APPENDIX C

SURFACE WATER DRAINAGE

C.1 Design Criteria

1. Design Rainfall Frequency

The design rainfall frequency for drains and structures for the initial drainage system and the major drainage system for various land uses shall be as shown in Table C.1.

Table C.1 Design Rainfall Frequency (years)

Land Use	Initial Storm	Major Storm
Residential	2	100
Commercial	5	100
Industrial	5	100

Source: D.I.D Planning and Design Procedure No. 1, 1975

In this planning of the storm water drainage system, a 5-year probability is adopted in the overall catchment area.

2. Storm Runoff Estimation

Storm Run off is estimated by the Rational Formula as follows:

$$Q = \frac{1}{360} CiA$$

where

- Q is the peak discharge in cubic meter per second of return period T years
- i is the average intensity of rainfall in mm per hour for a duration equal to the time of concentration t_c , and a return period T years.

A is the catchment area in ha.

C is a runoff coefficient

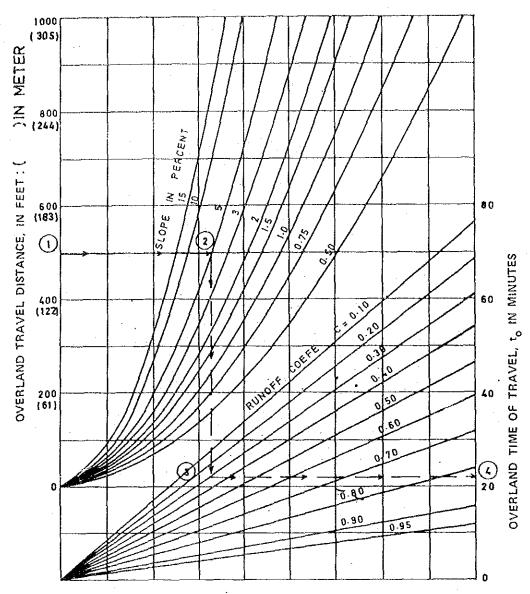
(a) Time of Concentration (tc)

The time of concentration is the time required for the water to flow from the most remote point of the catchment to the point being investigated.

For urban stormwater drains, the time of concentration (t_C) consists of the time required for runoff to flow over the ground surface to the nearest drain (t_O) , and the time of flow in the drain to the point under consideration (t_d) .

$$t_c = t_o + t_d$$

i) Overland Flow Time (to) – The time for overland flow (t₀) shall be estimated from Figure C.1 using appropriate values of length, slope and runoff coefficient C.


ii) Drain Flow time (t_d) – The time of flow in drains shall be estimated from the hydraulic properties of the drain. In the case of streams where the hydraulic properties are difficult to determine the time of flow shall be estimated using the velocities shown in Table C.2.

The calculation of the flow time is by the following formula:

$$t_{\rm d} = \frac{1}{60} \cdot \frac{L}{V}$$

Where: L = Length of water channel (m)

V = Average flow speed (m/sec)

Figure

Design Chart for Estimation of Overland Time of Flow

D.I.D Planning and Design Procedure No. 1, 1975 Source:

Table C.2 Approximate Stream Velocities

Average Slope of Channel (percent)	Average Velocity (m./second)
1–2	0.6
2-4	0.9
4-6	1, 2
6-10	1.5
10-15	1.8

Source: D.I.D Planning and Design Procedure No. 1, 1975

(b) Rainfall intensity-duration curve

The Rainfall intensity-duration curve of KUANTAN is adopted in this study.

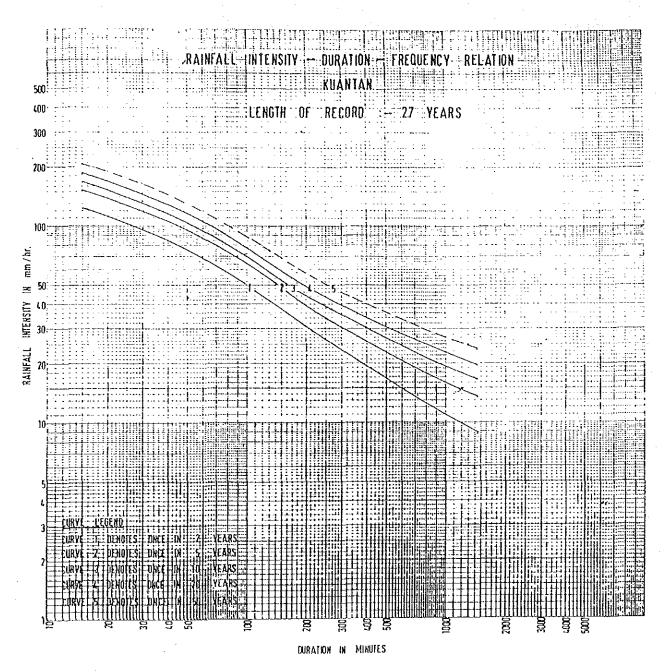


FIG:C.2 RAINFALL INTENSITY-DURATION CURVE

Source: D.I.D

(c) Runoff Coefficient (c)

The runoff coefficient, C, is the variable of the Rational Method least susceptible to precise determination. The values adopted in design are to be based on the ultimate expected development of the land. Table C.3 presents recommended values of runoff coefficients,

Table C.3 Rational Method Runoff Coefficients for Urban Centres

Land Use	Runoff Coefficient
Business: —	
City Areas Fully built-up and shophouses	0.90
Industrial: —	
Fully built-up	0.80
Residential: -	
(2 houses / acre)	0.55
(2-4 houses/acre)	0.65
(4-5 houses /acre)	0.75
(5 houses/acre)	0.85
Pavement	0.95
Park (normally flat in urban areas)	0.30
Rubber	0.45
Jungle (nrmally steep in urban areas)	0.35
Mining Land	0.10
Bare Earth	0.75

Source: D.I.D. Planning and Design Procedure No.1, 1975

For catchments with composite land uses or surface characteristics, a weighted value of C are calculated from the formula:

$$C = \frac{A_1C_1 + A_2C_2 \dots A_nC_n}{A}$$

Where C is the composite runoff coefficient A_1 , A_2 etc. are n areas, each of relatively uniform land use or surface character, comprising the total area A.

and

 C_1 , C_2 etc. are the corresponding runoff coefficients obtained from Table C.4.

In this study, the following runoff coefficients are recommended for drainage system planning on the basis of the land usage pattern.

Table C.4 Recommended Runoff Coefficient

Land Use	Runoff Coefficient
Commercial/Business Area	0.90
Industrial Area	0.80
Residential Area	0.65
Mountain, Park Area/Open Space	0.35
Other Area	0.30

Source: D.I.D Planning and Design Procedure No.1, 1975

3. Flow Computation

Manning's formula shall be adopted for uniform flow computations. The formula is as follows:—

$$Q = A \cdot V ; V = \frac{1}{n} \cdot I^{1/2} \cdot R^{2/3}$$

Where

Q is Flow in m³/S n is Manning's roughness coefficient A is Area in m² R is Hydraulic mean depth in meter

I is Slope in m/m.

Table C.5 Recommended Values of Manning's 'n'

	Type of Channel and Description	Minimum	Normal	Maximum
1.	Closed Conduits Flowing Partly Full			
	Concrete culvert, straight and free of debris	.010	.011	.013
	Concrete culvert with bends, connections with some debris.	.011	.013	.014
2.	Lined or Built up Channels			
	Precast invert sections and concrete lined channels	.013	.015	.017
	Concrete bottom with cement rubble stone sides	.017	.020	.024
	Channels with earth bottom, rubble sides	.020	.023	.026
3.	Natural streams (1)			
	Clean straight grassed banks	.025	.030	.035
	Some weeds and stones	.030	.035	.040
4.	Vegetal Lining	.030	.035	.05

Source: D.I.D. Planning and Design Procedure No. 1, 1975

The roughness coefficient adopted are Maximum values on Table C.5.

Table C.6 Adopted Values of Manning's 'n'

Type of Channel	n
Reinforced Concrete Channel	0.017
Wet Masonry Channel	0.026
Crassed Lined Channel	0.035

Source: D.I.D Planning and Design Procedure No. 1, 1975

4. Velocity of Flow

To prevent deposition of grit and sand in storm drains, the velocity of flow shall not be lower than 0.6 metre per second (2 ft/sec.) in any type of drain.

Care should also be given to maximum velocity of flow to prevent erosion of drains. The recommended minimum and maximum velocities for various types of drain are summarized on Table C.7.

Table C.7 Design Velocity

F (A)	Design Velo	ocity (m/sec)			
Type of Channel	Minimum	Maximum			
Reinforced Concrete Channel	0.6	3.0			
Wet Masonry Channel	0.6	2.5			
Grassed Lined Channel	0.6	2.2			

Source: D.I.D Planning and Design Procedure No. 1, 1975

5. Freeboard

0.3m freeboard is adopted for Trunk Drain in this study.

