
Photo 7

B-C Section
Proposed Site of North Butterworth Container Wharf

Photo 8

B-C Section Kg. Bagan Ajam Seashore

(3) C-D区間

スンガイ・ドウア通り沿いには、中国人基地、モスク、高密度住居地域、水田、ペナン島とバクワースを結ぶ水道管がある。

上記を考慮に入れ、ルートドとルートGの2比較案が考えられる。(図4.8、写真9、10参照)

a. ルートF

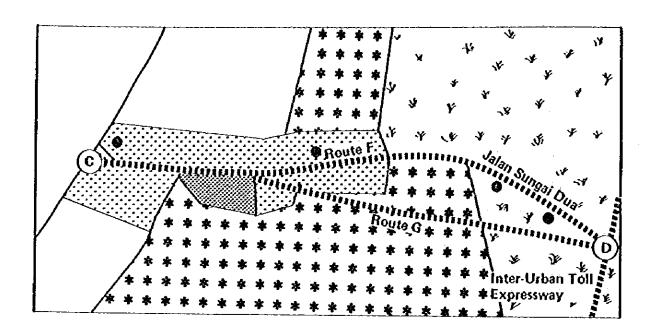
基本的にはこのルートはスンガイ・ドウア通りの改修であり、ししMが計画している都市間有料高速道路に接続される。

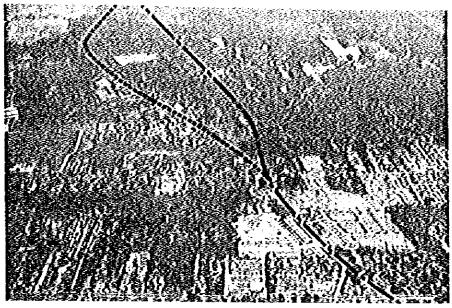
水道管は大口径で現在道路の両段に埋設されている。ペナン水道公社との打合 わせでは ø 1 3 5 cm (5 4 ")の水道管の移設は、相当むずかしいということであった。 従って ø 1 3 5 cm の水道管は移設せず、ルートドの路肩部に位置させる計画となる。

b. ルートG

現在のスイガイ・ドウア通りのプコ町周辺は多くの住宅があり道路巾員もひどく狭い。この道路の拡幅と住宅の撤去をさけるためにルートGは水田とココナツブランテーション地内に路線が選定される。

上記のルート比較案(図45参照)は技術委員会と運営委員会の席で討議された。



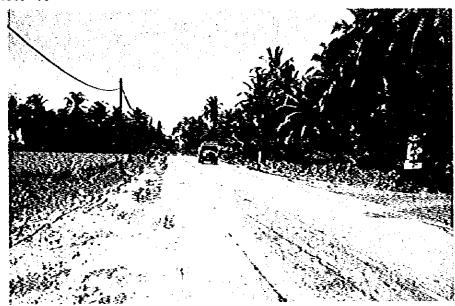

Fig. 4.8 PROPOSED ALTERNATIVE ROUTE (C-D SECTION) WITH PRESENT LAND USE

Residential
Commercial
School/Institutional
Industrial
Transportation
Open Space/Recreation
Cemetery
Padi Fields

* * * Coconut Plantation

Mosque

Photo 9


C-D Section

Route F (Jalan Sungai Dua)

Route G

Along the existing Jalan Sungai Dua

Photo 10

C-D Section
Proposed Interchange Site at Jalan Sungai Dua

4.5.3 比較路線案の選択

(1) 概 要

上記に述べた比較路線、すなわちA-B区間の3路線、B-C区間の3路線C-D区間の2路線につきとの頃で評価する。この評価は技術面、環境面、経済面(最小費用化)からなきれる。

比較路線の検討は以下の通りである。

(2) 比較路線の検討

1) n-1A, B, C

a. 経済面

建設費は、ルートA 25.9 4 4.000 M 8、ルートB 4 6.5 6 8.000 M 8、ルート C 5 7.8 5 6.000 M 8、と算出された。この値からするとルート A が明らかに最小建設費用である。

b. 技術面

ルートAは、建設中の交通混雑を考えるとルートBより指工が軽しい、ルート Cは、マラヤン鉄道ヤード上を接架で残ることになるので指工上に多少問題がある。

ルートAは、都市域を通過するため、スムーズな交通流を期待できない。しかし、ルートBとCはなめらかな交通流が期待出来る。

ルートBとCは、道路網パターンとしては、ルートAより良好なパターンである。

ルートAはプライ河の現在の議案と同じ規模のものを架けることが必要であるが特に問題はない。

しかし、ルートB、Cではブライ河に大規模もしくは中規模の僑を保ける必要がある。

c. 社会環境面

ルートAはチェン・フェリー通りの商業、住宅及びバタリースマーケットに も影響があると考えられる。

ルートCは、マレーハ穏とマレー鉄道に影響があると考えられる。ルートB の社会環境面へのインパクトは、非較的少ないものと判断される。

Table 4.2 COMPARISON OF ALTERNATIVE ROUTES (A-B SECTION)

	Items	Route 'A'	Route 'B'	Route 'C'	
	Length	6.000 km	4.610 km	5.200 km	
Dutline	Plan	Plan Improvement of the Existing Federal Route 1		New Construction & Improvement of Jalan Perusahaan	
-	Land Use	Developed Area	Developed Area for Residential and Transportation	Developed Area of Industry and Trans- portation	
44	Construction Condition	Comparatively difficult	Easy	Comparatively difficult	
ě	Traffic Flow Not Smooth		Smooth	Smooth	
₹	Network Pattern Not Suitable		Suitable	Suitable	
Technical Aspect	Major Structures	Two Large-scale Fly-over Structures and a Low level Bridge	High Level or Medium Level Bridge on Prai River	High Level or Medium Level Bridge on Prai River with viaduct Structure over Malayawata Steel and Malayaw Railway	
ž	Disruption of Community	Anticipated	Small	Small	
S-Enviror Aspect	Impacts on Existing Urban facility Impacts on Urban Environment	Markets, commercial Buildings and Houses affected	Insignificant	Malayawata Steel and Malayan Railway affected	
Š	Impacts on Urban Environment	Some problems	Insignificant	Insignificant	
Š	Construction Cost	M\$18,767,000	M\$44,374,000	M\$54,482,000	
Strug	Construction Cost Land Acquisition & Compensation	M\$ 7,177,000	M\$ 4,194,000	M\$ 3,374,000	
ខ្មី	Total	M\$25,944,000	M\$48,568,000	M\$57,856,000	

2) ルートD、ルートEおよびその中間案

a. 経済面

建設費用は、ルートD38.886,000M\$、ルートE64,186,000M\$、中間案38,130,000M\$であり、ルートDと中間案はルートEより工事費が安い。

b. 技 街 茵

ルートEは、バガン・アジャム通りを抜けるものであり、ここには、多くの 住居、商業ビル、公共趋設がある。従って用地取得はむずかしいと思われる。

一方、海岸線を通るルートDは、用地取得がそれ程大きな問題とはならないだろう。中間案は、海岸線とバガン・アジャム通りを抜ける。よって用地取得は比較的易しいであろう。

スムーズな交通の流れを確保するという観点からすると、ルートDが最良である。これはルートDが長距離交通、短距離および以内交通、貨物交通を機能

的に分離して処理できるからである。

c. 社会環境面

地域社会の破壊という観点からすると、ルートEはパガン・アジャム通り沿道の住居に影響を与えると考えられるし、商業ビル、公共偽設にもルートEは影響を及ぼすと思われる。

中間案には、バガン・アジャム通り沿道の住居の移転が必要である。一方、 ルート D は、殆ど住居の移転の必要はない。

上記B-C区間の比較路線の検討を表4.3に示した。

Table 4.3 COMPARISON OF ALTERNATIVE ROUTES (8-C SECTION)

	lterns	Route 'O'	Route 'E'	Combined Route 'D' and 'E'
	Length	5.535 km	5.150 km	5.385 km
Outline	Plan	New Construction	Improvement of Jalan Bagan Ajam	New Construction and Improvement of Jalan Bagan Ajam
•	Land Use	Seashore Area for Open Space and Recreation	Developed Area for Residence and Com- merce	Developed Area for Residence and Com- merce
ទ្ធិដ	Construction Condition Traffic Flow Network	Easy	Easy	Easy
555	Traffic Flow	Smooth	Not Smooth	Comparatively smooth
₽.	Network Pattern	Alternative of Federal Route 1	No Alternative of Federal Route 1	Partial Alternative of Federal Route 1
ental	Disruption of Community	Small	Anticipated	Not significant, but anticipated
Socio-Environmental Aspect	Impacts on Existing Urban Facility	Insignificant	Many shops and houses are affected	Some houses are affected
Socio [®]	Impacts on Urban Environment	Park and Open Space along seashore area are affected	Anticipated	Anticipated
8	Construction Cost	M\$30,751,000	M\$19,362,000	M\$22,183,000
struction	Land Acquisition & Compensation	M\$ 8,135,000	N!\$44,824,000	M\$15,947,000
Ş	Total	M\$38,886,000	M\$64,186,000	M\$38,139,000

3) n-+F, G

a. 経商页

建設費用はルートF 16.239,000 M \$、 ルートG 1 1,7 4 8,00 0 M \$ 、である。 ルートG は、ルートドより閉らかに工事費が安い。

· b. 技術面

600mm(24")、1350mm(54")の水道管がスンガイ・ドウア通りの再倒に

埋設されている。ルートドを建設する場合には、600mm の水道管の移設が必要となろう。

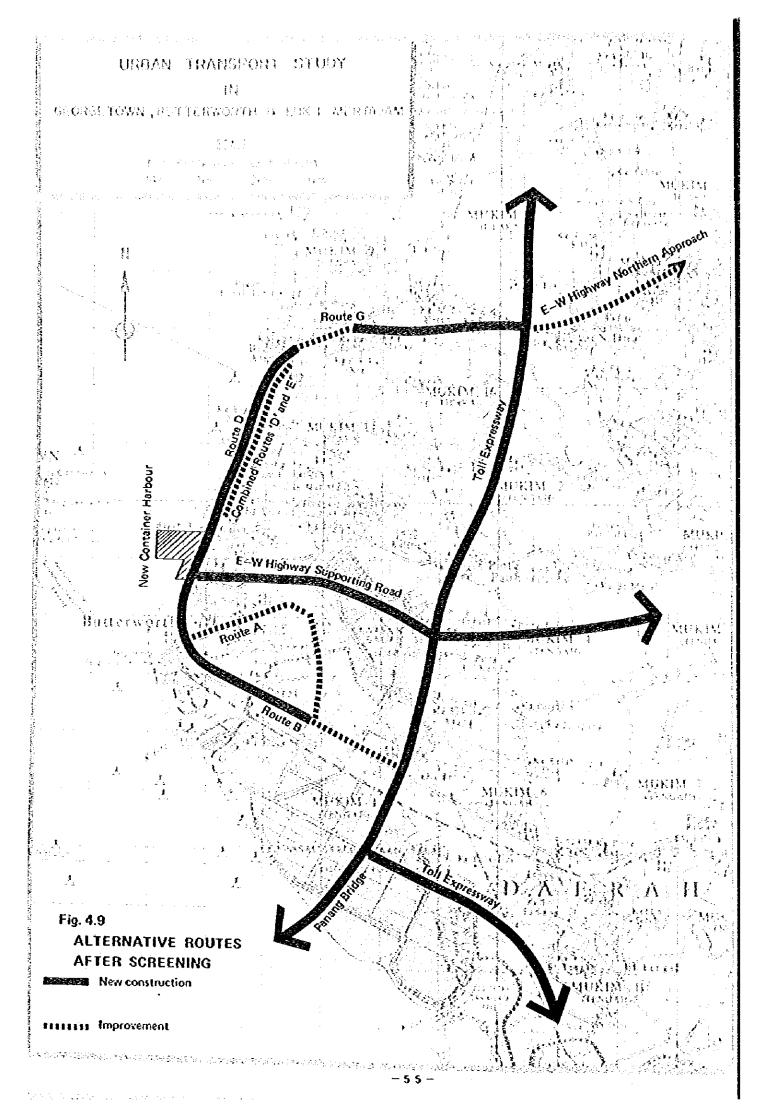
プユ町のスンガイ通り沿道には少住居が並んでいるが、ルート G 沿道には殆どないよって、ルートドの用地取得は、ルート G より困難であろう。

c. 環境面

環境面からすると、ルートドが現在の地域社会の中心を通るため地域分断のおそれがある。しかし、ルートGはココナツブランテーションと水田を抜けるため、ルートGの方がルートドよりやや良好である。

C-D区間の比較路線の検討を表44に示す。

Table 4.4 COMPARISON OF ALTERNATIVE ROUTE (C-D SECTION)


	Items	Route 'F'	Route 'G'	
Outline	Length	4.450 km	4,350 km	
	Pian	Improvement of Jalan Sungai Dua	New Construction	
O	Land Use	Kampong Area	Agricultural Area for Padi and Coconut	
Aspect	Construction Condition	2 Water pipes (24 inches and 54 inches) are affected	Easy	
	Traffic Flow	Smooth	Smooth	
	Network Pattern	_		
ğ	Disruption of Community	Anticipated	Small	
*	Impacts on Existing Urban Facility	Small houses in Kampong Area are affected	Insignificant	
Ė	Impacts on Urban Environment	Anticipated	Small	
	Construction Cost	M\$10,806,000	M\$8,883,000	
8	Construction Cost Land Acquisition & Compensation Total	M\$ 5,433,000	M\$2,865,000	
	Total	M\$16,239,000	M\$11,748,000	

(3) 検討結果

上記の検討より、以下の結論が導れる。

a. ルートBが他のルートよりベターである。しかしながら、ルートAの建設費用が他のルートより明らかに低いのでルートAの経済評価を待つ必要がある。ルートCは最高額であるが、他のルートに比べ便益の発生が最大であると考えられる。 従ってこれら3比較路線の選択は経済評価をまつ必要がある。

- b. 建設費用および環境面の検討より、ルートBは明らかに劣位である。他のルートについては、ルートDとルートD、Eの中間案の建設費用の差は 0.7 百万マレイシアドル(ルートDの方が中間案より高い)であるが、ルートDの社会的、環境的問題はより少くかつ、それ自身が国道一号線の迂回ルートとなり得る。上記を考えると、ルートDが中間案よりはすぐれているが、どちらを選択するかは、後の経済評価の結果によるべきである。
- c. 工事費用も環境問題も少く、かつ600m 水道管の移設の必要もないのでルートGが選択される。
- 図 4.9 に、第7章の経済評価で更に検討され選択される比較路線を示す。

4.6 プライ河比較橋梁調査

4.6.1 概 要

現地路査、設計基準、路線案にもとずいた橋栗比較案の検討をこの項で行う。いくつかのルートの中で、ルートAの橋は現在の橋と同規模で船舶に対し同じ余裕高であるのでこの項では検討しない。

ルートBとCについてプライ河橋梁の比較案を作成した。

4.6.2 プライ河の比較構造物

ルートBとCのプライ河横断橋計画の境界条件は航行船舶に対する余裕寫である。

- a. 余裕高 25.0 m
- b. " 16.0 m
- c. " 3.5 m

この境界条件によれば、横断の種類は以下のようになる。

- a. 僑 祭
- b. トンネル

橋梁としては、以下のいずれかの橋梁種類となる。

- a. 固定権
- b. 可勤擾

表4.5 に上記橋梁種類の比較案につき褒約する。

Table 4.5 ALTERNATIVE STRUCTURE PLANS

Structure Navigation Type and Compensation Need	Fixed	Movable
Free passage for all ships and no specific compen- sation need	High Level Bridge (1) High Level Bridge (2) Underwater Tunnel	Medium Level Bridge Law Level Bridge
Limit passage of some or most of ships and compen- sation is necessary for the Hong Leong-Shipyard and the PPC Dockyard	Medium Level Bridge Low Level Bridge	

Note: a. High level bridge refers to bridge with a clearance height of 25 meters

- b. Medium level bridge refers to bridge with a clearance height of 16 meters
- c. Low level bridge refers to bridge with a clearance height of 3.5 meters

上に述べた比較案にもとづき、ルートB、Cの検索の基本設計図を作成した。表4.6 に示す。

4.6.3 比較構造物の選択

比較案を夫々の観点から検討した。表4.7に比較を示す。

表 4.7より以下の結論が導かれる。

- a. 計画道路の性格(4.1 に述べてある)の観点からすると、固定機が可動構よりすぐれている。
- b. トンネル案は、建設工事費と維持管理費用の多大さの故に、案としてとの段 階で削除する。
- c. 最小費用の観点から、高高架橋(タイプ2)および中高架橋が選択される。

Table 4.6 SUMMARY OF ALTERNATIVE PLANS

Longstudinal Profile of Structure	TO THE MOUNDANDUT TO THE PARTY	Non-to-sove Company of the Company o						WEST TO SECOND THE SEC	TOWNSON THE PROPERTY OF THE PR	
Compressention Need	No Need	No Need	No Need	No Need	Need fur Hong Labory-Lunsen Shipyand	Need for Hong Leong-Luneen Shipyard and Regan Delam Dookyard	No Need	No Need	No Need	Need for Hong Leong-Lutuen Nhipyard
Newletton	Name to Existing fendpe	8	S		26 - 1 - 1 - 2 - 1 - 2 - 2 - 2 - 2 - 2 - 2	8	OK	x	8	
Alterheteva Plan		M. Special Control of the Control of	A Spirit	Under Water Tunnel	Medium (com)	NAT S-H	Medium Lavei Hardge (Acvebie)	Law Lavel Israge (Movable)	Co. Level	Medum Level C-2 Treidge
	Kassil	Ž.	2	4 <u>4</u>	8 200.8	1	l <u>3</u>	i _)201

Table 4.7 COMPARISON OF ALTERNATIVE STRUCTURE PLANS

.		Uternative Plans	Construction Cost (M\$'000)	Shifting of Shipyard	Other Viewpoints
	8-1	High Level Bridge (1)	51,681	Not necessary to shift shipyards	-
	82	High Level Bridge (2)	40,839	do	
	8-3	Underwater Tunneł	128,036	do	Technically possible, but rather hard to construct
					Maintenance and operating costs of tunnel are required
	B-4	Medium Level Bridge	45,660	Shifting of Hong Leong Shipyard is necessary	- .
Route 'B'	B-5	Low Level Bridge	52,656	Shifting of both H.L. and PPC Dockyard is necessary	
	8-6	Medium Level Bridge (Movable)	38,917	Not necessary to shift Shipyards	Necessity to control traffic on the bridge while the ship is passing through the bridge Maintenance and operating costs of bridge are additionally required
	8-7	Low Level Bridge (Movable)	33,078	-do-	do
0 20 20 20 20 20 20 20 20 20 20 20 20 20	C-1	High Level Bridge	51,717	-đo-	
ğ	C-2	Medium Level Bridge	52,867	Shifting of Hong Leong Shipyard is necessary	-

Note: Construction Costs are the total costs of the Prai Roundabout Fly-over Bridge, the structures for the Prai River and the Chain Ferry Fly-over Bridge, and also includes the compensation costs for the shipyards.

4.7 椒络設計

4.7.1 概 要

計画道路の設計は、地形図を用い、選択された比較案について行う。 各々の設計の稿尺は以下に示す。

Table 4.8 SCALE USED IN THE DESIGN OF THE PROJECT ROAD

Items		Scale		Remarks
	Plan	1 :	3,000	Topographical Mag
Road Design	Profile	H=1 : V=1 :	3,000 500	
	Cross-Section	1:	200	
Typical Co	ross-Section	1:	100	
Intersection	on Design	1:	500	
Bridge De	sign	1:	500	Survey Map

設計に用いた 1/3000 の地形図は、特足別量を行って 4 chain:1 inchの図面を拡大した。

4.7.2 線 形

(1) 平面線形

- a. 路線選定を行い、1/3000 均形図を用いて平面線形を計画した。
- b. 現道改良部の線形は、類ね、現道に合せる。また一部曲線半径の小さい箇所は 幾何構造に達合するよう改良した。
- c. プライ河換架区間は、長往間橋梁が計画されるため、工費を軽減すべく、直線 一とした。

(2) 採斯線形

- a、 校断勾配の限界長を考慮してプライ阿榛菜の最急勾配は 4%とした。
- b. 排水の関係から、最緩勾配を 0.3%とした。しかし、現道改良部の一部と海岸 部は 0%を用いた。この場合は、水路に勾配を付し、排水可能とした。
- c. 建設限界高では 4.75 mとした。
- d. 現道改良器の計画高は、オーバーレを考えて現道より10mから20m高とした。
- e. 海岸部の計画高は、工費及び波高の検討結果から設定した。

1. ルートGのヤツ林及び水田地帯通過部の計画高は、地下水の影響を考慮して、 現地盤より1mの高さとした。

4.2.3 横新構成

(1) 横新計画方針

1) 適用基準

基本的に「A Guide to Typical Standards Used in Highway Design Unit JKR/J(Rb) 005/80」に従い、交通条件、用途地域、環境、経済面に留意し、標準横新図を計画した。

2) 車線数

交通量配分結果及び、交通容量を基に車線数が決定される。交通容量は図 4.9 に示す。

Number of Capacity Level of Design Capacity Item Lane (P.C.U./day) Service (P.C.U./day) 4-lane 72,800 0.75 54,600 **Highway Section** 6-lane 109,200 0.75 81,900

Table 4.9 DESIGN CAPACITY

Note:

The level of service for the Project Road is employed as level IV.

