.9 1.30 2.00 0.60 22.3 3.5 5,890 11,286 494 1214601 7.1 6.6 trace trace 1216604 6.6 1.85 8 1006605 6.5 6.6 6.3 1.27 2.40 2.50 16.1 22.5 10.0 12 16 3 0.02 Sadong 245 1007604 3 6.2 6.6 7.1 1:93 2.50 1:50 28.3 42.5 18.0 15 28 trace trace 1105603 1,10 0.80 29 38 15 0.01 0.02 trace 1401605 7.0 0.50 0.60 0.40 12.5 13.0 12.0 8 11 2 2 2 Sarawak trace trace 1402603 7.1 7.3 6.0 0.70 1.00 0.40 11.0 12.0 10.0 25 28 28 21 0.02 0.04 246 6.7 0.85 1.20 0.50 14.0 26 1502602 15.3 trace trace Samarahan 1204602 3 7.2 7.2 7.1 9.1 26.00 0.60 29.5 71.5 6.5 566 1.629 18 trace trace 246 Kayan 247 1593601 6.0 0.40 22.0 11 trace 5.6 5.4 14.8 22.7 10 17 1594603 3 6.0 6.3 0.70 1.20 0.30 22.5 6.30 13 7 5 0.01 0.02 5.7 5.3 6.I 30.5 1598002 0.67 0.90 0.50 12.00 30 0.80 1599803 28.5 1698601 3 6.4 7,0 6.0 0.67 0.90 0.50 23.3 30.5 14.0 108 162 70 trace trace 6.6 32.0 1963601 0:30 163 t mce 1797601 4 6.6 6.3 0.53 0.60 0.30 8.0 12.0 3.0 5 8 2 trace trace 247 2 Sebaka 1797602 4 6.6 6.8 6.4 0.55 0.70 0.30 6.8 12.0 3.0 8 trace trace 247 1797603 6.2 0.40 22.0

6.3

Serayan

6.0

0.58

1.00

6.0

trace trace

Table 17 CAPITAL COST FOR SEWERAGE SYSTEMS PROPOSED BY MASTER PLAN

Unit: M\$ 10³

	*			·	
	City/Town	Total	Phase 1	Phase 2	Phase 3
	Component	Cost	1984 to 1987	1995 to 1997	2006 to 2007
1.	Kota Kinabalu				
	Main sewers	23,870	15,620	6,160	2,090
	Pumping stations	20,420	8,190	5,722	6,508
	Lagoons	27,890	7,661	10,653	9,576
	Land	8,625	6,700	1,525	400
	Total	80,805	38,171	24,060	18,574
2.	Sandakan				
	Main sewers	21,215	13,779	6,523	913
	Pumping stations	14,605	5,628	5,531	3,446
	Lagoons	12,928	4,309	6,464	3,155
	Marine outfall	9,945	9,945	.	- ·
	Land	2,960	2,960		
	Total	61,653	36,621	15,518	6,514
3.	Tawau				
•	Main sewers	12,605	11,220	1,386	. -
	Pumping stations	3,759	1,907	1,066	785
	Lagoons	15,332	4,668	5,181	4,788
	Land	300	7,700	4,700	3,900
	Total	47,996	25,495	12,333	9,473
				•	

Source; Refs. 1 to 3

Table 18 PARAMETER LIMITS OF SEWAGE AND INDUSTRIAL EFFLUENTS OF STANDARD A AND B

		Standard
Parameter	Unit	A B
Temperature	o _C	40 40
pH		6.0 - 9.0 5.5 - 9.0 20 50
BOD ₅ at 20°C	mg/1	50 100
Suspended Solids	mg/1 mg/1	50 100
Mercury	mg/1	0.005 0.05
Cadmium	mg/1	0.01 0.02
Chromium, Hexavalent	mg/1	0.05 0.05
Arsenic	mg/1	0.05 0.10
Cyanide	mg/l	0.05 0.10
Lead	mg/1	0.10 0.5
Chromium, Trivalent	mg/l	0.20 1.0
Copper	mg/l	0.20 1.0
Manganese	mg/l	0.20
Nickel	mg/1	0.20
Tin	mg/l	0.20 1.0
Zinc	mg/1	1.0
Boron	mg/1	1.0 4.0
Iron (Fe)	mg/l	1.0 5.0
Phenol	mg/1	0.001 1.0
Free Chlorine	mg/1	1.0 2.0
Sulphide	mg/1	0.50 0.50
Oil and Grease	mg/l	Not 10.0
		Detectable

Remarks; Standard A is the parameter limit of effluent to be discharged into inland waters within the catchment areas, and Standard B, into any other inland waters.

Source; Ref. 16

Table 19 SUMMARY OF PROJECTED BOD LOAD AND BOD CONCENTRATION FOR CASE 1

	•		1990	1		2000	er da jakir
		BOD	Load	BOD	BOD	Load	BOD
	•	From	Into	Concentration	From	Into	Concentration
	Basin	Source	River	in River	Source	River	in River
No.	Name	(ton/d)	(ton/d)	(mg/l)	(ton/d)	(ton/d)	(mg/l)
201	Pensiangan	0	0	0 - 0	0	0	0 - 0
202	Serudong	0	0.	0 - 0	0	0	0 - 0
203	Kalabakan	0	0	0 - 0	0 :	0	0 - 0
204	Barantian	.0	0	0	0	0	0
205	Umas-Umas	0	0	0 - 0	0	0	0 - 0
206	Merutai Besar	0	0	0 - 0	3	2	5 - 5
207	Tawau	0 (3)	0	0 - 0	1 (6)	0	0 - 1
208	Kalumpaung	0 (0)	. 0	0 - 0	0 (1)	0	0 - 0
209	Silibukan	4 (5)	3	3 - 4	8 (9)	5	5 - 7
210	Segama	0	0 .	0 - 0	1	0	0 - 0
211	Kinaba Tangan	ì	0	0 - 0	1	0	0 - 0
212	Segaliud	0 (4)	0	0	0 (11)	0	0
213	Labuk	2	1	0 - 1	6	3	0 - 3
214	Sugut	Õ	ō	0 - 0	0	0	0 - 0
215	Paitan	Ö	0	0 - 0	0	0	0 - 0
216	Bengkoka	Ö	ō	0 - 0	O	0	0 - 0
217	Bongan	4 (5)	3	7 – 9	3 (5)	2	4 - 5
218	Kadamaian	0 (3)	0	0 - 0	1	ĩ	1 - 1
219	Tuaran	2	Ö	$\ddot{0} - \ddot{0}$	3	õ	0 - 0
220	Putatan	1 (6)	0	0 0	1 (13)	Ö	0 - 0
221	Papar	1 (0)	· 0	0 - 1	2	1	0 - 2
222	Kimanis	Ô	0	0	0	Ô	ŏo
223	Membakut	0	0 :	0 - 0	0	Ö	0 - 0
_		2	0	0 - 0	4	1	0 - 0
224	Padas		0	0 - 0	0 (27)	0	0 - 0
225	Labuan	0 (6)		0		0	0
226 .	Lakutan	0	. 0	_	0		0 - 0
227	Lawas	0	0	0 - 0	0	0	
228	Trusan	0	0	0 + 0	0	0	0 - 0
229	Limbang	1	1	0 - 0	2	1	0 - 0
230	Baran	1	0	0 - 0	3	1	0 - 0
. 231	Miri	2 (7)	0	0 - 4	3 (21)	1	1 - 4
232	Sibuti	0	0	0 - 0	0	0	0 - 0
233	Niah	0	0	0 - 0	0	0	0 - 0
234	Suai	5	3	3 - 9	4	2	2 - 6
235	Similajau	0	.0	0 - 0	0	0	0 - 0
236	Kemeha	0 (27)	0	0 - 0	0(120)	0	0 - 0
237	Tatau	2	1	0 - 0	2	. 1	0 - 0
238	Balingian	0	0	0 - 0	0	0	0 - 0
239	Mukah	0	, 0	0 - 0	- 0	0	0 - 0
240	0ya	0	0	0 - 0	0	0	0 - 0
241	Rajang	14	5	0 - 0	30	13	0 - 0
242	Kerian	0	0	0 - 0	1	0 .	0 - 0
243	Sarabas	1	Ò	0 - 0	1	0	0 - 0
244	Lupar	5	3	0 - 2	5	2	0 - 1
245	Sadong	18	2 .	0 - 1	28	5	0 - 3
246	Sarawak	16	6	0 - 1	25	11	0 - 2
247	Кауач	0	0	0 - 0	3	1	1 - 1
							

Note; (): Encluding BOD load from cities located coastal area

82(134) 28

Total

144(341) 53

Table 20 COMPOSITION OF BOD LOAD INTO RIVER FOR CASE 1

Unit: ton/d

•				1990			2000				
<u> </u>	Basin		BOD Load					into R			
0.	Name	PR	UI	RA	Total	PR	UI	RA	Tota		
01	Pensiangan	0	0	0	0	0	0	0	O		
02	Serudong	0	0	0	0	0	0	0	O		
03	Kalabakan	0	0	0	0	0	0 :	0	. 0		
04	Barantian	0	0	0	0	0	0	0	0		
05	Umas-Umas	0	0	0	0	0	0	0	, 0		
06	Merutai Besar	0	0	0	0	2	0	0	2		
07	Tawau	0	0	0	0	0	. 0	- 0	. 0		
80	Kalumpuang	0	0	0 -	0	0	0	. 0	. (
09	Silibukan	3	0	0	. 3	5.	0	0	- 5		
10	Segama	0	0	0	0 '	0	0	0	(
11	Kinaba Tangan	. 0	0	0	0	. 0	0	0			
1.2	Segaliud	0	0	Ó	0	0	0 .	0	(
13	Labuk	1	0	0	1	3	0	0			
14	Sugut	ō	0	0	0	. 0	0.0	0	(
L5	Paitan	ō	0	:0	. 0	0	0	0	(
16	Bengkoka	Ö	0	. 0	0	Ō	0	0	. (
7	Bongan	š	0	: 0	3	2	ō	0			
8	Kadamaian	ő	Ö	0	: ŏ	0	1	0			
9	Tuaran	. 0	ő		Ö	ő	0	Ö	- 11 - E		
0	Putatan	0	0	. 0	ő	0	o	Ö			
1	:	Ö	o .	Ö	Ö	0	í	ŏ			
	Papar	-0	0	. 0	0	0	ō	0	(
2	Kimanis	.0	0	. 0	0	0	ő	0	. '		
3	Membakut		. 0	0	0	0	1	0	•		
4	Padas	0	0	0	0	0	0	0			
5	Labuan	0				0	0	0			
6	Lakutan	0	. 0	0	0	0	0	Ö	ì		
7	Lawas	.0	0	0	0						
8	Trusan	0	0	0	0	0	0	0	a je		
9	Limbang	0	1	. 0	1	. 0	1.	-			
	Baran	0	0	. 0	. 0	0	1	0			
1	Miri	0	. 0	. 0	0	0	0	. 1			
2	Sibuti	0	0	0	0	0 -	0	0			
3	Niah	0	0	0	0	0	0	0	1		
4	Suai	3	0	0	3	2	. 0	0			
5	Similajau	0	. 0	0	0	, 0	0	0	•		
6	Kemena	0	, 0	0	0	0	0	0	(
7	Tatau	: 1	0	0	.1	1	. 0	0	A		
8	Balingian	0	0	0	O	.0	0	0			
9	Mukah	O	0	0	.0	0	0	0	·		
0	0ya	0	0	0	: 0	0	0	0			
1	Rajang	o	4	1	5	3	9	1	1		
2	Kerian	. 0	0	- 0	. 0	0	0	0	-(
3	Sarabas	. 0	0	0	0	0	0	0	(
4	Lupar	3 -	0	0	3	2	0	0			
5	Sadong	. 0	0	2	2	2	0	3			
6	Sarawak	0	6	0	6	0	10	1	1		
7	Kayau	ŏ	ŏ	. 0	O .	1	o o	0			
		<u> </u>				-					
	Total	14	. 11	3	28	23	24	6	5.		

Note; PR: Palm oil mill and rubber factory effluent UI: Urban domestic and urban industry effluent RA: Rural and animal husbandry
(): % of the total BOD load

PROJECTED BOD LOAD IN 1990 AND 2000 FOR CASE 1 (1/6) Table 21

Basin No.	Outlet No.	BOD Load from Pollution Sources (ton/d)	1990 BOD Load into Main Stream (ton/d)	BOD Concen- tration (mg/1)	BOD Load from Pollution Sources (ton/d)	2000 BOD Load into Main Stream (ton/d)	BOD Concen- tration (mg/1)	Pollution Sources
201	1	0	0	0	0	0	0	R218
201	2	0.1	. 0	0	0.2	0	0	R201, R221
	3	0	0	0	0	0	0	B.P.
. :	S-total	0.1	0		0.2	. 0 .		
202	1	0	0	0	.0	0	0	R201
202	2	ŏ	Ö	0	0	0	0	в.Р.
,	3	0.2	0	0	0.4	0	0	R202
	S-total	0.2	0		0.4	0		
		0.0	0	0	0.5	0	0	R202
203	1 2	0.3	0	0	0.5	Ö	Õ	В.Р.
	S-total		0		0.5	0		
		٠	2					
204		, 0	0	0	:0	0	0	
205	1 2	0 0.1	0	0	0 0.2	0 0	0	B.P. R202
	S-total		0		0.2	0		
				0	3.2	1.9	5	P201
206	1 2	0 0	0	0	0	0	5	B.P.
	S-total	. 0	0		3.2	1.9		
207	. 1	. 0	0	0	0	0	0	B.P.
207	2.	0.4	Ö	. 0	0.5	0	0	A201
	3	0 -	0	0	0.1	. 0	1	P202*, R201*
	4	(2.2)			(5.3)			C201, A202
	S-total	0.4	0 ;		0.6	0		The second of th
208	1	0	0	0	0	0	0	P204*
200	2.	0	Ö	Ö	. 0	0	0	B.P.
	3	(0.2)	<u> </u>	_	(0.8)	· -		C202
	S-total	0	0		.0	0	. :	
200	1		2.6	4	8.4	5.1	7	P207, P208
209	2	4.4	2.0	3	0.9	. 0	5	B.P.
	3	(0.2)_	-		(0.8)	-		C203
	S-total		2.6		8.4	5.1		

Note; C: City, R: Rural, P: Palm oil mill, RF: Rubber factory,
A: Animal husbandry, *: P and RF with purification facilities
B.P.: Balance point

(): BOD load discharged to the sea directly

PROJECTED BOD LOAD IN 1990 AND 2000 FOR CASE 1 (2/6) Table 22

Basin No.	Outlet No.	BOD Load from Pollution Sources (ton/d)	1990 BOD Load into Main Stream (ton/d)	BOD Concen- tration (mg/1)	BOD Load from Pollution Sources (ton/d)	2000 BOD Load into Main Stream (ton/d)	BOD Concen- tration (mg/1)	Pollution Sources
210	1	0.3	0	0	0.5	0	0	R204
	2	. 0	0	0	0	0	: 0	R205
	3	0	0	0	0	0	0	В.Р.
	4	0	0	0	0	0	0	P209*
	S-total	0.4	0		0.5	0.1		
211	. 1	0.1	. 0	0	0.1	0	Û	R218
	2	0	0	Ó	0	0	0	R207
	3	0.4	0	. 0	0.6	0.1	0	R205
	4	0	0	0	0	00	0	В.Р.
	S-total	0.5	0.1		0.8	0.1		
212		0		0	0	0	0	
212		(3.7)	0	_	(10.7)	·	0	C212
	S-total	0	0		0	0		
213	1 .	0.3	0.2	1	1.2	0.7	3	C205
	2	0.2	. 0	Ō	0.3	0	1	R212
	3	0.1	0	0	0.1	0	1	R217
	4	0	0	0	0	0	0	P214*, P215*
	5	0	0	0	0	0	0	В.Р.
		1.5	0.9	0	4.2	2.5	0	P213
	7	0.2	0	0	0.3	0	0	R207
	8	0	0	0	0	0	0	R206
÷ i	S-total	2.3	1.1		6.2	3.3		
214	1	0.1	0	0	0.2	0	o !:	R212
	2	0.1	0	0	0.1	0	0	R207
•	3	0	0	0 :	0	0.	0	B.P.
	S-total	0.2	0		0.3	0		
215	1	0.1	0	0	0.1	0	0	D207
41.	2	0.1	0	0	0.1	0	0	R207 B.P.
	S-total	0.1	0		0.1	0		
		•					- 1	
216	1	0.1	0	0	0.1	0	0	R210
	2	0.2	0	0	0.4	0	0	R208
	3	0	0	0	0	0	0	B.P.
	S-total	0.3	0		0.5	0		

Note; C: City, R: Rural, P: Palm oil mill, RF: Rubber factory,
A: Animal husbandry, *: P and RF with purification facilities
B.P.: Balance point
(): BOD load discharged to the sea directly