DISTANCE PROPOSED PROPOSED	TABLE	8.0			KEMAMAN	N RIVER				
PROPOSED PROPOSED	ALTE		ALTER	ATIVE	ALTE		ALTEF		PAST FLOOD LEVEL 1972	REMARKS
- 0.6 +1.2	ISI	PROPOSED OUTSIDE WATER LE VEL (m)	ISTANC (km)	ROPOS UTSID WATER LEVEL (m)	DISTANCE (km)	PROPOSED OUTSIDE WATER LE VEL (m)		PROPOSE OUTSIDE WATER LEVEL (m)	(m)	
1 + 1.5 2 + 1.7 2 + 1.7 3 + 1.9 4 + 2.1 5 + 2.3 6 + 2.3 7 + 2.9 8 + 3.2 9 + 3.7 10 + 3.7 11 + 4.0 12 + 3.7 13 + 4.0 14 + 5.0 15 + 4.0 16 + 3.7 17 + 2.8 18 + 3.2 19 + 3.4 5.7 + 2.8 9 + 3.4 10 + 3.7 11 + 4.0 12 + 4.7 13 + 4.6 9.7 + 4.0 8.1 + 3.5 14 + 5.0 15 + 5.2 16 + 5.4 16 + 5.4 16 + 5.4 16 + 5.4 16 + 5.4	0	i					0	H	l	
2 +1.7 3 +1.7 4 +2.1 (0) +1.2 3 +1.9 +2.1 4 +2.1 (1) +1.5 (4) +1.5 4 +2.1 5 +2.1 (1) +1.5 (2) +1.8 5 +2.1 +2.1 6 +2.6 2.7 +2.0 2.7 +2.2 6 +2.6 +2.3 7 +2.9 3.7 +2.3 3.7 +2.3 7 +2.9 +3.4 8 +3.4 5.7 +2.8 5.7 +2.8 9 +3.4 +4.9 10 +3.4 5.7 +2.8 5.7 +2.8 9 +3.4 +4.4 11 +4.0 5.7 +3.2 (10) +3.4 +4.4 12 +4.0 8.1 +3.2 (10) +3.4 +4.4 14 +4.0 8.1 +3.5 11.4 +4.5 +4.5 +4.1 +4.1 +4.5 +4.5 15 +5.4 12.7 +4.8 <t< td=""><td>гH</td><td>+ 1.5</td><td></td><td></td><td></td><td></td><td>ᆫ</td><td>·-i</td><td></td><td></td></t<>	гH	+ 1.5					ᆫ	·-i		
3 + 1.9 (0) + 1.2 3 + 1.9 + 2.1 4 + 2.1 (1) + 1.5 4 + 2.1 + 2.1 5 + 2.3 (2) + 1.8 (2) + 1.8 5 + 2.1 + 2.3 6 + 2.6 2.7 + 2.0 2.7 + 2.2 6 + 2.6 + 2.3 7 + 2.9 3.7 + 2.3 3.7 + 2.3 7 + 2.9 + 3.4 8 + 3.4 5.7 + 2.8 5.7 + 2.8 9 + 3.4 + 4.4 10 + 3.7 6.7 + 3.1 (7) + 3.2 (10) + 3.4 + 4.4 11 + 4.0 8.7 + 3.2 (10) + 3.7 + 4.4 12 + 4.4 8.1 + 3.5 11.4 + 4.1 + 4.1 + 4.7 + 4.5 16 + 5.4 10.1 + 4.4 14.4 + 4.7 + 4.5 + 4.7 + 4.5 + 4.7 + 4.7 + 4.7 + 4.7 + 4.7 + 4.7 + 4.7 + 4.7 + 4.7	2	+ 1.7					2			
4 + 2.1 (1) + 1.5 (1) + 1.5 4 + 2.1 + 2.3 4 + 2.1 + 2.3 5 + 2.3 + 2.3 + 2.3 + 2.3 + 2.3 + 2.3 + 2.3 + 2.3 + 2.5 + 2.9 + 3.4 + 3.2 + 3.2 + 3.2 + 3.2 + 3.2 + 3.2 + 3.2 + 3.2 + 3.2 + 3.2 + 3.2 + 4.3 <t< td=""><td>(ግ</td><td>7</td><td>(0)</td><td>۲.</td><td>(0)</td><td>ä</td><td>m</td><td>H</td><td></td><td>·</td></t<>	(ግ	7	(0)	۲.	(0)	ä	m	H		·
5 + 2.3 (2) + 1.8 (2) + 1.8 5 + 2.3 5 + 2.3 6 + 2.6 + 2.6 + 2.6 + 2.6 + 2.6 + 2.6 + 2.6 + 2.6 + 2.6 + 2.6 + 2.6 + 2.6 + 2.6 + 2.6 + 2.6 + 3.7 + 2.9 + 4.2 + 3.2 + 4.2 8 + 4.2 + 4.2 8 + 4.2 + 4.2 8 + 4.2 + 4.2 8 + 4.2 + 4.2 8 + 4.2 + 4.2 + 4.2 + 4.2 8 + 4.2 + 4.2 8 + 4.2 + 4.2 + 4.2 8 + 4.2 <td>7</td> <td>•</td> <td>(1)</td> <td>,i</td> <td>(1)</td> <td>ij</td> <td>7</td> <td>2.</td> <td></td> <td></td>	7	•	(1)	,i	(1)	ij	7	2.		
6 + 2.6	w	٠	(2)	H	(2)	∞. ⊢i +	ιΩ	2		
7 + 2.9 3.7 + 2.3 7 + 2.9 7 + 2.9 + 3.2 8 + 3.2 4.7 + 2.5 8 + 3.2 + 3.2 9 + 3.4 5.7 + 2.8 9 + 3.4 + 4 10 + 3.7 + 3.1 (7) + 3.2 (10) + 3.4 + 4 11 + 4.0 7.7 + 3.4 - - - - - + 4 12 + 4.3 8.7 + 3.7 - <	9	•	•	2.	•	2.	.0	2.		
8 + 3.2 4.7 + 2.5 8 + 3.2 + 4 9 + 3.4 5.7 + 2.8 9 + 3.4 + 4 10 + 3.4 5.7 + 2.8 9 + 3.4 + 4 11 + 4.0 7.7 + 3.4 - - - - + 4 12 + 4.3 8.7 + 3.7 - - - - + 4 + 4 13 + 4.6 9.7 + 4.0 8.1 + 3.5 11.4 + 4.1 + 5.0 14 + 5.0 10.7 + 4.3 9.1 + 3.8 12.4 + 4.5 + 5.0 15 + 5.2 11.7 + 4.5 10.1 + 4.1 13.4 + 4.5 + 5.0 16 + 5.4 12.7 + 4.8 11.1 + 4.4 14.4 + 5.0	7	•	3.7	2.		2.	7	2.		
9 + 3.4 5.7 + 2.8 9 + 3.4 + 4 10 + 3.7 + 4.8 0 + 3.7 + 4 11 + 4.0 7.7 + 3.4 - - - - - + 4 12 + 4.3 8.7 + 3.7 - - - + 4 + 4 13 + 4.6 9.7 + 4.0 8.1 + 3.5 11.4 + 4.1 + 4.1 + 5.2 14 + 5.0 10.7 + 4.3 9.1 + 4.1 13.4 + 4.5 + 5.0 15 + 5.2 11.7 + 4.8 11.1 + 4.4 14.4 + 5.0 + 6 16 + 5.4 12.7 + 4.8 11.1 + 4.4 14.4 + 5.0 + 6	∞	ω.		2.	•	2	α)	w.		
10 + 3.7 6.7 + 3.1 (7) + 3.2 (10) + 3.7 + 4 11 + 4.0 7.7 + 3.4 - - - - + 4 12 + 4.3 8.7 + 3.7 - - - + 4 13 + 4.6 9.7 + 4.0 8.1 + 3.5 11.4 + 4.1 + 5.1 14 + 5.0 10.7 + 4.3 9.1 + 3.8 12.4 + 4.5 + 5.4 15 + 5.2 11.7 + 4.5 10.1 + 4.1 13.4 + 4.7 + 5 16 + 5.4 12.7 + 4.8 11.1 + 4.4 14.4 + 5.0 + 6	O	ω.	•	01	•	7	6	ω,		
1 + 4.0 7.7 + 3.4 - - - + 4 2 + 4.3 8.1 - - - + 4 3 + 4.6 9.7 + 4.0 8.1 + 3.5 11.4 + 4.1 + 5.1 4 + 5.0 10.7 + 4.3 9.1 + 4.3 + 4.1 + 4.5 + 4.5 5 + 5.2 11.7 + 4.5 10.1 + 4.1 13.4 + 4.7 + 5 6 + 5.4 12.7 + 4.8 11.1 + 4.4 14.4 + 5.0 + 6	1		•	m	(7)	ω.	(10)	ω •		
2 + 4.3 8.7 + 3.7 + 4 3 + 4.6 9.7 + 4.0 8.1 + 3.5 11.4 + 4.1 + 5.0 4 + 5.0 10.7 + 4.3 9.1 + 3.8 12.4 + 4.5 + 5 5 + 5.2 11.7 + 4.5 10.1 + 4.1 13.4 + 4.7 + 5 6 + 5.4 12.7 + 4.8 11.1 + 4.4 14.4 14.4 + 5.0 + 6		•	•	ش	I	1	ı	1		
3 + 4.6 9.7 + 4.0 8.1 + 3.5 11.4 + 4.1 + 5.5 4.5 6 + 5.2 11.7 + 4.5 10.1 + 4.1 13.4 + 4.7 + 5.0 6 + 5.4 12.7 + 4.8 11.1 + 4.4 14.4 14.7 + 5.0 + 6		4.	•	m	I	į	1	ŧ		
4 + 5.0 10.7 + 4.3 9.1 + 3.8 12.4 + 4.5 + 4.5 5 + 5.2 11.7 + 4.5 10.1 + 4.1 13.4 + 4.7 + 5.6 6 + 5.4 12.7 + 4.8 11.1 + 4.4 14.4 + 5.0 + 6		4.		4.	-	щ	-!	4.		
5 + 5.2 11.7 + 4.5 10.1 + 4.1 13.4 + 4.7 + 5 6 + 5.4 12.7 + 4.8 11.1 + 4.4 14.4 + 5.0 + 6		ι.	0	4	•	က်	2	4.		
6 + 5.4 12.7 + 4.8 11.1 + 4.4 14.4 + 5.0 + 6		'n	- -	4	0	4.	ω,	4.		
		δ.	ζ,	4	<u>,</u>	4.	4.	D.		

Water level is based on Mean Sea Level Water level is flood level of 10 year frequency.

Note: 1.

Source : Study Team, 1985

C-11

CUKAI RIVER

ALTE	RNATIVE 1, 4	ALTERN	ATIVE 2,3	PAST FLOOD LEVEL 1972	REMARKS					
DISTANCE (km)	PROPOSED OUTSIDE WATER LEVEL (m)	DISTANCE (km)	PROPOSED OUTSIDE WATER LEVEL (m)	(m)						
- 2	+ 1.2	- 2	+ 1.2	-						
- 1	+ 1.4	- 1	+ 1.3	-						
0	+ 1.6	0	. + 1.4	+ 2.0						
1	+ 1.7	1	+ 1.5	+ 2.1						
2	+ 1.8	. 2	+ 1.7	+ 2.2						
3	+ 2.0	3	+ 1.8	+ 2.3						
4	+ 2.2	4	+ 2.0	+ 2.5						
5	+ 2.3	5	+ 2.1	+ 2.6						

Source: Study Team, 1985

Note : 1. Water level is based on Mean Sea Level.

Water level is flood level of 10 year frequency. C.2 Storm Water Drainage System Design Data

PROJECT

of.....

Sheet. G. 2. 2. 1.

, T , 4 REMARKS Alternative Alternative 1 360 C.I.A Designer 1221 ورجوني إتحدي 1 ī i 1 I ı 9 20:10:49 [17] 5 9 S Φ 11 or wata to sm T 8 II Oʻ 1,000 500 006 400 900 600 1.71100 (30) պենտեղ ٤ <u>ال</u> 1.6 1.4 1.7 4.1 1.5 m³/s|m/s œ DRAIN DETAILS <u>2</u> Λεισσιελ 31.2 41.0 6.0X2.017.8 0X2.4 33.1 14.1 8.0X2.0 25.5 6.9 .0|14.1 33 Сараситу 60 3 'n 5.0X2.0 .0X2 0X2 0X2 3.0XI (11) 2:56 70. 'n ω ω. Water Drainage System Design Data ⋖ Type ⋖ ⋖ ۷ ⋖ Þ ⋖ ⋖ . 20.05 70.05 0.55 0.05 14017.50.05 40.20.05 140 13.7 0.05 (91) Grade 14524.70. 6.70 m³/s x [A x D) 3 = 0 12031. <u>=</u> 30 ដ Discharge 135 125 150 145 ۳. ۲۳. fil yrisharnf [4] HelmeA DRAIN DESIGN (C²) 1 33 i ĵ Storage Coefficient (b) nisiQ Š (12) ω 2.1 12 10 ĿΩ **^** ni amiT JatoT Contest Time of (₂) 20 1.5 21 쯢 Ę 28 22 = 7 4 9 16, 1 Total Equiv. Area ā 3 45. 95. 9 32. 35 5 8 Years S ሬግ Design Return Period S u) S ഗ S 'n <u>5</u> Storm 21 22 SUB-AREA TIME CONCENTRATION Concentration ç Ş ı ī 30 to amit sarA du? 10 ~ 12 10 S ~ Š 2 Oran Time Table C.11 10 10 9 ទីទី 9 ami ? bastiav O 32.4 124.00.6580.6 35.2 61.2 6145. CC 7 Or .6535. 50 ha 3 9 earA fraktioning3 .61 0.64 0.73 0.72 0.60 AREA Coefficient of Coefficient OF Horner 3 8 8 55 85 74. 82 ģ e 6914 (a) Sun-Area ซ [2] a Ω LUCATION שנבניסט Ξ

Study Team, 1985 Source:

0 دونه

PROJECT

Table C.10 Storm Water Drainage System Design Data

REMARKS				ternative 1,2		Alternative L., 2											
-				A1		A1	 \dashv		-					. — ·			
·	1223	:9/93 \$6(6)		ı		.1]	 - 1		6	 7 -		0		8		- 7	
360	17.7	or word to smit	Min	21		17	 9	_}		 -1		(ب		00		-1	
	1201	υμδυ∞⊃	٤	1400		800	600		6180	1800		1100		8		1 200	
AILS	1.9)	Velocity	s/w	1		1.2	1.8			1.8		61		1.6		1 4	
OET	(81)	ArioedeD	s/₅m	9. 7		28.4	12.9		23.0	12.9		16,9		23.0		11.9	
DRAIN DETAILS	(1.7)	2015	<u>.</u>	8 4 6 0x2 4 1		18.5x2.5	4.0XI.8		6.0X2.4	4.0XI.8		4.0X2.2		6.0X2.4		4.0X2.2	
	-	Type	· · · · · · · · · · · · · · · · · · ·	щ	,	Ø	4	•	⋖	< 4		₹.		A		₩.	
	(16)	9be1O	%	0.05		0.05	0.1		0.05	0.1		0.7		0.05		0.05	
	135	O = D (C × A) × 1 × C ₅	s/¿ш	8.9		7.8	 2.1		20.9	12.2		15.2		2.8		10, 9	
	(14)	ilsknisA (i) yrznajni	տո / հr ^п	1.151		1002	1451		1203	1201		140		125		115	
NON	(13)	Storage Coefficient (_S D)		_	-	1			-	1			-	1	-	_ ī	
RAIN DESIGN	1121	nı əmiT lesaT (_b s) niesQ	Σ	23		36	7		20	20		0		18		13	
O R A	133	Concentration Itel	N. M.	33		46	 17		30	30		19		28		23	
}	(10)	Total Equiv. Area (A × D) Z	ם	59.3		100.2	30.0		62.7	36.5		39.1		62. 7		34.2	
	(g)	Ուսքո հոքյերն ենութդ	Years	5		5	5		5	5		2		ເບ		Ŋ	
SUB-AREA TIME OF CONCENTRATION	ŝ.	To smiT solA-du2 noiselinopnoO	ξ	1		33	1		1	1		-		19		23	
SEA OF NTRA	5	amiT risiQ	د ت	23		133	7		20	20		6		6		13	
JUB- A	(9)	ami TibrichavO	ء ق	10		1	0		10	10		10		ı		10	
, <u>, , , , , , , , , , , , , , , , , , </u>	13)	each ingewood (A + 3)	, D	50°.		40.9	 30.0		62.7	36.5	 	39.1		23. 6		34, 2	
AREA	<u>ā</u>	Coefficient of (3) Honus		0.46		0.46	0.79		0.56	0.57		0,62		0.62		0.61	
	6	691A (A)	ь́с	129		89	38		112	9 9		63		38		56	
Z.	123	serA-cru2		c-1		c-2	rs		م	U		d-1		d-2		Φ	
LUCATION	6	nard narrse2		K-3			C-1		0-1	C-1		C-1		6-1		C-1	