3) 車線市員

以下の理由から1車線の巾員3.75 mとした。

- a. 計画道路は、高速有料道路や、東西ハイウエイと接続する。これらの車線巾 員は375 mであり、これらと整合させるべきである。
- b. 計画道の性格上、貨物自動車の交通が多く見込まれ、この点からも、広い車 線申員が必要とされる。

4) 中央 常

中央帯は、中央分離帯と、右側路角で構成される。中央帯市は、良好な環境を 形成するため種樹が可能な様に 4.5 mとした。

5) 路 扇 由

路層は道路に接して設ける。緊急時に停車を必要とする車浜に対処するために、 又、路層は結装の基礎及び表層の保護の機能も持つ。J.K.R.設計基準によると、 グループ 0 4、 0 5 の路層巾員は 2 5 mもしくは 3 0 mと設定されている。しか し本調査では 2 0 mとした。用地巾を減少させることにより、工事費を減少する ことが出来る。この路層内で自動二輪や自転車等の軽車両の走行、停車が可能で ある。

6) サービス道路市員

基本的には、計画道路に沿ってサービスロードが計画される。

サービス道路の市員は、最低、往復交通の場合 6.0 m以上必要である。また 市街地であるため、歩道の設置も要求される。

1) バッファソーン(緩循帯)

計画道路に沿ってパッファソーンを設ける事が望ましく、環境調査を行い、必要な場所にパッファソーンを計画した。

8) 用 炮

車線放及び土地利用から用地巾を300m、400m、5850mの3タイプを計画 した。(表4.10参照)

(2) 横新計画

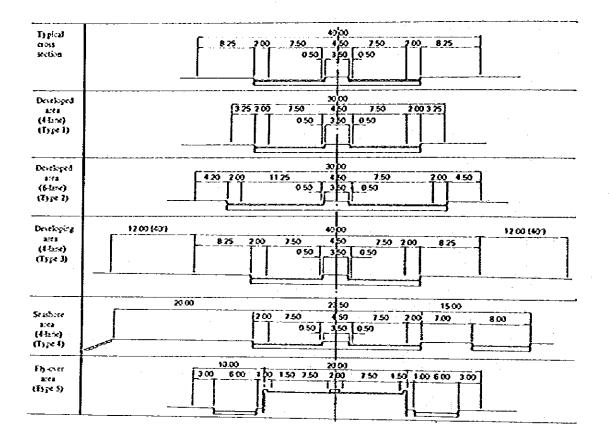
4.4章で述べた計画道路に適用する市員構成に基づき、表 4.10 に標準横断を設 定した。

計画道路の車線数の計画は、2つの比較寒を設定した。

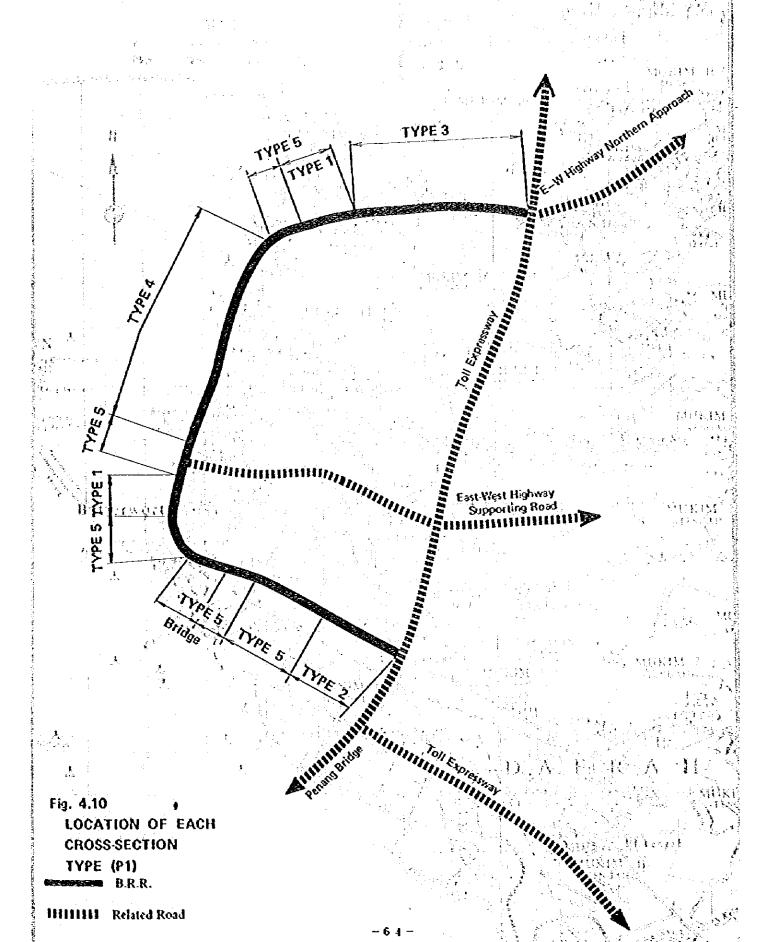
プラン1

6 車線:高速有料道路からブライの交差点区間~Prai Raundabout

4 車線:その他の区間


ブラン2

6車線:高速有料道路からバタワース新港区間


4 車線:その他の区間

図表

Table 4.10 TYPE OF CROSS-SECTION

GEORGE FOWN, HUA TERMS WHILL

4.7.4 交差点計画

(1) 概 要

計画道路は、都市内主要幹線道路であり、現況道路より高い走行速度とスムースな交通が確保されねばならない。

原則的に計画道路における交差の形式は交差する道路との関係から、表 4.11 k 示す様な基準を設定した。

intersection of At-grade intersection Grade. **Butterworth Ring** Remarks Non-signalized Separation Signalized Road to Inter-Urban Pri-Х mary Distributor 0 to Intra-Urban Pri-Х Х O mary Distributor to District Distri-Х butor О X to Local and X X Х access control Access Road to Approach Road Х 0 X

Table 4.11 TYPE OF INTERSECTION

Note: O - to establish intersections

X - not to establish intersections

(2) 交差点位置

図4.11 に交差点の位置と交差形式を示した。

立体交差点として、A、B、C、D及びHのS箇所また平面交差点としてE、F、G、I、及びJのS箇所が計画された。

(3) インターチェンジ

高速有料道路には、4箇所のインターチェンジがある。これをK、L、M及びN で示した。

これらは、Highuay Authority Malaysia によって、フルサービスインターチェンジとして計画されている。

(4) 交差点計画

方向別交通量(結積C参照)から以下の様に計画した。

1) A交差点(図411参照)

A交差点は、チェン・フェリー通りとの交差部であり、道路体系の面及び信号 交差点の現示計算検討から立体交差点とした。

2) B交差点

B 交差点は、現港への道路との交差部である。 現港への出入交通量の検討、信号現示の検討結果及びJKR,MPSP, PPC,などとの協議の結果立体交差点とした。

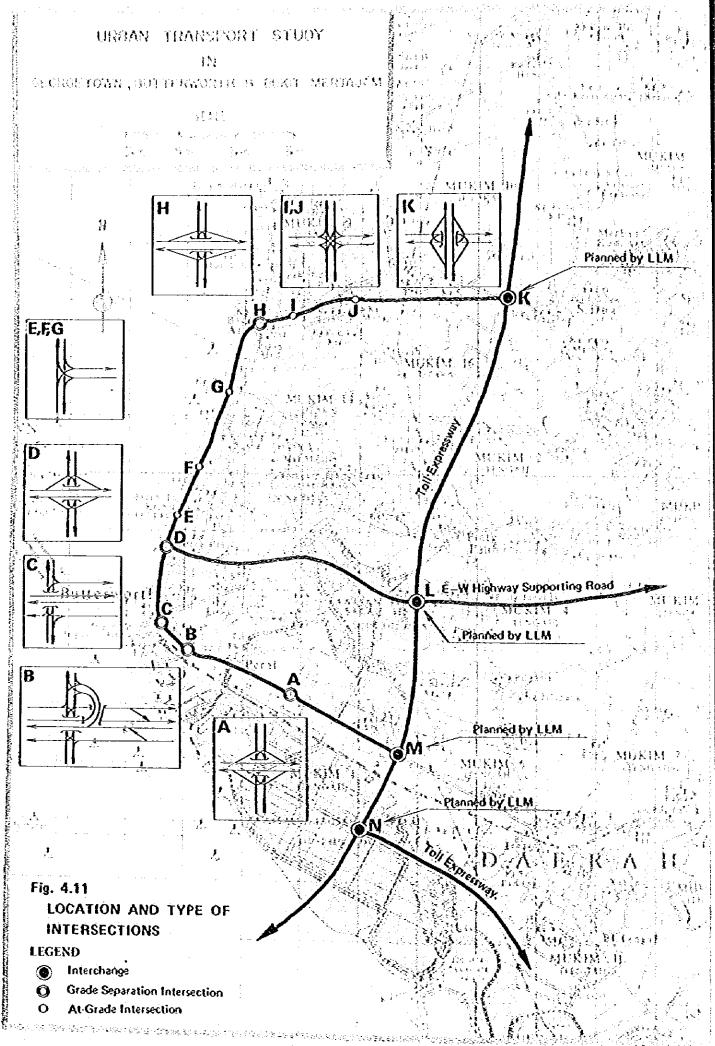
3) C交差点

C交差点はフェリーターミナル前の交差部である。

フェリー利用車の交通流の検討結果及びPPC , JKR , MPSP , など との協議をを行い立体交差点とした。

4) D交差点

D交差点は、東西ハイウエーとの交差部であり、双方とも、主要幹線道路である。


道路体系の面から及び信号現示の検討から立体交差点とした。

5) 且交差点

H交差点は、バガン・アジャム通りとの交差部であり、信号現示の検討から 立体交差点とした。

6) E、F、G、I、J交差点

とれの交差点は域内道路との交差部であり、交差点における交通量は多くは見 込まれない、信号現示の検討から平面交差点とした。

4.7.5 最大盛士高の検討

(1) 円弧すべり安全率の検討

橋梁主及び立体交差部のアプローチ部について、處主の円弧すべりの検討を行った。 土質条件は地質調査資料を用いた。円弧すべりの許容安全率は Fs = 1.2 とした。

地下水位はボーリング調査時の地下水位を用いた。算定結果を表4.12 に示す。

				<u> </u>
Examination — Site	BH-No.	Fill — height	Safety Factor	Check
Prai River	8H1	7.00	F=1.07 <fs=1.2< td=""><td>Out</td></fs=1.2<>	Out
·		6.00	F=1.29>Fs=1.2	Safe
Ferry Terminal	8H3	7.00	F=1.02 <fs=1.2< td=""><td>Out</td></fs=1.2<>	Out
		6.00	F=1.30>Fs=1.2	Safe
Bagan Ajam	BH-6	7.00	F=1.42>Fs=1.2	Safe

Table 4.12 CIRCULAR SLIP SAFETY FACTOR

円弧すべりの検討結果では、許容される盛土高さはプライ河部とフェリーターミナル付近では 6.00m 又パガン・アジャム付近では 7.00m となった。

(2) 花下量の検討

花下量の検討は20m、40m、60mの各盛土高について行なった。 結果を表 4 13 に示した。

Fill Depth (cm) Site BH-No. Height (m) SI **S2 S3 \$2** SI 15 50 6.00 50 60 15 Prai 4.00 36 BH-1 36 41 River 2.00 20 15 15 6.00 97 120 97 20 20 Ferry 35 4.00 35 66 BH-3 Terminal 12 2.00 12 20 7.00 22 70 80 70 22 6.00 59 72 59 Bagan 8H-6 Miam 34 4.00 34 51 29 2.00 18 18

Table 4.13 CONSOLIDATION SETTLEMENT

算定結果は、盤土高さ、6.0 m、4.0 m、2.0 mに対してその化下量は、7.0 cm 4.0 cm、2.0 cmとなった。

(3) 結 論

円弧すべりの検討結果からは、6.0 mの盛土高さは可能であるが、この場合、沈 下量は非常に大きく、120 mに達する。

この様な場合、花下を防ぐために、何らかの土質改良が必要である。

しかし、盛土高さを4.0 mとした場合、化下量は、わずかに4.0 m程度である。 8.0%化下の場合残留化下量は8 mとなり、道路建設時の許容範囲内であると思われる。

これらのことから、この調査では、根界盛土高さを 4.0 mと設定した。

4.7.6 護岸計画

(1) 凝 要

海岸部の護岸の構造としては大きく以下の3つの形式が考えられる。

- a. 傾斜型護岸
- b. 直立型 "
- c. 混成型 "

各々の構造形式について以下に述べる。

1) 預斜型護岸

傾斜型護岸は基礎巾が広いので、単位面積当りの荷重が小さくなるととから、 軟弱地盤に適している。

しかし、必要盛土材料が容易に得られ、基礎巾の十分にとれる場合に達している。このタイプは、 波圧にも安定しており、工費も比較的低い。

2) 直立型籌岸

直立型護岸は基礎巾が狭く、荷重が集中するので、支持力のある地盤に適している。

十分な用地のない場合最適である。

3) 混成型

退成量護岸は、傾斜型、直立型の双方の利点を生かして用いられ、時に水深の深い場合に適している。

(2) 該岸工

護岸工は下記の条件に基づき計画した。

1) 水理条件

2章で述べた様に、計画海域は比較的静穏である。

護岸は、彼の影響をさほどに受けず、従って、被覆石も大きいものは必要ない。 護岸の大部分は水深の視い部分に設けられ、干剤時の砕波点に位置することか ち、護岸基礎の洗抱を防止する必要がある。

2) 土質条件

お底は緩やかな傾斜を呈しており、(ほぼ水深は同じであり、沖合 5 0 0 m~
 1000m では土 0.3 m程度の差である。)大部分の地域の表層は粘層(C=
 25 1/m 層厚 1 0 m) である表層上の汚泥層は大体 0.5 mの厚さと考えられる。

3) 材 料

良質の花崗岩が山地部から産出される。

4) 約工の難易度

護岸の、大部分は海岸線よりやや水原の深い部分に計画され、基礎は水中約工 に有利なものを選択することが望ましい。

5) 工事 費

上記のように大量の建立材料は山地部より得られる。経済的観点からは、利用 可能な材料を最大限に利用する計画が望ましい。

(3) 提 案

現境の種々の条件より、護岸型式は、石張の類斜型が適している。

この構造は、軟弱層に対応でき、材料費の高いコンクリートの必要量が少なく、 経済的である。

又、図 4 13 に示す様に、護岸の緩やかな斜面は、地域住民に一種の海浜を提供することも出来る。

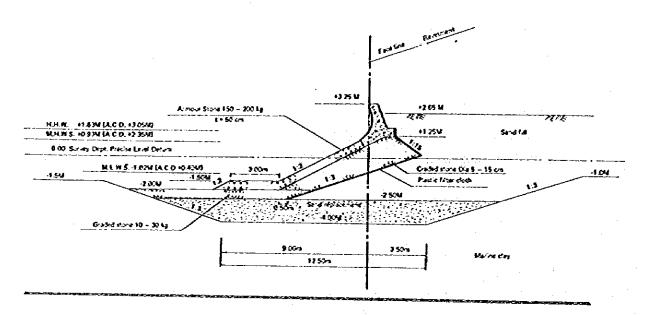
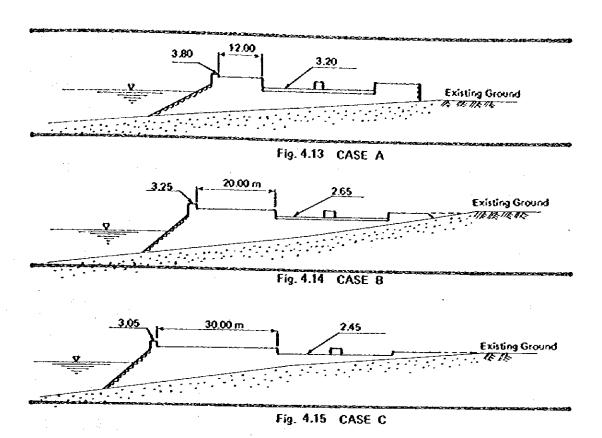


Fig. 4.12 REVETMENT OF COASTAL ROAD

4.7.7 海岸部の計画高の検討


(1) 权 要

横断形状及び路面計画高は、以下の事項を検討して決定した。

- a. 越波高さ及び越波量
- b,環境問題
- c. 工事費

(2) 比较案

上記の制約項目を考慮して、3種の比較案を作成した。それぞれ、ケースA、B、Cとした。(図413、414、415参照)

(3) 越波高さ及び越波量

3種の比較案に対して、越被高さを算定した。 詳細な計算はTechnical Report 02 "Hydrologicaj Study"に示した。 算定結果を表 4.14 に示す。

Table 4.14 CROWN ELEVATION

Case	Elevation (m)
Case A	3.8
Case B	3.25
Case C	3,05

(4) 環境問題

美観上道路計画高は現地盤よりも低い方が望ましい。高水位は、1.6 m、又現地 軽高さは28 m程度であることから、現地盤より計画高さを下げる事は難しい。

沿道のオープンスペースは広い方が良く、3つの比較案には、各々オープンスペースを設置し、散歩、魚釣り等に利用できる様に計画した。

(5) 工事 費(単位当り)

ケース、A、B、Cの単位距離当り工費は各々M\$3,000、M\$2,800、M\$ 2,830 程度であり、ケースBが最も低い。

(6) 結 論

3つの比較案は技術的には問題がないが、ここではケースBを選択した。 ケースBは工費が最も低く、しかも、環境的にも比較的良好である。 従って、海岸部では道路計画高を265m と設定し、オープンスペースの巾を 200m 程保した。

4.7.8 結裝計画

(1) 誘装種別

一般的に、アスファルトコンクリート舗装とセメントコンクリート舗装の2通りがある。

計画道路の舗装として、以下の理由からアスファルトコンクリートを採用した。

1) 低工費

セメントコンクリート舗装化必要な砂の供給は比較的繋かしい。その上、砂は 購入費が高く、アスファルトコンクリートに比べてセメントコンクリートの工費 ば高くなる。

例えば、アスファルトコンクリートとセメントコンクリートの単位面積当りの 工費の比率は、31.7:465となる。

Table 4.15 COMPARISON OF CONSTRUCTION COST BETWEEN CEMENT CONCRETE PAVEMENT AND ASPHALT CONCRETE PAVEMENT

Type of	Cement	Concrete Par	rement	Asphali	Concrete Pa	vement
Pavement Course	Quantity	Unit Cost	Cost	Quantity	Unit Cost	Cost
Surface Course	0.25m ³	M\$141.3	M\$35.3	0.10m ³	M\$205.8	M\$20.58
Base Course	0.20m³	M\$28.0	M\$7.0	0.25m ³	M\$27.6	M\$6.9
Sub-Base Course	0.20m³	M\$20.8	M\$4.2	0.20m ³	M\$20.8	M\$4.2
Total			M\$46.5			M\$31.68

2) 材料の入手の容易さ

アスファルトコンクリート舗装の路盤材は、ペナン島 O.R.R.の現場から入手できるが、砂の入手は非常に困難である。

セメントコンクリート舗装は、アスファルトコンクリート舗装に比べて、単位 面積当りの必要砂量が多く、前者は砂の供給の面で問題がある。

さらに、セメントコンクリート舗装は、配筋する必要がある。マレイシアでは 鉄筋の材料が不足気味であり、賃格も高い。これらの事からアスファルトコンク リート舗装が有利である。

3) 技 街 力

マレイシアでは、アスファルトコンクリート舗装は、相当以前より用いられて おり技術的に高い水準にあり問題はない。

4) 維持の容易性

都市部では、水道、下水、道路約設等の修繕や敷設がしばしば行われ、アスファルトコンクリートはその思り起こし、及び被覆が容易である。アスファルトコンクリート誘装は、表層の維持修繕も容易である。

(2) 鋳装の設計

1) 設計条件

- a. 地質調査から路床のC.B.R値はおよそ、50%である。
- b. 交通量調査から、トラック、バス等の大型車混入率は約10%である。
- c. 2000年における最大日交通量は乗用車換算台数で54000台/日である (プライ通り)
- d. アスファルトコンクリート誘装の寿命は20年道度とする。
- e. 各層の計画厚さを図 4.17 に示す。

2) 結装の新面構成

以下の様な新面相成とした(図4.16参照)

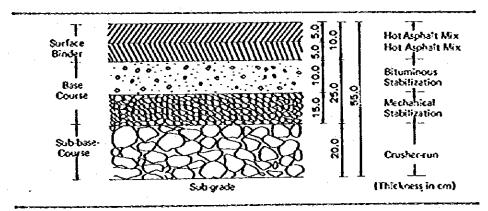


Fig. 4.16 CROSS-SECTION OF PAVEMENT

(3) 層厚の検討

1) 各層厚を図4.17に示した。

Surface	(1.0)	8
Binder	(1.0)	§]
Bitumen Stabilized Course	(8,0)	10.0
Mechanically Stabi- lized Course	(0.35)	35.
Crusher-run	(0.25)	8

Fig. 4.17 THE THICKNESS OF EACH COURSE (CM)

2) 道路の交通量区分

目標年次における最大日交通量は 54.000 P.C.U/日、大型車混入率は 1 0%と予測されている。

従って、一方向の大型車交通量は、2,700V/D(54,000×0.5×0.10)となり、これは、クラスCに区分される。

3) TA、及びHの厚さ

Road Enginering Standards では、図 4.17 に示した舗装設計におけるTA及びHの値は

TA =
$$5.0 \times 1.0 + 5.0 \times 1.0 + 10.0 \times 0.8 + 15.0 \times 0.35$$

+ $20.0 \times 0.25 = 28.25 c_R > 28.0 c_R \cdots (1)$
H = $55.0 c_R > 47.0 c_R \cdots (2)$

路床C、B、Rが5% (Technicl Report Al Geolechnicl Study 参照)の クラスCのTA及びHの厚さは各々280cm、47.0cmとなっている。

上記の計算結果から、目標年次とおける、最大交通量に対して適切であると利 新される。

4.8 穩限予備設計

4.8.1 上部構造の検討

- (1) 主要任間上記構造
 - 1) 比較構造形式

プライ河橋梁として、次の諸形式が考えられる。

- a銷售
- b プレストレスコンクリート権
- c 鉄筋コンクリート橋

これら3つの構造形式の中で、領籍又は、プレストレスコンクリート橋は、プライ河橋架として達している。鉄筋コンクリート橋は、短径間様化のみ使用される。 網権及びプレストレスコンクリート橋の中では、広い航路径間に対応するもの として、次にあげる構造形式を比較案とする。(表416参照)

Table 4.16 ALTERNATIVE STRUCTURE TYPES OF MAIN SPAN

Navigation Span Length	Structure Type			
40 m	(1) Posttensioned Concrete T—Shaped Girder			
70 m	(2) Posttensioned Concrete Box Girder (Cantilever girder erection)			
70111	(3) Steel Arch (Langer Girder)			
100–120m	(4) . Posttensioned Concrete Box Girder (Cantilever girder erection)			
100-12011	(5) Steel Arch (Tied Arch)			
140-160m	(6) Posttensioned Concrete Box Girder (Cantilever girder erection)			
140-100M	(7) Cable Stayed Concrete Girder			

2) 構造形式の比較検討

比較案は次の観点から評価する。

- a 建設貨
- b 拖工性
- c 維持管理
- d美観
- e 走行性

各構造形式の比較検討結果を表も17および418に示す。

3) 検討結果

比較検討の結果から次の結論が得られる。

- a 建設費の低減化と云う観点からは、比較案のうちで、ポストテンションの下型コンクリート桁橋が最も安価なものであり、それに次ぐものは、中央径間70 nのポストテンションの箱型コンクリート桁橋である。
- b 施工性は、プライ河の中の橋脚の数を減らすことが出来ること及び工事期間 を短く出来ることなどから、鋼橋が他よりも優れている。しかし、現地建設業 者の施工能力を考慮するとき、コンクリート橋の方がより適当であると思われる。
- c 維持管理の観点からは、コンクリート橋の方が剝僑より明らかに優れている。
- d 美観は、中央発聞140mのプレストレスト箱型桁橋と鋼製タイドアーチ橋 が他よりも優れている。

比較検討の結果、比較的安価に建設出来ること及び他の点でも問題が少いととから、70mの中央往間を有するポストテンション式の箱型コンクリート桁橋が 提案された。

Table 4,17 COMPARISON OF ALTERNATIVE STRUCTURE TYPES (1)

		C my (wy)	(might)
MAT.		TOTALCONT	(302.500)
ALTERNATIVES	PROPILE	Meh Lemi	Medium Level
		2,002	1,869
Tobales Carles Tobales Carles		20,634 (15,641)	17,426 (9,504)
	30 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	(15.64)	(2)(2) (2)(2)(2)
Proglematored Consense	2	30,747 (988,039)	18,033 (10,171)
	0) (0) (0) (0) (0) (0) (0) (0) (0) (0) ((620°E)	2,913 (1,964)
3, New Langer Grider	X X	03.1.15 (72%.01)	19,082 (A91,11)
	00 00 00 00 00 00 00 00 00 00 00 00 00	8,47,2 (5,48,1)	2,001
A. Hox Cirden	2 00	33,403 (17,574)	20,43H (31,041)
1	09 001	3,572 (2,643)	3,453 (2,429)
100 V DAG V COL		32,435 (18,460)	20.677 (20%21)
The state of the s	(b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	7,155	3,104 (1,239)
Postensoned Condess has Grider	90	34,043 (20,875)	\$6,056 (*4,178)
Cuba Stayed	00	5,000,0 (0,000)	3,515 (2,108)
	2	41,10m (22,402)	26,442

Table 4,18 COMPARISON OF ALTERNATIVE STRUCTURE TYPES (2)

ltem	3	Engineering Considerations	ons	
Alternatives	Construction	Maintenance	Aesthetics	Driving Comfort
1, Posttensioned Concrete T—Shaped Girder	 Mass production of main girder is possible Machinery for erection of girder is of relatively small scale and widely used for other projects. Largest number of piers in the river. Construction period is relatively short. 	• Almost free	Profile is monotonous and is not impressive	Expansion joint that is set at each pier a discomfort for motorist
2. Posttensioned Concrete Box Girder	 Machinery for erection of girder is of relatively small scale which cannot be used for other projects. Relatively large number of piers in the river. Construction period is relatively long. 	Almost free	 Profile is a relatively flat arch that gives a neat appearance 	No special problems
3. Steel Langer Girdor	Erection of main bridge is easy and operated in short period	Re-painting necessity once in every five to seven years.	Arch has a light accent but is not impressive	This type causes a light vibration to motorist
4. Posttensioned Concrete Box Girder	This type is given a medium evaluation between Alternative 2 and 6	- Almost free	Same as in Alternative 2	No special problems
5. Steel Tied Arch	 Using barges, main bridge can be erected easily and in short period Relatively small number of piers in the river 	- Re-painting necessity once in every five to seven years	Arch presents a forceful and dynamic outlook Diagonal rope hangers give a modern appearance	• No special problems
6. Posttensioned Concrete Box Girder	 Machinery for erection of girder is of relatively large scale, and cannot be used for other projects Construction of foundation is relatively easy Construction period is long 	- Almost free	 Flat arch through the river gives a graceful and strong appearance 	No special problems
7. Cable Stayed Concrete Girder	 High technical necessity for construction Construction of foundation is relatively easy Construction period is long 	- Almost free	This type is of too strong design to with the surroundings	Diagonal cables obstruct the view of the motorist

(2) 取付部及び高架部の上部構造

取付部の最も経済的な径間長さを次める為に、20 mから50 mの範囲の径間長について、検討が加えられた。

構造形式としては、次のような各形式が適用可能である。

- a プリテンションの桁橋
- b ポストテンションの欠あきスラブ
- c ポストテンションの工型指摘
- d ポストテンションの箱型桁橋

図4.1.8 転径間長さと、1平方m当りの建設費の関係を示した。これらの数字から ら、最も経済的な径間長は、3.0 mから3.5 mであると結論づけられた。それ故、 ポストテンションのコンクリート次あきスラブ機が取付部の上部構造として提案された。

4.8.2 下部構造の検討

(1) 基礎整式の選定

構造物の基礎は、古い神積層の下まで達しなければならないであろう。次の理由から抗構造が採用されねばならないだろう。

- a 基礎は、40mないし50mと比較的深いものとなるであろう。その場合、オープンケーソンやニューマティックケーソンを終すには、深すぎると思われる。
- b 杭打ちがなされる地盤のN-値は、最高25位である。基礎の基盤としての支持力は、必ずしも充分でないと思われるので、基礎にからる鉛直荷重は、杭の製 面摩擦抵抗に大きく依存することとなろう。
- c 一般に大きな底版を有し、その荷重の大部分を底部の地盤反力で受けるウェル あるいはケーソンは、その機能に於いて、杭よりも劣るであろう。

(2) 抗の形式

- 1) ディスプレイスメント杭
- 一般に、シュー又はプラグで先達を閉塞した打込杭がこれに相当する。 これら 打込杭は、次のような利点がある。
- a 建設の容易さ
- b 地盤の支持力のチェックが可能
- e 同一住化比較した時、他の型式の抗より大きい支持力が得られること。

- X Pretensioned Concrete Girder Bridge.
- Δ Positensioned Concrete Hollow Siab Bridge,
- D Posttensioned Concrete Girder Bridge,
- O Posttensioned Concrete Box Girder Bridge.