PROJECTED BOD LOAD IN 1990 AND 2000 FOR CASE 1 (3/6) Table 23

						1.5		
			1990		4	2000		
		BOD Load	BOD Load		BOD Load	BOD Load		
		from	into	BOD	from	into	BOD	
		Pollution	Main.	Concen-		Main	Concen-	0
	0.43			tration	Sources	Stream	tration	
	Outlet	Sources	Stream	(mg/l)	(ton/d)	(ton/d)	(mg/1)	Pollution Sources
No.	No.	(ton/d)	(ton/d)	(mg/x)	(1011/0)	(1011/11)	(11187 17	TOTALCION BODISCO
			2.6	9	2.6	1.6	5	P216
217	1	4.4			0	0	4	B.P.
	2	0	0	7	0	0	4	R208
	3	0		7 -		and the second s	**	C206
	4	(0.7)			(2.7)		<u>-</u>	C200
	S-total	4.4	2,6		2.6	1.6		• •
	0 20042							
								-007
218	1	0.3	0.2	0	1.2	0.7	1	C207
	2	0	0	0	0	0	1	В.Р.
	S-total	0.3	0.2	100	1.2	0.7		the second secon
	S-total	0.3	0.2		1.2	0.7		
219	. 1	1.1	0.1	0	1.5	0.2	0	A210
~	2	0.6	0.1	. 0	1.0	0.1	0	R213
	3	0	0	0	0	. 0	0	В.Р.
4								
	S-total	1.7	0.2		2.5	0.3		f e
220	1	0.3	0	0	0.5	0	0	R215
220	2	0.3	ŏ	ő	0.4	ŏ	1	A212
	3	0.5	ŏ	ŏ. :	0	ŏ.	1	в.Р.
	4	(4.9)	-		(11.8)		-	C208, RF204
		(4,3)						
	S-total	0.6	0		0.9	0		
001	,	0.3	0	1	0.4	0	1	R215
221	1 2	0.3	0	. 0	0.2	ŏ	ō	R216
	_		0.4	1	1.9	1.2	2	C209, B.P.
	3	0.7	V.4					0203, 2
	S-total	1.2	0.4		2.5	1.2	-	
			,		5 - C			
					•	0	0	
222		. 0	0	0	0		.0	
								· 1
223	1	0	Ö	0	Ö	0	0	в.Р.
	2	0.2	. 0	0	0.3	0	0	R220
			· · · · · · · · · · · · · · · · · · ·					
	S-total	0.2	,0		0.3	0		the state of the s
								* 1
224	1	0.1	. 0	0	0.2	0	0	R222
224	2	0.5	0.1	ő	0.7	0.1	0	R221, A213
	3	1.0	0.3	ő	2.2	0.9	ő	C210, R217, RF205*
	J	1.0	0.5	•		~•.	•	R205, R218
	4	0.2	. 0	0.	0.3	0	0	R220
			0	0	0.3	0	.0	B.P.
	5	0	· · · 0	. 0	0.3	0 .	0	A214
	6	0.2	0	0		0	. 0	R219
	7	0.1		<u> </u>	0.2			14.
	S-total	2.2	0.4		3.9	1.0		
								2.0

Note: C: City, R: Rural, P: Palm oil mill, RF: Rubber factory,
A: Animal husbandry, *: P and RF with purification facilities
B.P.: Balance point
(): BOD load discharged to the sea directly

PROJECTED BOD LOAD IN 1990 AND 2000 FOR CASE 1 (4/6) Table 24

			1990			2000		
	-	BOD Load	BOD Load		BOD Load	BOD Load		
•		from	into	BOD	from	into	BOD	*
		Pollution	Main	Concen-	Pollution	Main	Concen-	
asin	Outlet	Sources	Stream	tration	Sources	Stream	tration	
No.	No.	(ton/d)	(ton/d)	(mg/1)	(ton/d)	(ton/d)	(mg/l)	Pollution Source
225		(5.6)	0	0	(26.5)	0	0	C211, R223
226		. 0	• 0	0	0	0	0	
222	1	0.1	0	0	0.1	Ö	0	R224
227	2	0.1	0	Ö	Ó	, ,ŏ	0	В.Р.
	S-total	0.1	0		0.1	0		
		-						
228	1	0.2	.0	0 -	0.3	O :	0	R224
	2	0	0	0	00	.0	0	B.P.
•	S-total	0.2	0		0.3	0		
					0.0		Α	R225
229	1	0.2	0	. 0	0.3	0	0	P218, RF206
	2	0.3	0.2	0	0.6 1.3	0.4	0	C212, A216
1.	3 4	0.8 0	0.3	0	0	0.0	ŏ	B.P
							· · · · · · · ·	
	S-total	1.2	0.5	:	2.2	1.0		
							_	_004
230	1	0.7	0.1	0	1.1	0.1	. 0	R226
	. 2	0.6	0.3	0	2.1	1.2	. • 0,	C213
	3	0	0	0	0	0	0	B.P. R227
	4	0	0	0	0.1	0		K221
	S-tota1	1.3	0.4		3.3	1.4		
	_	0.1	^	1	0.3	• 0	2	R227
231	1	0.1	0.2	4	0.3	0.2	4	RF207
	2 3	0.3 1.4	0.1	4	1.9	0.2	4	A218
	.4	0	0.1	3	ő	0	4	B.P.
	5	0.4	Ö	4	0.6	0.1	4	A217
	6	(4.7)	·		(18.4)			C214
	S-total	2.2	0.3		3.1	0.5		
				·				1.5424 - 1
232	1	0	0	0	0	. 0	0 :	B.P.
	2	0	0	0	0	0	0	P219*
	3	0.2	0	0 .	0.3	0	0	R227
	S-total	0.2	0		0.3	0	·	
			0	0	0.4	0 :	0 .	R227
233	1	0.3	0	0	0.4	0	Ö	B.P.
3 (4)	2 3	0	0	0	0	0	0	P220*
	S-total	0.3	0		0.5	0.1		
		and the second second						

Note; C: City, R: Rural, P: Palm oil mill, RF: Rubber factory,
A: Animal husbandry, *: P and RF with purification facilities
B.P.: Balance point
(): BOD load discharged to the sea directly

PROJECTED BOD LOAD IN 1990 AND 2000 FOR CASE 1 (5/6) Table 25

			1990		. *-	2000			
		BOD Load	BOD Load		BOD Load	BOD Load			
		from	into	BOD	from	into	BOD		
		Pollution		Concen-	Pollution		Concen-	1	
n •.	0.4124			tration	Sources	Stream	tration	:	
	Outlet	Sources	Stream			(ton/d)	(mg/1)	Pollution S	Cource
No.	No .	(ton/d)	(ton/d)	(mg/1)	(ton/d)	(LOH/Q)	(mg/ r)	TOTIUCION	your ces
234	1 .	5.3	3.2	9	3.7	1.9	6	R227, P221	
2 34				3	0	. 0	2	B.P.	* :
	2	0	0						
	S-total	5.3	3.2		3.7	1.9			
225		0	0	0	0.1	0	0	R228	
235	1	0	0	: 0	0.1	ŏ	ŏ.	B.P.	
	2	U							
	S-total	0	. 0		0.1	0			
024		0.0	Ö	0	0.4	0	0	R228	
236	1	0.3						B.P.	
	2	. 0	0	0	0	0	.0	C215	
	3	(26.4)			(119.7)	<u>-</u>		6213	
	S-total	0.3	0		0.4	0			
				-					
						•	•	na a a	
237	1	0.2	0	0	0.4	. 0	0	R228	
	. 2	0	0	0	0	0	.0	B.P.	
	3	1.5	0.9	0	2.1	1.3	0	P222	
	S-total	1.7	0.9		2.5	1.3			•
		:							
					0	^	0	в.Р.	·
238	1	0	0	0	0	0	0	R229	
	2	0.2	. 0	0	0.4	00		RZZ9	
	S-total	0.2	0		0.4	0			
•	- 13032								
						1			
239	1	0	,0	0	0	0	0	В.Р.	
	2	0	0	0	0	0	0	P223*	
	3	0.3	<u> </u>	00	0.4	0	00	R2.29	
	S-total	0.3	0		0.4	0			
	0 10141	0.3				_			
		*.			•	•			
240	1	0	0	0	0	0 -	0	B.P.	
	2	0.3	0	0	0.5	0	0	R230	
	S-total	0.3	0		0.5	. 0			
	S-COCAT	0.5	•		0.7				
				•					
241	1	0.1	0	0	0.3	. 0	0	R233	
	2	0.6	0.1	0	0.9	0.1	0	R234	
	3	0.3	ō	0	0.4	0	0	R235	
	4	0.7	0.1	Ŏ	5.1	2.5	Ō	R232, R239	P224
	5	9.3	3.6	0	17.3	7.7	0.	C216, R231	R221.
	. •	2.2	3.0	-			•	R222	
	6	0.4	0	0	0.5	0	0	A223	
		0.4	. ' 0 '	0	0.5	0	Ö	В.Р.	
	·7		o o	ŏ	0.6	0.1	0	R237	1.1
	-8	0.4	1.0	, Ö	4.6	2.0	o ·	C217, R238	RF208
	9	2.6	7.0	, v	4.0	2.0	J	A220	, 200
									
	3-total	14.4	4.9		29.6	12.5			

Note; C: City, R: Rural, P: Palm oil mill, RF: Rubber factory,
A: Animal husbandry, *: P and RF with purification facilities
B.P.: Balance point
(): BOD load discharged to the sea directly

Table 26 PROJECTED BOD LOAD IN 1990 AND 2000 FOR CASE 1 (6/6)

			1990			2000			
		BOD Load from Pollution	BOD Load into Main	BOD Concen- tration	BOD Load from Pollution Sources	BOD Load into Main Stream	BOD Concen- tration		
Basin No.	Outlet No.	Sources (ton/d)	Stream (ton/d)	(mg/1)	(ton/d)	(ton/d)	(mg/1)	Pollution S	Sources
242	1	0	0	0	0	0	0	в.Р.	
	2	0.5	0 -	0	0.9	0.1	0	R240	
	S-total	0.5	0		0.9	0.1			
243	1	0	· 0 :	0	. 0	0	0	в.Р.	
243	2	0.9	0.1	0	1.4	0.1	0	R241, A224	· · · · · · · · · · · · · · · · · · ·
	S-total	0.9	0.1		1.4	0.1			
244			2.0	1	2.1	1.3	. 1	P225	
244	1 2	3.3 0.3	2.0	. 1	0.5	1.3	1	R242	
	3	0.5	ŏ	Ō	0	0 :	0	в Р	
	4 5	0.8 1.0	0.5 0.1	0	0.7 1.7	0.4	0	RF2O9 R243, Λ225	
	S-total	5.4	2.6		5.0	1.9	•		
275		0	0	0	0	0	0	R246	
245	1 2	. 0.8	0.1	0	1.2	ŏ	ő	R245	
	3	16.4	1.7	ì	22.5	2.6	2	C218, A227	.:
	4	0	:. 0	2	2.9	1.7	5	P226	
	5 6	0 0.7	$0 \\ 0.1$	0	0 0.9	$\begin{matrix} 0 \\ 0.1 \end{matrix}$	1 1	B.P. A226	
	S-total	17.9	1.9		27.6	4.5			
÷			1				_	7015	
246	1	0 0	0	0	0	0	0	R245 R247, A228	Y D Z U
	2	1.5	0.1	0	2.0	0.2 0.4	O	A231	, AZ30
	3	3.0	0.3	0	4.0 0.5	. 0.4	. 0	A229, B.P.	
	4	0.4	0	0	0.5	. 0	ő	RF210*	
	5 6	9.7	5.8	1	15.8	9.8	2	C219	
	7	1.8	0.2	1	2.8	0.3	2	R246	
	S-total	16.3	6.5		25.3	10.8			
0.43			·	0 :	2.1	1.3	1	P227	
247	2	0.3	0	0	0.5	0	1	R248	
	3	0.5	ŏ	0 .:	ő	ŏ	1	В.Р.	
•	S-total	0.3	. 0		2.6	1.3			

Note; C: City, R: Rural, P: Palm oil mill, RF: Rubber factory
A: Animal husbandry, *: P and RF with purification facilities
R P. Balence point

B.P.: Balance point
(): BOD load discharged to the sea directly

Table 27 SUMMARY OF PROJECTED BOD LOAD AND BOD CONCENTRATION FOR CASE 2

	1990				2000		
		ROD	Load	BOD	BOD.	Load	BOD
		From	Into	Concentration	From	Into	Concentration
	Basin	Source	River	in River	Source	River	in River
No.	Name	(ton/d)	(ton/d)	(mg/1)	(ton/d)	(ton/d)	(mg/1)
201	Pensiangan	0	0	0 - 0	0	0	0 - 0
201	Serudong	ő	0	0 - 0	ő	0 -	0 - 0
202	Kalabakan	0	0	0 - 0	ì	Ö	0 - 0
204	Barantian	0	0	Ŏ Ŏ	o ·	o ·	0
205	Umas-Umas	Ö	0	0 - 0	Ö.	0 :	0 - 0
206	Merutai Besar	ŏ	- 0	0 - 0	3	2	5 - 5
207	Tawau	0 (2)	ŏ	0 - 0	1 (4)	0	0 - 1
208	Kalumpuang	0 (0)	ŏ	0 - 0	0 (0)	Ŏ	0 - 0
209	Silibukan	4 (5)	3	3 - 4	8 (9)	5	5 - 7
210	Segama	0	0	0 - 0	1	Õ	ō - o
211		0	. 0	0 - 0	1	ŏ .	0 - 0
211	Kinabatangan	0 (3)	0	0 - 0	0 (5)	Ö	0
213	Segaliud	2	1	0 - 1	5	3	0 - 1
	Labuk	0	0	0 - 0	o	0	0 - 0
214	Sugut	0	0	0 - 0	Ó	0	0 - 0
215 216	Paitan	0	0	0 - 0	0	0	0 - 0
217	Bengkoka	4 (5)	3	7 - 9	3 (4)	2	4 - 5
218	Bongan	0	0	0 - 0	1	0	1 - 1
219	Kadamatan	2 .	0	0 - 0	2	. 0	0 - 0
-	Tuaran	1 (5)	0	0 - 0	1 (8)	0	0 - 1
220 221		1 (3)	0	0 - 1	2	1	0 - 1
222	Papar Kimanis	0	0	0 - 1	0	0	0
223	Membakut	0 .	0	0 - 0	ŏ	0 .	.00
224	Padas	2	0	0 - 0	3	1	0 - 0
225	Labuan	0 (4)	Ö	0	0 (11)	Ô	0
226	Lakutan	0 (4)	0	. 0	0 (11)	ŏ ·	ő
227	Lakutan	ő	0	0 - 0	Ö	ő	0 - 0
228	Trusan	0	0	0 - 0	ő	0	0 - 0
229	Limbang	1	0	0 - 0	2	1	0 - 0
230	Baram	1	0	0 - 0	2	î	0 - 0
231		2 (7)	:.0	0 - 4	3 (11)	1	1 - 4
232	Sibuti	0	0	0 - 0	0	0	0 - 0
233	Niah	.0.	Ô	0 - 0	1	Õ	0 - 0
234	Suai	5	3	3 - 9	4	2 .	2 - 6
235	**	ō	0	0 - 0	ō	0	0 - 0
235	Similajau	0 (19)	0	0 - 0	0 (53)	ŏ	0 - 0
237	Kemena	2	1	0 - 0	2	1	0 - 0
	Tatau	0	0	0 - 0	0	Ō	0 - 0
238 239	Balingian	0	0	0 - 0	:0	0	0 - 0
	Mukah	0	0	0 - 0	0	0	0 - 0
240	Oya Danasa	14	5	0 - 0	25	10	0 - 0
241	Rajang	0	0	0 - 0	25 1	0	0 - 0
242	Kerian		0	0 - 0	1	0	0 - 0
243	Sarabas	1 5		0 - 0	5	2	0 - 1
244	Lupar		3	0 - 2 0 - 1	27	4	$0 - 1 \\ 0 - 3$
245	Sadong	18	2				
246	Sarawak	15	6	v -	24	: 9	0 - 2 1 - 1
247	Kayau	0	0	0 - 0	3	1	1 - 1
	Total	80(119)	27		132(221)	46	
	•						