Source: Study Team, 1985

13 80 5 840.8 113 83 - 60 140.10.05 6 25.0x3 443.6 1.2200 28 - 7 - 5 72.6 27 17 - 125 25.2 0.05 8 10.4 26.5 1.2 1000 14 - 7 27 5 123.9 44 34 - 100 34.4 0.05 8 10.2 35.9 1.3 1000 13 - 0 - 5 69.0 30 20 - 120 23.0 0.05 8 10.2 24.8 1.21200 17 - 0 - 5 85.5 30 20 - 120 28.5 0.05 8 10.6 30.2 1.2 1200 17 -
- 5 69.0 30 20 - 120 20.0 5 B 10.2 324.8 1.2120 17 - 5 85.5 30 20 - 120 28.5 0.05 B 20.6 30.2 1.2 1200 17

	w
	Q
•	-1
	덢
	8
	ิส
	Φ
	H
	>
	ď
	ğ
	Ţ
	ö
	V,
	-•
	Ψ
	Ü
	ы
	-
	Söu:
	\simeq
	73

of		Ą	REMARKS				Alternative 2,3	Alternative 2,3	,	Alternative 3,4		Alternative 3,4							
		C.I.A		1221	lavy 1 travel		. 1	1		,		1		1.			\ 		
2-4		1 360		(1,7)	nt woff to amiT noitse2	Min	4	9											
Sheet.C	Designer	Ħ		(50)	Վ Լճս ծ Դ	٤	927	009		8		800				ļ	l 		
υΩ	-	٥	AILS	(61)	Velocity	s/w	1.7	1.7	Ì	1.2	-	1.3							
			DRAIN DETAILS	(18)	Capacity	15/m	11.0	2 9. 2		24.8		35.9							
			DRAI	(17)	311S		4.0X1.6	8.0X2.2		8.0X2.3	\$ 61	id		.					
		т) Б			Type		A	 Ą		м		മ]
		n Da		(16)	absit2 -	%	0.1	.20.05		0.05		0.05						_	
		esig		(15)	O = Σ (C × A) × i × C ₅	s/¿w	10.1	28.2		23.5		34,4							
		System Design Data		(14)	listnisA (i) ytitnatni	mm /hr	15010.	 145		115		100							
		Sys	SIGN	(13)	Storage Coefficient (₂ D)		ı	'				1							
		Drainage	DRAIN DESIGN	(11)	ni smiT lesoT f _b J) mesQ	Č. M	5	7		23		36							
			DR4	(11)	To smiT lesimo Of (₂)] nonsinosmoo	Min	15	17		33		7							
		Water		(10)	Total Equiv. Area (A x D) Z	r D	24.2	70.1		73.5		123						ļ	
	•	c.13		(6)	Anusofi ngasaQ boirof	Years	ĸ	5		N		2							
			TIME	(3)	Lo arrit sal Ardu S Concentration	Λ. Ci.N	-	J				33							
		Table	SUB-AREA TIME OF CONCENTRATION	12.	טנפוט דומייי	Σ	5	 7		23		13							
			SUB-	÷	்ளர் கரவேல்	Z C	10	10		01		1			<u> </u>				
				<u>(</u> 2)	Equivalent Area (A x D)	þa	24.2	70, 1		73.5		25. 2						! !	
			АВЕА	(4)	to Inscilled (D) HonuR		0.78	0.73		0.57	- i	0.57						! !	
				ē	821A (A)	엄	31	96		129		88	:						
L			z	ê	ธอง A-เรียนี		Q	ပ		C-1	i	C-2						-	
PROJECT	•		LOCATION	Ē	กเลเปี กดะเวจ2		K-1	K-1		K-3							-		

C.3 Study of Landfill

FILL-UP HIGHT AND FILL-UP VOLUME (WITHOUT PROJECT)

TABLE C.14

NAME OF DRAINAGE AREA	FILL-UP AREA (1) (ha)	RIVER WATER LEVEL (m)	PRESENT M.G.E.(2)(m)	FILL-UP M.G.E. (3)(m)	FILL-UP Hight (4)=(3(2)(m)	AMOUNT OF FILL-UP $(5) = (1) \times (4) \text{ (m}^3)$	ACTUAL FILL- UP VOLUME $(6) = (5) \times 0.8 \text{ (m}^3)$
K-1	164	3.0	1.2	3.5	2.3	3,772,000	(3,018,000)
K-2	254	3.6	2.2	4.0	8.	4,572,000	(3,657,000)
К-3-а	24	4.0	1.5	4.5	3.0	720,000	(576,000)
K-3-b	132	4.6	1.0	5.0	0.4	5,280,000	(4,224,000)
K-3-c-1	124	5.0	2.5	بن ب	3.0	3,720,000	(2,976,000)
K-3-c-2	71	5.0	2.5	5.5	3.0	2,130,000	(1,704,000)
K-3-d-1	173	5.1	2.0	0.9	0.4	6,920,000	5,536,000
K-3-d-2	231	5.1	2.5	5.5	3.0	6,930,000	5,544,000
K-4	200	3.2	1.2	3.5	2.3	4,600,000	3,680,000
K-5	104	2.4	2.5	3.0	0.5	520,000	416,000
C-1	. 103	2.5	1.6	3.0	1.4	1,442,000	(1,154,000)
C-2-a-1	270	2,5	2.4	4.5	2.1	5,670,000	4,536,000
C-2-a-2	197	2.5	2.0	0.4	2.0	3,940,000	3,152,000
C-2-a-3	255	2.5	1.6	3.0	1.4	3,570,000	2,856,000
C-3	247	2.4	2.5	3.0	0.5	1,235,000	(000,886)
TOTAL	2,549						44,017,000
108	Source: Study T	Team, 1985					(18,297,000)

Note : M.G.E. is Mean Ground Elevation above Mean Sea Level.

FILL-UP HIGHT AND FILL-UP VOLUME (ALTERNATIVE 1)

TABLE C.15

NAME OF DRAINAGE AREA	FILL-UP AREA(1)(ha)	RIVER WATER LEVEL (m)	PRESENT M.G.E.(2)(m)	FILL-UP M.G.E. (3)(m)	FILL-UP Hight (4) = (3/2)(m)	AMOUNT OF FILL-UP $(5) = (1) \times (4) (\pi^3)$	ACTUAL FILL- UP VOLUME $(6 = (5 \times 0.8 \text{ (m}^3))$
K-1	120	2.3	1 . 2	3.0	1.8	2,160,000	(1,010,000)
K-2	254	3.0	2.2	2.5	Pumping	Station	1,000,000
К3-а	24	3.4	го -	2.5			
K-3-b	114	4.0	1.0	2.5			
K+3-c-1	124	4.6	2.5	2.5	Pumping	Station	1,000,000
K-3-c-2	7.1	4.6	2.5	2.5			
K-3-d-1	173	7.6	2.0	2.5			
K-3-d-2	231	4.6	2.5	2.5			
K-4.	200	2.6	1.2	3.0	1,8	3,600,000	2,880,000
K-5	ı	1.9	2.5	ι	ı	I	l
C-1	. 103	2.2	1.6	2.5	6.0	927,000	(742,000)
C-2-a-1	270	2.2	2.4	0.4	1.6	4,320,000	3,456,000
C-2-a-2	197	2.2	2.0	3.5	1.5	2,955,000	2,364,000
C-2-a-3	255	2.2	1.6	2.5	6.0	2,295,000	1,836,000
Cla	ı	1.8	2.5	1	l	l	
TOTAL	2,136						14,288,000
Source:	Study	Team, 1985		·			(1,752,000)

Note : M.G.E. is Mean Ground Elevation above Mean Sea Level.

FILL-UP HIGHT AND FILL-UP VOLUME (ALTERNATIVE 2)

TABLE C.16			FILL-UF MIGHT AND FILL-UF VOLUME (ALTERNATIVE 2)	AND FILL-UF ATIVE 2)	VOLUME VOLUME		
NAME OF DRAINAGE AREA	FILL-UP AREA(1)(ha)	RIVER WATER LEVEL (m)	PRESENT M.G.E.(2)(m)	FILL-UP M.G.E. (3) (m)	FII.L-UP Hight $4 = 3 \cdot 2 \cdot (m)$	AMOUNT OF FILL-UP $(\mathfrak{S} = (\mathfrak{L}) \times (\mathfrak{A}) \times (\mathfrak{m}^3)$	ACTUAL FILL- UP VOLUME (6=5x 0.8 (m³)
K-1	132	1.8	1.2	2.5	1.3	1,716,000	(1,052,000)
K-2	254	2.4	2.2	3.0	8.0	2,032,000 - 200,000	(1,465,000)
K-3-a	24	2.9	7.5	3.5	2.0	480,000	(384,000)
Ж-3-b	114	3.5	1.0	4.0	3.0	3,420,000	(1,656,000)
K-3-c-1	124	4.1	2.5	4.5	2.0	2,480,000	(1,984,000)
K-3-c-2	71,	4.1	2.5	4.5	2.0	1,420,000	(1,136,000)
K~3~d-1	173	4.1	2.0	0.0	3.0	5,190,000	4,152,000
K-3-d-2	231	4.1	2.5	4.5	2.0	4,620,000	3,696,000
K-4	200	2.1	1.2	2.5	٤.	2,600,000	2,080,000
K-5	ı	1.5	2.5	. 1	1	ı	1
C-1	. 103	2.0	1.6	2.5	6.0	927,000	(742,000)
C-2-a-1	270	2.0	2.4	0.7	1.6	4,320,000	3,456,000
C-2-a-2	197	2.0	2.0	3.5	٠. د.	2,955,000	2,364,000
C-2-a-3	255	2.0	1.6	2.5	6.0	2,295,000	1,836,000
C-3.	T .	1.7	2.5	1	1	ì	1
TOTAL	2,148						26,003,000

M.G.E. is Mean Ground Elevation above Mean Sea Level. Note:

Study Team, 1985

Source:

(8,419,000)

FILL-UP HIGHT AND FILL-UP VOLUME (ALTERNATIVE 3)

TABLE C.17

NAME OF DRAINAGE AREA	FILL-UP REA AREA (1) (ha)	RIVER WATER LEVEL (m)	PRESENT M.G.E.(2)(m)	FILL-UP M.G.E. (3)(m)	FILL-UP Hight (4)=(3)(2)(m)	AMOUNT OF FILL-UP $(3) = (1) \times (4) \text{ (m}^3)$	ACTUAL FILL- UP VOLUME (6=(5) x 0.8 (m ³)
K-1	132	1.8	1.2	2.5	, E. H.	1,716,000	(1,052,000)
K-2	254	2.4	2.2	3.0	8.0	2,032,000	(1,465,000)
K-3-a	24	2.9	1.5	3.5	2.0	480,000	i
K-3-b	24	3.2	1.0	3.5	2.5	000,000	t
K-3-c-1	124	3.6	2.5	4.0	٠. د	1,860,000	(1,488,000)
K-3-c-2	71	3.6	2.5	0.4	1.5	1,060,000	(843,000)
K-3-d-1	173	3.6	2.0	4.5	2.5	4,325,000	3,460,000
K-3-d-2	231	3.6	2.5	7.0	1.5	3,465,000	2,772,000
K-4	200	2.1	1.2	2.5	1.3	2,600,000	2,080,000
K-5	1	1.5	2.5	ı	i	I	1
C-1	. 103	2.0	1.6	2.5	6.0	927,000	(742,000)
C-2-a-1	270	2.0	2.4	4.0	1.6	4,320,000	3,456,000
C-2-a-2	197	2.0	2.0	. s.	1.5	2,955,000	2,364,000
C-2-a-3	255	2.0	9 . [2.5	6.0	2,295,000	1,836,000
C-3	i	1.7	2.5	. 1	t	l	1
TOTAL	2,058						21,558,000
	Source: Study I	Team, 1985					(5,590,000)

Note : M.G.E. is Mean Ground Elevation above Mean Sea Level.