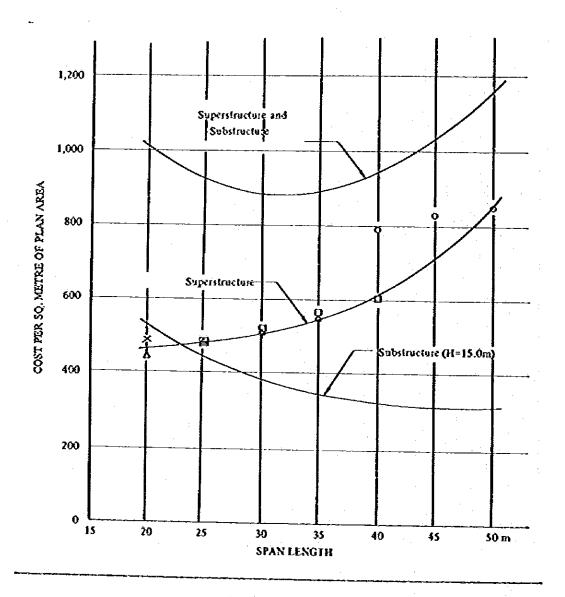


Fig. 4.18 GRAPH OF ECONOMIC SPAN LENGTH

との型式の主な短所は、工事中に生ずる大きな騒音と振動である。との型式には、プレカストフレストレストコンクリート杭、プレカスト鉄筋コンクリート杭、及び木杭がある。しかしながら、木杭は、近代的工事ではほとんど使われず一般的でない。又、プレストレストコンクリート杭は、普通の鉄筋コンクリート杭よりいくつかの利点を有している。取扱い時に生ずる応力に対しても小さい断面積で対応出来、その結果、経済的と云える。更に、小さい断面の為打込が容易となる。打込時の輪方向の内部応力波に対してもプレストレスの為にその低減が可能となる。軸方向のクラックの減少は、杭の耐久性を増加させる。

2) 半ディスプレイスメイト杭

との型式は、先端開放の鎖管杭及びスクリュー杭を含む。しかし、スクリュー 杭は、最近では一般的でない、と云うのは、鎖管杭やプレストレスト杭は、一般 により経済的で、且つ、より迅速に約工出来るからである。

頻管抗は、一般にシューを付けずに使用される。しかし、若しその杭が特別に 後しく打込まれるような場合、それらは鉛管の肉厚を増加させるために溶接で、 先端を特強することがある。

先端開放の鋼管抗は、先端閉塞の他の打込抗より貫入性能はすぐれている。しかし、これらは、地盤に対する特め固め効果の点では、他の型式にわずかではあるが劣っている。

3) 非ディスプレイスメント杭

これらは、現場打杭に対応する。これらは、ボーリング又は、他の方法で先ず 抱削される。据削孔は、ケーシング又は、チューブで保護され提削孔が充填され る時にそのまま残されたり、引き抜かれたりする。

一般に、との型式の抗は次の長所、短所を有する。

段所:

- a 80~600mの直往を有する大孔径杭とすることが可能
- b 予期せざる事態になった時、抗長の変更が容易
- c 工事中の騒音、振動をほとんどなくすことが可能

短所:

- a 地盤に対する特め固め効果は、打込杭に劣ること。
- b 同じ直任の抗で他の登式の抗と比較すると支持力が最も小さいこと。
- d (提前時の)混や混水を排除する道具が必要
- e 杭の効率を減少させるスライムの除去が旧盤

とれら現場打の抗は、一般に次の3つの施工方法によって実施される。

- a アースドリル
- b ペノト
- c リバースサーキュレーション

アースドリルは、この中で最も経済的と考えられるがこれは、このプロジェクトに於ける現場には適当でない。と云うのは、その規制能力が35mの深度までと思われるからである。

ベノトは、すべてケーシングを使用しつつ施工されるので、その規制孔の崩壊 は完全に予防されていると云う利点がある。

しかし、この方法は大きな舊工機械を必要とするので、河の中に於ける為工に は達していない。

リバースサーキュレーションは、ケーシングなしで約工されると云う利点を有するがとれば同時に約工管理の困難さをも意味する。

(3) 提 家

プレストレストコンクリート杭或いは先遠陽放の劉管杭の打込杭が次の理由から 提案される。

これらの型式は、現場打の抗型式化比べ為工が容易で且つ短時間での終工が可能 である。そして、より確実で大きな支持力を得ることが出来ると思われる。更化、 泥や泥水を除去するような問題もない。

プレカストプレストレストコンクリート杭が、次の理由により提案される。

- a) 頻管抗より経済的
- b) マレーシャで既に多量に製作されていて、網管より外貨を少ししか必要としない。
- c) 寮鮭の問題がほとんどない。

提案された基度型式が表4.19に示されている。

Table 4.19 RECOMMENDED FOUNDATION

DEPTII	LEGEND	TYPE OF	CONDITION		N-V	ALU	E		FO	UNDAT	IION		
(m)		SOIL	CONDITION	1(0 2	20 3	0 4	0	LAND PIER		WATI	ER PIE	R
EL-0.0	00-	Sand with Shell	Very Loose						EL=0.0				
5 —		Silty Clay	Very Soft							**************************************			
10 -	λx x	Silty Clay with Sand	Very Soft)EL= -9.	0
15 -	xx	Silty Clay	Soft										
	8,000	Sifty Sand	Loose	1									
20 -	J	Stry with	Médium to										
25	0.0	Gravel	Loose										
30	8			_	<u> </u>				P.C. Pile 4600 x 55m	į	1	P,C, Pile \$600 x 46m	-
	de Co	Sandy Clay		1					\$			Ş	
35		Sity Clay	Stiff	ļ '	<u> </u>		ļ		P.C. Pile			P.C. Pile	
40	g g	Sand with Gravel	Medium										
	8		\$						a a				
45		Silty Clay							Was a second				
50		Sand with Clay and Gravel	Medium		$\left \left\langle \right \right $								
55	88	7					}		The second secon				
60	8						1	_					
		Sindy City	Very Stiff to Hard							•			

4.9 環境の検討

4.9.1 調査目的

計画道路に因って引き起こされる環境的、社会的悪影響を極力抑えることがとの調査の目的である。

調査の主な目的は次の様である。

- a 環境指標や予備分析手法の確立
- b 環境保全の観点からの沿道環境の評価
- c 予想される環境阻害の緩和策の設計計画

4.9.2 環境指標、予備分析手法の設定

環境指標として以下に示するのとした。これらは、物理的指標と社会的、経済的指 標の2つに分けられる。

- 1) 物理的指標
 - a 生物、生態(植物、動物、水生動物)

 - c 水 型(排水、均下水、漠水)
 - d 気 象(気候、天候)
 - e 交通公害(騒音、大気汚染、振動、その他)
 - f 交通事故
 - g 建設時公害
- 2) 社会的、程済的指標
 - a 交通利用の使利度
 - b 土均利用度
 - c 人口配置
 - d 観光、娯楽
 - e 歷史的、文化的場所
 - f 移市景観
 - g 均域社会の結合
 - h 住民の移転
 - i 食工業生産
 - j 地 色
 - k 物 億

以下の時点について環境分析を行う。

- a プライ地域
- b パタリース南地域
- c バタワース北地域
- d スンガイドゥり地域
- e その他の調査地域 以下の時点について環境分析を行う。
- a 建設中
- b 供用開始後

上記の環境指標における、計画道路の予例される影響の予備分析を行い、環境指標と個々の地域からなる予例重要度マトリックスを得た。これを表420に示す。 この分析では、重要度を三段階に分類した。

予債分析の結果から、計画道によって、交通の利用便利度、土均利用度、都市景 観、均価などについて効果があり、一方、交通公害、建設時公害、均域結合、住民 移転、真業生産等に逆効果があるということがわかる。

49.3 効果

(1) 交通の利用度

現在、フェデラルルート1は、計談道路に沿っているが、車道の市員の狭い部分があり、効果的には機能していない。従って、計談道路によって、バクワースの道路 組体系の機能を高め、強化することが望まれる。

加えて、計画道路の建設によって、追埃の交通サービスが良くなり、掲市部の交通混雑を緩和する。

従って、旅行時間、費用の減少によって、計震道路沿線地域の交通利用の便利度 が改善される。

Table 4.20 MAGNITUDE MATRIX

	ļ <u>.</u>	l	Ourin	ig Constru	ction		1	, Al	ter Openli	13	
Category	Environmental Indicator	Prai	8 Worth South	B'worth North	Şungai Dua	Other Area	Prai	B worth South	B'worth North	Sungal Dua	Other
	Biology and ecology										
	Topography and geology										
hysical	Hydrography								:		
nys:co:	Meteorology										
	Traffic nuisance	-	•••••	::					. ; ; ; .		
	Traffic accident										
	Construction nuisance								umm		:
	Transport mobility and accessibility	· -									
	Land use potentiality										
l	Population distribution							21111111			
- [Tourism and recreation		-								
	Historical and cultural sites										
Social	Томпясаре	;:-::									
and cono-	Community Colsesion				Ì						
	People dis- pracement					1.				: 1	
	Shifting of Shipyards										
ļ	Agricultural Production				4		e este e elete				
	Industrial Production					·				<u> </u>	
	Land price	I									:
	Prices of commodities						en esti k				· · · ·

	Favourable effect	No change	Adverse effect
--	-------------------	-----------	----------------

(2) 土圪利用度

交遇利用の便利度の改善により、土地利用度を高め、又、交通利用の便利度に比例して土地の価値が増大すると一般的に言われている様に地価も高める。

(3) 都市景観

道路は、都市景観を形成する重要要因である。

計画道路によって、将来の多量の交通量を処理できるばかりでなく、快適な秩序 立った都市景観を形成する。加えて、海浜に沿ったオープンスペースはパクワース 住民に能動的、受動的娯楽の身近な場所となる。

(4) 地 值

先に述べた様に交通利用便利度の改善により、土地利用度を閉窿に高める場所の 好条件による需要が増加し、計画道路和線地域の土地価値が増加する。

4.9.4 環境改善策の評衡

(1) 生物的、生態的、水理的状態への影響

計画道の沿線地域は鼠に確立、開発された、もしくは開発途上の地域であるので、 地形地質的、生態的、気象的条件への特筆すべき影響はない。

(2) 交通公害

計画道路によって引き起こされる騒音、大気汚染、振動その他の被害によって、 周辺地域は恒常的に迷惑を被るであろう。

○手 段

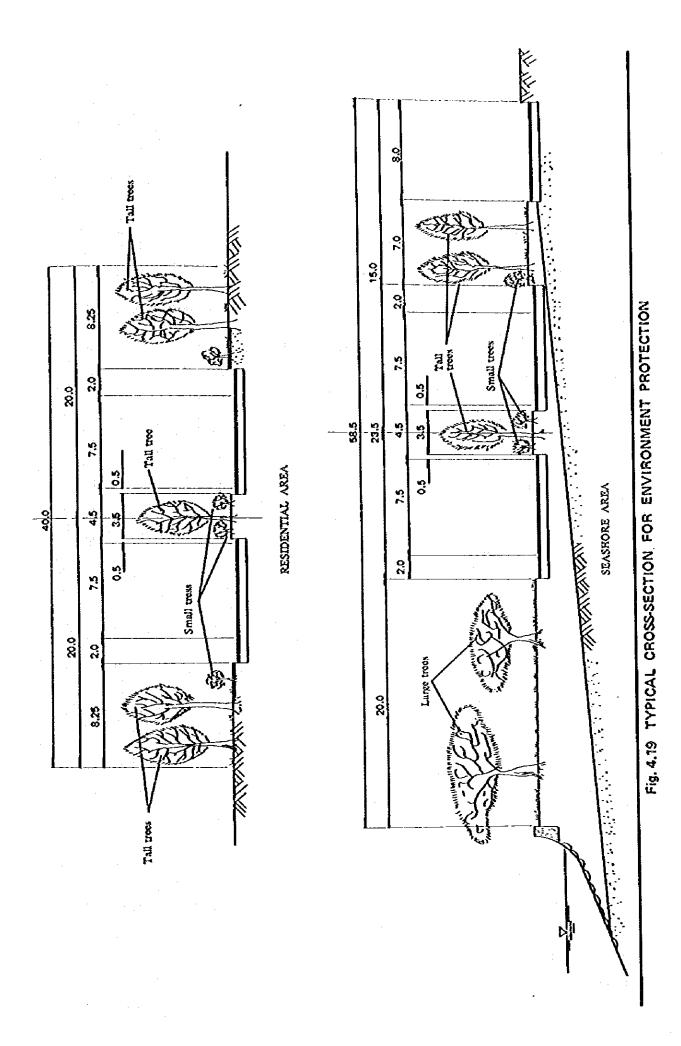
交通公害は、しばらくの間完全にはシャットアウトすることはできない。バッファソーンや植樹等の妥当な手段を特に住居地域や学校の近くには設けるべきである。 従って、標準横新構成の基本的要望として住居地域においては 8.2.5 m の歩道と3.5 m の中央分離帯を計画した。(図 4.1.9参照) この広いスペースにおいて交通騒音、汚染、まぶしさを低減する適当な植樹を確保できる。

(3) 建設時公害

周辺地域は、建設期間中建設活動に無りがちな不安定かつ異常な条件による騒音、 ガス、臭気、ほこり、よどれ等の被害を被る。

さらに、建設期間中現場に滞在せざるをえない出段ぎ労働者が現在のサービスや 施設を圧迫し、地域の公衆衛生を悪化させる。

○手 段


建設中の公害や迷惑は、適切な酱工管理、適切な建設機核や舊行方法の採用に より大幅に低減する事が出来る。

後者の問題に対して政府及び約工業者が幾同して必要なサービス乾設を提供しなければならない。

(4) 住民の移転

計画道路の用地取得にあたっては、計画線形にそった住民は移転せざるをえない。

移転世帯は適切な代替地又は相当の補償金により充分に補償される。 計画道路によって影響を受ける不法占居世帯は政府の再定住計画によって、よりよい機会と生活改善を与えられるであろう。

-90-

第6章 比較案への交通配分

5.1 极 要

5.1.1 配分方法

計画道路の比較案への交通配分手類は図5.1に示される。

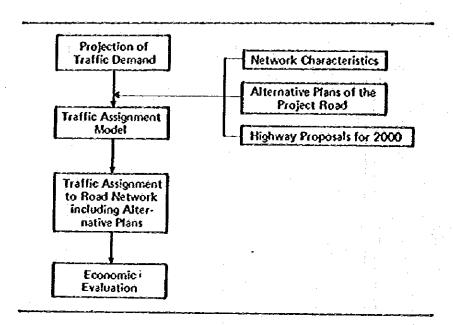


Fig. 5.1 PROCEDURE FOR TRAFFIC ASSIGNMENT

5.1.2 道路網

(1) 承認預計画案

主な承認済な道路計画は下記の通りである。

- a 有料道路(アロ・スター チャンカット・ジェリン道路)
- b ウエルスリー県とペナン島を結ぶ ペナン橋
- c 東西ハイウェイ
- d ブライ、バラージ取付道路

(2) 計画道路の比較案

技術的、経済的、環境評価からしぼられた比較楽は、図 5.2 K示す 6 案である。 以下にその構成ルートを記述する。

- a ルートI : ルートA、ルートDトE、ルートGを通る。
- b ルートII : ルートA、ルートD、ルートGを通る。
- c ルートIII : ルートB、ルートDとE、ルートGを通る。

d ルートIV : ルートB、ルートD、ルートGを通る

e ルートV : ルートC、ルートDとE、ルートGを通る

f ルートVI : ルートC、ルートD、ルートGを通る

(3) 道路網

との調査において、将来道路も考慮した道路網を設定した。

5.2 交通配分のモデル

- (1) 交通配分の交通量を計算するために、下記の交通配分モデルが使用された。
 - a 道路網の各リンク毎K交通配分するために、交通量と旅行時間の関連が確立された。この関連は、交通量が増加するとともK旅行時間も増加するという事である。また、交通量が交通容量を越えた時は、旅行時間は急渡に増加する。
 - b 0.Dペソーの交通量は、その道路を通る最少旅行時間式を採用して最少費用を 持って配分された。
 - c 交通量は始め、自動車とモーターサイクルに分類される。始め20多の交通量が配分対象となり、旅行時間が計算される。次にまた20多が配分され再度旅行時間が計算される。この様にして、何回も全交通量が配分し終るまで行われ、そして、最終旅行時間が計算される。

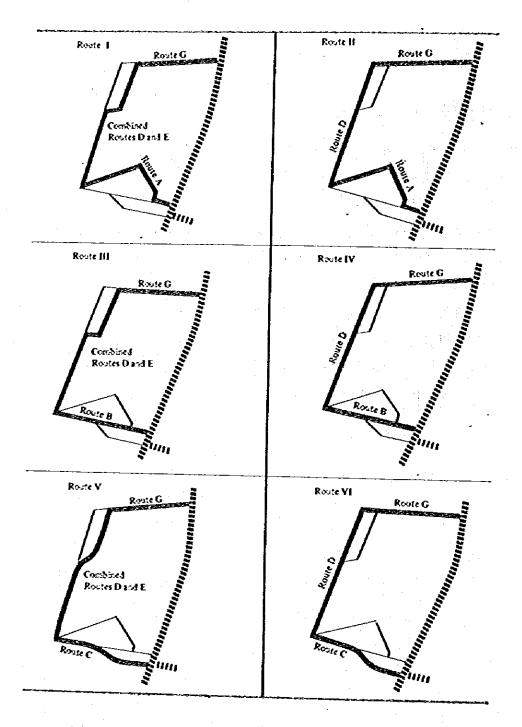


Fig. 5.2 ALTERNATIVE ROUTES FOR THE PROJECT ROAD

(2) 道路網のための資料

前述された道路網を基礎に、交通量を計算するために道路区分、Q-V曲線等が準備された。道路網の各リンクは表 5.1 化示す様に区分され、Q-V曲線は図-53 化示される。

Table 5.1 CLASSIFICATION OF ROAD TYPE

Class	Number of tane		2-lane		4-1	ene	6-lane
	Effective width of carriageway in feet	20′	22'	24'	44'	48'	72'
A	Urban Motorway	_		_		4-A	6-A
В	All purpose road with no standing vehicles permitted and negligible across traffic	28,	2-8,	28,	4-8,	4-8,	6-B
С	All purpose street with no restrictions at junctions	2-C,	2-C,	2-C.	4-C,	4-C,	
D	All purpose street restricted by junctions	2-D,	2-0,	2-D,	4-D ₁	4-0.	-

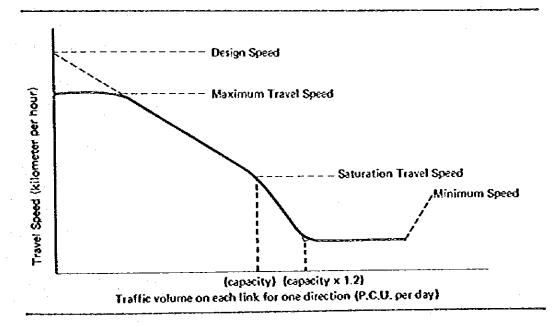


Fig. 5,3 Q-V FORMULA

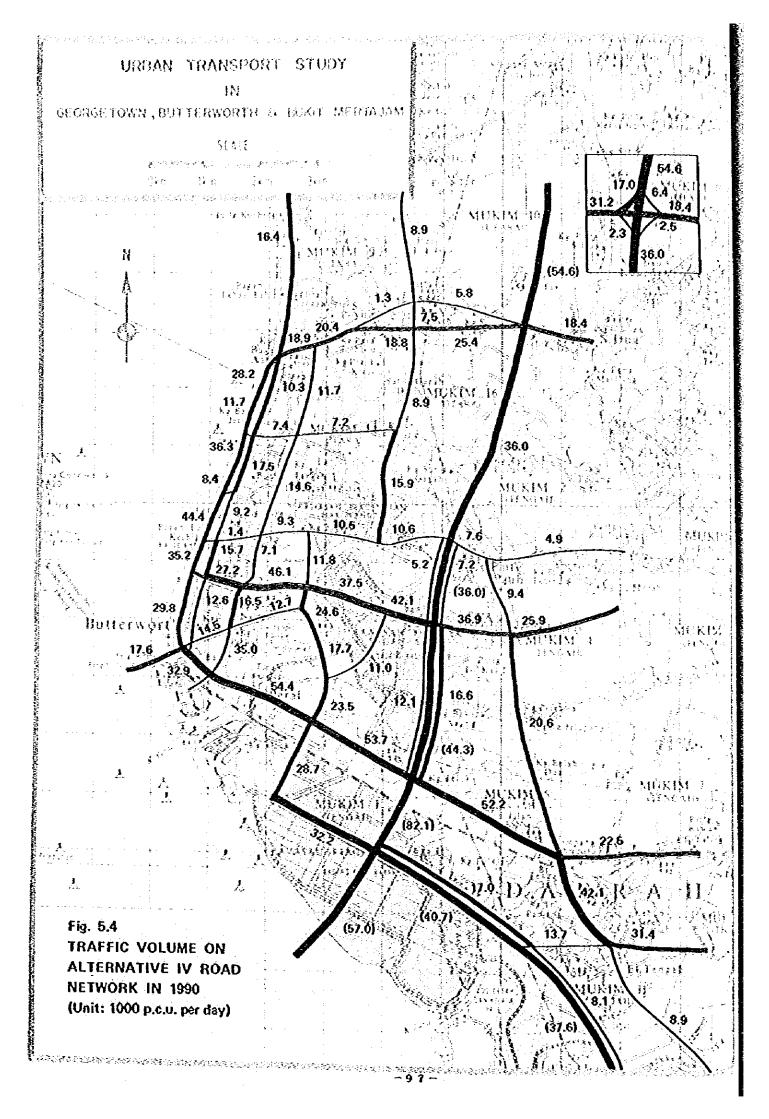
Table 5.2 TRAVEL SPEED AND CAPACITY BY ROAD TYPE

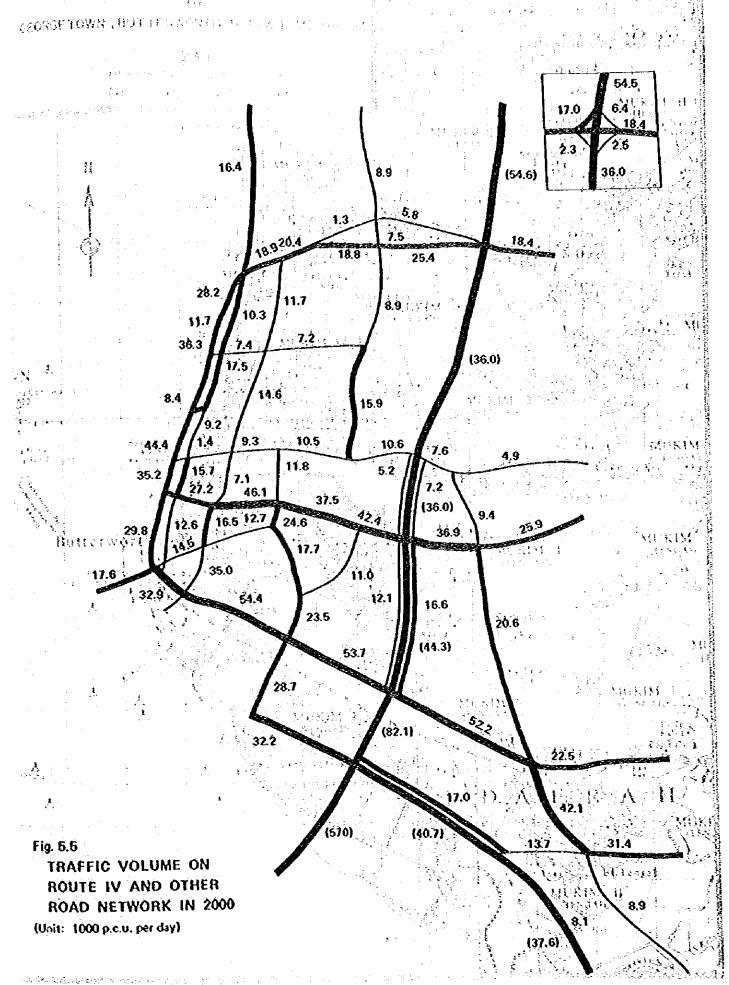
(Unit: kms/Hr.)