Note; (): Encluding BOD load from cities located coastal area

Unit: ton/d

					1990			. !	2000		
	Basin		BOD Load into River					BOD Load into River			
No.	Name	-	PR	UI	RA	Total	PF				
201	Pensiangan		0	0	0	0	0) () 0	0	
202	Serudong	100	Ö	ő	Ö	ŏ	Ŏ	•			
203	Kalabakan		Ö	. 0	0	0	0				
203 204	Barantian		0	. 0	0	. 0	0				
204 205	Umas~Umas		0	0	0	0	. 0				
			_	0		- 0	2				
206	Merutai Besar		0		0		. 2				
207	Tawau		0	. 0	0	. 0					
208	Kalumpuang		0	0	0	: 0,-	Ö				
209	Silibukan		3	0	0	3	5				
210	Segama		0	0	0	. 0	Q				
211	Kinaba Tangan	-	0	0	0	. 0	0				
212	Segaliud		0	0	0	0	0				
213	Labuk		1	0	0	1	3				
214	Sugut		0	0	0	0	0			0	
215	Paitan		0	. 0	0	. 0	0				
216	Bengkoka		0	0	0	0	O				
217	Bongan		3	. 0	0	.3	2				
218	Kadamaian		0	0	0	0	. 0				
219	Tuaran		0	0	0	0	0				
220	Putatan		0	. 0	0	0	. 0	0,	0	. 0	
221	Papar		0	0	0	0	. 0) 1	. 0	1	
222	Kimanis		0	. 0	0	0	0	0	0	· · · 0	
223	Membakut		0	0	0	. 0	0) C	. 0	0	
224	Padas		0	0	. 0	0	0	1	. 0	1	
225	Labuan		ò	0	Ō	. 0	. 0). C	0	0	
26	Lakutan		0	0	0	0	0	. 0	0	0	
27	Lawas		0	0	0	0	υ			0	
228	Trusan		ŏ	ō	Õ	Ö	. 0				
229 -	Limbang		ŏ	Ö	Ö	0	ō			1	
230	Baran		-0	o	0	ō	ō				
231			Ö	Ö	ŏ	0	ő			ī	
232	Sibuti		0	ő	0	0	0				
233	Niah		0	ő	0	0	Ö	-		ŏ	
234	Suai		3	. 0	0	3	. 2			2	
235		1	0	0	Ö	0	0			0	
	Similajau	4.5	0	Ö	0	0	, 0			ő	
236	Kemena	:	. 1	0	. 0	1	1				
237	Tatau									0	
238	Balingian		0	0	0	0	0				
239	Mukah		0	0	0	0	0	-		0	
240	0ya		0	0	0	0	0			0	
41	Rajang		0	. 4	1	5	3			10	
42	Kerian		0	0	0.	0	. 0				
43	Sarabas		0	0	0 :	. 0	0				
44	Lupar	1000	3	0	0	3	2				
45	Sadong	.1	0	. 0	2	.2	2			4	
46	Sarawak		0	5	1	6	0				
247	Kayau		0	0	0	0 1	1	. 0	. 0	1	
	M- 4 - 3		14		4	27	23	10	5	46	
	Total			(22)							
:	**	. '	(52)	(33)	(15)	(100)	(50	(39) (11	(100)	

Note; PR : Palm oil mill and rubber factory effluent

UI: Urban domestic and urban industry effluent RA: Rural and animal husbandry
(): % of the total BOD load

Tab1e 29 PROJECTED BOD LOAD IN 1990 AND 2000 FOR CASE 2 (1/6)

٠		BOD Load from	1990 BOD Load into	BOD	BOD Load from	2000 BOD Load into	BOD	
Basin No.	Outlet No.	Pollution Sources (ton/d)	Main Stream (ton/d)	Concentration (mg/l)	Pollution Sources (ton/d)	Main Stream (ton/d)	Concentration (mg/1)	Pollution Sources
201	1 2 3	0 0.1 0	0 0 0	0 0 0	0 0.2 0	0 0 0	0 0 0	R218 R201, R221 B.P.
	S-total	0.1	0	0	0.2	. 0	<u></u>	
202	1 2 3	0 0 0.2	0 0 0	0 0 0	0 0 0.4	0 0 0	0 0 0	R201 B.P. R202
	S-total	0.2	0		0.4	0		
203	1 2	0.3	0 0	0	0.5 0	0.1	0 0	R202 B.P.
	S-total	0.3	0		0.5	0.1	0.1	
204		0	0	0	0	0	0	
205	1 2	0 0 1	0 0	0	0 0.2	0 0	0	B.P. R202
	S-total	0.1	0		0.2	0	0	
206	1 2	0 0	0 0	0	3.2 0	1.9 0	5 5	P201 B.P.
	S-total	0	0		3.2	1.9		
207	1 2 3 4	0 0.4 0 (2.0)	0 0 0	0 0 0 -	0 0.5 0.1 (3.2)	0 0 0	0 0 1	B.P. A201 P202*, R201* C201, A202
	S-total	0.4	0	•	0.6	0		
208	1 2 3	0 0 (0.2)	0 0 -	0 0 -	0 0 (0.5)	0 0 -	0 0 -	P204* B.P. C202
	S-total	0	0		0	0		
209	1 2 3	4.4 0 (0.2)	2.6	4 3 -	8.4 0 (0.5)	5.1 0 -	7 5	P207, P208 B.P. C203
	S-total	4.4	2.6		8.4	5.1		

Note; C: City, R: Rural, P: Palm oil mill, RF: Rubber factory,
A: Animal husbandry, *: P and RF with purification facilities
B.P.: Balance point
(): BOD load discharged to the sea directly

PROJECTED BOD LOAD IN 1990 AND 2000 FOR CASE 2 (2/6) Table 30

		•								
			1990		BAS	2000				
		BOD Load	BOD Load		BOD Load	BOD Load	:: ! DAD			
		from	into	BOD	from	into	BOD			
		Pollution	Main	Concen-	Pollution	Main	Concen-			
Basin	Outlet	Sources	Stream	tration	Sources	Stream	tration	D. 11.54 0- 0		
No.	No.	(ton/d)	(ton/d)	(mg/1)	(ton/d)	(ton/d)	(mg/l)	Pollution Sources		
210		0.3	0	0	0.5	0	0	R204		
210	1	0.3	0	0	0.5	0	0	R205		
	2	0	0		0	0	0			
	3	0	0	0	0	0	0	B.P. P209*		
	4	0						F209"		
	S-total	0.3	0	-	0.5	0.1	a la faction			
							A			
211	1	0.1	0	0	0.1	0	0	R218		
211	2	0.1	0	0	0.1	0	0	R207		
	3	0.4	0	0	0.7	0.1	0	R205		
	4	0.4	0	0	0.7	0.1	0	B.P.		
								B.F.		
	S-total	0.5	0		0.8	0.1		**		
212		0	0	0	0	0	. 0			
212		(3.3)	· U,	0	(5,1)	: -	. Y	C212		
								3130		
	S-total	O	0		0	0				
					:	*		• •		
213	1	0.2	0.1	. 1	0.6	0.4	1	G205		
\$ L J	2	0.2	0.1	0	0.3	0.4	1	R212		
	3	0.1	0	Ö	0.1	ŏ	ō	R217		
	4	0.1	0	Ö	0.1	Ö	Ö	P214*, P215*		
	5	0	0	ŏ	ő	ŏ	0	** B.P. ** **		
	6	1.5	0.9	ő	4.2	2.5	0	P213		
	7	0.2	0.9	Ö	0.3	0	ő	R207		
	8	0.2	0	0	0.5	. 0	0	R206		
								1200		
	S-total	2.2	1.1	1	5.5	3.0				
				-						
214	- 1	0.1	0	0	0.2	0	0	R212		
£ 14	2	0.1	0	0 -	0.1	. 0	o ·	R207		
:	3	0.1	Ö	Ö	0.1	. 0	Ö	B.P.		
	5-totai	0.2	0		0.3	0				
	100	1	e e e							
215	1	0.1	0	0	0.1	0	0	R207		
423.	2	0	Ö	0	0.2	ō	0	B.P.		
							<u>_</u>			
	S-total	0.1	0		0.1	0	÷			
					4		100			
216	1	0.1	.0	0	0.1	0	0	R210		
	$\frac{1}{2}$	0.2	o ·	0	0.3	ŏ	ŏ	R208		
	3	0.0	ő	0	0	ő	ŏ	B.P		
										
-	S-total	0.3	0	·:	0.4	0				

Note; C: City, R: Rural, P: Palm oil mill, RF: Rubber factory,
A: Animal husbandry, *: P and RF with purification facilities
B.P.: Balance noint
(): BOD load discharged to the sea directly

Table 31 PROJECTED BOD LOAD IN 1990 AND 2000 FOR CASE 2 (3/6)

				•				
			1990			2000		
		BOD Load	BOD Load		BOD Load	BOD Load		
		from	into	BOD	from	into	BOD	
		Pollution	Main	Concen-	Pollution	Main	Concen-	
Basin	Outlet	Sources	Stream	tration	Sources	Stream	tration	
No.	No.	(ton/d)	(ton/d)	(mg/1)	(ton/d)	(ton/d)	(mg/l)	Pollution Sources
217		4 4	2.6	9	2.6	1.6	5	P216
217	1	0	0	7	0	0	. 4	B.P.
	2	0	0	7	0	Ö	4	R208
	3					-		C206
	4	(0.6)		<u> </u>	(1.3)	 		0200
	S-total	4.4	2.6		2.6	1.6		
218	1	0.3	0.2	0	0.6	0.4	1	C207
218	1							
	2	0	. 0	0	0	0	1	В.Р.
	S-total	0.3	0.2	•	0.6	0.4	•	
219	1	1.1	0.1	0	1.5	0.2	0	A210
219								
	2 3	0 6 0	0.1 0	0 0	0.8 0	$0.1 \\ 0$	0 0	R213 B.P.
			,			 	··············	Diri
	S-total	1.7	0.2		2.4	0.2		
	4.7					_		
220	1	0.3	0	0	0.5	. 0	0	R215
	2	0.3	0	0	0.4	0	1 .	A212
	3	0	0	0	0	. 0	1 .	В.Р.
	4	(4.6)	_	**	(7.4)	<u> </u>	<u> </u>	C208, RF204
	S-total	0.6	0		0.9	O		
221	1	0.2	. 0	0	0.4	. :0	1	R215
	2	0.1	0	0	0.2	0	Ö	R216
	3	0.6	0.4	1	1.0	0.6	ĭ	C209, B.P.
	S-total	1.0	0.4		1.7	0.7		<u></u>
	2-forar	1.0	. 0.4		1.,	0.7	•	*
222		0	0	. 0	. 0	. 0	0 .	
222			Ū		•	. 0	•	
202		0	: o			0 .	0	n n
223	1 2	0 2	0	0	0 0.2	0	0	B.P. R220
								RZZO
	S-total	0.2	0		0.2	· 0	N	
224	1	0.1	. 0	0	0.1	0	· · · · · ·	R222
224								
	2	0.5	0	0	0.7	0.1	0	R221, A213
	3	0.9	0.3	0	1.7	0.6	0	C210, R217, RF205* R205, R218
		0.2	. 0	. 0	0.2	^	0	
	4	-			0.2	0		R220
	5	0	0	.0	0	0	0	B.P.
	6	0.2	· . O	0	0.3	0	0	Λ214
	7	0.1	00	0	0.2	0	0	R219
	S-total	2.0	0.4		3.2	0.7		

Note; C: City, R: Rural, P: Palm off mill, RF: Rubber factory,
A: Animal husbandry, *: P and RF with purification facilities
B.P.: Balance point
(): BOD load discharged to the sea directly

PROJECTED BOD LOAD IN 1990 AND 2000 FOR CASE 2 (4/6) Table 32

			1990		<u> </u>	2000		•
Basin	Outlet	BOD Load from Pollution Sources	BOD Load into Main Stream	BOD Concen- tration	from Pollution Sources (ton/d)	BOD Load into Main Stream (ton/d)	BOD Concen- tration (mg/1)	Pollution Sources
No.	No.	(ton/d)	(ton/d)	(mg/1)	(consa)	(conju)	(mg/1)	torrdexen Boares
225	1.	(4.2)	0	, 0	(11.2)	0	0	C211, R223
226		0	0	0	0	0	0	
227	1 2	0.1	. 0, 0	. 0 0	0.1 0	0	0	R224 B.P.
-	S-tota1	0.1	0		0.1	0		
-	100							R224
228	1 2	0.2	0 0	0 0	0.3	0	0	B.P.
	S-total	0.2	0		0.3	0		
229	1	0.2		0 0	0.3 0.6	0 0.4	0	R225 R218, RF206
	3	0.3 0.8 0	0.2 0.3 0	0	1.2	0.5	0	C212, A216 B.P.
	S-total	1.2	0.5	<u>v</u>	2.0	0.9		
				: '.				
230	1	0.7	0.1	0	1.1	0.1	0	R226
	2	0.5	0.3	0	1.0 0	0.6 0	0	C213 B.P.
	. 3 4	0 0	0	0	0.1	ő	0	R227
٠	S-rotal	1.2	0.4		2.2	0.7		
231	1	0.1	0	1	0.3	0	2	R227
	2	0.3	0.2	4 4	0.3	0.2	4	RF207
	3	1.4	0.1	4	1.9	0.2	4	A218
	- 4 5	0.4	0	3 4	0.6	, 0.1	4	B.P. A217
	6	(4.3)		-	(8.4)			C214
	S-total	2.2	0.3		3.1	0.5		
			1.50	_	•		•	D D
232	1	0	0	0	0	0 0	0	B.P. P219*
	2 3	0.2	0	0	0.4	Ö	0	R227
	S-total	0.2	0		0.4	0		
					0.5	0.1	•	p127
233	1	0.2	0	0	0.5	0.1	0 0	R227 B.P.
	2 3	0	0	0	0	0	0	P220*
	S-total		0		0.5	0.1		

Note: C: City, R: Rural, P: Palm oil mill, RF: Rubber factory,
A: Animal husbandry, *: P and RF with purification facilities
B.P.: Balance point
(): BOD load discharged to the sea directly

PROJECTED BOD LOAD IN 1990 AND 2000 FOR CASE 2 (5/6) Table 33

			1990			2000				
*		BOD Load	BOD Load		BOD Load	BOD Load				
		from	inta	BOD	from	into	BOD			
		Pollution	Main	Concen-	Pollution	Main	Concen-		100	
Bas In	Outlet	Sources	Stream	tration	Sources	Stream	tration	1.		
							(mg/1)	Dallu	tion S	002000
No.	No.	(ton/d)	(ton/d)	(mg/1)	(ton/d)	(ton/d)	(mg/1)	FOLLU	LION 3	ources
234	1	5.3	3.2	9	3.7	2.0	6	R227,	P221	
_	2	0, .	0	: 3	0	0	2	B.P.		
	S-total	5.3	3.2		3.7	2.0				
					• •	* 1				
235	1	0	0	0	0.1	0	0	R228		
	. 2	0	0	0	0	0	0	B.P.	:	
	S-total	0	0	<u> </u>	0	0				
						:			•	
236	1	0.3	0	0	0.4	0	0	R228		
	2	0	ō.	ō	0	Ô	0	B.P.		
	3	(18.8)	-	-	(52.4)	_	_	C215		
	S-total	0.3	0		0.4	0				
	3-LULAI	0.5			0.4					
222	1	0.2	0	0	0.4	0	0	R228		
237	1									
	2	0	.0 0.9	0	0	0 1.3	0 0	B.P. P222		
	3	1.5		<u> </u>	2.1		· · · · · ·	PZZZ		
	S-total	1.7	0.9		2.5	1.3				
238	1	0	0	0	0	0	0	B.P.		
230	2	0.2	0	0	0.4	Ö	0	R229		
				·			-			
:	S-total	0.2	0		0.4	0				
0.20	,		•				•	n. n.		
239	1	0	0	0	0	. 0	0	B.P.		
	2	. 0	0	0	0	,O	0	P223*		
	3	0.2	0	0	0.4	0	0	R229		
	S-total	0.2	0		0.4	0				
					* :					
240	1	0	0	0	0	0 -	0	B.P.		
	2	0.3	0	0	0.4	0	0	R230		
	S-total	0.3	0		0.4	0				
•			-				:	•		
241	1	0.2	. 0 .	0	0.3	· · · · · · o	0	R233		
471	2		0.1	Ö	0.9	0.1	0	R234		
	3	0.5 0.2		0			0			
			0		0.4	0		R235	D220	naa/
	4	0.7	0.1	0 .	5.0	2.5	0		R239,	
	. 5	8.8	3.4	0 -	13.9	5.8	0		:R231,	K2Z1
	6	0.4	0	0	0.5	0	.0	R232 A223		
	7	0.4	0	ŏ	0.5	0	0	B.P.		
	8	0.4	0	ö	0.5	0.1	0	R237		•
	9	2.5	1.0	0	3.7	1.5	0		R238,	ይድ208
			+10					A220		
	S-total	13.6	4.6		25.2	10.0				

Note; C: City, R: Rural, P: Palm oli mill, RF: Rubber factory,
A: Animal husbandry, *: P and RF with purification facilities
B.P.: Balance point
(): BOD load discharged to the sea directly

Table 34 PROJECTED BOD LOAD IN 1990 AND 2000 FOR CASE 2 (6/6)

Basin No.	Out let No	BOD Load from Pollution Sources (ton/d)	BOD Load into Main Stream (ton/d)	BOD Concen- tration (mg/1)	BOD Load from Pollution Sources (ton/d)	BOD Load into Main Stream (ton/d)	BOD Concentration (mg/1)	Pollution Sources
242		0	0		0	0	0	n n
242	1 2	0 0,5	0	0	0.7	0.1	0	B.P. R240
	S-total	0.5	0		0.7	0.1		
٠.								
243	1	0	0	. 0	0	0	0	в.Р.
	2	0.8	0.1	0	1.2	0.1	0	R241, A224
	S-total	0.8	0.1		1.2	0.1		
					0.1			none
244	1	3.4 0.3	2.0	1	2.1 0.4	1.3	1 1	P225 R242
	. 2 3	0.3	0	0	0.4	0	0	B.P.
	4	0.8	0.5	. 0	0.7	0.4	ŏ	RF209
	5	1.0	0.1	Ŏ.	1.4	0.1	0	R243, A225
	S-total	5.4	2.6		4.6	1.8		
	100							
245	1	Ó	0	0	0	0	0	R246
: •	2	8.0	0.1	0	1.2	0.1	0	R245
	3	16.4	1.7	1	22.2	2.4	2	C218, A227
	4	0	0 0	2	2.9	1.7	5	P226
	5 6	0 0.7	0.1	0	0 0.9	$0 \\ 0.1$	1	B.P. A226
				<u> </u>			<u>-</u>	A220
	S-total	17.9	1.9		27.3	4.4		
246					A		^	R245
240	1 2	0 1.4	0 0.1	0	0 2.0	0 0.2	0 0	R247, A228, A230
	3	3.0	0.3	0	4.0	0.4	0	A231
	4	0.4	0.0	0	0.5	7.0	0	A229, B.P.
	5	0	č	ő	0	ŏ	ŏ	RF210*
	6	9 0	5.4	ì	13.9	8.4	2	C219
	7	1.7	0.2	1	3.1	0.3	. 2	R246
	S-total	15.5	6.0		23.5	9.3		
21-					o -			
247	1	0	0	0	2.1	1.3	1	P227
	2 3	0.3	·0 0	· , '0 : .	0.5 0	0	1 1	R248 B.P.
	S-total	0.3	0		2.6	1.3		D. f.