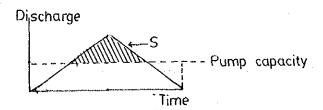
FILL-UP HIGHT AND FILL-UP VOLUME

TABLE C.18			(ALTERNATIVE	ATIVE 4)			
NAME OF DRAINAGE AREA	FILL-UP AREA 🗓 (ha)	RIVER WATER LEVEL (m)	PRESENT M.G.E.(2)(m)	FILL-UP M.G.E. (3) (m)	FILL-UP Hight (4)=(3)(2)(m)	AMOUNT OF FILL-UP $(\mathfrak{S}) = (\mathfrak{L}) \times (\mathfrak{A})$	ACTUAL FILL- UP VOLUME $() = () \times () \times ()$
						2,160,000	
K-1	120	2.3	1.2	3.0	J.8	000,006 -	(1,610,000)
K-2	254	3.0	2.2	3.5	1.3	•	(2,392,000)
K-3-a	24	3.4	1.5	0.4	2.5	600,000	I
K-3-b	24	3.7	1.0	4.0	3.0	720,000	I
K-3-c-1	124	7.7	2.5	4.5	2.0	2,480,000	(1,984,000)
K-3-c-2	17	4.1	2.5	4.5	2.0	1,420,000	(1,136,000)
K-3-d-1	173	4.1	2.0	5.0	3.0	5,190,000	4,152,000
K-3-d-2	231	4.1	2.5	4 5	2.0	4,620,000	3,696,000
K-4	200	2.6	1.2	3.0	1.8	3,600,000	2,880,000
K-5	ı	1.9	2.5	i	i.	ı	ı
C-1	103	2.2	1.6	2.5	6.0	927,000	(742,000)
C-2-a-1	270	2.2	. 2.4	4.0	7.6	4,320,000	3,456,000
C-2-a-2	197	2.2	2.0	3.5	٠ <u>٠</u>	2,955,000	2,364,000
C-2-a-3	255	2.2	1.6	2.5	6.0	2,295,000	1,836,000
C-3	í	₩.	2.5	ı	ì	ı	•
TOTAL	2,046						25,648,000
Sour	ce: Study T : M.G.E.	eam, 1985 is Mean Ground	nd Elevation	above Mean	Sea Level.		(7,264,000)

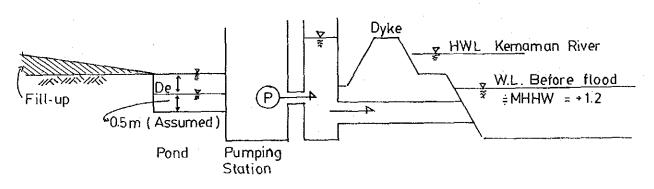
C-21

C.4 Study of Pumping Drainage

1. Design Rainfall


Frequency (%)	*1 Rainfall intensity for 1440 minutes duration (mm/hr)	Daily rainfall (mm)
 50	8.9	214
20	13.6	327 *2
10	16.5	396
5	19.5	468
 2	23.5	564

^{*1} Rainfall Intensity-Duration-Freuqency Relation, Kuantan, Length of Record – 27 years, DID


- 2. Pumping Capacity for the Drainage Area of 1 KM² Assuming,
 - Total volume of flood water shall be drained within 24 hours.
 - Volume of flood water during the time, which flood discharge is larger than pumping capacity, shall be storaged in the pond attached to the pumping station.
 - Runoff coefficient = 0.7
 - Design flood (rainfall) frequency = 5 years. We obtain pump capacity as follows.

^{*2} Design daily rainfall

- 1) Total volume of flood water: Vo Vo = 327 mm X 1 Km² X 0.7 = 229.000 m³
- 2) Pump capacity: P $P = 229000^{m3}/86400 \text{ sec} = 2.65 \text{ m}^3/\text{S}$
- 3) Required capacity of the pond : S $S = 1/4 \times 229,000 = 57,300 \text{ m}^3$

4) Effective depth of the pond: De

 $De = 1m \sim 1.5m$

5) Area necessary for pond: Ap

For De = 1m, A = 57,300 X 1/1.0 = 57,300 m²

= 5.8 ha

Dredge volume = 57,300 X 1.5 = 86,000 m³

For De = 1.5 m, a = 57,300 X 1/1.5 = 38,200 m²

= 3.8 ha

Dredge volume = 38,200 X 2.0 = 76,400 m³

- 3. Comparison of Pumping and Earth Filling Costs
 - 1) For one meter fill-up of 1 km², Cost (by dredging) = $1 \times 10^6 \text{m}^3 \text{X} \cdot 5 \text{M} \cdot / \text{m}^3 = \frac{\text{M} \cdot 5 \times 10^6}{\text{M} \cdot 3 \times 10^6 \text{m}^3 \times 10^6 \text{m$
 - 2) Pumping

 Pumping station and pond

 Maintenance (Every 20 years

 life time of pump, 2.65 X 0.5

 = 1.33)

 = M\$ 2.55 X 10⁶

 = M\$ 2.55 X 10⁶

 (every 20 years)

 Running (0.5% X 2.12 = 0.011)

 = M\$ 0.011 X 10⁶

 (every year)

Total (20 years) M\$ 4.1 x 10^6

- 4. Costs
 - Drainage area = 9.09 Km²

 Cost : (1) 2.55 X 9.09 = M\$23.18 X 10⁶ (construction)

 (2) 1.33 X 9.09 = M\$12.09 X 10⁶ (every 20 years)

 (3) 0.011X 9.09 = M\$ 0.10 X 10⁶ (every year)

 (4) 2 Km² X 0.5m X 5M\$/m³

 = M\$ 5.00 X 10⁶ (Fill for drainage)

 (1) + (4) = M\$28.18 X 10⁶

2) K-2 Area

Drainage area = 3.34 Km^2 Cost : (1) 2.55 X 3.34 = M\$ 8.52 X 10⁶ (2) 1.33 X 3.34 = M\$ 4.44 X 10⁶ (3) 0.011X 3.34 = M\$ 0.04 X 10⁶ (4) 2.00 Km² X 0.5m X 5M\$/m³ = M\$5.00 X 10⁶ (by river dredging)

APPĖNDIX D

CONSTRUCTION COST ESTIMATION

QUANTITIES - FLOOD CONTROL KEMAMAN RIVER

TABLE D.1

	Y MYNM		ALTE	RNATIVE	
	ITEM	1	2	3	4
1	River mouth improve- ment				
	Training dyke (Rubble mound)	72x10 ³ m ³	104×10 ³ m ³	104×10 ³ m ³	72x10 m ³
2	Diversion channel				
	Dredging		$1.77 \times 10^6 \mathrm{m}^3$	1.77x10 ⁶ m ³	
	Revetment (concrete block		$17.5 \times 10^3 \mathrm{m}^3$	17.5×10 ³ m ³	
3	Separation levee				
	Earth filling		9600 m ³	9600 m ³	
	Gabion	•	4000 m ³	4000 m ³	
	Steel sheet piling		9600 m²	9600 m²	
4	Dredging and dyke/ fill-up				
	1) Downstream of div. chan.				
	Dredging	2.64×10^3 m 3			2.64x10 ³ m ³
	Major-bed Arrange- ment	0.8x106 m ³			0.8x10 ⁶ m
	Upstream of diver- sion channel				
	From 1.3km-5.8km	$2.25 \times 10^6 \text{m}^3$	2.25x10 ⁶ m ³	2.25×10 ⁶ m ³	2.25x106 m
	From 5.8km-8.8km	•	1.35x10 ⁶ m ³		1.35x106 m
	Major-bed Ar- rangement	750x10 ³ m ³	750x10 ³ m ³	750x10 ³ m ³	750x10 ³ m
	3) Short-cut			1300x10 ³ m ³	1300x10 ³ m
5	Revetment				
	 Downstream (Gabion) 	26x10 ³ m ³			26x10 ³ m
	2) From 1.3km-11km	$39 \times 10^3 \mathrm{m}^3$	$39 \times 10^3 \text{ m}^3$	$39 \times 10^3 \text{m}^3$	$39 \times 10^3 \text{m}^3$
6	Kampung relocation	1 Lum.	1 Lum.	l Lum.	1 Lum.
7	Land aquisition	93 ha	93 ha	81 ha	81 ha

Source: Study Team, 1985

QUANTITIES - FLOOD CONTROL CUKAI RIVER

TABLE D.2.

***************************************	<u>ngangangan Malamanan managan panggan</u> an Pada Calabahan Malamahan managan managan managan managan managan managan	The section with the little word from the course supply to the section of the sec	ALTE	RNATIVE	· <u>-</u>
	ITEM	1	2	3	4
. 1	River mouth improve- ment Training dyke		56×10 ³ m ³	56x10 ³ m ³	
2	Dredging and dyke/fill-up	0.56x10 ⁶ m ³	0.78×10 ⁶ m ³	0.78x10 ⁶ m ³	0.56x106 m ³
3	Revetment (Gabion)	$21 \times 10^3 \text{ m}^3$	$30 \times 10^3 \text{m}^3$	$30 \times 10^3 \mathrm{m}^3$	$21x10^3 m^3$
4	Bush clearing (with trees)	20 ha	20 ha	20 ha	20 ha
	Others				
1	Bridge reconstruction	l Lum.	1 Lum.	1 Lum.	l Lum.
2	Barrage	1 Lum.	l Lum.	1 Lum.	1 Lum.

Source: Study Team, 1985

TABLE D.3

QUANTITIES - URBAN DRAINAGE

Mali		ALTER	ALTERNATIVE	
		2	3	4
Proposed Trunk Drain	17,900m	17,900m	17,900m	17,900m
Existing Trunk Drain	2,000m	2,000m	2,000m	2,000ш
Proposed Secondary Drain	1,388ha	1,420ha	1,464ha	1,388ha
Land Filling	1,752×10³ m³	8,419×10³ m³	5,590x103 m3	7,264x103 m3
* Actual Land Filling	0	6,030x103 m3	3,201x10 ³ m ³	3,562×10³ m³
Pumping Station	2 Stations	1	•	ı
Flood Gate	2 set	l set	l set	5 set
Bridge (W = 6.0 m)	1,560 m²	1,560 m²	l,620 m ²	1,620 m ²

Source: Study Team, 1985

* V = (Land Filling Volume) - (Effective River Dredging Volume)
This volume is used for cost estimation Note :

TABLE D.4 SCHEDULE OF UNIT CONSTRUCTION COSTS (1984 PRICE LEVEL)

NO	DESCRIPTION	UNIT	UNIT COST M	REMARKS
1	Excavation using dragline	m ³	3.20	
2	Compacted backfill	m 3	2.00	
3	Earthfill from borrow area and compaction	m3	10.00	
4	Transport spoil over average distance of 1 km	m 3	1.00	
5	Reinforced concrete (in- cluding formwork and rein- forcement) 1:2:4	m³	500.00	
6	Plain concrete (including formwork) 1:3:6	m ³	300.00	
7	Wet Masonry Works t = 300 mm	m ²	52.00	
8	Reinforced concrete bridge			
	Heavy traffic	m 2	1,600.00	
	Medium traffic	m²	1,200.00	
. 9	Dredging including earth- fill by Suction Dredger	m3	5.00	
10	Gabion	m3	90.00	
11	Mattresses	m ³	150.00	
12	Rubble Mound	m ³	160.00	
13	Concrete Block	m3	230.00	
14	Bush Clearing	ha	1,200.00	
15	Secondary Drain		<u> </u>	
	Commercial and Industry area	ha	34,000.00	
	Residential area	ha	25,100.00	
16	Steel sheet piling	m ²	200.00	i
17	Pumping Station	m³/sec	0.8×10^{6}	
18	Flood Gate	set	0.5×10^{6}	
19	Barrage	Lump.sum	5.0 x 10 ⁶	* cost of other cou termeasur against s linity in trusion

Source: 1/ S.D.I.D.