No. of Lane	Type of Road	Maximum Travel Speed	Saturation Travel Speed	Minimum Travel Speed	Travel Capacity/ day (P.C.U.)
6	6-A	60	20	10	81,000
	6-B	60	20	10	65,000
-	4-A,	50	15	7	55,900
	4-B,	50	15	· 7	45,000
	4-B,	50	15	7	40,900
4	4-C,	40	15	7	36,700
	4-C,	40	12	7	31,700
	4-D.	40	. 12	7	28,400
	4-D,	40	12	7	25,000
	2-B,	40	15	5	25,000
_	2-B,	40	15	5	22,500
	2-8,	35	12	5	20,100
	2-C,	40	15	5	20,100
2	2-C,	35	12	5	16,700
	2-С,	30	12	5	12,500
	2-D,	35	12	5	15,100
	2-D,	30	12	5	10,800
	2-0,	30	10	5	6,700

5.3 交通配分结果

5.31 計画道路上の交通量


ルートNについて、1990年及び2000年の日、キロメーター交通量は404,000P.C.U/は538,000P.C.U/はである。また、1990年、2000年の日交通量はそれぞれ92000P.C.U、136,000P.C.Uである。1990年から2000年の間の年平均停び率は4分である。(表53 5.4参照)


Table 5.3 DAILY TRAFFIC VOLUME ON THE PROJECT ROAD

Alternative Route	Year	Traffic Volume ('000 P.C.U.)	Vehicle Kilometer ('000 P.C.Ukms)
Route III with 4-lane and full access inter-	1990	95.9	381.2
change	2000	146.9	539.5
Route IV with 4-lane and full access inter-	1990	91.7	403.5
change	2000	135.7	538.4

図 5.4は、計画道路における日交通量である。との表から次の事が理解出来る。

- a 計画道路に配分された交通量は比較的大きい量を示している。特に、 2000 年 時点においてプライ州橋梁地点では 5 4,4 0 0 p.c.u/day を記録する。
- b 計画道路の南区間の交通量は北区間のそれより高い値を示している。

5.3.2 比較路線の対比

表 5.4 は比較路線の混雑度を示す。この混雑度から言えばルートIVは特にCBD について他の比較楽より優れている。

ルート【、Ⅱは明らかに他の比較楽よりも混雑度は高い。

Table 5.4 CONGESTION RATE BY ALTERNATIVE PLANS

				Alternation	e Route			Base
	Items	Route I	Route II	Route III	Route IV	Route V	Route VI	Case
	Road Capacity	526.9	526.9	539.6	539.6	639.6	539.6	398.1
C.8.D.	Congestion Rate	0.68	0.68	0.59	0.59	0.61	0.61	0.95
Area affect-	Road Capacity	1894.5	2011.6	1863.5	1980.6	1801.6	1918.7	1371.6
ed by the Project road	Congestion Rate	0.69	0.67	0.62	0.59	0.63	0.61	0.90
	Road Capacity	7533,3	7650,4	7602.4	7719.6	7543.9	7661.0	7010.5
Study Area	Congestion Rate	0,64	0.63	0.62	0.61	0.62	0.61	0.69

Note:

Concession Rate

Running vehicle-kilometers of traffic volume through the area excluding internal trips of the area

Total of traffic capacity of roads in the area including the B.R.R. (road lengths x road capacities)

5.3.3 計画道路のおよぼす影響

(1) 混雑度の減少と旅行速度の増加

計画道路を考慮した道路網と考慮しない場合の道路網との比較結果は、ルート 間及びIVの退緯度は計画道路を考慮しない道路網より減少し、また、旅行速度も同様に図5.6に示す様に改善された。

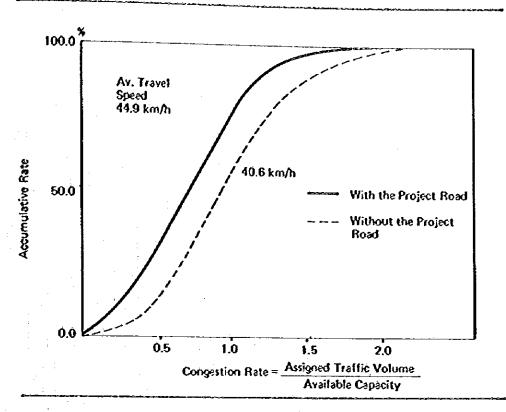


Fig. 5.6 DISTRIBUTION OF CONGESTION RATE ON ALL LINKS (YEAR 2000)

(2) 利用度の改善

計画道路の建設は、各ソーン間の利用度に対しても有効である。

利用度は、次に示す数式を使用し、計算される。その結果は図 5.7 に示される。

$$A := \sum_{j=1}^{n} (Pj \times tij) / \sum_{j=1}^{n} Pj$$

ととで Ai: ソーンiの利用度

Pj; ソーンjの人口

tij; ソーンiとゾーンjとの旅行時間

計画道路建設後、50ソーンの内23ソーンの利用度が良或は比較的良である。 全体の46分が改善される。

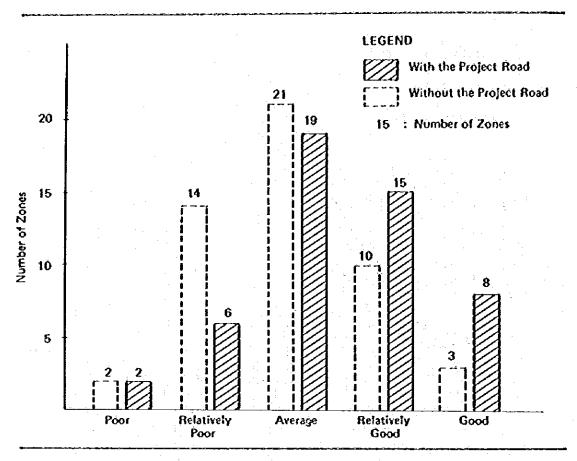


Fig. 5.7 DISTRIBUTION OF ACCESSIBILITY BY ROAD NETWORK

第6章 事業費の算出

6.1 数 要

事業費の算出は、1980年に行われたフェーズⅡ調査(ペナン島、環状道路調査) と同じ方法で計算された。また、同時に東西ハイウェイー、有料道路、ペナン橋梁等の 調査報告書も参考にして算出された。

事業費は1981年の価格である。

6.1.1 事業費算出方法

事業負貸出方法は下記の通りである。(図6.1参照)

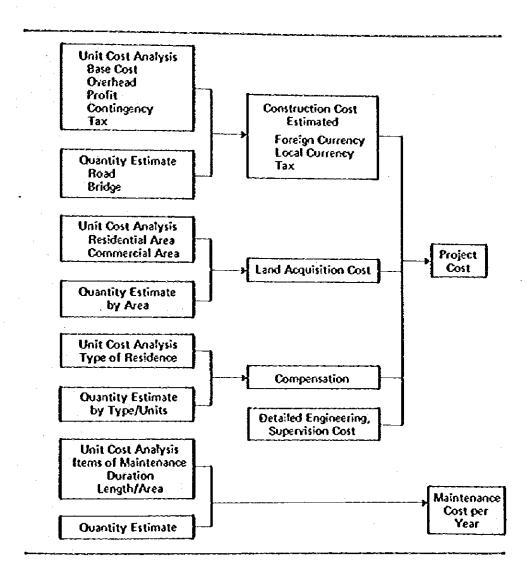


Fig. 6.1 PROCEDURE FOR COST ESTIMATION

6.1.2 事業費の構成

1) 条 件

事業費は次の条件で計算された。

- a 事業費はマレーシアドルで示される。
- b 1981年の価格を使用し積算する。
- e 事業費は外貨、内貨、税金の3種K区分される。
- 2) 直接工事費

直接工事費は下記のものから成り立つ。

- a 労働者の費用
- b 建設のための機核、材料費
- c その他必要な費用
- 3) 工事費

工事負は下記のものから成り立つ。

- a 直接工事費
- b 諸 経 費
- c 建設業者の利益
- る予 賃 費
- e (tě 金
- 4) 外 貨

外貨は、下記の項目である。

- a マレイシア国内で生産出来ない建設機械、材料費
- b 詳細設計、舊工管理のための外貨分費用
- 5) 内 貨

内貨は、下記の項目である。

- a マレイシア国内で生産されるセメント、土砂等の費用
- b 詳細設計、為工管理の一部費用
- c 労働者の費用及び運搬費
- d 用地費及び補債費
- 6) 用地費と結准費

用地費と特債費は下記のものが含まれる。

a 用 均 費

b補債費

一民家

一造粉所

とれらの費用は内貨分とされる。

7) その他の費用

事業費には下記のものも含まれる。

- a 詳細設計費用
- b 施工管理费用

6.2 建設單個分析

6.21 建設単値の構成

建設単価も内貨、外貨、税金の3種に別けられる。

内貨、外貨は直接工事費、諸経費、建設業者の利益、予債費から構成される。これ らの構成比率は表 6.1 に示される。

Table 6.1 PERCENTAGE OF COST COMPONENTS

ltem	Percentage (%)
Base Cost	100
Overheads	10
Profit of contractor	10
Contingency	5

6.22 人件化

収集された資料をもとに労働者の単価を設定した。その単価は表 6.2 に示される。

Table 6.2 LABOUR COST (In M\$ at 1981 prices)

	Items	Unit Cost per 8 hours day
1 G	enerat Labourer	20.0
2 C	oncrete Labourer	23.0
3 N	lason	22.0
4 N	lason's Labourer	20.0
5 C	arpenter	30.0
6 C	arpenter's Labourer	20.0
7 S	teel Bender and Fixer	23.0
8 P	neumatic Tool Operator	22.0
9 F	itter	35.0
10 W	elder	30,0
11 Pa	inter	23,0
12 T	ruck Driver	30.0
13 E	arth Moving Equipment Operator	35.0

6.23 建設材料資

材料費は、州JKR及び関連諸機関或は民間建設会社と充分協議し設定した。 主な材料費は、表 6.3 に示される。

6.2.4 建設機核費用

最近、マレイシア国では、種々のプラントの単価分析が行われている。

これらの資料に基づくと、計画道路に達すると思われる建設機械の内容は次の通りである。

- a 耐用年数-8年
- b 年間稼働率-2160時間
- c 金 和-8%
- d 年間の部品費-撥核購入費の5%
- e 相待、修理費 機核溝入費の5%
- 1 平均段影率-70%

		Table 6.3 COST LIST	OF MAJOR MAY	ERIALS In M\$ at 1981 prices)
	Material	Description	Unit	Market Cost
	Soil	Red Earth	m³	0.7
*	Sand	25 - 5	m³	20.9
		40 5	m³	20.9
		Granite dust	w ₃	12.0
	Crushed Stone	\$ 20	m³	30.1
4	SOURCE DANCE	d 40	m³	23.5
		ø 150 200	m³	17.0
		1:3:6	m³	141.3
*1	Concrete	1:2:4	m ³	182.0
to the light		1:1%:3	m ₃	234.0
	Cement	Poltland	50 kg.	9.3
	Asphalt	Grade (80 – 100)	Ť	491.8
•	Aspirat	Cut Back Bitumen	T	609.8
products		d 150	1.83 m	34.5
Sec. 3		હ 300	1.83 m	48.5
		d 450	1.52 m	70.0
	P.C Pile	\$ 600	1.52 m	98.5
	(class Y)	∮ 900	1.52 m	187.5
		d 1050	1.52 m	237.0
		d 1200	1.52 m	294.0
		d 1350	1,52 m	361.0
		d 1500	1.52 m	430.0
		49	t	924.0
	Steel Bar	6 13	t	988.0
· :		₫ 16 25	t i	829.0
		ø 32	t .	827.0
	Wood Pile	ৱ 100	4 m	98.0
÷		V Type		1,015
*	Steel Angle	Н Туре	. 1	1,403
		L Type	ŧ	1,137
**	Steel Pipe	ø 240	ខា	0.08
•	Frame Work	Wood	w ₃	10.8
	Guard Rail	Steel	m	60.3
er total	Lamp Post	Steel (10 m)	Vol.	406.8
	Comb tost	Steel (10 m)	Vol.	447.5
	Kerb	Concrete	m	13.0
		Diesoline	titer	0.403
0.00	Gas Oil	Fuel oil	liter	0.46
		Petrol	liter	1.02

625 建設单個分析結果

建設単価分析結果は表 6.4 K示される。この建設単価は直接費、諸経費、建設業者の利益及び予備費が含まれる。

Table 6.4 RESULTS OF UNIT COST ANALYSIS

(In M\$ at 1981 prices)

Biodina and American			(10 M29	f 1881 buces)			
Items	Sub-Item	Class	Unit		Unit	Cost	
items .	500-item	Class	Unit	F.C.	L.C.	Tax	Total
Site clearing	Residential	_	m ²	1.90	1.26	0.16	- 3.32
orte creating	Field		m²	0.26	0.17	0.02	0.45
Excavation	Soil	Common	m³	1.24	0.89	0.11	2.24
Waste	· do ·	-do-	m³	1.74	1.89	0.29	3.92
Embankment	· do -	· do ·	m³	3.85	1.46	0.51	5.82
Slope		Grass	m²	0	5.25	0.30	5.55
Turfing	Sidewalk	Tree	w,	1.26	4.94	0.32	6.52
TOTTING	Ореп Ѕрасе	Grass	w ₃	0	5.25	0.30	5.55
	Roadside	0.5 x 1.0	m	46.78	90.58	5.65	143.01
	Pipe Oulvert	D = 600	m	46.21	77.71	5.23	129.15
Drainage	Box Culvert	2.0 x 3.0	m	489.60	577.43	58.50	1,125.53
	DOX CONSIL	3.0 x 3.0	m	612.00	721.79	73.12	1,406.91
	Water Pipe	D = 24'	m	239.30	91,33	14.59	345.22
Wall	Masonry	Stone	m²	26.21	64.03	6.26	96.50
-	Revetment	Stone	m	818.70	1,169.70	132.70	2,121.10
	Carriageway	Asphait	m²	17,49	12.76	1.43	31.68
	Shoulder	Asphalt	w ₃	13.64	9.13	1.10	23.87
Pavement	Service Road	Asphalt	m²	13.64	9.13	1.10	23.87
	Sidewalk	Block	m²	5.49	7.61	0.62	13.72
_	Overlay	Asphalt	m²	11.00	8.00	1.00	20.00
	Kerb	Concrete	m.	8,54	14,52	1.16	24.22
	Central Spilt	Concrete	m	20,86	43,86	3.28	68.00
Facility	Guard Rail	Steel	m	44.11	3,22	6.23	53.56
	Lighting	Steel	m	40.00	19.00	7.00	66.00
	Lane-Marks	Paint	m	0.50	0.60	0.05	1.15
latan anti-	At-Grade		Vol	32,976	64,506	2,922	100,404
Intersection		Diamond	Vol	357,359	303,075	46,703	707,137
·	Interchange	Loop	Vol	1,629,159	1,467,567	164,643	3,261,369
Approach Road			m	462.46	498.20	48,71	
	 				130.20	40,/1	1,009.37

Note: F.C.: Foreign Currency

L.C.: Local Currency

6.3 工業数量の算出

6.3.1 概要

1:3,000地形図を使用して行われた概略設計を基化数量算出が行われた。また、 との数量は各区間毎に算出された。

道路区間は図6.2 に示される。橋梁の数量は主な橋梁について算出された。

6.3.2 工事数量

道路の工事数量は、各区間毎に算出され、表 6.5、 6.6 化示される。また、橋梁数量は表 6.7 化示される。

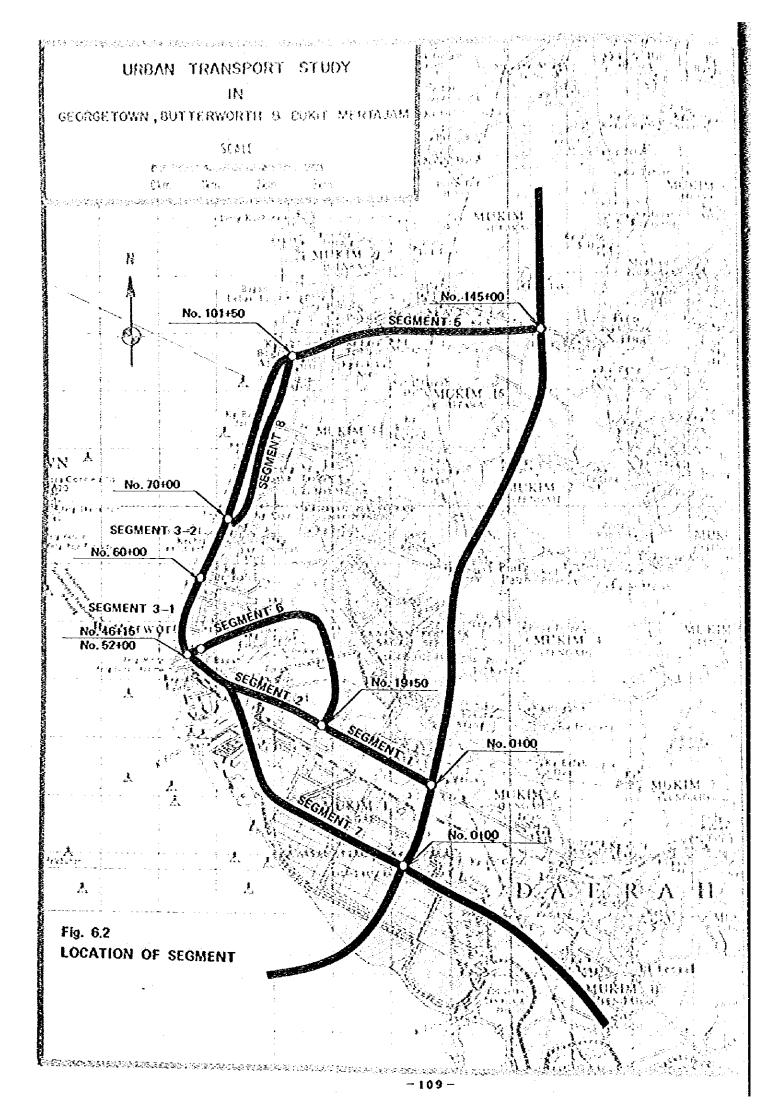


Table 6.5 CONSTRUCTION QUANTITY BY SEGMENT (ROAD)

							SO	Quantity			
Item	Sub-Item	Class Section	S S	Seament 1	Segment 2	Segment 3	Segment 4	Segment 5	Segment 6	Segment 7	Segment 8
See Clark	Recidential		3	0	27,400	45,300	8,720	20,000	39,244	46,100	31,600
500	Field		E	0	0	0	26,000	69,384	Ö	0	0
Expansion.	Š	Common	E	11,486	2,126	14,106	2,080	110,409	20,073	14,900	19,459
14/2696	19	Common	E	7,701	0	0	0	0	9,146	4,600	12,860
Embankment		Common	E	3.785	7,003	116,800	367,920	139,115	10,926	10,300	6,599
Single Si			ε	0	0	0	0	11,200	0	0	0
300	Sidewalk	Grass & Tree	£	12,853	14,630	37,222	79,417	4,208	25,292	21,500	1,300
Turfing	Open Space	Grass	ε	0	0	0	0	0	0	Ó	0
	Roadside	1.0×1.0	ε	3,760	4,080	4,470	008'9	8,700	7,700	2,200	6,420
	Pipe Culvert	009 = 0	٤	400	520	720	945	800	840	8	88
		3.0 × 3.0	ε	0	0	9	100	0	0	0	٥
Oreinage	הפאיטה אפש	5,0 × 5,0	٤	0	0	O	50	0	0	0	0
	Transfer	D = 24"	E	0	0	0	0	0	0	0	0
	Mooriog		 	0	0	0	1	0	0	0	5
19/91	Masoncy	1.40	E	894	1,705	2,571	568	894	3,748	2,600	2,348
1000	Roverment	Stone	ε	0	°	1,200	2,950	0	0	O	3
	Cheristen	Asobalt	3	17,230	7,245	36,100	51,820	63,193	29,586	29,800	30,05
	Shoulder	Ă	E	2,593	0	4,560	8,520	10,695	6,765	2,900	10,980
Pavement	Section Road	1_	Ę	3,720	25,080	13,980	20,760	3,720	7,360	16,300	7,020
-	Sidewalk	-	Έ	12,853	14,630	9,922	7,917	4,208	25,292	21,500	20,633
		SIOCK	1	18 515	1755	0	0	10,453	37,599	26,500	20,123
	Overlay	Concreto	£	4,220	4.680	5,740	8,970	9,020	8,080	7,500	6,960
Additional Facility	Central	Concrete	٤	1,800	200	1,980	3,000	4,200	3,390	2,400	285
	Heserved	Stead	٤	320	610	920	320	320	1,340	006	840
	5000	(2000)	8	3.010	2.665	1.785	3,150	804	1,450	3,300	3,550
	BUILDE	Steel	E E	1 950	2 600	2 390	3.150	4,350	4,150	5,200	3,085
	Land-Marks	Tain.	į	9.0		2.5	2.5	2.5	3	2.5	2.5
Intersection	Interchange	Diamond	, 		0	0	0	0.1	0	o	0
		Type					ď	(c	c	c
00,000	L < 50 m	Concrete	Ë	٥		2		200	200	> 0	270
200	L > 50 m	Concrete	E	150	2,165	405	22	3	3		
Approach Road			ε	٥	0	150	35	0	5	3	

Table 6.6 CONSTRUCTION QUANTITY BY SEGMENT (ROAD) (6-lane)

			100				
Processor of the second second					Qua	ntity	
<u>ltem</u>	Sub-Item	Class	Unit	Segment 1	Segment 2	Segment 3-1	Segment 6
Cta Ob a tax	Residential		w ₃	600	50,015	52,500	55,244
Site Clearing	Field		m²	0	0	0	0
Excavation	Soil	Common	m³	18,219	8,502	13,125	31,319.8
Waste	Soil	Common	m³	13,189	0	0	17,846.9
Embankment	Soil	Common	m³	5,030	14,647	22,500	13,472.9
Slope	Grass		w _s	0	0	0	0
T. 6	Sidewalk	Grass & Tree	m³	12,853	15,645	0	25,292,6
Turfing	Open Space	Grass	m²	0	0	0	0
	Roadside	1.0 x 1.0	m	3,760	4,370	0	7,700
	Pipe Culvert	D = 600	m	500	650	4,470	1,050
Drainage	00	3.0 x 3.0	m	0	0	0	0
	Box Culvert	5.0 x 5.0	នា	0	0	0	0
	Transfer	O = 24"	m	0	0	0	0
	Mooring		Vol.	0	0	0	0
Wall	Masonry	H = 4.0	w _s	894	2,405	1,200	3,748
	Revetment	Stone	ភា	0	0	Ó	Ò
	Carriageway	Asphalt	m²	26,811	23,197	24,675	49,436
	Shoulder	Asphalt	w _s	4,920	0	3,150	7,540
Pavement	Service Road	Asphalt	$\mathbf{w_s}$	3,720	25,530	7,440	7,360
·	Sidewalk	Concrete Block	m²	12,853	15,645	9,100	25,292.6
	Overlay	Asphalt	m²	18,108	1,047	0	42,658
	Kerb	Concrete	m	4,220	5,270	5,740	8,680
Additional	Central Reserved	Concrete	m	1,800	990	1,980	3,390
Facility	Guard Rail	Steel	m	320	860	920	1,340
	Lighting	Steel	m	3,010	2,665	1,785	1,450
. <u> </u>	Lane-Marks	Paint	m	1,950	2,600	2,390	4,150
Intersection	At Grade	Signal	No.	0.5	1	2.5	3
	Interchange	Diamond type	Vol.	0	1	0	0
Bridge	L < 50	Concrete	m²	0	0	0	0
	L>50	Concrete	m²	0	0	0	0
Approach Road			m	0	0	0	0