Note; C: City, R: Rural, P: Palm oil mill, RF: Rubber factory, A: Animal husbandry, *: P and RF with purification facilities

B.P.: Balance point
(): BOD load discharged to the sea directly

Table 35 WATER DEMAND PROJECTION AND PURIFICATION SYSTEM OF PALM OIL MILLS

Unit: $10^6 \text{m}^3/\text{y}$

Palm	Oil Mill	District	Basin						
No.	Name	No.	No.	1980	1985	1990	1995	2000	Remarks
201	Merotai	202	206		:···		0.06	0.12	N.A.
202	Ba1	202	207	0.12	0.12	0.12	0.12	0.12	with P.S.
203	Apas Balang	202	207	0.21	0.23	0.23	0.23	0.23	with P.S.
204	Mostyn Kuak	202	208	0.03	0.05	0.05	0.05	0.05	
205	Sabah A.D.	203	208	0.04	0.04	0.04	0.04	0.04	with P.S.
206	Giram	203	208	0.02	0.05	0.05	0.05	0.05	with P.S.
207	Silabukan	204	209	0.05	0.07	0.09	0.09	0.09	with P.S.
208	Silabukan No.2	204	209	-	:	·	0.13	0.23	N.A.
209	Tomanggong	205	210	0.06	0.10	0.12	0.12	0.12	with P.S.
210	Suan Lamba	206	212	0.05	0.06	0.09	0.09	0.09	L.D.
211	Sungai Manila	206	212	0.09	0.09	0.09	0.09	0.09	L.D.
212	Sungai Majang	206	212		0.07	0.07	0.07	0.07	with P.S.
213	Sapi	207	213	-		0.03	0.09	0.16	N.A.
214	Sabah	207	213	0.07	0.07	0.07	0.07	0.07	with P.S.
215	Pamo 1	207	213	0.12	0.12	0.12	0.12	0.12	with P.S.
216	Lang Kon	210	217		0.06	0.09	0.10	0.10	N.A.
217	Beaufort	220	223	0.06	0.09	0.09	0.09	0.09	with P.S.
218	Danou	225	229	0	. 0	. 0	-	→ .	without P.S
219	Sarawaku	227	232	0.06	0.08	0.08	0.08	0.08	with P.S.
220	Niah	227	233	0.09	0.21	0.23	0.23	0.23	with P.S.
221	Suai	227	234		<u> </u>	0.11	0.12	0.12	N.A.
222	Tatau	228	237		_	0.03	0.07		N.A.
223	Mukah	229	239	0	0.07	0.11	0.15	0.15	with P.S.
224	Julau	239	241	_	_		0.10	0.15	N.A.
225	Lemanak	242	244	_	0.02	0.07	0.08	0.08	N.A.
226	Serian	245	245	-	_	-	0.04	0.11	N.A.
227	Bau/Lundu	247	246	_	_	0	0.07	80.0	N.A.
~~ /	Dady Danie								

Remarks; P.S.: Purification system,

N.A.: Not available L.D.: Land disposal

Table 36 WATER DEMAND PROJECTION AND PURIFICATION SYSTEM OF RUBBER FACTORIES

		:					٠	Unit:	$10^6 \text{m}^3/\text{y}$
Rubb	er Factory	District	Basin		1		1 1		•
No.	Name	No.	No.	1980	1985	1990	1995	2000	Remarks
201	Ball Estate	202	207	0.14	0.15	0.15	0.34	0.34	with P.S.
202	Kudat SMR	209	217			-	0.11	0.34	N.A.
203	Paper SMR	213	219	-	0.23	0.45	0.45	0.45	N.A.
204	Putatan Crumb	214	220	0.23	-			<u></u> :	without P.S.
205	Tenom SMR	. 221	224	0.03	0.14	0.34	0.45	0.68	with P.S.
206	Lubai Tengah	225	229	0.02	0.03	0.03	0.03	0.08	N.A.
207	Lambir	227	231	0.04	0.04	0.04	0.04	0.04	N.A.
208	Meradong	238	241	0.06	0.06	0.06	0.06	0.06	without P.S.
209	Skrang	243	244	0.09	0.09	0.09	0.09	0.09	without P.S.
210	Lim Liang Kee	246	246	0.05	0.05	0.05	0.05	0.05	Recycle
		*					•		Process

Remarks; P.S.: Purification system

N.A.: Not available

Table 37 PROJECTION OF PIG PRODUCTION

201	*						Unit	: heads
No. No. 1980 1985 1990 1995 200 201 202 207 670 1,110 1,830 2,140 2,4 202 202 207 1,060 1,760 2,890 3,380 3,99 203 202 207 490 810 1,340 1,560 1,80 204 202 207 1,500 2,490 4,110 4,800 5,56 205 206 212 1,650 2,740 4,520 5,280 6,09 206 206 212 1,100 18,400 30,200 35,300 40,86 207 206 212 1,400 2,330 3,830 4,480 5,17 208 206 212 1,400 2,330 3,830 4,480 5,17 209 209 217 490 810 1,330 1,550 1,77 210 213 219 2,100 3,490		Diotation	Daada					
201 202 207 670 1,110 1,830 2,140 2,4 202 202 207 1,060 1,760 2,890 3,380 3,90 203 202 207 490 810 1,340 1,560 1,88 204 202 207 1,500 2,490 4,110 4,800 5,52 205 206 212 11,650 2,740 4,520 5,280 6,05 206 206 212 11,100 18,400 30,200 35,300 40,88 207 206 212 1,400 2,330 3,830 4,480 5,1 208 206 212 1,400 2,330 3,830 4,480 5,1 209 209 217 490 810 1,330 1,550 1,7 210 213 219 2,100 3,490 5,740 6,710 7,7 211 214 220 590	-			1980	1985	1990	1995	2000
202 202 207 1,060 1,760 2,890 3,380 3,96 203 202 207 490 810 1,340 1,560 1,81 204 202 207 1,500 2,490 4,110 4,800 5,52 205 206 212 1,650 2,740 4,520 5,280 6,05 206 206 212 11,100 18,400 30,200 35,300 40,88 207 206 212 1,400 2,330 3,830 4,480 5,1 208 206 212 1,400 2,330 3,830 4,480 5,1 209 209 217 490 810 1,330 1,550 1,7 210 213 219 2,100 3,490 5,740 6,710 7,7 211 214 220 590 980 1,620 1,890 2,15 212 214 220 590							The second	1.00
203 202 207 490 810 1,340 1,560 1,86 204 202 207 1,500 2,490 4,110 4,800 5,55 205 206 212 1,650 2,740 4,520 5,280 6,09 206 206 212 11,100 18,400 30,200 35,300 40,80 207 206 212 1,400 2,330 3,830 4,480 5,1 208 206 212 1,400 2,330 3,830 4,480 5,1 209 209 217 490 810 1,330 1,550 1,7 210 213 219 2,100 3,490 5,740 6,710 7,7 211 214 220 1,520 2,520 4,160 4,860 5,60 212 214 220 1,590 2,520 4,160 4,860 5,60 212 214 220 1,500 </td <td>201</td> <td>202</td> <td>207</td> <td>670</td> <td>1,110</td> <td>1,830</td> <td>2,140</td> <td>2,470</td>	201	202	207	670	1,110	1,830	2,140	2,470
204 202 207 1,500 2,490 4,110 4,800 5,56 205 206 212 1,650 2,740 4,520 5,280 6,05 206 206 212 11,100 18,400 30,200 35,300 40,88 207 206 212 1,400 2,330 3,830 4,480 5,1 208 206 212 1,400 2,330 3,830 4,480 5,1 209 209 217 490 810 1,330 1,550 1,7 210 213 219 2,100 3,490 5,740 6,710 7,7 211 214 220 1,520 2,520 4,160 4,860 5,60 212 214 220 590 980 1,620 1,890 2,14 213 218 224 330 540 890 1,040 1,62 214 219 224 450	202	202	207	1,060	1,760	2,890	3,380	3,900
205 206 212 1,650 2,740 4,520 5,280 6,05 206 206 212 11,100 18,400 30,200 35,300 40,88 207 206 212 1,400 2,330 3,830 4,480 5,11 208 206 212 1,400 2,330 3,830 4,480 5,11 209 209 217 490 810 1,330 1,550 1,77 210 213 219 2,100 3,490 5,740 6,710 7,7 211 214 220 1,520 2,520 4,160 4,860 5,60 212 214 220 590 980 1,620 1,890 2,16 212 214 220 590 980 1,620 1,890 2,16 212 214 229 590 980 1,620 1,890 2,16 213 218 224 330	203	202	207	490	810	1,340	1,560	1,800
206 206 212 11,100 18,400 30,200 35,300 40,86 207 206 212 1,400 2,330 3,830 4,480 5,1 208 206 212 1,400 2,330 3,830 4,480 5,1 209 209 217 490 810 1,330 1,550 1,79 210 213 219 2,100 3,490 5,740 6,710 7,74 211 214 220 1,520 2,520 4,160 4,860 5,66 212 214 220 590 980 1,620 1,890 2,14 213 218 224 330 540 890 1,040 1,26 214 219 224 450 750 1,230 1,440 1,66 215 223 225 380 630 1,030 1,200 1,33 216 225 229 510 <t< td=""><td>204</td><td>202</td><td>207</td><td>1,500</td><td>2,490</td><td>4,110</td><td>4,800</td><td>5,540</td></t<>	204	202	207	1,500	2,490	4,110	4,800	5,540
207 206 212 1,400 2,330 3,830 4,480 5,1 208 206 212 1,400 2,330 3,830 4,480 5,1 209 209 217 490 810 1,330 1,550 1,75 210 213 219 2,100 3,490 5,740 6,710 7,74 211 214 220 1,520 2,520 4,160 4,860 5,60 212 214 220 1,520 2,520 4,160 4,860 5,60 212 214 220 1,520 2,520 4,160 4,860 5,60 212 214 220 590 980 1,620 1,890 2,11 213 218 224 330 540 890 1,040 1,26 214 219 224 450 750 1,230 1,440 1,60 215 223 225 231 <td< td=""><td>205</td><td>206</td><td>212</td><td>1,650</td><td>2,740</td><td>4,520</td><td>5,280</td><td>6,090</td></td<>	205	206	212	1,650	2,740	4,520	5,280	6,090
208 206 212 1,400 2,330 3,830 4,480 5,1 209 209 217 490 810 1,330 1,550 1,79 210 213 219 2,100 3,490 5,740 6,710 7,79 211 214 220 1,520 2,520 4,160 4,860 5,66 212 214 220 590 980 1,620 1,890 2,14 213 218 224 330 540 890 1,040 1,26 214 219 224 450 750 1,230 1,440 1,66 215 223 225 380 630 1,030 1,200 1,33 216 225 229 510 850 1,400 1,630 1,88 217 227 231 810 1,350 2,230 2,600 3,00 218 227 231 1,770 2,950<	206	206	212	11,100	18,400	30,200	35,300	40,800
209 209 217 490 810 1,330 1,550 1,75 210 213 219 2,100 3,490 5,740 6,710 7,76 211 214 220 1,520 2,520 4,160 4,860 5,66 212 214 220 590 980 1,620 1,890 2,14 213 218 224 330 540 890 1,040 1,26 214 219 224 450 750 1,230 1,440 1,66 215 223 225 380 630 1,030 1,200 1,33 216 225 229 510 850 1,400 1,630 1,88 217 227 231 810 1,350 2,230 2,600 3,00 218 227 231 2,550 4,230 6,970 8,150 9,40 219 227 231 1,770 2,950	207	206	212	1,400	2,330	3,830	4,480	5,170
210 213 219 2,100 3,490 5,740 6,710 7,74 211 214 220 1,520 2,520 4,160 4,860 5,66 212 214 220 590 980 1,620 1,890 2,13 213 218 224 330 540 890 1,040 1,26 214 219 224 450 750 1,230 1,440 1,66 215 223 225 380 630 1,030 1,200 1,33 216 225 229 510 850 1,400 1,630 1,88 217 227 231 810 1,350 2,230 2,600 3,00 218 227 231 2,550 4,230 6,970 8,150 9,40 219 227 231 1,770 2,950 4,850 5,670 6,53 220 238 241 1,440 2,390 3,940 4,600 5,33 221 231 241 3,	208	206	212	1,400	2,330	3,830	4,480	5,170
211 214 220 1,520 2,520 4,160 4,860 5,66 212 214 220 590 980 1,620 1,890 2,18 213 218 224 330 540 890 1,040 1,20 214 219 224 450 750 1,230 1,440 1,60 215 223 225 380 630 1,030 1,200 1,33 216 225 229 510 850 1,400 1,630 1,80 217 227 231 810 1,350 2,230 2,600 3,00 218 227 231 2,550 4,230 6,970 8,150 9,40 219 227 231 1,770 2,950 4,850 5,670 6,54 220 238 241 1,440 2,390 3,940 4,600 5,3 221 231 241 3,770 6,260 10,300 12,100 13,90 222 231 241	209	209	217	490	810	1,330	1,550	1,790
212 214 220 590 980 1,620 1,890 2,18 213 218 224 330 540 890 1,040 1,26 214 219 224 450 750 1,230 1,440 1,66 215 223 225 380 630 1,030 1,200 1,33 216 225 229 510 850 1,400 1,630 1,88 217 227 231 810 1,350 2,230 2,600 3,00 218 227 231 2,550 4,230 6,970 8,150 9,40 219 227 231 1,770 2,950 4,850 5,670 6,54 220 238 241 1,440 2,390 3,940 4,600 5,33 221 231 241 3,770 6,260 10,300 12,100 13,90 222 231 241 2,470 4,100 6,760 7,900 9,1 223 231 241	210	213	219	2,100	3,490	5,740	6,710	7,740
213 218 224 330 540 890 1,040 1,26 214 219 224 450 750 1,230 1,440 1,66 215 223 225 380 630 1,030 1,200 1,33 216 225 229 510 850 1,400 1,630 1,86 217 227 231 810 1,350 2,230 2,600 3,00 218 227 231 2,550 4,230 6,970 8,150 9,40 219 227 231 1,770 2,950 4,850 5,670 6,50 220 238 241 1,440 2,390 3,940 4,600 5,33 221 231 241 3,770 6,260 10,300 12,100 13,90 222 231 241 2,470 4,100 6,760 7,900 9,1 223 231 241 650 1,090 1,790 2,090 2,4 224 241 243 <td< td=""><td>211</td><td>214</td><td>220</td><td>1,520</td><td>2,520</td><td>4,160</td><td>4,860</td><td>5,600</td></td<>	211	214	220	1,520	2,520	4,160	4,860	5,600
214 219 224 450 750 1,230 1,440 1,66 215 223 225 380 630 1,030 1,200 1,33 216 225 229 510 850 1,400 1,630 1,86 217 227 231 810 1,350 2,230 2,600 3,00 218 227 231 2,550 4,230 6,970 8,150 9,40 219 227 231 1,770 2,950 4,850 5,670 6,56 220 238 241 1,440 2,390 3,940 4,600 5,32 221 231 241 3,770 6,260 10,300 12,100 13,96 222 231 241 2,470 4,100 6,760 7,900 9,1 223 231 241 2,470 4,100 6,760 7,900 9,1 224 241 243 580	212	214	220	590	980	1,620	1,890	2,180
215 223 225 380 630 1,030 1,200 1,33 216 225 229 510 850 1,400 1,630 1,88 217 227 231 810 1,350 2,230 2,600 3,00 218 227 231 2,550 4,230 6,970 8,150 9,40 219 227 231 1,770 2,950 4,850 5,670 6,50 220 238 241 1,440 2,390 3,940 4,600 5,33 221 231 241 3,770 6,260 10,300 12,100 13,90 222 231 241 2,470 4,100 6,760 7,900 9,1 223 231 241 650 1,090 1,790 2,090 2,40 224 241 243 580 960 1,570 1,840 2,12 225 243 244 300	213	218	224	330	540	890	1,040	1,200
216 225 229 510 850 1,400 1,630 1,88 217 227 231 810 1,350 2,230 2,600 3,00 218 227 231 2,550 4,230 6,970 8,150 9,40 219 227 231 1,770 2,950 4,850 5,670 6,50 220 238 241 1,440 2,390 3,940 4,600 5,33 221 231 241 3,770 6,260 10,300 12,100 13,90 222 231 241 2,470 4,100 6,760 7,900 9,1 223 231 241 650 1,090 1,790 2,090 2,4 224 241 243 580 960 1,570 1,840 2,1 225 243 244 300 500 820 960 1,1 226 245 245 1,230 2,040 3,360 3,920 4,52 227 245 245 <td< td=""><td>214</td><td>219</td><td>224</td><td>450</td><td>750</td><td>1,230</td><td>1,440</td><td>1,660</td></td<>	214	219	224	450	750	1,230	1,440	1,660
217 227 231 810 1,350 2,230 2,600 3,00 218 227 231 2,550 4,230 6,970 8,150 9,40 219 227 231 1,770 2,950 4,850 5,670 6,54 220 238 241 1,440 2,390 3,940 4,600 5,33 221 231 241 3,770 6,260 10,300 12,100 13,90 222 231 241 2,470 4,100 6,760 7,900 9,1 223 231 241 650 1,090 1,790 2,090 2,4 224 241 243 580 960 1,570 1,840 2,1 225 243 244 300 500 820 960 1,1 226 245 245 1,230 2,040 3,360 3,920 4,52 227 245 245 29,600 49,100 80,900 94,600 109,00 228 247 246	215	223	225	380	630	1,030	1,200	1,390
218 227 231 2,550 4,230 6,970 8,150 9,40 219 227 231 1,770 2,950 4,850 5,670 6,54 220 238 241 1,440 2,390 3,940 4,600 5,33 221 231 241 3,770 6,260 10,300 12,100 13,90 222 231 241 2,470 4,100 6,760 7,900 9,1 223 231 241 650 1,090 1,790 2,090 2,4 224 241 243 580 960 1,570 1,840 2,12 225 243 244 300 500 820 960 1,1 226 245 245 1,230 2,040 3,360 3,920 4,52 227 245 245 29,600 49,100 80,900 94,600 109,00 228 247 246 1,440 2,400 3,950 4,620 5,33 229 246 246 </td <td>216</td> <td>225</td> <td>229</td> <td>510</td> <td>850</td> <td>1,400</td> <td>1,630</td> <td>1,880</td>	216	225	229	510	850	1,400	1,630	1,880
219 227 231 1,770 2,950 4,850 5,670 6,56 220 238 241 1,440 2,390 3,940 4,600 5,3 221 231 241 3,770 6,260 10,300 12,100 13,90 222 231 241 2,470 4,100 6,760 7,900 9,1 223 231 241 650 1,090 1,790 2,090 2,4 224 241 243 580 960 1,570 1,840 2,1 225 243 244 300 500 820 960 1,1 226 245 245 1,230 2,040 3,360 3,920 4,52 227 245 245 29,600 49,100 80,900 94,600 109,00 228 247 246 1,440 2,400 3,950 4,620 5,33 229 246 246 650 1,080 1,770 2,070 2,35 230 246 246	217	227	231	810	1,350	2,230	2,600	3,000
220 238 241 1,440 2,390 3,940 4,600 5,32 221 231 241 3,770 6,260 10,300 12,100 13,90 222 231 241 2,470 4,100 6,760 7,900 9,1 223 231 241 650 1,090 1,790 2,090 2,4 224 241 243 580 960 1,570 1,840 2,1 225 243 244 300 500 820 960 1,1 226 245 245 1,230 2,040 3,360 3,920 4,52 227 245 245 29,600 49,100 80,900 94,600 109,00 228 247 246 1,440 2,400 3,950 4,620 5,33 229 246 246 650 1,080 1,770 2,070 2,35 230 246 246 500 830 1,370 1,600 1,80 231 246 246	218	227	231	2,550	4,230	6,970	8,150	9,400
221 231 241 3,770 6,260 10,300 12,100 13,90 222 231 241 2,470 4,100 6,760 7,900 9,1 223 231 241 650 1,090 1,790 2,090 2,4 224 241 243 580 960 1,570 1,840 2,1 225 243 244 300 500 820 960 1,1 226 245 245 1,230 2,040 3,360 3,920 4,52 227 245 245 29,600 49,100 80,900 94,600 109,00 228 247 246 1,440 2,400 3,950 4,620 5,3 229 246 246 650 1,080 1,770 2,070 2,39 230 246 246 500 830 1,370 1,600 1,80 231 246 246 5,480 9,100 15,000 17,500 20,20	219	227	231	1,770	2,950	4,850	5,670	6,540
222 231 241 2,470 4,100 6,760 7,900 9,1 223 231 241 650 1,090 1,790 2,090 2,4 224 241 243 580 960 1,570 1,840 2,1 225 243 244 300 500 820 960 1,1 226 245 245 1,230 2,040 3,360 3,920 4,52 227 245 245 29,600 49,100 80,900 94,600 109,00 228 247 246 1,440 2,400 3,950 4,620 5,3 229 246 246 650 1,080 1,770 2,070 2,39 230 246 246 500 830 1,370 1,600 1,80 231 246 246 5,480 9,100 15,000 17,500 20,20	220	238	241	1,440	2,390	3,940	4,600	5,310
223 231 241 650 1,090 1,790 2,090 2,44 224 241 243 580 960 1,570 1,840 2,12 225 243 244 300 500 820 960 1,1 226 245 245 1,230 2,040 3,360 3,920 4,52 227 245 245 29,600 49,100 80,900 94,600 109,00 228 247 246 1,440 2,400 3,950 4,620 5,32 229 246 246 650 1,080 1,770 2,070 2,39 230 246 246 500 830 1,370 1,600 1,80 231 246 246 5,480 9,100 15,000 17,500 20,20	221	231	241	3,770	6,260	10,300	12,100	13,900
224 241 243 580 960 1,570 1,840 2,12 225 243 244 300 500 820 960 1,1 226 245 245 1,230 2,040 3,360 3,920 4,52 227 245 245 29,600 49,100 80,900 94,600 109,00 228 247 246 1,440 2,400 3,950 4,620 5,33 229 246 246 650 1,080 1,770 2,070 2,39 230 246 246 500 830 1,370 1,600 1,80 231 246 246 5,480 9,100 15,000 17,500 20,20	222	231	241	2,470	4,100	6,760	7,900	9,110
225 243 244 300 500 820 960 1,1 226 245 245 1,230 2,040 3,360 3,920 4,52 227 245 245 29,600 49,100 80,900 94,600 109,00 228 247 246 1,440 2,400 3,950 4,620 5,32 229 246 246 650 1,080 1,770 2,070 2,39 230 246 246 500 830 1,370 1,600 1,80 231 246 246 5,480 9,100 15,000 17,500 20,20	223	231	241	650	1,090	1,790	2,090	2,410
226 245 245 1,230 2,040 3,360 3,920 4,52 227 245 245 29,600 49,100 80,900 94,600 109,00 228 247 246 1,440 2,400 3,950 4,620 5,33 229 246 246 650 1,080 1,770 2,070 2,39 230 246 246 500 830 1,370 1,600 1,80 231 246 246 5,480 9,100 15,000 17,500 20,20	224	241	243	580	960	1,570	1,840	2,120
227 245 245 29,600 49,100 80,900 94,600 109,00 228 247 246 1,440 2,400 3,950 4,620 5,3 229 246 246 650 1,080 1,770 2,070 2,39 230 246 246 500 830 1,370 1,600 1,80 231 246 246 5,480 9,100 15,000 17,500 20,20	225	243	244	300	500			1,110
228 247 246 1,440 2,400 3,950 4,620 5,33 229 246 246 650 1,080 1,770 2,070 2,35 230 246 246 500 830 1,370 1,600 1,80 231 246 246 5,480 9,100 15,000 17,500 20,20	226	245	245	1,230	2,040	3,360		4,520
229 246 246 650 1,080 1,770 2,070 2,39 230 246 246 500 830 1,370 1,600 1,80 231 246 246 5,480 9,100 15,000 17,500 20,20	227	245	245	29,600	49,100	80,900	94,600	109,000
230 246 246 500 830 1,370 1,600 1,80 231 246 246 5,480 9,100 15,000 17,500 20,20	228	247				3,950		5,330
231 246 246 5,480 9,100 15,000 17,500 20,20	229	246	246	650				2,390
	230	246	246	500	830	1,370	1,600	1,800
232 246 246 5,910 9,820 16,200 18,900 21,80	231	246	246	5,480		15,000		20,200
	232	246	246	5,910	9,820	16,200	18,900	21,800