2/ Drainage Master Plan For Kuala Kedah, March 1981, JICA

TABLE D.5 EXPENDITURE SCHEDULE (ALTERNATIVE 1)

PARTICIPATION AND AND AND AND AND AND AND AND AND AN			de en	M\$ 10	6
	ITEM	1985- 1990	1991- 1995	1996- 2000	GRAND TOTAL
	PREPARATION WORKS	5,00			5.00
OL	BARRAGE	5.00			5.00
T R	RIVER MOUTH IMPROVEMENT	11.52			11.52
CONTROL	LAND AQUISITION/KG.RELOCATION	6.86			6.86
0.0 COS	DREDGING AND DYKE/LAND FILLING	25.05	21.00		46.05
FLOC	CUKAI RIVER IMPROVEMENT		3.00	<u> </u>	4.73
fx4	MAINTENANCE		0.74	1.85	2.59
				_	
1	TRUNK DRAIN	15.60	19.12		34.72
DRAIN- STS	SECONDARY DRAIN	10.40	13.00	12.18	35.58
DR.				:	
URBAN 1 AGE CO	PUMPING STATION		36.70		36.70
RB,	MAINTENANCE	0.24	1.32	2.70	4.26
	SUB TOTAL	81.40	94.88	16.73	193.01
	CONSULTANTS FEES	3.30	2.20		5.50
	TOTAL	84.70	97.08	16.73	198.51

TABLE p.6 EXPENDITURE SCHEDULE (ALTERNATIVE 2)

M\$ 10⁶1991-1996-GRAND 1985-ITEM 2000 TOTAL 1995 1990 5.00 5,00 PREPARATION WORKS 5.00 5.00 BARRAGE FLOOD CONTROL DIVERSION CHANNEL/RIVER MOUTH 32.52 24.52 IMPROVEMENT 8.00 5.56 5.56 LAND AQUISITION/KG.RELOCATION 33.26 DREDGING AND DYKE/LAND FILLING 18.26 15.00 15.59 CUKAI RIVER IMPROVEMENT 6.59 9.00 0.92 2,30 3.22 MAINTENANCE 34.36 18.76 15.60 TRUNK DRAIN URBAN DRAINAGE COSTS 36,72 13,50 12.42 10.80 SECONDARY DRAIN 30.15 13.35 2.80 14.00 LAND FILLING 3.24 0.24 1.20 1.80 MAINTENANCE 94.37 204.62 SUB TOTAL 80.38 29.87 CONSULTANTS FEES 3.70 2.60 6.30 TOTAL 98.07 82.98 29.87 210.92

EXPENDITURE SCHEDULE (ALTERNATIVE 3)

TABLE D.7

 $MS 10^{6}$

		100		·	
Acceptable Street, Sept.	ITEM	1985- 1990	1991- 1995	1996- 2000	GRAND TOTAL
	PREPARATION WORKS	5.00			5.00
	BARRAGE	5.00			5.00
٦ 0	DIVERSION CHANNEL/RIVER MOUTH IMPROVEMENT	24.52	8.00		32.52
NTROL	LAND AQUISITION/KG.RELOCATION	6.10		-	6.10
SIS	DREDGING AND DYKE/LAND FILLING	16.51	10.00	1 2 1	26.51
\sim	SHORT CUT		6.50	<u> </u>	6,50
FLOOD C(CUKAI RIVER IMPROVEMENT	6.59	9.00		15.59
Į Σ ų	MAINTENANCE		0.92	2.30	3.22
	TRUNK DRAIN	15.60	18.85		34.45
A S E	SECONDARY DRAIN	10.80	13.50	13.52	37.82
RBU LIN OS	LAND FILLING	1.50	7.50	7.00	16.00
URBAN DRAINAGE COSTS	MAINTENANCE	0.24	1.20	1.80	3.24
	SUB TOTAL	91.86	75.47	24.62	191.95
	CONSULTANTS FEES	3.70	2.60		6.30
	TOTAL	95.56	78.07	24.62	198.25

TABLE D.8 EXPENDITURE SCHEDULE (ALTERNATIVE 4)

M\$ 10⁶

ten. m. ng tenggin kilop ng Semak kina ngap	ITEN	1985- 1990	1991- 1995	1996- 2000	GRAND TOTAL
	PREPARATION WORKS	5.00			5.00
	BARRAGE	5.00			5.00
ROL	DIVERSION CHANNEL/RIVER MOUTH	11.52			11.52
S	LAND AQUISITION/KG.RELOCATION	7.40			7.40
OD CO	DREDGING AND DYKE/LAND FILLING	32.80	20.00		52.80
FLO	SHORT CUT		6.50		6.50
324	CUKAI RIVER IMPROVEMENT	1.73	3.00		4.73
	MAINTENANCE		0.88	2.20	3.08
E E	TRUNK DRAIN	16.40	19.91		36.31
A N N Y S Y S	SECONDARY DRAIN	9.58	13.00	13.00	35.58
URB RAI COS	LAND FILLING	1.81	8.00	8.00	17.81
Ω -	MAINTENANCE	0.24	1.20	1.80	3.24
	SUB TOTAL	91.48	72.49	25.00	188.97
	CONSULTANTS FEES	3.60	2.60		6.20
	TOTAL	95.08	75.09	25.00	195.17

APPENDIX E

ECONOMIC EVALUATION

E.1. BASIC DATA ESTIMATION

As for the basic data,

- a) Population in the Cukai town area
- b) Numbers of living quarters are prepared.
- a) Secular change in population in the Cukai town area is drawn in Fig. E.1 and tabulated in Table E.1.

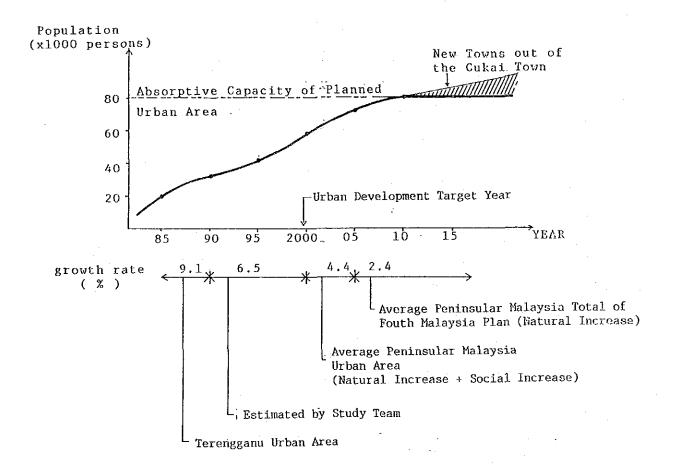


Fig. E.1 ESTIMATED POPULATION IN CUKAI TOWN AREA

Note: Figures of the year 1990 is affected by an increase in town area. Underdeveloping area is included in Cukau Towan Area in 1990.

TABLE E.1 ESTIMATED POPULATION IN CUKAI TOWN AREA

(x 1000 persons)

1985	1990	1995	2000	2005	2010
20	31	42	58	72	81

b) Number of living quarters in the Cukai town area are estimated with two steps.

(First Step)

= 25,384 (persons)/5,166 (living quarters)

= 4.91 (persons/living quarters)

Family size in the future is assumed to be 5 persons/living quarter and be constant.

(Second Step)

Estimated number of living quarters at each year (1985, 2000 and 2010)

= Population forecasted (1985, 2000, 2010)/family size

= 20,000/5 = 4,000 (1985)

= 58,000/5 = 11,600 (2000)

= 81,000/5 = 16,200 (2010)

Figures of living quarters at each year are readjusted according to the flood prone area.

E.2 FLOOD DAMAGE POTENTIAL ESTIMATION

a) Methods

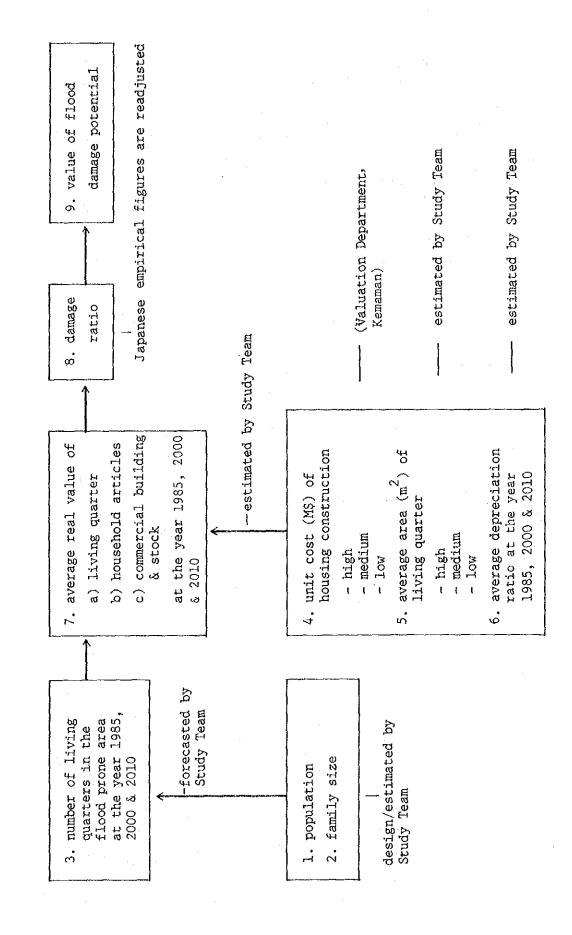
The value of the flood damage potential estimated at the year 1985, 2000 and 2010, and is assumed to increase linearly from the year 1985 to 2010. It is constant after the year 2010 forth.

Town area is expected to grow outside the Cukai town area from the year 2010 as shown by the hatched part in Figure E.1.

b) Identification of Flood Damage

Flood damages identified are categorized into four items with various sub-items which are:—

- 1) General Property Damage Potential
- 2) Public Property Damage Potential
- 3) Agriculture Products Damage Potential
- 4) Income/Sales Loss Potentials


c) Estimation of Each Flood Damage Potential

Aggregated flood damage potentials are summarized in Table E.2.

Table E.2 AGGREGATED FLOOD DAMAGE POTENTIAL CORRESPONDING TO FLOOD FREQUENCY

(Unit: x106 M\$)

Alternative	Year	Flood Frequency (%)					
Ancinative	1 Cai	20	10	5	2	1	
	1985	7.4	9.1	11.3	13.8	14.6	
Without	2000	23.6	37.8	54.1	70.3	77.7	
	2010	44.5	118.9	112.1	148.4	166.0	
	1985	0.3	0.9	7.0	7.7	12.0	
Alternative-1	2000	3.8	8.6	25.3	32.7	57.8	
	2010	9.4	22.9	50.7	66.5	131.6	
	1985	0.3	0.6	6.3	7.4	9.6	
Alternative—2	2000	2.6	5.1	21.5	27.5	43.3	
	2010	6.0	13.6	39.4	56.3	92.0	
	1985	0,0	0.6	6.3	7.4	9.6	
Alternative—3	2000	0.0	5.1	21.6	27.5	43.2	
	2010	0.0	13.6	39.4	55.2	92.0	
	1985	0.3	0.6	6.9	7.7	9.9	
Alternative-4	2000	3.7	7.6	24.5	33.2	47.8	
	2010	9.4	21.1	48.6	67.7	106.0	

FLOW CHART OF GENERAL PROPERTY DAMAGE POTENTIAL ESTIMATION

E.2

FIG.

c-1) General Property Damage Potential

This item of damage potential consists of three sub-items, which are: -

- House
- Household articles
- Commercial building and stock
- c-1-1) Unit cost of housing construction and average area of living quarter are shown with the average construction cost of living quarters in Table E.3.

Overall Estimation flow is shown in Fig. E.2.

TABLE E.3

HOUSING CONSTRUCTION DATA

		Average Floor Area (m²) 1/	Unit Cost (M\$/m²)2/	Standard Construction Cost (X 10 M\$)
	HIGH	165		360
WOODEN	MEDIUM	120	215	260
	rom	60		130
	HICH	130		600
PERMANENT	MEDIUM	90	460	410
	LOW	60		280
OMMERCIAL		245	410	1,000

Note: 1/ Figures were estimated based on the standard of SEDC's housing project and the findings of field survey conducted by the Study Team.

2/ Source: Valuation Department, Kemaman Figures were confirmed by private construction company.

- c-1-2) Depreciated values of houses at the year 1985, 2000 and 2010 are calculated based upon the estimated figures concerning:
 - a) Number of houses by wood/permanent,
 - b) Weighted average rate of depreciation for houses.
 - a) and b) are summarized in Tables E.4 and E.5 with notes.

TABLE E.4 NUMBER OF HOUSES BY WOOD/PERMANENT

	1985		20	2000		2010	
	WOOD	PERMANENT	WOOD	PERMANENT	WOOD	PERMANENT	
нісн	47	186	140	1020	244	2384	
MEDIUM	1878	1878	2857	5796	4490	12330	
LOW	2080	231	1608	179	1714	191	
COMMERCIAL	76		1	.73	3	37	

Source: Study Team, 1985

Note : -90% of high class houses constructed after 1985 is expected to be permanent.