Table 6.7 CONSTRUCTION QUANTITY OF BRIDGE

									;	424.6			•		
ansi		•	<u>-</u>	Prai Roundabout	£	Pro: River Bridge (Route B)	e do	P. F. P.	Tighway Fly-over	Jermal FIV-over	Sungai Dua Fly-over Bridge	Due Bridge	R.ver Pridge	S S S	800 B
lo o	(100)	Š	5	Bridge (Route A&B)	High Joyel	Ramp	Modium	Gridge (Route B)	Bridge (Route D)	Bridge (Route E)	(Route D)	(Route E)	Route A).	(Route C)	(Route F&G)
1							DAM)		0	. 600	2000	Ş	300	24,000	8
		4	Έ	3.700	17,500	006,	9,600	3,700	3,78	3	300	33		000	Ş
	Concrete	γ	É	1,300	10,000	800	5,800	1,300	005,1	8	وير. 1	3	3	36.0	3
	Sreel Beanforce	3 5	١.	440	2.470	210	1,460	430	440	190	450	230	230	3,400	8
	ment	2				6	000	ğ	200	6	200	ž	8	1,350	0
	Prestressed Wire	l		200	380	S	33	2		4	c	c	0	25	0
ຂບ	Structural Steel	BS-4360	ų	- 1	8	0	2		2	2240	5 400	2,700	2,380	32,200	810
€ }	Wearing Surface	6 cm	ω	- 1	24.840	2,810	14,940	325	3 5	2,7.7	57.5	36	SS	827	301
Þ	Expansion Joint	ı	£	72	252	3	3	7 8	7,00	200	909	8	200	3,800	8
	Guard Rail	1	£	009	2,760	2. 0.4.	000'	Ř	388	300	9000	4 800	5 400	62.500	1,600
	9 G O O	9 600	ε	9,020	45,400	5,100 000	25,000	8,700	000,8	3,0	3,4) C	0	200	0
	Seem Sheet Pile	,	٠	0	920	0	950	0	3	- -	3)	,	200	0
			Ē	0	870	0	870	0	5	7	,		3	5	Ç
	Landing Stage		ŀ	2 700	24 800	1 900	13,600	3,700	3,700	1,600	3,800	8	230	3	
	Concrete	Ç č	E	300	14 000	8	8,200	٠ 800	1,300	009	1,300	ă	1.840	19,700	3
	0 100	3				01.0	2 070	430	440	190	450	230	ဗ္ဗ	4,800	8
	ment	410	٦	7		; {	000	9	ç	8	8	8	110	1,910	0
	Prestressed Wire	1	-	200	065,	S .	6	2	v	Մ	0	0	0	32	0
а		BS-4360	4	5	ဗ	0	2		200	2240	A 400	2 700	3.370	48,450	810
vej	_	၉၁	έ	5,400	35,190	2,810	21,160	2,2,2	3	2/2/2	2	38	121	167	108
-9		,	ε	72	357	တ္	255	7.7	7/	7/	4,00	2000	003	008 %	8
	ᆂ.		٤	000	2,760	940	1,660	280	009	220	3	3 6	200	00,000	1,600
	Digital Control	V 200	٤	9.020	94,300	5,100	. 35,400	8,700	9006	3,900	9,200	30,000		<u> </u>	c
	, L. 100			c		o	1,300	0	0	0	0	5	> (3 8	
	Steel Sheet Flig	1	,	,	0,00	c	870	0	0	0	0	Ö,	0	200.1	,
	Landing Stage	:	E	>	>	,									

6.4 建設工事費

6.4.1 道路工事费

工事数量、建設単価を基化、道路建設費は抗算された。この建設費の内には、土工、 舗装工、排水工、及び関連道路施設費が含まれる。改良区間の1㎞当りの建設費は、 1.3(百万マレイシアドル)から1.5(百万マレイシアドル)で新設区間の1㎞当り の建設費は、2.1(百万マレイシアドル)から3.0(百万マレイシアドル)である。 第.4 工区の建設費は他工区化比べて比較的高い。これは道路用地中が広いためである。

6.4.2 穩梁工事費

模梁建設費は、支間30m、40m、及び70mの型式について計算した。上記の 模梁の1×当りの建設費は、900ドル、2000ドル、及び2300ドルとそれぞれ計算した。

養梁の建設費は表 6.1 5 比示す。

6.4.3 建設工事費

道路建設費及び餐梁建設費の合計は表6.8から表6.14までに示される。

Table 6.8 CONSTRUCTION COST 4-LANE (In M\$ at 1981 Prices)

<u>.</u>	Component of		Construct	tion Cost		
Segment	Cost	Road	Bridge	Land Acquisition	Compen- sation	Total
Segment 1	Economic Cost	2,403,476	2,326,449	0	0	4,729,925
	Financial Cost	2,533,437	2,448,893	0	0	4,982,330
Segment 2	Economic Cost	5,423,128	31,993,727	1,277,000	3,516,000	42,209,855
	Financial Cost	5,713,585	33,677,606	678,000	3,516,000	43,585,191
Segment 3-1	Economic Cost	2,228,594	4,565,516	9,793,000	1,473,000	18,060,110
Segment 0	Financial Cost	2,348,362	4,805,806	4,735,000	1,473,000	13,362,168
Segment 3-2	Economic Cost	4,470,118	2,323,884	3,436,000	516,000	10,746,002
Segment 5-2	Financial Cost	4,754,883	2,446,193	0	516,000	7,717,076
Segment 4	Economic Cost	13,124,074	2,304,567	8,063,000	1,317,000	24,808,641
	Financial Cost	13,970,529	2,425,860	94,000	1,317,000	17,807,389
Segment 5	Economic Cost	6,457,603	1,967,284	1,673,000	1,304,000	11,401,887
ocginent o	Financial Cost	6,811,887	2,070,930	1,561,000	1,304,000	11,747,81
Segment 6	Economic Cost	5,028,811	8,037,862	5,358,000	1,819,000	20,243,673
Deginent o	Financial Cost	5,284,067	8,460,907	5,358,000	1,819,000	20,921,97
Segment 7	Economic Cost	7,105,572	44,654,476	3,364,000	609,000	55,733,04
oeganear r	Financial Cost	7,476,926	47,004,711	2,765,000	609,000	57,855,63
Segment 8	Económic Cost	4,266,865	3,173,839	8,167,000	4,102,000	19,709,70
organism O	Financial Cost	4,489,025	3,340,883	5,121,000	4,102,000	17,052,90

Table 6.9 CONSTRUCTION COST 6-LANE (In M\$ at 1981 Prices)

	Component of		Construct	ion Cost		
Segment	Cost	Road	8ridge	Land Acquisition	Compensation	Total
Segment 1	Economic Cost	2,831,712	2,326,449	1,796,000	0	6,954,161
	Financial Cost	2,983,113	2,448,893	1,796,000	0	7,228,006
	Economic Cost	5,746,236	43,421,078	2,916,000	3,516,000	55,599,314
Segment 2	Financial Cost	6,052,592	45,706,394	2,486,000	3,516,000	57,760,986
ocyment z	Economic Cost	3,740,109	30,312,101	2,916,000	19,632,000	56,600,210
	Financial Cost RLL	3,937,137	31,907,494	2,486,000	16,632,000	57,962,631
Segment 3-1	Economic Cost	2,940,658	4,565,516	12,449,000	1,473,000	21,428,174
Segment 3-1	Financial Cost	3,092,815	4,805,806	7,418,000	1,473,000	16,789,621
Second A	Economic Cost	-	_		-	
Segment 4	Financial Cost			<u> </u>		
Consent E	Economic Cost	. —	_			
Segment 5	Financial Cost			<u></u>		
Saarran 6	Economic Cost	5,888,685	9,129,323	6,724,000	4,107,000	25,849,008
Segment 6	Financial Cost	6,186,955	9,609,813	6,724,000	4,107,000	26,627,768
C	Economic Cost	-	<u> </u>			
Segment 7	Financial Cost				<u> </u>	<u> </u>
C	Economic Cost				<u> </u>	
Segment 8	Financial Cost	_	l –			

Note H.L.: High Level Bridge M.L.: Medium Level Bridge

Table 6.10 CONSTRUCTION COST (in MS at 1981 Prices)

	4	No. of	Component of		Construction Cost	ion Cost		
Segment	Alternative Plan	Lane	Çost	Road	Bridge	Land Acquisition	Compensation	Total
			Economic Cost	5,423,128	31,993,727	1,277,000	3,516,000	42,209,855
	High Level	4	Financial Cost	5,713,585	33,677,606	678,000	3,516,000	43,585,191
			Economic Cost	3,267,373	22,858,312	1,277,000	19,632,000	47,034,685
	Medium Level	4	Financial Cost	3,440,843	23,937,190	678,000	19,632,000	47,688,033
Vegment v			Economic Cost	5,746,236	43,421,078	2,916,000	3,516,000	55,599,314
	High Level	ဖ	Financial Cost	6,052,592	45,706,394	2,486,000	3,516,000	986'092'25
			Economic Cost	3,740,109	30,312,101	2,916,000	19,632,000	56,600,210
	Wedica Level	o	Financial Cost	3,937,137	31,907,494	2,486,000	19,632,000	57,962,611
	1		Economic Cost	6,457,603	1,967,284	1,673,000	1,304,000	11,401,887
	Tuil Full Access	.	Financial Cost	6,811,887	2,070,930	1,561,000	1,304,000	11,749,817
Segment o		,	Economic Cost	5,797,169	1,967,284	1,561,000	1,304,000	10,629,453
	Partial Access	4	Financial Cost	6,151,453	2,070,930	1,561,000	1,304,000	11,087,383
			Economic Cost	886,171	2,021,555	1,745,000	92,000	4,744,726
Segment S	No. /U # No. /v	‡	Financial Cost	937,532	2,127,953	1,527,000	92,000	4,684,485

Table 6.11 PROJECT COST BY ALTERNATIVE PLANS (ECONOMIC COST) (In Thousand MS at 1981 Prices)

		:	Access	Land Acqui-		S	: : :	Engineer	Engineering Service	1	Maintenance
Route	Type of Bridge Cross-Section	Cross-Section	٦ 8	Sempen-	Road	Bridge	Total	Design	Supervision	1	St
Route :	1	4-1	E PE	37,641	24,855	22,390	47,250	2,363	2,363	89,617	800
Route 11		4-1	Follow	34,752	33,713	21,526	55,239	2,762	2,762	95,515	502
		6-1 4-1	i Su	37,053	25,678	46,351	72,029	3,601	3,601	116,284	466
	9	Plan 1	Portial	36,941	25,018	46,351	71,369	3,568	3,568	115,446	828
Route III		6-L, 4-L Plan 2	П По	41,348	26,713	57,778	84,491	4,225	4,225	134,289	492
	Medium Level	6-L, 4-L	E S	53,169	23,522	37,215	60,737	3,037	3,037	119,980	466
		6-1.4-1	15 15	34,164	34,535	45,481	30,016	4,001	4,001	122,182	884
	High Level	Plan 1	Partial	34,052	33,875	45,481	79,356	3,968	3,968	121,344	83
Route 1V		6-L, 4-L Plan 2	π IIoπ	38,459	35,570	606'95	92,479	4,624	4,624	140,186	84
	Medium Level	6-L, 4-L	FUIL	50,280	32,379	36,346	68,725	3,436	3,436	125,877	88
Route V	High Lavel	4-1-	بار اي اي	34,437	24,529	56,685	81,214	4,061	4,061	123,773	472
Route VI	High Level	4-L	Full	31,548	33,386	55,816	89,202	4,460	4,460	129,670	474
Route 111 (Section 1)	High Level	6-L, 4-L Plan 1	Full	17,855	10,483	38,886	49,369	2,463	2,468	72,160	8
Route III (Section 2)	High Level	6-L, 4-L Pian 1	Ho!!	19,198	15,195	7,465	22,660	1,133	1,133	44,124	265
Route IV (Section 1)	High Level	6-L, 4-L Plan 1	л 2	17,855	10,483	38,886	49,369	2,468	2,468	72,160	201
Route 1V (Section 2)	High Level	6-L, 4-L Plan 1	≣ u u	16,309	24,052	965'9	30,648	1,532	1,532	50,021	267

Note 4-L : 4-lane 6-L : 6-lane

Table 6.12 PROJECT COST BY ALTERNATIVE PLANS (FINANCIAL COST)
(In Thousand MS at 1981 Prices)

Route	Type of Bridge	Cross-Section	Access	Land Acqui-		Sost		Engineer	Engineering Service	}	Maintenance
			3 d\1	Compen-	Road	Bridge	Total	Design	Supervision	30	Š
Route 1		7	Full	25,989	26,222	23,574	49,796	2,490	2,490	80,765	86
Route !!	_	4-L	Full	18,177	35,703	22,659	58,362	2,918	2,918	82,375	205
		6-L, 4-L	Full	24,802	27,101	48,790	75,891	3,795	3,795	108,283	466
•	4	rian .	Partial	24,802	26,440	48,790	75,230	3,762	3,762	107,556	326
Route III	5000	6-L, 4-L Plan 2	Full	29,293	781'87	60,819	89,003	4,450	4,450	127,196	492
	Medium Level	6-L, 4-L	T OT	40,918	24,828	39,050	63,878	3,194	3,184	14,184	466
		6-L, 4-L	Full	16,990	36,582	47,875	84,457	4,223	4,223	109,893	468
	High Love	Pian 1	Partial	16,990	35,922	47,875	83,797	4,190	4,190	109,167	83
Route IV	•	6-L, 4-L Pion 2	Foll	21,481	37,666	59,904	97,570	4,879	4,879	128,809	494
	Medium. Level	6-L, 4-L	E P	33,106	34,310	38,135	72,445	3,622	3,622	112,795	768
Route V	High Level	4-L	Full	22,186	25,881	59,669	85,550	4,278	4.278	116,292	472
Route VI	High Level	7-5	Full	14,374	35,363	58,753	94,116	4,706	4,706	117,902	474
Route III (Section 1)	High Level	6-L, 4-L Plan 1	Full	12,198	11,045	40,932	51,977	2,599	2,599	69,373	201
Route III (Section 2)	High Lovel	6-L, 4-L Plan T	Full.	12,604	16,056	7,858	23,914	1,196	1,196	38,910	265
Route IV (Section 1)	High Level	6-L, 4-L Plan 1	Full	12,198	11,045	40,932	51,977	2,599	2,599	69,373	201
Route IV (Section 2)	High Level	6-L, 4-L Plan 1	Ho.	4,792	25,537	6,943	32,480	1,624	1,624	40,520	267

Note 4-1: 4-lane 6-1: 6-lane

Tablo 6.13 CONSTRUCTION COST BY SEGMENT (4-lane)

(In MS of 1981 Prices)

						South	Comtraction Cor				2	Š		
	Cereion No	L PAGE		Road	1**	÷.		Bridge	8		Acquisition	1000	,	
The state of the s		€	C B	0	Tex	Total	Я	ď	¥ e X	Total	& Compensation	F.C. L.C.	- 48×	100
	-										•	\$20,007.5	34.	2000
Seoment 1	03-01-0	1,980	1,950 1,141,476	1,262,000 120,961	120,001	2,533,437	1,260,617	1,065,832	122,444	2,488,893	0	2,402,003 2,327,832	G 7C	ACC. 200.
			100	848 000 0	200 487	4 71 7 4BK	17 827 322	14,166,395	1,683,885	33,577,606	4,793,000	42,209,845	1,974,342	4,194,187
Segment 2	19-60-10	2,000	2,728,852	2,040,170	102/202	2001						10,500,12 #1,4,000,02		
Caratana 24.1 46415-60	46+15-60	ğ	1,031,037	1,197,557	110,768	2,348,362	2,472,693	2,092,823	240,286	4,805,802	6,724,000	3,503,730 10,014,380	360,054	13,878,104
	•										(6,794,002	407.076	7 201 076
Canadar 3-2 60-70	80-70	8	1,000 2,110,477	2,369,641	284,766	4,754,883	1,259,133	1,064,751	122,300	2,466,193	o	3,369,610 3,424,392	•	
											900	16,839,641	947 748	7,807,389
Seament 4	70-101-60	3,150	3,150 6,264,173	6,850,901	846,455	13,970,529	1,245,542	1,059,025	121,293	2,425,800	33,1	7,509,715 9,329,926		
										ACA ATA A	7 065 000	11,289,887	457,930	11,747,817
Segment 5	101-50-145-0 4,350 3,281,611	4,350	3,281,611	3,175,902	354,284	6,811,887	1,045,771	512,150	03,000	2,0/0,930	2,000,000	4,327,382 6,962,505		
							1.		***	200 000	2 177 000	20,243,673	678,301	20,927,974
Seament 6	10-20-61-0	<u>\$</u>	2,306,960	2,721,851	255,256	5,284,067	3,623,857	4,414,000	000	/A6'00#'0	,,,,,,,,	5,930,817 14,312,856		
			-					400	A 26.0 20.6	*** ***	3 374 000	55,134,048	2,721,589	57,855,637
Segment 7	062-0	6,200	3,507,360	3,508,212	450,750	7,476,026	7,476,026 24,873,196	002,187,01	4,300,430			28,380,556 26,753,492		
						******		1 AKK 977	187 044	3,340,883	9.223.000	이	389,204	17,062,908
Sepment 8	75-0-100-85	3,085	2,035,391	2,231,474	222,160	4,489,025	1,716,300	019'000'	2			3 753 057 17 000 747		
								ĺ						

Table 6,14 CONSTRUCTION COST BY SEGMENT (6-lane)

(In MS at 1981 Prices)

												40	•	
						Constr	Construction Cost				2	3		
					7.00			Bridge	JG6		Acquertion			1
,	114 11 11	ביים			2	1		·				0.00	X	100
Sepment	STATION NO.	Ē	ñ,	ن	Tax	Total	Ų.	ပ	X	100	Tion I	F,C. L.C.		
											***	6,954,161	273 845	7 228 006
	151,401	0%0	1.356.762	1,444,950	151,401	2,083,113	1,260,617	2,983,113 1,260,617 1,065,832	122,444	122,444 2,448,893 1,796,000	1,790,000	2 647 379 4 306 787		
STORY OF THE PERSON OF THE PER		3										55 169 315	A 601 671	2 601 671 57 760 986
	200,000 000 000 000 000 000 000 000 000	2 665	2.916.375	2,829,861	306,306	6,052,592	24,224,480	19,196,599	2,285,315	2,285,315 45,706,394	6,002,000	27,140,855 28,028,460	70.150.7	
A TUBERON									ı			16.397,174	200 643	16 789 617
Cassage 2	1,527,787	1.385	1,412,871	1,527,787	152,157	3,002,815	3,092,815 2,472,693	2,002,823	240,286	4,805,802	000,108,8	3,885,564 12,511,610	7	
										0.000	W :00 4	25,849,008	778.759	778,759 26,627,767
Secondary 6	Carmant 6 10+50+61	4,150	2,799,350	4,150 2,700,350 3,089,336 208,270		6,186,955	6,186,955 5,030,468	4,098,856	480,489	9,000,612	2001,000	7,829,818 18,019,190		

Table 6,15 CONSTRUCTION COSTS FOR BRIDGE (In MS at 1981 prices)

-	MAT		4-Lane	ane	-		6-Lane	٠.	
		Ċ	٦,c	Tax	Total :	i.C	P.C	Tax.	Total.
Prai Roundabout Fly Bridge (Route A & B)	Prai Roundabout Fly-over Bridge (Route A & B)	2,131,663	2,521,234	244,889	4,897,786	2,131,663	2,521,234	244,889	4,897,786
Prai	High Level	12,072,490	15,353,155	1,443,455	28,869,100	17,102,694	21,750,303	2,044,895	40,897,892
Sridge (Route B)	Romp (Existing Port)	1,068,838	1,234,429	121,225	2,424,492	1,068,838	1,234,429	121,225	2,424,492
	Medium	7,752,373	10,419,877	956,434	19,128,684	10,982,528	14,761,492	1,354,948	27,098,968
Chain Ferry Fly-over Bridge (Route B & C)	/ Fly-over ute B & C)	2,056,145	2,427,120	235,961	4,719,226	2,056,145	2,427,120	235,961	4,719,226
E_W Highway FI Bridge (Route D)	E_W Highway Fly-over Bridge (Route D)	2,129,501	2,518,266	244,619	4,892,386	2,129,501	2,518,266	244,619	4,892,386
Bagan Jermal Fly-over Bridge (Route E)	al Fly-over (ite E)	925,760	1,095,795	106,398	2,127,953	925,760	1,095,795	106,398	2,127,953
Sungai Dua Fly-	(Route D)	2,118,051	2,491,083	242,586	4,851,720	0	Ö	0	0
	· (Route E)	1,059,026	1,245,541	121,293	2,425,860	1,059,026	1,245,541	121,293	2,425,860
Prai River Bridge (Route A)	ridge	1,139,994	1,479,512	137,869	2,757,375	1,614,992	2,095,975	195,314	3,906,281
Prai River Bridge (Route C)	ridge:	16,621,544	21,138,402	1,987,366	39,747,312	0	•	0	0
Sungai Dua Bridge (Route F & G)	Bridgei G)	392,000	423,000	43,000	000'858	392,000	423,000	43,000	858,000

6.5 用地取得費と補債費

6.5.1 用地取得費

(1) 概 要

計画道路の建設により用地取得及び補債に影響するものは、民間の土地、政府の土地及びその財産である。補債費のための財産価値はマレイツア国の土地評価事務 所及び市役所と協議して設定され、技術委員会で論議され最終的に設定した。

土地価値は異った土地利用によって異るだけでなく、道路からの距離によりその 差は生じるものである。この調査では同一価値を持った地域をグループ別に設定し た。

用地取得費は、経済費用と財務費用とに区分される。

経済費用とは、土地の持つ価値である。例えば計画道路の砂浜区間は、6し、道路が建設されない場合この地域を埋立し住宅地に転用する事が可能である。そのため、 との地域にはある価値が存在する。この価値が経済費である。そのためこの地域に ついては、砂浜の経済価値を計算する必要が生じる。

しかしながら財務費用は、建設のために必要な用地取得費のみである。例えば上記の砂浜は、州の所有地であり、工事の実施にあたり費用の支出はない。 これが財務費用である。

(2) 用炮取得の単質

計画道路沿の土地価値を設定するために、道路により影響ある土地について調査を行った。

調査の結果に基き、同一質値を持った地域毎に区分された。

砂浜の用地取得について、次の式を使用し単氫を設定した。

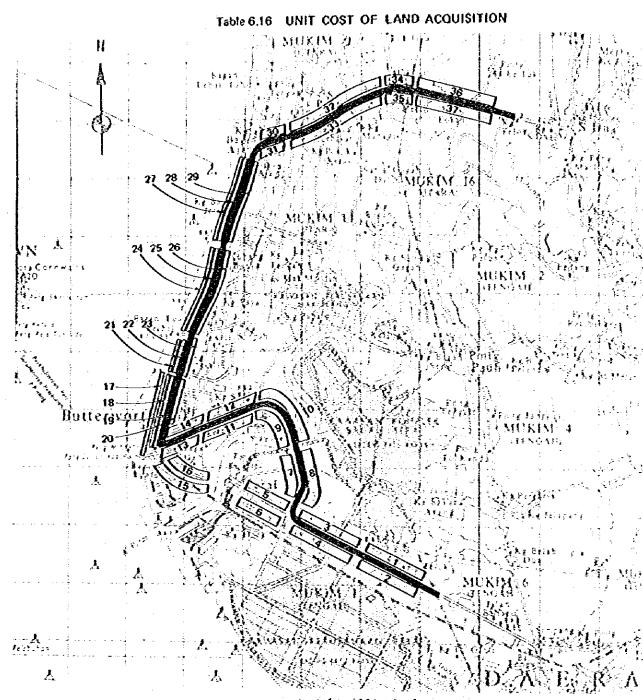
$$LV^{S} = LV^{A} \times 0.8 - (RC + IC)$$

ここで LV^S: 砂浜の土地賃賃

IN^A: 砂浜周辺の土均賃値

RC : 建立工事费用

IC : 埋立後の諸蔭設の工事費用


砂浜部の土地価値は次の様に設定した。

影点60~65=669X08-112=423ドル/ポ

图定65~85=363×08-112=176 时/元

新定85~98=189×08-112= 39 52/㎡

地域別土地価値の設定結果は表 6.1 6 に示される。

	(10	n M\$ at 1981	prices)		(Per m²)
Section	Unit Cost	Section	Unit Cost	Section	Unit Cost
1	83	14	281	27	189
2	74	15	66	28	196
3	157	16	63	29	215
4	144	17	511	30	140
5	44	18	585	31	115
6	77	19	614	32	59
7	139	20	658	33	63
8	92	21	669	34	28
9	107	22	673	35	28
10	122	23	814	36	8
11	153	24	363	37	9
12	122	25	418	38	7
13	252	26	418	39	9

(3) 用地取得費

土地の単価及び計画道路の建設により 用地取得しなければならない面積の計算 結果に基き、用地取得費は表 6.1 7 に示す様に計算された。

Table 6.17 LAND ACQUISITION COST
(In Thousand MS at 1981 prices)

		Land Acquisition	Cost	
Segment	4	lane	6-1	ane
	Economic	Financial	Economic	Financial
Segment 1	0	0	1,796	1,796
Segment 2	1,277	678	2,916	2,486
Segment 3-1	9,793	4,735	12,449	7,418
Segment 3-2	3,436	0	n.a.	n,a,
Segment 4	8,063	94	n.a.	n.a.
Segment 5	1,673	1,561	6,724	6,724
Segment 6	5,358	5,358	n.a.	n.a.
Segment 7	3,364	2,765	n.a.	n.à.
Segment 8	8,167	5,121	n.a.	n.a.