Source: Ref. 21, 22 and 23

Table 38 ASSUMED DEVELOPMENT OF SEPTIC TANK IN URBAN AREA

	•		Unit: %
Pollution Source	1980	1990	2000
Septic tank	20	35	50
Others	80	65	50

Table 39 ASSUMED BOD CONCENTRATION OF NON-SEWERAGE-URBAN-DOMESTIC

			Unit:	mg/l
Pollution Source	NUPL	1980	1990	2000
Septic tank	80	16	28	40
Others	200	160	130	100
Non sewerage urban domes	stic	180	160	140

Table 40 ASSUMED DEVELOPMENT OF LAND DISPOSAL IN PALM OIL MILLS AND RUBBER FACTORIES

		· · · · · · · · · · · · · · · · · · ·	Unit: %
	1980	1990	2000
Palm oil mills	25	50	75
Rubber factories	0	10	20

Table 41 ASSUMED DISCHARGE RATIO OF PALM OIL MILLS AND RUBBER FACTORIES

			1980	1990	2000
Palm	Oil Mills			·	
	Surface runoff ratio of land disposal area		0.25x0.1	0.5x0.1	0.75x0.1
	Discharge ratio of palm oil mills		0.75	0.5	0.25
	Runoff ratio		0.8	0.55	0.3
Rubb	er Factories	:	·		
	Surface runoff ratio of land disposal area		0x0.1	0.1x0.1	0.2x0.1
	Discharge ratio of rubber factories		1.0	0.9	0.8
	Runoff ratio		1.0	0.9	0.8

Table 42 DISCHARGE RATIO, RUNOFF RATIO, INFILTRATION RATIO AND BOD CONCENTRATION OF EFFLUENT ASSUMED UNDER PRESENT PURIFICATION LEVEL

Pollution Source	Year	Dis- charge Ratio	BOD Con- Centration (mg/1)	Runoff Ratio	Infil- tration Ratio
Domestic		<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>			
Urban Sewerage	1990 & 2000	0.9	30	1.0	0.2
					,
Urban Non-sewerage	1990 2000	0.9 0.9	160 140	$\begin{array}{c} 0.6 \\ 0.6 \end{array}$	0 0
Rural	1990 & 2000	0.8	200	0.1	0
Manufacture					
Urban sewerage	1990 & 2000	1.0	30	1.0	0.2
Urban Non-sewerage	1990 & 2000	1.0	200	0.6	0
Rura1	1990 & 2000	1.0	200	0.1	0
Palm Oil Mill					
With P.S. <u>/1</u>	1990 2000	0.55 0.3	50 50	0.6 0.6	0
Without P.S.	1990 2000	0.55 0.3	22,000 22,000	0.6 0.6	· 0 0 · .
Land Disposal	1990 & 2000	0.1	50	0.6	0
Rubber Factories					
With P.S.	1990 2000	0.9 0.8	50 50	0.6 0.6	0
Without P.S.	1990 2000	0.9 0.8	2,320 2,320	0.6 0.6	0
Land Disposal	1990 & 2000	0.1	50	0.6	0
Animal Husbandry	1990 & 2000	1.0	200 <u>/2</u>	0.1	0

Remarks; $\frac{1}{2}$: Purification System $\frac{1}{2}$: $\frac{1}{2}$ g/d/head

Table 43 EFFECTIVE CATCHMENT AREA AND RIVER MINIMUM MAINTENANCE FLOW FOR WATER QUALITY

Panin	Effective Catchment Area for Water Quality	Flo Balanc	imum enance w at e Point 97%	Basin	Effective Catchment Area for Water Quality	t Main F1 Balan	nimum tenance ow at ice Point 97%
Basin No.	(km ²)		$-3_{\rm m}3/_{\rm s/km}2)$	No.	(km ²)		0^{-3} m 3 /s/km 2)
201	5,285	67.1	12.7	227	973	7.8	8.00
201	918	8.2	8.94	228	2,598	14.3	5.50
202	1,288	12.4	9.65	229	3,865	71.1	18.4
203	538	4.7	8,74	230	21,822	388.4	17.8
					- -		
205	408	3.3	8.19	231	138	0.9	6.76
206	358	3.2	8.84	232	790	4.5	5.74
207	118	1.2	10.5	233	1,117	6.1	5.48
208	1,020	10.5	10.3	234	1,242	8.5	6.83
209	530	7.5	14.1	235	465	3.9	8.49
210	4,787	63.2	13.2	236	5,718	61.8	10.8
211	15,528	73.6	4.74	237	4,753	51.3	10.8
212	353	4.9	13.8	238	1,548	16.3	10.5
213	5,698	82.1	14.4	239	1,375	14.9	10.8
214	2,826	40.4	14.3	240	1,277	10.8	8.46
215	623	9.9	15.9	241	46,035	1,408.7	30.6
216	898	4.2	4.68	242	849	11.3	13.3
217	730	3.1	4.24	243	799	10.1	12.7
218	905	5,7	6.26	244	5,209	68.8	13.2
219	935	6.4	6.88	245	2,935	40.5	13.8
220	248	1.5	5.91	246	2,152	36.4	16.9
221	785	4.8	6.14	247	990	20.5	20.7
222	255	1.5	5,86				
223	243	1.4	5.71		* v .		
224	8,475	57.2	6.75				
225	46	0.3	6.73				
226	290	1.5	5.17		. 4		
			/				

Table 44 STANDARDS RELATING TO LIVING ENVIRONMENT FOR RIVERS IN JAPAN

				Standard Value	es <u>/1</u>	
Cate- Purpose of gory Utilization		pН	BOD (mg/lit)	SS (mg/lit)	DO (mg/lit)	Number of Coliform Groups (MPN/0.1 lit)
AA	Water supply, class 1; conservation of natural environment & uses listed in A-E	6.5-8.5	1 or less	25 or less	7.5 or more	50 or less
Λ	Water supply, class 2; fishery, class 1; bathing & uses listed in B-E	6,5-8.5	2 or less	25 or less	7.5 or more	1,000 or less
В	Water supply, class 3; fishery, class 2, & uses listed in C-E	6.5-8.5	3 or less	25 or less	5 or more	5,000 or less
С	Fishery, class 3; industrial water, class 1, & uses listed in D-E	6.5-8.5	5 or less	50 or less	5 or more	
D	Industrial water, class 2; agricultural water 2, & uses listed in E	6.0-8.5	8 or less	100 or less	2 or more	
E	Industrial water, class 3; conservation of environment	6.0-8.5	10 or less	Floating matter such as garbage should not be observed.	2 or more	

- Remarks; /1: The standard value is based on the daily average value.

 (The same applies to the standard values of lakes and coastal waters.)
 - $\underline{/2}$: At the point of abstraction for agriculture, pH shall be between 6.0 and 7.5 and dissolved oxygen shall not be less than 5 mg/lit.

(The same applies to the standard values of lakes.)

- 1. Conservation of natural environment: Conservation of scenic spots and other natural resources.
- 2. Water supply, class 1: Water treated by simply cleaning operation, such as filtration.
 - Water supply, class 2: Water treated by normal cleaning operation, such as sedimentation and filtration.
 - Water supply, class 3: Water treated through a highly sophisticated cleaning operation including pretreatment.
- 3. Fishery, class 1: For aquatic life such as trout and bull trout inhabiting oligosaprobic water, and those of fishery class 2 & class 3.
 - Fishery, class 2: For aquatic life, such as the salmon family and sweetfish inhabiting oligosaprobic water and those of fishery class 3.
 - Fishery, class 3: For aquatic life such as carp and silver carp inhabiting β -mesosaprobic water
- 4. Industrial water, class 1: Water given normal cleaning treatment such as sedimentation.
 - Industrial water, class 2: Water given sophisticated treatment by chemicals. Industrial water, class 3: Water given special cleaning treatment.
- 5. Conservation of environment: Up to the limits at which no unpleasantness is caused to people in their daily life (including a walk by the riverside, etc.).

Source; Ref. 37

Table 45 WATER QUALITY CRITERIA FOR FRESH SURFACE WATER PROPOSED BY THE NATIONAL POLLUTION CONTROL COMMISSION IN PHILIPPINES

and the second second	4 - 4		Standa	rd Values	<u> </u>
Classification	Purpose of Utilization	рН	BOD mg/lit	DO mg/lit	Coliform MPN/0.1 lit
AA	Domestic Water Supply/1	7 - 8.5	<u>-</u>	<u>-</u>	50 or less
Α	Domestic Water Supply/2	6.5-8.5	5 or less	5 or more	500 or less
В	Bathing	6.5-8.5	10 or less	5 or more	1000 or less
С	Fishing	6.5~8.5	15 or less	5 or more	5000 or less
D	Agricultural and Industrial Water Supply	6.0-8.5	<u>-</u>	3 or more	

Remarks; /1: Waters from watersheds which are uninhabited and otherwise protected and can be used for water supply with limited treatment.