-80% of medium class houses constructed after 1985 is expected to be permanent.

-10% of low class house constructed after 1985 is expected to be permanent.

TABLE E.5 WEIGHTED AVERAGE RATE OF DEPRECIATION 1985 2000 2010 WOOD PERMANENT WOOD PERMANENT WOOD PERMANENT HIGH 40 3 24 10 8 11 MEDIUM 3 40 32 20 28 13 LOW 40 3 40 20 39 25 COMMERCIAL 20 20 19

Source: Study Team, 1985

Note: - Depreciation rates for wooden, permanent house and shophouse are 2%, 1% and 1.5% of construction cost per year respectively (Source: Valuation Department in Kemaman).

 Average rates of depreciation are calculated with a weight of number of houses by the years after construction.

With Tables E.4 and E.5, we finally arrive at depreciated value of house at the year 1985, 2000 and 2010. Table 6 presents the results.

	•		4
m., n	i		J.
TABLE E.6	DEPRECIATED	VALUE OF HOUSE	$(x10^2 MS.1985 price)$

	. 19	1985		2000		2010	
	WOOD	PERMANENT	WOOD	PERMANENT	WOOD	PERMANENT	
HIGH	216	582	274	540	331	534	
MEDIUM	156	398	176	328	187	357	
LOW	78	272	78	224	79 .	210	
COMMERCIAL (+ equipment)		730		836	8	46	

c-1-3) Household Article

Quantity of household articles is expected to increase at the same rate as the growth rate of GRDP. Value of this sub-item, therefore, increases year by year.

Estimated function is given below:

$$\begin{pmatrix} \text{household} \\ \text{articles' value} \\ \text{at the year t} \end{pmatrix} = \begin{pmatrix} \text{value at the} \\ \text{year, } 1985 \end{pmatrix} \times \left(1 + \frac{r}{100}\right)^{t-1985}$$

Where, t; year

r; growth rate of GRDP

Results are shown in Table E.7.

TABLE E.7 VALUE OF HOUSEHOLD ARTICLES DAMAGE POTENTIAL PER HOUSEHOLD
(x10² M\$)

		985		000	2	010
	WOODEN	PERMANENT	WOODEN	PERMANENT	WOODEN	PERMANENT
HIGH	116	200	197	340	230	484
MEDIUM	40	76	68	129	76	184
LOW	10	37	17	63	37	90

c-1-4) Commercial Building

This sub-item consists of two componentns:—

- Commercial building (shophouse)
- Stock

First item is explained together with the house. Second sub-item is estimated based upon the figures in 1985.

Estimated value of stock for each shophouse is 28,000 Malaysian dollars per commercial unit, which is the average of stock per commercial unit in

the Cukai town area in 1985, Original data are collected during the asset survey by the Study Team,

c-2) Public Property Damage Potential

This item contains six sub-items. Actual values of flood damage in case of 1983 flood are expanded at the growth rate of population in the Cukai town area, and arrived at the value of damage potentials at the year 1985, 2000 and 2010. Those are shown in Table E.8.

TABLE E.8 PUBLIC PROPERTY DAMAGE POTENTIAL (IN CASE OF THE SAME FLOOD DISCHARGE AS THE 1983 FLOOD)

			(X10 ³ M\$)
	1985	2000	2010
1)School Damage	38	107	175
2)Electricity Facilities	126	353	580
3)Telecommunication Facilities	0		0
4)Water Supply Facilities	0	0	0
5)Road	22	62	101
6)Bridge	0	0	0

Source: Kemaman District Office

All the figures are converted into the value weighted by the flood frequency.

c-3) Agriculture Products' Damage Potential

Estimation of this damage is not conducted because:

- no commercial agricultural activity exists, and all agricultural products are consumed within producers' houses.
- -- each unit of cultivated area is small.

Impact of estimation error attributable to this exclusion is examinated in a sensitivity analysis.

c-4) Income/Sales Loss Potential

This item consists of four sub-items; which are: -

- workers' income loss
- shop sales loss
- electricity consumption loss
- transportation charge loss

General estimation function is given below:-

Income/Sales = (Loss per day) x (Duration day) x (Number of person/Loss Potential shophouse)

Brief explanations on each sub-item are given below.

a) Workers' income loss

Those who live in the low class and wooden houses are assumed to be diem workers, engaging in fishing, mining and so on.

Their average diem is assumed 22 Malaysian dollars per day, lower than the national opportunity cost of labour. Data are collected during the asset survey by the Study Team.

b) Shop salesloss

Average sales performance is assumed to be 650 Malaysian dollars per day, based upon the asset survey data compiled by the Study Team.

c) Electricity consumption loss

Actual value of damage in case of the 1983 damage is expanded at the growth rate of population and arrives at the damage potential at the year 1985, 2000 and 2010.

Those are converted into the value weighted by the flood frequency.

d) Transportation charges loss

Concerning the bus charge and taxi charge, no actual loss attributable to the 1983 flood is apparent in the Cukai town area.

As for beca charge loss, it accounts for negligible part of flood damage as a whole. This is, therefore, excluded in the flood damage calculation.

E.3 ECONOMIC EVALUATION

Besides the assumptions described in Chapter 9, the followings are set.

(Economic price)

Economic prices of cost items are calculated based upon the conversion factors, which are:—

- opportunity cost of labour = 0.77

- opportunity cost of construction matterial = 0.77

- opportunity cost of capital = 8%

(Source: National Parameter for Economic Evaluation, EPU, 1979.)

Benefits and costs of the project are tabulated in Tables E.9 to E.13.

Table E.9 BENEFIT OF THE PROJECT

(Unit (Unit: x106 M\$)

			Flood F	requency (%	6)	
<u> </u>		20	10	5	2	1.1
	1985	7.0	8.2	4.3	6.2	2.6
Alternative-1	2000	19.8	29.3	28.8	37.6	19.9
	2010	35.1	96.0	61.4	82.0	34.4
	1985	7.0	8.5	5.0	6.4	5.0
Alternative2	2000	21.0	32.7	32.6	42.8	34.4
	2010	38.5	105.4	72.7	92.1	74.0
	1985	7.4	8.5	5.0	6.4	5.0
Alternative-3	2000	23.6	32.7	32.6	42.8	34.5
	2010	44.5	105.4	72.7	93.2	74.0
	1985	7.0	8.5	4.4	6.1	4.7
Alternative-4	2000	19.8	30.3	29.6	37.2	29.9
	2010	35.2	97.9	63.5	80.7	60.0

Source: Table E.2.

Unit : M\$ 10 ⁶	GRAND TOTAL	5.00	5.00	11.52	6.86	46.05	4.73	2.59	34.72	35.58	36.70	4.26	193.01	5.50	198.51
nit :	2001					٠		0.37		1.78		0.54	2.69		2.69
n	2000							0.37		2.60		0.54	3.51	·	3.51
	1999							0.37		2.60		0.54	3.51		3.51
	1998			-				0.37		2,60		0.54	3.51		3.51
	1997							0.37		2.60		0.54	3.51		3.51
	1996							0.37	3.52	2.60	9.38	0.36	16.23	0.20	16.43
_	1995							0.37	3.90	2.60	05.6	0.32	16.59	0.20	16 79
TIVE 1)	1994					7.00	1.00	;	3.90	2.60	07.6	0.28	24.18	09.0	
TERNA	1993					7.00 7.00	1.00	!	3.90	2.60	4.00	0.20	18.70 ;	09.0	19.30 24.78
SCHEDULE (ALTERNATIVE	1992					7.00	1.00	i	3.90	2.60	4.52	0.16	9.18	0.60	19.78
SCHEDI	1991		2.00	3.52		7.00	1.73		3.90	2.60	٠	0.12	20.87 1	1.00	21.87
expenditure	1990		2.00	4.00	2.00	9.00		!	3.90	2.60		0.08	23.58	1.00	24.58
EXPENI	1989		1.00	4.00	2,00. 2,00	9.05	٠.		3.90	2.60		0.04	22.59 2	1.00	23.59 2
	1988				2.00				3.90	2.60			8.50 2	0.30	8.80
	1987	2.00			0.86								2.86		2.86
	1986	3.00											1.00		3.00
TABLE E.10	ITEM	PREPARATION WORKS	BARRAGE	RIVER MOUTH IMPROVEMENT	LAND AQUISITION/ KG. RELOCATION	DREDGING AND DYKE/ LAND FILLING	CUKAI RIVER IMPROVEMENT	MAINTENANCE (*1)	TRUNK DRAIN	SECONDARY DRAIN	PUMPING STATION	MAINTENANCE (*2)	SUBTOTAL	CONSULTANTS FEES (*3)	TOTAL
TABI				STSO	BOF C	CONL	EFOOD	•	TIN-	COS DE∖	'CE 'VN	aяu A			

Note: 1. *1 0.5% of FLOOD CONTROL COSTS every year

2. *2 1% of TRUNK DRAIN COST every year and M\$ 0.04 x 106 every year for K-2 P.S

and M\$ 0.10 x 10 every year for K-2 P.S

3. Other maintenance cost is M\$ 4.44 x 106 every 20 years for K-2 P.S and

M\$ 12.09x 10 every 20 years for K-3 P.S

4. *3 Consultants Fees are 5% of Flood Control Cost and Trunk Drain Cost.

TABLE E.11

EXPENDITURE SCHEDULE (ALTERNATIVE 2)

					٠											Juit :	Unit : MS 10
	1986	1986 1987 1988	1988	1989	1661 0661	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	GRAND TOTAL
PREPARATION WORKS	3.00	2.00															5.00
				1.00	2.00	2.00											5.00
DIVERSION CHANNEL/ RIVER MOUTH IMP.				8.52	8.00	8,00.8,00	8.00										32.52
LAND AQUISITION/ KG. RELOCATION		0.56	1.00	2.00	2.00									•			5.56
DREDGING AND DYKE/ LAND FILLING				6.26	7.00	5.00	5.00	5.00 .5.00	5.00								33.26
				0.59	3.00	3.00	3.00	3.00	3.00								15,59
MAINTENANCE (*1)								•		0.46	97.0	0.46	0.46	0.46	0.46	97.0	3.22
			3.90	3.90	3.90	3.90	3.90	3.90	3.90	3,90	3.16						34.36
SECONDARY DRAIN			2.70	2.70	2.70	2,70	2.70	2.70	2.70	2.70	2.70	2.70	2.70	2:70	2,70	1.62	36.72
						2.80	2.80	2.80	2.80	2.80	2.80	2.80	2.80	2.80	2.80	2.15	30.15
MAINTENANCE (*2)				0.04	0.08	0.12	0.16	0.20	0.24	0.28	0.32	0.36	0.36	0.36	0.36	0.36	3.24
	1.00	2.56	7.60	25.01	28.68	27.52	25.56	17.60	17.64	10.14	9.44	6.32	6.32	6.32	6.32	4.59	204.62
CONSULTANTS FEES (*3)			0.30	1.20	1.20	1.00	1.00	0.60	09.0	0.20	0.20						6.30
	3.00	3.00 2.56	7.90	26.21	29.88	28.52	26.56	18.20	18.20 18.24 10.34	10,34	9.64	6.32	6.32	6.32	6.32	4.59	210.92

Source: Study Team. 1985

Note : 1. *1 0.5% of FLOOD CONTROL COSTS every year
2. *2 1% of TRUNK DRAIN COST every year
3. *3 Consultants Fees are 5% of Flood Control Costs and Trunk Drain Cost.