6.5.2 補債费

(1) 概 要

計画通路沿の家屋の賃債を求めるために、家屋数、構造等の調査が実施された。 調査範囲は現 に沿い両側の建築物を対象とした。

とれらの調査結果は、1:3000危形図に記載され、また、建物の構造、状態、 等ファイル整理された。

えてプライ河沿にある2つの造船所の結債費を考える必要がある。

(2) 单 质

上記に述べた現境調査に基き、構造別、材料別の建物の補債費は表 6.1 8 に示される通りである。

(3) 造船所の補債費

構造費の算出は 種々の関連する事項がありその算出は非常に製団なものであるが、ここでは、次の様に特債費を考えた。

精慎費=新設造給所の建設費-現在の造船所の上地質格-造船所の残存賃値 2つの造船所の特債費は表も19に示される。

Table 6.18 UNIT COST OF COMPENSATION FOR RESIDENTIAL STRUCTURES (In M\$ at 1981 prices)

Type of Housing	Material	Unit Cost (M\$/m²)
Detached Double - Storey	Concrete	510
do	Wooden	300
Detached Single — Storey	Concrete	430
do	Wooden	300
Semi-Detached Double-Storey	Concrete	433
do	Wooden	300
Semi-Detached Single-Storey	Concrete	433
Terraced Double Storey	Concrete	344
Terráced Single Storey	Concrete	344
Terraced Triple - Storey	Concrete	500
Detached Double - Storey	Wooden	300
Terraced 4 - Storey	Concrete	330
Terraced 5 Storey	Concrete	350
Terraced Single - Storey	Wooden	250
Semi-Detached Single-Storey	Wooden	300
Squatter Single — Storey	Wooden	200

Table 6.19 COMPENSATION FOR DOCKYARDS (In Thousand M\$ at 1981 Prices)

	Item	PPC Dockyard	Hong Leong Shipyard
Construc-	Reclamation Cost	+2,203	+1,412
tion Cost	Dockyard	+29,290	+29,530
Sub-1	otal	+31,493	+30,942
Land Value	(existing dockyard)	-8,400	-4,400
Survival Va	lue (existing dockyard)	-11,000	-11,000
Compensat	ion	12,093	15,542

The survival value in the above table is the value estimated for the PPC dockyard only and since the survival value of the Hong Leong - Shipyard is not obvious, the same value is adopted for the Hong Leong Shipyard.

(4) 精值费

計画道路に対する特債費は各工区毎に表620に示される。

Table 6.20 COMPENSATION COST BY SEGMENT (In thousand M\$ at 1981 prices)

Segment	- Compens	ation Cost:
	4-lane	6-lane
Segment 1	0	0
Segment 2	3,516	3,516
Segment 3-1	1,473	1,473
Segment 3-2	516	0.3.
Segment 4	1,317	n.a.
Segment 5	1,304	n.a.
Segment 6	1,819	4,107
Segment 7	603	n,a,
Segment 8	4,102	n.a.

Note: 6-lane is not applicable to Segment 3-2, 4, 5, 7 and 8.

6.6 年間維持管理費

「The Maloyssa Highway Maiutance Study」、「Memrandum for a Case for the Revision for Gvant-in-ald for Maintenance to Municipalities in West Mclaysia」 及び関連資料に基き、ペナン環状道路の年間維持管理費が推定された。バタクース環状道路はペナン環状道路の横断構成と多少異るが、再検討を行い、この調査の維持管理費を設定した。

年間維持管理費を設定するために、次の項目について考える。

1) 道路の表面再舗装

道路の表面再請装は10年毎に行われる。アスファルト請装3ca厚で表面再請装を 行うと、その単個は0.5 7マレイシアドルとなる。材料は加熱式アスファルトである。

2) 街路樹

街路樹の管理には枝はらい、船水、保護等が含まれる。 単額は1 取当り1,000ドルと設定した。

3) 排水工

排水工の耐用年数は20年とした。そして毎年5多のとり変えを行う。単価はメーター当り25ドルと設定した。

4) 禄 石

録石の耐用年数は20年とした。そして、毎年5季の修理を行う。単価はメーター 当り1.5ドルと設定した。

5) 路面マーキングと交通模示

この維持管理は銘面のマーキング、交通標示の修理、新品への取替等が含まれる。 1 知当りの単価は 1,000 ドルと設定した。

6) 交通信号

交通信号の維持管理は信号機の新設、修理を含む。 信号機の耐用年数は20年である。単値は1,250ドルと設定した。

7) 中央分離帯

この維持管理は芝かりと木の枝はらいである。

中央分離帯の申は35 mであり、1回の芝かりと木の枝はらいは平方メートル当り0.05ドルと設定した。

8) ガードレール

ガードレールの維持管理は、必要に応じて修理、新品への取替えが含まれる。毎年 5 多の新品取替えとする。この場合メートル当り 5 4 ドルと単価を設定した。

9) 横断管集水ます

横断管集水ますは、土砂等を掃除しなければならない。この単質は 1 屋当り 8 0 0 ドルと設定した。

10) 橋梁及び他の構造物

機製及び他の構造物は常時その安全性に対して調査していなければならない。 もし、欠陥があった場合それを修理するものが含まれる。 1 5 当りの維持管理費を 1,000ドルと設定した。

維持管理費は表621.622に示される。これらの維持管理費は、4車線道路を対象として計算された。6車線道路については4車線の1.2倍と設定した。

Table 6.21 MAINTENANCE COST (4-LANE)

(In M\$ at 1981 prices) (Unit: per km) Cost Cost Unit Unit Cost Items Quantity Economic Tax (5%) Total Resurfacing of Road $\mathbf{m_3}$ 0.57 20,000 11,400 570 11,970 Roadside Trees km 1,000 1 1,000 50 1,050 Drainage 2.5 m 2,000 5,000 250 5,250 Kerb m 1,5 2,000 3,000 150 3,150 Marking and Lighting km 1,000 1.000 50 1,050 Traffic Signals km 1,250 1 1,250 63 1,313 Central Reservation 1.8 1,000 1.800 90 1,890 Guard Rail 200 54 1,080 54 1,134 Pipe and Kerb Outlet km 800 1 800 40 840 Bridge and Other 1,000 1 1,000 Structures 50 1,050 Sub-Total 27,330 1,367 28,697 15% Administrative 4,100 205 4,305 and Technical Staff **Total**

> Table 6.22 MAINTENANCE COST OF EACH SEGMENT (In M\$ at 1981 prices)

31,430

1,572

33,002

	Length	l	4-lane	
Segment	(Km)	Economic	Tax	Total
Segment 1	1.950	61,289	3,065	64,354
Segment 2	2.665	83,761	4,189	87,950
Segment 3-1	1.385	43,531	2,177	45,708
Segment 3-2	1.000	31,430	1,572	33,002
Segment 4	3.150	99,005	4,952	103,956
Segment 5	4.350	136,721	6,838	143,559
Segment 6	4.150	130,435	6,524	136,958
Segment 7	5.200	163,436	8,174	171,610
Segment 8	4.350	136,721	6,838	143,559

7 計画道路の評価

7.1 摄 要

7.1.1 評価の方法

計画道路の評価の方法は図7.1に示す通りである。

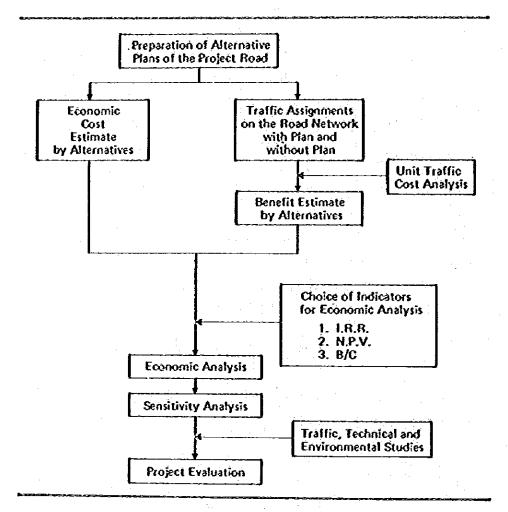


Fig. 7.1 PROCEDURE FOR PROJECT EVALUATION

7.1.2 経済評価のための指標

国際金量機関及びマレイシア国の経済企画庁の基準に従い、経済分析において 3 つの 経済指標が使われた。

a 内部収益率 (IRR) 内部収益率とは財務と経済の2つに分類出来る。 財務による内部収益率検討は個人企業(投資)に使用される。この調査では経済 的観点からの内部収益率で検討される。

内部収益率計算は下記の式により計算される。

$$B(R) - C(R) = 0$$

$$B(R) = \sum_{i=1}^{m} \frac{bi}{(1+R)i}$$

$$C(R) = \sum_{i=0}^{n-1} \frac{c_i}{(1+R)_i}$$

R : 内部取查率

ci: 年間費用

bi : 年間の便益

n : プロジェクトの計画年数

b 現在Ğ值(NPV)

現在価値は割引費用と便益との差で示される。現在価値がプラスという事は、そ のプロジェクトが経済的に実施可能であるということである。

c 便益一費用率(B/C)

便益一費用率は便益の現在賃値との差で示される。

便益一費用率=
$$\frac{B}{C}$$

$$B = \sum_{i=1}^{n} \frac{bi}{(1+r)i}$$

$$C = \sum_{i=0}^{n-1} \frac{ei}{(1+r)i}$$

bi :年間の便益

ei :年間の費用

r :割引率

n : プロジェクトの計画年数

3つの経済指標の内、IRRは主に投資時期の設定と本調査の最適比較案の選定に 使用される。

7.2 比较案

(1) 权 要

技術的また交通計画の函製点から検討された選択された後の比較案は、次の項目 により経済的に再度評価される。

a 路 段

b 傷梁型式

c 道路の車線数

- d 有料高速道路との取付
- e 道路の段階格工

しかし、用地取得の段階的買収は、この経済評価の内に含まれない。なぜならば、 始工時において追加用地買収が基本的に難かしいからである。

(2) 路 粮

計画道路の比較案は技術的評価を行い、選択された比較路線を集約し、その組合せを考えると 6 案が策定される。この 6 案について経済評価を行う。図 5.2、5.7 を参照。

a ルートー : このルートはAルート、DとEの組合セルート及びルートGを通る。

b ルートII : このルートはA、D及びGルートを通る。

c ルート目 : このルートはB、D、Eの組合せ、及びGルートを通る。

d ルートN : このルートはB、D及びGルートを通る。

e ルートV : このルートはC、DとEの組合せルート及びGルートを通る。

ſ ルートⅥ : このルートはC、D及びGルートを通る。

- (3) 傷架型式の比較は技術的観点からすでに下記に示す 2 案にしばられている。との 2 案について経済評価を行う。
 - a 桁下25 aの空間をもつ高、橇梁
 - b 桁下16mの空間をもつ中、橋梁

(4) 道路の車線数

経済評価のための車線数の比較案は、下記の通りである。但し、これはルートIII とIVについてのみ行う。

- a プラン1: 始点製の有料高速道路からプライ交差点間を6車線、その他の区間 を4車線とする計画
- b プラン2: 始点圏の有料高速道路からバタクース・コンテナ港までを 6 車線とし、その他の区間を 4 車線とする計画。

但し、他の比較路線案、例えばルートし、ルート日等は全線4車線計画とする。

(5) 有料高速道路との取付

スンガイ・ドゥク地区での有料高速道路と計画道路とのインターチェンジ型式の 比較案は下記に示す2案について経済評価を行う。

- a 完全インターチェンジ
- b 不完全インターチェンジ

(6) 段階落工

比較路線ルートIIIとIVについて、下記の2条を経済評価の対象とする。

- a 第1王区 (計画道路の海区間)
- b 第2工区 (計画道路の北区間)
- (7) 比較条の組合せ

上記で述べた経済評価される比較案の組合せは、表で1に示される。

(8) 比较案の評価方法

程務評価において比較案は次のステップで評価される。

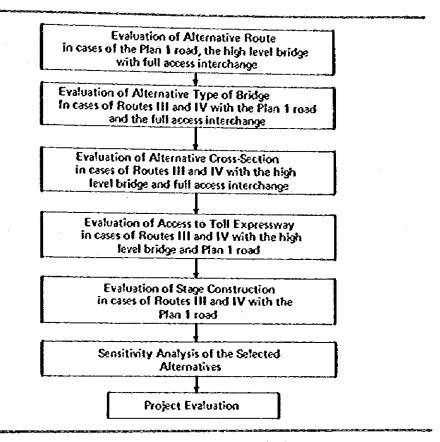


Fig. 7.2 PROCEDURE FOR ECONOMIC EVALUATION

Table 7.1 ALTERNATIVE PLANS FOR ECONOMIC EVALUATION

Alternative Route	Type of Bridge	Cross-Section Plan	Access Type	Abbreviation of Alternative Plan
Route I		4lane	Full	Route I-F, 4-L
Route II		4-lane	Full	Route II-F, 4-L
		Plan i	Full	Route III-F, Plan 1
	High Level		Partial	Route III-P, Plan 1
Route III	i	Plan 2	Full	Route III-F, Plan 2
	Medium Level	Pian 1	Full	Route III-F, Plan 1 with Medium Leve
	High Level	Plan 1	Full	Route IV-F, Plan 1
			Partial	Route IV-P, Plan 1
Route IV		Plan 2	Full	Route IV-F, Plan 2
	Medium Level	Plan 1	Full	Route IV-F, Plan 1 with Medium Leve
Route V	High Level	4-fane	Full	Route V-F, 4-L
Route VI	High Level	4-lane	Full	Route VI-F, 4-L

Note: Plan 1: 6-lane road from the Toll Expressway to the Prai Roundabout and 4-lane road for the other part of the Project Road.

Plan 2: 6-lane road from the Toll Expressway to North Butterworth Container Wharf and a 4-lane road for the other part of the Project Road.

7.3 経済費用の算出

7.3.1 経済費用算出のための建設工程

調査道路の最適投資時期を検討するために、詳細設計及び工事実施工程は、可能な 限り期間を短縮して計画された。工程は次の通りである。

詳細設計 1982 7 ~ 1983 12 用地買収 1984 1 ~ 1985 12 道路建設 1985 6 ~ 1987 12 構造物建設 1984 10 ~ 1987 12

Table 7.2 PRELIMINARY CONSTRUCTION SCHEDULE

Year Items	1982	1983	1984	1985	1986	1987	1988
Detailed Engineering			ļ ——				
ROW Acquisition			-				
Road Construction					r Mark Brokktan		i
Structure Construction					******		

Accordingly, the Project Road is expected to be opened to traffic in the year 1988.

7.3.2 経済費用

建設工事費の詳細は第6章ですでに述べられている。

建設工事費の内訳は、用地取得費、保賃費、道路工事費と構造物工事費である。 プロジェクトの評価をするために、費用と便益は経済費用をもって計算される。経 済費用とは下記の通りである。

- a 経済費用は基本的に財政費用から税金を差引いたものである。
- b 政府所有の土地評価は経済費用に含まれる。
- c 砂浜の用地取得費は経済費用に含まれる。 各比較案の計算された経済費用の結果は表2.4、2.5 に示される。

7.3.3 経済費用の年次配分

計画道路の建設は嵩工作為工時期等考慮して6年間を設定した。各工種の程済費用の年次配分は表 7.3 に示される。

Table 7.3 STREAM OF ECONOMIC COSTS

Year Year	Oetailed R.O.W. Study Acquisition		Road Construction	Structure Construction
1982	50%	_	_	
1983	50%	-		
1984		50%		10%
1985		50%	25%	30%
1986	•	-	30%	30%
1987			45%	30%

7.3.4 推持管理費

経済評価のための維時管理費は、第6章に述べられている。

7.4 交通費用の算出

7.4.1 摄 要

交通費用は、自動車運行費用と時間費用の2つ化区分される。 自動車運行費用は、走行費用と固定費用と化区分される。 各費用の算出は "Year Book of Transpout Statistics 1979" に準する。 自動車運行費用は下記に示す車種別に求められる。

- a モーターサイクル
- b 桑用車
- c タクシー
- d バス
- e 轻量荷物車
- f 中量荷物車
- g 重量荷物車

Table 7.4 ECONOMIC COSTS BY ALTERNATIVE PLANS

Alternative Route	Type of Bridge	Cross- Section	Access Type	Economic Cost (M\$'000)
Route I	-	4-lane	Full	89 617
Route II		4-lane	Full	
		Plan 1	Full	116,284
Route III	High Level	LISH I	Partial	115,446
		Pian 2	Full	134,289
	Medium Level	Plan 1	Full	115,446
		Plan 1	Full	122,182
	High Level	- 1611 3	Partial	121,344
Route IV		Plan 2	Full	140,186
	Medium Level	Plan 1	Full	125,877
Route V	High Level	4-lane	Full	
Route VI	High Level	4-lane	Full	129,670

Table 7.5 ECONOMIC COSTS BY ALTERNATIVE PLANS

Alternative Route	Type of Bridge	Cross- Section	Access Type	Section	Economic Cost (M\$'000)
Route III	High Level	Plan 1	Plan 1 Full	Section 1	72,160
		F (Q)	FOR	Section 2	44,124
Route IV	High Level	Plan 2	Full	Section 1	72,160
1100(614	enga eerei	# 1011 Z	FUIL	Section 2	50,021

2.4.2 自動車運行費用

(t) 運行費用

1) ガソリン代

ガソリン代は、1 kg当りのガソリン消費量、走行速度、最近のガソリン代等を基本にして設定された。

2) オイル代

オイル代は、16時のサイル消費量、及び最近のオイル代を考慮して設定された。

3) タイヤ代

タイヤ代は、タイヤの耐久年数、年間走行距離、タイヤそれ自体の費用を基に 設定された。

4) 維持管理費と修理費

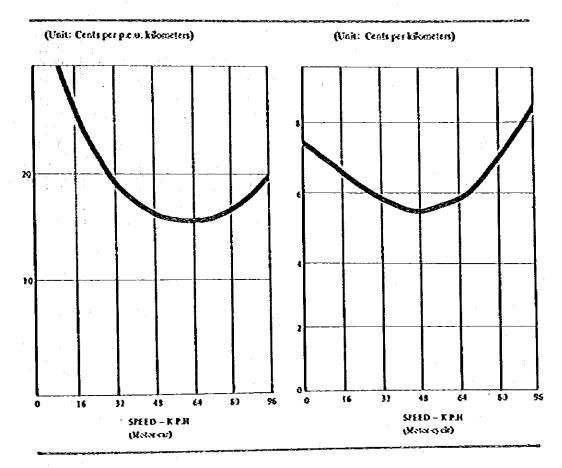
選持管理と修理費は、人件費と舒品代からなる。人件費は、各々の自動車に対して、総労働時間を使用して計算され、舒品代は、自動車の箇格の割合で計算される。

5) 波質貨却費

減賃賃却費は、全減賃債却の割合で計算され、その結果は表7.6に示される。

Table 7.6 DEPRECIATION AND SALVAGE VALUE

Type of Vehicle	Percentage of Depreciation (%)	Salvage Value (% of Vehicle Cost)
M/Cycle	30	15
Private Car	30	20
Taxi	85	15
Bus	70	15
Light-Van	60	15
Medium Truck	70	15
Heavy Lorry	70	15
		


Source: Year Book of Transport Statistics 1975

1 毎当りの基本走行費用は、上記で説明した要素を考慮して計算された。計算結果 は表 7.7 に示される。

Table 7.7 DISTANCE-DETERMINED RUNNING COSTS (In cents per km at 1981 Prices)

Type of vehicle	M/Cycle	Car	Taxi	Bus	Light Van	Medium Lorry	Heavy Lorry
Running Cost	5.59	14.93	11.13	24.84	17.54	38.59	46.30
Fuel	2.95	7.70	3.24	6.29	7.18	11.91	11.01
Oit	0.22	0.76	1.13	1.51	1.13	1.51	2.32
Tyres	0.24	0.90	1.20	6.42	1.91	7.24	10.70
Maintenance	1.45	3.40	2.66	5.49	4.38	12.05	15.02
Depreciation	0.73	2.17	2.90	5.13	2.94	5.88	7.25

走行費用に影響を与える要素は、自動車の走行速度と道路路面の状態である。しか しながら、ペナン州の道路路面状況は良好であり、そのため自動車の走行速度のみ考 慮する。走行速度変化による走行費用は、図 7.3 K示される。

Note: The figure for motor car is obtained by using the p.c.u. by vehicle type and the composition rate of vehicles.

Fig. 7.3 RELATIONSHIP BETWEEN RUNNING COSTS AND SPEED

(2) 固定費用

1) 乗務員の費用

乗務員の費用は、タクシーの運転士、バスとトラックの運転士、バスの車等、 大雅トラックの積荷のための人夫等別けて計算される。

2) 時間関連債却費

時間関連債却費は、総債却費から距離関連債却費を差引いて求める。

3) 金 利

機会費用を年12岁と設定したので車額費用に対しても同様の利子率を用いて 計算する。

4) 管理費

事故費用の代替として、保険費用と管理費を固定費に含める。 表 7. 8 は上記費用の合計によって時間あたり固定費を車程別に求めてある。

Table 7.8 TIME-DETERMINED RUNNING COSTS (In M\$ per hr. at 1981 Prices)

Type of vehicle	M/Cycle	Çar	Taxi	8us	Light Van :	Medium Lorry	Heavy Lorry
Fixed Cost	0.35	1.51	2.97	6.41	1.56	3.98	6.38
Crew		0.25	1.74	4.36	2.09	2.70	3.11
Depreciation	0.19	0.56	0.16	0.66	0.19	0.35	0.43
Interest	0.15	0.70	0.45	1.76	0.38	0.93	1.15
Overhead			0.62	2.38	0.46	1.71	1.69
Sub-Total	0.35	0.51	2.97	9.16	3.13	5.69	6.38
Fleet substitu- tability factor	1.0	1.0	1.0	0.7	0.5	0.7	1.0

7.4.3 時間費用

時間費用は、家庭の収入からのアプローチを使用して計算される。計算は次の項目に従う。

- a) 旅行者は短縮された時間に対してその分の費用を払う。
- b) 旅行時間の旅行者の賃貸はその人の個人収入により決まる。
- c) 旅行時間の旅行者の価値は、旅行目的により決まる。 各自動車の時間費用は、次の式により計算される。

$$C_j = N_j \cdot I_j \times \sum_i T_i \cdot P_i$$

. Cj = 自動車 j の時間費用

NJ = 自動車子の平均乗車人数

1] = 自動車子の乗車員の時間当り収入

Ti ニトリップパーパス主の構成率

• の時間負債要素

各項目は次の様に計算された。

1) 平均乗車率(Ni)

乗用車:

3.0 人/台

オート・パイ ; 1.4人/台

バス

; 24人/台

979---

3.6人/台

出典 Yean book of Transport Statistics Maluysia 1979

2) 時間収入(Ij)

時間収入杖、自動車を持たない人、ォートバイを持つ人、自動車を持つ人のそ れぞれの年収入と年労働時間から計算される。

自動車を持たない人

M\$ 1.44/時

オートバイを持つ人

M\$ 2.41/時

自動車を持つ人。

M\$ 5.41/時

3) 自動車の時間賃値

- 各々の目的別時間賃値・要素は、前述された仮定と、図表化された。 各目的別トリップの構成率を基準に計算された。

Table 7.9 TIME VALUE FACTOR AND COMPOSITION RATIO BY TRIP PURPOSE

Trip Purpose	Time Value Factor	Composition Batio (Ti)			
(i) ·	(Pi)	for owner	for non-owner		
Business	100% of hourly income	18%	14%		
To and from work	50% of hourly income	60%	46%		
Private	No value	22%	40%		
Total		100%	100%		

Therefore: EPi - Ti = 48% (for Vehicle Owner)

= 38% (for Non-Vehicle Owner)

自動車別時間費用は表で10 化示される。

Table 7.10 TIME VALUE OF VEHICLES (In M\$ per hr. at 1981 Price)

Passenger Car	M\$7.79/hr.
Motor-Cycle	M\$1.62/ hr.
8us	M\$13.14/hr.
Taxi	M\$6.75/ hr.