<u>/2</u>: A conventional treatment is necessary for water supply use of these waters.

Source; Ref. 38

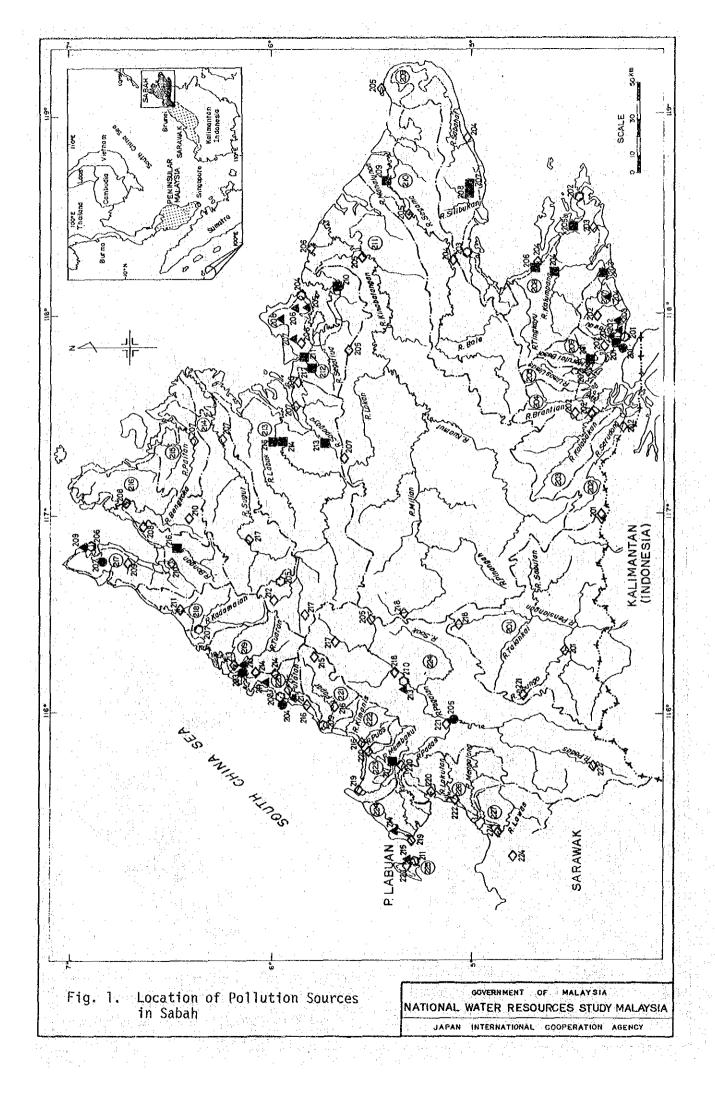
Table 46 BREAKDOWN OF CONSTRUCTION COST OF PUBLIC SEWERAGE SYSTEMS FOR BUTTERWORTH AND BUKIT MERTAJAM

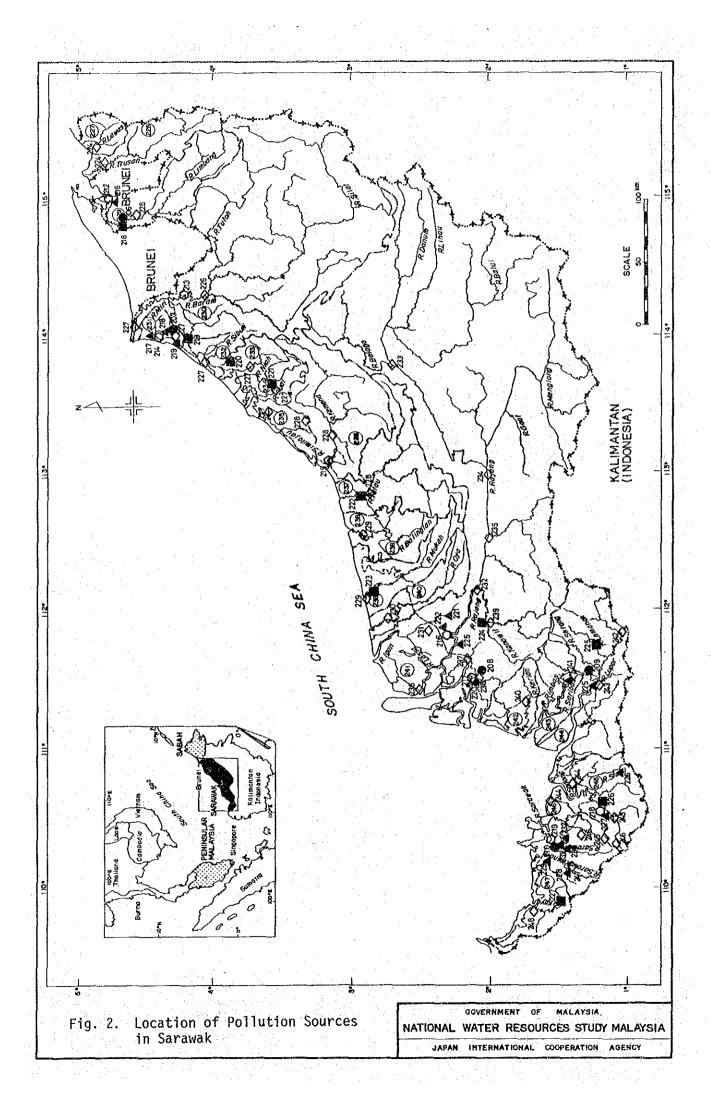
	Cost (M\$10 ⁶)	Share (%)	
Trunk Sewer Pumping Facilities Treatment Facilities	166 5 50		27 1 8
Land	45		7
Sub-total	266		44
Branch Sewer House Connection Pipe	281 62		46 10
Sub-total	343		56
Total	609		100

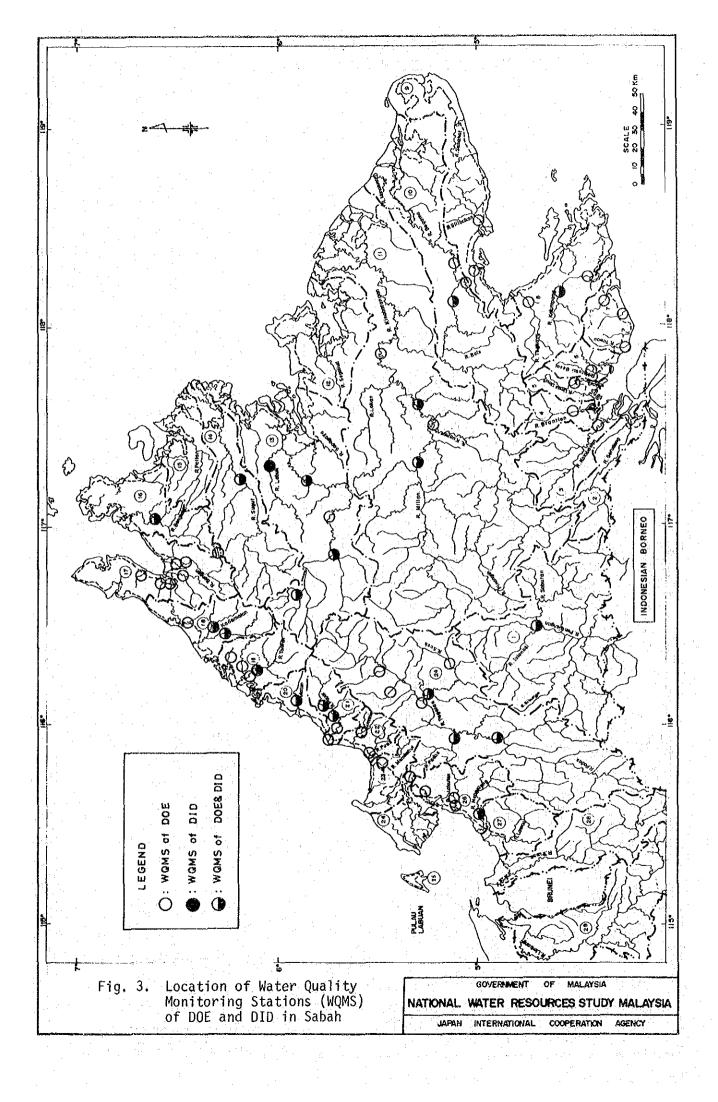
Remarks; (1): At 1976 price

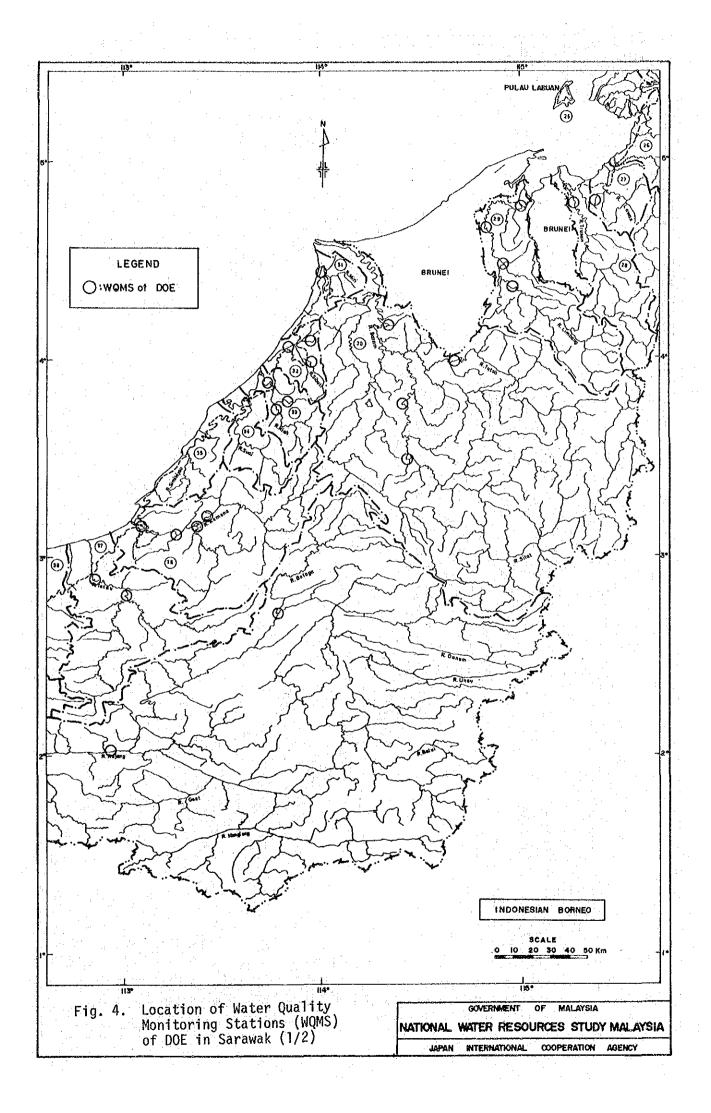
(2): Excluding engineering cost and physical contingency.

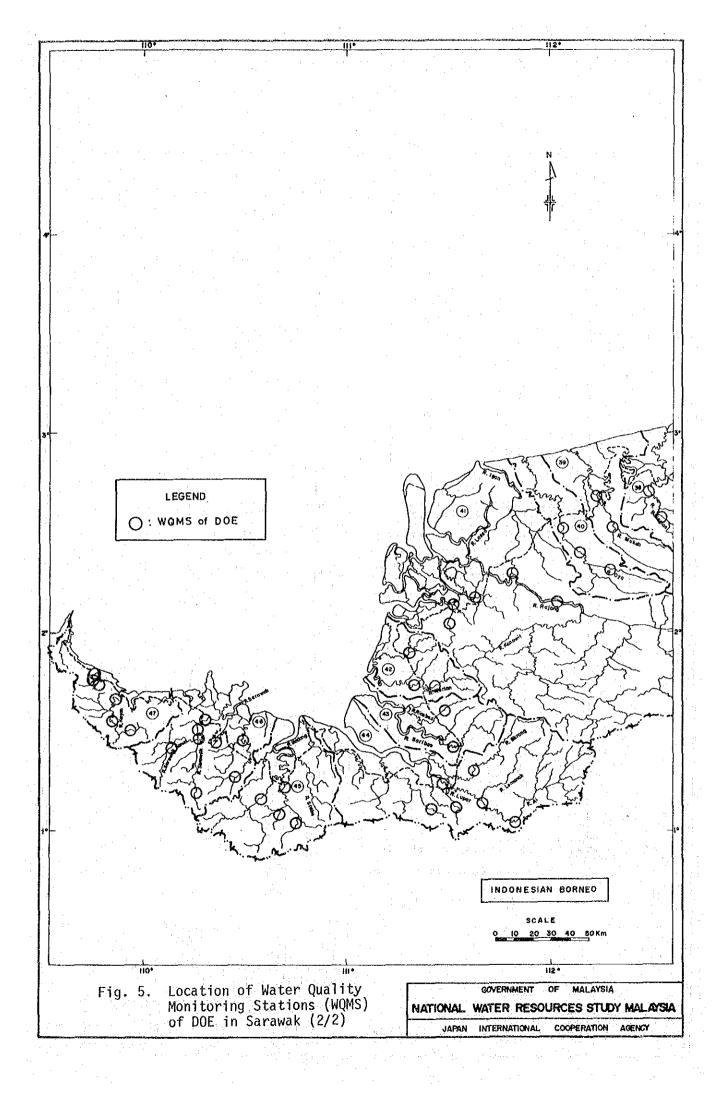
Source; Penang State Sewerage and Drainage Master Plan 1978, JICA


Table 47 ASSUMED UNIT CONSTRUCTION COST FOR WATER POLLUTION ABATEMENT FACILITIES


Purification Pretreatment
Facilities Facilities


Public Palm Rubber Primary Secondary


			acilit		Facilities	
Item	Public Sewerage Systems	Pa 1990	1m 2000	Rubber 1990 & 2000	Primary Pre- treatment	Secondary Pre- treatment
Direct Const. Cost	105.3	2.50	2.25	0.96	26.70	78.60
Land Acquisition	5.3	-		-		
Engineering	10.5	0.25	0.23	0.10	2.67	7.86
Sub-total	121.1	2.75	2.48	1.06	29.37	86.46
Physical Contingency	36.3	0.85	0.72	0.34	8.83	25.94
Tota1	157.4	3.60	3.20	1.40	38.20	112.40