				EXPE	expenditure	E SCHE	DULE (ALTERN	SCHEDULE (ALTERNATIVE 3)	3)					ן נ	Unit :	: M\$ 10 ⁶
	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	GRAND
PREPARATION WORKS	3.00	2.00															5.00
				1.00	2.00	2,00								 - 			5.00
DIVERSION CHANNEL/ RIVER MOUTH IMP.				8.52	8.00	8.00	8.00					•					32.52
LAND AQUISITION/ KG. RELOCATION		1.00	1.10	2.00	2.00											•	6.10
DREDGING AND DYKE/ LAND FILLING				4.51	7.00	5.00	5.00		5.00					4			26.51
								6.50								-	6.50
			٠	0.59	3.00	3.00	3.00	3.00	3.00								15.59
MAINTENANCE (*1)										0.46	0.46	97.0	0.46	0.46	97.0	97.0	3.22
			3.90	3.90	3.90	3.90	3.90	3.90	3.90	3.90	3.25						34.45
SECONDARY DRAIN			2.70	2.70	2.70	2.70	2.70	2.70	2,70	2.70	2.70	2.70	2.70	2.70	2.70	2.72	37.82
						1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.00	16.00
A MAINTENANCE (*2)				0.04	0.08	0.12	0.16	0.20	0.24	0.28	0.32	0.36	0.36	0.36	0.36	0.36	3.24
, , , , , , , , , , , , , , , , , , ,	1.00	3.00	7.70	23.26	28.68	26.22	24.26	17.80	16.34	8.84	8.23	5.02	5.02	5.02	5.02	4.54	191.95
CONSULTANTS FEES (*3)			0.30	1.20	1.20	1.00	1.00	09.0	09.0	0.20	0.20		*.				6.30
	3.00	3.00	8,00	24.46	29.88	27.22	25.26	25.26 18.40 16.94	16.94	9.04	8.43	5.02	5.02	5.02	5.02	4.54	198.25

Source : Study Team, 1985

Note : 1. *1 0.5% of FLOOD CONTROL GOSTS every year 2. *2 1% of TRUNK DRAIN COST every year 3. *3 Consultants Fees are 5% of Flood Control Costs and Trunk Drain Cost.

EXPENDITURE SCHEDULE (ALTERNATIVE 4)

Source : Study Team, 1985

Note: 1. *1 0.5% of FLOOD CONTROL COSTS every year
2. *2 1% of TRUNK DRAIN COST every year
3. *3 Consultants Fees are 5% of Flood Control Costs and Trunk Drain Cost.

E.4 SENSITIVITY ANALYSIS

(CONDITIONS)

The alternative with the highest cost efficiency and favourable non-tangible effects is Alternative 3, and this is examined in vairous aspects.

Cost is further devided into labour cost and construction material/maintenance cost. Labour cost accounted for 21.8% of the total cost, while construction material/maintenance for 78.2%.

(CONCLUSIONS)

EIRR shows slightly elastic changes, corresponding to the fuctuation of benefits rather than that of costs.

EIRR ranges from 4.8% to 9.9% corresponding to the change in benefits and costs (-30% to +30%).

TABLE E.14 SENSITIVITY ANALYSIS
(ALTERNATIVE-3, EVALUATION PERIOD; 30 YEAR)

		Chang	es in	Cost a	nd Ben	efit (%)
	-30	-20	-10	0	+10	+20	+30
Total Cost	9.9	8.9	8.0		6.6	6.0	5.5
Labour Cost	7.4	7.2	7.0		6.7	6.6	6.4
Construction Material Cost	8.9	8.1	7.5	7.2	6.4	5.9	5.4
Total Benefit	4.8	5.7	6.5	7.5	7.9	8.5	9.2

TABLE E.15 SENSITIVITY ANALYSIS (EVALUATION PERIOD; 50 YEARS)

 Alternative
 Alternative
 Alternative
 Alternative

 1
 2
 3
 4

 EIRR
 7.1
 7.5
 8.2
 7.3

(Unit: %)

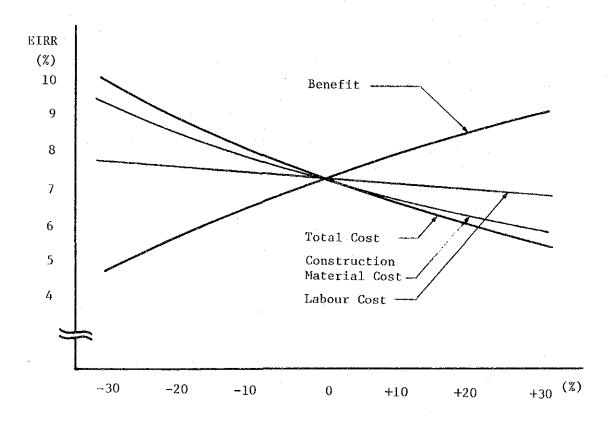


FIG. E.3. SENSITIVITY ANALYSIS

E.5 DEVELOPMENT POTENTIAL

E.5.1 New Town Centre Development Potential

In case of ALTERNATIVE 2 and 3, the drainage area K-5 which located North of planned diversion channel has high development potential because of direct connection with existing commercial centre of Cukai town.

- a) Land value in case of without project, ALT. 1 and ALT. 4 is as followsings:
 - Additional Residential Area 45 ha
 (Newly developed residential area)
 - Development Cost (filling + inflastructure) 15 M\$/ m^2

 $45 \times 10^4 \times 15 = 6.75 \times 10^6$ (M\$)

- Land Value 35 M\$/m²

 $45 \times 10^4 \times 35 = 15.75 \times 10^6$ (M\$)

- Present Land Value 9 M\$/m²

 $45 \times 10^4 \times 9 = 4.05 \times 10^6$ (M\$)

TABLE E.16

LANDUSE IN POTENTIAL LAND

Unit: hectar

LANDUSE	AREA	REMARKS
Water Surface	20	Canal, Marina, Yacht harbour, Swamp area, etc.
Road and Public Facility Area	. 11	Road, Side walk, Lighting, Public building (Fire station, Police etc.)
Park and Recreational Area (Public)	14	Include Private & Public Marina and Yacht club, Gardent etc.
Commercial & Bussiness Area	15	(to be sold or rent)
Residential Area (High Class)	. 12	(to be sold or rent)
(Medium Class)	10	(to be sold or rent)
TOTAL	82	

Incremental value by development is

$$15.75 - 6.75 - 4.05 = 4.95 = 5.0$$
 (million M\$) (without project)

- b) Land value in case of New Town Centre Infrastructure project carried out.
 - Assumed landuse for Town Centre is as following.
 - Infrastructure Cost is assumed as followings: –

Filling the land

$$62 \times 10^4 \times @5 \text{ M}\$/\text{m}^2 = 4.6 \times 10^6 \quad (\text{M}\$)$$

Inflastructure & Environmental development (Road, water supply, sewer, electricity, landscaping etc.)

25 million (M\$)

Present land value (State land: 9 M\$/m²) 82ha

7.38 million (M\$)

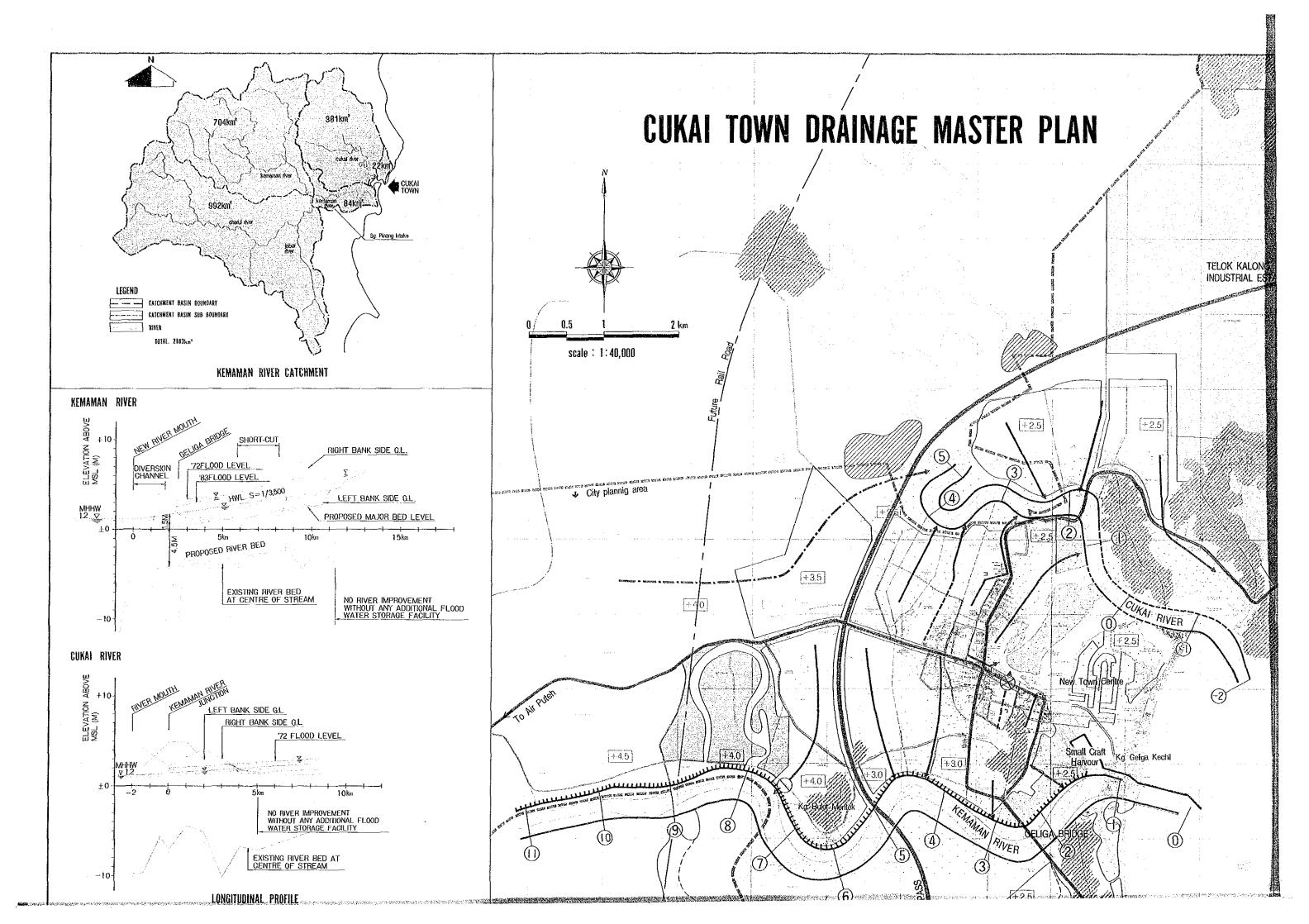
Total Development Cost Approx 37 Million (M\$)