7.5 便益の算出

7.5.1 考慮される便益

直接便益は、計画道路が終工される前と後との交通費用の差により求められる。 交通特性は3つの分野に別けられる。

- a) 計画道路が実約されない時の交通(通常交通)
- b) 計画道路が実施されそれに転換する交通(転換交通)
- c) ・ それに転換しない交通(転換しない交通)

通常交通は、計画道路の有・無比関係なく、常に走行している交通で走行費用と 時間費用の短稿が便益となる。

転換交通は、計画道路完成後に転換される。この転換交通は走行費用と、路線が長くなったり、混雑のためより時間がかかった旅行時間の短縮が便益となる。

加えて、計画道路のほとんどが衝設道路の場合、転換交通として使用される。

転換されない交通は、現道が混雑していないため、交通費用の中に便益が生じる。 上記の3つの便益の他に、発生交通からの発生便益がある。

この発生便益は、この調査の内では考慮されていない。なぜならば、この便益は非常に小さいので省略する事が出来るからである。

そのため、計画道路の便益は、下記に示す様に通常交通、転換交通、転換しない交通の便益をとりあつかり。

- a. 族行時間の減少(時間便益)
- b 運行費用の節約(走行費用)
 - 走行費用の節約(距離に比例)
 - 固定費用の節約(時間に比例)

7.5.2 便益計算方法

各々の便益の計算には次の計算式が使用される。

1) 時間便益

$$TB = \sum_{ij} (pij (tij^{wo} - tij^{w}) v)$$

TB ; 時間便登

pij : 計画道路を使用しソーン i とソーン j 間の利用者

tij^{wo} ; 計画道路が実施されない場合のソーン i とソーン j 間の旅行時間

tij^w ; 計画道路が実施された場合のソーン i とソーン j 間の旅行時間

v ; 時間價值

2) 運行費用の節約

$$RB = \sum_{i,j} Tij \left(\left(Lij^{wo} RCij^{wo} - Lij^{w} \cdot RCij^{w} \right) + \left(tij^{wo} - tij^{w} \right) \right)$$
× FCij

RB : 走行費用の節約

Tij : ソーンiとソーンj間の交通量

Lij : ゾーンiとゾーンj間の旅行距離

RCij : ソーンiとソーンj間の走行費用

FCij : ゾーンiとゾーン j間の固定費用

7.5.3 便益計算

ネットワーク配分モデルを使用し、各比較案の便益は表 7.11 7.12 そして 7.13 に示される。

Table 7.11 BENEFITS BY TYPE

A	ternative	Vehi	cle Operating	Cost	Time	
	Route	Running Cost	Fixed Cost	Total	Cost 8,906 (46.6%)	Total
1990	Route III	7,117 (32.2%)	3,103 (16.2%)	10,220 (53.4%)		19,126 (100,0%)
٠.	Route IV	6,643 (34,3%)	3,285 9,928	9,407 (48.7%)	19,335 (100.0%)	
2000	Route III	17,849 (35.0%)	8,687 (17.0%)	26,536 (52.0%)	24,415 (48.0%)	50,951 (100.0%)
	Route IV	18,505 (34,5%)	9,198 (17.2%)	27,703 (51.7%)	25,873 (48.3%)	53,576 (100.0%)

Note: Upper figure: Benefit (A!\$'000) Lower figure: Composition (%)

Table 7.12 BENEFIT BY ALTERNATIVE PLANS

Alternative Route	Type of Bridge	Cross- Section	Access Type	Benefit in 1990 (M\$*000)	Benefit in 2000 (M\$'000)	Year for Exceeding Capacity
Route i	_	4-fane	Full	13,455	34,431	1999
Route II	-	4-lane	Full	13,664	36,626	1999
			Full	19,126	50,951	2001
	High Level	Plan 1	Partial	17,558	42,816	2001
Route III	Ingil Leter	Plan 2	Full	19,126	52,596	2005
	Medium Level	Plan 1	Fuil	19,126	60,951	2001
			Full	19,335	53,576	2001
Route IV	High Level	Plan 1	Partial	17,757	45,047	2001
	mg/rector	Plan 2	Full	19,335	55,317	2005
•	Medium Level	Plan 1	Full	19,335	53,576	2001
Route V	High Level	4-lane	Full	19,226	50,615	2001
Route VI	High Level	4-lane	Full	19,135	53,184	2001

Notes: Plan 1 in cross-section: 6-lane from the Toll Expressway to the Prai Roundabout and

4-lane for the other part of the Project Road.

Plan 2 in cross-section: 6-lane from the Toll Expressway to the North Butterworth Container Wharf and 4-lane for the other part of the Project Road.

Table 7.13 BENEFIT BY SECTION

Alternative Route	Type of Bridge	Cross- Section	Access Type	Section	Benefit in 1990 (M\$'000)	Benefit in 2000 (M\$'000)	Year for Exceeding Capacity
Route III	High Level	Pian 1	Full	Section 1	11,749	37,814	2000
noote III	High Level	Pian 1	Full	Section 2	7,378	13,137	2005
Route IV	High Level	Pian 1	Full	Section 1	11,749	37,814	2000
tosts IV	High Level	Pian 1	Full	Section 2	7,585	15,762	2005

7.6 程済評価

む 比較路線の評価

比較路線の経済分析は表 7.14 化示される。すべての比較路線は経済的に可能 であることが示されている。その内で、ルートflとルートNがより経済的可能性 が高い。

Table 7.14 ECONOMIC INDICATOR BY ROUTE PLANS

		1			Cight advertisable
Alternative Route	Discounted Benefits (\$1000)	Discounted Costs (\$'000)	B/C Ratio	Net Present Value (\$'000)	Internal Rate of Return (%)
Route I-F, 4-L	80,712	57,615	1.401	23,097	15.5
Route II-F, 4-L	80,952	60,662	1.384	23,290	15.4
Route III-F, Plan 1	124,880	73,302	1.704	51,578	17.5
Route IV-F, Plan 1	129,343	76,351	1.694	52,992	17.4
Route V-F, 4-L	124,628	77,621	1.606	47,007	16.8
Route VI-F, 4-L	124,130	80,665	1.539	43,465	16.4
		· K			

Notes: a. Discount Rate

b. Project Life

: 25 years c. In case of the High Level Bridge

2) 橋梁形式の評価

橋架形式比較案の程済分析結果は、表 7.15 に示される。 両案とも経済的に可 能である。しかしながら、16mの桁下空間をもつ橋梁より、25mの桁下空間 をもつ高橋梁の方がより程済的可能性が高い。

Table 7.15 ECONOMIC INDICATORS BY TYPE OF BRIDGE

Alternative Route	Type of Bridge	Discounted Benefit (\$1000)	Discounted Cost (\$'000)	B/C Ratio	Net Present Value (\$*000)	Internal Rate of Return (%)
	High Level Bridge	124,880	73,302	1.704	51,578	17.5
Plan 1	Medium Level Bridge	124,880	76,820	1.626	48,060	16.9
Route IV-F	High Level Bridge	129,343	76,351	1.694	52,992	17.4
Plan 1	Medium Lev- el Bridge	129,343	79,869	1,619	49,474	16.8

Notes: a. Discount Rate: 12%

b. Project Life : 25 years

3) 車線数の比較案の評価

車線数の比較経済分析結果は表7.16 に示される。両案とも経済的に可能であ るが、プラン1(有料高速道路からプライ交差点まで6車線、その他4車線)は プラン2よりも経済的可能性が高い。

Table 7.16 ECONOMIC INDICATORS BY CROSS-SECTION PLAN

Alternative Route	Type of Plan	Discounted Benefit (\$'000)	Discounted Cost (\$000)	B/C Ratio	Net Present Value (\$'000)	Internal Rate of Return (%)
	Plan 1	124,880	73,302	1.704	51,578	17.5
Route III-F	Plan 2	141,116	84,438	1.672	66,722	16.8
	Plan 1	129,343	76,351	1.694	52,992	17.4
Route IV-F	Plan 2	147,220	87,485	1.683	59,735	16.9

Notes: a. Discount Rate: 12%

b. Project Life : 25 years

4) 有料高速道路の取付方法の評価 🖟

表 7.14 は取付方法についての経済分析の結果が示されている。との表から 全方向取付方法が部分取付方法より経済的可能性が高い事を示している。

Table 7.17 ECONOMIC INDICATORS BY ACCESS PLANS

Alternative Route	Type of Access	Discounted Benefit (\$'000)	Discounted Cost (\$'000)	B/C Ratio	Net Present Value (\$'000)	Internal Rate of Return (%)
Davida III	Full Access	124,889	73,302	1.704	51,578	17.5
Route III Plan 1	Partial Access	103,690	72,266	1.504	36,424	16.2
Route IV	Full Access	129,343	76,351	1.694	52,992	17.4
Płan 1	Partial Access	112,547	75,312	1.494	37,235	16.1

Notes: a. Discount Rates : 12%

b. Project Life

: 25 years

5) 暫定為王の評価

との経済分析の目的は、計函道路の優先類位を決めるために行われた。経済分 折の結果、セクション 1 がセクション 2 よりもより高い優先順位である事を示している。

Table 7.18 ECONOMIC INDICATORS BY SECTION

Alternative Route	Type of Section	Discounted Benefit (\$'000)	Discounted Cost (\$'000)	B/C Ratio	Net Present Value (\$'000)	Internal Rate of Return (%)
Route III	Section 1	84,443	44,894	1.925	41,549	18.6
Plan 1	Section 2	40,437	28,411	1.423	12,026	15.5
Route IV	Section 1	84,443	44,894	1.925	41,549	18.6
Plan 1	Section 2	44,677	31,463	1.420	13,214	15.3

7.7 感度分析

- a. 計画に対する総事業費
- b. 🦸 🦸 便背
- c. 投資時期の変化
- d. 計画年次の変化
- e. オートバイの乗用車換算係数の変化
- 1. 東西道路の路線の追加
- g. 比較路線であるAルートが4車線に拡向された場合

ルート川、ルートNに対する影響

感能分析の結果は表7.19 に集約されている。詳細な説明は下記の通りである。

(1) 事業費

事業費化与える影響の要素は次の通りである。

- a. 工事数量
- b. 材料の単位単領
- c. 建設機械の単位単質
- d. 建設機械の能力
 - e. 労働者の能力

上記の項目の変化により、建設費を20多増加させても、まだルート目及びルートNは程務的に可能である。

(2) プロジェクトの便益

交通費用算出の項で述べた様に便益に影響する項目は下記の通りである。

a. 自動車の1 ka当りの旅費

- b. 自動車の1時間当りの旅費
- c. 時間費用
- d. 走行费用
- e. 倒定费用

プロジェクトの便益を20多減少させても、ルート班、ルートX社経済的に可能である。

(3) 建設費と便益の組合せ

建設費用を20多増加させ、便益を20多減少させても、まだルート目、及びルートIVは経済的に可能である。

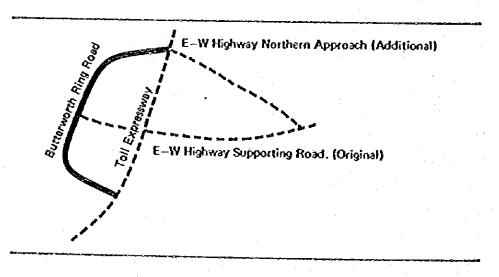
(1) 建設費の投資年次

この計算では頭初窓に比べて、より建設費の影響がより大きくなる様に、投資時期を変更して計算した。

その結果、すべての計算案は経済的に可能である。

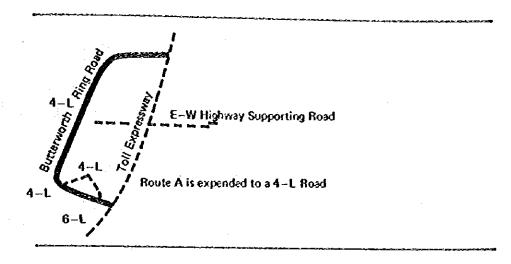
(5) 計函対象手数

との計算は計画対象年数を25年から5年稿少し、20年で行った。 その結果、すべての計画家は経済的に可能である。


(6) モーターサイクルの乗用車換算率の変化

類初計画家のモーターサイクルの乗用車換算率は 0.7 5 を使用したが、この計算ではモーターサイクルの乗用車換算率を 0.5 として計算した。

この結果すべての計画案は頭初案よりも経済的に優位を示している。


(1) 東西道路の追加

下図の様に東西道路を1本新たに計画した場合について計算された。

との結果、すべての計画案に対して経済的に可能である。

(8) ルートAが4車線に拡巾された場合のルート個とルートIVの検討、下図に示す様 にルートA(現在の国道1号線)が4車線に払巾された場合について計算した。

との結果、函案とも経済的に可能である。

上記の計算された感度分析の結果は表で19 に示される。

Table 7.19 RESULTS OF SENSITIVITY ANALYSIS

_	Alternative	Rou	te III - F, Pl	an 1	Roc	ite IV – F, Pla	ភ 1
	Route	8/C Ratio	NPV (M\$'000)	18R (%)	8/C Ratio	NPV (M\$'000)	IRR (%)
١.	Original Results	1.704	51,578	17.5	1.694	52,992	17.4
Ż.	20% Cost Increase	1.420	36,918	15.5	1.412	37,723	15.4
3.	20% Benefit Decrease	1.363	26,603	15.0	1.355	27,125	15.0
4.	20% Cost Increase and 20% Benefit Decrease	1.136	11,943	13.2	1,129	11,856	13.2
5.	Change in Cost Stream	1.619	47,727	16.7	1.614	49,222	16.6
6.	Project Life 20 Years	1,560	41,027	16.9	1.549	41,849	16.8
7.	Change in PCU of M/Cycle	2.163	85,257	20.8	2.153	87,998	20.7
8.	Alignment of the support- ing road of the East-West Highway	1.550	40,346	16.4	1.551	42,082	16.4
9.	When Route A is expanded to 4—Tane road	1,591	52,808	16.3	1.605	55,867	16.4

7.8 プロジェクトの評価

1 経済分析の結果、比較路線ルートⅡ及びルートⅣが他の比較路線に比べて、より 優れた比較案と言える。ルートⅡとルートⅣを比較した場合、下記の理由によりル ートⅣがルートⅢより優れた路線と言える。

煙由

a. ルート但は現道パガン・アジャム通りの改良工事を含む。パガン・アジャム 通りはルート田が完成後、その道路機能として、都市内幹線道路の機能を分担 することになるだろう。この周辺の地域特性から考えると、この道路には長距 離交通、短距離交通等の混合交通が通行するだろう。交通機能から考えれば長 距離交通及び短距離交通は区分する事が望ましい。

しかしながら、ルート田の場合、上記で説明した様に機能の分散が不可能である。ルートNの場合、主として長距離交通をルートNに短距離交通を現道のパガン・アジャムに通行させる事により交通機能分散が可能となる。

また、ルートNはアクセスコントロールされているため、交通事故が減少する ものと思われる。地域住民に対する環境面においてもルートNは民家密集地を さけているため、ルート田より優れていると言える。

b. もし交通事故が発生した場合、その道路が一時的に通行不能になる事が考えられる。ルートN上で事故が生じた場合、現道のパガン・アジャムをその字題路として使用出来る。

- 逆にルート田上で事故が発生した場合、この字超路の確保が出来ない。

- c. 5.3章で述べた交通配合の結果から、ルートN社ルート目に比べてより低い い混雑度を示している。
- d. 約工の容易度から言えば、ルートNが容易である。なぜならば、ルートNは現在の交通を共用しながら約工しなければならないから。
- 2. 経済評価と交通調査の結果から有料道路からプライ交差点区間を6車線とし、他 区間を4車線とする。
- 3 程済評価及び技術的問題点から桁下25ノートルの空間をもつ、高橋梁楽は中橋 梁楽より優れている。

この提案は、プライ川に沿い2つの造輪場があるが、とれらの将来計画に対して も整合されている。

- 経済評価及び交通調査の結果、有料道路と計両道路との交差方式は全方向交通可能な交差方式を提言した。
- 5 . もし、建設予算に限界があった場合、第1工区(計画道路の南半分)を優先順位 第1とし、続いて第2工区(計画道路の北半分)を施工する。

8 実施計画

8.1 级 要

この章の目的はマレイシア政府の予算、他の道路計画の投資時期等を考慮して計画 道路の実施計画を建てるものである。

実始計画は下記の調査の検討後、設定される。

- a. 道路予算と道路の必要投資額との比較分析
- b. 事業費負出
- c. 実施予定の準備
 - d. 年間の投資額

マレイシア政府と協議の結果、実施計画は下記に記述される。

8.2 道路予算と道路の必要投資額との比較分析

8.2.1 道路予算の予列

道路予算と道路の必要投資額との比較分析はフェーズ I ですでに行われている。 そのため、この調査ではフェーズ I の調査結果を踏襲する。

将来道路投資額を算出するために、過去の資料を検討する。

表8.1 は1972年から1978年の間の道路投資額の傾向を示している。との間の伸率は14%である。道路投資額は、国道投資額と州道投資額と化別けられる。 (表8.2参照)

Year	Road Expenditure	Federal Road Expenditure	State Road Expenditure
1972	167.4	59.5	107.9
1973	203.9	94.3	109.6
1974	280.1	131.2	148.9
1975	325.9	173.6	152.3
1976	379.8		<u> </u>
1977	424.0		_
1978	414.0		

Table 8.1 ROAD EXPENDITURE (1972 - 1975)

Source: Highway Planning Unit

道路の投資総額は国の改入すなわちGDPK大きく左右する。それゆえ、との予 翻ではG.D.Pの伸率化従い予測する。その結果、道路投資額は1978年、4459 (百万マレーシアドル)、1985年、7115(百万マレーシアドル)、2000 年民社 21497(百万マレーシアドル)と予測される。

^{*} Estimated provisionally by HPU.

調査対象地域の道路投資額の配分柱総道路投資額の2多、4多、6多、8多である。 その結果を表8.2,8.3 に示す。

Table 8.2 FORECAST OF BUDGET (1981 – 2000) (In million M\$ at 1979 prices):

Year	Road Expenditure	Federal Road Expenditure	State Road Expenditure
1979	445.9	252.0	193.9
1935	711.5	602.0	309.5
2000	2,149.7	1,214.6	935.1

Table 8.3 FORECAST OF BUDGET ALLOCATED TO THE STUDY AREA (In million M\$ at 1979 prices)

Year	Road	Alfocation to Study Area				
	Expenditure	2%	4%	6%	8%	
1981	521.1	10.4	20.8	31.3	42.7	
1985	711.5	14.2	28.5	42.7	56.9	
1990	1,028.6	20.6	41.1	61.7	82.7	
2000	2,149.7	43.0	86.0	129.0	174.0	

8.2.2 ペナンの道路建設に対する必要投資額

道路建設ド対する必要投資額は、本計画道路を含め、フェーズ | の基本計画ですで に 検討されている。 この資料によればペナン島内では 23 ケ所の建設、また、ウェルスリー県では 20 ケ所の建設が予定されており、 総建設費は 608 (百万マレーシアドル)が提案されている。

1981年から1985年の5年間で道路建設は200(百万マレーシアドル) 1986年から1990年の5年間では219(百万マレーシアドル)が予閉される。

Table 8.4 INVESTMENT REQUIREMENTS BY PHASE (In thousand MS at 1979 prices)

Items	Phase 1 (1981—1985)	Phase 2 (1986–1990)	Phase 3 (1991–2000)	Yotal
Highway Projects	199,525	218,712	189,714	607,951
Intersection Improvements	38,741	19,755	7,030	65,526
Others	7,718	679	172	8,569
Total	245,984	239,146	196,916	682,046

Notes: 1) The construction cost includes the detailed engineering and construction supervision.

2) The cost of the Project Road is included in Phase 1 and 2.

8.2.3 予算と必要投資額との比較

もし、マレイシア国の予算が1981年から2000年まで約3%の上昇するならは、フェーズ1で提案したすべての計画の実行が可能であると思われる。しかしながら、将来において他の必要な計画も提案されるだろう。

Table 8.5 COMPARISON BETWEEN FUNDS AND EXPENDITURE (In million M\$ at 1979 prices)

Phase	Investment Requirements	Highway Funds
Phase 1 1981 1985	246.0	91.7
Phase 2 1986 - 1990	239.1	133.7
Phase 3 1991 - 2000	196.9	472.8
Total	682.0	698.2

8.3 実施工程

計画道路の実施計画を算定するためには、程済評価の結果や財源を考慮しなければならない。予算と必要投資額との比較分析の結果、10年間はかなりの財源が要求される。

この様な状況を考慮すると経済分析で使用した年数、例えば1982-1987年よりもより長い年月が必要とされるであろう。

- 一方、計画の評価の結果は下記に記述される。
- a. 用地の暫定買収又は道路の2車線から1車線への暫定施工は実行困難なため、 ととでは取り扱わないものとする。
- b. 区間別れおける哲定約工は前述した様に優先類位を考慮して決める。

上記の事項を考慮して、暫定終工計画は下記の様に定める。

第1段階 : 計画道路の南区間(第1工区)

(プライ適りと、有料高速道路の交差点からバタワースの新コンテナー港の人口まで)

第2段階 : 計画道路の北区間(第2工区)

(パタリースの哲コンテナー港人口から、スンガイ・ドウクの有料高 速道路の交差点まで)

暫定施工を基礎にし、約工計画は図 & 1 に示される様に 2 段階の約工計画が勧告された。

8.4 必要投資額

施工計画を基礎とし、本調査の投資要求額は用地費、補債費、道路建設費をして、 橋梁建設費として貸出された。また、これらは、1981年の価格にもとずき、内貨、 外貨とに区分されている。年間必要投資額は表8.7 に示され、また、段階施工による 必要投資額は表8.8 及び8.9 にそれぞれ示される。

Fig. 8.1 RECOMMENDED IMPLEMENTATION SCHEDULE

Items	Year	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991
Detai	ted Engineering					ļ ——i					
	Land Acquisition) man_25						
	Road Construction				**********		*****			-	
Phase 1	Construction of Prai River Bridge										
	Construction of Flyorer Bridges				4						
	Land Acquisition				 						
Phase 2	Road Construction	* 				 					
	Construction of Fly- over Bridges	<u> </u>						desc.			<u> </u>

Table 8.6 PROJECT COST (In thousand M\$ at 1981 Prices)

Items	Foreign	Local	Total
Detailed Engineering and Construction Supervision	4,192	4,254	8,446
Phase 1			
Land Acquisition	0	12,198	12,198
Road Construction	5,148	5,897	11,045
Structure Construction	21,561	19,371	40,932
Total	26,709	37,466	64,175
Phase 2			
Land Acquisition	0	4,792	4,792
Road Construction	11,656	13,881	25,537
Structure Construction	3,550	3,393	6,943
Total	15,206	22,066	37,272
Total			
Land Acquisition	0	16,990	16,990
Road Construction	16,804	19,778	36,582
Structure Construction	25,111	22,764	47,875
Total	41,915	59,532	101,447
Grand Total	46,107	63,786	109,893

Note: Tax is included in Local Currency

Table 8.7 ANNUAL INVESTMENT REQUIREMENTS FOR PHASE 1 AND 2 (In thousand M\$ at 1981 Price)

Const- ruction	Land Acquisition	Road	Constru	uction	Structu	re Consi	truction	:	Total	•
Year	Local	Foreign	Local	Total	Foreign	Local	Total	Foreign	Local	Total
1982		528	528	1,056				528	528	1,056
1983		1,584	1,584	3,168				1,584	1,584	3,168
1984	9,148				3,224	2,838	6,062	3,224	11,986	15,210
1985	3,050	1,082	1,238	2,320	4,522	4,063	8,585	5,604	8,351	13,955
1986	2,396	1,621	1,857	3,478	7,434	6,710	14,144	9,055	10,963	20,018
1987	2,396	2,703	3,096	5,799	6,135	5,484	11,619	8,838	10,976	19,814
1988	-	4,895	5,830	10,725	1,263	1,202	2,465	6,158	7,032	13,190
1989		3,672	4,373	8,045	2,525	2,404	4,929	6,197	6,777	12,974
1990	· -	3,672	4,372	8,044	1,262	1,202	2,464	4,934	5,574	10,508

Notes: a. The Construction includes the detailed engineering and construction supervision

b. Tax is included in the "Local Currency".

Table 8.8 ANNUAL INVESTMENT REQUIREMENTS FOR PHASE 1 (In Thousand M\$ at 1981 Prices)

Const- ruction	Land Acquisition	Rose	Constru	ection	Structu	re Const	ruction		Tot	al
Year	Local	Foreign	Local	Total	Foreign	Local	Total	Foreign	Local	lotal
1984	9,148			1	3,071	2,703	5,774	3,071	11,851	14,922
1985	3,050	1,030	1,179	2,209	4,307	3,870	8,170	5,337	8,099	13,429
1986		1,544	1,769	3,313	7,030	6,390	13,470	8,624	8,159	16,783
1987		2,574	2,949	5,523	5,843	5,222	11,065	8,417	8,171	16,588

Notes: a. Excluding the detailed engineering and construction supervision

b. Tax is included in the "Local Currency".

Table 8.9 ANNUAL INVESTMENT REQUIREMENTS FOR PHASE 2
(In Thousand M\$ at 1981 Prices)

Const- ruction	Land Acquisition				Structu	Structure Construction			Total		
Year	Local	Poreign	Foçsi	Total	Foreigh	Local	Total	Foreign	Local	Total	
1986	2,396							0	2,396	2,396	
1987	2,396						. :	0	2,396	2,396	
1988	0	4,662	5,552	10,214	1,203	1,145	2,348	5,865	6,697	12,562	
1989		3,497	4,165	7,662	2,405	2,289	4,694	5,902	6,454	12,356	
1990		3,496	4,164	7,660	1,202	1,145	2,347	4,698	5,309	10,007	

Notes: a. Excluding the detailed engineering and construction supervision.

b. Tax is included in the "Local Currency".

補稿編

補稿A 便益-費用の流れ

1. APPENDIX-A

A-1 BENEFIT-COST STREAM

Alternative Route I with Full Service Interchange, High-Level Bridge and Plan 1.