FIGURES

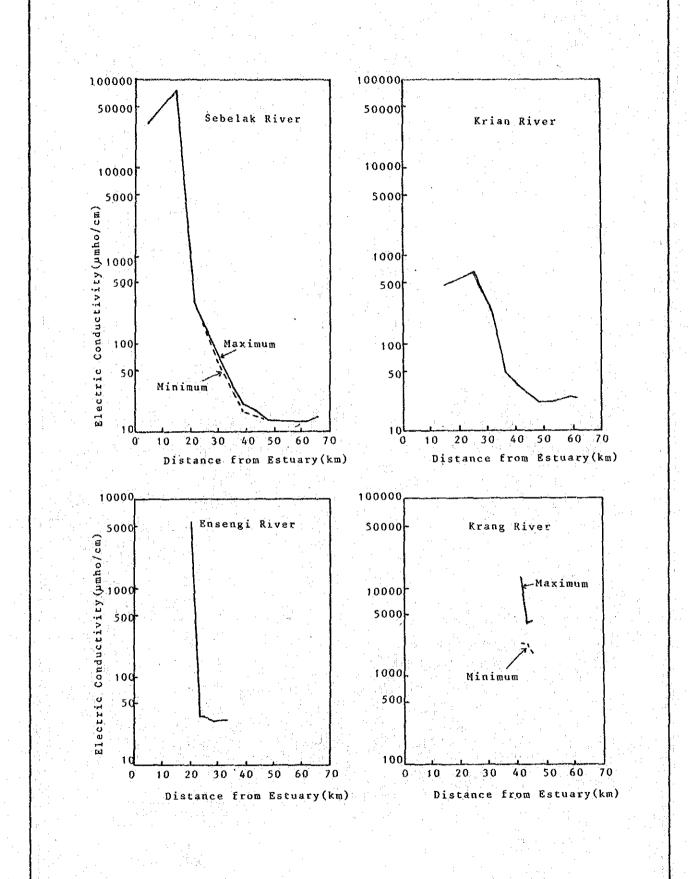
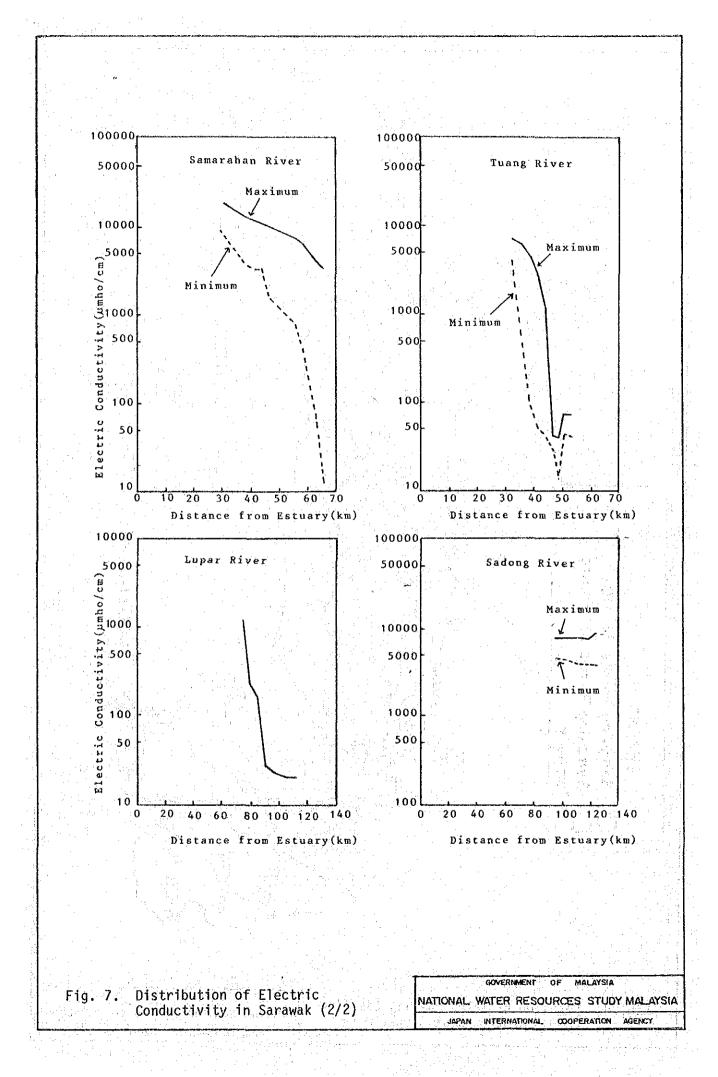
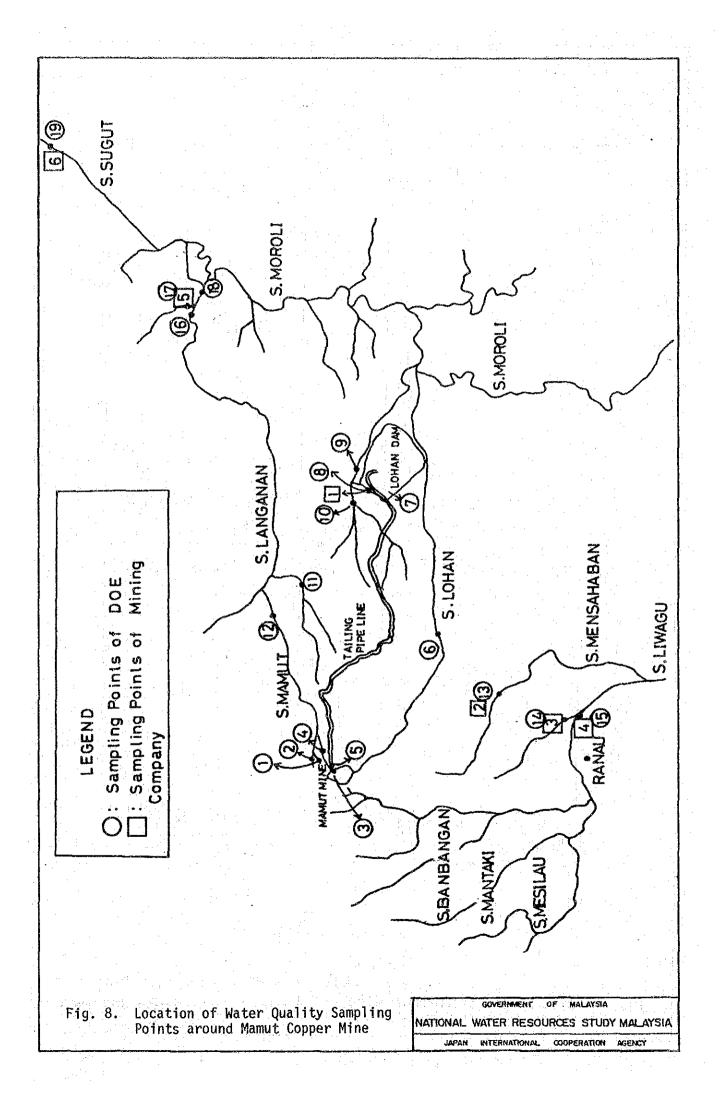




Fig. 6. Distribution of Electric Conductivity in Sarawak (1/2)

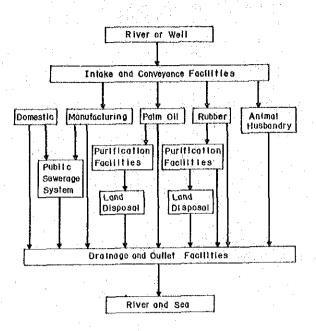
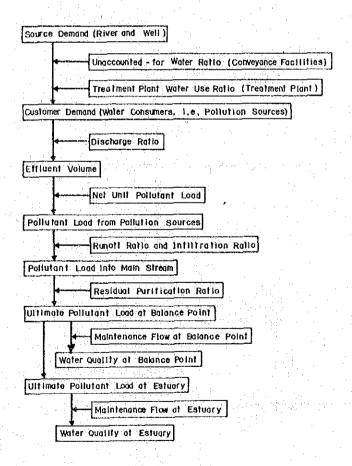
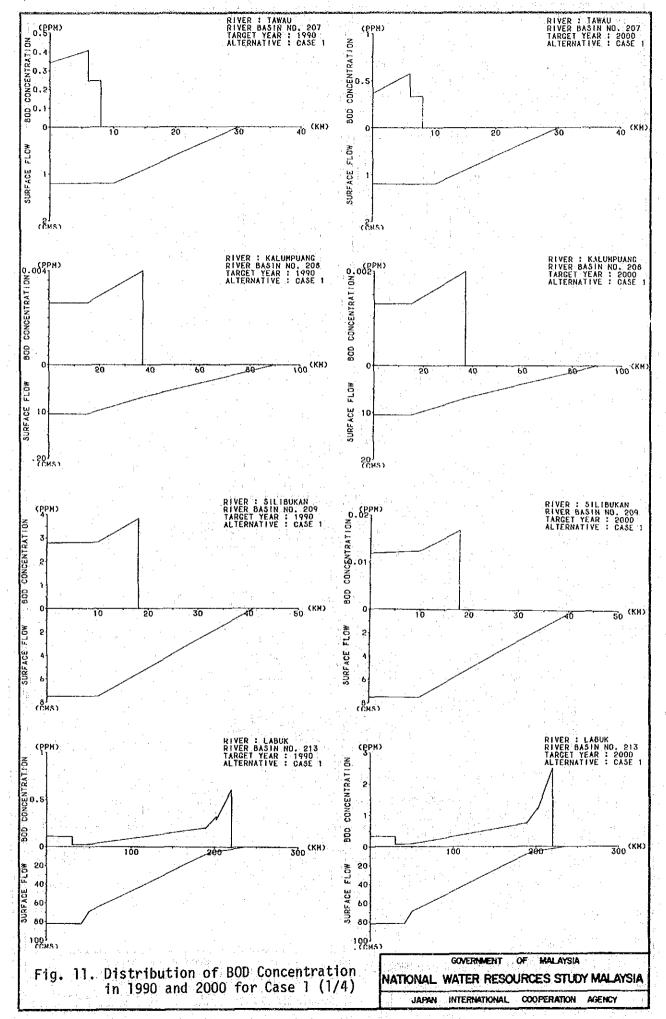
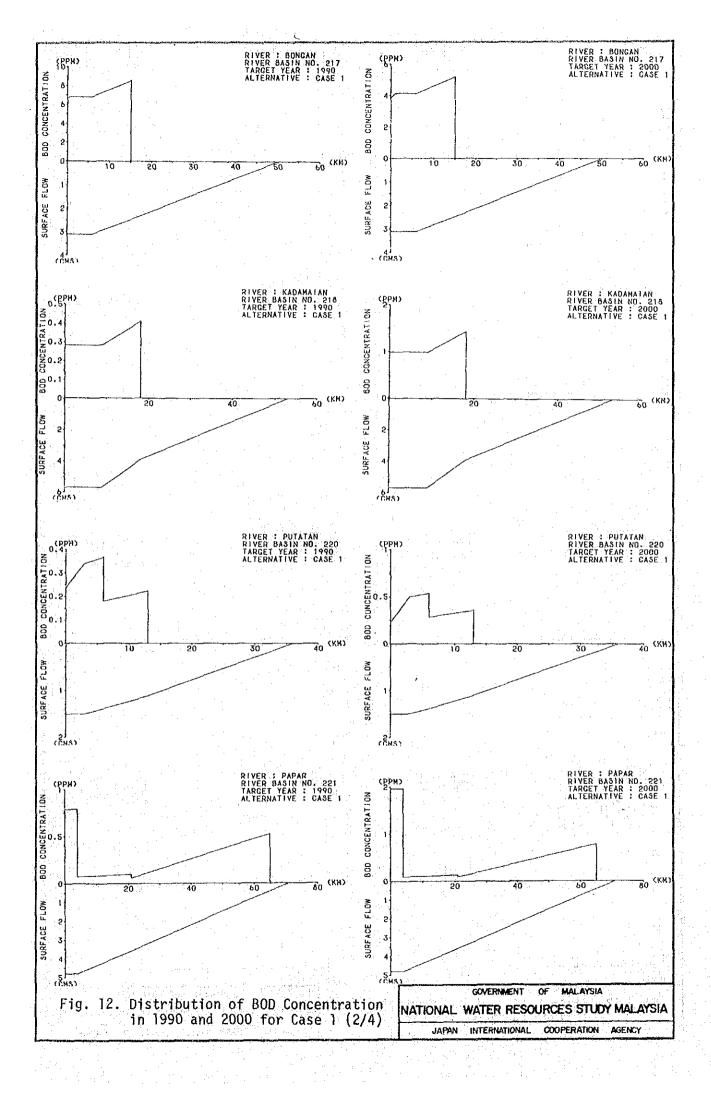
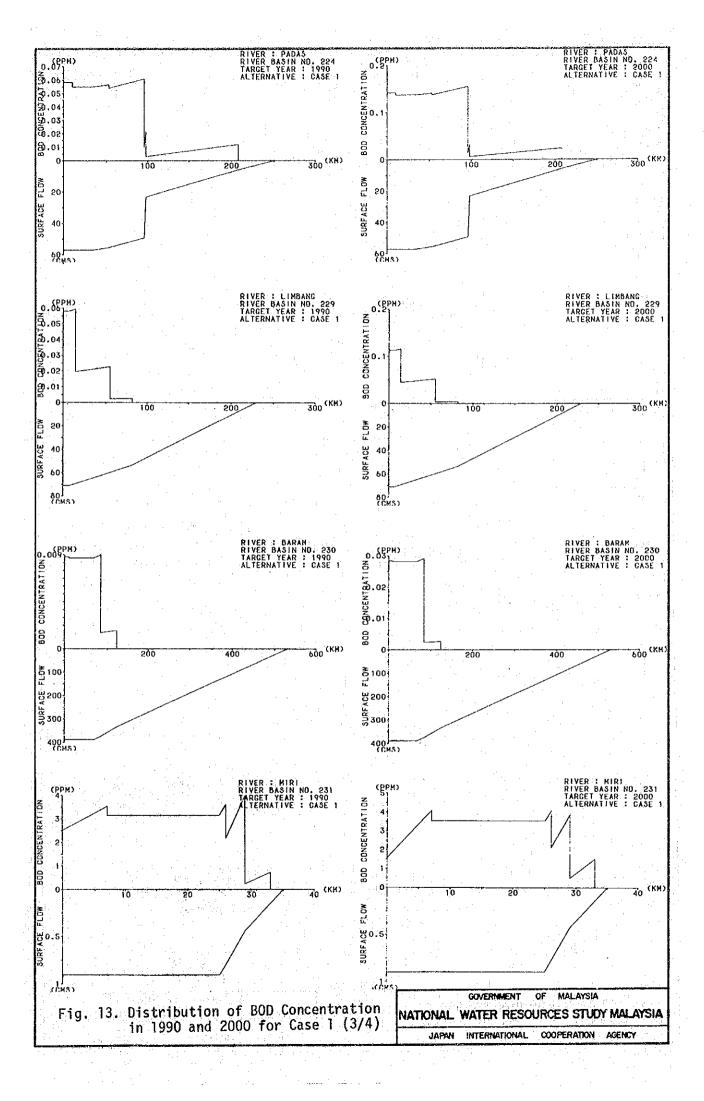
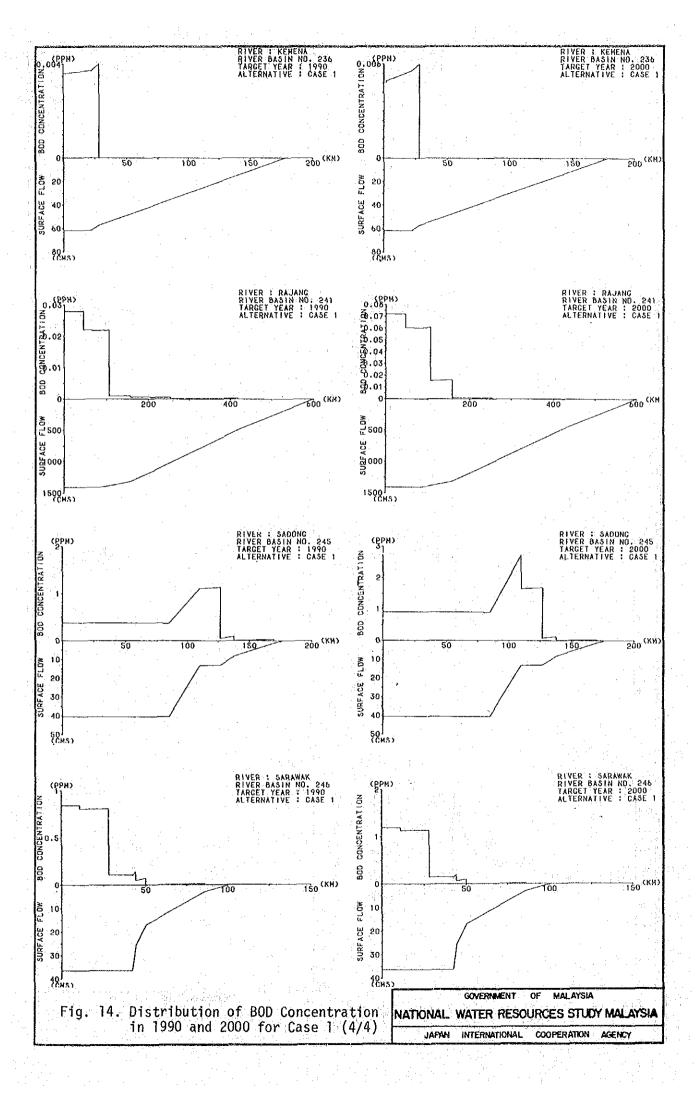
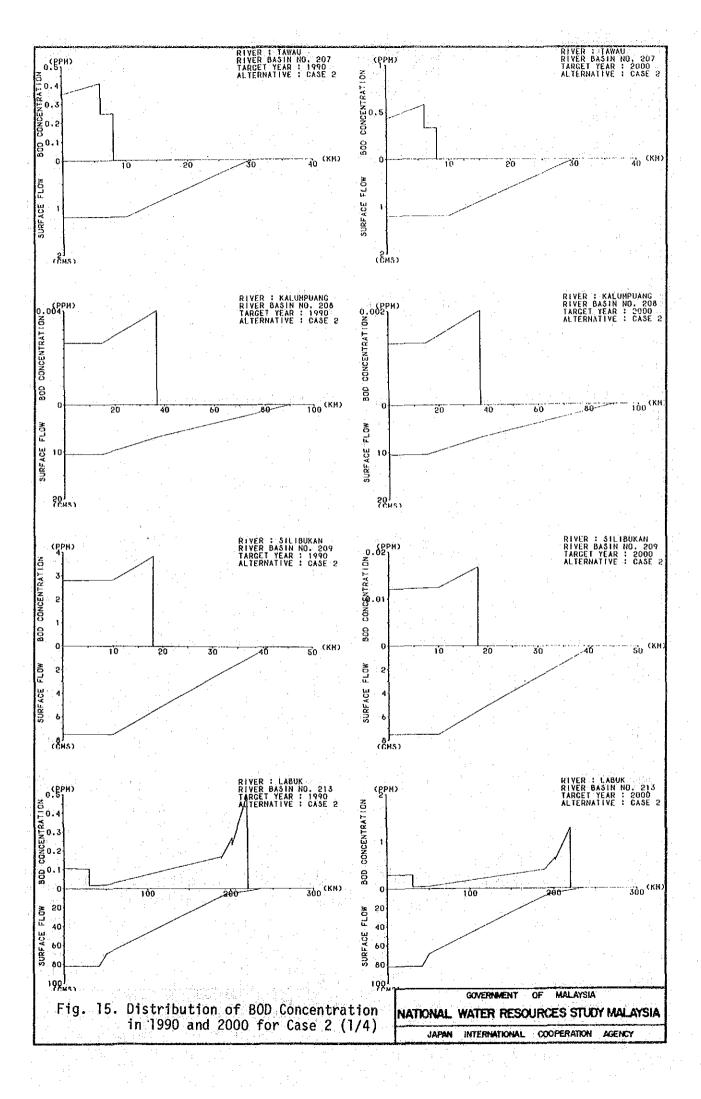
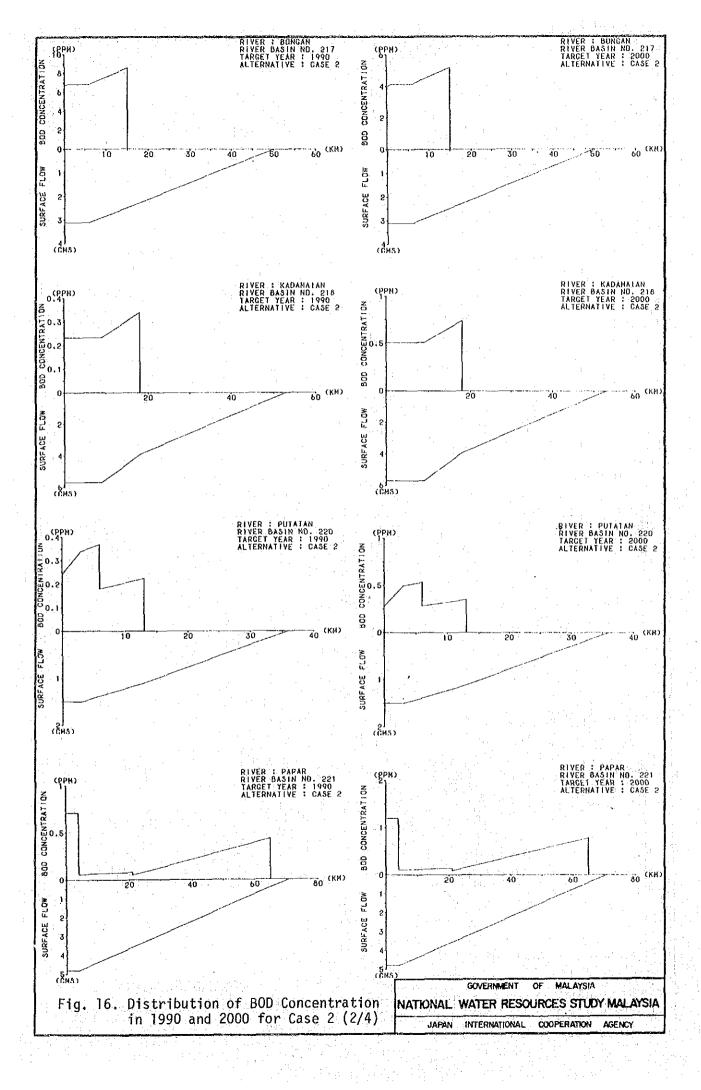
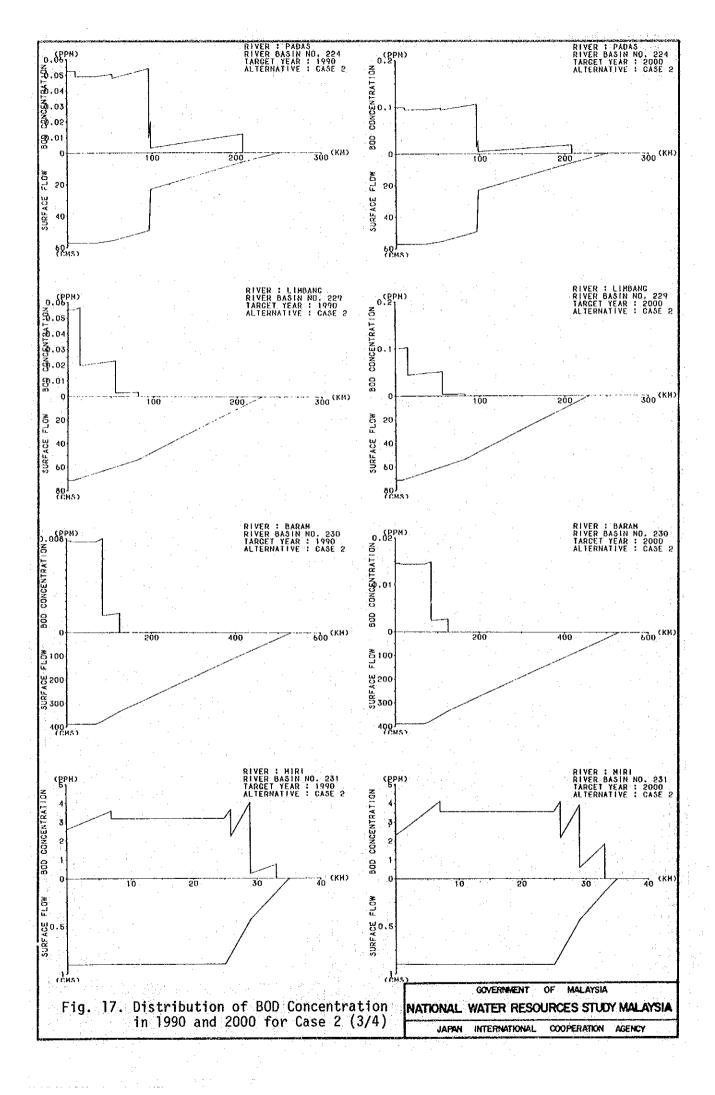