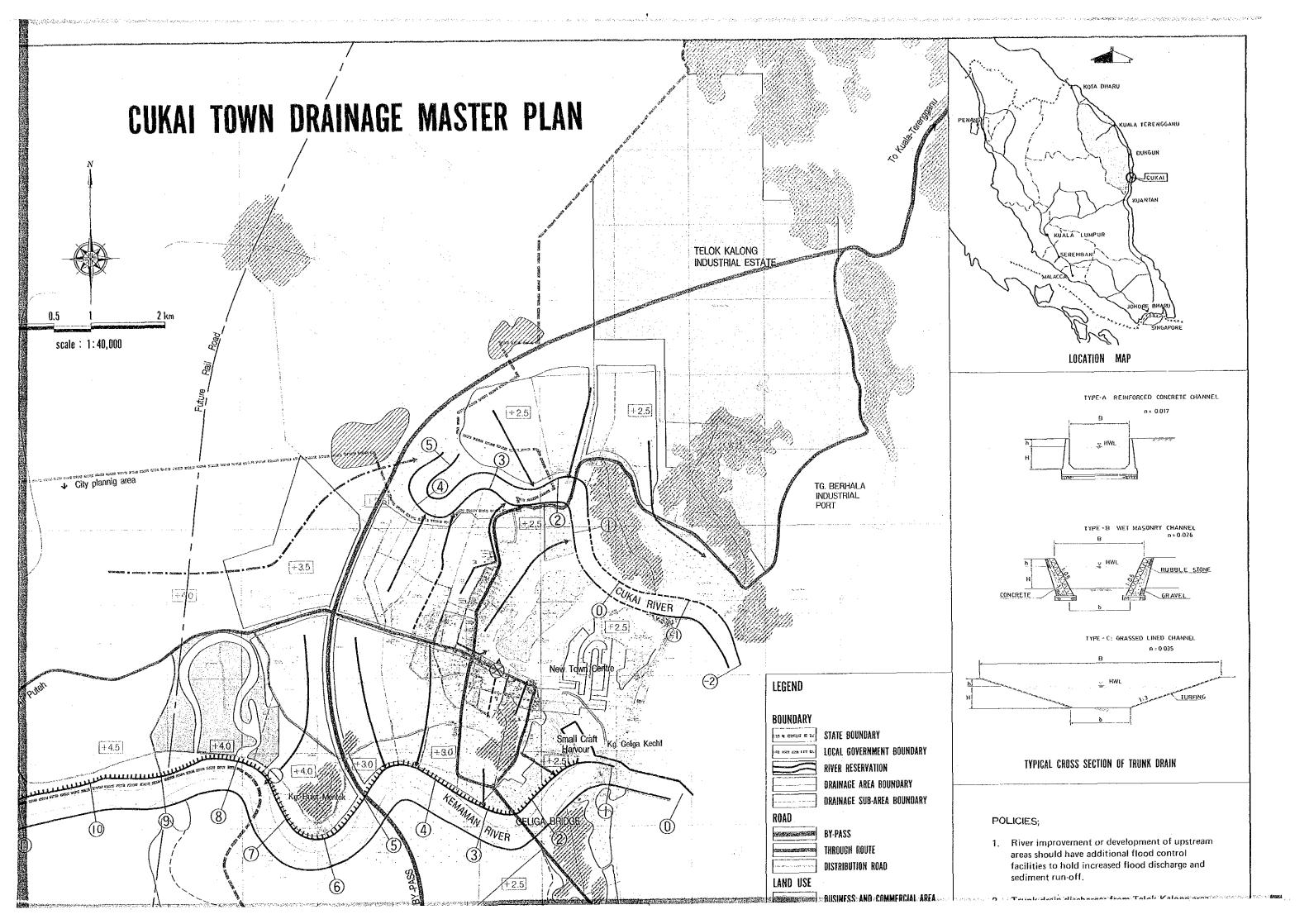
- Selling price of land

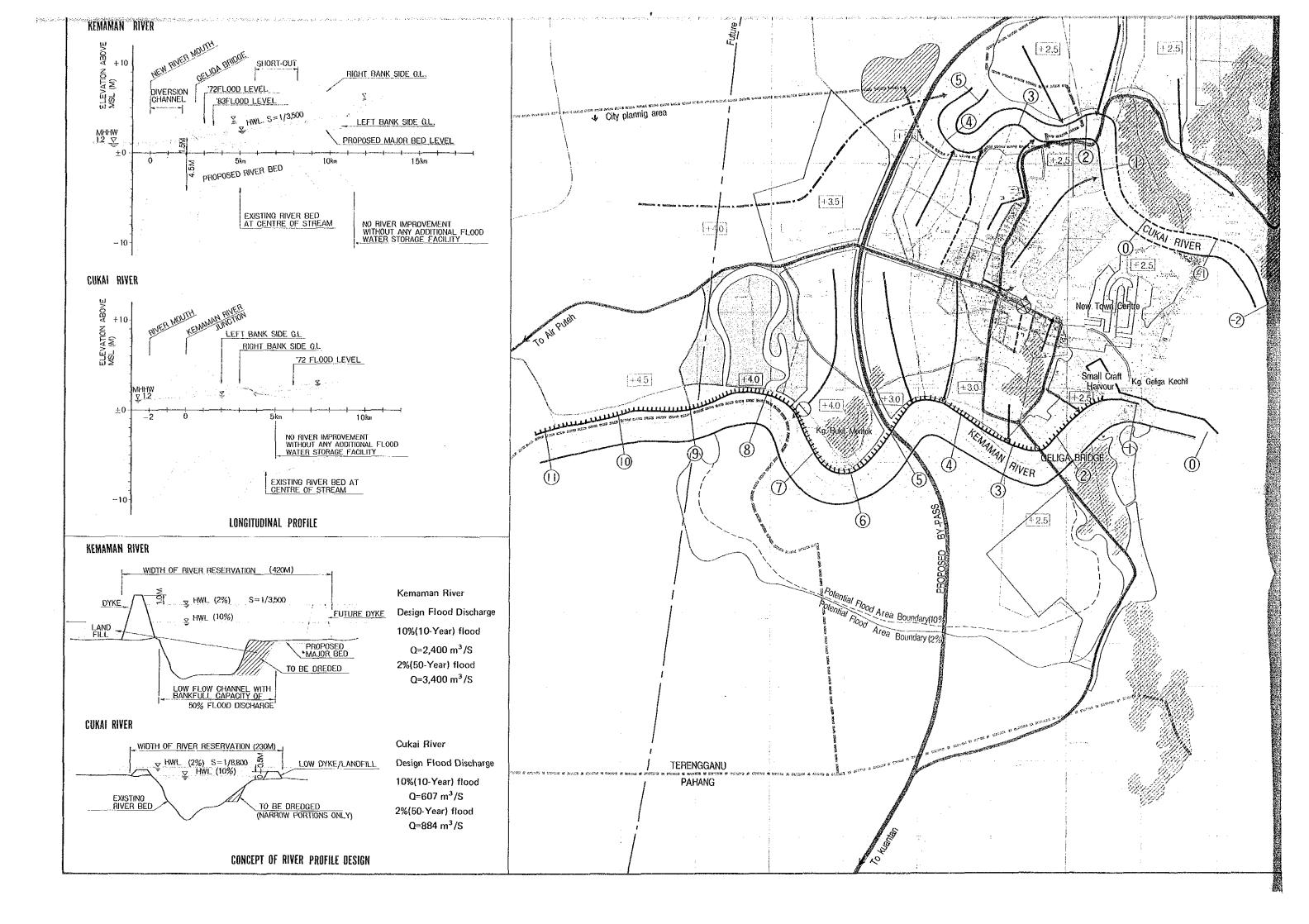
•	Million M\$	Million M\$
Commercial area	(15 ha @ 500 M\$/m²)	75
High Cost Residential	(12 ha @ 300 M\$/m²)	36
Medium Cost Residential	(10 ha @ 200 M\$/m²)	20
	Total	131

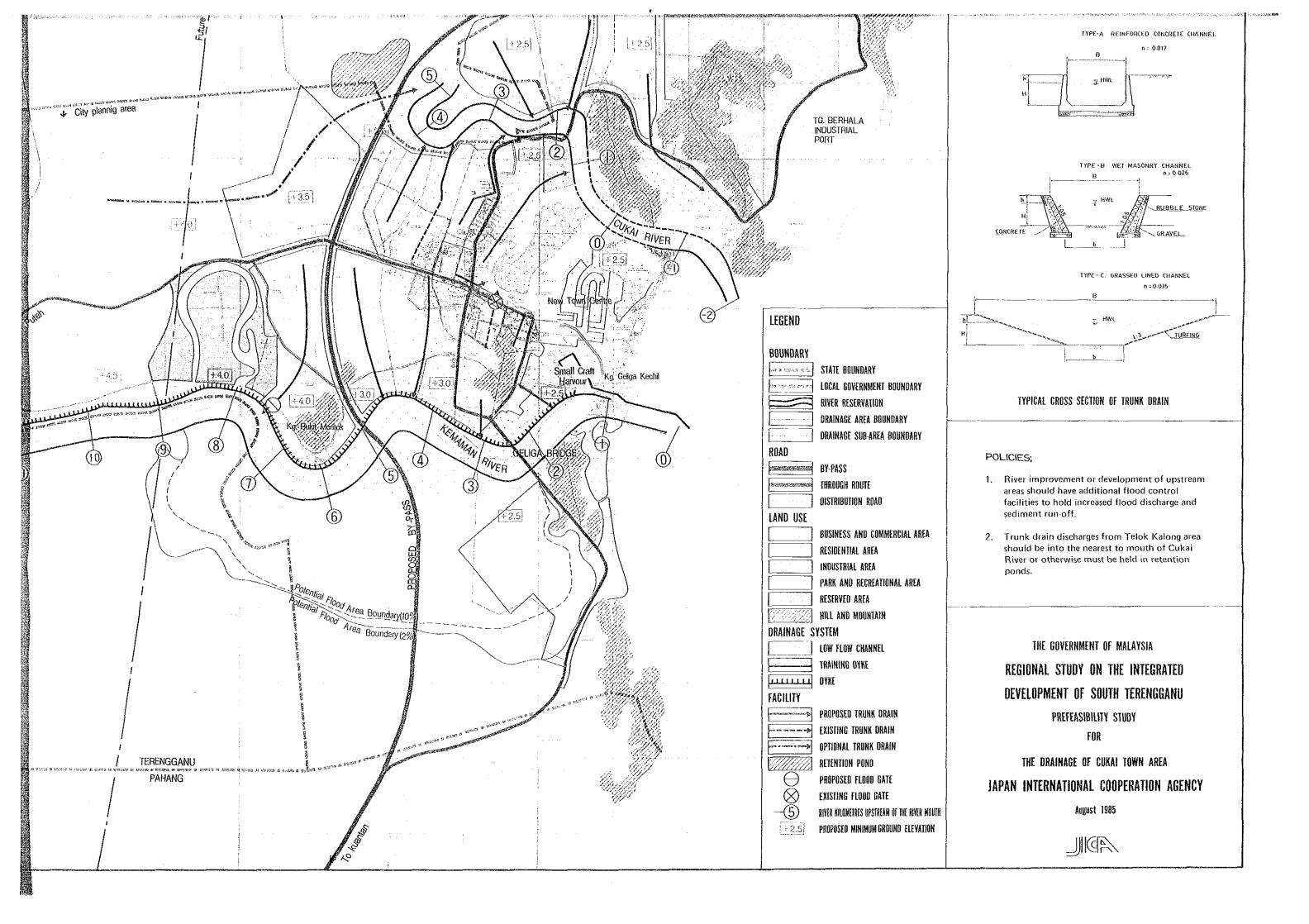
- Total Land Value increasement after Town Centre infrastructure project.

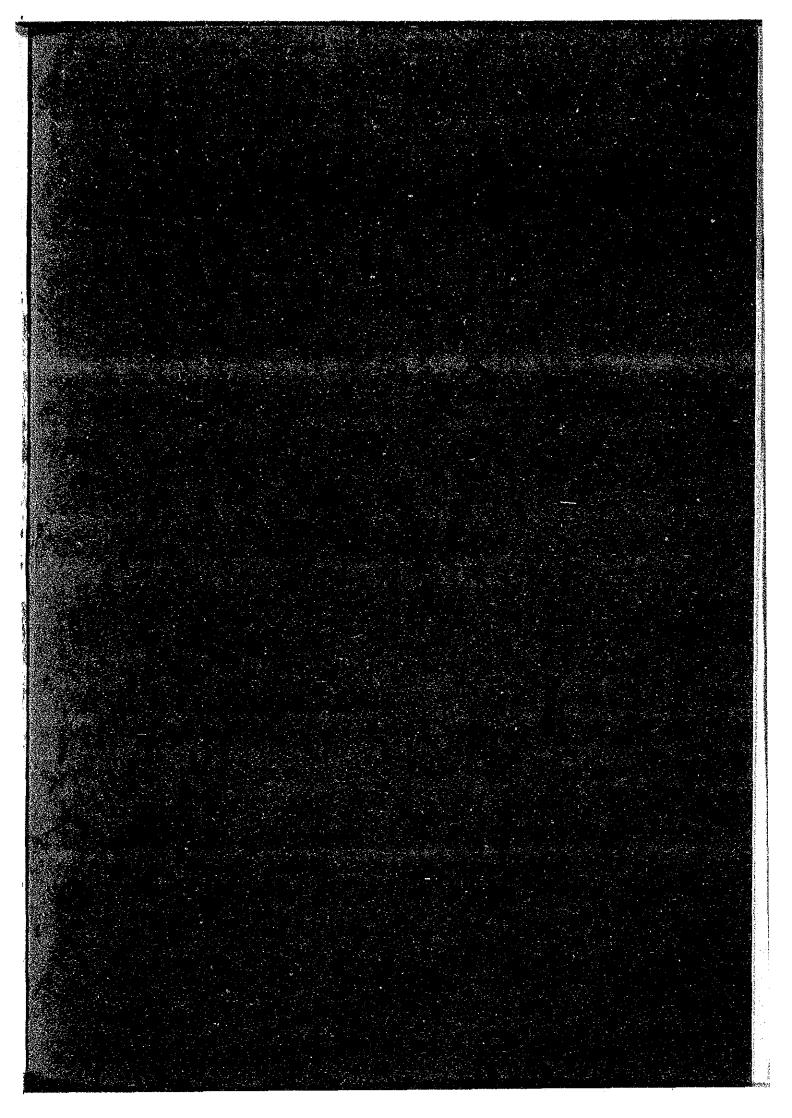
$$131 - 37 = 94 \text{ (Million M\$)}$$
with project (ALT. 2 & 3)


c) Difference between with Town Centre Development (ALT. 2, ALT. 3) and normal residential development (ALT 1, 4 and without project) is calculated as follows.


$$94 - 5 = 89$$
 (Million M\$)


Then this amount can be considered potential development benefit for the case of ALT - 2 and ALT - 3.


"AN EXAMPLE OF NEW TOWN CENTRE DEVELOPMENT PLAN", which is used to calculate the potential of development described above, is shown on Fig. A. 5.


• •