Discount Rate = 0.120 B/C Ratio = 1,401 N. P. W. = 23097. 1. R. R. = 0.155

		ounted	Discou	inted .
Year	Cost	Benefit	Cost	Benefit
1 1981	0	0	0	0
2 1932	1182	0	1055	0
3 1983	1182	0	942	0
4 1984	21173	0	15071	o
5 1985	32401	0	20591	l 0
6 1986	14885	0	8446	0
7 1987	18799	0	9524	0
8 1988	500	11150	226	5044
9 1989	500	12248	202	4947
10 1990	500	13455	180	4852
11 1991	500	14781	161	4759
12 1992	500	16237	144	4668
13 1993	500	17836	128	4578
14 1994	500	19593	115	4490
15 1995	500	21524	102	4404
16 1996	500	23644	91	4320
17 1997	500	25973	82	4237
18 1998	500	28532	73	4156
19 1999	500	31343	65	4076
20 2000	500	31343	58	3639
21 2001	500	31343	52	3249
22 2002	500	31343	46	2901
23 2003	500	31343	41	2590
24 2004	500	31343	37	2313
25 2005	500	31343	33	2065
26 2006	500	31343	29	1844
27 2007	500	31343	26	1646
28 2008	500	31343	23	1470
29 2009	500	31343	21	1312
30 2010	500	31343	19	1172
31 2011	500	31343	17	1048
32 2012	500	31343	15	934

		' TOTAL '
Undiscounted Cost	=	102122
Undiscounted Benefit	#	643775
Discounted Cost	=	57615
Discounted Benefit	=	80712

A-2 BENEFIT-COST STREAM

Alternative Route II with Full Service Interchange, High-Level Bridge and Plan 1.

Discount Rate = 0.120 B/C Ratio = 1.384 N. P. W. = 23290. I. R. R. = 0.154

	Undisc	counted	Discounted		
Year	Cost	Benefit	Cost	Benefit	
1 1981	0	0	0	. 0	
2 1982	1381	0	1233	0	
3 1983	1381	0	1101	0	
4 1984	19637	0	13977	Ó	
5 1985	33006	0	20976	0	
6 1986	17401	0	9874	0	
7 1987	22710	0	11506	Ó	
8 1988	502	11219	227	5075	
9 1989	502	12381	203	5000	
10 1990	502	13664	181	4927	
11 1991	502	15080	162	4855	
12 1992	502	16643	144	4784	
13 1993	502	18367	129	4714	
14 1994	502	20270	115	4645	
15 1995 -	502	22371	103	4578	
16 1996	502	24689	92	4511	
17 1997	502	27247	82	4445	
18 1998	502	30071	73	4380	
1999	502	33187	65	4316	
20 2000	502	33187	58	3853	
21 2001	502	33187	52	3440	
22 2002	502	33187	46	3072	
23 2003	502	33187	- 41	2743	
24 2004	502	33187	37	2449	
25 2005	502	33187	33	2186	
26 2006	502	33187	30	1952	
27 2007	502	33187	26	1743	
28 2008	502	33187	24	1556	
2009	502	33187	21	1390	
2010	502	33187	19	1241	
31 2011	502	33187	17	1108	
32 2012	502	33187	15	989	

	- <u></u>	* TOTAL *	
Undiscounted Cost	=	108066	
Undiscounted Benefit	· =	676620	
Discounted Cost	=	60662	
Discounted Benefit	=	83952	

A-3 BENEFIT-COST STREAM

Alternative Route III with Full Service Interchange, High-Level Bridge and Plan 1.

Discount Rate = 0.120 B/C Ratio = 1.704 N. P. W. = 51578. I. R. R. = 0.175

Unit: 1000 M\$

		ounted	Discou	inted
Year	Cost	Benefit	Cost	Benefit
1 1981	0	0	0	0
2 1982	1801	0	1608	o
3 1983	1801	0	1436	ه ا
4 1984	23394	0	16651	0
5 1985	39368	0	25337	o
6 1986	22688	0	12874	0
7 1987	26733	0	13544	1 0
8 1988	466	15722	211	7112
9 1989	466	17341	188	7004
10 1990	466	19126	168	6897
11 1991	466	21095	150	6792
12 1992	466	23266	134	6688
13 1993	466	25662	120	6587
14 1994	466	28303	107	6486
15 1935	466	31217	95	6388
16 1996	466	34430	85	6290
17 1997	466	37975	76	6195
18 1998	466	41884	68	6100
19 1999	466	46195	61	6007
20 2000	466	50951	54	5916
21 2001	466	56196	48	5826
22 2002	466	56196	43	5202
23 2003	466	56196	39	4644
24 2004	466	56196	34	4147
25 2005	466	56196	31	3702
26 2006	466	56196	27	3306
27 2007	466	56196	24	2951
28 2008	466	56196	22	2635
29 2009	466	56196	20	2353
30 2010	466	56196	17	2101
31 2011	466	56196	16	1876
32 2012	466	56196	14	1675

TOTAL *

Undiscounted Cost = 127935
Undiscounted Benefit = 1067519
Discounted Cost = 73302
Discounted Benefit = 124880

A-4 BENEFIT-COST STREAM

Alternative Route IV with Full Service Interchange, High-Level Bridge and Plan 1.

Discount Rate = 0.120 B/C Ratio = 1.694 N. P. W. = 52992. 1. R. R. = 0.174

	Undisc	counted	Discot	inted
Year	Cost	Benefit	Cost	Benefit
1 1981	0	0	0	0
2 1982	2001	0	1787	0
3 1983	2001	0	1595	0
4 1984	21857	0	15557	0
5 1985	40474	0	25722	0
6 1986	25205	0	14302	0
7 1987	30644	0	15525	0
8 1988	468	15770	212	7134
9 1989	468	17461	189	7052
10 1990	468	19335	169	6972
11 1991	468	21410	151	6893
12 1992	468	23707	135	6815
13 1993	468	26250	120	6738
14 1994	468	29067	107	6661
15 1995	468	32185	96	6586
16 1996	468	35639	86	6511
17 1997	468	39462	76	6437
18 1998	468	43696	68	6364
19 1999	468	48385	61	6292
20 2000	468	53576	54	6221
21 2001	468	59324	49	6150
22 2002	468	59324	43	5491
23 2003	468	59324	39	4903
24 2004	468	59324	35	4377
25 2005	468	59324	31	3908
26 2006	468	59324	28	3490
27 2007	468	59324	25	3116
28 2008	468	59324	22	2782
29 2009	468	59324	20	2484
30 2010	468	59324	17	2218
31 2011	468	59324	16	1980
32 2012	468	59324	14	1768

133882
1117831
76351
129343

A-5 BENEFIT-COST STREAM

Alternative Route V with Full Service Interchange, High-Level Bridge and Plan 1.

Discount Rate = 0.120 B/C Ratio = 1.606 N. P. W. = 47007. 1. R. R. = 0.168

Unit: 1000 M\$

		counted	Discounted	
Year	Cost	Benefit	Cost	Benefit
1 1981	0	0	0	0
2 1982	2031	0	1813	ŏ
3 1983	2031	0	1619	ا آه
4 1984	23171	0	16493	0
5 1985	41514	l 0	26383	0
6 1986	25583	0	14517	0
7 1987	29446	0	14918	ا o
8 1988	472	15842	214	7166
9 1989	472	17452	191	7049
0 1990	472	19226	170	6933
1 1991	472	21180	152	6819
2 1992	472	23333	136	6708
3 1993	472	25704	121	6598
4 1994	472	28317	108	6490
5 1995	472	31195	97	6383
6 1996	472	34365	86	6278
7 1997	472	37858	77	6175
8 1998	472	41706	69	6074
9 1999	472	45945	61	5975
2000	472	50615	55	5877
21 2001	472	55769	49	5780
2 2002	472	55759	44	5161
23 2003	472	55759	39	4608
24 2004	472	55759	35	4114
25 2005	472	55759	31	3674
26 2006	472	55759	28	3280
27 2007	472	55759	25	2929
28 2008	472	55759	22	2615
29 2009	472	55759	20	2335
30 2010	472	55759	18	2084
31 2011	472	55759	16	1861
32 2012	472	55759	14	1662

' TOTAL '

Undiscounted Cost	=	135576
Undiscounted Benefit	±	1061846
Discounted Cost	=	77621
Discounted Benefit	=	124628
Discounted Devent		·

A-6 BENEFIT-COST STREAM

Alternative Route VI with Full Service Interchange, High-Level Bridge and Plan 1.

Discount Rate = 0.120 B/C Ratio = 1.539 N. P. W. = 43465. I. R. R. = 0.164

Unit: 1000 M\$

	Undis	counted	Discounted	
Year	Cost	Benefit	Cost	Benefit
1 1981	0	0	0 :	. 0
2 1982	2230	0	1991	Ò
3 1983	2230	0	1778	• 0
4 1984	21635	0	15399	0
5 1985 .	42121	0	26769	0
6 1986	28099	0	15944	0
7 1987	33357	0	16900	. 0
8 1988	474	15597	214	7055
9 1989	474	17276	191	6978
10 1990	474	19135	171	6900
11 1991	474	21195	153	6824
12 1992	474	23476	136	6749
13 1993	474	26002	122	6674
14 1994	474	28801	109	6600
15 1995	474	31901	97	6528
16 1996	474	35335	87	6456
17 1997	474	39138	77	6384
18 1998	474	43350	69	6314
19 1999	474	48016	62	6244
20 2000	474	53184	55	6175
21 2001	474	53184	49	6513
22 2002	474	53184	44	4923
23 2003	474	53184	39	4395
24 2004	474	53184	35	3924
25 2005	474	53184	31	3504
26 2006	474	53184	28	3128
27 2007	474	53184	25	2793
28 2003	474	53184	22	2494
29 2009	474	53184	20	2227
30 2010	474	53184	18	1988
31 2011	474	53184	16	1775
32 2012	474	53184	14	1585

* TOTAL *

Undiscounted Cost	=	141522
Undiscounted Benefit	=	1040614
Discounted Cost	E	80665
Discounted Benefit	=	124130

A-7 BENEFIT-COST STREAM

Alternative Route III with Full Service Interchange, High-Level Bridge and Plan 2.

Discount Rate = 0.120 B/C Ratio = 1.672 N. P. W. = 56722. J. R. R. = 0.168

		counted	Discounted	
Year	Cost	8enefit	Cost	Benefit
1 1981	0	l o	0	0
2 1932	2113	0	1887	0
3 1983	2113	0	1684	0
4 1984	26741	0	19034	0
5 1985	45886	1 0	29161	٥
6 1986	26614	0	15102	ō
7 1987	30822	0	15615	1 0
8 1988	492	15623	223	7067
9 1989	492	17286	199	6982
10 1990	492	19126	177	6897
11 1991	492	21162	158	6814
12 1992	492	23415	141	6731
13 1993	492	25907	126	6650
14 1994	492	28665	113	6569
15 1995	492	31717	101	6490
16 1996	492	35093	90	6411
17 1997	492	38829	80	6334
18 1998	492	42962	72	6257
19 1999	492	47536	64	6182
20 2000	492	52596	57	6107
21 2001	492	58195	51	6033
22 2002	492	64390	46	5960
23 2003	492	71244	41	5888
24 2004	492	78828	36	5817
25 2005	492	87220	32	5746
26 2006	492	87220	29	5131
27 2007	492	87220	26	4581
28 2008	492	87220	23	4090
29 2009	492	87220	21	3652
30 2010	492	87220	18	3261
31 2011	492	87220	16	2911
32 2012	492	87220	15	2599

	TOTAL	-
--	-------	---

Undiscounted Cost	=	146589	
Undiscounted Benefit	=	1370334	
Discounted Cost	=	64438	
Discounted Benefit	=	141160	

A-8 BENEFIT-COST STREAM

Alternative Route IV with Full Service Interchange, High-Level Bridge and Plan 2.

Discount Rate = 0.120 B/C Ratio = 1.683 N. P. W. = 59735. 1. R. R. = 0.169

	Undiscounted		Discou	
Year	Cost	Benefit	Cost	Benefit
1 1981	0	0	0	0
2 1982	2312	0	2064	0
3 1983	2312	0	1843	Ó
4 1984	25206	0	17941	Ò
5 1985	46494	0	29548	Ó
6 1986	29131	0	16530	0
7 1987	34734	0	17597	0
8 1988	494	15669	223	7088
9 1989	494	17406	200	7030
10 1990	494	19335	178	6972
11 1991	494	21478	159	6915
12 1992	494	23859	142	6859
13 1993	494	26503	127	6803
14 1994	494	29441	113	6747
15 1995	494	32704	101	6692
16 1996	494	36329	90	6637
17 1997	494	40356	81	6583
18 1998	494	44829	72	6529
19 1999	494	49797	64	6476
20 2000	494	55317	57	6423
21 2001	494	61448	51	6370
22 2002	494	68259	46	6318
23 2003	494	75825	41 🖖	6266
24 2004	494	84229	36	6215
25 2005	494	93565	33	6164
26 2006	494	93565	29	5504
27 2007	491 :	93565	26	3 4914
28 2008	494	93565	23	4388
29 2009	494	93565	21	3918
30 2010	494	93565	18	3498
31 2011	494	93565	16	3123
32 2012	494	93565	15	2788

		SUIAL	:
Undiscounted Cost	=	152539	
Undiscounted Benefit	=	1451304	
Discounted Cost	=	87485	
Discounted Benefit	=	147220	

A-9 BENEFIT-COST STREAM

Alternative Route III with Full Service Interchange, Medium-Level Bridge and Plan 1.

 Discount Rate
 =
 0.120

 8/C Ratio
 =
 1.626

 N. P. W.
 =
 48060.

 I. R. R.
 =
 0.169

	Undisc	ounted	Discounted	
Year	Cost	Benefit	Cost	Benefit
1 1981	0	0	0	0
2 1982	1519	0	1356	0
3 1983	1519	0	1211	0
4 1984	30493	0	21704	0
5 1935	44483	0	28270	0
6 1986	19133	0	10857	ĺ
7 1987	22838	0	11570	0
8 1988	466	15722	211	7112
9 1989	466	17341	188	7004
10 1990	466	19126	168	6897
11 1991	466	21099	150	6792
12 1992	466	23266	134	6688
13 1993	466	25662	120	6587
14 1994	466	28303	107	6486
15 1995	466	31217	95	6388
16 1996	466	34430	85	6290
17 1997	466	37975	76	6195
18 1998	466	41884	68	6100
19 1999	466	46195	61	6007
20 2000	466	50951	54	5916
21 2001	466	56196	48	5826
22 2002	466	56196	43	5202
23 2003	466	56196	39	4644
24 2004	466	56196	34	4147
25 2005	466	56196	31	3702
26 2006	466	56196	27	3306
27 2007	466	56196	24	2951
28 2008	466	56196	22	2635
29 2009	466	56196	20	2353
30 2010	466	56196	17	2101
31 2011	466	56196	16	1876
32 2012	466	56196	14	1675

en e		' TOTAL '
Undiscounted Cost	=	131635
Undiscounted Benefit	=	1067519
Discounted Cost	=	76820
Discounted Benefit	· #	124880

A-10 BENEFIT-COST STREAM

Alternative Route IV with Full Service Interchange, Medium-Level Bridge and Plan 1.

Discount Rate = 0.120 B/C Ratio = 1.619 N. P. W. = 49474. I. R. R. = 0.168

	Undis	counted	Discounted		
Year	Cost	Benefit	Cost	Benefit	
1 1981	0	0	0	0	
2 1982	1718	0	1534	• 0	
3 1983	1718	0	1370	0	
4 1984	28957	0	20611	0 0	
5 1985	45089	0	28655	0	
6 1986	21649	0	12284	0	
7 1987	26749	0	13552	0	
8 1988	468	15770	212	7134	
9 1989	468	17461	189	7052	
10 1990	463	19335	169	6972	
11 1991	468	21410	151	6893	
12 1992	468	23707	135	6815	
13 1993	468	26250	120	6738	
4 1994	468	29067	107	6661	
15 1995	468	32185	96	6586	
16 1996	468	35639	86	6511	
17 1997	468	39462	76	6437	
18 1998	468	43696	68	6364	
1999	468	48385	61	6292	
20 2000	468	53576	54	6221	
21 2001	468	59324	49	6150	
22 2002	468	59324	43	5491	
23 2003	468	59324	39	4903	
24 2004	468	59324	35	4377	
25 2005	468	59324	31	3908	
26 2006	468	59324	28	3490	
27 2007	468	59324	25	3116	
28 2008	468	59324	22	2782	
29 2009	468	59324	20	2484	
30 2010	468	59324	17	2218	
31 2011	468	59324	16	1980	
32 2012	468	59324	14	1768	

TOTAL	•
-------	---

Undiscounted Cost	= .	137580
Undiscounted Benefit	=	1117831
Discounted Cost	=	79869
Discounted Benefit	= .	129343

A-11 BENEFIT-COST STREAM

Alternative Route III with Partial Service Interchange, High-Level Bridge and Plan 1.

Discount Rate = 0.120 B/C Ratio = 1.504 N. P. W. = 36424. I. R. R. = 0.162

* 1.1	Undis	counted	Discounted				
Year	Cost	Benefit	Cost	Benefit			
1 1981	0	0	0	0			
2 1982	1784	0	1593	0			
3 1983	1784	0	1422	o			
4 1984	23338	0	16612	0			
5 1985	39639	0	25191	0			
6 1986	22481	0	12756	0			
7 1987	26421	0	13386	1 0			
8 1988	329	14691	149	6645			
9 1989	329	16061	133	6487			
10 1990	329	17558	119	6332			
11 1991	329	19195	106	6180			
12 1992	329	20985	95	6033			
13 1993	329	22941	84	5888			
14 1994	329	25080	75	5748			
15 1995	329	27418	67	5610			
16 1996	329	29975	60	5476			
17 1997	329	32769	54	5345			
18 1998	329	35824	48	5218			
19 1999	329	39164	43	5093			
20 2000	329	42816	38	4971			
21 2001	329	46808	34	4852			
22 2002	329	46808	30	4333			
23 2003	329	46808	27	3868			
24 2004	329	46808	24	3454			
25 2005	329	46808	22	3084			
26 2006	329	46808	19	2753			
27 2007	329	46803	17	2458			
28 2008	329	46808	15	2195			
29 2009	329	46808	14	1960			
30 2010	329	46808	12	. 1750			
31 2011	329	46808	11	1562			
32 2012	329	46808	: 10	1395			

	' TOTAL '						
Undiscounted Cost		123672					
Undiscounted Benefit	=	906173					
Discounted Cost	=	72266					
Discounted Benefit	=	108690					

A-12 BENEFIT-COST STREAM

Alternative Route IV with Partial Service Interchange, High-Level Bridge and Plan 1.

Discount Rate = 0.120 8/C Ratio = 1.494 N. P. W. = 37235. I. R. R. = 0.161

	Undis	counted	Discounted				
Year	Cost	Benefit	Cost	Benefit			
1 1981	0	0	0	0			
2 1982	1984	0	1771	0			
3 1983	1984	0	1582) 0			
4 1984	21801	0	15518	0			
5 1985	40245	0	25576	j 0			
6 1986	24997	0	14184	0			
7 1987	30332	0	15367	0			
8 1988	331	14740	150	6668			
9 1989	331	16179	134	6534			
10 1990	331	17757	119	6403			
11 1991	331	19489	107	6275			
12 1992	331	21391	95	6149			
13 1993	331	23478	85	6026			
14 1994	331	25768	76	5905			
15 1995	331	28283	68	5787			
16 1996	331	31042	60	5671			
17 1997	331	34070	54	5558			
18 1998	331	37394	48	5446			
19 1999	331	41043	43	5337			
20 2000	331	45047	38	5230			
21 2001	331	49442	34	5126			
22 2002	331	49442	31	4576			
23 2003	331	49142	27	4086			
24 2004	331	49442	24	3648			
25 2005	331	49442	22	3257			
26 2006	331	49442	19	2908			
27 2007	331	49442	17	2597			
28 2008	331	49442	16	2319			
29 2009	331	49442	14	2070			
30 2010	331	49442	12	1848			
31 2011	331	49442	11	1650			
32 2012	331	49442	10	1473			

·		* TOTAL *	e e e e e e e e e e e e e e e e e e e
Undiscounted Cost	=	129618	
Undiscounted Benefit	=	948985	
Discounted Cost	=	75312	
Discounted Benefit	=	112547	

補稿 B O - D 交 通 量

Table B.1 OD TRAFFIC VOLUME IN 1979

10	<u></u>		Study Area							Exter	nal Area	١.	
<u>。 \</u>	,	2	3	4	5	6	7	8	9	10	11	12	Total
i	13858	16314	3299	5323	4047	4105	6795	1891	5461	2015	3471	4380	69964
2	0	6172	866	1448	3195	2434	2177	1122	2795	1192	1243	2020	24614
3	0	0	910	1650	156	305	1433	285	1417	636	964	2264	10020
4	0	Ō	0	1005	403	792	4486	419	121	56	112	101	7500
5	6	Ò	0	0	1868	833	658	304	1970	494	124	656	7897
6	0	0	0	0	. 0	3712	6345	293	1149	1836	785	847	14967
7	0	Ŏ	Ô	0	0	0	39417	478	2634	5851	6762	2320	57462
8	0	Ö	0	0	0	0	Ó	0	528	182	326	308	1404
9	0	0	Ö	0	0	0	0	0	0	436	1400	3119	4955
10	0	. 0	0	. 0	0	0	0	O	Ō	- 20	211	642	873
11	0	0	0	0	0	0	0	Ó	0	0	23	2757	2780
12	0	. 0	Ö	0	O	0	0	0	0	0	Ġ	. 0	C
Total	13858	22436	5075	9431	10674	12181	60211	4792	16075	12718	15481	19414	202348

Table B.2 OD TRAFFIC VOLUME IN 1985

0	<u> </u>	Study Area								External Area				
0	1	2	3	4	5	6	7	8	9	10	11	12	Total	
1	31243	14769	6600	5989	3197	3509	10432	2608	5848	3338	4705	6606	98844	
2	0	12225	4268	3212	4322	2851	6744	1280	4716	2445	3069	2377	47509	
3	0	Ó	4180	4253	1275	2810	6977	927	3650	1991	2635	3195	31893	
4	. 0	0	0	1731	929	1844	6131	1052	2335	1440	2100	3146	20708	
. 5	0	0	0	. 0	2390	871	2213	313	2095	981	1151	519	10533	
6	0	0	0	. 0	. 0	4467	6188	367	2384	1688	1745	556	17395	
7	0	. 0	0	. 0	Ó	0	53770	1406	6797	6208	7467	3896	79544	
8	0	0	0	Ó	0	Ó	0	0	713	400	619	319	2051	
9	0	. 0	0	0	0	0	0	Ó	C	349	1047	4685	6081	
10	0	0	0	. 0	Ó	0	0	0	0	167	887	2012	3066	
11	0	0	0	Ó	0	. 0	0	o	Ò	0	186	4108	4294	
12	0	0	0	0	0	0	0	0	. 0	0	0	0	0	
Total	31243	26934	15048	15185	12113	16352	92455	7953	28538	19007	25611	31419	321918	

Table B.3 OD TRAFFIC VOLUME IN 1990

\ o			<u></u>	Sti	dy Are	3			E	ternal /	es 1		
0/													<u>]</u>
1	32153	15747	7941	7179	3090	3240	10666	2674	6119	3589	4607	9020	106025
2	0	12493	5334	4030	4088	2783	7249	1186	6042	2678	3037	3373	51293
3	0	0	5135	5449	1340	2801	7786	855	4130	2308	2804	3741	36359
4	o	0	0	2937	1145	2147	7863	1097	3084	1932	2592	3351	26148
5	0	0	. 0	. o	2185	791	2312	304	2137	1,030	1113	896	10772
6	0	0	0	0	Ó	3707	5930	323	2323	1665	1605	1287	16840
7	0	0	Ô	0	0	0	59100	1377	7306	6781	9451	5151	89166
8	0	. 0	0	0	Ó	0	0	29	828	460	651	963	2931
9	0	0	0	0	0	,0	o	0	. 0	409	1090	6355	7854
10	0	0	0	. 0	0	0	Ó	0	0	190	936	2329	3455
11	Ó	0	0	0	0	0	0	0	. 0	. 0	217	5173	5390
12	0	Ó	0	0	0	Ó	0	. 0	Ö	0	0	0	0
Total	32153	28240	18410	19595	11852	15469	100906	7855	30969	21042	28103	41639	356233

Table B.4 OD TRAFFIC VOLUME IN 2000

\ D				Stu	ndy Area			:	Ext				
0	1	2	3	4	5	6	7	8	9	10	11	12	Total
1	43357	22110	13029	13531	3778	3678	17270	5053	9313	5435	7015	14936	158506
2	0	18557	9736	8239	5100	3626	13003	2264	8465	4372	4912	5905	84179
3	0	0	9406	11836	1899	3564	14391	1758	7385	4074	5026	7328	66665
. 4	0	0	0	7897	1910	3377	17359	2696	6501	4019	5441	7698	66898
5	0	. 0	Ö	0	2369	785	3275	520	2820	1346	1478	1332	13925
6	0	0	0	0	0	3270	7556	498	2831	1981	1959	1733	19828
7	0	0	0	0	0	ò	91532	3019	12640	11437	16232	9770	144630
8	0	0	0	Ó	0	0	0	76	76	1671	928	1320	6112
9	0	0	Ó	0	. 0	0	0	. 0	Ó	671	1794	11102	13567
10	0	0	0	0	0	0	0	0	Ó	304	1514	3815	5633
11	0	. 0	0	0	0	0	0	0	o	. 0	319	\$856	9185
12	0	0	0	0	0	. 0	Ó	0	0	. 0	0	0	C
Total	43357	40667	32171	41503	15056	18293	164386	15884	51626	34567	47010	14602	579127