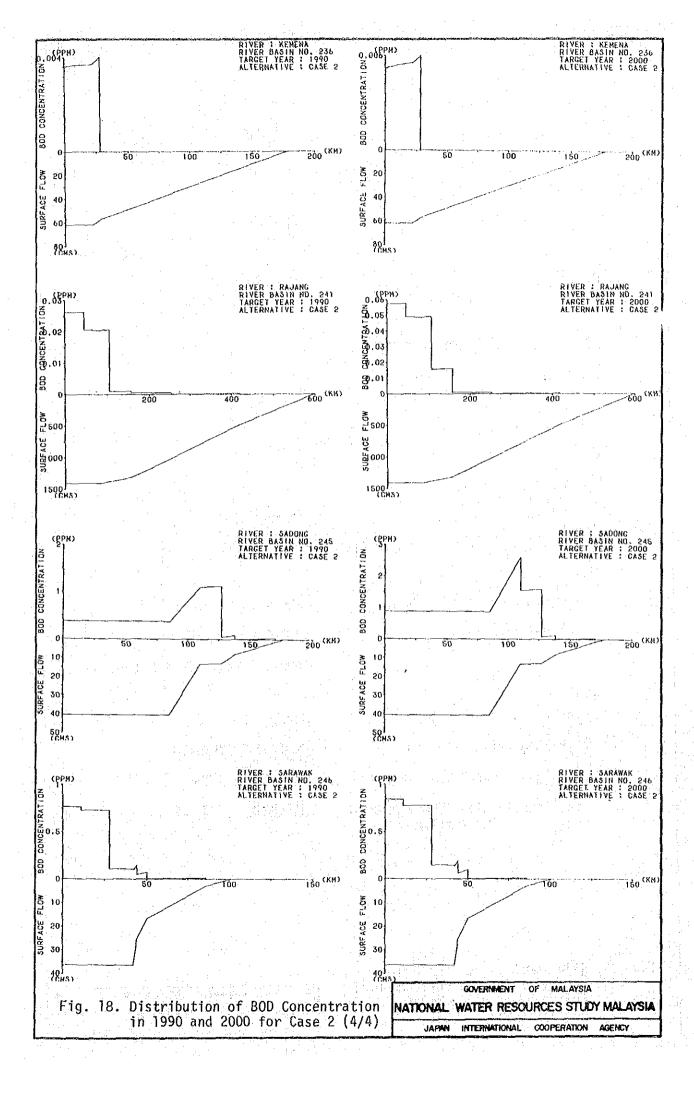
Fig. 9. Composition of Pollution Sources


Fig. 10. Water Quality Projection Flow Chart







Environmental Feature

Self Purification by River
Odors Occurrence from River
Fish Inhabitation Carp and
Silver Carp

River Water Quality Limit

Netherlands

River Water Quality Standard

Oklahoma State, USA

for Domestic Water Supply

ÚSSR

for Domestic Water Supply & Food Manufacturing

for Bathing, Sports & Recreation

Philippines

for Domestic Water Supply

for Bathing

for Fishing

Japan

for Domestic Water Supply

for Industrial Water Supply

for Agricultural Water Supply

for Conservation of Environment

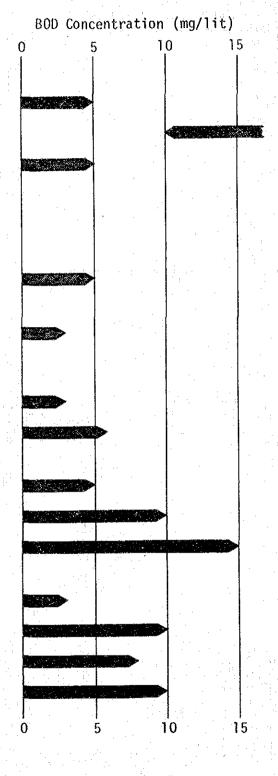


Fig. 19. Relationships between BOD
Concentration and Environmental
Feature, and River Water
Quality Limit

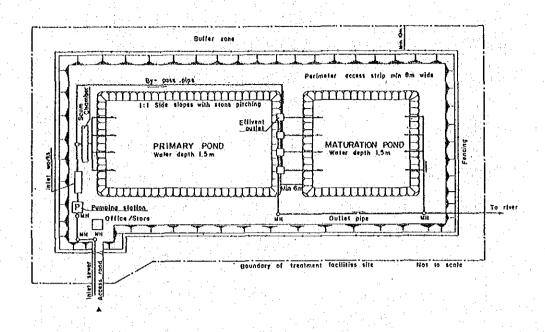


Fig. 20. Typical Layout of Stabilization Pond Process

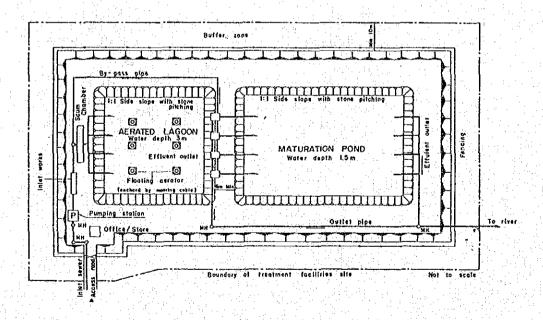


Fig. 21. Typical Layout of Aerated Lagoon Process

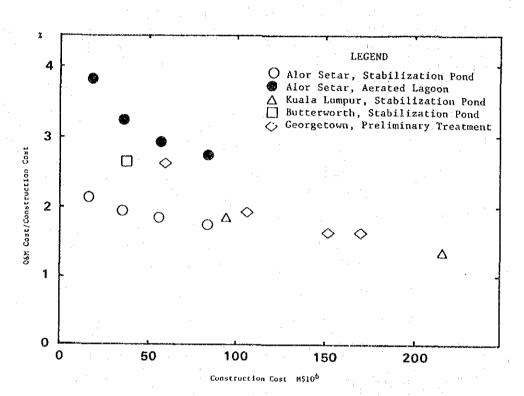
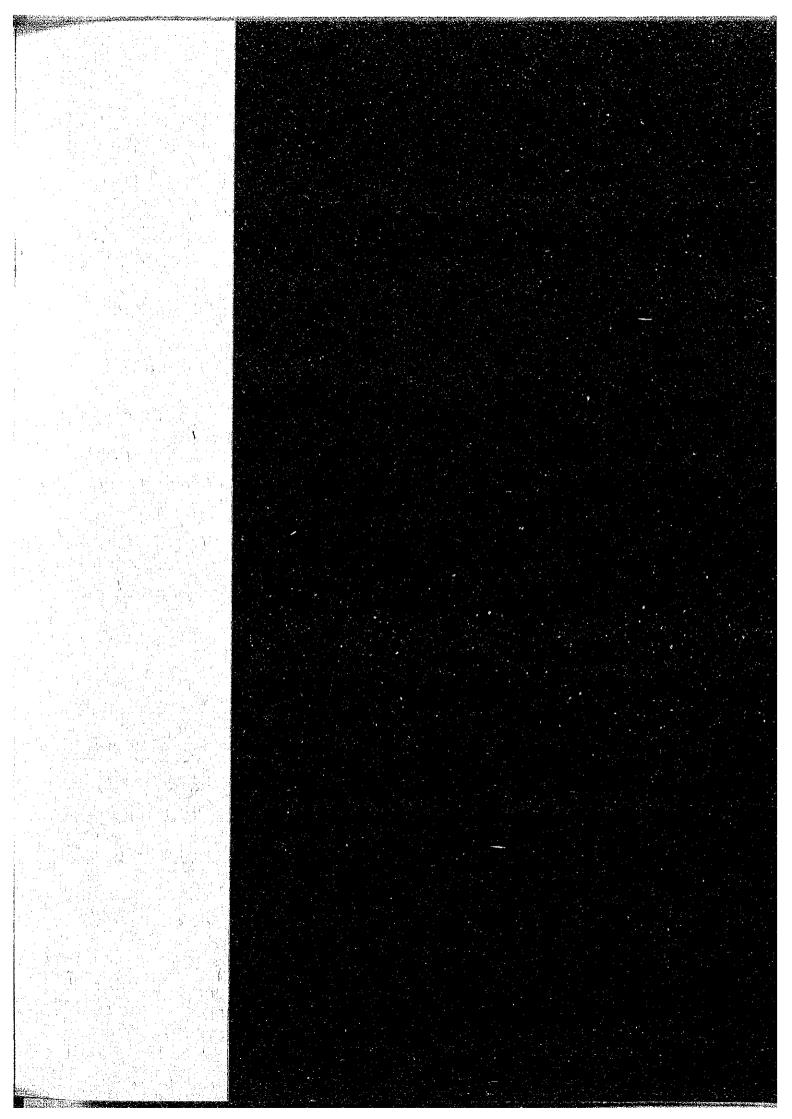
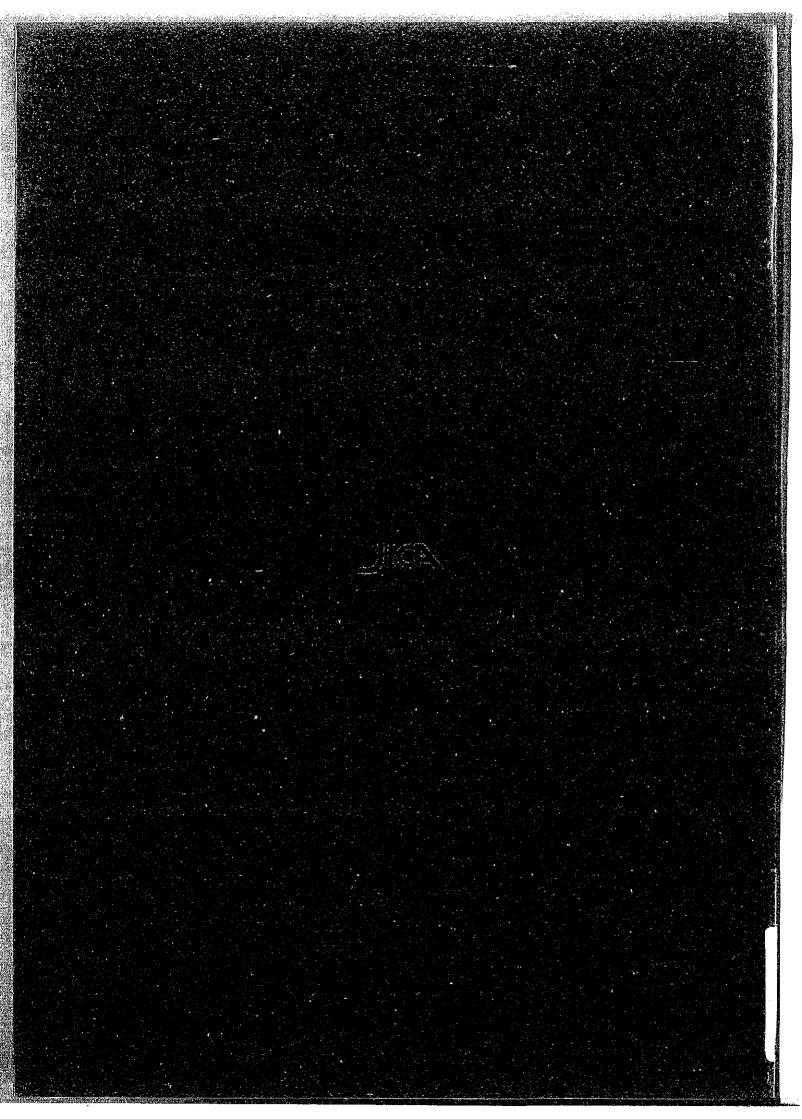




Fig. 22. Relationships between O&M and Construction Cost

